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ABSTRACT 

The purpose of this design based research (DBR) study was to investigate the grade 

11 students' understanding of quadratic inequalities in a graphing calculator (GC) 

enhanced mathematics classroom. The study was framed within the pragmatic 

paradigm which is committed to multiple world-realities. This pragmatic paradigm 

embraces mixed methods to collect both quantitative and qualitative data on 

students' understanding of quadratic inequalities and to generate evidence that 

would guide educational practice. This study consisted of three main research cycles 

of the teaching experiments i.e., three high schools in Gauteng province and were 

conducted in phases. A hypothetical learning trajectory (HLT) was developed in the 

first phase and used for monitoring the hypotheses, assessing the starting point of 

students’ understanding and formulating the end goals. The instructional activities 

were created using the heuristics from the guided reinvention, didactical 

phenomenology and emergent models. The feed-forwards from the first two research 

cycles helped to improve the HLT leading to a coherent local instructional theory for 

quadratic inequalities in a GC environment.  

The findings of the three research cycles were that the use of an integrated 

approach (graphic and algebraic) proved to be an effective learning strategy for 

solving quadratic inequalities in a GC mediated classroom. Students were able to 

visualise and interpret the graphs and their properties (e.g., zeros, intervals, axis of 

symmetry, concavity and domain) displayed on the screens of the GCs.  Students 

used instrumented action schemes of graphing and tabulating values to develop and 

reify the concept of quadratic inequalities. Students also led to meaningfully written 

solution sets of quadratic inequalities using correct interval notations. The results of 

the pre- and post-tests showed that there was a significant difference in the mean 

scores, suggesting an improved performance.  

The effectiveness of the GC use on students’ performance was practically justified 

by the Cohen’s d effect sizes, which were large in all the three cycles. Secondly the 

use of real-life mathematical situations involving linear inequalities as the starting 

points supported the students’ conceptual understanding of quadratic inequalities. 

The students’ understanding of real-life mathematical situations moved from the 

referential level to the general level. The use of the GC also enhanced the students’ 
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reasoning and problem solving skills in quadratic inequalities. These skills enabled 

students to represent real world problems mathematically (horizontal 

mathematization), solve the problem using the initiated strategies, interpret the 

model solutions and look back at the adequacy of their solutions. However, a 

cognitive obstacle for many learners was to help them to develop metacognitive or 

executive control skill of self-monitoring during problem solving in all three cycles. 

The use of the GC also afforded the students an opportunity to move from the 

informal reasoning (horizontal mathematising) to formal reasoning (vertical 

mathematising). The findings support previous studies in the domain that the use of 

the GC improves students’ understanding in learning mathematics.  

The findings of the three cycles permitted to produce evidence-based heuristics such 

as design principles that might inform the future decisions for learning quadratic 

inequalities in a flexible GC environment. The main design principle of this study 

was: Graphically representing quadratic inequalities in a flexible graphing calculator 

environment.  To this end, the focus was to help students become flexible in dealing 

with quadratic inequalities in the form of symbols, graphs, or contextual problems. 

Other essential design principles that emerged in these three cycles were a) the 

training students to use the GC fluently to reduce chances of the limited viewing 

window for becoming a source for students' misconceptions and b) using the GC 

cannot address all learning styles, and must be complemented by other traditional 

methods. 

It is hoped that the findings of this study will contribute to the research literature on 

how to effectively teach the topic of quadratic inequalities. Similarly, professional 

development programmes and workshops for teachers can be conducted at cluster 

or district level starting with piecemeal group. Furthermore, the findings might be 

recommended to the textbook or curriculum developers for designing more 

explorative learning activities with graphing calculators. The results of the three DBR 

cycles might be added to the likelihood of transferability to other algebraic concepts. 
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OPSOMMING 

Die doel van hierdie ontwerpgebaseerde navorsing (DBR) was om die graad 11-

studente se begrip van kwadratiese ongelykhede in 'n grafiese sakrekenaar-

verbeterde wiskundeklaskamer te ondersoek. Die studie is geraam binne die 

pragmatiese paradigma wat verbind is tot veelvuldige wêreldrealiteite. Hierdie 

pragmatiese paradigma bevat gemengde metodes om sowel kwantitatiewe as 

kwalitatiewe gegewens te versamel oor studente se begrip van kwadratiese 

ongelykhede en om bewyse te genereer wat die onderwyspraktyk kan lei. Hierdie 

studie het bestaan uit drie hoofnavorsingsiklusse van die onderrigeksperimente, dit 

wil sê drie hoërskole in die provinsie Gauteng en is in fases uitgevoer. In die eerste 

fase is 'n hipotetiese leerbaan (HLT) ontwikkel en gebruik vir die monitering van die 

hipoteses, die beoordeling van die beginpunt van studente se begrip en die 

formulering van die einddoelwitte. Die onderrigaktiwiteite is geskep deur gebruik te 

maak van die heuristiek uit die geleide heruitvinding, didaktiese fenomenologie en 

ontluikende modelle. Die aanvoerders vanaf die eerste twee navorsingsiklusse het 

gehelp om die HLT te verbeter, wat gelei het tot 'n samehangende plaaslike 

onderrigteorie vir kwadratiese ongelykhede in 'n GC-omgewing.Die bevindinge van 

die drie navorsingsiklusse was dat die gebruik van 'n geïntegreerde benadering 

(grafies en algebraïes) 'n effektiewe leerstrategie was om kwadratiese ongelykhede 

in 'n GC-bemiddelende klaskamer op te los. Studente kon die grafieke en hul 

eienskappe (byvoorbeeld nulle, intervalle, simmetrie-as, konkawiteit en domein) wat 

op die skerms van die GC's verskyn, visualiseer en interpreteer. Studente het 

instrumentale aksieskemas gebruik om grafieke en tabelleerwaardes te gebruik om 

die konsep van kwadratiese ongelykhede te ontwikkel en te vernuwe. Studente het 

ook gelei tot sinvol geskrewe oplossings vir kwadratiese ongelykhede met korrekte 

intervalnotasies.  

Die resultate van die voor- en na-toetse het getoon dat daar 'n beduidende verskil in 

die gemiddelde tellings was, wat dui op 'n verbeterde prestasie. Die doeltreffendheid 

van die GC-gebruik op studente se prestasie is prakties geregverdig deur die Cohen 

se d-effekgroottes, wat in al die drie siklusse groot was. Tweedens het die gebruik 

van wiskundige situasies uit die werklike lewe wat lineêre ongelykhede betrek as 

vertrekpunte die studente se konseptuele begrip van kwadratiese ongelykhede 

ondersteun. Die studente se begrip van wiskundige situasies in die werklike lewe het 

van die referensiële vlak na die algemene vlak beweeg. Die gebruik van die GC het 

ook die studente se redenasie- en probleemoplossingsvaardighede in kwadratiese 

ongelykhede verbeter. Hierdie vaardighede het studente in staat gestel om regte 

wêreldprobleme wiskundig voor te stel (horisontale wiskunde), die probleem op te 

los met behulp van die geïnisieerde strategieë, die modeloplossings te interpreteer 

en terug te kyk na die toereikendheid van hul oplossings. 'N Kognitiewe struikelblok 

vir baie leerders was egter om hulle te help om metakognitiewe of uitvoerende 

beheersvaardighede van selfmonitering tydens probleemoplossing in al drie die 

Stellenbosch University https://scholar.sun.ac.za



vi 
 

siklusse te ontwikkel. Die gebruik van die GC het ook aan die studente die 

geleentheid gebied om van die informele redenering (horisontale wiskunde) na 

formele redenering (vertikale wiskunde) oor te gaan. Die bevindings ondersteun 

vorige studies op die gebied dat die gebruik van die GC studente se begrip in die 

leer van wiskunde verbeter. Die bevindings van die drie siklusse is toegelaat om 

bewysgebaseerde heuristieke te produseer, soos ontwerpbeginsels wat die 

toekomstige besluite oor kwadratiese ongelykhede in 'n buigsame GC-omgewing 

kan inlig.  

Die belangrikste ontwerpbeginsel van hierdie studie was: grafiese voorstelling van 

kwadratiese ongelykhede in 'n buigsame grafiese sakrekenaaromgewing. Met die 

oog daarop was die fokus om studente te help om buigsaam te raak in die hantering 

van kwadratiese ongelykhede in die vorm van simbole, grafieke of kontekstuele 

probleme. Ander noodsaaklike ontwerpbeginsels wat in hierdie drie siklusse na vore 

gekom het, was: a) die opleiding van studente om die GC vlot te gebruik om die 

kanse te verminder dat die beperkte kykvenster 'n bron word vir studente se 

wanopvattings en b) die gebruik van die GC kan nie alle leerstyle aanspreek nie, en 

moet aangevul word met ander tradisionele metodes.Die bevindings van hierdie 

studie kan gebruik word om kennis uit te brei en 'n bydrae te lewer tot die 

navorsingsliteratuur oor hoe om die onderwerp van kwadratiese ongelykhede 

effektief te onderrig. Op soortgelyke wyse kan professionele 

ontwikkelingsprogramme en werkswinkels vir onderwysers op groeps- of distriksvlak 

aangebied word vanaf 'n groepsverband. Verder kan die bevindings aanbeveel word 

aan die handboek of kurrikulumontwikkelaars om meer ontdekkende leeraktiwiteite 

met grafiese sakrekenaars te ontwerp. Die resultate van die drie DBR-siklusse kan 

moontlik bygevoeg word tot die waarskynlikheid van oordraagbaarheid na ander 

algebraïese konsepte. 
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CHAPTER 1: INTRODUCTION AND ORIENTATION OF THE STUDY 

1.1 Introduction  

This chapter explains the background of the problem to lend relevance to the study. 

A brief description of technology use in mathematics education in the South African 

context was dealt with. In this study, the notion of technology was understood as the 

use of graphing calculators (GCs). The statement of the problem, the purpose of the 

study, the research questions and significance of the study provided the reason for 

conducting this research. Design-based research (DBR) is introduced as the 

methodology suitable for technology-enhanced learning environments [TELEs]. The 

limitations and delimitations of the study are discussed. Definitions of key terms and 

terminology used in this study are made. The chapter then concludes by giving an 

overview of the thesis. 

1.2 Background of the study  

The nature and quality of learning mathematics consistently seems to be a concern 

in secondary schools in South Africa. There is growing disappointment that 

education does not achieve the national goals as reflected in the National Senior 

Certificate (NSC) Mathematics results. Grade 12 results which are the benchmark of 

the country’s level of performance in mathematics do not match up with the 

government’s effort towards improving quality education. As a nation we 

underperform in mathematics; this is more pronounced in disadvantaged secondary 

schools. Bennet and Carre (1993) stated that this is not only a South African problem 

but a worldwide concern. They further express the view that it is essential for 

students to receive quality education resulting from their teachers’ comprehension of 

a broad curriculum and deeper knowledge of some specialised aspects of it. A 

question arises as to whether students in South Africa receive quality learning 

supported by the productive use of technology in mathematics classrooms. 

1.2.1. Government policies on education system 

Government policies have an impact on the education system of any given country. 

In the context of the South African history, an apartheid regime had educational 

policies which disadvantaged the education of the majority. The Bantu Education Act 

(1953) legitimised the downgrading of the quality and level of education for black 

Stellenbosch University https://scholar.sun.ac.za



2 
 

people so that their academic certificates became irrelevant to the labour market 

(Hlatshwayo, 2000). In addition, the apartheid education policies were characterised 

by teacher-centred teaching, rote learning, and an obsession with content and 

punitive formal examinations designed to achieve high levels of failure (Edwards, 

2016). Educational resources were unevenly distributed in schools and it has proved 

to be difficult to redress the situation by just donating resources to those schools. 

Since the advent of democracy in 1994, South Africa has been investing much in 

education to close the gap created by the apartheid government by the provision of 

quality education to disadvantaged communities. It should be noted that the 

apartheid regime left a legacy of unequal distribution of resources in schools 

populated by the black majority students (Mooketsi, 2016; Hlatshwayo, 2000). This 

has also affected the distribution of ICT resources in schools, hence impacting on 

the provision of quality education. 

Major socio-economic reform initiatives have taken place to replace the apartheid 

policies with policies that would promote democratic principles and be relevant for a 

multicultural society (Sayed & Kanjee, 2013; Edwards, 2016). The democratic 

government of South Africa gazetted the White Paper on e-Education policy (DoE, 

2004), intended to transform and reconstruct the education system (Mooketsi, 2016). 

The policy states, in some of its key clauses that South African teachers and 

learners ought to: 1) use available information and communication technologies to 

actively participate and contribute to the knowledge society, and 2) become efficient 

in communication and collaboration skills with or without use of ICTs (DoE, 2004). 

This suggests that this policy on e- Education is meant to facilitate and provide 

proper guidance on the integration and advancement of digital technology in 

teaching and learning.  The e- Education policy further states that teachers and 

learners have to acquire and master ICT skills in order to be able to interact 

meaningfully with ICT (DoE, 2004). Such skills may help both teachers and learners 

to actively interact with graphing calculators in mathematics classrooms as the 

available technology for information and communication.  

In pursuit of the e-education policy, there have been reforms of curriculum structure 

to suit the implementation of the ICT education policy, which requires the integration 

of technology in mathematics classrooms, in particular. This has seen major 
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curriculum reform initiatives taking place to replace the apartheid curriculum such as 

Outcome Based Education (OBE), National Curriculum Statement (NCS) and 

Curriculum Assessment Policy and Statement (CAPS). The new curriculum aimed to 

promote democratic principles and be relevant for a multicultural society (Sayed & 

Kanjee, 2013; Edwards, 2016). The main focus of the reformed curriculum structure 

was to improve and incorporate technology in the teaching and learning process in 

secondary school classrooms and administrative practices. This has been on how to 

add value to the provision of education through the pronouncement of pedagogically 

integrated technology in the learning. 

1.2.2. South African students’ international performance in mathematics  

South Africa is one of the low performing countries in mathematics compared to 

other participating countries. The Trends in International Mathematics and Science 

Study (TIMSS) is an assessment of the mathematics and science knowledge of 

fourth and eighth grade students around the world. TIMSS was developed by 

the International Association for the Evaluation of Educational Achievement (IEA) to 

provide participating nations opportunity to benchmark the students’ educational 

achievement across borders in mathematics and science (Mc Tighe & Seif, 2003). In 

the case of this current study, the researcher is interested in the performance of the 

secondary school learners. The earlier South African data showed that a high 

number of Grade 8 learners did not attempt to answer many of the mathematics 

items, which made estimating achievement scores extremely difficult (Reddy, Visser, 

Winnaar, Arends, Juan and Prinsloo, 2016). To provide better estimates, in 2003 

South Africa assessed Grade 8 and 9 learners, and in TIMSS 2011 and 2015 only 

Grade 9 learners were assessed.  

A sample of 300 schools for The TIMSS 2015 was drawn from 10 009 schools in 

South Africa, that offered Grade 9 classes. A total of 12 514 learners, 334 

mathematics teachers participated in the study conducted by the Human Sciences 

Research Council. Thirty-six countries participated at the Grade 8 level and three 

countries at the Grade 9 level (Norway, Botswana and South Africa). Of the 39 

participating countries, South Africa was ranked one of the five lowest performing 

countries with average scale score of 372, which included Botswana (391), Jordan 

(386), Morocco (384) and Saudi Arabia (368) (Reddy, et al., 2016). This means the 
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South African learners achieved a mathematics score below the international 

benchmark of 400 points, a score denoting the minimum level of competence. The 

TIMSS curriculum and assessment frameworks are organised around the 

mathematics content domains of number, algebra, geometry, data and chance. 

These results are indicative that students had misconceptions in these content 

domains at Grade 9, which can be transferred to the next grades if not properly 

resolved.  Other researchers had different perspectives towards the poor learner 

achievement of mathematics in South Africa. Reasons cited were that learners 

struggle to understand mathematics and are very good at recalling facts or 

answering questions involving procedural knowledge in TIMSS, 2011(Reddy, et al., 

2013) but lowly ranked in problem solving and higher- level cognitive abilities (Spaull, 

2013). Another possible reason for learners’ poor understanding is ineffective and 

poor teaching (Stols, 2013) which does not develop learners’ ability to solve 

problems, critical thinking, transfer and application of knowledge in new settings (Mc 

Tighe & Seif, 2003). This study presumed that in the context of resolving the 

students’ poor understanding of mathematics, the graphing calculator may serve to 

mediate the teaching and learning processes. 

1.2.3. Grade 12 students’ national performance in mathematics 

The Grade 12 students’ performance in public mathematics examinations in South 

Africa was mediocre from 2014 to 2017. The results are summarised in Table 1.1, 

below. As shown in the table, only 51.1% of students (127 197) who wrote the NSC 

Mathematics examination achieved 30% and above, and 35.1% of these students 

(86 096) achieved 40% and more in 2017 (DBE, 2017). This means 64, 9% achieved 

below 40% in mathematics, thus a huge percentage of students who did not meet 

the university requirements. For those students who wrote mathematics 

examinations in 2015, only 49.1% achieved 30% and more, and 31.9% of them 

achieved 40% and above. This means students performed badly as 50.9% of those 

who wrote achieved less than 30% in 2015.  

       Table 1.1: NSC Mathematics results: 2014-2017 
 No. Wrote No. achieved at 

30% and above 
% achieved at 

30% and above 
No. achieved at 
40% and above 

% achieved at 
40% and above 

2014 225 458 120 523 53,5 79 050 35,1 

2015 263 903 129 481 49,1 84 297 31,9 

2016 265 912 136 011 51,1 89 119 33,5 

2017 245 103 127 197 51,9 86 096 35,1 
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These improved results may have been attributed to the increase in the number of 

candidates who answered the knowledge and routine questions correctly (DBE, 

2017). This means students had difficulties with those questions that required non-

routine and problem solving skills across all topics in the curriculum. The report from 

the department of education however indicated that students’ algebraic skills are 

poor (DBE, 2017). It further revealed that most candidates lacked fundamental and 

basic algebraic competencies, which could have been acquired in the lower grades. 

In particular, many students were able to factorise the expression but could not solve 

the inequality (DBE, 2017). Students treated the inequality as an equation and this 

led to them writing answers that did not make sense.  Additionally, candidates also 

showed little or no understanding of the set builder or interval notation (DBE, 2014; 

2015; 2016; 2017). The use of graphing calculator may foster the development of 

such skills as it combines the algebraic and graphical representations. 

The report recommends that when teaching quadratic inequalities, teachers should 

integrate algebra with functions so that learners have a visual understanding of 

inequalities (DBE, 2017). It emphasises the need of stressing the meaning of the 

inequality signs in the teaching of both algebra and functions. It further suggests the 

use of different methods to solve quadratic inequality problems so that learners can 

choose the method they understand best. The DBE (2017) realised that students 

lacked proper understanding of the words “and” and “or” in the context of inequalities 

as they used them interchangeably. In that context teachers were encouraged to 

explain the difference between “and” and “or” as they are very different in meaning. 

The report recommends the use of the graphical representation of the different 

scenarios to explain the meaning of roots of an equation and the meaning of solution 

of the inequality (DBE, 2017). The use of the graphing calculator and hence this 

study was motivated by the suggestions emanating from this DBE report on the 

solution of quadratic inequalities.  

1.2.4. The use of the graphing calculators in Mathematics Education 

The use of GCs in mathematics has grown rapidly among students and teachers of 

developing and developed economies.  Different types of GCs, more sophisticated 

ones have been produced by different companies which include Texas Instruments, 

Casio and Sharp to mention a few. With the increasingly rapid development of 
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technology, GCs have begun to assume more and more computer-type capabilities 

(Muhundan, 2005) in mathematics classrooms of many countries. Initially computers 

and/or Computer Algebra Systems were largely used as instructional tools that can 

be used to make concepts more accessible, and easier to learn and understand. 

Because of their low cost, portability, and capability, GCs have been widely accepted 

as the appropriate technology-tools to be integrated into the teaching and learning of 

mathematics, in particular (Graham, 2005; Spinato, 2011). In particular, the speed, 

accuracy, and capabilities of current graphing calculators have led many teachers to 

believe that more emphasis should be placed on their use in mathematics 

classrooms (Muhundan, 2005; Spinato, 2011). These affordances of the GCs have 

assisted in introducing new ways for teaching and learning mathematics through 

graphical and symbolic representations. These representations may enhance 

students’ understanding of quadratic inequalities at the eleventh grade, which is the 

focus of this study. 

The initial reactions to GC technology in mathematics education were generally 

positive (Dunham & Dick, 1994; Muhundan, 2005). Students who used GCs 

experienced a rich mathematics curriculum that allowed them to focus on realistic 

applications. Muhundan (2005) further stated that the full use of GC could deepen 

students’ understanding of mathematics concepts. The large screen display, 

graphics capability, exploratory functions of graphing and multiline display 

calculators have afforded students better opportunities to explore concepts and 

problem situations of mathematics. With this regard, the use of GC enabled students 

with a supportive learning environment that may promote growth their mathematical 

knowledge. 

GCs have become more popular among students and teachers for several reasons. 

They perceive GCs as mini-computers with standard processors, display screens, 

and built-in software which offer interactive graphics, and on-screen programming 

and other built-in features, such as zoom-in, zoom-out, trace, and table. Many of 

these capabilities were previously available only on a mainframe or a 

microcomputer. These powerful capabilities, together with the decreasing cost and 

size, have made the use of GCs to be the best alternative technology for use in 

mathematics classrooms (Muhundan, 2005; Averbeck, 2000). It has been noted that 
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the use of GCs promotes exploration and generalization of mathematical concepts. 

Today, the use of GCs in school mathematics has increased in many parts of the 

world, including in Australia, Canada, and many countries in Europe and allowed in 

many standard mathematics exams (Muhundan, 2005). However, there is limited 

information about the use of GC in South African schools. In this context, students 

are deprived of significant range of opportunities benefitted by using this potentially 

powerful teaching and learning tool.  

Several questions and concerns are increasingly raised about the proliferation of GC 

in mathematics education, despite the recommendations made by renowned experts 

and researchers in relation to the use of GC. Foley in Muhundan (2005), on the one 

hand, raises some important questions relating to the presence and affordability of 

this technology about 1) how can this calculator affect mathematics education; 2) 

how can this calculator influence what is taught and how it is taught, and 3) how can 

this calculator improve students’ understanding of mathematics?. These are crucial 

questions that this study sought to answer in the South African context. On the other 

hand, Harvey in Graham (2005) raises similar concerns to be addressed through the 

use of GC: 1) we need to analyse carefully the content that we presently teach and 

that we would like to teach, 2) we need to determine the ways that GCs can help us 

teach that content, and 3) we must not cling to our present ways of teaching. 

Muhundan (2005) argues that the question to the mathematics community is not 

whether a GC is allowed in mathematics classrooms but how it is and should be 

used in students’ learning. In her meta-analysis study, Ellington (2003) provided the 

answers to the questions raised about the benefits of the use of GC to the students’ 

understanding of mathematics. She summarised that the greatest student gains 

were found when calculators assumed a pedagogical role in the classroom, beyond 

being available for checking work. She found that the GC use is correlated with 

improvements in students’ conceptual and problem solving skills, operational skills 

and positive attitudes towards mathematics. This means Ellington’s findings support 

the use of GC in improving students’ understanding of quadratic inequalities. 

In addition, Dunham (1999) suggested that curriculum development, assessment, 

the method of instruction, and required instructional materials for instructors need to 

be addressed in the use of the GCs in mathematics education. In this case, the 

mathematics education community has a responsibility to react positively to the 
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available technology and carefully conduct the research studies that should respond 

to the raised questions and concerns. The AMATYC (1995) recommends adapting to 

this reality and helping students to use GC appropriately so that they can be 

competitive in the workforce and adequately prepared for future study.  

A significant number of studies have shown the potential benefits associated with 

appropriate use of the graphing calculators on students’ understanding of 

mathematics. They have specifically indicated that graphing calculators may improve 

student understanding of various algebraic concepts (Drijvers & Doorman, 1996; 

Ellington, 2003; Penglase & Arnold, 1996) and student problem solving and 

reasoning and also enable them to demonstrate greater ability to connect multiple 

representations of algebraic concepts (Ellington, 2006; Spinato, 2011). This seems 

to suggest that the students’ understanding of quadratic inequalities as part of 

algebra can be enhanced in a graphing calculator environment. The question is 

whether these benefits also apply to the teaching and learning of quadratic 

inequalities in typically under-resourced township schools in the South African 

context. 

Using graphing calculators efficiently provides an opportunity for teachers to create a 

supportive environment to help their students enhance their mathematical knowledge 

and understanding (Lee & McDougall, 2010). It is further indicated that the 

pedagogical affordances of the graphing calculator are closely related to improving 

learning of mathematics (Choi-Koh, 2003; Leng, 2011; Roschelle & Singleton, 2008). 

However, one of the important general principles included in the South African CAPS 

document for Mathematics states that: “No calculators with programmable functions, 

graphical facilities or symbolic facilities (for example, to factorise or to find roots of 

equations) should be allowed. Calculators should only be used to perform standard 

numerical computations and to verify calculations by hand (DoE, 2012, p.8).” It is 

against this background that the GC is used in this study as the available technology 

(DBE, 2015) to provide supportive environment to enhance students’ understanding 

of quadratic inequalities. Graphing calculators are used the same way computers are 

integrated in classrooms. Similarly computers are also not allowed in the 

assessment but can be used to make concepts more accessible, and easier to learn 

and understand. For this reason, a careful thought has be given in designing 

instructional activities of quadratic inequalities for the students to be mediated by the 
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graphing calculator in order to develop students’ reasoning and problem solving 

skills.  

This study is in line with the recommendations of National Mathematics Advisory 

Panel (2008) that research be conducted to determine the effects of the GC use on 

students’ problem solving, conceptual understanding, and computation skills. It also 

seeks to fill the perceived gap that there is little literature on the GC use at high 

schools in the South Africa. The idea is to provide students with the length of time 

with graphing calculators in order to master some of the functions at their own time. 

This could help to realize the DBE’s vision that every learner will be able to enjoy 

doing mathematics in South Africa. 

1.3 Problem statement  

A problem is something that challenges the mind and makes a person bewildered 

(Merriam, 1998). This study examines a problem that is bewildering majority of the 

schools in South Africa which is a concern in the community of mathematics 

educators, i.e. learning for understanding quadratic inequalities in Grade 11. In more 

than two decades of teaching mathematics, I have observed that Grade 12 students 

often give inconsistent solutions to quadratic inequality problems in the algebra 

general section of the National Senior Certificate (NSC)  Mathematics Examinations. 

This means students often have many misconceptions, conceive an erroneous 

inequality representation, which makes them difficult to understand this topic in the 

classroom. The topic of quadratic inequalities is introduced immediately after 

quadratic equations in Grade 11 according to the Curriculum and Assessment Policy 

Statement (CAPS) for Mathematics. According to Bagni (2005), this could influence 

the misunderstanding of quadratic inequalities because students then easily confuse 

an inequality with an equation. For example, in their study of the 27 Grade 11 

learners’ errors and misconceptions on solving quadratic inequalities conducted in 

Gauteng Province, Makonye and Shingirayi (2014) revealed that “In doing so the 

inequality signs vanish and are then replaced by equal signs. In the end learners 

come up with roots to an equation instead of the solution to an inequality” (p. 717). I 

have also observed that students use commutative multiplication in solving 

inequalities, and/or fail to change the direction of the inequality sign when multiplying 
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by a negative number as well as misinterpret the interval that is bounded in 

inequality problems.  

The Department of Basic Education (DBE)’s Diagnostic Reports of the National 

Senior Certificate (NSC) examination have similarly indicated that grade 12 students 

have little or no understanding of a quadratic inequality and many of them treat an 

inequality as an equation (DBE, 2014; 2015; 2016).  This has led them to write 

answers that do not make sense. The 2016 report, for example, states that “[t]he 

inequality signs < and > mean very little to the candidates and they could not use 

them to describe domain, range and certain restricted values on graphs” (DBE, 

2016, p. 154). Also, most candidates could obtain the critical values but were unable 

to provide the meaningful solution for the quadratic inequality (DBE, 2014). In 

addition, Makonye and Shingirayi (2014) found that reading the solution from the 

diagram or the number line tended to be a common problem among students 

The international literature confirms that both students and teachers are frustrated 

with the difficulties encountered when dealing with inequalities in the mathematics 

classroom (Tsamir & Bazzini, 2002) and there are two primary reasons highlighted  

by Blanco & Garrote (2007) as difficulties. These include lack of arithmetic skills or 

knowledge, and the absence of semantic and symbolic meanings of inequalities. It is 

further stated that students’ difficulties in solving quadratic inequalities even persist 

at university level if not adequately resolved in high schools. The inclusion of 

inequalities in the algebra curriculum has been criticised, when it has been openly 

recognized that inequalities belong to the study of many aspects of mathematics 

(Burn, 2005; Tall, 2004; Boero & Bazzini, 2004). This placement of inequalities 

invites the learning of inequalities through memorized, routine procedures. According 

to Halmaghi (2011), students may fail to make important connections and to solve 

inequalities that look different from the model they have commonly encountered. 

This suggests that the use of GC may help to develop activities that can benefit 

students from the connection between equation and inequalities. 

The research problem explored in this study is an educational problem that is directly 

related to the gaps of knowledge observed in the mathematics classroom. If students 

fail to have a better understanding of quadratic inequalities, they are likely to meet 

challenges in other related concepts. Many past studies have used GC to examine 
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students’ understanding in quadratic functions (Hollar & Norwood, 1999), but little is 

said about its use in quadratic inequalities. It is therefore important to determine how 

the students’ understanding of quadratic inequalities can be supported in graphing 

calculator-enhanced environments at the 11th grade in South Africa.  

1.4 Purpose and objectives of the study  

This study was conducted in pursuit of the most consistent recommendations from 

the mathematics researchers who encouraged more algebra teachers to take full 

advantage of the potentially powerful teaching aid (i.e., graphing calculators) 

(AMATYC, 1995) to investigate the role of the GC in developing students’ reasoning 

and problem solving abilities (Ellington, 2003; Spinato, 2005).  This study therefore 

explored Grade 11 students’ understanding of quadratic inequalities in a graphing 

calculator enriched environment, with specific reference to how their reasoning and 

problem solving skills were developed in the South African context.  

The following research objectives guided the study: 

1. To explore how the pedagogical use of GCs impacted on students’ 

performance in solving quadratic inequalities 

2. To explore how students perceived the pedagogical use of the GC towards 

improving their quadratic inequality problem solving abilities 

3. To explore how students perceived the pedagogical use of the GC to be 

supportive of their mathematical reasoning when solving quadratic inequalities 

1.5 Research questions  

The following overarching research question guided the study: To what extent 

does the graphing calculator environment provide students with the opportunity to 

develop an understanding of quadratic inequality and to engage in mathematical 

reasoning and problem solving? 

The following sub-questions intended to address the overarching research question: 

1. To what extent can the pedagogical use of graphing calculator influence high 

school students’ performance in solving quadratic inequalities?  

2. In what ways (how) can the pedagogical use of the graphing calculator 

support the high school students’ problem solving ability in relation to 

quadratic inequalities? 
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3. In what ways (how) can the pedagogical use of the graphing calculator 

enhance students’ mathematical reasoning ability when solving quadratic 

inequalities? 

     4.  What perceptions do students have on the pedagogical use of the graphing 

calculators in learning quadratic inequalities? 

1.6 Null hypotheses  

The first research question as the basis for this study leads to the following null 

hypothesis for the quantitative aspects of the data analysis:  

H0 There is no difference between pre-test (before) and post-test (after using 

graphing calculators) in achievement scores of grade 11 students on quadratic 

inequalities after each DBR cycle. 

H1 There is a difference between pre-test (before) and post-test (after using graphing 

calculators) achievement scores of grade 11 students on quadratic inequalities after 

each DBR cycle. 

1.7 Significance of the study  

The present study incorporated the teaching of quadratic inequality with graphing 

calculator and examined its use on student understanding in South African schools. 

In that respect, its findings aimed to: 

 Provide information for the research community and for FET mathematics 

teachers on how to successfully use graphing calculators to bring about 

conceptual understanding of quadratic inequalities by students. 

 Assist in setting education reform policies and develop technological 

strategies that can be used to improve the teaching and learning of the 

quadratic inequalities. 

 Contribute to the body of knowledge in Mathematics Education by adding 

another dimension to the existing empirical evidence about GCs on students’ 

understanding of quadratic inequalities. 

 Support educational planners and policy makers in choosing the appropriate 

methods of managing changes associated with ICT use in the educational 

system in South Africa. 
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 Provide a robust conceptual framework for analysing the students’ 

understanding in a more visible manner, not only during the reflection phase 

but also during the planning and implementation. This framework intended to 

assist in breaking down the complex processes of teaching and learning, 

particularly quadratic inequalities, making it more understandable and also to 

afford researchers greater insight into the intricacies of the practices.  

1.8 Methodology of the study  

This study employed design-based research (DBR) as a research methodology for 

graphing calculator-enhanced learning environments. As Wang and Hannafin (2005) 

noted the DBR is an ideal alternative research methodology suitable to both 

research and design of technology-enhanced learning environments (TELEs). This 

means that as a new educational research paradigm, design-based research has 

great potential to change the disconnect between educational research and design 

practice. In this context, the research focused on how the instructional use of 

graphing calculator in the mathematics classroom effectively intervened in the 

teaching and learning process. Literature has indicated that DBR affects teaching 

practices and/or educational policies as it makes learning research more relevant for 

classroom practices (Reimann 2011). This, for example, may concern the alignment 

with curriculum, standards and assessment requirements. In Wang and Hannafin’s 

(2005) opinion, researchers in DBR processes collaborate intimately with 

participants to achieve theoretical and pragmatic goals and these goals can 

ultimately change educational practices in a maximum extent. In this regard, the 

implementation of this research approach is aligned with CAPS of Further Education 

Training (FET) mathematics when teaching and learning quadratic inequalities in 

South African schools.  

Design-based research has been conceptualized as a research methodology in 

educational contexts (Anderson & Shattuck, 2012) which allows the researchers to 

bridge the gap between educational theory and practices (Brown, 1992; Collins, 

1992). This implies that researchers of DBR studies usually team up with 

practitioners to work together over an extended period of time so as to provide a 

solution(s) to a practical problem that faces a specific educational context. Literature 

indicates that DBR moves beyond simply observing to involve systematically 

engineering learning contexts (Barab and Squire, 2004) using systematic design and 
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instructional strategies and tools (The Design-Based Research Collaborative, 2003) 

which allow researchers to improve and generate evidence-based claims about 

learning (Van den Akker et al., 2006). Within this context, researchers can improve 

educational practices (i.e., the pedagogy of quadratic inequalities) conducted in the 

real, complex learning/teaching environments -in the graphing calculator-enhanced 

classroom. In this study DBR approach used a sequential mixed methods design, 

which embraces both the quantitative and qualitative data. More specifically, the pre-

test and post-test design constituted the quantitative data while the individual and 

focus group interviews together with the students’scripts constituted mostly the 

qualitative data. 

DBR studies use the term intervention to denote the object, activity, or process that 

is designed as a possible solution to address the identified problem. McKenney and 

Reeves (2012) describe intervention as a broad term used “to encompass the 

different kinds of solutions that are designed” (p. 14); these solutions include 

educational products, processes, programs, and policies. This current study 

identified the graphing calculator artefact as the intervention with a potential solution 

to the perceived problem of the topic of quadratic inequalities. These studies 

normally span many years with multiple research cycles that focus on the iterative 

stages of the intervention analysis, design, development, implementation, and 

evaluation phases. In order to clearly explain the students’ inner processes of 

thinking and understanding of quadratic inequalities, a model of integrated GC in 

DBR phases of figure 4.3 in Chapter 4 was implemented. The three main phases are 

(i) analysis and exploration, (ii) design and construction, and (iii) evaluation and 

reflection (Reeves, 2006; Shattuck & Anderson, 2013), that lead to the outputs of 

increased theoretical understanding and effective intervention. Thus, information 

about the intervention is disseminated and diffused to a wider audience. This means 

in the reflective phase, the design principles are reflected, shared and published to 

inform future development and implementation decisions. 

The adoption of DBR is consistent with the contemporary approaches to research in 

mathematics education that employ mixed methods design research to address 

instructional problems related to teaching and learning mathematics (Bakker 2004; 

Gravemeijer & Bakker, 2006; Gravemeijer 1994). According to Gravemeijer & 

Bakker, (2006) such design research projects are iterative and theory based 
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attempts aimed to simultaneously understand and improve educational processes. 

This suggests that the product of this DBR is usually a theory-driven and empirically-

based instruction.  

In addition, in the preparatory and design phase, the instructional goals are defined, 

the hypothetical learning trajectory (HLT) is delineated and the theoretical context of 

the design outlined. The purpose of the HLT is to frame a possible path which the 

student can take to master the reasoning and understanding required to comprehend 

the mathematical concepts involved. In developing the HLT, the researcher has to 

anticipate and refine the course map along which students’ mathematical reasoning 

evolves in the context of the learning activities (Bakker, 2004). Through a series of 

design experiments the HLT is tested and refined during each iterative cycle of the 

teaching experimental phase. The notion of these experiments is to improve the 

learning process under scrutiny and the means by which it is supported (e.g. 

graphing calculator-enhanced classroom). Finally, a reflective analysis is carried out 

to establish if the intended research goal has been achieved.  

 

The conjecture of this design based study was that the use of a graphing calculator 

strategy within the social constructivist and technological learning environment could 

promote the development of students’ understanding in the domain of quadratic 

inequality concept. The use of GC as a mediating tool was expected to define and 

shape inner processes of students’ thinking and understanding of quadratic 

inequalities; hence empowering students to make connections between the algebraic 

and geometric representation. 

1.9 Delimitations and limitations of the study 

The study intended to limit its scope to grade 11 students who were doing 

mathematics from three disadvantaged high schools in Gauteng Province of South 

Africa. This implies that the results are not generalizable to all high schools in the 

province. The study mainly focused on the learning of students in the graphing 

calculator-supported environment in which the graphing calculator was used as an 

artefact to influence a better understanding of quadratic inequalities. The study did 

not attempt to produce a fine-grained analysis of students’ understanding of 

quadratic inequalities but rather to assess the extent to which graphing calculator 
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intervened to enhance their mathematical understanding. The study used the results 

of one school to develop and improve the student activities to be done by the 

following school.  

Some of the limitations of the study that must be considered when interpreting the 

results and that can provide direction for the future research were:  

 This study did not have control groups and hence the researcher cannot make 

bold conclusions about cause-effect relationships. In fact, the researcher used 

the Cohen’s d effect size to interpret the effect of the GC on the students’ 

academic achievement. In that regard, a combination of the two analyses 

could have been interpreted differently. Additionally, this study avoided the 

difficulties addressed by Hiebert (1999) and Slavit (1994), of comparing 

classes with different objectives when graphing calculators are introduced. 

 The financial constraints affected the selection of number of provinces as this 

could not allow more than one province to be selected. The province of 

Gauteng was purposefully and conveniently sampled. This discourages the 

generalisation of the results as these results were from one of the nine 

provinces of South Africa. Subsequent research should strive to expand the 

data set to include at least three provinces. 

 Another limitation concerns the timeframe which was arguably still short 

relative to students’ prior experiences with the use of the GC. The use of GC 

is not commonplace in South African schools, so it is not entirely possible that 

some students may have had previous experience using the GC. Survey data 

about students’ prior use of the GC indicated that the majority had never used 

such tools (Sections 5.6.5; 6.6.5; 7.6.5). Although this study was effectively 

conducted for 9 weeks in each research cycle, it was unreasonable to assume 

that students had adequate experience of using the graphing calculators.  

 Another constraint is the nature and design of the experiment itself (i.e., 

DBR). In an attempt to make the comparison of the GC use and traditional 

method as straightforward as possible, the subsequent research should 

consider to include a control group.  
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1.10 Definitions of key terms 

The following key terms are defined and/or explained in order to have a common 

understanding of the use of these terms in this study.  

Technology integration is the appropriate and consistent use of any technological 

tool that produces changes in educational practices and student learning. 

Graphing calculator is a handheld technological tool currently used in mathematics 

classroom capable of producing graphs of functions, finding roots of functions, 

solving systems of equations and inequalities, as well as visualising symbolic and 

geometric representations.  

Conceptual understanding is regarded as the student’s ability to instrumentally use 

specific mathematical procedures and symbols, and to relationally develop the 

mathematical connections between the existing and constructed knowledge in the 

context of solving (or interpreting solutions of) quadratic inequalities. 

Reasoning is a process whereby a student analytically formulates the conjectures, 

draws logical evidence from a set of assumptions and justifies their results. 

Problem solving is a process whereby a student mathematically interprets the 

situations, selects the appropriate strategy, implements correctly the strategy and 

reflects on the solutions. 

Technology enhanced classroom is one that houses collaborative technology or 

equipment which provides learning opportunities for students to build meaningful 

connections between concepts and procedures. 

A quadratic inequality is a mathematical statement that relates a quadratic 

expression as either less than or greater than another, for an example ±𝑎𝑥2 + 𝑏𝑥 +

𝑐 ≤ 0 or±𝑎𝑥2 + 𝑏𝑥 + 𝑐 ≥ 0. Solutions to that quadratic inequality are two real 

numbers: p and q, which produce true statements when substituted for the variable, 

x. The real values, p and q in the domain of the function are called critical numbers 

or roots (p and q), and can be obtained by factorizing or sketching the graph of the 

inequality (Ali & Wilmot, 2016 ). The following will be the expected solution set of 

each type of the quadratic inequalities in terms p and q. In the given case, let p and q 

be the roots of the quadratic inequality,±𝑎𝑥2 + 𝑏𝑥 + 𝑐 ≠ 0, where p<q, then:  
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1. 𝑎𝑥2 + 𝑏𝑥 + 𝑐 ≤ 0     {𝑝 ≤ 𝑥 ≤ 𝑞} , because the continuous operator is used. 

2.  𝑎𝑥2 + 𝑏𝑥 + 𝑐 ≥ 0     {𝑥 ≤ 𝑝 ∪ 𝑥 ≥ 𝑞}, because the discontinuous operator is used.    

3. −𝑎𝑥2 + 𝑏𝑥 + 𝑐 ≥ 0    {𝑥 ≤ 𝑝 ∪ 𝑥 ≥ 𝑞} , because the discontinuous operator is used.   

4. −𝑎𝑥2 + 𝑏𝑥 + 𝑐 ≤ 0    {𝑝 ≤ 𝑥 ≤ 𝑞}, because the continuous operator is used (Ali & 

Wilmot, 2016) 

1.11 Organization of the dissertation  

This study is organized into eight chapters, with references and appendices. The 

appendices consist of examples of the semi-structured interview protocols, letters 

and communication with others involved in the research study.  

Chapter 1 discussed the background and presented the problem to be investigated. 

Also, the chapter provided the purpose and objectives of the study, and the research 

questions to be answered. 

 Chapter 2 reviews relevant literature on the history of inequalities, quadratic 

inequalities, graphing calculators and, reasoning and problem solving as key 

components of conceptual understanding that guided the teaching and learning of 

quadratic inequalities. 

Chapter 3 discusses the theoretical frameworks which supported and guided the 

teaching and learning for mathematical understanding. It additionally established the 

kind of teaching and learning practices that promoted the development of students’ 

mathematical reasoning and problem solving skills and also presented some key 

challenges to enact these practices in a technologically enhanced mathematics 

classroom.  

Chapter 4 discusses the design based research as a methodology that was used to 

extract the results of this study. This chapter included discussions on the population, 

instruments and sampling techniques, issues of reliability and validity, and also 

ethical considerations.  

Chapters 5, 6 and 7 analyses the results obtained from students’ interactions with 

graphing calculators in solving quadratic inequality problems. These are the chapters 

that answered the research questions posed in this study.  
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Finally, chapter 8 completes the study by presenting the discussions, conclusions 

and recommendations. 

1.12 Chapter summary  

This chapter started by providing the background to the study and stating the 

problem to be investigated. The purpose, research questions and significance of this 

study and definition of terms were included in this chapter. Additionally, some 

important decisions were made related to the use of graphing calculator as an 

effective means for improving the Grade 11 students’ conceptual understanding of 

quadratic inequalities. Students’ difficulties and misconceptions in learning quadratic 

inequalities in high schools were discussed. A design based research was adopted 

as the appropriate methodology of this study which can contribute to developing a 

useful learning instructional theory of quadratic inequalities in a GC enhanced 

environment. This methodology assisted to collect both quantitative and qualitative 

data from the students in three research cycles of teaching experiments.  

It has been noted that using graphing calculator could have a positive influence on 

students’ understanding of algebraic concepts, including quadratic inequalities. 

Students can benefit from the use of this powerful technology-tool, as quadratic 

inequalities are perceived to be difficult in South African high schools. Researchers 

(e.g., Ellington, 2003; Graham, 2005; Spinato, 2011) stated that designed 

mathematical activities (lessons) which integrate the GC-based explorations can 

enhance student reasoning and problem solving skills. It is the researcher’s hope 

that teaching and learning of quadratic inequalities with the use of GCs can increase 

students’ conceptual understanding. 

The next chapter discusses some of the relevant literature that surround this study in 

particular the opportunities and challenges of using graphing calculators to develop 

students’ understanding of quadratic inequalities. 
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CHAPTER 2: REVIEW OF THE LITERATURE 

2.1 Introduction 

This chapter provides a review of the literature relating to the main topics of this 

study. The first section presented the history of quadratic inequalities in 

mathematics, research on quadratic inequalities and the methods of solving 

inequalities. The second section followed with a discussion of the general overview 

of research on technology in mathematics, research on graphing calculator in 

mathematics, graphing calculator usage in South African curriculum and problem 

solving strategies, the role of graphing calculator in mathematics and misconceptions 

with the use of the graphing. In the third section, conceptual understanding in 

quadratic inequalities, and reasoning and problem solving as key aspects of 

conceptual understanding were discussed in relation to the reviewed literature. The 

fourth and last section presented a summary of the literature review. Experiences of 

mathematics education researchers, globally and locally were considered to gain 

insights on how GCs have been used to enhance the understanding of quadratic 

inequalities in mathematics. The inclusion of Curriculum and Assessment Policy 

Statement (CAPS) review on the use of technology in education intended to 

ascertain if the curriculum has been specifically designed to take advantage of the 

technology. The main thrust was on how graphing calculators have been and could 

be effectively used to improve student reasoning and problem solving skills in the 

topic of quadratic inequalities, so that ultimately conceptual understanding of 

students is achieved.                        

2.2 The Historical Approach in Mathematics Education 

The historical approach can play a valuable role in mathematics teaching and 

learning as a major issue of the research in mathematics education, with reference 

to all school levels (Baghi, 2005). Accordingly, Cornu, (1991) argues that when the 

teaching, learning, or understanding of a concept encounters problems, it is a 

tradition to search for the answer to the problem from the history of the concept. The 

history of mathematical may assist to locate periods of slow development. 

Furthermore, the inclusion of some history is to show mathematics as a human 

creation and still developing (DBE, 2012). Therefore, this section presented the 

historical approach of the inequalities, in particular.  
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The use of the historical incidents usually informs educators, mathematicians and 

researchers about the developmental stages and epistemological obstacles 

associated with a mathematical concept. Researchers indicate that the approach 

creates opportunities for the mathematics community to link psychological learning 

processes with historical-epistemological issues (Radford, Boero & Vasco, 2000). In 

the context of the developmental stages of the concept, the researcher may find 

information about periods of slow development of the concept (Halmaghi, 2011). 

According to Burn (2005), the historical development of a mathematical concept can 

reveal actual steps of success in learning. This exploration could be applied when 

the research in education indicates that the understanding of a concept is not 

consonant with students’ intuitions (Burn, 2005), which seems to be the case with 

inequalities (Bazzini & Tsamir, 2003). Inequalities have been disregarded for almost 

two millennia before being considered worth of special attention.  Hardy, Littlewood 

and Polya, (1934) expressed that the historical and bibliographical accounts are 

difficult in inequalities, which have applications in every part of mathematics but have 

never been developed systematically. This can be an indication that there are some 

gaps which are required to be filled in with respect to concept development. Such 

gaps can slower the concept development hence creating problems for students’ 

understanding of the concept. This has similarly and negatively affected the 

development of quadratic inequalities.  

This approach can help the researchers and educators to identify the difficulties and 

misconceptions which may hinder the students’ understanding of the concept. These 

are seen as the epistemological obstacles that Radford (1997) interprets as recurrent 

mistakes. Precisely, students make repetitive and consistent mistakes when they 

learn a specific topic. Radford further categorises epistemological obstacles into 

three groups of sources such as (1) an ontogenetic source (related to the students' 

own cognitive capacities, according to their development); (2) a didactic source 

(related to the teaching choices); and (3) an epistemological source (related to 

knowledge itself). Radford’s classification signifies that the conceptual mistakes 

made by students originate from different sources. The implications of historical facts 

may indicate the real sources of learning and teaching obstacles associated with the 

topic of quadratic inequalities. 
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Once the sources of the epistemological obstacles have been identified for the 

concept under study, then the obstacles in the historical texts can be confronted with 

better teaching and learning approaches. The teacher can adopt instructional 

strategies that may reduce the deep-rooted and recurring mistakes made by 

students associated with the learning of quadratic inequalities. Halmaghi, (2011) 

states that teaching a concept linked to epistemological obstacles and being aware 

of that, the teacher can better plan when and how it would be more appropriate to 

introduce that concept to the students to avoid unnecessary misconceptions. On the 

other hand, Sfard, (1995) argues that the teacher can work on training the students 

to practise that concept even when the meaning is obscured and manipulation 

mistakes are persistent. This study, for example, aims to integrate the graphing 

calculator as a teaching and learning tool that can minimise the epistemological 

obstacles associated with quadratic inequalities. The suggestions made by 

Halmaghi, (2011) and Sfard, (1995) have helped in the preparations and delivery of 

quadratic inequality sessions for this study.  

Studies have further indicated that the historical approach in mathematics is valued 

not only for detecting epistemological obstacles, but also for informing teachers and 

researchers in mathematics education in various other ways (Bagni, 2005; Burn, 

2005). Historical anecdotes can be used by teachers as motivators to develop a 

concept and this is viewed as a powerful approach to didactics (Radford, 1997). 

Recapitulation (presenting topics through their historical development) is another 

way of using the historical facts in class, since the method essentially sets the stage 

for the students to recreate the concept (Radford, 1997). This study is not only using 

the history of inequalities to improve teaching and learning of quadratic inequalities, 

but also to expose students to the power of inequalities in a broader intuitive and, at 

the same time, rigorous way. In this regard, the intuitive and rigorous way of learning 

quadratic inequalities was aimed at improving students’ understanding of the 

concept in question. For the purpose of this study, research findings (e.g., Radford, 

1997, Halmaghi, 2011, Burn, 2005) motivate the researcher’s engagement with the 

historical facts of quadratic inequalities to inform teaching and to provide leads for 

further research on students’ understanding. 

2.3 The Historical Developments of Inequalities 
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In this section the study explores the history of inequalities from Antiquity to the 

beginning of the 20th Century. This may help to better unpack the problems that arise 

specifically from teaching and learning quadratic inequalities as well as suggest 

possible ways of solving them. Previous studies have noted that mathematics begins 

with inequality (Tanner, 1962) and inequalities therefore are the building blocks for 

many mathematical domains (Halmaghi, 2011). In this context, an understanding of 

inequalities may improve the learning of other mathematical concepts as well. 

However, it has emerged that inequalities do not have a long standing history 

(Halmaghi, 2011) and was scarcely considered till now by researchers in 

mathematics education (Boero & Bazzini, 2004). As already noted in section 2.2, it 

took two millennia to change the status of inequalities from mere support for some 

mathematics to a discipline of study (Fink, 2000). This would suggest that some of 

the teaching and learning problems are associated with the slow development of the 

concept of inequalities. 

Inequalities are not unfamiliar at all to ancient mathematicians, including the Greeks 

(Bagni, 2005) and, the Hindus and Chinese (Fink, 2000). Inequalities were first 

encountered in Classic Geometry, where they were used to express factual 

relationships between quantities. For example, the ancients knew about the triangle 

inequality as a geometric fact and the arithmetic-geometric mean inequality, as well 

as the isoperimetric inequality in words ‘alike exceed’, ‘alike fall short’ or ‘alike are in 

excess of’ to compare magnitudes. This means that the knowledge of inequalities 

helped the ancient mathematicians to compare magnitudes and to explain 

mathematical discoveries in the context of inequalities.  

Greek mathematicians were profoundly aware of the power of inequalities to obtain 

equality (Burn, 2005). Burn employs a metaphor – called “the vice” – to describe the 

properties of inequalities that Ancient mathematicians used to help produce equality. 

It consists of the following argument: when a number A is squeezed in between two 

small quantities, -ε<A< ε, for all positive numbers ε, then the number A=0. The 

inequality -ε<A< ε works as a carpenter’s vice, compressing the inner quantity so 

much as to leave room for only one number in between ±ε, and that number is zero. 

The vice could be used to squeeze a difference of two numbers: -ε<A-c< ε, and to 

prove the equality c = A (Burn, 2005). Although they seemed to have used the vice, 
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Greek mathematicians were not aware of the existence of negative numbers. Here is 

an account of the vice in Euclid’s Elements:  

Two unequal magnitudes being set out, if from the greater there is 
subtracted a magnitude greater than its half, and from that which is left a 
magnitude greater than its half, and if this process is repeated continually, 
then there will be left some magnitude less than the lesser magnitude set 
out. And the theorem can similarly be proven even if the parts subtracted 
are halves (Katz, 2009, p.82). 

The proposition states that by taking a small quantity, compared to a bigger one 

(ε<B), one can get a smaller quantity than the smaller of the two initial quantities by 

successively subtracting halves from the big one. Thus, the inequality becomes 

B/2𝑛< ε. This can be turned into B < 2𝑛ε, an inequality which signifies that a multiple 

of ε exceeds B (Burn, 2005). Classical Greeks as well as Archimedes used the 

potential of this inequality to calculate the volume of a pyramid as one third of the 

area of the base times the height (Burn, 2005), and many other similar results 

(Halmaghi, 2011). 

According to Halmaghi (2011), Euclid’s Elements abounds in propositions that 

express inequality relationships between angles, sides, perimeters, or areas. 

However, there is no account of using inequalities in arithmetic or numbers’ 

manipulation (Fink, 2000). The Euclid’s words are translated using the inequality 

symbols in order to help the reader understand and interpret the old text, but those 

symbols did not exist. This means a great deal of geometry and algebra was 

expressed verbally in those times. The modern reader needs the symbols alongside 

with the text to fully understand inequalities in Euclid’s work (Halmaghi, 2011) and for 

example, the symbols are used to write geometric inequalities. This therefore 

demonstrates that inequalities were used as tools to serve geometry in the ancient 

times. 

Burn’s (2005) account summarizes the old history of inequalities and projects the 

importance of classical work on inequalities for the further development of 

mathematics. Inequalities were used to measure awkward quantities dating back to 

Euclid and beyond. Archimedes in particular was skilled in using inequalities to 

deduce equalities, and after translating his method into algebra, such proofs were 

used by Fermat (1636). Arabic mathematicians understood the work of the Greeks 
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and proved similar results on the volume of solids (Katz, 2009).  They were also 

skilful in manipulating inequalities in approximations using continued fractions (Fink, 

2000). It should be noted that geometry, arithmetic, and number theory were well 

established mathematics disciplines in Antiquity. However, inequalities were not 

recognized as sole mathematics concepts. They were only considered as peculiar 

tools used to develop other theories in mathematics. 

In the development of algebra three stages were identified such as rhetorical 

algebra, syncopated algebra, and symbolic algebra (Radford, 1997). Rhetorical 

algebra is the algebra of words. Syncopated algebra is the algebra that uses a 

mixture of words and symbols to express generalities. This is the algebra of Pacioli, 

Cardan, and Diophantus. It is Francois Viete who made the distinction between a 

constant and a variable, both being represented by letters. Viete’s contributions 

transformed algebra from an operational level towards process level (Bagni, 2005). 

As a result equations became the objects of higher-order processes (Sfard, 1995). 

He purified algebra from all the clutter of words and presented it in abstract form, the 

encapsulation of a pure mathematics idea (Radford, 1997). From Viete onwards, 

structural algebra cemented its place in the history of mathematics. This means that 

the structure in algebra helped geometry capture generality and express operational 

ideas. In this context, geometry needed algebra for new reifications and new 

development (Sfard, 1995) than in its early years when algebra used geometry. The 

new developments in algebra signify that inequalities were no longer under algebra. 

Algebra metamorphosed from words to symbols. Equations or identities were 

transformed from heavy paragraphs to delicate formulae. Inequalities, however, 

seem to have been left behind, forgotten, abandoned, and seemingly having no real 

use in the development of algebra (Halmaghi, 2011). This suggests that The Middle 

Ages were a period of great accomplishments for algebra as algebra had more 

influence on geometry.  

The development in algebra might have influenced the mathematicians to produce 

the symbols that would permit inequalities to come along and evolve. Eves (1969) 

documents that the symbols < and > were first introduced in mathematics-related 

texts by Thomas Harriot in North Carolina who got inspired by the symbol  on the 

arm of a Native American in coining the symbols for inequalities (Johnson, 1994, 
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p.144). The account states that Harriot decomposed the Native symbol into the two 

well-known symbols < and >. Tanner (1962) argues that the origin of the symbols is 

less mystical than that. She argues that the inequality symbols are modifications of 

the equal sign, a symbol which was coined by Recorde as two horizontal, parallel 

and equal lines, to represent that what is on one side of the sign is exactly the same 

as what is on the left side of it. Tanner (1962) further indicates that, when producing 

the inequality signs, Harriot “took the equality in Recorde's sign to reside not in the 

two lengths, but in the unvarying distance between the two parallels” (p.166). 

According to Tanner (1962), Harriot modified the distance between the two lines of 

the equal sign, to show that the bigger quantity lies on the side of the longer distance 

between the lines.   

Harriot used < to represent that the first quantity is less than the second quantity and 

> to represent that the first quantity is greater than the second quantity (Johnson, 

1994). “The symbol for greater than is > so that 𝑎 > 𝑏 signifies that 𝑎 is greater 

than 𝑏. The symbol for less than is < so that 𝑎 < 𝑏 signifies that 𝑎 is less than 𝑏 

(Seltman & Goulding, 2007, p.33). Harriot was familiar with the symbolical reasoning 

introduced by Viete and, moreover, he transformed Viete’s algebra into a modern 

form (Katz, 2009). In addition, Harriot simplified Viete’s notations to the point that 

even a novice in the history of mathematics could understand his formulae. Harriot 

first used the symbol of inequality to transcribe the well-known inequalities of the 

means and then, he used the inequalities in his work to solve equations. 

Here are some excerpts from Artis Analyticae Praxis ad Aequationes Algebraicas 

Resolvendas, (The Analytical Arts Applied to Solving Algebraic Equations) Harriot’s 

posthumously published work in lemmas and propositions. The propositions use 

inequalities to solve equations. For example:   

Lemma 1  

If a quantity be divided into two unequal parts, the square of half the total is greater 

than the product of the two unequal parts. If p and q are two unequal parts of the 

magnitude, then it is true that  
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𝟐
         

  

 (Seltman & Goulding, 2007, p.96)  

Transcribed, the above inequality reads: (
𝒑+𝒒

𝟐
)𝟐 > 𝒑𝒒 

Lemma 2  

If three quantities are in continued proportion, the sum of the extremes is greater 

than twice the middle. Suppose b, c and d are in continued proportion; then it is true 

that 𝒃 + 𝒅 > 𝟐𝒄. (Seltman & Goulding, 2007, p.96)  

Proposition 5  

The ordinary equation 𝒂𝒂𝒂 − 𝟑𝒃𝒃𝒂 = +𝟐𝒄𝒄𝒄 in which 𝒄 > 𝒃, is explicable by a single 

root. (Seltman & Goulding, 2007, p.100) 

The sample of Harriot’s work shown above may lead to a simple conclusion – which 

is that once they were coined and it was shown how they work, the inequality 

symbols became well established and were easily adopted. However, history shows 

that the mathematics community did not adopt Harriot’s symbols immediately, 

possibly because Harriot did not publish his work. In the 18th century, the < and > 

signs finally made their way into Continental Europe (Cajori, 1928-29). Moreover, in 

1734, the French geodesist Pierre Bouguer invented the symbols ≤ and ≥, to 

represent less than/greater than or equal to, respectively. These new symbols were 

used to “represent inequalities on the continent” (Smith, 1958, p.413). More 

precisely, the < symbol is used to represent quantities that are different, the first one 

being less than the second one. The ≤ symbol incorporates the equality as well; it 

allows the first magnitude to be equal to the second one. This therefore means that 

the inequality symbols that are now universally accepted in mathematics literature 

are: < for less than, > for greater than, ≤ for less than or equal to, ≥ for greater than 

or equal to, and ≠ for not equal to. 

The appearance of symbolic algebra helped in the understanding of mathematical 

texts. Mathematical arguments were in the past presented in longhand. There were 

no symbols to represent the unknowns and no symbols to represent the relationship 
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between unknowns. That was before Diophantus, during the rhetorical algebra stage 

(Harper, 1987). Presenting mathematical statements in plain language could mean 

writing several pages to describe those facts, while expressing the same statement 

in mathematical symbols could even take a single line. “It is amazing how much the 

Greek mathematicians could accomplish by using rhetorical means of expressing 

inequalities and geometrical embodiments” (Halmaghi, 2011; p. 48). In this context, 

symbolic algebra produced the much-needed tools for the embodiment of 

geometrical ideas and for the representation of inequalities which were more 

abstract and specific. Moreover, the use of symbols in mathematics has shortened 

the time to be spent on expressing mathematical facts, hence more output in terms 

of performance. Radford (2006) describes algebraic symbolism as a metaphoric 

machine that is encompassed by a new general abstract form of representation and 

by the Renaissance technological concept of efficiency. Symbolism therefore helped 

algebra prosper, while Harriot’s inequality signs stimulated the proliferation of 

inequalities (Tanner, 1962). This suggests that many presentations of old inequalities 

may be successfully compressed using the inequality symbols and this symbolism 

has spurred the development of an inequality concept from a mere peculiarity.  

The rise of Algebra and the adoption of mathematical symbols, however, allowed 

inequalities to become more easily noticed in the bigger picture of mathematics. The 

circumstances became more favourable for the inequalities to flourish into a 

discipline. Mathematical statements involving inequalities were expressed in 

inequality symbols. Inequalities migrated to Algebra to get the power of symbols from 

there, and then they settled for good into the theory of functions where they were 

enriched with new structures and philosophy (Hamalghi, 2011). With the rise of the 

theory of functions, inequalities seemed to have gained greater relevance. 

Embedded in functions, they became omnipresent in many mathematical branches, 

from geometry to algebra, to statistics, to numerical analysis, to game theory. 

Mathematicians began working on proving the famous Antique inequalities (e.g., 

Cauchy), creating extensions (e.g., Schwarz) or developing new ones (e.g., Newton, 

Maclaurin, & Bernoulli). Inequalities have been developed inside and through 

“interactions between different branches of mathematics” (Kjeldsen, 2002, p.2), like 

the theory of functions, linear algebra, mechanics, calculus, statistics and probability, 
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to name only a few. This included the epsilon-delta proofs in math analysis which is 

one of the most significant applications of the metaphor of the ‘vice’. 

The big production of inequalities started with the appearance of the Journal of the 

London Mathematics Society. Also, the first history of inequalities book was written 

by Hardy et al. in 1934 when edited the book Inequalities (Fink, 2000).  It seems that 

since Hardy, the development of inequalities has been remarkable. Thus, the table 

without a border at the end infers that the history of inequalities continues and that 

the production of inequalities is unbounded. Hardy’s work has been much more 

significant in the development of inequalities. Hardy is the founder of the Journal of 

the London Mathematical Society, a publication for many papers on inequalities. 

Linear or quadratic equations, for example, were studied as independent concepts 

by Babylonian mathematicians. However, before Hardy, quadratic inequalities did 

not get special attention from mathematicians – nobody took the pains to introduce 

them to the mathematics community as a mathematical concept rather than as a 

simple tool used to serve other concepts. Hardy (1934) himself attested, in his 

Presidential Address to the London Mathematical Society in 1928, that even though 

inequalities have been intensively used by analysts, there was no coherent reference 

to the concept. As noted, the inequalities had a sigh of relief after the development of 

symbolic algebra in the 18th century. This means that for seventeen centuries 

inequalities were not recognised as independent mathematical concepts.  

Long before Hardy, mathematicians knew the power and importance of inequalities, 

since they used inequalities as tools in developing Geometry and Calculus. One 

could suggest that there are some contributions related to inequalities which are not 

yet published. Hardy, Littlewood, & Polya (1934) confessed that the historical and 

bibliographical accounts were not readily available for the subject like inequalities 

which had applications in every part of mathematics. In this regard, their contribution 

was to track down, document, solve and carefully present a volume comprising of 

inequalities, and to officially write the first page of the history of inequalities. The 

availability of this information may lead to much better exploration of students’ 

misconceptions and to what instructional tool can be used by students in the 

classroom to potentially gain better understanding of quadratic inequalities.  
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2.4 Inequalities in the South African Mathematics Curriculum 

The topic of quadratic inequalities is included in the section of algebra in the South 

African Mathematics Curriculum (Makonye & Shingirayi, 2014). The topic of 

quadratic inequalities in one variable is primarily introduced in grade 11 immediately 

after revisiting quadratic equations in the CAPS document (DBE, 2012; p. 11). In 

addition, this topic is examined in the sections of algebra and functions in the NSC 

mathematics examinations. This indicates that quadratic inequalities are taught in 

algebra courses in South Africa, in conjunction with equations or as a section of the 

chapter on equations. This seems to suggest that quadratic inequalities are still 

considered as an algebra concept or as an additional section of the equations. Thus 

this has a bearing in determining the solution of quadratic inequalities as students 

can just use the same procedures of solving quadratic equations. A study by 

Makonye & Shingirayi (2014) conducted with 27 learners of grade 11 in Soweto, 

established that learners committed the procedural and conceptual errors linked to 

algebraic processes and confused equations and inequalities. In this context, the 

quadratic inequalities were solved using algebraic methods, disconnected from the 

concept of quadratic functions. The CAPS document states that student should 

“solve quadratic inequalities in one variable and interpret the solutions graphically” 

(DBE, 2012; p.11). However, the recommendations also encourage the use of other 

available approaches. The recommended textbooks (Bradley, Campbell & McPetrie, 

2014; Phillips, Basson & Botha, 2014) for Grade 11 have suggested three different 

approaches to be used which include functional graphs.  

It has been further noted that there are a few studies where inequalities were 

connected to the study of functions (Boero et al., 2001; Garuti et al., 2001; Sackur, 

2004). The concept of function has been widely recognized as being foundational to 

mathematics education, in particular in solving quadratic inequalities. The NSC 

Diagnostic reports recommend that teachers should integrate the algebra with 

functions so that learners have a visual understanding of inequalities (DBE, 2014; 

2015; 2016). This means embedding functional approaches in solving quadratic 

inequalities in the South African curriculum of Grade 11 Mathematics is 

recommended. This recommendation creates room for infusing the GC technology in 

teaching and learning quadratic inequalities as it provides both algebraic 

representations and quality visual images of functional graphs.  
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The inclusion of inequalities in the algebra curriculum however has been criticised, 

when it was recognized that inequalities belong to the study of many aspects of 

mathematics (Burn, 2005; Tall, 2004; Boero & Bazzini, 2004). This placement of 

inequalities is seen as unfortunate as it invites the learning of inequalities through 

memorized, routine procedures. According to Halmaghi (2011), students may fail to 

make important connections and to solve inequalities that look different from the 

model they have commonly encountered. There is a didactical challenge to develop 

activities that will help students benefit from the connection between equation and 

inequalities, while making them aware of the pitfalls of applying the transformational 

techniques used in solving equations to solving inequalities (Kieran, 2004, p.146). In 

this context, manipulating inequalities as equations means being able to replicate 

what can be repeated while changing the parts that need to be changed (Sfard, 

1998). This implies that teaching and learning of quadratic inequalities should be not 

be viewed as an extension of quadratic equations as students mistake one for 

another. This therefore calls for the use of graphing calculators as a didactical 

solution to the learning of quadratic inequalities. 

2.5 Research on Inequalities in Mathematics Education  

In the literature, researchers have witnessed students’ and teachers’ frustrations with 

the difficulties encountered when dealing with inequalities (Tsamir & Bazzini, 2002, 

p.2). Inequalities are perceived by some students and teachers alike as a misfortune 

(Burn, 2005), rather than an important brick for a solid foundation in mathematics 

(Halmaghi, 2011). This has motivated the researchers to be engaged in studies 

about teaching and learning inequalities that can bring about conceptual 

understanding, and positive perceptions of students.  

Accordingly, teachers were the first people to be engaged in writing about teaching 

and learning inequalities reflecting on classwork activities and presenting their 

observations in the Mathematics Teacher (McLaurin, 1985; Piez & Voxman, 1997). 

Their writings focused on various topics which included the students’ difficulties in 

the algebraic manipulation of inequalities, the methods of teaching inequalities, and 

the preferred methods of introducing inequalities to students (Halmaghi, 2011). Such 

activities have paved the way for this study to use graphing calculators in teaching 
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and learning quadratic inequalities as the preferred instructional method that can 

provide students with the opportunity to develop visual thinking and understanding.  

A series of conferences were held by the International Group for the Psychology of 

Mathematics Education (PME), in which the teaching, learning, and understanding of 

algebra have been fundamental streams of research (Kieran, 2006). The history of 

research on inequalities was the theme in 1998, at the 22nd PME Conference, when 

the discussion on inequalities was initiated by the presentation of research 

conducted by Tsamir, Almog and Tirosh (Bazzini & Tsamir, 2004). Inequalities are 

viewed as an important subject from the mathematical point of view but a difficult 

subject for students and a subject scarcely considered till now by researchers in 

mathematics education (Boero & Bazzini, 2004). Consequently, in 1999, the Project 

Group of mathematics educators called for research papers on inequalities at the 

23rd Psychology of Mathematics Education Conference. The conference required the 

research papers to focus on some of the following key questions:  

What are common errors in inequalities? What are possible sources of students’ 

incorrect solutions in inequalities? What theoretical frameworks could be used for 

analysing students’ reasoning about algebraic inequalities? What is the role of the 

teacher, the context, different modes of representation, and technology in promoting 

students’ understanding of inequalities? Is there a global theory that may encompass 

the local theory of inequalities (Bazzini & Tsamir, 2004)? This study therefore fills a 

perceived gap in the literature as identified by the PME to globally encompass the 

local theory of quadratic inequalities mediated by the use of the graphing calculator. 

The 23rd and 28th PME papers coverage ranged from error patterns in students’ 

solutions of inequalities to didactical perspectives on students’ errors; from traditional 

teaching to teaching with technology; from the didactical aspects of classifying 

inequalities under algebra to the metaphors of using functions to present inequalities 

(Halmaghi, 2011). The findings of these papers act as a guide for this study to 

explore the patterns of students’ misconceptions induced by the traditional teaching 

methods in the quadratic inequality classroom. In this study, the graphing calculator 

was used as the possible alternative instructional method for improving students’ 

understanding of quadratic inequalities.  
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The diversity in the conference’s theme refers to the approaches used by 

researchers which include the theoretical frameworks for interpreting students’ 

understanding. Diversity may be found in the different lines of research, different 

theories to account for the findings and the educational implications that have been 

put forward by the researchers (Bazzini & Tsamir, 2004). This implies that research 

papers should have variations in their approaches and presentations. The theoretical 

frameworks included a Vygotskian perspective, Nunez’s metaphor construct, Duval’s 

semiotic registers in mathematics and Frege’s theory of denotation, as well as 

Fischbein’s theory of intuitive, formal and algorithmic knowledge (Bazzini & Tsamir, 

2004; Halmaghi, 2011). This study similarly seeks to use graphing calculator 

technology to enhance students’ understanding of quadratic inequalities through 

selecting diverse, theoretical frameworks: RME theory, Vygotsky’s socio-cultural 

learning theory and the theory of instrumental genesis in Chapter 3 to analyse their 

reasoning and problem solving skills in a supported mathematics classroom. 

Kieran (2004) observes that problem solving activities directed toward generating the 

symbolic form of inequalities were absent from the research on inequalities. Thus, for 

Kieran, inequalities, as well as algebraic equations, could be meaningfully introduced 

to young students through contextual problems. In the CAPS document contextual 

problems are defined as those mathematical problems that should include issues 

relating to health, social, economic, cultural, scientific, political and environmental 

issues (DBE, 2012). She observes that students enjoy the process of coming to a 

generalization by working on recursive aspects of a concept. Kieran (2004) however, 

has no answer to the question: What instructional support do students need in order 

to grow from the context to meaningful symbolic manipulations of inequalities? The 

present study has included contextual problems in its planned students’ activities in 

which graphing calculators are used as an instructional tool to move students to 

meaningfully symbolic manipulations of quadratic inequalities. The activities are 

expected to provide opportunities for students to model and interpret a situation 

mathematically, and promote students’ higher order thinking skills.  

2.6 Methods of solving quadratic inequalities 

This section presents the most common methods of solving quadratic inequalities, 

which include the graphical method, the sign-chart (the improved sign-chart) method, 
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and the logical connectives method (Halmaghi, 2011; Tsamir & Reshef, 2006; 

Bradley, Campbell & McPetrie, 2014; Phillips, Basson & Botha, 2014). The methods 

are explained in detail below, showing the merits and demerits of each.  

The graphic method usually consists of creating a function associated with the 

inequality, graphing the function, comparing the y with the 𝑥-axis (or another y in 

some cases), reading the x values for the appropriate y, and giving the solution 

(Sackur, 2004). Students sketch the quadratic graph and determine the values of x 

for which the graph lies either above or below the x-axis as the solutions of quadratic 

inequalities (Phillips, Basson & Botha, 2014). This means students need to 

understand how to determine the 𝑥-intercepts and the shape of the parabola. The 𝑥-

intercepts are the critical values which represent the interval limits of the solution set.  

The sign-chart method usually consists of finding the intervals where the evaluated 

expression in the composition of the inequality is either greater than or less than zero 

(Sackur, 2004). The intervals are bounded by all the zeros of the associated 

equations aligned on a number line. Test values are taken from each interval 

determined by locating the zeros on the number line. The values of the function are 

then calculated for every test value. For the sign chart method (table approach), we 

keep only the sign of the value of the function at each of the test values (Sackur, 

2004; Phillips, Basson & Botha, 2014). This means the interval that makes the 

inequality true is the correct solution for either a positive or negative quadratic 

expression.  

The logical connectives approach to solving an inequality – for example consists in 

using the structure of the fraction and logically analysing all the possibilities of getting 

numerical values that are less than or equal to zero for the given fraction (Sackur, 

2004). This approach is not common for the quadratic inequalities but it can be used 

to enrich students’ knowledge. However, Phillips, Basson & Botha (2014) have 

suggested the use of number line approach to solve quadratic inequalities. This 

approach uses the critical values (𝑥 −intercepts) to divide the line into three regions. 

Test the 𝑥 values taken from the left, between and right of the critical values to 

determine the final solution. The final solution is in the interval where the quadratic 

expression is true.  

Stellenbosch University https://scholar.sun.ac.za



35 
 

In the previous texts, researchers presented papers on the instructional approaches, 

with specific references to the solution strategies like using the sign-chart method 

(Dobbs & Peterson, 1991) or graphical methods (Dreyfus & Eisenberg, 1985) to 

solve quadratic inequalities. On the one hand, McLaurin (1985) and Dobbs and 

Peterson (1991) have suggested that the sign-chart is the best method for learning 

quadratic inequalities. In their argument, a good understanding of the sign-chart 

method can empower students with the necessary skills for solving more 

complicated quadratic inequalities for which no other method is available. For 

example, the quadratic inequalities resulting from the transformed rational 

inequalities are solved using the sign-chart. McLaurin (1985) also pleaded for a 

unified method to teaching students how to solve absolute value, quadratic, rational 

and irrational inequalities – by following the sign-chart method.  

Tsamir and Almog (2001), on the other hand, investigated students’ solution 

strategies and difficulties when faced with various types of inequalities (linear, 

quadratic, rational, and square root). Their results showed that using graphical 

representations usually lead to correct solutions, while difficulties with approaches 

based on algebraic manipulations arose when students failed to recognise the 

difference between inequalities and equations. In another Tsamir and Reshef’s 

(2006) experiment conducted with twenty high school students who were split into 

three groups where each group was first introduced to one of the three methods – 

graphic, sign-chart, logical connectives. Students interactively familiarised with their 

methods, and then they presented their methods to the other students who learned 

the other two methods as well. At the end of the study, the students were tested on 

solving quadratic inequalities following a method of their choice. As expected, 

students mostly used and gave preference to their first method that they were 

introduced to, except those that first learned the logical connectives method. 

However, there were students who used more than one method in solving different 

inequalities. In that context, the graphic method was most frequently employed and 

preferred by students.  

Sackur, (2004), however, has not completely favoured the use of graphical 

representations to solve quadratic inequalities as demanding for students, and that is 

not free from students’ errors and misconceptions. Knuth (2000) also observed that 

students often have a limited understanding of the relationship between algebraic 
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and graphical representations, and that they strongly prefer to solve tasks 

algebraically rather than utilising graphical information - even in cases where a 

graphical solution would be much easier. Similarly, Linchevski and Sfard (1991) 

identified the logical connectives method as problematic, since it requires more 

abstract thinking than the other two methods.  

Tsamir and Reshef (2006) recommended presenting students with multiple methods 

when teaching quadratic inequalities. They argue that since inequalities serve 

different purposes in mathematics education; therefore each representation 

(approach) is applicable to a specific situation. The logical connectives approach 

was further criticised for developing pseudo-structural conceptions rather than 

operational ones which promote relational understanding. Similarly, Piez and 

Voxman (1997) point out that the students must become familiar with multiple 

methods and representations when dealing with inequalities. It is essential, 

therefore, to note that flexibility in manipulating algebraic structures would not only 

allow students to solve other types of inequalities, but would also improve students’ 

problem-solving and reasoning skills.  

Tsamir et al. (2004) also suggested that teaching inequalities through functions or 

technology could minimize the construction of misconceptions. In their views, a 

function approach to teaching inequalities means using the graphing calculator to 

graph functions and then reading the solution of an inequality associated with the 

graph. In the same vein, Boero and Bazzini, (2004) indicated that this approach can 

improve students’ use of metaphors in understanding inequalities and their capacity 

to make connections far beyond mathematics. They further state that the “visual 

enactive activity” with dynamic entities – the functions – “can give a powerful 

embodied sense of global relationship” between functions and inequalities (Boero & 

Bazzini, 2004, p.141). This means that the function approach can improve students’ 

visualisation as they interact with the graphs in determining the region defined by the 

quadratic inequalities.  

Abramovich and Ehrlich (2007) were in favour of using a graphic tool- the graphing 

calculator - in the study of inequalities as that could graph relations, and therefore, 

inequalities as well. They argued that the solution of the proposed inequality is 

identified by the machine itself and visually represented on the graph. This suggests 
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that the graphical approach has an advantage over the previous mode of using 

functions to solve inequalities. They further point out that graphing calculators could 

be successfully used in solving all types of inequalities, and they believe that 

students should experience graphing the given inequality as well as the equivalent 

forms they get by algebraic transformations. The solutions of the new inequalities 

can inform students about the correctness of their algebraic approach (Abramovich & 

Ehrlich, 2007). In other words, the graphing calculator can be used as a means for 

solving quadratic inequalities and, at the same time, a tool for validating the 

algebraic manipulation of the referred inequalities. Thus, there is a need for 

encouraging students to evolve from algebraic procedures to manipulating mental 

entities, in particular graphing calculators which allow for the acquisition of 

meaningful higher order thinking.   

Sackur, (2004) states that that it is not easy at all for students to shift from the 

dynamism of a graph where 𝑦 is the moving entity to reading the solution on the 𝑥-

axis. Also, it is not easy for students to switch from seeing the dynamic solution as a 

point moving along the 𝑥-axis between some boundaries to giving the solution as a 

static entity – an interval. However, Halmaghi, (2011) states that flexibility in 

manipulating algebraic structures would not only allow students to solve inequalities, 

but would improve students’ problem-solving skills as well. In this context, the use of 

graphing calculator as one of the modern methods can assist students to solve 

quadratic inequalities and to validate their solutions. This switch from algebraic to 

visual graphical representations helps students conceptualize the symbolic form of 

inequalities as they can see where the graph is either above or below the 𝑥-axis.  

2.7 Technology in Mathematics Education 

Developments in technology have been affecting every aspect of education, in 

particular, what and how to teach and learn in the mathematics classroom. 

Recommendations have been made that technology is essential in teaching and 

learning mathematics (NCTM, 2009; ISTE Standards for Students, n.d.). The 

NCTM’s Principles and Standards for School Mathematics Technology Principle 

state that technology influences the mathematics that is taught and enhances 

students’ learning (NCTM, 2009). Similarly, The International Society for Technology 

in Education (ISTE) standard for students mentions that students need appropriate 
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digital tools and resources for critical thinking skills and conducting research, 

managing projects, solving problems, and making informed decisions (ISTE 

Standards for Students, n.d). This implies that technology plays a big role in the life 

of a student. Furthermore, ISTE standards require teachers to engage students in 

exploring real-world issues and solving authentic problems using digital tools and 

resources (ISTE Standards for Teachers, n.d.). This suggests that schools should 

embrace new instructional methods such as technology, which may help to explore 

mathematical problems. The e-Education policy of South Africa articulates that every 

learner in the general and further education and training (GET and FET) bands 

should manipulate ICTs confidently and creatively (i.e., by 2013) in order to develop 

the skills and knowledge needed to be a full participant in the global community 

(DoE, 2004). Admittedly, this is an indication that the presence of the technology is 

felt in the classrooms of South Africa. Therefore, these three sources emphasise the 

significance, availability and appropriate use of technology in education, specifically 

for mathematics. In particular, a graphing calculator technology will be used in this 

study to bring about new instructional ways for improving students’ understanding of 

mathematics in the South African schools and to develop students for global 

participation. 

Ruthven and Hennessy (2003) successfully studied uses of technology, including 

GC technology, in mathematics teaching with a group of secondary school teachers, 

who indicated that technology could, among others, foster student independence 

and peer support, help students with special needs to overcome difficulties in writing, 

drawing, and graphing, eliminate error-ridden calculations and save time for higher-

order learning activities. Similarly, Wertheimer (1990) highlights that the presence of 

technology in the classroom frees the teacher for more individualized support of 

student learning in addition to providing opportunities for students to collaborate and 

create exciting and nurturing classroom environments. It is further suggested that 

technology can improve mathematical learning specifically in the areas of problem 

solving, concept and skill development, reasoning, and communication (Kimmins & 

Bouldin, 1996; Spinato, 2011). This implies that the benefits derived from the use of 

technology can be experienced from the use of the GC as an available technology. 

This suggests that through the use of graphing calculator, students are provided 
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opportunities for graphing, visualizing, producing multiple representations, and 

computing in the mathematics classroom.   

In the literature, many researchers have indicated that technology allows for 

improvements in the teaching and learning of mathematics. For instance, although 

technology has a negative effect on teaching lower-order thinking skills, it was found 

to have positive effects on teaching higher-order thinking skills (Karadeniz, 2015). 

This means that teachers, who aim to develop or improve higher order thinking skills 

of their students, should use technology in their mathematics classrooms, thus the 

use of graphing calculator as the available technology. It is therefore, important to 

provide students with the opportunities to use graphing calculator in their 

mathematics classrooms so that they can experience both the benefits and 

disadvantages of the technology. In addition, it is possible to motivate students 

especially of lower ability (Ruthven & Hennessy, 2002) because of increased student 

engagement with technology (Karadeniz, 2015). This therefore potentially leads to 

explore students’ understanding of mathematical concepts, in particular quadratic 

inequalities, with graphing calculator. 

2.8 The use of technology in South African classrooms  

The e-Education policy has practically enforced the technology integration in South 

African classrooms. In 2004 the Department of Education drafted The White Paper 

on e-Education policy for guiding the ideal implementation of pedagogical technology 

integration. This policy spells out the framework, objectives, funding, resources and 

implementation strategies for ICT integration in the classroom (Padayachee, 2017). 

The main thrust was to build digital and information literacy so that all learners 

become confident and competent in using technology to contribute to an innovative 

and developing South African economy (DBE, 2004). This means the policy dictates 

the government's strategy to improve the quality of learning and teaching across the 

education and training system. For that reason, this policy on ICT facilitated the 

integration of digital technology in teaching and learning, including handheld 

graphing technology.   

The policy further indicates that e-Learning may involve the use of the “Internet, CD-

ROM, software, other media and telecommunications” (DoE, 2004, p. 15). This 
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means the policy is supportive of the use of graphing calculator in mathematics 

classroom since this tool has (computer) graphing software. Additionally, the policy 

recommends the use of the Internet and associated web-based applications as the 

delivery medium for the learning experience (DoE, 2004). This also justifies and 

upholds the use of graphing calculator in mathematics classrooms because from the 

internet one can access software like GeoGebra, Sketchpad and Desmos. These 

have capabilities similar to those of the GCs. In this context, the use of such media 

can assist students to develop lifelong skills and knowledge through understanding 

subtle mathematical concepts. Thus, the graphing calculator can be used as a 

delivery medium for the learning of quadratic inequalities at the 11th grade. The GCs 

are portable and do not need internet to be accessed by the users, which means 

learners can use them any time. 

The policy additionally proposes different approaches for the use of ICT in 

classrooms such as the use of multimedia applications, to create contexts for 

problem-solving and the creation of knowledge in the productive learning 

environment. The implications for the teachers are to effectively use technology in 

their classes in order to develop and empower students with the basic knowledge, 

skills and attitudes. Such technological knowledge and skills can enable students to 

access, analyse, evaluate, integrate, present and communicate information (DBE, 

2004). This means through the use of technology, including the GC students are 

provided with a range of cognitive activities that can enhance their understanding of 

quadratic inequalities. This is in line with the requirements of the CAPS FET 

mathematics (DBE, 2012) which focus on active participation of the learners and 

how teachers use the available technology in their mathematics classrooms. As 

explained by Ertmer et al. (1999), the use of technology in the existing curriculum 

can support, reinforce, enhance, and enrich student learning. This implies that the 

GC will be used as the available technology for productive learning.  

The CAPS document calls for the need to integrate the available technology in 

teaching and learning of mathematics. In reference to learning of functions and their 

graphs in the same document, it is stated that students should  

“Generate as many graphs as necessary, initially by means of point-

by-point plotting, supported by available technology, to make and test 
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conjectures and hence generalise the effects of the parameter which  

results  in  a horizontal shift and that which results in a  horizontal 

stretch and/or reflection about the y axis, (DBE, 2012, p.9)”. 

The implication of this statement is that the GC can be used as an available 

technology to generate the quality and visual graphs that support the students to 

make and test conjectures. However, it is further stated in the same document that 

only scientific and non-programmable calculators are allowed to be used in the 

formal assessment. This suggests that graphing calculators as programmable 

calculators will not be used in the assessment activities but allowed as a tool for 

instruction, visualisation, and checking. In addition, GCs have fewer propensities for 

learner distraction than computers, and are more portable, and affordable in terms of 

cost, therefore their pedagogical use in mathematics classrooms can be encouraged 

where available.  

2.9 Research on graphing calculators in mathematics  

Several researchers have supported the use of graphing calculators (GCs) in 

teaching and learning of mathematics (Dunham & Dick, 1994; Heid, 1997; Husna, 

Munawir & Suraiya, 2005; Penglase & Arnold, 1996). They have indicated that 

student achievement, understanding, reasoning and problem-solving skills improve 

in a graphing calculator enhanced classroom. However, there are other studies 

which have shown mixed results in mathematics achievement between those 

students who use the GC (experimental) and those who do not (control). 

One of the earliest reviews on the literature about the use of the GCs in mathematics 

education was by Beckmann et al. (1999) who acknowledged that the proliferation of 

graphing calculators since the late 1980s has profoundly impacted mathematics 

curricula and instructional practices. This suggests that contemporary approaches of 

teaching and learning mathematics concepts in a technologically incorporated setting 

should be adopted to support the use of graphing calculators. In a similar study 

review, Dunham and Dick, (1994) reported that graphing calculators have the 

potential to dramatically facilitate changes in teaching and learning mathematics in a 

more interactive and exploratory environments. In this scenario, students 

interactively employed graphing calculators to explore connections across different 

representations which include symbolic algebra, functions and graphs. In their 
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argument, Beckmann et al. (1999) further indicated that graphing calculators provide 

access to multiple types of representations and allow students to see how one can 

switch between algebraic, numerical, and graphical forms of functions. The 

implications for this current study are that the students can use the multiple 

representations provided by the GCs to solve problems, explain their reasoning, and 

the meaning of the solution in the context of the problem. 

The impact of graphing calculators on learning mathematics has been the focus of 

several studies. Penglase and Arnold (1996) conducted a critical review on 

published studies during 1990 to 1995 that examined the effects of GCs in high 

school and college mathematics. The majority of the reviewed studies focused on 

two major areas: a) testing the effects of the use of GCs within specific areas of 

mathematical study; and b) making judgments regarding the effectiveness of such 

use. They concluded that using GCs in mathematics education had mixed results 

and that the GC research failed to provide clear direction to mathematics education. 

They additionally found that most studies that favoured the use of GCs did not show 

significant differences between GC and non-GC groups. Penglase and Arnold’s 

review found that students’ understanding of the connection between functions and 

their graphs, capabilities with spatial visualization skills, and attitudes toward 

mathematics were the areas that provided positive results. They, however, 

questioned the GC usage and testing procedures in several studies and suggested a 

need for new methods to evaluate students who have been exposed to GC 

technology.   

Burrill et al. (2002) on the other hand, conducted a meta-analysis of 43 studies 

investigating the use of handheld graphing technology in mathematics instruction 

with a Computer Algebra Software (CAS). They found that students who used 

calculators with a CAS were better at applying calculus concepts. However, the 

calculators seemed to be more effective for lower-achieving students in accuracy but 

not in conceptual development. Similarly, research of meta-analyses of 53 calculus-

based studies from 1984 through 2000 (Ellington, 2003) and of 42 studies (Ellington 

2006) were also conducted to investigate the effects of hand-held calculators on the 

precollege students in mathematics classes. However, her research studies differed 

from that of Burrill et al. in the sense that they only included graphing calculators that 

did not include a CAS. In addition, Ellington only considered those studies that had 
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control and experimental students, where the treatment group used the graphing 

calculator. Her research investigated the effects of non-CAS graphing calculators on 

procedural skills, conceptual skills, overall achievement and attitude of the students 

in the middle school, high school and college. Ninety three percent of the studies in 

these meta-analyses included algebra and pre-calculus concepts, and this suggests 

that inequalities were included. Ellington found that, when calculators are included in 

instruction but not testing, there was no benefit for students’ ability to apply formulas 

and procedures, but the calculator was beneficial for student understanding. In 

addition, she found no effect on overall mathematics achievement. This means that 

the difference between the experimental and control students in terms of post-test 

achievement was not statistically significant. She also found that calculators are 

most helpful to improve students’ problem solving skills, understanding of 

mathematical concepts and overall achievement when used in both instruction and 

testing. Results also showed a positive impact on students’ attitudes toward 

mathematics. This scenario is yet to be proven in this current study where GCs are 

used as instructional media but prohibited for the assessment in the CAPS FET 

Mathematics. This concurs with the National Council of Teachers Mathematics 

(NCTM, 2009), which reviewed nearly 200 research studies conducted between 

1976 and 2009 and found that graphing calculator usage in teaching and learning 

enhanced the understanding of mathematics concepts and student orientation 

toward mathematics. This means that exposing students to the use of GCs may help 

them achieve better understanding of the quadratic inequalities in the current study 

as well as develop the appropriate abilities for reasoning and problem solving. 

2.10 Graphing calculator usage in pre- concepts of quadratic inequality  

A large number of research studies has been conducted into the effectiveness of the 

GC into students’ learning about pre-concepts of quadratic inequalities in high 

schools. For example, Carter (1995) investigated the effects of GCs on student 

achievement and understanding of the function concept in which the treatment group 

used the GC and the control group was taught in a traditional manner. Carter 

concluded that there was a significant gain between pre- and post-test scores for the 

both groups. However, the GC instruction provided a favourable influence on student 

achievement and improvement for the treatment group. The difference in the 

outcomes for the two groups was not statistically significant. Similarly, Armah and 

Stellenbosch University https://scholar.sun.ac.za



44 
 

Osafo-Apeanti (2012) conducted a study that investigated the effects of graphing 

software on students’ conceptual understanding of quadratic functions at senior 

secondary level in Ghana. The aim was to determine the extent to which the 

effective use of graphing software as an instructional technology could improve the 

performance of forty three Form 2 students in mathematics. Using a t-test analysis, 

the results revealed a significantly higher performance in the post-test than the pre-

test. Thus, the use of graphing software can effectively improve students’ 

performance in quadratic functions. This means the anecdotal evidence from the 

studies has provided an idea for a pedagogical model for constructivist and situated 

learning approaches in conjunction through the effective use of graphing technology. 

The research of Heller et al. (2005) found that incorporating GCs into learning 

mathematics, and increasing their use in particular, in algebra instruction, 

significantly improved the students’ algebra scores, even if the test was taken 

without the use of the graphing calculators. They further emphasised that significant 

results are achieved in the algebra curricula that take advantage of the calculators’ 

capabilities. This current study is inspired by these results as it is administered in an 

environment where GCs are used as instructional media- prohibited in the 

assessment. Other researchers however, note that only prolonged use of the 

graphing calculator may lead to enrichment of students’ solution repertoires and a 

better understanding of algebraic concepts such as functions (van Streun, 

Harskamp, & Suhre, 2000). This means that the significant achievement of students’ 

understanding in a GC-enhanced mathematics classroom is also a function of 

teacher preparedness and consistent use of GC in a highly supportive curriculum. 

The implication for this study is that the prolonged use of GCs may lead to the 

development of better solution reservoirs by students in algebraic concepts, 

including quadratic inequalities.  

 
On the other hand, Rivera (2007) conducted a qualitative study of pre-calculus 

students on developing a graphical process for solving polynomial inequalities using 

the TI-89 graphing calculator. The main goal was for students to make sense of 

solving polynomial inequalities without being given an algebraic procedure for doing 

so. Certain limitations of the graphing calculator, such as the capability to receive 

only explicit equations as opposed to implicit equations, required the students to rely 
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on some algebraic procedures in addition to graphing. However, students used the 

calculator to explore the ideas of zeros, intercepts, and inequalities, and exploration 

through the graphing calculator led the class to draw conclusions about how to solve 

inequalities. Students used features of the graphing calculator such as the trace 

feature, the table, the math function, and the algebra function. In addition to using 

the calculator to solve problems, students referred to their experience using the 

calculator to graph functions and solve problems without the calculator. Rivera 

concluded that students used the graphing calculator as a psychological tool and 

that they were able to extend the possibilities for solving problems using this tool. In 

this sense, students used the tool to assess the reasonableness of solutions 

provided on the graphing calculator and to make sense of what is provided to them 

through the calculator. This means that the same algebraic procedures and GC 

features will be used in the current study to learn the quadratic inequalities in a GC 

mediated classroom.  

In the same study, Carter (1995) examined the effects of GCs on students’ 

difficulties and misconceptions with the function concept. From the questionnaires 

and interviews, she found that the students who used GCs understood function 

transformations, understood the connections between the graphical and algebraic 

representations, were able to make connections between a point on the graph and 

the two distinct values that the point encodes, were able to solve non-routine 

problems, and were more active than students not using a GC. The GC environment 

allows students the freedom to spend more time on problem solving. With graphing 

calculators, students can switch between graphical and numerical representation of 

data (Waits & Demana, 2000). Within the use of this medium, it is possible for 

students to visualize data in more than one way, hence algebraic and graphical 

connections.  

2.11 Graphing calculator usage in problem solving and reasoning  

A case study with Grade 10 conducted by Choi-Koh (2003) demonstrated that using 

graphing calculators promoted students’ mathematical thinking. She observed the 

student’s thinking through the learning process for trigonometry tasks. The study 

included three stages for student understanding; namely, intuitive, operative, and 

applicative. The student graphed functions with the calculator and observed relations 
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with graphs in the intuitive stage. The operative stage consisted of explaining the 

reason why the effects occur, abstracting and comprehending the trigonometric 

algebraic equations, and systematizing (predicting and conjecturing the composite 

functions). Inductive generalizing by giving detailed examples, making formulas for 

the given graphs, and reflecting by constructing statements based on discovered 

properties formed the applicative stage. The student’s thinking process was 

observed advancing from the intuitive to the operative and, then, to the applicative 

stage with the usage of the graphing calculator. Choi-Koh reported that at the 

beginning of the operative stage, graphing calculators affected the student’s 

explanations but visual data promoted the students’ motivation to explain the graphs 

and functions. She concluded that the use of GC was beneficial for students to 

develop their thinking process. This investigative approach was adopted and 

modified in this current study as it assisted in describing the intuitive, operative and 

applicative thinking of the 11th grade students in quadratic inequalities.    

Spinato (2011) conducted a mixed-method study on the impact of graphing 

calculator use on high school students’ reasoning skills through calculus problems. 

The results of the study indicate that (1) graphing calculators had a positive impact 

upon students’ reasoning skills (2) graphing calculators were most effective in the 

areas of initiating a strategy and monitoring progress (3) students’ reasoning skills 

were most improved when graphing calculators were used together with the analytic 

approach during both instruction and testing and (4) students who used the graphing 

calculator performed equally as well in all elements of reasoning as those who used 

pencil and paper to solve problems. In addition, graphing calculators may help 

students to assess the reasonableness of their answers, to justify their answers, and 

then to form conclusions, inferences, and generalizations based upon their solution 

to the problem. The only areas of reasoning for which there was no significant 

difference when graphing calculators were used were analysing a problem and 

seeking and using connections. This present study requires such prerequisite skills 

of students to be developed in order to solve quadratic inequalities in a GC enriched 

environment. 

 

Stellenbosch University https://scholar.sun.ac.za



47 
 

Ruthven (1990) investigated students' abilities to translate between graphic and 

symbolic forms of functions in a graphing calculator classroom. The study was 

conducted in four classes from two high schools involved in a two-year project for the 

introduction of graphing calculators. Observation methods provided her with 

information about students' approaches for translating between representations of 

functions. She observed that when translating functions from graphical to symbolic 

form, students from the treatment group having access to graphing calculators used 

graphical techniques to check answers and students from the control group used 

numerical techniques. Ruthven also identified two stages that students used to 

translate functions from graphical to symbolic form: identification and refinement. 

Within the identification stage, students classified graphs with respect to which family 

of functions the graph belonged, such as linear, quadratic, cubic, or exponential. 

During the refinement stage, the parameters of the symbolic expression were 

adjusted to conform to the given graph. Ruthven observed that the students from the 

treatment group used graphical methods to refine their functions and students from 

the control group used numerical methods. Her observations indicated a difference 

in students' approaches used to translate functions from graphical to symbolic form. 

However, the impact of the graphing calculator on students' learning was not readily 

determined because no classroom observations. The difference in approaches for 

the groups could have been attributed to the techniques taught in class. The control 

group may have been taught only the numerical method for refining parameters of 

functions. Additionally, the success that was attributed to the treatment group may 

have been due to the efficiency of the GC rather than ability of the students. 

Students could check answers easily with the graphing calculator than with a 

scientific calculator. To check their refinements, students in the control group using a 

scientific calculator would have to spend more time than the treatment group. Thus, 

the success attributed to the treatment group and the technique that they used to 

refine their answers could have been attributed to the tool rather than an increase in 

understanding or ability. The results of this translation approach may be considered 

in preparing the instructional materials for the current study and also guide in 

observing the students’ actions when solving quadratic inequalities. This technique 

may help in checking and interpreting the solution of inequalities using the graphical 

representations enhanced by the use of the GC. It was noted that there was scant 
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literature about the research on teaching and learning quadratic inequalities using 

the GCs. For that reason, this study fills that gap. 

2.12 The roles of the graphing calculator in mathematics  

This section discusses the role of graphing calculator in mathematics classroom as 

supported by a large portion of research studies (Doerr and Zangor, 2000; Averbeck, 

2000; Leng, 2011; Karadeniz, 2015). They have identified at least five different roles 

of the graphing calculator use in mathematics classroom such as computational tool, 

transformational tool, data collection and analysis tool, visualization tool, checking 

tool. Through their findings, they have precisely elaborated how students use 

graphing calculators for each category in mathematics classroom.   

The graphing calculator technology can be used as a computational tool particularly 

to evaluate numerical expressions and perform calculations. The studies revealed 

that two issues appeared in the use of graphing calculators as a computational tool: 

entering symbols and parentheses correctly, and the precision of computational 

results (Doerr & Zangor, 2000). Students use mathematical reasoning to explain the 

errors appearing on their graphing calculator screen for the first issue. The second 

issue arises particularly in rounding off the answers as students’ interpretations of 

rounding off affect their problem solving strategies. They observed that students 

rounded off the numbers for every step of the problem rather than at the end of the 

problem.   

As a transformational tool, the integration of graphing calculators in mathematics 

teaching and learning has impacted on the teachers’ strategies to change the forms 

of some questions asked to their students and students’ gains from the questioning 

techniques (Karadeniz, 2015). For instance, the teacher can use both paper-pencil 

and graphing calculator strategies for asking a question about the inequality solution. 

With paper and pencil method, students are only able to focus on a specific strategy 

to solve the question such as factorisation or quadratic formula and then decide for 

the inequality solution set. However, in the calculator-based form, students are able 

to determine graphically by showing the inequality graph with the required solution 

set being within or outside the critical values. Therefore, students have improved 

their global views of inequality solutions with calculators as “their computational skills 

are transformed to interpretative skills” (Doerr & Zangor, 2000).  
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Graphing calculators are also be used as a data collection and analysis tool in 

mathematics learning. Some of the mathematics activities involve gathering data, 

controlling phenomena, and finding patterns (Karadeniz, 2015). For instance, 

students are required to understand the context of the activity through formulating a 

desired pattern of numbers. In addition, students need to conjecture, refine, 

negotiate and decide what constituted a satisfactory set of data (Doerr & Zangor, 

2000). In a given contextual problem as an activity, students will formulate and solve 

a quadratic inequality using a graphing calculator as well as decide on the 

satisfactory solution intervals.  

Students can use graphing calculators as a visualization tool in four different ways:  

(1) to develop visual parameter matching strategies to find equations that fit data 

sets, (2) to find appropriate views of the graph and determine the nature of the 

underlying structure of the function, (3) to link the visual representation to the 

physical phenomena, and (4) to solve equations (Doerr & Zangor, 2000). In the 

context of quadratic inequalities, these suggested ways are possibly relevant and 

applicable. Using graphing calculators as a visualization tool also reflects students’ 

ways of solving equations and inequalities (Karadeniz, 2015). For instance, the 

teacher explains all three available methods for solving an equation; including paper 

and pencil solutions, use of the calculator’s solve button and graphical solution. 

Doerr & Zangor (2000) observed many students used the graphical approach, which 

was less computational but provided a more meaningful interpretation for the 

solution.  In the case of this current study, the use of both graphical and graphing 

calculator approaches will provide more visualization to meaningfully solve quadratic 

inequalities.   

Students use graphing calculators as a checking tool in mathematical tasks to check 

the conjecture for the problems. They generally pose a conjecture about a possible 

function as fitting a data set. Then, students checked how well it fits by using their 

graphing calculators. They also used graphing calculators to understand multiple 

symbolic forms (Doerr & Zangor, 2000). In this regard students will check their 

inequality solutions using calculators to confirm the correctness and reasonableness. 

Leng (2011) however, identified six different ways of using graphing calculator (TI-

Nspire) in a calculus class such as “an exploratory tool, as a confirmatory tool, as a 
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problem solving tool, as a visualization tool, as a calculation tool, as a graphing tool 

(p. 935).” Three of these types namely, confirmatory tool, visualization tool and 

calculation tool were similar to the checking tool, visualization tool, and 

computational tool respectively in Doerr and Zangor’s (2000) category, in terms of 

their definitions. Students use graphing calculator (TI-Nspire) as an exploratory tool 

in mathematical tasks; as a problem-solving tool to attempt diverse approaches 

when solving mathematics problems; and as a graphing tool. The roles of the GC, 

above were considered in this current study as meaningful guidelines to observe the 

ways students use the tool in learning quadratic inequalities.  

These roles of graphing calculators do affect the students’ learning in mathematics 

classroom. Students’ decisions whether to use graphing calculators are normally 

affected by their perspectives on external effects, such as teachers' perspectives on 

using graphing calculators (McCulloch, 2011). As explained by Ertmer, Addison, 

Lane, et al., (1999), the way teachers perceive the role of technology is related to 

how they use technology in the mathematics instruction. In other words, these roles 

are driven by the teachers’ perspectives on the use of graphing calculators in their 

classroom. For that reason, awareness of these roles can influence the effective use 

of graphing calculators in student learning of quadratic inequalities and in designing 

instructional materials. To effectively achieve integration of the GC, the researcher 

as a teacher cautiously considered the obstacles or dilemmas faced by teachers 

when they use technology in their teaching. Using graphing calculators efficiently in 

mathematics classroom created a supportive environment to help the students 

enhance their mathematical knowledge and understanding (Lee & McDougall, 2010). 

This means that the classroom environment enabled students to gainfully engage 

with graphing calculators as they learned quadratic inequalities. However, there are 

errors and misconceptions associated with the use of graphing calculators.  

2.13 Misconceptions associated with the graphing calculator use  

Some research studies have indicated the potential drawbacks of using the GC 

both technically and conceptually. These are students’ difficulties and 

misconceptions which are related to the use of the GC in mathematics (Mitchelmore 

and Cavanagh 2000). For example, students experience new types of errors and 

misconceptions as they learn mathematics, which are introduced by GCs. These 

Stellenbosch University https://scholar.sun.ac.za



51 
 

errors are referred to as calculator-induced errors and effectively affect students’ 

mathematics learning (Muhundan, 2005).  

In her study of the students’ general errors in GC-based classes, Tuska (1992) has 

identified eight GC associated misconceptions. These misconceptions fall into four 

categories namely:  misunderstanding of the domain of a function, misunderstanding 

of the end behaviour and asymptotic behaviour of functions, misconception of the 

solution of inequalities, apparent misconception that every number is rational. In this 

regard, students need to observe and be informed about the GC-based errors and 

misconceptions in their use of GCs.  

Mitchelmore and Cavanagh (2000) point out that, although there is adequate 

evidence that students occasionally misinterpret the graphic image, no systematic 

research have been conducted on the types of’ GC- induced misconceptions. In their 

response, they investigated students’ difficulties in using a GC. This particular study 

investigated how grades 10 and 11 students interpret linear and quadratic graphs on 

a Casio fx-7400G through clinical interviews. Their findings showed that students’ 

errors in using a GC were attributable to four main causes: a tendency to accept the 

graphic image uncritically without attempting to relate it to other symbolic or 

numerical representation; a poor understanding of the concept of scale; an 

inadequate grasp of accuracy and approximation; and a limited grasp of the 

processes used by the calculator to display graphs.  

Issues associated to scale may be due to students’ lack of experience with graphs 

where the axes are not scaled equally (Williams, 1993, Thomas, 2016). Thomas 

(2016) pointed out that curricular materials often favour examples and exercises that 

are easily viewable in the calculator-standard 10x10 viewing window. In this case, 

students can encounter problems when non-standard window settings are required. 

This is also related to a poor understanding of using the calculator’s built-in zoom 

operations and finding reasonable window setting manually. All GCs have a zoom 

out feature that increases the range of both axes equally, which is usually useful for 

adjusting the drawn graphs. However, in many circumstances simply zooming-out 

results in losing important features of the graph (e.g., the local extrema of a 

polynomial function). The physical design of the GCs usually contributes to this 

misconception. Normally, GCs have the common design features of rectangular 
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screens, yet they are to display graphs using square windows. This results in some 

oddities such as perpendicular lines appearing as though they do not intersect at a 

right angle. Thomas (2016) emphasised that the error may look like a relatively minor 

quibble but it could conceivably create misunderstandings to some students.   

Mitchelmore and Cavanagh (2000) observed misconceptions and misunderstandings 

related to accuracy and approximation among the participants in their study. For 

example, students tended to correlate a greater number of decimal places with 

increased accuracy when making approximations but at the same time showed a 

marked preference for integer values. This may also be a by-product of the 

curriculum as examples and exercises tend to favour problems with integer 

solutions. A better understanding of how calculator and computer algorithms work 

and the associated limitations could help to alleviate some related to the accuracy of 

calculator approximations.  

Linking different representations of functions is another potential source of difficulty 

for students. Students have a tendency of accepting the graph displayed by the 

calculator without necessarily thinking critically about the results. For instance, 

students may fail to recognise inconsistencies between the symbolic form of a given 

function and the graph generated by the GC (Mitchelmore and Cavanagh, 2000). For 

example, the graph of a negative function can look different in the GC without a 

negative or the graph of a rational function can look different in the GC particularly 

near discontinuities. In situations like this, students may not think about their 

knowledge of the symbolic representations of the functions, leading them to 

misinterpret their GC output (Ruthven, 1990).  

The final category of student difficulties in using the GC observed by 

Mitchelmore and Cavanagh, (2000) is in the representation of graphs by a finite 

number of pixels. It was noted that students commented on the jagged appearance 

of graphs caused by the GC’s low screen resolution. This low resolution and the 

irregular graphs that it caused can also lead to misunderstanding (Hector, 1992). For 

example, the asymptotic decay toward the horizontal axis of an exponential function 

disappears when the calculator can no longer display the curve as separate from the 

axis itself. This also could be associated with difficulties of linking the symbolic and 
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graphic representations. It is conceivable that more accurate graphical depictions 

could be used by students to develop more coherent concepts of function types.   

According to Thomas (2016), many of the difficulties experienced by students when 

using the GC are more to do with mathematics than technology. Such 

misconceptions can be traced to an incomplete or inadequate understanding of the 

underlying mathematical concepts. On the other hand, these difficulties may be 

compounded by the design and shortcomings of the calculator as in the case of the 

scale issues. It is further stated that the representations of graphs can be aggravated 

if the user does not have a firm understanding of the associated function properties 

(Thomas, 2016). In addition, Williams (1993) found that the GC can be confusing for 

some students even after instruction and experimentation and teachers also 

mistakenly assume that their students have shared understandings. The implications 

of this study are that when teachers design the instructional activities, they should 

consider these misconceptions of GC use. 

2.14 Conceptual understanding in quadratic inequalities 

In Skemp’s (1976) views mathematical understanding comprises relational 

understanding and instrumental understanding. Ideally, the former refers to a 

situation where the student can know both what to do and why in the mathematics 

classroom. The latter refers to just being able to know or apply the rules without 

reasons (i.e., making sense of what these concepts mean and how they are 

interrelated). This means that in the familiarity phase the students develop an 

instrumental understanding and then later grows into relational understanding (i.e., at 

general level). With relational understanding students are able to explain the 

mathematical ideas (why) and how they are related. For instance, a student who 

understands quadratic inequalities can explain why the graphical representations are 

correct and how the solution sets can be  meaningfully written. 

Similarly, Kilpatrick, Swafford, and Findell (2001) describe conceptual understanding 

in mathematics as an integrated and functional grasp of mathematical ideas, which 

enables students to learn new ideas by connecting those ideas to what they already 

know. This means that students can understand the mathematical concepts when 

the new ones are linked systematically with the prior ideas and contexts so that they 

are able to transfer the constructed knowledge into solving the non-routine 
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situations. In an attempt to gain a more complete understanding of the cognitive 

processes involved in quadratic inequalities, the topic should be integrated with 

quadratic functions and graphs. A careful analysis of behaviour on mathematical 

tasks certainly should come into play, suggested Williams, (1993).  For example, 

students may or may not recognize a function and they may not have a complete 

understanding of all of the elements or be able to transfer the function between 

different representations of it – ordered pairs, table, equation, graph, etc. This kind of 

behaviour may compel the student to unconsciously accept the particular form as the 

definition and is unknowingly blind to the other forms possible of function (Parent, 

2015).  In this way, the student only understands a particular form of function; due to 

that being the only one used hence the student can only retain that particular form. 

Parent (2015) further pointed out that an important ingredient for understanding 

something is to know where it belongs in a larger scheme and to become familiar 

with its parts. This means students’ understanding of quadratic inequalities can be 

developed through learning the history of inequalities, including their misconceptions. 

Gaining insight on what hinders students from forming their own schema of a 

concept can enrich the current pool of knowledge surrounding quadratic inequalities. 

It is important that students should have adequate original information for the 

background knowledge in order to enhance their higher order thinking to solve 

quadratic inequalities. This can enable students to effectively transfer the previous 

knowledge so as to develop new mathematical concepts. The transfer of knowledge 

occurs when previous learning and experience is used in order to more quickly and 

efficiently learn a new skill, or mathematics content. According to Willingham (2006), 

students with a rich base of factual knowledge (i.e., coherent framework of 

knowledge) find it easier to learn more. In other words, when the student’s previous 

procedural knowledge is sound, it allows him/her to concentrate on constructing new 

knowledge (ideas) of mathematics. For example, if students know their multiplication 

tables, they can learn the concept of factoring quadratic expressions to obtain the 

roots of a function easier. In order to retain deep understanding of the new 

mathematical concept, students must be engaged in meaningful and contextualized 

learning experiences. Again, the use of the GC as a potential learning tool may help 

the students construct new knowledge that can enable them to completely 

understand quadratic inequalities.   
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Understanding involves the connections of prior mathematical concepts by students 

that can be explored when they solve quadratic inequalities in this study. As defined 

by the NRC (2001), conceptual understanding is to comprehend mathematical 

concepts, operations and relations. This actually means students should possess 

proper knowledge of the main concepts and operations involved and how these 

concepts interrelate. In addition, students can only be able to make sense of the 

mathematics if they understand the concepts and operations that are involved 

(NCTM, 2009). In other words, students who understand the concept can identify 

and use the relationships that exist between the concepts in a given problem. For 

this reason, engaging students in mathematical tasks involving multiple 

representations is essential for understanding quadratic inequalities. This can be a 

meaningful way of facilitating the connections between the different representations 

of the quadratic inequalities. The National Council of Teachers of Mathematics 

recommends that high school students should be able to create and use tabular, 

symbolic, graphical, and verbal representations and to analyse and understand 

patterns, relations and functions (NCTM, 2000). In this way, students can understand 

the operations of quadratic inequalities using tabular, symbolic and graphical 

representations to explain the relationship. In addition, multiple representations in 

teaching and learning of the quadratic inequalities can enable students to 

conceptually understand the patterns and relations existing within the concepts. 

Working with representations allows students to move back and forth between the 

symbolic and graphic approaches as they solve quadratic inequalities. In this 

context, the use of the GC may provide visual representations of table, symbolic 

function and graph, which can make students develop coherent conceptual 

knowledge or understanding.   

The Knuth’s (2000) work was considered relevant to this current study as it used the 

analytical approach (graphical) to improve students’ understanding. The study 

conducted with 284 high school students ranging from first year algebra through 

Advanced Placement calculus, concluded that although students often appear to 

understand connections between equations and graphs, their actual understanding 

of the connections is often superficial.  Knuth found that: 1) students relied heavily on 

algebraic solution methods even if the graphical would have been quicker; 2) 

students seemed to have developed a ritualistic procedure for solving problems 
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similar to those in the study; and that 3) students may have difficulties dealing with 

the graph-to-equation direction of solving problems. These observations indicate that 

students are dependent on rote procedural understanding, and then this conception 

may similarly be transferred to solving quadratic inequalities. This means that the 

use of the GC is needed to boost students’ understanding of algebraic concepts in 

order to minimize the use of algorithms and memorization. In the case of this current 

study, the use of the GC may reduce the level of reliance on algebraic methods and 

increase the application of graphical methods when students solve quadratic 

inequalities. Notably, students who have a greater conceptual knowledge are able to 

apply and adjust their procedures to fit the problem at hand. Such students are 

capable of solving non-routine problems that they have never come across before.     

Learning mathematics, therefore, is not just about finding answers but about the 

ability to interpret solutions and reflect upon these solutions. For Spinato (2011), this 

understanding is different from the learning that focuses on manipulative techniques 

and algebraic methods of problem solving. The desired learning should stimulate 

cognitive domains that allow students to systematically organise their knowledge into 

coherent framework which enables them to use reasoning and problem solving skills 

to unfamiliar problems. In the next section, these students’ skills are explained as the 

constituents of conceptual understanding in quadratic inequalities. 

2.15 Aspects of understanding mathematics  

In this part of the study the researcher explains students’ understanding of 

mathematics through its constituents: reasoning and problem-solving. Mathematics 

serves as a tool for problem-solving, communication, reasoning patterns of thinking 

and connectedness with other aspects (NoprianiLubis, et al., 2017). Similarly, the 

National Councils for Teachers of Mathematics point out that reasoning, problem-

solving and sense making are the cornerstones of mathematics and should be 

present in every mathematics classroom (NCTM, 2009). In this context, reasoning 

and problem solving skills are used in this present study to explore the students’ 

understanding of quadratic inequalities in a graphing calculator mediated classroom.  

2.15.1 Mathematical reasoning skills 

Student reasoning is an important cognitive skill of doing mathematics that has been 

recommended for inclusion in the curriculum. Reasoning is defined as the knowledge 
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processing which uses evidence to draw conclusions or to produce assumptions 

(NCTM, 2009; Lithner, 2008). In simple terms, reasoning involves the ways of 

thinking in trying to solve mathematics problems and reaching to conclusions based 

on initial assertions. In addition, through reasoning processes, students make use of 

analytical skills to generalize and apply mathematics to unfamiliar or complex 

contexts (Garden et al., 2006). This means students formulate conjectures, draw 

logical deductions from a set of assumptions and justify their results. In this regard, 

students are engaged in a higher level of thinking that is informed by logical 

conclusions based on assumptions, reflections, explanations, and justifications. The 

National Research Council (2001) suggests that students who are not involved in 

mathematical activities that demands reasoning are cut off from the whole realms of 

human endeavour. In this perspective, mathematics is a human activity which is not 

just about finding answers but about the ability to interpret solutions logically and 

reflect upon them intuitively.  

Reasoning is also viewed as the ability to think coherently and logically, and draw 

inferences from facts known or assumed (Mansi, 2003; Gunhan, 2014). In order to 

achieve this, students must be able to formulate and represent the mathematical 

facts adequately and further explain and justify the solution consistently. This line of 

thought allows students to continually refine and evaluate their own conjectures and 

assertions (Mansi, 2003), and to develop and maintain their reasoning skills 

(Gunhan, 2014). Regularly engaging in reasoning, according to Kilpatrick, Swafford 

and Findell, (2001), makes students build a productive disposition that can help 

mathematics make more sense to them. They, additionally suggest that asking 

students questions of “what” and “why” help to develop deeper thinking about the 

mathematical concept. This means incorporating such higher-level thinking 

questions into the daily mathematical instruction elevates the learning from 

procedural to conceptual understanding. Such exploring questions (how and why) 

help students to create conjectures of mathematics concepts. Along this vein, the 

students increasingly develop capacity for logical thought and actions, such as 

analysing, proving, evaluating, explaining, inferring, justifying and generalizing. 

Researchers have identified and explained the five main domains of reasoning: 

analysing a problem, initiating a strategy, monitoring one’s progress, seeking and 
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using connections, and reflecting on one’s solution (NCTM 2009; Spinato, 2011). 

Analysing a problem consists of identifying hidden structures, patterns and 

relationships, and making connections and deductions, and determining whether a 

solution is appropriate. Initiating a strategy as the second component involves 

selecting the appropriate concepts, representations, and procedures, making 

purposeful use of procedures, organizing solutions, and making logical deductions. 

The third domain, monitoring one’s progress consists of reviewing the strategy that 

one has chosen to make further analysis of a problem and to modify selected 

strategies if necessary. The fourth domain, seeking and using connections, includes 

connecting different mathematical domains and connecting different contexts and 

representations. Reflecting on one’s solution involves interpreting and justifying 

solutions, assessing the reasonableness of solutions, considering alternative ways of 

solving problems and generalizing solutions. In order to measure and understand 

students’ reasoning, the five main domains of reasoning would be considered in 

designing the interview questions for this study. 

Garden et al. (2006) has further indicated that reasoning is used for solving both 

routine and non-routine problems.  Routine problems are those that students are 

familiar with and encounter often in a mathematics classroom. Non-routine problems, 

on the other hand, are those that students do not often encounter and are not 

familiar with solving. As explained by Schoenfeld (1992), non-routine problem 

solving can occur after routine problem solving. These types of problems require a 

level of thinking beyond that of routine problems. Although reasoning skills are used 

to solve both types of problems, it is the non-routine problems for which reasoning 

skills are most useful. Students apply their existing knowledge to a new situation that 

they encounter when solving problems of mathematics. 

Reasoning is at the heart of learning mathematics conceptually, and has recently 

received greater attention in the high school setting (Graham et al., 2010; 

Nebesniak, 2012). Incorporating thinking skills into learning mathematics is essential 

to students’ understanding and success. This implies that students need to 

experience mathematics and create meaning for them by reasoning about the 

mathematics and deduce the sense of what is happening within the mathematics 

(Graham et al., 2010). In this context, teaching that is focused on creating reasoning 
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increases students’ understanding of mathematics. In essence, teachers are 

expected to infuse reasoning into the curriculum by choosing specific mathematical 

tasks, facilitating math discussions (Graham et al., 2010), and posing questions that 

encourage students to think mathematically and explain their thinking (Nebesniak, 

2012). An emphasis on reasoning can help students appreciate algebra conceptually 

(Graham et al., 2010) and facilitate a greater conceptual understanding of 

mathematical concepts (Nebesniak, 2012). In this context, the use of the GC in the 

mathematics classroom may assist students to develop both reasoning and sense 

making.  

Teaching reasoning helps lay a strong foundation on which students can build an 

understanding of concepts (Graham et al., 2010). This means students can 

accurately carry out mathematical procedures, understand why those procedures 

work, and know how they might be used. This can help those struggling students 

suddenly experience mathematics for themselves. The use of GCs can help students 

retain what they have learnt by connecting to prior knowledge. Thus through the use 

of GCs students may link new concepts to other mathematical understandings. 

2.15.2 Mathematical problem solving skills  

Problem solving is a learning process that students normally get involved in school 

mathematics. When students learn mathematics, they develop important life skills 

such as analysing, interpreting, predicting, evaluating and reflecting (Anderson, 

2009). This means that problem solving skills are students’ life skills which can be 

continually applied when students search for solutions and connections in real-life 

situations. Kuzle (2013) defines mathematical problem solving as the process which 

usually involves several iterative cycles of expressing, testing, and revising 

mathematical interpretation and of sorting out, integrating, modifying, and refining 

clusters of mathematical concepts. In this context, problem solving provides an 

important context for learning mathematics as students are provided with a chance 

to analyse, interpret, predict and reflect on their solutions. Thus problem solving is 

central to understanding mathematics as students have opportunities to explore 

problems themselves and to monitor those problem-solving processes.  

According to the NCTM (2010), problem solving is an integral part of all mathematics 

curricula as it involves tasks that have the potential to provide intellectual challenge 
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and improve the understanding of students' mathematical development. Similarly, 

Karatas and Baki (2013) view problem solving as an intellectual, logical and 

systematic ability which helps students when dealing with mathematical problems, to 

search for multiple solutions then, select the best solution with regard to the 

conditions. Mahmoud Radi (2006) contend that teaching problem solving skills 

improves communication quality, increases assertiveness skills, and arouses self-

efficacy and self-discipline of students. Similarly, McMoran et al. (2007) note that 

teaching problem-solving skills improved student understanding and personal skills 

as well as enriched students’ mathematical conceptions. This means problem 

solving enables students to have deep mathematics knowledge and gives them the 

opportunity of pursuing their own learning enthusiasm of knowing mathematics. This 

further suggests that problem solving is an effective learning process with a positive 

drive for promoting students’ thinking and understanding in mathematics learning.  

Problem solving is the heart of mathematics education (NoprianiLubis, et al., 2017; 

Dede & Yaman, 2005). For that reason, researchers have suggested several 

strategies to be adopted for solving mathematical problems. One of the most 

commonly known problem-solving strategies were introduced by Polya (1945; 1957; 

1971), who cited four broad steps to successfully solve a mathematical problem. The 

heuristic steps of problem solving process in his book How to solve it are: 

understanding the problem (stating the problem in your own words); devising a plan 

(formulating an inequality or strategy, or examining related problems); executing the 

plan (implementing a strategy or solving an inequality or checking operations and 

links); and looking back (checking or reflecting on the results). These heuristic steps 

enable students to solve the mathematical problems that they created competently 

as would have gained the required experience.  For this reason, this research study 

draws upon Polya’s ideas and modified them such that they can be applied to 

developing the students’ abilities of solving quadratic inequality problems. 

Problem-solving is a framework within which creative thinking and learning takes 

place in an attempt to overcome difficulties that appear to interfere with the goal 

attainment (Perveen, 2010). This process in mathematics is used to solve problems 

that do not have obvious solutions (Polya, 1945; Perveen, 2010). Polya (1957) 

further claimed that not introducing non-routine problems to students was an 
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unforgivable mistake and added that it was a necessity to include these problems in 

mathematics. The routine problems, as noted by Polya, cannot improve the 

imagination of students because of its mechanical solutions. This implies that 

students should develop heuristics for solving the non-routine problems. This 

process actually provides opportunities for students to create their own approaches 

and to gain the requisite experience from their own discoveries (Polya, 1957; 

Perveen, 2010). In this context, students use their experiences and knowledge to 

solve the mathematical problems even when they do not explicitly know the solution. 

However, students who cannot understand a problem may not be able to find and 

use suitable strategies and may not be able to explain what they are doing.  

Research reports have put an emphasis on student reasoning and problem solving 

activities in mathematics (Karatas, & Baki, 2013). In CAPS mathematics curriculum, 

(DBE, 2011), problem solving is described as a cognitive skill that should be along 

with mathematics teaching and learning. The mathematics curriculum as explained 

by Karatas and Baki (2013), bases on the principle that every child should learn 

mathematics with the basic skills such as problem solving, communication and 

reasoning. In reference to CAPS FET Mathematics document, four levels of 

cognitive skills are stated to be developed in students namely procedural knowledge, 

routine and complex reasoning, and problem solving (DBE, 2012). This implies that 

problem solving skill is essential for students doing mathematics and for 

comprehending mathematics meaningfully. 

In the context of using technologically enhanced learning environments, students 

can seek for additional solutions for the problems posed on them for deeper 

understanding. For example, one of these tools is the GC which provides students a 

chance to visualize modelling variations (Idris, 2006). The use of the GC, as 

Goldenberg (2000) stated, offers students a richer and deeper understanding of 

mathematical topics and also help students improve their problem solving skills. 

Therefore, this study attempts to use the GC in anticipation to improve and retain 

students’ problem solving strategies and their underlying reasoning skills in quadratic 

inequalities. Moreover, students’ understanding of quadratic inequalities is provided 

by making sense of a problem, seeking to justify why the solution is true and 
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applying a carefully thought-out strategy (e.g. GC) to ill-defined problems for the 

inequality solutions. 

Many of the reviewed studies indicated and suggested that the use of the GCs 

improved student achievement and understanding in mathematics. In addition, the 

use of the GC significantly improved students’ problem solving, reasoning, 

communication, and representation skills. These studies have laid a strong 

foundation for the current study and it is hoped that the current study would provide 

encouraging preliminary results about students’ reasoning and problem solving skills 

of quadratic inequalities in the graphing calculator-enriched classroom. 

2.16 Chapter summary  

The purpose of this research was to investigate the students’ understanding of 

quadratic inequalities in a graphing calculator mediated environment. This chapter 

began with a discussion of the historical developments of inequalities, inequalities in 

the South African curriculum and research on inequalities. Through the reviews of 

multiple studies the researcher noted that inequalities started with mathematics and 

still remains the pillars of many mathematical contents. However, not many studies 

have been conducted on inequalities and there is limited amount of literature 

available specifically to the quadratic inequalities. It was noted that inequalities do 

not have a long history and makes it difficult to explore the actual steps of success 

and misconceptions in learning this particular topic. It is essential to understand the 

historical developments of inequalities so that the educators can concentrate on 

those misconceptions when designing the instructional materials. Seemingly learning 

of quadratic inequalities is difficult to be understood by students of high schools. For 

this reason, this study explored the ways of teaching quadratic inequalities, including 

the graphing calculator.  

A comprehensive review of the related literature on the use of the graphing 

calculator technology, its role in secondary mathematics instruction, and 

misconceptions of the GC was performed. In reviewing the literature, the researcher 

noted that making the graphing calculator available for the students to use as an 

instructional medium, had an added value to their understanding of quadratic 

inequalities. Graphing calculators are used to improve classroom dynamics, boost 

students’ confidence levels, and promote students’ thinking and problem-solving 

Stellenbosch University https://scholar.sun.ac.za



63 
 

abilities in quadratic inequalities. The reviewed research studies revealed that the 

use of the GC had been widely investigated in many areas of mathematics, in 

particular their effects on students’ understanding of concepts. However these 

studies have not focused much on the understanding of quadratic inequality concept. 

This means that the use of graphing calculators in quadratic inequalities is sparsely 

studied and remains unresolved issue. The FET mathematics curriculum (CAPS) is 

specifically designed to take advantage of the use of the GC as a potentially 

available technology that can engage students in exploring and solving real-world 

problems. A large amount of research supporting the use of the GC has expressed 

the significant gains that may assist students to understand mathematical concepts. 

The use of the GC as a possible alternative method can connect algebraic method 

with functions and this allows the students to switch freely between algebraic and 

visual graphical representations. The use of graphic calculator reduces the drudgery 

of applying arithmetic and algebraic procedures when solving quadratic inequalities. 

Students are free to spend more time on problem solving and visualize data in more 

than one way.  

Evidence from the reviewed literature has shown that preparedness of teachers and 

consistent use of the GC can improve student conceptual understanding in 

mathematical concepts. Thus, there is a need for the research on the impact of the 

uses of graphing calculators on the students’ understanding of quadratic inequalities. 

This study provides a rare opportunity to investigate students’ reasoning, problem 

solving and sense making skills of quadratic inequalities in a graphing calculator 

environment as key aspects of students’ understanding.  

The next chapter discusses the theoretical frameworks supporting this study on 

students’ understanding in a graphing calculator mediated mathematics classroom. 
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CHAPTER 3: THEORETICAL FRAMEWORKS  

3.1. Introduction  

This chapter discussed theoretical perspectives related to the research questions 

that helped in designing instructional activities and interpreting students’ 

understanding of quadratic inequalities in a graphic calculator enhanced classroom. 

To this end, the following theories of learning mathematics were discussed in this 

chapter: sociocultural constructivist (Vygotskian) theory, Realistic Mathematics 

Education (RME) theory and instrumentation theory (IT), and are compatible with 

one another. These theories assist in explaining the kinds of productive classroom 

practices that enhance students’ reasoning, the heuristic methods used to solve 

mathematical problems and the ways of interactions between teacher, students and 

mathematics concepts in a GC enhanced classroom. The use of these compatible 

perspectives was aimed to provide a rich spectrum of what constitutes students’ 

understanding, and how mathematics teachers can enact practices that enhance 

student thinking in a graphing calculator-enhanced classroom. 

These theoretical perspectives generally place students at the centre of learning 

rather than as recipients of direct instruction. In student-centred learning, as 

suggested by White Clark, DiCarlo & Gilchriest, (2008), students are involved in 

discovering information while the teacher serves more as a guide and facilitator of 

learning. The RME and instrumentation frameworks are influenced and associated 

with constructivist teaching. As pointed out by Amineh and Asl, (2015), the 

constructivist perspective influences many areas of thought on mathematics 

education, including particular teaching strategies, conceptual understanding, 

reasoning and the use of technology. In this way, these perspectives provide 

students with opportunities to work in a social setting of groups (i.e., mathematics 

classroom). 

3.2. Sociocultural constructivist theory 

The purpose of this section is to explore and understand how the key concepts of 

Vygotskian theory (such as cultural, historical and social) ca n contribute to the 

cognitive development and learning of the students in the mathematics classroom 

technologically supported. This section discusses the socio-cultural interaction and 
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zone of proximal development (ZPD) as the main concepts of the theory (Vygotsky, 

1978; 1987). The implications of this theory on learning mathematics in a 

technologically enhanced classroom are also included for discussion. Researchers 

(e.g. Kravtsova, 2009; Vygotsky, 1997; Ruthven, 2013) distinguish a socio-cultural 

interaction as fundamental for the full cognitive development of the students in the 

mathematics classroom, while a ZPD explains the construction of student’s 

knowledge and understanding with the aid of adult or peer who is regarded as a 

more knowledgeable other. These themes of the theory are expected to provide 

cognitive power to the teacher-researcher on how to integrate the use of the GC in 

the teaching of quadratic inequalities..  

3.2.1 Socio-cultural environment and discourse 

Social constructivism, in Ross’ (2006) views, is a theory of knowledge in sociology 

and communication theory that examines the knowledge and understandings of the 

world that are developed jointly by individuals. This means students develop their 

mathematical understanding, significance and meaning of the concepts through 

interacting with other human beings and their environments. Social constructivism, 

strongly influenced by Vygotsky's (1978) work, suggests that knowledge is first 

constructed in a social context and then internalized and used by individuals (Eggen 

& Kauchak, 2004). Vygotsky considers cognitive development primarily as a function 

of external factors such as cultural, historical, and social interaction rather than of 

individual construction. This means culture plays an important role in the 

construction of knowledge and does model the behaviour of the students.  

Learning is a social process that is affected by student’s culture (Panhwar, Ansari, & 

Ansari, 2016) and culture is a critical construct for the cognitive development of 

students (Vygotsky, 1986).  It is further noted that student’s education equally relies 

on both the outside sociocultural forces and the inner stimuli (Panhwar, Ansari, & 

Ansari, 2016). In this context, the student’s intellectual development is initiated by 

social and cultural influences and interactions which lead to higher and deeper 

mental development and functions. It is of great importance to note that the human 

mind rarely works solitarily, but in social contexts. For this reason, socio-cultural 

environment is a necessary factor in learning and is very critical for intellectual 

development and understanding of mathematics.  
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A critical review of literature (e.g., Wertsch, Rio & Alvarez, 1995) indicates that the 

theory has divided the student’s intellectual development into the inter-psychological 

plane and intra-psychological plane. The inter-psychological development ensues 

when the student communicates with other people and intra-psychological 

development takes place when innovative efforts are used by the student to 

strengthen his/her learning after having acquired from other individuals and society. 

This specifically suggests that student’s cultural development occurs firstly at the 

social level (inter-psychological) and later, at the individual level (intra-psychological) 

(Wertsch, Rio & Alvarez, 1995). The student initially acquires knowledge through 

contacts and interactions with people and then later assimilates and internalises this 

knowledge adding his personal value to it (Panhwar, Ansari, & Ansari, 2016).This 

means a meaningful learning occurs when individuals (students) are engaged in 

social activities and then integrate this into the individual’s mental structure (inside 

the mind of the student).  

This transition from social to personal property is not a mere copy, but a 

transformation of what had been learnt through interaction, into personal values 

(Panhwar, Ansari, & Ansari, 2016). The idea is when two or more students interact 

on a psychological plane the student may internalize the information, structures and 

functions. In the social learning context, the social functions, speech and discourse 

usually prepare the student for the higher mental activities and synthesis (Wertsch, 

Rio & Alvarez, 1995). Within the context of educational practices, students do not 

merely copy their teachers’ capabilities but rather they transform what teachers offer 

them during the processes of appropriation –that is using graphing calculator. To this 

end, knowledge is not derived directly from the reality but from different perspectives. 

This implies that the teacher-researcher should consider the social and cultural 

context and the CAPS policies when delivering sessions of quadratic inequalities in a 

graphing calculator-enhanced classroom. 

Language is critical in the learning process for students as it is used as a means of 

communication between a student and any person in the environment. 

Communication is one of the advocacies of the socio-cultural theory in the learning 

environment and has assisted students to acquire knowledge from one another and 

from more able peers, parents and teachers (Panhwar, Ansari, & Ansari, 2016). This 
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means, in the socio-cultural contexts, the student internalises and processes the 

information and knowledge gained through communicating with other people. Thus, 

the processed information improves the student’s development of knowledge and 

true understanding (Kohler, 2010). The reviewed literature also reveals that social 

interactions shape the child’s mental development and the child does not shape 

society (Panhwar, Ansari, & Ansari, 2016). This suggests that socio-cultural 

experiences have a greater influence on the way students learn and build their 

concepts about the surrounding objects. This implies that in a technologically rich 

classroom students can be adequately prepared for the higher mental functions and 

synthesis to internalize the information and structures. 

Language is the first stage of development as a vocal means of learning in the social 

process (i.e. classroom) (Kohler, 2010). Through the appropriate use of language, 

students can be moved beyond the initial stage of development to internalise and 

organise the thought processes (Obukhova & Korepanova, 2009). This therefore 

suggests that a meaningful classroom language can facilitate the meaning 

construction out of student’s thought processes. Students need to make meaning out 

of thought processes by communicating the results. Meaning can function in terms of 

mind and behaviour within the social context. Meaning exists in two places: between 

two people and in the thinking process; ―the transactional space between the 

individual and the world of objects and events. The student firstly constructs the 

meaning out of his/her environment and then moves to a higher level when it is 

internalized. The use of appropriate language by the teachers in a GC mediated 

mathematics classroom may stimulate students to construct their meanings and 

concepts correctly even to move to the higher levels.  

Tajuddin, Tarmizi, Konting and Ali (2009) argue that the exploratory activity in 

mathematics may facilitate an active approach to learning as opposed to a passive 

approach where students just listen to the teacher. This type of learning environment 

can assist students to internalise accurate information and construct correct meaning 

in the mathematics classroom. The same researchers indicated that the use of 

graphing calculators provides various kinds of guided explorations that should be 

undertaken in functions, graphs, equations and inequalities. This means students 

may use GC to explore the effects of changing parameters of a function on the 
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shape of its graph and also explore the relationships between the graphs and 

inequalities. In such instances, the use of GC has provided an exploratory learning 

environment. 

3.2.2 Vygotsky’s Zone of Proximal Development 

The second theme of Vygotsky’s theory has the potential for cognitive development 

which is limited to a zone of proximal development (ZPD). This zone is defined as 

the distance between a child’s “actual developmental level as determined by 

independent problem solving” and the higher level of “potential development as 

determined through problem solving under adult guidance or in collaboration with 

more capable peers” (Vygotsky 1978, p. 86). This is the area of exploration and 

potential learning for which the student is cognitively prepared, but requires 

assistance and social interaction to fully develop (Sibawu, 2013). Students are 

allowed to mediate, internalize and develop new concepts, knowledge and skills 

through interacting with competent people in his learning environment. In this sense, 

a teacher or more experienced peer is required to provide the learner with necessary 

support in the ZPD.  

In his work, Vygotsky has described student’s learning as movement through a 

series of levels of development with the aid of someone who has higher knowledge. 

This movement occurs in the student’s zone of proximal development.  Researchers 

(e.g., Bozhovich, 2009; Verenikina, 2003) explained the difference between the 

student’s levels of cognitive development in the ZPD. The student’s actual level of 

ZPD refers to what a student can demonstrate alone or perform independently 

(Bozhovich, 2009) and that is a “yesterday of development” (Verenikina, 2003). The 

potential level of development refers to the next level attainable through the use of 

mediating semiotic and environmental tools and capable adult or peer-student 

facilitation (Bozhovich, 2009) and that is a “tomorrow of development” (Verenikina, 

2003). Thus, the ZPD is the distance between what a person can do with and without 

help of knowledgeable adult or peer. The term proximal (nearby) indicates that the 

assistance provided goes just slightly beyond the learner’s current competence 

complementing and building on their existing abilities. In this way, an instructor’s 

teaching of a student is regarded not just as a source of information to be 
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assimilated but as a lever with which the student’s thought is shifted from a lower 

level to the higher one. 

Roosevelt (2008) argued that in order to keep students in their own ZPDs teachers 

should give them interesting and culturally meaningful learning and problem-solving 

tasks that are slightly more difficult than what they do alone.  Such tasks can push 

students to work together either with another, more competent peer or with a teacher 

or competent adult to finish the task. The idea is that after completing the task jointly, 

the student will possibly be able to complete the same task individually next time, 

and through that process, the student’s ZPD for that particular task will have been 

raised. According to Campbell (2008), this process is then repeated at the higher 

level of task difficulty that the learner’s new ZPD requires. Thus through such 

collaborative endeavours with more skilled persons, students learn and internalize 

new concepts, psychological tools and skills. Learning mathematics in the ZPD 

means a student can perform a range of mathematical tasks that he cannot yet 

handle alone but with the help of instructors or more capable peers. The idea is that 

student is engaged in cooperative dialogues with more capable partners to discuss 

the assigned tasks. Consequently, a student may acquire the appropriate language 

and make it part of his/her private speech, and use this speech to organise his/her 

independent performance in the same way. In other words, he/she acquires the 

correct methods and skills, and then uses them in his/her independent performance 

later. 

The socio-cultural learning theory advocates scaffolding in the classrooms. 

Scaffolding (ZPD) is the assistance given by the more knowledgeable adults, which 

enables a student or an inexperienced person to solve problems, perform activities 

or accomplish targets which he/she could not achieve without help (Panhwar, Ansari, 

& Ansari, 2016). With Daniels (2001), scaffolding is a form of assistance that enables 

a novice to solve a problem, carry out a task, or achieve a goal which would be 

beyond his/her unassisted efforts. For this reason, scaffolding in mathematics 

learning is central as students can solve problems which they could not have 

succeeded without teacher’s or peer’s help. The theory underscores student-student 

interaction and student-teacher interaction, and rejects a teacher-centred approach. 

It further emphasises the significance of the active and participatory relationship 
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between a student and a supportive teacher in any form as people, peer, social 

norms and values, ritual, and customs (Daniels, 2001). Thus, a Vygotsky’s ZPD 

model might be appropriate to provide an all-encompassing structure to involve 

teachers and learners in significant and fruitful collaborative strategies for 

mathematics learning, in particular, integrating the use of graphing calculators to 

solve quadratic inequalities. 

Vygotsky’s theory also emphasises the significance of externally mediated activity 

that involves the use of external means to reach the student’s goal (Verenikina, 

2003). This suggests that mediation is central to the sociocultural learning theory. 

Mediated action is a process that helps human consciousness to develop through 

interaction with artefacts, tools, and social others in an environment and can result in 

individuals to find new meanings in their world (Panhwar, Ansari, & Ansari, 2016). 

This means people who have different levels of skills and knowledge (e.g., teachers) 

select and shape the students’ learning experiences (Verenikina, 2003; Stetsenko & 

Arievitch, 2004). This process is connected with the application of tools and signs to 

reconstruct the meanings of the world. The other significant people adopt these 

cultural tools, having both psychological and social functions, to perform an activity 

for them and with them (Stetsenko & Arievitch, 2004). Artefacts, or cultural products, 

are those things which are manufactured and created by people in the culture which 

include a pen, spoon, table, language, traditions, beliefs, arts, science and so on 

(Panhwar, Ansari, & Ansari, 2016). For example, graphing calculators may be 

considered as external means and used as artefacts/tools to solve quadratic 

inequalities in the mathematics classroom. The idea is that students interact between 

and with the cultural tools to reconstruct their meanings and functions.  

Researchers have argued that student’s action is mediated and cannot be separated 

from the milieu in which it is carried out (Verenikina, 2003). The idea is that learning 

usually takes place where the use of psychological tools is available to a learner in 

his or her environment. Learning is about actions of the students and it should be 

studied in context where the actions take place. For example, a student’s speech, 

thinking, and utterance in the learning process are considered as actions, so they 

are carefully mediated. The idea is that the students’ actions in the mathematics 

learning process need to be mediated in order to develop their cognitive thinking and 
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true understanding. Psychological tools provide educational activities and materials 

in a child’s learning which are generally considered tools. This means that computers 

or graphing calculators are Vygotsky’s psychological tools referred to and hence a 

means of mediation. These tools particularly in learning of mathematics provide 

students with a diverse mode of thinking.  

Mediation done through symbols causes not only quantifiable progress in terms of 

competence and fluency, but it also results in cognitive improvement in terms of 

critical reasoning and thinking (Panhwar, Ansari, & Ansari, 2016). Thus, the process 

of the theory suggests that social tools and signs transform and improve the overall 

flow and organisation of psychological functions of students. This shows that the 

emergence of new cultural tools (e.g., graphing calculator, GeoGebra, and 

computers) can transform power and authority from teachers to the students. This 

means that interacting with GCs can assist the students to transform the learning 

opportunities in the mathematical classroom and move them into and through the 

next layer of thinking or understanding.  

Another notable aspect of Vygotsky's theory is instruction that is received by 

students in classrooms. According to Verenikina, (2003), instruction should be 

geared towards the zone of proximal development that is beyond the learner’s actual 

development level. The idea is that the higher mental functions of students –e.g., 

mediated perception, logical thinking, deliberate attention and memory- are acquired 

through learning and teaching. However, teachers should provide opportunities for 

students to mediate and assist each other in the creation of ZPD in which each 

student learns and develops. In this context, students can discover the whole 

meanings by themselves following teacher’s instructions in classroom settings.   

The theory further regards teacher’s instruction as crucial to students’ development 

in the classroom. The theory suggests that the most efficient instruction that can 

appropriately engage students in learning activities within a supportive learning 

environment should be mediated by tools (Verenikina, 2003). The instructional tools 

can be cognitive strategies, a mentor, peers, computers, printed materials, or any 

instrument that organises and provides information for the student (Verenikina, 

2003). In that respect, these instructional tools provide students with dynamic 

support that can help them complete a given task near the upper end of their ZPD. 
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However, the mediated support is systematically withdrawn as the students move to 

higher levels of confidence (Panhwar, Ansari, & Ansari, 2016; Sibawu, 2013). This 

means the mediated instructions in the students’ ZPD should provide appropriate 

assistance that enables students to increase their potential for future participation. In 

this study GCs function as tools to mediate, or influence, human activity and 

learning. This implies that the use of graphing calculator as an instructional tool to 

solve quadratic inequalities may raise the potentially cognitive development of the 

grade 11 students in South Africa. 

3.3 Realistic Mathematics Education (RME) 

RME is a domain-specific instruction theory for mathematics education that has its 

origin in the Netherlands (Van den Heuvel-Panhuizen, 2013). In this theory, 

guidelines for instructions are offered that support learners to construct or reinvent 

mathematics interactively (Gravemeijer, 1994). The idea is to promote the 

construction of mathematical knowledge and skills of students through the use of 

models. In this context, the learning of mathematics is a constructive activity in which 

students are not spoon-fed with factual knowledge (i.e. reproductive learning). 

Students do not learn through memorizing knowledge but through constructing their 

own conceptual knowledge. Similarly, a student should always have a learning tool 

(model) at his/her disposal to help bridge the gap between the concrete and abstract. 

This theory emphasises the solution of contextual problems and focuses on 

developing students to start thinking mathematically.  

Zulkardi (2014) is of the view that students should be actively involved in the learning 

process in order to be able to create their own meaning and solutions of real life 

mathematical problems. This suggests that students work out contextual problems 

using tools or models, (e.g. graphing calculators) to enhance their thinking and 

problem solving skills. Such models can allow collaborative learning among students 

as they meaningfully engage in solving problems in context. Mathematics learning 

activities cannot simply rely on reception, imitation and memorization (Peters, 2006) 

rather it should be a process that is lively animating and participatory. Learners 

therefore should be given room to engage in mathematical activities that are relevant 

and meaningful to their lives (Barnes, 2005; Gravemeijer, 1994). It should be noted 

that as a neo-constructivist approach (Ndlovu, 2014), RME provides a possibility for 
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involving students in purposeful activities in a meaningful context. RME theory 

stresses that mathematics learning should, in Freudenthal’s (1977) view, be 

connected to reality, maintained closer to learner’s experience and be relevant to 

society, in order to be of human value. For this reason, this domain-specific 

instruction theory may provide the much needed ideas on how to develop a 

meaningful framework of mathematical relations and objects in this current study. 

Researchers proposed the similar (but different number of) learning and teaching 

principles of the RME approach (Treffers, 1991; Van den Heuvel-Panhuizen, 2010). 

These include the activity principle (learners use their own productions); level 

principle (use of models); reality principle (use of context); intertwinement principle 

(use of various learning strands); interaction principle (interactivity in the 

teaching/learning process) and the guidance principle (guided re-invention). 

However, these learning and teaching principles are parallel to the de Lange’s 

(1987) tenets of the RME. The tenets are: (1) the use of real-life contexts; (2) the use 

of models; (3) student's free production; (4) interaction; (5) intertwining. In the 

present study the instructional activities for students are designed and conducted in 

accordance with Van den Heuvel-Panhuizen’s (2010) six principles underpinning 

RME pedagogy.  

3.3.1 The Activity Principle: The use of students’ own productions  

This first principle of RME considers learning mathematics as a constructive activity 

(Treffers, 1991), which could best be learned by doing it (Van den Heuvel-

Panhuizen, 2013). This principle actually (in Freudenthal’s (1991) views) interprets 

mathematics as a human activity, in which students are treated as active 

participants. The transfer of ready-made knowledge directly to students is 

considered to be an ‘anti-didactic inversion’ (Freudenthal, 1973, 1983, 1991). Rather, 

students should be confronted with problem situations so as to develop all sorts of 

mathematical tools and insights, formal or informal, by themselves (Cheung & 

Huang, 2005). In this context, students are actively involved in the classroom and 

mathematics becomes meaningful. Consequently, students have the opportunity to 

produce more concrete objects by themselves in order to develop their own informal 

problem solving strategies. This can assist students to discover relationships and 

learn to use their knowledge to develop mathematical concepts by themselves. In 
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addition, the activity principle implies that learners should be confronted with 

problem-situations in which they can gradually develop their own strategies based on 

an informal way of working. It should be noted that student’s own constructions play 

a pivotal role towards their understanding of the mathematical concepts. The role of 

the teacher-researcher in this study, however, should be to facilitate learning in such 

a way that each individual student can develop his/her own algorithmic way of 

solving the quadratic inequality problems. As such in this present study rather than 

being recipients, students were given activities (tasks) of quadratic inequalities to 

work on by themselves using GCs (see Appendix C).  

3.3.2 The Level Principle: The use of models 

In this principle, the learning of a mathematical concept or skill is viewed as a 

process which progressively stretches out over the long term and various levels of 

abstraction. This principle advocates the use of models and symbols to develop or 

scaffold students’ understanding of mathematical concepts from intuitive, informal 

and context-bound towards more formal notions (Bakker, 2004). This means the use 

of a variety of models, schemes, diagrams, and symbols should support this 

developmental process and these instruments should be meaningful for the students 

and should have the potential for generalization and abstraction. The use of these 

instruments can enable students to move through different levels of understanding in 

the process of learning mathematics. In this present study the use of graphing 

calculator may help students to move through the different levels as it has the 

potential for producing visual models, diagrams and symbols.  

The level principle emphasises the learning of mathematics using models that can 

help students make progress from informal to more formal mathematical activity. 

Gravemeijer (2000) describes how initial models that students create of a contextual 

situation change and become an entity of their own. In this instance, the intuitive 

model of a certain (contextual) situation later functions as a model for more formal 

mathematical reasoning. This means that the use of models moves student thinking 

away from the contextual situation to the mathematical relationships. In the case of 

quadratic inequalities, the notion of a graphical representation that displays quadratic 

graph was envisioned to become a model of numerical points and later a model for 

more formal quadratic inequality reasoning.  
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Gravemeijer (1994) describes the four levels of emergent modelling in more general 

terms:  situation level, referential level, general level and formal level (Drijvers, 2003; 

Bakker, 2004; Cheung & Huang, 2005; Van den Heuvel-Panhuizen, 2013; Ndlovu, 

2014). This suggests that the realistic mathematics learning starts with modelling the 

real problem and then ends with modelling situations that give rise to formal 

knowledge. Gravemeijer (1994) explains the four hierarchical levels as: 1) a 

situational level where students work within the context of the problem. 2) a 

referential level where their models refer to the situation. 3) a general level where the 

mathematical focus is on strategies that govern the reference to the context, and 4) a 

formal level where students work with conventional procedures and algorithms.  

In this level principle student activities should first start from the (informal) situation 

level closely bound to problem contexts so that domain-specific situational 

knowledge and strategies can be used (Cheung & Huang, 2005). The second or 

referential level encompasses the use of concrete mathematical models representing 

mathematical objects. This is a level of ‘model of’ in reference to the concrete 

models’ close connection to the situations described in the problem (Van den 

Heuvel-Panhuizen, 2003). The third or general level is a transitional level in which 

relationships are analysed through general mathematical models that can be 

dissociated from the problem contexts. The dissolute models are referred to as 

‘models for’ where the focus is more on paradigmatic (or typical examples of) 

solution procedures that can be used to solve new problem situations (Van den 

Heuvel-Panhuizen, 2003). The fourth or formal level allows pure cognitive thinking or 

higher level of formal mathematical reasoning, reflection and appreciation (Cheung & 

Huang, 2005). This level principle can be used to structure an entire learning 

sequence of quadratic inequalities. These varying levels may assist in designing the 

instructional materials of the students, in particular where graphing calculator is used 

as an instructional instrument. For this reason, the levels of emergent modelling can 

be adapted to a larger variety of mathematical learning activities. 

In this context, a student understanding of the mathematical concept starts from 

lower level (familiarising with concept) through devising informal context-connected 

solutions to the higher level (relationships/schematisation). My understanding, in 

relation to this study, is that students can gain insight into how concepts (quadratic 
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inequalities) and (graphing calculator-enhanced solution) strategies can be related 

by reflecting on the activities in which they have purposefully participated. This 

reflection can be elicited by interaction (Van den Heuvel-Panhuizen, 2013). Students’ 

levels of understanding the concept can be enhanced through the use of models 

which serve as an important device to bridge the ZPD between informal, context-

related mathematics and more formal mathematics. Firstly, learners develop 

strategies closely connected to the context. Later, certain aspects of the context 

situation can become more general, which means that the context acquires the 

character of a model. These models give students support for solving other related 

problems and access to more formal mathematical knowledge. The literature reveals 

that in order to bridge the gap between the formal and informal level, models shift 

from a model of a particular situation to a model for all kinds of other equivalent 

situations (Cheung & Huang, 2010; Van den Heuvel-Panhuizen, 2013). It could be 

noted that models are rooted in concrete situations and they are useful for higher 

levels of mathematical activities. This means that the models will enable learners to 

access the formal mathematical knowledge organized as a discipline. In this study 

students will use GCs to develop strategies that enable them perform high levels of 

quadratic inequality situations. 

This principle underscores the importance of growth in mathematical understanding 

(Peters, 2016), thus from the concrete or enactive, to the iconic and, ultimately, to 

the symbolic representational forms (Ndlovu, 2014). Thus, learning from one level of 

understanding to another requires scaffolding by more knowledgeable others or the 

sequencing of instruction in such a way that new learning carefully builds on 

previous knowledge (cf: Scaffolding in Section 3.2.2). For example, the instructional 

activities of quadratic inequalities in this study did not end with concrete models, but 

extended to the use of graphs to determine the regions of the solutions and 

ultimately to the determination of the symbolic representations (quadratic 

inequalities) from contextual problems, thus signifying some progression from 

everyday experiences to ‘models of’ (horizontal mathematisation) to ‘models for’ and 

to higher levels of mathematical reasoning or proof (vertical mathematisation). 
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3.3.2.1 Horizontal and vertical mathematization 

 
Within the RME, horizontal and vertical mathematization has stood out to be one of 

key concepts for students’ understanding in mathematics. Horizontal 

mathematization refers to moving from the world of life to the world of symbols 

(Freudenthal, 1991), schematising the transformed problem mathematically by 

mathematical means (Treffers, 1987) and mathematizing reality (Drijvers, 2003). 

This means students can organize, translate, and transform the realistic contextual 

problems into mathematical terms (i.e., mathematizing reality). The horizontal 

mathematisation process deals with ordering, schematizing and building models of 

real situations so that they become open to mathematics (Peters, 2016). On the 

other hand, Gravemeijer (1994) views this horizontal mathematisation process as 

describing the contextual problem in order to identify the central relations and to 

understand the problem better. He further states that this description of the problem 

does not automatically answer the question, but simplifies the problem by identifying 

major and minor aspects of the problem. In this context, horizontal mathematisation 

can be inferred as an understanding of the problem, the language and the intention 

of the question. It involves an understanding of the context of the problem and an 

attempt to make mathematical statement. Peters (2016) further clarifies the real 

contexts in mathematical problems should provide students with a need to engage in 

the problem and bring forward important mathematical ideas. 

Vertical mathematisation is described as the progression of shortening 

(Freudenthal,1991) and a shift to a solution method that is more sophisticated, better 

organized and more mathematical (Gravemeijer and Terwel, 2000) and reflection 

(Gravemeijer, 1994). This can be referred to as when students start shortening their 

path to a mathematical result but use a more sophisticated path. This could mean 

that if a student explicitly replaces his or her solution method by one on a higher 

level. Gravemeijer (1994) explains that students start their mathematical activity by 

mathematising from reality (informal descriptions of problem situations) and then 

analysing their own mathematical activity (shaping algorithms and interpreting 

solutions with mathematical language). Vertical mathematization can be described 

as the activities that are related to the mathematical process, the solution of the 

problem, the generalization of the solution and the further formalization (Drijvers, 

2003). The models, schemes, symbols and diagrams are instruments that can be 
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used for vertical mathematization (Treffers, 1987). This means progressive 

mathematizing involves the formalizing and schematizing of informal problem-solving 

strategies. An example given by Freudenthal (1991), when counting sets of eyes in a 

group a student starts counting in twos instead of ones. Simply put based on the 

critical shifts in young students’ view of numbers, students move from “adjectives” 

(eight beads) to nouns (eight) or move from “referents” (1/2 a bar) to “entities” (1/2). 

In such scenario, it is related to the shift from model of to the model for in 

mathematics, thus a vertical mathematisation shift. The use of models enables 

student to build their presentations on each other to develop powerful mathematical 

ideas. The use of GC may move the student from informal understanding of 

quadratic inequalities to formal level. At this formal level, students can explain the 

solution of the inequality by mere looking at the graphical representation. 

3.3.3 The Interactivity Principle 

This principle states that mathematics education is by nature interactive. This 

signifies that the learning of mathematics is not only a human activity but also a 

social activity (Van den Heuvel-Panhuizen, 2010, 2013). Similarly, Treffers (1991), 

viewed mathematics learning as not an isolated activity but it occurs in a society and 

is directed and stimulated by the socio-cultural context. To that end, learners should 

be afforded opportunities to share their experiences, strategies and inventions with 

each other. For this reason, this principle is linked to social constructivist theory of 

Vygotsky (See Section 3.2.1). By discussing each other’s findings, students can get 

ideas for improving their strategies (Van den Heuvel-Panhuizen, 2010). This means 

in their working groups for example, students exchange their ideas and arguments 

so that they can learn from others.  

In interactive instruction, discussion and collaboration enhance reflection on the work 

(Cheung & Huang, 2010; Gravemeijer, 1994; Van den Heuvel-Panhuizen, 2013).This 

suggests that keeping students involved in interactive activities can result in them 

being reflective and ultimately leading them to achieve the higher level of 

understanding. In the context of this present study, students were divided into 

manageable groups to answer given tasks using GCs as an interactive tool. The use 

of the GCs can provide students with a range of opportunities, which makes them 

easily to refer to the visual representations. Moreover, interaction can evoke both 
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individual and collective reflection, which can scaffold students to higher levels of 

mathematical understanding (Ndlovu, 2014). In addition, through purposeful 

interaction students can acquire meaningful ideas for improving their learning 

strategies. By solving the mathematical problems the students can possibly 

experience that these problems can be solved differently and at different levels of 

understanding. The emphasis of this principle is that productive learning in 

mathematics results from interaction among students accentuated with opportunities 

for improving their problem solving strategies. Therefore, in this study the emphasis 

is placed on the fact that GCs may create opportunities for students to actively 

interact in their learning of quadratic inequalities.  

3.3.4 The Reality Principle: The use of context   

The reality principle embraces the RME aims of having students who are capable of 

applying mathematics (Van den Heuvel-Panhuizen, 2010) in the real context. To that 

end, students should start with rich and meaningful contexts demanding 

mathematical organisation (Freudenthal, 1991; Cheung & Huang, 2010) that can 

enable horizontal and vertical mathematisation (Ndlovu, 2014). This principle 

discourages teachers who begin with abstractions or definitions when teaching 

mathematical topics as these contexts cannot be mathematised by the students. 

This means students can develop mathematical tools and understanding when 

exposed to realistic contexts that can be mathematised. The application of 

mathematical knowledge is not only considered as something that is used at the end 

of a learning process but also at the beginning (Van den Heuvel-Panhuizen, 2010). 

The realistic problem situations in learning activities, in Drijvers’ (2015) views, are 

experientially real to students and meaningful, authentic as starting points, so that 

students experience the activity as making sense. In this principle, the importance of 

using real contexts that are meaningful and natural to learners as a starting point for 

their learning cannot be overemphasised (Cheung & Huang, 2005; Van den Heuvel-

Panhuizen, 2010; De Villiers, 2012). For example, in this current study Moses 

Mabhida Stadium was used as contextual example to introduce the concepts 

quadratic function and quadratic inequality. This activity allowed students to make 

conjectures with regard to solutions of quadratic inequalities. (see Activity 8 in 

Appendix C).  
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Thus, like any progressive approach, this reality principle strives to enable students 

to use their tools to solve experientially real problems. In this case, learners should 

use their mathematical understanding and tools to solve realistic problems (Peters, 

2016). The use of GC is indirectly recommended by the CAPS FET Mathematics 

(DBE, 2011) as an instructional tool that may support this realistic approach when 

solving quadratic inequality contextual problems. With the aid of GCs students may 

create visual or mental situations matching mathematical tasks assigned to them 

which are informed by their own ideas, experiences and imagination. The 

instructional materials in this study were designed in a manner that allowed 

participants to mathematise everyday experiences of quadratic inequalities. The 

emphasis of this principle is that productive learning in mathematics starts with rich 

and meaningful contexts in an organised manner horizontally and vertically.  

Therefore, in this study the emphasis is placed on the fact that starting lessons of 

quadratic inequalities with experientially real and meaningful contexts may increase 

the students’ understanding in a graphing calculator mediated classroom. 

3.3.5 The Intertwinement Principle 

This principle emphasises the importance of coherent learning in mathematics and a 

mutual relationship between different mathematical concepts. The notion is that 

learning mathematics involves the construction of specific knowledge and skills 

within a connected body of (mathematical) knowledge (Treffers, 1991). The 

advocacy of this principle is to integrate various mathematical topics and develop an 

integrated approach to solve mathematics. For example, a better understanding of 

quadratic inequalities requires the students to have the knowledge of functions, 

algebra and geometry. Along this line of thought, a concept/topic becomes the part 

of the solution to the other concept/topic. This integrated approach provides students 

with flexibility to link topics to different sub-domains and to other disciplines (Van den 

Heuvel-Panhuizen, 2010). For example, topics like factorisation, arithmetic, 

functions, and linear inequality are closely related and can be used to solve 

quadratic inequalities. This means that mathematical domains are not considered as 

isolated curriculum topics but as heavily integrated (Ndlovu, 2014). In line with this 

principle, students were given tasks involving rich problems in which they could use 

or link with different mathematical knowledge both within and across concepts in a 

subject. This principle aligns with Shulman’s (1986) knowledge of the curriculum 
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(KC). For example, in this study solving quadratic inequalities was integrated with 

quadratic equations when critical values were involved, quadratic functions when 

determining the zeros as the boundaries for the regions and were also linked to 

interval (set builder) notations for expressing solutions.  

This principle enables the students to view mathematics as part of a real life solution 

as it can be implemented within different parts of a prescribed mathematics topic and 

beyond. This principle of RME intertwines the concepts, topics and approaches in 

order to develop students’ understanding. Van den Heuvel-Panhuizen (2013) 

mentions that the strength of this principle is that it renders coherency to the 

curriculum in terms of the school curriculum. In essence, the learning strands in 

mathematics remain intertwined with each other.  

3.3.6 The principle of guided re-invention  

In this line of thought, students progressively mathematize their own mathematical 

activity when they learn mathematics (Treffers, 1987) and they can reinvent 

mathematics under the guidance of the teacher and the instructional design (Bakker, 

2004). The guided reinvention principle states that students should experience the 

learning of mathematics as a process similar to the process by which mathematics 

was invented (Gravemeijer, 1994). This suggests that teachers can steer the 

learning process by providing a powerful learning environment in which the process 

of mathematical knowledge construction can emerge. The learning process may be 

meaningfully steered even in a GC-enhanced classroom, where students can be 

purposefully engaged in mathematical activities such as solving quadratic 

inequalities.  

 

This principle puts emphasis on mathematics as a process in which learners learn 

mathematics in activities guided by their teachers or their peers (Sembiring et al., 

2008). The idea is that students are provided with a ‘guided’ opportunity to ‘reinvent’ 

mathematics by ‘striking a delicate balance between the force of teaching and the 

freedom of learning’ (Freudenthal, 1991, p. 55). In this context, students can apply 

their mathematical knowledge when they are taught with methods that can create 

learning opportunities. In this study the GC is used as the delivery mode which can 

potentially create opportunities for the students in learning quadratic inequalities in 
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the guidance of the teacher-researcher. In this context, the instructional materials, 

including the designed activities of quadratic inequalities guided the student 

participants to work in small groups and to present their work to others. The groups 

were also individually accountable for the completion of their own homework and 

assessment tasks as well as post-test. The students were additionally encouraged to 

seek assistance within them first and foremost and consult the teacher-researcher as 

a last resort. The intention was to create adequate room for the students to re-invent 

mathematics and to design possible strategies. The teacher-researcher remained 

available all the time to anticipate participants’ difficulties and to help groups in 

meaning negotiation and collective self-reflection on the effectiveness of their 

problem-solving strategies in quadratic inequalities. The significance of the guidance 

principle is that teachers must be able to foresee where and how they can anticipate 

the students’ understandings and skills that are just coming into view in the distance 

(Van den Heuvel-Panhuizen, 2003; Ndlovu, 2014). This implies that with proper 

planning of students’ activities teachers may create opportunities for them to re-

invent mathematics. 

It is therefore important for teachers to provide learners with learning environments 

in which guided re-invention can be possible. It is important to note that this principle, 

on the learning side, aims at allowing learners to regard the knowledge they acquired 

as their own personal mathematical knowledge for which they have been 

responsible. On the teaching side, teachers should provide learners with 

opportunities to develop their own mathematical knowledge.  

3.4 Instrumental approaches with graphing calculator  

This section presents the main elements of the instrumentation theory: instrument, 

instrumental genesis and instrumental orchestration. The theory of instrumentation 

was developed in the context of educational research on the effective integration of 

technology into mathematics education by the French researchers, who preferred to 

call it the ‘instrumental approach’ initially rather than the theory of instrumentation 

(Trouche, 2004; Ndlovu, et al., 2013). The instrumental approach is a means of 

analysing technology-mediated teaching and learning in mathematics (Artigue, 2002; 

Guin, Ruthven & Trouche, 2005). This approach allows teachers to explain how 

students appropriate technological tools such as graphing calculators to represent 
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and develop mathematical concepts (instrumental genesis) and use them as 

instruments to solve mathematical problems (schemes of instrumented action). 

Ultimately this study describes the teachers’ competencies related to didactic 

management in the technology-enhanced environment (instrumental orchestration). 

3.4.1 Instrument and artefact 

The theory of instrumentation concerns handling tools and develops on the notions 

of tool use. A tool or artefact is not automatically a mediating instrument. This means 

the tool becomes an instrument when its need has been felt and turned out to be 

valuable instrument for performing a specific task successfully. The following is a 

simple example used by Drijvers,  

A hammer may initially be a meaningless thing to a prospective user, 
unless he/she has used it before, or has seen somebody else using 
it. Only after the need to have something like a hammer is felt, and 
after the novice user has acquired some experience in using it, does 
the hammer gradually develop into a valuable and useful instrument 
that mediates the activity (2003, p. 96). 

This implies that a hummer becomes an acceptable and useful instrument when the 

user has acquired the rightful skills to use it and knows exactly in what 

circumstances to use it. A similar distinction between tool and instrument can be 

made for other artefacts, such as graphing calculators. For Rabardel (1995), an 

instrument mediates the activity when there is a meaningful relationship between the 

artefact, the user and a type of tasks, in this case solving quadratic inequalities. 

Other researchers stated that the instrument consists of both the artefact and the 

accompanying mental schemes developed by the user (Drijvers, 2003; Drijvers and 

Trouche, 2008). This means that for an artefact to become an instrument for a user 

(mental schemes) there must be a meaningful relationship between them.  

Verillon and Rabardel (1995) attest that an artefact can be any physical, electronic, 

or symbolic tool or technology that influences the activity and thinking of the user. As 

often referred to in mathematics education literature, an artefact can be a computer 

algebra system (Drijvers, 2003; Guin & Trouche, 2002), graphing calculators 

(Artigue, 2002), dynamic geometry (Cayton, 2012), spreadsheet software 

(Haspekian, 2005), new forms of smart handheld devices (Trouche & Drijvers, 2010). 

Fahlgren (2015) describes an artefact as an object, material or abstract, available to 
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the user and aimed at performing a certain type of task. Kratky (2016) relates the 

notion of artefact to the technologies that can perform mathematical tasks and/or 

respond to the user’s actions in mathematically defined ways. In this study an 

artefact refers to actions of the GC being appropriated by the students to solve the 

quadratic inequalities. In other words, artefacts can transform the learning 

opportunities in the classroom as they function as tools that may mediate, or 

influence, human activity and learning. This means that an instrument is a function of 

artefact (the graphing calculator), mathematical tasks (quadratic inequalities) and 

mental scheme (student).  

3.4.2 Theory of instrumental genesis  

This section discusses how the available tool or artefact can lead to the development 

of a useful and meaningful instrument through the process of the instrumental 

genesis. The process of instrumental genesis is used to reflect a relationship that 

develops between the user and the artefact by which an artefact becomes an 

instrument for the user (Fahlgren, 2015; Artigue, 2002; Drijvers & Gravemeijer, 2005; 

Trouche, 2004). Similarly, Kratky, (2016) used this theory to describe the relationship 

that developed between a mathematical user and the technological tool in his study. 

Rabardel (2002) describes instrumental genesis as the iterative process by which 

the user and the artefact influence each other during activity when the user interacts 

with the tool. This implies that when the user (teacher or student) engages with the 

artefact in the mathematics activity, they both influence each other. This further 

suggests that students’ understanding of a mathematical concept can be developed 

or not depending on the appropriateness of the use of technological tool. In her 

opinion, Drijvers (2003) indicated that students’ conceptual and technical (or artefact-

oriented) development shows a close relation to each other. In this context, students 

constantly transform the artefact when they engage in activity with it, thus forming 

mutual mediation between the student and artefact.  

The instrumental genesis, as explained by Trouche, (2004), consists of two relational 

directions: one towards the artefact (instrumentalisation) and another towards the 

user (instrumentation). In reference to the former, an artefact affects and shapes the 

user’s actions and the character of the knowledge constructed by the artefact’s 

constraints and potentialities (affordances and enablements). Expressed differently, 
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instrumentalisation is an instrument mastery process that can go through various 

stages including discovery and selection of relevant functions, personalisation and 

transformation of the artefact itself (Trouche, 2004; Ndlovu, et al., 2013). During this 

instrumentalisation process the user attempts to get to know the instrument, to 

master the instrument and to adopt the instrument to one’s own personal specific 

needs. For example, various potentialities of the artefact are progressively 

discovered, or possibly transformed in personal ways, if there is consistent use of the 

instrument.  

By contrast, instrumentation means that a person, who uses the instrument, is 

affected and shaped by the artefact. Differently stated, instrumentation is the process 

by which the user is mastered by his/her artefact or by which the artefact prints its 

mark on the user by allowing him/her to develop activities within some limits (Ndlovu, 

et al., 2013). In this case, the artefact shapes and transforms the person (user) to 

enable him to do something that the tool was not originally designed for by adapting 

to its constraints and possibilities (affordances). For example, using a graphing 

calculator to represent a quadratic function may affect student’s conceptualisations 

of the notion of quadratic inequalities in mathematics classrooms. 

The focus of the instrumental genesis theory is on developing student's ability to 

construct and understand knowledge. For this reason, the theory is developmental 

and psychological in the teaching and learning process. Instrumentalization is a 

psychological process because it is related to the way of shaping the cognitive 

activity i.e. the artefact in use. This process develops ways of using, manipulating, 

and shaping the artefact in use, an organization of usage schemes, a personalization 

and sometimes transformation of the tool, and a differentiation between the complex 

processes that constitute instrumental genesis and those which are critical for 

teachers to master (Guin & Trouche, 2002). On the other hand, instrumentation is a 

developmental process because mental schemes or instrumented action schemes 

emerge as users execute a task (Drijvers & Trouche, 2017). When the task is 

completed the uses of a certain tool become internalized and implemented. This 

implies that the tool is used to enhance concept development and understanding. In 

this bi-directional relationship students perform trivial routine classroom activities 

guided by the teacher (i.e. the level of instrumentation) and are often engaged in 
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non-routine mathematical problems in their free time (i.e. the level of 

instrumentalisation).  

In this process of instrumental genesis the tool is developed in an appropriate and 

sensible way (Drijvers, 2003) and its results are condensed in the form of utilization 

schemes. Differently stated, the instrumental genesis consists of building up 

utilization schemes. Researchers (e.g., Guin & Trouche, 2002; Rabardel, 1995; 

Trouche, 2000; Drijvers, 2003; Ndlovu, et al., 2013) identified two kinds of utilization 

schemes of instrumental genesis such as the utility schemes and schemes of 

instrumented action. The utility schemes (schèmes d’usage), as the first category 

involve adapting an artefact for specific purposes by changing or extending its 

functionality. For example, a PC can be upgraded with a new version of a word 

processing software package and a calculator menu can be customized by 

downloading additional programs and applications into the graphing calculator. 

These schemes concern the instrumentalization of the artefact (refers to the user 

adapting the tool). The schemes of instrumented action (schèmes d’action 

instrumentée) as the second kind are viewed as coherent and meaningful mental 

schemes for using the technological tool to solve a specific type of problems. For 

example, the use of graphing calculator to solve quadratic inequalities using the 

‘SOLVE’, ‘TABLE’ and ‘GRAPH’ schemes.  An experienced user (student) quickly 

and accurately applies these schemes by means of a sequence of key strokes 

and/or mouse clicks. A novice user, however, has to deal with the technical and 

conceptual aspects. These schemes of instrumented action are concerned with 

instrumentation of the artefact (refers to using the tool for solving specific cognitive 

tasks). The instrumentation process leads to the building up of schemes of 

instrumented action that are useful for fulfilling a specific kind of task.  

The utility schemes and schemes of instrumented action − the instrumentalization 

and instrumentation − in some cases are related, and it is not easy to decide what 

kind of schemes are developed (Drijvers, 2003). However, this study restricts its 

focus to concentrate on the algebra-related instrumentation techniques in order to 

guarantee the coherence with the purpose and research questions on the students’ 

understanding of quadratic inequalities. In particular, the study uses simple algebraic 

instrumented action schemes for solving quadratic inequalities and, tabular and 

Stellenbosch University https://scholar.sun.ac.za



87 
 

graphical solving as well as combining these simple instrumentation schemes into 

more complex instrumentation schemes. In this context, the graphing calculator is 

used as the available technological tool to achieve specific tasks that can contribute 

to an improved understanding of quadratic inequalities.  

An instrumentation scheme (scheme of instrumented action) has an external, visible 

and technical part, which concerns the machine actions (Drijvers, 2003) and the 

mental, cognitive part, which is the most important aspect of the scheme for 

conceptual development and understanding. For example, suppose a student wants 

to solve the equation: −2𝑥 + 8 = −2𝑥2 + 8 with a graphing calculator. The graphical 

solving scheme involves the mental step of seeing both sides of the equation as 

functions: 𝑦1 = −2𝑥2 + 8 and 𝑦2 = −2𝑥 + 8, which can be drawn. Furthermore, 

applying the scheme involves the conception of a solution as the x coordinates of the 

intersection points of the two graphs. These are mental activities that give meaning 

to the technical actions such as entering functions, drawing graphs and calculating 

intersection points. 

The instrumentation scheme that illustrates the relation between conceptual and 

technical aspects involves the scaling of the viewing window of a graphing calculator.  

Students usually have the difficulties with scaling the viewing window of a graphing 

calculator (Goldenberg, 1988). Students need to be developed the technical skills for 

setting the viewing window dimensions and the mental image of the calculator 

screen where the position and the dimensions of a relevant rectangle need to be 

chosen. These examples illustrate that an instrumentation scheme integrates the 

machine techniques and mental concepts by interplaying between acting and 

thinking. It is therefore conjectured that the conceptual part of this scheme can cause 

the difficulties for students to understand mathematical concepts. Technical skills 

and conceptual insights are inextricably bound up with each other within the 

instrumented action scheme. As suggested by Drijvers (2003), the mental part 

consists of the mathematical objects involved, and of a mental image of the problem-

solving process and the machine actions in the case of technological tools. This 

means the conceptual part of instrumentation schemes includes both mathematical 

objects and insight into the ‘mathematics of the machine’.  
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According to Haapasalo, (2012), instrumentation and instrumentalisation appear 

when using CAS, dynamic geometry, dynamic statistics, CAD, online databases, 

supported learning environments, virtual environments, digital portfolios, etc. The 

same processes can be performed with hands-on technology-the graphing 

calculators to solve mathematical problems. Knowledge gained through these 

processes is not sterile without any transfer, but socially generated, viable 

knowledge that has both cognitive and pragmatic relevance. Using hands-on 

technology can potentially promote sustainable mental activities (competences) in 

which the students make their own interpretation (consequences) against the 

standard view: e. g. deciding whether the solution of the quadratic inequality is within 

or outside critical values.  

3.4.3 Theory of Instrumental orchestration   

Integrating technology meaningfully in the mathematics classroom comes with 

didactical challenges for the teachers. This has been acknowledged upfront by the 

researchers (e.g. Trouche, 2004; Artigue, 2002) who stated that there is a complexity 

of competencies or skills required of teachers when using technology within 

mathematics classrooms. Similarly, Lagrange and Monaghan (2009) articulated that 

the availability of technology amplifies the complexity and, as a consequence, 

challenges the stability of teaching practices. This means teachers are expected to 

manage new pedagogical situations and at the same time develop a new repertoire 

of appropriate teaching practices for these technology-rich settings (Drijvers et al., 

2014; Ndlovu, et al., 2013). The use of theory of instrumental orchestration, in 

Trouche’s (2004) views, helps teachers how to organize and support students’ 

learning of mathematics in a technology-enhanced classroom. The idea is that the 

teachers need to influence and steer students’ instrumental genesis through skilful 

use of instructional technology in the mathematics classrooms. 

An instrumental orchestration is defined as the teacher’s intentional and systematic 

organisation and use of the available artefacts in computerised learning environment 

in a given mathematical task situation, in order to guide students’ instrumental 

genesis (Drijvers, Doorman, Boon, Reed, & Gravemeijer, 2010), including GCs. 

Stated differently, the skilful use of ICT for instructional purposes with the goal of 

facilitating instrumental genesis in learners is referred to as instrumental 
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orchestration (Ndlovu, et al., 2013). This means that teachers use a repertoire of 

their competencies to address the didactical challenges of teaching mathematics in a 

technology-rich classroom. Such competencies may help to guide students on how 

to use and interact with instruments to solve mathematical problems in a technology-

enhanced classroom. In simple terms, an instrumental orchestration describes the 

teacher’s role in guiding and shaping students’ use of technology and their 

opportunities to engage in instrumental genesis (Kratky, 2016). Within this context, 

teachers above all should help students to actualise the epistemic function of their 

schemes– to develop mathematical understandings and knowledge using the 

artefact cum instrument. The notion is the teacher steers students’ learning 

experiences as (s)he has the power to influence which artefacts the students may 

access and how they may use those artefacts. 

3.4.4 The constructs of instrumental orchestration 

Drijvers et al. (2010) identified three constructs of instrumental orchestration within a 

teacher’s instructional activity in a computerised learning environment: a didactic 

configuration, an exploitation mode and a didactic performance.  

A didactic configuration is a teacher competence that refers to the arrangement of 

artefacts/ instruments in the classroom environment (Drijvers et al., 2010) such as 

tools, materials, and seating (Kratky, 2016; Ndlovu, et al., 2014) to induce a sound 

mathematical discourse. Put differently, in the process of didactic configuration the 

teacher gets into plans of how to select the artefacts that students can use and how 

to arrange them in the classroom (Trouche, 2004). This means that GCs can be 

arranged in a way that favours individual work, working in small groups and/or whole 

class setting by the teacher. This may include any artefacts that students can use on 

their own or in groups and any artefacts or presentation technologies (such as an 

overhead projector or smartboards) that may be used during the learning activity. In 

the teaching experiments students sat in groups of four so that they can interact 

among themselves. 

An exploitation mode is a teacher competence that refers to the way the teacher 

decides to exploit a didactical configuration (Ndlovu, et al., 2014). Drijvers, et al. 

(2010) viewed this mode as the way in which the teacher decides to use a didactical 

setting or configuration for the benefit of his or her instructional intentions and how a 
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mathematical task can be worked through. For example, the tasks can be performed 

in whole-class, groups or individually. This means a teacher must make a decision 

as to whether to let learners work in small groups, or individually, with worksheets or 

with instructions on the board or projected on a screen. This competency allows 

teachers to plan and exploit ways of how to engage students with mathematical 

tasks and tools in a technology-rich classroom. With the exploitation mode, in 

Trouche’s (2004) view, the teacher decides how to leverage the didactic 

configuration with respect to his or her goals for the orchestration. (S)he may 

demonstrate a particular artefact technique, establish a link between work done with 

the artefact and work done with paper and pencil, and have a student to present his 

or her work with the artefact, or initiate a discussion related to a representation 

generated by the artefact. Each of these examples represents different exploitation 

modes that the teacher may use to facilitate learning in a particular manner.  

Drijvers et al. (2010) further note that the teacher may plan for and design the 

didactical configuration and exploitation modes for specific instrumental 

orchestrations, but cannot fully plan his or her didactical performance, since it 

includes actions that a teacher makes in response to the students and activity within 

a particular lesson. A didactical performance, as suggested by Ndlovu, et al. (2014) 

is a teacher competence that refers to ad hoc decisions taken during the teaching 

process itself. This didactical competence may involve issues such as what question 

to pose, what interruption(s) to make to draw learners’ attention to unexpected 

technological tool behaviour during task performance (Drijvers et al., 2010) and how 

to respond to a particular student’s response, and how to deal with the unexpected 

under changing circumstances (Ndlovu, et al., 2011; Kratky, 2016). This means a 

teacher cannot completely anticipate students’ experiences, struggles and 

successes when using artefacts to solve mathematical activities. Thus, a teacher 

must be competent to make in-the-moment decisions during a lesson, which make 

up his or her didactical performance. This- making on-the-spot instructional decision- 

is achievable when teachers competently use multiple pedagogical moves during 

their didactical performances in a technologically learning environment.  
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3.5 Chapter summary  

This chapter critically reviewed and discussed the theoretical frameworks related 

with the research questions of this study and those that were perceived to be helpful 

in designing instructional activities and interpreting students’ understanding of 

quadratic inequalities in a graphing calculator enhanced classroom. To this end, 

sociocultural constructivist (Vygotskian) theory, Realistic Mathematics Education 

(RME) theory and, instrumental genesis and orchestration theory (TIG) were 

considered as the theories of learning mathematics and were compatible with one 

another. These frameworks generally place students at the centre of learning as 

there are influenced and associated with the constructivist teaching and learning. In 

this way, students are provided with opportunities to work in a social setting of 

groups (i.e., graphing calculator mediated mathematics classroom). 

The researcher noted that the success of the mathematical concept development of 

students depends on the potentiality of the educational technology (artefact), 

students’ knowledge in the instrumental genesis and the teacher’s instrumental 

orchestrations as teacher’s competences for integrating graphing calculator into 

his/her pedagogy. The aforementioned theoretical frameworks provided the 

pedagogical strategies and opportunities for teaching and learning the quadratic 

inequalities in a graphing calculator rich classroom.  

The next chapter is Chapter 4 on methodology.  
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CHAPTER 4: RESEARCH METHODOLOGY 

4.1 Introduction 

This chapter discusses the research philosophical assumptions (paradigm), research 

design and research methods of the study. In this way, the study endeavoured to 

generate new knowledge that can make mathematics teaching and learning more 

purposeful and sustainable in a graphing calculator environment. The design-based 

research (DBR) is presented as a paradigmatic methodology within the real context 

of educational enquiry that embraces mixed-method research framework. This 

research methodology, DBR is developed and employed as the main research 

paradigm informing this design study. Thus, it involves a flexible three-stage 

research framework such as the preliminary phase, teaching experiment and 

reflective phase. With the use of DBR, this chapter provides a rationale for 

developing learning theories and improving mathematics learning as well as 

generating hypotheses. In this sense, the importance of hypothetical learning 

trajectory (HLT) is also explained in this part of the study.  

This chapter further discusses the sequential mixed methods research of exploratory 

design as data collection and analysis structure. The mixed methods approach, 

which combines the quantitative and qualitative research methods for use in a single 

research project, is foregrounded in DBR methodology. Furthermore, the justification 

for selection of the participants, sampling procedures and the research instruments 

in the study is discussed. The chapter includes a diagrammatic representation of the 

major facets of the envisaged framework for the research design and development of 

the study, and a discussion on the schematic model envisaged for this study. Finally, 

in order to ensure reliability, validity and trustworthiness of the research, appropriate 

criteria for pragmatic research methodology are presented, including triangulation. 

This chapter concludes with a summary.  

4.2 Research paradigms in education 

 
Researchers perceive world differently and have assigned different meanings to the 

concept of paradigm (Creswell, 2009; Livesey, 2011). This has accordingly affected 

the manner in which they describe and interpret data in their philosophical thinking. 

The term paradigm refers to a research culture with a set of beliefs, values, and 
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assumptions that a community of researchers has in common regarding the nature 

and conduct of research (Kuhn, 1977). This aspect concerns the conceptual 

framework shared by a community of scientists and philosophers which provides 

them with a convenient model for examining problems and finding solutions using 

appropriate methodological approaches and tools. This means a paradigm plays a 

fundamental role in the social sciences and research as it best describes the basic 

set of the researcher’s beliefs, values and assumptions.  

 
Renowned researchers have described research paradigm as researcher’s 

worldview (Mackenzie & Knipe, 2006; Creswell, 2009) and as researcher’s beliefs, 

shared assumptions, concepts, values and practices (Johnson & Christensen, 2004) 

that shape the way s/he perceives and interprets the world around him/her. Others 

conceived the research paradigm as the researcher’s basic set of beliefs that guide 

the development of the research (Guba and Lincoln. 1994; Denzin & Lincoln, 2005; 

Alghamdi, 2015). More specifically, a research paradigm would include the accepted 

theories, traditions, approaches, models, frame of reference, body of research and 

methodologies; and it could be seen as a model or framework for observation and 

understanding (Creswell, 2007; Babbie, 2010; Rubin & Babbie, 2010; Babbie, 2011). 

Viewed differently, research paradigms constitutes the perspectives, thinking, school 

of thought or set of shared beliefs, that informs the meaning or interpretation of 

research data (Kivunja & Kuyini, 2017). This means the researcher uses the 

paradigm to determine the methodology of his/her research project, the research 

methods and how the data can be analysed. As suggested by Alghamdi (2015) and 

Morris (2006), any particular study should state the research questions or aim at the 

very beginning followed by the appropriate research paradigm in order to be 

compatible with the methodology chosen. Poni (2014) adds that research paradigms 

represent a critical element in the study as they influence both the strategy and the 

way the researchers construct and interpret the meaning of the reality. In essence, 

research paradigms influence what should be studied, how it should be studied, and 

how the results of the study should be interpreted based on the researcher’s 

individual experiences. 
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4.2.1 Positivist paradigm  

The positivist paradigm believes that the truth exists independently of the observer 

(Alreshidi, 2016; Gall et al., 2003) and this truth can be sought by applying the 

scientific methods of investigation (Kivunja & Kuyini, 2017). Muijs (2011) emphasised 

that the positivistic researcher attempts to understand the truth about how the world 

works. The researcher involves the scientific method in the search for cause and 

effect relationships in nature (Kivunja & Kuyini, 2017) and that tries to interpret 

observations in terms of facts or measurable entities (Schunk, 2008). Researchers 

pointed out that the positivists use quantitative methods to investigate the truth about 

the phenomena (Mackenzie and Knipe, 2006; Barbie & Mouton, 2009; Mouton, 

2011; Muijs, 2011). In this sense, the researcher may use experimentation, 

observation and reason based on experience to understand and explain the 

observable and measurable human behaviour through unbiased means.  

Positivists also believe that an objective reality exists outside personal experiences 

with its own cause-and-effect relationships (Neuman, 2006; Babbie & Mouton, 2008; 

Saunders et al., 2009; Muijs, 2011). This implies that positivism entails a belief that 

valid knowledge can only be produced on the basis of direct observation by the 

senses; and this would include the ability to measure and record what would be seen 

as knowledge. Observation in this sense means accepting only empirical evidence 

as valid evidence. In the context of the positivist paradigm, these assumptions have 

enabled the researcher to collect, analyse and interpret, and understand 

relationships embedded in the data (Kivunja & Kuyini, 2017). In this paradigm the 

researcher is an outsider and the research is not dependent on the researcher 

(Alreshidi, 2016; Mouton, 2011; Williams, 2007). Therefore, the role of the positivist 

researcher is to precisely describe and understand the parameters and coefficients 

in the data of the research study using the prescribed scientific knowledge. For this 

current study the positivist paradigm played a big role as pre- and post- tests and 

pre- and post- survey questionnaires were used to collect, analyse and interpret the 

quantitative data of students’ performance in a graphing calculator mediated 

classroom.  

The ontological position of the positivists is that there is only one truth and an 

objective reality that exists independent of human perception. Epistemologically, the 

investigator and investigated are independent entities. Therefore, the investigator is 
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capable of studying a phenomenon without influencing it or being influenced by it; 

“inquiry takes place as through a one way mirror” (Guba and Lincoln, 1994, p.110). 

The goal is to measure and analyse cause-and-effect relationships between 

variables within a value-free framework (Denzin and Lincoln, 1994). The scientific 

theories can be tested by statistical and controlled variables through using surveys 

or experiments (Hammersley and Atkinson, 2007). This implies that the positivist 

researchers adopt objective ways of discovering the truth. Therefore, the obtained 

knowledge is objectively determined which can limit feelings or any subjective 

experiences.  

Sample sizes are much larger than those used in qualitative research so that 

statistical methods to ensure that samples are representative can be used (Kivunja & 

Kuyini, 2017). The results of large sample sizes allow the researcher produce 

generalisations. This paradigm relies on deductive reasoning (Creswell, 2009; 

Harwell, 2011; McMillan & Schumacher, 2001), formulating and testing hypotheses 

(Mack, 2010) and offering mathematical calculations and extrapolations (Kivunja & 

Kuyini, 2017). Through these activities the researcher can make better explanations 

and predictions based on measurable outcomes. This means the positivist 

researcher uses the descriptive and inferential statistics to organise, test, interpret 

and infer collected quantitative data to produce and to generalise valid evidence. The 

numerical nature of positivist paradigm (i.e., quantitative nature) influences the 

researchers to use statistical instruments. These statistical instruments help 

researchers to organise and simplify the measurements, scores or number (Johnson 

& Christensen, 2008). In this current study the researcher performed the calculations 

of mean, frequencies, range, standard deviation, effect size, Cohen’s d; draw 

histogram and also performed hypothesis testing, t-tests and dependent paired t-

tests to describe the instrument reliability and to report data quantitatively. 

4.2.2 The interpretivist (constructivist) paradigm  

Interpretivist paradigm focuses on exploring the complexity of social phenomena with 

a view of gaining better understanding. The interpretivist claim is that reality is 

constructed in a subjectively social manner (Tuli, 2011) for understanding individuals’ 

behaviours (Guba & Lincoln, 1989), investigated within their own social environment 

(Parahoo, 2006; Alreshidi, 2016). It means that interpretivists study the social events 
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within its subjective contexts without controlling any variables which differs from 

positivists’ views. The purpose here is to understand and interpret everyday 

happenings (events), experiences and social structures – as well as the values 

people attached to these phenomena (Collis & Hussey, 2009; Rubin & Babbie, 

2010).  Interpretivists believe that social reality is subjective and nuanced, because it 

is constructed by the perceptions of the participants, as well as the values and aims 

of the researcher. This approach depends on the interaction of investigators with the 

subjects under study (Alreshidi, 2016). This might lead to different people’s 

perspectives as people perceive different meanings to the same events or 

phenomena. This means that the interpretivist researcher always attempts to 

interpret the participants’ experiences and events, and then constructs meanings 

and understanding from these social interactions.  

This paradigm attempts to get into the head of the subjects being studied (Kivunja & 

Kuyini, 2017) in order to understand and interpret the subject’s thinking and the 

meaning s/he has of the context (Wang and Zhu, 2016). Similarly, researchers have 

indicated that both knowledge and the researcher cannot be separated since the 

researcher is the only source of the reality (Mackenzie & Knipe, 2006; Muijs, 2011; 

Wang & Zhu, 2016). This means the researcher cannot be an outsider but should be 

part of the world that is being investigated. In this context, every action/gesture made 

by the subject is observed and interpreted by the researcher. Moreover, emphasis is 

placed on the interpretation of the participants’ point of view of the case being 

investigated (Creswell, 2003). Therefore, the key tenet of this paradigm is that the 

reality is socially constructed (Mertens, 2005; Bogdan & Biklen, 1998). For this 

reason, this paradigm can be called the constructivist paradigm because they are 

contextually related. In this paradigm, Kivunja and Kuyini (2017) point out that theory 

is grounded in the data generated by the research activity. This means theory does 

not precede research. The idea is data are gathered and analysed in a manner 

consistent with grounded theory (Strauss & Corbin, 1990). This paradigm therefore 

relies on subjectivity and inductive reasoning. For the reasons advanced, the 

interpretivist paradigm (Barbie & Mouton, 2009; Mackenzie & Knipe, 2006) 

advocates the use of qualitative research methods to precisely understand and 

interpret the viewpoints of the subject observed in the study. Interviews, observation, 
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document reviews and visual data analysis are typical examples of qualitative data 

collection tools used in this paradigm (Mackenzie and Knipe, 2006). 

Interpretivists claim that an objective observation of the social world is impossible, as 

it has meaning for humans only, and is constructed by intentional behaviour and 

actions. Livesey (2011) explains interpretivism as a method that sees the social 

world as something that can only be produced and reproduced on a daily basis by 

people.  Something that holds true for the moment (now) might not necessarily hold 

true tomorrow, or in another society (social environment).  Knowledge is developed 

and theory is built through developing ideas from observed and interpreted social 

constructions.  As such, the researcher seeks to make sense of what is happening.  

This can even generate findings beyond the common scientific knowledge (Rubin & 

Babbie, 2010).  So, interpretivists attempt to understand subjective realities and to 

offer explanations, which are meaningful for the participants in the research. 

Ontologically, interpretivist researchers believe that there are multiple realities or 

truths which exist based on one’s construction of reality; this leads to variety of 

meanings for various people. Reality is socially constructed and so is constantly 

changing (Mackenzie & Knipe, 2006). On the epistemological level, they stated that 

there is no access to reality independent of our minds and no external referent by 

which to compare claims of truth. The investigator and the object of study are 

interactively linked so that findings are mutually created within the context of the 

situation which shapes the inquiry (Guba and Lincoln, 1994; Denzin and Lincoln, 

1994). This suggests that reality has no existence prior to the activity of investigation, 

and reality ceases to exist when the researcher no longer focuses on it (Smith, 

1983). The emphasis of qualitative research is on process and meanings.  

In so far as research methodology is concerned, Henning et al. (2004) hold that the 

interpretive understanding is grounded in an interactive, field-based inductive 

methodology and is intertwined in the practice within a specific context. Livesey 

(2011) proposes that the best methods within the interpretive research paradigm are 

those of observation and interpretation. This means that the researcher would 

understand how human beings experience and interpret their world through the use 

of in-depth and focus group interviews and participant observation. Transcripts, 

conversations and video-tapes may be studied, in order to gain a sense of subtle 
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non-verbal communication or to understand the interaction in its real context 

(Neuman, 2011). Samples are not meant to represent large populations, rather, 

small, purposeful samples of articulate respondents. This implies that small, 

purposeful samples can provide important information, not because they are 

representative of a larger group (Reid, 1996). This, in addition, allows the 

interpretivist researcher to engage in active collaboration with the participants so as 

to address real-life problems in a specific context. The tenets of qualitative research 

method are integrated in this current study to effectively understand how students 

experience their learning in a graphing calculator enhanced classroom. 

4.2.3 The Pragmatic Paradigm  

This pragmatic paradigm embraces the philosophical views that it was not possible 

to access the truth about the real world solely by virtue of a single research 

approach, hence discourages the use of one system of philosophy and reality. This 

paradigm advocates the integration of positivist and interpretivist paradigms. 

Philosophers (such as Alise & Teddlie, 2010; Biesta, 2010; Tashakkori and Teddlie, 

2003) push for the worldview that would provide integrative scientific methods of 

research. This implies that the combined research approaches would provide the 

most appropriate benchmarks for studying the phenomenon at hand. As Kivunja and 

Kuyini (2017) opine, the pragmatists advocate for approaches to research that could 

be more practical and pluralistic. These approaches are expected to shed light on 

the actual behaviour of participants, the beliefs that stand behind those behaviours 

and the consequences that are likely to follow from different behaviours (Kivunja & 

Kuyini, 2017). Precisely put, pragmatic researchers test hypotheses and provide 

various views, i.e. inside and outside perspectives (Creswell and Plano Clark, 2011; 

Johnson & Christensen, 2008). This therefore gave rise to the pragmatic paradigm 

that advocates the use of mixed methods to understand human behaviour (Creswell 

& Plano Clark, 2011; Denscombe, 2008; Johnson & Christensen, 2008). The 

pragmatic paradigm implies that the overall approach to research is that of mixing 

data collection methods and data analysis procedures within the research.  

Pragmatism is the research paradigm for the mixed-method approach (Mackenzie 

and Knipe, 2006). It mixes the vision of an ordered and understandable world with a 

passing glance to plurality and social constructivism. The pragmatic approach 
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focuses on providing insight and has no philosophical loyalty (Mackenzie and Knipe, 

2006). The ontological view of pragmatists argues that there are different 

perspectives about social reality and the researcher sees reality or truth based on 

their own standards and beliefs. This implies that there is no single reality and all 

individuals have their own and unique interpretations of reality.  Epistemologically, 

the pragmatic paradigm is either objective or subjective, based on the research focus 

and inquiry (Creswell and Clark, 2011; Teddlie & Tashakkori, 2009).  For example, 

investigators can use the quantitative approach as a primary approach to data 

collection, while qualitative methods involve a secondary approach to collecting data 

(QUAN + qual). This means that the relationships in research are best determined by 

what the researcher deems appropriate to that particular study (i.e., a relational 

epistemology). The reason for conducting qualitative methods is often to describe 

quantitative data (Onwuegbuzie & Leech, 2005). It seems that research design and 

methods can be identified based on research questions.  

In order to answer the research questions it is important to choose the right research 

design and use appropriate methods to collect and analyse the data (Muijs, 2010). It 

could require more than one research method to address the research questions.  

Additionally, this approach leads to rich descriptions being obtained (Alreshidi, 

2016); and this makes researchers to adopt instruments that permit them to collect 

intensive data from subjects by giving participants the freedom to talk about their 

own experiences (Tuli, 2011). For that reason, researchers use appropriate 

strategies for the purpose of collecting data (Alreshidi, 2016). For the reasons given 

above, the researcher in this study has adopted the pragmatic approach which 

combines the positivist and interpretivist worldviews when investigating students’ 

behaviour in a GC environment.  Therefore, this study has used mixed methods 

approaches to collect the data of diversity and the relationships among students. 

4.2.3.1 Mixed methods approach 

In this study, mixed methods were used to gather data from the selected grade 11 

students of the three selected secondary schools in Gauteng Province. A significant 

number of studies have indicated that mixed methods research is effective in 

teaching and learning. This is an approach to inquiry in which the researcher 

integrates both quantitative and qualitative data to provide a unified understanding of 
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a research problem (Creswell & Plano Clark, 2007). Simply stated, it mixes data 

collection methods and data analysis procedures in the research process. In Ponce 

and Pagán-Maldonado’s (2015) views, mixed methods approaches are used only 

when we address research problems which have objective and subjective elements 

in its manifestation. In this context, mixed methods research is blending qualitative 

and quantitative methods of research to produce a final product which can highlight 

the significant contributions of both. The notion is that in a single study the 

researcher combines quantitative and qualitative techniques and methods. 

Saunders, Lewis and Thornhill (2003, 2009) state that there are two major 

advantages of employing multi methods in the same study.  Firstly, different methods 

can be used for different purposes in the same study, hence giving the researcher 

confidence in addressing the most important issues.  The second advantage of using 

multi-methods approach is that it enables triangulation to take place.  Thus, offering 

strengths for offsetting the weaknesses of separately applied quantitative and 

qualitative research methods, Ponce, et al. (2015) elaborated. This blending of 

quantitative and qualitative research methods offers the advantage of the respective 

qualities of both approaches.  

These mixed methods provide a breadth and depth of understanding (Creswell, 

2007) and greater confidence in conclusions (Ponce, et al., 2015). Similarly, they 

argue that mixed methods allow producing more comprehensive internally consistent 

and valid findings (Johnson, Onwuegbuzie & Turner, 2007) on the research 

problems. Creswell, (2007) argues that mixed methods enhance the collection of 

more comprehensive evidence for study problems, help to answer questions that 

quantitative or qualitative method alone cannot answer, and reduce adversarial 

relationships among researchers and promote collaboration. Similarly, Ponce et al., 

(2015) claim that mixed methods research always encourages the use of multiple 

worldviews and is a practical and natural approach to research. Additionally, Scott 

and Morrison (2007) argue the advantages of employing mixed method research in a 

single study as: 1) enhancing triangulation; 2) integrating both outsider and insider 

perspectives 3) increasing an understanding of the relationship between variables; 

and 4) allowing appropriate emphases at different stages of the research process. 
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Creswell (2009) identifies three strategies for mixing qualitative and quantitative 

methods, namely merging, embedding and connecting the datasets. For the current 

study the researcher made use of the mixing strategy proposed by Creswell and 

Plano Clarke (2011) to connect the qualitative data, in order to build or develop the 

subsequent quantitative data. More specifically, the data are connected in that the 

qualitative results were used in collaboration with the literature review to design a 

measurement instrument, namely a questionnaire for quantitative data. For this 

reason, this study pursued the mixed methods exploratory research design or 

exploratory sequential research design as the structure (or way) of systematically 

connecting quantitative and qualitative approaches in mixed methods research 

(Ponce, 2011, 2014: Caruth, 2013; Creswell & Plano Clark, 2011; Teddlie & 

Tashakkori, 2009). The exploratory nature of this sequential mixed method research 

approach is grounded in discovering how the graphing calculator enhances students’ 

understanding of quadratic inequalities through their experiences of using this 

technology. A sequential mixed methods approach was employed for this study due 

to the complexity of the research problem and the absence of foundational literature 

to guide the specific dimensions of this issue. The exploratory design permitted the 

researcher to interact with the participants through interviews aimed to uncover the 

relationship between students’ understanding and GC (Creswell, 2008). Its 

exploratory nature, as Creswell (2008) explains, also allows the researcher to collect 

quantitative data and then collect qualitative data to help explain or elaborate on 

quantitative results. The idea is the researcher sequentially collects and analyses the 

quantitative data in the first phase and then uses the findings of the quantitative data 

to design a second qualitative phase, but using another research approach (Medina, 

2012; Perez, 2012; Medina, 2014; Ponce et al., 2015). The established theoretical 

framework subsequently presented the researcher with the opportunity to identify 

topic-specific themes and variables for further investigation. In this case, the study 

began with a quantitative phase and then qualitative approach using the previous 

findings to design another phase. The idea is that the research problem is 

sequentially studied by using the findings of the first phase to design the second 

phase in order to decisively conclude about the attributes of the phenomenon under 

the study. This sequential structure has much relevance to the DBR.  
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4.3 Research methodology 

A design based research (DBR) is described as a systematic but flexible 

methodology aimed to improve educational practices through iterative analysis, 

design, development, and implementation, based on collaboration among 

researchers and practitioners in real-world settings, and leading to design principles 

and theories (Wang and Hannafin, 2005, p.6). From another perspective, Bannan-

Ritland (personal communication, 2009) viewed DBR as a meta-methodology that 

combines different methods at different points in the innovation cycle. Similarly, 

Barab and Squire (2004) noted that DBR as a methodological toolkit for deriving 

evidence-based claims from naturalistic learning contexts that are engineered in 

ways that allow for generating and improving these claims with the intent of 

producing new theories, artefacts, and practices that account for and potentially 

impact learning and teaching. This means DBR can be conceptualised as a 

pragmatic research methodology grounded in theories (i.e., strongly based on prior 

research and theory) that integrates different methods intended to improve 

educational practices in collaboration among researchers and practitioners through 

evidenced-based claims in order to produce new theories, artefacts, and practices 

and design principles. Differently expressed, DBR is a type of research carried out in 

the real, complex, and messy learning/teaching (naturalistic) contexts (i.e., 

classrooms and schools) but in the iterative cycles so as to build new theories of 

teaching and learning, and produce instructional tools that survive challenges found 

in everyday practice (Shavelson et al., 2003) and improve educational practices 

mediated by some interventions through continuously refining the end products 

(Abdallah, 2011). This implies that the problem of students’ understanding of 

quadratic inequalities may be effectively and collaboratively identified through the 

use of DBR approach, and fully addressed in a GC facilitated classroom in order to 

produce learning instructional theories. 

Other scholars have noted that design-based research has lent itself to the field of 

educational research as its underlying premise is to develop the design of artefacts, 

technological tools, and curriculum and to further an existing theory or develop new 

theories in naturalistic settings that can support and lead to an deepened 

understanding of learning (Barab, Dodge, Thomas, Jackson, & Tuzun, 2007; Barab 

& Squire, 2004; Fishman, et al., 2004). There is a natural alignment between design 
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research and research in education (Lesh, 2003) and its cyclic and iterative 

processes are aligned with the authentic design of educational environments 

(Kennedy-Clark, 2013). In this respect, the methodological approach of DBR 

supports the investigation of a learning design. Schoenfeld (2009) explained that the 

products of well-conducted design experiments are improved interventions and 

improved understandings of the processes that result in their productiveness. Thus, 

the products/outputs of DBR are design principles, learning theories, interventions, 

curricular products, instructional tools, and/or practical solutions/prescriptions. In the 

context of this current study, the DBR is used with mixed methods as other methods 

that can help to determine the students’ understanding processes of quadratic 

inequalities in which both qualitative and quantitative data are collected and 

analysed in a GC enriched learning environment. 

The main characteristics of design-based research proposed by Wang and Hannafin 

(2005) were used as guidelines as follows: 

 The design study is pragmatic because its goals are addressing current real-

world problems (i.e., flexible learning environment for understanding quadratic 

inequalities) by designing/enacting students’ activities in a GC mediated 

classroom as well as extending local theories and refining design principles. 

 The design study is grounded in both theory and the real-world context and 

conducted in collaboration with mathematics teachers, head of departments 

and student participants, and is much more likely to lead to effective use of 

GC to solve quadratic inequalities.  

 The design study, in terms of research process, is interactive, iterative and 

flexible.  The researcher interactively worked together with practitioners and 

participants throughout the design processes to address the emerging local 

issues in a timely manner. The iterative outcomes of designs provided 

explanatory platforms and the focus of investigation in the subsequent cycle 

of inquiry. Ultimately the design processes were flexible as they permitted 

changes to be implemented and new emerging patterns to be developed.  

 The design study is integrative because the researcher integrated a variety of 

research methods and approaches from both qualitative and quantitative 

research paradigms.  This integrative data from multiple sources served to 

confirm and enhance the credibility and adaptability of research findings. 
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 The design study is contextualized and evidence-based because research 

results were connected with both the design process through which results 

are generated (teaching experiments) and the setting (schools) where the 

research is conducted. 

This study of the students’ understanding of quadratic inequalities in a graphing 

calculator mediated classroom falls within the parameters of a design based 

research study because it is pragmatic, grounded, integrative, interactive, iterative 

and flexible, and contextual.  

Confrey, (2006) indicates that even though the design study has evolved from 

various terms such as design research, design experiment, teaching experiment and 

design-based research methods, it still enjoys the same research approach. The 

strengths of design studies are noted by Shavelson, Phillips, Towne and Feuer 

(2003, p.25), “lie in testing theories in the crucible of practice; in working collegially 

with practitioners, co-constructing knowledge; in confronting everyday classroom, 

school, and community problems that influence teaching and learning and adapting 

instruction to these conditions”. This means DBR has survived in the field of 

educational research because it provides opportunities to the researcher to work 

closely with the participants and collaborate with practitioners to develop theories. In 

addition, DBR involves not simply observing but rather systematically engineering 

learning contexts (Barab and Squire, 2004) for addressing classroom, school, and 

community problems. Therefore, the use of design and instructional strategies 

(graphing calculator) as intervention allows the teacher-researcher to improve 

educational practice, conducted in the iterative cycles of teaching contexts. In this 

context, the design-based approach has been adopted to enhance the teaching and 

learning of quadratic inequalities in a technologically mediated setting.  

DBR is a theory-guided design and procedure which is implemented in iterative 

cycles of data collection and analysis. DBR is not a specific data collection and 

analysis method (Reimann, 2011), but rather uses integrative methods. The 

integrative methods include survey, expert review, case study, inquiry methods, 

video recording, semi-structured interviews, questionnaires and statistical analysis 

(Cobb and Gravemeijer, 2008). Such methods provide opportunities for researchers 

to maximise the credibility and adaptability of their findings. Easterday, Lewis and 
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Gerber (2014) indicate that DBR methods allow researchers to generate useful 

educational interventions and effective theory for solving individual and collective 

problems of education. In addition, DBR provides ways and procedures for designing 

specific tasks, materials, tools, patterns of communication and interaction, and 

instructional sequences (hypothetical learning trajectories) in learning environments 

(Reimann, 2011). For this reason, using this pragmatic approach in this research 

may help students to become flexible in dealing with quadratic inequalities, whether 

as numeric, symbolic or graphic representation as well as increase the relevance of 

findings about how to use the graphing calculator in mathematics classroom. This 

may also lead to the articulation of design principles by the researcher that are 

relevant to other educators and district subject facilitators and that are transferable to 

similar contexts. 

4.4. Phases of design based research 

Reeves’ (2006) study has identified four interconnected phases of the design 

research process as shown in Figure 4.1, below to be followed in this study. 

  

Figure 4. 1: Design-based research phases in educational technology (adapted from 

Reeves, 2006) 

In Reeves’ (2006) views, the DBR approach is a process which starts from the 

identification and analysis of problems by researchers and practitioners in 

collaboration; and then goes through the development of prototyping solutions 

informed by theories, existing design principles, and technological innovations; then 

involves iterative cycles of testing and refinement of solutions in practice; and finally, 

results in reflection to produce design principles and enhance solution 

implementation in practice. 
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4.4.1 Analysis of practical problems- Phase 1 

In design based research, the analysis and articulation of the students’ problem is 

fundamental for the ultimate success of the overall study. The purpose of this 

preliminary phase involved identifying and formulating a significant educational 

problem of the study through: interactions with student participants in secondary 

school intervention programmes (SSIP); a review of relevant empirical studies to 

identify the pedagogical-content knowledge (PCK) gap including NSC diagnostic 

reports (DBE, 2014-2017); and real interactions with mathematics practitioners. 

Finally, it assisted to collect preliminary empirical data that might bring about the 

plausible solution to the entire students’ misconceptions. 

Design-based research places much value on the input of practitioners and 

researchers working in, or investigating, the problem area (Herrington, Mc Kenney, 

Reeves, & Oliver, 2015).  In this respect, the researcher further consulted most 

experienced mathematics practitioners such as FET teachers, district subject 

specialists and university lecturers including the supervisors. These practitioners 

were regarded as having insights that were based upon their experiences and 

practical understanding of the mathematical issues. The idea is that conversations 

with these individuals might provide the researcher with a better appreciation of the 

multiple educational contexts that comprise students’ misconceptions in quadratic 

inequalities. For this reason, the researcher was consistently involved in long-term, 

meaningful engagement with practitioners (a long-term process that started already 

a few years ago) as they are the reservoirs of knowledge about the research 

problem.  

An intensive and systematic preliminary investigation of tasks, problems, and context 

is crucial in design based research (van den Akker, 1999, Herrington, McKenney, 

Reeves and Oliver, 2007) as it helps to discover more accurate and explicit 

connections of the problem. Doing a comprehensive review of literature serves two 

main purposes: (a) clarifying the key research terms (e.g., graphing calculators in 

mathematics, quadratic inequalities, and the use of graphing calculators in the 

curriculum); and (b) providing theoretical frameworks for conceptual understanding. 

With adequate literature the researcher can formulate the research aim and the 

general research question, and develop a hypothetical learning trajectory (HLT) (van 
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Eerde, 2013). In addition, the researcher can identify the disclosure of the relevant 

studies, the students’ difficulties related to the topic and the knowledge gap about 

the learning of the topic. By so doing, the researcher gains an insight about the 

research problem (i.e. learners’ inability to solve quadratic inequalities) and connects 

the designed instructional activities with students’ current knowledge. 

As a result of consultation of literature, students and practitioners as well as 

Herrington et al.’s (2007) suggestion, the researcher identified the problem and 

concluded that students were not exposed to the constructivist learning environment. 

In a constructivist learning environment, “students are engaged in a cognitively rich 

and authentic environment that lends itself to knowledge construction” (Steketee & 

Bate, 2013; p. 273). In doing so, the researcher avoided the risk of only partially 

addressing the problem or missing it altogether. According to Herrington et al (2007), 

many researchers begin by thinking of a solution – such as a technology-based 

intervention, an educational game, or a technology tool – before they consider the 

educational problem to be solved. For this study, relevant research questions were 

formulated to address potential problem of students in quadratic inequalities. This is 

in line with the view that research questions should emerge from the stated problem 

rather than from the stages of design-based research (Herrington, McKenney, 

Reeves and Oliver, 2007). The research questions were exploratory and open in 

nature as they sought to improve existing inadequate practices. For example, the 

underlying questions were framed in the form of “what”, “how” and “in what ways” so 

as to drive innovative design research. 

To this end, literature review process, in Herrington, et al.’s (2007) opinion, is critical 

in design-based research as it normally facilitates the creation of draft design 

guidelines that inform the design and development of the intervention for the 

identified research problem. Findings from an iteration of review often help to fine-

tune the principles guiding the design. Finally, this phase involves collecting 

preliminary empirical data through pre-test and semi-structured interviews. The 

preliminary results are necessary for informing the preliminary design framework that 

should guide the next stage of this design study (i.e. the prototyping phase).  

Stellenbosch University https://scholar.sun.ac.za



108 
 

4.4.2 Development of solutions Informed by design principles- Phase 2 

The second phase is where the researcher attempts to develop a feasible solution 

immediately after firmly conceiving the nature and extent of the research problem. A 

wide consultation provided a theoretical foundation upon which the problem can be 

better articulated and its informed solution would be grounded in scholarly principles. 

The Design-Based Research Collective (2003, p. 6) wrote, “[Solutions] embody 

specific theoretical claims about teaching and learning, and reflect a commitment to 

understanding the relationships among theory, designed artefacts and practice”. As 

noted by Barab and Squire (2004, p.6), “design-based research suggests a 

pragmatic philosophical underpinning, one in which in its ability to produce changes 

in the world”. This means a well-described theoretical framework derived from a 

powerful literature review can inform a sound basis for the problem solution of the 

study. The notion is that a DBR researcher is able to produce changes in the world if 

s/he understands the pragmatic philosophical underpinnings where the value of a 

theory lies (Barab and Squire, 2004). In this study, different theories of learning 

mathematics (cf: chapter 3) helped to develop design principles for guiding the 

design of the intervention (the graphing calculator-enhanced solution). Furthermore, 

the solutions of quadratic inequalities in the graphing calculator-facilitated 

environment are developed from the effective consultation and collaboration with 

practitioners. 

Through a review of the literature on mathematics learning theories (cf: chapter 3), 

their pragmatic underpinnings were that the learning activities needed to embody 

certain features that would support the construction of meaningful learning 

outcomes. The solution of these activities should entail the development of cognitive 

aspects by encouraging students to not only engage in learning, but come to value 

this process as an integral aspect of their cognitive growth. In this context, the 

students would be more inclined to engage in the understanding of the concepts if 

activities were purposeful and relevant to their specific learning needs and contexts. 

They would be more motivated to learn too if the teachers could link new and 

existing knowledge and experiences, and more so if activities were learner-centred 

rather than teacher-centred. Additionally, their learning would be enriched if they had 

opportunities to collaborate with other students such that they could share 

perspectives and co-construct their own understandings. The theories further made 
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assumptions about students’ learning in the technology-mediated settings. Students’ 

activities in a technology-enriched classroom should be meaningful and engage 

learners in complex, authentic problem solving and reflection. These authentic 

activities essentially are the vehicle through which learners engage with content and 

attempt to make sense by relating them to their own contexts and learning needs. 

Technological learning environments could act as a mirror to their own 

understanding by helping students to see their solutions differently and/or with more 

clarity. Importantly, learning should be scaffolding, primarily by a teacher but also via 

collaboration with the other students and learning resources. 

The reviewed literature assisted to identify the research studies that had listed 

principles and relevant criteria to address the educational problem. Using this 

grounded approach a number of critical elements were determined and ultimately 

used to construct the initial conceptual framework (cf. figure 3.2). Models, 

frameworks and principles and guidelines (i.e., hypothetical learning trajectories) 

from the reviewed studies and papers were listed and grouped. From these groups, 

a list of the suggested HLTs was developed to form a guiding framework for the 

current study.  

The review of proposed design principles and guidelines (i.e., HLTs) was 

collaboratively done with experts and practitioners in education fraternity. By means 

of this iterative process, the original list of critical elements (principles and 

guidelines) was determined and evolved. As indicated earlier, expert reviewers were 

selected on the basis of their extensive experience of working in the educational 

fields of ICT and authentic assessment. They were carefully and purposefully chosen 

from both representations within the literature, as well as by recommendation.  In 

their opinion the practitioners were asked to evaluate the critical elements whether 

they made sense as a framework.  They were also asked to adequately evaluate if 

the elements were reflective of what should be considered the determination of 

authenticity within graphing calculator learning environment. Furthermore the experts 

were asked to provide any feedback or information that might be used to enhance 

the suitability or applicability of any of the critical elements in addressing research 

problem. 
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4.4.2.1 Conceptual design framework  

With a clear understanding of the nature and extent of the research problem and 

wide consultation of literature (Reeves, 2006; Van Wyk & de Villiers, 2014; Vygotsky, 

1978; Trouche, 2004; Freudenthal, 1991), a conceptual design framework was 

synthesised and modelled aiming to improve students’ understanding of quadratic 

inequalities in grade 11. This design model in Figure 4.2 below is anticipated to 

provide opportunities for conducting the DBR in graphing calculator mediated 

environment so as to address the students’ misconceptions of quadratic inequalities. 

The components of the model are explained below: 
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DBR phases in a GC-mediated classroom 

This framework incorporated the phases of the design-based research in a GC-

mediated classroom and the research problem was analysed using these 

interrelated and iterative phases as set out in Figure 4.2. The phases represented 

namely, analysing students’ difficulties with quadratic inequalities, developing and 

designing a GC mediated solution, testing and refining the solution in iterative cycles 

and, evaluating and reflecting on effectiveness in resolving students’ quadratic 

inequality problem solving difficulties. 

Reflection in action and on action 

Reflection was explained in two forms in the works of Schon (1983) and, Van Wyk 

and de Villiers (2014) as reflection in action and reflection on action and these were 

applied in this framework. Reflection in action involves reflecting during an action in 

each phase of the cycle without interfering to its outcome such as concrete research 

goals as a result of problem analysis; detailed design of the solution; development of 

a functional artefact and research findings to answer research question(s). On the 

other hand, reflection on action involves looking back to understand what has 

happened, thus learning from past experiences (e.g., previous DBR cycle) and also 

looking forward to meet challenges and then modify and refine subsequent cycle(s).  

Iterative cycles 

These cycles embedded in this framework were iterative and finite. The iterative 

cycles were based on specific, critical decisions and informed judgment to enhance, 

improve and re-design an artefact (e.g., the use of graphing calculator). In this study 

it was anticipated that three iterative cycles might help to document the desired local 

instructional theory for quadratic inequalities.  

Theoretical frameworks  

The theories of sociocultural constructivism, theory of instrumental genesis and 

Realistic Mathematics Education were used as lenses to analyse students’ 

understanding in the GC-enhanced classroom. The construct of instrumental 

orchestration helped to use his/her didactic competences in a graphing calculator 

enhanced mathematics classroom. Hypothetical learning trajectory was critical for 

designing learning materials and activities of quadratic inequalities.   
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Learner achievement 

Using the graphing and table instrumented schemes students had the opportunities 

to improve their problem solving and reasoning skills and then deepened 

understanding of quadratic inequality concepts. Consequently, both reflection in 

action and reflection on action might have contributed towards enhancing students’ 

performance achievement in mathematics.  

Dual outputs 

The completion of the final DBR cycle results in dual outputs namely, the 

implementation of a real-world solution and the formal documentation of theoretical 

understanding of the phenomenon under study (Van Wyk & de Villiers, 2014). The 

results of the design model would be used to develop the local instructional theory 

for quadratic inequalities and design principles. 

4.4.3 Iterative cycles of testing and refinement- Phase 3  

The third phase of design-based research (i.e., the teaching experiment) focuses on 

the implementation and evaluation of the proposed solution in a designed and 

developed learning environment or intervention (Herrington, McKenney, Reeves and 

Oliver, 2015; Ashford-Rowe, 2008). The goal was to gain an in-depth insight into the 

effectiveness of the intervention. The designed learning environment would ensure 

that three research cycles of the teaching experiments, thus in schools A, B and C 

were occurring to generate and refine evidence-based outcomes.  

The researchers, in collaboration with the participants, learn whether the solution is 

effective in practice or if it needs to be improved in some way. The idea is that the 

researchers and participants work closely together to interpret and make sense of 

the data that emerge during the implementations of the proposed solution. The 

limitations and constraints of the anticipated solution were identified and used by the 

researcher in the subsequent cycle. Particularly, all parties (e.g., the designers, 

practitioners, researchers and participants) are instrumental in advancing the 

pragmatic and theoretical aims of the design study (Wang & Hannafin, 2005). In the 

context of this study, the teacher was the researcher, students were the participants 

and the practitioners were the collaborators who had stake in the research 

outcomes.  
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As suggested by Gravemeijer and Cobb (2006), the purpose of the teaching 

experiment is to test and improve the hypothetical learning trajectory (HLT) and to 

develop an understanding of how it works in the actual learning process. Design-

based research is iterative in nature meaning that a single implementation is never 

sufficient to gather adequate evidence about the success of the intervention (i.e., 

graphing calculator) and its effect on the students’ understanding of quadratic 

inequalities. Within these cycles changes are consistently implemented and 

evaluated to adjust the HLT and develop the prototype local instructional theory to 

further improve its ability to address the research problem. This is in keeping with the 

focus suggested by Reeves (1999) and Herrington, et al. (2015).  The idea here is to 

use the DBR approach in a GC setting to gain an understanding which should have 

meaning beyond the immediate setting. 

The research cycles of teaching experiments  

In the case of this current study there were three research cycles involved and were 

implemented in three different schools (See Table 4.2). The cycles were conducted 

as the actual teaching processes in which the sequences of instructional activities 

were implemented in a naturalistic (graphing calculator) classroom environment. The 

mathematical content of the teaching experiment for these three cycles remained 

essentially the same. The developed HLT about the quadratic inequality concept was 

implemented in a graphing calculator-enhanced classroom environment. The 

limitations on the cycle were used as the feed-forward of the subsequent cycle. 

4.4.4 Reflections to produce design principles- Phase 4  

The fourth and final phase was that of developing a set of critical elements into a 

revised framework based upon the data received at the conclusion of phase three. 

Because of the collaborative nature of DBR, design principles are generated in an 

evaluation/reflection phase. Reflection "involves active and thoughtful consideration 

of what has come together in both research and development (including theoretical 

inputs, empirical findings, and subjective reactions) with the aim of producing new 

(theoretical) understanding" (Mc Kenney & Reeves, 2012, p. 151). As part of an 

ongoing DBR process, design principles are empirically and richly developed in order 

to eventually lead to theoretical understanding of educational contexts. As described 
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by Amiel & Reeves (2008), the design principles or guidelines derived can be 

implemented by others interested in studying similar settings and concerns.  

4.5.4.1 Design principles in design based research study 

A design principle is described as a prediction (Greeno, 2016), a criterion that needs 

to be fulfilled (Collins, 1990; Edelson, 2002), a value (something that is valued as 

important in itself), heuristic advice (Van den Akker, 1999), a design methodology 

(Edelson, 2002, perhaps a combination of such meanings (Bakker, 2004). This 

means design researchers at the end of their studies provide their advice to future 

researchers/readers by means of design principles. These design principles may 

include conjecture maps (Sandoval, 2014), local instruction theories (Gravemeijer, 

1998) and hypothetical learning trajectories (Simon, 1995). The design principles 

help to link the educational goals to an idea on how this could be achieved through 

design experiments (Herrington, et al., 2007).  They additionally proposed three 

desired outputs (scientific, practical and societal) in the form of both knowledge and 

products. These were intended to move students from their current levels of 

understanding to specific learning goals (of quadratic inequalities).  

In the scientific design principles, evidence-based heuristics can inform future 

development and implementation decisions (Linn, Davis & Bell, 2004). In this current 

study the design principles were used to close the pedagogical gap in the teaching 

and learning of quadratic inequalities in the GC environment. In the practical design 

principles, learning and teaching artefact(s) and activities are designed by the 

researcher, programmers and resource specialists to intervene in mathematics 

education. In this current study the researcher designed a learning environment 

(learning instructional trajectory) and the instructional activities for improving 

students’ reasoning and problem solving skills of quadratic inequalities. in the 

societal design principles, the researcher and practitioners designed  new heuristic 

approach for solving quadratic inequalities in a GC environment as the local 

instruction theories to inform future development and implementation decisions. 

Similarly, Reeves (2006) identified three fundamental principles of design-based 

research such as:  

1) Addressing complex problems in real contexts in collaboration with practitioners;  
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2) Integrating known and hypothetical design principles with technological advances 

to render plausible solutions to these complex problems; and, 

3) Conducting rigorous and reflective inquiry to test and refine innovative learning 

environments as well as to define new design principles.  

To this end, design principles can help the design based researchers to develop and 

refine their artefacts, technological tools and curriculum, and to advance an existing 

theory or develop new theories that can support and lead to a deeper understanding 

of mathematics (Kennedy-Clark, 2013; Barab, Dodge, Thomas, Jackson, & Tuzun, 

2007; Barab & Squire, 2004). This further means that the principles link the findings 

of the DBR to theories well-known in mathematics education, which includes a 

domain-specific instructional theory of RME, socio-cultural constructivist learning 

theory and theory of instrumental genesis. 

4.5. Hypothetical learning trajectories (HLT)  

A hypothetical learning trajectory (HLT) is a design and research instrument in all 

phases of design research (Bakker, 2003; Bakker & van Eerde, 2004). Simon (1995) 

states that student learning is hypothetical because the actual learning trajectory is 

not knowable in advance and it characterizes an expected tendency. In other words, 

these are educational predictions made by teachers on student learning and then 

testing them in practice. This means the learning pathways (trajectories) are in the 

hypothetical nature. The HLT is the link between an instruction theory and a concrete 

teaching experiment (Bakker, 2003) and a bridge linking the theory of constructivism 

to practice (Uygun, 2016). It is informed by general domain-specific and conjectured 

instruction theories. In the teaching process, teachers have the opportunity to test 

the designed hypothetical learning trajectories (HLT) and make modifications based 

on the experiences obtained in this process. This makes it possible to explain the 

HLT as a construct for teaching and learning process. In addition, the HLT can be 

accepted as a cognitive tool for improving mental processes and mathematical 

learning actions constructed in a learning environment- the graphing calculator. 

In the present study, the HLT based on the graphing calculator learning environment 

was used since it provided the teacher-researcher a framework for supporting the 

understanding of students’ thinking and learning of quadratic inequalities. In the HLT, 

the teachers make predictions about the progress in the teaching and learning 
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sequence. In simple terms, the HLT explains the usage of the teachers’ predictions 

made with regard to the teachers’ knowledge and assessments about student 

knowledge and their history about how the learning process may happen. As shown 

in Simon’s (1995) model (Figure 4.3) below, learning trajectories make the link 

between teachers’ knowledge and their students’ actions around three elements 

such as learning goals, learning activities and hypothetical learning process. The 

HLT is defined in terms of the learning goal, the learning activities and the 

hypothetical learning process (Simon, 1995) in a designed classroom based on the 

predictions of the teachers (Uygun, 2016). The teachers make the predictions by 

examining the student’s learning and reasoning carefully considering their actions in 

the classroom, the results of assessments about them and their history. In this way, 

the HLT helps the teachers understand their students’ learning and thinking 

processes. Learning trajectories are identified as a useful attempt for assessment 

(Battista, 2004) and teacher education (Wilson, Mojica, & Confrey, 2013). As Simon 

suggested, the learning goal defines the direction and the hypothetical learning 

process is an educational prediction made by the teacher of how the students’ 

thinking and understanding may evolve in the context of the learning activities.  

 

Figure 4. 3: Mathematics teaching cycle (Simon, 1995) 

Simon used the HLT for designing and planning the Mathematics teaching cycle, 

mostly for one or two lessons, but in the present study, it is used as an instrument in 

the DBR for the instructional sequences of quadratic inequalities in a GC mediated 

classroom. This implies that HLTs were developed for teaching experiments that 
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constituted of 8-9 sessions per cycle. As a consequence, the HLT in this study 

comes close to the local instruction theory of the learning of quadratic inequalities. 

The HLT can be seen as a concrete embodiment of this local instruction theory 

(Gravemeijer, 1995). Furthermore, this study differs from Simon’s approach of a 

teacher’s perspective, by assuming a teacher-researcher’s perspective. In light of 

this, the researcher found it very critical to design the sessions for the teaching of 

quadratic inequalities in a GC environment. These sessions were designed with the 

help of the HLT and were expected to be beneficial for assessing students’ 

understanding of quadratic inequalities. Then, necessary modifications of the HLT 

could be made based on the experiences in the cyclic teaching experiments. In this 

respect, students could effectively understand quadratic inequalities in a GC 

environment designed with respect to the social constructivist theory, RME principles 

and theory of instrumental genesis. The social learning environment was 

encouraged by the use of GC in which analysing, discussing and demonstrating the 

algebraic and geometrical ideas were made in order to solve quadratic inequalities. 

Researchers have highlighted that the construct of the HLT plays different roles in 

teaching mathematics (e.g. Bakker & van Eerde, 2004; van Eerde, 2013). 

Gravemeijer (2000) indicates that the HLT embraces conjectures about student 

learning processes and how they are supported in the classroom. The HLT also 

provides the researcher with a mechanism for defining and refining a study map 

along which students’ reasoning evolves in the context of the learning activities. In 

line with this argument, the instructional sequences are also modelled along the 

HLTs. The conjectures of students’ thinking and reasoning are described in the 

context of the proposed actions of the teacher. The teacher's hypotheses assist to 

generate the developmental ideas from the learning activities. This means the 

teacher-researcher continually adjusts the HLT that he has hypothesized to better 

reflect his enhanced knowledge.  

 

The construct of the HLT also plays different roles in the DBR phases (Drijvers, 

2003; Bakker, 2004; Gravemeijer, 1994). This means that an HLT, after it has been 

formulated, has different functions depending on the phase of the design based 

research and continually develops through the different phases. Actually the HLT 

guides and informs researchers and teachers how to carry out a particular design 
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experiment in a designed classroom. Ultimately, the interplay between the HLT and 

empirical results forms the basis for theory development, as follows:  

1. In the design phase, the HLT guides the design of instructional materials that have 

to be developed or adapted. With adequate consultation of practitioners and 

confrontation of concrete activities, the researcher develops a more specific HLT 

during the design phase (Drijvers, 2003).  

2. In the teaching experiment, the HLT functions as a guideline for the teacher and 

researcher what to focus on in teaching, interviewing, and observing (Drijvers, 2003; 

Bakker, 2004). It can happen that the teacher-researcher feels the need to adjust the 

HLT or instructional activity for the next lesson. This is consistent with Freudenthal’s 

(1991) views that the cyclic alternation of research and development can be more 

efficient if the cycle is shorter. The idea is that minor changes in the HLT can be 

made because of incidents in the classroom such as anticipations that have not 

become true, strategies that have not been foreseen, activities that were too difficult, 

and so on. In such cases, a micro-cycle of design, experiment, and analysis occurs 

within a macro-cycle of design research (Bakker, 2004). In the DBR such micro-

cycles are accepted and provide optimal conditions for changes in the HLT. This 

means that these changes are successful when supported by theoretical 

considerations. The HLT can thus also change during the teaching experiment 

phase.  

3. In the reflective analysis, the HLT functions as a guideline determining what the 

researcher should focus on in the analysis of the instructional interventions in the GC 

classroom. Because predictions are made about students’ learning, the researcher 

can contrast those anticipations with the observations made during the teaching 

experiment. Such an analysis of the interplay between the evolving HLT and 

empirical observations forms the basis for developing an instruction theory. After this 

analysis, the HLT can be reformulated, in a more drastic way than during the 

teaching experiment and the new HLT can guide the next cycle.  

Simon (1995) has identified four main components that define the HLT: starting 

points, learning goals, learning activities and hypotheses on students’ thinking 

process. In regard to these components of HLT, this present study used them to 
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elaborate how the students' understanding of quadratic inequalities evolved in a GC 

mediated learning environment.  

Starting points  

The starting points are established to connect the planned instructional activities with 

students’ current or relevant knowledge. In this study, starting points are prior 

mathematical concepts, ideas and representations connected to the quadratic 

inequalities that can be used for introducing the topic. For example, the use of set 

builder notation, which identifies the solutions of unknown variable, drawing a 

number line for the given builder set notation and sketching quadratic functions.  

Learning goals 

The learning goals are defined to provide direction to the planned instructional 

activities in solving quadratic inequality. In this study, students are expected to use a 

graphing calculator as an instructional tool consistent with the CAPS requirements. 

Students are also expected to understand the zeros of the functional graphs as 

critical values that define the solution region of quadratic inequalities and to express 

their solutions in set builder or interval notations.  

Learning activities 

The context that is embedded in the instructional activities is mostly about solution of 

quadratic inequality. In this study, students were engaged in learning sessions that 

involve them to solve inequalities, express the solution in set builder system and use 

quadratic graphs. The teacher introduced students to the use of the GC in 

determining solutions of quadratic inequalities from sketched graphs. In this case, 

the role of the teacher is certainly to support students in finding and reasoning about 

a better solution for the quadratic inequality.  

Hypothetical learning process  

In this study the hypothetical learning process involved the teacher’s predictions of 

how the students' thinking and understanding of quadratic inequalities can evolve in 

the context of answering the learning activities. The proposed broad sequence of the 

HLT: Solving symbolic, routine, complex and concrete quadratic inequality problems 
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in the graphing calculator environment. In addition, the teacher-researcher made 

predictions about students’ learning and understanding in particular, in a GC 

facilitated classroom. 

Table 4. 1: The HLT for teaching and learning of quadratic inequalities 

Session 

 

Learning 

Objectives 

(Purpose) 

 

Learning 

Activities 

Supporting 

Learning 

Theories 

 

Data Instruments 

 

Researcher’s 

Activities 

 

1 To assess the 

prior 

knowledge of 

students in 

solving 

quadratic 

inequalities 

 

Students 

independently 

determine the 

solution sets of 

the quadratic 

inequalities using 

traditional 

method. 

The dominating 

learning theories: 

RME 

Pre-test (Quan & 

Qual) 

Observation 

(Qual) 

The researcher 

assesses the 

students’ prior 

knowledge in 

quadratic 

inequalities. 

 

2 To sketch the 

graphs and 

determine the 

zeros of 

quadratic 

functions using 

the graphing 

calculator 

Students sketch 

the graphs and 

read-off the zeros 

of quadratic 

functions using 

graphing 

calculators. 

Principles of 

RME: Level, 

Interaction and 

Guided re-

invention, 

Vygotsky social 

learning and 

Theory of 

Instrumental 

Genesis. 

Questionnaires 

(Quan) In-depth 

interviews (Qual) 

Focus group 

interviews (Qual) 

Teacher uses 

interactive 

teaching with 

graphing 

calculators as 

instructional tools. 

3 To determine 

the solution 

sets of 

quadratic 

inequalities 

using graph 

sketches and 

graphing 

calculators. 

Students are 

engaged in 

determining the 

solution sets of 

the quadratic 

inequalities using 

the graphing 

calculator as an 

instructional tool. 

Principles of 

RME: Level, 

Interaction and 

Guided re-

invention, 

Vygotsky social 

learning and 

Theory of 

Instrumental 

Genesis. 

Questionnaires 

(Quan), In-depth 

interviews (Qual) 

Focus group 

interviews (Qual) 

The researcher 

works out all of 

the examples with 

the students, while 

asking for student 

input. 

 

4 Using GCs to 

solve symbolic 

Quadratic 

inequalities. 

Students are fully 

engaged in 

determining the 

solution sets of 

the quadratic 

inequalities using 

the GC  

Principles of 

RME, Vygotsky 

social learning 

and Theory of 

Instrumentation. 

Questionnaires 

(Quan), In-depth 

interviews (Qual) 

Focus group 

interviews (Qual) 

Observation 

(Qual) 

The teacher 

demonstrates how 

to use the GC to 

solve quadratic 

inequalities with 

few examples. 
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5 Solving 

symbolic 

quadratic 

inequalities 

using the GC 

as a checking 

tool 

Students are fully 

engaged in 

solving the 

quadratic 

inequalities 

verifying their 

answers with 

GCs. 

Principles of 

RME: Level, 

Interaction and 

Guided re-

invention and 

Theory of 

Instrumental 

Genesis. 

Questionnaires 

(Quan), In-depth 

interviews (Qual) 

Focus group 

interviews (Qual) 

Observation 

(Qual) 

The teacher 

engages the 

students to work 

out the solutions 

of quadratic 

inequalities and 

then uses the GC 

as a checking tool. 

6 To use the GC 

to answer 

questions 

involving the 

real-life 

application of 

quadratic 

inequalities. 

Students are fully 

engaged in 

solving quadratic 

inequalities using 

the GCs. 

Principles of 

emerging models 

and guided re-

invention, 

Vygotsky social 

learning and 

theory of 

Instrumentation. 

Questionnaires 

(Quan), In-depth 

interviews (Qual) 

Focus group 

interviews (Qual) 

Observation 

(Qual) 

The teacher 

engages the 

students to apply 

quadratic 

inequalities to 

solve problems 

using GCs as 

instructional tools. 

7 To apply 

quadratic 

inequalities in 

solving 

problems with 

use of GCs. 

Students are fully 

engaged in 

solving problems 

with quadratic 

inequalities using 

GCs. 

Principles of 

emerging models 

and Guided re-

invention and 

Theory of 

Instrumental 

Genesis. 

Questionnaires 

(Quan), In-depth 

interviews (Qual) 

Focus group 

interviews (Qual) 

Observation 

(Qual) 

The teacher 

continues 

engaging the 

students in solving 

problems using 

GCs as 

instructional tools. 

8 To evaluate the 

success of the 

design and the 

effeccts of the 

GC- enhanced 

learning in 

quadratic 

inequalities. 

Students 

independently 

answer problems 

of quadratic 

inequalities using 

conventional 

methods. 

Principles of RME 

Theory of 

instrumental 

genesis 

Social 

constructivist 

theory 

Post-test   

In-depth 

interviews (Qual) 

Focus group 

interviews (Qual) 

Observation 

(Qual) 

The researcher 

assesses the 

students’ 

reasoning and 

problem solving 

abilities of 

quadratic 

inequalities. 

 

4.6 The proposed teaching experimental cycles of this study 

The three research cycles of the teaching experiments in this study are preceded by 

a preliminary phase which was conducted with grade 11 students over a period of 

one week. The teaching experiment was enacted over the three cycles of the DBR in 

three experimental secondary schools of Gauteng province within 2018 (see Table 

4.2). The experiences gained from a previous iterative cycle was used as a template 

for the next iteration and assisted in the learning and teaching of quadratic 

inequalities in the graphing calculator-supported classroom.  

 

Stellenbosch University https://scholar.sun.ac.za



122 
 

Table 4. 2: A design-based research cycle 

1 WEEK PRELIMINARY PHASE 

Grade 11 

students at 

school C 

 Examine literature and pedagogical strategies. 

 Outline key concepts & conceptual trajectory. 

 Consult practitioners. 

 Implement assessment strategies. 

                                    Overall reflections after preliminary phase 

  

15 

WEEKS 

CYCLE 1: 

SCHOOL A 

5 weeks 

CYCLE 2: 

SCHOOL B 

5 weeks 

CYCLE 3: 

SCHOOL C 

5 weeks 

RETROSPECTIVE 

ANALYSIS 

 

PHASE 1 

 

 

Analysis of 

practical problems 

–literature review 

for conceptual 

Underpinning 

 NEW STUDENTS  NEW STUDENTS Retrospective analysis 

of the data set seeks 

to place participants’ 

learning and the 

means by which it was 

supported in a broad 

theoretical context. 

 

 

The development of a 

domain-specific 

pedagogical strategy 

for Grade 11 students 

to develop their 

conceptual 

understanding of 

quadratic inequality 

concept. 

    

PHASE 2 

 

Development of 

solutions informed 

by the literature 

Refinement of 

solutions based 

on reflection 

Refinement of 

solution based on 

reflection 

    

PHASE 3 

 

Intervention (first 

iteration) – data 

collection and 

analysis 

Intervention 

(second iteration) 

– data collection 

and analysis 

Intervention (third 

iteration) – data 

collection and 

analysis 

    

PHASE 4 

 

Reflection to 

produce design 

principles and re-

design HLT 

Reflection to 

produce design 

principles and re-

design HLT. 

Reflection to 

produce design 

principles and 

local theories. 

 

4.7 Population and sampling methods 

Grade 11 students of mathematics from Gauteng province were the core participants 

in the study. A combination of convenience, purposive and stratified random 

sampling strategies was used to select the provinces, districts, schools and student 

participants for the current study. A sample of a total of one hundred and twenty 

students (N=120) were randomly selected from three schools. Simply put, they were 

thirty five student participants (n=35) from School A, forty (n=40) from School B and 

forty five (n=45) from School C. It is also important to indicate that three practising 

teachers, one district mathematics facilitator and two university lecturers participated 
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in the designing of the learning activities of the DBR study in the GC-mediated 

learning environment.  

Specifically, the researcher used purposive sampling to identify Gauteng province, 

Ekurhuleni North district and the three public high schools in the underperforming 

category. Purposeful selection ensured maximal variation as determined by student 

mathematics achievement (as measured by 2016 NSC results of the schools in 

mathematics) and diverse school demographics. Purposive sampling is a non-

random method of sampling where the researcher selects “information-rich” cases 

for study in depth (Patton, 2002) and a sample from which the most can be learned 

(Merriam, 2009).   The benefit of purposive sampling is that, as Patton (2002) puts it, 

“Any common patterns that emerge from great variation are of particular interest and 

value in capturing the core experience and central, shared dimensions of a setting or 

phenomenon”. This sampling strategy befits the qualitative aspect as this approach 

seeks to understand the behaviour of the phenomenon. The other advantage of the 

use of this judgmental sampling strategy is that particular settings, persons or events 

are selected deliberately to provide important information that cannot be obtained 

from other choices. This strategy was ideal for exploratory mixed methods research 

design and appropriate for the design-based study as there was a limited number of 

educators who had expertise in the area being researched- use of graphing 

calculator in mathematics. This was also expected to generate the best case 

scenarios of the graphing calculator-enhanced mathematics classrooms. However, 

as a non-random sampling strategy, it is deliberately selective and biased (Cohen, et 

al., 2007). Another disadvantage of this sample is that the selected schools do not 

represent the wider population of South African high schools.  

The researcher identified the province, district and schools using convenience 

sampling in order to collect survey data for the research problem and sub-questions. 

Scott and Usher (2011, p.79) stated that “convenience sampling comprises choosing 

an unrepresentative sample by selecting respondents because it is convenient for 

the researcher”.  A sample of three high schools of this district in Gauteng province 

were a convenient sample because they were willing and readily available (Patton, 

2002; Lodico, et al. 2010; Creswell, 2011) and became the captive audience (Cohen 

et al., 2007). The students conveniently indicated their willingness to participate in 
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quantitative surveys and qualitative interviews. The researcher chose this non-

probabilistic strategy because the selected participants are often readily available 

and willing to be studied (Creswell, 2008), is less expensive to administer and often 

helps to overcome many limitations associated with research. For example, 

challenges associated with conducting an exploratory qualitative study include 

extensive time constraints and the significant amount of financial resources involved 

in traveling to the participants’ locations. According to Creswell (2008), the most 

time-consuming and costly approach of this sampling technique is to conduct 

individual interviews. However, there are limitations to this sampling type as the 

researcher cannot attempt to generalize the results beyond the given population 

(Mertens, 2009; Creswell, 2011) as the population was self-identified as the willing 

participants by the researcher and the parameters in this type of sample are 

negligible (Cohen, Manion and Morrison, 2007).  

Stratified random sampling procedure was also used to mainly reduce the population 

heterogeneity and to increase the efficiency of the estimates. The population, as 

Johnson, et al. (2007) and Cohen, et al. (2007) noted that, is divided into 

homogenous subgroups/strata, with each group containing subjects with similar 

characteristics. This means from each stratum, a simple random sample is selected 

and there are combined together to form the required sample from the population. In 

this regard, the researcher divided learners into three groups of 3 learners who 

performed relatively higher than their pre- test average (referred to as “Higher”), 3 

learners who performed about their pre-test average (referred to as “Expected”), and 

3 learners who performed relatively lower than their pre-test average (referred to as 

“Lower”) in each school, thus in line with Collins’ (2010) suggestions. In this study an 

equal number of male and female students were randomly selected in order to have 

a proper representation of each gender, where it was possible, to use graphing 

calculators in solving quadratic inequalities. A random sample drawn from these 

subgroups was qualitatively interviewed (i.e., in-depth, semi-structured and focus 

group interviewed) so as to explore the students’ behaviours in a GC facilitated 

learning environment. A stratified random sample is, a useful blend of randomization 

and categorization, thereby enabling both a quantitative and qualitative nature of 

research to be undertaken (Cohen, et al., 2007).  
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4.8. Research methods 

4.8.1. Quantitative research methods 

The quantitative section deals with those methods that provide quantitative 

information and objectively evaluate the data using statistical instruments.  

4.8.1.1 Pre-post testing method 

The pre-post testing (PPT) collects the quantitative data across two observations: 

baseline (beginning of program) and at a later point, at the end of the educational 

program that had been in operation for the possible change to occur (Delucchi, 2014; 

Schalich, 2015). Therefore, the main purpose of pre-post testing is to assess the 

value-added learning outcomes of an intervention in classroom (Delucchi, 2014). In 

this way this testing method is used to measure change in student competencies of 

critical skills in learning quadratic inequalities. 

Pre-testing involves measuring growth in students’ academic preparedness or 

progress, skills, knowledge, attitudes, or behaviours prior to participating in the 

intervention (Schalich, 2015). This method helped to assess participants when they 

first enter a program to establish a firm benchmark against which to measure growth 

or value-added. On the other hand, post-test is student’s achievement measured 

after completing an intervened educational program. In this context, this method is 

used so that the performance and progress of the students can be easily monitored. 

Researchers argue that if an intervention is having an impact on its participants, the 

effect should be reflected as a positive change between participants’ scores on the 

pre-test and the post-test (Delucchi, 2014). This suggests that the pre-post testing 

method is used to better quantify the learners' baseline knowledge and what they 

gained from their intervention participation. This method also provides instructor with 

several opportunities such as feedback on the success about intervention, a better 

gauge of the time needed for the program, a measure of’ participants’ confidence in 

answers and participants’ perceptions about incorrect answers. In this study, this 

PPT method was administered to provide evidence if the use of graphing calculator 

as an intervention for teaching and learning quadratic inequalities impacted positively 

on students’ thinking and problem solving abilities.   
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The method (pre-post testing) has some limitations. For example, a positive change 

in students’ performance cannot necessarily be attributed to the effectiveness of the 

intervention. It is hard to discern if the positive change chartered in the academic 

improvements was due to the intervention in the classroom (i.e. graphing calculator). 

If students drop out, the post-test results may be higher because those who remain 

are more concerned or persistent. This may not mean, on the other hand, that the 

students who scored so low had little improvement in the post-test scores. Using the 

same test for both the pre- and post-test can influence post-test scores upwards as 

students would have absorbed knowledge just from taking the pre-test and 

concentrate more on that content. McMillan and Schumacher (2006) point out that 

maturation is a threat to internal validity of the pre-post testing design when the 

dependent variable is unstable, because of maturational changes. They further state 

that the threat is more serious if the time between the pre-test and post-test is too 

long or increasing (Behar-Horenstein & Niu, 2011). This suggests that the 

convenient time for minimal threat of maturation should be relatively short (i.e. 2-3 

weeks) between the pre-test and post-test. Researchers should be cautious about 

controlling threats such as maturation, which become more apparent with a longer 

period of time between pre-test and post-test (Behar-Horenstein & Niu, 2011). The 

idea is the influence of the intervention cannot be effective with a longer period of 

time between pre- and post-test. In this context, the researcher was cautious of the 

maturation that threatened the positive results of intervention during the 

administration of pre-test and post-test.  

The instruction time of using the graphing calculator between pre-test and post-test 

was within three weeks for each school. However, there is one school that was 

affected by school holidays. For example three sessions including pre-test were 

done before closing and the remaining sessions were done after re-opening.the GC 

was used as an intervention tool to support students in the learning of quadratic 

inequalities. Bell (2010) points out that the longer the time lapse between the pre –

and post-test, the more difficult it is to rule out alternative explanations for any 

observed differences. In this regards, the results of the affected school generated 

from the pre- and post-tests were not much affected since five sessions were 

performed after. However, the researcher was cautious when he analysed the 
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results of this school and made claims about the effects of the GC intervention on 

students’ understanding of quadratic inequalities. 

In this study the pre-post tests were self-developed by the researcher to be used as 

a research instrument. The tests were developed after reviewing the related 

literature and consultation with experts, namely teachers and heads of mathematics 

department, subject facilitators and university lecturers. The validity of the items was 

assessed by the three heads of mathematics of the selected schools. The tests 

contained 8-9 sessions including multiple choice questions intended to measure 

students’ performance skills and conceptual understanding. All the items in the tests 

were taken from previous examination question papers and 11th grade mathematics 

textbooks about quadratic inequalities. The tests were constructed in such a manner 

that they included knowledge, comprehension and application levels (CAPS-DBE, 

2012). The same questions for quadratic inequalities were used for the pre-test and 

post-test but the order or sequence of numbering questions was changed in the 

post-test for each participating school. Using the same instrument as a pre-test and 

post-test or using two properly equated tests such as comparable forms of the same 

test safeguards against instrumentation concerns. See Appendix A. The data 

(scores) were quantitatively analysed using statistical instruments such as mean, 

standard deviations, t-distribution and Cohen d effect size. Information collected and 

analysed did not include student names or other individual identifiable information. 

4.8.1.2   Pre- and post-questionnaires 

The questionnaires were distributed to all participating students seeking for their 

perceptions on the use of the GCs in solving quadratic inequalities, their 

experiences, supporting their problem solving and reasoning skills and helping them 

do homework independents. A questionnaire has the advantage of taking it to a 

wider audience compared to interviews, but has a disadvantage of not being 

possible to customise it to individuals as it is possible with other methods of data 

collection. The pre-post surveys (PPS) collected the data across two observations: 

baseline (beginning of program) and at the end of the educational program that had 

been in operation for the possible change to occur. 
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4.8.2 Qualitative research methods 

The qualitative methods were used to provide subjective information (e.g., focus 

group and semi-structured interviews, participant observation and video recording) 

for enriching and understanding the context and actual practice of the study 

(Alreshidi, et al., 2016) and elucidate the mental processes underlying behaviours as 

well as to identify the reoccurring patterns that characterise the data (Merriam, 

2009).  

4.8.2.1 Focus group interview 

Focus groups are increasingly being used as a research tool in the social sciences 

(Wilkinson, 2008; Hopkins, 2007), frequently employed in qualitative research on 

perceptions (Widdowson, 2012; Freitas, et al., 1998) and in almost any research 

environment that combines with other qualitative or quantitative methods (Kress & 

Shoffner, 2007). As a qualitative research tool, focus group always seeks to 

understand better how people consider an experience, idea, or event (Freitas, et al., 

1998). Simply put, it provokes a discussion about what people think, or how they 

feel, or on the way they act. Its relevance in this study is upheld as it would explore 

the students’ perceptions and experience about the use of graphing calculators in 

solving quadratic inequalities. 

Some researchers view focus groups as group interviews (Hughes and DuMont, 

1993), as group discussions (Krueger 1998) or informal discussions among selected 

individuals (Beck et al. 1986). Focus group is a type of in-depth interview 

accomplished in a group whose focus (object) is the interaction inside the group 

(Freitas, et al., 1998). Bedford and Burgess (2001) provide a detailed definition of a 

focus group as a one-off meeting of between four and eight individuals who are 

brought together to discuss a particular topic chosen by the researcher(s) who 

moderate or structure the discussion. This means discussions are carefully planned 

to obtain perceptions (Krueger 1998) of relatively homogenous groups (Hughes and 

DuMont, 1993) in a defined environment. The participants influence each other 

through their answers to the ideas and contributions during the discussion. In most 

cases, the moderator stimulates discussion with comments or subjects. The 

fundamental data produced by this technique are the transcripts of the group 

discussions and the moderator's reflections and annotations. 
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Focus groups consist of two research methods components such as a group 

interview and focused interview (Bryman, 2001). The members of a focus group are 

invited for the interview to share their experiences from a particular situation, which 

in this case, using GCs to solve quadratic inequalities. Being a focused interview, 

open questions are asked to the group about a specific situation. Krueger (1994) 

argues that focus group interviews are useful in obtaining information which is 

difficult or impossible to obtain by using other methods. As De Vos, Strydom, Fouchẻ 

and Delport (2002) suggested, a focus group interview is the research technique that 

collects data through group interaction on a topic determined by the researcher. This 

means a group of people are brought together in a room to engage in a guided 

discussion (Babbie & Mouton 2001; Edenborough 2002) in order to collect data of 

students’ thinking and reasoning. Thus using focus groups the researcher can 

intervene into the conversation and pose questions to probe what members had just 

said. For example, participants’ perspectives are revealed through discussion or 

participants’ questions and arguments. 

Focus groups are effective in assessing participants’ attitudes, opinions and 

experiences relative to a specific context (Bryman, 2008; Freitas, et al., 1998), in this 

case, students’ understanding in the GC mediated classroom. Researchers have 

recommended that group interviews are convenient to conduct and produce 

immediate results (Krueger, 1988) and are relatively cost effective to reach the same 

number of participants at a speedy time (Krueger & Casey, 2000). The qualitative 

data is generated through discussion focused on a topic, which is determined by the 

research purpose. Freitas, et al. (1998) have recommended the use of focus group 

research method for generating hypotheses based on the perceptions of the 

participants and to evaluate different research situations or study populations. This 

implies that the focus group interview would be useful to explore students’ 

perceptions, opinions and experiences about the use of GC in learning quadratic 

inequalities. This would help to get an insight into students’ beliefs through what the 

students say, think and write in the classes supported by GC. In this study, a focus 

group interview protocol is used which constituted of both open-ended and 

structured questions to examine the students’ perceptions and attitudes about the 

GC’s use to learn quadratic inequalities. See Appendix F. 
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However, there are potential disadvantages of focus group interviews such as 

increased difficulty with transcribing (Krueger, 1994) especially as some participants 

normally dominate others in discussion (Wilkinson, 2008). The higher number of 

participants in a focus group increases the risk of members breaching confidentiality 

agreements (McParland & Flowers, 2012), may result in less opportunity to 

participate and could elevate the likelihood of conformity (Wibeck, Dahlgren & 

Öberg, 2007). To off-set some of these limitations of focus group, this study 

minimised the number of participants to four. In terms of confidentiality, the 

researcher stuck to the conditions expressed in the student consent form, see 

Appendix J. 

4.8.2.2 The in-depth interviews 

The interview is a social relationship designed to exchange information between the 

participant and the researcher. In-depth interviews were one of the typical interviews 

employed in this study and were open to allow the participants to raise their views 

(Kajornboon, 2005; Babbie and Mouton, 2009). These are organised approaches 

that collect data with regards to participants’ perceptions and interpretation of a given 

situation (Kajornboon, 2005; McMillan & Schumacher, 2006) and participants’ 

attitudes, thoughts and actions (Kendall, 2008). In addition, interviews afford 

participants a chance to clarify and elaborate their ideas in their own words. The in-

depth face-to-face interviews are selected because of the advantages of the social 

and gestural cues. Another advantage is that the interviewer can immediately react 

to the interviewee reactions or responses to seek more information or clarification. 

The responses of participants are also more spontaneous, without an extended 

reflection. The participant therefore reacts immediately to the question and it 

becomes more spontaneous or naturalistic.     

4.8.2.3 Semi-structured Interviews  

The semi-structured interviews are the most appropriate instrument to answer the 

research questions. In a semi-structured interview, a researcher initially uses an 

interview guide (prepared question prompts), but the researcher allows for flexibility 

in the way they are answered in order to draw as much data from the interviewees 

as possible (Merriam, 1998). Creswell (2003) recommends that the questions should 

be few to facilitate interviewees’ views and opinions and also to create space for the 
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interviewer to elicit deeper meanings of the responses. This could allow the 

researcher to ask other questions emanating from what the interviewee said for more 

clarity on the issue discussed. Mouton (2013) provides a number of factors that 

might influence response bias; however in this study interviewees were given 

authority and confidence by making them aware that the researcher was going to 

learn from their practices before carrying out the interviews. 

Semi-structured interviews are non-standardised and are frequently used in 

qualitative analysis and the interviewer does not do the research to test a specific 

hypothesis (David & Sutton, 2004). The researcher has a list of key themes, issues, 

and questions to be covered. In this type of interview the order of the questions can 

be changed depending on the direction of the interview. An interview schedule is 

also used, but additional questions can be asked. Kajornboon (2005) indicates that 

semi-structured interviews are more of an open-ended questions’ nature and lend 

themselves to probing. Kajornboon (2005) points out that if the respondent is 

uncertain about the question, the researcher can explain or rephrase the question. 

The semi-structured interviews were most beneficial because probing was possible 

to understand students’ experiences when working in a GC enhanced classroom. 

They also helped with regards to students’ perspective on the effectiveness of GC in 

teaching and learning so that their marks are improved in quadratic inequalities. The 

semi-structured interview schedule was validated and moderated by the participating 

practitioners. In this way the researcher ensured that the semi-structured interview 

schedule measured what it was supposed to measure.  

The interviews were needed to investigate the thinking and reasoning of the students 

and to obtain a more complete picture of students' understanding of quadratic 

inequalities. The interviews were conducted within two weeks after the post-test was 

administered. Pre- and post- tests alone do not provide a complete picture of 

students' understanding of quadratic inequalities. In addition, data from the 

interviews provided explanations for students' responses on the post-test. This is 

within the goals of the interviews which aimed to gather information about students' 

responses on the post-test, students' use of graphing calculators, and students' 

problem solving, reasoning and sense making abilities in quadratic inequalities. The 

first goal was to clarify students’ confusing statements or omitted responses, to 
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explore students' preferred representations of quadratic inequalities, and to explain 

factors for changes in responses from pre-test to post-test. Student misconceptions 

of quadratic inequalities were not a primary concern of the interviews but were 

explored when they arose. The second goal of the interviews was to explore 

students' use of graphing calculators in the classroom and for homework, but was 

prohibited for examination assessment. The third and last goal of the interviews was 

to explore whether students were able to apply their understanding of quadratic 

inequalities to solve the contextual problems with GC. The protocol for the interviews 

(see Appendix E) was developed.  

4.8.2.4 Classroom observations 

The purpose of the classroom observations was to collect data about the GC 

mediated classroom environment in which students encounter quadratic inequalities. 

The focus of the observations in this study was the students' use and instructor's use 

of graphing calculators. As Marshall and Rossman (1999) suggested, observation is 

a systematic noting and recording of events, behaviours and objects in a social 

setting chosen for the study. Furthermore, they emphasised that observation is a 

fundamental and highly important method in all qualitative inquiry. Angrasino and de 

Pèrez (2000) argued that observations need to be conducted in naturalistic settings 

so that they do not interfere with participants or planned activities. In the case of this 

study, the smart board classroom of each experimental school was used for the 

research purpose and provided the naturalistic environment for observation. The 

information gained from the observations was descriptive in nature and provided a 

more complete picture of how the created environment influenced students’ thinking, 

behaviours and attitudes in solving quadratic inequalities.  The other focus was what 

and how materials were presented to students in class. Skemp (1971) stated that the 

mathematical topics presented in class were the experiences in which students 

construct their understanding due to the abstract nature of mathematics.  

In order to capture the complexity of integrating graphing calculators into teaching 

and learning, the session presentations and student participation were video 

recorded. The video was also used to capture students’ verbal and non-verbal 

communication which reveals students’ mathematical understanding. This facilitated 

the collection of comprehensive data needed to give detailed descriptions of the 
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teaching and learning process. The video recorded classes were viewed and 

transcribed by the researcher to evaluate the enablement of GCs during actual 

sessions. The actions of teacher-researcher (instrumental orchestrations) and 

learners are captured and the artefacts (e.g. written work and test scripts) used are 

also included in the synthesis of the data. 

The sessions were divided into five main task activities such as quadratic inequality 

concept, graphic representation, symbolic manipulation skills, numeric manipulation 

skills and contextual problems. These session activities were spread into three 

weeks for each DBR cycle and classroom observations began the first week in order 

for the students to get acquainted with being observed. Daily observations continued 

until the accomplishment of the sessions and the administration of post-test. The 

sessions were videotaped and notes on the material presented were taken. After 

each classroom observation, any research materials handed out by the teacher-

researcher were collected and the researcher completed an observation and 

document summary shown in Appendix G. These summaries were short forms that 

were used to develop questions for the student interviews and to help with data 

analysis. The handouts given to students were homework assignments, worksheets 

and quizzes. 

4.9 Validity and reliability in mixed methods research  

Criticism has been on the subjectivity, or sample sizes, or unscientific methods used 

to collect data of qualitative studies. These are obviously the questions of validity 

and reliability, which address trustworthiness of the research study (Merriam, 1995). 

This section discusses reliability and validity of the research results. Although terms 

of validity and reliability engage with positivism and are related to the quantitative 

approach, they have also been used for interpretive research with the qualitative 

approach (Alreshidi, et al., 2016; Lincoln & Guba, 1985). Lincoln and Guba (1985) 

proposed the following appraising criteria for studies adopting mixed methods 

approaches described in Table 4.3 below.  
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Table 4. 3: Appraising criteria for studies adopting mixed methods approaches 

 

Reliability refers to the extent to which test scores are free of measurement error in a 

quantitative research.  As noted by Muijs (2011), whenever researchers want to 

measure something, there is some element of error in the research measurements. 

However, this study employed various procedures to build the trustworthiness in the 

research instruments and research results.  

Internal reliability refers to the reliability within a research project. It can be improved 

with several procedures, including a pilot study and the Cronbach alpha coefficient to 

measure the reliability of instrument. In the previous sections, the data collection 

methods discussed how the reliability could be increased. Internal reliability further 

refers to the reasonableness of inferences and assertions (Bakker, 2004). This was 

improved by discussing the students’ misconceptions and errors with practitioners. 

External reliability usually denotes replicability or confirmability of the research. This 

means that the conclusions of the study depended on the subjects and conditions, 

and not on the researcher (Bakker, 2003). Differently viewed, Lincoln and Guba 

(1985) refer confirmability to the degree to which the researcher can demonstrate the 

neutrality of the research interpretations, through an audit trail. In qualitative 

research, replicability is mostly interpreted as virtual replicability. Bakker & van Eerde 

(2013) interpreted trackability (transparency) in the research as what the 

readers/users are able to track in the whole process of the study. In this context, the 

data should reflect the views of the participants accurately rather than the 

researcher’s views. For this reason, the research must be sequentially documented 

in such a way that it is clear how the research has been carried out and how 

conclusions have been drawn from the data.  
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The readers/users of this present DBR study would be able to track the learning 

process of the participants and to reconstruct their study as failures and successes, 

procedures followed, the conceptual framework used, and the reasons to make 

certain choices were all reported as they manifested in the study. The users would 

experience the cyclic process of development of students’ understanding of 

quadratic inequalities and this experience can be transmitted to others to become 

like their own experiences. This study would further provide raw data that can be 

traced to original sources (i.e., the participants of the three schools). In this sense, 

students’ views are accurately presented through the use of interviews, video 

observations and written work as multiple data sources. Bakker & van Eerde, (2013) 

further emphasize the degree of independence of the researcher about how the data 

was collected and analysed. In this study the researcher’s independence was 

improved by discussing the critical fragments with colleagues, called inter-

subjectivity, about the interpretations and conclusions during the retrospective 

analysis.  With graphing calculator strategies as the goal in mind, each response 

given by the student participants and each action observed was coded using action 

verbs that describe the steps to solving quadratic inequality problem.  

Internal validity refers to the quality of the data collections quantitatively and the 

soundness of the reasoning that has led to the conclusions (i.e., credibility) 

qualitatively. Several research instruments were used to improve the internal validity 

of this study such as improving HLTs in the teaching experiments and testing 

conjectures that were generated. This study also used video recordings of classroom 

observations and of focus group discussions, field notes, students’ written work, and 

student interview recording to collect data. The use of mixed instruments of data 

collection allowed the researcher to perform data triangulation and contributed to the 

trustworthiness and credibility of data. The credibility of the findings was maintained 

through prolonged engagement with the participants during interviews and in 

classrooms, as an attempt to establish an effective vehicle for obtaining and 

processing reliable information. Furthermore, credibility was maintained through an 

on-going dialogue with participants, numerous observations, and by the use of 

member checks. The researcher was fully engaged in observing student participants 

as they interacted with graphing calculators in solving inequality problems (prolonged 

engagement) over a nine-week period in order to understand the actions of the 
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students. The data sources helped to search for counterexamples of the conjectures 

of this study. During this period, the researcher established trust and mutual 

understanding with the participants, hence granting them autonomy to perform 

instructional activities with graphing calculators confidently. The activities of every 

participating member were strictly checked including attendance in class to ensure 

correct and truthful interpretations to the data collected. At the end, participants were 

allowed to review the researcher’s findings so as to verify if the data collected 

matched with their experiences and also to confirm the accuracy of interpretations. 

External validity is mostly interpreted quantitatively as the generalizability of the 

research results. Transferability is interpreted differently in both quantitative and 

qualitative paradigms. Transferability in quantitative paradigm refers to the ability of 

the researcher to extend the findings of a study beyond the specific individuals and 

setting in which that study occurred (Merriam, 1995). While in qualitative research, it 

refers to the question of how we can generalize the results from certain contexts to 

be functional for other contexts (Bakker & van Eerde, 2013). The question is how the 

results can be generalized from these specific contexts as to be useful for other 

contexts. An important way to do so is by framing issues as instances of something 

more general (Cobb, Confrey, et al., 2003; Gravemeijer & Cobb, 2001). Merriam, 

(1995) has considered transferability (generalisation) in three concepts such as 

working hypotheses, concrete universals and reader/user, as the basis for 

interpreting generalizability of findings of qualitative research. Small sample size and 

non-random sampling (mostly purposeful) in a qualitative study leads to a notion of 

non-generalizability across different settings. However, the purpose of qualitative 

research is to understand the particular in depth, rather than finding out what is 

generally true of many (Merriam, 1995). In essence, there is no reason not to 

generalize (or transfer) research findings in other types of similar situations. More 

often than not, general conclusions are made from similar particulars. Merriam’s 

(1995) contribution is that, “the general lies in the particular” (, p. 58). This suggests 

that it is up to the reader to decide the extent of generalizability of the research 

findings, not up the researcher.  

To ensure transferability of the findings of this study to other schools, districts, 

provinces and other departments different from education, the researcher used a 

mixed methods approach inscribed in DBR to explore and understand the 
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experiences, opinions and perceptions of participants. A detailed, practical 

description of the findings of this DBR study was presented so that the audience 

would understand the contextual variables operating within this setting and have a 

solid framework for comparison (Merriam, 2009). The challenge however was to 

present the results of instruction theory, HLT, and instructional activities in such a 

way that others can adjust them to their local contingencies (Barab & Kirshner, 

2002). In the conclusions the researcher produced a list of issues and patterns 

similar that occurred in classes of three schools in the teaching experiments 

(Chapters 5, 6 & 7). By using the theory of instrumental genesis, the graphs were 

drawn with the help of graphing calculator environment to provide more abstract 

explanations connected to the solutions of quadratic inequalities. The graphs were 

successfully applied in learning quadratic inequalities in all the teaching experiments 

and can be generalised that their use improved students’ understanding in a GC 

mediated classroom.  

4.10. Ethical considerations 

Prior to data collection, an ethical clearance letter was obtained from the university 

granting permission to pursue data collection. Secondly permission was also sought 

for conducting the study at the high schools in Gauteng Province from the Gauteng 

Department of Education (GDE) but at district level, school governing boards, and 

the principals of the participating schools. Thirdly, consent forms were sent to 

parents of the participating learners to be signed granting permission for their 

children to be interviewed, observed, tested and taught during the investigating 

period. Participating students were informed of their rights to withdraw at any time 

without any consequences and were given options not to answer any question that 

they were not comfortable with. The researcher emphatically informed the 

participants that the study was not evaluative and that the findings and conclusions 

were not be used against them. To protect the rights of participants, the data 

collected were kept confidentially so there was no link to any student, and codes 

were used to capture data on an individual participant basis. Upon successful 

completion of this study, the data were deleted from the researcher’s laptop. The 

researcher had no personal interest in the participating schools, and as such the bias 

in data collection were minimised. The letter for the school principal was presented in 

Appendix A and a letter to the teachers was in Appendix B. The letter to the school 
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governing board to inform parents about the researcher’s intention was presented in 

Appendix C. The student consent form was presented in Appendix J. 

 4.11. Summary 

This chapter has presented pragmatism as the research paradigm and the DBR as 

the research methodology. A pragmatic paradigm was adapted for its constructivist 

approach that the truth is socially constructed and is independent of the researcher. 

As a pragmatic approach, DBR integrated different worldviews and assumptions 

which were used as the bases for mixed approaches and procedures of data 

collection and analysis. Mixed methods were used to explore and understand 

students’ behaviours in learning quadratic inequalities in a GC mediated classroom. 

The use of mixed methods assisted the researcher to arrive to the conclusions with 

more confidence and to provide a holistic view of the findings. In-depth and semi-

interviews, focus group interview, classroom observation, video recording, pre-post 

testing and pre- and post-questionnaires were administered as data collection 

instruments. The use of mixed instruments of data collection allowed the researcher 

to perform data triangulation and to achieve the trustworthiness, validity and 

reliability of data. In addition, issues of population and sampling procedures were 

also elaborated in this chapter. This sampling strategy helped the researcher to 

select the three secondary schools and student participants (N=120) learning Pure 

Mathematics as one of the core subjects from Gauteng province. The HLT for 

teaching/learning quadratic inequalities was developed in the first phases and 

implemented in the three cycles in a total of 15-week instructional sequence. The 

instructional materials and activities were designed with the help of HLT. Permission 

was sought for conducting the study at the high schools from Gauteng Province 

Department of Education. Consent forms were signed by the students granting 

permission for their children to participate in the research. Participating students 

were informed of their rights to withdraw at any time without any consequences and 

confidentiality of their information was at maximum level. 

The next chapter 5 presented the analysis of the data collected from the various data 

collection procedures of the study in School A.   
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CHAPTER 5: RESULTS OF THE FIRST CYCLE OF THE 
TEACHING EXPERIMENT 

5.1. Introduction 

The purpose of this present study was to investigate the grade 11 students' 

understanding of quadratic inequalities in a graphing calculator enhanced 

mathematics classroom. In addition, the study examined whether the problem 

solving and reasoning skills of the students were supported by the pedagogical use 

of the graphing calculator. The data described in this chapter were collected in 

School A to address the following research questions:  

1. To what extent can the pedagogical use of graphing calculator influence high 

school students’ performance in solving quadratic inequalities? 

2. In what ways (how) can the pedagogical use of the graphing calculator support the 

high school students’ problem solving ability in quadratic inequalities?  

3. In what ways (how) does the pedagogical use of the graphing calculator support 

the high school students’ reasoning ability when solving quadratic inequalities? 

4. What perceptions do students have on the pedagogical use of the graphing 

calculators in learning quadratic inequalities? 

This chapter is the first part of the empirical results of the study and addressed the 

first DBR cycle at the eleventh grade. In attempt to answer the research questions, 

the results of the first DBR cycle of the teaching experiment in School A are 

presented in the following sections. First, Section 5.2 describes the starting points of 

the HLT including the learning outcomes. Second, the educational setting of the 

cycle is explained in Section 5.3. Third, the results of the pre- and post-tests are 

analysed in Section 5.4.  Four, the results of the problem solving are analysed in 

Section 5.5. Fifth, Section 5.6 presents the results of the focus group interviews with 

students. Sixth, the results of pre- and post-surveys are analysed in Section 5.7. The 

results of the in-depth interviews with students are discussed in Section 5.8. Finally, 

the study concludes with the reflections, feed forwards and design principles in 

Section 5.9.  
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5.2  Starting points of the HLT and learning outcomes  

The starting points for the HLTs for quadratic inequalities were the use of set builder 

notation, which defines the solutions of unknown variable, drawing a number line for 

the given builder set notation and graphing quadratic functions and the effect of 

parameters on quadratic functions and quadratic equations. The graphing and 

symbolic processes of quadratic inequalities were identified as the ground level, and 

the complex and concrete processes represented the higher level of the concept of 

quadratic inequalities. The middle level embraced the routine processes of quadratic 

inequalities. The understanding of the properties of quadratic graphic 

representations was considered to be important in the reification of symbolic 

expressions and formulas in the development of algebraic concepts (Drijvers, 2003). 

In conjunction with the starting points, the following learning outcomes were derived 

from the prepared sessions that inform the design of the HLT for quadratic 

inequalities: 

Learning outcomes of the instructional activities 

The first learning outcome in session two was that students would develop the 

notions of interval notations, parameters, x-intercepts and finally quadratic graphs in 

a flexible graphing calculator environment. This means the GC use was expected to 

facilitate the transition from the graphical representation and interval notation to 

quadratic inequality representation.  

The second learning outcome in session three was that students would develop the 

notions of solving quadratic inequalities in a flexible graphing calculator environment. 

This means that the use of graph and tabular instrumented schemes was expected 

to facilitate the transition from the quadratic graphs and interval notations to symbolic 

quadratic inequalities  

The third learning outcome in session four was that students would develop the 

reasoning skills to solve routine problems in symbolic quadratic inequalities in a 

flexible graphing calculator environment. This means that the GC use was expected 

to support the transition from the routine procedures to complex procedures of 

solving quadratic inequalities.  
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The fourth learning outcome in sessions 5 and 6 was that students would develop 

the higher order problem solving and reasoning skills in contextual quadratic 

inequality situations in a flexible graphing calculator environment. This means that 

the GC use was expected to support the transition from the symbolic to the 

contextual quadratic inequality problems. 

5.3. Participants and research procedures of the study 

The teaching experiment took place in a public high school with eleventh-grade 

class, thereafter the school is referred to as School A. A total of 42 students 

participated in this study and were randomly chosen from 130 eleventh graders. The 

participants were asked not to identify themselves on the pre-tests and post-tests, 

but rather to label their scripts with symbols given randomly by their teacher, such as 

A1, A2, A3,..., A42, where A represented the school. However, 5 students decided to 

withdraw their participation and were not considered during the quantitative analysis 

of the results. Four students also participated in the interviews. The sample included 

below average, average and above average students and a top student.  

To avoid research bias, the teaching was conducted by the researcher and a pre-test 

was administered on the first day before the GC intervention.  The test consisted of 6 

questions to be solved traditionally.  Additionally, students were tested on their 

reasoning and problem-solving abilities in the contextual quadratic inequality 

problems. Immediately after the pre-test assessment, they answered the pre-

intervention questionnaires. Thereafter students received instructions on how to use 

the GC and were allotted time to explore the graphing of quadratic functions. The 

same tool- the GC was also used to solve quadratic inequalities and to interpret or 

determine their solution sets. The students were given more activities to perform 

using the GC in order to understand and visualise the graphical representations.   

The GC enabled students to create and use tabular, symbolic and graphical 

representations and also to analyse patterns and relations of graphs. An observation 

of student interaction with the graphing calculators was made as they performed 

their class activities. Students were given adequate time to familiarise themselves 

with the use of graphing calculators as they attempted the designed activities of eight 

sessions. Not deviating from the CAPS document requirements, the students used 

the GC as a visualisation tool that can make students intuitively understand the 
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properties of algebraic processes, which are missed during the learning process and 

the reasons of the errors that they make (Stavy, et al., 2006). It was also used, as 

suggested by Averbeck (2000), as an alternative method for solving mathematical 

problems, a guide for planning the solution process and a reference or resource for 

checking accuracy of their graphs and their solutions during the monitoring phase. 

Ultimately, the post-test was administered which was identical to the pre-test so that 

the improvements in understanding could be monitored during the teaching 

experiment.  The post-test was administered to measure learning gains attributable 

to the use of the GC. In answering the questions of the post-test in quadratic 

inequalities, students were not allowed to use the GC. This is in compliance with the 

CAPS document to use the GC as an alternative technology. After the post-test 

assessment, the students completed the post-intervention survey and some were 

selected for further interviewing. The post survey was used to measure changes in 

students’ opinions after the use of graphing calculator to solve quadratic inequalities. 

The data collected from this survey were then analysed using SPSS 16.0. 

5.4. Analysis of the students’ results of the pre- and post-tests  

This section presents and discusses the results of the pre- and post- tests and the 

written tasks which sought to answer the first research question: 

To what extent does the pedagogical use of GCs impact on students’ 

performance in solving quadratic inequalities? 

The results were also used to test the null hypothesis: H0: There is no difference 

between the pre-test mean and the post-test mean of quadratic inequalities for the 

students in the study (𝐻0: 𝜇1 (pre−test) = 𝜇2 (post−test). Alternatively, H1: There is a 

difference between the pre-test mean and post-test mean of quadratic inequalities 

for the different domains for the students in the study (𝐻1: 𝜇1 (pre−test) ≠ 𝜇2 

(post−test).  The results of 35 students obtained in School A are presented in the 

form of descriptive statistics (Table 5.1) and paired samples test (Table 5.2) below.  

Table 5.1 below, presents the descriptive statistics analysis of School A showing that 

students performed much better in the post test (M=35.9143; SD=19.76237) than in 

the pre-test (M=21.0857; SD=15.98965). The results of the post-test reflected better 

scores in the median mark of 36% and highest score of 87% from 77%. This 
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suggests that there was a reasonable improvement in the post-test towards the 

understanding of quadratic inequalities. This could be attributable to effective 

intervention of the GC in the learning of quadratic inequalities. 

Table 5. 1: Descriptive Statistics Analysis of School A 

 
N Minimum Maximum Mean 

Std. 
Deviation 

Pre-Test 35 3.00 77.00 21.0857 15.98965 

Post-Test 35 7.00 87.00 35.9143 19.76237 

Valid N (listwise) 35 
    

 

In Table 5.2 below, the results of the dependent (paired) samples t-test show that 

t(34) = -11.384 and 𝑝 = 0.000. This means the actual probability value is 0.000 and it 

is substantially smaller than the specified alpha value of 0.05. These t-test results 

indicate that the null hypothesis was rejected at 5% significant level in favour of the 

alternative hypothesis. Therefore, there was a statistically significant difference 

between the students’ means of the pre- and post-test scores. In that context, there 

was a statistically significant improvement of the students’ results after the use of the 

GC in the learning of quadratic inequalities. 

Table 5. 2: Paired Samples Test of School A 

Pair 1 

                                          Paired Differences 

Mean 
Std. 

Deviation 
Std. Error 

Mean 

95% Confidence Interval 
of the Difference 

    Sig(2-
tailed) 

Lower Upper T Df 

Pre-Test & 
Post-test 
  

-1.48286E1 7.70594 1.30254 -17.47565 -12.18149 -11.384 34 .000 

 

Although the results presented above indicated the statistically significant 

improvement in the test scores of students, they do not tell much about the 

magnitude of the GC intervention’s effect in solving quadratic inequalities. Because 

there was no control group for this particular task and limitation of statistical 

significance, the researcher proceeded to calculate the Cohen’s 𝑑 effect size statistic 

using the pre-test and post-test means in order to determine the magnitude or 

practical significance of the difference in scores. The effect size was 1.1, indicating 
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that the post-test mean is at 86% of the pre-test mean. This means that there was a 

large effect impacted by the use of the GC on learning quadratic inequalities (i.e., 

using Cohen’s, (1988) interpretation: 0.2=50%=small effect, 0.5=58%=medium effect 

and 0.8=79%≥ large effect). The researcher therefore concluded that there was a 

practically significant improvement of about 0.8 standard deviations in the mean 

scores from pre-test (M=21.09, SD=16.00) to post-test [M=35.91, SD=19.76, t(34)=-

11.384, p=0.000<0.005]. This implies that the pedagogical use of the GC impacted 

positively on the students’ performance in solving quadratic inequalities. This study 

did not investigate if the teaching and learning of quadratic inequalities with the GC 

is better than an approach without it, but to show that it can help with the 

understanding of the topic or concept. The 𝑡-test results showed that there were 

learning gains not only for the purposeful sample of students but also for all the 

students that were exposed to the teaching intervention with the GC and instructional 

material. The findings are consistent with the theoretical frameworks as they were 

used in designing the learning activities.  

5.4.1 Students’ results in written tasks of symbolic quadratic inequalities  

The improvement of students’ performance in the post-test could be attributed to the 

written tasks during the teaching experiment. Students wrote a task with questions 

related to sessions 3 and 4 and was considered for analysis. These questions were 

meant to monitor the progress of the students in each session. The results of the 

students were analysed to determine what percentage of those who answered the 

symbolic quadratic inequalities correctly, incorrectly, blankly or incompletely and also 

used graphic approach (see Table 5.3), below.  

Table 5. 3: Results of the written task about symbolic quadratic inequalities  
 

Questions of the 
Written Task 

 
Correct 

% 

 
Incorrect 

% 

 
Blank 

% 

 
Incomplete 
       % 

Method used 

Graph 
% 

Others 
% 

None 
% 

 4.1   𝟒𝒙 + 𝒙𝟐 ≤ 𝟎 40 26 9 26 54 20 26 

4.2   (𝒙 + 𝟐)(𝟑𝒙 − 𝟕) ≥ 𝟎 51 14 6 29 66 17 17 

 4.3  𝒙𝟐 − 𝒙 − 𝟏𝟐 < 𝟎 54 20 6 23 57 23 20 

4.4  −(𝒙 − 𝟒)(𝒙 + 𝟓) < 𝟎 43 17 3 37 72 17 11 

 4.5  𝟐𝒙𝟐 − 𝟕𝒙 ≥ 𝟒 37 26 14 23 48 23 29 

The analysis of the data in Table 5.3 above revealed that each of the symbolic 

quadratic inequality questions was solved correctly by more than 40% of the 

students with the exception of question 4.5. This may suggest that at least 40% (>14 
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of the students) had acquired adequate knowledge and skills for solving symbolic 

quadratic inequalities. The percentage of students who had incorrect or blank 

solutions was between 20 and 35, which indicate an improvement in the 

understanding of quadratic inequalities. It was also observed that between 20% and 

37% of students had incomplete answers. Question 4.4 had the greatest percentage 

(37%) of incomplete answers. An incomplete solution means that the student used 

the correct strategy but abandoned the strategy before arriving to the solution. One 

of the observations made by the researcher was that students were able to 

determine the critical values and sketch the graph but could not go beyond that. On 

the other hand, students had difficulties with identifying the solution set of the 

quadratic inequality as the coefficient of x-squared was negative. This means student 

had difficulties in determining the domain of inequality function.  

Students’ answers were supposed to be linked to the use of graphs in order to see 

the influence of GC. In this vein, students’ abilities of using graphs were assessed in 

solving symbolic quadratic inequalities. It was observed that more than 50% of the 

students used graphs to determine the solutions of the inequalities, except in 

question 4.5 with 48%. In this question students attempted to solve before 

expressing in standard form. Not more than eight students (≤ 23%) used other 

methods such as line graph and sign chart or table to determine the solutions of 

quadratic inequalities. A line graph is also shown on the graphing calculator when 

solving quadratic inequalities. In this case, the influence of the GC was very strong in 

developing such skills among the students. In the table, only 10 or less did not use 

any of the three methods linked to the GC. 

A sample of answers of the four students in the written task is shown in Figures 5.1 

and 5.2 below. The four students were purposefully chosen because their written 

work represented all types of possible answers presented in School A.  

Stellenbosch University https://scholar.sun.ac.za



146 
 

        

Figure 5. 1: Students’ incomplete answers on symbolic quadratic inequality 

Figure 5.1, above shows the incomplete solutions of two students SA5 and SA23 

who used both the algebraic and graphical methods. The first student correctly 

determined the critical values using the factorisation method and also correctly 

sketched the graph but failed to identify the region representing the solution of the 

inequality. On the other hand, the second student also failed to determine the 

solution of the quadratic inequality after using the quadratic formula and sketching 

the graph correctly. The graph of student SA23 lacked details compared to the 

student SA5’s graph. Figure 5.2 below shows the solutions of other two students 

who used different graphical methods to determine the region of the inequality. 

  

Figure 5. 2: Students’ solutions with different graphs 

Student SA18 correctly used the sketched graph to determine the region 

representing the solution of the quadratic inequality. This means the solution was 

correctly written. Student SA10, on the other hand, correctly used the line graph to 

indicate the region of the solution set. The two graphs drawn by the students are 

commonly seen on the graphing calculators; as a result students acquired these 

from the consistent use of the GC. Based on the students’ work, the use of the GC 

SA18 SA10 

SA5 SA23

3 
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helped them to produce visual models and diagrams as well as integrated 

meaningfully the graphical and algebraic representations that supported their 

reasoning and problem solving. This is consistent with the ideas of the level and 

intertwinement principles of the RME and instrumented action schemes of the 

instrumental approach theory.   

 5.4.2 Students’ results of written tasks in applications of quadratic inequalities 

The improvement of students’ performance noted in the post-test could be attributed 

to the written tasks during the teaching experiment, related to questions in session 5 

and was considered for analysis. The written task assisted to monitor the progress of 

the students. The results of the students were analysed to determine what 

percentage of those who answered the application problems of quadratic inequalities 

correctly, incorrectly, blankly or incompletely (see Table 5.4), below.  

 Table 5. 4: Students’ results in application of quadratic inequalities 

Question Written Task on Applications Correct 
% 

Incorrect 
% 

Blank 
% 

Incomplete 
% 

5.1 For what values of 𝒙 will √𝒙𝟐 − 𝟐𝟓 
be real? 

 
37 

 
29 

 
14 

 
20 

5.2 For which values of 𝒙 will 

Q=√𝒙𝟐 − 𝟖𝒙 + 𝟏𝟐 be non-real? 

 
49 

 
20 

 
9 

 
23 

5.3 Given 𝒈(𝒙) = −𝒙𝟐 + 𝟕𝒙 + 𝟔 
For which values of x will g(x)>0? 

 
40 

 
23 

 
11 

 
26 

The analysis of the data in Table 5.4 revealed that 37%, 49% and 40% of the 

students respectively applied correctly quadratic inequalities to solve questions 5.1, 

5.2 and 5.3. This indicates that at least 63% of the students needed to be re-skilled 

in these problem areas of applications. The proportion of incomplete solutions (i.e., 

20%, 23% and 26% respectively) was very high for all the three questions. This 

implies that students were able to identify the problem and select the right strategy 

(i.e., forming quadratic inequality) of the application problem. The incomplete 

solution might indicate that further use of the GC is needed to develop students’ 

cognitive skills and confidence. This therefore lays foundation for the emphasis in the 

revision for the post- test. However, a number of students still experienced difficulties 

in determining the solutions of the quadratic inequalities. This included those who 

had incorrect or blank solutions, which are 46% in Q5.1, 29% in Q5.2 and 34% in 

Q5.3. The consistent use of the GC may reduce the percentage of students who had 

incorrect or blank solutions. The level principle of RME theory helped the researcher 
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to interpret how students used the models and graphs to move their informal thinking 

(horizontal mathematization) away from the application to the formal reasoning 

(vertical mathematization). This is in line with the principle of intertwinement as this 

topic involves the connections of many concepts and activity principle was at play as 

students were confronted with situational problems as well as the socio-cultural 

learning of Vygotsky’s theory where appropriate language was to be used when 

solving quadratic inequalities.  

5.5. Students’ results of problem solving in quadratic inequalities 

5.5.1 Analysis of the student’s problem solving strategies in the post-test 

This section intended to answer the second research question, “In what ways (how) 

can the pedagogical use of the graphing calculator support the high school students’ 

problem solving ability in quadratic inequalities?”, through discussing the processes 

used by the students in applying problem solving strategies in Question 5 of the 

post-test. This question required students to determine the values of 𝑥 for which 

√25 − 𝑥2  will be non-real.  The students applied quadratic inequalities to determine 

the values of x. The students were purposefully chosen because their written work 

represented the different problem solving approaches. A rubric for quadratic 

inequality problem solving test (QIPST) in Appendix H was used to score this 

question. A sample of answers of the three students is shown in Figure 5.3 below. 

    

Figure 5. 3: Students’ answers on problem solving 

Using the rubric QIPST, student PA31 understood the problem and correctly 

identified the strategy of solving the problem but was not able to apply it. She did not 

try hard enough to determine the solution. For that reason, she scored a 2. The 

student used an algebraic approach throughout the entire process of problem 

solving, including finding roots, setting up the inequality and using the correct 

PA31 PA3 
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procedures of removing the squares. Her procedures did not lead her to the correct 

roots.  

Using the rubric QIPST, student SA3 understood the problem and correctly identified 

the strategy of solving the problem. He was able to apply the strategy but the 

solution set was incorrect due to misconceptions. He did not try hard enough to 

reflect on his solution. In that reason, he scored a 3. The student used an algebraic 

approach throughout the entire process of problem solving, including setting up the 

inequality and finding roots. He was able to identify the difference of squares as the 

correct procedure of determining the roots. A line graph was correctly drawn by the 

student to illustrate his wrong solution. His mistake, however, was not in 

understanding of the problem but in an inaccurate application of the quadratic 

inequalities. 

 

Figure 5. 4: Student’s answer on problem solving 

Using the rubric QIPST, student SA26 understood the problem and appropriately 

applied the strategy of solving the problem. This means an inequality was correctly 

constructed and appropriate solutions arrived at using the correct procedures.  She 

tried hard to reflect on her solution by checking its reasonableness. In that regard, 

she scored a 5. The student used both graphical and algebraic approaches to help 

solve the problem. The algebraic approach seemed to be the most useful in setting 

up the inequality and finding the critical values by using the difference of squares 

procedure. A graphical approach also helped her to solve the problem by correctly 

sketching the graph and indicating the zeros of the function. The student 

appropriately understood the effect of the negative parameter ‘a’ in the quadratic 

function. She used the graph to determine more than one interval that would be 

needed to solve this application problem and realised that one of these intervals was 

positive and one was negative. The teacher-researcher cautiously concluded that the 
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GC use supported the students’ performance and problem solving strategies. This is 

aligned with the ideas of the level principle of RME theory as designing and 

sequencing of the instructional materials were structured using the levels of 

mathematical reasoning and problem solving.     

5.5.2  Student’s perceptions of how GC use supported the quadratic inequality 
problem solving abilities 

This section intended to answer the second research sub-question on how the 

students perceived about the use of the GC towards supporting their problem solving 

abilities of quadratic inequalities. Student perceptions were measured using a Likert 

scale in which students marked 1 if they strongly disagreed, 2 if they disagreed, 3 if 

they were not sure, 4 if they agreed, and 5 if they strongly agreed. Students’ 

responses were captured in Table 5.5 below.  

Table 5. 5: Students’ results of how GC use supports problem solving 

In Table 5.5, sixty-three percent of the students agreed or strongly agreed that the 

GC use enabled them to interpret the quadratic inequality problems. However, there 

were 7 of the 35 students (20%) who were not sure. Twenty seven students (77%) 

affirmed that the GC use guided them to sketch the graphs for solving quadratic 

inequalities. Sixty six percent of the students agreed or strongly agreed that the GC 

use developed them to use correct methods and procedures in solving quadratic 

inequalities. Seventy one percent of the students felt that the GC use allowed them 

to check for errors, mistakes and correctness of their solutions. Of those students 

who were not sure in their decisions, the researcher suggested that they needed an 

expanded opportunity with the use of the GC on how to solve quadratic inequalities. 

The researcher therefore cautiously concluded that the majority of the students 

perceived that the use of the GC supported them in problem solving of quadratic 

Students’ perception of how GC use supports 
problem solving 

SD 
% 

D 
% 

NS 
% 

A 
% 

SA 
% 

GC use enabled me to interpret the problem of 
quadratic inequality 

6 11 20 46 17 

GC use guided me to sketch the graphs for 
solving quadratic inequalities 

3 6 14 46 31 

 GC use helped me to use correct methods and 
procedures to solve quadratic inequalities 

9 9 17 40 25 

 GC use allowed me to check for mistakes and 
correctness of my quadratic inequality solutions  

6 9 14 48 23 

Key: SD-Strongly Disagree; D-Disagree; NS-Not Sure; A-Agree; SA-Strongly Agree 
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inequalities as all the Polya’s four-steps of problem-solving processes had high 

percentages.  

The teacher-researcher observed that the students actively participated in solving 

quadratic inequalities. Students were able to construct meaning of solving quadratic 

inequalities with the use of GC as they worked with these tools and further explored 

ways to use the tools. Students became familiar with the tools after working with 

them and were used to help solve problems. This means students used the graphing 

calculator to see the connections between a solution and meaning of solution in 

terms of the graph (White-Clark et al., 2008; Amineh & Asl, 2015). In this case, the 

GC was used for exploration, an idea more consistent with cognitive constructivism. 

This is consistent with the Vygotsky’s theory of socio-cultural learning where the GC 

was used as mediator to develop cognitive understanding.                                       

5.6 Students’ results from the focus group interviews  

This section described the qualitative results of students’ focus group interviews on 

both problem-solving (Section 5.6.1) and reasoning (Section 5.6.2). A question was 

selected from the post-test for critically exploring the students’ problem-solving 

abilities and students’ reasoning skills in quadratic inequalities. Students were 

expected to use the graphing calculator only to verify the reasonableness of their 

solutions. According to Lunenberg (1998), learning in a constructivist manner 

involves asking students to analyse a problem, interpret results, classify terms or 

concepts, and to make predictions. These cognitive activities are strongly connected 

to the processes of students’ understanding.  

A sample of three students was selected from School A for focus group interviews. 

There were two female students (AF1 and AF3) and one male student (AF2). The 

interviews took place in their math classroom on a regular school day after school 

hours. Three students who obtained marks below average, average and above 

average in the post-test were purposefully selected to participate in the focus group 

interviews. The participants were asked to solve a contextual quadratic inequality 

problem that was in the post-test and were also asked several questions relating to 

the reasoning processes involved in solving that problem. The students were asked 

to explain their thoughts throughout the interviews in order to understand their 

thinking processes. Throughout the interview, participants were observed how they 
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used algebraic approaches and, sketches and graphs in their thinking processes 

through the problem. At the end of the interviews they submitted their interview 

scripts to further analyse how they reasoned their way throughout this problem. Each 

interview lasted for approximately thirty minutes. The interviews were audio recorded 

and then transcribed.   

5.6.1. Students’ results of the focus group interview on problem solving  

This section attempted to address the second research question of the study: 

In what ways can the pedagogical uses of the GC enhance students’ 

problem solving abilities when solving quadratic inequalities?  

The selected students were presented with a contextual problem that they first saw 

in the post-test. The problem stated, “A small manufacturer’s weekly profit is given 

by 𝑃(𝑥) = − 2𝑥2 + 220𝑥, in which 𝑥 is the number of items manufactured and sold. 

Find the number of items that must be manufactured and sold if the profit is to be 

greater than or equal to R6000”. The students were given ten minutes preparation 

time to read, formulate and solve the problem. They were supposed to explain their 

thinking processes clearly and not to erase their working.  In this case, students 

answered questions 1.6 and 1.7 (Appendix D) which were central to solving the 

contextual quadratic inequality problem.  

The codes used in the interviews are: TR for the teacher-researcher and AF for the 

focus group students from School A. Student participants were interviewed as a 

group and their responses were presented and transcribed below:  

TR: (The teacher-researcher handed out the problem to the students). Please read 

this problem attentively and then formulate the required mathematical statement. 

Students AF1:       6000 ≤ − 2𝑥2 + 220𝑥 

Students AF2:       6000 ≥ − 2𝑥2 + 220𝑥 

Students AF3:     − 2𝑥2 + 220𝑥 ≥ 6000 

 

TR:         And then solve it without the use of the GC, showing all the necessary 

working. Please do not erase any step you have written. 

 

Students (AF1, AF2 & AF3): After ten minutes the students handed in their scripts for 

marking.  
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Interpretation of the individual students’ interview results 

Students’ attempts are shown below and were analysed in order to determine 

whether the use of graphing calculator had enhanced their problem solving 

competencies at School A:  

Student AF1 was able to formulate the required quadratic inequality from the 

contextual problem as   6000 ≤ − 2𝑥2 + 220𝑥. She used an algebraic approach that 

is a quadratic formula throughout the entire process of problem solving; including 

finding the critical values (see Figure 5.5). Despite the fact that she was not 

supposed to erase any attempt, she went on to cancel the work with inequality as 

faintly seen on top left of her script. This student seemed to confuse the two 

concepts of equation and inequality, although she knew that the algebraic statement 

formed was a quadratic inequality. This shows a lack of true understanding by this 

student. 

 

Figure 5. 5: Student AF1’s solution 

Throughout the process, she did not question her results. After finding the x-values, 

the student did not try another approach.  However, at the end of the problem when 

she was asked to verify her solution using the GC, she realized that the solution was 

incorrect. She pointed out that, “I think, I am definitely wrong because it should not 

be zero. This means the profit is zero” Her mistake, however, was not in 

understanding but in confusing the equations and inequalities. The student, then, 

confused the topics of quadratic inequality and equation in solving this problem. 

Student AF2 was not able to model the required quadratic inequality from the 

contextual problem: 6000 ≥ − 2𝑥2 + 220𝑥. He mistakenly wrote the wrong inequality 
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sign, pointing in the opposite direction. He also used both the algebraic and 

graphical approaches; however, the algebraic approach (quadratic formula) seemed 

to be the most useful in helping him to solve the quadratic inequality. After writing the 

inequality in standard form, the student started graphing the function on the paper 

and then sketched the region representing the solution. Unfortunately, he did not 

indicate on his submitted script the required region; see Figure 5.6 below. 

 

Figure 5. 6: Student AF2’s solution 

In addition, the student was not able to write a correct solution set of the quadratic 

inequality. Interestingly, the student was able to graph the correct shape for the 

function given and he correctly set up the x-intercepts (i.e., the critical values).  

Throughout solving the contextual problem, he did not question his manipulative 

skills. This means the student did not try other approaches to validate the 

determined solution.  However, at the end of the problem when he was asked to 

verify his solution using the GC, he discovered that the solution was incorrect. His 

problem was partial misunderstanding as he wrote an incorrect inequality sign.  

Student AF3 correctly formulated the required inequality from the contextual 

problem. She used a graphical approach to pave the way for the solution of the 

problem. She started the problem by sketching the graph of the function onto her 

script. After looking at the graph, she indicated the region that had the solution of the 

quadratic inequality. She then switched to an algebraic approach, which is factoring, 

to find the zeros of the function; see Figure 5.7, below.             
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Figure 5. 7: Student AF3’s solution 

She made observations throughout when solving this problem and moved freely 

between algebraic approach and graphical approach, thus switching back and forth 

from the two approaches. This helped her to reflect on the strategies used to solve 

the contextual problem correctly. She verified her solution using the values of x and 

then found that her solution was justified. Consequently, student AF3 wrote the 

correct interval notation for the solution. Her solution was also verified using the 

graphing calculator.   

Comments on the students’ problem solving abilities 

The three students had different levels of proficiency in relation to problem solving 

processes. For that reason, the students’ problem solving processes were scored in 

terms of a) forming an inequality, b) using algebraic approach, c) using graphical 

approach, d) using the graphing calculator for verifying solution and e) obtaining a 

correct solution set. The scoring ranged from 0 to 5. A 5 represented the highest 

score of executing all the listed steps correctly. The use of an algebraic approach is 

mandatory in the CAPS curriculum and should be complemented with the use of the 

graphical approach. In this regard, Student AF1, an average learner scored a 3 as 

he did not use the graphical approach and failed to write the solution set correctly. 

Student AF2, a below average learner scored a 2 as he did not form a correct 

inequality, did not sketch the graph and did not write correctly the solution set. 

Student AF3, an above average learner scored a 5 for performing all the steps 

correctly. This means that Student AF3 used all relevant information to solve the 

problem and was able to translate the problem into appropriate mathematical 

language. Based on these results, the teacher-researcher concluded that the use of 
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GC supported the students’ problem solving abilities of the quadratic inequalities. 

This is consistent with the findings by the earlier researchers (e.g., Spinato, 2011; 

Karadeniz, 2015; Idris, 2009).    

5.6.2 Students’ results of the focus group interviews on reasoning   

This section addresses the third research question:  

How does the pedagogical use of the GC support students’ reasoning 

abilities when solving quadratic inequalities?  

The qualitative results of the focus group interviews with students on their reasoning 

abilities in the contextual quadratic inequality problems were analysed and described 

in this section. In order to successfully examine the students’ reasoning (using 

evidence to draw conclusions) in solving the contextual quadratic inequality problem, 

student participants of School A were asked questions during the focus group 

interviews relating to analysing a problem (Questions 1.1 & 1.3), initiating a strategy 

(Questions 1.4 & 1.5) and reflecting on one’s solution (Questions 1.7 and 1.9). See 

Appendix D for more details about these interview items. Participants were also 

observed throughout the process of solving the problem in order to assess how they 

monitor their progress and how they seek and use connections of concepts.  In this 

context, the three students who participated in the focus group interviews on 

problem-solving were further assessed their reasoning abilities at School A.  

5.6.2.1 Students’ results from focus group interview on analytical reasoning 

The first reasoning question (Q1.1) of the focus group interviews required the 

students to identify the main concept involved in the contextual problem. The 

teacher-researcher observed that all the three students were able to identify the 

main concept involved as quadratic inequality. The second question (Q1.2) wanted 

students to analyse the problem whether there were any other concepts used in the 

problem.  

TR:        Are there any other mathematical concepts or relationships between   

concepts that are used in this problem? 

Student AF1: Yes, quadratic equations and inequalities 

Student AF2: Yes, quadratic equations and graphs. 
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Student AF3: Yes, quadratic equations, quadratic graphs and domains 

All the students were able to list at least two mathematical concepts that were used 

in solving the problem. However, Student AF1 did not include graphs in her list; 

therefore this even affected her in solving the contextual problem (see Figure 5.6, 

above). Students AF2 and AF3 were aware that in order to understand quadratic 

inequalities they needed the background of the quadratic equations, graphs and 

domain of the function.  

The next reasoning question (Q1.3) requested the students to draw conclusions from 

their solutions of the contextual problem. In that regard, the students drew the 

following conclusions about their solutions.  

TR:             Is there any relevant conclusion that you can make about the solution to 

the problem? If so, what can you say? 

Student AF1: Yes. I think I can say the values of x should be two and both positive. 

These values must give us profit greater than zero.  

Student AF2: No. But I think the solution of the problem should be the values of x 

because they represent the number of items sold. 

Student AF3:  Yes. Looking from the graph I have sketched, I assumed that there will 

be more than one solution and the solution should be between the 

critical values in order to have a profit of more than R6000.  

Interpretation of the students’ responses 

All the three students were able to state at least one reasonable conclusion. Student 

AF1’s conclusion- “that the solutions would be two and positive”, affected the way 

she determined the solution of the quadratic inequality (see Figure 5.6, above). 

Student AF2 attempted to provide a valid conclusion but he contradicted himself. 

This suggests that this student lacked confidence in contextual problems. Student 

AF3 made two analytical conclusions by stating that “there would be more than one 

solution and the solution would be between the critical values.” The use of graphical 

approach assisted this student to locate the wanted region of the inequality solution. 

This means student AF3 knew that the region of the quadratic inequality solution in 

the graph becomes the solution of the problem. The teacher-researcher observed 

that student AF3 possessed a strong analytical reasoning which is a pre-requisite for 

understanding inequalities. On the other hand, student AF2 had a weak analysis and 

this even affected him to write the solution of the inequality correctly. This is linked 
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up with the ideas on the theory of instrumental genesis which include the usage 

schemes and instrumented action schemes.  

5.6.2.2 Students’ results from focus group interview on initiative reasoning  

In this area of reasoning- Initiating a Strategy, students were assessed on how they 

purposefully selected the appropriate concepts, representations and procedures 

when solving the contextual problem. The first reasoning question (Q1.4) of the 

focus group interview required the students to identify the approaches which were 

most helpful to solve the contextual problem. The following is how the students 

responded: 

TR:            Which approaches do you think were most helpful in solving this problem- 

algebraic and/or graphic? 

Student AF1: I think a quadratic formula helped me most to solve the problem.  

Student AF2: To me they were two approaches, quadratic formula and graphic, that 

seemed to be helpful to solve the problem. 

Student AF3: Algebraic (factorisation) and graphic approaches were the most helpful 

to solve the problem. 

TR:           Briefly explain why you selected these approaches. 

Student AF1: I used this quadratic formula approach because I am comfortable with 

it. I normally get the values of x correctly when I use the quadratic 

formula.  

Student AF2: I used first the quadratic formula approach so that I get the critical 

values correctly and then I used graphical approach for determining the 

shape of the graph.  

Student AF3: I used factorisation because it saves time. After getting the values of x, 

I used them to draw the graph representing the inequality in order to 

indicate the portion of the solution.  

Interpretation of the students’ responses 

All the students were able to state and explain the approaches or representations 

that they executed to solve the contextual quadratic inequality problem. The 

approaches used by the students were almost similar but differed in the way they 

were used. Student AF1 correctly responded that she used the algebraic approach-

quadratic formula to solve the problem. She used algebraic approach only to find the 

critical values and did not make any attempt of using another approach (cf: Figure 

5.5). Student AF2 responded correctly that he used two approaches- algebraic and 

graphic to solve the problem. However, the algebraic approach, quadratic formula, 
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dominated throughout the process of solving the problem. His graphical sketch 

lacked some details although it was related to his modelled inequality (cf: Figure 

5.6). Student AF3 also responded correctly that she used two approaches- algebraic 

and graphic to solve the problem. However, the graphical approach seemed to be 

the most useful in helping her to solve the problem. The teacher-researcher 

observed that the student began the problem by sketching the graph representing 

the function and then went on to indicate the portion where the solution lied. The 

graph drawn by the student was correct in shape. The algebraic approach- 

factorisation was only used to determine the zeros of the function which were later 

on indicated on the graph for the decision. The consistent use of two strategies 

earned her good results (cf: Figure 5.7). This means student AF3 initiated the correct 

strategies for solving the contextual problem. Therefore, she had a strong initiative 

reasoning ability of solving quadratic inequalities. This may suggest that the graphing 

calculator was a resource of information for students to develop solution strategies of 

the problem. The use of the GC allowed students to focus on strategies and 

interpretations of answers. Students were provided with immediate and accurate 

feedbacks and this contributed towards developing their strategies. This means 

students received reliable information about the use of graphs to solve quadratic 

inequalities.  

The next reasoning question 1.5 of the focus group interview required students to 

explain how the use of the graphical approach helped them solve the quadratic 

inequality. The responses of the students were: 

TR:         Explain how helpful the use of graphical approach was in solving the 
contextual problem. 

Student AF1: The graph was helpful because with a graph I can tell whether the 
solution lies inside or outside the critical values. 

Student AF2: The graphical approach helps to interpret the inequality in the form of a 
graph. A graph shows the critical values as the x-intercepts and the 
required region of the inequality defined by the inequality sign.  

Student AF3: After seeing the shape of the graph, I indicated the x-intercepts which 
are critical values and these determine the required region of inequality. 
The inequality sign tells me where the solution lies on the graph. 

Interpretation of the students’ responses 

The responses given by the students were similar and demonstrated that they 

understood the role of the graphical sketches when solving quadratic inequalities. 
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The use of GC provided students with visual representation of quadratic inequality 

solutions in the form of graphs and this might have influenced them to use graphs 

too. In fact this was the main purpose of using the GC as an instructional tool. 

However, the explanation given by Student AF1 lacked specificity. The same student 

did not sketch the graph to aid him and his critical values were given as the solution 

of the inequality (cf: Figure 5.5). This means she had a weak initiated reasoning 

strategy. This is consistent with the level principle of the RME theory where students 

use models, graphs and diagrams to solve quadratic inequalities. 

5.6.2.3 Students’ results from focus group interview on reflective reasoning  

In this area of reasoning- reflecting on one’s solution, students were assessed on 

how they interpreted their solutions (Q1.6), justified the reasonableness of their 

solutions (Q1.7), and how they considered alternative ways of solving problems 

(Q1.9).  The questions intended to make students reflect on their solutions of the 

contextual quadratic inequality problem. 

The following reasoning questions (Q1.6 & Q1.7) were asked to find out how the 

students interpreted and justified their solutions of the contextual problem. The 

following is how the students responded: 

TR:           With the values of x that you have obtained, do you think you have solved 

this problem completely and correctly? Justify your reasoning. 

Student AF1: I believe my answer is complete and reasonable.  

Student AF2: No. (Scratching his head …), I am struggling to complete the problem. 

Student AF3: Yes, there are correct.  

TR:            Can you justify why you say your answer is reasonable?  

Student AF1: Because when I substitute my values of x, it gives me a zero. But this 

means there were no profits made. (She reasoned …) I think my 

solution is wrong.  

Student AF2: My values of x give me negative profits, which are less than zero. I now 

doubt my solution because there won’t be any profit. 

Student AF3: Because when I used my values of x within the interval, the answer is   

more than 6000. This is reasonable to me. 

 

Interpretation of the students’ responses 

All the three students were able to decide whether their solutions were reasonable 

and justified their decisions. Student AF1, who ended after finding the critical values, 
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realised that the answer was not reasonable. She stated, “No, because when I 

substitute my values of x, it gives me a zero, which means there were no profits 

made.” This means that she realised that there should be some profits for the items 

sold. Student AF2 also realised that his solution was unreasonable and was giving 

him “negative” profits. This was different with Student AF3 as her solution was 

complete and reasonable. She was able to provide plausible reasons. Her values of 

x taken from within the solution set provided the profits which were more than 6000. 

This student was helped by the use of the GC to combine both algebraic and graphic 

strategies. In this sense, student AF3 was able to reflect on her own solution 

effectively and this suggests that she displayed strong reflective or metacognitive 

reasoning skills in respect of this item. This is in line with the interactivity principle 

which encourages the reflective thinking and also supports the socio-cultural learning 

theory. 

The next reasoning question (Q1.9) of the focused group interview addressed the 

issue of the reasonableness of the students’ solutions using an alternative way. In 

this context, students were asked, “When using the graphing calculator, do you still 

get the same solution?” Responses of the students to this question were almost 

similar as students expected their solutions to be reasonably correct. This is the time 

when students were allowed to use the GC to verify the correctness of their 

solutions. The students punched the inequality into the graphing calculator to 

validate their solutions. They used the graphic feature of the GC which validated and 

interpreted their solution graphically. Students AF1 and AF2 found that they had 

different solutions and were incorrect. Student AF1 responded, “I have realised that I 

did not complete finding the solution of the problem because I left my answer at the 

critical values.” Student AF2, on the other hand, indicated that his solution was 

outside the required region. Student AF3 noted that her solution found earlier using 

the pencil and paper methods was reasonable and correct. This means she was very 

correct to state that a profit greater than 6000 was within the critical values of the 

graph. It is evident that the use of the GC did not develop the students’ reflective 

reasoning completely. This suggests that in the next cycle the emphasis of the 

teacher-researcher has to focus on the development of students’ metacognitive 

reasoning skills.  
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5.6.2.4 Students’ results of the observed monitoring progress  

This section described the students’ reasoning skills as they were observed solving 

the contextual quadratic inequality problem during the focus group interviews. The 

observation mainly focused on how the students monitored their progress. This 

section sought answers for the third research sub-question. Students were observed 

on how they reviewed and/or modified their selected strategies in particular when 

they encountered difficulties. The observed results of the three purposefully selected 

students were as follows: 

Student AF1 converted the problem into right quadratic inequality and correct 

procedure (algebraic) was followed through. However, she did not reference any 

method of graphing to solve the problem. She only ended at finding the solution of 

the equation and did not realize her mistakes. This means she did not make 

adequate attempt to monitor her progress; thus why she did not realise the 

incompleteness of her solutions. Her low level of self-monitoring affected her to 

attempt other avenues or make any reasonable assumptions that could lead her to 

review her selected strategy. Throughout solving the problem the student relied on 

using quadratic formula. When the teacher-researcher asked her to use the GC to 

solve the problem she was able to visualise the correct solution displayed on the GC.  

Student AF2 converted the problem into a quadratic inequality but with wrong 

inequality sign and correct procedure (algebraic) was followed through. He used 

mainly algebraic (symbolic) representations and did not use a graph at the beginning 

of the problem. He seemed to get confused when he realised that he needed to write 

down the solution of the inequality. An attempt of another approach was made as he 

struggled to sketch the graph, which was left incomplete (cf: Figure 5.6). This means 

when he found the x-intercepts correctly, these did not match the sketched graph. 

Even though he did monitor his progress, he did not verify his assumptions correctly. 

When the teacher-researcher asked him to verify his solutions with graph produced 

by the graphing calculator, he realised that the solutions were incorrect.  

Student AF3 used two different approaches- algebraic and graphic, to solve the 

quadratic inequality. A look at the graph of this quadratic function assisted in the 

monitoring of her progress in the reasoning process. However, she did not rely on 

one reasoning procedure as she kept on switching from the algebraic to graphical 
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approaches and vice versa. The graph seemed to be very beneficial in the reasoning 

processes used by this student. Throughout her problem solving process, she 

continued monitoring her progress and verifying her assumptions. The teacher-

researcher observed that every move that she could take, she questioned it. She 

was also able to use the GC to confirm the shape of the graph, find the zeros of the 

function, make assumptions and verify her solutions found using the pencil and 

paper methods. It is evident that the use of the GC supported the students’ 

reasoning domain of monitoring progress as they solved quadratic inequalities.  

5.6.2.5 Students’ results of the observed seeking and using connections 

In this area of reasoning- seeking and using connections, students were observed on 

how they sought and used connections of different concepts, contexts and 

representations when solving the contextual quadratic inequalities. This is also about 

when the students make references to mathematical concepts used earlier in the 

topic of quadratic inequalities, in other mathematics areas, or in any other subject 

areas. In this context, the findings were as follows: 

Student AF1 was only able to make connections between the solution of quadratic 

equation and the quadratic inequality (cf: Figure 5.5). However, she did not use this 

relationship to determine the solution of the inequality. Student AF2 made a similar 

connection but further used the critical values to determine the solution of the 

quadratic inequality in interval notations (cf: Figure 5.6). Student AF3 was able to 

seek and use connections between concepts and representations when solving the 

quadratic inequality. She made links between the algebraic (symbolic) and graphic 

representations when she attempted to solve the contextual quadratic inequality 

problem (cf: Figure 5.7).  In this case, she used quadratic graphing (geometry) and 

solving quadratic equations (algebra) both as viable ways to find a quadratic 

inequality solution. The student realised that the solution of the equation (x-values) 

was the x-intercepts of the graph which determine the solution of quadratic 

inequality. This suggests that the algebraic reasoning (i.e., algebraic symbols and 

functions) has helped student AF3 to use the connections effectively in solving 

quadratic inequalities. This means that the GC use supported students’ reasoning 

domain of the using connections and this findings are in accordance of the 

intertwinement principle of the RME theory. 
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The teacher-researcher cautiously concluded that the GC use supported the 

students’ reasoning skills in learning quadratic inequalities and this conclusion is 

linked up with the findings made by the earlier researchers (e.g., Spinato, 2011; 

Karadeniz, 2015; Idris, 2009; Armah & Osafo-Apeanti, 2012). This further indicates 

the potentiality of the GC use as a mediated tool in developing critical reasoning as 

aligned to the ideas of the Vygotsky’s ZPD theory. This is consistent with the theory 

of instrumental approach for instrumented action schemes.  

5.6.3 Student’s perceptions of how GC enhanced reasoning skills 

This section intended to answer the third research sub-question on how the students 

perceived the use of the GC towards enhancing their reasoning abilities in learning 

quadratic inequalities. Student perceptions were measured using a Likert scale in 

which students marked 1 if they strongly disagreed, 2 if they disagreed, 3 if they 

were not sure, 4 if they agreed, and 5 if they strongly agreed. Students’ responses 

were captured in Table 5.6 below.  

Table 5. 6: Student’s perceptions on how GC use enhanced reasoning 

Student’s perceptions on how GC use 
enhanced reasoning 

SD D NS A SA 

The graphing calculator helped me to analyse 
adequately the quadratic inequality problems 

6 9 17 40 28 

The graphing calculator enabled me to use 
many approaches when solving quadratic 
inequalities 

3 9 14 46 28 

The graphing calculator assisted me check my 
progress when solving quadratic inequalities 

3 11 23 34 29 

The graphing calculator helped me to use other 
concepts to solve quadratic inequalities 

9 6 17 46 22 

The graphing calculator allowed me to think 
more about my quadratic inequality solutions  

6 3 23 51 17 

Key: SD-Strongly Disagree; D-Disagree; NS-Not Sure; A-Agree; SA-Strongly Agree 

In Table 5.6, 69% of the students agreed or strongly agreed that the use of the GC 

helped them to analyse correctly the quadratic inequality questions. Only 26% of the 

students, including those who were not sure, denied that the GC enabled them to 

use new strategies when solving inequalities. Twenty two of the students (63%) 

agreed or strongly agreed that the GC assisted them monitor or check their progress 

when solving inequalities. A large proportion of the students (69%) affirmed that the 

graphing calculator guided them to use other mathematical concepts to solve 

inequalities. Only three students (8.6%) denied that the GC helped them to think or 
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reason more about their inequality solutions. This implies that the majority of 

students (69%) felt that the GC allowed them to evaluate the reasonableness of their 

solutions. Based on these results, the researcher partially concluded that the 

majority of the students felt that the use of the GC supported them in reasoning skills 

of solving quadratic inequalities. 

5.7 Results of students’ responses in the pre-and post-surveys 

5.7.1 Comparative results of students’ responses in the pre-and post-surveys 

This section intended to answer the fourth sub-question by comparing the results of 

the pre- and post- surveys means on how the students perceived about the GC use 

in learning quadratic inequalities.  

What perceptions do students have on the pedagogical use of the 

graphing calculators in learning quadratic inequalities? 

The post-survey intended to gather the perceptions of the students on whether the 

use of GC in learning quadratic inequalities assisted them to understand the topic. 

The positive changes of students’ perceptions would be attributable to the effective 

intervention of the GC use as an artefact in learning quadratic inequalities. The 

eleven items of the pre-survey were similar to the ones on the post-intervention 

survey to see if students changed their perceptions on how they learned quadratic 

inequalities after GC intervention as an instructional tool. Students’ responses were 

biased towards the understanding of and lessening the difficulties of learning 

quadratic inequalities. In this context, an increased confidence in their ability to 

understand and learn quadratic inequalities is measured by students’ option of 

“disagree” or “strongly disagree” and increased mean. A comparison of the students’ 

perceptions is given in Table 5.7 below, where 𝑀0=post-survey and 𝑀𝑅=pre-survey 

mean.     
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Table 5. 7: Results of students’ pre- and post- intervention surveys (n=35) 

    
ITEM 

 1 = Strongly Agree, 2 = Agree, 3=Not Sure,  
4 = Disagree, and 5 = Strongly Disagree                             

Pre-survey Post-survey 

𝑴𝑹 SD 𝑴𝑶 SD  

SPQI 
1 

Quadratic inequalities are difficult to learn and understand  2.66 1.11 3.37 1.09 

SPQI 
2 

I do not see the difference between the equation and 
inequality 

2.69 1.30 3.69 1.37 

SPQI 
3 

It’s difficult to determine the solution sets of quadratic 
inequalities after finding the critical values.  

2.49 1.01 3.60 1.31 

SPQI 
4 

I have difficulties with determining factors of quadratic 
expressions (inequalities)  

3.31 1.16 3.37 1.21 

SPQI 
5 

I don’t know the difference between critical values and x-
intercepts of the graphs 

2.43 1.12 3.87 1.11 

SPQI 
6 

In order to understand the quadratic inequality topic I 
usually memorise it  

2.71 1.25 4.20 2.20 

SPQI 
7 

Of all the topics I have done so far I don’t enjoy learning 
quadratic inequalities 

2.57 1.29 3.60 1.09 

SPQI 
8 

It’s difficult to use graphical sketches to determine the 
solutions of quadratic inequalities 

2.57 1.17 3.71 1.15 

SPQI 
9 

Given an opportunity of not to learn quadratic inequalities I 
was going to do so 

2.60 1.17 3.34 1.24 

SPQI 
10 

Technology (e.g., computers) cannot help me to understand 
quadratic inequalities 

2.49 1.17 3.57 1.29 

The results of the first question in the Table 6.7 above show that students had 

difficulties in learning quadratic inequalities traditionally. This is reflected in the post-

survey mean greater than the pre-test survey mean (𝑀0=3.37>𝑀𝑅=2.66). It was 

noted that students did not see the difference between the quadratic equations and 

inequalities with a pre- survey mean less than the post-survey mean (𝑀𝑅=2.69< 

𝑀𝑂=3.69). Thirdly students felt that it was difficult to determine the solution sets of 

the quadratic inequalities after they had calculated the critical values when 

conventionally taught. This is reflected in the post-survey mean greater than the pre-

test survey mean (𝑀0=3.60>𝑀𝑅=2.49).  

Fourthly some students felt that they had difficulties in factoring quadratic 

expressions. However there was no much difference in the means of the pre- and 

post- surveys (𝑀0=3.37>𝑀𝑅=3.31). Fifthly the students felt that they did not know the 

difference between critical values and x-intercepts of the graphs using traditional 

methods. This is shown by the pre-survey mean less that the post-survey mean 

(𝑀𝑅=2.43<𝑀𝑂=3.87). Sixthly students felt that they usually memorise the procedures 

of solving quadratic inequalities in order to understand the topic when learning 

traditionally. The pre-survey mean is less than the post-survey mean 

(𝑀𝑅=2.71<𝑀𝑂=4.20), explaining that students learned quadratic inequalities through 

memorisation. In the seventh question, students felts that they had difficulties in 

using the graphical sketches to determine the solution sets of quadratic inequalities 
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when traditionally taught. This is reflected by the post-survey mean (𝑀𝑂 = 3.71) that 

is greater than the pre-survey mean (𝑀𝑅=2.57).   

Eighthly students felt that they did not enjoy learning quadratic inequalities when 

traditionally taught. The results revealed that the pre-survey mean was less than the 

post-survey mean (e.g., 𝑀𝑅=2.57 and𝑀𝑂 = 3.60). In the next question, students felt 

that if they had an option, they were not going to learn quadratic inequalities. The 

results revealed that the pre-survey mean was less than the post-survey mean (e.g., 

𝑀𝑅=2.60<𝑀𝑂 = 3.34). Lastly students felt that the use of technology (e.g., 

computers) could not help them to understand quadratic inequalities. The results 

shows that the post-survey mean was bigger that the pre-survey mean (e.g., 

𝑀𝑅=2.49<𝑀𝑂 = 3.57), thus accepting its importance in learning quadratic inequalities 

after having used the GC.  

Generally, the results from the Table 5.7 show that the use of the GC brought new 

development on the students’ perceptions towards the learning of quadratic 

inequalities. This was supported by the post-survey means that were greater than 

the pre-survey means of all the items.  The overall student responses showed that 

the use of the GC supported the students’ learning of quadratic inequalities. Initially 

students indicated that given an option of not learning quadratic inequalities they 

were going to do so because they were neither enjoying nor understanding the topic. 

This is consistent with the findings revealed by the earlier researchers who indicated 

that the use of the GC would develop visual images which can help students to 

construct their understanding (Spinato, 2011; Karadeniz, 2015). In addition, the GC 

use provided students with a more meaningful interpretation for the solution (Doerr & 

Zangor, 2000). Other researchers have criticised rote learning as it leads to surface 

level understanding and makes students experience challenges in solving problems 

(McTighe & Self, 2003; Snyder & Snyder, 2008). The use of the GC boosted 

students’ understanding of algebraic concepts i.e., quadratic inequalities in order to 

minimize the use of algorithms and memorization (Knuth, 2000). 

5.7.2 Student’s perceptions on how the GC supported the learning sessions  

This section intended to answer the fourth research sub-question by analysing the 

results of students’ responses on how they perceived about the GC use in the 

designed sessions of learning quadratic inequalities.  
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What perceptions do students have on the pedagogical use of the 

graphing calculators in learning quadratic inequalities? 

In that context students were issued with an eight item post-intervention survey to 

answer. Student perceptions were measured using a Likert scale in which students 

marked 1 if they strongly disagreed, 2 if they disagreed, 3 if they were not sure, 4 if 

they agreed, and 5 if they strongly agreed. Students’ responses were captured in 

Table 5.8 below.  

Table 5. 8: Student’s perceptions on how the GC supported the sessions 
 
ITEM 

Students’ perceptions of the effects of the graphing 
calculator sessions on  learning quadratic inequalities                                    

SA 
(%) 

A 
 (%) 

N  
(%) 

D 
(%) 

SD 
(%) 

SPGC 1 The use of the GC in learning sessions assisted me to solve 
symbolic (algebraic) quadratic inequalities  

14 55 11 11 9 

SPGC 2 The use of the GC in learning sessions assisted me to 
understand the difference between critical values and zeros 
of the graph 

26 40 14 9 11 

SPGC 3 The use of the GC in learning sessions assisted me to 
identify correctly the region of the inequality solution 

14 52 14 14 6 

SPGC 4 The use of the GC in learning sessions assisted me to 
transform contextual problems into quadratic inequalities  

20 43 20 6 11 

SPGC 5 The use of the GC in learning sessions assisted me to use 
graphical sketches when solving quadratic inequalities  

23 46 17 6 8 

SPGC 6 The use of the GC in learning sessions assisted me to 
understand the effect of the parameter ‘a’ in the quadratic 
inequality 

20 49 17 8 6 

SPGC 7 The use of the GC in learning sessions assisted me to note 
that the effect of the parameter ‘a’ of quadratic function had 
the same effect on quadratic inequality  

23 46 17 8 6 

SPGC 8 The use of the GC in learning sessions assisted me to learn 
and understand much better quadratic inequalities 

25 49 11 9 6 

1 = strongly disagree, 2 = disagree, 3=not sure, 4 = agree, and 5 = strongly agree 

Table 5.8 shows that 69% percent of the students strongly agreed or agreed that the 

use of graphing calculator in learning sessions assisted them to solve symbolic 

(algebraic) quadratic inequalities. Sixty six percent of the students admitted that the 

use of graphing calculator in learning sessions assisted them to see the difference 

between critical values and zeros of the graphs. Students affirmed (strongly agreed 

or agreed) that the use of graphing calculator in learning sessions assisted them to 

use graphs when solving quadratic inequalities (69%) and to identify correctly the 

region of the inequality solution (66%). Sixty three percent of students strongly 

agreed or agreed that the use of graphing calculator in learning sessions assisted 

them to transform contextual (application) problems into quadratic inequalities. 

However 20% of them were not sure whether the use of the GC helped in 

transforming contextual problems. Only 14% percent of the students strongly 

disagreed or disagreed that the use of graphing calculator in learning sessions 
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assisted them to understand the effect of the parameter ‘a’ in the quadratic 

inequality. Seventy four percent of the students strongly agreed or agreed that the 

use of the GC in the designed sessions assisted them to learn and understand the 

topic of quadratic inequalities better. 

The researcher concluded that the use of the GC in the planned sessions helped 

students to understand the quadratic inequalities as they were able to identify 

quadratic inequality with the shapes of the quadratic graphs, to see the effect of the 

parameter “a” on the different graphs, to use the graphs to solve quadratic 

inequalities, to transform contextual problems into symbolic quadratic inequalities 

and to determine the region of the solution. These are considered as the main 

procedures that can lead the students to solve quadratic inequality correctly. The 

results are in line with the roles of the GC identified by the previous researchers 

(Averbeck, 2000; Karadeniz, 2015; Lee & McDougall, 2010). They also perceived 

that the effect of the different parameters were the same for all the quadratic 

functions and inequalities expressed in the form of 𝑎(𝑥 + 𝑝)2 + 𝑞 ≥≤ 0 𝑜𝑟 𝑎𝑥2 + 𝑏𝑥 +

𝑐 ≤≥ 0. The use of the GC created a supportive environment in the sessions (Lee & 

McDougall, 2010) and provided students with a more meaningful interpretation for 

the solution (Doerr & Zangor, 2000). During the sessions students used both 

graphical and graphing calculator approaches which provided them with more 

visualization to meaningfully solve quadratic inequalities (Karadeniz, 2015). The 

consistently use of the GC in their quadratic inequality sessions helped students 

enhance their knowledge and understanding (Lee & McDougall, 2010).  

5.8  Results from the in-depth interviews about graphing calculator use in 
quadratic inequalities  

This section of in-depth interview with students mainly attempted to address the 

fourth research sub-questions about the students’ perceptions on the use of the GC 

in learning quadratic inequalities.  

What perceptions do students have on the pedagogical use of the 

graphing calculators in learning quadratic inequalities? 

An in-depth interview was conducted with the three students who were purposefully 

sampled from those who had obtained marks below average, average and above 

average from the post–test. They were individually interviewed after school on a 
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regular school day in their classroom. Each interviewee lasted for approximately 

thirty minutes. The in-depth interview was recorded and then transcribed. The 

interview consisted of ten questions which were mainly about the use of the GC on 

students’ understanding of quadratic inequalities.  

The codes used in the interview are TR for the teacher-researcher and AD for 

School A student in the in-depth interview (D). They were interviewed separately, but 

for convenience their responses are given together below. The responses of the in-

depth interview questions are discussed in the following sub-sections:   

5.8.1.  Students’ responses to how the use of the GC made their learning of 
quadratic   inequalities easier  

The question asked by the teacher-researcher below sought to find out the students’ 

opinions about whether the use of the GC made their learning of quadratic 

inequalities easier. Students’ responses were almost similar as shown below:  

TR:              Does the use of the GC make your learning of quadratic inequalities 

easier to understand?  Please explain your answer. 

Interview with Student AD1 

Student AD1:  Yes it does. The graphing calculator shows the solutions and the 
graph which makes it simpler for me to understand the inequality. It 
illustrates the graph with the critical values. I don’t have to calculate the 
critical values. 

TR:           Can you please elaborate what you mean, “It illustrates the graph with the 
critical values.” 

Student AD1: The displayed graph on the GC screen has x-intercepts; these x-
intercepts are the critical values, which normally determine the solution 
set of the inequality.  

Interview with Student AD2 

Student AD2: Yes, it is because the GC shows the coordinates and how the graph 
goes. You don’t need long calculations.  

TR:          What do you mean, “the GC shows the coordinates and how the graph 
goes?” 

Student AD2:   Coordinates are the x-intercepts where the graph cuts the x-axis. The 
x-intercepts help to determine the solution of the quadratic inequality. 

TR:            Does it mean you have problems of determining the critical values? 
Student AD2: No, I can use the quadratic formula to find them but in the process you 

can make errors.  
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Interview with Student AD3 

Student AD3: Yes, because it gives us the critical values that we need and shows us 
that the solution on the graph is below or above the x-axis.  

TR:           If the graph is below the x-axis, what happens? 
Student AD3: This means the solution of the inequality is within or outside the graph 

depending on the coefficient of x-squared. 
TR:         Ok. Thank you. 

Interpretation of students’ responses 

Students’ responses were positive and almost similar as they affirmed that their 

learning of quadratic inequalities had been made easier after the use of GC. 

Students did explain that “the x-intercepts and the region of the solutions of the 

quadratic inequality are always shown on the GC.” This means the use of the GC 

enabled the students to see how the quadratic inequality was solved graphically as 

displayed on its screen as shown in Figure 5.8, below.  

 

Figure 5. 8: Solution of the quadratic inequality displayed on the GC 

In this case, the graph tells us the solution set of quadratic inequality is a disjunction 

of 𝑥 = −1 and 𝑥 = 3. The use of the GC, according to students, demonstrates the 

shape of graph with “its x-intercepts which are the critical values” for the inequality. 

This means that through the use of the GC, students were able to visualise the 

graphs with critical values which made it easy to determine the solution of 

inequalities. Students benefitted from the visualisation capabilities of the GC which 

made them understand easily the relationship/connections between the graphs and 

solutions of quadratic inequalities. The visual images of the graphical 

representations contributed to the improved learning of quadratic inequalities as 

shown by reference to ‘shows us if the solution on the graph is below or above the x-

Stellenbosch University https://scholar.sun.ac.za



172 
 

axis’. This is consistent with the level principle where the GC potentially produced 

the visual models, symbols and diagrams to help students to move from informal to 

formal reasoning. The findings by students were in line with the schemes of 

instrumented actions as students used the GC capabilities to produce the schemes. 

However, not all the students made use of the graphical models to illustrate their 

solutions, although they appreciated the graphical meaning on the algebraic solution. 

They apparently could not link the two representations. 

5.8.2 Students’ responses to how the use of the GC helped them to feel comfortable 
with quadratic inequalities  

The question asked by the teacher-researcher below sought to find out the students’ 

opinions about whether the use of the GC helped them feel more comfortable with 

quadratic inequalities. This question is part of in-depth interview which attempts to 

answer the first research question. Students’ responses were almost similar as 

shown below:  

TR:         Does the use of the GC help you to feel more comfortable with quadratic 

inequalities? 

Interview with Student AD1 

Student AD1: Yes, I am comfortable. I used to have fear with quadratic inequalities 

and this topic was always very difficult. I never did well in quadratic inequalities. 

TR: Explain how the use of the GC helped you to minimise this fear. 

Student AD1: The use of the GC helped me to gain confidence in learning quadratic 

inequalities as it use graphs to show the solutions of quadratic 

inequalities. 

Interview with Student AD2 

Student AD2: Yes, I am comfortable and enjoying solving quadratic inequalities after 

the use of the GC.  

TR:               Explain how the use of the GC contributed to your comfortability. 

Student AD2: With the use of the GC, I can check the values of x that I calculated 

using quadratic formula if they are correct. 

Interview with Student AD3 

Student AD3: Yes, it does. I am comfortable with solving quadratic inequalities. 
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TR:             Please explain your answer. 
Student AD3: The GC gives me information that I will always remember. The graphs 

are clearly illustrated and it is easy to interpret the values from the GC. 
This boosts my confidence in learning quadratic inequalities.  

TR:           Ok. Thank you very much. 

Interpretation of students’ responses 

Students’ responses were positive and almost similar as they have expressed 

enjoyment and confidence in the learning of quadratic inequalities with the use of the 

GC. This implies that the use of the graphing calculator provided an enabling 

environment for learning quadratic inequalities. Student AD1 gave an affective 

answer of a reduced fear of the mathematics content of quadratic inequalities and 

expressed relief that she has now managed to pass the topic which makes her more 

comfortable. Student AD2 affirmed that GC use made him not only more 

‘comfortable’ with the topic but also ‘enjoys’ it. Student AD3 affirms that GC use 

‘boosted’ her confidence and made her ‘comfortable with’ the topic because the use 

of GC ‘gives … information’ she will ‘always remember’. When you can always 

remember that means your confidence is high in that concept. Using the GC fostered 

the development of the targeted mathematical domain. For example, the GC has 

stimulated the use of graphical sketches as objects/models that could help students 

to determine the solutions of quadratic inequalities. Student AD3 emphasised that 

the ‘clearly illustrated’ graphical sketches helped to ‘interpret’ the solutions of the 

quadratic inequalities (see Figure 6.12). This means the use of the GC motivated 

students’ learning of inequalities and students were able to construct the conceptual 

knowledge. These findings link up well with the ideas on the theory of instrumental 

genesis: schemes of the instrumented actions. 

5.8.3 Students’ responses to whether the GC should be used in learning quadratic 
inequalities  

The question sought students’ opinions on whether the GC should be used in 

learning quadratic inequalities or not. The students’ opinions were positive and quite 

similar as shown below:  

TR:            Should graphing calculators be used in learning quadratic inequalities at 

the eleventh grade?  

Student AD1:  Yes, students should use the GC when they learn quadratic 

inequalities. It should always be supported by the teacher’s voice.  
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TR:          Does it mean you prefer your teacher to the use of the GC? 

Student AD1: No it’s not that I prefer a teacher to the use of the GC but a teacher is 

always needed for explaining where I am not clear. 

Interview with Student AD2 

Student AD2: Yes, it must be used instead of having the teacher doing all the steps 
for the learners.  

TR:            Does it mean the teacher must be eliminated from classroom and give 
space to the use of GC? 

Student AD2: No. GC should be used when introducing a topic of quadratic 
inequalities and when verifying the solution of quadratic inequalities 
including the quadratic graphs. 

Interview with Student AD3 

Student AD3: Definitely, it must be accepted in the mathematics classroom.  
TR:               Please explain your opinion. 
Student AD3: The use of the GC provides learners with opportunities to answer more 

questions. But the teacher must always be there to explain where I 
don’t understand. 

Interpretation of students’ responses 

Most of the students responded similarly to this question as they supported the use 

of the GC in learning of quadratic inequalities. This clearly means that with its 

capabilities, the GC afforded students opportunities to learn better quadratic 

inequalities. Student AD3 emphatically affirms by saying ‘definitely’ and also gives 

additional reason as giving learners opportunities to ‘answer more questions’. This 

means the GC was used as a psychological tool to produce enjoyment through its 

use. This is linked up with the socio-cultural theory of Vygotsky. However, the 

students felt that there can be more effective learning of inequalities when 

complemented by the use of traditional methods (e.g., teacher talking). The 

responses of Students AD1 and AD3 emphasised the need for the teacher to be 

there to “support” and “explain” to them where they don’t understand. They viewed 

the teacher as an additional resource to the GC who can attend their individual 

differences in the classroom. This is aligned to the findings made by Ndlovu (2014) 

that technology cannot orchestrate itself to articulate mathematical understandings to 

learners. Student AD2 argued, for example, that the GC must be incorporated in the 

learning of quadratic inequalities to reduce teacher domination (or workload) of 

lessons. In addition, she emphasised that the GC must be used when ‘introducing’ 
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the topic and ‘verifying’ the solution of quadratic inequalities. This suggests the GC 

appeared to be instrumental in the learning of quadratic inequalities with its 

capabilities. This is aligned to the schemes of instrumented actions in the theory of 

instrumental approach. 

5.8.4  Students’ responses to how the use of the GC improved their understanding 
of quadratic inequalities  

This question sought students’ views whether the use of the GC improved their 

understanding of quadratic inequalities in mathematics classroom. The views of the 

three students were very similar as shown below:  

Interview with Student AD1 

TR:         Does the use of the graphing calculator improve your understanding when 
learning quadratic inequalities?  

Student AD1:  Yes it does.   
TR:           Please explain your answer in detail. 
Student AD1: After the use of the GC my comprehension has increased and I can 

interpret the solutions of quadratic inequalities using quadratic graphs. 
The visualisation of graphs by the GC made me to understand most this 
topic. 

TR:        Please explain how GC use helped you to solve quadratic inequalities 
graphically. 

Student AD1: The use of the GC helped me to consider x-intercepts of the graphs as 
critical values of the quadratic inequalities, which determine the region of 
the solution sets. 

TR:       Thank you very much for your time. 

Interview with Student AD2 

TR:  Does the use of graphing calculator improve your understanding when learning 
quadratic inequalities?  
Student AD2:  Yes, there is a great improvement of understanding quadratic 

inequalities even if I might not get all the marks in a test.  
TR:           Please explain how your understanding has been improved. 
Student AD2: Given a quadratic inequality question I know that I must use a 

graphical sketch to determine the solution set. And the solution set are 
determine by the zeros of the function which are x-intercepts. 

TR:            Explain how the use of the GC helped you to use the graphic sketches to 
solve quadratic inequalities. 

Student AD2:  Actually the solutions of quadratic inequalities are displayed from the 
GC in drawn graphs.  

TR:            Thank you very much for your time. 

Interview with Student AD3 
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TR:       Does the use of the graphing calculator improve your understanding when 
learning quadratic inequalities?  

Student AD3: Yes. I see myself at a better level of understanding than before, 
because I can explain to my classmates who have difficulties with this 
topic. The use of the GC helped me to determine the solution of 
quadratic inequalities by using graphs. 

TR:          How were you helped to use the graph?  
Student AD3: If you use the GC to solve the quadratic inequalities the solutions are 

shown on the graphs. I realised that I must sketch and use the graphs to 
determine solutions. 

TR:       Thank you very much for your time. 

 Interpretation of students’ responses 

The responses of the students clearly explain that GC use was instrumental towards 

understanding quadratic inequalities. All the three students emphasised that GC use 

aided them to understand the topic of quadratic inequalities. Student AD2 

emphatically elaborated, “…there is a great improvement of understanding quadratic 

inequalities even if I might not get all the marks in a test”. When students press 

GRAPH button, the punched quadratic inequality is transformed into the quadratic 

graph with a region of the solution (see Figure 5.8). This means the GC visualises 

the graphical images which are the solution of the quadratic inequalities. Students 

indicated that graphical sketches assisted them to determine the regions of the 

solution sets of quadratic inequalities. The use of the GC influenced students to link 

algebraic methods with graphs i.e., graphs being drawn as aid for solving quadratic 

inequalities. This means by looking at the inequality students can picture what the 

shape of the graph will look like. The linking of the graphical and algebraic 

representations is one of the recommendations of the CAPS for FET Mathematics 

document (DBE, 2011), which states that students must solve quadratic inequalities 

by integrating both methods. This is in accordance with the intertwinement principle 

of RME theory. This further indicates that the students interacted with GC as a new 

cultural tool to develop their cognitive thinking and true understanding. This is 

aligned with the Vygotsky’s ZPD theory. The use of GRAPH instrumented action 

scheme also assisted to reconstruct students’ meanings of quadratic inequalities. 

5.8.5 Students’ experiences of using the GC in learning quadratic inequalities  

This question solicited students’ experiences after using the GC to solve quadratic 

inequalities in a mathematics classroom. The student interviewees were asked to 
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relate their experiences. Students expressed exciting experiences, as the responses 

given below show:  

TR:             How can you explain your experiences of using the GC in learning 
quadratic   inequalities? 

Student AD1: It was an interesting experience because I had never used a GC 
before in learning mathematics. It made me a little more excited to 
realise that quadratic inequalities are not difficult to understand. One 
could see the solution of the quadratic inequality represented on the 
graphing calculator. This technology combines both algebra and graphs 
to solve quadratic inequalities.  

Student AD2: It was a wonderful experience because I learnt how to use a GC to 
solve quadratic inequalities.  I now know how to sketch quadratic graphs 
and how to use such graphs to determine the solutions of quadratic 
inequalities. I now understand quadratic inequalities more than before. 

Student AD3: It was an educative experience because I now have confidence of 
solving quadratic inequalities, which used to be so difficult. I explored 
many questions of quadratic inequalities using the GC. I realised that the 
solution of the quadratic inequalities can be better determined when I 
combine algebraic and graphic approaches.  

Interpretation of the students’ responses 

The responses of the three students revealed that they had ‘interesting’, ‘wonderful’ 

and ‘educative’ experiences with the use of the GC in solving quadratic inequalities. 

The use of the GC made students to become less anxious about learning quadratic 

inequalities and they were inspired to use sketches and graphs. All the three 

students indicated that the GC use reduced the levels of their difficulty with quadratic 

inequality problem solving. Student AD1 indicated that “one could see the solution of 

the quadratic inequality displayed as drawn graph on the screen” when using a GC 

in Figure 5.9, below.  

             

Figure 5. 9: Solving quadratic inequalities graphically 

𝑥2 + 2𝑥 − 8 ≥ 0 

(𝑥 − 2)(𝑥 + 4) ≥ 0 

𝑥 = −4 𝑜𝑟 𝑥 − 2 

Solving quadratic inequalities graphically 

                     (−∞, −4] ∪ [2, ∞) 
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This means that the GC acted as a visual aid tool (visualisation tool) and provided 

the students with opportunity to see how the solutions are presented graphically. 

This is in line with the fact that what a child has seen it is hard to forget. Students 

AD1 and AD3 mentioned that the use of GC allowed them to make connections 

between the algebraic methods (factoring or quadratic formula) and graphs when 

solving quadratic inequalities. This means that the sketched graphs were used as 

visual objects to aid his conceptual understanding of quadratic inequalities. Student 

AD3 also indicated that she used the GC for investigating more quadratic inequality 

problems and to solve them independently.  This was evident when she stated that 

the use of the GC gave her room for the exploration of several questions of quadratic 

inequalities. In this case, this student used the GC as an educational and exploration 

tool for her to solve and to understand a range of quadratic inequality examples. All 

the three students indicated that they used the GC to solve and graph quadratic 

inequalities in order to understand the topic better. This is consistent with the theory 

of instrumental genesis for instrumented action schemes (Trouche, 2004). The 

findings by the students are also in line with the intertwinement principle of the RME 

theory which emphasises an integrated approach to solve a mathematical problem. 

5.8.6 Students’ responses to how the use of the GC helped them to score better 
marks on quadratic inequalities 

This question asked if the use of the GC helped students to score better marks on 

quadratic inequalities and to rate themselves between 0 and 5, a 5 being the highest. 

All the students confidently affirmed better marks after the use of graphing calculator.  

Interview with Student AD1 

TR:            Did the use of the GC make you score better results in quadratic 

inequalities? 

Student AD1: Yes, my marks are much better. 

TR:            Explain what made them to improve after using the GC. 

Student AD1: Through the use of the GC, I learnt to solve quadratic inequalities by 

using two methods (i.e., the algebraic and graphical methods).   

TR:         In that case, how can you rate your level of understanding in quadratic 

inequalities after the use of the GC? 

Student AD1: 4 out of 5. 

Student AD2: Yes, for the first time, I was always failing quadratic inequalities. 

TR:           Explain what made you to score better after using the GC. 
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Student AD2: The use of the GC helped me to know the basics of the quadratic 

inequalities. And I was able to practise on my own.  

TR:          In that case, how can you rate your level of understanding in quadratic 

inequalities after the use of the GC? 

Student AD2: I rate myself at 4. 

Student AD3: Yes, my marks are better as the topic was no longer a challenge. 

TR:              Explain what made you to improve after using the GC. 

Student AD3: I explored many questions of quadratic inequalities using the GC and 

practised solving inequalities with graphs.   

TR:            In this case, how can you rate your level of understanding? 

Student AD3: I rate myself with a definite 5. 

Interpretation of the students’ responses 

The responses of the three students were almost similar and they rated themselves 

with at least a 4. The students felt that the use of the GC made their results better in 

quadratic inequalities. Student AD2 argued that the GC helped him to know the 

basics of the quadratic inequalities. Student AD3 attributed his better marks to being 

able to explore many questions of quadratic inequalities using the GC and linking the 

algebraic and graphical methods. The teacher-researcher noted that Student AD2 

had overrated himself; he still needed more sessions of the quadratic inequalities. 

Actually the use of the GC helped him to gain self-confidence in solving quadratic 

inequalities and “(…) to know the basics of the quadratic inequalities”. This is 

consistent with the Vygotsky’s ZPD theory for scaffolding students to achieve the 

impossible (Panhwar, Ansari, & Ansari, 2016) and with the activity principle of RME. 

5.9. Reflections, design principles and feed-forward of the research cycle  

This final section of the chapter presents the reflection and design principles of the 

research cycle at School A and the way forward for the next cycle. The researcher 

looked back at the teaching experiment and designed the principles of the first cycle 

and then concluded by formulating the feed-forward for the second research cycle to 

be implemented at School B.   

5.9.1. Reflecting on the starting points and learning outcomes of the HLT  

In Section 5.2, the researcher set out the starting points of the HLT for this study 

concerning the opportunities that the use of the GC would offer for the students in 

order to achieve the higher level of understanding of the quadratic inequalities. In 
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this current section, the researcher evaluates those learning outcomes (as 

expectations) individually to find out if they were confirmed in School A.  

The first learning outcome in session two was that students would develop the 

notions of interval notations, parameters, x-intercepts and quadratic graphs in a 

flexible graphing calculator environment. During the teaching experiment at School 

A, students were confronted with questions that were mathematically similar but with 

different coefficients of 𝑥2 (see Session 2 in Appendix D). Students used similar 

reasoning and problem-solving procedures but different processes as they attempted 

the quadratic functions and inequalities. The use of the GC helped students to 

visualise the graphs displayed on the screens and enabled them to understand the 

properties of quadratic graphs (e.g., zeros, intervals, axis of symmetry, concavity). 

Students were able to make repetitions of graphs using the GC and this helped them 

develop and reify the key pre-concepts of quadratic inequalities. As it was 

anticipated that the use of the GC would provide a flexible environment for students 

to understand quadratic graphs and their properties, this was not adequately 

achieved.  Some students had difficulties to recognise the concavity of quadratic 

functions with respect to the coefficients of 𝑥2 and did not make meaningful 

generalisation. Consequently, these students failed to transfer the correct prior 

knowledge and they needed more activities for further practice. In this regard, the 

use of the GC partially supported the transition from the graphical representation to 

quadratic inequality representation.  

The second learning outcome for sessions 3 and 4 was that students would develop 

the notions of solving quadratic inequalities in a flexible graphing calculator 

environment. This means that students were supposed to use their knowledge of 

quadratic functions and graphical properties towards solving symbolic quadratic 

inequalities, which demand routine reasoning skills. During the teaching experiment 

at School A, students were confronted with questions that were mathematically 

similar but with different levels of difficulties (see Sessions 3 and 4 in Appendix D). 

Students were expected to use the GC as an instructional artefact, in particular the 

graphic and tabular instrumented action schemes to solve the symbolic quadratic 

inequalities. These instrumented action schemes allowed students to repeat the 

processes of graphing and tabling the values and supported them develop and reify 

the concept of quadratic inequalities. The repetition of the processes made the 
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students to realize that changing the parameter values affected the complete 

quadratic graphs and inequality solution sets. The graphical visualization of this 

effect (i.e., changing the parameters) created a strong mental image for the students. 

The impression is that most of the students started to perceive graphs and 

inequalities as entities that could symbolize objects. The use of graphical 

representations (models) made students to extend their graphical conception of the 

quadratic functions towards the view of understanding the quadratic inequalities. The 

graphical models mediated very well between the quadratic equations and quadratic 

inequalities. The graphical schemes of the graphing calculators were helpful for 

visualizing the effects of parameters and the properties of graphs. Furthermore, 

students used the tabular instrumented action scheme to check for the solutions in 

the table of values displayed on the GC. However, the understanding and 

interpretation of such graphs and inequalities still remained a hard issue for the 

grade 11 students. The researcher partially concluded that the use of graph and 

tabular instrumented action schemes facilitated the transition from the graphical 

representations to symbolic quadratic inequalities.  

The third learning outcome in sessions 5 and 6 was that students would develop the 

higher order problem solving and reasoning skills in contextual quadratic inequality 

situations in a flexible graphing calculator environment. This means that the 

transition from the symbolic quadratic inequalities to the contextual quadratic 

inequality situations was to be brought about by the use of the GC. In that regard, 

students were supposed to use their routine reasoning skills of solving symbolic 

quadratic inequalities into solving contextual quadratic inequality situations. During 

the teaching experiment at School A, students were confronted with questions that 

were mathematically similar but with different levels of difficulties (see Sessions 5 

and 6 in Appendix D). Students were engaged in the use of the GC as an 

instructional artefact to solve the contextual quadratic inequality problems. The 

consistent use of the GC enabled students to extend their routine reasoning skills 

towards the non-routine reasoning and problem-solving skills in contextual quadratic 

inequality situations. Students were able to transform the contextual situations into 

quadratic inequalities with one variable as required by the CAPS FET Mathematics 

document and solved them similarly as symbolic quadratic inequalities. With the use 

of the graphical representations displayed on the GC screens, students were able to 
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extend their understanding of the symbolic towards the view of understanding 

contextual situations. The graphical models successfully mediated between the 

symbolic and contextual situations as it was further observed that the students 

attempted well question 4 and fairly question 5 in the post-test. However, the 

understanding and interpretation of such graphs and inequalities remained a hard 

issue for the grade 11 students. For that reason, these difficulties continued to 

prevail in both sessions and post-test with similar questions that demanded the same 

reasoning and problem solving processes. The researcher therefore concluded that 

the use of the GC partially supported the transition from the symbolic quadratic 

inequalities (the routine skills) towards the contextual quadratic inequality situations 

(non-routine skills) of solving quadratic inequalities.  

5.9.2. Reflections on the in-depth interviews with students 

The responses of the students from the in-depth interviews affirmed that the use of 

the graphing calculator provided an enabling environment for learning quadratic 

inequalities. In their arguments, they revealed that their learning of quadratic 

inequalities had been made easier after the use of the GC and they were able to see 

how the quadratic inequalities were solved graphically. Students further contributed 

that the use of the graphical sketches assisted them to determine the regions of the 

solution sets of quadratic inequalities and were enabled to visualise the solutions of 

quadratic inequalities on the GC screens. Through the process of visualisation 

students were able to establish the relationship between the quadratic graphs and 

quadratic inequality solutions. As revealed in the interviews, the visual images of the 

graphic representations improved the learning of quadratic inequalities. Additionally, 

they affirmed that the use of the GC influenced them to link algebraic methods with 

graphs i.e., graphs being drawn as aid for solving quadratic inequalities. This was 

affirmed by student DA3, “by looking at the inequality I can picture what the shape of 

the graph will look like and where its solution set will be”. The linking of the graphical 

and algebraic representations is one of the recommendations of the CAPS for FET 

Mathematics document (DBE, 2011), expressed emphatically in the NSC 

Examination Diagnostic Reports that students must solve quadratic inequalities by 

integrating both methods (DBE, 2014; 2015; 2016; 2017). Ultimately, students 

expressed enjoyment and confidence in the learning of quadratic inequalities with 

the use of the GC and indicated that it was instrumental towards their understanding 
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of quadratic inequalities. However, not all the students made use of the graphical 

models to illustrate their solutions in answering the post-test. This means that 

although these students appreciated the graphical meaning of an algebraic solution 

they apparently could not connect the two representations. Despite the fact that 

students had ‘interesting’, ‘wonderful’ and ‘educative’ experiences with the use of the 

GC in solving quadratic inequalities, they still valued the presence of the teacher as 

an additional resource to the GC who can attend their individual differences in the 

classroom. 

5.9.3. Reflecting on the focus group interviews  

The qualitative results of three students who were engaged in focus group interviews 

showed different levels of proficiency in relation to problem solving processes. The 

student’s problem solving processes were scored in terms of a) modelling an 

inequality, b) using algebraic approach, c) using graphical approach, d) verifying 

their solution including the use of the graphing calculator and e) obtaining a correct 

solution set (interval notation). The students’ work revealed that two of them did not 

confidently use the graphical approach and did not obtain correct solutions of 

contextual quadratic inequalities. However, all of the three were in a position to use 

the GC to verify their solutions when asked to do so (cf. Section 5.7.2). Evidently, 

this means on average the three problem-solving processes were performed. With 

these results the teacher-researcher concluded that the second research question 

was achieved partially. 

The qualitative results of the focus group interviews with students on their reasoning 

skills in the contextual quadratic inequality problems revealed that students 

possessed average analytical reasoning which is a pre-requisite for understanding 

quadratic inequalities. Two thirds of students were able to identify at least two pre-

concepts of quadratic inequalities and all of them stated at least one reasonable 

conclusion. It was further revealed that the students had average initiative reasoning 

skill of solving quadratic inequalities. Two of three students were able to use and 

explain the strategies (approaches) that they executed to solve the contextual 

quadratic inequality problem, which included algebraic, graphical and graphing 

calculator. Similarly, two of three students displayed weak reflective or metacognitive 

reasoning skills of solving the contextual quadratic inequality problem. These 
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students were not able to reflect on their solutions of the contextual quadratic 

inequality problem through interpreting, justifying and checking and using alternative 

ways (using the graphic feature of the GC). This suggests that in the next cycle the 

emphasis of the teacher-researcher has to focus on the development of students’ 

metacognitive reasoning skills. The researcher observed that the reasoning domain 

of monitoring progress by students was partially supported by the use of the GC. It 

was noted that only one of three students was able to monitor her progress and 

verify her assumptions. In the next cycle the teacher-researcher’s focus should be on 

how to improve students’ reasoning skills on monitoring their progress. It was further 

observed that two of three students were able to seek and use connections between 

concepts and representations in the reasoning process of the contextual quadratic 

inequality situation. The use of both algebraic and graphing reasoning helped 

students to solve the problem. The researcher partially concluded that the use of the 

GC supported the students’ reasoning skills on seeking and using connections.   

The teacher-researcher observed that during the activity sessions the majority of the 

students were able to make inferences, draw conclusions and reflect on the 

reasonableness of their solutions of quadratic inequalities. The use of the GC as an 

instructional tool provided opportunities for the students to analyse the inequality 

problems, interpret the solutions and to make predictions about the solution sets.  

This is in line with the constructivist teaching and learning which requires teachers to 

focus on the use of physical actions (graphing calculator) to promote the use of 

senses to construct the underlying meaning of concepts (Vygotsky, 1978), and 

students’ independent thinking and the control of their own learning situation (von 

Glasersfeld, 1996; Amineh & Asl, 2015). These actions are strongly connected to the 

processes of reasoning and problem solving.   

5.9.4. Feed-forward for the second DBR cycle 

The findings of the first research cycle at School A informed the feed-forwards for the 

next research cycle. The feed-forwards of this cycle concerned the hypothetical 

learning trajectory, the instructional activities and the research methodology.  

The feed-forward concerning the HLT addressed the broad outline: Solving symbolic, 

routine and contextual quadratic inequality situations in a flexible graphing calculator 

environment. The results from the teaching experiment suggested that the use of 
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graphical approach was most helpful to students in solving quadratic inequalities 

because of its dynamic character and visual image. Therefore, the properties of the 

quadratic graph including the interval notation were addressed earlier in the learning 

trajectory. However, the use of the GC did not support completely the conception of 

the graphical approach. Therefore, an emphasis on the conception of quadratic 

graphical properties should be considered in the next cycle. A second issue 

concerning the HLT was the use of the GC to support the transition of symbolic 

quadratic inequalities towards the contextual quadratic inequalities which did not 

come across in a satisfying way. This can be attributed at least partially to difficulties 

with solving symbolic and routine quadratic inequalities, and the use of graphical 

strategy in particular. It is important to master this graphical technique, so that it does 

not hinder the generalization and visualisation processes. Thirdly on the HLT was 

the need for linking the algebraic and graphical approaches to holistically develop 

students’ reasoning skills and problem-solving abilities in solving quadratic 

inequalities. Students incompletely solved the contextual quadratic inequalities 

because they had partially developed their reasoning domains of the metacognitive 

(reflective) and monitoring skills. 

The feed-forward concerning the instructional activities focused on those teaching 

materials that needed more time for better understanding. A first point was that 

students needed more practice in using graphs to solve quadratic inequalities. 

Additional sessions were designed for students to work in groups using the GC so 

the visual images can be retained. This approach must be combined with the 

algebraic representations to holistically solve quadratic inequalities. Students would 

further be engaged with the graphic and tabular instrumented schemes in separated 

and integrated practice. As far as the role of the teacher-researcher is concerned, 

the teacher must use his experience in the next cycle for orchestrating the learning 

process in group discussions and regard himself as an additional resource of 

information for the students.   

The feed-forward concerning the research methodology addressed the teaching 

experiments. The first point was to establish a better match between the pre-test and 

post-test, so that the improvements in understanding could be monitored during the 

teaching experiment. The second point was to conduct mini-interviews or mini-

written tasks during the sessions on selected questions to provide appropriate and 
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meaningful data. The third point was to organise students into groups and give them 

task to solve in order to observe the students’ interaction and thinking; this would 

provide platform for those students who have many questions to be assisted.  

5.9.5 Design principles of the study 

This current design based study was driven by the pedagogical gap in the teaching 

and learning of quadratic inequalities. The researcher identified five fundamental 

principles of design-based research such as:  

1. Starting the topic of quadratic inequalities with the problems of real-life 

situations  

2. Integrating algebraic and graphical representations when teaching quadratic 

inequalities helps students to develop visual images that lead them to formal 

reasoning. 

3. Using the GC approach as teaching strategy is not effective all the time but it 

should be complemented with traditional styles to develop the student’s 

understanding of quadratic inequalities. 

4. Learning activities should be prepared well ahead of the first contact session 

in collaboration with practitioners. 

The next research cycle is discussed in a similar manner in chapter 6 but 

incorporating the limitations of the previous cycle. 
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CHAPTER 6: THE SECOND CYCLE OF TEACHING EXPERIMENT 

6.1. Introduction 

The purpose of this present study was to investigate the grade 11 students' 

understanding of quadratic inequalities in a graphing calculator enhanced 

mathematics classroom. In addition, the study examined whether the problem 

solving and reasoning skills of the students were supported by the pedagogical use 

of the graphing calculator. The data described in this chapter were collected in 

School B to address the following research questions:  

1. To what extent can the pedagogical use of graphing calculator influence high 

school students’ performance in solving quadratic inequalities? 

2. In what ways (how) can the pedagogical use of the graphing calculator support the 

high school students’ problem solving ability in quadratic inequalities?  

3. In what ways (how) does the pedagogical use of the graphing calculator support 

the high school students’ reasoning ability when solving quadratic inequalities? 

4. What perceptions do students have on the pedagogical use of the graphing 

calculators in learning quadratic inequalities? 

This chapter is a follow up of the first research cycle at Grade 11 which focused on 

the hypothetical learning trajectory (HLT) and the experiences during the first cycle 

of the BDR teaching experiment. In a similar manner, the current chapter addresses 

the second research cycle in the same grade but at a different school. The teaching 

experiment sought to investigate how the designed HLTs played out in the 

classroom and whether the use of the GC provided learning opportunities for 

improving the students’ understanding of the quadratic inequalities in the way it was 

expected to.   

In the current chapter the re-designed HLT is described by the starting points 

including the learning outcomes in Section 6.2. Second, the participants and 

research procedures of the cycle are explained in Section 6.3. Third, the results of 

the pre- and post-tests are analysed in Section 6.4.  Four, the results of the problem 

solving are analysed in Section 6.5. Fifth, Section 6.6 presents the results of the 

focus group interviews with students. Sixth, the results of pre- and post-surveys are 
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analysed in Section 6.7. The results of the in-depth interviews with students are 

discussed in Section 6.8. Finally, the study concludes with the reflections, feed 

forwards and design principles in Section 6.9. 

6.2 Starting points of the HLT and learning activities  

In this section, the starting points for the HLTs for quadratic inequalities were the use 

of set builder notation which defines the solutions of unknown variable, drawing a 

number line for the given set builder notation and graphing quadratic functions and 

the effect of parameters in quadratic functions and quadratic equations were part of 

HLT. The understanding of the properties of quadratic graphic representations was 

considered to be important in the reification of symbolic expressions and formulas in 

the development of algebraic concepts (Drijvers, 2003). In the first cycle a broad 

outline of HLT was developed: Solving symbolic, routine and concrete quadratic 

inequality problems in the graphing calculator environment. This was viewed as a 

broad trajectory of how to achieve higher level understanding of quadratic 

inequalities by using the opportunities offered by GC use. Furthermore, the 

experiences and the feed-forward from the first teaching experiment in School A 

informed the HLT of the second cycle.  

The teaching and learning experiences derived from the first cycle were: 

1. Using the GC consistently helps to reduce the percentage of learners who have 

difficulties in learning quadratic inequalities. 

2. Linking graphic and algebraic representations helps learners to understand 

quadratic inequalities better. 

3. Using models, graphs and diagrams in the teaching and learning of quadratic 

inequalities moves away the learners’ informal thinking to formal reasoning and 

problem solving. 

However, there were no major changes in designing the HLT for the second cycle. 

The feed forwards from the first teaching experiment which guided the development 

of the HLT for the second cycle in School B were stated as follows:  

1. More emphasis to the use of quadratic graphs and their properties at the starting 

point can develop an insight into the higher levels of learning quadratic inequalities.  
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2. More time to be created with the GC use can allow for gradual visualisation of 

quadratic graphs that helps to perceive the effects of the parameters.  

3. More emphasis to the integration of the algebraic and graphic representations can 

lead to a better understanding of quadratic inequalities. 

4. More practise with the instrumented action schemes for graphing and tabling may 

lead to meaningful presentations of the solution sets of quadratic inequalities.  

The use of the quadratic graphical representations was considered to be important in 

the reification of symbolic (algebraic) expressions and formulas and in the 

conceptual development of quadratic inequalities. The assumption was that students 

who have a conception of the quadratic inequality pre-concepts were likely to extend 

towards the higher levels (i.e. complex and problem solving) of quadratic 

inequalities. The learning in the GC environment was assumed to allow for algebraic 

exploration and visual geometric representations in solving quadratic inequalities. 

This was expected to lead towards achieving the higher level understanding of 

quadratic inequalities with the use of the GC.   

The transitions for the learning activities in quadratic inequality concept 

The transition from the quadratic graphs and interval notations to symbolic quadratic 

inequalities was to be brought about by confronting the students with several 

questions that were mathematically similar but with different parameter values (see 

Session 2 in Appendix D). The expectation here was that the students would 

perceive the similarity of the reasoning and problem-solving procedures in spite of 

the different parameter values.  

The transition from the quadratic functions and equations to the quadratic 

inequalities was to be brought about by a graphical approach, in which the 

parameter value was changed gradually and systematically (see Sessions 3 & 4 in 

Appendix D). In that regard, students were asked to analyse the effect of the 

changing parameter value on the graph. Mentally, the student realized that changing 

the parameter value affected the complete graph and quadratic inequality solution 

sets. The GC was used in this transition for graphing a sequence of ‘shifting’ graphs 

and visualisation of the effects of the parameters on the quadratic graphs and their 

zeros.  
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The transition from the symbolic quadratic inequalities to the contextual (complex) 

quadratic inequality problems was to be fostered by applying additional algebraic 

properties to the concrete situations and using the graphical representations (see 

Sessions 5 & 6 in Appendix D). Solving the contextual quadratic inequalities involves 

the use and filtering of appropriate graphical properties (intersection points, tangent 

points, vertices, roots). Such problems were expected to lead to a mental shift of 

students, so that they could apply reasoning and problem solving procedures. The 

use of the GC was to allow for this shift as the graphical and tabular representations 

were expected to make students reify the concept of quadratic inequalities. The 

tabular instrumented action scheme was to elicit  the students to use the concept of 

interval to reify the concept of quadratic inequality solutions. 

6.3. Participants and research procedures of the second DBR cycle 

The teaching experiment took place in a public high school with eleventh-grade 

class, thereafter the school is referred to as School B. A total of 37 students 

participated in this study and were randomly chosen from 70 eleventh graders. The 

participants were asked not to identify themselves on the pre-tests and post-tests, 

but rather to label their scripts with symbols given randomly by their teacher, such as 

B1, B2, B3,..., B37, where B represented the school. However, two students decided 

to withdraw their participation and were not considered during the quantitative 

analysis of the results. Four students also participated in the interviews. The sample 

included below average, average and above average students and a top student. To 

collect the data for this second DBR cycle, the same procedures described in 

Section 5.3 were followed. 

6.4. Comparative analysis of the students’ results of the pre- and post-tests  

This section presented and discussed the results of the pre- and post- tests and the 

written tasks which sought to answer the first research question: 

To what extent does the pedagogical use of GCs impact on students’ 
performance in solving quadratic inequalities? 

The results were also used to test the null hypothesis: H0: There is no difference 

between the pre-test mean and the post-test mean of quadratic inequalities for the 

students in the study (𝐻0: 𝜇1 (pre−test) = 𝜇2 (post−test). Alternatively, H1: There is a 
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difference between the pre-test mean and post-test mean of quadratic inequalities 

for the different domains for the students in the study (𝐻1: 𝜇1 (pre−test) ≠ 𝜇2 

(post−test).  The results of 35 students obtained in School A are presented in the 

form of descriptive statistics (Table 6.1) and paired samples test (Table 6.2) below.  

Table 6.1 below presents the descriptive statistics analysis of school B showing that 

students performed much better in the post test (M=45.1429; SD=21.41762) than in 

the pre-test (M=22.3429; SD=13.50151). It is further observed that the majority 

scored better marks in post-test with a lowest mark of 17% and highest mark of 90% 

compared to pre-test with a lowest mark of 3% and highest mark of 63%. This could 

be attributed to effective use of the GC in solving designed activities of quadratic 

inequalities. The median mark (47%) of the post-test was also much better than that 

of the pre-test (20%). This suggests there was a reasonable improvement in the 

post-test and this means that half of the students scored above 47%.   

         Table 6. 1: Descriptive Statistics of School B 

  Mean N Std. Deviation Std. Error Mean 

Pair 1 Pre-Test 22.3429 35 13.50151 2.28217 

Post-Test 45.1429 35 21.41762 3.62024 

In the next table, a paired-samples t-test was conducted to test whether the 

improvement noted in the post-test was significant. The use of the paired-samples t-

test helped to test the null hypothesis, which stated that there was no difference 

between the pre-test mean and the post-test mean of quadratic inequalities for the 

students in the study (𝐻0: 𝜇1 (pre−test) = 𝜇2 (post−test). In that regard, Table 6.2 

below presents the dependent (paired) samples t-test results of School B with paired 

differences of means of the pre- and post-tests of 35 students.  

     Table 6. 2: Paired Samples Test of School B 
  

Pair 1 

                                          Paired Differences 

Mean 
Std. 

Deviation 
Std. Error 

Mean 

95% Confidence Interval 
of the Difference 

    Sig(2-
tailed) 

Lower Upper T Df 

Pre-Test 
& Post-
test 
  

-2.280E1 23.57067 3.98417 -30.89681 -14.70319 -5.723 34 .000 
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Table 6.2 above, presents the dependent (paired) samples t-test of school B with 

paired differences of the means of the pre- and post-tests of 35 students. The t-test 

results in the table show that t(34) = -5.723 and 𝑝 = 0.000. This means the actual 

probability value is 0.000 and it is substantially smaller than the specified alpha value 

of 0.05. These t-test results indicated that the null hypothesis was rejected at 5% 

significant level in favour of the alternative hypothesis. This means that there was a 

statistically significant difference between the students’ means of the pre- and post-

test scores. In that context, there was a statistically significant improvement of the 

students’ results after the use of the GC in the learning of quadratic inequalities. 

Although the results presented above indicated the statistically significant 

improvement in the test scores of students, they do not tell much about the 

magnitude of the GC intervention’s effect in solving quadratic inequalities. Because 

there was no control group for this particular task and limitation of statistical 

significance, the researcher proceeded to calculate the Cohen’s 𝑑 effect size statistic 

using the pre-test and post-test means  in order to determine the magnitude or 

practical significance of the difference in scores. The effect size was 0.83, indicating 

that the post-test mean is at 79% of the pre-test mean. This means that there was a 

large effect impacted by the use of the GC on learning quadratic inequalities (i.e., 

using Cohen’s, (1988) interpretation: 0.2=50%=small effect, 0.5=58%=medium effect 

and 0.8=79%= large effect). The researcher then concluded that there was a 

practically significant improvement of about 0.5 standard deviations in the mean 

scores from pre-test (M=22.3429, SD=13.50151) to post-test [M=45.1429, 

SD=21.41762, t(34)=-5.723, p=0.000<0.005]. This implies that the pedagogical use 

of the GC impacted positively on the students’ performance in solving quadratic 

inequalities. This study did not investigate if the teaching and learning of quadratic 

inequalities with the GC is better than an approach without it, but to show that it can 

help with the understanding of the topic or concept. The t-test results showed that 

there were learnings gains not only for the purposeful sample of students but also for 

all the students that were exposed to the teaching intervention with the GC and 

instructional material. The findings are consistent with the theoretical frameworks as 

they were used in designing the learning activities.  
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6.4.1 Students’ results in written tasks of symbolic quadratic inequalities  

The improvement of students’ performance in the post-test could be attributed to the 

written tasks during the teaching experiment. Students wrote a task with questions 

related to sessions 3 and 4 and was considered for analysis. These questions were 

meant to monitor the progress of the students in each session. The results of the 

students were analysed to determine what percentage of those who answered the 

symbolic quadratic inequalities correctly, incorrectly, blankly or incompletely and also 

used graphic approach (see Table 6.3), below.  

Table 6. 3: Students’ results of the written task about symbolic quadratic inequalities  
 

Inequality 
 

Correct 
% 

 
Incorrect 

% 

 
Blank 

% 

 
Incomplete 
% 

Method used 

Graph 
% 
 

Others 
% 

None 
% 

 4.1   𝟒𝒙 + 𝒙𝟐 ≤ 𝟎 57 23 9 14 57 20 23 

4.2   (𝒙 + 𝟐)(𝟑𝒙 − 𝟕) ≥ 𝟎 66 14 6 14 54 20 26 

 4.3  𝒙𝟐 − 𝒙 − 𝟏𝟐 < 𝟎 72 17 6 6 66 14 20 

4.4  −(𝒙 − 𝟒)(𝒙 + 𝟓) < 𝟎 51 26 14 9 54 17 29 

 4.5  𝟐𝒙𝟐 − 𝟕𝒙 ≥ 𝟒 54 20 14 11 51 17 32 

The analysis of the data in Table 6.3, below revealed that each of the symbolic 

quadratic inequality questions was solved correctly by more than 50% of the 

students. This may suggest that at least 18 of the 35 students had acquired 

adequate knowledge and routine skills for solving symbolic quadratic inequalities. 

The percentage of students who had incorrect or blank solutions was between 20 

and 40; this can be viewed as an improvement in the understanding of quadratic 

inequalities. It was observed that some students, in question 4.4 attempted to solve 

but had some difficulties, thus the reason why it had the greatest percentage (40%) 

of incorrect or blank answers. It was also observed that less than 15% of students 

had incomplete answers. An incomplete solution means that the student used the 

correct strategy but abandoned the strategy before arriving to the solution. These 

students were able to determine the critical values and/or sketch the graph but could 

not go beyond that.  

Students’ answers were supposed to be linked to the use of graphs in order to see 

the influence of the GC. In this vein, students’ abilities of using graphs were 

assessed in solving symbolic quadratic inequalities. It was observed that more than 

50% of the students used graphs to determine the solutions of the inequalities, 
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except in question 4.5 with 48%. In this question students attempted to solve before 

expressing in standard form. Not more than eight students (≤ 23%) used other 

methods such as line graph and sign chart or table to determine the solutions of 

quadratic inequalities. A line graph is also shown on the graphing calculator when 

solving quadratic inequalities. In this case, the influence of the GC was very strong in 

developing such skills among the students. In the table, only 10 or less did not use 

any of the three methods linked to the GC. 

Students’ answers were supposed to be linked to the use of graphs in order to see 

the influence of the GC. In this vein, it was observed that more than 50% of the 

students used graphs to determine the solutions of the inequalities. Not more than 7 

students (≤ 20%) used other methods such as line graph and sign chart or table to 

determine the solutions of quadratic inequalities. A line graph dominated in other 

methods; this could be that a line graph is also shown on the graphing calculator 

when solving quadratic inequalities. This means the use of the GC supported the 

students’ abilities of using graphs when solving symbolic quadratic inequalities. 

Samples of students’ written tasks on symbolic quadratic inequalities 

The written tasks of the four students were purposefully sampled to show the 

different approaches used to answer the problematic question 4.4 in Figures 6.1 and 

6.2 below. It was evident that the use of the GC had great impact on students’ 

learning of quadratic inequalities in School B.  

         

Figure 6. 1: Students’ solutions of symbolic inequalities 

SB15 SB24 
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In figure 6.1 student SB15 used both algebraic and sign chart approaches to solve 

the symbolic quadratic inequalities. She perfectly combined the two strategies and 

she knew the solutions represented the negative values. However the solutions were 

incorrectly written, thus using wrong interval notations. This means the student does 

not understand the difference between “and” and “or” in quadratic inequality 

solutions (DBE, 2017). Student SB24 used both algebraic and geometric 

representations to solve the symbolic quadratic inequality. He perfectly linked the 

two strategies and they led him to the correct solutions of the inequality. The graph 

indicated where the solutions were found and he rightly expressed the solutions in 

interval notations. 

In figure 6.2, below student SB7 correctly used the line graph and algebra when 

solving this question. The regions of the solutions were correctly indicated however 

the interval notations as solutions were meaningless. She did not apply logical 

thinking to check the appropriateness of her solutions and it was like she gave her 

solutions procedurally. It was also noted that the student lacked the algebraic 

structure sense in quadratic expressions. She did not realise that the quadratic 

expression and its factorised equivalent were of the same structure but differently 

interpreted. In that sense, she chose to expand and then re-factorised before 

applying the null factor law. 

  

         Figure 6. 2: Students’ solutions of symbolic quadratic inequalities  

In figure 6.2, above student SB21 did not apply the correct procedure of removing 

the negative sign; as a result the direction of the inequality was not changed. 

However, he was able to determine the correct critical values and the required 

SB7 SB 21 
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solution sets of the inequality. The student did not struggle expressing the solution 

set he seemed to be having a sound understanding of the effect of a negative 

parameter (the coefficient of 𝑥2) on quadratic inequality solutions. This means the 

student used visualisation to write down the solutions. This student strongly relied on 

algebra and visualisation. 

The sampled written tasks of four students showed that the use of the GC had 

influence on the learning of quadratic inequalities as these graphs are commonly 

displayed on the GC. Students attempted very well to link algebraic (symbolic) and 

geometric (graphics, diagrams, lines) representations when solving quadratic 

inequalities. These models helped students with the visual representations which 

were expected to move their informal thinking away from the applications to the 

formal reasoning. This is consistent with the ideas of the level principle of RME 

theory that reflects the levels of reasoning development from horizontal to vertical 

mathematization. This was attainable through the consistent use of the GC and 

repetition of the processes. This is also in line with instrumented action schemes of 

the instrumental approach theory as students were able to integrate meaningfully the 

graphical and algebraic representations for supporting their reasoning and problem 

solving. 

6.4.2 Students’ results of written tasks in applications of quadratic inequalities 

The improvement of students’ performance noted in the post-test could be attributed 

to the written tasks during the teaching experiment, related to questions in session 5 

in Appendix D and was considered for analysis. The written task assisted to monitor 

the progress of the students. The results of the students were analysed to determine 

what percentage of those who answered the application problems of quadratic 

inequalities correctly, incorrectly, blankly or incompletely (see Table 6.4), below.  

Table 6. 4: Students’ responses in application of quadratic inequalities 

Question Application Correct 
 

Incorrect Blank 
 

Incomplete 
 

5.1 For what values of 𝒙 will √𝒙𝟐 − 𝟐𝟓 
be real? 

 
57 

 
23 

 
11 

 
9 

5.2 For which values of 𝒙 will 

Q=√𝒙𝟐 − 𝟖𝒙 + 𝟏𝟐 be non-real? 

 
65 

 
20 

 
9 

 
6 

5.3 Given 𝒈(𝒙) = −𝒙𝟐 + 𝟕𝒙 + 𝟔 
For which values of x will g(x)>0? 

 
51 

 
29 

 
9 

 
11 
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The analysis of the data in Table 6.4 revealed that 57%, 65% and 51% of the 

students respectively applied correctly quadratic inequalities to solve questions 5.1, 

5.2 and 5.3. This implies that students were able to understand the problems and 

transform them into quadratic inequalities and then selected the right strategies to 

solve them. The percentage of students who had incorrect or blank solutions was 

between 29 and 38; this can be viewed as an improvement in understanding the 

problems involving quadratic inequalities. These students need expanded 

opportunities to be adequately re-skilled in these problem areas of applications. 

Although the proportion (i.e., 9%, 6% and 11% respectively) of students who had 

incomplete solutions was very low for all the three questions, a further use of the GC 

would help to develop students’ cognitive skills and confidence. This therefore lays 

foundation for the next cycle. However, it was noted that a large portion of students 

had experienced difficulties in solving quadratic inequalities. The consistent use of 

the GC as visual artefact supported with teacher’s voice was expected to reduce the 

percentage of students who had incorrect, blank or incomplete solutions.  

A sample of two students’ answers was selected to show how they attempted the 

application problems involving quadratic inequalities in Figures 6.3 and 6.4, below. 

Student SB10 was able to link the nature of roots with quadratic inequalities. In that 

regard, she correctly applied the understanding processes of quadratic inequalities 

to solve the problem. With the aid of both algebraic and graphic approaches the 

student was able to solve correctly the modelled quadratic inequality.  

 

Figure 6. 3: A sampled student’s correct solution 

Student SB33 correctly converted the quadratic function into the quadratic inequality. 

The whole inequality was multiplied by a negative sign, converting it to a non-positive 

expression. However, the student failed to factorise correctly and also wrote the 

SB10 
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meaningless solution set of quadratic inequality. This means that the solution set 

was procedurally written without proper understanding of the interval notations.  

 

Figure 6. 4: A sampled student’s incorrect solution 

The work of the two students demonstrates the positive influence of the GC use on 

solving quadratic inequalities. The students used visual representations: graphic and 

line graph which are both displayed on the GC. The graphs (line and quadratic) are 

used as psychological tools to develop cognitive significance and meaning of the 

solutions of quadratic inequalities. Through the GC use students were able to 

internalise the structure of writing the solution set and to use the appropriate terms 

when solving quadratic inequalities. These are the affirmations of the Vygotsky’s 

socio-cultural theory of learning mathematics. 

6.5. Students’ results of problem solving in quadratic inequalities 

This section presents the students’ results on problem solving strategies used when 

answering the post-test and the results of how the GC use supported their problem 

solving abilities when learning quadratic inequalities. 

6.5.1 Analysis of the student’s problem solving strategies in the post-test 

This section intended to answer the second research question, “In what ways (how) 

can the pedagogical use of the graphing calculator support the high school students’ 

problem solving ability in quadratic inequalities?”, through discussing the processes 

used by the students in applying problem solving strategies in Question 5 of the 

post-test. This question required students to determine the values of 𝑥 for which 

√25 − 𝑥2  will be non-real.  The students applied quadratic inequalities to determine 

the values of x. The students were purposefully chosen because their written work 

SB33 
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represented the different problem solving approaches. A rubric for quadratic 

inequality problem solving test (QIPST) in Appendix E was used to score this 

question. A sample of answers of the three students is shown in Figures 6.5 and 6.6 

below. 

Figure 6. 5: Students’ answers on problem solving of quadratic inequality 

In figure 6.5, above, student BP16 correctly interpreted the problem and correctly 

identified the strategy of solving the problem but was not able to apply it. She did not 

monitor her progress as she worked the problem. For that reason, she scored a 2. 

The student used an algebraic approach throughout the entire process of problem 

solving, including finding roots, setting up the inequality and using the correct 

procedures of removing the squares. Her procedures did not lead her to the correct 

roots. Student BP4 correctly interpreted the problem and correctly identified the 

strategy of solving the problem. He was able to apply the strategy but the solution 

set was incorrect due to misconceptions. He treated inequalities as equations, thus 

solutions were left at critical values. In that reason, he scored a 3. The student used 

an algebraic approach throughout the entire process of problem solving, including 

setting up the inequality and finding roots. He was able to identify the difference of 

squares as the correct procedure of determining the roots. 

BP16 BP4 
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Figure 6. 6: Student BP 29’s answer on problem solving 

Using the rubric QIPST, student BP29 perfectly understood the problem and 

successfully applied the strategy of solving the problem. This means an inequality 

was correctly constructed and appropriate solutions arrived at using the correct 

procedures.  She tried hard to reflect on her solution by checking its reasonableness. 

In that regard, she scored all the marks thus scooping a 4. The student used both 

graphical and algebraic approaches to help solve the problem. The algebraic 

approach seemed to be the most useful in setting up the inequality and finding the 

critical values by using the difference of squares procedure. A graphical approach 

also helped her to solve the problem by correctly sketching the graph and indicating 

the zeros of the function. The student appropriately understood the effect of the 

negative parameter ‘a’ in the quadratic function. She used the graph to determine 

more than one interval that would be needed to solve this application problem and 

realised that one of these intervals was positive and one was negative.     

Based on the students’ answers of problem solving, the teacher-researcher 

cautiously concluded that the GC use supported the students’ performance and 

problem solving strategies. This is aligned with the ideas of the level principle of 

RME theory as designing and sequencing of the instructional materials were 

structured using the levels of mathematical reasoning and problem solving. 

6.5.2  Student’s perceptions of how the GC use supported the quadratic inequality 
problem solving abilities 

This section intended to answer the second research sub-question on how the 

students perceived about the use of the GC towards supporting their problem solving 

abilities of quadratic inequalities. Student perceptions were measured using a Likert 

BP 29 
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scale in which students marked 1 if they strongly disagreed, 2 if they disagreed, 3 if 

they were not sure, 4 if they agreed, and 5 if they strongly agreed. Students’ 

responses were captured in Table 6.5 below.  

Table 6. 5: Student’s perceptions on how the GC use supported problem solving 

 

In Table 6.5, sixty-nine percent of the students agreed or strongly agreed that the 

GC use enabled them to understand the quadratic inequality problems. However, 

there were 5 of the 35 students (14%) who were not sure. Twenty three students 

(67%) affirmed that the GC use guided them to sketch the graphs for solving 

quadratic inequalities. Seventy seven percent of the students agreed or strongly 

agreed that the use of the GC developed them to use correct methods and 

procedures in solving quadratic inequalities. Sixty nine percent of the students felt 

that the GC use allowed them to check for errors, mistakes and correctness of their 

solutions. Of those students who were not sure in their decisions, the researcher 

suggested that they needed an expanded opportunity with the use of the GC on how 

to solve quadratic inequalities. The researcher noted that the results were 

overwhelmingly impressive on how the students perceived on the use of the GC to 

support them in problem solving of quadratic inequalities as all the Polya’s four-steps 

of problem-solving processes had high percentages. 

This shows that graphing calculator played undoubtedly significant roles in students' 

learning of quadratic inequalities. The GC was used as a tool by students for 

problem solving processes in which they graphed functions in order to familiarize 

0 20 40 60 80

The GC use enabled me to understand the
problem of quadratic inequality

The GC use guided me to sketch the graphs for
solving quadratic inequalities

The GC use helped me to use correct methods and
procedures to solve quadratic inequalities

The GC use allowed me to check for mistakes and
correctness of my quadratic inequality solutions

Key: SD-Strongly Disagree; D-Disagree; NS-Not
Sure; A-Agree; SA-Strongly Agree

3 

6 

3 

6 

14 

3 

6 

9 

14 

26 

14 

17 

60 

47 

66 

60 

9 

20 

11 

9 

SA % A % NS % D % SD %

Stellenbosch University https://scholar.sun.ac.za



202 
 

themselves with the problem. In the planning phase, students developed a strategy 

for determining the solution and were used like a compass to point in the right 

direction for solving the problem. The use of graphing calculators assisted students 

in their problem solving by helping them develop and confirm their solution 

strategies. In the monitoring phase the GC was used as a resource for verifying 

solutions and then students were able to develop a symbolic approach. This is 

consistent with the ideas of the earlier researchers (e.g., Averbeck, 2000). This 

means students used the graphing calculator to see the connections between a 

solution and meaning of solution in terms of the graph (White-Clark et al., 2008; 

Amineh & Asl, 2015). In this case, the GC was used for exploration, an idea more 

consistent with cognitive constructivism. This is consistent with the Vygotsky’s theory 

of socio-cultural learning where the GC was used as mediator to develop cognitive 

understanding.      

6.6 Students’ results from the focus group interviews  

This section described the qualitative results of students’ focus group interviews on 

both problem-solving (Section 6.6.1) and reasoning (Section 6.6.2). A question was 

selected from the post-test for critically exploring the students’ problem-solving 

abilities and students’ reasoning skills in quadratic inequalities. Students were 

expected to use the graphing calculator only to verify the reasonableness of their 

solutions. According to Lunenberg (1998), learning in a constructivist manner 

involves asking students to analyse a problem, interpret results, classify terms or 

concepts, and to make predictions. These cognitive activities are strongly connected 

to the processes of students’ understanding.  

A sample of three students was selected from School B for focus group interviews. 

There were two female students (BF2 and BF3) and one male student (BF1). The 

interviews took place in their math classroom on a regular school day after school 

hours. Three students who obtained marks below average, average and above 

average in the post-test were purposefully selected to participate in the focus group 

interviews. The participants were asked to solve a contextual quadratic inequality 

problem that was in the post-test and were also asked several questions relating to 

the problem solving processes involved in that problem. The students were asked to 

explain their thoughts throughout the interviews in order to understand their thinking 
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processes. Throughout the interview, participants were observed how they used 

algebraic approaches and, sketches and graphs in their thinking processes through 

the problem. At the end of the interviews they submitted their interview scripts to 

further analyse how they reasoned their way throughout this problem. Each interview 

lasted for approximately thirty minutes. The interviews were audio recorded and then 

transcribed.  A full transcription of each interview is included in Appendix G. 

6.6.1 Students’ results of the focus group interviews on problem solving  

This section attempted to address the second research question of the study:  

In what ways can the pedagogical uses of the GC enhance students’ 
problem solving abilities when solving quadratic inequalities?  

The results of the focus group interviews with students on their problem solving 

abilities of the contextual quadratic inequalities were analysed and described in this 

section. In that context, the selected students were presented with a contextual 

problem that they first saw in the post-test. The problem stated, “A small 

manufacturer’s weekly profit is given by 𝑃(𝑥) = − 2𝑥2 + 220𝑥, in which 𝑥 is the 

number of items manufactured and sold. Find the number of items that must be 

manufactured and sold if the profit is to be greater than or equal to R6000”. The 

students were given ten minutes preparation time to read, formulate and solve the 

problem. They were supposed to explain their thinking processes clearly and not to 

erase their working.  In this case, students answered questions 1.6 and 1.7 

(Appendix D) which were central to solving the contextual quadratic inequality 

problem.  

The codes used in the interviews are: TR for the teacher-researcher and BF for the 

focus group students from School B. Student participants were interviewed as a 

group and their responses were presented and transcribed below:  

TR: (The teacher-researcher hands out the problem to the students). Please read 

this problem attentively and then formulate the required mathematical statement. 

Students BF1:       − 2𝑥2 + 220𝑥 ≥ 6000 

Students BF2:       6000 ≤ − 2𝑥2 + 220𝑥 

Students BF3:     − 2𝑥2 + 220𝑥 ≥ 6000 

TR:         And then solve it without the use of the GC, showing all the necessary 
working. Please do not erase any step you have written. 
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Students (BF1, BF2 & BF3): After ten minutes the students handed in their scripts for 

marking.  

Interpretation of the individual students’ interview results 

Students’ attempts are shown below and were analysed in order to determine 

whether the use of graphing calculator had enhanced their problem solving 

competencies at School B:  

Student BF1 was able to formulate the required quadratic inequality from the 

contextual problem as  − 2𝑥2 + 220𝑥 ≥ 6000. He used both algebraic and graphic 

approaches but factorisation dominated throughout the entire process of problem 

solving; including finding the critical values (see Figure 6.7). A wrong quadratic graph 

was just drawn but was not fully utilised to guide him in making decision. For that 

reason he wrote meaningless intervals: 𝑥 ≥ 50 or 𝑥 ≤ 60 , as his final solution. He 

was misled by his graph.  

 

Figure 6. 7: Student BF1’s problem solving 

Throughout the process of problem-solving, he did question his results. His first 

solutions which were similar to the final one were scratched out.  However, at the 

end of the problem when he was asked to verify his solutions using the GC, he 

realized that the solutions were incorrectly written. His problem was partial 

misunderstanding as he wrote incorrect interval notations. 

Student BF2 was able to model the required quadratic inequality from the contextual 

problem: 6000 ≤ − 2𝑥2 + 220𝑥. She used both the algebraic and graphical 

approaches; however, the algebraic approach (quadratic formula) seemed to be the 

most useful in helping her to solve the quadratic inequality. The graph was correctly 
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drawn with critical values but was never used. After writing the inequality in standard 

form, the student solved the quadratic equation only (i.e., 𝑥 = 50 or 𝑥 = 60). This 

student seemed to confuse the two concepts of equation and inequality, although 

she knew that the algebraic statement formed was a quadratic inequality. This shows 

a lack of true understanding by this student, see Figure 6.8 below. 

 

              Figure 6. 8: Student BF2’s problem solving  

In addition, the student was able to graph the correct shape for the function given 

and she correctly set up the x-intercepts (i.e., the critical values).  It was observed 

that she did not question her solutions thus lack of monitoring one’s progress. This 

means the student did not try other approaches to validate her solutions.  However, 

at the end of the problem when she was asked to verify her solution using the GC, 

she discovered that her solution did not make any sense. She pointed out that, the x-

values should be in inequality form in order to get a profit greater or equal to zero.  

Student BF3 correctly formulated the required inequality from the contextual 

problem. She used a graphical approach to pave the way for the solution of the 

problem. She started the problem by sketching the graph of the function onto her 

script. After looking at the graph, she indicated the region that had the solution of the 

quadratic inequality. She then switched to an algebraic approach, by using quadratic 
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formula, to find the zeros of the function; see Figure 6.9, below.         

 

Figure 6. 9: Student BF3’s problem solving 

She monitored her progress throughout when solving this problem and moved freely 

between algebraic approach and graphical approach, thus switching back and forth 

from the two approaches. This helped her to reflect on the strategies used to solve 

the contextual problem correctly. She verified her solution using the values of x and 

then found that her solution was justified. Consequently, student BF3 wrote the 

correct interval notation for the solution (i.e., 50 ≤ 𝑥 ≤ 60). Her solution was also 

verified using the graphing calculator.   

Comments on the students’ problem solving abilities 

The three students had different levels of proficiency in relation to problem solving 

processes. For that reason, the students’ problem solving processes were scored in 

terms of a) forming an inequality, b) using algebraic approach, c) using graphical 

approach, d) using the graphing calculator for verifying solution and e) obtaining a 

correct solution set. The scoring ranged from 0 to 5. A 5 represented the highest 

score of executing all the listed steps correctly. The use of an algebraic approach is 

mandatory in the CAPS curriculum and should be complemented with the use of the 

graphical approach or any other relevant approach. In this regard, Student BF1, an 

average learner scored a 3 as he used an incorrect graph and wrote incorrect 

solution sets. Student BF2, a below-average learner scored a 3 as she did not use 

her graph correctly and wrote wrong solutions. Student BF3, an above average 

learner scored a 5 for performing all the steps correctly. This means that Student 

BF3 used all relevant processes of problem-solving and was able to translate the 

Stellenbosch University https://scholar.sun.ac.za



207 
 

problem into appropriate mathematical language. Based on these results, the 

teacher-researcher concluded that the use of the GC supported the students’ 

problem solving abilities of the quadratic inequalities. This is consistent with the 

findings by the earlier researchers (e.g., Spinato, 2011; Karadeniz, 2015; Idris, 

2009).    

6.6.2 Students’ results of the focus group interviews on reasoning   

This section attempted to address the third research question:  

How does the pedagogical use of the GC support students’ reasoning 
abilities when solving quadratic inequalities?  

The results of the focus group interviews with students on their reasoning abilities in 

the contextual quadratic inequality problems were analysed and described in this 

section. In order to successfully examine the students’ reasoning in solving the 

contextual quadratic inequality problem, student participants of School B were asked 

questions during the focus group interviews relating to analysing a problem 

(Questions 1.1 & 1.3), initiating a strategy (Questions 1.4 & 1.5) and reflecting on 

one’s solution (Questions 1.7 and 1.9) in Appendix D. 

6.6.2.1 Students’ results from focus group interview on analytical reasoning 

The first reasoning question (Q1.3) of the focus group interviews required the 

students to identify the main concept involved in the contextual problem.  

TR:        State and explain the main concept of this problem (1.3) 
Student BF1: It is a quadratic inequality because the profit of items sold must be 

greater than 6000. 
Student BF2: It’s a quadratic inequality because the problem talks about greater than 

or equal to. 
Student BF3: The inequality I formed is a quadratic inequality. P(x) representing a 

quadratic function is greater than 6000, which is the profit. 

Interpretation of the students’ responses 

All the three students were able to identify the main concept involved as quadratic 

inequality and gave appropriate justification. The key phrase “greater than” was used 

as supporting evidence by the students. However, student BF3 gave a detailed 

explanation which included “quadratic function greater than representing profit”, thus 

a good ability of analytical reasoning. 
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The next reasoning question (Q1.3) requested the students to draw conclusions from 

their solutions of the contextual problem. In that regard, the students drew the 

following conclusions about their solutions.  

TR:             Is there any relevant conclusion that you can make about the solution to 
the problem? If so, what can you say? 

Student AF1: Yes. I think the solution of the inequality is above the x-axis  
Student AF2: The solution of the quadratic inequality lies inside the critical values. 

The graph drawn from this inequality is facing down  
Student AF3:  Yes. The profit and number of sold items must be more than zero and 

my solution is between the critical values  

Interpretation of the students’ responses 

All the three students were able to state at least one reasonable conclusion. Student 

BF1’s conclusion- “that the solutions would be above the x-axis”, affected the way he 

determined the solution of the quadratic inequality (see Figure 6.9). Student BF2 

provided a valid conclusion but she gave an incomplete solution (see Figure 6.10). 

This suggests that this student lacked self-confidence in contextual problems. 

Student BF3 made two analytical conclusions by stating that “the profit and number 

of sold items must be more than zero and the solution is between the critical values” 

This means student BF3 was able to visualise the quadratic inequality solution in the 

graph. The teacher-researcher observed that student BF3 possessed a strong 

analytical reasoning which is a pre-requisite for understanding inequalities. On the 

other hand, student BF1 had a weak analysis and this even affected him to write the 

solution of the inequality correctly (see Figure 6.11).  

6.6.2.2 Students’ results from focus group interview on initiative reasoning  

In this area of reasoning- Initiating a Strategy, students were assessed on how they 

purposefully selected the appropriate concepts, representations and procedures 

when solving the contextual problem. The first initiative reasoning question (Q1.5) of 

the focus group interview required the students to identify the approaches which 

were most helpful to solve the contextual problem. The following is how the students 

responded: 

TR:            Which approaches do you think were most helpful in solving this problem- 
algebraic and/or graphic? 

Student BF1: I think a factorisation helped me most to solve the problem.  
Student BF2: To me quadratic formula seemed to be helpful to solve the problem. 
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Student BF3: Algebraic (quadratic formula) and graphic approaches were the most 
helpful to solve the problem. 

TR:           Briefly explain why you selected these approaches. 
Student BF1: I used factorisation because I am comfortable with it and easy to use. 

After getting the values of x, I used them to draw the graph to indicate 
the portion of the solution.  

Student BF2: I used first the quadratic formula approach because it’s the quickest 
approach and saves time. I normally get the values of x correctly when I 
use the quadratic formula. 

Student BF3: I used first the quadratic formula approach so that I get the critical 
values correctly and then I used graphical approach for determining the 
shape of the graph.  

Interpretation of the students’ responses 

All the students were able to state and explain the approaches that they executed to 

solve the contextual quadratic inequality problem. The approaches used by the 

students were almost similar but differed in the way they were used. Student BF1 

responded correctly that he used two approaches- algebraic and graphic to solve the 

problem. However, the algebraic approach, factorisation, dominated throughout the 

process of solving the problem. A wrong graph was drawn (i.e., concave up) and x-

intercepts were indicated but lacked other details (cf: Figure 6.9). Student BF2 

correctly responded that she used the algebraic approach-quadratic formula to solve 

the problem. Although she had attempted to draw a graph but she did not use it to 

solve the inequality (cf: Figure 6.10). Student BF3 also responded correctly that she 

used two approaches- algebraic and graphic to solve the problem. However, the 

graphical approach seemed to be the most useful in helping her to solve the 

problem. The graph drawn by the student was correct in shape. The algebraic 

approach- quadratic formula was only used to determine the zeros of the function 

which were later on indicated on the graph for the decision. The consistent use of 

two strategies earned her good results (cf: Figure 6.11). All the three students 

initiated their strategies for solving the contextual problem very well but students BF1 

and BF2 were not consistent with their strategies. The influence of the use of the GC 

is visible on students’ work as all of them had drawn a graph to help them solve the 

inequality. This may suggest that the graphing calculator was a resource of 

information for students to develop solution strategies of the problem. For that 

reason, all the three students had developed initiative reasoning ability of solving 

quadratic inequalities.  
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The second initiative reasoning question (Q 1.6) of the focus group interview 

required students to explain how the use of the graphical approach helped them 

solve the quadratic inequality. The responses of the students were: 

TR:        Explain how helpful the use of graphical approach was in solving the 

contextual problem. 

Student BF1: Yes it was. The graphical approach helps to interpret or link the 
inequality in the form of a graph and helps me to see the required region 
of the inequality using the inequality sign.  

Student BF2: Yes. Even though algebraic methods are reliable the graph is even 
more. The graph tells you if the solution lies inside or outside the critical 
values.  

Student BF3: Yes it does. The graph helps to figure out the x-intercepts and the 
shape, and then you know where the solution lies. My x-intercepts are 
the critical values.  

Interpretation of the students’ responses 

The responses given by the students were similar and demonstrated that they 

understood the role of the graphical sketches when solving quadratic inequalities. 

Students responded that the graphical approach helps to “interpret or link the 

inequality” and “figure out’ and “is even more reliable”. This is even noted in their 

work where each student attempted to use a graphic approach to solve the 

inequality. This means the use of the GC provided students with visual 

representation of quadratic inequality solutions in the form of graphs and this might 

have influenced them to use graphs too. In fact this was the main purpose of using 

the GC as an instructional tool. The responses of the students show that the solution 

of the inequality is always within or outside the critical values. This means the use of 

the GC helped to develop students’ initiative reasoning strategy.  

6.6.2.3 Students’ results from focus group interview on reflective reasoning  

In this area of reasoning- reflecting on one’s solution, students were assessed on 

how they interpreted their solutions (Q1.8), justified the reasonableness of their 

solutions (Q1.9), and how they considered alternative ways of solving problems 

(Q1.10).  The questions intended to make students reflect on their solutions of the 

contextual quadratic inequality problem. The following reasoning questions (Q1.8 & 

Q1.9) were asked to find out how the students interpreted and justified their solutions 

of the contextual problem. The following is how the students responded: 
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TR:           With the values of x that you have obtained, do you think you have solved 
this problem completely and correctly? Justify your reasoning. 

Student BF1: Yes. I believe my answer is complete and reasonable.  
Student BF2: No. (Scratching his head …), I am struggling to complete the problem.  
Student BF3: Yes, there are correct.  
TR:            Can you justify why you say your answer is reasonable? 
Student BF1: Because both my values of x are valid answers. 
Student BF2: Yes. My values of x give me profits. 
Student BF3: Yes, it does. Because when I used x=50 I got a positive value.  
TR:            Which values of x really represent the profit?  
Student BF1: When I substitute my values of x, it gives me a zero. (He reasoned …) 

I think my solution is wrong.  
Student BF2: I now doubt my solution because there won’t be any profit. 
Student BF3: The values of x that are within the interval give the profits more than 

6000.  

Interpretation of the students’ responses 

All the three students were able to decide whether their solutions were reasonable 

and justified their choices. Student BF1 also realised that his solution was 

unreasonable and was giving him negative or no profits. Student BF2, who ended at 

the critical values, realised that the answer was not reasonable. She indicated that 

“my values of x give me a zero, which means there were no profits made.” She later 

on realised that there should be some profits for the items sold. This was different 

with Student BF3 as her solution was complete and reasonable. She was able to 

provide plausible reasons. Her values of x taken from within the solution set provided 

the profits which were more than 6000. This student was helped by linking both 

algebraic and graphic strategies. In this sense, student BF3 was able to reflect on 

her own solution effectively and this suggests that she displayed strong reflective or 

metacognitive reasoning skills in respect of this item. This may mean that the use of 

the GC has not provided adequate opportunities for students to develop their 

metacognitive reasoning skills of solving the contextual quadratic inequality 

problems. 

The next reasoning questions (Q1.10 and Q1.11) were combined in analysing 

students’ responses since they focused on the use of the GC. Question 1.10 asked 

about any other relevant information that could be used to justify their solutions. 

Students’ responses were as follows: 

TR:           Is there any other relevant information that can be used to justify their 

solutions? 
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Student BF1: No.  

Student BF2: Yes using a graphing calculator. 

Student BF3: Yes, I can use a graphing calculator. 

TR:         When using the graphing calculator, do you still get the same solution? 

Explain. 

Student BF1: Yes the critical values are the same but the solution is within them. 

Student BF2: No.  I get the same critical values. I did not write the solution of the 

quadratic inequality. 

Student BF3: Yes, I got the same answers and there are within the critical values. 

Interpretation of the students’ responses 

Student BF1 did not realise that the GC could be used as an alternative to verify his 

solutions. In that regard, the teacher-researcher requested the students to take out 

their GCs to verify the accuracy of their solutions. After punching the inequality into 

their graphing calculators students were able to see if their solutions were accurate. 

Only the solution of student BF3 was accurate. Students BF1 and BF2 found that 

they had different solutions and were incorrect. Student BF1 responded that, “the 

critical values were the same but the solution was within them”. On the other hand, 

student BF2 noted that “I did not write the solution of the quadratic inequality 

because I left my answer at the critical values”. Interestingly, all the students were 

able to solve the inequality and interpret the results accurately from the GC. This is 

consistent with idea of the instrumented action scheme in the TIG. It is evident that 

the use of the GC did not develop the students’ reflective reasoning completely. This 

suggests that in the next cycle the emphasis of the teacher-researcher has to focus 

on the development of students’ metacognitive reasoning skills.  

6.6.2.4 Students’ results of the observed monitoring progress  

This section described the students’ reasoning skills of monitoring progress as they 

were observed solving the contextual quadratic inequality problem. The main focus 

was to assess how the students reviewed and/or modified their selected strategies in 

particular when they encountered difficulties (see Rubric in Appendix E). The 

observed results of the three purposefully selected students were as follows: 

Student BF1 converted the problem into right quadratic inequality and correct 

procedures (algebraic) were followed through (cf: Figure 6.7). However, he did make 

reference to the incorrect graph as another approach to solve the problem. He was 

then misled and got wrong solutions. This means he did not make adequate attempt 
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to monitor his progress; thus why he did not realise that he had written meaningless 

solutions. His low level of self-monitoring affected him to attempt other avenues or 

make any reasonable assumptions that could lead him to review his selected 

strategy. When the teacher-researcher asked him to use the GC to solve the 

problem he was able to visualise the correct solutions displayed on the GC.  

Student BF2 converted the problem into a right quadratic inequality and correct 

procedures (algebraic) were followed through. She used mainly algebraic (symbolic) 

representations and did not use a graph at the beginning of the problem. She 

seemed to get confused when she realised that she needed to write down the 

solution of the inequality. An attempt of another approach was made by sketching a 

right graph to help in determining the solutions, which was not effectively exploited 

(see Figure 6.8). Her low level of self-monitoring affected her attempt and could not 

go beyond critical values. This means that she was able to indicate the x-intercepts 

correctly. When the teacher-researcher asked her to verify her solutions with graph 

produced by the graphing calculator, she realised that she had incomplete solutions.  

Student BF3 used two different approaches- algebraic and graphic, to solve the 

quadratic inequality (cf: Figure 6.9). A look at the graph of this quadratic function 

assisted in the monitoring of her progress in the reasoning process. However, she 

did not rely on one reasoning procedure as she kept on switching from the algebraic 

to graphical approaches and vice versa. The graph seemed to be very beneficial in 

the reasoning processes used by this student. Throughout her problem solving 

processes, she continued monitoring her progress and verifying her assumptions. 

The teacher-researcher observed that every move that she could take, she 

questioned it. She was also able to use the GC to confirm the shape of the graph, 

find the zeros of the function, make assumptions and verify her solutions found using 

the pencil and paper methods. 

6.6.2.5 Students’ results of the observed seeking and using connections 

In this domain of reasoning- seeking and using connections, students were observed 

on how they sought and used connections of different concepts, contexts and 

representations when solving the contextual quadratic inequalities. This is also about 

when the students make references to mathematical concepts used earlier in the 
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topic of quadratic inequalities, in other mathematics areas, or in any other subject 

areas. In this context, the findings were as follows: 

Student BF2 was only able to make connections between the solution of quadratic 

equation and the quadratic inequality (see Figure 6.8). However, she did not use this 

relationship to determine the solution of the inequality. Students BF1 and BF3 were 

able to seek and use connections between concepts and representations when 

solving the quadratic inequality. In their attempts to solve the contextual quadratic 

inequality problem, they made links between the algebraic (symbolic) and graphic 

representations (see Figure 6.7 and 6.9). However, student BF1 failed to link 

correctly the critical values to express in right interval notations. In this case, student 

BF3 used quadratic graphing (geometry) and solving quadratic equations (algebra) 

both as viable ways to find a quadratic inequality solution. The student realised that 

the solution of the equation (x-values) was the x-intercepts of the graph which 

determine the solution of quadratic inequality. This suggests that the algebraic 

reasoning (i.e., algebraic symbols and functions) has helped student BF3 to use the 

connections effectively in solving quadratic inequalities. This means that the GC use 

supported students’ reasoning domain of using connections and these findings are in 

accordance of the intertwinement principle of the RME theory. This principle 

underlies the importance of integrating concepts, contexts and subjects in order to 

develop better understanding of quadratic inequalities. 

With regard to these results, the teacher-researcher cautiously concluded that the 

GC use supported the students’ reasoning skills in learning quadratic inequalities. 

This conclusion is linked up with the findings made by the earlier researchers (e.g., 

Spinato, 2011; Karadeniz, 2015; Idris, 2009; Armah & Osafo-Apeanti, 2012). This 

further indicates the potentiality of the GC use as a mediating tool in developing 

critical reasoning as aligned to the ideas of the Vygotsky’s ZPD theory. This is 

consistent with the theory of instrumental approach for instrumented action schemes.  

6.6.3 Student’s perceptions of how GC enhanced reasoning skills 

This section intended to answer the third research sub-question on how the students 

perceived the use of the GC towards enhancing their reasoning skills in learning 

quadratic inequalities. Student perceptions were measured using a Likert scale in 

which students marked 1 if they strongly disagreed, 2 if they disagreed, 3 if they 
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were not sure, 4 if they agreed, and 5 if they strongly agreed. Students’ responses 

were captured in Table 6.6 below.  

Table 6. 6: Student’s perceptions on how the GC enhanced reasoning 
Student’s perceptions on how the GC 
enhanced reasoning 

SD 
% 

D 
% 

NS 
% 

A 
% 

SA 
% 

The GC use helped me to analyse adequately the 
quadratic inequality problems 

6 9 11 69 6 

The GC use enabled me to use many approaches 
when solving quadratic inequalities 

0 6 23 49 23 

The GC use assisted me check my progress when 
solving quadratic inequalities 

3 3 17 60 17 

The GC use helped me to use other concepts to 
solve quadratic inequalities 

9 6 17 46 23 

The GC use allowed me to think more about my 
quadratic inequality solutions 

0 6 17 66 11 

Key: SD-Strongly Disagree; D-Disagree; NS-Not Sure; A-Agree; SA-Strongly Agree 

In Table 6.6, 75% of the students agreed or strongly agreed that the use of the GC 

helped them to analyse correctly the quadratic inequality questions. Only 29% of the 

students, including those who were not sure, denied that the GC enabled them to 

use new strategies when solving inequalities. Twenty seven of the students (77%) 

agreed or strongly agreed that the GC assisted them monitor or check their progress 

when solving inequalities. A large proportion of the students (69%) affirmed that the 

graphing calculator guided them to use other mathematical concepts to solve 

inequalities. Only two students (5.7%) denied that the GC helped them to think or 

reason more about their inequality solutions. This implies that the majority of 

students (77%) felt that the GC allowed them to evaluate the reasonableness of their 

solutions. Based on these results, the researcher partially concluded that the 

majority of the students felt that the use of the GC supported them in reasoning skills 

of solving quadratic inequalities. 

6.7 Results of students’ responses in the pre-and post-surveys 

This section presents the results of the students’ responses in the pre- and post-

surveys of how they perceived about the GC use in learning quadratic inequalities. 

Their perceptions are presented in the following subsections.  
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 6.7.1 Comparative results of students’ responses in the pre-and post-surveys  

This section intended to answer the fourth sub-question by comparing the results of 

the pre- and post- surveys means on how the students perceived about the GC use 

in learning quadratic inequalities.  

What perceptions do students have on the pedagogical use of the 
graphing calculators in learning quadratic inequalities? 

The post-survey intended to gather the perceptions of the students on whether the 

use of the GC in learning quadratic inequalities assisted them to understand the 

topic. The positive changes of students’ perceptions were attributable to the effective 

intervention of GC use as an artefact in learning quadratic inequalities. The eleven 

items of the pre-survey were similar to the ones on the post-intervention survey to 

see if students changed their perceptions on how they learned quadratic inequalities 

after the GC intervention as an instructional tool. Students’ responses were biased 

towards the understanding of and lessening the difficulties of learning quadratic 

inequalities. In this context, an increased confidence in their ability to understand and 

learn quadratic inequalities is measured by students’ option of “disagree” or “strongly 

disagree” and increased mean. A comparison of the students’ perceptions is given in 

Table 6.7 below, where 𝑀0=post-survey mean and 𝑀𝑅=pre-survey mean.   

    Table 6. 7: Results of students’ pre- and post- intervention surveys (n=35) 
    
ITEM 

 1 = Strongly Disagree, 2 = Disagree, 3=Not Sure,  
4 = Agree, and 5 = Strongly Agree                             

Pre-survey Post-survey 

𝑴𝑹  SD 𝑴𝑶 SD  

SPQI 1 Quadratic inequalities are difficult to learn and understand  2.46 1.29 3.67 1.11 

SPQI 2 I do not see the difference between the equation and inequality  2.57 1.17 3.87 1.17 

SPQI 3 It’s difficult to determine the solution sets of quadratic 
inequalities after finding the critical values.  

2.49 1.09 4.57 1.37 

SPQI 4 I have difficulties with determining factors of quadratic 
expressions (inequalities)  

2.84 1.30 3.09 1.29 

SPQI 5 I don’t know the difference between critical values and x-
intercepts of the graphs 

2.61 1.16 3.57 1.09 

SPQI 6 In order to understand the quadratic inequality topic I usually 
memorise it  

2.67 1.29 4.10 1.20 

SPQI 7 Of all the topics I have done so far I don’t enjoy learning 
quadratic inequalities 

2.49 1.11 3.84 1.16 

SPQI 8 It’s difficult to use graphical sketches to determine the solutions 
of quadratic inequalities 

2.77 1.30 3.71 1.15 

SPQI 9 Given an opportunity of not to learn quadratic inequalities I was 
going to do so 

3.21 1.17 3.30 1.25 

SPQI 
10 

Technology (e.g., computers) cannot help me to understand 
quadratic inequalities 

2.69 1.12 3.50 1.17 

Table 6.7 shows that the learning of quadratic inequalities was no longer difficult to 

understand after using the GC. This is reflected by the post-survey mean which is 
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greater than the pre-survey mean (𝑀0=3.67 >𝑀𝑅=2.46), Secondly, the students 

initially indicated that they did not see the difference between the equation and 

inequality but after the GC use this does not hold. This is supported by the large 

value of the post-survey mean (𝑀0 = 3.67 >  𝑀𝑅=2.57). The students further 

indicated that determining the solution sets of quadratic inequalities after finding the 

critical values was no longer an issue. This is justified by the pre-survey mean 

(𝑀𝑅=2.49) which is less than the post-survey mean (𝑀0=4.57). Next, students 

revealed that they had difficulties in determining factors of quadratic expressions 

(inequalities) before the GC use. This reflected by the post-survey mean which 

increased after the intervention (𝑀0=3.09 > 𝑀𝑅=2.84). Fifth, students indicated that 

initially they did not know the difference between critical values and 𝑥-intercepts of 

the graphs but after the GC use they can. The large post-survey mean supports this 

claim (𝑀0=3.57 > 𝑀𝑅=2.61). Sixth, students further revealed that before the GC 

intervention they used memorise quadratic inequalities in order to understand. The 

mean of the post-survey shows that the learning improved after the GC use 

(𝑀0=4.10 > 𝑀𝑅=2.67). Seventh, the large post-survey mean reveals that the learning 

of quadratic inequalities was enjoyable after the GC use (𝑀0=3.84 > 𝑀𝑅=2.24). 

Eighth, students indicated that they had difficulties to use graphical sketches to 

determine the solutions of quadratic inequalities before the GC use. This is reflected 

in survey means where the pre-survey is smaller than the post-survey 

(𝑀𝑅=2.77< 𝑀𝑂=3.71). Ninth, students indicated that given an opportunity of not to 

learn quadratic inequalities they were going to do so before the GC use. The small 

pre-survey mean (𝑀𝑅=2.21) compared to post-survey mean (𝑀0=3.71) reflected that 

the GC use has brought confidence in learning quadratic inequalities. Before the GC 

use students fewer students did not believe that the use of technology (e.g., 

computers) could help them to understand quadratic inequalities. The large post-

survey mean indicates that more students appreciate the role of the GC in learning. 

Generally, the results from the Table 6.7 show that the use of the GC brought new 

development on the students’ perceptions towards the learning of quadratic 

inequalities. This was supported by the post-survey means that were greater than 

the pre-survey means in all the items. The overall student responses showed that 

the use of the GC supported the students’ learning of quadratic inequalities. Initially 

students indicated that given an option of not learning quadratic inequalities they 
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were going to do so because they were neither enjoying nor understanding the topic. 

This is consistent with the findings of the earlier researchers who indicated that the 

use of the GC would develop visual images which can help students to construct 

their understanding (Spinato, 2011; Karadeniz, 2015) and provide a more meaningful 

interpretation for the solution (Doerr & Zangor, 2000). This shows that the GC use 

minimizes the use of algorithms and memorization (Knuth, 2000) which leads to 

surface level understanding and makes students experience challenges in solving 

problems (McTighe & Self, 2003; Snyder & Snyder, 2008; Kohler, 2010).  

6.7.2 Student’s perceptions on how the GC supported the learning sessions   

This section intended to answer the fourth research sub-question by analysing the 

results of students’ responses on how they perceived about the GC use in the 

designed sessions of learning quadratic inequalities.  

What perceptions do students have on the pedagogical use of the 
graphing calculators in learning quadratic inequalities? 

In that context students were issued with an eight item post-intervention survey to 

answer. Student perceptions were measured using a Likert scale in which students 

marked 1 if they strongly disagreed, 2 if they disagreed, 3 if they were not sure, 4 if 

they agreed, and 5 if they strongly agreed. Students’ responses were captured in 

Table 6.8 below.  

Table 6. 8: Student’s perceptions on how the GC supported the learning sessions 
 
ITEM 

Students’ perceptions of the effects of graphing 
calculator on the designed sessions of  learning 
quadratic inequalities                                    

SA 
(%) 

A 
(%) 

N 
(%) 

D 
(%) 

SD 
(%) 

SPGC 1 The use of the in learning sessions assisted me to solve 
symbolic (algebraic) quadratic inequalities  

20 46 15 11 8 

SPGC 2 The use of the GC in learning sessions assisted me to 
understand the difference between critical values and 
zeros of the graph 

25 49 11 9 6 

SPGC 3 The use of the GC in learning sessions assisted me to 
identify correctly the region of the inequality solution 

14 57 9 14 6 

SPGC 4 The use of the GC in learning sessions assisted me to 
understand contextual (application) problems of quadratic 
inequalities  

20 54 11 6 9 

SPGC 5 The use of the GC in learning sessions assisted me to use 
graphical sketches when solving quadratic inequalities  

23 60 8 6 3 

SPGC 6 The use of the GC in learning sessions assisted me to 
understand the effect of the parameter ‘a’ in the quadratic 
inequality 

28 46 11 9 6 

SPGC 7 The use of the GC in learning sessions assisted me to 
note that the effect of the parameter ‘a’ of quadratic 
function had the same effect on quadratic inequality  

22 49 17 6 6 

SPGC 8 The use of the GC in learning sessions assisted me to 
learn and understand much better quadratic inequalities 

31 46 11 9 3 
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1 = strongly disagree, 2 = disagree, 3=not sure, 4 = agree, and 5 = strongly agree 

Table 6.8 shows that 66% of the students strongly agreed or agreed that the use of 

the GC in the learning sessions assisted them to solve symbolic (algebraic) 

quadratic inequalities. Seventy five percent of the students admitted that the use of 

the GC in learning sessions assisted them to see the difference between critical 

values and zeros of the graphs. Students affirmed (strongly agreed or agreed) that 

the use of the GC in learning sessions assisted them to identify correctly the region 

of the inequality solution (71%). Seventy four percent of students strongly agreed or 

agreed that the use of the GC in learning sessions assisted them to understand 

contextual (application) problems of quadratic inequalities. However 11% of them 

were not sure whether the use of the GC helped to understand contextual problems. 

Eighty three percent of students strongly agreed or agreed that the use of the GC in 

learning sessions assisted them to use graphical sketches when solving quadratic 

inequalities. Only 15% percent of the students strongly disagreed or disagreed that 

the use of graphing calculator in learning sessions assisted them to understand the 

effect of the parameter ‘a’ in the quadratic inequality. Only four students (12%) 

strongly disagreed or disagreed that the use of the GC in learning sessions assisted 

them to notice the effect of the parameter ‘a’ of quadratic function had the same 

effect on quadratic inequality. Seventy seven percent of the students strongly agreed 

or agreed that the use of the GC in the learning sessions assisted them to learn and 

understand the topic of quadratic inequalities better. This means that the students 

overwhelmingly perceived that the use of the GC assisted them to learn quadratic 

inequalities effectively.  

The researcher partially concluded that the use of the GC in the planned sessions 

helped the students to understand the quadratic inequalities as they were able to 

identify quadratic inequality with the shapes of the quadratic graphs, to see the effect 

of the parameter “a” on the different graphs, to use the graphs to solve quadratic 

inequalities, to transform contextual problems into symbolic quadratic inequalities 

and to determine the region of the solution. These are considered as the main 

procedures that can lead the students to learn quadratic inequalities effectively. The 

results are in line with the roles of the GC identified by the previous researchers 

(Averbeck, 2000; Karadeniz, 2015; Lee & McDougall, 2010). They also perceived 

that the effect of the different parameters were the same for all the quadratic 
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functions and inequalities expressed in the form of 𝑎(𝑥 + 𝑝)2 + 𝑞 ≥≤ 0 𝑜𝑟 𝑎𝑥2 + 𝑏𝑥 +

𝑐 ≤≥ 0. The use of the GC created a supportive environment in the sessions (Lee & 

McDougall, 2010) and provided students with a more meaningful interpretation for 

the solution (Doerr & Zangor, 2000). During the sessions students used both 

graphical and graphing calculator approaches which provided them with more 

visualization to meaningfully solve quadratic inequalities (Karadeniz, 2015). The 

consistently use of the GC in their quadratic inequality sessions helped students 

enhance their knowledge and understanding (Lee & McDougall, 2010). These results 

were triangulated with their responses from the in-depth and focus group interviews 

on how the GC use helped them to understand quadratic inequalities. 

6.8  Results from the in-depth interviews about the GC use in quadratic 
inequalities  

This section of in-depth interview with students mainly attempted to address the 

fourth research sub-questions about the students’ perceptions on the use of the GC 

in learning quadratic inequalities.  

What perceptions do students have on the pedagogical use of the 
graphing calculators in learning quadratic inequalities? 

An in-depth interview was conducted with the three students who were purposefully 

sampled from those who had obtained marks below average, average and above 

average from the post–test. They were individually interviewed after school on a 

regular school day in their classroom. Each interviewee lasted for approximately 

thirty minutes. The in-depth interview was recorded and then transcribed. The 

interview consisted of ten questions which were mainly about the use of the GC on 

students’ understanding of quadratic inequalities.  

The codes used in the interview are TR for the teacher-researcher and BD for 

School B student in the in-depth interview (D). They were interviewed separately, but 

for convenience their responses are given together below. The responses of the in-

depth interview questions are discussed in the following sub-sections:   
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6.8.1  Students’ responses on how the use of the GC made easier students’ learning 
of quadratic inequalities  

The question asked by the teacher-researcher below sought to find out the students’ 

opinions about whether the use of the GC made their learning of quadratic 

inequalities easier. Students’ responses were almost similar as shown below:  

TR:              Does the use of GC make your learning of quadratic inequalities easier 

to understand?  Please explain your answer. 

Interview with Student AD1 

Student BD1: Yes because I get the x-values at the same time without doing long 
steps. These x-values help me to find the solutions of the quadratic 
inequalities. 

TR:   Getting the x-values at the same time doesn’t affect your 
understanding? 

Student BD1: No, I don’t have to calculate the critical values as they are displayed 
on the GC screen as x-intercepts and show the solution set of the 
inequality.  

Interview with Student BD2 

Student BD2: Yes it does, because the GC shows the critical values and how the 
graph goes.  

TR:          What do you mean, “the GC shows the critical values and how the graph 
goes?” 

Student BD2: The critical values help to determine the solution of the quadratic 
inequality and I can see where the graph cuts the x-axis. 

Interview with Student BD3 

Student BD3: Yes it does, because the graphing calculator gives us the critical 
values that we need and shows us if the graph is below or above the x-
axis.  

TR:           Can you give clarity what you mean by “it shows us that the graph is 
below or above this x-axis.” 

Student BD3: The GC indicates whether the solution is above or below the x-axis. 
This means the solution can be within or outside the critical values.  

TR:           Ok. Thank you very much. 

Interpretation of students’ responses 

Students’ responses were positive and almost similar as they affirmed that their 

learning of quadratic inequalities had been made easier after the use of GC. 

Students did explain that “the x-intercepts, critical values and the region of the 

solutions of the quadratic inequality are always shown on the GC.” The displayed 
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information on the GC enabled the students to see how the quadratic inequality was 

solved graphically as shown in Figure 6.10, below.  

 

Figure 6. 10: Solution of the quadratic inequality displayed on the GC screen 

 

In this case, the graph indicates that the solution set of quadratic inequality is a 

disjunction of 𝑥 = −1 and 𝑥 = 3. The use of the GC, according to students, 

demonstrates that the solution is within or outside the critical values. Using the 

displayed information in Figure 6.12 the solution is outside the critical values. 

However, there are instances when the displayed information can be presented in 

the form of quadratic graph. This means that through the use of the GC, students 

were able to visualise the graphs with critical values which made it easy to determine 

the solution of inequalities. The visual images of the graphical representations 

contributed to the improved learning of quadratic inequalities as shown by reference 

to ‘shows us if the solution on the graph is below or above the x-axis’. Students 

benefitted from the visualisation capabilities of the GC which made them understand 

easily the relationship/connections between the graphs and solutions of quadratic 

inequalities. 

6.8.2 Students’ responses to how the use of the GC helped them to feel comfortable 

with quadratic inequalities  

The question below sought to find out the students’ opinions about whether the use 

of the GC helped them feel more comfortable with quadratic inequalities. This 

question is part of in-depth interview which attempts to answer the first research 

question. Students’ responses were almost similar as shown below:  

TR:         Does the use of the GC help you to feel more comfortable with quadratic 

inequalities? 
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Interview with Student BD1 

Student BD1: Yes, I am comfortable. I used to face some challenges with quadratic 
inequalities before I used graphing calculator.  

TR: Do you still have those challenges?  
Student BD1:  Ah no. Using his hand to demonstrate sometimes, sometimes but I am 

ok. 

Interview with Student BD2 

Student BD2:  Yes it does. I used to be afraid of learning quadratic inequalities but 
after the use of the GC I am different.  

TR:                Explain how the use of the GC contributed to your comfortability. 
Student BD2: With the use of the GC, I get the needed information about quadratic 

inequalities that I will always remember. 

Interview with Student BD3 

Student BD3: Yes, it does. I am comfortable with solving quadratic inequalities. 
TR:             Please explain your answer. 
Student BD3: You can use the graph displayed on the GC to determine the solution 

of the quadratic inequality. You practise solving many problems and this 
boosted my confidence in learning quadratic inequalities.  

TR:           Ok. Thank you very much. 

Interpretation of students’ responses 

Students’ responses were positive and almost similar as they have expressed 

confidence in the learning of quadratic inequalities with the use of the GC. This 

implies that the use of the graphing calculator provided an enabling environment for 

learning quadratic inequalities. Student BD1 and BD2 gave an affective answer of a 

reduced mathematics anxiety thus “challenge” and “afraid” of learning quadratic 

inequalities. Student BD2 emphatically indicated that the use of the GC ‘gives … 

information’ she will ‘always remember’. Student BD3 affirms that GC use ‘boosted’ 

her confidence as she was able to see graphic representations. This means the use 

of the GC stimulated the use of graphical sketches as objects/models that could help 

students to determine the solutions of quadratic inequalities.  

6.8.3  Students’ responses to whether the GC should be used in learning quadratic 
inequalities  

The question sought students’ opinions on whether GC should be used in learning 

quadratic inequalities or not. The students’ opinions were positive and quite similar 

as shown below:  
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TR:   Should graphing calculators be used in learning quadratic inequalities 
at the eleventh grade?  

Student BD1: Yes it should be used it is easier to understand the GC than the 
teacher working on the chalk board.  

TR:   Is the use of the GC not affecting your thinking?  
Student BD1: Ah no. With the use of the GC I can substitute the values of x to check 

my solutions.  
TR:           Does it mean you prefer the use of the GC to your teacher? 
Student BD1: No it’s not that. The teacher is always needed for explaining where I 

am not clear. 

Interview with Student BD2 

Student AD2: Yes, it must be used instead of having the teacher doing all the steps 
for the learners. The GC helped me to answer many questions on my 
own. 

TR:            Does it mean the teacher must be eliminated from classroom and give 
space to the use of the GC? 

Student BD2: No. But the GC helped me to understand more methods including 
using the graphs. 

Interview with Student BD3 

Student BD3: Definitely, it must be accepted in the mathematics classroom.  
TR:               Please explain your opinion. 
Student BD3: The use of the GC simplifies the difficulties that learners have in 

quadratic inequalities. The GC helps to figure out how the graph would 
look like and make it easy to decide the region of the solutions. 

Interpretation of students’ responses 

Most of the students responded similarly to this question as they supported the use 

of the GC in learning of quadratic inequalities. This clearly means that with its 

capabilities, the GC afforded students opportunities to learn better quadratic 

inequalities. Student BD3 emphatically affirms by saying ‘definitely’ and also gives 

additional reason as giving learners opportunities to ‘figure out how the graph looks 

like’ and ‘the region of the solutions’. This means the GC was used as a 

psychological tool to produce enjoyment through its use. This is linked up with the 

socio-cultural theory of Vygotsky. Student BD1 viewed the importance of a GC as an 

instructional tool and checking tool in his learning that should be complemented by 

his teacher’s voice. Student BD2 indicated that the use of the GC provides students 

with opportunities for “understanding more methods including using the graphs” and 

it reduces “teacher domination” during lessons. However, Students BD1 and BD2 

emphasised the need for the teacher to be there to “support” and “explain” to them 
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where they don’t understand. They viewed the teacher as an additional resource to 

the GC who can attend their individual differences in the classroom. This is aligned 

to the findings made by Ndlovu (2014) that technology cannot orchestrate itself to 

articulate mathematical understandings to learners. This is aligned to the schemes of 

instrumented actions in the theory of instrumental approach.  

6.8.4  Students’ responses on how the use of the GC helped them to do homework 
and other activities of quadratic inequalities  

The question asked if the use of the GC helped students to do homework and class 

activities of quadratic inequalities independently. Students’ responses were positive 

and almost similar.  

TR:          Was the use of the GC helpful in doing homework and other class activities 

of quadratic inequalities independently? 

Interview with Student BD1 

Student BD1: “Yes it was helpful. 
 TR:              Please justify your answer 
Student BD1: The use of the GC helped me to trust my answers as it was easy to 

check if I’m right and it helped me to practise answering many of these. 
My homework was easy to do because I had done many similar 
questions of quadratic inequalities on my own using the GC.  

Interview with Student BD2 

Student BD2: I did not use the GC to write homework because I didn’t have it. 
TR:         Suppose you had one was it going to be helpful? 
Student BD2: Yes it does help. 
TR:              Please explain your answer  
Student BD2: The GC makes it easier for me to solve inequalities. It helped me to 

gain the knowledge of drawing graphs and interpret them. With more 
practice that I had on the use of the GC I would be able to do 
homework independently of solving inequalities.  

Interview with Student BD3 

Student BD3: Yes it does  
TR:              Please explain your answer  
Student BD3: The GC shows graphs with critical values and where the solutions 

could be. Then the final solution becomes much simpler to determine. 
Again the GC can correct my mistakes and always did the homework 
by myself. 

The responses from the students seemed to be similar and confirmed their 

independence on writing any activity involving quadratic inequality after the use of 
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the GC.  For example, I did the homework “on my own”, “independently” and “by 

myself”. Student BD1 indicated that the GC helped him to “trust my answers” and 

student BD2, on the other hand gained “the knowledge of drawing and interpreting 

graphs”.  Student BD3 felt the use of the GC simplified her homework as she was 

able to interpret the displayed the graphs and critical values to determine the 

solutions of quadratic inequalities. 

6.8.5 Students’ experiences of using the GC in learning quadratic inequalities  

This question solicited students’ experiences after using the GC to solve quadratic 

inequalities in a mathematics classroom. The student interviewees were asked to 

relate their experiences. Students expressed exciting experiences, as the responses 

given below show:  

Interview with Student BD1 

TR:              How can you explain your experiences of using the GC in learning 

quadratic   inequalities? 

Student BD1: It was interesting  

TR: Please explain your experience  

Student BD1: As it was a first time to use a programmable GC in learning quadratic 

inequality it brought joy and unforgettable experience. It gave me more 

knowledge of solving quadratic inequalities using graphs. It reduced the 

difficulties I had on quadratic inequalities. 

Interview with Student BD2 

TR:           How can you explain your experiences of using the GC in learning 
quadratic   inequalities? 

Student BD2: It was great and awesome 
TR:  Please relate your experience  
Student BD2: I learnt new ways of solving inequalities and it was my first time to use 

a graphing calculator. I learnt to draw a quadratic graph on the GC and 

also to solve quadratic inequalities using the drawn graph. The critical 

values are indicated and as well as where the solutions lies. Now I know 

the importance of the parameter value in solving quadratic inequalities.  

Interview with Student BD3 

TR:           How can you explain your experiences of using the GC in learning 
quadratic   inequalities? 
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Student BD3: It was exciting and very interesting 
TR:  Tell us how exciting was? 
Student BD3:  It was the first time to use the GC and it enabled me to solve 

quadratic inequalities which the topic used to be so difficult for me. It was 
very interesting to learn quadratic inequalities using graphs.  

TR:  Didn’t the use of the GC affect your thinking? 
Student BD3:  Definitely no. Instead it inspired me to use sketches and graphs when 

solving quadratic inequalities. It helped to figure out how the graph will 
look like always. 

Interpretation of the students’ responses 

The responses of the three students revealed that they had ‘interesting’, ‘great’ and 

‘exciting’ experiences with the use of the GC in solving quadratic inequalities. The 

use of the GC in quadratic inequalities brought ‘joy and unforgettable’ experience to 

student BD1 as he was no longer facing difficulties. Similarly, the ‘first time’ 

experience of other two students (BD2 & BD3) to use a graphing calculator brought 

new approaches such as graphs to solve quadratic inequalities. Students were able 

see the solutions of the quadratic inequalities displayed as drawn graphs on the 

screen when using a GC (see Figure 6.13, below). Student BD2 further stated that 

the use of the GC helped her to understand the effect of the parameter of a quadratic 

function when solving quadratic inequalities. On the other hand student BD3 

emphasised how she was inspired to use sketches and graphs. All the three 

students indicated that the GC use reduced the levels of their difficulty with quadratic 

inequality problem solving.  

             

 Figure 6. 11: Solving quadratic inequalities graphically 

This means that the GC acted as a visual aid tool (visualisation tool) and provided 

the students with opportunity to see how the solutions are presented graphically. 

This is in line with the fact that what a child has seen it’s hard to forget. This means 

that the sketched graphs were used as visual objects to aid their conceptual 

𝑥2 + 2𝑥 − 8 ≥ 0 

(𝑥 − 2)(𝑥 + 4) ≥ 0 

𝑥 = −4 𝑜𝑟 𝑥 − 2 

Solving quadratic inequalities graphically 

                     (−∞, −4] ∪ [2, ∞) 
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understanding of quadratic inequalities (i.e., to figure out how the graph will look like 

always). All the three students indicated that they used the GC as to solve and graph 

quadratic inequalities in order to understand better the topic (i.e. the instrumentation 

process). This is consistent with the theory of instrumental genesis (Trouche, 2004).  

6.8.6  Students’ responses on how the use of the GC helped them to score better 
marks on quadratic inequalities 

This question asked if the use of the GC helped students to score better marks on 

quadratic inequalities and to rate themselves between 0 and 5, a 5 being the highest. 

All the students confidently affirmed better marks after the use of graphing calculator.  

Interview with Student BD1 

TR:             Did the use of the GC make you score better results in quadratic 
inequalities? 

Student BD1: Yes, it was.  
TR:             Explain what made them to improve after using the GC. 
Student BD1: My marks are much better. I used to face challenges with quadratic 

inequalities but now I have improved a lot.  
TR:          In that case, how can you rate your level of understanding? 
Student BD1: I would rate my level of understanding between 31/2 and 4 
TR:  Why rate yourself with a 31/2?  
Student BD1: Ok a 4 

Interview with Student BD2 

TR:         Did the use of the GC make you score better results in quadratic 
inequalities? 

Student BD2: Yes, it does. 
TR:            Explain what made you to score better after using GC. 
Student BD2: With the use of the GC I have gained more about solving quadratic 

inequalities.  
TR:          In that case, how can you rate your level of understanding in quadratic 

inequalities after the use of the GC? 
Student BD2: I rate myself at 4 because there has been an improvement since. 

Interview with Student BD3 

TR:         Did the use of the GC make you score better results in quadratic 
inequalities? 

Student BD3: Yes, I can confirm that. 
TR:              Explain what made you to improve after using the GC. 
Student BD3: Because when you use a GC the chances of you knowing the basics 

of the quadratic inequalities are high. 
TR:             In this case, how can you rate your level of understanding? 
Student BD3: I rate myself slightly above a 3. 
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TR:             Thank you very much. 

Interpretation of the students’ responses 

The responses of the three students were almost similar and they rated themselves 

with a 4. The students felt that the use of the GC made their results better in solving 

quadratic inequalities. Student BD3 argued that the GC helped her to know the 

basics of the quadratic inequalities. The teacher-researcher noted that Student BD1 

was not certain with his rating but he justified that his challenges were then over. 

Conversely, student BD2 gained self-confidence in solving quadratic inequalities and 

had been active in classes of the quadratic inequalities. 

6.9. Reflections, design principles and feed-forward of the research cycle  

This final section of the chapter presented the reflection and design principles of the 

research cycle at School A and the way forward for the next cycle. The researcher 

looked back at the teaching experiment and designed the principles of the first cycle 

and then concluded by formula the feed-forward for the second research cycle to be 

implemented at School C.   

6.9.1. Reflecting on the starting points and learning outcomes of the HLT  

In Section 6.2, the researcher set out the expectations as starting points of this 

design study concerning the opportunities that graphing calculators (GC) would offer 

for the students in order to achieve the higher level of understanding of the quadratic 

inequalities. In this current section, the researcher evaluated those expectations one 

by one to find out if they were confirmed in School B.  

The first learning outcome in session two was that students would develop the 

notions of interval notations, parameters, x-intercepts and quadratic graphs in a 

flexible graphing calculator environment, including the additional expectations (cf: 

section 6.3).  During the teaching experiment at School B, students were confronted 

with questions that were mathematically similar but with different coefficients of 𝑥2 

(see Session 2 in Appendix D). More emphasis was given to the use of quadratic 

graphs which was viewed as a challenge in the first cycle. Students were given 

additional activities on quadratic graphic properties and were engaged in groups. 

The use of the GC indeed proved to be an appropriate instructional artefact for 

helping students to generate a family of graphs in the same system of axes. In 
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addition, the use of the GC helped students to visualise the graphs displayed on the 

screens and enabled them to understand their properties (e.g., zeros, intervals, axis 

of symmetry, concavity and domain). On the other hand, students were able to make 

repetitions of graphing quadratic functions using the GC and this made them develop 

and reify the key pre-concepts of quadratic inequalities. As it was anticipated that the 

use of GC would provide a flexible environment for students to understand quadratic 

graphs and their properties, this was moderately achieved.  Almost all the students’ 

attempts and discussions on quadratic inequalities had graphs with x-intercepts and 

students were able to recognise the concavity of quadratic functions with respect to 

the coefficients of 𝑥2. This is a positive sign towards understanding quadratic 

inequalities. In this regard, the use of GC effectively supported the transition from the 

graphical representation to quadratic inequality representation.  

The second learning outcome blended with the third in sessions 3 and 4 was that 

students would develop the notions of solving quadratic inequalities in a flexible 

graphing calculator environment. This means students were supposed to use their 

knowledge of quadratic functions and equations towards solving symbolic quadratic 

inequalities, which demand routine reasoning skills. During the teaching experiment 

at School B, students were confronted with questions that were mathematically 

similar but with different levels of difficulties (see Sessions 3 and 4 in Appendix D). 

Students were supposed to use the GC as an instructional artefact, in particular the 

graphic and tabular instrumentations to solve the symbolic quadratic inequalities. 

Students were involved in the instrumented action schemes for graphing and tabling 

that could lead to a better instrumentation (i.e., the fourth additional expectation). 

These instrumented action schemes allowed students to repeat the processes of 

graphing and tabling the values and supported them develop and reify the concept of 

quadratic inequalities. Through the repetition of the processes the students realized 

that changing the parameter values affected the complete quadratic graphs and 

inequality solution sets. The graphical visualization of this effect (i.e., changing the 

parameters) created a strong mental image for the students. The impression is that 

most of the students started to perceive graphs and inequalities as entities that could 

symbolize objects. The use of graphical representations (models) made students to 

extend their graphical conception of the quadratic functions towards the view of 

understanding the symbolic quadratic inequalities. In particular, the 𝑥-intercepts of 
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the graphs were used as the boundaries for deciding whether the quadratic 

inequality solutions are within or outside them. The graphical models mediated very 

well between the quadratic equations and quadratic inequalities. Notably, the 

graphical schemes of the graphing calculators were helpful for visualizing the effects 

of parameters and the properties of graphs. Furthermore, students used the tabular 

instrumented action scheme to check for the solutions in the table of values 

displayed on the GC. The understanding and interpretation of graphs and 

inequalities has improved and the students’ performance in the post-test questions 

similar to those in sessions 3 and 4 was good. The researcher, for this reason, 

concluded that the use of graph and tabular instrumented action schemes 

moderately facilitated the transition from the graphical and tabular representations to 

quadratic inequality representations.  

The fourth expectation inscribed in sessions 5 and 6 was that students would 

develop the higher order problem solving and reasoning skills in contextual quadratic 

inequality situations in a flexible graphing calculator environment. This means that 

the transition from the symbolic quadratic inequalities to the contextual quadratic 

inequality situations was to be brought about by the use of the GC. In that regard, 

students were supposed to use their routine reasoning skills of solving symbolic 

quadratic inequalities into solving contextual quadratic inequality situations. During 

the teaching experiment at School B, students were confronted with questions that 

were mathematically similar but with different levels of difficulties (see Sessions 5 

and 6 in Appendix D). Students were engaged in the use of the GC as an 

instructional artefact to solve the contextual quadratic inequality problems. The 

consistent use of the GC enabled students to extend their routine reasoning skills 

towards the non-routine reasoning and problem-solving skills in contextual quadratic 

inequality situations. In these sessions students interacted with questions that 

demanded the previous routine reasoning processes in developing non-routine skills 

which were mediated by the use of the GC. In that regard, students were able to 

convert the contextual situations into quadratic inequalities with one variable as 

required by the CAPS FET Mathematics document and solved them similarly as 

symbolic quadratic inequalities. With the use of the graphical representations 

displayed on the GC screens, students were able to extend their understanding of 

the symbolic towards the view of understanding contextual situations. The graphical 
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models successfully mediated between the symbolic and contextual situations as it 

was further observed that the students attempted well question 4 and fairly question 

5 in the post-test. However, the understanding and interpretation of such contextual 

quadratic inequality problems remained a hard issue for some students. For that 

reason, these difficulties continued to prevail in both sessions and post-test with 

similar questions that demanded the same reasoning and problem solving 

processes. The researcher therefore concluded that the use of the GC did not 

adequately support the transition from the symbolic quadratic inequalities (the 

routine skills) towards the contextual quadratic inequality situations (non-routine 

skills) of solving quadratic inequalities. 

6.9.2. Reflections on the in-depth interviews with students 

The responses of the students from the in-depth interviews affirmed that the use of 

the graphing calculator provided an enabling environment for learning quadratic 

inequalities. In their arguments, they revealed that their learning of quadratic 

inequalities had been made easier after the use of GC and they were able to see 

how the quadratic inequalities were solved graphically. Students further contributed 

that the use of the graphical sketches assisted them to determine the regions of the 

solution sets of quadratic inequalities and were enabled to visualise the solutions of 

quadratic inequalities on the GC screens. Through the process of visualisation 

students were able to establish the relationship between the quadratic graphs and 

quadratic inequality solutions. As revealed in the interviews, the visual images of the 

graphic representations improved the learning of quadratic inequalities. Additionally, 

they affirmed that the use of the GC influenced them to link algebraic methods with 

graphs i.e., graphs being drawn as aid for solving quadratic inequalities. This was 

affirmed by student BD3, “by looking at the inequality I can figure out how the graph 

will look like and where its solution set will be”. The linking of the graphical and 

algebraic representations is one of the recommendations of the CAPS for FET 

Mathematics document (DBE, 2011), expressed emphatically in the NSC 

Examination Diagnostic Reports that students must solve quadratic inequalities by 

integrating both methods (DBE, 2014; 2015; 2016; 2017). Ultimately, students 

expressed enjoyment and confidence in the learning of quadratic inequalities with 

the use of the GC and indicated that it was instrumental towards their understanding 

of quadratic inequalities. A significant number of students presented their work with 
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graphs and some of graphs were not relevant. This is a sign that the use of the GC 

had “inspired the use of the graph” as indicated by student DB3. However, not all the 

students made use of the graphical models to illustrate their solutions in answering 

the post-test. This means that although these students appreciated the graphical 

meaning of an algebraic solution they apparently could not connect the two 

representations as expected. Despite the fact that students had ‘interesting’, ‘great’ 

and ‘awesome’ experiences with the use of the GC in solving quadratic inequalities, 

they still valued the presence of the teacher as an additional resource to the GC who 

can attend their individual differences in the classroom. 

6.9.3. Reflecting on the focus group interviews  

The qualitative results of three students who were engaged in focus group interviews 

showed different levels of proficiency in relation to problem solving processes. The 

student’s problem solving processes were scored in terms of a) modelling an 

inequality, b) using algebraic approach, c) using graphical approach, d) verifying 

their solution including the use of the graphing calculator and e) obtaining a correct 

solution set (interval notation). The students’ work revealed that one of them did not 

confidently use the graphical approach even if the right graph was drawn and did not 

obtain correct solutions of contextual quadratic inequalities. However, all of the three 

were in a position to use the GC to verify their solutions when asked to do so. 

Evidently, this means on average the three problem-solving processes were 

performed well. With these results the teacher-researcher concluded that the second 

research question was moderately achieved. 

The results of the focus group interviews with students on their reasoning abilities in 

the contextual quadratic inequality problems revealed that students possessed 

average analytical reasoning which is a pre-requisite for understanding quadratic 

inequalities. Two thirds of students were able to identify at least two pre-concepts of 

quadratic inequalities and all of them stated at least one reasonable conclusion. It 

was further revealed that the students had average initiative reasoning skill of solving 

quadratic inequalities. Two of three students confidently used and explained the 

strategies (approaches) that they executed to solve the contextual quadratic 

inequality problem, which included algebraic, graphical and graphing calculator. 

Similarly, one of three students displayed moderate reflective or metacognitive 
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reasoning skills of solving the contextual quadratic inequality problem. This student 

was not able to reflect on their solutions of the contextual quadratic inequality 

problem through interpreting, justifying and checking and using alternative ways 

(using the graphic feature of the GC). It is evident that the use of the GC did not 

adequately develop the students’ reflective reasoning. This suggests that in the next 

cycle the emphasis of the teacher-researcher has to focus on the development of 

students’ metacognitive reasoning skills.  

It was noted that only one of three students was able to monitor her progress and 

verify her assumptions. In the next cycle the teacher-researcher’s focus should be on 

how to improve students’ reasoning skills on monitoring their progress. It was further 

observed that two of three students were able to seek and use connections between 

concepts and representations in the reasoning process of the contextual quadratic 

inequality situation. The use of both algebraic and graphing reasoning helped 

students to solve the problem. The researcher partially concluded that the use of the 

GC supported the students’ reasoning skills on seeking and using connections.   

The teacher-researcher observed that during the activity sessions the majority of the 

students were able to make inferences, draw conclusions and reflect on the 

reasonableness of their solutions of quadratic inequalities. The use of GC as an 

instructional tool provided opportunities for the students to analyse the inequality 

problems, interpret the solutions and to make predictions about the solution sets.  

This is in line with the constructivist teaching and learning which requires teachers to 

focus on the use of physical actions (graphing calculator) to promote the use of 

senses to construct the underlying meaning of concepts (Vygotsky, 1978), and 

students’ independent thinking and the control of their own learning situation (von 

Glasersfeld, 1996; Amineh & Asl, 2015). These actions are strongly connected to the 

processes of reasoning and problem solving.   

6.9.4. Feed-forward for the third cycle 

The findings of the second research cycle at School B informed the feed-forwards for 

the third research cycle. The feed-forwards of this cycle concerned the hypothetical 

learning trajectory, the instructional activities and the research methodology. 

The feed-forward concerning the HLT addressed the broad outline: Solving symbolic, 

routine and contextual quadratic inequality situations in a flexible graphing calculator 
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environment. The results from the teaching experiment suggested that the use of 

graphical approach was most helpful to students in solving quadratic inequalities 

because of its dynamic character and visual image. However, the use of GC did not 

support completely the conception of graphical approach as its properties including 

the interval notation, concavity and domain remained a challenge to the students. A 

second issue concerning the HLT was the use of GC to support the transition of 

symbolic quadratic inequalities towards the contextual quadratic inequalities which 

did not come across in a satisfying way. This can be attributed at least partially to 

difficulties with solving symbolic and routine quadratic inequalities, and the use of 

graphical strategy in particular. It is important to master this graphical technique, so 

that it does not hinder the generalization and visualisation processes. Thirdly on the 

HLT was the need for linking the algebraic and graphical approaches to holistically 

develop students’ reasoning skills and problem-solving abilities in solving quadratic 

inequalities. Students incompletely solved the contextual quadratic inequalities 

because they had moderately understood symbolic quadratic inequalities and 

partially developed their metacognitive and monitoring- reasoning skills. 

The feed-forward concerning the instructional activities focused on those teaching 

materials that needed more time for better understanding. A first point was that 

students needed more practice in using graphs to solve quadratic inequalities. 

Additional sessions were designed for students to work in groups using GC so the 

visual images can be retained. This approach was combined with the algebra in 

order to holistically solve quadratic inequalities. Students would further be engaged 

with the graphic and tabular instrumented action schemes in separated and 

integrated practice. As far as the role of the teacher-researcher is concerned, it is 

hoped that he would avail himself every time to explore his experience in the third 

cycle for orchestrating the learning process in class discussions and as an additional 

resource of information for the students.   

The feed-forward concerning the research methodology addressed the teaching 

experiments. The first point was to establish a better match between the pre-test and 

post-test, so that the improvements in understanding could be monitored during the 

teaching experiment. The second point was to conduct mini-interviews during the 

sessions on selected questions in order to provide appropriate and meaningful data. 

The third point was to organise students into groups and give them task to solve in 
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order to observe the students’ interaction and thinking; this would provide platform 

for those students who have many questions to be assisted.  

6.9.5 Design principles of the study 

This current design based study was driven by the pedagogical gap in the teaching 

and learning of quadratic inequalities. The researcher identified five fundamental 

principles of design-based research such as:  

1. Starting the topic of quadratic inequalities with the problems of real-life 

situations  

2. Considering small number of learners when learning quadratic inequalities 

experimentally in a flexible graphing calculator environments  

3. Using models, graphs and visual images in the teaching and learning of 

quadratic inequalities moves students’ thinking to formal reasoning and 

problem solving. 

4. Using the GC approach only cannot address all learning styles and must be 

complemented by other methods.  

5.  Discourage discussions that are not related to classroom objectives as they 

can distract the effective learning. 
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CHAPTER 7: THE THIRD CYCLE OF DBR TEACHING EXPERIMENT  

7.1. Introduction 

This chapter reports on the results of the DBR cycle at School C and focuses on the 

hypothetical learning trajectory, the learning experiences in the teaching experiment 

and, final reflections and a feed-forward to the future research. The teaching 

experiment sought to investigate how the designed HLT played out a grade 11 

classroom and whether the use of graphing calculator provided learning 

opportunities for improving the students’ understanding of the quadratic inequalities 

in an envisaged way.   

The re-designed HLT is described by the starting points and main activities included 

in the teaching materials and their expected learning outcomes in Section 7.2. 

Second, the participants and research procedures of the cycle are explained in 

Section 7.3. Third, the results of the pre- and post-tests are analysed in Section 7.4.  

Four, the results of the problem solving are analysed in Section 7.5. Fifth, Section 

7.6 presents the results of the focus group interviews with students. Sixth, the results 

of pre- and post-surveys are analysed in Section 7.7. The results of the in-depth 

interviews with students are discussed in Section 7.8. Finally, the chapter concludes 

with the reflections on the development of the HLT, feed forwards and design 

principles in Section 7.9. 

7.2 The HLT for the quadratic inequality concept in the third DBR cycle 

This section presents the HLT of the last DBR cycle in terms of the starting points 

and the expectations that were explored in this final teaching experiment in School 

C. In this context, the broad learning trajectory was motivated through attempting 

quadratic inequalities of the different cognitive levels. Then the activities that were 

supposed to bring about the transitions between the different learning processes of 

quadratic inequalities were later described. This could lead to re-affirm the broad 

HLT in quadratic inequalities: Solving routine, symbolic and concrete quadratic 

inequality problems in the graphing calculator environment enhances students’ 

understanding. Finally, graphic and tabular instrumentations are addressed in this 

broad learning trajectory. 
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7.2.1 Starting points and expectations for the concept of quadratic inequalities 

As with first and second research cycles, the starting point for the development of 

the HLT was the symbolic structure of quadratic inequalities for defining the concrete 

situations and the suggestions of how to achieve higher level of students’ 

understanding in the GC mediated environment. Furthermore, this last research 

cycle was built upon the experiences and the reflections (feed-forward) from the 

previous two research cycles. In essence, the approaches used in previous two 

research cycles were revisited. However, the reflections (feed-forward) of the second 

research cycle led to the following learning outcomes that were intended to improve 

the results and effectively inform the re-designed HLT for this last research cycle:  

1. In the second research cycle, the properties of the quadratic graphs including 

interval notations (domain), concavity and the effects of parameter 𝛼 were identified 

as the bottlenecks. Also students did not see the true meaning of interval notations; 

hence they gave meaningless solution sets. Specific attention to this would improve 

the students’ visualisation and presentation of the solution sets of quadratic 

inequalities in a flexible graphing calculator environment. 

2. In the second research cycle, the transition from the quadratic functions and 

equations to the symbolic quadratic inequalities was problematic, which was 

supposed to be fostered by using the graphic and tabular instrumented action 

schemes of the graphing calculator. For instance, the use of the graphic and tabular 

instrumented action schemes would support the students’ visualisation of graphs and 

reification of interval notations and concavity (the effects of parameter 𝛼) of quadratic 

functions. Specific attention was to improve students’ skills of quadratic functions 

and domains towards solving symbolic quadratic inequalities, which demand routine 

reasoning skills. 

3. In the second research cycle, the students did not understand the contextual 

problems of quadratic inequalities, which hindered their conceptual development. 

Therefore, being guided by the reality principle of RME theory, the use of real-life 

mathematical situations including linear inequalities as the starting point was 

supposed to help the conceptual development of quadratic inequalities at a 

referential level and foster meaningful generalization at the general level.  
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4. In the second research cycle, the transition from the routine problems to the 

contextual (complex) problems of quadratic inequalities was a hard issue for some 

students, which was supposed to be addressed by an earlier intertwinement of the 

algebraic and graphic representations. Therefore, the effective use of the GC on 

intertwinement would develop into an integrated approach that can stir up the 

students’ understanding of the quadratic inequalities and would diminish students’ 

difficulties. The learning in the GC environment was expected to allow for algebraic 

exploration and visual geometric representations in solving quadratic inequalities. 

7.2.2. The transitions for the learning activities in quadratic inequality concept 

The suggested steps toward solving the design problems are to broadly describe the 

learning activities that foster the transition to the higher understanding of quadratic 

inequalities. The transition from the quadratic graphs and interval notations to 

symbolic quadratic inequalities is expected to occur by confronting the students with 

several questions that are mathematically similar but have different parameter values 

(Session 2). The expectation here was that the students would perceive the similarity 

of the reasoning and problem-solving procedures in spite of the different parameter 

values.  

The transition from the quadratic functions and equations to the quadratic 

inequalities is expected to be brought about by a graphical approach, in which the 

parameter value changes gradually and systematically (Sessions 3 & 4). The student 

is asked to study the effect of the changing parameter value on the graph. Mentally, 

the student realizes that changing the parameter value affects the complete graph 

and quadratic inequality solution sets. The GC can be used in this transition for 

graphing a sequence of ‘shifting’ graphs and visualisation of the effects of the 

parameters on the quadratic graphs and their zeros for expressing in intervals.  

The transition from the symbolic quadratic inequalities to the contextual (complex) 

quadratic inequality problems is expected to be fostered by applying additional 

algebraic properties to the concrete situations and using the graphical 

representations (Sessions 5 & 6). The solving of the contextual quadratic inequalities 

involves the use and filtering of appropriate graphical properties (intersection points, 
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tangent points, vertices, roots). Such problems are expected to lead to a mental shift 

of students, so that they can apply reasoning and problem solving procedures. The 

use of the GC allows for this shift, because the graph and tabular instrumentations 

are expected to make students reify the concept of quadratic inequalities. The 

tabular instrumented scheme elicits to stimulate the students to use the concept of 

interval to reify the concept of quadratic inequality solutions. 

7.3. Participants and research procedures of the study 

The teaching experiment took place in a public high school with eleventh-grade 

class, thereafter the school is referred to as School C. A total of 45 students 

participated in this study and were randomly chosen from 92 eleventh graders. The 

participants were asked not to identify themselves on the pre-tests and post-tests, 

but rather to label their scripts with symbols given randomly by their teacher, such as 

C1, C2, C3,...,C45, where C represented the school. However, 10 students decided 

to withdraw their participation citing lack of commitment and transport reasons. Their 

results were not considered for the quantitative analysis.  

To collect the data for this third DBR cycle, the same procedures described in 

Section 5.3 were followed. Measuring which school did better than the other was not 

the intention of this study. This study concerned itself on measuring the improvement 

of students’ understanding of quadratic inequalities when the GC as a tool had been 

intervened. The improvement of the subsequent cycle solely depended on the 

limitations of the previous cycle, which were “the feed-forwards” (Drijvers, 2003).  

7.4. Comparative analysis of the students’ results of the pre- and post-tests  

This section presented and discussed the results of the pre- and post- tests and the 

written tasks which sought to answer the first research question: 

To what extent does the pedagogical use of GCs impact on students’ 
performance in solving quadratic inequalities? 

The results were also used to test the null hypothesis: H0: There is no difference 

between the pre-test mean and the post-test mean of quadratic inequalities for the 

students in the study (𝐻0: 𝜇1 (pre−test) = 𝜇2 (post−test). Alternatively, H1: There is a 

difference between the pre-test mean and post-test mean of quadratic inequalities 

for the different domains for the students in the study (𝐻1: 𝜇1 (pre−test) ≠ 𝜇2 
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(post−test).  The results of 35 students obtained in School C were compared and 

presented in paired samples t-test (Table 7.1) below.  

The analysis of results of School C showed that students performed much better in 

the post test (M=47.6571; SD=24.06846) than in the pre-test (M=27.6857; 

SD=15.92218). The results of the post-test reflected highest score of 90% from 63%. 

This could be attributable to effective intervention of the GC in the learning of 

quadratic inequalities. However, 7% was the lowest score for both the pre-test and 

post-test. The median mark (43%) of the post-test was also much better than that of 

the pre-test (23%). It is further noted that 14 out of the 35 students (40%) scored 

more than 50% in the post-test while only 3 (i.e., 8.57%) had done so in the pre-test. 

This suggests that there was a reasonable improvement in the post-test towards the 

understanding of quadratic inequalities. It was noted that the majority of the students 

used the graphs very well to solve the quadratic inequalities. From the results of the 

post-test the researcher concluded that the HLT was adjusted well enough to the 

level of the students as they incorporated the graphical sketches in solving quadratic 

inequalities. The idea of using real life situations as the starting point of the HLT 

could have also assisted to improve the students’ understanding of quadratic 

inequalities. This suggests that the students with competence of graphs were likely 

to express correctly the solution of the quadratic inequality. 

In the next table, a paired samples t-test was conducted to test the significance of 

the GC use on the students’ performance in solving quadratic inequalities. The use 

of the paired-samples t-test helped to test the null hypothesis, which stated that there 

was no difference between the pre-test mean and the post-test mean of quadratic 

inequalities for the students in the study (𝐻0: 𝜇1 (pre−test) = 𝜇2 (post−test). In that 

regard, Table 7.1 below presents the dependent (paired) samples t-test results of 

School C with paired differences of means of the pre- and post-tests of 35 students. 

The t-test results in the table show that t(34) = -3.755 and 𝑝 = 0.001. This means the 

actual probability value is 0.001 and it is substantially smaller than the specified 

alpha value of 0.05. These t-test results indicated that the null hypothesis was 

rejected at 5% significant level in favour of the alternative hypothesis. This means 

that there was a statistically significant difference between the students’ means of 

the pre- and post-test scores. In that context, there was a statistically significant 
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improvement of the students’ results after the use of the GC in the learning of 

quadratic inequalities.   

Table 7. 1: Dependent (paired) samples t-test of school C 

Pair 1 

                                          Paired Differences 

Mean 
Std. 

Deviation 

Std. Error 

Mean 

95% Confidence Interval 

of the Difference 
    

Sig(2-

tailed) 

Lower Upper T Df 

Pre-Test 

& Post-

test 

  

-1.99714E1 31.46659 5.31882 -30.78058 

 

-9.16228 -3.755 34 .001 

Although the results presented above indicated the statistically significant 

improvement in the test scores of students, they do not tell much about the 

magnitude of the GC intervention’s effect in solving quadratic inequalities. Because 

there was no control group for this particular task and limitation of statistical 

significance, the researcher proceeded to calculate the Cohen’s 𝑑 effect size statistic 

using the pre-test and post-test means  in order to determine the magnitude or 

practical significance of the difference in scores. The effect size was 0.8, indicating 

that the post-test mean is at 79% of the pre-test mean. This means that there was a 

large effect impacted by the use of the GC on learning quadratic inequalities (i.e., 

using Cohen’s, (1988) interpretation: 0.2=50%=small effect, 0.5=58%=medium effect 

and 0.8=79%= large effect). The researcher then concluded that there was a 

practically significant improvement of about 0.8 standard deviations in the mean 

scores from pre-test (M=27.69, SD=15.92) to post-test [M=47.66, SD=24.07, t(34)=-

3.755, p=0.001<0.005]. This study concludes that the pedagogical use of the GC 

impacted positively on the students’ performance in solving quadratic inequalities. 

This study did not investigate if the teaching and learning of quadratic inequalities 

with the GC is better than any approach without it, but to show that it can help with 

the understanding of the topic. The t-test results showed that there were learning 

gains not only for the purposeful sample of students but also for all the students that 

were exposed to the teaching intervention with GC and instructional materials. In 

reference to first and second cycles, the effects of the GC use were practically 

significant and results significantly improved at 5% level. The performance of School 

Stellenbosch University https://scholar.sun.ac.za



243 
 

C was the best with the highest post-test mean. The presentation of the solutions by 

students improved a lot, thus using correct interval notations and use of graphical 

approaches increased, in comparison with other cycles. However, School B had the 

largest Cohen 𝑑 effect size, signifying the greatest improvement in the post-test (cf: 

Sections 5.4 & 6.4).   

7.4.1 Students’ results in written tasks of symbolic quadratic inequalities  

The improvement of students’ performance in the post-test could be attributed to the 

written tasks during the teaching experiment. Students wrote a task with questions 

related to sessions 3 and 4 and was considered for analysis. These questions were 

meant to monitor the progress of the students in each session. The results of the 

students were analysed to determine what percentage of those who answered the 

symbolic quadratic inequalities correctly, incorrectly, blankly or incompletely and also 

used graphic approach (see Table 7.2), below.  

Table 7. 2: Students’ results of the written task about symbolic quadratic inequalities 

In Table 7.2, above each of the symbolic quadratic inequality questions was solved 

correctly by more than 50% of the students. This may suggest that at least 18 of the 

35 students had acquired adequate knowledge and routine skills for solving symbolic 

quadratic inequalities. However, Q4.3 had the highest percentage (63%) of correct 

solutions. The percentage of students who had incorrect or blank solutions was 

between 20 and 43. This can be viewed as an improvement in the understanding of 

quadratic inequalities, except in Q4.5. It was further observed that students had 

some difficulties in this question, thus the reason why it had the greatest 

percentages of incorrect (29%) and blank (14%). It was also observed that the same 

question had the least percentage students (6%) who had incomplete answers. An 

incomplete solution means that the student used the correct strategy but abandoned 

it before arriving to the solution. Precisely, it means the students were able to 

determine the critical values and/or sketch the graph but could not go beyond that.  

Inequality Correct 

% 

Incorrect 

% 

Blank 

% 

Incomplete 

% 

Graph 

Use (%) 

Others 
% 

None 
% 

 4.1   𝟒𝒙 + 𝒙𝟐 ≤ 𝟎 54 26 9 11 71 20 9 

4.2   (𝒙 + 𝟐)(𝟑𝒙 − 𝟕) ≥ 𝟎 60 17 9 14 60 23 17 

 4.3  𝒙𝟐 − 𝒙 − 𝟏𝟐 < 𝟎 63 14 6 17 69 20 11 

4.4  −(𝒙 − 𝟒)(𝒙 + 𝟓) < 𝟎 57 17 9 17 69 17 20 

 4.5  𝟐𝒙𝟐 − 𝟕𝒙 ≥ 𝟒 51 29 14 06 57 14 29 
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Students’ answers were supposed to be linked to the use of graphs in order to see 

the influence of GC. In this vein, it was observed that more than 55% of the students 

used graphs to determine the solutions of the inequalities. Between 14% and 23% of 

the students used other methods such as line graph and sign chart or table to 

determine the solutions of quadratic inequalities. A line graph dominated in other 

methods; this could be that a line graph is also shown on the graphing calculator 

when solving quadratic inequalities. This means the use of the GC supported the 

students’ abilities of using graphs when solving symbolic quadratic inequalities. It 

was observed that the highest percentage (29%) of students used none method to 

answer to question 4.5. See the purposefully sampled work of the two students with 

different approaches they used to answer the problematic question 4.5 in Figure 7.1 

below. It was evident that the use of the GC had great impact on students’ learning 

of quadratic inequalities in School C.  

  

Figure 7. 1: Students’ solutions of symbolic quadratic inequality questions 

Student SC12 used both algebraic and sign chart approaches to solve the symbolic 

quadratic inequalities. He perfectly combined the two strategies in such a way that 

he indicated the regions where the solutions represented the positive values. 

However the solutions were incorrectly written, thus using wrong interval notations 

and term ‘and’. This means the student does not understand the difference between 

“and” and “or” in quadratic inequality solutions (DBE, 2017).  

 

SC12 SC34 
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Student SC34 committed lot of misconceptions which greatly affected her ability to 

consistently produce the right answer. She did not apply the correct procedure of 

transposing a positive term as a result this affected the factorisation method. The 

linear factors (𝑖. 𝑒. , 2𝑥 + 1 ≥ 0 𝑜𝑟 𝑥 + 4 ≥ 0) were expressed with inequality signs 

logically following the quadratic inequality sign. Furthermore, she probably mixed up 

with the basic simultaneous linear inequalities (with one variable) in Grade 10. She 

gave the final answer for  𝑥 ≤ −4  or  𝑥 ≥ −
1

2
 as  𝑥 ≥ −4 or 𝑥 ≥ −

1

2
. Linking and 

understanding of algebraic and graphic approaches did not help her to solve this 

question correctly. She wrote the interval notations as solutions which were 

meaningless. She did not apply logical thinking to check the appropriateness of her 

solutions and it was like she gave her solutions procedurally.   

The sampled work of two students showed that the use of the GC had influence on 

the learning of quadratic inequalities. Students attempted to link algebraic (symbolic) 

and geometric (graphics, diagrams, lines) representations when solving quadratic 

inequalities. The use of the GC helped these students to use visual representations 

such as graphics, lines and diagrams to solve and understand quadratic inequalities. 

These models helped students with the visual representations which were expected 

to move their informal thinking away from the applications to the formal reasoning. 

This is consistent with the ideas of the level principle of RME theory that reflects the 

levels of reasoning development from horizontal to vertical mathematization. This 

was attainable through the consistent use of the GC and repetition of the processes. 

This is also in line with instrumented action schemes of the instrumental approach 

theory as students were able to integrate meaningfully the graphical and algebraic 

representations for supporting their reasoning and problem solving. 

7.4.2 Students’ results of written tasks in applications of quadratic inequalities 

The improvement of students’ performance noted in the post-test could be attributed 

to the written tasks during the teaching experiment, related to questions in session 5 

in Appendix D and was considered for analysis. The written task assisted to monitor 

the progress of the students. The results of the students were analysed to determine 

what percentage of those who answered the application problems of quadratic 

inequalities correctly, incorrectly, blankly or incompletely (see Table 7.3), below. .  
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Table 7. 3: Students’ answers in application of quadratic inequalities 
Question Application Correct 

% 
Incorrect 

% 
Blank 

% 
Incomplete 

% 

5.1 For what values of 𝒙 will √𝒙𝟐 − 𝟐𝟓 be 
real? 

 
63 

 
17 

 
11 

 
9 

5.2 For which values of 𝒙 will 

Q=√𝒙𝟐 − 𝟖𝒙 + 𝟏𝟐 be non-real? 

 
57 

 
20 

 
9 

 
14 

5.3 Given 𝒈(𝒙) = −𝒙𝟐 + 𝟕𝒙 + 𝟖 
For which values of x will g(x)>0? 

 
54 

 
26 

 
14 

 
6 

The analysis of the data in Table 7.3 revealed that 63%, 57% and 54% of the 

students respectively applied correctly quadratic inequalities to solve questions 5.1, 

5.2 and 5.3. This implies that students were able to understand the problems and 

transform them into quadratic inequalities and then selected the right strategies to 

solve them. The percentage of students who had incorrect or blank solutions was 

between 28 and 40; this can be viewed as an improvement in the understanding of 

problems involving the applications of the quadratic inequalities. However, question 

5.3 had the highest percentage (40%) of incorrect or blank solutions. These students 

need expanded opportunities to be adequately re-skilled in these problem areas of 

applications. Although the proportion (i.e., 9%, 14% and 6% respectively) of students 

who had incomplete solutions was very low for all the three questions, a repetition of 

similar problems supported by the use of the GC would help to develop students’ 

cognitive skills and confidence. The consistent use of the GC as visual artefact 

supported with teacher’s voice would reduce the percentage of students who had 

incorrect, blank or incomplete solutions. Students learn best when they construct 

their own mathematical understanding and they share their learning experience with 

others.  

A sample of two students’ answers was selected to show how they attempted 

question 5.3 an application problem involving quadratic inequalities in Figure 7.2, 

below. Student SC17 substituted 𝑔(𝑥) and expressed the quadratic inequality in 

standard form. The whole inequality was multiplied by a negative sign, converting it 

to a non-positive expression. In that regard, she correctly applied the strategy of 

quadratic inequality to solve the question concerned. The student did not factorise 

correctly but the wrong critical values were correctly indicated on a right graph. 

However, she wrote a meaningless solution (i.e., −1 < 𝑥 > 6). This means that the 

solution set was procedurally written without proper understanding of the interval 

notations. A right graph used as a model helped the student to figure out the correct 

region of the solution but she wrongly placed the inequality signs without logical 
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thinking. The meaningless answers given by students helped the teacher-researcher 

to teach logical thinking to students so that they can analyse and access their 

students logically (Smith, 2002). As corrective measure, students were taught to use 

the line graph to reflect on their solutions. This means a solution that makes sense 

can be represented on a line graph.  

      

Figure 7. 2: Student’s answers in application of quadratic inequalities 

 In Figure 7.2 above, student SC2 correctly converted the quadratic function into the 

quadratic inequality. He failed to convert this inequality to a non-positive expression 

after multiplying by a negative sign. He was able to factorise correctly and also drew 

a correct line graph. Using his positive quadratic inequality he correctly indicated the 

region of the solution sets.  However, he wrote a meaningless solution (i.e., −1 >

𝑥 > 6). This means that the solution set was procedurally written without proper 

understanding of the interval notations. The use of the GC to answer many similar 

questions was viewed as the best alternative of bringing out solution to this question. 

Students learn best when they construct their own mathematical understanding and 

they share their learning experiences with others. This is in line with the socio-

cultural learning theory by Vygotsky. Students used the correct language or terms in 

their application which is a tenet of this theory.  

The answers of the two students demonstrate the influence of the use of the GC on 

solving quadratic inequalities. The students used visual representations: graphic and 

line graph which are both displayed on the GC. This is consistent with the findings of 

earlier researchers that graphing calculators provide multiple approaches to studying 

functions, including graphical, numerical, algebraic approaches, and visualization of 

concepts (Karadeniz, 2015; Leng, 2011; Committee on the Undergraduate Program 

in Mathematics, 2004). This is an indication that the pedagogical affordances of the 

SC17 SC2 
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graphing calculator are closely related to the improved learning of mathematics 

(Choi-Koh, 2003; Leng, 2011; Roschelle & Singleton, 2008). 

7.4.3. Student answers in problem-solving questions  

In this section students were required to formulate and solve a real-life situation in 

quadratic inequality (see Session 6 in Appendix D). Immediately after receiving 

adequate teaching and learning of problem-solving involving quadratic inequality 

students were given a related real-life mathematical question below: 

The height of a ball above the ground after it is thrown upwards at 18 

metres per second can be modelled by the function ℎ(𝑥) = 18𝑥 − 3𝑥2, 

where the height ℎ(𝑥) is given in metres and the time 𝑥 is in seconds. At 

what time in its flight is the ball within 15 metres of the ground? 

The researcher used the rubric for scoring the students’ problem-solving abilities 

(QIPST) in Appendix E. Students were scored on how they understood the problem, 

devised a plan, carried out the plan and looked back after finding the solution. The 

results are shown in Figure 7.3, below. 

 

Figure 7. 3: Results of students’ problem-solving abilities in quadratic inequalities 

Fifty-one percent of the students correctly interpreted the problem, modelled the 

correct quadratic inequality, used the correct procedures that led to the solution and 

evaluated their solution correctly. A small proportion of students (9%) had incomplete 

solutions, which was classified in two categories by the researcher. The analysis 

revealed that (a) the students were able to identify the problem and set up the 
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correct quadratic inequality but did not solve the problem completely and (b) the 

students understood the problem, modelled correctly the quadratic inequality and 

used correct procedures to solve it but was not completed.  

On the other hand, a significant proportion of the students (29%) had incorrect 

solutions. The researcher made three analytical observations related to students’ 

incorrect solutions about their problem-solving abilities. The researcher concluded 

that (a) some students did not fully comprehend the problem; (b) some students 

understood the problem but did not know how to formulate a quadratic inequality 

from the context; (c) other students understood the problem and formulated the 

quadratic inequality but had difficulty in solving and checking the accuracy of their 

solutions.  

A substantial proportion (11%) of students left blank implying that no attempt was 

made at all to answer this problem. This is an indication that students had challenges 

in understanding the problem in its context. Forty percent of students who had 

incorrect or left blank did not comprehend the conceptual problem involving 

quadratic inequalities. This information might help in the planning for intervention 

tasks and for the future research. 

7.5. Students’ results of problem solving in quadratic inequalities 

This section presents the students’ results on problem solving strategies used when 

answering the post-test and the results of how the GC use supported their problem 

solving abilities when learning quadratic inequalities. 

7.5.1 Analysis of the student’s problem solving strategies in the post-test 

This section intended to answer the second research question, “In what ways (how) 

can the pedagogical use of the graphing calculator support the high school students’ 

problem solving ability in quadratic inequalities?”, through discussing the processes 

used by the students in applying problem solving strategies in Questions 5 and 6 of 

the post-test.  

This post-test question (Question 5) required students to determine the values of 𝑥 

for which √25 − 𝑥2  will be non-real.  The students applied quadratic inequalities to 

determine the values of x. The students were purposefully chosen because their 

written work represented the different problem solving approaches. A rubric for 
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quadratic inequality problem solving test (QIPST) in Appendix E was used to score 

this question. A sample of answers of the three students is shown in Figures 7.4 and 

7.5 below. 

Using the rubric QIPST, student SC4 understood the problem and applied inequality 

to the nature of roots. He correctly identified the strategy of solving the problem i.e., 

quadratic inequality and used the null factor law to solve it. He did not try hard 

enough to reflect on his solution. For that reason, he scored a 2. The student used 

both algebraic and graphic approaches to solve problem, but his wrong graph led 

him to give incorrect solutions. His work reflects the influence of the use of GC in the 

classroom. 

  

Figure 7. 4: Student’s answer on application of quadratic inequalities 

Using the rubric QIPST, student SC30 understood the problem and correctly 

identified the strategy (i.e., quadratic inequality) of solving the problem. She was able 

to apply the strategy to the nature of roots and identified the difference of squares as 

the correct procedure of determining the roots. The student used both algebraic and 

graphic approaches to solve the problem. However, she did not try hard enough to 

reflect on her solution. In that reason, she set up wrong inequality solutions and she 

scored a 3. The impact of the use of the GC in solving quadratic inequalities is noted 

here as the student used the graph as an object to solve mathematical problem and 

correctly visualised the effect of the negative parameter.  

Using the rubric QIPST, student SC19 understood the problem and appropriately 

applied the strategy of solving the problem in Figure 7.5, below. This means an 

inequality was correctly constructed and appropriate solutions arrived at using the 

SC4 SC30 
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correct procedures.  She tried hard to reflect on her solution by checking its 

reasonableness. In that regard, she scored a total mark i.e., 4.     

 

Figure 7. 5: Student’s answer in applications of quadratic inequalities 

Student SC19 used both graphical and algebraic approaches to help solve the 

problem. The algebraic approach seemed to be the most useful in setting up the 

inequality and finding the critical values by using the difference of squares 

procedure. A graphical approach also helped her to solve the problem by correctly 

sketching the graph and indicating the zeros of the function. The student 

appropriately understood the effect of the negative parameter ‘a’ in the quadratic 

function. She used the graph to determine more than one interval that would be 

needed to solve this application problem and realised that one of these intervals was 

positive and one was negative. The second post-test question (Question 6) stated 

that: A small manufacturer’s weekly profit is given by 𝑃(𝑥) = − 2𝑥2 + 70𝑥, in which 𝑥 

is the number of items manufactured and sold. Find the number of items that must 

be manufactured and sold if the profit is to be greater than or equal to R600. This 

problem solving question required students to apply the concept of quadratic 

inequalities when determining the number of sold items, x that could make the profit 

to be greater than or equal to R600. The purposefully selected students’ written work 

represented the different problem solving approaches used by them after the GC 

intervention. A rubric with Polya’s four-step processes of problem-solving 

(understanding the problem, devising a plan, carrying out the plan, and looking back) 

was used to assess the students’ abilities (SPSA) for this question in Appendix E. A 

sample of answers of the three students is shown in Figures 7.6 and 7.7 below.  

Student PC7 partially understood the problem but completely made a wrong 

quadratic inequality. She implemented correct procedures to solve a wrong 

inequality but did not make an attempt to check for accuracy of her solutions. Using 

SC19 
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the rubric SPSA, she was scored 5 out of 12. The student used an algebraic 

approach throughout the entire process of problem solving, including finding roots, 

and setting up the inequality. Her procedures did not lead her to the correct roots.  

Figure 7. 6: Students’ answers in contextual quadratic inequality problem 

In Figure 7.6 above, student PC18 completely understood and interpreted the 

problem and correctly modelled the quadratic inequality. He substantially 

implemented the correct procedures of solving inequality but did not lead him to 

correct solution. He incompletely checked for the accuracy of his solution and 

decided to choose a positive interval. Using the rubric SPSA, she was scored 9 out 

of 12. The student used an algebraic approach throughout the entire process of 

problem solving, including setting up the inequality and finding roots. When the 

student divided the inequality by a negative he did not change the direction of the 

inequality sign. His mistake, however, was not in understanding of the problem but in 

an inaccurate application of the quadratic inequalities. 

Figure 7.7 below, student PC26 completely understood and interpreted the problem 

and correctly modelled the quadratic inequality. She completely implemented the 

correct procedures of solving inequality and led her to correct solution. Subsequently 

she made an attempt to check for accuracy of her solution in a convincing and 

appropriate manner using the sketched graph which indicated the region of the 

solution set. 

PC7 PC1

8 
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Figure 7. 7: Student’s answer in contextual quadratic inequality problem 

Using the rubric SPSA, she was scored 12 out of 12. This means student SA26 used 

effectively the four-step problem-solving processes to solve question 6 of the post-

test. The student used both graphical and algebraic approaches to help solve the 

problem. The algebraic approach seemed to be the most useful in setting up the 

inequality and finding the critical values by using the factoring procedure. A graphical 

approach also helped her to solve the problem by correctly sketching the graph and 

indicating the zeros of the function. The student appropriately understood the effect 

of the negative parameter ‘a’ in the quadratic function. She used the graph to 

determine the interval that would be needed to solve this problem. 

The students’ answers indicate the pedagogical affordances of the graphing 

calculator in improving the learning of quadratic inequalities. The results reflect that 

the use of the GC contributed effectively towards improving problem-solving 

strategies and reasoning skills of students. This is consistent with the findings of 

Roschelle and Singleton (2008), who noted that the GC contributed towards 

displaying multiple representations, engaging with interactive real world problems, 

checking their work, and justifying their solutions and providing a supportive context 

for productive mathematical thinking.  

7.5.2  Student’s perceptions of how the GC use supported the quadratic inequality 

problem solving abilities 

This section intended to answer the second research sub-question on how the 

students perceived about the use of the GC towards supporting their problem solving 

abilities of quadratic inequalities. Student perceptions were measured using a Likert 

scale in which students marked 1 if they strongly disagreed, 2 if they disagreed, 3 if 
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they were not sure, 4 if they agreed, and 5 if they strongly agreed. Students’ 

responses were captured in Table 7.4 below.  

Table 7. 4: Student’s perceptions on how GC supported problem solving 

  

 In Table 7.4, seventy-two percent of the students agreed or strongly agreed that the 

GC use enabled them to understand the contextual problems of quadratic 

inequalities. However, there were 5 of the 35 students (14%) who were not sure. 

Twenty-eight students (80%) affirmed that the GC use guided them to sketch the 

graphs (i.e., parabola and line graph) for solving quadratic inequalities. Seventy four 

percent of the students agreed or strongly agreed that the use of the GC helped 

them to use the best alternative methods and procedures in solving quadratic 

inequalities. However, 26% of them perceived differently either denied or were not 

certain. Sixty six percent of the students felt that the GC use assisted them to check 

for errors, mistakes and correctness of their solutions. Of those students who were 

not sure (17%) in their decisions, the researcher suggested that they needed an 

expanded opportunity with the use of the GC on how to solve quadratic inequalities. 

With the overwhelmingly impressive results in Table 7.4 above, the researcher 

partially concluded that the pedagogical use of the GC supported them in problem 

solving of quadratic inequalities as all the Polya’s main steps of problem-solving 

processes had high percentages. 

Students’ responses show that graphing calculator played undoubtedly significant 

roles in students' learning of quadratic inequalities. The GC was used as a tool by 

students for problem solving processes in which they graphed functions in order to 

familiarize themselves with the problem. In the planning phase, students developed 

Student’s perceptions on how GC supported 
problem solving 

SD 
% 

D 
% 

NS 
% 

A 
% 

SA 
% 

The GC enabled me to understand the quadratic 
inequality problem (applications) 

6 9 14 49 23 

The GC guided me to sketch the graphs for 
solving quadratic inequalities  

6 3 11 46 34 

The GC helped me to use correct methods and 
procedures to solve quadratic inequalities 

9 6 11 54 20 

The GC allowed me to check for mistakes and 
correctness of my quadratic inequality solutions 

6 11 11 51 14 

Key: SD-Strongly Disagree; D-Disagree; NS-Not Sure; A-Agree; SA-Strongly Agree 
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a strategy for determining the solution and were used like a compass to point in the 

right direction for solving the problem. The use of graphing calculators assisted 

students in their problem solving by helping them develop and confirm their solution 

strategies. In the monitoring phase the GC was used as a resource for verifying 

solutions and then students were able to develop a symbolic approach. This is 

consistent with the ideas of the earlier researchers (e.g., Averbeck, 2000). This 

means the GC use assisted students to move well through the three stages for 

conceptual understanding namely, intuitive, operative, and applicative (Choi-Koh, 

2003). This means students used the graphing calculator to see the connections 

between a solution and meaning of solution in terms of the graph (White-Clark et al., 

2008; Amineh & Asl, 2015). This is consistent with the Vygotsky’s theory of socio-

cultural learning where the GC was used as mediator to develop cognitive 

understanding.      

7.6 Students’ results from the focus group interviews  

This section described the qualitative results of students’ focus group interviews on 

both problem-solving (Section 7.6.1) and reasoning (Section 7.6.2). A question was 

selected from the post-test for critically exploring the students’ problem-solving 

abilities and students’ reasoning skills in quadratic inequalities. Students were 

expected to use the graphing calculator only to verify the reasonableness of their 

solutions. According to Lunenberg (1998), learning in a constructivist manner 

involves asking students to analyse a problem, interpret results, classify terms or 

concepts, and to make predictions. These cognitive activities are strongly connected 

to the processes of students’ understanding. 

A sample of three students (CF1, CF2 and CF3) was selected from School C for 

focus group interviews. The interviews took place in their math classroom on a 

regular school day after school hours. Three students who obtained marks below 

average, average and above average in the post-test were purposefully selected to 

participate in the focus group interviews. The participants were asked to solve a 

contextual quadratic inequality problem that was in the post-test and were also 

asked several questions relating to the problem solving processes involved in that 

problem. The students were asked to explain their thoughts throughout the 

interviews in order to understand their thinking processes. Throughout the interview, 
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participants were observed how they used algebraic approaches and, sketches and 

graphs in their thinking processes through the problem. At the end of the interviews 

they submitted their interview scripts to further analyse how they reasoned their way 

throughout this problem. Each interview lasted for approximately thirty minutes. The 

interviews were audio recorded and then transcribed.   

 7.6.1 Students’ results of the focus group interviews on problem solving  

This section attempted to address the second research question of the study:  

In what ways can the pedagogical uses of the GC enhance students’ 
problem solving abilities when solving quadratic inequalities?  

The qualitative results of the focus group interviews with students on their problem 

solving abilities of the contextual quadratic inequalities were analysed and described 

in this section. Within that context, the selected students were presented with a 

contextual problem that they first saw in the post-test. The problem stated, “A small 

manufacturer’s weekly profit is given by 𝑃(𝑥) = − 2𝑥2 + 220𝑥, in which 𝑥 is the 

number of items manufactured and sold. Find the number of items that must be 

manufactured and sold if the profit is to be greater than or equal to R6000”. The 

students were given ten minutes preparation time to read, formulate and solve the 

problem. They were supposed to explain their thinking processes clearly and not to 

erase their working.  In this case, students answered questions 1.6 and 1.7 

(Appendix D) which were central to solving the contextual quadratic inequality 

problem.  

The codes used in the interviews are: TR for the teacher-researcher and CF for the 

focus group students from School C. Student participants were interviewed as a 

group and their responses were presented and transcribed below:  

TR:  (The teacher-researcher hands out the problem to the students). Please read 
this problem attentively and then formulate the required mathematical statement. 

Students CF1:       − 2𝑥2 + 220𝑥 ≤ 6000 

Students CF2:       6000 ≤ − 2𝑥2 + 220𝑥 

Students CF3:     − 2𝑥2 + 220𝑥 > 𝑂 
TR:         And then solve it without the use of the GC, showing all the necessary 

working. Please do not erase any step you have written. 
Students (CF1, CF2 & CF3): After ten minutes the students handed in their scripts 

for marking.  

Interpretations of the individual students’ interview results 
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Students’ attempts are shown below and were analysed in order to determine 

whether the use of graphing calculator had support their problem solving 

competencies at School C: Student CF1 was not able to interpret the problem 

correctly as she formulated the quadratic inequality with a wrong inequality sign (i.e., 

less than) from the contextual problem (see Figure 7.8). She used algebraic 

approach mostly quadratic formula throughout the entire process of problem solving; 

including finding the critical values. This student seemed to confuse the two 

concepts of equation and inequality, although she knew that the algebraic statement 

formed was a quadratic inequality. This shows a lack of true understanding by this 

student. 

 

Figure 7. 8: Student CF1’s problem solving 

Throughout the process, she did not question her modelled inequality and the final 

solution. It seemed the x-values had no meaning to the student as she did not try 

another approach.  However, at the end of the problem when she was asked to 

verify her solution, she realized that the solution was not supposed to be 𝑥 = 50 

or𝑥 = 60. These values when substituted gave zero. She pointed out that, “I think, I 

am definitely wrong because profit should not be zero”. Her misconception however, 

was in confusing the equations and inequalities.  

Student CF2 was able to convert the contextual problem into the right quadratic 

inequality: 6000 ≤ − 2𝑥2 + 220𝑥. He used both the algebraic and graphical 

approaches; however, the algebraic approach (quadratic formula) seemed to be the 

most useful in helping him to solve the quadratic inequality. The graph was correctly 
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drawn with critical values and indicated the portion where the solution of the 

quadratic inequality was found. He then switched to an algebraic approach, by using 

quadratic formula to find the zeros of the function see Figure 7.9, below. 

 

Figure 7. 9: Student CF2’s problem solving 

Throughout the process of problem-solving, he consistently monitored his progress 

and questioned any move he took. Notably, he moved freely between algebraic 

approach and graphical approach, thus switching back and forth from the two 

approaches. This helped him to reflect on the strategies used to solve the contextual 

problem with accuracy. He verified his solution using the values of x within the critical 

values in order to justify his solution. Consequently, student CBF2 wrote the correct 

interval notation for his solution (i.e.,𝟓𝟎 ≤ 𝒙 ≤ 𝟔𝟎). He was also able to verify and 

confirm his solution when the teacher-researcher asked him to use the graphing 

calculator.    

Student CF3 did not interpret the contextual problem correctly and this led her to 

model a wrong inequality:− 𝟐𝒙𝟐 + 𝟐𝟐𝒙 ≥ 𝟎 without 6000. The inequality sign was 

correctly written except that she had omitted 6000. This means her solution was 

different from others. She used the quadratic formula to determine the critical values. 

However, she never used a graphical approach to support her reasoning. The 

algebraic approach seemed to be the most useful in helping this student to solve the 

problem.  
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Figure 7. 10: Student CF3’s problem solving                

It was observed that she did not question her solutions thus lack of monitoring one’s 

progress. This affected her not to realise that she did not include 6000 in her 

formulated quadratic inequalities. This means the student did not try other 

approaches to validate her solutions. She had different critical values from other 

learners and thus when she realised she did not use 6000. The researcher asked 

her: 

TR:            Why didn’t you use 6000 since in the contextual problem was given? 
Student CF3: I did not know what to do with it. 

TR:          𝑃(𝑥) is given as a profit function and must be greater than 6000. In your 
inequality replace the zero with 6000 and then solve for x. 

The student was not able to solve the quadratic inequality correctly. She had a 

problem of expressing interval notation. In her attempt she used quadratic formula 

and wrote her solution as 𝟓𝟎 > 𝑥 < 𝟔𝟎.  This solution was meaningless. The 

researcher asked about the appropriateness of her solution: 

TR:         Do you think the solution you have given is appropriate?   
Student CF3: Yes because it is inside the graph that is increasing and decreasing.  
TR:          Ok.  Use the graphing calculator to check the accuracy of your solution. 

The student was able to visualise the shape of a graph but failed to write the solution 

set. She had problems of adjusting the GC so that the axes are increased to 

accommodate large values of x and y. After getting assistance from her classmates, 

she discovered that her solution did not make any sense.  

Stellenbosch University https://scholar.sun.ac.za



260 
 

Comments on the students’ problem solving abilities 

The three students had different levels of proficiency in relation to problem solving 

processes. For that reason, the students’ problem solving processes were scored in 

terms of a) formulating an inequality, b) using algebraic approach, c) using graphical 

approach, d) using the graphing calculator for verifying solution and e) obtaining a 

correct solution set. The scoring ranged from 0 to 5. A 5 represented the highest 

score of executing all the listed steps correctly. The use of an algebraic approach is 

mandatory in the CAPS curriculum and should be complemented with the use of the 

graphical approach or any other relevant approach (DBE, 2015, 2016, 2017). In this 

regard, Student CF1, an average learner scored a 3 as she did not use a graph and 

wrote no solution sets. Student CF2, an above-average learner scored a 5 as he did 

well all the processes of solving the problem. Student CF3, a below-average learner 

scored a 2 for not executing all the steps correctly. This means that Student CF3 

was not able to formulate an inequality, use the graphing calculator for verifying 

solution and express correct solution set. The use of the graphical approach was 

implied in solution because she had a visual image of quadratic functions. In respect 

of these results, the teacher-researcher partially concluded that the pedagogical use 

of GC supported the students’ problem solving abilities of the quadratic inequalities. 

 7.6.2 Students’ results of the focus group interviews on reasoning skills  

This section attempted to address the third research question:  

How does the pedagogical use of the GC support students’ reasoning 
abilities when solving quadratic inequalities?  

The qualitative results of the focus group interviews with students on their reasoning 

abilities in the contextual quadratic inequality problems were analysed and described 

in this section. In order to successfully examine the students’ reasoning in solving 

the contextual quadratic inequality problem, student participants of School C were 

asked questions during the focus group interviews relating to analysing a problem 

(Questions 1.1 & 1.3), initiating a strategy (Questions 1.4 & 1.5) and reflecting on 

one’s solution (Questions 1.7 and 1.9) in Appendix D. 
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7.6.2.1 Students’ results from focus group interviews on analytical reasoning 

The first reasoning question (Q1.3) of the focus group interviews required the 

students to identify the main concept involved in the contextual problem.  

TR:         State and explain the main concept of this problem (1.3) 

Student CF1: It is a quadratic inequality because sold items representing  𝑥-values 
must give profit more than 6000. 

Student CF2: The profit should be greater than or equal to, that is a quadratic 
inequality. 

Student CF3: A quadratic inequality because it’s about greater than 6000. 

Interpretation of the students’ responses 

All the three students were able to identify the main concept involved as quadratic 

inequality and gave satisfactory justifications. The key phrase “greater than” guided 

the students in identifying the underlying concept and was used as supporting 

evidence. However, student CF1 gave a detailed explanation that, “the sold items 

representing  𝑥-values must give profit more than 6000”, thus a good ability of 

analytical reasoning. 

The next reasoning question (Q1.3) requested the students to draw conclusions from 

their solutions of the contextual problem. In that regard, the students drew the 

following conclusions about their solutions.  

TR:             Is there any relevant conclusion that you can make about the solution to 
the problem? If so, what can you say? 

Student CF1: Yes. I think the solution of the inequality must be the x-value that when 
substituted in the inequality the answer is more than 6000.  

Student CF2: Yes. The number of sold items must be more than zero for the profit to 
be more than 6000 and solutions should be between the critical values.  

Student CF3: I think the values of x must lie inside the critical values of the graph 
that is increasing and decreasing. 

Interpretation of the students’ responses 

All the three students were able to state at least one reasonable conclusion. Student 

CF1’s conclusion that- “the solution must be the x-value”, affected the way she 

determined the solution of the quadratic inequality (see Figure 7.68). Student CF2 

made two analytical conclusions that “the number of sold items must be more than 

zero and the solution was between the critical values”. This means student CF2 was 

able to visualise the quadratic inequality solution in the graph using the effects of 
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parameter value (i.e., the coefficient of 𝑥2). Student CF3 provided a valid conclusion 

but gave meaningless solution from a wrong quadratic inequality (see Figure 7.10). 

This suggests that this student lacked self-confidence in contextual problems. It was 

noted that student CF2 possessed a strong analytical reasoning which is a pre-

requisite for understanding inequalities. On the other hand, students CF1 and CF3 

had moderate analysis and this even affected them to write the solution of the 

quadratic inequality correctly.  

7.6.2.2 Students’ results from focus group interview on initiative reasoning  

In this area of reasoning- initiating a strategy, students were assessed on how they 

purposefully selected the appropriate concepts, representations and procedures 

when solving the contextual problem. The first initiative reasoning question (Q1.5) of 

the focus group interview required the students to identify the approaches which 

were most helpful to solve the contextual problem. The following is how the students 

responded: 

TR:             Which approaches do you think were most helpful in solving this 
problem- algebraic and/or graphic? 

Student CF1: Algebraic and graphic approaches helped me to solve the problem.  
Student CF2: To me quadratic formula and graphs were helpful to solve the problem. 
Student CF3: factorisation, quadratic formula and graphic approaches were the most 

helpful to solve the problem. 
TR:          Please state and explain those approaches that you used to solve this 

problem. 
Student CF1: I used quadratic formula to solve the problem. It is easiest and fastest 

method to use when solving for x. I use a calculator to calculate the x 
values. 

Student CF2: Quadratic formula and graph were helpful in solving this problem. I 
used the quadratic formula to find critical values and then used the 
graph to show the position where the solution is found. 

Student CF3: Quadratic formula because it is easy to use.  

Interpretation of the students’ responses 

All the students were able to state and explain the approaches that they executed to 

solve the contextual quadratic inequality problem. All the students used quadratic 

formula to determine the critical values. Student CF1 consistently used algebraic 

approach- quadratic formula throughout the process of solving the problem. Student 

CF2 also responded correctly that he used two approaches- algebraic and graphic to 

solve the problem. However, the graphical approach seemed to be the most useful in 
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helping him to solve the problem. The graph drawn by the student was correct in 

shape. The algebraic approach- quadratic formula was only used to determine the 

zeros of the function which were later on indicated on the graph for the decision. The 

consistent use of two strategies earned her good results (cf: Figure 7.8).  

Student CF3 correctly responded that she used the algebraic approach-quadratic 

formula to solve the problem. She used visualisation to decide the region of the 

solution developed by the use of the GC. Although she had a strong visual image of 

the solution, she did not write the interval notation correctly. All the three students 

initiated their strategies differently for solving the contextual problem. This suggests 

that they possessed different levels of the initiative reasoning skills of solving 

quadratic inequalities.  

The second initiative reasoning question (Q 1.6) of the focus group interview 

required students to explain how the use of the graphic approach helped them solve 

the quadratic inequality. The responses of the students were: 

TR:        Explain how helpful the use of graphical approach was in solving the 
contextual problem. 

Student CF1: No I did not use it but it is helpful in a way that I use it to decide if the 
solution is within or outside the critical values. 

Student CF2: The graphical approach helped me to interpret the inequality in the 
form of a graph and helped me to see the region of the inequality.  

Student CF3: The graph can help me to figure out the critical values and the position 
of the solution.  

Interpretation of the students’ responses 

The responses given by the students were similar and demonstrated that they 

understood perfectly the role of the graphic approaches when solving quadratic 

inequalities. Students responded that the graphical approach helped them to 

“interpret the inequality” and “figure out solution” and “to decide for the region”. This 

is even noted in the work of student CF2 (cf: Figure 7.9) showing how the graphic 

approach was used to solve the inequality. It is evident that the use of the GC 

provided the student with visual representation of quadratic inequality solutions in the 

form of graphs and how it has influenced them to use graphs too. The responses of 

the students showed that the use of the GC helped to develop students’ initiative 

reasoning strategy. Within the context, student CF2 had a strong initiative reasoning 

strategy for solving quadratic inequalities. 
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7.6.2.3 Students’ results from focus group interview on reflective reasoning  

In this area of reasoning- reflecting on one’s solution, students were assessed on 

how they interpreted their solutions (Q1.8), justified the accuracy of their solutions 

(Q1.9), and how they considered the alternative way of solving problems (Q1.10).  

The questions intended to make students reflect on their solutions of the contextual 

quadratic inequality problem. The following reasoning questions (Q1.8 & Q1.9) were 

asked to find out how the students interpreted and justified their solutions of the 

contextual problem. The following is how the students responded: 

TR:            With the values of x that you have obtained, do you think you have 
solved this problem completely and correctly? Justify your reasoning. 

Student CF1: Yes. I believe my answer is complete and reasonable.  
Student CF2: Yes I think there are correct. 
Student CF3: (Smiling …), I think so.  
TR:            Please justify why your answer is reasonable?  
Student CF1: Because when I substitute the values of x I got zeros. But I am 

expecting the answers more than 6000. 
Student CF2: Using the graph the values of x are between the critical values and 

give me profits greater than 6000. 
Student CF3: (Smiling …), it is reasonable.  

Interpretation of the students’ responses 

Not all the three students were able to decide whether their solutions were 

reasonable and justified their choices. Student CF1 realised that her solution was 

unreasonable and the answers were zeros. She indicated that “I am expecting the 

answers more than 6000.” Student CF3 completely failed to justify reasonableness 

of her solutions. This was different with student CF2 as his solution was complete 

and reasonable. He was able to provide plausible reasons supported by the use of 

the graph. His values of x taken from within the critical values provided the profits 

which were more than 6000. In this sense, student CF2 was able to reflect on his 

own solution effectively and this suggests that he displayed strong reflective or 

metacognitive reasoning skills in respect of this item. This may mean that the use of 

the GC has not provided adequate opportunities for students to develop their 

metacognitive reasoning skills of solving the contextual quadratic inequality 

problems. 

The next reasoning questions (Q1.10 and Q1.11) were combined in analysing 

students’ responses since they focused on the use of the GC. Question 1.10 asked 
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about any other relevant information that could be used to justify their solutions. 

Students’ responses were as follows: 

TR:         Is there any other relevant information that can be used to justify their 
solutions? 

Student CF1: There could be.  
Student CF2: Yes using a graphing calculator. 
Student CF3: No. 

TR:         When using the graphing calculator, do you still get the same solution? 
Explain. 

Student CF1: No.  I did not write the solution of the quadratic inequality. I only wrote 
critical values. 

Student CF2: Yes the solution is within the critical values. 
Student CF3: (Smiling …), I don’t know how to use the GC. 

Interpretation of the students’ responses 

Students CF1 and CF3 did not realise that the GC could be used as an alternative 

approach to verify their solutions. In that regard, the teacher-researcher requested 

the students to take out their GCs to verify the accuracy of their solutions. After 

punching the inequality into their graphing calculators students were able to see if 

their solutions were accurate or not. Only the solution of student CF2 was accurate 

and reasonable. Students CF1 found that she did not complete finding the solution, 

thus her solution was incorrect. Student CF1 responded that, “I only wrote critical 

values”. Interestingly, all the students were able to solve the inequality and interpret 

the results accurately from the GC. This is consistent with idea of the instrumented 

action scheme in the TIG. It is evident that the use of the GC did not develop the 

students’ reflective reasoning completely. The future research should focus on the 

development of students’ meta-cognitive reasoning skills.  

7.6.2.4 Students’ results of the observed monitoring progress  

This section described the students’ reasoning skills of monitoring progress as they 

were observed solving the contextual quadratic inequality problem. The main focus 

was to assess how the students reviewed and/or modified their selected strategies in 

particular when they encountered difficulties (see Rubric in Appendix E). The 

observed results of the three purposefully selected students were as follows: 

Student CF1 converted the problem into right quadratic inequality and correct 

procedures (algebraic) were followed through. She used mainly algebraic (symbolic) 
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representations and did not make any reference to the graph as another approach to 

solve the problem. The use of one approach misled her and left solution at critical 

values. This means she did not make adequate attempt to monitor her progress; 

thus why she did not realise that she had not completely answered the problem. Her 

low level of self-monitoring affected her to attempt other avenues or make any 

reasonable assumptions that could lead her to review her selected strategy. When 

the teacher-researcher asked her to use the GC to solve the problem she was able 

to visualise the correct solutions displayed on the GC. 

Student CF2 used two different approaches- algebraic and graphic, to solve the 

quadratic inequality. A look at the graph of this quadratic function assisted in the 

monitoring of his progress in the reasoning process. However, he did not rely on one 

reasoning procedure as he kept on switching from the algebraic to graphical 

approaches and vice versa. The graph seemed to be very beneficial in the reasoning 

processes used by this student. Throughout his problem solving processes, he 

continued monitoring his progress and verifying his assumptions (i.e., the solutions 

must be within the critical values to produce greater profits). The teacher-researcher 

observed that every move that he could take, he questioned it. He was also able to 

use the GC to confirm the shape of the graph, find the zeros of the function, make 

assumptions and verify his solutions found using the pencil and paper methods. For 

this reason, student CF2 has a high level of reasoning skills on monitoring his 

progress. 

Student CF3 converted the problem into a wrong quadratic inequality but correct 

algebraic procedures were followed through. She used mainly algebraic (symbolic) 

representations and never used a graph. She seemed to get confused when she 

realised that she needed to write down the solution of the inequality. However, she 

had developed strong visual images of the graphic representations that she was able 

to use in finding the solution set of quadratic inequalities. Using the ruling of 

consistent accuracy, she was able to solve her wrong inequality but wrote 

meaningless solution set. She could not take the advantage of her strong 

visualisation to monitor her progress. When the teacher-researcher asked her to 

verify her solutions using the graphing calculator, she was not able adjust the axes of 

the GC to accommodate large values. Based on her actions on this problem, she 

has weak reasoning skills on monitoring her progress. 
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7.6.2.5. Students’ results of the observed seeking and using connections 

In this domain of reasoning- seeking and using connections, students were observed 

on how they sought and used connections of different concepts, contexts and 

representations when solving the contextual quadratic inequalities. This is also about 

when the students make references to mathematical concepts used earlier in the 

topic of quadratic inequalities, in other mathematics areas, or in any other subject 

areas. In this context, the findings were as follows: 

Student CF1 was only able to make connections between the solution of quadratic 

equation and the quadratic inequality (see Figure 6.7). However, she did not use this 

relationship to determine the solution of the inequality. For this reason, she has weak 

reasoning skills on seeking connections. Students CF2 and CF3 were able to seek 

and use connections between concepts and representations when solving the 

quadratic inequality. Students CF2, in his attempts to solve the contextual quadratic 

inequality problem, made links between the algebraic (symbolic) and graphic 

representations (cf: Figure 7.7). In this case, student CF2 used quadratic graphing 

(geometry) and solving quadratic equations (algebra) both as viable ways to find a 

quadratic inequality solution. The student realised that the solution of the equation (x-

values) was the x-intercepts of the graph which determine the solution of quadratic 

inequality using them as critical values. This suggests that the algebraic reasoning 

(i.e., algebraic symbols and functions) has helped student CF2 to use and seek the 

connections effectively in solving quadratic inequalities. Student CF3 did link 

correctly the x-values of the quadratic equations to the critical values of the quadratic 

inequalities and then used to express the solution of inequality in interval notations. 

However, she had difficulties to write correctly the solution set of her wrong quadratic 

inequality. In that regard, student CF3 had moderate reasoning skills of seeking and 

using connections between concepts and representations when solving the quadratic 

inequality. 

7.6.3 Student’s perceptions of how the GC enhanced reasoning skills 

This section intended to answer the third research sub-question on how the students 

perceived the use of the GC towards enhancing their reasoning skills in learning 

quadratic inequalities. Student perceptions were measured using a Likert scale in 

which students marked 1 if they strongly disagreed, 2 if they disagreed, 3 if they 

Stellenbosch University https://scholar.sun.ac.za



268 
 

were not sure, 4 if they agreed, and 5 if they strongly agreed. Students’ responses 

were captured in Table 7.5 below.  

Table 7. 5: Student’s perceptions on how the GC enhanced reasoning 

Student’s perceptions on how the GC enhanced 
reasoning 

SD 
% 

D 
% 

NS 
% 

A 
% 

SA 
% 

The graphing calculator helped me to analyse 
completely the quadratic inequality problems 

6 11 14 46 23 

The graphing calculator enabled me to use many 
approaches when solving quadratic inequalities 

9 6 17 54  14 

The graphing calculator assisted me check my 
progress when solving quadratic inequalities 

3 6 17 57 17 

The graphing calculator helped me to link/mix 
concepts when solving quadratic inequalities 

9 6 20 49 17 

The graphing calculator allowed me to think more 
about my quadratic inequality solutions 

3 9 11 51 26 

Key: SD-Strongly Disagree; D-Disagree; NS-Not Sure; A-Agree; SA-Strongly Agree 

In Table 7.5, 69% of the students agreed or strongly agreed that the use of the GC 

helped them to analyse completely the quadratic inequality problems. Only 31% of 

the students, including those who were not sure, denied that the GC enabled them to 

use new strategies when solving inequalities. This means a large proportion of 

students (69%) had perceived positively. Twenty six of the students (74%) agreed or 

strongly agreed that the GC assisted them monitor or check their progress when 

solving inequalities. A significant number of the students (66%) affirmed that the 

graphing calculator helped them to link other mathematical concepts to solve 

inequalities. Only four students (11.4%) denied that the GC helped them to think or 

reason more about their inequality solutions. This implies that the majority of 

students (77%) felt that the GC provided them with opportunities to reflect on (i.e., 

validate) their solutions. Based on these results, the researcher partially concluded 

that the majority of the students perceived that the pedagogical use of the GC 

supported their reasoning skills when solving quadratic inequalities.            

7.7 Results of students’ responses in the pre-and post-surveys 

This section presents the results of the students’ responses in the pre- and post-

surveys of how they perceived about the GC use in learning quadratic inequalities. 

Their perceptions are presented in the following subsections.  
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7.7.1 Comparative results of students’ responses in the pre-and post-surveys 

This section intended to answer the fourth sub-question by comparing the results of 

the pre- and post- surveys means on how the students perceived about the GC use 

in learning quadratic inequalities.  

What perceptions do students have on the pedagogical use of the 
graphing calculators in learning quadratic inequalities? 

The post-survey intended to gather the perceptions of the students on whether the 

use of GC in learning quadratic inequalities assisted them to understand the topic. 

The positive changes of students’ perceptions were attributable to the effective 

intervention of the GC use as an artefact in learning quadratic inequalities. The 

eleven items of the pre-survey were similar to the ones on the post-intervention 

survey to see if students changed their perceptions on how they learned quadratic 

inequalities after GC intervention as an instructional tool. Students’ responses were 

biased towards the understanding of and lessening the difficulties of learning 

quadratic inequalities. In this context, an increased confidence in their ability to 

understand and learn quadratic inequalities is measured by students’ option of 

“disagree” or “strongly disagree” and increased mean. A comparison of the students’ 

perceptions is given in Table 7.6 below, where 𝑀0=post-survey mean and 𝑀𝑅=pre-

survey mean.  

Table 7. 6: Results of students’ pre- and post- intervention surveys (n=35) 

    
ITEM 

 1 = Strongly Agree, 2 = Agree, 3=Not Sure,  
4 = Disagree, and 5 = Strongly Disagree                             

Pre-survey Post-survey 

𝑴𝑹 SD 𝑴𝑶 SD  

SPQI 1 Quadratic inequalities are difficult to learn and understand  2.71 1.21 4.20 1.31 

SPQI 2 I do not see the difference between the equation and 
inequality 

2.49 1.30 4.67 1.24 

SPQI 3 It’s difficult to determine the solution sets of quadratic 
inequalities after finding the critical values.  

2.21 1.15 3.60 1.11 

SPQI 4 I have difficulties with determining factors of quadratic 
expressions (inequalities)  

2.49 1.16 3.71 1.29 

SPQI 5 I don’t know the difference between critical values and x-
intercepts of the graphs 

2.43 1.12 3.57 1.11 

SPQI 6 In order to understand the quadratic inequality topic I 
usually memorise it  

2.57 1.17 3.77 1.15 

SPQI 7 Of all the topics I have done so far I don’t enjoy learning 
quadratic inequalities 

2.66 1.11 3.37 1.09 

SPQI 8 It’s difficult to use graphical sketches to determine the 
solutions of quadratic inequalities 

2.46 1.12 3.68 1.15 

SPQI 9 Given an opportunity of not to learn quadratic inequalities I 
was going to do so 

2.43 1.11 3.84 1.20 

SPQI 10 Technology (e.g., computers) cannot help me to 
understand quadratic inequalities 

2.43 1.20 3.71 1.09 
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Before the GC intervention, students indicated that given an option of not learning 

quadratic inequalities they were going to do so (𝑀𝑅=2.43) because they were neither 

enjoying (𝑀𝑅=2.66) nor understanding (𝑀𝑅=2.71) the topic (see Table 7.6). However, 

the students’ responses show that the use of the graphing calculator improved their 

understanding (𝑀0=4.20) and enjoyment  (𝑀0=3.37) of learning quadratic 

inequalities. This is reflected in the post-survey means which are respectively greater 

than the pre-test survey means. The results further reveal that initially the students 

did not see the difference between the equation and inequality (𝑀𝑅=2.49), and the 

difference between critical values and x-intercepts of the graphs (𝑀𝑅=2.43); but after 

the GC use they were able to see the difference. This is reflected by the increased 

post-survey means of 𝑀𝑂=4.67 and 𝑀𝑂=3.57 respectively. The post-survey means 

exhibited an increased use of the graphs (𝑀𝑂 > 𝑀𝑅=3.68 >2.46) and reduced level of 

memorising procedures (𝑀𝑂 > 𝑀𝑅=3.77 >2.57) when learning quadratic inequalities 

in a GC mediated classroom. The overall results show that the GC use brought good 

behaviour in students’ learning of quadratic inequalities. They further indicated that 

determining the solution sets of quadratic inequalities was no longer difficult. This is 

reflected by the pre- survey mean (𝑀𝑅 =2.21) which is less than the post-survey 

mean (𝑀𝑂 =3.60). 

7.7.2 Students’ perceptions on how the GC supported the learning sessions  

This section intended to answer the fourth research sub-question by analysing the 

results of students’ responses on how they perceived about the GC use in the 

designed sessions of learning quadratic inequalities.  

What perceptions do students have on the pedagogical use of the 
graphing calculators in learning quadratic inequalities? 

In that context students were issued with an eight item post-intervention survey to 

answer. Student perceptions were measured using a Likert scale in which students 

marked 1 if they strongly disagreed, 2 if they disagreed, 3 if they were not sure, 4 if 

they agreed, and 5 if they strongly agreed. Students’ responses were captured in 

Table 7.7 below.  
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Table 7. 7: Student’s perceptions on how GC use supported their sessions 
 
ITEM 

 Students’ perceptions of the effects of graphing 
calculator on the designed sessions of  learning 
quadratic inequalities                                    

SA 
(%) 

A 
(%) 

N 
(%) 

D 
(%) 

SD 
(%) 

SPGC 1 The use of graphing calculator in learning sessions 
assisted me to solve symbolic (algebraic) quadratic 
inequalities  

23 43 14 3 14 

SPGC 
2 

The use of graphing calculator in learning sessions 
assisted me to understand the difference between critical 
values and zeros of the graph 

17 54 9 14 6 

SPGC 3 The use of graphing calculator in learning sessions 
assisted me to identify correctly the region of the inequality 
solution 

20 51 17 9 3 

SPGC 4 The use of graphing calculator in learning sessions 
assisted me to understand contextual (application) 
problems of quadratic inequalities  

45 40 14 6 9 

SPGC 5 The use of graphing calculator in learning sessions 
assisted me to use graphical sketches when solving 
quadratic inequalities  

34 46 11 6 3 

SPGC 6 The use of graphing calculator in learning sessions 
assisted me to understand the effect of the parameter ‘a’ in 
the quadratic inequality 

23 40 17 9 11 

SPGC 7 The use of graphing calculator in learning sessions 
assisted me to note that the effect of the parameter ‘a’ of 
quadratic function had the same effect on quadratic 
inequality  

20 43) 20 11 9 

SPGC 8 The use of graphing calculator in learning sessions 
assisted me to learn and understand much better quadratic 
inequalities 

37 49 6 3 6 

1 = strongly disagree, 2 = disagree, 3=not sure, 4 = agree, and 5 = strongly agree 

Table 7.7 shows that 66% of the students strongly agreed or agreed that the use of 

graphing calculator in learning sessions assisted them to solve symbolic (algebraic) 

quadratic inequalities. Seventy-one percent of the students perceived that the use of 

graphing calculator in learning sessions assisted them to see the difference between 

critical values and zeros of the graphs. Students affirmed (strongly agreed or agreed) 

that the use of graphing calculator in learning sessions assisted them to use graphs 

when solving quadratic inequalities (80%) and to identify correctly the region of the 

inequality solution (71%). Fifty-seven percent of students strongly agreed or agreed 

that the use of graphing calculator in learning sessions assisted them to understand 

contextual (application) problems of quadratic inequalities. However 14% of them 

were not sure whether the use of the GC helped to understand contextual problems. 

Eighty percent of students strongly agreed or agreed that the use of graphing 

calculator in learning sessions assisted them to use graphical sketches when solving 

quadratic inequalities. Only 20% percent of the students strongly disagreed or 

disagreed that the use of graphing calculator in learning sessions assisted them to 

understand the effect of the parameter ‘a’ in the quadratic inequality. However, 17% 

of the students were neutral about their understanding of the effect of the parameter 

‘a’ in the quadratic inequality. Only 3 students (9%) strongly disagreed or disagreed 
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that the use of graphing calculator in the sessions assisted them to learn and 

understand much better quadratic inequalities. This means that the students (86%) 

overwhelmingly perceived that the use of the GC assisted them to learn and 

understand the topic of quadratic inequalities better. 

Based on the results in Table 7.7 above, the researcher partially concluded that 

students perceived that the pedagogical use of the GC strongly supported their 

learning sessions of quadratic inequalities. Within this regard, students felt that  the 

use of the GC in the anticipated sessions helped them to understand the quadratic 

inequalities as they were able to identify quadratic inequality with the shapes of the 

quadratic graphs, to see the effect of the parameter “a” on the different graphs, to 

use the graphs to solve quadratic inequalities, to transform contextual problems into 

symbolic quadratic inequalities and to determine the region of the solution using 

correct interval notations informed by the calculated critical values. These are 

considered as the main concepts that can lead the students to solve quadratic 

inequality confidently. They also perceived that the effect of the different parameters 

were the same for all the quadratic functions and inequalities expressed in the form 

of 𝒂(𝒙 + 𝒑)𝟐 + 𝒒 ≥≤ 𝟎 𝒐𝒓 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 ≤≥ 𝟎.  

7.8  Results from the in-depth interviews about the GC use in quadratic 
inequalities  

This section of in-depth interview with students mainly attempted to address the 

fourth research sub-questions about the students’ perceptions on the use of the GC 

in learning quadratic inequalities.  

What perceptions do students have on the pedagogical use of the 
graphing calculators in learning quadratic inequalities? 

An in-depth interview was conducted with the three students who were purposefully 

sampled from those who had obtained marks below average, average and above 

average from the post–test. They were individually interviewed after school on a 

regular school day in their classroom. Each interviewee lasted for approximately 

thirty minutes. The in-depth interview was recorded and then transcribed. The 

interview consisted of ten questions which were mainly about the use of the GC on 

students’ understanding of quadratic inequalities.  
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The codes used in the interview are TR for the teacher-researcher and BD for 

School B student in the in-depth interview (D). They were interviewed separately, but 

for convenience their responses are given together below. The responses of the in-

depth interview questions are discussed in the following sub-sections:   

7.8.1. Students’ responses on how the use of GC made easier students’ learning of 
quadratic inequalities  

The question asked by the teacher-researcher below sought to find out the students’ 

opinions about whether the use of the GC made their learning of quadratic 

inequalities easier. Students’ responses were almost similar as shown below:  

TR:              Does the use of GC make your learning of quadratic inequalities easier 

to understand?  Please explain your answer. 

Interview with Student CD1 

Student CD1: Yes it does because I can see how to sketch the graph and the 
position of the critical values.  

TR:   Then how does it make your learning easier? 
Student CD1: I don’t have to calculate the critical values as they are displayed on the 

GC screen and it shows where the solution lies.  

Interview with Student CD2 

Student CD2: Yes, because the GC shows the critical values and how to determine 
the graph.  

TR:           What do you mean, “the GC shows the critical values and the graph?” 
Student CD2: The critical values help to determine the solution of the quadratic 

inequality and the graph shows where solution lies. 

Interview with Student CD3 

Student CD3: Yes it does, because the graphing calculator puts the graph in a 
simpler way to understand.  

TR:           What do you mean by “it puts the graph in a simpler way?” 
Student CD3: With graph it is easier to tell if the solution is above or below the x-

axis. The solution can be within or outside the critical values.  
TR:           Ok. Thank you very much. 

Interpretation of students’ responses 

Students’ responses affirmed that their learning of quadratic inequalities had been 

made easier after the use of GC. Students emphasised that the graph and critical 

values are always displayed on the GC and these are helpful in determining the 

solutions of the quadratic inequalities.  Student CD3 indicated that with the graph it is 
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easier to tell if the solution is within or outside the critical values. The displayed 

information on the GC made it easier to understand the solutions of the quadratic 

inequalities (see Figure 7.10).  

 

Figure 7. 11: Solution of the quadratic inequality displayed on the GC screen 

In this case, the graph indicates that the solution set of quadratic inequality is a 

disjunction of 𝑥 = −1 and 𝑥 = 3. The use of the GC, according to students, 

demonstrates that the solution is outside the critical values in Figure 7.10. However, 

there are instances when the displayed information can be presented in the form of 

quadratic graph. This means that through the use of the GC, students were able to 

visualise the graphs with critical values which made it easy to determine the solution 

of inequalities. The visual images of the graphical representations contributed to the 

improved learning of quadratic inequalities as shown by reference to ‘shows us if the 

solution on the graph is below or above the x-axis’. For this reason, students 

benefitted from the visual capabilities of the GC which made them understand easily 

the connections between the graph and critical values, and solutions of quadratic 

inequalities. 

7.8.2  Students’ responses on how the use of the GC helped them to feel 
comfortable with quadratic inequalities  

The next question of in-depth interview sought to find out the students’ opinions 

about whether the use of the GC helped them feel more comfortable with quadratic 

inequalities, which attempted to answer the first research question. Students’ 

responses were almost similar as shown below:  

TR:         Does the use of the GC help you to feel more comfortable with quadratic 
inequalities? 
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Interview with Student CD1 

Student CD1: Yes, I am comfortable because the GC helped me to do try many 
problems on my own. I used to have difficulties with quadratic 
inequalities before I used graphing calculator.  

TR:   Do still have those difficulties with quadratic inequalities?  
Student CD1: If I have I put the inequality into the GC to solve for me.  

Interview with Student CD2 

Student CD2: Yes I am. I am more excited of learning quadratic inequalities after the 
use of the GC.  

TR:               Explain “I am more excited”  
Student CD2: After the use of the GC, quadratic inequalities are no longer difficult. 

The GC has made it easy to understand and follow the steps.  

Interview with Student CD3 

Student CD3: I am comfortable with learning quadratic inequalities. 
TR:             Please explain your answer. 
Student CD3: The use of the GC has made it easy to understand and analyse the 

graph, which is useful to determine the solution of the quadratic 
inequality.  

TR:            Ok. Thank you very much. 

Interpretation of students’ responses 

Students’ responses were almost similar and they felt comfortable with the learning 

of quadratic inequalities in the GC environment. Student CD1 and CD2 gave an 

affective answer of a minimised mathematics anxiety such as “difficulties” of learning 

quadratic inequalities. Student CD2 emphatically indicated that “I am more excited,” 

meaning the use of the GC eased the pressure of learning quadratic inequalities. 

Student CD3 added that the use of the GC stimulated the use of graphical sketches 

to determine the solutions of quadratic inequalities.  

7.8.3  Students’ responses on whether the GC should be used in learning quadratic 

inequalities  

Still attempting to answer the first research question, the next question of the in-

depth sought students’ opinions on whether the GC should be used in learning 

quadratic inequalities or not. The students’ opinions were positive and quite similar 

as shown below:  

TR:  Should graphing calculators be used in learning quadratic inequalities at the 
eleventh grade?  

Stellenbosch University https://scholar.sun.ac.za



276 
 

Interview with Student CD1 

Student CD1:  In my opinion it should be used.  
TR:   Please explain  
Student CD1: It is easier to understand the quadratic inequality because the GC 

shows where the solution is found.  

Interview with Student CD2 

Student CD2: Yes, it must be used to help those learners who have difficulties with 
quadratic inequalities. The GC helped me to answer many questions on 
my own. 

Interview with Student CD3 

Student CD3: Sometimes  
TR:               Please explain why sometimes. 
Student CD3: If the use of the GC is always students might not be able to solve 

quadratic inequalities on their own. Through linking different methods 
helps to understand mathematical concepts.  

Interpretation of students’ responses 

All the students responded supporting the use of the GC in learning of quadratic 

inequalities. The GC afforded students opportunities to learn better quadratic 

inequalities. Students indicated that the use of the GC showed “where the solution is 

found” and “helped me to answer many questions on my own”. Student CD3 

emphatically indicated “sometimes” and wanted students to link algebraic and GC 

approaches in order for them to master the procedural steps of solving quadratic 

inequalities.   

7.8.4  Students’ responses on how the use of GC helped them to do homework and 
other activities of quadratic inequalities  

The next question of the in-depth interview asked if the use of the GC helped 

students to do homework and class activities of quadratic inequalities independently. 

Students’ responses were as follows:  

TR:          Was the use of the GC helpful in doing homework and other class activities 
of quadratic inequalities independently? 

Interview with Student CD1 

Student CD1: “Yes it was helpful. 
 TR:             Please justify your answer 
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Student CD1: The use of the GC was helpful because I can be surer with my 
solutions. If I get wrong answer it helped me to keep on trying until I 
understand. I always tried to answer my homework on my own. 

Interview with Student CD2 

Student CD2: Yes because there were no longer any difficulties of calculating critical 
values using quadratic formula. Critical values are always displayed.  

TR:         Do you have difficulties of calculating critical values? 
Student CD2:  Ah, no. With the use of the GC you spend more time gaining 

knowledge of solving the inequalities on your own. 

Interview with Student CD3 

Student CD3: Yes it was.  
TR:             Please explain your answer  
Student CD3: The GC displays the graphs with critical values and where the 

solutions could be. It helped me how to use the graph to determine the 
solution and correct my mistakes. I always did the homework by myself. 

Interpretation of the students’ responses  

The responses from the students seemed to be very similar and confirmed their 

independence on writing any activity involving quadratic inequality after the use of 

the GC.  For example, I did the homework “on my own” and “by myself”. Student 

CD1 indicated that the GC helped her to be “surer of my answers” and student CD2, 

on the other hand “to spend more time gaining knowledge”. Student CD3 felt the use 

of the GC helped her “how to use the graph to determine the solution”. In particular, 

the use of the GC developed students’ confidence in answering any activity on 

quadratic inequalities.  

7.8.5 Students’ experiences of using the GC in learning quadratic inequalities  

This next question of the in-depth interview solicited students’ experiences after 

using the GC to solve quadratic inequalities in a mathematics classroom. The 

student interviewees were asked to relate their experiences. The responses given 

below show:  

Interview with Student CD1 

TR:              How can you explain your experiences of using the GC in learning 
quadratic   inequalities? 

Student CD1: It was quite good 
TR:  Please explain your experience  
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Student CD1: At first it was difficult to use a GC in learning quadratic inequalities but 
later it helped me to improve my understanding. With the GC you can 
practise answer many questions and it corrects your work.  

TR:  Is it not affecting your thinking?  
Student CD1: Ah no. I answer similar questions on my own then I check if my 

answers are correct with the GC.  

Interview with Student CD2 

TR:              How can you explain your experiences of using the GC in learning 
quadratic   inequalities? 

Student CD2: It was very nice 
TR:  Please relate your experience  
Student CD2: I learnt new ideas of solving inequalities and it was my first time to use 

a graphing calculator. I learnt to draw a quadratic graph on the GC and 
also to solve quadratic inequalities using the graph. It helped me to 
decide if the solution lies between the critical values or not. It gave me 
more time for practising.  

Interview with Student CD3 

TR:           How can you explain your experiences of using the GC in learning 
quadratic   inequalities? 

Student CD3: It was so great  
TR:  Tell us how great it was? 
Student CD3:  It was the first time to use GC and it enabled me to understand 

quadratic inequalities more than before. I learnt how to solve quadratic 
inequalities using graphs.  

TR:  What about writing inequality solution? 
Student CD3:  The use of the GC helped me to decide correctly if the solution was 

within the critical values or outside. It helped me to figure out how the 
graph will look like always and the position of the solution. 

Interpretation of the students’ responses 

Students expressed “good”, “very nice” and “so great” experiences with the use of 

the GC in solving quadratic inequalities. The ‘first time’ experience of the students to 

use a graphing calculator brought new “ideas” such as graphs to solve quadratic 

inequalities. Students were able to solve quadratic inequalities graphically (i.e., using 

quadratic graph or line graph) (see Figure 7.11, below). Students CD1 and CD3 

further stated that the use of the GC helped them to understand more than before 

the quadratic inequalities. In addition, student CD3 indicated that the use of the GC 

helped her “to figure out how the graph will look like always and the position of the 

solution”. All the three students indicated that the GC use reduced the levels of their 

difficulty with quadratic inequality.  
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Figure 7. 12 Solving quadratic inequalities graphically 

This means that the GC acted as a visual aid tool (visualisation tool) and checking 

tool as it provided the students with opportunity to see how the solutions are 

presented graphically. This means that the sketched graphs were used as visual 

objects to aid their conceptual understanding of quadratic inequalities (i.e., to figure 

out how the graph will look like always). All the three students indicated that they 

used the GC as to solve and graph quadratic inequalities in order to understand 

better the topic (i.e. the instrumentation process). This is consistent with the theory of 

instrumental genesis (Trouche, 2004).  

7.8.6  Students’ responses on how the use of the GC helped them to score better 
marks on quadratic inequalities 

This last question of the in-depth interview asked if the use of GC helped students to 

score better marks on quadratic inequalities and to rate themselves between 0 and 

5, a 5 being the highest. All the students confidently affirmed better marks after the 

use of graphing calculator.  

Interview with Student CD1 

TR:            Did the use of the GC make you score better results in quadratic 
inequalities? 

Student BD1: Yes, it did.  
TR:            Explain what made you to improve after using the GC. 
Student CD1: Before the use of the GC I was always struggling with quadratic 

inequalities but now I have improved a lot. The use of the GC always 
shows me where I am wrong when I practise solving the quadratic 
inequalities.  

TR:         In this case, how can you rate your level of understanding? 
Student CD1: I would rate my level of understanding at 5 

Interview with Student CD2 

𝑥2 + 2𝑥 − 8 ≥ 0 

(𝑥 − 2)(𝑥 + 4) ≥ 0 

𝑥 = −4 𝑜𝑟 𝑥 − 2 

Solving quadratic inequalities graphically 

                     (−∞, −4] ∪ [2, ∞) 
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TR:        Did the use of the GC make you score better results in quadratic 
inequalities? 

Student CD2: Yes, it did. 
TR:            Explain what made you to score better after using the GC. 
Student CD2: With the use of the GC I have gained more knowledge about solving 

quadratic inequalities as it helped me to understand the steps involved 
in. it provided me with opportunities to practise answering more 
problems on quadratic inequalities. 

TR:           In that scenario, how can you rate your level of understanding in 
quadratic inequalities after the use of the GC? 

Student CD2: I rate myself at 4 because there has been an improvement since. 

Interview with Student CD3 

TR:         Did the use of the GC make you score better results in quadratic 
inequalities? 

Student CD3: Yes, I can confirm that.  
TR:              Explain what made you to improve after using GC. 
Student CD3: Because the GC has everything, meaning it has the graph and critical 

values that are helpful for understanding the basics of the quadratic 
inequalities. The GC also provides more opportunities for more practices 
on your own and for checking if my solution is correct. 

TR:            In this case, how can you rate your level of understanding? 
Student CD3: I rate myself with a 5. 
TR:            Thank you very much.      

Interpretation of the students’ responses 

The responses of the three students indicated that the use of the GC made them 

achieve better score marks in solving quadratic inequalities. The use of the GC 

helped students to know the basics of the quadratic inequalities (CD3) and to gain 

more knowledge (CD1). On the other hand, student CD1 indicated that she was no 

longer struggling with quadratic inequalities. They further indicated that the use of 

the GC also provided them with more opportunities for practicing on their own and 

for verifying their solutions. The teacher-researcher noted that students CD1 and 

CD3 had overrated their levels of understanding as these were below- average and 

average learners.  

7.9. Reflection and conclusion of the last DBR cycle  

This final section of the chapter presented the reflection of the last DBR cycle at 

School C. The researcher looked back to the starting points and expected learning 

outcomes for the third teaching experiments. Then the conclusion was drawn from 
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the hypothetical learning trajectory and the results of the three research cycles in 

teaching experiments.   

7.9.1. Reflecting on the expectations of the HLT  

The researcher set out the expectations, based on the feedforwards from the second 

research cycle in Section 7.2, as starting points of this design study in relation to the 

opportunities that graphing calculators (GC) would offer for the students to achieve 

the higher level of understanding of the quadratic inequalities. In this current section, 

the researcher evaluated those expectations one by one to find out if they were 

confirmed in School C.  

The first expectation in this last cycle was that specific attention to the properties of 

the quadratic graphs such as domain (interval notations), concavity (the effects of 𝛼) 

would improve the students’ visualisation and presentation of the solution sets of 

quadratic inequalities in a flexible graphing calculator environment. During the 

teaching experiment at School C, students were confronted with activities that were 

mathematically similar but with different coefficients of 𝑥2 (see Session 2 in Appendix 

D). More emphasis was given to the use of quadratic graphs, interval notations 

(domain), concavity and the effects of parameter 𝛼 which were identified as the 

bottlenecks in the second research cycle. Students were given two additional 

activities on quadratic graphic properties and were engaged in pairs. The use of the 

GC indeed proved to be an appropriate instructional artefact for helping students to 

generate a family of graphs in the same systems of axes. In addition, the use of the 

GC helped students to visualise the graphs displayed on the screens and enabled 

them to understand their properties (e.g., zeros, intervals, axis of symmetry, 

concavity and domain). On the other hand, students were able to make repetitions of 

graphing quadratic functions using the GC and this made them develop and reify the 

key pre-concepts of quadratic inequalities. As it was conjectured, the findings 

confirmed that the emphasis on the properties of the quadratic graphs improved the 

students’ visualisation and presentation of the solution sets of quadratic inequalities 

in the GC environment. Evidence for this is the way the students answered quadratic 

inequalities in written tasks (cf: Section 7.4.1). Almost all the students’ attempts and 

discussions about quadratic inequalities were supported with graphs and students 

were able to recognise the concavity of quadratic functions with respect to the 

coefficients of 𝑥2. This was a positive sign towards understanding quadratic 
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inequalities. In this regard, the use of GC supported the transition from the graphic 

representation to quadratic inequality representation in the last DBR cycle. 

The second expectation in this last DBR cycle was that the graphic and tabular 

instrumented action schemes would support the students’ visualisation and 

reification of interval notations and concavity (the effects of parameter 𝛼) of quadratic 

functions. The notion is that parameters have a graphical meaning, which was 

expected to prepare the students for generalization for the solution sets of quadratic 

inequalities. This means students were supposed to use their prior skills of quadratic 

functions and equations towards solving symbolic quadratic inequalities, which 

demand routine reasoning skills. During the teaching experiment at School C, 

students were confronted with questions that were mathematically similar but with 

different levels of difficulties (see Sessions 3 and 4 in Appendix D). Students were 

supposed to use the GC as an instructional artefact, in particular the graphic and 

tabular instrumentations to solve the symbolic quadratic inequalities. These 

instrumented action schemes allowed students to repeat the processes of graphing 

and tabling the values and supported them develop and reify the concept of 

quadratic inequalities. Through the repetition of the processes the students realized 

that changing the parameter values affected the complete quadratic graphs and 

inequality solution sets. The graphical visualization of this effect (i.e., changing the 

parameters) created a strong mental image for the students. The impression is that 

most of the students started to perceive graphs and inequalities as entities that could 

symbolize objects. The use of graphical representations (models) made students to 

extend their graphical conception of the quadratic functions towards the view of 

understanding the symbolic quadratic inequalities. In particular, the 𝑥-intercepts of 

the graphs were used as the limits for deciding whether the quadratic inequality 

solutions are within or outside them. The graphical models mediated very well 

between the quadratic equations and quadratic inequalities (Sections 7.7.1 & 7.7.2). 

The notion is that the graphical schemes of the graphing calculators were helpful for 

visualizing the effects of parameters and the properties of graphs. Evidence is shown 

in the students’ answers in the written tasks (cf: Section 7.4.2). As it was 

conjectured, the graphic and tabular schemes of the instrumented actions improved 

the students’ understanding and interpretation of graphs in solving quadratic 

inequalities. The use of graph and tabular instrumented action schemes thus 
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facilitated the transition from the graphical and tabular representations to quadratic 

inequality solutions.  

The third expectation of the last DBR cycle was that introducing a topic of quadratic 

inequalities with real-life mathematical situations particularly linear inequalities would 

intrinsically motivate students. The idea was to draw a specific focus on the linear 

inequality problems of the real-life situations which meant to foster the concept and 

its significance in life (see Session 7 in Appendix D). The mastery of these real-life 

linear inequality situations would increase the students’ confidence in quadratic 

inequality problems. Evidence provided by the students’ work showed that the use of 

real-life linear inequality contexts indeed fostered better interpretation of 

mathematical situations and generalization (see Sections 7.5.1 and 7.6.1). In the 

referred sections, students’ understanding of real-life mathematical situations moved 

from the referential level to the general level. These findings are embraced in the 

reality principle of RME theory. In this principle, the importance of using real contexts 

that are meaningful and natural to learners as a starting point for their learning can 

develop mathematical tools and understanding when exposed to realistic contexts 

that can be mathematised (Cheung & Huang, 2005; Van den Heuvel-Panhuizen, 

2010; De Villiers, 2012; Drijvers, 2015). This shows that the realistic problem 

situations in learning activities were experientially real to students and meaningful, 

authentic as starting points (Drijvers, 2015). In that regard, the linear inequality 

contexts helped students to develop true meaning to quadratic inequalities. Also, the 

fact that students were not required solving quadratic inequalities; they developed 

interests in interpreting the contextual situations. However, in complex situations the 

students still had difficulties keeping track of the problem-solving strategy.  

The fourth expectation was that an earlier intertwinement of the algebraic and 

graphic representations would stimulate the understanding of the contextual 

(complex) problems of quadratic inequalities in the GC environment. This is 

consistent with the principle of intertwinement which advocates for an integrated 

approach of various mathematical topics (Van den Heuvel-Panhuizen, 2010; Widjaja 

& Heck, 2003). The use of the integrated approach supported the students’ 

visualisation and enhanced the reification of the graphs as objects that were used to 

solve quadratic inequalities. During the teaching experiment at School C, students 

were confronted with questions that were mathematically similar but with different 
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levels of difficulties (see Sessions 5 and 6 in Appendix D). Students were engaged in 

the use of the GC as an instructional, visualisation, guiding and checking artefact to 

solve the contextual quadratic inequality problems. Students were able to convert the 

contextual situations into algebraic expressions -quadratic inequalities and then 

solved them algebraically and graphically. The integrated approach successfully 

mediated between the symbolic and contextual situations as evidenced form the 

students’ work in questions 4 and 5 of the post-test (see Figure 7.8). This means the 

expectation was justified. The use of the GC brought about the appealing 

visualizations of the quadratic graphs and students found them helpful in solving any 

type of quadratic inequalities. This earlier intertwinement stirred up the students’ 

understanding of the quadratic inequalities and diminished students’ misconceptions. 

The researcher is tempted to conclude that the use of the GC for the learning of the 

quadratic inequalities was appropriate for the eleventh grade. 

7.9.2. Conclusions drawn from the three DBR cycles  

This section described the conclusion drawn from the three DBR cycles about the 

HLT and the teaching experiment experiences. The cycles were presented in 

Chapters 5, 6 and 7 for three different schools. In this section the researcher briefly 

looked back at these three chapters and summarized the main issues that would be 

considered in more detail in the next chapter.   

The development of the HLT of three DBR cycles 

The three research cycles in Chapters 5, 6 and 7 led to the development of an HLT 

for the three teaching experiments in three different schools. The broad outline of 

HLT: Solving routine symbolic and contextual problems of quadratic inequalities in a 

flexible graphing calculator environment. This was viewed as a broad learning 

trajectory of how to achieve higher level understanding of quadratic inequalities by 

using the opportunities offered by the use of the GC. Student activities were 

developed to foster the transitions in a natural way of learning quadratic inequalities. 

These activities included manipulations in the GC environment and, of course, the 

related mental activities. Furthermore, the experiences and reflections (the feed-

forwards) from the first two teaching experiments informed the HLT of the last two 

DBR cycles. In this way, optimization of the HLT was achieved. However, there were 

no major changes in designing the HLT for the second and third cycles except that 
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real-life inequality situations should be incorporated as starting points. Thus, the 

developed HLT remained the same for the three DBR cycles and was supported by 

the starting points and expected learning outcomes.  

A summary of the experiences of the teaching experiments 

The results from the teaching experiments suggested that the use of graphical 

approach was most helpful to students in solving quadratic inequalities because of 

its dynamic character and visual images. However, the use of the GC did not 

adequately address the properties of quadratic graph such as domain, the interval 

notation and concavity without the use of teacher’s voice. For that reason, the 

teacher-researcher had to avail himself every time to explore his experience in the 

second cycle for orchestrating the learning process in whole-class discussions and 

also as an additional resource of information for the students. The use of the GC 

supported the transition of symbolic quadratic inequalities towards the contextual 

quadratic inequalities however this did not come across in a satisfying way. This was 

attributed at least partially to algebraic misconceptions of solving routine symbolic 

quadratic inequalities in general and the use of graphic strategy in particular. It is 

important to master this graphical technique, so that it does not hinder the 

generalization and visualisation processes. Linking the algebraic and graphical 

representations in the GC environment was expected to holistically develop students’ 

reasoning skills and problem-solving abilities in the broad learning trajectories of 

solving quadratic inequalities. Students incompletely solved the contextual quadratic 

inequalities because they had partially understood symbolic quadratic inequalities 

and partially developed the reasoning skills of metacognition and monitoring their 

progress. 

A null hypothesis was stated and tested if there was no difference between the pre-

test mean and the post-test mean of quadratic inequalities for the students in the 

study. A dependent paired statistics t-test and Cohen’s d effect-size were conducted 

to test the significance of the GC use on the students’ performance in solving 

quadratic inequalities. The t-test results indicated that the null hypothesis was 

rejected at 5% significant level in favour of the alternative hypothesis of the three 

research cycles (cf: Sections 5.4; 6.4; 7.4) and the GC use had practically improved. 
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The students’ results of the in-depth interviews in the three cycles affirmed that the 

use of the graphing calculator provided an enabling environment for learning 

quadratic inequalities. Students revealed that the use of the GC made their learning 

of quadratic inequalities easier and enabled to see how the quadratic inequalities 

were solved graphically. They also explained that a graph with critical values was 

always displayed on the GC which helped them to write accurate solutions. They 

further argued that the use of the GC afforded opportunities to figure out how the 

graph would look like and to see how the solutions could be presented graphically. 

This means that the graphs were used as visual objects that aided to understand 

quadratic inequalities. Students further revealed that the use of the GC helped them 

to link algebraic methods with graphs when solving quadratic inequalities. This was 

within the recommendations of the CAPS for FET Mathematics document (DBE, 

2011), expressed emphatically in the NSC Examination Diagnostic Reports that 

students must solve quadratic inequalities by integrating both methods (DBE, 2014; 

2015; 2016; 2017). Additionally, students expressed joy and comfort of using the 

GC, which brought about the appealing visual images for solving quadratic 

inequalities. For those underlying reasons, the students attributed their high score 

marks in and minimised anxieties of solving quadratic inequalities to the use of the 

GC.  

The results of three students of each cycle who were engaged in focus group 

interviews showed different levels of proficiency in relation to problem solving 

processes. The students, who scored high scores in solving quadratic inequality 

problem, used an integrated approach (i.e., the algebraic and graphical approaches) 

and also verified their solution with the graphing calculator when required to do so. 

The students’ work revealed that the graphical approach was used by almost every 

student (cf: Sections 5.6.1; 6.6.1; 7.6.1).  Evidently, the results indicated that the use 

of the GC supported the students’ problem-solving abilities. The results of the focus 

group interviews also revealed that the use of GC was beneficial in helping students 

to identify the main concept involved, make convincing conclusions before solving it 

and make appropriate choice of the strategy to execute. Through the use of the 

graphic approach students were able to “interpret the inequality” and “figure out 

solution” and “to decide for the region”. Notably, the use of GC did not completely 

support all the reasoning domains in all the three cycles. Results indicated that the 
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use of the GC supported students’ reasoning skills such as analysing, initiating a 

strategy and seeking and using connections.  However, the use of the GC did not 

support completely the reasoning skills of reflecting on one’s solution (metacognitive) 

and monitoring one’s progress when solving quadratic inequalities. It was a hard 

issue for some students to reflect on their own solutions without the use of the GC. It 

was observed that students who used multiple approaches –algebraic and graphic-

successfully monitored their progress and verified their assumptions as they were 

able to switch between approaches and to question every action they take. 

Design principles of the DBR study 

It is well known that students typically struggle with learning of quadratic inequalities 

which could be facilitated by correctly interpreting graphs in the forms in which they 

are presented. In this regard, the design principles were formulated to help students 

become flexible in dealing with quadratic inequalities using functional graphs, 

whether as symbolic, graphic, or numeric. The use of the graphs or visual graphs 

from the GC helped to formulate and refine the following principles in the three 

cycles of design based research. The main design principle of this design based 

study: Graphically interpreting the quadratic inequalities in a flexible graphing 

calculator environment.  The three cycles of DBR also assisted to identify other 

minor design principles which helped to close the learning gap of quadratic 

inequalities, as listed below: 

1. Helping students deal with quadratic inequalities flexibly, stress the graphical 

representations of functions 

2. Training students to use the GC fluently reduces chances of the limited 

viewing window of the tool becoming a source for students' misconceptions. 

3. Starting the topic of quadratic inequalities with the problems of real-life 

situations enhances students’ understanding in a GC environment. 

4. Integrating algebraic and graphical representations when teaching quadratic 

inequalities 

5. Provide feedback to the learners about their solutions in a flexible GC  

environment  

Chapter 8 is the next and final chapter that discusses the main findings of the three 

DBR cycles presented in Chapters 5, 6 and 7 in a broader didactic spectrum. 
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CHAPTER 8: DISCUSSION, CONCLUSIONS AND 
RECOMMENDATIONS 

 

8.1. Introduction  

This final chapter discusses the main findings of the three cycles presented in 

Chapters 5, 6 and 7 in a broader didactic spectrum. The purpose was to make a 

synthesis of these cyclic results and then to reflect on the main findings of the three 

research cycles. Secondly, the chapter discusses the findings of the four research 

sub-questions and then derives the answer to the main research question (8.2). 

Thirdly, it discusses the contributions of the theoretical frameworks and the 

methodology to these findings (8.3). The fourth it draws conclusions from the 

findings (8.4) and lastly recommendations for the study are made (8.5).  

8.2. Discussions of the findings  

In this section the researcher first discusses the findings of this study focusing on the 

three research sub-questions presented in Chapters 5, 6 and 7. Second, the findings 

are compared with the initial expectations, and then I look back on the possible 

alterations in these issues. Third, the researcher reflects on the critical role that the 

theoretical frameworks played in the study. Fourth, the suitability of the research 

methodology is also discussed.  

8.2.1. First research question about the students’ performance 

The first research sub-question was,  

To what extent can the pedagogical use of graphing calculator influence 
high school students’ performance in solving quadratic inequalities?   

The results from the three chapters addressed the first sub-question in the three 

research cycles (cf: Sections 5.4; 6.4; 7.4) through the quantitative analysis of the 

pre- and post-tests. Results of the dependent paired statistics t-test showed that 

there were significant differences between the students’ means of the pre- and post-

test in their performance of quadratic inequalities. This difference is significant for 

overall performance among all students and specifically in three participating 

schools. The results showed that the students’ mean scores of the post-test in the 

three research cycles had improved and there was sufficient evidence to conclude 
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that this change from the GC use was statistically significant at 5 % (p=0.05) level  

and had large Cohen’s d effect sizes (𝑑1 = 0.8; 𝑑2 = 1.1; 𝑑3 = 0.8). With these 

significantly higher means between the pre- and post- test results in the three 

research cycles, this indicates that the use of the GC was beneficial in improving the 

students’ performance in quadratic inequalities. It is interesting to note that the 

largest gains of students’ scores of the post- test occurred in the third cycle at School 

B. This could be attributed to the written tasks that consolidated the learning 

activities (Sections 5.4.1-2; 6.4.1-2; 7.4.1-2) and well-developed HLT. Furthermore, 

the use of feedback and the exposure to graphic representations provided by the GC 

could have influenced this wide difference of students’ performance between pre-test 

and post-test. For this reason, a conclusion can be drawn that supports the 

alternative hypothesis of this study that the use of the GC enhanced students’ 

understanding of quadratic inequalities. The results showed that there was a 

significant gain between pre- and post-test score achievement in the GC enhanced 

environment. These findings were consistent with the earlier studies such as those of 

Carter (1995); Ellington (2006) and Armah and Osafo-Apeanti (2012), in the GC 

learning environment. This shows that the GC was a support mechanism for 

students' learning (Karadeniz, 2015) as provided them with multiple representations 

to enhance their understanding of the concept (Averbeck, 2000; Spinato, 2011).  

8.2.2 Second research question about the students’ problem solving 

The second research question was,  

In what ways can the pedagogical use of the graphing calculator support 
the high school students’ problem solving ability in quadratic inequalities?  

In order to answer this question, the results of the post-test (cf: Sections 5.5.1; 6.5.1; 

7.5.1) were used as means of analysing the students’ problem solving abilities of 

quadratic inequalities in a graphing calculator learning environment. Question five 

was selected from the post-test (see Appendix D) for exploring the students’ problem 

solving abilities in the application of quadratic inequalities. The students were not 

supposed to use the graphing calculator as an additional tool to help solve the 

problem but for verifying the accuracy of their solutions. A sample of three students’ 

answers was selected and analysed from each DBR cycle. Using the quadratic 

inequality problem solving test (QIPST) rubric in Appendix D, students’ answers 

were scored and analysed. The results revealed that students understood the 
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problem and appropriately applied the strategy of solving the problem. This means 

an inequality was correctly constructed and appropriate solutions were arrived at 

using the correct procedures. However, not all students reflected on their solutions 

by checking its reasonableness and accuracy. The majority of students scored more 

than 50%, thus an indication that the pedagogical use of the GC supported students’ 

problem-solving abilities. The use of both graphical and algebraic approaches helped 

students to solve the problems. 

Another quantitative portion of the study sought to answer the same research 

question through the post-survey results (cf: Sections 5.5.2; 6.5.2; 7.5.2). The post-

survey data of the three DBR cycles revealed that the students felt that the use of 

the graphing calculator supported them in problem solving of quadratic inequalities. 

In their supporting evidence, students indicated that the use of the GC enabled them 

to understand the contextual problems, guided them to sketch the graphs, use the 

best alternative methods and procedures and check for errors, mistakes and 

correctness of their solutions. Students’ perceptions were assessed using the 

Polya’s main steps of problem-solving processes. For that reason, students in all the 

three cycles perceived that the use of the GC helped them to play out these activities 

when solving contextual quadratic inequalities. The use of multiple representations 

(graphical, tabular, and algebraic) of quadratic inequalities offered by the use of the 

GC allowed students to view more than one representation. The use of the GC thus 

supported them in problem solving of quadratic inequalities.  

The qualitative portion of the study also supported this conclusion. The qualitative 

results of the focus group interview on problem solving (cf. Sections 5.6.1; 6.6.1; 

7.6.1) revealed that students, who scored high scores in solving quadratic inequality 

problem, used an integrated approach (i.e., the algebraic and graphical approaches) 

and also verified their solutions correctly with the graphing calculator when required 

to do so. The graphical approach seemed to be the most useful in solving the 

quadratic inequality as it helped students to identify the correct region of the solution 

and to write the meaningful interval notations. It was noted that students who used 

the integrated approach were also able to move back and forth between the multiple 

representations. However, there were cases where the students could not 

confidently use the graph even if the right graph was drawn. Two-thirds of the 
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students of each DBR cycle were able to reflect on their solutions and strategies 

used to solve the contextual problem correctly and were in a position to use the GC 

to verify their solutions when asked to do so. Evidently, the results indicated that the 

use of the GC partially supported the students’ problem-solving abilities.  

On the quantitative portion of the focus group interviews (Sections 5.6.1; 6.6.1; 7.6.1) 

students’ problem solving abilities were scored in terms of a) formulating an 

inequality from the contextual problem, b) using the algebraic approach, c) using the 

graphical approach, d) using the graphing calculator for verifying solutions and e) 

obtaining a correct solution set. The results also revealed that the graphing 

calculators were useful in terms of helping to improve students’ problem solving and 

thinking skills. These findings from the results of the post-test, focus group interviews 

and post surveys were compatible with the results obtained in the previous studies 

(e.g., Spinato, 2011; Averbeck, 2000; Allison, 2000; Bitter & Hatfield, 1991; Carter, 

1995). The exposure of students to different strategies, including the use of the GC 

supports the development of their problem solving skills in quadratic inequalities. The 

International Society for Technology in Education standard suggested that having 

digital tools in the classroom and using them appropriately in mathematics, helps 

students improve critical thinking skills and, solve and make informed decisions in 

real-world problems (ISTE Standards for Teachers and Students, n.d.).  

8.2.3 Third research question about the students’ reasoning  

This section reflects on the third research question,  

In what ways (how) does the pedagogical use of the graphing calculator 
support the high school students’ reasoning ability when solving quadratic 
inequalities?  

In order to answer this research question, focus group interviews combined with 

observations (Sections 5.6.2 ; 6.6.2; 7.6.2.) were used as means of exploring the 

students’ reasoning skills (e.g., analysis, initiative, reflection, monitoring and seeking 

connection) when solving quadratic inequalities. The qualitative results from the 

focus group interviews with students on their reasoning skills in the contextual 

quadratic inequality problems revealed that the use of the GC was beneficial in 

developing different domains of the students’ reasoning skills in all the three DBR 

cycles of teaching experiments. Results indicated that the use of the GC differentially 
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supported the domains of students’ reasoning skills in all the three research cycles. 

In the first two research cycles (Sections 5.6.2; 6.6.2) the researcher observed that 

the use of the GC mostly improved and developed the domains of the students’ 

reasoning skills such as analysing a problem, initiating a strategy and, seeking and 

using connections. This means the students were able to reason about solving 

quadratic inequalities by identifying hidden structures, choosing the appropriate 

strategies and representations as they connected different mathematical domains 

and contexts. Students used both algebraic and graphic representations as a way of 

making meaningful connections to understand quadratic inequalities better. 

However, the use of the GC did not support completely the development of the 

reasoning domains of reflecting on one’s solution (metacognitive) and monitoring 

progress when solving quadratic inequalities. It was a hard issue for some students 

to reflect on their own solutions and monitor their progress without the use of the GC. 

It was observed that students who used more than one approach –algebraic and 

graphic-successfully justified their solutions and verified their assumptions as they 

were able to look back and forth between these approaches and to question every 

action they take.  

In the third DBR cycle (Section 7.6.2) the researcher observed that the domains of 

reasoning that improved in the GC environment were analysing, initiating a strategy 

and seeking and using connections and reflecting on their solutions. The researcher 

attributed the improved reasoning domain of reflecting on the solution to the 

increased attention to the feed-forwards in Chapter 6. These domains of reasoning 

require analysing the mathematical problem to determine the possible approaches 

and strategies that can be used throughout solving the problem and reflecting on the 

reasonableness of the solutions through justifying their solutions, and connecting 

mathematical concepts. This means the students were able to reason about solving 

quadratic inequalities by identifying patterns, choosing the appropriate strategies, 

and verifying the accuracy of their solutions using connections to understand 

concepts. Students used both algebraic and graphic representations as a way of 

seeking meaningful connections and understanding quadratic inequalities. However, 

students did not seem to improve much in metacognitive reasoning domain of 

monitoring progress which includes verifying their assumptions as they could not 

review and modify their selected approaches when solving quadratic inequalities. 
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The quantitative portion of the study sought to answer this research question through 

the post-survey results (cf: Sections 5.6.3; 6.6.3; 7.6.3.). The post-survey data of the 

three research cycles revealed that the students perceived that the use of the 

graphing calculator supported their reasoning skills when solving quadratic 

inequalities. In their supporting evidence, students indicated that the use of the GC 

helped them to analyse completely, use multiple strategies, monitor or check their 

progress, link with other mathematical concepts and reflect on (i.e., look back) their 

solutions of the contextual quadratic inequality problems. The pedagogical use of the 

GC thus supported their reasoning skills when solving quadratic inequalities. 

Another quantitative portion of this research also supported this conclusion. The data 

drawn from the written task indicated that the use of the GC seemed to be very 

helpful in improving the reasoning skills among student participants of the three DBR 

cycles in solving quadratic inequalities. However, there were some variations in 

terms of reasoning skills developed for each cycle of the teaching experiments. For 

example, students who began with lower reasoning abilities had improved after the 

use of the GC. It was also noted that the use of GC did not seem to have much 

effect on those students, who had higher reasoning skills. These findings were 

consistent with the research literature, which state that graphing calculators are more 

effective for lower-achieving students (Burrill et al., 2002; Spinato, 2011). The results 

from the written tasks of the current study support this conclusion. The researcher 

observed that the higher achieving students maintained higher marks in the written 

tasks. In most cases, these students used both an algebraic approach and a graphic 

approach to earn the highest reasoning scores. This means the use of the GC was 

effective in supporting students’ domains of reasoning skills. However, students’ 

reasoning domains did not seem to develop at the same level. This means the 

development of students’ reasoning domains were affected by their limited 

background of concepts related to quadratic inequalities and the use of the GC 

syntaxes.   

Students’ responses from the interviews were directly related to particular domains 

of reasoning skills, which shows that they had developed these skills. For example, 

the process of checking their solutions and assumptions throughout solving relates 

directly to the reasoning domain of monitoring progress. Students were able to 

identify concepts and relationships, develop strategies, make conclusions, draw 
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connections to other contexts and reflect upon their solutions, effectively monitored 

their progress and successfully solved the contextual quadratic inequality problem. 

By contrast, students who did not perform well in all of the reasoning domains 

struggled to solve the problem, which is consistent with the findings of Karadeniz 

(2015); Spinato (2011); Graham (2005) and Averbeck (2000). 

8.2.4 Fourth research question about the students’ perceptions of the pedagogical 
use of the GC on quadratic inequalities 

This section reflects on the fourth research question,  

What perceptions do students have on the pedagogical use of the 
graphing calculators in learning quadratic inequalities? 

In order to answer this research question, the results of post-surveys were used 

(Sections 5.7; 6.7; 7.7) as means of exploring the students’ perceptions 

quantitatively. The comparative results of the pre- and post-surveys showed that the 

GC use impacted good behaviour in students’ learning of quadratic inequalities. This 

was revealed by the students’ responses that favoured the post surveys. The post 

survey means of the items were greater than the pre-survey means (cf: Tables 5.7; 

6.7; 7.7). Students indicated that they understood and enjoyed learning quadratic 

inequalities and had minimised memorising procedures. Additionally, they indicated 

that they had no difficulties in determining the solution sets of quadratic inequalities 

and were able to see the difference between the equation and inequality. With the 

consistent use of the GC they were able to show the difference between critical 

values and x-intercepts of the graphs. 

In sections (5.7.2; 6.7.2 and 7.7.2), the post-survey data of the three research cycles 

revealed that the students felt that the use of the graphing calculator supported them 

in answering quadratic inequality activities. In their supporting evidence, students 

indicated that the use of the GC enabled them to identify quadratic inequalities by 

the shapes of the quadratic graphs, to see the effects of the parameter “a” on the 

different graphs, to use the graphs to solve quadratic inequalities and to use correct 

interval notations informed by the critical values. All these were considered to be the 

main concepts that can lead the students to solve quadratic inequality confidently. 

The pedagogical use of the GC thus supported students’ reasoning and problem 

solving skills of quadratic inequalities. 
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As a qualitative portion of this section, the in-depth interview (cf: Sections 5.8; 6.8; 

7.8) was conducted with the three students who had obtained marks below average, 

average and above average from the post–test. The interview sought to find out if 

the use of the GC had influenced students’ understanding of quadratic inequalities. 

The responses of the students from the in-depth interviews affirmed that the use of 

the graphing calculator provided an enabling environment for learning quadratic 

inequalities. In their arguments, they revealed that their learning of quadratic 

inequalities had been made easier after the use of the GC and they were able to see 

how the quadratic inequalities were solved graphically. Students further contributed 

that the use of the graphical sketches assisted them to determine the regions of the 

solution sets of quadratic inequalities and were enabled to visualise the solutions of 

quadratic inequalities on the GC screens. Through the process of visualisation 

students were able to establish the relationship between the quadratic graphs and 

quadratic inequality solutions. This is supported by the findings in the literature that 

visual data promoted students’ motivation to explain the graphs and functions (Choi-

Koh, 2003) and also that with visual images students can develop their thinking 

process (Doerr & Zangor, 2000).  The use of the calculators enabled them to 

visualize the problems and concepts as also found by (Leng, 2011). Using graphing 

calculators as a visualization tool also reflects students’ ways of solving equations 

and inequalities (Karadeniz, 2015). 

As revealed in the interviews, the visual images of the graphic representations 

improved the learning of quadratic inequalities. Additionally, they affirmed that the 

use of the GC influenced them to link algebraic methods with graphs i.e., graphs 

being drawn as aid for solving quadratic inequalities. Ultimately, students expressed 

enjoyment and confidence in the learning of quadratic inequalities with the use of the 

GC and indicated that it was instrumental towards their understanding of quadratic 

inequalities. A significant number of students presented their work with graphs and 

some of graphs were not relevant. This is a sign that the use of the GC had “inspired 

the use of the graph” as indicated by student DB3. However, not all the students 

made use of the graphical models to illustrate their solutions in answering the post-

test. This means that although these students appreciated the graphical meaning of 

an algebraic solution they apparently could not connect the two representations as 

expected. Despite the fact that students had ‘interesting’, ‘great’ and ‘awesome’ 
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experiences with the use of the GC in solving quadratic inequalities, they suggested 

for a balanced approach with regard to its use and the use of symbolic approaches 

(Averbeck, 2000). Students still valued the presence of the teacher as an additional 

resource to the use of the GC who can attend to their individual differences in the 

classroom. 

8.3. Contributions of the theoretical frameworks and methodology 

The role of the theoretical frameworks and methodology cannot be over emphasised 

as they contributed enormously to the improvement of students’ understanding of 

quadratic inequalities in a graphing calculator-assisted classroom.  

8.3.1 The theory of Realistic Mathematics Education  

The guided re-invention principle of RME was instrumental in developing the 

hypothetical learning trajectories (HLTs) and designing instructional activities for the 

three research cycles of teaching experiments. The results of the study revealed that 

students were able to develop their own informal problem-solving strategies and 

ideas as they were engaged with the use of the GC and learning activities. The use 

of the GC helped them to experience an abstract mathematical problem (i.e., solving 

quadratic inequalities algebraically) as real and meaningful to them. Students learnt 

with their own authority and greater freedom and learning was always meaningful to 

them (i.e., linking up of algebraic and graphic representations). It was further noted 

that students progressively formalised their informal strategies of solving quadratic 

inequalities (i.e, using graphic approach) and this is in line with the ideas of previous 

researchers (Drijvers, 2003; Bakker, 2004; Ndlovu et al., 2013). The use of the GC 

provided the students with a powerful learning environment as students were able to 

develop their own mathematical domains, ideas and representations, and had the 

opportunity to experience a process similar to that of solving quadratic inequalities. 

This concurs with the findings of the earlier researchers (Van den Heuvel-Panhuizen, 

2003; Ndlovu, 2014) in a technology learning environment which have similar 

symbolic algebra capabilities. It was noted that this learning process, however, 

needed a focused teacher’s guidance to develop sensible directions and to leave 

‘dead-end streets’ within the mathematical community. The researcher further 

observed that it was beneficial to let students graph their own diagrams and compare 
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them with the ones on the GC as this allowed them to formalise their informal 

reasoning and to make their abstract notions to become more general.  

The findings of the study also revealed that the use of the GC as an instructional tool 

afforded students opportunities to move through different levels (emergent 

modelling, abstraction, generalization, formalization) of understanding quadratic 

inequalities as they were able to produce visual models, diagrams and symbols in 

their attempts. Specifically, the use of the GC helped students to use their models 

and diagrams to build up their presentations on each other to develop powerful 

mathematical ideas. In reference to realistic quadratic inequality problems, students 

were able to organise, translate and transform into quadratic inequalities. At the 

same time students used their models, diagrams and symbols for formal reasoning 

in quadratic inequality situations. This was an indication that students were moved 

from horizontal mathematisation to vertical mathematisation, where they could 

explain the solution of the inequality by mere looking at the graphical representation. 

This is consistent with the findings of the previous researchers (Freudenthal, 1991; 

Gravemeijer, 1994; Drijvers, 2003; Menon, 2012). Drijvers (2003) further suggests 

that if the realistic problem situation is meaningful to the students then the 

technology serves as a means for vertical mathematisation. For this study, the 

concrete and realistic problem situations were meaningful to the students and 

provided better starting points. Again, the use of graphical approach became the 

generalised procedure for solving quadratic inequalities. 

The RME heuristics (historical and didactic) also contributed to the success of this 

study. Historically, the most apparent success was the idea to start the HLT with 

real-life linear inequality situations to support students’ understanding of quadratic 

inequalities. The historical accounts functioned as evolving HLTs which inspired the 

development of the activities related to real life applications. The design of 

instructional activities and materials were preceded by a historical study of the 

relevant pre-concepts of quadratic inequalities such as linear inequalities, quadratic 

equations and quadratic graphs. The pre-concepts were the basic ingredients of the 

intended instructional sequence and minimised the epistemological obstacles. This 

historic principle contributed to the structuring of the learning activities from lower 

level (familiarity) through informal context-connected solutions to the formal 
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mathematical reasoning. This is consistent with the findings of prior researchers 

(Radford, 1997, Halmaghi, 2011; Bagni, 2005; Burn, 2005).  

8.3.2. Contributions of the theory of instrumentation 

The theory of instrumentation proved to be a fruitful framework in this study, although 

it was applied only to learning and teaching of quadratic inequalities. The findings of 

this study showed that the use of the GC (instrumental approach) contributed to the 

building the students’ conceptual understanding (knowledge) of quadratic 

inequalities. The instrumental approach to the use of the GC effectively influenced 

students to easily construct the graphs (an enablement of the GC) and dynamically 

manipulated the GC by creating unavailable opportunities in a paper and pencil 

environment (a potentiality of the GC). Through the teacher-researcher’s exploitation 

mode of didactic performance, students were prompted to effectively use the GC 

(i.e., teacher’s instrumental efforts). In addition, it was through the utilisation 

schemes of the GC that the students were able to perceive the relation between 

algebra and graphic visualisation. This relationship helped students to connect the 

graphic properties and quadratic inequality solutions. The use of the GC provided 

opportunities for students to use visual models, diagrams and symbols as they were 

able to figure out the solutions of quadratic inequalities. The qualitative results 

revealed that students were satisfied with the graphic-numeric approach and only 

considered algebra when determining the critical values. In addition, the table 

approach was often utilised after questions from the teacher-researcher. These 

results are linked to the findings of the previous studies (Drijvers, 2003; Jupri, 

Drijvers and Van den Heuvel-Panhuizen, 2015) that the use of the GC provided 

students with visual and representational opportunities..  

The researcher further observed that the students were able to develop additional 

schemes for solving contextual problems of quadratic inequalities which were in line 

with the conjectured schemes. The usage schemes enabled the students to discover 

and select the relevant functions, and adjust the screen as they entered the 

inequalities and put the GC into action. However, in solving the contextual real-life 

problems, the researcher observed that student difficulties in setting up quadratic 

inequalities were not caused by their inability to understand each word or phrase in 

the problem, but by their inability to represent them in an appropriate algebraic 

expression- quadratic inequality. Students displayed a limited understanding of the 
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contextual quadratic inequality problems, which concerns the process of 

transforming the problem situation into the world of mathematics (horizontal 

mathematization). This is consistent with the findings of the earlier studies such as 

those of Ndlovu et al (2013), Drivjers et al (2010), Trouche (2004) and Van den 

Heuvel-Panhuizen (2003). 

The results revealed that there was a close relation between machine techniques 

and conceptual understanding of students when using the graphing calculator (the 

instrumentation process). A technical and a conceptual aspect could be 

distinguished in many of the problems that the students encountered. This means 

the understanding of quadratic inequalities and the GC techniques are closely 

related to one another. It was observed that, on the one hand, students who had 

difficulties in carrying out GC techniques had limitations in the insight of quadratic 

inequalities. On the other hand, the development of students’ reasoning and problem 

solving skills of solving quadratic inequalities as mental conceptions were fostered 

by the GC techniques. This means the limitations in the conceptual aspect hindered 

the instrumental approach to learning quadratic inequalities in the GC environment. 

As a consequence, the students’ errors that occurred while using the GC revealed a 

lack of congruence between machine technique and mathematical conception, or 

indicated limitations in the conceptualization of the mathematics involved. These 

findings were linked to the results of prior studies such as those of Drijvers (2003), 

Ndlovu, et al. (2011) and Jupri, Drijvers and Van den Heuvel-Panhuizen (2015) for 

the instrumented action scheme with related conceptual and technical aspects in a 

GC environment.  

The instrumentation difficulties did play a role in this study and were persistent. A 

well-known example concerns the scaling of the viewing window of a graphing 

calculator. The researcher observed that students needed to develop an 

instrumented action scheme which involves the technical skills of setting the viewing 

window dimensions of the GC. Some students were hindered to transform the 

quadratic inequality from algebraic form into the graphic visualization on the graphic 

interface (the instrumented action schemes). The researcher felt that it was the 

incompleteness of the conceptual part of such a scheme that caused the difficulties 

of setting appropriate viewing screens of GC. This means the instrumental genesis 

sometimes was hindered by conceptual barriers of the students. It was noted that 
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students made syntactic errors in entering negative numbers with a different minus 

sign than is used for subtraction. In this regard, the instrumentation difficulties were 

technical as the students were not able to operate the GC in the intended way. This 

is an indication that some students were still in the process of mastering the GC- 

utilisation schemes- to accomplish their instrumental genesis. Thus, the 

instrumentation difficulties were more than it had been expected beforehand. 

Although the graphic instrumented action scheme facilitated the expected transitions 

within the topic of quadratic inequalities, the graphing calculator was more an 

exploratory tool. Students used the tool to explore the conventional symbol system, 

but not to express themselves by means of their own symbols. This is consistent with 

the previous findings which revealed that the integration of the GC into teaching and 

learning often turns out to be more complex than expected (Doerr & Zangor, 2000; 

Drijvers, 2003; Averbeck, 2000 Guin & Trouche, 2002). 

8.3.3 The Vygotsky’s socio-cultural theory  

The Vygotsky’s socio-cultural theory proved to be an adequate framework in this 

study as it provided opportunities for the teacher--researcher to observe, interpret 

and understand how the students constructed their knowledge in a GC mediated 

classroom. This theory also contributed to selecting learning strategies and 

designing instructional activities for a GC mediated classroom. 

The ZPD contributed to the success of this study, more specifically on the 

organisations of concepts and objects. The teacher-researcher applied in its 

principles to design learning activities and materials in a graphing calculator 

classroom. The activities were more experimental and provided students with 

opportunities to construct their own understanding, significance and meaning 

through the use of the GC. The designed activities took into consideration of the 

students’ knowledge and difficulties and the GC was used as a planning tool. Taking 

into cognisance of the students’ ZPD, the teacher-researcher started with what the 

students could do independently based on the prior knowledge in order to link with 

knowledge that they performed under his assistance. This means the learning 

activities of quadratic inequalities incorporated real-life problems which were solved 

with the researcher’s help. This is affirmed by the ZPD’s principle that providing the 

appropriate assistance should scaffold the student to perform the task successfully 

(Vygotsky, 1978; Siyepu, 2013).  
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An application of the socio-cultural theory’s principles helped in modelling sound 

instructional practices and using the appropriate language. The use of the GC did 

not substitute the teacher’s role instead he assumed his role to guide the students to 

gain meaningful understanding of quadratic inequalities. Students were viewed as 

active constructors of knowledge and negotiators in a GC mediated classroom. The 

well-planned tasks provided opportunity for students to interact, discuss and present 

their own work in classroom. In their interaction as groups and pairs, students 

received help from other learners (peers) who were more capable. The theory 

helped to view learning of mathematics as a human activity, within a socio-cultural 

setting where students can exchange ideas among themselves using an appropriate 

language. The teacher as the most knowledgeable made comments on their problem 

solving efforts in oral and written reflections. This showed that the theory contributed 

to the promotion of the students’ independent thinking and the control of their own 

learning situation. This theory was also helpful in preventing students from simply 

memorizing information but to use graphic instrumented action scheme to promote 

the use of senses to obtain underlying meaning of concepts. This is linked to the 

findings of the researchers like Noddings (1990), who suggested that students 

needed building materials, tools, patterns, and sound work habits in order to 

construct mathematical objects and relationships.  

8.3.4. The suitability of the methodology of the study   

The design based research (DBR) as a pragmatic methodology played a critical role 

for attempting to understand and explore how the use of the GC improved the 

learning of quadratic inequalities at the eleventh grade. This methodology was 

suitable as it generated scientifically claimed evidence using both quantitative and 

qualitative data. The non-availability of specific instructional activities, synthesised 

hypotheses and global theoretical framework for understanding students’ learning 

behaviours in a graphing calculator environment, required the design based study. In 

addition, this was an exploratory study which needed a research design for reviewing 

theories, hypotheses and instructional activities during the subsequent research 

cycles. The use of the graphing calculator in mathematics education affected the 

existing instructional and assessment methods, as they were not designed for 

technological instructions. In that regard, an appropriate design study was needed to 

accommodate the changing learning trajectory in the cycles.  
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DBR also allowed the researcher to collaborate with practitioners and peers. Peer 

review of instructional activities assisted in making more explicit the goals and 

expectations of the study. This methodology permitted the researcher to administer 

the mini-interviews for identifying the key items and reflecting on the results with the 

intent of producing feed-forwards for the subsequent cycles. In that context, the 

cyclic nature of the DBR assisted to generate the design principles and local 

instructional theory of learning quadratic inequalities in a flexible GC environment. 

The local instructional theory of the study was as: The pedagogical use of the GC 

improves the instructional sequence of quadratic inequalities. The main design 

principle of this study was: Graphically represent quadratic inequalities in a flexible 

graphing calculator environment.  Other essential design principles that emerged in 

these three cycles were (i) the training of students to use the GC fluently to reduce 

chances of the limited viewing window for becoming a source of students' 

misconceptions and (ii) using the GC cannot address all learning styles, and must be 

complemented by other traditional methods.  

8.4. Conclusions of the study 

With the quantitative and qualitative findings of the study, the researcher concluded 

that the main research objective was achieved i.e., the use of the GC improved the 

Grade 11 students’ understanding of the quadratic inequalities. The GC provided the 

flexible learning environment which made it possible for students to effectively 

interact, share mathematical ideas and create models (graphs, diagrams, number 

lines) which were used for developing their mathematical reasoning and problem 

solving skills. Students had the opportunity to make multiple representations 

(symbolic, graphic and numeric) of quadratic inequalities and this helped them to 

flexibly work within and between these representations. The use of the GC fostered 

the students’ independent mathematical learning with the minimal guidance by the 

teacher-researcher.  This means that the study was able to measure the true effects 

of the GC use on the students’ understanding of mathematical concepts as observed 

in earlier research. With these results, the researcher was able to produce the 

evidenced-based heuristics (design principles) and local instructional theory for 

learning quadratic inequalities in a flexible GC environment. However, graphing 

calculator cannot orchestrate itself to articulate students’ conceptual understanding 
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of quadratic inequalities; the human instructional agent remains indispensable in 

appropriating it to accomplish the desired didactic goals.  

8.5 Recommendations of the study 

The researcher recommends the use of the findings for professional development 

programmes for the FET mathematics teachers so the GC could be used as an 

intervention tool in their classrooms. This means the findings of this study can be 

communicated to the teachers to encourage them to integrate the GC for improving 

the students’ reasoning and problem solving skills of quadratic inequalities or related 

problems. It might be fruitful for the teachers to attend more GC workshops to 

enhance its efficient application with actual classroom examples of mathematics.  

The researcher further recommends for the communication of the findings to the 

policy makers in the Department of Education about the need for permitting the use 

of graphing calculators both in the instruction and assessment. It might be beneficial 

to discuss how the GC can be used in the assessment process in educational 

workshops, where teachers collaboratively create both tests for the GC and non-

programming calculators. The workshop should include the discussion of the nature 

of the questions to be assessed with the GC. Additionally, the textbook developers, 

including Umalusi might benefit from teachers’ comments about more exploratory 

activities with GCs. As a result, Umalusi and curriculum developers might consider 

introducing calculator versions for the NSC mathematics examinations as what 

obtains in other countries. They might also include different types of GCs for different 

types of questions based on the goals of the activities.   

The researcher might consider presenting different roles of the GC to subject 

teachers, such as computational, transformational, data collection and analysis, 

visualization, checking (Doerr & Zangor, 2000). This can be beneficial to them to 

observe different roles of the GC put into practice when learning mathematics. The 

findings indicated that the use of the graphing calculator improved students’ 

performance and, their reasoning and problem-solving skills in quadratic inequalities. 

In addition, the use of the GC provided students with experiences of using the right 

strategies, connecting newly learned concepts with existing knowledge and reflecting 

on their solutions to check the appropriateness. The GC facilitated the use of two or 

more methods i.e., algebraic and graphic representations, which are instrumental for 
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students’ understanding of quadratic inequalities. Therefore, there would be a strong 

motivation to adopt the use of the GC as an instructional tool on a wider basis  in 

South African secondary schools, as learners were found to be “only good at 

questions involving procedural knowledge in TIMSS, 2011(Reddy, et al., 2013) but 

poor in problem solving and higher- level cognitive abilities (Spaull, 2013)’. Such 

findings therefore, might become a valuable asset to inform the mathematics 

teachers as problem solving and reasoning skills are the cornerstones for 

understanding a mathematical concept. As an alternative approach, the GC can be 

used to achieve the main goals of the Department of Basic Education, therefore 

solving quadratic inequalities by integrating algebraic and graphic methods in the 

NSC Examination Diagnostic Reports (DBE, 2014; 2015; 2016; 2017). 

The experiences gained in conducting the cyclic DBR teaching experiments of this 

study provided insights from which to make recommendations for future research. 

Because of its positive effects on students’ academic achievement and its 

effectiveness on students’ reasoning and problem-solving, the GC should be given 

more space in the mathematics education. Despite its undoubtedly significant role, 

there is a limited literature on and also not much research on graphing calculator in 

South Africa. This design-based study brings forth a meritorious contribution of an 

enquiry-based approach to the teaching and learning of mathematics in an 

explorative manner. There has also been little research done with the learning of 

quadratic inequalities in South Africa. This study then adds to that literature with 

reference to the teaching and learning of quadratic inequalities which is limited by 

the little research. Furthermore, it could be argued that there is a gap in research on 

teaching and learning with the GC within theoretical frameworks such as the 

instrumental genesis, RME and Vygotsky’ socio-cultural learning theories. Further 

research thus is needed to fill this gap. 

Additionally, future research should focus on the learners of different grades and 

different concepts to tap the opportunities offered by the pedagogical use of the GC 

in mathematics classrooms. The same opportunities should be extended to research 

about the teachers’ and preservice teachers’ perceptions in South Africa on the use 

of the GC in solving quadratic inequalities. The pre- and post- survey outcomes 

(Sections 5.6.7; 6.6.7; 7.6.7) about students’ perceptions on the use of the GC to 

improve problem solving and reasoning could be explored in greater detail. In this 
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case, an exploratory qualitative research could to be adapted to inquiry about how 

the students’ reasoning and problem solving skills were supported in the GC learning 

environment when solving quadratic inequalities. Within that context, 

recommendations are made to the use of the exploratory qualitative research for 

providing valuable insights into how the use of the GC enhanced the students’ 

understanding.   

This study used a DBR approach to examine students’ understanding of quadratic 

inequalities in a graphing calculator-enhanced classroom. Therefore, data in this 

study were collected in three cycles. This entailed that each data cycle was largely 

dependent on the previous for results and mostly depended on the results of the 

previous cycle to improve the next. It would be useful to collect similar data from one 

experimental school and then compare with the control school since it is one of the 

first of its kind in the South African mathematics curriculum. 
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APPENDICES 

 

Appendix A: Session 1: Pre-Test  

 
This activity aims to test the prior knowledge of students in solving quadratic 
inequalities at the eleventh grade in South African secondary schools. 
  
Instructions to Participants 

 Please attempt to answer all questions. 

1. Given an inequality: (𝒙 − 𝟐)(𝒙 + 𝟑) < 𝟎, the solution is  

A.−𝟑 < 𝒙 < 𝟐   B. −𝟐 < 𝒙 < 𝟑   C. 𝒙 < −𝟐 or 𝒙 > 𝟑  D. 𝒙 < −𝟑 or 𝒙 > 𝟐                 (2) 

2. State the solution set of each diagram, indicated in bold black.                                (4) 

2.1.                                                                 2.2.        

                                                              0                       3 

                          -5            1 

 

3. Solve for x 

3.1.  𝒙𝟐 + 𝟑𝒙 > 𝟎                                                                                                                (3) 

 

3.2.  (𝒙 + 𝟏)(𝟑 − 𝒙) ≥ 𝟎                                                                                                     (3) 

3.3.  (𝒙 − 𝟑)(𝒙 + 𝟐) > −𝟒                                                                                                  (4) 

4.  Given 𝒇(𝒙) = (𝒙 − 𝟒)𝟐 − 𝟖  and 𝒈(𝒙) = −𝟐𝒙 + 𝟖 

      For which values of 𝒙 is  𝒇(𝒙) ≥ 𝒈(𝒙) ?                                                                      (4) 

5. Determine the values of 𝒙 for which √𝟐𝟓 − 𝒙𝟐  will be non-real                                (4)   

6. A small manufacturer’s weekly profit is given by 𝑷(𝒙) = − 𝟐𝒙𝟐 + 𝟕𝟎𝒙, in which 𝒙 is 

the number of items manufactured and sold. Find the number of items that must be 

manufactured and sold if the profit is to be greater than or equal to R600.            (5) 

[TOTAL MARKS 30] 
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APPENDIX B: Pre- intervention surveys 

 

Indicate with an X the box that accurately represents your response to each 

statement. SA=Strongly Agree, A=Agree, N=Not Sure, D=disagree, SD=Strongly 

Disagree  

 
ITEM 

 Students’ perceptions about the learning 
of quadratic inequalities                                    

SA A N D SD 

SPQI 1 Quadratic inequalities are difficult to 
understand 

     

SPQI 2 I do not see the difference between the 
equation and inequality 

     

SPQI 3 It’s difficult to determine the solution sets of 
quadratic inequalities after finding the critical 
values.  

     

SPQI 4 I have difficulties with determining factors of 
quadratic expressions (inequalities)  

     

SPQI 5 I don’t know the difference between critical 
values and x-intercepts of the graphs 

     

SPQI 6 In order to understand the quadratic inequality 
topic I usually memorise it  

     

SPQI 7 Of all the topics I have done so far I don’t like 
quadratic inequalities 

     

SPQI 8 It’s difficult to use graphical sketches to 
determine the solution of quadratic inequality 

     

SPQI 9 I have never used graphical sketches when 
solving quadratic inequalities 

     

SPQI 10 Given an opportunity of not to do quadratic 
inequalities I was going to do so 

     

SPQI 11 Technology (e.g., computers) cannot help me 
to understand mathematics 

     

SPQI 12 I have never used a programmable calculator 
to solve quadratic inequalities  

     

1 = strongly disagree, 2 = disagree, 3=not sure, 4 = agree, and 5 = strongly agree 
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Appendix C: Learning Activities in Quadratic Inequalities 

Session 2 
 
Aim: This session aims to determine the solution sets of quadratic inequalities when 
given in the form of graphs. Students are expected to use the zeros of the functions 
as the critical values when determining the inequality solution.  
 

1.1. Given an inequality: (𝒙 + 𝟒)(𝒙 − 𝟏) < 𝟎, the solution is  

A.−𝟐 < 𝒙 < 𝟒   B. −𝟒 < 𝒙 < 𝟏   C. 𝒙 < −𝟐 or 𝒙 > 𝟒  D. 𝒙 < −𝟒 or 𝒙 > 𝟐                  

1.2. State the solution set of each diagram, indicated in bold black.                                 

1.2.1.                                                                 1.2.2.        

                                                              0                       3 

                      -1           6 
 
 
  

2.1. Write down the solution sets of𝑓(𝑥) > 0, when 𝑓(𝑥) is represented by the drawn 
graphs.  
 
2.1.2.                                                                  2.1.2.                                  
                                                                                         

                                                                                 -3             5                
                      -6      -1                                                  
 
 
 

2.2. Examine the graph of 𝑦 = 𝑥2 − 4𝑥 − 5 and then answer the following questions. 
 
 

 

2.2.1 What are the solutions of 0 = 𝑥2 − 4𝑥 − 5? 
 

2.2.2 What are the solutions of 𝑥2 − 4𝑥 − 5 ≥ 0? 
 

2.2.3 What are the solutions of 𝑥2 − 4𝑥 − 5 < 0? 
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2.3. Use the graph of the related function of each quadratic inequality to write its 
solutions 
 

 
 

 
Session 3 

 
Aim: This session aims to sketch the graphs of quadratic functions using graphing 
calculators and then read-off the zeros of these functions. Students are expected to 
learn how to use the GCs through answering this session. 
 
3. Sketch the graphs of the functions, below and then write down their zeros. You are 

advised to use graphing calculators when sketching these graphs. 

 

3.1. 𝒇(𝒙) = 𝒙𝟐 − 𝒙 − 𝟏𝟐 

 

3.2. 𝒈(𝒙) = 𝒙𝟐 + 𝟕𝒙 − 𝟖 

 

3.3. 𝒉(𝒙) = 𝟗𝒙 − 𝟒𝒙𝟐 

 

3.4. 𝒇(𝒙) = 𝟐𝒙𝟐 − 𝟓𝒙 − 𝟑 

  

3.5. 𝒈(𝒙) = −𝟐𝒙𝟐 + 𝟑𝒙 + 𝟗 

 

 
 

Session 4 
 
Aim: This session aims to use graphing calculators to determine the solution sets of 
quadratic inequalities. Students are expected to determine the critical values that 
could lead to the solution set of the inequality through solving quadratic equations. 
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4. Use the graphing calculator to determine the solution sets of the following 
inequalities 
 

4.1. 𝑥2 − 𝑥 − 12 < 0 
 

4.2. 9𝑥 − 4𝑥2 ≥ 0 
 
4.3. (𝑥 − 3)(𝑥 − 4) < 12 
 

4.4. −2𝑥2 + 3𝑥 + 9 ≥ 0 
 
4.5. 9 >  −𝑥(𝑥 − 6) 
 

4.6. −𝑥2 − 3𝑥 + 5 ≤ 0 
 

4.7   𝑥2 − 6𝑥 + 10 ≥ 2 
 

 
Session 5 

 
Aim: This session aims to use the graphing calculators to answer the questions 
involving the application of quadratic inequalities. Students are expected to connect 
the notion of quadratic inequalities with the previous mathematical concepts in order 
to answer these questions. 
 
5. Use the graphing calculator to answer these questions involving the application of 
quadratic inequalities. 
 

5.1. For which values of 𝑥 will Q=√𝑥2 − 8𝑥 + 12 be non-real? 
 

5.2. Determine the domain of the function 𝑓(𝑥) = √𝑥2 − 5𝑥 + 6 
 

5.3. Given 𝑇𝑛 = 2𝑛2 − 3𝑛 + 2 of the quadratic sequence. Which term of this 

sequence is the first term more than 407?                                                                                        

5.4. Sketch the graphs of 𝑓(𝑥) = −𝑥2 + 2𝑥 + 3 and 𝑔(𝑥) = −2𝑥 + 3 using the 

graphing calculator. 

5.4.1. Determine the solution of 𝑓(𝑥) ≥ 0 

5.4.2. Determine the solution of 𝑓(𝑥) ≥ 𝑔(𝑥) 

5.5. Use the graphs of the functions to solve the following:  
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5.5.1.  𝑓(𝑥) = 𝑔(𝑥)           5.5.2.  𝑓(𝑥) ≥ 𝑔(𝑥)         5.5.3.  𝑓(𝑥) < 𝑔(𝑥) 
 

                                                 Session 6 
  

Problem-solving quadratic inequality situations 
 
Aim: This session aims to use graphing calculators to solve the contextual problems 
involving the quadratic inequalities. Students are expected to develop higher-order 
skills and also to extend their notion of qualitative reasoning in order to solve such 
complex, non-routine problems. 
 
6. Use the graphing calculators to solve the following contextual problems with the 
quadratic inequalities. 
 

6.1. The height of a punted football can be modelled by the function 𝐻(𝑥) = −4.9𝑥2 +

20𝑥 + 1, where the height 𝐻(𝑥) is given in metres and the time 𝑥 is in seconds. At 

what time in its flight is the ball within 5 metres of the ground? Hint: the function 𝐻(𝑥) 

describes the height of the football. Therefore, you want to find the values of 𝑥 for 

which 𝐻(𝑥) ≤ 5. 

6.2. Suppose a ball’s height (in meters) is given byℎ(𝑡) = −5𝑡2 + 20𝑡. When will the 
ball have a height of at least 15 m? 
 
6.3. A baseball player hits a high pop-up with an initial velocity of 30 metres per 

second, 1.4 metres above the ground. The height 

ℎ(𝑡) of the ball in metres 𝑡 seconds after being hit is 

modelled by ℎ(𝑡) = −4.9𝑡2 + 30𝑡 + 1.4. How long 

does a player on the opposing team have to get 

under the ball if he catches it 1.7 metres above the 

ground? Does your answer seem reasonable? 

Explain. 

6.4. If a ball is thrown vertically upward from the ground with an initial velocity of 80 

m/s, its approximate height is given byℎ(𝑡) = −16𝑡2 + 80𝑡, in which 𝑡 is the time (in 

seconds) after the ball is released. When will the ball have a height of at least 96 m? 

 

6.5*. A small manufacturer’s weekly profit is given by 𝑃(𝑥) = − 2𝑥2 + 110𝑥, in which 

𝑥 is the number of items manufactured and sold. Find the number of items that must 

be manufactured and sold if the profit is to be greater than or equal to R1500. 

 

 
Session 7 

 
Aim: To solve quadratic inequalities without the use of graphing calculators in 
preparation for the post- test. 
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7.1. Without the use of graphing calculator, solve for questions 14, 15 and 16 when 

𝑓(𝑥) ≥ 0 and for questions 17, 18 and 19 when 𝑓(𝑥) < 0.   

 

7.2. Solve the quadratic inequality graphically but without the use of graphing 

calculator. 

7.2.1.  𝑥2 − 𝑥 − 12 ≤ 0 

7.2.2 −𝑥2 − 3𝑥 + 28 ≤ 0 

7.2.3. (𝑥 − 3)(𝑥 + 5) ≤ 0 

7.3. For which values of 𝑥 will Q=√𝑥2 − 8𝑥 be non-real? 
  

7.4. Sketch the graphs of 𝑓(𝑥) = −2𝑥 − 8 and 𝑔(𝑥) = −2𝑥2 − 8𝑥 without the use of 
the graphing calculator. 
 

7.4.1. Determine the solution of 𝑔(𝑥) < 0 
7.4.2. Determine the solution of 𝑓(𝑥) ≥ 𝑔(𝑥) 
 
7.5. If an object is thrown vertically upward from the ground with an initial velocity of 

60 m/s, its approximate height is given by ℎ(𝑡) = −12𝑡2 + 60𝑡, in which is the time (in 

seconds) after the ball is released. When will the ball have a height of at least 72 m? 

7.6. A small manufacturer’s weekly profit is given by 𝑃(𝑥) = − 2𝑥2 + 70𝑥, in which 𝑥 

is the number of items manufactured and sold. Find the number of items that must 

be manufactured and sold if the profit is to be greater than or equal to R600. 
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Session 8 

Post-test (30 Marks) 

Aim: To assess students’ understanding of quadratic inequalities after the 

intervention of the graphing calculator in the 11th grade. In this session students are 

expected to solve quadratic inequality questions without the use of GC to 

demonstrate that they have developed reasoning and problem solving skills.  

Instructions to Participants 

 Please attempt to answer all questions. 

1. Given an inequality: (𝒙 − 𝟐)(𝒙 + 𝟑) < 𝟎, the solution is  

A.−𝟑 < 𝒙 < 𝟐   B. −𝟐 < 𝒙 < 𝟑   C. 𝒙 < −𝟐 or 𝒙 > 𝟑  D. 𝒙 < −𝟑 or 𝒙 > 𝟐                 (2) 

2. State the solution set of each diagram, indicated in bold black.                                (4) 

2.1.                                                                 2.2.        

                                                              0                       3 

                          -5            1 

 

3. Solve for x 

3.1.  𝒙𝟐 + 𝟑𝒙 > 𝟎                                                                                                                (3) 

3.2.  (𝒙 + 𝟏)(𝟑 − 𝒙) ≥ 𝟎                                                                                                     (3) 

3.3.  (𝒙 − 𝟑)(𝒙 + 𝟐) > −𝟒                                                                                                  (4) 

4.  Given 𝒇(𝒙) = (𝒙 − 𝟒)𝟐 − 𝟖  and 𝒈(𝒙) = −𝟐𝒙 + 𝟖 

      For which values of 𝒙 is  𝒇(𝒙) ≥ 𝒈(𝒙) ?                                                                      (4) 

5. Determine the values of 𝒙 for which √𝟐𝟓 − 𝒙𝟐  will be non-real                                (4)   

6. A small manufacturer’s weekly profit is given by 𝑷(𝒙) = − 𝟐𝒙𝟐 + 𝟐𝟐𝟎𝒙, in which 𝒙 is 

the number of items manufactured and sold. Find the number of items that must be 

manufactured and sold if the profit is to be greater than or equal to R6000.            (5) 

[TOTAL MARKS 30] 
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Session 9: Real-life mathematical situations: Linear inequalities 

1. The maximum height of a bakkie to enter into Lakeside mall is 1.5 metres. Write 

down an expression representing this statement. 

 

2. Mr Xhi earns more than R 5000 at his current job. Write down an expression 

representing this statement. 

 

3. ABC spaza shop makes a profit between R2 500 and R 5 000 per week.  Write 

down an expression representing this statement. 

 

4. How much strength is required to throw a shot put at least 10 metres? Write down 

an expression representing this statement. 

 

5. The minimum time to finish a piece of task by a learner is 3 hours. Write down an 

expression representing this statement. 
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Appendix D1: Post-intervention surveys 

Indicate with an X the box that accurately represents your response to each 

statement. SA=Strongly Agree, A=Agree, N=Not Sure, D=disagree, SD=Strongly 

Disagree  

 
ITEM 

Students’ perceptions about the learning of 
quadratic inequalities after the graphing 
calculator intervention (use)                                 

 
SA 

 
A 

 
N 

 
D 

 
SD 

SPQI 1 Quadratic inequalities are difficult to 
understand 

     

SPQI 2 I do not see the difference between the 
equation and inequality 

     

SPQI 3 It’s difficult to determine the solution set of 
quadratic inequalities after finding the critical 
values.  

     

SPQI 4 I have difficulties with determining factors of 
quadratic expressions (inequalities)  

     

SPQI 5 I don’t know the difference between critical 
values and x-intercepts of the graph 

     

SPQI 6 In order to understand the quadratic inequality 
topic I usually memorise it  

     

SPQI 7 Of all the topics I have done so far I don’t like 
quadratic inequalities 

     

SPQI 8 It’s difficult to use graphical sketches to 
determine the solution of quadratic inequality 

     

SPQI 9 I have never used graphical sketches when 
solving quadratic inequalities  

     

SPQI 10 Given an opportunity of not to do quadratic 
inequalities I was going to do so 

     

SPQI 11 Technology (e.g., computers) cannot help me 
to understand mathematics 

     

1 = strongly disagree, 2 = disagree, 3=not sure, 4 = agree, and 5 = strongly agree 

 

 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



335 
 

Appendix D2: Post- surveys: The effects of graphing calculator on students’ 
learning activities 

Indicate with an X the box that accurately represents your response to each 

statement. SA=Strongly Agree, A=Agree, N=Not Sure, D=disagree, SD=Strongly 

Disagree  

 
ITEM 

 Students’ perceptions of the effects of graphing 
calculator on the designed sessions of  learning 
quadratic inequalities                                    

SA A N D SD 

SPGC 
1 

The use of graphing calculator in learning sessions 
assisted me to solve symbolic (algebraic) quadratic 
inequalities  

     

SPGC 
2 

The use of graphing calculator in learning sessions 
assisted me to understand the difference between 
critical values and zeros of the graph 

     

SPGC 
3 

The use of graphing calculator in learning sessions 
assisted me to identify correctly the region of the 
inequality solution 

     

SPGC 
4 

The use of graphing calculator in learning sessions 
assisted me to transform contextual (application) 
problems into quadratic inequalities  

     

SPGC 
5 

The use of graphing calculator in learning sessions 
assisted me to use graphical sketches when solving 
quadratic inequalities  

     

SPGC 
6 

The use of graphing calculator in learning sessions 
assisted me to understand the effect of the parameter 
‘a’ in the quadratic inequality 

     

SPGC 
7 

The use of graphing calculator in learning sessions 
assisted me to note that the effect of the parameter 
‘a’ of quadratic function has the same effect on 
quadratic inequality  

     

SPGC 
8 

The use of graphing calculator in learning sessions 
assisted me to learn and understand much better 
quadratic inequalities 

     

1 = strongly disagree, 2 = disagree, 3=not sure, 4 = agree, and 5 = strongly agree 
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Appendix D3: Post-survey: The effects of graphing calculator on students’ 

reasoning and problem solving 

 

Please indicate with an X the box that accurately represents your response to each 

statement. SA=Strongly Agree, A=Agree, N=Not Sure, D=disagree, SD=Strongly 

Disagree 

 

SPR Student’s perceptions of the GC use on their 

reasoning in quadratic inequalities 

SD D NS A SA 

SPR1 The graphing calculator assisted me to adequately 

analyse the inequality problem 

     

SPR2 The graphing calculator helped me use multiple 

approaches to solve inequality problem 

     

SPR3 The graphing calculator enabled me to continuously 

monitor my progress in solving inequality problem 

     

SPR4 The graphing calculator assisted me to find and use 

connections of previous mathematical concepts  

     

SPR5 The graphing calculator guided me to reflect on my 

solution sets of the inequality problem 

     

SPPS Student’s views of the GC use on their problem-

solving in quadratic inequalities 

SD D NS A SA 

SPPS

1 

The graphing calculator helped me to understand or 

interpret the contextual inequality problems  

     

SPPS

2 

The graphing calculator enabled me to formulate 

quadratic inequalities from contextual problems  

     

SPPS

3 

The graphing calculator  assisted me to correctly 

solve the inequality problem  

     

SPPS

4 

The graphing calculator assisted me to look back 

upon the solution found  

     

SPPS

5 

The graphing calculator helped me to restate the 

inequality problem using my own words 

     

1 = strongly disagree, 2 = disagree, 3=not sure, 4 = agree, and 5 = strongly agree 
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Appendix E1: Quadratic inequality test (QIT) rubric for pre- and post-tests  

a) Overall rubric 

Description Score 

 Completely blank.  

 Only data were written down, no attempt for solution.  

 Completely incorrect answer and inappropriate reasoning. 

 

0 

 Indicator of a correct strategy was written but no application.  

 An attempt for solution, but not completed with some unclear workings. 

  Correct answer but inappropriate reasoning 

 

1 

 Correct strategy was found, but the student was not able to apply it or he has not 

tried hard enough. 

  Correct answer was found, but there was no indicator as to how it was achieved, 

essential workings omitted. 

 

2 

 Correct strategy was identified and applied, but there was no correct answer due to 

some calculation errors and misconceptions. 

 Correct strategy was used and correct answer arrived at but some errors during the 

representations 

 

3 

 Complete and appropriate solution and correct answer  

4 

 
b) Rubric for quadratic inequality problem-solving test (QIPST) 

 
Aspect rated Scores 

0 1 2 3 

Understanding 
the problem 

No attempt at all Completely 
misinterprets the 

problem 

Substantially 
interprets the 

problem 

Correctly and 
completely 

interprets the 
problem 

Devising a plan No attempt at all Completely makes 
a wrong 

inequality/model 
 

 

Substantially makes 
a correct inequality/ 

model for the 
solution 

Completely 
makes a correct 
inequality/ model 

and leads to a 
correct solution 

Carrying out the 
plan 

No attempt at all Completely 

implements wrong 

procedures based 

on inappropriate 

model or wrong 

inequality 

Substantially 
implements 

procedures of the 
correct inequality 

and leads to a 
partially correct 

solution 

Completely and 
correctly 

implements 
procedures of 

correct inequality 
and leads to a 
correct solution 

Looking back No attempt at all Incompletely  check 
the solution 

Substantially 
checks and 
evaluate the 

solution 

Correctly and 
completely check 
and evaluate the 

solution 
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Appendix E2: Rubric for assessing student’s reasoning skills in pre- and post-

tests  
 3 2 1 0 

 Analysing a 
problem  

 

The student describes 
at least three 
relationships between 
mathematical 
concepts or terms.  
 

The student is able to 
describe two 
relationships between 
mathematical 
concepts.  
 

The student is 
able to list some 
mathematical 
concepts.  
 

No response 
given 

Student is able to 
draw at least 2 correct 
conclusions about the 
answer to the 
problem.  
 

Student is able to 
draw at least 1 correct 
conclusion about the 
answer to the 
problem. 

Student draws an 
incorrect 
conclusion about 
the answer to the 
problem. 

No response 
given 

Initiating a 
strategy  

 

The student lists at 
least 1 reasonable 
approach.  
 

The student lists one 
unreasonable 
approach.  
 

No response 
given 

N/A 
 

Monitoring 
one’s 
progress  

 

The correct procedure 
is followed through 
OR the student 
begins with an 
incorrect procedure 
but realizes mistake 
and follows through 
using a new 
approach.  
 

The student begins 
with an incorrect 
procedure, realizes 
mistake, and attempts 
another approach OR 
begins the correct 
procedure and solves 
a certain portion but 
does not follow 
through. 

The student 
begins with an 
incorrect 
procedure and 
realizes mistake 
but does not 
attempt another 
approach.  
 

The student uses 
an incorrect 
approach in 
solving the 
problem and does 
not show 
evidence of 
monitoring her 
progress or leaves 
blank. 
 

Seeking and 
using 
connections  

 

Student is able to 
connect this problem 
to previous 
knowledge in math 
before inequalities or 
in other subjects in at 
least two ways.  

Student is able to 
connect this problem 
to previous knowledge 
in math before or 
during calculus in at 
least one way.  

No response 
given 

N/A 
 

Reflecting on 
one’s solution  
 

Student finds correct 
solution and decides 
if it is reasonable, and 
attempts to justify the 
answer.  
 

Student finds an 
incorrect or partially 
correct solution and 
decides if it is 
reasonable, and 
attempts to justify it.  

Student finds the 
correct solution 
but cannot justify 
or find out if it is 
reasonable.  

Student finds an 
incorrect solution 
and does not 
decide if it is 
reasonable  

Student is able to 
make two correct 
inferences.  
 

Student is able to 
make one correct 
inference.  
 

Student attempts 
to make an 
inference, but it is 
incorrect.  

No response 
given 
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Appendix F1: Focus group interviews with students 

Thank you for doing this interview. You are requested to answer a few questions 
about problem solving and then solve one of the problems that were on the post-test. 
At all times it is important that you think out loud so that we can understand how you 
reason through this problem. 

PROBLEM: A small manufacturer’s weekly profit is given by𝑃(𝑥) = − 2𝑥2 + 220𝑥, in 
which 𝑥 is the number of items manufactured and sold. Find the number of items that 
must be manufactured and sold if the profit is to be greater than or equal to R6000. 
 
1.1 (The teacher-researcher hands out the problem to the students). Please read this 

problem attentively and then formulate the required mathematical statement.  

 

1.2 Without the use of the graphing calculator, solve this problem showing all the 

necessary workings. Do not erase any steps.  

 
 
 
 
 
 

 1.3 State and explain the main concept of this contextual problem. 

 
 

1.4 Is there any relevant conclusion that you can make about the solution to the 

problem?  ____________________________________________ 

1.5 Which approaches do you think were most helpful in solving this problem- 

algebraic (e.g., factoring, quadratic formula) and/or graphical sketches? 

 
 

 

  Briefly explain why you selected these approaches. 

 

1.6 Do you think the use of graphical sketch was helpful in solving this problem?                   

Please explain your answer. 
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1.7  Is it possible to use both algebraic and graphical approaches in solving this 

problem? If yes explain your answer. 

 
 

 

1.8  With the answers you got, do you think you have solved this problem completely 

and correctly? Justify your reasoning. 

 

 

1.9 What conclusions can be drawn from the solution of this problem? 

 
 

  

 1.10 Is there any other relevant information that can be used to justify your solution? 

 
 

 

1,11 Using the graphing calculator do you still get the same solution?  

 
 
 

1.12. Please explain how helpful was the use of graphing calculator in understanding 

quadratic inequalities 

 
 

1.13. Which prior mathematical concepts did you use to solve this problem? Please 

explain your answer. 
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Appendix F2: In-depth interviews with students 

In this part of the interviews you are requested to express your feelings about how 

the GC use supported your learning of quadratic inequalities, for example in 

improving your reasoning and problem solving skills. Thank you for your time. 

2.1. Does the use of a graphing calculator make the learning of the quadratic 

inequalities easier to understand? 

_________________________________________________________________  

Why or why not? 

___________________________________________________________________ 

2.2. Does using the graphing calculator make you feel more comfortable with the 

quadratic inequalities?  

_________________________________________________________________ 

 Why or why not?  

_________________________________________________________________ 

2.3. Should graphing calculators be used to solve quadratic inequalities?  

 __________________________________________________________ 

If you feel so, how should they be used in grade 11? 

___________________________________________________________________ 

2.4. What is your opinion on the use of the graphing calculators in learning quadratic 

inequalities?  

___________________________________________________________________ 

 

2.5. Does using the graphing calculators improve your understanding when learning 

quadratic inequalities?   

________________________________________________________________ 

If yes, how does this happen? 
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2.6. Does the use of the graphing calculators make you write and complete your 

homework of quadratic inequalities?   

_________________________________________________________________ 

Why or why not? 

___________________________________________________________________ 

2.7. How can you explain your experiences with regard to the use of graphing 

calculators in the learning of quadratic inequalities? 

___________________________________________________________________ 

2.8. Do you prefer using other methods than using the graphing calculator to solve 

quadratic inequalities?  

___________________________________________________________________ 

If yes which one? 

___________________________________________________________________ 

2.9. Does the use of a graphing calculator make you score a better mark on 

quadratic inequality test than any other tests? Explain you answer. 

___________________________________________________________________ 

2.10.How would you rate your level of understanding of quadratic inequality concept 

after using graphing calculator, on a scale of 0 to 5, with 5 being very high? 

_________________________________________________________________ 
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APPENDIX G: OBSERVATION SCHEDULE 

After each session, the researcher completed the following observation summary. 

These summaries were guided the researcher to plan for effective use in classrooms 

and, to help in interviews and with data analysis.  

Observation Summary: Graphing calculator use by student 

Time:_______                                                               Date:_______  

Session No.:_____________  

1. Anything observed about the graphing calculator use that was salient, interesting, 

illuminating, or important 

 

2. Anything observed about the graphing calculator use that needs to be followed up 

in the interviews? 

------------------------------------------------------------------------------------------------------------ 

3. Observations about the frequent use of graphs or graphing calculators 
 
------------------------------------------------------------------------------------------------------------ 
 
4. Observations about the use of graphing calculators in the reasoning process to 
solve quadratic inequalities. 
 
-------------------------------------------------------------------------------------------------------------- 
 
5. Observations about the use of graphs or graphing calculators in the problem 
solving skills 
 

 

 

RUBRIC FOR OBSERVATION 
 
 1 2 3 4 

Graphical approach Does not use any 
approach to solve a 
problem 

Does not use a 
graphical approach 
to solve the problem 

Attempts to use a 
graphical approach 
but cannot interpret 
the graph to solve 
the problem 

Uses a graphical 
approach to solve 
the problem 

Graphing Calculator  Does not use the 
graphing calculator 

Uses the graphing 
calculator for 
computation only 

Uses the graphing 
calculator for at 
least one 
representation or 
feature 

Uses the graphing 
calculator for 
multiple 
representations 

Frequency Never Once Sometimes Always 
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     APPENDIX H1: Stellenbosch University Research Ethics letter 
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APPENDIX H2: DGE research approval letter 
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Appendix K1: Request for permission to conduct research from the District 

Director 

 

 
 

 REQUEST FOR PERMISSION FROM DISTRICT DIRECTOR  

TO CONDUCT A RESEARCH 

STUDENTS’ UNDERSTANDING OF QUADRATIC INEQUALITIES IN A 

GRAPHING CALCULATOR-ENHANCED MATHEMATICS CLASSROOM   

Your district has been invited to participate in a research study to be conducted by Mr Levi 

Ndlovu, a PhD student in the Department of Curriculum Studies at Stellenbosch University.  

This study will contribute to the teaching and learning knowledge base regarding the use of 

graphing calculators in mathematics classrooms and their use will improve students’ learning 

and understanding of quadratic inequalities.  

1. PURPOSE OF THE STUDY 

 

This research intends to improve students’ understanding when learning quadratic 

inequalities. During the study the researcher will integrate graphing calculators in 

mathematics lessons as supporting interventional tools to enhance the development of 

students’ reasoning, sense making and problem solving skills which are the basic aspects of 

conceptual understanding. The main focus is to basically minimise misconceptions and errors 

that may cause students not to solve quadratic inequalities successfully. 

 

2. WHAT WILL BE ASKED OF YOU?  

 

I would like to ask your permission to allow Hulwazi Secondary School and Crystal Park 

High to participate in this research after school.  The following will be done during the study: 

 

Teachers will participate in the following way: 

 Teachers will conduct classroom observations for at least 6 hours, when the 

researcher is implementing the intervention strategy (graphing calculator) in the 

quadratic inequality classroom. At the end, the teachers will collectively present their 

findings to the researchers about the effectiveness of the graphing calculators in 

solving quadratic inequalities.  
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 Teachers will be interviewed for about 30 minutes on one-to-one basis and their 

experiences will be video-recorded.  Interviews will be conducted during the school 

days at your school but once in a week.  

 You and the participating schools will be given an opportunity to receive a summary 

of the report. I will also at the end of the research, share feedback with the 

mathematics teachers on the effects of integrating graphing calculators in the 

mathematics classroom.  

Students will participate in the following way: 

 Solve quadratic inequality questions in the pre- and post-tests for research purpose. 

 Attend 6 one-hour lessons for solving quadratic inequalities using graphing 

calculators during the week.  

 Be video-recorded in all their class activities that involve the use of graphing 

calculators to solve quadratic inequalities. 

 Be interviewed for 30 minutes on one-to-one and on a focus group basis about their 

experiences of the use of graphing calculators to solve quadratic inequalities. 

 

3. POSSIBLE RISKS AND DISCOMFORTS 

 

There are no risks and discomforts for the teachers and students to participate in the research 

study. 

 

4. POSSIBLE BENEFITS TO PARTICIPANTS AND/OR TO THE SOCIETY 

 

There are direct possible benefits for the participation of your school in this research. The use 

of graphing calculator in solving quadratic inequalities will most likely provide opportunities 

to students to better understand the concept as they will be exposed to symbolic, tabular and 

graphing representations. Within this graphing calculator context, students’ involvement and 

engagement in class activities might increase due to the fact that teachers will address the 

content in a meaningful manner. It could be stressed that the use of different teaching 

methods and models will enhance students’ learning and understanding. This research will 

also equip the participating mathematics teachers with additional pedagogical content 

knowledge and skills needed to teach quadratic inequalities. This study will further increase 

students’ achievement in solving quadratic inequalities as teachers will be able to identify and 

select purposeful activities in the graphing calculator-enhanced classroom.   

 

5. PAYMENT FOR PARTICIPATION 

 

Participation of your teachers and students will be free of payment and voluntary that is there 

will be no remuneration. However, the researcher might provide incentives such as 

refreshments should funds permit. 
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6. PROTECTION OF YOUR INFORMATION, CONFIDENTIALITY AND 

IDENTITY 

Any information shared by your teachers and students during this study will be protected. I 

will not use any name or anything else that might identify your schools, students or teachers 

in the written work, oral presentations, or publications. The information remains confidential 

at all times. All data, including field notes and video recordings, will be kept under lock and 

key and will the electronic versions will be digitally encrypted (password protected). 

Databases will be destroyed after the research has been presented and/or published which 

may take up to five years after the data has been collected.  

7. PARTICIPATION AND WITHDRAWAL 

 

Participating teachers and students will be free to withdraw at any time, even after they have 

consented to participate. They may decline to answer at any specific questions. 

8. RESEARCHERS’ CONTACT INFORMATION 

 

If you have any questions or concerns about this study, please feel free to contact Levi 

Ndlovu at 074 521 1865/ 071 920 6056, [ndlovulevi@yahoo.com] and/or the supervisors 

Professor MC Ndlovu [mcn@sun.ac.za] and Dr H. Wessels at 021 808 3484.  

9. RIGHTS OF RESEARCH PARTICIPANTS 

 

You may withdraw your consent at any time and discontinue participation without penalty.  

You are not waiving any legal claims, rights or remedies because of your participation in this 

research study. If you have questions regarding your rights as a research participant, contact 

Ms Maléne Fouché [mfouche@sun.ac.za; 021 808 4622] at the Division for Research 

Development. 

 

If you agree for this research to be conducted at your schools, please sign below. The second 

copy is for your records. Thank you very much for your help.  

 

________________________________________              _____________________

 Signature of District Director                             Date 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za

mailto:ndlovulevi@yahoo.com
mailto:mcn@sun.ac.za


349 
 

APPENDIX K2: Letter of consent from principal 

 

 REQUEST FOR PERMISSION FROM SCHOOL PRINCIPAL  

TO CONDUCT A RESEARCH 

STUDENTS’ UNDERSTANDING OF QUADRATIC INEQUALITIES IN A 
GRAPHING CALCULATOR-ENHANCED MATHEMATICS CLASSROOM   

Your school has been invited to participate in a research study to be conducted by Mr Levi 

Ndlovu, a PhD student in the Department of Curriculum Studies at Stellenbosch University.  

This study will contribute to the teaching and learning knowledge base regarding the use of 

graphing calculators in mathematics classroom and their use will improve students’ learning 

and understanding of quadratic inequalities.  

10. PURPOSE OF THE STUDY 

This research intends to improve students’ understanding when learning quadratic 

inequalities. During the study the researcher will integrate graphing calculators in 

mathematics lessons as supporting interventional tools to enhance the development of 

students’ reasoning, sense making and problem solving skills which are the basic aspects of 

conceptual understanding. The main focus is to basically minimise misconceptions and errors 

that may cause students not to solve quadratic inequalities successfully. 

11. WHAT WILL BE ASKED OF YOU?  

I would like to ask your permission to allow three of your mathematics teachers to participate 

in this research.  The following will be done during the study: 

Teachers will participate in the following way: 

 Teachers will conduct classroom observations for at least 6 hours, when the 

researcher is implementing the intervention strategy (graphing calculator) in the 

quadratic inequality classroom. At the end, the teachers will collectively present their 

findings to the researchers about the effectiveness of the graphing calculators in 

solving quadratic inequalities.  

 Teachers will be interviewed for about 30 minutes on one-to-one basis and their 

experiences will be video-recorded.  Interviews will be conducted during the school 

days at your school but once in a week.  

 You and the participating teachers at your school will also be given an opportunity to 

receive a summary of the report. I will also at the end of the research, share feedback 
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with the mathematics teachers on the effects of integrating graphing calculators in the 

mathematics classroom.  

Students will participate in the following way: 

 Solve quadratic inequality questions in the pre- and post-tests for research purpose. 

 Attend 5 one-hour lessons for solving quadratic inequalities using graphing 

calculators during the week.  

 Be video-recorded in all their class activities that involve the use of graphing 

calculators to solve quadratic inequalities. 

 Be interviewed for 30 minutes on one-to-one and on a focus group basis about their 

experiences of the use of graphing calculators to solve quadratic inequalities. 

 

12. POSSIBLE RISKS AND DISCOMFORTS 

 

There are no risks and discomforts for the teachers and students to participate in the research 

at your school. 

13. POSSIBLE BENEFITS TO PARTICIPANTS AND/OR TO THE SOCIETY 

There are direct possible benefits for the participation of your school in this research. The use 

of graphing calculator in solving quadratic inequalities will most likely provide opportunities 

to students to better understand the concept as they will be exposed to symbolic, tabular and 

graphing representations. Within this graphing calculator context, students’ involvement and 

engagement in class activities might increase due to the fact that teachers will address the 

content in a meaningful manner. It could be stressed that the use of different teaching 

methods and models will enhance students’ learning and understanding. This research will 

also equip the participating mathematics teachers with additional pedagogical content 

knowledge and skills needed to teach quadratic inequalities. This study will further increase 

students’ achievement in solving quadratic inequalities as teachers will be able to identify and 

select purposeful activities in the graphing calculator-enhanced classroom.   

14. PAYMENT FOR PARTICIPATION 

Participation of your teachers and students will be free of payment and voluntary. That is 

there will be no remuneration. However, the researcher might provide incentives such as 

refreshments should funds permit. 

15. PROTECTION OF YOUR INFORMATION, CONFIDENTIALITY AND 

IDENTITY 

Any information shared by your teachers and students during this study will be protected. I 

will not use any name or anything else that might identify your school, students or teachers in 

the written work, oral presentations, or publications. The information remains confidential at 

all times. All data, including field notes and video recordings, will be kept under lock and key 

and will the electronic versions will be digitally encrypted (password protected). Databases 
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will be destroyed after the research has been presented and/or published which may take up 

to five years after the data has been collected.  

16. PARTICIPATION AND WITHDRAWAL 

 

Participating teachers and students will be free to withdraw at any time, even after they have 

consented to participate. They may decline to answer at any specific questions. 

17. RESEARCHERS’ CONTACT INFORMATION 

If you have any questions or concerns about this study, please feel free to contact Levi 

Ndlovu at 074 521 1865/ 071 920 6056, [ndlovulevi@yahoo.com] and/or the supervisors 

Professor MC Ndlovu [mcn@sun.ac.za].  

18. RIGHTS OF RESEARCH PARTICIPANTS 

You may withdraw your consent at any time and discontinue participation without penalty.  

You are not waiving any legal claims, rights or remedies because of your participation in this 

research study. If you have questions regarding your rights as a research participant, contact 

Ms Maléne Fouché [mfouche@sun.ac.za; 021 808 4622] at the Division for Research 

Development. 

 

If you agree for this research to be conducted at your school, please sign below. The second 

copy is for your records. Thank you very much for your help.  

 

________________________________________              _____________________

 Signature of Principal                             Date 
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Appendix K3: Student consent form 
 

 

 

 

STELLENBOSCH UNIVERSITY 

                             STUDENT CONSENT TO PARTICIPATE IN RESEARCH 

STUDENTS’ UNDERSTANDING OF QUADRATIC INEQUALITIES IN A 

GRAPHING CALCULATOR-ENHANCED MATHEMATICS CLASSROOM   

Your school has been invited to participate in a research study conducted by Mr. L. Ndlovu, 

from the Curriculum Studies Department at Stellenbosch University.  The investigation 

results will contribute to the development of a PhD thesis.  Your school has been selected as a 

possible participant in this study because this research will help you to understand better 

quadratic inequalities when you use graphing calculators in the classroom.  

1. PURPOSE OF THE STUDY 

This research intends to improve your understanding of quadratic inequalities through the use 

of the graphing calculators in a mathematics classroom. The aim is to minimise 

misconceptions and errors that usually are stumbling blocks when learners have to solve 

quadratic inequalities.  

2. PROCEDURES 

If you agree to take part in this study, you will be asked to:  

 Solve quadratic inequality questions in the pre-and post-tests for research purpose. 

 Attend 5 hour-lessons for learning quadratic inequalities using graphing calculators 

during the week. 

 Be interviewed for 30 minutes on one-to-one or focus group basis about the use of 

graphing calculators to solve quadratic inequalities. 

 Be video-recorded in all your class activities that involve the use of graphing 

calculators to solve quadratic inequalities. 

3. POSSIBLE RISKS AND DISCOMFORTS 

 

The only possible inconvenience might be attending lessons after school but you will only be involved 

for 2 weeks. There are no foreseeable risks or discomforts involved in partaking in this research.  

 

4. POSSIBLE BENEFITS TO PARTICIPANTS AND/OR TO THE SOCIETY 
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There are direct benefits to you for participation in this research, which may include to 

increase your involvement in the mathematics classroom and to enhance your achievement in 

quadratic inequalities. This research will explore how your reasoning, sense making and 

problem solving skills may be developed to answer quadratic inequalities. This research will 

also equip your teachers with additional instructional skills needed to teach quadratic 

inequality concept. These additional skills have the potential to increase learners’ 

participation in classroom activities as teachers will deliver the quadratic inequality concept 

in a realistic context.  

5. PAYMENT FOR PARTICIPATION 

There will be no payment for participation. Participants take part on a voluntarily basis. 

However, the researcher intends to provide small incentives such as soft drink with a 

sandwich should funds permit to encourage attendance of the voluntary sessions. 

  

6. PROTECTION OF YOUR INFORMATION, CONFIDENTIALITY AND 

IDENTITY 

 

Any information you share with me during this study and that could possibly identify you as 

a participant will be protected and will remain confidential and will be disclosed only with 

your permission or as required by law. Confidentiality will be maintained through:  

 Not using your name in the final draft of the thesis, but using special coding of the 

data. 

 Storing your personal data on a password-protected personal laptop, which include 

interview results and field notes, will be kept in a safe at the researcher’s home.  

Any information gathered from you that includes video-recordings and photographs will be 

made available to you on request at all times. Your personal data will be accessible to other 

participants only if prior consent is obtained from you. All materials gathered will be 

destroyed when no longer needed for the research. This information will only be used for the 

purpose of this research and publications that may result from the research. The results of the 

research study will be made available and not the identities of the learners to the school, 

Department of Education and other researchers on request.  

7. PARTICIPATION AND WITHDRAWAL 

You can choose whether to be in this study or not. If you agree to take part in this study, you 

may withdraw at any time without any consequence. You may also refuse to answer any 

questions you don’t want to answer and still remain in the study. The researcher may 

withdraw you from this study if circumstances arise which warrant doing so to maintain the 

validity of the data.  However, your participation in this study will improve the accuracy of 

the results because more responses from students better inform the study about how to 

continue improving students’ understanding of quadratic inequalities.  
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8. RESEARCHERS’ CONTACT INFORMATION 

 

If you have any questions or concerns about this study, please feel free to contact Levi 

Ndlovu at 074 521 1865/ 071 920 6056, [ndlovulevi@yahoo.com] and/or the supervisors Prof 

MC Ndlovu [mcn@sun.ac.za] at 021 808 3484. 

9.   RIGHTS OF RESEARCH PARTICIPANTS 

 

You may withdraw your consent at any time and discontinue participation without penalty.  

You are not waiving any legal claims, rights or remedies because of your participation in this 

research study. If you have questions regarding your rights as a research participant, contact 

Ms Maléne Fouché [mfouche@sun.ac.za; 021 808 4622] at the Division for Research 

Development. 

 

DECLARATION OF CONSENT BY THE PARTICIPANT 

 

As the participant I confirm that: 

 I have read the above information and it is written in a language that I am comfortable 

with. 

 I have had a chance to ask questions and all my questions have been answered. 

 All issues related to privacy, and the confidentiality and use of the information I 

provide, have been explained. 

 

By signing below, I ______________________________ agree to take part in this research 

study. 

_______________________________________ _____________________ 

Signature of Participant Date 
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Appendix K4: Parental consent form 

 

 
 

STELLENBOSCH UNIVERSITY 

PARENTAL/GUARDIAN CONSENT FOR CHILD/DEPENDANT T0 
PARTICIPATE IN RESEARCH 

STUDENTS’ UNDERSTANDING OF QUADRATIC INEQUALITIES IN A 

GRAPHING CALCULATOR-ENHANCED MATHEMATICS CLASSROOM   

Your child/dependant has been selected to participate in a research study to be conducted by 

Mr Levi Ndlovu, from the Curriculum Studies Department at Stellenbosch University.  The 

research results will be communicated in a research report to the Department of Education, 

aiming to improve the learning of quadratic inequality concept for your child/ dependent.  

 

1. PURPOSE OF THE STUDY 

This research intends to investigate students’ understanding of quadratic inequalities in the 

mathematics classroom supported by the graphing calculator. The aim is to minimise 

misconceptions and errors that usually are stumbling blocks when learners have to solve 

quadratic inequalities. Students’ feedback will help to improve the mathematics performance 

in the national public examinations.  

  

2. PROCEDURES 

If you agree that your child/dependant takes part in this study, s(he) will be asked to:  

 Solve quadratic inequality questions in the pre-and post-tests for research purpose 

conducted at his/her regular school. 

 Attend 6 hour-lessons for learning quadratic inequalities using graphing calculators 

once in a week. 

 Be interviewed for 30 minutes on one-to-one or group basis about the use of graphing 

calculators to solve quadratic inequalities. 

 Be video-recorded in all class activities that involve the use of graphing calculators to 

solve quadratic inequalities. 
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3. POSSIBLE RISKS AND DISCOMFORTS 

The only possible inconvenience might be attending lessons after school but s(he) will only 

be involved for 2 weeks. There are no foreseeable risks or discomforts involved in partaking 

in this research.  

4. POSSIBLE BENEFITS TO PARTICIPANTS AND/OR TO THE SOCIETY 

There are direct benefits for participating in this research as the study will most likely 

increase student involvement in the mathematics classroom and then enhance his/her 

achievement in quadratic inequalities. This research will explore how learner reasoning, 

sense making and problem solving skills are developed to answer quadratic inequalities in a 

graphing calculator supported environment. The use of graphing calculator in solving 

quadratic inequalities will provide opportunities to students to better understand the concept 

as they will be exposed to symbolic, tabular and graphing representations.  

5. PAYMENT FOR PARTICIPATION 

There will be no payment for participating in the research project by learners. Participants 

will take part on a voluntarily basis. However, the researcher intends to provide small 

incentives such as soft drink with a sandwich should funds permit to encourage attendance of 

the voluntary sessions. 

6. PROTECTION OF LEARNER INFORMATION, CONFIDENTIALITY AND 

IDENTITY 

Any information shared by your child/dependant during this study and that could possibly 

identify him/her as a participant will be protected and will remain confidential and will be 

disclosed only with your and his/her permission or as required by law. Confidentiality will be 

maintained through:  

 Using pseudonyms and special coding of data in the final draft of the research report. 

 Storing participants’ personal data on a password-protected desktop and laptops, 

which include questionnaire and interview results and field notes. Hard copies will be 

kept under lock and key both at the researcher’s office and home.  

Any information gathered from the learners that includes video-recordings and photographs 

will be made available to you on request at all times. Learners’ personal data will be 

accessible to other participants only if prior consent is obtained from learners. All materials 

gathered will be destroyed when no longer needed for the research. This information will 

only be used for the purpose of this research and publications that may result from the 

research. The information collected for this research will be made available to the school, 

Department of Education and other researchers on request.  

7. PARTICIPATION AND WITHDRAWAL 
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Your child/dependant can choose whether to be in this study or not. If s(he) opts to take part 

in this study, s(he) will still have the right to withdraw at any time without any consequence. 

S(he) may also refuse to answer any questions s(he) does not want to answer and still remains 

in the study. The researcher may withdraw any learner from this study if circumstances arise 

which necessitate doing so to maintain the validity of the data.  However, every learner’s 

participation in this study will improve the accuracy of the results because more responses 

from students will better inform the study about how to continue improving the 

understanding and relevance of quadratic inequalities at the eleventh grade.  

8. RESEARCHERS’ CONTACT INFORMATION 

If you have any questions or concerns about this study, please feel free to contact Mr Levi 

Ndlovu at 074 521 1865/ 071 920 6056, [ndlovulevi@yahoo.com] and/or the supervisors Prof 

MC Ndlovu [mcn@sun.ac.za] at 021 808 3484. 

9. RIGHTS OF RESEARCH PARTICIPANTS 

Your child/dependant may withdraw his/her assent at any time and discontinue participation 

without penalty.  You are not waiving any legal claims, rights or remedies because of your 

child’s participation in this research study. If you have questions regarding your rights as a 

research participant, contact Ms Maléne Fouché [mfouche@sun.ac.za; 021 808 4622] at the 

Division for Research Development. 

 

DECLARATION OF CONSENT BY THE PARTICIPANT 

As the participant, I confirm that: 

 I have read the above information and it is written in a language that I am comfortable 

with. 

 I have had a chance to ask questions and all my questions have been answered. 

 All issues related to privacy, and the confidentiality and use of the information I 

provide, have been explained. 

 

By signing below, I ______________________________ agree that my child takes part in 

this research study. 

_______________________________________ _____________________ 

Signature of Parent/Guardian Date 
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