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SUMMARY 

Land cover change, triggered by natural and anthropogenic land use change, affects ecosystem 

services provided by grasslands. Woody encroachment into the grasslands is a threat to function 

and productivity of rangelands, and threaten rural livelihoods, intensified by rising CO2 levels 

associated with climate change. Processes of change can only effectively be identified after 

spatial land transition has been revealed and patterns of change quantified. Accurately 

quantifying the rates and extent of land cover change is the first step in relating underlying land 

use processes and the environmental effects thereof to land cover change trajectories involving 

grassland transformation. 

The study aims to demonstrate how land cover change, in particular woody encroachment 

influences landscape functions provided by grasslands in the Eastern Cape. The study seeks to 

determine how accurately land cover transformation can be quantified and modelled using 

existing datasets that may contain map error and raises the question how the error pattern can 

affect modelling of future evapotranspiration and carbon storage. A further question is how the 

drivers of change vary between regions under different land tenure, i.e. dualistic or commercial 

systems. 

Systematic land cover change analysis and future land change modelling were used to 

characterise land cover change trajectories and flows in the landscape. Flows were described 

using (1) an indicator-based approach, and (2) intensity analysis and change budget. 

Hypothetical map error was determined for observed and modelled land cover maps. Overall 

change was partitioned into quantity, exchange and shift disagreement and intensity. The 

change budget was computed both at catchment and local level. Map error was further 

investigated using a local geographically weighted method. Local geographically weighted 

correspondence matrices were constructed to determine spatially explicit probabilities of 

change and error at catchment level and per land cover class. By consulting the overall 

allocation difference maps, hotspots of change and probable error were identified for further 

investigation. Trends in remote sensing-derived biophysical variables were analysed to 

determine how land cover change would affect the surface energy budget and the carbon cycle, 

as proxies for water use and rangeland productivity. 

Primary drivers of landscape modification comprised rangeland degradation, woody 

encroachment, urbanisation, increased dryland cultivation and commercial afforestation, with 

the latter concentrated in the commercial catchment. Though grassland persistence still 

dominated land cover in the landscape, catchments under dualistic land tenure experienced 
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steeper declines in the grassland area. Woody encroachment was also found predominantly in 

these catchments. 

Overall accuracy for the input land cover maps were reported as >80%, equating to theoretical 

land cover change accuracy of 67–72%. Landscape change varied between 18% and 42%, with 

19% estimated from direct overlay of land cover maps with 30 m resolution pixels. By applying 

a multi-resolution aggregation technique, the study showed that lower resolution input data 

would identify less change in the landscape, mainly because the allocation error diminishes at 

lower resolutions. For higher change accuracies and reliability, the accuracy of input land cover 

maps would have to be increased.   

Hypothetical map error in observed land cover change maps were found to be higher in 

catchments under dualistic tenure for gaining transitions, whereas losing transitions showed 

higher error in catchments practicing commercial farming. The hypothetical error accounted 

for almost 50% of the reported change. The modelled land cover change showed higher 

allocation disagreement, suggesting that the land change model was not very reliable, 

particularly for the commercial catchment. 

Analysis of remotely sensed data products such as albedo, net primary production and 

evapotranspiration, in combination with land cover change data has led to better understanding 

of the landscape of the catchments. Though grasslands are predicted to decrease in favour of 

woody invasive plant species and cultivated land, this study predicted a decrease of 12% and 

6% respectively in net carbon storage and water use by vegetation. Information from multiple 

sources, in both quality and type, were integrated to better understand rangeland productivity 

degradation and to compare the impact of climate versus land management in the different 

catchments. Quantifying changes in biophysical parameters can assist scientists and managers 

in addressing global challenges. 

 

KEY WORDS: 

Land cover, land cover change, land change modelling, hypothetical error, intensity analysis, 

geographically weighted, evapotranspiration, net primary production
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OPSOMMING 

Verandering in grondbedekking wat deur natuurlike en antropogeniese verandering in 

grondgebruik veroorsaak word, beïnvloed die ekostelseldienste wat deur grasvelde gelewer 

word. Houtagtige indringing van die grasvelde is ŉ bedreiging vir die funksionering en 

produktiwiteit van weivelde en bedreig landelike lewensbestaan. Hierdie proses word 

aangehelp deur die toenemende CO2-vlakke wat met klimaatsverandering verband hou.  

Prosesse van verandering kan eers effektief geïdentifiseer word nadat ruimtelike landoorgang 

geopenbaar is en patrone van verandering gekwantifiseer is. Die akkurate kwantifisering van 

die trajek en omvang van grondbedekkingsverandering is die eerste stap om die onderliggende 

prosesse vir grondgebruik en die omgewingseffekte daarvan aan grondbedekkingstrajeksies te 

koppel. Laasgenoemde hou direkte verband met die transformasie van grasveld.  

Hierdie studie het ten doel om te demonstreer hoe grondbedekkingsverandering, veral deur 

houtagtige indringerplante, die landskapfunksies wat grasvelde in die Oos-Kaap verrig 

beïnvloed. Die studie poog om te bepaal hoe akkuraat die transformasie van grondbedekking 

met bestaande datastelle, wat kaartfoute bevat, gekwantifiseer en gemodeller kan word. Daar is 

onsekerheid oor hoe die foutpatrone in die datastelle die modellering van toekomstige 

evapotranspirasie en koolstofopberging kan beïnvloed. 'n Verdere navorsingsvraag is hoe die 

drywers van verandering tussen streke onder verskillende grondbesit, te wete dualistiese of 

kommersiële stelsels, wissel. 

Sistematiese ontleding van grondbedekking en toekomstige modellering is gebruik om die 

trajek en vloei van grondverandering in die landskap te beskryf. Vloei is beskryf met behulp 

van (1) 'n aanwyser-gebaseerde benadering, en (2) intensiteitsanalise en veranderingsbegroting. 

Hipotetiese kaartfoute is vir waargenome en gemodelleerde grondbedekkingskaarte bepaal. 

Algehele verandering is in kwantiteit, wissel en verskuiwingsverskille en intensiteit opgedeel. 

Die veranderingsbegroting is per opvanggebied sowel as op plaaslike vlak bereken. Kaartfoute 

is verder met behulp van 'n plaaslike geografies-geweegde metode ondersoek. Plaaslike 

geografies-geweegde korrespondensie-matrikse is opgestel om ruimtelik-sensitiewe 

waarskynlikhede vir veranderinge en foute per opvanggebied en grondbedekkingklas te bepaal. 

Die totale toekenningsverskilkaarte is geraadpleeg om brandpunte van verandering en 

waarskynlike foute vir verdere ondersoek te identifiseer. Die tendense in biofisiese 

veranderlikes wat vanaf afstandswaarneming afgely is, is ontleed om te bepaal hoe verandering 

in grondbedekking die oppervlakte-energiebegroting en die koolstofsiklus, wat watergebruik 

en graslandproduktiwiteit verteenwoordig, sou beïnvloed. 
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Die resultate het getoon dat weiveldagteruitgang, houtagtige indringing, verstedeliking, 

verhoogde droëlandverbouing en kommersiële bosbou, met laasgenoemde gekonsentreer in die 

kommersiële opvanggebied, die primêre drywers van grondbedekkingsverandering was. 

Alhoewel grasland grondbedekking die landskap steeds oorheers, het dit in opvanggebiede 

onder dualistiese grondbesit afgeneem. Houtagtige indringing is hoofsaaklik in hierdie 

opvanggebiede opgemerk. 

Die algehele akkuraatheid van die inset grondbedekkingskaarte is as >80% gerapporteer, wat 

teoreties in die konteks van grondbedekkingverandering aan 67-72% gelykstaande is. 

Landskapverandering het tussen 18% en 42% gewissel, met 19% wat op direkte oorleg van 30 

m resolusie grondbedekkingskaarte geraam is. 'n Multi-resolusie-samevoegingstegniek het 

getoon dat laer resolusie-insetdata minder verandering in die landskap identifiseer, hoofsaaklik 

omdat die toewysingsfout by laer resolusies verminder. Die akkuraatheid van 

grondbedekkingskaarte sal verhoog moet word om die akkuraatheid en betroubaarheid van 

veranderinge te verbeter.  

Daar is bevind dat hipotetiese kaartfoute in waargenome grondebedekkingsveranderingskaarte 

hoër was in opvanggebiede onder dualistiese bestuur vir grondbedekkingsklasse wat toegeneem 

het, terwyl in die kommersiële opgevanggebied groter foute in grondbedekkingsklasse met 

afnemende oorgange opgetel is. Die hipotetiese fout was verantwoordelik vir byna 50% van die 

gemelde verandering. Die gemodelleerde gronddekkingverandering het 'n groter 

toewysigingsverskil getoon, wat daarop dui dat die grondbedekkingsveranderingsmodel nie 

baie betroubaar was nie, veral nie vir die kommersiële opvanggebied nie. 

Analise van afstandswaarnemingsdataprodukte soos albedo, netto primêre produksie en 

evapotranspirasie, in kombinasie met grondbedekkingsveranderingsdata, het gelei tot 'n beter 

begrip van die landskap in die opvanggebiede. Alhoewel die voorspelling is dat grasvelde ten 

gunste van houtagtige indringerplantspesies en bewerkte lande sal afneem, het hierdie studie 

slegs 'n afname van onderskeidelik 12% en 6% in die netto koolstofopberging en watergebruik 

deur plantegroei voorspel. Inligting uit verskeie bronne, beide in kwaliteit en tipe, is geïntegreer 

om die agteruitgang van die landskapproduktiwiteit beter te verstaan en om die impak van 

klimaat op grondbestuur in die verskillende opvanggebiede te vergelyk. Die kwantifisering van 

veranderinge in biofisiese parameters kan wetenskaplikes en bestuurders help om wêreldwye 

uitdagings die hoof te bied. 

TREFWOORDE: 
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CHAPTER 1:  UNDERSTANDING LINKAGES BETWEEN LAND 

COVER AND ECOSYSTEM SERVICES FOR 

MANAGING DYNAMIC LANDSCAPES 

The competition for land resources and the services provided by the land are increasingly 

dynamic in response to the high demands of a growing population under a changing climate. 

(Verburg et al. 2015: 38) 

Land cover and land use dynamics have significant consequences for the natural environment, 

being important drivers of change in ecosystems and the services they provide (Reyers et al. 

2009). Subtle changes in land management and land use practices can have important 

repercussions (Verburg, Neumann & Nol 2011) as human actions continue to change and exert 

pressure on the natural environment. To effectively manage complex ecosystems, the processes 

that create and maintain the environment, whether natural or modified, must be adequately 

understood and quantified (Bailey 2017). This introductory chapter briefly explores the 

concepts of landscape dynamics, land cover, and ecosystem services before outlining the 

significance of investigating the relationships between these concepts. The research problem 

and related questions are formulated, followed by a statement of the aim and objectives. The 

research methodology and design are also provided, and the chapter concludes with an outline 

of the dissertation structure. 

1.1 LANDSCAPE DYNAMICS 

Many definitions for the term ‘landscape’ exist, but in this study, a landscape is considered a 

spatially heterogeneous area of interacting ecosystems that function as a unit and can be 

analysed at any scale. The landscape structure – spatial elements present, their arrangement and 

spatial extent – determines the heterogeneity of the landscape (Turner & Gardner 2015) and its 

functioning. The term ‘landscape function’ (Willemen et al. 2010) is used to indicate the 

capacity of a landscape to provide goods and services. Ecosystem services are then described 

as the goods and services delivered that benefit humans (Banzahf & Boyd 2005), such as 

provisioning of food and fibre, regulating and provisioning of water, soil productivity, and use 

of natural areas for recreation or spiritual purposes (Egoh et al. 2008; 2012).  

As interest in landscape function and ecosystem services grow, the need for spatially explicit 

quantification of landscape dynamics using geo-referenced metrics and GIS-based approaches 

has increased (Egoh et al. 2012; Lavorel et al. 2017; Martínez-Harms & Balvanera 2012), 

especially in support of land management (Doré et al. 2011; Grêt-Regamey et al. 2013). For 
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analysis purposes, landscapes are frequently represented as digital maps (Turner & Gardner 

2015). 

Complex human-environment interactions determine landscape use and the resulting character 

(Bastian, Krönert & Lipský 2006; Feranec et al. 2010). The complexity of these human-

environment interactions increasingly challenges planners, environmental agencies and policy 

makers in their decisions on sustainable landscape development (Turner 2009). The effects of 

human domination over the terrestrial surface of the earth is well documented and evidenced 

by the 30-50 per cent of the land surface that has been transformed by human activities 

(Vitousek et al. 1997) and virtually no land surface considered ‘pristine’ (Turner 2009).  

The extent of landscape modifications currently underway and their associated consequences 

(Steffen et al. 2003) are unprecedented, requiring integrative studies of landscape systems 

dynamics (Rindfuss et al. 2004). A management decision to exploit a particular landscape 

function, e.g. cultivation of land, will directly affect the mix of services provided by a landscape 

(DeFries, Foley & Asner 2004). Consequently, land use and land cover changes may result in 

production services, e.g. food, a positive service, increasing at the expense of the regulatory 

service, e.g. soil retention and water quality regulation, the trade-off (Reyers et al. 2009), 

limiting landscape function. Besides the influence of biophysical factors, land use change can 

also be affected by economic, social, cultural, political or institutional forces (Verburg et al. 

2006), making land use change models important tools to facilitate integrated socio-

environmental management (Verburg et al. 2002).  

Even though the impact of land use change on ecosystem function is profound, the lack of long-

term information regarding the consequences of such change presents a significant obstacle to 

understanding and managing landscapes (DeFries, Foley & Asner 2004). According to Reyers 

et al. (2009), land cover change can comprise of land transformation or land degradation, 

referring respectively to abrupt change versus gradual decline, each with a different effect on 

the landscape. Since landscapes are complex and dynamic systems, a linear response to land 

cover change is unlikely (DeFries, Foley & Asner 2004) so that a small change in land use 

could have large consequences.  

Satellite-based Earth observation is a powerful means to monitor changes at the land surface. 

Not only does remote sensing (RS) provide the basic data to undertake inventory of land 

(Skidmore et al. 1997), but RS based time series analysis can be used to reveal land surface 

dynamics and analyse the magnitude of these changes within a defined monitoring time span 

(Kuenzer, Dech & Wagner 2015; Lasaponara & Lanorte 2012). Land change (systems) science 
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seeks to understand, explain and project land use and land cover dynamics associated with 

human-environment interaction (Turner 2009; Turner, Lambin & Reenberg 2007) by 

integrating information from various research communities (Rindfuss et al. 2004) in support of 

land management and by inference ecosystem management. 

1.2 QUANTIFYING LANDSCAPE FUNCTION 

Landscape function (ecosystem services goods and services) can be mapped using landscape 

indicators that support land cover data and represent a variety of biophysical and socio-

economic landscape elements and processes (Willemen et al. 2010). Lavorel et al. (2017) 

indicated that regulating services have been the most commonly mapped, followed by 

provisioning services (Lautenbach et al. 2015; Maes et al. 2012; Martínez-Harms & Balvanera 

2012; Seppelt et al. 2011). However, the approaches for mapping landscape function are many 

and varied (Crossman et al. 2013b) as are the definition of what needs to be mapped (Nahlik et 

al. 2012; Nemec & Raudsepp-Hearne 2013). According to Nemec & Raudsepp-Hearne (2013), 

an ecosystem process does not produce an ecosystem service unless there is a person as 

beneficiary (Chan et al. 2006). It is therefore important to distinguish between merely mapping 

the spatial extent of the landscape structure and function using secondary data as proxy, and 

quantifying the ecosystem services itself from primary data (Nemec & Raudsepp-Hearne 2013). 

Hauck et al. (2013) suggest that maps are essential for proper management of ecosystems and 

their services on regional and landscape levels. 

One approach has been to derive information on landscape function directly from land use or 

land cover maps (Burkhard, Kroll & Müller 2010; Haines-Young, Potschin & Kienast 2012; 

Lautenbach et al. 2015; Maes et al. 2012; Troy & Wilson 2006; Turner, Lambin & Reenberg 

2007), as most ecosystem services cannot be directly quantified. The use of indicators or proxy 

data for quantification has, therefore, been customary (Andrew, Wulder & Nelson 2014; Egoh 

et al. 2012). However, attributing fixed values for given land cover types (Lautenbach et al. 

2015), based on look-up table approaches, can lead to severe uncertainty in mapped ecosystem 

services supply from national (Eigenbrod et al. 2010) to landscape (Lavorel et al. 2011) scales, 

if spatio-temporal patterns and processes (Lavorel et al. 2017) are not accounted for. Grêt-

Regamey et al. (2014) demonstrated that finer resolution mapping is required especially in 

topographically complex areas since spatially explicit information about non-clustered and 

isolated ecosystem services is lost at coarse resolution. 

Many spatially explicit, quantitative estimates of biophysical parameters are currently 

supported by modern RS, with great relevance to landscape mapping (Andrew, Wulder & 
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Nelson 2014; Ayanu et al. 2012). RS data products that describe biodiversity, plant traits, 

vegetation condition, ecological processes, soil properties, and hydrological variables can 

provide direct estimates of the ecological properties that control ecosystems (Andrew, Wulder 

& Nelson 2014; Li, Xu & Guo 2014), and may contribute to more effective spatial 

characterisation of landscape function and ecosystem services in support of integrated land use 

planning (Bennett et al. 2015).  

1.3 CHARACTERISING THE LANDSCAPE  

Land cover is one of the most important environmental variables (Foody et al. 2013) and reflects 

the state of the landscape at a particular point in time (Feranec et al. 2010). Satellite-based Earth 

observation and geographic information systems (GIS) have been established as the best tools 

for observation, measurement and monitoring of land cover and associated changes (Bodart et 

al. 2013; Foody et al. 2013; Foody 2002; Olofsson et al. 2013; Schoeman et al. 2013; Szantoi 

et al. 2016). Earth observation data provide large area coverage of features on the face of the 

Earth at near real time. The historical archive of such imagery provides multi-temporal 

monitoring capability and is therefore well suited to generate thematic land cover maps.  

By systematically employing image analysis, useful information is derived from 

electromagnetic radiation reflected or emitted from the Earth’s surface captured in satellite 

images (Blaschke 2010; Campbell & Wynne 2011). It is important that the quality of these land 

cover maps derived from remotely sensed data be assessed to understand error and its 

implications, especially if allowed to propagate through analyses and when linking the maps to 

other datasets (Foody 2002). This is especially the case when using nationally-produced land 

cover data products, such as are available in the United Kingdom (Fuller, Smith & Devereux 

2003), the United States of America (Homer et al. 2015) and South Africa (Schoeman et al. 

2013; Van den Berg et al. 2008). Even though accuracy may be reported for land cover maps, 

some error and uncertainty, of which the size and location are unknown, is often present 

(Enaruvbe & Pontius 2015; Estes et al. 2018). 

Land cover change can involve anthropogenic actions or alterations in biogeochemical cycles, 

climate and the hydrology of ecosystems (Reyers et al. 2009) from natural processes that 

manifest in the landscape and can be captured in a land cover map. Independent classification 

of RS images from two or more different dates is the most common method of generating a 

multi-temporal series of maps to identify the difference between land cover categories in maps 

of different instances (Aldwaik & Pontius 2013; Feranec et al. 2010; Stott & Haines-Young 

1998) through land cover change analysis. For ease of quantitative and qualitative evaluation 
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of the land cover conversions, map categories can be generalised to identify typology of 

changes by using a land cover conversion label assigned to the intersection of successive land 

cover maps (Benini et al. 2010). In this way, change trajectories can be represented thematically 

on a map. The accuracy of land cover change modelling is directly dependent on the accuracy 

of the input land cover data (Burnicki 2011; Foody 2002; Schoeman et al. 2013).  

Classification errors in independently generated land cover maps are compounded in a land 

cover change analysis, possibly leading to spurious landscape changes (Burnicki 2011; Pontius 

& Lippitt 2006). For any land cover change analysis, the reliability of the land cover change 

detected should therefore be assessed in order to explain the certainty with which the change 

can be considered real or spurious (Fuller, Smith & Devereux 2003; Olofsson et al. 2014; 

Olofsson et al. 2013; Pontius & Li 2010; Pontius & Lippitt 2006). Aldwaik & Pontius (2012) 

proposed a method for land cover change analysis, called ‘intensity analysis’, which computes 

deviations between observed changes and uniform changes. They proposed a method (Aldwaik 

& Pontius 2013) to compute the minimum hypothetical error that could account for deviations 

between observed changes and uniform changes (Teixeira, Marques & Pontius 2016).  

While the practice of accuracy assessment is well-established within the RS community (Foody 

2002; Strahler et al. 2006), many maps are either not evaluated rigorously or only to a limited 

extent (Foody 2002). In addition, the image classification accuracy guidelines that exist can 

provide misleading information on the quality of datasets produced (Foody 2008). Very few 

published studies make full use of the information obtained from accuracy assessments 

(Olofsson et al. 2013). In addition, accuracy information is generally reported as a global 

statistic without spatial context (Foody 2005; McGwire & Fisher 2001) to simplify complex 

data for decision makers (Comber et al. 2017) with no indication of the spatial distribution of 

change or error (Comber 2013; Foody 2005; Steele et al. 1998). Although map users and 

producers are interested in communicating and understanding the quality of land cover change 

maps, many do not consider accuracy reports (Christ 2017) and need guidance on how to assess 

accuracy in a consistent and transparent manner, especially when RS products are used for 

scientific, management, or policy support activities (Olofsson et al. 2014).  

Overly simple approaches to quantifying trajectories and flows in a landscape can lead to 

inaccuracies in landscape mapping and valuation (Bagstad et al. 2014). Land cover mapping 

and modelling fall into the category of ill-structured problems (Saaty 1978) without a single, 

correct and convergent answer (Hong 1998). Ill-structured problems cannot be solved with an 

algorithm or a predefined sequence of operations and can also be referred to as unstructured or 

semi-structured (Densham 1991; Goodchild & Densham 1990). Such problems may have 
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multiple solutions, solution paths and criteria (Kitchener & King 1981). Ecosystem services 

present in the landscape can have complex flow dynamics, operating across differing spatial 

and temporal scales (Bagstad et al. 2013; Grêt-Regamey et al. 2014; Johnson et al. 2012). 

Consequently, RS data representing biophysical parameters can be incorporated into 

quantitative and spatially explicit assessments of landscape functionality (Andrew, Wulder & 

Nelson 2014; Ayanu et al. 2012; Kuenzer et al. 2014; Lavorel et al. 2017). In particular, RS 

time series data can be used to investigate seasonal profiles (to characterise intra-annual 

variability) and temporal trajectories (to characterise changes in state or trends in ecosystem 

condition above and beyond the range of normal seasonal variability) (Vogelmann et al. 2016) 

to map and monitor a wide variety of ecosystem properties.  

Lavorel et al. (2017) reports on the incorporation of inter-annual variability in agricultural 

practices derived from moderate resolution imaging spectroradiometer (MODIS) data for 

modelling crop production ecosystem services. Pasquarella et al. (2016) illustrated how 

ecosystem properties and dynamics manifest in the Landsat data record, but did not attempt to 

quantify the patterns observed. By monitoring trends in vegetation greenness, Zhu et al. (2016) 

integrated land cover change data with Landsat imagery to lay the foundation for quantifying 

and analysing relationships between time series data, ecosystems and ecological processes. It 

is clear from the existing literature that cooperation between the biodiversity and RS 

communities in the field of direct or proxy-driven time series, analysis of habitats and habitat 

changes is needed to support long-term understanding of climate and human-induced change 

(Dietterich 2009; Kuenzer et al. 2014). 

1.4 IMPACT OF INVASIVE ALIEN PLANTS ON ECOSYSTEM SERVICES IN 

RURAL EASTERN CAPE 

South Africa is regarded as a water-stressed country, with low rainfall and high evaporation. 

All effort needs to be made to effectively manage resources to ensure water security for both 

social and economic development (DWA 2013). Water security is mainly reliant on surface 

(fresh) water and its development. Available water is heavily committed for use; surplus 

reserves are estimated to represent only 1.4% of total national water availability, and the country 

as a whole is predicted to experience a 1.7% water deficit by the year 2025 (DWAF 2004). 

Invasive alien plants (IAPs) are estimated to significantly reduce the yields of dams and runoff-

river supply systems (DWA 2013). Areas, such as the Western Cape and parts of the Eastern 

Cape, have periodically suffered from drought prior to 2012 (DWA 2013), while the whole 

country has recently experienced water stress (Baudoin et al. 2017). Long-term sustainable 
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solutions must resort to effective management strategies to sustainably prioritise the remaining 

water reserves. This requires that the impacts of land use practices on water provision under 

various land tenure arrangements be quantified and addressed. 

In the rural Eastern Cape landscape, communal farming is practised alongside commercial 

livestock farming. Grazing and crop cultivation are the main land use practices (Kakembo 2001; 

WRC 2013). The area consists of several land tenure systems, which include former 

commercial farms north of Maclear and traditional and betterment villages, around Cala, and 

former Transkei rural areas (Kakembo 2001; Wotshela 2009). Invasive Australian Acacia 

species continue to spread and cause undesirable impacts, despite a considerable investment 

into management (Van Wilgen et al. 2012). IAPs contribute to land degradation via soil erosion 

and reduction of water resources (Le Maitre et al. 2016) affecting available ecosystem services 

to people and the environment (Van Wilgen et al. 2012). Bush encroachment, the invasion 

and/or thickening of such aggressive undesired woody species, results in an imbalance of the 

grass to bush ratio, a decrease in biodiversity and a decrease in livestock carrying capacity (De 

Klerk 2004). IAPs with relatively high biomass translates to higher evapotranspiration rates and 

reduced runoff (Turpie, Marais & Blignaut 2008).  

Since 1995, the Working for Water (WfW) Alien Plant Clearing Programme, initiated as a 

poverty relief public works programme, has been clearing IAPs with the primary motivation of 

water saving (Dye et al. 2008; Turpie, Marais & Blignaut 2008). IAP-induced land cover 

change also disrupts soil characteristics (De Villiers et al. 2005; Okoye 2016), which requires 

active restoration to prevent IAP regrowth and fostering of natural vegetation with associated 

ongoing costs (Gaertner et al. 2012). In addition, native plant invasions are also widespread, 

independent of local land use changes and driven by global climate (Nackley et al. 2017), with 

impacts structurally and functionally similar to those of IAPs. 

Ngorima & Shackleton (2019) reported that increased rural-urban migration and increase of 

households supplied with electricity, has reduced the value and use of IAPs as an ecosystem 

service. Consequently, the cost of IAPs may soon outweigh the benefits. Unless deliberate land 

management intervention takes place, the IAP invasion in the Eastern Cape would continue to 

increase (Gouws & Shackleton 2019), which has implications for the WfW programme (Van 

Wilgen & Richardson 2014). Clearing of the IAPs on their own is not sufficient motivation to 

proceed with the national WfW programme. There needs to be consideration of the 

sustainability of the landscape when the activities of WfW are completed, through a process 

such as rehabilitation. To ensure sustainability of landscape processes for human benefit, it is 

essential to build stronger links between the control of undesirable woody plants and the derived 

Stellenbosch University https://scholar.sun.ac.za



8 

 

 

 

benefits to humans occupying the land (Oelofse et al. 2016; Skowno et al. 2017). The capture 

of carbon by the landscape is the primary driver of livestock and food production in this human-

dominated social-ecological system. Understanding the total economic value and water use 

efficiency (WUE) of these processes requires an empirical assessment of the water cycle 

(Brantley et al. 2018). 

For local farmers reliant on grassland, effective rangeland management would require an 

understanding of the effect of woody encroachment on grass production, as well how land cover 

trajectories may impact water sources (Gwate et al. 2016). Land cover maps, such as the South 

African National Land Cover (NLC) dataset with reported accuracy of 67% (Van den Berg et 

al. 2008), provide incomplete information about the state of the landscape – despite having a 

high spatial resolution of 30 m – and therefore does not accurately reflect the processes 

operating in the landscape (Feranec et al. 2010).  

An opportunity exists to characterise land cover and identify change in land cover classes over 

time to derive change trajectories that will describe processes and flows in the landscape 

affecting ecosystem services. The intensity analysis framework suggested by Pontius, Shusas 

& McEachern (2004) has frequently been used to describe categorical changes in land cover 

(Akinyemi & Pontius 2016; Pontius et al. 2013; Teixeira, Marques & Pontius 2016; Zhou et al. 

2014), also in South Africa (Jewitt et al. 2015). Temporal changes among categories can be 

described as systematic, significant and important (Aldwaik & Pontius 2012). Overall change 

can be partitioned into difference based on the size of the classes, called quantity difference, 

and disagreement due to possible misallocation of the classes, called allocation difference 

(Pontius & Millones 2011). Allocation difference can be partitioned into exchange and shift 

disagreement based on whether pairs of pixels from two or more land-cover classes have 

exchanged places (Pontius & Santacruz 2014). Quantity, exchange and shift disagreement 

statistics (Pontius & Santacruz 2014) have not been applied in land cover change studies in 

South Africa. 

Future land cover changes may result in adjustments to biophysical drivers impacting on net 

ecosystem carbon exchange (Palmer et al. 2017), catchment water use (Gwate et al. 2018) 

through evapotranspiration (ET), and the surface energy balance through a change in albedo 

(Gibson et al. 2018). However, although Gibson et al. (2018) discussed the theoretical value of 

albedo, spatial and temporal relationships between land cover change and albedo – as metric to 

monitor potential environmental changes at local scale – have not been explored. 
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1.5 RESEARCH PROBLEM FORMULATION 

The concept of landscape dynamics, landscape function and ecosystem services are 

increasingly used in support of land use management, urban planning and natural resource 

management decisions (Cowling et al. 2008; Grêt-Regamey et al. 2013; MEA 2005). While the 

science for assessing ecosystem services is improving, appropriate methods to address 

uncertainties in a quantitative manner are still lacking (Grêt-Regamey et al. 2013; Grêt-

Regamey et al. 2014). Incorporating phenomenological understanding, derived from RS-

estimated ecosystem services proxies (Ayanu et al. 2012) into ecosystem services models, 

would likely increase reliability and robustness of ecosystem services assessments and maps 

(Lavorel et al. 2017). Time series satellite data (Forkel et al. 2013; Zhu et al. 2016) have recently 

been used to quantify changing trends in ecosystem productivity and can provide a continuous 

view of ecosystem dynamics (Kennedy et al. 2014). However, not many data-driven examples 

exist that establish its use within the RS temporal domain.  

Land cover datasets are frequently used as surrogates of ecosystem services and landscape 

patterns, while land cover classification followed by change analysis remains one of the most 

popular uses of RS data (Foody et al. 2013). New approaches have emerged as scientists 

endeavour to accomplish higher accuracies to better characterise the terrestrial surface of the 

Earth (Blaschke 2010; Gómez, White & Wulder 2016; Khatami, Mountrakis & Stehman 2016), 

as this provides insight into the processes that occur and shape our environment. To explain the 

dynamics of a land change system, observed patterns of land cover change must be linked to 

the underlying processes that are driving the changes. Association of pattern and process 

requires an accurate quantification of the spatial characteristics of land cover change (Burnicki 

2012). Errors in classified maps are propagated to land cover change maps, which affects our 

ability to accurately relate pattern to process. Spatial autocorrelation and temporal dependence 

exist between classification errors in time series maps. Therefore, accuracy of such data is of 

paramount importance.  

According to Le Maitre, O’Farrell & Reyers (2007), the impacts on ecosystem service delivery 

by different kinds of land use, as well as land use change in the form of land degradation and 

biodiversity loss, have not been studied extensively in South Africa. The linkages between these 

factors and human well-being are poorly understood and quantified. In the Eastern Cape, 

stronger links must be built between the control of undesirable woody plants (including IAPs) 

and the derived benefits to humans to ensure sustainability of landscape processes for human 

benefit. Empirical evidence of ecosystem services, such as the water use of every component 

of the diverse landscape described by land cover, needs to be collected to strengthen such 
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linkages. Understanding the variability in time and space of land use change linked to 

ecosystem services change can provide the foundations for effective management of such 

change. For this to be successful, accurate change maps are required. 

Modelling, particularly if performed using a spatially explicit approach, is an important 

technique for projecting and exploring alternative future scenarios, thereby gaining 

understanding to quantitatively describe key processes (Lavorel et al. 2017; Veldkamp & Lambin 

2001). The following research questions have been formulated towards achieving this: 

 How accurately can transformations in land cover be quantified using existing datasets?  

 How do trends in biophysical drivers and characteristics of land cover change trajectories 

differ from one region to another? 

 How does the pattern of error in land cover change datasets affect modelling of 

evapotranspiration and carbon storage? 

 How can ecosystem stress be characterised using Earth observation data and time series 

analysis?  

1.6 RESEARCH AIM AND OBJECTIVES 

The aim of this study is to demonstrate how land cover change, in particular encroachment by 

woody vegetation, impacts landscape function provided by grasslands in the Eastern Cape. 

Systematic land cover change and trend analyses of RS-derived biophysical variables will be 

carried out to determine how land cover change affects the surface energy budget, as well as 

the carbon cycle. 

The following objectives have been identified to achieve these aims: 

1. Perform systematic land cover change analyses on existing data products using land cover 

conversion labels and intensity analysis.  

2. Characterise spatial patterns of land change dynamics using land cover conversion labels 

to represent and interpret transitions. 

3. Apply quantitative techniques of intensity analysis to describe and interpret patterns of land 

change. 

4. Characterise the relationship between land cover change and ecosystem stress using RS 

time series analysis.  

Through these objectives the study investigates the use of independent land cover maps for 

change analysis in a grassland-dominated landscape in the Eastern Cape of South Africa, with 

the explicit purpose to delineate land cover change trajectories that are crucial to accurately 
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quantify water and carbon fluxes. Invasion by woody plants as a driver of grassland 

transformation, which in turn influences rangeland ecosystem services, such as forage 

production, water supply, habitat, biodiversity, carbon sequestration and recreation, is 

quantified. The stated aim and objectives were designed to address the identified knowledge 

gaps by demonstrating how novel geospatial techniques can assist with managing ecosystems. 

Specifically, solutions will be presented to: (1) determine the accuracy of existing land cover 

datasets frequently used as surrogates of landscape processes; and (2) model future scenarios 

by evaluating land cover change trends.  

1.7 RESEARCH METHODOLOGY AND AGENDA 

In accordance with Van der Merwe & De Necker (2013), a research methodology refers to the 

theoretical paradigm or framework in which the research was conducted. This research was 

investigative and experimental in nature and approached from a synoptic perspective. Spatio-

temporal analysis of RS data products combined in a modelling framework was used to analyse 

regional spatial patterns and develop predictions. Concentrating on impacts and drivers of land 

cover change, the study falls within the emerging interdisciplinary research field of land change 

science (Verburg et al. 2015).  

This dissertation draws on a wide range of technologies and approaches, ranging from land 

cover classification and land cover change analysis to land change modelling. Spatial patterns 

of land cover transition-flows are described using an indicator-based approach, intensity 

analysis and the change budget. Local and global methods are explored to uncover map error. 

Using trend analysis, the relationship between land cover change, water use and carbon 

sequestration using satellite products was investigated. The research formed part of Water 

Research Commission (WRC) funded project (K5/2400/4) Rehabilitation of grasslands after 

eradication of alien invasive trees, with overall project aim to assess, and make 

recommendations for improving the grass production from areas that have been cleared of 

wattle. The project was affectionately named “Emva kwe dywabasi” by stakeholders, which 

means “after the wattle” in isiXhosa. The research was performed in a quantitative paradigm, 

depicted in the research design (Figure 1-1) and comprises four components, each relating to 

one of the research objectives.  

Chapter 3 demonstrates the accuracy of real land cover change as determined by land cover 

change analysis, while characterising degradation gradients using an indicator-based approach 

(published as Münch et al. 2017). The chapter consequently addresses Research Objective 1. 
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Chapter 4 relates to Research Objective 2, as it describes the use of landscape change analysis 

within the intensity analysis framework (Pontius et al. 2013) to discover the effects of map error 

and characterise spatial patterns. Chapter 4 also partly addresses Objective 3, given that 

quantitative techniques, such as the change budget (Pontius & Santacruz 2014), derived by 

partitioning change into quantity and allocation disagreement and referred to as the 

disagreement budget, are applied and demonstrated at global and local level. 

 
Figure 1-1 Research design 

In Chapter 5, land change modelling is described. Land cover was modelled to a future date 

using predictor variables and land cover change analysis between observed (Chapter 3) and 

modelled data, as well as the accuracy assessment performed using the same quantitative 

techniques in a different context. Based on the future model, management principles for the 

catchments are proposed. Chapter 6 describes the trends in albedo, in support of Objective 4 

and research question “How do trends and characteristics differ among the various catchments 

and sub-catchments?” The final chapter (Chapter 7) provides a synthesis of the research and 

discusses the important role land cover change plays in landscape function mapping and 

management. To draw the dissertation to a conclusion, Chapter 7 answers the final research 

question “Can ecosystem stress be characterised using Earth observation data and time series 

analysis?”  
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Having concluded Chapter 1, which introduced the research problem, aim and objectives, 

Chapter 2 provides background literature on land cover change analysis methods and 

terminology, landscape function mapping and trend analysis, especially with the focus on using 

RS data for the analysis.  
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CHAPTER 2:  A REVIEW OF LITERATURE AND METHODS:  

LANDSCAPE FUNCTION, DYNAMICS AND 

MANAGEMENT 

... nature is perfect till man deforms it with care. 

Alexander von Humboldt (1850: x)  

in Meskell (2011: 22) 

Land change science addresses the causes and consequences of change in the surface of the 

Earth and includes observation, monitoring, modelling and projection of that change (Turner 

2017). Drawing on the background of the German Landschaft traditions introduced by Von 

Humboldt, Ritter and Ratzel (in Arntz 1999: 297-300), land change science integrates the 

research interests of the social ecologies, environmental sciences, remote‐sensing and GIS and 

spatial sciences (Chowdhury & Turner 2019; Turner 2017). According to Hartshorne 

(1939: 23), “…geography was conceived of as a science of relationships between the natural 

environment and human activities”, and concepts and methods to measure the effects of these 

relationships in the context of land change science, are described in this chapter. 

When considering the title of the dissertation: Towards land change management using 

ecosystem dynamics and land cover change, it makes sense that an objective and critical 

summary of relevant literature should include a review of literature relating to each of the 

italicised terms. The literature considered for this review falls within the domains of landscape 

science and land change science, which are centred on research and implementation challenges 

for changing land uses/covers in regional social-ecological systems (Robinson & Carson 2013) 

and will deal with land cover and land cover change in a coupled human-environment system 

(Turner & Robbins 2008).  

In the next section, the emphasis is on ecosystem dynamics and land cover change, and how 

knowledge acquired about landscape dynamics in analyses, can contribute to land change 

management. Firstly, the inter-relationship between landscapes and ecosystem dynamics will 

be explored. Before deliberating on land use and land cover, land cover change and land change 

modelling, the effect of woody encroachment on the ecosystem services in the grasslands will 

be discussed, touching on land management. However, different land change management 

practices will not be covered in detail. Although image processing was undertaken to create 

land cover data (Chapter 3), this review will not provide exhaustive background on image pre-

processing, but merely reflect on image classification techniques for land cover delineation. 

According to Wulder et al. (2018), the need to undertake pre-processing steps has been 
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significantly reduced with the availability of well calibrated imagery, analysis ready data and 

higher-level derived products. Digital maps are often used when investigating landscapes. 

However, a map is a human construct, merely a model of reality, where scale determines the 

detail that can be represented. While map error is a universal concern, and the focus of much 

of this dissertation, it is especially a concern when using classified (i.e. categorical) data due to 

the potential for misclassifications (Turner & Gardner 2015). Trend analysis, specifically used 

with remotely sensed data, will be appraised later in this chapter, concluding the literature 

review. 

2.1 LANDSCAPES AND ECOSYSTEMS DYNAMICS 

While Hartshorne (1939) defined landscape as a part of the earth’s surface with its components 

as perceived by humans, a more distinct definition of the term landscape was introduced in 

Chapter 1, namely “a spatially heterogeneous area of interacting ecosystems that function as a 

unit and can be analysed at any scale” (Chapter 1: 2). According to the American Heritage® 

Science Dictionary (Editors 2011), a system in which a community of living organisms (biotic) 

interact with non-living components (abiotic) of their environment, is called an ecosystem, 

whereas ecosystem dynamics describe the study of how ecosystems change over time. 

Processes of change can be described as stable linear or rapid non-linear, which can drive the 

system outside of its normal operating parameters (Chapin, Matson & Vitousek 2011). Change 

in ecosystems can generally be of seasonal nature and reflect gradual change or be abrupt, 

caused by disturbances in the landscape. Heterogeneity of the landscape determines interactions 

among ecosystems (Turner & Gardner 2015). Therefore, it is important to understand the 

patterns, causes and consequences of spatial heterogeneity for ecosystem function (Chapin, 

Matson & Vitousek 2011; Lovett et al. 2005). 

Ecosystems support human well-being by providing various ‘goods and services’ to society 

(Englund, Berndes & Cederberg 2017) based on the capacity of the landscape to deliver the 

particular function (Bennett et al. 2015; Turner & Gardner 2015). These are termed ‘ecosystem 

services’ (Costanza et al. 1997; Daily 1997; Ehrlich & Ehrlich 1981; MEA 2005). The concept 

of ecosystem services is widely recognised and modelling and mapping approaches for 

ecosystem services at different spatial and temporal scales have been extensively researched 

(Burkhard et al. 2013; Crossman et al. 2013b). As most ecosystem services cannot be directly 

quantified, a clear distinction must be made between mapping the ecosystem service and 

mapping the landscape within which the ecosystem service operates (Nemec & Raudsepp-

Hearne 2013). Indicators or proxy data derived from land cover maps have widely been used 

Stellenbosch University https://scholar.sun.ac.za



16 

 

 

 

for quantification of ecosystem services (Andrew, Wulder & Nelson 2014; Burkhard, Kroll & 

Müller 2010; Egoh et al. 2012; Haines-Young, Potschin & Kienast 2012; Lautenbach et al. 

2015; Maes et al. 2012; Troy & Wilson 2006; Turner, Lambin & Reenberg 2007). 

Egoh et al. (2008) mapped the production of five ecosystem services in South Africa to assess 

the relationship and spatial congruence between services and evaluate the value of these 

ecosystem services as a proxy measure compared to primary production. Primary production 

showed some potential as a surrogate for ecosystem service distribution. Egoh et al. (2012) 

followed up this work with an extensive review of possible ecosystem services indicators, 

which was used to provide a methodological framework for mapping and assessing ecosystems 

and their services at European scale (Maes et al. 2012), thereby going beyond merely using land 

cover based assessments in policy and decision making. 

Extensive research, providing consistent and scientific information for enhanced decision 

making on various aspects that affect the landscape and their impacts on ecosystem services are 

now focussed on development of management strategies and land governance (Deininger, 

Selod & Burns 2011). Under the auspices of the Global Land Programme (https://glp.earth/) 

(Verburg et al. 2015), land change science has emerged as an interdisciplinary research field, 

concentrating on both drivers and impacts of land change (Rindfuss et al. 2004; Turner, Lambin 

& Reenberg 2007).  

In the context of land change science, Robinson & Carson (2013) argued that assembling 

qualitative and quantitative data was the starting point for management of complex non-linear 

processes that operate at landscape scale. Data for land use and land cover change analyses 

have been extracted from various sources, including remote sensing (Verburg et al. 2015). 

Verburg, Neumann & Nol (2011) identified that spatially, temporally and thematically 

heterogeneous data sources presented various challenges due to intrinsic uncertainties. 

Moreover, long-term land cover change data have proved to be of great importance in 

preparation of concrete local, regional and national land management measures, as well as 

generating management scenarios. Nevertheless, the need exists for sustainable land 

management practices and policies.  

Keesstra et al. (2018) advocated for the use of nature based solutions, implemented in 

mainstream land management strategies, to assist with restoration of ecosystem services. Egoh 

et al. (2008) highlighted that for effective management of biodiversity and ecosystem services 

in a heterogeneous landscape, the focus should be on ecosystem service hotspots that deliver 

multiple ecosystem services, as the landscape effect varies according to the service being 
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studied (Duarte et al. 2018). Long & Qu (2018) formulated a theoretical model of regional land 

use transitions within the framework of natural system-economic system-managerial systems 

to assist with formulation of land management policies. Mechanisms of mutual feedback were 

established between land use transition and land management, where land use transitions were 

affected by land management via economic measures, land engineering, policy and institution; 

whereas land use transitions contributed to land management via socio-ecological feedback. 

The authors argued that not only current, but also subsequent future scenarios of land use 

transitions should be considered. Crossman et al. (2013a) acknowledged that, while human 

decision making at national to global scale influenced land system changes, likewise local land 

systems changes feedback on ecosystem services and decision making, concurring with 

Verburg et al. (2015: 30) that “…land system change is both a cause and consequence of socio-

ecological processes”. This leads to the next section, where the problem of woody 

encroachment in the grasslands, the effect on the ecosystems services provided by grasslands 

and land management of the grasslands, will be deliberated. 

2.2 GRASSLANDS, INVASIONS AND ECOSYSTEM SERVICES 

In South Africa, grasslands have been affected by degradation and habitat transformation, 

resulting in most grassland vegetation types being classified as endangered or vulnerable 

(Reyers et al. 2007). Grasslands provide ecosystem services required to support human well-

being, such as below ground carbon storage, surface water supply, water flow regulation, soil 

accumulation and soil retention (Gwate et al. 2018). In a study to identify spatial priority areas 

for conserving ecosystem services, Egoh et al. (2011) found that to conserve at least 40% of the 

soil and water services, preserving only between four and 13 per cent of the grassland biome 

was required. In contrast, to conserve 40% of the carbon service provided by the grassland, 

34% of the grassland biome must be conserved. Due to the moderate to high overlap between 

priority areas for ecosystem services and biodiversity, a single combined systematic 

conservation plan was proposed (Egoh et al. 2011). 

Land degradation, defined as “… a reduction in the capacity of land to perform ecosystem 

functions and services that support society and development” (Koohafkan, Lantieri & 

Nachtergaele 2003: 1), is a major threat to productivity of the grasslands. This is exacerbated 

by livestock production in the semi‐arid Eastern Cape. Land management is characterised by 

either private ranching under freehold tenure or on a communal basis on land that is under 

dualistic or bilateral landholding arrangement (Bennett, Palmer & Blackett 2012).  
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Furthermore, invasive Australian Acacia species continue to spread, despite a considerable 

investment into management (Van Wilgen et al. 2012) with abandoned cultivated land 

especially vulnerable to infestation (Blair, Shackleton & Mograbi 2018; De Neergaard et al. 

2005; Scorer, Mantel & Palmer 2019). Invasive alien plants (IAPs) contribute to land 

degradation via soil erosion and reduction of water resources (Gwate et al. 2018; Le Maitre et 

al. 2016; Palmer et al. 2017) affecting available ecosystem services to people and the 

environment (Van Wilgen et al. 2012). Bush encroachment, the invasion and/or thickening of 

aggressive undesired woody species, has been a rangeland management problem since the early 

1900s (Skowno et al. 2017). Generally seen as a form of ecological degradation caused by poor 

land management practices (Hobbs 2016; O’Connor, Puttick & Hoffman 2014), bush 

encroachment results in an imbalance of the grass to bush ratio, a decrease in biodiversity and 

a decreased livestock carrying capacity (De Klerk 2004), which potentially threatens food 

security. Invasions in grazing areas, around riverbanks and homesteads are seen as undesirable, 

with risk of crime in wattle-infested areas (Shackleton et al. 2007; Shackleton et al. 2016). 

Given that South Africa is a water-stressed country, with low rainfall and high evaporation, 

effective water resources management is required to ensure water security for both social and 

economic development (DWA 2013). Therefore, agricultural legislation was enacted to address 

the problem of alien plant invasion and indigenous woody plant encroachment. The Working 

for Water (WfW) Alien Plant Clearing Programme has also been combatting alien plant 

invasions since 1995. The primary motivation for IAP clearing was to conserve water 

provisioning ecosystem services (Dye et al. 2008; Turpie, Marais & Blignaut 2008) as the 

relatively high biomass of IAPs translates to higher evapotranspiration rates and reduced runoff 

(Turpie, Marais & Blignaut 2008).  

Although soil erosion and soil fertility declines could be attributed to land management 

practices, such as heavy grazing (Blair, Shackleton & Mograbi 2018), IAP-induced land cover 

change also disrupts soil characteristics (De Villiers et al. 2005; Oelofse et al. 2016; Okoye 

2016). Active restoration is then required to prevent IAP regrowth and facilitate re-

establishment of natural vegetation (Gaertner et al. 2012). Continued land management through 

stewardship and intervention through assisted restoration and thinning of existing trees will be 

necessary to manage current and new IAPs, as well as native invaders (Nackley et al. 2017; 

Scorer, Mantel & Palmer 2019). 

Nevertheless, should woody plant increase in grassy biomes be a consequence of elevated 

atmospheric CO2 in the face of climate change, rangeland managers may need to adopt an 

adaptive attitude to a different ecosystem state (Case & Staver 2017; Hobbs 2016). A positive 
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consequence of the increased woody biomass may be increased carbon storage in the landscape 

(Cai et al. 2016a).  

In this section, some of the effects that land cover change due to woody encroachment in the 

grassland could have on ecosystems services and biodiversity were discussed. The next sections 

will compare land use and land cover, provide an overview of land cover classification methods 

and review accuracy assessment, leading into land cover change. 

2.3 LAND COVER  

Although the terms are often used interchangeably, land use and land cover have some 

fundamental differences. Anderson et al. (1976) recognised the importance of land use for 

planning and management, before quoting definition of land use of Clawson & Stewart (1965) 

as, “man’s activities on land which are directly related to the land” while describing land cover 

as, “the vegetational and artificial constructions covering the land surface” (Burley 1961: 19). 

Stated simply, land use refers to the purpose the land serves, but does not describe the surface 

cover on the ground, conversely land cover refers to the surface cover on the ground, but does 

not describe the use of land. In addition, the land use may be different for land with the same 

cover type. Land use, and the resulting landscape character (cover), is therefore the result of 

complex human–environment interactions (Bastian, Krönert & Lipský 2006; Feranec et al. 

2010). Since land cover is one of the most important environmental variables (Foody et al. 

2013) reflecting the state of the landscape at a specific point in time (Feranec et al. 2010), some 

of the methods to derive land cover will be described next. 

2.3.1 Land cover classification 

Satellite-based Earth observation and geographic information systems (GIS) have been 

established as the best tools to observe, measure and monitor land cover (Bodart et al. 2013; 

Schoeman et al. 2013; Szantoi et al. 2016). Earth observation is used to capture useful 

information in satellite images, derived from electromagnetic radiation reflected or emitted 

from the Earth’s surface (Blaschke 2010; Campbell & Wynne 2011) to provide near real time 

large area coverage of features on the face of the earth. Despite extensive availability of radar-

based and thermal infrared satellites, these sources of data are not within the scope of this 

review, and the focus will be on the use of optical remote sensing. The historical archive of 

available imagery offers multi-temporal monitoring capabilities. Wulder et al. (2018) 

elaborated on the fact that, despite the increasing number of sensors available to provide 

imagery at medium and high spatial resolutions (Belward & Skøien 2015), none have achieved 
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the temporal depth, radiometric calibration and open access of the Landsat program (Roy et al. 

2014; Wulder et al. 2016). However, multi-sensor satellite data from ESA Sentinel and Landsat, 

could already supply near weekly cloud-free surface observations (Li & Roy 2017) for 

monitoring. 

Analysis of complex landscape objects, captured in remotely sensed imagery, is simplified 

through land cover classification (Campbell & Wynne 2011). Classification involves grouping 

similar image pixels into classes, with each pixel evaluated as a discrete unit composed of 

values in several spectral bands (Campbell & Wynne 2011). Jansen & Gregorio (2002) noted 

that classification is an abstraction representing reality; it would consequently contain inherent 

generalisations. A land cover classification system (LCCS), either standardised or project 

specific, determines the nature and extent of classes and provides the thematic legend (Jansen 

& Gregorio 2002; Loveland et al. 2000). Producers of land cover data require pure 

(homogenous) land cover classes that are easily extracted from remote sensing derived data 

with high classification accuracies, while user requirements are land use driven with land cover 

only applying to areas covered by natural vegetation (Lück et al. 2010). For planning and 

management purposes, land use data are more important than land cover data (Wulder et al. 

2018), although more difficult to classify. 

Petit et al. (2002) suggested that, in the interest of comparing compatible classes between 

heterogeneous land cover datasets prior to land cover change analysis, levels of thematic 

content and spatial details must be balanced. This can be achieved by using map generalisation 

to minimise map inconsistencies, thereby creating a simplified legend. Generally, detailed 

classes are aggregated under a number of conceptually broader classes (Lück & Diemer 2008). 

Aldwaik, Onsted & Pontius (2015) warned that, while aggregation could simplify 

interpretation, it can also influence the sizes and types of changes mapped. Implementing an 

existing hierarchy (reclassification scheme) to facilitate aggregation may then hide important 

category dynamics, prompting the use of a behaviour based aggregation algorithm (Aldwaik, 

Onsted & Pontius 2015).  

Both per-pixel and object-based image analysis (OBIA) approaches are used in image 

classification. In contrast to per-pixel approaches, which manipulate individual pixels, OBIA 

aims to delineate meaningful spatial units in images based on spatial, structural and hierarchical 

properties in addition to spectral properties. These units are then classified in an integrated way 

(Lang 2008). The effect of the change of classification units is that the within-class spectral 

variation is reduced, removing the so-called salt-and-pepper effects typical of per-pixel 

classification (Liu & Xia 2011). Common image classification techniques include 
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unsupervised, supervised and hybrid classification (M Li et al. 2014). Various classification 

algorithms are available with the maximum likelihood classifier (MLC) being one of the most 

frequently used algorithms. However, parametric MLC, with its requirement for large training 

datasets, is not useful for big datasets. Variables (features) derived from satellite data are known 

to be non-parametric (not normally distributed) and the ranges of targeted classes often overlap 

(Wulder et al. 2018). 

Non-parametric supervised classifiers, such as artificial neural networks (ANN), support vector 

machines (SVM) and decision tree classifiers, can accommodate complex feature space 

relationships among classes, and have been shown to be more efficient and accurate than 

parametric classifiers (Pal & Mather 2005). Furthermore, ensembles of non-parametric 

classifiers and implementations that apply different random subsets of training data multiple 

times (Doan & Foody 2007; Friedl et al. 2010; Hansen et al. 2008) have been implemented to 

improve classification results. For instance, the random forest classifier (Belgiu & Drăguţ 2016) 

has become one of the most popular ensemble classifiers, especially for large area 

classifications (Zhang & Roy 2017).  

In their review of image classification techniques, M Li et al. (2014) described the use of spatio-

contextual information, such as texture extraction (Holobâcă, Ivan & Alexe 2019; M Wang et 

al. 2018) and Markov random field modelling (Liu & Cai 2012; Moser, Serpico & Benediktsson 

2013; Wehmann & Liu 2015), that use the relationship between a pixel and its neighbour in 

image classification. M Li et al. (2014) concluded that due to their conceptual simplicity and 

easy implementation, spectral classifiers have remained popular for land cover classification, 

although the growing realisation that spatial information is important, especially when 

classifying high resolution imagery, will cause increased popularity of spatio-contextual 

classifiers. 

2.3.2 Map accuracy 

Classification accuracy is the direct measure of the quality of maps produced through land cover 

classification (Foody 2008). No classified map is ever completely correct, it is therefore critical 

that the accuracy of land cover maps derived from remotely sensed data be assessed to 

understand error and its implications, especially if allowed to propagate through analyses 

linking the map to other datasets (Foody 2002). Ideally, a formal accuracy assessment should 

be completed that involves extensive ground truthing of the map (Turner & Gardner 2015). 

However, since map error is often unknown (Enaruvbe & Pontius 2015) or a formal accuracy 
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assessment is beyond the capacity of the analyst (Turner & Gardner 2015), it is important to 

gain at least a qualitative assessment of map accuracy. 

A square contingency table (sequence of categories in rows is the same as in columns) is 

generally used to show the association between rows representing map categories and columns 

representing reference categories (Agresti 2019). The contingency table is called an error or 

confusion matrix in remote sensing land cover classification, with computed estimates typically 

being overall accuracy (OA), user’s accuracy (UA) and producer’s accuracy (PA), and 

commission and omission error percentages (Congalton & Green 2009). The OA represents the 

percentage of cases correctly allocated to their respective thematic land cover classes (Foody 

2002). The PA, of use to the map producer, is a measure of how well a certain area has been 

classified and indicates the probability of a reference sample being correctly classified (not 

omitted) (Congalton 2001). The UA, on the other hand, is aimed at the map user, and indicates 

for a given class how many of the pixels on the map are actually classified correctly (Olofsson 

et al. 2013). The UA can be computed directly from the sample counts. Criticised by Pontius & 

Millones (2011), the family of kappa indices have traditionally been used to accommodate for 

the effects of chance agreement (Foody 2002). AUC (area under the curve) ROC (receiver 

operating characteristics) curve methods can be used for classification accuracy (Pontius & 

Schneider 2001). Foody (2008) also recommends the use of confidence intervals computed 

from the OA using the formula: 

√
𝑝(1 − 𝑝)

𝑛 − 1

𝑡

 Equation 2-1 

 

where 𝑝 is the proportion of correctly allocated cases (OA);  

 𝑛 is the number of cases used in the assessment; and 

 𝑡 is derived from the t distribution at the desired level of confidence. 

Statistically defensible and transparent accuracy assessments (Stehman 2009) are essential to 

ensure user confidence and ensure the integrity of the land cover products (Wulder et al. 2018). 

While recommendations and good practice guidance have been advocated (Foody 2002; 

Olofsson et al. 2014), these have not always been followed. Olofsson et al. (2013) gave advice 

on the content of an accuracy assessment: it should contain a clear description of the sampling 

design (sample size and scheme); an error matrix; the area of each land cover class according 

to the map; and descriptive accuracy measures (user's, producer's and overall accuracy). 

Olofsson et al. (2013) also recommended that mapped areas should be adjusted to eliminate 

bias caused by map classification error, and confidence intervals must be supplied to quantify 

the sampling variability of the estimated area, in agreement with Foody (2008).  
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Accuracy measures estimated from a sample may be subject to uncertainty (Olofsson et al. 

2014; 2013; Pontius, Shusas & McEachern 2004). Therefore, a more robust approach would be 

to report all figures in the estimated error matrix in terms of proportion of area; and estimates 

of overall accuracy, user's accuracy and producer's accuracy based on the population (Pontius, 

Shusas & McEachern 2004). Olofsson et al. (2013) also recommended the use of confidence 

intervals that provide a range of values for the reported parameter, taking the uncertainty of the 

sample-based estimate into account.  

While the practice of accuracy assessment is well-established within the RS community (Foody 

2002; Strahler et al. 2006), many maps are either not evaluated rigorously or only to a limited 

extent (Foody 2002). Very few published studies make full use of the information obtained 

from accuracy assessments (Olofsson et al. 2013). Although map users and producers are 

interested in communicating and understanding the quality of land cover maps, many do not 

consider accuracy reports (Christ 2017) and need guidance on how to assess accuracy in a 

consistent and transparent manner, especially when RS products are used for scientific, 

management or policy support activities (Olofsson et al. 2014).  

Foody (2005) explained that one of the limitations of the conventional approach to classification 

accuracy assessment, i.e. using a confusion matrix-based approach, is that it is not spatially 

explicit (McGwire & Fisher 2001). It yields a single, global (in the sense of relating to the entire 

classified dataset), estimate of thematic classification accuracy and masks the fact that 

classification accuracy varies spatially. Only an estimate of the overall accuracy of the entire 

classification is given. However, this global overall summary statistic simplifies complex data 

for decision makers (Comber et al. 2017). Moreover, accuracy and error can vary spatially, 

since misclassifications are typically not randomly distributed over the mapped area, with error 

concentrated near class boundaries (Congalton 2001; Steele et al. 1998) and/or can be 

systematically located in relation to issues, such as sensor view angle effects (Foody 2005).  

Various authors have explored spatially explicit methods for classification accuracy. Steele et 

al. (1998) modelled spatial maps of error using kriging interpolation, while McGwire & Fisher 

(2001) recommended using a Monte Carlo approach. Foody (2005) demonstrated the potential 

of calculating geographically distributed correspondence matrices and interpolated between 

them to generate surfaces of error. Comber et al. (2012) used geographically weighted 

regression to create local correspondence matrices, whereas Tsutsumida & Comber (2015) 

applied geographically weighted logistic regression to the confusion matrix to address spatio-

temporal accuracy for time series land cover data. Comber et al. (2017) recommended the use 

of geographically weighted correspondence matrices in combination with quantity and 
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allocation disagreement (Pontius & Santacruz 2015) as a generic spatially explicit approach. 

Comber et al. (2012) observed that, despite the advances supported by these methods, current 

validation and accuracy techniques in remote sensing have largely ignored spatially explicit 

methods. 

Generating a land cover map accurately and quantifying the extent of a land cover class require 

careful selection of reference data for use in both training and validation (Congalton & Green 

2009; Foody 2002; MacLean & Congalton 2012; Olofsson et al. 2013). The accuracy of training 

data will influence the success of the classification, while the validation data, assumed to be 

correct, are used to perform accuracy assessment (Congalton & Green 2009; Foody 2002). 

When considering robust methods to generate land cover products for multiple repeat time 

steps, in preparation for change analysis, Gómez, White & Wulder (2016) recommended the 

use of novel inputs, such as land cover transitions, improved quality of training samples and 

combinations of multi-scale, multi-sensor data for improved accuracy.  

Kinkeldey (2014) contended that despite accuracy assessment, uncertainty is essentially present 

in all thematically classified land cover data because boundaries between land cover objects are 

inherently uncertain due to geometric inaccuracies, ambiguity in classification and vagueness 

in class definitions (Fisher et al. 2006). Wulder et al. (2018) argued that a common repository 

of reference data to aid in accuracy assessment activities, such as a global accuracy assessment 

database for land cover (Khatami, Mountrakis & Stehman 2017), would be invaluable for land 

cover mapping research as large training sets will potentially increase land cover accuracy and 

promote scientific development. 

2.4 LAND COVER CHANGE  

The importance of land cover change as a research topic was confirmed by Google Scholar 

keyword searches on terms ‘land cover change’ and ‘remote sensing’ , which yielded scholarly 

links to more than 77 800 articles, with almost 9 600 articles published since 2018. Land cover 

change can be caused by anthropogenic actions, such as economic, social, cultural, political or 

institutional forces (Verburg et al. 2006), or initiated by natural processes, such as alterations 

in biogeochemical cycles, climate and the hydrology of ecosystems (Reyers et al. 2009). The 

physical changes that are reflected in the landscape can then be measured by analysing remote 

sensing products. Jansen & Gregorio (2002) identified that land cover changes could represent 

conversion from one class to another, or modification within one class, which would have 

implications for the particular methods selected for both land cover classification and change 

detection. Various procedures have been developed for comparison of images at different time 
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steps and has been extensively reviewed (Coppin et al. 2004; Hussain et al. 2013; Lu et al. 2004; 

Mas 1999; Singh 1989; Tewkesbury et al. 2015).  

Based on the transformation procedures and analysis techniques applied, the general 

approaches to change detection have involved comparison of two or more independent land 

cover maps, multi-date data classification and image enhancement (Mas 1999; Singh 1989). Lu 

et al. (2004) identified three phases when performing change detection with remotely sensed 

data, namely (1) image pre-processing – which includes geometrical rectification as well as 

image registration, radiometric, atmospheric and topographic correction; (2) change detection 

technique selection; and (3) accuracy assessment.  

2.4.1 Change detection  

Tewkesbury et al. (2015) critically summarised change detection techniques from the 

perspective of several decades of satellite remote sensing. They emphasised that the analysis 

unit is an important construct to consider in change detection and described commonly used 

analysis units, such as pixels, objects, and kernels. They also overviewed common change 

detection techniques such as image analysis overlay, image analysis comparison, multi-

temporal image object and polygon vector analyses. The authors compared various analysis 

units to the fundamental features of image interpretation, as documented by Avery and Colwell 

(in Campbell 1983: 43), namely size, shape, tone, texture, shadow, pattern and association. 

Comprehensive lists of comparison methods during change detection have been presented in 

previous reviews (Coppin et al. 2004; Hussain et al. 2013; Lu et al. 2004; Mas 1999; Singh 

1989). Tewkesbury et al. (2015), however, summarised these methods into six broad groupings 

(Mas 1999): (1) layer arithmetic; (2) post-classification or map-to-map change detection; (3) 

direct classification of multi-temporal image stack; (4) data transformation, such as principle 

component analysis (PCA) and multivariate alteration detection (MAD), applied to a multi-

temporal stack; (5) change vector analysis (CVA); and (6) hybrid change detection, often 

expressed as a layer arithmetic operation, followed by direct classification of changed features 

(Lu et al. 2004). Hussain et al. (2013) further highlighted the challenges associated with the 

exponential increase in the image data volume and multiple sensors, especially with the use of 

very high resolution imagery and object-based methods, suggesting the potential of data mining 

techniques for change detection (Hussain et al. 2013). 

Despite the many and varied comparison methods uncovered, the most common change 

detection method used to identify the difference between land cover at two time steps, has been 

independent classification of multi-date RS images (Aldwaik & Pontius 2013; Feranec et al. 
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2010; Stott & Haines-Young 1998; Tewkesbury et al. 2015). Although all digital change 

detection methods are affected by spatial, spectral, temporal and thematic restrictions (Coppin 

et al. 2004), the advantage of this change detection technique is that both the baseline 

classification and the change transitions are explicitly known (Tewkesbury et al. 2015).  

2.4.2 Accuracy and uncertainty  

Olofsson et al. (2013) contended that to perform an accuracy assessment effectively, is by no 

means a trivial task and requires time and resources. Accuracy is defined as the degree to which 

the map produced agrees with the reference classification (Olofsson et al. 2013). Burnicki 

(2011) noted that the change detection error matrix is the most reported accuracy assessment 

tool and is an extension of the single-date classification error matrix (Section 2.3.2), and its 

related statistics. The error matrix or contingency table (Section 2.3.2) is called a conversion or 

transition matrix in temporal land cover change analysis (Pontius 2019). Rows represent the 

initial categories (land cover classes), while columns signify the final categories. Gross loss and 

gross gain are calculated respectively from the row and column differences and the diagonals 

of the transition matrix (Comber et al. 2016). Total landscape change is computed as the 

difference between observed losses and gains.  

Ideally, the change accuracy assessment should be performed on the final change map, as done 

for the single-date input images, since combining accuracy measures produced for the single-

date land cover maps may not necessarily indicate the accuracy of the change map (Burnicki 

2011). Stratified sampling is, therefore, a common approach to use when sampling for change 

accuracy assessment (Stehman & Wickham 2006; Stehman, Sohl & Loveland 2003). This is 

done by dividing the map of change into meaningful strata and conducting sampling separately 

within each stratum, making sure that all transitions are covered (Burnicki 2011). 

Whilst performing land cover classification for the purpose of change analysis, Burnicki (2011) 

showed that the spatial error structure was comprised of small-scale local error interactions, as 

well as exhibiting a large-scale trend. In addition, interaction between single-date land cover 

maps due to temporal dependence increased the expected accuracy of the change map 

(Burnicki, Brown & Goovaerts 2007). Classification errors in independently-generated land 

cover maps can be compounded in land cover change analysis, leading to erroneous results in 

measured landscape change (Burnicki 2011; Pontius & Lippitt 2006). The accuracy of land 

cover change maps produced from post-classification change detection is therefore directly 

dependent on the accuracy of the input land cover data (Burnicki 2011; Foody 2002; Schoeman 

et al. 2013). Under the assumption of temporal independence, the expected OA for a map of 
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change is estimated by multiplying the individual accuracies for each classified map (Pontius 

& Li 2010; Pontius & Lippitt 2006). The accuracy and reliability of the land cover change 

detected should therefore be assessed in order to explain the certainty with which the change 

can be considered real or spurious (Fuller, Smith & Devereux 2003; Olofsson et al. 2014; 

Olofsson et al. 2013; Pontius & Li 2010; Pontius & Lippitt 2006).  

According to Olofsson et al. (2013), an accuracy assessment of a land cover change map should 

contain at least estimates of change accuracy and changed area, adjusted for classification error 

and confidence intervals. The transition matrix, also known as correspondence or confusion 

matrix, used in the analysis should be included (Pontius 2019). Burnicki (2011), therefore, 

argues that map accuracy reporting must extend beyond map-wide (global) non-spatial 

summaries and should include information about the spatial and temporal characteristics of 

error in a change map. This is in agreement with Comber et al. (2017: 234), who reflected on 

the “philosophical underpinnings of local rather than global approaches for modelling 

landscape processes” and that the remote sensing community should engage in more advanced 

reporting techniques, such as local statistical models. 

Uncertainty in land cover change can be quantified from the accuracy assessment (Zhang & 

Goodchild 2002), from classification confidence (Brown, Foody & Atkinson 2006) or from 

expert knowledge (Lowry et al. 2008). Similar to Lowry et al. (2008), Kinkeldey (2014) defined 

a straightforward uncertainty measure for land cover change on the basis of fuzzy membership 

values, with the complement of the minimum membership value yielding a value for change 

uncertainty. Kinkeldey (2014) suggests that a potential benefit of using change uncertainty lies 

in the reduction of falsely detected change. 

2.4.3 Change analysis 

Change analysis describes further analysis of change detection results, in an attempt to 

distinguish error from actual change. According to Kinkeldey (2014), change detection outputs 

are generally thematic datasets that are sensitive to classification error and location error 

(geometric misregistration or positional error). Carmel & Dean (2004) noted that co-registration 

errors can occur when using a multi-temporal stack of images and is generally an extension of 

individual image location errors. To measure both location and classification error, Carmel & 

Dean (2004) developed the combined location classification (CLC) error model to determine 

uncertainty in a collection of land cover maps. They reported that the CLC error model could 

be used to assess overall uncertainty when performing thematic change detection analysis as a 

good agreement was found between model predictions and simulation results.  
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Kennedy, Cohen & Schroeder (2007) tested a conceptual approach to change detection for 

forests using a dense temporal stack of Landsat imagery for a 20-year period. Distinctive 

temporal progressions prior and post change event caused characteristic temporal signatures in 

spectral space. The automated method searched for idealised signatures in the entire temporal 

trajectory of spectral values with overall accuracies ranging between 77-90%.  

Benini et al. (2010) devised a method to generalise map categories by identifying typology of 

change and assigning a conversion label to the intersection of successive land cover maps. This 

method eases quantitative and qualitative evaluation of land cover conversions by reducing the 

number of class transitions. In addition, transitions that would be illogical or impossible can be 

labelled as error. The resultant change trajectories can be represented thematically on a map 

(Okoye 2016).  

A change budget can be constructed by partitioning the overall difference or disagreement 

between two land cover maps (Section 2.4.2) into quantity and allocation differences, based 

respectively on correct quantity modelled per class with a given size; and correctly modelled 

location per class (Pontius & Millones 2011). Aldwaik & Pontius (2012) proposed a method 

for land cover change analysis, called intensity analysis, which computes deviations between 

observed changes and uniform changes, and propose a method (Aldwaik & Pontius 2013) to 

compute the minimum hypothetical error that could account for deviations between observed 

and uniform changes (Teixeira, Marques & Pontius 2016). Intensity of change is defined as 

annual rate of change (Aldwaik & Pontius 2012). If the observed intensity is greater than the 

uniform intensity, then the data show more change than the uniform hypothesis implies, leading 

to a hypothetical commission error. Hypothetical omission error occurs when the observed 

intensity is smaller than the uniform intensity. Larger hypothetical errors suggest map error 

(Aldwaik & Pontius 2012). Intensity analysis has been used particularly when there are more 

than two categories (Alo & Pontius 2008; Enaruvbe & Pontius 2015; Jewitt et al. 2015; Pontius 

et al. 2013; Pontius, Huffaker & Denman 2004; Teixeira, Marques & Pontius 2016). Intensity 

analysis has been applied widely in investigations to improve the understanding of observed 

land change (Akinyemi & Pontius 2016; Jewitt et al. 2015; Pontius et al. 2013; Zhou et al. 

2014). Because the change budget and intensity analysis are applied extensively in this 

dissertation, a more comprehensive description is required. The formulation of the change 

budget is provided in the next section, followed by the formulation of intensity analysis. 
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2.4.4 Change budget formulation 

Developed with land change modelling in mind, Pontius (2002) mathematically formulated 

quantity and allocation disagreement between categorical thematic maps (Pontius & Cheuk 

2006; Pontius & Li 2010; Pontius & Millones 2011; Pontius, Shusas & McEachern 2004). 

Allocation difference, where the location of a land cover class has changed over time, despite 

the overall quantity at landscape scale remaining the same, can be partitioned into exchange 

and shift disagreement based on whether pairs of pixels from two or more land cover classes 

have exchanged places (Pontius & Santacruz 2014).  The term disagreement budget therefore 

seems more appropriate for this method and is used in this text. The formulation of 

change/disagreement budget is provided in the next section. Equation 2-2 gives the overall 

difference during time interval t for category j. In Equation 2-2 to Equation 2-5, the denominator 

is the product of the study period and the size of the spatial extent, to express change as an 

annual percentage of the study area extent.  

𝑑𝑡𝑗 =
{[∑ (𝐶𝑡𝑖𝑗 + 𝐶𝑡𝑗𝑖)

𝐽
𝑖=1 ] − 2 × 𝐶𝑡𝑗𝑗}100%

(𝑌𝑡+1 − 𝑌𝑡) ∑ ∑ 𝐶𝑡𝑖𝑗
𝐽
𝑗=1

𝐽
𝑖=1

 
Equation 2-2 

 

where 𝑑𝑡𝑗 is the annual difference for category j during interval t;  

 𝐶𝑡𝑖𝑗 is the number of pixels that transition from category i to category j 

during interval t; 

 𝐶𝑡𝑗𝑖 is the number of pixels that transition from category j to category i 

during interval t; 

 𝐶𝑡𝑗𝑗 is the number of pixels that persist in category j during interval t; 

 𝑌𝑡+1, 𝑌𝑡 are respectively the year at start and end of time interval t; 

 𝑖, 𝑗 are the indices for the categories; and 

 𝐽 is the number of categories. 

Equation 2-3 gives the quantity component during interval t for category j. The quantity 

component is the absolute change in size of the category.  

𝑞𝑡𝑗 =
|∑ (𝐶𝑡𝑖𝑗 − 𝐶𝑡𝑗𝑖)𝐽

𝑖=1 100%|

(𝑌𝑡+1 − 𝑌𝑡) ∑ ∑ 𝐶𝑡𝑖𝑗
𝐽
𝑗=1

𝐽
𝑖=1

 
Equation 2-3 

 

where 𝑞𝑡𝑗 is the annual quantity component for category j during interval t.  

Equation 2-4 gives the exchange between categories i and j during time interval t. Categories i 

and j exchange when some locations transition from category i to category j while other 

locations transition from j to i.  Equation 2-5 sums the exchanges for category j to give the 

exchange component for category j. 

Stellenbosch University https://scholar.sun.ac.za



30 

 

 

 

𝜀𝑡𝑖𝑗 =
2𝑀𝐼𝑁𝐼𝑀𝑈𝑀(𝐶𝑡𝑖𝑗 , 𝐶𝑡𝑗𝑖)100%

(𝑌𝑡+1 − 𝑌𝑡) ∑ ∑ 𝐶𝑡𝑖𝑗
𝐽
𝑗=1

𝐽
𝑖=1

 𝑓𝑜𝑟 𝑖 > 𝑗 𝑎𝑛𝑑 𝜀𝑡𝑖𝑗 = 0 𝑓𝑜𝑟 𝑖 ≤ 𝑗 
Equation 2-4 

 

𝑒𝑡𝑗 = ∑ (𝜀𝑡𝑖𝑗 + 𝜀𝑡𝑗𝑖)
𝐽

𝑖=1
=

2{[∑ 𝑀𝐼𝑁𝐼𝑀𝑈𝑀(𝐶𝑡𝑖𝑗 , 𝐶𝑡𝑗𝑖)𝐽
𝑖=1 ] − 𝐶𝑡𝑗𝑗}100%

(𝑌𝑡+1 − 𝑌𝑡) ∑ ∑ 𝐶𝑡𝑖𝑗
𝐽
𝑗=1

𝐽
𝑖=1

 
Equation 2-5 

 

where 𝜀𝑡𝑖𝑗 is the annual exchange between categories i and j during interval t;  

 𝑒𝑡𝑗 is the annual exchange component for category j during interval t;  

Equation 2-6 gives the shift component for category j during interval t. The shift component is 

the difference minus the quantity component minus the exchange component.  

𝑆𝑡𝑗 = 𝑑𝑡𝑗 − 𝑞𝑡𝑗 − 𝑒𝑡𝑗 Equation 2-6 

where 𝑆𝑡𝑗 is the annual shift component for category j during interval t;  

 𝑑𝑡𝑗 is the annual difference for category j during interval t;  

 
𝑞𝑡𝑗 

is the annual quantity component for category j during interval t; 

and  

 𝑒𝑡𝑗 is the annual exchange component for category j during interval t.  

Equation 2-3, Equation 2-5 and Equation 2-6 give the three components of difference for an 

arbitrary category j. Equation 2-7 to Equation 2-9 sum the components for each category to 

give the overall value for the component during time interval t. As each location of temporal 

difference involves two categories, the losing category and the gaining category, division by 

two is necessary.  

𝑄𝑡 =
∑ 𝑞𝑡𝑗

𝐽
𝑗=1

2
 

Equation 2-7 

 

𝐸𝑡 =
∑ 𝑒𝑡𝑗

𝐽
𝑗=1

2
 

Equation 2-8 

 

𝑆𝑡 =
∑ 𝑆𝑡𝑗

𝐽
𝑗=1

2
 

Equation 2-9 

 

where 𝑄𝑡 is the annual quantity component overall during interval t;  

 𝐸𝑡 is the annual exchange component overall during interval t;  

 𝑆𝑡 is the annual shift component overall during interval t;  

 𝑆𝑡𝑗 is the annual shift component for category j during interval t;  

 
𝑞𝑡𝑗 

is the annual quantity component for category j during interval t; 

and  

 𝑒𝑡𝑗 is the annual exchange component for category j during interval t.  
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Equation 2-10 shows how the difference overall (𝐷𝑡) is the sum of the three components. 

𝐷𝑡 =
∑ 𝑑𝑡𝑗

𝐽
𝑗=1

2
=  𝑄𝑡 + 𝐸𝑡 + 𝑆𝑡 

Equation 2-10 

 

2.4.5 Intensity analysis formulation 

Intensity Analysis (Aldwaik & Pontius 2012; Pontius, Shusas & McEachern 2004) is a method 

that considers maps at multiple instances for the same set of land cover classes, described as 

categories. The goal of intensity analysis is to account for transitions at interval, category and 

transition level (Aldwaik & Pontius 2012). Using a transition matrix for each time interval, 

changes are computed relative to hypothetical uniform change at the interval, category, as well 

as at the transition level. Interval level can show if the change is large merely because the 

duration of the interval is long or if the change over time is faster or slower than expected. 

Category level indicates whether the loss or gain of a particular land cover class is large, because 

the category is large, thereby identifying classes that are actively losing or gaining. The 

transition level shows if some transitions are targeting or are targeted by particular land cover 

classes. By analysing the off-diagonal entries of the confusion matrix, systematic transitions of 

land cover change can be identified. The method also tests for stationarity of changes across 

time intervals. Table 2-1 introduces common symbols used in the mathematical equations 

formulating the intensity analysis framework to reduce duplication.  

Table 2-1 Common symbols used in mathematical notation in Equation 2-11–Equation 2-18 

Symbol Meaning 

𝐽 Number of categories 

𝑖, 𝑗 Index for a category, i = initial time point, j = final time point 

𝑚, 𝑛 Index for the losing (m) and gaining (n) category during transition 

𝐶𝑡𝑖𝑗 This is the number of pixels that transition from category i to category j during interval t 

𝑌𝑡 , 𝑌𝑡+1 Year at start (t) and end (t+1) of time interval  

2.4.5.1 Interval level 

Equation 2-11 calculates the overall rate of change during an interval as the size of the change 

divided by the duration of the time interval expressed as a percentage of the spatial extent at 

one rate per time interval.  

𝑆𝑡 =
change during [𝑌𝑡 , 𝑌𝑡+1]

(duration of [𝑌𝑡 , 𝑌𝑡+1])(extent)
100% =

∑ [(∑ 𝐶𝑡𝑖𝑗
𝐽
𝑖=1 ) − 𝐶𝑡𝑗𝑗]𝐽

𝑗=1

(𝑌𝑡+1 − 𝑌𝑡)(∑ ∑ 𝐶𝑡𝑖𝑗)𝐽
𝑖=1

𝐽
𝑗=1

100% Equation 2-11 

 

where 𝑆𝑡 is the annual intensity of change for time interval [𝑌𝑡 , 𝑌𝑡+1]; and 

 𝐶𝑡𝑗𝑗 is the number of pixels that persist in category j during interval t. 
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Equation 2-12 calculates one uniform rate based on rate of overall change for the entire study 

period given that the pattern of change were stationary in terms of rate of overall change. 

𝑈 =
area of change during all intervals

(duration of all intervals)(extent)
100% =

∑ {∑ [(∑ 𝐶𝑡𝑖𝑗
𝐽
𝑖=1 ) − 𝐶𝑡𝑗𝑗]𝐽

𝑗=1 }𝑇−1
𝑡=1

(𝑌𝑇 − 𝑌1)(∑ ∑ 𝐶𝑡𝑖𝑗)𝐽
𝑖=1

𝐽
𝑗=1

100% Equation 2-12 

 

where 𝑈 is value of uniform line for time intensity analysis; 

 𝐶𝑡𝑗𝑗 is the number of pixels that persist in category j during interval t; 

 𝑇 is the number of time points; and 

 𝑡 is the index for the initial time point of interval [𝑌𝑡 , 𝑌𝑡+1], where t 

ranges from 1 to T-1. 

2.4.5.2 Category level 

Category level analysis compares observed intensities of loss and gain for each category with 

uniform intensity of change during each time interval. It identifies the categories for which 

change is more intensive than the overall change intensity in the spatial extent. At category 

level, Equation 2-13 computes the annual gross per-category loss intensity during an interval, 

by dividing the size of the annual gross loss by the size of the category at the start of the interval. 

Similarly, Equation 2-14 gives the annual gross per-category gain intensity during an interval, 

this time calculated from the size of the annual gross gain divided by the category size at the 

end of the interval. 

𝐿𝑡𝑖 =
annual loss of 𝑖 during [𝑌𝑡 , 𝑌𝑡+1]

size of 𝑖 at 𝑌𝑡

100% =
[(∑ 𝐶𝑡𝑖𝑗

𝐽
𝑗=1 ) − 𝐶𝑡𝑖𝑖]

(𝑌𝑡+1 − 𝑌𝑡) ∑ 𝐶𝑡𝑖𝑗
𝐽
𝑗=1

100% Equation 2-13 

 

𝐺𝑡𝑖 =
annual gain of 𝑗 during [𝑌𝑡 , 𝑌𝑡+1]

size of 𝑗 at 𝑌𝑡+1

100% =
[(∑ 𝐶𝑡𝑖𝑗

𝐽
𝑖=1 ) − 𝐶𝑡𝑗𝑗]

(𝑌𝑡+1 − 𝑌𝑡) ∑ 𝐶𝑡𝑖𝑗
𝐽
𝑖=1

100% Equation 2-14 

 

where 
𝐿𝑡𝑖 

is the intensity of annual loss of category i during interval t  

relative to size of category i at 𝑌𝑡; 

 
𝐺𝑡𝑖 

is the intensity of annual gain of category i during interval t  

relative to size of category i at 𝑌𝑡+1; 

 𝐶𝑡𝑗𝑗 is the number of pixels that persist in category j during interval t; 

and 

 𝐶𝑡𝑖𝑖 is the number of pixels that persist in category i during interval t. 

For category level intensity analysis, the uniform hypothesis states that gross loss and gross 

gain will occur at the same annual intensity for all categories, which is equal to the speed of 

change during the interval (U from Equation 2-12). The loss of i is dormant during interval t 

when annual loss (Lti) < U. If Gtj < U, then the gain of j is dormant during interval t. Conversely, 
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if Lti > U, then the loss of i is active during interval t; and gain (Gtj) of j is active during interval 

t if Gtj > U.  

2.4.5.3 Transition level 

For each time interval, transition level of analysis produces two sets of outputs: one for gains 

of category n, and the other for losses of category m. The uniform hypothesis at transition level 

(Equation 2-15) is that during a particular interval, category n transitions to all other categories 

(not-n) with the same annual intensity. Equation 2-16 gives the annual transition intensity of 

the gain of category n from another category i.  

𝑊𝑡𝑛 =
annual gain of 𝑛 during [𝑌𝑡 , 𝑌𝑡+1]

size of non − 𝑛 at 𝑌𝑡

100% =
[(∑ 𝐶𝑡𝑖𝑛

𝐽
𝑖=1 ) − 𝐶𝑡𝑛𝑛]100%

(𝑌𝑡+1 − 𝑌𝑡) ∑ [(∑ 𝐶𝑡𝑖𝑗
𝐽
𝑖=1 ) − 𝐶𝑡𝑛𝑗]𝐽

𝑗=1

 
Equation 2-15 

 

𝑅𝑡𝑖𝑛 =
annual transition from 𝑖 to 𝑛 during [𝑌𝑡 , 𝑌𝑡+1]

size of 𝑖 at 𝑌𝑡

100% =
𝐶𝑡𝑖𝑛100%

(𝑌𝑡+1 − 𝑌𝑡) ∑ 𝐶𝑡𝑖𝑗
𝐽
𝑗=1

 Equation 2-16 

 

where 
𝑊𝑡𝑛 

is the value of uniform intensity of transition to category n from 

all non-n categories at time Yt during time interval [Yt, Yt+1]; 

 
𝑅𝑡𝑖𝑛 

is the annual intensity of transition from category i to category n 

during time interval [Yt, Yt+1] where i ≠ n; 

 𝐶𝑡𝑖𝑛 is the number of pixels that transition from category i to category 

n during interval t; 

 𝐶𝑡𝑛𝑛 is the number of pixels that persist in category n during interval t; 

and 

 𝐶𝑡𝑛𝑗 is the number of pixels that transition from category n to category 

j during interval t. 

If the observed transition intensity from i (Equation 2-16) is less than the uniform transition 

intensity (Equation 2-15), then the gain of n avoids category i, but if the observed transition 

intensity (Rtin) from i is greater than the uniform transition intensity (Wtn), then the gain of n 

targets category i. The transition from m to n is stationary, given the gain of n, if the gain of 

category n either targets category m for all time intervals or avoids category m for all time 

intervals.  

Equation 2-17 and Equation 2-18 similarly analyse the loss of category m.  

𝑉𝑡𝑚 =
annual loss of 𝑚 during [𝑌𝑡 , 𝑌𝑡+1]

size of non − 𝑚 at 𝑌𝑡

100% =
[(∑ 𝐶𝑡𝑚𝑗

𝐽
𝑖=1 ) − 𝐶𝑡𝑚𝑚]100%

(𝑌𝑡+1 − 𝑌𝑡) ∑ [(∑ 𝐶𝑡𝑖𝑗
𝐽
𝑗=1 ) − 𝐶𝑡𝑖𝑚]𝐽

𝑗=1

 Equation 2-17 
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𝑄𝑡𝑚𝑗 =
annual transition from 𝑗 to 𝑚 during [𝑌𝑡 , 𝑌𝑡+1]

size of 𝑗 at 𝑌𝑡

100% =
𝐶𝑡𝑚𝑗100%

(𝑌𝑡+1 − 𝑌𝑡) ∑ 𝐶𝑡𝑖𝑗
𝐽
𝑗=1

 Equation 2-18 

 

where 
𝑉𝑡𝑚 

is the value of uniform intensity of transition to category m from 

all non-m categories at time Yt during time interval [Yt, Yt+1]; 

 
𝑄𝑡𝑚𝑗 

is the annual intensity of transition from category m to category j 

during time interval [Yt, Yt+1] where j ≠ m;  

 𝐶𝑡𝑚𝑗 is the number of pixels that transition from category m to category 

j during interval t; 

 𝐶𝑡𝑚𝑚 is the number of pixels that persist in category m during interval t; 

and 

 𝐶𝑡𝑖𝑚 is the number of pixels that transition from category i to category 

m during interval t. 

If category m loses to all other categories in a uniform manner, then Qtmj = Vtm  for all j, and the 

transition from m to n is defined as stationary, given the loss of m, if the loss of category m is 

either avoided by category n or targeted by category n of all time steps. Stationary processes 

will be defined in the next section. 

2.4.5.4 Stationarity defined  

In statistics, a stationary process is a stochastic process whose joint probability distribution does 

not change when shifted in time or space. For a stationary process, mean and variance do not 

change over time or position. In contrast, spatial non-stationarity describes modelled 

relationships that are not constant across space but are dependent on the absolute location in 

space (Haining 1993; Jones & Hanham 1995). Miller & Hanham (2011) warn that when 

underlying processes are non-stationary, global statistics, pattern measurements and model 

parameters will be inaccurate making any subsequent spatial inferences incorrect. The next 

section focuses on land change modelling used to simulate future land change.  

2.5 LAND CHANGE MODELLING 

Spatially explicit modelling is an important technique for projecting and exploring alternative 

future scenarios, thereby gaining understanding to quantitatively describe key processes 

(Lavorel et al. 2017; Veldkamp & Lambin 2001). Spearheaded by Verburg et al. (1999) and Pontius, 

Cornell & Hall (2001), land change modelling (both land cover and land use) entails the 

simulation of the behaviour of the environmental and social systems in an area over a period of 

time based on measured land change (Paegelow et al. 2013). A short description of the 

characteristics of a land change model follows. 
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Eastman, Van Fossen & Solorzano (2005) noted that land change models must address three 

main areas, each using a different model: (1) change demand; (2) transition potential; and (3) 

change allocation, to generate a future land cover scenario. Both change demand and change 

allocation rely on a transition potential model.  

Change demand models are used to estimate the rate of change between each pairwise 

combination of land cover types using an empirical or theoretical approach (Eastman, Van 

Fossen & Solorzano 2005). The output is a transition probability matrix that gives a probability 

estimate for each pixel to either be transformed to another land cover or to persist and be 

calibrated to an annual time step (Kamusoko et al. 2009). Markov chain analysis is a popular 

method used in the change demand process. 

Transition potential modelling lies at the heart of change modelling and much research has 

focussed on techniques to generate the transition potential map (Camacho Olmedo, Paegelow 

& Mas 2013; Eastman, Van Fossen & Solorzano 2005; Mas et al. 2014; Pérez-Vega, Mas & 

Ligmann-Zielinska 2012). A transition potential map describes the degree to which a location 

might potentially change in time, and can be created based on probabilities of transitions or on 

suitability of land cover to be occupied (Eastman, Van Fossen & Solorzano 2005). Various 

approaches have been suggested to produce transition potential maps. Kolb, Mas & Galicia 

(2013) used both weights of evidence (WoE) that represents probabilities of change and logistic 

regression modelling (RM) that expresses suitability for land cover classes, to produce 

transition potential maps based on identified drivers. Despite low precision identified in the 

transition potential maps, the evaluated areas of change showed more accurate transition 

potential maps using WoE. Another popular approach for developing a transition potential map, 

is the multi-layer perceptron implemented in IDRISI software, which is a back-propagation 

neural network model (Eastman 2016; Eastman, Van Fossen & Solorzano 2005).  

Change allocation techniques produce the spatial patterns of changing landscapes by allocating 

the amount of changes that have been established with certainty by projecting the historical 

land cover change across space (Mas et al. 2014). A land change model must predict both the 

quantity of each land cover type, as well as the location of any change (Pontius, Huffaker & 

Denman 2004).  

The accuracy of the output of an inductive model is a function of both the model itself, namely 

suitability of algorithms within the model to fulfil the intended purpose, and the accuracy of the 

input data. Model performance assessment is often based on the spatial coincidence between a 

simulated map and an observed land cover map. Other methods include expert opinion, 
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comparison of outputs generated with multiple models or multiple runs with the same model 

(Mas et al. 2013; 2014). 

Simulation of land cover change can follow a prospective approach based only upon past trends 

or introduce alternative future scenarios (Paegelow & Camacho 2008). However, most land 

change models follow a data-driven inductive approach (Overmars, De Groot & Huigen 2007), 

using statistical inferences to find correlations between explanatory factors. The use of a 

deductive model would allow the operator to include driving factors that may have causal 

influence on land cover change. 

Perera, Sturtevant & Buse (2015) drew attention to the fact that Turner and Gardner had already 

envisaged spatially explicit simulation of broad-scale ecosystem dynamics as early as 1991 

(Turner & Gardner 1991). Verbesselt et al. (2010a) argued that, by detecting and characterising 

change over time, the first step toward identifying drivers of change and understanding change 

mechanism is taken. The next step would be to perform spatially explicit modelling to create 

alternative future scenarios (Mas et al. 2014), as envisaged by Turner and Gardiner. By 

exploring these scenarios, a better understanding of processes in the landscape can be gained 

(Veldkamp & Lambin 2001).  

The Land Change Modeller (LCM) integrated into IDRISI was used in this study and the 

approach used by this model is framed here.  In LCM, land cover mapped at two time steps (T1 

and T2) are used to estimate the patterns and processes of change and for model 

parameterization / calibration (Mas et al. 2013). LCM uses multi-layer Perceptron (MLP) with 

explanatory spatial variables to create transition potential maps. Spatial explanatory variables 

are GIS datasets representing drivers of the observed change (Pérez-Vega, Mas & Ligmann-

Zielinska 2012), typically based on biophysical or socioeconomic criteria, used to model the 

historical change process (Eastman 2016). The potential explanatory power of a variable can 

be tested using Cramer’s V test where the level of association between GIS datasets 

representing phenomena thought to be drivers in a particular transition and the land cover in 

question can be determined. Cramer’s V is a correlation coefficient that ranges from 0.0, 

indicating no correlation (discarded variable), to 1.0, indicating perfect correlation (excellent 

potential variable) (Megahed et al. 2015). Although these values are not regarded as definitive, 

they can help in deciding whether to include an explanatory variable in creating a transition 

potential map for a transition by examining whether the explanatory variable explains the 

transition for a particular land cover. Land cover transitions with similar underlying drivers of 

change can be grouped into sub-models (Pérez-Vega, Mas & Ligmann-Zielinska 2012). 

Explanatory spatial variables are assigned to each sub-model on the basis of Cramer’s V values.  
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Cramer's V is the most popular of the chi-square-based measures of nominal association 

because it gives good norming from 0 to 1 regardless of table size, when row marginal equal 

column marginal, computed using the formula:  

𝑉 = √
𝜑2

min (𝑘 − 1, 𝑟 − 1)
= √

χ2 𝑛⁄

min (𝑘 − 1, 𝑟 − 1)
 

Equation 2-19 

 

where 𝜑 is the coefficient of contingency; χ 

 χ is derived from Pearson’s chi-squared test; 

 𝑛 is the grand total of observations; 

 𝑘 is the number of columns; and 

 𝑟 is the number of rows. 

Since V has a known sampling distribution it is possible to compute its standard error and 

significance (Liebetrau 1983). 

The transition potential of each sub-model is determined through a knowledge based approach 

to machine learning in the MLP. The MLP is a feedforward neural network. Data flows in one 

direction from the input layer through the hidden layers (computational nodes) to the output 

layer. The nodes are linked by a web of connections that are applied as a set of weights. A back-

propagation algorithm is used to train the network by iteratively spreading the errors from the 

output layer to the input, adjusting weights to minimise the error between the observed and the 

predicted outcomes (Pérez-Vega, Mas & Ligmann-Zielinska 2012). The training performance 

is assessed by a precision value expressed in percent. Networks that are too small cannot 

identify the internal structure of the data and produce lower performance accuracies whereas 

too large networks overfit the training data (Pérez-Vega, Mas & Ligmann-Zielinska 2012). The 

aim of the training is to build a model of the data generating process so that network outputs 

can be predicted from unseen inputs. The network output is then compared with the desired 

output, the error is computed and then back-propagated through the network to adjust weights. 

As large quantities of data are required for training, small training samples are unlikely to result 

in an accurate model. Half of the training data are randomly selected for learning and half for 

validation. After the MLP has been trained, validation data are used to calculate a "skill 

measure" (computed as the accuracy of transition prediction minus the accuracy expected by 

chance) (Mas et al. 2014). The MLP creates time-specific transition potential maps for each of 

the sub-models (Eastman, 2016). Through cross-tabulation of land cover (Kamusoko et al. 

2009) Markov chain analysis develops a transition probability matrix of land cover change 

between two different dates.  
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LCM produces two predictors of future land cover: soft prediction and hard prediction. Soft 

prediction, or potential to transition, is a continuous mapping of vulnerability to change 

(Eastman 2016). It is calculated by aggregating all the transition potentials and provides an 

indication of the degree to which the areas have the right conditions to precipitate change. The 

soft predictor provides a likelihood of a cell to experience land cover change without providing 

an indication as to what the new land cover will be.  

The hard prediction procedure used by LCM is based on IDRISI’s multi-objective land 

allocation (MOLA) module. MOLA determines a compromise solution by maximizing the 

suitability of lands for each objective given the assigned weights (Eastman 2016). Land 

allocation conflicts are resolved by allocating the cell to the objective (land cover class) for 

which its weighted transition potential is highest based on a minimum distance to ideal point 

rule using the weighted ranks. Finally, the transition probability matrix derived from the 

Markov chain analysis determines how much land is allocated to a class over a specified n-year 

period. 

This section provided a short overview of land change modelling. Land change models are 

implemented in various software packages and have been used to describe and project the 

dynamics of land use and land cover to explain how humans are changing the earth's surface. 

LCMs are used to forecast future land change by computing change demand based on existing 

and likely future scenarios, developing transition potential and performing change allocation to 

generate a future land cover scenario. It is a wide, developing topic with an active research 

community, falling within the context of land change science. In the next section, trend analysis 

as it pertains to remotely sensed data is reviewed. 

2.6 TREND ANALYSIS 

By definition, trend analysis is the practice of finding a pattern within collected information. It 

often relies on a set of statistical techniques that deals with time series data. Time series data 

refer to data in a series of particular periods or intervals. This discussion focusses specifically 

on time series analysis of Earth observation data to reveal land surface dynamics and highlight 

the magnitude of these dynamics within defined monitoring periods (Kuenzer, Dech & Wagner 

2015; Lasaponara & Lanorte 2012). In the past, time series analysis was complicated and 

limited to a small number of expert users, relying on coarse resolution data (Kuenzer, Dech & 

Wagner 2015). The release of several satellite data archives has led to free access to a large 

volume of imagery ideal for time series analysis (Lasaponara & Lanorte 2012; Wulder & Masek 

2012). This is complemented by the availability of new open source tools and novel techniques 
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for time series analysis (Kuenzer, Dech & Wagner 2015). This section reviews some of the 

products and methods applied in trend analysis involving remotely sensed data. 

2.6.1 Remotely sensed data available for time series analysis 

Accurate estimation of trends depends on the quality of the sensed data, the statistical method 

used, the length of the time series, as well as the temporal and spatial resolution of the data 

(Sulkava et al. 2007). Moreover, very few sensors have captured data that span several decades 

available for time series analysis. 

Two of the sensors that have produced the longest available time series of data are the advanced 

very high-resolution radiometer (AVHRR) sensors, operated by the National Oceanic and 

Atmospheric Administration (NOAA) that offers coarse resolution daily coverage since 1978. 

The Landsat archive, operational since 1972, includes Landsat 4 MSS (MultiSpectral Scanner), 

Landsat 5 TM (Thematic Mapper), Landsat 7 ETM+ (Enhanced Thematic Mapper Plus), and 

Landsat 8 OLI (Operational Land Imager) consisting of medium resolution imagery at 16-day 

intervals (Kuenzer, Dech & Wagner 2015; Wulder et al. 2018). 

Since the early 2000s, the moderate resolution imaging spectroradiometer (MODIS) sensor 

(Justice et al. 1998), and the European Environmental Satellite (ENVISAT) sensors, advanced 

along-track scanning radiometer (AATSR) and medium resolution imaging spectrometer 

(MERIS) have provided access to coarse and medium resolution data. MODIS was launched 

on the Terra satellite in 1999 and on the Aqua satellite in 2002, whereas the sensors on board 

ENVISAT have collected data from 2002 to April 2012. More recently, the European Space 

Agency (ESA) Sentinel series provides many new multi-sensor options for time series analysis, 

with global coverage and provided on a free and open basis. The compatibility of Sentinel 2 

with Landsat allows measurements from Sentinel 2 to be integrated with Landsat, thereby 

allowing the Landsat and Sentinel 2 archive to be used for time series analysis in combination 

(Wulder et al. 2018). 

Selected SPOT (Satellite Pour l’Observation de la Terre) VEGETATION data from 1998 

onwards at one-kilometre resolution are also available at a daily interval, while higher 

resolution SPOT multispectral data was made available as part of the SPOT World Heritage 

Programme (Kuenzer, Dech & Wagner 2015). Lasaponara & Lanorte (2012) comment on the 

high cost of multispectral SPOT data, which has been prohibitive in assessing its value for time 

series analysis.  
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2.6.2 Trend analysis techniques and examples 

Temporal vegetation information have been derived from time series of normalised difference 

vegetation index (NDVI) data since the early 1980s (Malingreau 1986; Tucker, Justice & Prince 

1986) and many methods for extracting seasonality and trends have been developed since. For 

instance, time series satellite data (Forkel et al. 2013; Zhu et al. 2016) have recently been used 

to quantify changing trends in ecosystem productivity linked to land cover classes and can 

provide a continuous view of ecosystem dynamics (Kennedy et al. 2014). Trend analysis is not 

limited to NDVI but can be applied to time series of other satellite-derived data, such as land 

surface temperature or snow cover (Kuenzer, Dech & Wagner 2015). 

All trend estimation methods have limitations that may be more or less critical, depending on 

the application. Estimation of trends from time series data differs substantially depending on 

analysed satellite dataset, the corresponding spatio-temporal resolution and the applied 

statistical method (Forkel et al. 2013). Fensholt et al. (2012) attested that both linear and non-

linear development in the time series value, e.g. NDVI, could be detected from time series data. 

Linear development can be derived using the Pearson Product–moment linear correlation test 

and Theil-Sen median slope trend analysis (Sen 1968; Theil 1950). However, care must be 

taken when using linear regression analysis for estimating trends in time series data, as spatial 

and temporal autocorrelation can violate statistical assumptions, such as the independence of 

observations (De Beurs & Henebry 2010). Accordingly, De Beurs & Henebry (2010) suggested 

the application of temporal autocorrelation structures or the use of the non-parametric Mann-

Kendall monotonic test for non-linear development, while Neeti & Eastman (2011) proposed 

using spatial autocorrelation as contextual evidence in the testing of trends based on a 

modification of the Mann‐Kendall statistic, as implemented in IDRISI. The additional 

contextual information reinforced evidence of neighbouring pixels with similar trends, whereas 

spurious trends would be removed. 

Many studies have calculated trends based on annual time steps, using regression analysis 

(Eklundh & Olsson 2003), either from annually or seasonally aggregated values, or extracted 

annual values. Röder et al. (2008) acquired a time series of Landsat data consisting of a single 

image per year and was able to retrospectively assess rangeland processes and interpret the 

linear trends in relation to land use practices and previous management interventions. Annual 

aggregation eliminates the seasonal cycle in a satellite parameter, such as the NDVI time series, 

removing the seasonal correlation structure that could hamper trend analysis. However, the 

annual aggregation of time series data reduces the temporal resolution and time series length, 

which is critical for assessing the statistical significance of the observed trend.  
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Various methods have been developed to estimate and subtract the seasonal cycle or by 

modelling the seasonal signal (De Jong et al. 2011; Verbesselt et al. 2010a; Verbesselt et al. 

2010b) thereby providing access to the full temporal resolution. Verbesselt et al. (2011) 

demonstrated that break detection for additive seasonal trend (BFAST) could detect and 

characterise spatial and temporal changes within the trend component of satellite image time 

series. BFAST employs the seasonal trend decomposition method (STL) based on a locally 

weighted regression smoother (LOESS) (Cleveland et al. 1990). Abrupt changes that were not 

associated with trend or seasonal components of the time series could be identified (Verbesselt 

et al. 2010b) using BFAST. Method STM (trend estimation based on a season-trend model) 

described by Forkel et al. (2013) uses this method implemented specifically for remotely sensed 

data. Method AAT (Forkel et al. 2013) was designed to estimate trends and trend changes based on 

an annual aggregated time series, with breakpoints estimated using the method of Bai & Perron 

(2003) and Zeileis et al. (2003). The Mann-Kendall trend test (Mann 1945) was applied to 

determine significance of trends. To enable detection of long-term trend changes, the observation 

periods of 48 monthly observations are recommended, while time series segment of a length 

smaller than eight years are not considered trends (Forkel et al. 2013). Kuenzer et al. (2014) 

suggested that the residuals, the remainder of the time series after trend and seasonal 

components were removed, could be relevant for management of natural resources, such as 

plant disease, fires or natural hazards. 

Overall, De Jong et al. (2011) found that trend estimates from the different methods resulted in 

similar general spatial patterns of the major regional greening and browning trends, but noted 

substantial spatial pattern variations in areas with weak trends. Vogelmann et al. (2016) advised 

that gradual changes were best characterised and monitored using time series analysis. Wessels, 

Van den Bergh & Scholes (2012) identified abrupt changes that were correlated with land cover 

change and hypothesised error. Similarly, Fensholt et al. (2015) found that patterns of diverging 

NDVI metric trends could also be used to evaluate the impacts of environmental changes related 

to land cover change, thereby detecting changes in ecosystem functioning over time. Forkel et 

al. (2013) developed trend estimation methods specifically applicable to remote sensing data, 

implemented in R statistical software (R Core Team 2017) package greenbrown (Forkel & 

Wutzler 2015). 

2.7 SUMMARY 

This review of literature and methods focussed on the domains of landscape science and land 

change science but dealt predominantly with land cover and land cover change, land change 
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modelling and trend analysis. The review commenced with a definition of landscapes as 

spatially heterogeneous areas of interacting ecosystems functioning together that can be 

analysed at any scale. While ecosystems support human well-being by providing functions and 

services, humans also affect ecosystems and their services through socio-ecological processes 

manifested as land use and land cover change. Ecosystems and their functions and services can 

be measured using land cover derivatives as proxy. Because of the importance of ecosystem 

services, development of management strategies and land governance are at the forefront of 

research priorities in land change science.  

Woody encroachment of the grasslands and the effect on ecosystems services delivered by the 

grasslands were deliberated next. Grasslands are susceptible to both invasion and degradation. 

Invaders include natural woody vegetation as well as invasive aliens. Degradation is caused by 

overstocking and overgrazing, often regarded as a management problem. Bush encroachment 

results in an imbalance of the grass to bush ratio, a decrease in biodiversity, decreased livestock 

carrying capacity and increased evapotranspiration associated with reduced runoff. Invasive 

species also affect soil quality. However, if woody plant increase is a consequence of climate 

change, rangeland managers will have to adopt a different management strategy. This would 

also be the case for clearing programmes. The effect of different land use management practices 

is therefore highlighted in Chapters 3 and 5. A positive consequence of the increased woody 

biomass may be increased carbon storage in the landscape. A large number of scientists are 

focussing on the ecological effects and management strategies of woody encroachment; 

however, these were beyond the scope of the project and not covered in detail in this section. 

Chapters 5 and 6 explore the consequences of land cover change on net ecosystem carbon 

exchange and the hydrologic functioning of the catchments by investigating trends in albedo, a 

climate regulating ecosystem service. 

A distinction was made between land cover and land use. Land cover was identified as one of 

the most important environmental variables as it reflects the state of the landscape at a particular 

point in time and serves as a representative of underlying processes at work. A reflection on 

image classification techniques for thematic land cover delineation was provided. Object-based 

image analysis was found to be the preferred classification method. However, digital maps 

created as classification output are subject to human error, leading into the discussion on map 

accuracy. Generally, map accuracy is measured in a square contingency matrix by comparing 

representative reference points with the classified map. Various statistics can be computed from 

the contingency matrix including overall, producer’s and user’s accuracy. The family of kappa 

indices have also been used but have fallen out of favour. Due to the potential for 
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misclassification when using categorical land cover classes, map error is a universal concern 

and guidelines exist on what information should be reported from accuracy assessments, both 

for land cover classification and land cover change. Despite the fact that accuracy reports from 

the contingency matrix are easy to understand, they are not spatially explicit and therefore do 

not capture the spatial variation in accuracy and error. Various authors have addressed the lack 

of spatially explicit methods for classification accuracy since the early 2000s, but these methods 

do not seem to have had much acceptance. Comber et al. (2017) have suggested the use of 

geographically weighted contingency matrices to allow mapping of spatially explicit accuracy 

measurements, both for land cover classification as well as land cover change and forms part 

of the research activities undertaken in this dissertation.  

Land cover change could represent conversion from one class to another, or modification within 

one class, which would have implications for the particular methods selected for both land cover 

classification and change detection. Change detection methods have taken the form of image 

analysis overlay, image analysis comparison, multi-temporal image object and polygon vector 

analyses. Of these methods, the independent classification of remotely sensed imagery, 

followed by post-classification change analysis remains the most popular. During change 

analysis, a square contingency matrix is also used, however, loss and gain is computed from 

the off-diagonal entries. A popular framework for land cover change accuracy assessment is 

intensity analysis. The rate of change (intensity) at interval, category and transition level is used 

to compare if change has occurred faster or slower than uniform. Hypothetical map error can 

then be identified. By constructing the change budget, change is partitioned into quantity, 

exchange and shift disagreement. This dissertation therefore uses the terms change budget and 

disagreement budget interchangeably. The intensity of the change budget components can also 

be computed. A spatially explicit change budget can also be constructed, as done in Chapter 4. 

The next section addressed land change modelling and provided a general overview of the three 

main areas that a land change model must address, namely change demand, transition potential 

and change allocation. An in-depth description of the IDRISI Land Change Modeller was given, 

highlighting strengths and weaknesses of the modelling software. Finally, an overview of trend 

analysis was given by firstly looking at available remotely sensed data, followed by various 

trend estimation techniques, that all have limitation. BFAST and the Season-trend model can 

be used with ease with remotely sensed data. Halmy et al. (2015) argued that remote sensing, 

and particularly land cover change detection and trend analysis applied to time series satellite 

images, has become an important tool for ecosystem service monitoring and management.  
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For the diverse research questions addressed in this study, a very large reading list was required. 

The paper-based structure of the dissertation lent itself to reporting the bulk of literature in this 

chapter (Chapter 2) whilst still increasing the body of literature in each separate chapter. Of 

special interest is that cloud computing platforms are opening new possibilities for generating 

land-cover maps by applying deep learning algorithms (Azzari & Lobell 2017). To demonstrate 

this, Midekisa et al. (2017) used high resolution Landsat satellite observations and the Google 

Earth Engine cloud computing platform to quantify land cover and impervious surface changes 

in Africa over 15 years at continental scale.  

Kuenzer, Dech & Wagner (2015) noted that the greatest challenge to space agencies and data 

providers over the next decade is the enormous volume of data to be preserved, as well as the 

amount of data that individual researchers will process in their research endeavours to inform 

management. This so-called “Big Data” problem has created a demand for cloud-based 

solutions for data storage and processing, the development of processing algorithms and code-

sharing platforms, and the emergence of open source programming languages. The demand for 

these technologies will grow as more data sources becomes available. 

This concludes the formal review of literature. However, each of the subsequent chapters 

(excluding Chapter 7) has been written in the format of a journal article and therefore includes 

additional literature pertaining only to the topic addressed by the chapter. The next chapter 

(Chapter 3) discusses land cover change trajectories in the grasslands in the Eastern Cape, 

defining woody encroachment as a degradation gradient. 
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CHAPTER 3:  CHARACTERISING DEGRADATION GRADIENTS  

THROUGH LAND COVER CHANGE ANALYSIS 

This chapter1 overviews a land cover change analysis performed for the agro-ecosystems in the 

Eastern Cape. The study used land cover change analysis to characterise degradation gradients 

using an indicator-based approach and to demonstrate the effect of map accuracy on real change 

that can be measured by the analysis.  

3.1 ABSTRACT  

Land cover change analysis was performed for three catchments in the rural Eastern Cape, 

South Africa, for two time steps (2000 and 2014), to characterise landscape conversion 

trajectories for sustained landscape health. Land cover maps were derived: (1) from existing 

data (2000); and (2) through object-based image analysis (2014) of Landsat 8 imagery. Land 

cover change analysis was facilitated using land cover labels developed to identify landscape 

change trajectories. Land cover labels assigned to each intersection of the land cover maps at 

the two time steps provide a thematic representation of the spatial distribution of change. The 

results show that, while land use patterns are characterised by high persistence (77%), the 

expansion of urban areas and agriculture has occurred predominantly at the expense of 

grassland. The persistence and intensification of natural or invaded wooded areas were 

identified as a degradation gradient within the landscape, which amounted to almost 10% of the 

study area. The challenge remains to determine significant signals in the landscape that are not 

artefacts of error in the underlying input data or scale of analysis. Systematic change analysis 

and accurate uncertainty reporting can potentially address these issues to produce authentic 

output for further modelling. 

3.2 INTRODUCTION 

Landscape units or land use types encountered in the mesic regions of South Africa are diverse, 

comprising inter alia irrigation agriculture, dryland cultivation, extensive rangeland and forests, 

as well as low-density urban areas. Driven by critical water security issues in the country, 

noteworthy progress has been made towards establishing links between catchment health and 

especially the effects of invasive alien plants (IAPs) and the provision of hydrological services 

(Le Maitre, Gush & Dzikiti 2015; Turpie, Marais & Blignaut 2008) within landscape units. 

                                                 
1This chapter was originally published as a scientific article (citation below). The manuscript was reformatted to match the 
guidelines of Department of Geography & Environmental Studies, Stellenbosch University.   

Münch Z, Okoye PI, Gibson LA, Mantel S & Palmer AR 2017. Characterising degradation gradients through land cover change 
analysis in rural Eastern Cape, South Africa Geosciences 7:7. 
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While direct habitat destruction remains the primary threat to biodiversity, IAPs pose an 

increasing challenge both locally and globally (Driver et al. 2012) and can adversely affect the 

primary productivity of the natural grasslands in South Africa used for livestock farming 

(Driver et al. 2012). The reduction in biodiversity heightens ecosystem susceptibility to 

biological invasions that, in turn, erode ecosystem services (Díaz et al. 2006). Landscape 

change, by IAPs and other land use approaches, may contribute to land degradation and the 

reduction of water and other available resources to native species and rural inhabitants (Driver 

et al. 2012; Le Maitre, Gush & Dzikiti 2015; Turpie, Marais & Blignaut 2008). Therefore, one 

of the fundamental requirements necessary for evaluating the merit of any land use activity is 

the ability to accurately quantify ecosystem services associated with such activity (Brown, 

Bergstrom & Loomis 2007).  

Land cover reflects the state of the landscape at a particular point in time (Feranec et al. 2010) 

arising from processes operating at the terrestrial surface representing elements determined both 

by natural conditions, as well as by human influence (Bastian, Krönert & Lipský 2006). Land 

cover change involves alterations in biogeochemical cycles, climate and the hydrology of 

ecosystems (Reyers et al. 2009) from anthropogenic actions. Land cover dynamics have 

important consequences for natural resources as drivers of change in ecosystems and their 

services (Huang & Asner 2009; Reyers et al. 2009), and determining land cover change can 

provide information about these processes (Feranec et al. 2010). Land cover change analysis 

identifies the difference between land cover categories in maps of different time points 

(Aldwaik & Pontius 2013; Feranec et al. 2010; Stott & Haines-Young 1998) and draws 

conclusions about landscape conversion (Benini et al. 2010; Lambin, Geist & Lepers 2003; 

Nagendra, Munroe & Southworth 2004).  

The ability to quantify the rates and extents of land cover change and develop models that relate 

changes in land cover to underlying land use processes and environmental effects depends on 

accurate observations of landscape change (Burnicki 2011; Feranec et al. 2010). The 

occurrences and mechanisms of these land cover change processes may be difficult to analyse 

due to a lack of empirical ecological and geospatial data correctly representing the variables 

driving these changes (Nagendra, Munroe & Southworth 2004). Therefore, to ensure sustained 

landscape health, change analysis of landscape activities needs to be performed to enable the 

quantification of the derived benefits to humans occupying the catchment (Cowling et al. 2008). 

Satellite-based Earth observation and geographic information systems (GIS) have been 

established as the best tools for observation, measurement and monitoring of land cover change 

(Bodart et al. 2013; Schoeman et al. 2013; Szantoi et al. 2016). Earth observation data provide 
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large area coverage of features on the face of the earth at near real time. The historical archive 

of such imagery provides multi-temporal monitoring capability and is therefore well suited to 

generate land cover maps for change analysis. Useful information is derived from 

electromagnetic radiation reflected or emitted from the earth’s surface captured in satellite 

images, by systematically employing image analysis (Blaschke 2010; Campbell & Wynne 

2011).  

Independent classification of remote sensing images from two or more different dates is the 

most common method of generating a multi-temporal series of maps for landscape pattern 

analysis (Linke et al. 2009). A traditional per-pixel or an object-based approach (Blaschke 

2010) can be followed where classes or categories are assigned to each pixel (or object). 

Common image classification techniques include unsupervised and supervised classification. 

Various classification algorithms are available, with the most used algorithm being the 

maximum likelihood classifier (MLC) (Tseng et al. 2007). However, traditional supervised 

classifiers are often outperformed by classification methods such as artificial neural networks, 

expert systems and decision trees (DTs) (Pal & Mather 2003). 

Accurately generating a land cover map and quantifying the extent of a land cover class or its 

change over time require careful selection of reference data for use in both training and 

validation (Congalton & Green 2009; Foody 2002; MacLean & Congalton 2012; Olofsson et 

al. 2013). The accuracy of training data will influence the success of the classification, while 

the validation data, assumed to be correct, are used to perform accuracy assessment (Congalton 

& Green 2009; Foody 2002).  

When using land cover data products created from different input datasets, methodologies and 

legend categories, post-classification editing can be carried out to improve classification 

accuracies. Minor inconsistencies that would impede direct comparison can also be corrected 

(Homer et al. 2015). If exact locations of map errors are known, land cover maps can be rectified 

through post-classification editing to minimise error propagation prior to land cover change 

analysis. Error can be introduced during sampling if inaccurate land cover classes are assigned 

or through misclassification during image analysis (Burnicki, Brown & Goovaerts 2007; 

Pontius & Li 2010).  

The accuracy of land cover change modelling is directly dependent on the accuracy of the input 

land cover data (Burnicki 2011; Schoeman et al. 2013), and thus, classification errors in the 

independently-generated maps of land cover derived using different methodologies are 

compounded in an land cover change analysis, possibly leading to spurious results in landscape 
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change (Burnicki 2011). For any land cover change analysis, the reliability of the land cover 

change detected should therefore be assessed in order to explain the certainty with which the 

change can be considered real or spurious (Fuller, Smith & Devereux 2003; Malek, Scolobig 

& Schröter 2014; Olofsson et al. 2014; Olofsson et al. 2013). A single-date sample-based error 

matrix, often the endpoint of accuracy assessment prior to land cover change analyses, provides 

insufficient information to assess the accuracy of gross change (Olofsson et al. 2014; Olofsson 

et al. 2013). To address the errors introduced by comparison of erroneous input maps, Fuller, 

Smith & Devereux (2003) proposed a method to measure the level of change with 75% 

reliability as a function of the accuracy of each input land cover map, the number of classes 

mapped and the percentage of change detected. Equally, Pontius et al. (Pontius & Li 2010; 

Pontius & Lippitt 2006) describe measures to determine the probability of error in predicted 

land change based on erroneous input maps. 

This chapter describes the use of independent land cover maps for change analysis in a 

grassland-dominated landscape in the Eastern Cape of South Africa to delineate land cover 

change trajectories that are crucial to gain a better understanding of water and carbon fluxes. 

Invasion by woody plants is a driver of grassland transformation, which influences ecosystem 

services provided by rangelands, such as forage production, water supply, habitat, biodiversity, 

carbon sequestration and recreation (Gwate et al. 2016). Therefore, from a rangeland 

management perspective, understanding the land cover trajectories relating to grass production 

would be important for local farmers (Gwate et al. 2016). In addition, the success of the 

Working for Water (WfW) programme (Turpie, Marais & Blignaut 2008), which uses labour-

intensive methods to clear invasive woody plants while supporting job creation (Driver et al. 

2012), can be evaluated. As IAPs are reported to have a high total incremental water use 

compared with indigenous vegetation (Clulow, Everson & Gush 2011), clearing could salvage 

a significant proportion of water to maintain other ecosystem services (Meijninger & Jarmain 

2014; Van Wilgen et al. 2008). 

The objectives of the chapter therefore are: (1) the post-classification editing and accuracy 

assessment of the existing national land cover product (Van den Berg et al. 2008); (2) deriving 

and validating a second land cover map (Okoye 2016) to facilitate change analysis; (3) 

performing land cover change analysis on these datasets; and (4) delineating important land 

cover change trajectories. Accurately quantifying the rates and extent of land cover change 

would be the first step in relating underlying land use processes and the environmental effects 

thereof to land cover change trajectories involving grassland transformation crucial to the 

carbon-water nexus. 
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3.3 MATERIALS AND METHODS  

3.3.1 Study area 

Three quaternary catchments (T35B, T12A and S50E) situated in the Mzimvubu-Tsitsikamma 

Water Management Area in the Eastern Cape of South Africa (Figure 3-1) were selected for 

investigation. The vegetation of the study area is best described as grassland interspersed with 

thicket, formal plantations and IAPs (Mucina & Rutherford 2006). Grassland is the second 

largest biome in South Africa comprising almost 29% of the total area (Van Wilgen et al. 2012), 

of which about 30% has been permanently modified (Mucina & Rutherford 2006). The 

grasslands comprise not only grass species, but also bulbous perennials that reappear annually 

(Carbutt et al. 2011). Invasion by woody plants has transformed the grassland, negatively 

influencing rangeland production. Vegetation diversity and richness have been degraded by 

poor farming practices such as overgrazing, burning and wood felling. The soils comprise 

mostly deep clayey loams to rocky soils.  

 
Figure 3-1 Three study sites S50E, T12A and T35B; NIAPS Kotzé et al. (2010) 

In this rural landscape, communal farming is practised alongside a strong commercial livestock 

sector. However, to describe the complexity of the communal farming tenure arrangement in 

the Eastern Cape more appropriately, the label “dual or bilateral landholding arrangement” was 

agreed upon by stakeholders, due to the interaction of the components of traditional leadership 

and the municipal system in land allocation. Grazing and crop cultivation are noticeable as the 

main land use practices (Kakembo 2001; WRC 2013). The area consists of three different land 

tenure units namely former commercial farms and traditional and betterment villages, 

predominantly in T12A and S50E, and former Transkei rural areas (Kakembo 2001; Wotshela 
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2009). Major users of water and carbon in this socio-ecological system are livestock and alien 

trees. The local district municipality (Chris Hani) and WfW Alien Plant Clearing Programme 

have been clearing IAPs in these catchments for the past twelve years, with water saving being 

the primary motivation (Dye et al. 2008). Location of WfW clearings (Driver et al. 2012) can 

be seen in Figure 3-1 within T12A and south of T35B (Kotzé et al. 2010). 

S50E (31°45’S 27°30’E; 44760 ha), the southernmost catchment, represents an area with high 

grazing potential, under communal tenure of the local headman, with an eight per cent density 

of different IAP species (Kotzé et al. 2010). Within the catchment lies the Ncora Dam supplied 

by the Tsomo River. In close proximity to the east of S50E lies T12A (31°30’S 27°45’E; 27870 

ha). Further north, catchment T35B (31°S 28°15’E; 39550 ha) represents commercial/freehold 

land with many different land usages including forestry, mixed livestock and crop production.  

Rainfall in the study area occurs predominantly in summer with highest rainfall measured in 

January. Figure 3-2 illustrates the annual rainfall variation in the study area derived from 

Tropical Rainfall Measuring Mission (TRMM) satellite data (Huffman et al. 2010; Huffman et 

al. 2007) validated with complete weather station data from Cala and Maclear (see Figure 3-1 

for location) with median approximately 680mm.  

 
Figure 3-2 Rainfall variation in the study area, 2000-2014 

Over the study period, rainfall varied between a low of ~450mm per annum in 2003 to a high 

of almost 950mm in 2006, a year of extreme rainfall in all of the catchments (NDMC 2007). 

The rainfall for the two years selected for landscape comparison display significantly different 
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(p<0.05) precipitation volumes with 2000 being a relatively wet year (~850mm) in contrast to 

2014 when the area received only ~600mm. 

3.3.2 Data selection 

Two time steps (T1 and T2) were selected for analysis. The first time step (T1) was selected to 

describe the landscape in 2000, coinciding with the date of the South African National Land 

Cover (NLC) dataset (Van den Berg et al. 2008).  The NLC has commonly been applied in 

studies requiring land cover as input (Ament & Cumming 2016; Van den Berg, Kotzé & Beukes 

2013; Jewitt et al. 2015; Kahinda et al. 2008; Maherry et al. 2010; Munyati & Ratshibvumo 

2011; Thomas 2015). This land cover map was classified from multi-temporal Landsat 7 

Enhanced Thematic Mapper imagery using primarily conventional per-pixel classifiers based 

on 2000-2001 conditions (Van den Berg et al. 2008) with a minimum mapping unit of 1-2 ha 

(Jewitt et al. 2015) and 45 classes (Van den Berg et al. 2008). The year 2000 also corresponds 

to the launch of the moderate resolution imaging spectroradiometer (MODIS) satellites (Terra 

and Aqua) providing science quality data with high temporal and spectral resolution, as well as 

intermediate spatial resolution imagery (Justice et al. 2002). This data was used in other 

modelling and comparison studies in this project (Gwate et al. 2016).   

In the interest of comparing compatible classes between land cover datasets T1 and T2, a 

revised land cover classification scheme (legend) comprising eight classes (Table 3-1) was 

developed, by aggregating detailed classes (Aldwaik, Onsted & Pontius 2015; Petit et al. 2002) 

under a number of conceptually broader classes (Lück & Diemer 2008).  

Table 3-1 Modified land cover legend compared to original legends 

Conceptual class*  Final legend Abbreviation 

Natural, terrestrial non-vegetated bare areas Bare Rock and Soil (natural) BRS 

Cultivated and managed terrestrial primarily 
vegetated areas 

Cultivated land  CLs 

Forest Plantations (clear-felled, Pine spp, 
Other / mixed spp) 

FPs 

Natural and semi-natural terrestrial primarily 
vegetated areas 

Unimproved (Degraded / Natural) Grassland UG 

Forest Indigenous, Thicket Bushlands, Bush 
Clumps, High Fynbos 

FITBs 

Artificial, terrestrial primarily non-vegetated 
areas 

Urban/Built-up (residential, formal township) UrBu 

Natural or artificial primarily non-vegetated 
aquatic or regularly flooded water bodies 

Water bodies Wb 

Natural and semi-natural aquatic or regularly 
flooded vegetated areas 

Wetlands Wl 

* Chief Directorate National Geospatial Information (CD: NGI) hierarchical structure (Lück & Diemer 2008: 7). 

For this study the conceptual class “Cultivated and managed terrestrial primarily vegetated 

areas” was divided into “cultivated” (CLs) and “managed” (FPs) vegetation, while “Natural 

and semi-natural terrestrial primarily vegetated areas” was separated into grassland and low 

Stellenbosch University https://scholar.sun.ac.za



52 

 

 

 

shrubs (UG) and wooded vegetation (FITBs) based on the original NLC land cover legend 

(Table 3-1). Due to the low reported overall accuracy (65.8%) of the selected T1 dataset (Van 

den Berg et al. 2008), it was systematically updated using the revised legend (Table 3-1) with 

aggregated land cover classes, subsequently referred to as ENLC 2000 for T1. Some tracts, 

labelled “Degraded Unimproved (natural) Grassland”, were recognised as subsistence farming 

and re-allocated to “CLs”, while some parcels were re-allocated to “Urbu” after identification 

as rural villages. Accuracy assessment was performed on the edited dataset using stratified 

random sample points generated using ArcMap 10.4 (Environmental Systems Research 

Institute (ESRI), ESRI 2016). Classes were assigned from aerial photography (dated July 2000: 

Chief Directorate: National Geospatial Information (CD: NGI)) using the eight-class land cover 

legend (Table 3-1). In addition, a new land cover dataset was generated through image 

processing to represent the second time step (T2) for 2014, 15 years later (Okoye 2016) 

corresponding to collection of field data (Gwate et al. 2016). 

3.3.3 Image processing2 

Various steps were taken to generate the land cover dataset for 2014 (T2). These included 

developing supplementary datasets, image pre-processing and image classification (Okoye 

2016). An object-oriented supervised approach using geographic object-based image analysis 

(GEOBIA) was selected for classifying imagery in eCognition Developer (Definiens 2003). A 

rule-based decision tree classification with defining threshold conditions was implemented to 

categorise object-features into respective classes.  

Various supplementary datasets were developed to inform the decision tree classification. 

Stratified random sample points were generated from the existing land cover map (NLC 2000) 

and buffered by 30m to capture land cover areas. A new label, according to the new eight-class 

land cover legend (Table 3-1), was then assigned to each area by visually interpreting 2014 

aerial photographs. In excess of 5000 points per catchment were generated in this manner, with 

more points selected for land cover classes with greater geographical extent e.g. UG. Field (in-

situ) data collected during field visits in 2014 (less than 100 points) were included in the training 

dataset. Density estimation was performed on the SPOT Building Count (ESKOM SBC) 

(Mudau 2010) data to delineate urban areas (UrBu). Digitised boundaries of cultivated land (for 

CLs) and forest plantations (FP) were rasterised and slope was derived from a digital elevation 

model (SUDEM) (Van Niekerk 2013).  

                                                 
2 Image processing was carried out by PI Okoye (Okoye 2016) assisted by SE Muller (CGA). 
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Two suitable cloud-free Landsat 8 images (scenes LC81690812014121LGN00 and 

LC81700822014160LGN00, dated 2014-05-01 and 2014-06-09 respectively) covering the 

spatial extent of the study area were downloaded for analysis. Images for the dryer winter 

season were selected to enhance the possibility of detecting greener IAPs within dry grasslands 

(Huang & Asner 2009). The Landsat scenes were atmospherically corrected by normalising the 

solar radiance through conversion of spectral radiance to atmospheric reflectance. This was 

done in ATCOR 2 (Richter & Schlapfer 2013) using radiance-conversion-to-top of atmosphere 

(ToA) reflectance model by converting digital numbers (DN) to radiance using the gain and 

bias values found in the metadata of each image file. The Landsat scenes had little or no cloud 

cover. Haze removal was performed using the ToA reflectance correction method to eliminate 

atmospheric effect that can cause image contamination and obscure ground features (Richter & 

Schlapfer 2013). This was followed by scene sharpening in PCI Geomatica (Nikolakopoulos 

2008) to improve spatial resolution of the multi-bands in order to separate interspersed land 

cover classes by extracting small feature objects (Laliberte, Fredrickson & Rango 2007).  

Spectral and vegetation indices were derived from the stacked Landsat dataset to improve the 

decision tree construction. These included the normalised difference vegetation index (NDVI), 

enhanced vegetation index (EVI), normalised difference water index (NDWI), soil adjusted 

vegetation index (SAVI) and tasselled cap brightness. NDVI was selected to separate 

indigenous forest from grasslands. NDVI is affected by soil brightness (Carlson & Ripley 1997) 

and saturates in high biomass areas (Huete et al. 2002; Wang, Liu & Huete 2002), EVI was 

consequently calculated as it shows greater sensitivity to vegetation change and reduces 

atmospheric effects on vegetation index values (Huete et al. 2002). NDWI was used to improve 

delineation of wetlands, owing to its sensitivity to changes in liquid water content of vegetation 

canopies (Gao 1996). SAVI (Haboudane 2004) was computed as a corrective index on soil 

brightness for areas with low vegetation cover (<40%) and exposed soil surface. The brightness 

algorithm (Crist & Cicone 1984; Kauth & Thomas 1976) was calculated to represent the 

reflectance intensity of bare rocks and soils, among other features, sharing similar spectral 

radiance. 

Image pixels with relative homogeneity were clustered using multi-resolution segmentation 

(MRS) algorithm (Jiang et al. 2008; X Li et al. 2014). MRS is an ascending area-merging 

technique where smaller objects are progressively merged into larger objects. The advancement 

in heterogeneity is controlled with three input parameters, namely scale, shape and compactness 

(Laliberte, Fredrickson & Rango 2007). Shape and compactness were weighted at 0.1 and 0.5, 

respectively. Scale, referred to as “window of perception” (Marceau 1999) is a unit-less 
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parameter that regulates the size and homogeneity of image objects. Scale was set to two due 

to accommodate the land cover heterogeneity in the study area. All layers were given equal 

importance in the segmentation settings, except the near infrared and red bands that received 

double weighting to increase their response signal to vegetation greenness. A minimum 

mapping unit of 1825 m2 (3X3 pan-sharpened pixels (Blaschke 2010; MacLean & Congalton 

2012) was selected to accommodate small fragmented land cover classes. 

A decision tree is defined as a classification procedure that recursively partitions a dataset into 

smaller subdivisions according to a decision framework defined by a tree structure (Friedl & 

Brodley 1997). Not only are decision trees non-parametric and do not require assumptions 

regarding the distributions of the input data, but the classification structure is explicit and easy 

to interpret, making the method intuitive. Using training classes derived from aerial 

photographs with eight land cover classes (Table 3-1), a preliminary decision tree was generated 

in the classification and regression trees (CART) software (Salford Predictive Modeller 7.0) 

from which the final rule-set was constructed (Laliberte, Fredrickson & Rango 2007). The 

shadows class was incorporated into the surrounding vegetative cover class, validated by visual 

assessment from aerial photographs. The land cover maps (one for each Landsat scene) were 

combined into a single dataset hereafter referred to as DLC 2014 (T2).  

3.3.4 Accuracy assessment 

Since accuracy measures, estimated from a sample, are subject to uncertainty (Olofsson et al. 

2014; Olofsson et al. 2013; Pontius, Shusas & McEachern 2004), a more robust approach is to 

report the estimated error matrix (Section 2.3.2) in terms of proportion of area and estimates of 

OA, UA and PA based on the population (Pontius, Shusas & McEachern 2004). An associated 

confidence interval provides a range of values for the reported parameter which takes the 

uncertainty of the sample-based estimate into account. Accuracy assessment of both ENLC 

2000 for T1 and DLC 2014 for T2 was performed by cross tabulating estimated area of observed 

reference classes vs. predicted classes. Stratified random sample points were generated per land 

cover class using ArcMap 10.4. Reference land cover classes were assigned to these sample 

points from aerial photography of the same year. The estimated proportion of area for each cell 

of the error matrix was calculated (Olofsson et al. 2013). Accuracy measures calculated from 

this error matrix includes OA (proportion correctly classified) PA accuracy (the probability that 

a reference land cover is correctly classified) and UA (the probability of pixels matching the 

sample) (Congalton 2001). A 95% confidence interval was computed from the standard error 

of the estimated area (Olofsson et al. 2014).  
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3.3.5 Change analysis 

The comparative approach the most commonly used land cover change detection method 

(Section 2.4.1). In this approach categorical land cover maps generated independently at 

different time steps are compared using a transition matrix to identify the most important 

transitions (Marceau 1999; Mas 1999). The basis for this method is an accurate land cover map 

at each time step. Errors in these land cover maps will be propagated to the change map, with 

overall expected error greater than in either of the maps from which it originated (Stott & 

Haines-Young 1998). 

Land cover change analysis was performed by comparing the reference dataset ENLC 2000 

from time step 1 (T1) to the classified dataset DLC 2014 from time step 2 (T2) in a transition 

matrix. Rows in the transition matrix represent the land cover at T1, while columns represent 

land cover at T2. From the transition matrix, net gain and loss per class was calculated. The 

accuracy of the resulting land cover change map was quantified (Section 2.4.2). The pattern of 

error observed in the land cover change map will reflect the errors in the individual input 

classified maps and their interactions (Nagendra, Munroe & Southworth 2004) if the 

classification errors are independent (Fuller, Smith & Devereux 2003). This is unlikely as 

locations that were difficult to classify correctly at T1 would also be difficult to classify 

correctly at T2 even if different methodologies are used (Congalton 2001).  

The probability of a particular class transition occurring can be calculated from the user’s 

accuracies for each land cover map (Pontius & Li 2010), which give the conditional probability 

that a pixel transitioned from the land cover class in its row to the class in its column. 

Theoretical (D), upper (U), middle (M) and lower (L) bounds for estimates of change were 

calculated (Pontius & Li 2010) from the user’s accuracy per land cover class for each input map 

(T1 and T2) and reported in a transition matrix. Matrix D assumes the land cover maps from 

T1 and T2 to be perfectly accurate. Matrix M assumes possible error in all pixels.  Matrix U 

considers error only in areas that correspond between T1 and T2, whereas matrix L considers 

error in places that differ between T1 and T2 and assumes no error in pixels that match (Pontius 

& Li 2010).  

Figure 3-3, adapted from Fuller, Smith & Devereux (2003), shows the level of change that can 

be measured with 75% reliability when performing change analysis between pairs of maps with 

two and eight classes, with map accuracies ranging from 75 to 99%. The level of change 

between 2000 and 2014 that can be measured with 75% reliability (75% of the observed 

difference between the maps is real change), was subsequently calculated as a function of the 

Stellenbosch University https://scholar.sun.ac.za



56 

 

 

 

accuracy of each input land cover map, the eight classes mapped and the percentage change 

detected according to Figure 3-3 (Fuller, Smith & Devereux 2003). 

  Adapted from Fuller, Smith & Devereux (2003) 

Figure 3-3 Level of change with 75% reliability when mapped using pairs of maps with 2 and 8 classes and 

with map accuracies ranging from 75 to 99% 

3.3.6 Land cover change trajectories 

Seven main flows or trajectories of aggregated land cover change were identified (Feranec et 

al. 2010; Stott & Haines-Young 1998) and are listed in Table 3-2 (highlighted with grey 

background). These trajectories include: (1) persistence, where no land cover change has 

occurred; (2) intensification, which represents the transition of a lower intensity to a higher 

intensity usage; (3) afforestation representing the planting of trees; (4) deforestation, which 

involves the clearance of trees; (5) extensification where higher intensity usage is converted to 

a lower intensity usage; (6) natural dynamics to represent seasonal conversions; and (7) 

exceptionality associated with potential map errors. In the context of this study, these seven 

categories were subdivided to account for specific changes in this landscape (Table 3-2). As 

part of persistence (P), Pf indicates areas where woody vegetation (including indigenous forest 

and IAPs) has persisted while Pu describes areas where settlements have persisted over time. 

Of particular importance are areas where forests (indigenous or alien) and other woody areas 

have disappeared or been removed (reclamation, deforestation) or another land cover has 

potentially been replaced by IAPs (FITBs intensification). Due to the resolution of the satellite 

imagery used in the generation of the land cover classes, it was not possible to determine change 

in the intensity of agricultural activities, but conversion to agricultural practices can be 
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identified (agricultural intensification). Exceptionality indicates where an improbable 

conversion occurs such as to wetland, which may be used to identify classification errors. 

Table 3-2 Labels and descriptions for conversion patterns and trajectories 

Land cover conversion label Description 

Persistence  

P – Persistence Areas with no change in land cover 

Pf – FITBs persistence Areas where woody natural and artificial vegetation persists 

Pu – Urban persistence Areas where settlements persist over time 

Intensification  

If – FITBs intensification Areas where woody natural and artificial vegetation substitutes previous land cover 

Iu – Urban intensification Areas converted to urban 

Ia – Agricultural intensification Areas where agricultural activities substitute previous land cover 

Afforestation  

R – Afforestation Areas where other land cover is converted into plantation 

Deforestation  

D – Deforestation Plantation converted to other land cover 

Extensification  

Re – Reclamation Woody natural and artificial vegetation areas converted to grassland and bare area 

De – Degradation Shrub areas converted to grassland or bare areas 

A – Abandonment Urban and agricultural areas converted to grassland and bare areas 

Natural dynamics  

Dn – Natural dynamics Areas where natural changes occurred 

Exceptionality  

E – Exceptionality 
 

Unusual conversion–Not expected / possible misclassification / active intervention 

The use of a land cover conversion label not only allows a thematic representation of the spatial 

distribution of change (Aldwaik & Pontius 2013), but also provides information about the 

processes (flows) in the landscape that can be represented on a map to simplify the evaluation 

of land cover change (Section 2.4.3). From the intersection of the two land cover layers, a square 

transition matrix was created where rows show the classes from 2000 (T1), columns show the 

same classes from 2014 (T2). The table entry indicates the intersection created by the overlay 

of the successive land cover maps. A land cover conversion label (Table 3-2) was assigned to 

each intersection representing process flow depicted in Table 3-3.  

Table 3-3 Land cover conversion labels representing conversion trajectories between T1 and T2 

Class label 

2014 (T2) 

UG FITBs BRS Wb Wl CLs FPs UrBu 

2
0
0
0
 (

T
1

) 

UG P IF De Dn 

Dn 
Ia 

R 

Iu FITBs Re Pf Re 
E 

BRS 

Dn 

IF 

P 

Wb 
Dn 

P E 

Wl Dn P 

Iu CLs A A 

E E 

P 

FPs D D 
Ia 

P 

UrBu A A R Pu 

UG: Unimproved Grassland; FITBs: Forest Indigenous Thicket Bushlands; BRS: Bare Rock and Soil 
Wb: Water bodies; Wl: Wetlands; CLs: Cultivated Land; FP: Forest Plantations; UrBu: Urban built-up 
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This conceptual schema of using land cover conversion labels (Benini et al. 2010) for change 

analysis was developed to describe patterns and trajectories both qualitatively and 

quantitatively. The area for each land cover conversion label was calculated and expressed as a 

percentage of the total area of each of the catchments (Section 2.4.3). 

3.4 RESULTS 

3.4.1 Accuracy assessment of datasets for T1 and T2 

The accuracy assessment for the land cover map ENLC 2000 for Time Step 1 (T1) obtained 

after updating the existing NLC dataset (Van den Berg et al. 2008) based on sample counts, is 

presented in Table 3-4, while Table 3-5 illustrates the accuracy expressed as the estimated per 

cent of the study area (the population). Rows represent map categories, while reference 

categories are given in the columns. Table 3-4 also reports the area for each map category and 

the per cent of the study area to the nearest integer, where a zero means a positive number less 

than one half and a dash means that no pixels were observed. Table A-1 in Appendix A provides 

the detail at the catchment level. Accuracy measures, OA, UA and PA are presented with a 95% 

confidence interval (Olofsson et al. 2013). 

Table 3-4 Summarised accuracy assessment of land cover map ENLC 2000 (T1) based on sample counts 

Class UG FITBs BRS Wb Wl CLs FP UrBu Total 

Map Area 

Ha % 

UG 3544 269 59 13 77 190 71 60 4283 78370 70 

FITBs 90 1360 2 6 0 26 31 0 1515 10367 10 

BRS 1 0 0 0 0 0 0 0 1 19 0 

Wb 1 0 0 448 1 3 0 0 453 1402 1 

Wl 41 0 0 1 155 62 22 0 281 1427 1 

CLs 79 33 0 1 17 1488 15 21 1654 12089 11 

FP 13 253 0 0 2 1 1125 1 1395 4991 4 

UrBu 68 12 0 0 1 55 1 418 555 3506 3 

Total 3837 1927 61 469 253 1825 1265 500 10137 112172 100 

UG: Unimproved Grassland; FITBs: Forest Indigenous Thicket Bushlands; BRS: Bare Rock and Soil 
Wb: Water bodies; Wl: Wetlands; CLs: Cultivated Land; FP: Forest Plantations; UrBu: Urban built-up 

Table 3-5 Summarised accuracy assessment of ENLC 2000 (T1) expressed as the estimated proportion of 

area 

Class UG FITBs BRS Wb Wl CLs FP UrBu Total UA PA Overall 

UG 58 4 1 0 1 3 1 1 70 83±1 97±1 84±1 

FITBs 1 8 0 0 - 0 0 - 9 90±2 60±2  

BRS 0 - - - - - - - 0 0±50 0±1  

Wb 0 - - 1 0 0 - - 1 99±1 83±4  

Wl 0 - - 0 1 0 0 - 1 55±6 34±6  

CLs 1 0 - 0 0 10 0 0 11 90±2 72±2  

FP 0 1 - - 0 0 4 0 4 81±2 70±3  

UrBu 0 0 - - 0 0 0 2 3 75±4 68±4  

Total 60 14 1 1 2 14 5 3 100    

UG: Unimproved Grassland; FITBs: Forest Indigenous Thicket Bushlands; BRS: Bare Rock and Soil 
Wb: Water bodies; Wl: Wetlands; CLs: Cultivated Land; FP: Forest Plantations; UrBu: Urban built-up 
UA: User’s Accuracy; PA: Producer’s Accuracy 
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Based on the sample counts (Table 3-4) and estimate of the population (Table 3-5), the OA of 

the T1 dataset (ENLC 2000) is 84% with a 95% confidence interval of 1% based on the 

calculated standard error. This is almost 20% more than the uncorrected NLC 2000 dataset (Van 

den Berg et al. 2008).  

A summary of the accuracy assessment performed on the DLC 2014 dataset, which was derived 

through classification of Landsat 8 imagery for time step T2, is presented in Table 3-6. 

Catchment level results are reported in Table A-2 of Appendix A. The descriptions for 

abbreviations used as column headings can be found in Table 3-1. The rows represent the map 

categories, while columns represent reference categories. The areas computed from the map 

categories, as well as the per cent of total area, are also shown in Table 3-6. Similar to Table 

3-5, Table 3-7 illustrates the accuracy of the T2 dataset based on Table 3-6 data expressed as 

the estimated proportion of area (the population) reported as the per cent, where a zero means 

a positive number less than one half and a dash means that no pixels were observed. 

Table 3-6 Summarised accuracy assessment of DLC 2014 (T2), based on sample counts 

Class UG FITBs BRS Wb Wl CLs FP UrBu Total 

Map Area 

ha % 

UG 3282 363 8 16 170 64 12 42 3957 75968 68 

FITBs 75 1475 0 1 1 9 37 0 1598 9861 9 

BRS 5 1 24 0 0 1 0 1 32 193 0 

Wb 4 2 0 173 6 0 0 0 185 1319 1 

Wl 26 6 0 17 121 0 2 0 172 538 1 

CLs 91 32 6 4 35 1577 0 25 1770 13089 12 

FP 15 2 0 0 0 0 541 3 561 4175 4 

UrBu 39 6 0 0 2 5 0 393 445 7030 6 

Total 3537 1887 38 211 335 1656 592 464 8720 112172 100 

UG: Unimproved Grassland; FITBs: Forest Indigenous Thicket Bushlands; BRS: Bare Rock and Soil 
Wb: Water bodies; Wl: Wetlands; CLs: Cultivated Land; FP: Forest Plantations; UrBu: Urban built-up 

Table 3-7 Summarised accuracy assessment of DLC 2014 (T2) expressed as the estimated proportion of area 

Class UG FITBs BRS Wb Wl CLs FP UrBu Total UA PA Overall 

UG 56 6 0 0 3 1 0 1 68 83±1 97±1 85±1 

FITBs 0 8 - 0 0 0 0 - 9 92±1 55±2  

BRS 0 0 0 - - 0 - 0 0 75±17 42±17  

Wb 0 0 - 1 0 - - - 1 94±4 76±6  

Wl 0 0 - 0 0 - 0 - 0 70±7 10±3  

CLs 1 0 0 0 0 10 - 0 12 89±2 90±2  

FP 0 0 - - - - 4 0 4 96±2 90±3  

UrBu 1 0 - - 0 0 - 6 6 88±3 86±3  

Total 58 15 0 1 4 12 4 6 100   
 

UG: Unimproved Grassland; FITBs: Forest Indigenous Thicket Bushlands; BRS: Bare Rock and Soil 
Wb: Water bodies; Wl: Wetlands; CLs: Cultivated Land; FP: Forest Plantations; UrBu: Urban built-up 

Wetlands (Wl) were poorly predicted with a low PA (Section 2.3.2) of 36% based on sample 

counts, which means that more than 60% of the reference samples were omitted from the 

classification (error of omission). The PA calculated from the area proportion is as low as 

10% ± 3%, reflecting the uncertainty in the classification. Based on the reference data, the 
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stratified area for land cover class Wl can be calculated as 3981 ± 492 ha, more than seven-

times the mapped area. An error-adjusted estimate of the area covered by Wl (±95% confidence 

interval) confirms the need to adjust the map area obtained from pixel counting to account for 

the large omission error. FITBs and bare rock and soil (BRS) also showed low producer’s 

accuracies.  

The FITB class showed a UA (Section 2.3.2) of greater than 90%, but a PA of only 55% ± 2%. 

The OA based on reference point data, computed as correctly classified divided by the total, 

ranged between 83% (T35B) and almost 90% (S50E) (Table A-2 in Appendix A) using sample 

points (Table 3-6), but did not differ much when using the proportion of estimated area (Table 

3-7). The OA (Section 2.3.2) for T35B was 83% ± 1% and for S50E slightly lower at 87% ± 

1%. The OA for the study area was calculated as 85% ± 1% (Table 3-7). 

3.4.2 Land cover change: ENLC 2000 vs. DLC 2014 

A post-classification comparison of the overlaid land cover maps for 2000 (T1) and 2014 (T2) 

was made using a transition matrix (Section 2.4.2). Table 3-8 shows the transition from one 

land cover class to another as a per cent of the study area. Four values are reported per land 

cover change combination. The left entries in the cells represent D, assuming each input land 

cover map to be completely accurate; the upper right entries are the upper bound (U) where 

error exists in corresponding areas; the middle right entries (M) assume possible error in all 

pixels; and the lower right entries (L) assume no error in matching pixels. Descriptions of class 

labels can be found in Table 3-1. The rows represent the T1 (2000) land cover classes, while 

the T2 (2014) land cover classes are found in the columns. The diagonal entries (light grey in 

Table 3-8) indicate the persistence of land cover classes, while the off-diagonal entries indicate 

a change from one land cover class to a different class. The Total T1 column shows the land 

cover totals at 2000, and the Total T2 row shows the land cover totals at 2014 expressed as a 

per cent of the total study area. The column on the right (Loss T1) indicates loss by land cover 

class, and the row at the bottom (Gain T2) indicates gain by land cover class. The total change 

as a proportion of the total study area is given in the entry in the bottom row of column Loss 

T1. The columns UA and PA reflect the product of the user’s and producer’s accuracy for each 

individual land cover map (T1 and T2) providing a theoretical accuracy for the transition per 

class.  

Grassland (UG) still dominated the study area in 2014 with 68% of the total area being classified 

as such when measuring change without considering error (accuracy 84% × 85% = 71%). 

Although UG has the highest theoretical PA of 94%, the remaining UG could be as low as 58% 
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when considering possible error in all pixels (matrix M). Net losses were noted for UG and FP, 

with gains in UrBu. No change was calculated for Wb. For classes FITBs, BRS and CLs, the 

net gain or loss was dependent on the method for calculating land change (matrix D, M, U or 

L). CLs showed a net gain of 1% when no error is considered, but up to 2% loss when possible 

error in all pixels is considered (M). The low PA for CLs of 63% confirms large differences 

between map and ground conditions. In addition, the theoretical accuracy of the resulting land 

cover change maps, computed as the product of the overall accuracies of the individual land 

cover maps at T1 and T2 (Aldwaik & Pontius 2013; Fuller, Smith & Devereux 2003; Mas 

1999), ranged between a low 67% for T35B to 76% for T12A (Table A-3 in Appendix A). This 

leaves a hypothetical error in landscape transition of up to 30% based on error propagation from 

contributing land cover maps. The total change, computed from loss at T1 and gain at T2, varies 

between 18% and 42% calculated from the lower (L) and upper (U) bounds of change (lower 

right cell, Table 3-8) with 19% computed from the overlay of the T1 and T2 maps.  

Table 3-8 Transition matrix for the 2000 (T1)–2014 (T2) change  

Class 
2014 (T2) Total Loss 

UA PA 
UG FITBs BRS Wb Wl CLs FP UrBu T1 T1 

2
0
0
0
 (

T
1

) 

UG 

 42  8  0  0  2  4  1  4  61  19   

6
0 

42 3 7 0 0 0 0 0 2 2 3 1 1 3 3 70 60 9 17 69 94 

 61  2  0  0  0  2  1  2  69  8   

FITBs 

 7   4  0  0  0  0  1  0  13  9   

4 6 5 5 0 0 0 0 0 0 0 1 0 1 0 0 9 14 4 9 83 33 
 3   5  0  0  0  0  0  0  10  4   

BRS 

 1  0   0  0  0  0  0  0  1  1   

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 
 0  0   0  0  0  0  0  0  0  0   

Wb 

 0  0  0   1  0  0  0  0  1  0   

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 92 63 
 0  0  0   1  0  0  0  0  1  0   

Wl 

 2  0  0  0   0  0  0  0  2  2   

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 2 39 3 
 0  0  0  0   0  0  0  0  1  1   

CLs 

 4  1  0  0  0   7  0  1  13  6   

1 4 0 1 0 0 0 0 0 0 9 7 0 0 0 1 11 14 2 6 80 64 
 1  0  0  0  0   9  0  0  11  3   

FP 

 2  0  1  0  0  0   2  0  5  3   

1 2 1 1 0 0 0 0 0 0 0 0 3 2 0 0 4 5 2 3 78 63 
 1  1  0  0  0  0   3  0  4  2   

UrBu 

 1  0  0  0  0  0  0   2  3  2   

0 1 0 0 0 0 0 0 0 0 0 0 0 0 3 2 3 3 0 2 67 58 
 0  0  0  0  0  0  0   3  3  0   

Total T2 

 58  13  1  1  3  12  4  7       

6
8 

58 9 15 0 0 1 1 0 4 12 12 4 4 6 6       

 67  9  0  1  1  12  4  6       

Gain T2 

 17  9  1  0  3  5  2  5    42   

7 16 4 10 0 0 0 0 0 3 3 4 1 2 4 5   19 40   

 6  4  0  0  1  3  1  3    18   

Note: The left entries in the cells represent matrix D, the upper right entries matrix U, the middle right entries matrix M and 
the lower right entries matrix L. All entries express the per cent of the study area 

Assuming that map errors are independent, and changes are mapped correctly within the area 

of overlap, the accurately-mapped difference due to change (c), as well as those changes that 

are hidden, can be calculated (Fuller, Smith & Devereux 2003). Areas with no change 
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(persistence) can also be identified. Table 3-9 assesses the likely differences due to change and 

those due to error (Fuller, Smith & Devereux 2003). Where the land cover change map reflects 

the true situation (change or persistence), the cell text in Table 3-9 is shown in bold; true change 

hidden by errors is given in italic text; and the cells are shaded where the map records a 

difference (change or error). 

Table 3-9 A comparison of T1 and T2 to assess the differences due to change or error 

Proportional accuracy of T1 (2000)  a1 0.84     

Proportional accuracy of T2 (2014) a2 0.85     

Number of classes N 8     

Indicative proportion of change C      

Areas of change (c) 
c = 0.19 c = 0.40 

a2 1 − a2 Totals a2 1 − a2 Totals 

a1 0.14 0.02 0.16 0.29 0.04 0.33 

 
 0.00 0.00  0.01 0.01 

1 – a1 0.02 0.00 0.03 0.05 0.01 0.05 

 0.00 0.00 0.00 0.01 0.00 0.01 

Totals 0.16 0.03 0.19 0.34 0.06 0.40 

Areas with no change (1 − c) a2 1 − a2 Totals a2 1 − a2 Totals 

a1 0.58 0.10 0.68 0.43 0.08 0.50 

1 – a1 0.11 0.02 0.13 0.08 0.01 0.09 

 
 

0.00 0.00  0.00 0.00 

Totals 0.69 0.12 0.81 0.51 0.09 0.60 

 c = 0.19   c = 0.40 

Maps show different classes (sum of shaded cells) 41%   55% 

Maps show the same classes (sum of unshaded cells) 59%   45% 

Real change as a proportion of mapped difference 40%   54% 

Proportion of change which is correctly shown as such 96%   96% 

Note: Cell text in bold reflects true change or persistence; true change hidden by errors is given in italic text; and cells are 
shaded where the map records a difference (change or error). 

With the change of 19% calculated from Table 3-8 and the levels of accuracy estimated for T1 

(Table 3-5) and T2 (Table 3-7), there would only be a 59% agreement between the two land 

cover maps, and 41% of the combined map area would record differences. Of the 41% 

difference, ~18% would be real change, and ~23% would have arisen through errors. With a 

change of 40% (matrix M from Table 3-8), there would only be an agreement of 45% between 

the maps and 55% difference. Although there is substantial over-estimation of changed areas 

in both scenarios, 96% of all change could be mapped (Table 3-9). 

3.4.3 Land cover conversion dynamics 

Using the conceptual schema of land cover conversion labels (Table 3-2 and Table 3-3) in 

analysing the change matrix statistics, landscape transition between the two time periods was 

quantified. Transitions from and to land cover classes BRS and Wl were not characterised 

according to Table 3-3, but were added to land cover conversion label E (exceptionality) due 

to the low UA and PA for these two classes. Table 3-10 summarises the conversion dynamics 

Stellenbosch University https://scholar.sun.ac.za



63 

 

 

 

by area and per cent of catchment area to the nearest integer, where zero indicates a positive 

number less than one half, and a dash means no transitions were observed.  

Table 3-10 Land cover conversion (area and percentage) described using land cover labels 

Land cover label  
(Land cover change trajectory) 

Conversion between Time Step T1 and T2 (2000-2014) 

T35B T12A S50E Overall 

ha % ha % ha % ha % 

Pf: FITB persistence 683 2 1984 7 2746 6 5413 5 

If: FITB intensification 916 2 1466 5 2066 5 4448 4 

Re: Reclamation 2394 6 652 2 1275 3 4321 4 

Pu: Urban persistence 28 0 1133 4 1892 4 3054 3 

Iu: Urban intensification 49 0 1582 6 2343 5 3975 4 

P: Persistence 31488 80 19364 70 30843 69 81694 73 

Ia: Agricultural intensification 671 2 865 3 1869 4 3405 3 

R: Afforestation 1121 3 54 0 91 0 1265 1 

D: Deforestation 356 1 136 1 572 1 1064 1 

De: Degradation - - - - - - - - 

Dn: Natural dynamic 779 2 15 0 187 0 981 1 

A: Abandonment 533 1 555 2 720 2 1808 2 

E: Exceptionality 530 1 60 0 155 0 745 1 

Figure 3-4 provides the spatial distribution of these land cover conversions using the indicator-

based approach (land cover labels) to visualise change trajectories. 

 
Figure 3-4 Indicator-based approach for land cover conversion. 

Land use patterns in all three catchments are characterised by persistence (Figure 3-4 land cover 

labels P, Pu and Pf) with more than 70% of the total area showing no change. Conversions 

between classes represent small fragmented areas of less than six per cent within the 
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catchments. Intensification of woody vegetation, where class FITBs have substituted previous 

land cover, averaged at four per cent, while reclamation (Re) to grassland was four per cent 

over all three catchments. Transitions from plantation, labelled deforestation (D), covered one 

per cent of the study area extent, while afforestation (R) mostly affected T35B. Degradation 

(De) linked to conversion to bare soil was not represented due to the low accuracy of land cover 

class BRS. Exceptionality (E), indicating possible classification errors and land cover classes 

with high uncertainty (BRS and Wl), represented one per cent of land transformation. The 

highest exceptional trajectories were found in catchment T35B, caused by the high presence of 

Wl. 

3.5 DISCUSSION 

This study describes the challenges encountered while performing change analysis to determine 

landscape conversion dynamics between two time steps, represented by two datasets derived 

using different methods. The original input dataset proposed for Time Step 1 (T1) proved 

unsatisfactory based on OA and was subsequently improved using manual methods. The T1 

dataset was derived from a national level dataset frequently used for studies that require land 

cover as input, such as the quantification of runoff and infiltration for a particular land cover 

unit (Thomas 2015). Users often do not consider the low reported accuracy. As this dataset 

coincides with the availability of high temporal resolution MODIS data, it is frequently used as 

a starting point for area-based spatial analysis studies.  

The dataset for Time Step 2 (T2) is the output of the object-based classification of Landsat 8 

data. The OBIA approach was able to deal with the problem of the salt-and-pepper effect 

(Section 2.3.1), common in classification outcomes using traditional per-pixel approaches 

(Blaschke 2010). The rule-based expert system provided robust land cover classifications for a 

highly fragmented catchment landscape and precision in delineating boundaries of the various 

vegetation types despite the coarser Landsat 8 resolution (Blaschke 2010; Radoux & Defourny 

2007). The OA for this land cover dataset (T2) using single-date imagery was deemed 

acceptable based on the OA value of greater than 85% ± 1% (Table 3-7). Sufficient ground 

truth data are required for definite mapping of alien plants and other cover classes, such as 

wetlands.  

As land cover classification is fraught with uncertainty, it is important to accurately report on 

the uncertainty inherent in data created through spatial modelling (Olofsson et al. 2014; 

Olofsson et al. 2013), which starts with an effective sampling design of ground truth data 

(Olofsson et al. 2014). Estimates of OA, user’s accuracy and PA based on the population 
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(Pontius, Shusas & McEachern 2004) can be reported. A confidence interval can be computed, 

to describe the uncertainty of the sample-based estimates. In addition, the construction of a 

meaningful land cover legend through categorical aggregation in a manner that gives insights 

concerning categorical change over time (Aldwaik, Onsted & Pontius 2015) that can 

accommodate these wooded classes must be investigated. However, it must be noted that 

category aggregation may decrease the error in the individual land cover maps, as well as the 

difference between land cover maps at T1 and T2 (Pontius & Malizia 2004). 

In this study, land cover change detection was performed using a transition matrix to compare 

the categorical land cover maps from the two time steps. The method (D) assumes that the 

probability of error in the two independently classified maps (T1 and T2) is randomly 

distributed, which is unlikely, as error is affected by autocorrelation (Pontius & Lippitt 2006). 

Upper (U), middle (M) and lower bounds of land cover change were also reported. Method U 

assumes that error only exists where land cover maps match; therefore, more error is associated 

with higher estimated change, up to 42% in this study area. Simulated errors cause a shift of 

values from the diagonal to the off-diagonal entries of the transition matrix (Pontius & Li 2010). 

In contrast, method L considers that error exists only in areas of change, therefore more error 

with less estimated change (Pontius & Li 2010). As some classes are easier to classify than 

others, and such regions are frequently clustered (Congalton 2001); the error may exhibit spatial 

autocorrelation. This would cause large homogenous classes, such as UG, to exhibit small errors 

compared to fragmented small classes, such as woody outcrops with many edges around small 

patches. This is clear from the high PA for the UG class (Table 3-5 and Table 3-7) and low PA 

for FITBs. Error may also be temporally autocorrelated, such as classes on flat slopes that 

persist over time, which may be easier to classify (Pontius & Lippitt 2006). Future studies 

should therefore consider investigating the spatial and temporal correlation of error within the 

input land cover maps prior to land cover change analysis, to reduce error propagation 

(Burnicki, Brown & Goovaerts 2007). The accuracy for the land cover change map was derived 

from the overall accuracies of the individual land cover maps (84% and 85%, respectively) 

resulting in a low OA of 71% for the change map. From Figure 3-3, the level of change that can 

be recorded with 75% reliability on maps with 2, 3, 10 and 30 classes with a particular accuracy 

can be determined (Fuller, Smith & Devereux 2003). For instance, to map a change of 19% 

(Table 3-8), input land cover maps would need to be about 96% accurate, assuming 75% 

reliability. Should greater reliability be required, map accuracies need to approximate 99% 

(Kiruki et al. 2017), a near-impossible operational requirement. Theoretical accuracy of greater 

than 70% was achieved for the land cover change maps for the southern catchments (T12A and 
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S50E) with T35B showing greater uncertainty at 67%. Individual classes BRS and Wl displayed 

low producer’s accuracies, which caused conversion trajectories involving these classes to be 

flagged as exceptionality and excluded from the trajectory analysis.  

This study used a framework for change analysis (Benini et al. 2010; Feranec et al. 2010; Mas 

1999) based on change trajectories derived from land cover labels (Table 3-3) categorising 

combinations of land cover change into seven main flows or trajectories. When this framework 

was applied to the land cover change maps, the persistence of land cover classes (>70% from 

Table 3-10) was noted with grassland remaining the majority cover in the three catchments. 

Both urban persistence (Pu) and FITB persistence (Pf) are clearly visible in catchments T12A 

and S50E (Figure 3-4) with the expansion of urban areas (Iu, urban intensification) in these two 

southern catchments predominantly at the expense of grassland (UG) and agriculture (CLs), 

demonstrating the natural development of urban areas. Urban intensification is also highest in 

these catchments where subsistence farming is practised. This apparent intensification may 

possibly be attributed to the T1 dataset classification strategy that identified formal townships 

but failed to delineate traditional villages practising subsistence farming, as encountered in 

these areas. Accordingly, agricultural activities intensified (Ia) by four per cent in S50E, 

attributed to conversion from grassland (UG) when no error is considered, but up to 2% loss 

when possible error in all pixels is considered (M), associated with low user’s and producer’s 

accuracies for CLs in land cover classification.  

Considering that the class FITBs contains indigenous forest, thicket, bushland, bush clumps, 

high fynbos and alien plants that are spectrally similar and could not be separated using Landsat 

imagery, it is not surprising that T12A, with persistent remnants of indigenous forest, has the 

highest percentage of the class FITB persistence (Pf). The high persistence of FITBs (Pf) in 

S50E is likely attributed to the presence of Pinus spp. (Mucina & Rutherford 2006) on the 

southwest of the catchment. Interestingly, despite T12A being a focus area for WfW with the 

aim of eradicating alien trees, there is still a prominent presence of such vegetation. In both the 

T1 and T2 datasets, the low PA for FITBs highlights the uncertainty associated with this 

transition. In order to provide a better distinction between different wooded classes, higher 

spatial resolution data need to be considered to distinguish between spectrally homogenous 

vegetation types (Wang, Liu & Huete 2002). 

Since scientists want to identify the dominant signals of land change, the varying dynamics 

between the three catchments must be noted. Accounting for approximately four per cent of the 

study extent, agricultural intensification (Ia) and afforestation (R) can be regarded as an increase 

in the productivity of the landscape, with land use intensification associated with a productivity-
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driven landscape. Conversely, the persistence and intensification of FITBs (Pf + If) may be 

regarded as a degradation gradient existing in the landscape, when IAPs included in the FITBs 

class affect biodiversity and ecosystem services. T12A and S50E have similar trajectories of 

this degradation gradients (Pf + If), which may reflect real change or be an artefact of the 

classification and land cover change detection. After persistence, this is the strongest 

conversion trajectory within these two catchments. It can be postulated that the FITB 

persistence and intensification noticeable in T12A and S50E may be attributed to IAPs, known 

to affect grassland veld types (Carbutt et al. 2011). 

The context of reclamation (Re) in this study designates the potential extent of anthropogenic 

rehabilitation, where areas classified as FITBs (invaded by IAPs and other woody vegetation) 

have been replaced with grassland and bare rocks. Despite reported WfW activity, reclamation 

(Re) in T12A and S50E was less than three percent. In T35B, six per cent of FITBs have been 

returned to grassland, an area of almost 2400 ha. This, however, may be an artefact associated 

with the low accuracy of the land cover change map for T35B (Table A-3 in Appendix A). 

Spatial analyses of the locational factors, which may be driving the land cover change 

trajectories (Ariti, Van Vliet & Verburg 2015; Kiruki et al. 2017; MacFadyen et al. 2016), are 

envisaged for future research. 

3.6 CONCLUSIONS  

This study described the use of independent land cover maps for change analysis in a grassland-

dominated landscape for three catchments in the Eastern Cape of South Africa. Land cover 

maps were derived from an existing national land cover dataset data (2000-T1) and through 

OBIA (2014-T2) of Landsat 8 imagery. A revised land cover legend comprising eight classes 

was developed by aggregating detailed classes under a number of conceptually broader classes 

to create a common land cover scheme for comparing compatible classes between land cover 

datasets T1 and T2.  

The land cover change analysis has revealed an increase of agricultural intensification, 

urbanisation and infrastructural development across the three catchments over the 15-year 

period. Land cover class FITBs in the guise of natural vegetation or alien plants have persisted 

and intensified chiefly at the periphery of river channels, as well as around agricultural areas 

and human inhabited regions. While some land cover classes, such as grassland and water 

bodies, have maintained approximate states of persistence, land degradation resulting from land 

use intensification and FITBs (possibly IAPs) infestations has been identified.  
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Landscape units associated with clearly identified persistent or degradation trajectories can be 

used in future studies to characterise water use and carbon fluxes for sustained landscape health 

from remote sensing products allowing models of ecosystem stress to be developed. The 

persistence and intensification of natural or invaded wooded areas were identified as such a 

degradation gradient within the landscape. The challenge remains to determine significant 

signals in the landscape that are not artefacts of the underlying input data, different 

classification schemes and aggregation methods, the experience of operators or the scale of 

analysis. Through systematic analysis of changes and accurate reporting of uncertainty, this can 

be addressed to produce output that authentically reflects the landscape dynamics in order to 

accurately quantify the effect of landscape transitions on the ecosystem services in the 

catchments.  

3.7 SPATIAL PATTERNS OF ERROR 

The land cover change analysis described in this chapter was performed on land cover maps 

derived specifically for this study. This means that relatively good accuracy assessment data 

was available and accurate reporting could be done on the inherent uncertainty associated with 

land cover classification. This study highlighted the effect of poor accuracy results on the 

reliability of land cover change results, stressing the importance of high accuracies for 

operational purposes. In the next chapter (Chapter 4), further systematic analysis of changes 

and potential map error are explored in the quest to produce output that authentically reflects 

landscape dynamics. Landscape units associated with clearly identified persistent trajectories 

can then be used in future studies (Chapter 6) to characterise water use and model future 

scenarios (Chapter 5) to demonstrate effect of land cover change on water use and carbon 

storage in the study areas. Chapter 4 describes the use of intensity analysis (Pontius et al. 2013; 

Pontius, Shusas & McEachern 2004) to identify non-uniform change (Aldwaik & Pontius 2012; 

Aldwaik & Pontius 2013), either faster or slower than expected. To complement these global 

change statistics, local geographically weighted measures are applied to report spatially explicit 

change statistics (Comber et al. 2017). 
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CHAPTER 4:  GLOBAL AND LOCAL PATTERNS  

OF LANDSCAPE CHANGE ACCURACY  

Processes of change can only effectively be identified after spatial land transition has been 

revealed and patterns of change quantified (Macleod & Congalton 1998). In Chapter 3, the 

effect that accuracy of existing land cover products has on land cover change analysis, was 

uncovered using an indicator-based approach. This chapter3 describes how the minimum 

hypothetical error in imperfect land cover maps can be revealed at landscape level using 

intensity analysis (Aldwaik & Pontius 2012; Pontius, Shusas & McEachern 2004) to measure 

landscape change.  

4.1 INTRODUCTION 

Land cover maps are increasingly used in research to study social and environmental processes, 

patterns and change (Estes et al. 2018). Most often image classification of satellite data is 

performed to produce land cover maps (Foody et al. 2013; Foody 2008) that are used in the 

subsequent analyses of change and causal process. Land cover change analysis provides 

evidence of the spatial dynamics and intensity of processes (Puertas, Brenning & Meza 2013). 

Change detection outputs, however, are sensitive to misclassification and misregistration of 

imagery (Kinkeldey 2014; Pontius & Cheuk 2006). As evidenced by Tobler’s first law of 

geography (Tobler 1970), spatial autocorrelation lies at the heart of many landscape processes 

and land cover errors show a distinctive spatial distribution (Tsutsumida & Comber 2015). In 

addition, Foody (2008: 3137) laments that “image classification accuracy typically adopted in 

remote sensing may often be unfair, commonly being rather harsh and misleading”, while maps 

with relative low accuracy produced by other communities are often used unquestioningly.  

A common problem with land cover maps is that even though accuracy is reported, some error 

and uncertainty, of unknown size and location, remains (Enaruvbe & Pontius 2015; Estes et al. 

2018). Despite land cover data being such a crucial reference dataset (Foody et al. 2013), 

informing a wide variety of activities Olofsson et al. (2013, 2014) reported that the practice of 

providing accuracy assessment and uncertainty accounting has not consistently been adopted 

in the remote sensing community. Typically, insufficient description is provided of sampling 

strategies or how accuracy assessment was conducted (Olofsson et al. 2014; Stehman 2014). In 

addition, the information provided in the confusion matrix, generally used for accuracy 

reporting in remote sensing land cover classification, is a global statistic without spatial context 

                                                 
3 Submitted to ISPRS Journal of Photogrammetry and Remote Sensing 
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(Foody 2005; McGwire & Fisher 2001). This global overall summary simplifies complex data 

for decision makers (Comber et al. 2017) but gives no indication of the spatial distribution of 

change or error (Comber 2013; Foody 2005; Steele et al. 1998) masking local variations thereby 

possibly limiting the understanding of the spatial process and statistical relationships under 

investigation (Comber et al. 2017). 

Aldwaik & Pontius (2012) introduced the ‘intensity analysis’ framework to analyse land change 

in maps over several points in time. The framework compares land cover change intensity with 

uniform or random change (Section 2.4.3), characterising change as persistence, gain or loss 

(Aldwaik & Pontius 2012). Intensity analysis has been applied widely in investigations to 

improve the understanding of observed land change (Akinyemi & Pontius 2016; Jewitt et al. 

2015; Pontius et al. 2013; Zhou et al. 2014). The effect of hypothetical map error in explaining 

deviations from uniform land change (Aldwaik & Pontius 2013; Enaruvbe & Pontius 2015; 

Teixeira, Marques & Pontius 2016), especially faced with unknown map error as in maps for 

historical time points can be studied. Even when highly accurate classified datasets with 

reported accuracy are used, about half of the observed change could be explained by error 

(Pontius & Lippitt 2006; Chapter 3). Inconsistent results may thus provide insight into the 

processes that created the land cover change pattern (Pontius & Li 2010). A change budget 

(Section 2.4.4) can be constructed by partitioning the overall difference between two land cover 

maps into quantity and allocation differences (Pontius & Millones 2011). Although spatio-

temporal results can be obtained by partitioning the study area domain (Quan et al. 2018), the 

reported change is not spatially explicit (Comber et al. 2017). 

Various authors have explored spatial characteristics of classification accuracy, such as 

modelling spatial maps of error using kriging interpolation (Steele et al. 1998) and Monte Carlo 

approaches (McGwire & Fisher 2001). Foody (2005) demonstrated the potential of calculating 

geographically distributed correspondence matrices and interpolated between them to generate 

surfaces of error. Comber et al. (2012) focussed on using geographically weighted regression 

to create local correspondence matrices for variations in the accuracy of both (crisp) Boolean 

and (soft) fuzzy land cover classes and applied geographically weighted logistic regression to 

the confusion matrix (Comber 2013) to also address spatio-temporal accuracy for time series 

land cover data (Tsutsumida & Comber 2015). In describing the use of geographically weighted 

correspondence matrices as a generic spatially explicit approach, Comber et al. (2017:242) 

lament the lack of research into local statistical models of land cover, which would 

“accommodate the spatial autocorrelation found in remotely sensed data and analyses of many 

landscape processes”. 
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In the semi-arid grasslands of South Africa, land cover change, manifested as degradation or 

transformation, has important consequences for natural resources, significantly affecting 

ecosystem processes and services (Egoh et al. 2011; Reyers et al. 2009). Conversion of 

grassland to woody vegetation results in increased leaf area and rooting depth and consequently 

higher actual evapotranspiration, thereby reducing water yield (Zhang, Dawes & Walker 2001). 

In addition, consistent with global trends, grasslands have displayed an increasing trend in 

actual evapotranspiration and reduction in water use efficiency (Gang et al. 2016; Gwate et al. 

2018). Even with land cover maps providing a simple approach to derive information on 

ecosystem services (Burkhard et al. 2013; Egoh et al. 2012; Kandziora, Burkhard & Müller 

2013; Maes et al. 2012), a combination of other factors, including land management and global 

forces related to warming, may be at work. The availability of the medium resolution Landsat 

series archive provides a temporal record of more than 40 years of space-based surface 

observations (Roy et al. 2014) offering scientists the opportunity to document and compare land 

cover. However, it is difficult to obtain accurate ground information to validate land cover maps 

produced from historical data (Enaruvbe & Pontius 2015). 

Chapter 3 described a recent land cover change study in the Eastern Cape of South Africa. In 

this study (Chapter 3) independently created land cover maps for 2000 and 2014 revealed a 

theoretical accuracy for the resulting land cover change maps of just over 70%, with a 

hypothetical error in landscape transition of up to 30% based on error propagation from the 

contributing land cover maps. Land use patterns were characterised by persistence with more 

than 70% of the total area showing no change. Despite the relatively high accuracies for the 

independently mapped land cover maps, 37% of the combined map area recorded differences 

with ~19% real change and ~19% arising from error (Chapter 3). Despite substantial over-

estimation of changed areas, 96% of all change could be mapped (Fuller, Smith & Devereux 

2003). However, map error was evident as the total change, computed from loss at T1 and gain 

at T2, varied between 18% and 42% with only 19% computed from the direct overlay of the T1 

and T2 maps, which assumes the unlikely probability that map error (in T1 and T2) is randomly 

distributed. Although overall land cover change between 2000 and 2014 was quantified and 

described in Chapter 3, only global statistics were presented, and the spatial distribution of 

errors was not determined.  

The aim of this chapter is to describe how map error would influence measurement of land 

cover change, as derived from imperfect input data; and how that could affect modelling of 

landscape processes. In particular, this chapter will focus on the spatial distribution of map 

error. Using the transition matrix, the change budget (Section 2.4.4) and change intensity 

Stellenbosch University https://scholar.sun.ac.za



72 

 

 

 

(Section 2.4.5), are extracted at various spatial scales and global scale statistics are reported. 

Geographically weighted correspondence matrices (Section 2.3.2) are developed (Brunsdon, 

Charlton & Harris 2016; Comber et al. 2017; Pontius & Santacruz 2015) to capture local, 

spatially explicit statistics. Spatially distributed estimates of change are explored to support 

interpretation of results from maps that have known error of which the size and location are 

unknown. 

4.2 MATERIALS AND METHODS 

4.2.1 Study area and data 

The illustrative case study area selected is quaternary catchment S50E (448 km2) in the Eastern 

Cape, South Africa, located around 27°35′E 31°45′S (Figure 4-1). A single Landsat scene 

covers the catchment, minimising potential error from image pre-processing, such as 

atmospheric correction and pan sharpening. S50E is administered under a dual land tenure 

system where land allocation is jointly managed by traditional leadership and the municipal 

system. Mixed farming is practised, and the catchment is under pressure from land cover change 

affecting ecosystem services of carbon sequestration and water production. Invasive alien 

plants (IAPs) represent a known threat in this catchment. Despite an active clearing programme, 

a density of between five and 25% has been recorded (Kotzé et al. 2010).  

Land cover maps independently derived from Landsat at three time steps (1990, 2000 and 2014) 

were used. A revised land cover legend (Table 4-1) with eight classes was developed (Chapter 

3) by combining detailed classes to enable comparison of the three land cover maps.  

Table 4-1 Land cover legend with eight aggregated classes 

Conceptual class* Classes included Aggregated class Abbreviation 

Natural and semi-natural 
terrestrial primarily vegetated 
areas 

Unimproved Grassland;  Degraded 
Grassland; Shrubland and Low Fynbos 

Grassland 
 

UG 
 

Indigenous Forest; Thicket, Bushland, Bush 
Clumps, High Fynbos; Dense bush; 
Woodland/Open bush 

Forest indigenous 
 
 

FITBs 
 
 

Natural, terrestrial non-vegetated 
bare areas 

Bare Rock and Soil; Mines and Quarries  
 

Bare Rock and Soil 
 

BRS 
 

Cultivated and managed 
terrestrial primarily vegetated 
areas 

Cultivated, permanent, commercial, 
irrigated; temporary, commercial, dryland; 
temporary, subsistence, dryland 

Forest Plantations; Woodlots 

Cultivated 
 
 
Forest Plantations 

CLs 
 
 

FP 

 
Artificial, terrestrial primarily non-
vegetated areas 

 
Urban / Built-up (residential, formal 
township) 

 
Urban / Built-up  
 

 

UrBu 
 

Natural or artificial primarily non-
vegetated aquatic or regularly 
flooded water bodies 

Waterbodies Waterbodies Wb 

Natural and semi-natural aquatic 
or regularly flooded vegetated 
areas 

Wetlands 
 
 

Wetlands 
 
 

Wl 
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Aggregation of classes generally increases accuracy (Strahler et al. 2006) by removing error 

caused by confusion of classes with similar spectral characteristics. The simplified land cover 

for the three time steps is shown in Figure 4-1. The dataset for 1990 (GeoTerraImage 2016) 

was created as a commercial venture following the success of the 2013-14 National Land cover 

map (NLC) (GeoTerraImage 2015). Due to absence of historical validation data, no accuracy 

assessment was performed. However, since the same mapping and modelling methodologies 

were applied as for the 2013-14 NLC (GeoTerraImage 2015),but using Landsat 5 instead of 

Landsat 8 data (GeoTerraImage 2016), the accuracy is reported to be similar at 82.53±0.6%. 

Thirty-three land cover classes were combined to match the aggregated eight-class legend 

(Table 4-1). The dataset for the year 2000 (Chapter 3) is based on the South African NLC 

dataset (Van den Berg et al. 2008) for the same year. After applying the revised legend (Table 

4-1), this dataset was systematically updated to increase the low reported overall accuracy of 

66% (Chapter 3) to 85.5±0.01%. 

 
Figure 4-1 Study area showing simplified land cover for 1990, 2000 and 2014 

The 2014 dataset was classified from Landsat 8 data using object-based image processing4 

(Chapter 3) using the same revised land cover legend comprising eight classes (Table 4-1) with 

an overall accuracy of 89.9±0.01%. Overall accuracy (Section 2.3.2) is the proportion of the 

spatial extent that has agreement between the map and the ground, combined over all categories 

(Teixeira, Marques & Pontius 2016).  

NDVI3g.v0, the third generation global inventory monitoring and modelling system (GIMMS) 

normalised difference vegetation index (NDVI) data from the National Oceanographic and 

                                                 
4 Image processing was carried out by PI Okoye (Okoye 2016) assisted by SE Muller (CGA). 
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Atmospheric Administration (NOAA) advanced very high resolution radiometer (AVHRR) 

sensor, has been used to map and monitor vegetation changes since 1981 (Pinzon & Tucker 

2014; Tucker et al. 2005). NDVI3g.v0 is compatible with moderate resolution imaging 

spectroradiometer (MODIS) NDVI (MOD13Q1) as the same dynamic range is used (Brown et 

al. 2006; Tucker et al. 2005). The GIMMS archive is considered the best dataset available for 

long-term NDVI trend analysis (Beck et al. 2011). For comparison, NDVI3g.v0 (8 km 

resolution), MOD13Q1 (250 m resolution) and NDVI derived from Landsat 5 TM, Landsat 7 

ETM and Landsat 8 OLI, available via Google Earth Engine (GEE), were extracted and 

aggregated to monthly time steps in the GEE code editor. A monthly time series for 1990-2014 

was constructed from which trend analysis (Section 2.6.2) was performed in package 

greenbrown (Forkel & Wutzler 2015) in R statistical software (R Core Team 2017). Trends 

were computed based on annual aggregated time series (method AAT) and on a season-trend 

model (method STM) (Section 2.6.2). Trend and breakpoint estimation in method STM 

explains the time series by a piecewise linear trend and a seasonal model in a regression 

relationship following the decomposition formulation used in BFAST (Verbesselt et al. 2010b; 

Verbesselt et al. 2011).  

4.2.2 Landscape level change analysis 

Land cover change maps T1 (1990-2000) and T2 (2000-2014) were constructed from the three 

land cover maps by overlaying pairs of these maps in ArcGIS software (ESRI 2016). Transition 

matrices were constructed to summarise the spatial intersection of all pixels for T1 and T2, 

serving as a record for land cover class changes (Section 2.3.2). The methods used in the 

subsequent catchment scale change analysis (Section 2.4.3) is overviewed in Figure 4-2. 

 
Figure 4-2 Flow diagram of methods applied in change analysis 
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Accuracy for the change maps at catchment scale was calculated as the product of the OAs of 

the individual contributing maps (Pontius & Li 2010; Pontius & Lippitt 2006) based on the 

reported accuracies. Losses and gains (area and class percentage) were derived from the row 

and column marginal totals and the diagonals of the transition matrix (Section 2.4.2). Total 

landscape change was computed as the difference between observed losses and gains.  

By analysing the off-diagonal entries of the confusion matrix, systematic transitions of land 

cover change were identified. Following the intensity analysis framework (Section 2.4.5), 

hypothetical omission and commission error intensities were calculated from the transition 

matrices for each time step (Aldwaik & Pontius 2012). The change budget (Section 2.4.4) was 

computed by deconstructing the total landscape change during each time interval into quantity, 

exchange and shift disagreement. Pontius (2019) showed how intensive exchange components 

could signal possible confusion of categories with each other. Intensity analysis was therefore 

also applied to change budget components quantity, exchange and shift (Pontius 2019). The 

intensity of each component was calculated per land cover class, after which the overall 

intensity of each component was computed. Component intensities not only facilitate 

comparison of each category with other categories but also with overall difference. 

A multi-resolution spatial aggregation procedure (Pontius & Cheuk 2006; Pontius 2002) was 

applied to each of the two land cover change datasets (T1 and T2) to determine the effect of 

geographic distance over which land change transitions occur on the change budget. Coarser 

grid cells that have partial (fuzzy) membership in each of the land cover classes were produced 

by aggregating a cluster of four neighbouring pixels. The membership in each class is the 

proportion of finer resolution cells of each class that constitute the coarser cell. As resolution 

becomes coarser, the specification of location becomes less precise. However, using a 

composite operator (Pontius & Cheuk 2006), the proportion of each land cover class remains 

constant in the landscape, thereby preventing aggregation bias. The differ package (Pontius & 

Santacruz 2015) was used to compute multi-resolution location (exchange and shift) and 

quantity disagreement in the land cover maps (T1 and T2) in eleven multiples of the finest 

resolution (Pontius 2002) ranging from 30 m to 29 km.  

4.2.3 Geographically weighted change budget 

Since the transition matrix-based approach only indicates the overall, or global, accuracy of the 

change maps, local measures of correspondence (Section 2.3.2) were computed from subsets 

of the full datasets in a geographically weighted change analysis approach. Local 

correspondence matrices were constructed at predefined locations (Comber et al. 2017) to 
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describe the spatial variation in the agreement between two datasets and generate spatially 

distributed measures of error. A sample of 5000 points were selected on a hexagonal lattice 

over the catchment using spsample (sp package) (Pebesma et al. 2018). A centric systematic 

grid (Milne 1959) was generated, which when clipped to catchment boundaries, yielded 4325 

locations. At each location, a subset of the data falling under a bi-square kernel were weighted 

by their distance to that particular location, to be used for construction of a local transition 

matrix using the gwxtab package (Brunsdon, Charlton & Harris 2016). The bi-square kernel 

uses a distance-decay weighting function (Equation 4-1), but gives null weights to observations 

at a distance greater than the set bandwidth (Gollini et al. 2015).  

𝑓(𝑑) = {(1 − (
𝑑

ℎ
)

2

)

2

0

if 𝑑 < ℎ;
otherwise.

  Equation 4-1 

 

where 𝑑 is the distance of the data point to the kernel centre; and 

 ℎ is the bandwidth. 

An adaptive bandwidth of the nearest 15% data points, as well as fixed bandwidths at 1 km,  

3 km and 5 km were explored (Comber et al. 2017), as bandwidth affects the degree of 

smoothing and the sensitivity of the analyses to the data distribution. Spatially distributed 

quantity and allocation (exchange and shift) disagreement values were calculated by integrating 

functionality from the gwxtab (Brunsdon, Charlton & Harris 2016) and diffeR (Pontius & 

Santacruz 2015) packages. Three locations, representing different change trajectories based on 

bandwidth, were selected to illustrate local geographically weighted transition cross tabulations 

and the effect of bandwidth. Location of points are illustrated in Figure 4-3. Shannon`s diversity 

index (SHDI) (Ortiz-Burgos 2016) was selected as an indicator of landscape patch diversity for 

comparison at local level, calculated using package vegan (Oksanen et al. 2018) in R using the 

following Equation 4-2: 

𝑆𝐻𝐷𝐼 = ∑(𝑝𝑖𝑙𝑛𝑝𝑖)

𝑚

𝑖=1

  Equation 4-2 

 

where 𝑝𝑖 is the proportion of the landscape occupied by land cover change 

type i; and 

 𝑚 is the number of land cover change types in the given landscape. 

All instances of persistence were counted as a single type. SHDI is sensitive to the diversity 

and heterogeneity of the landscape at T1 and T2. Higher values of SHDI indicate higher degree 

of fragmentation in the land cover change pattern and therefore higher spatial heterogeneity. 

The relationship between the SHDI and the change budget both at catchment and the selected 
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locations at local scale were analysed to verify the spatial variation in the change budget at local 

scale.  

4.3 RESULTS 

Figure 4-3 shows persistence of land cover (in grey) over the entire study period between 1990 

and 2014. Persistent classes in T2 (2000-2014) are shown in green. Areas with persistence in 

T1 (1990-2000) appear in orange while areas of change in both periods are indicated in red in 

Figure 4-3. For each period (T1 / T2), Figure 4-3 shows land cover change as loss of land cover 

at time step 1 (1990 / 2000) and gain of land cover at time step 2 (2000 / 2014). 

 
Figure 4-3 Land cover change partitioned into persistence, loss and gain 

Land cover classes that have remained the same are indicated in grey as persistence. 

4.3.1 Intensity analysis at landscape level 

Based on the product of the overall accuracies of the individual contributing land cover maps, 

land cover change accuracies varied between 70 and 72%, with accuracies for T1 (1990-2000) 

lower than for T2 (2000-2014). Figure 4-4 shows the sizes of observed changes and 

hypothetical commission and omission errors to the left and the intensity of the change 

compared to uniform on the right. 
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Figure 4-4 Intensity analysis at interval level 

Interval level change of approximately 20% of the study area domain was observed. Over the 

ten-year period of T1, this translates into an annual rate of change of ~ 2%, while during T2 (14 

years) an annual change of approximately 1.5% was exhibited. Land cover change during T1 

was categorised as fast (greater than uniform annual change of 1.73%). In contrast, during T2 

land cover change was categorised as slow, being less than uniform. Four per cent hypothetical 

commission error in T1 suggests that change was mapped while the uniform hypothesis implies 

persistence (Aldwaik & Pontius 2013). Conversely, for T2 the omission error indicates 

persistence while the uniform hypothesis implies change. Both the trend in the annual aggregate 

NDVI time series (AAT) and the seasonal trend (STM) at catchment scale was captured with 

NDVI3g.v0 for the entire study period (1990-2014) and with MOD13Q1 for T2 (2000-2014) 

in Figure 4-5. Slope (m) and significance (p) of trends are reported at the top of the graph for 

AAT and at the bottom of the graph for STM. 

 
Figure 4-5 Landsat NDVI time series at catchment scale 
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The AAT demonstrated a gradual and non-significant (m=-00035; p=0.62) decreasing trend 

(thick dashed black line). In period T1, AAT on NDVI3g.v0 showed an increase while T2 

showed a decrease, however, not significant in either period. The ordinary least squares (OLS)-

based moving sum (MOSUM) test on the NDVI3g.v0 time series detected two significant 

structural breaks (p=0.01) in T1 during 1993 and 1995, but none in T2. A significant downward 

trend was detected prior to the breakpoint in 1993 (Figure 4-5) with non-significant negative 

trends between and after the breakpoint. The MOD13Q1 time series (T2 only) indicated a 

significant structural break in 2004, significant downward trend prior to the breakpoint and non-

significant negative trend after the breakpoint. 

Over the entire period (1990-2014), the mean NDVI (NDVI3g.v0) remained constant with 

seasonal fluctuations, but no significant overall trend. MOD13Q1 values were consistently 

lower, but followed a similar trend, in agreement with findings that the GIMMS3g dataset 

shows statistically significant increases in vegetation productivity (Guay et al. 2014) compared 

to MODIS.  

Figure 4-6 provides a graphic summary of the category level change, namely per land cover 

class, for T1 and T2 computed from the transition matrix. Gross loss (T1 Loss 1990, T2 Loss 

2000) was calculated from the row difference, while gross gain (T1 Gain 2000, T2 Gain 2014) 

was computed from the column differences in the transition matrices.  

 
Figure 4-6 Loss and gain per land cover class 

Grassland (UG), the largest class by area, is involved in many of the transitions in the landscape 

and a nett loss was recorded for both T1 and T2 of respectively 6% and 5%. Especially 

prominent in Figure 4-6 is the gain in FITBs in T1 (7% gain in 2000) at the expense of UG. 

Large gains were also noted for CLs (2% in each period) and UrBu (5% in T2) as reported in 

Chapter 3, which focussed only on T2 (2000-2014). Persistence was measured in almost 80% 
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of the catchment area. Graphically (Figure 4-6), the results at category level indicate large losses 

of grassland, UrBu in T1, but gains in FITBs in T1, CLs in both periods and UrBu in T2, as 

also reported in Chapter 3.  

Detailed results from intensity analysis at category level are illustrated in Table 4-2. The 

observed size of gain and loss per land cover class (in per cent of study area) are presented per 

time step. Hypothetical error per class is shown as either omission or commission error.  

Table 4-2 Hypothetical error in input data contributing to error in land cover change 

  Gain T1 (1990-2000)  Loss T1 (1990-2000)  

  Observed 
Omission 

Error 
Commission 

Error 
Gain 

Intensity 
Observed 

Omission 
Error 

Commission 
Error 

Loss 
Intensity 

UG 6.0 8.7 0 1.0 11.8 2.9 0 1.8 

FITBs 7.7 0 7.2 8.0 0.6 0 0.1 2.3 

BRS 0 0 0 10.0 0.7 0 0.7 10 

Wb 0.4 0.3 0 1.2 0 0.7 0 0.1 

Wl 0.4 0 0.4 8.6 1.6 0 1.6 9.6 

CLs 4.5 0 1.3 2.7 2.2 0.9 0 1.6 

FP 1.2 0 0.3 2.6 1.9 0 1.1 3.7 

UrBu 0.8 0.2 0 1.8 2.2 0 1.2 3.7 

Total change 21.0    21.0    

Hypothesised 
Error 

9.2    4.5    

  
  

Gain T2 (2000-20141) Loss T2 (2000-20141) 

Observed 
Omission 

Error 
Commission 

Error 
Gain 

Intensity 
Observed 

Omission 
Error 

Commission 
Error 

Loss 
Intensity 

  

UG 6.1 7 0 0.8 10.7 2.4 0 1.2 

FITBs 4.5 0 2.9 3 3.6 0 2 2.6 

BRS 0.1 0 0.1 7.1 0 0 0 7 

Wb 0.1 0.6 0 0.2 0.2 0.5 0 0.5 

Wl 0.1 0 0.1 6.7 0.4 0 0.4 7.1 

CLs 4.2 0 0.6 1.6 2.3 1.3 0 1 

FP 0.2 0.2 0 0.8 2.9 0 2.5 4.6 

UrBu 5.2 0 4.1 3.9 0.3 0.8 0 0.5 

Total change 20.5    20.5    

Hypothesised 
Error 

7.8    5.0    

UG: Unimproved Grassland; FITBs: Forest Indigenous Thicket Bushlands; BRS: Bare Rock and Soil 

Wb: Water bodies; Wl: Wetlands; CLs: Cultivated Land; FP: Forest Plantations; UrBu: Urban built up 
 

Table 4-2 also shows the change intensity (as per cent of the class) for each class in each period. 

Categories more active than uniform are marked in bold. Note that the uniform intensity at 

category level for the study periods T1 and T2 were computed as 2.1% and 1.5% respectively. 

Hypothesised error from gains amounted to 9% for T1 and 8% for T2, whereas hypothesised 

error from losses was approximately 5% in each period.  
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Hypothesised error from gains amounted to 9% for T1 and 9% for T2, whereas hypothesised 

error from losses was approximately 5% in each period. Since hypothesised error of omission 

(Table 4-2) in one class will be counted as error of commission in another class, omission errors 

identified in some classes (such as UG, Wb and UrBu in T1) were balanced by commission 

errors in other classes (FITBs, BRS, Wl, CLs and FP). Overall UG, a large dormant class 

(Aldwaik & Pontius 2012) with loss and gain in both periods below the calculated hypothetical 

uniform change, showed the highest omission error. The flow matrix (Table 4-3) expresses the 

annual land change at transition level during each time interval, with initial time in the rows 

and end time in the columns. 

Table 4-3 Flow matrix in hectares per year (ha.a-1) where the upper number is T1 (1990-2000) and the lower 

number (in italics) is T2 (2000-2014).  

S50E  
End time 2000 /  2014 (columns) 1990 / 2000  

Loss UG FITBs BRS Wb Wl CLs FP UrBu 

Initial time 
UG 

 255T 0.8 12 13T 168 47 32 527d 

1990 / 2000 
(rows) 

 78A 3T 2 2T 113 2A 142T 342d 

 

FITBs 
20  - 0.1A 0.1A 0.4A 5T 0.3A 26a 

 

92T  0.2 0.5 0.1A 5A 5T 12 114a 
 

BRS 
22T 5T  3T - - 0.2A - 30a 

 

0.5 0A  - - 0A 0T 0.4T 1.0a 
 

Wb 
0.9A 0.5 -  - 0A 0.1 - 2d 

 

3.9A 0.5A -  - 3 - 0.1A 8d 
 

Wl 
44 7 0A 1.4  18T 0.2A 1 72a 

 

8 0.1A - -  6T - 0.2A 14a 
 

CLs 
89 4A - 0.1A 3T  0A 3A 100d 

 

48A 13 0.1 0.4A 0.1  0A 11 73d 
 

FP 
19A 67T 0 0.1A 0A 0.1A  0.6A 87a 

 

41 51T 0.8T - 0A 0.1A  0.4A 94a 
 

UrBu 
76T 7A 0.5T 0A 0.2A 13A 0.1A  96a 

  3A 0.4A 0.1 - - 8T 0.1A  11d 

2000 / 
2014 

Gain 
271d 345a 1.4a 16d 17a 200a 52a 37d 939 

196d 143a 4a 3d 2a 134a 7d 167a 656 

Note:  aActive at category level. dDormant at category level. T Targets at transition level. A Avoids at transition level. 
UG: Unimproved Grassland; FITBs: Forest Indigenous Thicket Bushlands; BRS: Bare Rock and Soil 
Wb: Water bodies; Wl: Wetlands; CLs: Cultivated Land; FP: Forest Plantations; UrBu: Urban built-up 

The flow matrix gives the annual area of each transition, annual losses and gains for each 

category, including annual overall change in hectares (Runfola & Pontius 2013). Where losses 

are greater than gains, the numbers in column ‘Loss’ underlined. Similarly, if gains are greater 

than losses, the numbers in row ‘Gain’ are underlined. At category level, for Loss and Gain, 

superscript a means active (greater than uniform) while superscript d means dormant (less than 

uniform). At transition level, systematic transitions (Aldwaik & Pontius 2013) are indicated in 

Table 4-3 where superscript T means the gaining category in the column targets the initial 
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category in the row while the losing category in the row targets the initial category in the 

column. Similarly, superscript A means the gaining category in the column avoids the initial 

category in the row, while the losing category in the row avoids the category in the column. 

The size of overall change slowed down to 656 ha.a-1 in T2, decreasing from 939 from ha.a-1 in 

T1, confirming T2 change as slower than uniform (Figure 4-4). The largest simultaneous annual 

transitions in size were pairs of transitions from UG to CLs at some locations and from CLs to 

UG at other locations, with UG avoiding CLs in T2. Systematically targeting transitions for 

both periods were found between FITBs and FP, also seen in Figure 4-3. Not only was high 

loss intensity noted for UrBu in T1 (Table 4-2), but Table 4-3 shows UrBu was systematically 

targeted by UG in T1. In contrast in T2, high gain intensity of UrBu was at the expense of UG 

(Table 4-3).  

4.3.2 Global change budget 

The global change budget, divided into quantity, exchange and shift disagreement expressed as 

a percentage of catchment size for both periods, is reported at interval level (Figure 4-7B) and 

category level for T1 (Figure 4-7A) and T2 (Figure 4-7C). The red minus (-) indicates a net loss 

per class while the green plus (+) shows net gain for the class in the particular interval. Quantity, 

exchange and shift intensities per class are shown at category level (Figure 4-7D, F) and interval 

level (Figure 4-7E). 

 
Figure 4-7 Global change budget size and intensity at interval level (B, E) and category level for T1 (A, D) 

and T2 (C, F) 
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Quantity difference, also referred to as Net change (Pontius & Millones 2011) from gain and 

loss, amounts to almost 10% for T1 and 8% for T2 (Figure 4-7B). Figure 4-7E interprets the 

quantity size as an intensity of 46% of total change for T1, specified by the Q line in Figure 

4-7D. Allocation (exchange + shift) from Urbu, FP, CLs and UG (Figure 4-7D) contribute to 

the change during T1. The intensity of quantity change is lower in T2 than in T1 at 38% (vertical 

line Q in Figure 4-7F), with UG, FITBs and CLs having less intensive quantity components 

relative to the quantity component overall. Allocation intensity (exchange plus shift) amounted 

to 54% for T1 and more than 60% for T2, in agreement with sensitivity analysis findings by 

Pontius & Lippitt (2006). 

4.3.3 Resolution and the global change budget 

The effect of increasing pixel resolution on the allocation disagreement (exchange plus shift) is 

shown in Figure 4-8 for T1. The horizontal axis depicts pixel resolution in geometric increments 

(1, 2, 4, 8…), while the vertical axis shows the percentage change. Table 4-4 summarises the 

data for the change budget at multiple resolutions. 

 
Figure 4-8 Effect of multiple resolution spatial aggregation on allocation error at catchment level 

In the aggregation routine based on the composite operator (Pontius & Cheuk 2006), the 

quantity change stays constant with resolution (Pontius 2002), in this case 9.7% for T1 and 

7.8% for T2 (Table 4-4). However, the allocation error (exchange + shift components) 

diminishes at coarser resolutions. At catchment resolution, only quantity plays a role in the 

overall change percentage. 
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Table 4-4 Change budget at multiple resolutions for T1 and T2 

 Resolution T1 (1990-2000) T2 (2000-2014) 

Multiples (m) Quantity Exchange Shift Overall Quantity Exchange Shift Overall 

1 30 9.7 8.4 2.9 21.0 7.8 9.6 3.1 20.5 

2 60 9.7 8.0 2.9 20.5 7.8 9.3 3.1 20.1 

4 120 9.7 7.1 2.8 19.6 7.8 8.4 3.0 19.2 

8 240 9.7 5.9 2.6 18.2 7.8 7.1 2.9 17.8 

16 480 9.7 4.4 2.4 16.5 7.8 5.5 2.8 16.1 

32 960 9.7 3.0 2.1 14.8 7.8 3.7 2.7 14.2 

64 1920 9.7 1.5 1.6 12.7 7.8 2.0 2.5 12.3 

128 3840 9.7 0.6 1.2 11.5 7.8 0.3 2.2 10.3 

256 7680 9.7 0.2 0.9 10.8 7.8 0.1 1.6 9.5 

512 15360 9.7 0.0 0.7 10.4 7.8 0.0 0.3 8.1 

974 29220 9.7 0.0 0.0 9.7 7.8 0.0 0.0 7.8 

At the finest resolution, error due to location accounts for 11% of the landscape in T1 but at a 

resolution of 1 km (960 m in Table 4-4) the error due to location accounts for only 5% of the 

landscape. Allocation error in T2 is higher than T1, with almost 13% error attributed to land 

cover classes that have changed position at the finest resolution in T2. 

4.3.4 Change budget at local scale 

The effect that the selected bandwidth may have on the outcome of the geographically weighted 

analysis is illustrated in Figure 4-9. Overall allocation difference (overallAllocD) computed at 

4325 locations within the specified bandwidth (adaptive, fixed 1, 3 and 5 km) is expressed as a 

normalised value between 0 and 1 representing the probability of the particular error occurring 

(Comber et al. 2017). Labelled points 1, 2 and 3 are superimposed on the bandwidth maps in 

Figure 4-9. 

 
Figure 4-9 Effect of bandwidth on local analysis 

Bandwidth affects the degree of smoothing (Gollini et al. 2015), but as yet, the gwxtab package 

does not include bandwidth optimisation. A fixed bandwidth of 5 km yields clusters that cannot 

easily be distinguished from each other, possibly not representative of processes in the 

landscape. In contrast many small local clusters are found with a bandwidth of 1 km. Figure 

4-10 maps the variation of overall comparative measures (quantity, exchange and shift) 

Stellenbosch University https://scholar.sun.ac.za



85 

 

 

 

computed from the geographically weighted transition matrices extracted for points 1, 2 and 3 

(Figure 4-9) using adaptive and fixed bandwidth (1, 3 and 5 km) values.  

 
Figure 4-10 Localised quantity, exchange and shift disagreement calculated at three selected points for two time 

steps and four different bandwidths. 

The local change budget at Points 1, 2 and 3 (Figure 4-10) identify clear spatial differences in 

how change has occurred in the catchment, both in terms of quantity and allocation. Persistence 

surrounds Point 2 (SHDI 0.5-0.9) where quantity error remains fairly constant for T1, and in 

T2 the allocation error only increases at the largest bandwidth. At this point (P2) the overall 

change is less than catchment average. Points 1 (SHDI 1.1-1.4) and 3 (SHDI 0.9-1.4) show 

much higher spatial heterogeneity with change higher than 35% within a fixed bandwidth of 

1km. Table 4-5 tabulates the SHDI corresponding to the change budget results in Figure 4-10.  

Table 4-5  Localised quantity, exchange and shift disagreement calculated at three selected points for two time 

steps and four different bandwidths, with Shannon index (SHDI) for overall catchment and fixed 

bandwidths 

Period Location S50E Point 1 Point 2 Point 3 

T1 

Bandwidth 
Adap- 
tive 

Adap- 
tive 

Fixed Adap- 
tive 

Fixed Adap- 
tive 

Fixed 

1 km 3 km 5km 1 km 3 km 5km 1 km 3 km 5km 

Quantity 9.7 17.1 12.3 16.2 17.0 5.8 2.9 5.3 6.5 12.4 21.1 17.4 11.7 

Exchange 8.4   9.8 14.3 12.4 10.4 8.5 1.6 7.5 8.5 11.4 14.6 12.4 11.2 

Shift 2.9  3.3   8.1   4.3   3.5 4.0 1.5 2.1 3.9   1.8   3.3   1.5   1.9 

SHDI 1.0    1.4   1.2   1.1  0.5 0.8 0.9    1.3   1.0   0.9 

T2 

Bandwidth 
Adap- 
tive 

Adap- 
tive 

Fixed Adap- 
tive 

Fixed Adap- 
tive 

Fixed 

1 km 3 km 5km 1 km 3 km 5km 1 km 3 km 5km 

Quantity 7.8   8.9 23.3 11.4   9.7 14.9 17.3 20.4 14.0   8.9 14.5 10.4   8.8 

Exchange 9.6 12.5   7.9 12.7 12.4   6.5   0.0   3.9   6.8 14.1 15.1 15.4 13.8 

Shift 3.1   6.5   6.6   7.4   6.7   1.0   0.0   1.1   1.0   1.3   4.2   2.2   1.2 

SHDI 1.0    1.4   1.1   1.1    0.8   0.9   0.9    1.4   1.1   0.9 

 

The SHDI and change budget (Figure 4-10, Table 4-5) confirm that Point 2 experienced less 

change than the entire catchment in T1, while Points 1 and 3 present change greater than 

catchment level. Exchange and shift disagreement at Point 2 occured at distances larger than 3 

Stellenbosch University https://scholar.sun.ac.za



86 

 

 

 

km. Spatially explicit overall comparative measures (quantity, exchange and shift) were 

extracted and are presented in Figure 4-11 for 1 km bandwidth. Figure B-1 in Appendix B 

shows the spatially explicit disagreement budget for the 3 km bandwidth.  

 
Figure 4-11 Spatial distribution of overall difference, quantity, exchange and shift difference computed at 1 km 

bandwidth 

The overall difference map shows hotspots of change and probable error within the study area. 

Of particular importance would be areas affected in both periods. The spatial distribution of the 

change budget elements (quantity, exchange and shift) per land cover class was computed for 

all bandwidths. Figure 4-12 shows each of the components for T1 at 1 km bandwidth in rows, 

while land cover classes (UG, FITBs, CLs, FP and UrBu) are represented in columns, 

expressing the probability of land cover change in graduated colours, white to black. Black 

represents the highest probability of change, while white represents the lowest probability. 

Period T2 is similarly illustrated in Figure 4-13. 

Spatial variation in quantity disagreement in Figure 4-12 can be related to loss and gain as 

illustrated in Figure 4-3. The exchange disagreement identified for UG and CLs in  

Figure 4-7A, D (~3%) can be identified in Figure 4-12 E: UG and E: CLs. In Figure 4-12, shift 

is most prominent in UG and, as the largest dormant class, is most likely involved in many 

transitions. Figure 4-7D indicates the highest shift difference intensity for FP in T1, which is 

also visible in Figure 4-12 S: FP. 
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Figure 4-12 Spatial distribution of quantity, exchange and shift difference per land cover class for T1 computed 

at 1 km bandwidth. 

 

 
Figure 4-13 Spatial distribution of quantity, exchange and shift difference per land cover class for T2 computed 

at 1 km bandwidth 
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4.4 DISCUSSION 

This study set out to describe the influence of map error on measurement of land cover change 

that could affect modelling of landscape processes; and explore techniques to find and describe 

the error. Following on from Chapter 3, the temporal setting for this study includes a land cover 

dataset from the near past (1990) that was retrospectively classified (GeoTerraImage 2016) but 

for which no suitable historical ground truth data was available. Reported accuracy (82.53%, 

Kappa 0.81) is based on the premise that the same mapping and modelling procedures and 

image formats were used as for a later dataset SA-land cover (GeoTerraImage 2015) for which 

field data was collected, and which performed well in terms of accuracy in comparison to other 

national scale land cover products (Estes et al. 2018). As overall accuracy for the 2000 dataset 

was improved from 67% (Van den Berg et al. 2008) to 84% (Chapter 3), the T1 land cover 

change output map could have a theoretical accuracy of 56-69% based on the product of the 

two input land cover maps (Aldwaik & Pontius 2013; Fuller, Smith & Devereux 2003; Mas 

1999). The accuracy of the T2 land cover map is reported as 72% (Chapter 3), but could be as 

low as 58% if a more detailed land cover classification system (LCCS) was employed. Pontius 

& Malizia (2004) noted that category aggregation may decrease the error in individual land 

cover maps as classes that are spectrally similar, would likely be aggregated. This in turn would 

also affect the land cover change maps by reducing error while increasing uncertainty. To this 

end Aldwaik, Onsted & Pontius (2015) suggested the use of behaviour based categorical 

aggregation to construct a meaningful LCCS.  

Intensities higher than the uniform value indicate that gains (or losses) are more intensive than 

the landscape in general. This is found within all classes except UG and Wb (Table 4-2). If the 

observed intensity for a particular class, for example FITBs in T2 (2000-2014), is greater than 

the hypothesised intensity of 1.5%, then change in the class is active and the observed change 

is the sum of uniform change and commission error. The commission error reflects the false 

positives, number of pixels allocated in a predicted class that do not belong to that class in 

reality. Similarly, if the observed intensity for a class, for instance UG in T1 (1990-2000), is 

less than the hypothesised intensity 2.1%, then the class is seen as dormant and the hypothesised 

change is the sum of observed change and omission error. An omission error is a measure of 

false negatives and occurs for example when grassland pixels are not classified as grassland but 

erroneously as another class. Despite displaying the highest change intensity (both gain and 

loss) in Table 4-2, land cover classes Wl and BRS cover a very small part of the catchments 

and presented low producer’s accuracies (Chapter 3). Both Wl and BRS are strongly affected 

by natural processes and climate and exhibit seasonal variation. Of concern to note is that in 
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1990, 2% of the study area comprised Wl (Figure 4-1). This may be an artefact from the image 

classification. The decline in wetlands due to agricultural intensification close to river courses 

over the 24-year study period, exacerbated by low rainfall, is cause for concern.  

The flow matrix (Table 4-3) expresses transition level annual land change and confirms T2 

change as slower than uniform (Figure 4-4). The size of overall change slowed down to 

656 ha.a-1, decreasing from 939 from ha.a-1 in T1. The largest simultaneous annual transitions 

in size were pairs of transitions from UG to CLs at some locations and from CLs to UG at other 

locations, with UG avoiding CLs in T2. Distinguishing between cropland (CLs) and 

surrounding land cover classes, in particular grassland and savanna, is an ongoing research 

question in agricultural remote sensing. Ozdogan & Woodcock (2006) showed that sensor 

resolution should be finer than average field size to accurately determine cropland area and 

location, especially in areas, such as S50E, where smallholder fields are smaller (Samberg et 

al. 2016). Residual trees in these rural farming communities cause classifiers to have difficulty 

with distinguishing grassland and savannas from the smallholder fields (Debats et al. 2016; 

Estes et al. 2016; Sweeney et al. 2015). Figure 4-12 (E: UG and E: CLs) shows the highest 

probable locations of these pairs of transitions derived from the geographically weighted 

transition matrix. Although local statistical models and spatially dependent methods better 

reflect the understanding of local spatial processes and relationships, they are difficult to 

construct (Comber et al. 2017), however the ability to reflect such statistics in maps make them 

potentially more widely usable. Global statistics, such as overall accuracy from the confusion 

matrix, are easy to understand, but are not spatially explicit. 

Systematically targeting transitions for both periods were found between FITBs and FP (Table 

4-3, Figure 4-3 and Figure 4-12). This is likely an indication of some classification error in the 

original land cover datasets, as the spectral signatures of plantation (FP) and indigenous forest 

(FITBs) are similar (Chapter 3). FITBs show higher than uniform gain and loss intensities for 

both periods (Table 4-2) ascribed to woody encroachment by alien or native vegetation 

(Nackley et al. 2017; Skowno et al. 2017) as a consequence of elevated atmospheric CO2 

(Hobbs 2016; Skowno et al. 2017) on the one hand, and clearing on the other. The affected area 

in both catchments is between 5-7% of the catchment area. Not only was high loss intensity 

noted for UrBu in T1 (Table 4-2), but Table 4-3 shows UrBu systematically targeted by UG in 

T1. In contrast in T2, high gain intensity of UrBu was at the expense of UG (Table 4-3). This 

is a clear case of error in the 2000 map as loss of UrBu in T1 in Figure 4-3 is clearly matched 

with gain in UrBu in T2 (in the centre of the map). Though not as clear as for the previous 

examples, local exchange disagreement for urban in Figure 4-12 shows high probabilities 
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distributed over the map. In this setting, rural villages are easily confused with cropland or 

rangeland due to widely spaced dwellings interspersed with bare soil and occasional trees. It is 

likely that the occurrence of mixed pixels introduced error in the land cover classification 

(Ozdogan & Woodcock 2006). 

At the finest pixel resolution (30 m), error due to allocation accounts for 11% of the study area 

in T1, but at a resolution of 1 km this error accounts for only 5% of the study area (Figure 4-8). 

Allocation error in T2 is higher than T1, with almost 13% error attributed to land cover classes 

that have changed position at the finest resolution in T2. The aggregation routine, based on a 

composite operator, causes quantity to stay constant (Pontius & Cheuk 2006), while allocation 

diminishes. In this scenario, half of the location errors occur over distances less than 1 km. If 

woody encroachment occurs in one cell and clearing occurs in the neighbouring cell, then the 

pair of cells constitutes a swap in the FITBs category. At a slightly coarser resolution, the 

invaded cell and the cleared cell are aggregated into the same coarse cell, causing the swap to 

disappear, resulting in diminished swap at coarser resolutions. At the coarsest resolution 

(29 km) only quantity plays a role and the increase in agreement is equal to the allocation error. 

When using coarse resolution satellite imagery to extract biophysical parameters to measure 

changes in NDVI, ET or NPP, along with land cover change maps derived from medium to 

high resolution satellite imagery, quantity disagreement should thus be considered as the overall 

change in the landscape. 

The potential of using geographically weighted local measures of change reporting was 

explored in this chapter to complement the global statistics derived from the transition matrix. 

Local statistics not only support the identification of potential map error, but provides a spatially 

explicit manner to dynamically visualise accuracy and to characterise error in maps and models. 

Spatial distribution of overall allocation difference (Figure 4-11) over time can help to identify 

hotspots of change. However, the geographically weighted methods are sensitive to bandwidth 

selection (Gollini et al. 2015) and finding the optimal degree of smoothing has not yet been 

implemented into gwxtab (Brunsdon, Charlton & Harris 2016). The implementation is currently 

available as an R package and runs prohibitively long on the Windows platform. However, the 

geographically weighted framework based on correspondence tables supports understanding of 

spatial processes and statistical relationships (Comber et al. 2017). 

4.5 CONCLUSION 

This chapter described how map error could be determined and reported, both at global scale 

(from the transition matrix) and at local scale (by constructing a geographically weighted 
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transition matrix). Processing was done on imperfect input data with known error of which the 

size and location was unknown. Using the intensity analysis framework and local 

correspondence matrices, spatially explicit probabilities of error could be constructed. It was 

found that at coarser resolutions, quantity disagreement would provide the total change in the 

landscape as allocation disagreement disappears with composite aggregation.  

Concluding with the sentiment of Foody (2008) – that image classification accuracy is often 

viewed negatively, and simplistically – a greater awareness of the problems encountered in 

accuracy assessment and potential of spatially explicit accuracy assessment may reduce unfair 

criticism of thematic maps derived from remote sensing. Spatially explicit approaches such as 

the geographically weighted correspondence matrices can accommodate the spatial 

autocorrelation found in remotely sensed data and address the spatial non-stationarity of 

processing within such data for improved modelling of landscape processes. 

The next chapter focuses on land change modelling to derive a land cover dataset for a point in 

the future from landscape units associated with clearly identified persistent trajectories of 

change which will then be used in Chapter 6 to characterise the relationship between 

biophysical parameters and land cover change. In Chapter 5 intensity analysis and the change 

budget will again be explored as tools to validate a dataset for which there is no field data. 
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CHAPTER 5:  ACCURACY OF MODELLED FUTURE LAND COVER 

In Chapter 3, land cover change from 2000 to 2014 was analysed for the study area, while 

Chapter 4 investigated spatially explicit measures of patterns of landscape change over a larger 

time horizon, by considering 1990 through to 2014 to establish trends in land cover change. 

Five primary drivers of landscape modification were identified, comprising rangeland 

degradation, woody encroachment, urbanisation, increased dryland cultivation and commercial 

afforestation. Bearing a similar period in mind, future land cover scenarios for catchments S50E 

and T35B are explored in this chapter. Since the two catchments under investigation are 

examples of different management practices, a comparison of potential future land cover can 

guide land management decision making. S50E hosts mixed farming practices of livestock 

grazing and crop cultivation, with land allocation managed collaboratively by traditional 

leaders and the municipal system. The label “dualistic or bilateral landholding arrangement” 

was agreed upon by stakeholders to describe the complexity around this land management 

system. Conversely, in T35B the land tenure is predominantly freehold, representative of a 

commercial farming system. 

This chapter5 focuses on Objective 3 (Figure 1-1) in describing quantitative techniques used in 

accuracy assessment of the modelled future land cover, of intensity analysis and in particular 

the disagreement budget (Pontius & Santacruz 2014), in order to describe and interpret patterns 

of land change to inform management. Land use land cover change modelling (subsequently 

referred to as land change modelling) entails the simulation of the behaviour of the 

environmental and social systems in an area over a time period in such a way that it relates to 

the measured land change (Paegelow et al. 2013). The chapter will provide a brief overview of 

the land change modelling performed before describing the validation of the future scenario, 

used for modelling biophysical variables in Chapter 6.   

5.1 LAND CHANGE MODELLING 

Land change models (Section 2.5) generally address change demand, transition potential and 

change allocation (Eastman, Van Fossen & Solorzano 2005). Most land change models follow 

a data-driven inductive approach, attempting to draw correlations between the multitudes of 

explanatory factors involved using statistical inferences (Overmars, de Groot & Huigen 2007). 

                                                 
5 Components of this chapter have been published as a scientific article (citation below). The chapter contains excerpts from the 
manuscript but has been adapted extensively and was reformatted to match the guidelines of Stellenbosch University, Department 
of Geography & Environmental Studies.   
 
Gibson LA, Műnch Z, Palmer AR & Mantel S 2018. Future land cover change scenarios in South African grasslands - implications 
of altered biophysical drivers on land management Heliyon 4:e00693. 
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Simulation of land cover change can be carried out using a prospective approach based only 

upon past trends or by introducing alternative future scenarios (Paegelow & Camacho 2008). 

Deductive models would allow the inclusion of relevant driving factors assumed to have causal 

influence on land cover change, such as political change or climatic disasters. Both change 

demand and change allocation rely on a transition potential model. According to Veldkamp & 

Lambin (2001), an inductive pattern-based top-down approach can be used to build on spatial 

distribution of past land cover change to develop a mathematical model to estimate change 

potential along with spatial explanatory variables, the so-called drivers of change (Kolb, Mas 

& Galicia 2013) often embedded in GIS (Castella & Verburg 2007).  

Transition potential maps can be created based on probabilities of transitions or on suitability 

of land cover to be occupied (Eastman, Van Fossen & Solorzano 2005), describing the degree 

to which locations might potentially change in time. Various approaches have been suggested 

to produce transition potential maps. These include weights of evidence (WoE), a modified 

form of Bayesian analysis (Bonham-Carter 1994) to represent the probabilities of dominant 

change processes; logistic regression modelling (RM) that shows the suitability regarding the 

different land cover classes; or back-propagation neural network models as implemented in 

IDRISI’s multi-layer perceptron (Eastman, Van Fossen & Solorzano 2005; Kolb, Mas & 

Galicia 2013). 

Change demand models estimate the rate of change between each pairwise combination of land 

cover types, summarising the results in a transition probability matrix. Empirical or theoretical 

approaches have been used (Eastman, Van Fossen & Solorzano 2005). Through cross tabulation 

of land cover, Markov chain analysis develops a transition probability matrix of land cover 

change between two different dates and provides a probability estimate for each pixel to either 

be transformed to another land cover or to persist and be calibrated to an annual time step 

(Kamusoko et al. 2009). 

Change allocation involves techniques to allocate the amount of certain changes, established 

through the projection of the historical land cover change across space, to produce the spatial 

patterns of changing landscapes (Mas et al. 2014). A land change model must predict both the 

quantity of each land cover type, as well as the location of any change (Pontius, Huffaker & 

Denman 2004). The accuracy of the output of an inductive model is a function of both the model 

itself, namely suitability of algorithms within the model to fulfil the intended purpose, and the 

accuracy of the input data. Thus, to anticipate where possible inaccuracies may be entering into 

modelled output, assumptions within the model can be examined, as can accuracies of input 

data (Gibson et al. 2018). Model performance assessment is often based on the spatial 
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coincidence between a simulated map and an observed land cover map. Other methods include 

expert opinion, comparison of outputs generated with multiple models or multiple runs with the 

same model (Mas et al. 2013; 2014).  

The aim of this chapter is to perform land change modelling to project land cover change trends 

to a future time step. The disagreement budget (Pontius & Santacruz 2014), which separates 

change into quantity, exchange and shift disagreement, will be used to validate the future land 

cover model. This will be used to gain an understanding of the implications on biophysical 

parameters (Chapter 6) that in turn can guide land management strategies. 

5.2 MATERIALS AND METHODS 

Land change modelling6 was used to create transition potential maps for each transition, a 

projected potential for transition map (soft prediction) and a predicted land cover map for 2030 

(T3) for S50E and T35B following the flowchart in Figure 5-1.  

 
Figure 5-1 Land Change Modeller (LCM) method for land cover change prediction 

The soft prediction is a continuous mapping of potential to transitionwith no final land cover 

predicted while the hard prediction (change allocation) shows the individual land cover classes 

predicted by the model (Section 2.5). Though limited when developing alternative scenarios 

(Pérez-Vega, Mas & Ligmann-Zielinska 2012), the Land Change Modeller (LCM), integrated 

into IDRISI Terrset 18.08 software (http://www.clarklabs.org/), was selected as it provides 

extensive tools for the assessment and projection of land cover change (Eastman, 2016). 

Historical land cover change maps were used to determine all possible transitions of land cover 

classes. Explanatory variables were identified that could influence future land cover change 

(Gibson et al. 2018).   

                                                 
6 Land change modelling was performed by Dr Lesley Gibson. 
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5.2.1 Transition sub-models 

Overlay of land cover maps for T1 (2000) and T2 (2014) at 30 m pixel resolution (Okoye 2016) 

were used to determine transitions for sub-models to feed into the multi-layer Perceptron (MLP) 

in IDRISI. A transition label was given to all possible transitions of land cover using an identical 

common land cover legend (Chapter 3). The land cover classes involved in transition are 

grassland (UG); woodland, indigenous and invasive (FITBs); bare (BRS); waterbodies (Wb); 

wetland (Wl); cultivated (CLs); plantation (FP); and urban (UrBu) (Chapter 3). Land cover 

transitions with common underlying drivers were identified and grouped into sub-models 

(Pérez-Vega, Mas & Ligmann-Zielinska 2012). Six sub-models were identified as (1) 

Intensification representing the transition of a lower intensity to a higher intensity usage and 

includes increase in cultivation, woody encroachment or invasion and urban expansion. 

Afforestation (2) refers to the planting of commercial trees and (3) Deforestation refers to the 

clearance of trees. Any conversion to grassland or bare areas are characterised as (4) 

Reclamation, Degradation and Abandonment, while seasonal conversions not explained 

through anthropogenic change are labelled as (5) Natural dynamics. Exceptionality (6) is 

associated with potential map errors (Chapter 3). Table 5-1 displays the labels, transitions and 

description for each sub-model. Small transitions (less than 10 ha) were removed from the 

analysis to minimise exceptionalities. 

Table 5-1 Transition sub-models and descriptors for catchment S50E and T35B 

Transition sub-model Description Land cover transitions*++ 

If: FITBs intensification  
(↑FITBs) 

Woody natural and artificial vegetation 
substitutes previous land cover 

UG to FITBs; FP to FITBs; CLS to FITBs 
 

Ia: Agricultural intensification 
(↑Agric) 

Agricultural activities substitute previous land 
cover 

UG to CLS; FITBs to CLS; Wb to CLS*; 
Wl to CLS; UrBu to CLS; FP to CLS+ 

Iu: Urban intensification 
(↑Urban) 

Urban activities substitute previous land 
cover 

UG to UrBu; CLS to UrBu*; FITBs to 
UrBu 

R: Afforestation (↑Forest) 
 

Other land covers are converted to 
plantations 

UG to FP; FITBs to FP; WL to FP++; CLS 
to FP++ 

D: Deforestation (↓Forest) Plantations converted to other land covers FP to UG; FP to BRS*; FP to Wl++ 

A: Abandonment (Abandon) 
 

Urban and agricultural areas converted to 
grassland and bare areas 

CLS to UG; UrBu to UG; CLS to Wl++ 

 

Dn: Natural dynamic (Natural) 
 

Areas where natural changes occurred 
 

UG to Wb; UG to Wl; Wb to UG; Wl to 
UG; FITBs to Wl++ 

De: Degradation (Degrade) 
 

Shrub area converted to grassland and bare 
areas 

UG to BRS 
 

Re: Reclamation (Reclaim) 
 

Woody natural and artificial vegetation areas 
converted to grassland and bare area 

FITBs to UG 
 

Note: *Bold text shows transitions that occurred in S50E only; ++italics show transitions that occurred only in T35B 
UG: Unimproved Grassland; FITBs: Forest Indigenous Thicket Bushlands; BRS: Bare Rock and Soil 
Wb: Water bodies; Wl: Wetlands; CLs: Cultivated Land; FP: Forest Plantations; UrBu: Urban built-up 
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Areas of potential woody encroachment, where another land cover class has potentially been 

replaced by IAPs (FITBs intensification), were identified as a dominant driver in the study area. 

A change from any other land cover class to urban (with the exception of waterbodies and 

wetlands) were labelled Iu (Urban intensification). It was not possible to determine change in 

the intensity of agricultural activities due to image resolution, but conversion to agricultural 

practices was identified (Agricultural intensification). Where forests (indigenous or alien) and 

other woody areas have disappeared or have been removed, the labels Reclamation and 

Deforestation were assigned. Due to the low accuracy reported in Chapter 3, all transitions 

involving land cover classes bare soil (BRS) and wetlands (Wl) were labelled as potential 

classification error. In reality, as indicated in Table 5-1, not all possible transitions occurred 

between 2000 and 2014 in both S50E and T35B. 

5.2.2 Explanatory variables 

GIS datasets were identified to describe the potential transitions (Table 5-1). Typical 

explanatory variables are slope and distance to roads and settlements and land tenure (Mas et 

al. 2014). Within the context of this study, IAP intensification is more likely to occur in close 

proximity to existing infestation through the process of seed dispersal and afforestation close 

to existing plantations based on existing infrastructure. Topographic variability can affect 

certain transitions, for example water bodies will not expand into areas with positive slope and 

certain vegetation may not grow at higher altitudes. In addition, vegetation distribution is 

influenced by access to water, therefore the Euclidean distance from rivers was used as a proxy 

for water availability (Gibson et al. 2018). Geoprocessing was performed to represent the 

particular process and abbreviations were assigned to each processed spatial dataset. Each 

derived explanatory dataset was tested for suitability using Cramer’s V (Section 2.5), where 

higher values represent stronger relationships between the variable and a particular transition 

with values higher than 0.4 regarded as good, while values higher than 0.15 are ‘useful’ 

(Megahed et al. 2015). For transitions with low Cramer V values, evidence likelihood (EV) was 

computed as an additional explanatory variable. EV calculates the relative frequency of pixels 

that belong to the different classes within the areas of change (Eastman 2016).  

5.2.3 Land Change Modeller 

Explanatory spatial variables were combined with transition sub-models in the MLP in IDRISI 

to create transition potential maps following Figure 5-1. A transition probability matrix was 

generated using Markov chain analysis to assign probability of change by projecting historic 

change to the future. The transition probability matrix and transition potential maps were 
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combined in IDRISI’s multi-objective land allocation (MOLU) module to present the land 

cover scenario for 2030 (T3), a hard prediction with explicit predicted land cover classes. 

Individual transition potential maps were aggregated to create a soft prediction map indicating 

the propensity of the landscape to experience change. Soft prediction, or potential to transition, 

is a continuous mapping of vulnerability to change (Eastman 2016). Model performance was 

evaluated using the accuracy rate and skill measure provided in IDRISI (Eastman 2016). The 

skill measure compares the number of correct predictions, minus those attributable to random 

guessing, to that of a hypothetical set of perfect predictions and so measures the applicability 

of the explanatory variables to past land cover change. Therefore, the skill measure is not an 

evaluation of performance of the model, but rather a gauge of how well the explanatory 

variables explained change in the past. 

5.2.4 Validation of future land cover dataset 

Since the result of this model is a future scenario, typical land cover validation methods could 

not be employed. Other indicators were thus employed to assess the prediction. While visual 

examination reveals spatial patterns, it is subjective and can be misleading. Disagreement 

statistics, in the form of quantity, exchange and shift disagreement (Pontius & Santacruz 2014), 

were used to provide an indication of the quality of the future scenario map. Quantity difference 

is defined as the amount of difference between the predicted map and a comparison map, in this 

case the 2014 land cover map, where the proportions of the classes do not match. Allocation 

disagreement occurs where the quantity per class remains the same, but the spatial distribution 

of the class changes and can be separated into exchange and shift, involving two or more classes 

respectively (Pontius & Santacruz 2014). Even though the disagreement budget is applied to 

different land cover maps than proposed (Pontius & Chen 2006; Pontius & Millones 2011), it 

provides a novel approach to compare the measured land cover maps and the future scenario 

for which there is no validation data. 

Land cover change analysis was performed by overlaying the land cover dataset from T2 (2014) 

and the modelled dataset (T3–2030) to produce a transition matrix. Rows in the transition matrix 

represent the land cover at T2, while columns represent land cover at T3. Land cover change 

from the transition matrix was matched to the sub-models (Table 5-1) representing the six main 

trajectories (Feranec et al. 2010; Stott & Haines-Young 1998) of specific changes in the 

landscape, and land cover labels were assigned. The disagreement budget, including quantity 

and allocation disagreement for the land cover change analysis was extracted, and analysed. 
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5.3 RESULTS 

5.3.1 Explanatory variables 

A description of the explanatory variables, geoprocessing performed to create the layers, as 

well as the overall Cramer’s V values used for sub-model selection are shown in Table 5-2.  

Table 5-2 Description of potential explanatory variables and their overall Cramer’s V value 

Variable Geoprocessing Data source Scale 
Cramer V 

S50E T35B 

Elev Elevation United States Geological 

Survey (USGS) SRTM 1 Arc-

Second  

(USGS, 2004) 

~30m cell 

resolution 

0.268 0.207 

Asp Aspect computed from Elev 0.213 0.089 

Slope Slope computed from Elev 0.259 0.167 

D_FP Euclidian distance from FP (T1) Land cover 2000  

(Chapter 3) 

30m cell 

resolution 

0.200 0.275 

D_FITBs Euclidian distance from FITBs (T1) 0.181 0.087 

D_riv Euclidian distance from rivers National Geo-Spatial 

Information vector data 

1: 50 000 vector 

scale converted 

to 30m cell 

resolution 

0.098 0.105 

D_rd Euclidian distance from roads 0.172 0.128 

D_res 

 
Euclidian distance from settlements 0.230   

EV Evidence likelihood     0.408 

Cramer V values larger than 0.15 at variable level were used for sub-model selection. 

Explanatory variables selected for each sub-model are shown in Appendix C, Table C-1 for 

S50E and Table C-2 for T35B. 

5.3.2 Transition potential  

The skill measure and accuracy rate of each sub-model calculated through MLP (Figure 5-2) 

are recorded in Table C-1 (S50E) and Table C-2 (T35B). The skill measure, based on the 2000 

and 2014 land cover maps, compares the number of correct predictions, minus those attributable 

to random guessing, to that of a hypothetical set of perfect predictions.  

 
Figure 5-2 Sub-model accuracy and skill measure from multi-layer Perceptron for (A) S50E and (B) T35B 

[Figures above bars depict the number of pixels in each sub-model] 
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In S50E, accuracy varies between 37% and 70%, with a correlation of 0.5 between accuracy 

and number of pixels involved in transition (Table C-1). Higher sub-model accuracies were 

achieved in T35B, particularly for the afforestation sub-model. Abandonment (A) and Natural 

dynamics have lowest accuracies. Anomalies are ascribed to low user’s and producer’s 

accuracies (Chapter 3) for land cover classes Wetlands (Wl) (in sub-model Dn) and Bare rock 

and soil (BRS) (in sub-model De) affecting the MLP outcome. However, this could also be an 

indication that change is not totally controlled by the drivers selected to be used in the models. 

Low accuracies for transitions that involve a small number of pixels should be regarded as being 

of low importance.  

5.3.3 Change demand 

The probability of a land cover persisting (diagonal shaded grey) and of each class transitioning 

to every other class from the Markov matrix are presented in Table 5-3.  

Table 5-3 Markov matrix probability of land covers in S50E (bold) and T35B (italics) transitioning or 

persisting 

Class UG FITBs BRS Wb Wl CLS FP UrBu 

UG 
0.80 0.05 0.00 0.00 0.00 0.07 0.00 0.08 

0.91 0.03 0.00 0.00 0.01 0.02 0.03 0.00 

FITBs 
0.34 0.58 0.00 0.00 0.00 0.02 0.02 0.04 

0.82 0.10 0.00 0.00 0.01 0.03 0.03 0.00 

BRS 
0.43 0.05 0.00 0 0.00 0.02 0.01 0.49 

0.25 0.00 0.00 0 0.01 0.11 0.62 0.00 

Wb 
0.03 0.00 0 0.93 0 0.04 0 0.00 

0.56 0.01 0.00 0.07 0.16 0.13 0.06 0.00 

Wl 
0.52 0.01 0.00 0.00 0.00 0.43 0 0.03 

0.68 0.01 0.00 0.00 0.06 0.12 0.13 0.00 

CLS 
0.11 0.03 0.00 0.00 0.00 0.84 0.00 0.03 

0.24 0.01 0.00 0.00 0.03 0.69 0.02 0.00 

FP 
0.34 0.42 0.00 0 0.00 0 0.24 0.00 

0.16 0.00 0.00 0 0.02 0.01 0.82 0.00 

UrBu 
0.03 0.00 0.00 0 0 0.05 0.02 0.92 

0.46 0.04 0.00 0.00 0.02 0.27 0.02 0.19 

UG: grassland; FITBs: woodland; BRS: bare; Wb: waterbodies; Wl: wetlands; CLS: cultivated; FP: plantation; UrBu: urban 

The probability estimate for each UG pixel to persist is approximately 80% in S50E and 90% 

in T35B with probability of loss to FITBs in both catchments. Although a much higher 

probability of loss of FITBs to UG is predicted, the number of pixels that can in reality transition 

are limited. Waterbodies have a high probability of persistence in S50E, given the presence of 

the Ncora dam. The probability of persistence of FP is low in S50E, but high in T35B where 

commercial forestry is practised. Classes Wl and BRS show a very low probability of persisting. 
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5.3.4 Prediction 

The output from the LCM is reported in Figure 5-3. The soft prediction map derived from the 

aggregated individual transition potential maps is shown in Figure 5-3A and B, while the 

change allocation predicted by IDRISI’s MOLU module is presented in Figure 5-3C and D. 

 
Figure 5-3 Projected potential to transition map (A-S50E, B-T35B), Predicted land cover for 2030 (C-S50E, 

D-T35B) 

The soft prediction (Figure 5-3A, B) is a continuous mapping of vulnerability to change with 

no final land cover predicted while the hard prediction, the output from change allocation 

(Figure 5-3C, D) shows the individual land cover classes predicted by the model.  

5.3.5 Evaluating prediction 

A map of the land cover change, with transition labels assigned to the intersection of each class 

pair representing the sub-models for the land cover change modelling, is presented in Figure 

5-4. 

 
Figure 5-4 Land cover conversion / persistence for S50E (A) and T35B (B) 

The transition matrix derived from the overlay between the 2014 (T2) and LCM 2030 (T3) is 

presented in Table 5-4 as a percentage of the catchment. Net gain and loss of a particular land 

cover class over the period 2014-2030 is shown with land cover labels from Figure 5-4 

representing the transition in Table 5-4. 
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Table 5-4 Modelled land cover change as a percentage of the study area for S50E (bold) and T35B (italics). 

Land cover labels are provided as superscript to S50E values at class intersect 

Change UG FITBs BRS Wb Wl CLs FP UrBu 
Total 
2014 Loss Net 

UG 
  44.7 P   3.2 If   0.1 De   0.1 Dn   0.1 Dn   4.0 Ia   0.1 R   4.7Iu   56.9   12.0 -4.8 

  72.7   2.7   0.1 -   0.5   1.3   2.6   0.1   79.9    7.2 -0.2 

FITBs 
    4.0 Re   5.5Pf   0.0 Re   0.0 E   0.0 Dn   0.3 Ia   0.2 R   0.5 Iu   10.5     5.1  -0.6 

    3.3   0.4 - -   0.0   0.1   0.1   0.0     4.0     3.6  -0.9 

BRS 
    0.0 Dn   0.0 If   0.1 P - E - Dn   0.0 Ia   0.0 R   0.0 Iu     0.1     0.1   0.1 

- -   0.2 - - - - -     0.2     0.0   0.1 

Wb 
    0.1 Dn   0.0 If - Dn   2.6 P - Dn   0.1 Ia - R   0.0 E     2.9     0.3  -0.2 

    0.0 - -   0.0 - - - -     0.0     0.0   0 

Wl 
    0.0 Dn - If   0.0 Dn - Dn   0.0 P   0.0 Ia - R   0.0 Iu     0.1     0.1  -0.01 

    0.8 - - -   0.1   0.1   0.2 -     1.2     1.1  -0.3 

CLs 
    2.2 A   0.5 If   0.0 A   0.0 E   0.0 E   15.0 P   0.0 R   0.7 Iu   18.2     3.4   1.7 

    1.5   0.1 - -   0.2   4.3   0.2 -     6.2     1.9  -0.2 

FP 
    0.6 D   0.7 If   0.0 D   0.0 E - E   0.0 Ia   0.4P   0.0 Iu     1.8     1.4  -1.1 

    1.3 - - -   0.1   0.0   6.8 -     8.3     1.5   1.5 

UrBu 
    0.3 A   0.1 If   0.0 A   0.0 E   0.0 E   0.6 Ia   0.0 R   8.5Pu     9.5     1.0   4.9 

    0.1 - - -   0.0   0.1   0.0   0.1     0.2     0.1   0 

Total 
2030 

  52.1   9.9   0.2   2.7   0.1   20.0   0.7 14.4       

  79.7   3.1   0.3   0.0   0.9   6.0   9.8   0.2       

Gain 

    7.4   4.4   0.1   0.1   0.1   5.1   0.3   5.9     23.4   

    7.0   2.7   0.1 -   0.8   1.7   3.0   0.1     15.5   

Change 
per year 

                 S50E     1.5   

                 T35B     1.0   

If: FITBs intensification; Ia: Agricultural intensification; Iu: Urban intensification; R: Afforestation; D: Deforestation;  
A: Abandonment; Dn: Natural dynamic; De: Degradation; Re: Reclamation 

Assuming a map accuracy for the modelled map similar to that of the observed map, the cross 

tabulation of current and future land cover classes (Table 5-4) shows for future period 2014-

2030 a 23% total change (gain and loss) for catchment S50E. This compares favourably with 

the 21% change for the periods 1990-2000 (Chapter 4) and 2000-2014 (Chapter 3; Chapter 4). 

Since the future scenario model mimics patterns of past measured change, the change intensity, 

defined as the change per year, remained constant at 1.5% per year for S50E.  

In T35B, the total change (gain and loss) in the landscape over all land cover classes was only 

15.5% for prediction period 2014 to 2030, compared with 18.2% for the period between 2000 

and 2014 (Chapter 3). The change intensity decreased from 1.3% to less than 1% for this 

catchment. The disagreement between the actual land cover maps 2014 (T2) and 2000 (T1), as 

well as between modelled land cover classes (T3) and 2014 land cover classes (T2), is provided 

in Table 5-5. 
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Table 5-5 Comparison between transitions for 2000 to 2014 (T1-T2) and 2014 to 2030 (T2-T3) for S50E and 

T35B. Columns are labelled Q for Quantity, E for Exchange and S for Shift disagreement. 

 S50E  T35B 

 2000–2014 2014–2030 2000–2014 2014–2030 

Class Q E S Q E S Q E S Q E S 

UG 4.5 8.9 4.0 4.8 12.0 2.8 4.3 9.3 2.7 0.2 11.6 2.5 

FITBs 0.8 5.9 1.8 0.6 7.5 1.4 4.3 4.6 0.0 0.9 5.4 0.0 

BRS 0.1 0.0 0.0 0.1 0.1 0.0 0.2 0.0 0.0 0.1 0.0 0.0 

Wb 0.2 0.2 0.0 0.2 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

Wl 0.4 0.1 0.0 0.0 0.1 0.0 1.9 1.4 0.1 0.3 1.5 0.1 

CLS 1.9 4.0 0.7 1.6 6.3 0.5 0.1 2.6 0.6 0.2 3.0 0.3 

FP 2.7 0.4 0.0 1.1 0.5 0.0 1.8 2.1 0.0 1.5 3.0 0.0 

UrBu 4.9 0.8 0.0 4.9 2.0 0.0 0.0 0.2 0.1 0.0 0.2 0.0 

Overall 7.7 10.3 3.3 6.7 14.4 2.4 6.3 10.1 1.8 1.7 12.4 1.4 

Q: Quantity; E: Exchange; S: Shift 
UG: grassland; FITBs: woodland; BRS: bare; Wb: waterbodies; Wl: wetlands; CLS: cultivated; FP: plantation; UrBu: urban 

Table 5-5 reveals the classes that account for the largest exchanges and therefore possibly the 

largest model errors. In both measured and modelled transitions, UG had the highest exchange 

percentage with approximately 9% for the 2000-2014 transition and ~12% for the modelled 

transition (in bold italics). In the measured data (2000-2014), the similarity between categories 

with similar spectral signatures could cause exchange error, which would be propagated to the 

predicted land cover change model. Figure 5-5 shows the overall disagreement of the catchment 

at the two time steps for the two catchments. 

 
Figure 5-5 Quantity, exchange and shift disagreement 

There is a marked increase in exchanged pixels in the predicted model for 2030, with lower 

quantity disagreement, particularly in T35B. The similarity in quantity disagreement between 

measured and modelled scenarios implies that for S50E, the correct number of pixels were 

allocated to a class. The high exchange disagreement for classes UG, FITBs and CLs, as well 
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as FP in T35B suggests that these classes were probably not modelled accurately in the 2030 

land cover map and that certain transitions were incorrectly predicted. This was to be expected 

based on the model accuracies reported for S50E (Table C-1, Appendix C) with none of the 

sub-models having an accuracy level higher than 70%. For T35B (Table C-2, Appendix C), 

sub-models for urban intensification (Iu) and afforestation (R) provided accuracies of higher 

than 80%. The disagreement budget for these classes in the two time periods is also similar. 

The sub-models for abandonment (A) and natural dynamics (Dn) presented accuracies lower 

than 50%, but very few pixels were associated with these transitions.  

5.4 DISCUSSION 

The aim of this research was to guide land management strategies by performing land change 

modelling to project land cover change trends into the future. A land change model must predict 

not only the quantity of each land cover type, but also the location of any change (Pontius, 

Huffaker & Denman 2004). Since the LCM follows an inductive approach, past land cover 

maps are used to empirically model change as a function of explanatory spatial variables (Mas 

et al. 2014). The accuracy of the output of an inductive model is a function of both the model 

itself, specifically suitability of algorithms within the model to fulfil the intended purpose, and 

the accuracy of the input data. Errors in the individual input land cover maps will be propagated 

through the model and produce errors in all model outputs, including the probability matrix, 

transition potential map and future land cover map (Figure 5-1). Gibson et al (2018) evaluated 

the LCM based on two modelling assumptions. Firstly, rates of change are assumed to be 

constant, which implies that external forces remain constant, as implemented in the Markov 

process of change demand. Secondly, the drivers of change (explanatory spatial variables) are 

assumed to act identically to create the propensity for change maps in change allocation. 

Selection of explanatory spatial variables are at the discretion of the operator. This implies that 

a single model can produce different outputs based on the user’s choice of model parameters. 

Therefore, there can be greater variation within the outputs of a single model than between the 

outputs of different models (Camacho Olmedo et al. 2015). Consequently, the ability to capture 

the non-linear behaviour of land cover change processes in variables and model in algorithms 

is a limitation of LCM (Camacho Olmedo et al. 2015; Paegelow et al. 2013).  

Despite the limitations of the LCM output, land cover change analysis was performed between 

the observed land cover map of 2014 and the modelled land cover map for 2030 to identify 

landscape dynamics and identify trends that may continue into the future given the set of 

explanatory variables used. The overall accuracy for the input land cover maps, T1 (2000) and 
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T2 (2014), was reported as respectively 83% (81%) and 87% (83%) for S50E (T35B), equating 

to a land cover change accuracy of 72% (67%). Assuming similar map accuracies between the 

modelled map and the observed map T2, the accuracy of the land cover change map for the 

modelled scenario would be 76% (69%). This may appear low, but if higher change accuracies 

are required, for example change mapped with 75% reliability, the accuracy of input land cover 

maps at T1 and T2 would need to be about 90% (Fuller, Smith & Devereux 2003). This is a 

seldom achievable accuracy level when mapping land cover from medium resolution satellite 

imagery. Hypothetical map errors for the 2000-2014 transition amounted to 8% (5%) for gains 

in S50E (T35B) and 5% (10%) for losses (Chapter 4). Similarly, hypothetical errors computed 

for the 2014-2030 period was 6% (6%) for gains and 5% (6%) for losses.   

It was found that in 2014, grasslands represented 57% (80%) of the total S50E (T35B) area 

with this figure modelled to decrease to 52% (80%) by 2030 with losses likely to favour a gain 

in woody plants and cultivated land. The results show that the total change (gain and loss) in 

the study area over all land cover classes was 21% (18%) for the period between 2000 and 2014 

and 23% (16%) from 2014 up to the future scenario for 2030, with the change intensity 

remaining constant at 1.5% (<1%) per year. It was determined that the probability of grasslands 

persisting is around 80% (>90%) with the highest probability of grasslands being lost to woody 

encroachment ~5% (3%) and cultivation ~7% (<2%).  

Grassland, the largest class, showed the largest measured and modelled loss. A slightly higher 

loss intensity was modelled for this large dormant class (+0.1%). In contrast to the measured 

change, a net loss was modelled for woody plants and shrubs. However, the predicted loss falls 

within the 30% hypothetical error in landscape transition ascribed to error propagation from 

contributing land cover maps calculated in Chapter 3, making the result acceptable. Net change 

in woody plants for 2000 to 2014 varied between -0.5% to +1% of total catchment area. In 

T35B, plantations showed a small net gain, potential of expansion of forestry. Intensification 

of woody plants were modelled in the upper reaches of the Pot River and Little Pot. Intensity 

analysis (Aldwaik & Pontius 2012) determined that, while woody plants systematically target 

grassland (transition If), clearing of woody plants also systematically result in grassland (Re–

reclamation), albeit degraded, with a net loss of woody plants over the modelled period. 

Afforestation (increased plantation) was the strongest trajectory in T35B showing a net gain of 

1.5% with plantation targeting wetlands. This transition is likely be the result of the low 

accuracy of the wetland class (Wl) in the 2014 input land cover dataset.  
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5.5 FUTURE LAND COVER EFFECTS 

Grasslands are vital in supporting agriculture and providing ecosystem services (Gwate et al. 

2018), such as forage production, habitat, carbon sequestration and water supply. Consequences 

of loss of grassland include loss of grazing for livestock through degradation or transformation 

affecting rural livelihoods (Skowno 2018). In addition, loss of grasslands to agriculture and 

woody encroachment, will result in higher catchment evapotranspiration (ET) linked to 

catchment water use (Gwate et al. 2018), with T35B being most impacted (Gibson et al. 2018). 

Conversion of grassland to woody vegetation (indigenous and invaders) results in increases in 

biophysical attributes, such as leaf area and rooting depth, causing higher actual ET, which 

reduces runoff and consequently water yield from the catchment (Gwate et al. 2018; Palmer et 

al. 2017). However, such transitions can result in more carbon storage, the benefits of which 

may be offset by greater water demands from leafy vegetation. Changes in proportions and 

composition of land cover across the catchment will therefore affect the net ecosystem carbon 

exchange (NEE) (Lei et al. 2016) and influence the hydrologic functioning of a catchment 

affecting the climate system (Bright, Cherubini & Strømman 2012).  

LCM models future scenarios based on trends of historic change and consequently the results 

represent a future scenario based on no intervention deviating from past interventions. The 

impact of the different land management practices in S50E (dualistic farming system) and T35B 

(commercial system) can be identified in the historic land cover change trends, as well as in the 

future scenario. It is apparent that under the dualistic farming system, degradation is taking 

place at a more rapid rate than in T35B, where over 90% of current grassland is expected to 

persist to 2030. For those involved in planning in these rural catchments, there should be greater 

sensitivity amongst policy makers towards the negative effects of further afforestation and 

uncontrolled invasion of IAPs. The results therefore suggest that rehabilitation and land 

management initiatives should be targeted in catchments under a dualistic farming system, 

rather than those that are predominantly commercial systems.  

5.6 MODELLING LANDSCAPE FUNCTION 

This chapter illustrated that future land cover changes will likely result in adjustments to 

biophysical drivers impacting on net ecosystem carbon exchange, catchment water use through 

evapotranspiration, and the surface energy balance through a change in albedo. Subsequently, 

the next chapter (Chapter 6) explores the relationship between the regulating ecosystems 

service, albedo, and land cover change, considering that a pattern of error may exist. The 

analysis will compare trends in albedo, evapotranspiration (ET) and net primary production 
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(NPP), using the current (2014) and future land cover derived in this chapter (2030), to model 

water use and carbon storage for a future date to describe how ecosystem stress can be 

characterised from Earth observation date by employing time series analysis. 
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CHAPTER 6:  MONITORING EFFECTS OF LAND COVER CHANGE 

ON BIOPHYSICAL DRIVERS IN RANGELANDS USING 

ALBEDO 

In this chapter7, the relationship between land cover change and albedo is explored as the latter 

has shown to be a regulating ecosystems service (Anderson et al. 2011; Betts 2001; Lutz & 

Howarth 2014). Trends in albedo are described at catchment and land cover change trajectory 

level. Links are established to landscape processes of carbon storage and water use — through 

net primary production (NPP) and evapotranspiration (ET) respectively — to serve as indicators 

of future carbon storage and water use potential in the carbon-water nexus. The chapter thus 

addresses Objective 4 and responds to the research question: How do trends in biophysical 

drivers and characteristics of land cover change trajectories differ among the various 

catchments? 

6.1 ABSTRACT  

This chapter explores the relationship between land cover change and albedo, recognised as a 

regulating ecosystems service. Trends and relationships between land cover change and surface 

albedo were quantified to characterise catchment water and carbon fluxes, through ET and NPP 

respectively. Moderate resolution imaging spectroradiometer (MODIS) and Landsat satellite 

data were used to describe trends at catchment and land cover change trajectory level. Peak 

season albedo was computed to reduce seasonal effects. Different trends were found depending 

on catchment land management practices and satellite data used. Although not statistically 

significant, albedo, NPP, ET and normalised difference vegetation index (NDVI) were all 

correlated with rainfall. In both catchments, NPP, ET and NDVI showed a weak negative trend, 

while albedo showed a weak positive trend. Modelled land cover change was used to calculate 

future carbon storage and water use. According to the results, a decrease in catchment carbon 

storage and water use is expected. Grassland, a dominant dormant land cover class, was targeted 

for land cover change by woody encroachment and afforestation, causing a decrease in albedo, 

while urbanisation and cultivation caused an increase in albedo. Land cover map error of 

fragmented transition classes and the mixed pixel effect affected the results, suggesting the use 

of higher resolution imagery for NPP and ET and albedo as a proxy for land cover. 

                                                 
7 This chapter was originally published as a scientific article (citation below). The manuscript was reformatted to match the 
guidelines of Stellenbosch University, Department of Geography and Environmental Studies.   
 
Münch Z, Gibson LA & Palmer AR 2019. Monitoring effects of land cover change on biophysical drivers in rangelands using 
albedo. Land, 8, 33; doi:10.3390/land8020033. 
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6.2 INTRODUCTION 

Changes in land use and land cover (LULC) cause bio-geophysical changes to the land surface 

that disturb the earth’s surface energy balance (Betts 2001), which have noticeable impacts on 

ecological and environmental systems. Biophysical characteristics associated with land cover 

types are not only responsible for carbon storage in the landscape, but also affect water use of 

vegetation driven by eco-hydrological processes (Gwate et al. 2018), such as in grasslands in 

water scarce catchments in South Africa. Ecosystem changes can be detected and quantified 

using biophysical parameters derived from multi-temporal satellite observations of the land 

surface (Forkel et al. 2013). Primary drivers of change within the rural catchments in the Eastern 

Cape have been linked to woody encroachment, commercial afforestation, urbanisation, 

increased dryland cultivation and rangeland degradation to the detriment of native grasslands 

(Chapter 3). Conversion of grassland to woody vegetation results in higher actual 

evapotranspiration (ET) due to increases in biophysical attributes, such as leaf area and rooting 

depth. In turn, higher ET has the effect of reduced water yield from the catchment (Gwate et al. 

2018; Palmer et al. 2017). Changes in proportions and composition of LULC across the 

catchment will affect the net ecosystem carbon exchange (NEE) (Lei et al. 2016) and influence 

the hydrologic functioning of a catchment affecting the climate system (Bright, Cherubini & 

Strømman 2012).  

Surface albedo, the proportion of solar radiation reflected relative to the total incident radiation, 

can vary considerably depending on the character of the landscape and the vegetation present 

(Lutz & Howarth 2014). Land surface albedo has long been recognised as a radiative force from 

LULC change (Bonan 2008; Bright, Cherubini & Strømman 2012) and plays a key role in 

climate change (Bonan 2008; Georgescu, Lobell & Field 2011), while climate modelling 

studies have confirmed albedo as a climate regulating ecosystem service (Lutz & Howarth 

2014). Afforestation reduces surface albedo by absorbing more solar radiation and increasing 

surface temperature (Bonan 2008; Swann, Fung & Chiang 2012), while deforestation may 

activate either radiative forcing, due to surface albedo change, or non-radiative forcing due to 

change in evapotranspiration efficiency and surface roughness (Davin et al. 2010). In addition, 

invasion by woody alien species changes the landscape composition and affects soil properties, 

even after clearing (Oelofse et al. 2016). Thus, for each land cover transition, the shift in surface 

albedo should also be considered. Commercial afforestation, invasive alien plants (IAPs) (like 

Acacia mearnsii [black wattle]) and native woody plant encroachment (like Vachelia karroo) 

all result in an increase in the total aboveground woody standing biomass (Gouws & Shackleton 
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2019; O’Connor, Puttick & Hoffman 2014) with associated increase in leaf area index (LAI) 

and consequently a possible reduction in surface albedo.  

The higher level of green water in these land cover classes is a good absorber of heat, and this 

may result in further global heating (Bonan 2008; Swann, Fung & Chiang 2012), possibly 

discounting the positive consequences of carbon sequestration (Lutz & Howarth 2014). In 

contrast, urban communities, such as those found in the rural Eastern Cape, South Africa, with 

widely spaced dwellings interspersed with bare soil, may result in higher albedo. Similarly, 

degraded rangeland, with lower fractional canopy cover, may also have higher albedo 

(Rotenberg & Yakir 2010). Betts (Cunha et al. 2018) found surface albedo to be an accurate 

proxy for land cover change in a semi-arid region in Brazil, due to its sensitivity to seasonal 

phenological variation (Cunha et al. 2018; Wang et al. 2017) and landscapes affected by land 

management practices (Cai et al. 2016b). Land cover change projections in the Eastern Cape of 

South Africa have highlighted the importance of focusing land and water resources 

management interventions on rehabilitation in catchments under dualistic8 farming systems 

(Chapter 5). Consequently, it is vital to consider surface albedo within a range of different land 

cover classes, and recommend policies that will change albedo to promote improvements 

offered by carbon offsets. 

Remote sensing is a key tool for monitoring long-term environmental change from space. High 

spatial resolution Landsat (Wulder & Masek 2012) and high temporal resolution gridded 

moderate resolution imaging spectroradiometer (MODIS) vegetation indices have been used to 

characterise land cover dynamics for climate change assessment, mitigation and adaptation 

(Friedl et al. 2014; Ganguly et al. 2010). Furthermore, the recent launch of the Google Earth 

Engine (GEE) cloud-based platform facilitates systematic large-scale processing of geospatial 

data through ease of access to data archives (Hansen & Loveland 2012) and shared algorithms 

(Gorelick et al. 2017). 

Due consideration must be given to the scale at which analyses should be conducted since 

spatial resolution and the extent of analysis can have major effects on results, especially when 

categorical land cover maps are derived that provide information about patterns and processes 

in the landscape (Estes et al. 2018). A common problem in spatial analysis of heterogeneous 

landscapes is the two-fold modifiable areal unit problem (MAUP) (Openshaw & Taylor 1979). 

Not only can the shape and placement of non-overlapping units used to extract map values (such 

                                                 
8 To describe the complexity around the communal farming tenure arrangement in the Eastern Cape, the label “dualistic or bilateral 
landholding arrangement” was agreed upon by stakeholders, due to the interaction of the components of traditional leadership 
and the municipal system in land allocation. 
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as land cover classes) influence analyses of those values, but also the dimensions of arbitrary 

aggregation units (such as pixels in remote sensing imagery) do not match the characteristic 

shapes and scales of natural features in the heterogeneous landscape, affecting subsequent 

analyses (Dark & Bram 2007). Estes et al. (2018) suggested that higher resolution imagery 

could address this problem. However, map error may be responsible for incorrect 

interpretations of land cover change (Pontius & Lippitt 2006). Lack of adequate reference data 

or imperfect reporting of accuracy results affect the explanations of the processes depicted in 

land cover change maps (Estes et al. 2018; Olofsson et al. 2014; Olofsson et al. 2013).  

Various studies have been conducted to gain an understanding of rangeland dynamics in the 

mesic regions of the Eastern Cape, using a combination of remote sensing and field data. For 

instance, Gwate et al. (2016) described the invasion of the rangelands by black wattle and the 

effect on soil properties (Okoye 2016). In Chapter 3 (Münch et al. 2017) derived land cover 

change trajectories and associated error from land cover maps, while Palmer et al. (2017) 

determined the fraction of photosynthetically active radiation (fPAR) and LAI for several land 

cover classes. Modelled evapotranspiration (ET) was used to highlight the effect of land cover 

change on the catchment evaporative fraction (Gwate et al. 2018). In Chapter 5 (Gibson et al. 

2018) future land cover changes were modelled based on observed land cover change maps and 

future change trajectories derived. However, the effect of land cover change, both observed and 

modelled, on surface albedo and consequently the surface energy balance, has not been 

explored in this region. Additionally, the link between modelled landscape change, surface 

albedo and changes in catchment water and carbon fluxes have not been investigated. Recently, 

surface albedo was extracted from satellite data per land cover class for calibration of land 

surface models (LSM) in climate modelling (Duveiller et al. 2018; Duveiller, Hooker & 

Cescatti 2018), while other authors have investigated the potential of albedo in land cover (De 

Oliveira Faria et al. 2018) and land cover change analyses (Cunha et al. 2018).  

The aim of this chapter is to quantify trends and relationships between land cover change, 

surface albedo, NPP and ET to characterise catchment water and carbon fluxes and postulate 

consequences on ecosystem services provided by grasslands. Trends in surface albedo are 

described at catchment and trajectory level for observed land cover change. Links are 

established to quantify future carbon storage and water use — through respectively NPP and 

ET — in response to modelled land cover change. The benefits of using albedo as a proxy for 

land cover change are highlighted. 
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6.3 MATERIALS AND METHODS  

Located in the Eastern Cape Province, South Africa (Figure 6-1), the quaternary catchments 

S50E and T35B are dominated by grassland, interspersed with woody IAPs (Mucina & 

Rutherford 2006). The Ncora Dam, supplied by the perennial Tsomo River, lies within the S50E 

catchment, while T35B, drained by the Pot and Little Pot Rivers, has no large dams. The mean 

annual rainfall for the area is ~800 mm (Schulze 2007), with the majority falling in summer 

particularly during January.   

 
Figure 6-1 Study area with land cover classification for 2000, 2014 and 2030 

Mixed farming, with livestock grazing and crop cultivation practised under dualistic land tenure 

(Kakembo 2001) is practised in S50E with its high grazing potential. In this catchment, farming 

practices such as overgrazing, burning and wood felling have contributed to grassland 

transformation resulting in degraded vegetation diversity and richness. In contrast, T35B 

represents commercial/freehold land with several different land usages, including forestry, 

mixed livestock and crop production. Non-clustered rural and urban settlements are found in 

both catchments.  

Invasion by woody plants, particularly black wattle (Acacia mearnsii), silver wattle (Acacia 

dealbata) and poplar (Populus spp.), has transformed the grasslands (Gouws & Shackleton 

2019; Oelofse et al. 2016), affecting rangeland production. Coordinated efforts of clearing IAPs 

(Van Wilgen & Wannenburgh 2016) that have higher water use relative to indigenous 
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vegetation (Clulow, Everson & Gush 2011) are underway to increase the proportion of water 

available to maintain other ecosystem services provided by rangelands (Meijninger & Jarmain 

2014; Van Wilgen et al. 2008). Figure 6-2 provides an overview of the processing steps 

described in this section to perform trend analysis and characterise carbon fluxes (NEE) and 

water use in the catchments. 

 
Figure 6-2 Processing flow to model albedo relationship with land cover 

6.3.1 Land cover change 

Observed land cover maps for 2000 (T1) and 2014 (T2) (Münch et al. 2017) and modelled land 

cover for 2030 (T3) (Gibson et al. 2018) at 30 m pixel resolution were selected for land cover 

change analysis. Land cover classes included grasslands (UG), shrublands, indigenous as well 

as invasive trees and bushes (FB), bare soils (BR), water bodies (WB), wetlands (WL), 

croplands (CL), forests (FP) and urban, built-up (UB). As described in Chapter 3 and Chapter  5, 

the existing South African national land cover map for 2000 (Van den Berg et al. 2008) was 

adapted to these eight classes through aggregation to conceptually broader classes (Lück & 

Diemer 2008) and manual editing (Chapter 3). Supervised object-based image analysis using a 

rule-based decision tree classification of Landsat 8 imagery was implemented to generate the 

2014 land cover maps (Chapter 3). The overall accuracy achieved for these maps was 84 ± 1% 

and 85 ± 1% for 2000 and 2014 respectively. Land cover changes between T1 and T2 were 

analysed along with explanatory variables to generate transition potential maps. Markov chain 

analysis was used to assign probabilities to potential changes to derive the future land cover 

map for 2030 (Chapter 5) presented in Figure 6-1.  

Post-classification change analysis was performed through overlay of (1) T1 and T2, and (2) 

T2 and T3 land cover maps and used to construct a transition matrix for the intersection of each 

pair of land cover maps (Chapter 3; Chapter 5). Observed historical land cover change of 21% 
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and 18% in, respectively, S50E and T35B were reported for 2000–2014 (Chapter 3). Projected 

land cover change, modelled from the 2014 and 2030 land cover maps, amounted to 23% and 

16% of the catchment for S50E and T35B respectively (Chapter 5). Nine land cover change 

trajectory labels were assigned to specific land cover transitions to relate land cover change to 

specific landscape processes (Chapter 3). Landscape changes in the study area were grouped 

into three land change categories (Verbesselt et al. 2011; Vogelmann et al. 2012).  

Table 6-1 shows the land cover class transitions identified by trajectory labels with expected 

albedo change direction for each class transition, based on literature values (De Oliveira Faria 

et al. 2018; Henderson-Sellers & Wilson 1983; Matthews et al. 2004) for similar land cover 

classes, provided in brackets: (↑) to signify increase, (↓) decrease or (-) no change. The land 

change category is also specified as abrupt (highlighted in light grey), seasonal (dark grey) or 

gradual ecological change (no background). 

Table 6-1 Land cover change trajectories with expected albedo change direction for each class transition 

provided in brackets: (↑) to signify increase, (↓) decrease or (-) no change 

 
Land cover trajectory (label) 

Land cover transitions  
(expected albedo change) 

 
Land change category  

Woody encroachment (Ifg) UG->FB(↓); FP->FB(↑); CL->FB(↓) Gradual ecological change 

Abandonment (Ag) CL->UG(↓); UB->UG(↓) 

Degradation (Deg) UG->BR(↑) 

Reclamation (Reg) FB->UG(↑) 

Increased cultivation (Iaa) UG->CL(↑); FB->CL(↑); WB->CL(↑); WL-

>CL(↑); UB->CL(↓)  

Abrupt change 

Urban expansion (Iua) UG->UB(↑); CL->UB(↑); FB->UB(↑) 

Afforestation (Ra) UG->FP(↓); FB->FP(↓) 

Deforestation (Da) FP->UG(↑); FP->BR(↑) 

Natural dynamic (Dns ) UG->WB(↓); UG->WL(↓);  

WB->UG(↑); WL->UG(↑) 

Seasonal change 

UG: grasslands, FB: shrublands, BR: bare, WB: water bodies, WL: wetlands, CL: croplands, FP: forest/plantation, UB: urban 

Gradual ecological change (superscripted with g) describes landscape changes associated with 

the woody intensification of grassland, abandonment of agriculture, degradation of grassland 

and agriculture, as well as reclamation of grassland from IAPs. When a lower intensity use 

transitions to a higher intensity use, such as bushland encroachment into grassland, or increase 

in agriculture, it is considered intensification in the landscape. Although an increase in 

agriculture is intensification of the landscape, it is categorised as an abrupt change 

(superscripted with a), along with afforestation, deforestation and urban intensification due to 

the time scale over which the change occurs. Deforestation, degradation and reclamation, 

resulting in expected albedo increase, as well as abandonment, with expected albedo decrease, 

describe transitions to grassland and bare areas. Seasonal change (superscripted with s) can 

account for natural dynamics of seasonal conversions not explained through anthropogenic 
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change that may result in albedo fluctuations. As trajectory labels identified in the study area 

(Table 6-1) define transitions from multiple land covers to a single land cover, or to multiple 

land covers, there may be opposing albedo change directions within the same trajectory. These 

opposing vectors may have a confounding effect on the results and require further work to 

untangle the influence of each land cover transition.  

The land cover trajectory labels (Table 6-1), subsequently called transition classes, were applied 

to the transitions between 2000–2014 and 2014–2030 (Chapter 5). In addition to these 

transitions, exceptionality, associated with potential map errors (Chapter 3) was noted in the 

study area, but excluded from analysis (<1% of T35B, 2.8% of S50E). Persistent classes, 

defined as pixels that represent the same thematic land cover class in 2000 as in 2014, where 

no land cover change was measured, may represent a measure of seasonality, degradation or 

long-term background change not associated with class transition. Both transition and persistent 

classes were used for further analysis. 

6.3.2 Satellite data 

6.3.2.1 Albedo 

A strong agreement exists between Landsat surface reflectance (SR) and MODIS nadir–

bidirectional reflectance distribution function (BRDF)–adjusted reflectance (NBAR) implying 

that the Landsat archive, prior to the MODIS era, can be used to obtain results of a similar 

quality to MODIS (Wang et al. 2017). To maintain this integrity, the same methodology to 

estimate albedo was applied to both the Landsat and MODIS collections. Albedo for each time 

step was calculated from MODIS and Landsat using the formula suggested by (Liang et al. 

2003; Liang 2001) with constant values referred to in Equation 6-1 provided in Table 6-2. 

𝑎𝑙𝑏𝑒𝑑𝑜 =  c0 + c1r1 + c2r2 + c3r3 + c4r4 + c5r5 + c7r7,     Equation 6-1 

 

where r1, r3, 

r4, r5, 

r7 

are the surface reflectance derived from MODIS and Landsat 

bands 1, 3, 4, 5, and 7 respectively, while r2 is excluded for 

Landsat but represents MODIS band 2. 

 
Table 6-2 Constant values used in calculation of albedo from moderate resolution imaging spectroradiometer 

(MODIS) and Landsat 

Sensor c0 c1 c2 c3 c4 c5 c7 

MODIS -0.0015 0.160 0.291 0.243 0.116 0.112 0.018 

Landsat -0.0018 0.356 0 0.13 0.373 0.085 0.072 
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The MODIS 500 m BRDF/NBAR/albedo product (MCD43A) (Schaaf et al. 2002; Z Wang et 

al. 2018) standardises MODIS directional reflectance to a nadir view at the illumination of local 

solar noon to eliminate the angular effect on biophysical related parameters. A 15-year time 

series of MODIS data were extracted using the National Aeronautics and Space Administration 

(NASA) application for extracting and exploring analysis ready samples (AppEEARS) 

interface (https://lpdaacsvc.cr.usgs.gov/appeears/). This time series was made up of 690 8-day 

surface reflectance (MCD43A4 nadir reflectance band 1-7, version 5) and albedo band quality 

(MCD43A2 BRDF albedo band quality, version 5) data from 18 February 2000 (8-day 

composite beginning on ordinal day 49) to 10 February 2015 at 500-m resolution. To cover 15 

years, each year-long period is defined as beginning on ordinal day 49 and ending on day 41 

containing 46 data points (Loarie et al. 2011).  

Landsat imagery was selected from the Google Earth Engine image collections (USGS Earth 

Resources Observation and Science (EROS) Center, Sioux Falls, United States of America) 

(Gorelick et al. 2017) for the same period as the MODIS data. Sixty three Landsat 5 Thematic 

Mapper (LT5), 243 Landsat 7 Enhanced Thematic Mapper Plus (ETM+, LE7) and 49 Landsat 

8 Operational Land Imager (LC8) images were selected. These selected images that had already 

been (1) calibrated to a consistent radiometric scale and (2) atmospherically corrected to 

represent surface reflectance, were filtered for pixel quality and catchment geography (image 

path/row 169/082 for T35B and 170/082 for S50E). Equation 6-1 was applied to each image in 

the LT5 and LE7 image collections as the band specifications on Landsat TM and Landsat 

ETM+ are identical. For the LC8 collection, the parameters r1, r3, r4, r5, r7 in Equation 6-1 

are the surface reflectance values derived from equivalent LC8 bands 2, 4, 5, 6 and 7 

respectively (Holden & Woodcock 2016). The separate LT5, LE7 and LC8 albedo collections, 

sorted by date, were merged into a new albedo image collection in GEE. 

6.3.2.2 Normalised difference vegetation index (NDVI) and peak season albedo 

As surface albedo is sensitive to vegetation cover change, especially during the growing season 

(Zhai et al. 2015), peak season albedo (PSA) was extracted. PSA, defined as the albedo when 

the maximum NDVI value per year occurs, could limit seasonal vegetation fluctuation in the 

data thereby reflecting the relationship between inter-annual albedo variations with land cover 

change.  

For MODIS, NDVI was calculated from MCD43A4 (NASA EOSDIS Land Processes DAAC, 

USGS EROS Center, Sioux Falls, United States of America) surface reflectance band 1 (red) 

and band 2 (near infrared) at 500 m spatial resolution for every pixel in each annual time series 

Stellenbosch University https://scholar.sun.ac.za



116 

 

 

 

and the relative position of the maximum NDVI was marked. The albedo value for the particular 

position, representing the PSA, was extracted from the MCD43A4 time series (Zhai et al. 2015).  

The same method to derive PSA was applied to the Landsat data in GEE. However, only 

growing season images between September and May were considered as the lower temporal 

resolution and images with cloud cover may confound albedo at an annual time step. Cloudy 

pixels were masked out using the quality assessment bands that identify pixels exhibiting 

adverse instrument, atmospheric, or surface conditions, supplied with Landsat surface 

reflectance products. The relative position of maximum NDVI during the peak growing season 

for each year was used to extract the albedo from the merged Landsat albedo image collection. 

NDVI was calculated from red and near infrared surface reflectance bands – bands 3 and 4 

respectively for LT5 and LE7 and bands 4 and 5 respectively, for LC8. Mean PSA values for 

persistent and transition classes in each study area were extracted from the MODIS and Landsat 

PSA using a zonal statistics function in R statistical software (R Core Team 2017). 

6.3.2.3 Moderate resolution imaging spectroradiometer (MODIS) net primary production 

(NPP) and evapotranspiration (ET)  

NPP (MOD17A3, version 5, 1 km) (Running & Mu 2015) and ET (MOD16A2, version 5, 1 

km) (Mu et al. 2007; Mu, Zhao & Running 2011) products, were extracted to represent carbon 

and water fluxes, respectively. The MOD17A3 product provides information about annual 

(yearly) NPP at 1 km pixel resolution. Although the new 500 m, version 6 product (Running & 

Mu 2015) was considered, uncharacteristically high NPP values were observed for 2000 and 

2001, and the coarser resolution 1 km product was, therefore, selected instead. 

Not only does ET play an important role in the terrestrial water cycle through precipitation 

return, but as user of more than half of the total solar energy absorbed by land surfaces, ET is 

an important energy flux (Trenberth et al. 2009). The MOD16 product uses a physical model 

based on the Penman–Monteith logic (Monteith 1965) to calculate ET (Cleugh et al. 2007; Mu 

et al. 2007; Mu, Zhao & Running 2011). Although uncertainties were noted in both measured 

(Savage et al. 2004) and remotely sensed data (Mu, Zhao & Running 2011; Ramoelo et al. 

2014; Zhao et al. 2005), MOD16A2 data was previously used in catchment S50E (Gwate et al. 

2018) to investigate the influence of land cover change on ET. 

Annual NPP (MOD17A3) and ET (MOD16A2) were extracted for the period 2000 to 2014 to 

visualise the trend of these variables in the catchments. Non-parametric least squares regression 

was performed in localised subsets to fit a smooth “LOcal regression” (LOESS) curve 
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(Cleveland 1979). Mean NPP and ET per-pixel were calculated. Summary statistics were 

computed from the gridded datasets for each land cover transition class using zonal statistics. 

 

6.3.3 Trend analysis  

Linear correlation analysis was performed on annual PSA time series for MODIS and Landsat 

using linear least square regression to identify significant linear trends (p<0.05) at catchment, 

land cover trajectory and pixel level. The slope of the regression, which describes the direction 

of change, was also extracted. PSA percentage change (slope of linear correlation analysis 

multiplied by study period) was computed per-pixel. Mean values for catchment and trajectory 

level analyses were extracted by applying zonal statistics.  

Per-pixel linear regression was performed between PSA, NPP, ET and NDVI to characterise 

the relationships between PSA and (1) NPP, (2) NDVI and (3) ET. The coefficient of 

determination (R2), correlation coefficient and the direction of the trend was extracted from the 

slope of the linear regression. Percentage change was applied to model future change as a 

function of land cover change using the linear regression equations developed for persistent 

classes applied to modelled land cover. 

A season-trend model (STM) (Forkel et al. 2013) based on a classical additive decomposition 

model as formulated in breaks for additive seasonal and trend (BFAST) software (Verbesselt et 

al. 2010b) was applied to the 8-day MODIS albedo time series with package greenbrown 

(Forkel & Wutzler 2015) in R statistical software (R Core Team 2017). The full temporal 

resolution albedo time series was explained by a piecewise linear trend and a seasonal model 

in a regression relationship (Forkel et al. 2013), to identify trends, inter-annual variation (IAV) 

and significant breakpoints at pixel level. The method uses ordinary least squares (OLS) 

regression fitting linear and harmonic terms to the original time series to estimate time series 

segments based on significant trend slope. The significance of the trend in each segment is 

estimated from a t-test. A maximum of three breakpoints with significant structural changes (p 

≤ 0.05), were selected. Time series properties (mean, trend, inter-annual variability, seasonality 

and short-term variability) were estimated from the 8-day MODIS albedo product (Forkel et al. 

2013). 
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6.4 RESULTS 

6.4.1 Catchment level peak season albedo (PSA), NPP, ET and NDVI 

Figure 6-3 shows the spatial and statistical distribution of the PSA trend, computed as the pixel 

level slope of PSA regression over the study period for T35B and S50E for both MODIS (Figure 

6-3A, B, E, F) and Landsat (Figure 6-3C, D, G, H).  

 

 

Figure 6-3 Peak season albedo (PSA) trend (top) and histogram of trend (bottom) measured with MODIS and 

Landsat for T35B and S50E between 2000–2014 

Although similar spatial patterns are observed, it is clear from Figure 6-3C and D that there are 

some extreme changes that are not captured at coarser MODIS resolution. This is borne out by 
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the larger range for Landsat displayed on the x-axes in Figure 6-3G and H. The slope for 

MODIS pixels varied between -0.003 (blue pixels) in both catchments with maximum increase 

of 0.005 for S50E and 0.0026 for T35B (red pixels). Measured from Landsat PSA, greater 

variation of values between −0.01 (blue pixels) and 0.011 (red pixels) was calculated. Locations 

where Landsat PSA trend is either higher than the maximum MODIS trend or lower than the 

minimum trend are indicated with circles in Figure 6-3C and D. At catchment scale the mean 

change (mpc) in PSA was less than one per cent ±10 standard deviations (sd) for MODIS and 

±5 sd for Landsat.  

 
Figure 6-4 Mean annual PSA (A, B), net primary production (NPP) (D, E), evapotranspiration (ET) (F, G) and 

normalised difference vegetation index (NDVI) (H, I) values respectively for T35B (left) and S50E 

(right), with bar plot of annual rainfall (C)  

[LOcal regression (LOESS) curve in red, linear regression curve in dotted lines] 
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Over the study period, mean MODIS PSA values of 0.145±0.011 and 0.150±0.014 were 

obtained for catchment T35B and S50E respectively, with mean Landsat PSA values 

significantly lower (p<0.05) at 0.143±0.022 for T35B and 0.140±0.022 for S50E. The boxplots 

in Figure 6-4 illustrate mean annual PSA (Figure 6-4A, B), NPP (Figure 6-4D, E), ET (Figure 

6-4F, G) and NDVI (Figure 6-4H, I) trends for the observed study period extracted from 

MODIS data. Mean annual rainfall (Agricultural Research Council weather station data, 

Tropical Rainfall Measuring Mission satellite data) is shown in the bar plot in Figure 6-4C. WS 

30388 represents the rainfall in S50E at Cala, while WS 30149 represents the rainfall for T35B 

at Ugie. The linear trend is shown with a dotted line while the LOESS curve indicates the local 

trend. 

While similar spatial patterns were observed for mean MODIS PSA at coarser resolution and 

mean Landsat PSA, linear correlation between Landsat pixels, scaled to MODIS resolution, 

shows an R2 of only 0.718 for T35B and 0.723 for S50E. In addition, the mean PSA in both 

S50E and T35B did not change significantly over the 15-year study period (p>0.05). However, 

by fitting a median-based linear model (Sen 1968; Siegel 1982; Theil 1950), the S50E slope 

showed a slight increase (β1M = 0.00023; β1LS = 0.0003; p>0.05), which would cause a net 

increase of 0.003 (0.004) in PSA. In contrast, mean PSA trend in T35B was negative with 

MODIS (β1M = −00009) but positive with Landsat (β1LS = 0.0004), translating to PSA change 

of −0.001 (+0.006). Non-significant trends at catchment scale were confirmed with a Mann-

Kendall (MK) test (p > 0.05) for both catchments. Mean albedo values and trend were also 

calculated from the 8-day MODIS product (T35B-σ = 0.135±0.017, β1M8 = 0.0001; S50E-σ= 

0.146±0.001, β1M8 = 0.00004).  

PSA generally followed an increasing trend in response to reduced rainfall, and a decreasing 

trend in response to increased rainfall, when comparing Figure 6-4A and B with Figure 6-4C. 

The high rainfall in 2006, categorised as a flood (NDMC 2007), caused a drop in PSA reflected 

in 2006. Although a relationship between albedo and rainfall is suggested, neither the linear, 

nor non-linear trend (Theil-Sen slope, measured with MK-test) was significant (p>0.5) at 

catchment scale. NPP, ET and NDVI in T35B (Figure 6-4) have higher mean values 

(0.892 kg.C.m-2; 542 mm.yr-1; 0.54) compared to S50E (0.802 kg.C.m-2; 508 mm.yr-1; 0.49) 

and are statistically different (p<0.05), measured with the Wilcoxon signed rank test for non-

parametric data. Although the trends appear strongly related to that of the rainfall pattern in 

Figure 6.4C, there is only a weak negative linear trend (p>0.1). Lower NPP, ET and NDVI were 

noted for 2003 in both catchments confirming the inflection point in 2004, which Gwate et al. 

(2018) associated with extreme low rainfall in 2003 (Figure 6-4C). Even though the LOESS 
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curve (in red) indicates a local downward trend, the linear trend is not significant (p>0.05) in 

any of the catchments.  

The correlation between mean PSA, NPP, NDVI and ET is reported in Table 6-3. Complete 

cases, where a value existed for each of the four datasets for the pixel in question, were extracted 

for every pixel within the two catchment extents for comparison. A positive correlation 

indicates the extent to which one variable, like PSA, increases or decreases in parallel with 

another variable, while a negative correlation indicates the extent to which one variable 

increases as the other decreases. 

Table 6-3 Catchment level correlation between PSA, NPP, NDVI and ET 

T35B 1 2 3 4 

1.  PSA - −0.01 −0.35 −0.22 

2. NPP  0.13 -  0.51*  0.71* 

3. NDVI −0.28  0.31 -  0.60* 

4. ET −0.08  0.64*  0.57* - 

Note: Correlations for S50E (n = 2407) are presented above the diagonal in italics,   
and correlations for T35B (n = 2162) are presented below the diagonal. *p < 0.05. 

In both the catchments, the strongest correlation was found between NPP and ET with 0.64 in 

T35B (n=2162) and slightly higher at 0.71 for S50E (n=2407). Correlation between NDVI and 

ET was ~0.6 in both catchments, while NDVI showed a stronger relationship with NPP in S50E. 

A weak negative correlation was found between PSA, NPP and ET. In T35B, PSA had a weak 

positive correlation with NPP, but none in S50E. Detail of the correlations computed per land 

cover class and transition trajectory are provided in supplementary material, Appendix D, Table 

D-1. In contrast to the catchment results, the strongest correlation at land cover class and 

transition level was between NDVI and ET (>0.79). Only persistent forest/plantation (n=42; 

0.55) and trajectory deforestation (n=35; 0.75) in S50E showed a significant correlation 

between NPP and ET. Intensification of agriculture showed a similar strong positive NDVI–ET 

correlation (0.87) response in both catchments, but a negative PSA–NDVI correlation, only the 

correlation between albedo and NDVI was stronger in T35B (n=41; −0.54) as compared to 

S50E (n=117; −0.45). Contrary to expectation, deforestation in T35B showed a positive 

correlation (n=23; 0.7) between albedo and NPP. Afforestation in S50E (n=6; −0.56) displayed 

a negative correlation between albedo and NPP, but a positive correlation in T35B (n=60; 0.63). 

The aggregated catchment correlation masks some of the per class correlations, resulting in 

Simpson’s paradox where groups of data show one particular trend, which is reversed when 

groups are aggregated (Comber et al. 2016). Common in spatial analysis of heterogeneous 

landscapes, this is an example of MAUP (Dark & Bram 2007) where the sample size (n) is 

dictated by the arbitrary land cover aggregation units.  
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The spatial distribution of the correlation between PSA and each of the variables NPP, NDVI 

and ET are shown in Figure 6-5 for T35B (top) and S50E (bottom). Only significant correlations 

(p<0.05) are symbolised, while p>0.05 is shown in grey. ‘No data’ values (white) are visible in 

Figure 6-5D and F where the NPP and ET algorithms did not calculate a value for the Ncora 

dam in S50E.  

 
Figure 6-5 Spatial distribution of albedo correlation with NPP, NDVI and ET 

Negative values (brown) show negative correlation where one variable increases as the other 

decreases. Positive values (green) show positive correlation where variables increase in parallel. 

Pixels where all three variables are significantly correlated with PSA, are highlighted with blue 

(+PSA+ET+NDVI+NPP or –PSA-ET-NDVI-NPP) and red (+PSA-ET-NDVI-NPP or -

PSA+ET+NDVI+NPP) buffers to indicate the direction of the correlation. 

Labels 1, 2 and 3 in Figure 6-5 indicate the spatial location of three points where pixel values 

were extracted to further illustrate the correlation between PSA, NPP, ET and NDVI at local 

scale, linked to specific land cover trajectories. Point 1 represents an area with high negative 

albedo trend (Figure 6-5A), in contrast to Point 3 with a high positive albedo trend (Figure 

6-5B). Point 2 was selected as the middle ground with almost no trend (Figure 6-5B). In the 

case of Points 1 and 3, negative correlation was noted, while for Point 2 positive correlation 

was measured between PSA and NPP, ET and NDVI. It is important to note that each of the 
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variables (NPP, ET and NDVI) can show either positive or negative correlation with PSA at 

different spatial locations. 

6.4.2 Land cover trajectories 

Table 6-4 compares published albedo values to similar land covers as those found in the study 

area.  

Table 6-4 Study area albedo values compared to literature 

 
 S50E T35B   

 
Land cover 

Landsat 
Mean 

MODIS 
Landsat 

Mean 
MODIS 

 
Literature value 

UG grasslands  0.142 0.152 0.146 0.147 0.17 (Matthews et al. 2004) 

FB 
 

shrublands (indigenous & 
invasive trees & bushes)  

0.113 
 

0.133 
 

0.138 
 

0.144 
 

0.17 (Matthews et al. 2004) 
 

BR 
 

bare  0.163 
 

- 
 

- 
 

- 
 

0.20–0.33 (Henderson-Sellers & 
Wilson 1983) 

WB 
 

water bodies  0.126 
 

0.134 
 

0.043 
 

- 
 

0.05–0.20 (Henderson-Sellers & 
Wilson 1983) 

WL wetlands  0.120 - 0.126 0.147 0.10-0.195 (Blok et al. 2011; 
Carrington, Gallimore & 
Kutzbach 2001) 

CL 
 

Croplands 0.146 
 

0.155 
 

0.163 
 

0.154 
 

0.163 (De Oliveira Faria et al. 
2018) 

FP forest/plantation  0.105 0.117 0.113 0.124 0.11 (Matthews et al. 2004) 

UB urban, built-up 0.166 0.163 0.177 0.157 0.1 – 0.9 (Small 2005) 

No persistent bare soil was observed in T35B, while the extent of bare soils and water bodies 

was too small to extract mean MODIS PSA. Similarly, in S50E, mean MODIS PSA could not 

be evaluated for bare soils and wetlands. In this study, UG refers to herbaceous vegetation 

(grassland, savannas and degraded grassland), while in other databases found in literature, such 

as the CORINNE database (Pérez-Hoyos, García-Haro & San-Miguel-Ayanz 2012), grassland 

may refer to greener pastures with a lower albedo value. Similarly, in the case of shrublands it 

is probable that the albedo measured by Matthews et al. (2004) are leafier and thus have a higher 

LAI and lower albedo than in this study area. Pérez-Hoyos, García-Haro & San-Miguel-Ayanz 

(2012) observed that class names used in land cover classification systems are often descriptive 

without providing detail on the criteria used to define these classes. Water bodies and croplands 

fall within the literature ranges, while forest/plantation lies within 0.01 of published values for 

this land cover class, although lower than reported by De Oliveira Faria et al. (2018). 

Table 6-5 summarises significant PSA change (trend slope p < 0.05) and the percentage area 

per catchment occupied by persistent land cover classes and transition trajectory classes, 

measured using both MODIS and Landsat. Significant PSA change is divided into decrease in 

albedo (negative change) and increase in albedo (positive change), given both in percentage of 

catchment area as well as PSA change. PSA change is calculated as the trend slope multiplied 
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by the study period (15 years) to give the expected increase or decrease in PSA per land cover 

class or transition and is highlighted in light grey. Equally, the detail per land cover class is 

presented in supplementary material, Appendix D, Table D-2 and Table D-3. 

Table 6-5 Total and significant change in land cover classes per catchment, reported in percentage of 

catchment and change in albedo [highlighted in light grey] 

Study 
area 

Total catchment Significant change Negative sig. change Positive sig. change 

% area PSA change % area PSA change % area PSA change % area PSA change 

Land 
cover 

MOD LS MOD LS MOD LS MOD LS MOD LS MOD LS MOD LS MOD LS 

T35B   −0.001 0.003 11.1 11.3 −0.013 0.004 7.9 4.3 −0.026 −0.039 3.2 7.0 0.019 0.031 

P 82.7 81.0 −0.001 0.004 7.4 8.4 −0.011 0.007 5.0 2.8 −0.025 −0.039 2.4 5.6 0.018 0.03 

T 17.6 17.8 −0.004 0.001 3.4 2.8 −0.017 −0.002 2.7 1.4 −0.027 −0.04 0.7 1.4 0.023 0.036 

S50E   0.004 0.004 8.5 16.1 0.016 0.017 1.9 4.1 −0.018 −0.026 6.6 12.0 0.026 0.032 

P 75.4 75.5 0.004 0.004 5.4 10.9 0.013 0.013 1.3 2.9 −0.023 −0.027 4.1 8.0 0.025 0.027 

T 20.6 21.1 0.007 0.009 3.0 5.0 0.023 0.029 0.5 1.1 −0.020 −0.027 2.5 3.9 0.032 0.045 

MOD=MODIS LS=Landsat P=Persistent classes T=Transition classes 

As expected, with persistent classes comprising 82% of T35B, the mean change (MODIS, 

Landsat; −0.001, 0.004) for these classes was similar to that of the entire catchment (−0.001, 

0.003). Significant change (9%, 10%) was noted with similar trend directions.  

 
Figure 6-6 Peak season albedo (PSA) in persistent land cover classes over the study period 

Negative trends amounted to a larger negative change to lower albedo values, however, the 

positive change measured with Landsat covered a larger area. For S50E, persistent classes 

covered 75% of the landscape with a mean change in PSA over the study period of 0.004 
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measured by both MODIS and Landsat. Although the area mapped as persistent is almost the 

same among the data sources, the area of significant change (p<0.05) is almost double when 

Landsat is used. Figure 6-6 illustrates the mean PSA for each persistent land cover class 

measured with MODIS and Landsat for T35B (A, C) and S50E (B, D) for the study period. In 

S50E, persistent urban land cover displayed the highest PSA, measured with either sensor 

(Figure 6-6C, D). In contrast, MODIS PSA in urban land cover (Figure 6-6A), showed an 

anomalous result for T35B owing to the fragmented nature of the urban class (n=3; Appendix 

D, Table D-2), representing only 0.1% (n=3) of the catchment area (Appendix D, Table D-2, 

D-3). The urban sites in this catchment have a longer history of human occupation, and are 

characterised by considerably more woody vegetation than rural villages in S50E that are under 

communal tenure arrangements. Shrubland in T35B shows an unexplained trough between 

2002–2006 and 2009–2011 in Figure 6-6B. This could be related to variation in rainfall, IAP 

clearing activities and regrowth. 

Transition classes (Table 6-1) account for 18% in T35B and 21% in S50E (Münch et al. 2017) 

at Landsat resolution. These transition classes measured with MODIS and Landsat respectively 

showed smaller changes in T35B (-0.004, 0.001) compared to S50E (0.007, 0.009). Total area 

of transition in T35B is almost 4% larger when measured with Landsat, while there is only 2% 

difference in S50E, implying more local scale and fragmented transition in T35B.  

 
Figure 6-7 Peak season albedo (PSA) in transition classes over the study period  

[If-woody encroachment, Re-reclamation, R-afforestation, CAT-catchment average, Ia-increased 

cultivation, Iu-increased urban, D-deforestation, De-degradation, A-abandonment] 

Stellenbosch University https://scholar.sun.ac.za



126 

 

 

 

Between 2000 and 2014, gradual ecological change (woody encroachment, abandonment, 

degradation and reclamation) caused a positive significant increase in albedo for all Landsat-

based classes (Supplementary material, Appendix D, Table D-2 and D-3), however, the affected 

area covers less than 2% of the two catchments.  

In contrast, when MODIS data was used, only woody encroachment and reclamation caused 

increases in albedo. Therefore, it is clear that the detail of change in the landscape is not 

effectively captured using only MODIS data. Figure 6-7 illustrates the relationship between the 

transition classes and PSA from MODIS and Landsat compared with the catchment average 

PSA (black line). Degradation, urban intensification, increased cultivation and abandonment 

all have higher than catchment average PSA. These classes are all associated with increased 

bare surfaces with higher albedo. Increased cultivation also results in a higher albedo, due to 

clearing of existing vegetation to establish crops, the fraction of bare ground between standing 

rows or desiccation in fallow fields. In both catchments, the effect of degradation (De) is much 

larger when PSA is measured using Landsat, but the percentage is low (0.1% in both 

catchments). Deforestation (D) shows the expected increase in PSA in S50E, but not in T35B 

where it follows the afforestation (R) curve, possibly indicative of a classification error in the 

land cover products due to replanting of young trees. 

6.4.3 Season-trend model 

 
Figure 6-8 Estimated trends on three selected points decomposed using season-trend model (STM) in package 

greenbrown in R [Red squares indicate structural breaks, while blue and green stars indicate 

significance of trend segments] 
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The estimated trend and breakpoints from the deconstructed 8-day albedo time series using the 

STM method (Forkel et al. 2013), extracted for Points 1, 2 and 3 (Figure 6-5) are depicted in 

Figure 6-8. Significant structural breakpoints (95% CI) are indicated by red squares and 

horizontal red lines. The trend line on 8-day time series, between significant breaks, is added 

in blue. The significance of the trend line segments is indicated by blue stars to show the p-value 

(*** p<=0.001, ** p<=0.01, * p<=0.05). The slope and significance of the trend line on annual 

aggregate is added in blue text, with the p-value illustrated with green stars on the trend line. 

Trend for Point 1, with persistent forest/plantation (FP) and trajectory afforestation (Ra), shows 

a significant overall decrease of albedo (p<=0.001 green *) with three significant breakpoints, 

each with significant trend (blue *). The overall slope indicates a small but significant negative 

change. Point 3 indicates the opposite trajectory with Da (deforestation) resulting in an increase 

of albedo (p<=0.001). Two breakpoints are indicated with three significant segments (p<=0.01). 

Point 2 is an example of persistent grassland (UG) where the overall trend shows a very small, 

insignificant increase. Structural changes occurred at all three points in 2007.  

 
Figure 6-9 Inter-annual variability standard deviation (IAV sd) (A-T35B, B-S50E) and seasonal range (C-

T35B, D-S50E)  of albedo measured on all pixels from the 8-day MODIS product 

Estimated IAV (annual anomalies) and seasonality (mean seasonal cycle) are shown in Figure 

6-9 for all pixels in the catchments, not only those with significant change. In Figure 6-9, the 

IAV is shown in the left panel, while the seasonal range is shown in the right panel for T35B 
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(top; A, C) and S50E (bottom; B, D). Over the study period of 15 years, albedo in S50E 

fluctuated annually with a mean of 0.0041, very similar to the mean of 0.0045 in T35B. 

However, the IAV for the two catchments were found to be significantly different (p<0.001; 

Wilcoxon rank sum test). The highest frequency of pixels varied with standard deviations (sd) 

between 0.003 and 0.005. Similarly, the mean seasonal cycle in the two catchments — based 

on 8-day MODIS albedo values — are significantly different (p<0.001; Mann-Whitney U test 

for non-parametric data). The albedo can vary between 0.01 and 0.08. Distinct spatial patterns 

are noted in the maps in Figure 6-9. 

6.4.4 Modelling ET and NPP 

In Table 6-6, the area percentage for modelled persistent land cover classes in 2030 are 

compared with the size of these land cover classes in 2014. Table 6-6 also includes the net 

change, as well as the mean trend calculated from MODIS. Based on the mean MODIS PSA 

change and relationships with NPP and ET, three scenarios for future NEE and water use were 

calculated: (1) lower mean albedo indicating proliferation of woody vegetation; (2) mean 

albedo, the status quo persists; and (3) higher mean albedo, with conversion to agriculture and 

urban intensification dominating future transitions. 

Table 6-6 Modelled net ecosystem carbon exchange (NEE) and water use for persistent land cover classes in 

S50E (bold) and T35B (italics) 

 
Land cover class 

UG  
(grassland) 

FB (woody 
encroachment) 

CL  
(croplands) 

FP (forest/plantation) 
UB  

(urban) 

Catchment T35B S50E T35B S50E T35B S50E T35B S50E T35B S50E 

% area 2014 79.9 56.9 4.0 10.5 6.2 18.2 8.3 1.8 0.2 9.5 

% area 2030 79.7 52.1 3.1 9.9 6 20.0 9.8 0.7 0.2 14.4 

Net %change  -0.2 -4.8 -0.9 -0.6 -0.2 1.7 1.5 -1.1 0 4.9 

PSA trend † † * * † †† *** ** ** †† 

%Persistence 72.7 44.7 0.4 5.5 4.3 15.0 6.8 0.4 0.1 8.5 

NEE  
(103 kg C) 

2014 2027 1633 53 213 138 408 206 71 2 129 

High 2021 1323 12 181 124 392 238 17 2 236 

Med 2690 1739 17 237 169 521 292 21 2 316 

Low 4605 2832 28 383 291 843 358 23 4 518 

ET  
(103 m3) 

2014 1437 1182 36 156 96 303 127 37 1 94 

High 1403 855 8 122 85 263 144 10 1 152 

Med 1520 1007 9 140 93 316 170 12 1 185 

Low 1714 1163 10 160 105 378 190 14 1 219 

Negative trend= *** <-0.0005   ** <-0.0002    * <-0.0000 Positive trend=† >0.0000    †† >0.0002    ††† >0.0005 

In the higher albedo scenario, the total modelled NEE in 2030 for persistent classes in T35B 

could reduce by 1% when compared with 2014. Should a low albedo scenario ensue, an increase 

of more than 80% could be obtained with a catchment mean of 3.2 × 106 kg C based on the 
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mean time series NPP. Similarly, water use could decrease by almost 3% or increase by up to 

19% for persistent classes. In T35B, the total change (gain and loss) in the landscape over all 

land cover classes was 15.5% for modelled period 2014 to 2030 (Gibson et al. 2018), compared 

with 18.2% for the period between 2000 and 2014 (Münch et al. 2017). Trajectory labels 

indicating gradual and abrupt changes are responsible for the difference between persistence 

and the total modelled NEE and water use in the catchment. Trajectories abandonment, 

reclamation and degradation increase grasslands, woody encroachment boosts shrublands, 

increased cultivation, afforestation and urban expansion respectively, result in higher croplands, 

forest/plantation and urban. Afforestation was the strongest modelled trajectory in T35B 

showing a net gain of 1.5% and a strong negative albedo trend. These changes could produce 

an additional 0.5–1.1 × 106 kg C and 0.3–0.4 Mm3 ET.  

For S50E, the total change over all land cover classes was 23% for the same modelled period 

(Gibson et al. 2018). By comparison, the period between 2000 and 2014 exhibited 21% change 

(Münch et al. 2017), assuming a similar map accuracy for the modelled map. The modelled 

NEE for persistent classes varies between 2.1 and 4.6 × 106 kg C, with modelled water use 

varying between 1.4 and 1.9 Mm3. In 2014, these values were 2.5 × 106 kg C and 1.8 Mm3 

respectively (Table 6-6). Changes to the landscape could account for NEE of 0.7–1.6 × 106 kg 

C and water use of 0.5–0.7 Mm3. The expected scenario for S50E is increased PSA due to 

intensification of agriculture, lower NEE and water use, depending on which land cover class 

is replaced. 

6.5 DISCUSSION 

6.5.1 Land cover change and trend analysis 

Land use and land cover change in the selected catchments have affected ecosystem services 

provided by land cover classes, particularly grasslands. Although land use patterns are 

characterised by relatively high persistence (Figure 6-1), it is clear that human activities are 

having an increasing impact on the size of the rangelands and consequently, the productivity of 

the landscape. The availability of dense time series satellite images enables degradation to be 

assessed not merely in terms of land cover change vectors but with more sophistication through 

identifying trends or catastrophic changes across the time series. As was shown in this study, 

land cover change analysis using only categorical land cover maps can neither identify a decline 

in the productivity of grasslands nor minor intrusions of shrubs and woody vegetation into the 

landscape. However, transitions can be identified and from analysing time series data in these 
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transition classes, from which a more nuanced understanding of long-term changes can be 

gained.  

The results have shown that important transitions that have occurred from 2000 to 2014 (Münch 

et al. 2017) are likely to continue into the future (Gibson et al. 2018) with alien invasion, 

afforestation, rehabilitation, and increased livestock production identified as factors that could 

affect water use and carbon storage either positively or negatively. Analysis of the 

characteristics of albedo trends, linked to catchments and land cover change trajectories, 

provide a deeper understanding of how these changes may influence NPP and ET, precursors 

to future carbon storage and water use potential in the carbon-water nexus. 

Despite being actively targeted in many of the transitions in the catchment, grassland (UG) 

remains the dominant cover, and has the greatest effect on the catchment albedo, remaining 

constant over the study period (Figure 6-6). As LAI and fPAR measured for shrubland (Figure 

6-6 and If in Figure 6-7) and croplands (Figure 6-6) in the catchments (Palmer et al. 2017) are 

higher than that measured for grassland, conversion would result in a potential gain in carbon 

storage (NEE), but a higher water demand by vegetation. When considering mean Landsat and 

MODIS albedo values (Table 6-4), conversion from shrubland presenting a lower mean albedo 

than grassland, should cause a gradual decrease in albedo of ~0.03 (Table 6-4). Contrary to 

expectation, the grassland to cropland transition shows an increase in albedo. This reason for 

the increase is two-fold: (1) the land tenure system, where farming is interspersed with rural 

housing gives rise to an increase in degraded surfaces with associated higher albedo, and (2) 

due to lower rainfall, agricultural production decreases with dry bare soil for parts of the year 

post-harvest increasing the mean albedo for this class. These factors result in higher inter-annual 

variation (Figure 6-7). Continuous grazing by livestock also contributes to rangeland 

degradation and increase of albedo due to reduction in the basal cover of herbaceous plants 

(mainly grasses) (Bennett, Palmer & Blackett 2012). Urban expansion and intensification 

increased the albedo when natural woody areas were replaced by housing. 

Similar spatial patterns of PSA were observed when comparing mean MODIS PSA with 

Landsat PSA (Figure 6-3), although the values differ significantly (p < 0.05). It was noted that 

the coarser MODIS resolution causes spatial smoothing that masks the detail captured at higher 

Landsat resolution, especially for small fragmented land cover classes, where coarse pixels with 

mixed land cover classes will be dominated by greener vegetation (Zhang et al. 2017). The 

spatial smoothing may then in turn result in misleading temporal patterns when analysing the 

MODIS derived data. On the other hand, although Landsat has superior spatial resolution and 

despite the long record of the freely available Landsat data archives (Hansen & Loveland 2012), 
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MODIS offers a higher temporal resolution lending itself to a more dense time series and, as a 

result, a more detailed temporal analysis.  

As a consequence of lower temporal frequency, calculation of PSA using Landsat can become 

problematic when limited cloud-free images are available for the growing season. For example, 

a lower mean albedo may be calculated, from which could be concluded that more carbon can 

be sequestered than may happen in reality, and thus translating into higher expected water use. 

Forkel et al. (2013) demonstrated that the performance of trend estimation methods decreased 

with increasing inter-annual variability. Zhai et al. (2015) recommended reducing seasonal 

variation by using PSA. Seasonal effects on the time series analysis are illustrated by high inter-

annual variability (Figure 6-9) at, for example the Ncora dam inflow, the perennial Nququ River 

in the west and the Tsomo River in the north of S50E and the confluence of Pot and Little Pot 

Rivers in T35B. The range of the seasonal cycle (Figure 6-9) was largest in areas of steep slope 

(>25%), usually classified as persistent grassland. Therefore, the use of PSA rather than full 

time series albedo would reduce overall time series variation and likely increase the 

performance of trend estimations. 

The main land cover change trajectories recorded in the catchments are reflected in the 

measured NDVI, NPP and ET patterns. Changes in carbon storage and water use can be related 

to: (1) alien invasion and afforestation that decrease albedo but increase water use and carbon 

storage and (2) livestock production that increases water use, but could result in grassland 

degradation with increased albedo, and rehabilitation (reclamation) that reduces water use and 

carbon storage. Given the reliance of NPP, ET and NDVI on water availability, as expected 

these MODIS calculated variables displayed a positive correlation with rainfall (as rainfall 

increased, each of these variables increased). Confirming this reliance on precipitation, lower 

NPP, ET and NDVI were measured in 2003 when lowest rainfall was recorded. Similarly, 2006 

stands out as a year with high rainfall and high NPP and ET in both catchments, although NDVI 

did not increase significantly (Figure 6-4). However, a weak negative trend across the period 

of study was detected as less rainfall over time was recorded. S50E, the catchment under 

dualistic land tenure, was more affected by the low rainfall, with lower NPP, ET and NDVI 

(Figure 6-4). 

6.5.2 Catchment differences 

Correlation analysis between PSA and the variables NPP, ET and NDVI at catchment scale 

(Table 6-3), showed similar trends with negative correlations between PSA and NDVI, and 

PSA and ET. A positive correlation was determined between PSA and NPP in T35B, but with 
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no significance in S50E. However, significant positive correlations were recorded between ET 

and NDVI in all persistent land cover classes and transitions, namely greener vegetation 

associated with higher water use (supplementary material, Appendix D, Table D-1). 

Intensification of wooded areas revealed different patterns in the two catchments, where the 

increase of woody biomass should increase NPP and ET, while albedo decreases. Transition 

trajectories that describe conversions from multiple land cover classes, such as deforestation 

(removal of forest to be replaced by other land cover) or afforestation (gradual ecological 

change to plantations from either grassland or previously wooded areas) encapsulates opposing 

trajectories, which may affect the correlation results especially in transition classes smaller than 

the MODIS footprint. The results of transition correlations may also be confounded by the 

difference in resolution of land cover data and biophysical parameters. This illustrates the effect 

of scale on spatial analysis, where the size, shape and placement of arbitrary aggregation units, 

such as categorical land cover maps may lead to incorrect interpretation of results in 

heterogeneous landscapes (Comber et al. 2016; Estes et al. 2018). 

In T35B, the commercial agriculture catchment, intensification of woody invaders in the upper 

reaches of the Pot River and Little Pot River is offset by reclamation to grassland (possibly 

degraded) in the lower reaches (Figure 6-1). The transition from shrubland to grassland is 

expected to increase albedo in this catchment based on mean MODIS and Landsat values 

extracted (Table 6-4). However, persistence of shrubland may be accompanied by densification 

of woody vegetation, which would not be noticed in the land cover change analysis as the land 

cover class remains constant. While afforestation (R in Figure 6-7) is the strongest trajectory in 

T35B, conversion to forest/plantation from all other classes will result in lowering of albedo. It 

is likely that the decrease in surface albedo could result in an increase in the absorption of 

energy, leading to higher temperatures (Rotenberg & Yakir 2010). Higher NPP was noted for 

T35B than in the dualistic catchment S50E, with declining patterns of NPP observed in both 

catchments (Figure 6-4). However, mean MODIS albedo trend decreased, with Landsat 

showing a positive increasing trend in PSA (Table 6-5).  

The net carbon storage for persistent classes in 2014, modelled from mean NPP values, was  

3.2 × 106 kg C, giving a higher carbon value than extracted directly from the MODIS product 

for 2014. This leads to the conclusion that using the time series mean for modelled values may 

overestimate the NEE (and ET) in 2030. Although land cover change modelling predicted an 

increase in commercial forestry, with associated increase in NPP, grassland is still the largest 

land cover class, contributing less to catchment carbon sequestration. In 2030, the expected 

carbon storage based on 2014 figures would, therefore, be no higher and could even decrease. 
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However, using mean MODIS NPP values, an increase of 30% in NEE was modelled. Water 

use in the catchment is expected to vary between −3% and +19% with water use efficiency 

(WUE) remaining constant at approximately 1.5 kg.m-3. 

For S50E a positive albedo change trend over the 2000–2014 study period was observed (Table 

6-5). When considering a scenario where mean albedo prevails and the positive trend does not 

continue, net carbon storage for persistent classes could increase by 15% to 2.88 x106 kg C by 

2030 based on land cover change. However, a more likely scenario is an increase in albedo due 

to degradation and decrease of grasslands, intensification of agriculture and urbanisation 

resulting in a decrease of 12% in modelled NEE, mirroring the decline in NPP over the period 

of the study (Figure 6-4E). In 2014, 1.8 Mm3 of water was used by persistent classes in S50E 

recorded as ET, resulting in WUE of 1.4 kg.m-3. Total catchment ET for persistent classes could 

decrease by 6% in 2030 based on mean time series ET values, and may reduce to as low as 

1.4 Mm3, resulting in a reduction of 21%. However, should albedo decrease, ET could increase 

by 9% in persistent land cover classes. 

6.5.3 Implications 

Land cover change brought about by woody encroachment of grassland and in particular the 

densification of existing patches (Gouws & Shackleton 2019; Gwate et al. 2016) will typically 

alter carbon sequestration and cycling (Hughes et al. 2006; Oelofse et al. 2016). Although 

technically regarded as a degradation gradient in the landscape (Münch et al. 2017) due to the 

effect on biodiversity and ecosystem services, this land cover change (woody encroachment 

and densification) can potentially act as a carbon sink (Oelofse et al. 2016) due to an increase 

in woody biomass (Scholes & Archer 1997). Invasion of grassland by IAPs can also reduce 

productivity due to a loss of rangeland productivity for livestock production. Acacia spp. are 

effective in utilising available resources more efficiently and may therefore outcompete native 

species by altering local conditions (Lorenzo et al. 2016; Rodríguez-Echeverría et al. 2013; 

Sholto-Douglas et al. 2017). However, the value and use of IAPs as an ecosystem service is 

reducing in the study areas due to increased rural–urban migration and the increase in the 

number of households supplied with electricity (Ngorima & Shackleton 2019). The cost of IAPs 

in the study areas will soon outweigh the benefits, resulting in a net negative trade-off. Gouws 

& Shackleton (2019) suggested that IAP invasion would continue to increase in the Eastern 

Cape unless deliberate land management intervention takes place. This has implications for 

national-scale invasion management strategies such as the Working for Water programme in 

South Africa (Van Wilgen & Richardson 2014). Though grasslands are predicted to decrease 
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in favour of woody invasive plant species and cultivated land, this study predicted a decrease 

of 12% and 6% respectively in net carbon storage and water use by vegetation. This is in 

contrast to expectation where previous studies (Palmer et al. 2017), measuring LAI and fPAR, 

indicated that woody encroachment would represent a gain in both catchment net ecosystem 

carbon exchange and evapotranspiration. 

The novelty of this study lies in the application of dense time series analysis of 15 years of data 

on surface energy balance, water and carbon sequestration parameters for catchments under two 

different land management regimes. The study uses previous land cover change and future 

scenario analyses, combined with the season-trend model output to quantify carbon 

sequestration and water use, both for areas of no change (persistent classes) and areas that have 

transitioned from one land cover to another. The release of satellite image archives and the 

possibility of online bulk processing through platforms such as Google Earth Engine are 

allowing more subtle yet refined analyses of land cover changes. Not only can the changes 

themselves be quantified in terms of categorical land cover maps, but persistence and transition 

between and within classes has become possible.  

Analysing remotely sensed data products such as albedo, NPP and ET can lead to a better 

understanding of trends in the functioning of catchments generally and rangelands specifically. 

Declining trends, as seen in albedo, NPP and ET (Figure 6-4) may be caused by regional climate 

trends. Information from multiple sources, both quality and type, can contribute to an enhanced 

understanding of degradation in rangeland productivity (Eddy et al. 2017), relating degradation 

to the impact of climate versus land management by investigating dual catchments with similar 

climate regimes but clearly different management practices (Eddy et al. 2017). Quantifying the 

changes in these biophysical parameters can assist scientists and managers in addressing the 

global challenges of our times. 

6.6 CONCLUSIONS 

It was found that the spatial and temporal characteristics of the different sensors are useful for 

highlighting differing aspects of change in the study area: Landsat’s resolution is well suited 

for highlighting spatial change, but MODIS temporal resolution is ideal for a complete long-

term dense time series. The presence of many small and fragmented land cover classes in these 

catchments suggest that analysis of albedo, NPP and ET derived from satellite data with similar 

resolution would be ideal. Further research is recommended to explore the use of higher 

resolution satellite data to effectively model carbon storage and water use. The Google Earth 

Engine platform provides shared geoprocessing algorithms (Gorelick et al. 2017) and access to 
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long-term data (Hansen & Loveland 2012), that can be used to generate detailed maps (Forkel 

et al. 2013) to model future scenarios.  

Furthermore, the advent of new sensors, such as the European Space Agency’s Sentinel-2 

satellites, with 5-day revisit time and up to 10 m spatial resolution, may provide a better 

alternative for time-series analysis. In particular, the red-edge bands will allow determination 

of rangeland quality (Ramoelo et al. 2015). However, since Sentinel-2B was only launched in 

March 2017, it will take time before this data can be used for long-term studies. In the 

meantime, taking an ensemble approach with Landsat and MODIS allows for the benefits of 

each sensor to be exploited. 

Based on trend analysis, the study revealed little change in catchment mean albedo at the time 

of peak vegetative growth. This implies little to no change in either carbon capture potential or 

WUE of each catchment at the peak of the growing season. However, since inter-annual 

variation can affect the accurate calculation of trends (Forkel et al. 2013), the PSA was used to 

minimise these effects in this study.  

As expected, a strong positive correlation between ET and NDVI was found, as greener 

vegetation is associated with higher water consumption and a decrease in albedo is correlated 

with an increase in ET and NDVI. Some transitions, however, include opposing albedo change 

vectors, confounding correlation analysis between these variables. Consequently, it is 

recommended that separate transition classes be analysed for opposing vectors.  

Although the comparison of ET in grassland performed by Gwate et al. (2018) found lower 

values prior to 2003, this may be ascribed to the different method used to extract values from 

land cover maps with potential uncertainty, especially for grassland, a large dormant class. This 

confirms the importance of accurate land cover maps for modelling (Estes et al. 2018) as the 

reliability of downstream analyses can be impacted with substantial risk of error magnification 

(Scholes & Archer 1997). 

It is probable that a decrease in precipitation leads to desiccation of vegetation and soil, thus 

resulting in a higher albedo. The cause and effect of a positive correlation between PSA and 

rainfall (increased PSA with increased rainfall as seen in 2006–2007) is yet to be established 

and it may be that, at local scale, increased albedo is driving a decrease in rainfall, as suggested 

by Doughty, Loarie & Field (2012) and Loarie et al. (2011).  

Finally, predicted land cover for the year 2030 was used to postulate consequences of the 

change on catchment water and carbon fluxes. The expected decrease in net carbon storage and 
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water use by vegetation confirms recommendations for land and water resources management 

interventions in catchments under dualistic farming systems (Chapter 5), such as S50E. 

Accurate land cover classes and change trajectories are required to successfully model scenarios 

for future land cover change that may affect ecosystem services. Even though map errors in 

land cover maps affect the understanding of socioeconomic and environmental patterns and 

processes in landscapes, such maps remain an essential resource in describing and quantifying 

such processes (Estes et al. 2018). Higher quality input datasets would provide higher 

confidence levels in the overall observed change. A large dominant class, such as grasslands, 

may be easier to classify and exhibit smaller errors than highly fragmented classes, such as 

woody outcrops (FB) or wetlands (WL) due to spatial and temporal autocorrelation (Congalton 

2001; Pontius & Lippitt 2006). This research has demonstrated that albedo can be an effective 

parameter for the detection of environmental change. Albedo could be considered a proxy for 

land cover and land cover change in studies investigating ecosystems services, capturing 

changes in productivity.  

This concludes the reporting of the empirical results of this dissertation. The next chapter 

provides a summary and reflective restatement of the research. 
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CHAPTER 7:  SYNOPSIS — Emva kwe dywabasi  

As part of project “Emva kwe dywabasi9”, this study set out to demonstrate how land cover 

change, in particular, encroachment by woody vegetation, impacts landscape function delivered 

by grasslands in the Eastern Cape. Land cover change has arguably the greatest effect on climate 

change and landscape function globally and is triggered primarily by anthropogenic land use 

change. As a result, land use and land cover change affect biophysical characteristics at the 

earth’s surface and can be measured using remote sensing. Woody encroachment into the 

grasslands of the Eastern Cape of South Africa have been a threat to the function and 

productivity of rangelands and is threatening rural livelihoods, exacerbated by rising CO2 levels 

associated with climate change.  

In this study, systematic land cover change analysis and future modelling were performed to 

determine land cover change trajectories and flows in the landscape. Trends in remote sensing-

derived biophysical variables were analysed to determine how land cover change would affect 

the surface energy budget and the carbon cycle, providing local communities with a better 

understanding of future water use and rangeland productivity. This research sought to address 

the following research questions: 

How accurately can transformations in land cover be quantified using existing datasets? 

 

How does the pattern of error in land cover change datasets affect modelling of 

evapotranspiration and carbon storage? 

How do trends in biophysical drivers and characteristics of land cover change 

trajectories differ from one region to another? 

How can ecosystem stress be characterised using Earth observation data and time series 

analysis?  

Four main objectives were set to address these questions. These objectives were addressed in 

Chapters 3 to 6 (Figure 1-1). Each chapter has been written as a freestanding article and the 

main findings from the particular experiment were summarised within the respective chapters, 

titled: 

 Chapter 3: Characterising degradation gradients through land cover change analysis; 

 Chapter 4: Global and local patterns of landscape change; 

 Chapter 5: Accuracy of modelled future land cover; and 

                                                 
9 After the wattle in isiXhosa (Section 1.7) 
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 Chapter 6: Monitoring effects of land cover change on biophysical drivers in 

rangelands using albedo. 

The next section provides a synthesis of the research findings in response to each of the research 

questions, followed by the contribution of this research to knowledge. This leads to a discussion 

on the study limitations and recommendations for future research, before making some 

concluding remarks.  

7.1 SYNTHESIS OF FINDINGS IN RESPONSE TO RESEARCH QUESTIONS 

Change in land cover were detected for different combinations of periods from four time steps 

(1990, 2000, 2014 and 2030) and over three quaternary catchments (S50E, T12A and T35B) 

under different land tenure systems (bilateral and freehold). Existing land cover datasets (1990, 

2000), modified (2000) and newly generated products (2014, 2030) were used for the analyses. 

The following subsections reflect on each of the research questions and critically evaluate to 

what extent this research has addressed each.  

7.1.1 How accurately can transformations in land cover be quantified using existing 

datasets? 

Concentrating on Objectives 110 and 211, Chapter 3 (Münch et al. 2017) described the land cover 

classification and subsequent change analysis performed for three grassland-dominated 

quaternary catchments (S50E, T12A and T35B) in rural Eastern Cape, South Africa. Data from 

two time steps (2000 and 2014) were selected to characterise land cover, namely (1) existing 

land cover data for 2000 and (2) land cover map for 2014 generated using object-based image 

analysis (Chapter 3). Grappling with Objectives 110 and 312, Chapter 4 explored the quantitative 

frameworks of intensity analysis and the change/disagreement budget to describe land cover 

change analysis in S50E for two periods: (1) 1990-2000, by introducing an existing dataset 

from 1990; and (2) 2000-2014, by using the same datasets as in Chapter 3. The square 

contingency table (confusion matrix or transition matrix) is at the centre of these analyses, from 

which statistics about classification accuracy and land cover change were calculated.   

Theoretical accuracy of a land cover change map was computed as the product of the input map 

accuracies. Theoretical accuracies for the land cover change maps varied between 56% and 

76% (Chapter 3, Table A-3; Chapter 4, Discussion). If change maps with reliability higher than 

75% were required, the map accuracies for input land cover datasets would have to be improved 

                                                 
10Perform systematic land cover change analyses on existing data products using LC conversion labels and intensity analysis.  
11Characterise spatial patterns of land change dynamics using LC conversion labels to represent and interpret transitions.  
12 Apply quantitative techniques of intensity analysis to describe and interpret patterns of land change. 
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to ~99% (Chapter 3). Achieving these levels of accuracies at Landsat resolution is unlikely, 

suggesting that some uncertainty in both the classification results and the change results must 

be accepted.  

Land cover change detection was performed by image overlay using a transition matrix for 

change analysis. Four different scenarios of location of map error were considered, specifically, 

(1) randomly distributed error; (2) error that can occur at all places; (3) error that exists only in 

places that match; and (4) error that exists only in places that differ. Land cover change ranging 

from 18–42% was computed. A change of 19% was calculated from direct overlay of land cover 

maps with 30 m resolution pixels, assuming random error (Chapter 3). Furthermore, the 

intensity analysis framework (Chapter 4) was used to analyse land cover change in maps at 

interval, category and transition level, by comparing change intensity (rate of change per year) 

with uniform or random change. The land cover change was then characterised as persistence, 

gain or loss at each level and important transitions were identified.  

Hypothetical error that could account for land cover change was computed by comparing the 

observed change intensity with random change (Chapter 4). Larger values for hypothetical error 

are indicative of probable map error. Land cover class transitions with highest hypothetical 

error were identified. As expected, land cover classes Bare Soil (BRS) and Wetlands (Wl) 

showed the highest hypothetical error (Chapter 4) in the change analysis. These classes were 

also highlighted in Chapter 3 as having poor user’s and producer’s accuracies during land cover 

classification. Woody plant encroachment (FITBs) showed a high commission error in both 

size and intensity for 1990–2000 analysis, likely due to map error in the 2000 dataset (Chapter 

4). Land cover change was also deconstructed into a change budget of quantity, exchange and 

shift disagreement from the transition matrix. Despite the ease of understanding, these results 

obtained from the transition matrix are not spatially explicit.  

By performing hierarchical multi-resolution spatial aggregation, it could be demonstrated that 

at coarser resolutions, exchange and shift disagreement disappeared, while quantity 

disagreement could provide a realistic value for the total change in the landscape. This result 

could be attributed to land cover classes that changed position at the finest resolution. In 

sensitivity analyses of detected change, Pontius & Lippitt (2006) found that about half of the 

observed difference over time could be explained by error. This finding was supported by the 

allocation change intensity of greater than 50% computed for the two periods (Chapter 4). 

To gain a clearer understanding of the location of hypothetical error, Chapter 4 described how 

the change budget could also be computed at local scale by constructing a geographically 
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weighted transition matrix. Spatially explicit probabilities of error per land cover class were 

constructed by combining components of the intensity analysis framework with local 

correspondence matrices. The overall allocation difference maps highlighted hotspots of change 

and probable error for further investigation (Chapter 4), leading to the conclusion that the 

suggested combination of global and especially local analyses from the transition matrix, should 

be used to accurately quantify map error in existing land cover datasets. 

Results from Chapter 3 and 4 indicated that map error in input land cover classification 

datasets had the greatest effect on the accuracy of measured land cover change. Lack of 

adequate reference data or imperfect reporting of accuracy results affect the explanations 

of the processes depicted in land cover change maps. By implementing a change budget, 

quantity disagreement could be used as a reliable measure of minimum change in the 

landscape, which would be valid at multiple scales. Change budget maps produced from 

geographically weighted contingency tables could be used to provide spatial context to 

map error.  

7.1.2 How do trends in biophysical drivers and characteristics of land cover change 

trajectories differ from one region to another? 

7.1.2.1 Spatial patterns of land change dynamics 

The study followed two different approaches in understanding land cover change dynamics. 

Firstly, an indicator approach was designed based on process flows in the landscape; and 

secondly, direct transitions between land cover classes from time step 1 and time step 2 were 

compared with each other, analysed using the intensity analysis framework and change budget. 

Seven main flows or trajectories were identified in the landscape. Persistence generally 

dominates the landscape and can be described as areas where no land cover change has been 

measured. Intensification represents the transition of a lower intensity to a higher intensity 

usage, such as transitions from grassland to woody vegetation or agriculture. Clearance or 

planting of trees, with particular reference to plantations, were characterised respectively as 

deforestation and afforestation. In areas where higher intensity usage was converted to a lower 

intensity usage, such as degradation of grasslands or reclamation where woody encroachment 

was cleared or has disappeared, the flow was described as extensification. The term natural 

dynamics was used to represent seasonal conversions. Exceptionality describes improbable land 

cover conversions that could not exist in reality and could potentially be used to identify 

classification errors.  
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Land cover change labels, developed to identify landscape change trajectories, were assigned 

to each intersection of the land cover maps at the two time steps. These land cover labels provide 

a thematic representation of the spatial distribution of change and simplify understanding of the 

processes involved (Chapter 3). Sub-models for future land change modelling (Chapter 5) were 

subsequently developed using these land cover labels. However, for some of these land cover 

labels, opposing albedo change directions were found under the same label (Chapter 6), which 

may have had a confounding effect on the results. Some of the trajectory labels defined 

transitions from multiple land covers to a single land cover, or to multiple land covers with 

different characteristics (Chapter 6). Nonetheless, homogenous landscape units associated with 

clearly identified persistent trajectories were used to characterise water use and carbon fluxes 

for sustained landscape health from remote sensing products (Chapter 6).  

While land cover patterns were characterised by high persistence (77%) in all three catchments, 

the landscape trajectories classified as rangeland degradation, woody encroachment, 

urbanisation, increased dryland cultivation and commercial afforestation were identified as 

drivers of landscape modification affecting landscape function. Considering that the class 

describing woody encroachment (FITBs) contained a large variety of vegetation types, 

including indigenous forest, thicket, bushland, bush clumps, high fynbos and alien plants that 

are spectrally similar and could not be separated using Landsat imagery, it is not surprising that 

this class demonstrated a low producer’s accuracy (Chapter 3) and high hypothetical map error 

(Chapter 4). Despite the uncertainty associated with this transition, persistence and 

intensification of wooded areas, by native or invasive species, were recognised as a degradation 

gradient within the landscape, amounting to almost 10% of the study area. The presence of 

invasive alien plants, included in the Woody encroachment class, is known to affect biodiversity 

and landscape function (Chapter 3).  

Urban intensification was measured in the catchments where subsistence farming is practised 

(S50E and T12A) with expansion around existing villages (Chapter 3). In contrast, no urban 

intensification was measured in the commercial catchment T35B. However, commercial 

agriculture (4% of study extent) emerged as increased productivity of the landscape, with land 

use intensification associated with a productivity-driven landscape (Chapter 3). 

Notwithstanding, net carbon storage in the catchment, measured by the MODIS net primary 

production product, did not increase significantly between 2000 and 2014 (Chapter 6).  

Due to the ongoing work of Working for Water in the area, and grassland rehabilitation plans 

for the project at large, the study placed a great emphasis on reclamation. However, less than 

three per cent reclamation was noted in T12A and S50E, the catchments under bilateral tenure. 
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In contrast, in T35B, freehold tenure, the six per cent of woody encroachment returned to 

grassland, was partly attributed to the low accuracy of the land cover change map (Chapter 3). 

The intensity analysis framework is commonly used to describe categorical changes between 

two datasets, summarised in a square contingency table. Though the total change in area 

constituted approximately 20% of the S50E catchment, the change intensity over the ten-year 

period from 1990-2000 was reported as faster than uniform at interval level. A four per cent 

hypothetical commission error was computed implying that change was mapped, while the 

hypothesis suggested persistence. Conversely, observed change was slower than uniform 

during 2000-2014, with the implication that some change was omitted. At interval and category 

level, the computed hypothetical map error pointed to an unusual amount of error associated 

with the 2000 land cover dataset (Chapter 4). Partitioning the change budget into quantity, 

exchange and shift intensities indicated that 46% of change for 1990–2000 could be assigned 

to change in quantity, while for 2000–2014 only 38% of change was associated with quantity. 

This was is in agreement with the findings in Chapter 3. Error due to change in location of 

classes amounted to almost 10% of the total area of change for 2000–2014 (Chapter 4). 

7.1.2.2 Trends in biophysical drivers 

Based on persistent landscape units, trends in biophysical drivers were described (Chapter 6) 

using Landsat and MODIS satellite data, in support of Objective 413. Landsat resolution was 

found to be best suited to highlight spatial change. However, obtaining a dense time series of 

cloud-free Landsat imagery proved to be difficult. Conversely, the temporal resolution of 

MODIS imagery was ideal for obtaining a complete long-term dense time series. Based on the 

analyses it was found that, owing to the presence of many small fragmented land cover change 

classes in the catchments, imagery with spatial resolutions similar to Landsat and temporal 

resolutions similar to MODIS would provide the best results, potentially eliminating the risk of 

Simpson’s paradox (Chapter 6).   

Based on the 2000–2014 trend analysis, Chapter 6 revealed little change in catchment mean 

albedo at the time of peak vegetative growth, which was analysed to minimise the effect of 

inter-annual variation. The stable albedo trend was linked to little or no change in either carbon 

capture potential or water use efficiency of each catchment at the peak of the growing season. 

Trends in biophysical variables describing carbon storage (NPP), water use (ET) and vegetation 

vigour (NDVI), though strongly related to that of the rainfall pattern, showed only a weak 

negative linear trend. As expected, a strong positive correlation between ET and NDVI was 

                                                 
13 Characterise the relationship between LC change and ecosystem stress using RS time series analysis. 
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found as greener vegetation is associated with higher water consumption and a decrease in 

albedo is correlated with an increase in ET and NDVI. T35B demonstrated statistically higher 

mean values of NPP, ET and NDVI compared to S50E, reflecting not only the difference in 

land management and tenure, but also climate variation. Predicted land cover for the year 2030 

was used to model consequences of land cover change on catchment water and carbon fluxes. 

From the model, a decrease in net carbon storage and water use by vegetation is expected 

(Chapter 6).  

The study found significant differences between the catchments with different land 

management practices. Land management and land use in the study area affected spatial 

patterns of land cover change and map error. Variations in biophysical drivers net 

primary production (NPP) and evapotranspiration (ET) were also associated with the 

land tenure of the catchments as a result of the land use. In addition, the difference in 

climate gradient could also have contributed to these differences (see rainfall difference 

in Figure 6-4C). This is in agreement with the statement by Verburg et al. (2015:30) that 

“…land system change is both a cause and consequence of socio-ecological processes”. 

7.1.3 How does the pattern of error in land cover change datasets affect modelling of 

evapotranspiration and carbon storage? 

Accurate land cover classes and change sub-models are required to successfully model future 

land cover change scenarios. Following an inductive approach using selected explanatory 

spatial variables, the land change model (Chapter 5) predicted not only the quantity of each 

land cover type, but also the location of all changes. Grassland (UG), as the dominant cover in 

the study area, had the greatest effect on catchment albedo. Conversion of grassland to woody 

shrubland and cropland cultivation was expected to decrease albedo and cause a potential gain 

in carbon storage (NEE), but a higher water demand by vegetation. However, contrary to 

expectation, the grassland to cropland transition showed an increase in albedo, possibly related 

to the land tenure system, as farming interspersed with rural housing gave rise to an increase in 

degraded surfaces. Continuous grazing by livestock contributed to rangeland degradation and 

increased albedo. Similarly, urban expansion and intensification increased the albedo when 

natural woody areas were replaced by housing. Increased albedo was associated with a loss in 

carbon storage, but also a decrease in the demand for water by vegetation. Consistent with 

global trends, grasslands have displayed an increasing trend in water use and reduction in water 

use efficiency (Gang et al. 2016; Gwate et al. 2018). 
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The model output relied on the suitability of the algorithms within the model, as well as the 

accuracy of the input data. Errors in the individual input land cover maps were propagated 

through the model and produced errors in all model outputs. Therefore, higher quality input 

datasets, with smaller map error, would offer higher confidence levels in the overall output 

model. Given that the selection of explanatory spatial variables to define the drivers of change 

are at the discretion of the operator, a single model can produce different outputs based on a 

different selection of model parameters. The ability to capture the non-linear behaviour of land 

cover change processes, especially those that may not yet exist within the current context, is 

thus a shortcoming of inductive land change models. 

The pattern of error observed in the modelled land cover change map reflects the errors 

of the individual input maps even if the classification errors are independent. This pattern 

of error therefore affected modelling of carbon storage and water use. It was also noted 

that the coarser moderate resolution imaging spectroradiometer (MODIS) resolution 

caused spatial smoothing that masked the detail captured by the higher resolution 

Landsat imagery. This was especially the case for small fragmented land cover classes, 

where coarse pixels with mixed land cover classes would be dominated by greener 

vegetation. The spatial smoothing could also result in misleading temporal patterns when 

analysing the MODIS derived data. However, the lower temporal resolution of the 

Landsat imagery, especially in the growing season, is a confounding factor. 

7.1.4 How can ecosystem stress be characterised using Earth observation data and time 

series analysis? 

This section elaborates on the implications of understanding where error can occur in land cover 

datasets derived through Earth observation. Such an understanding will increase the confidence 

of using remote sensing derived data products for land cover change analysis.  

Grasslands are vital in supporting rural livelihoods and providing landscape function, such as 

water supply and carbon sequestration, forage production and habitat. Consequences of loss of 

grassland include loss of grazing for livestock through degradation or transformation. Chapters 

3 and 4 describe the decline in the size of grassland, elaborating on the transitions between 

classes. In Chapter 5, land cover change was modelled to a future date using predictor variables 

and historical land cover change. Despite certain limitations of the inductive land change model 

applied, the future scenario modelled a further decrease in grasslands with a >80% probability 

of persistence. However, grassland, the biggest class, showed the largest measured and 
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modelled loss, favouring a gain in woody plants and cultivated land. In T35B, modelled 

plantations showed a small net gain, a possible opportunity for expanded commercial forestry. 

The consequences of loss of grasslands to afforestation and woody encroachment would be 

increased leaf area and rooting depth, higher catchment evapotranspiration (ET) linked to 

increased catchment water use, reduction of runoff with lower water yield from the catchment. 

Conversely, these transitions can result in higher carbon storage, the benefits of which may be 

offset by greater water demands from leafy vegetation. In contrast, dryland agriculture and 

urbanisation would cause an increase in albedo. Changes in proportions and composition of 

land cover across the catchment thereby affect the net ecosystem carbon exchange (NEE) and 

influence the hydrologic functioning of the catchments, disturbing the climate system. 

Chapter 6 described how biophysical parameters (NPP and ET) could be measured using coarse 

resolution MODIS imagery. Relationships between albedo at the time of peak vegetative 

growth, NPP, ET and NDVI were established to highlight areas of significant change that can 

be related to specific land cover changes. 

The impact of the different land management practices in S50E (dualistic farming system) and 

T35B (commercial system) were identified in the historic land cover change trends, as well as 

in the future scenario. It is apparent that under the dualistic farming system of S50E, 

degradation is taking place at a more rapid rate than in T35B, where over 90% of current 

grassland is expected to persist to 2030. However, there is greater uncertainty associated with 

the T35B model, with high allocation intensity error (Chapter 5). The results, therefore, suggest 

that rehabilitation and land management initiatives should target catchments under dualistic 

farming systems, rather than those that have predominantly commercial systems. However, 

land management policy is required to determine the feasibility of clearing programmes in the 

light of continued alien and native encroachment assisted by climate change.  

The implications are that woody encroachment of grassland, and particularly densification of 

existing patches, will typically alter carbon sequestration and cycling. Although technically 

regarded as a degradation gradient in the landscape due to the effect on biodiversity and 

ecosystem services, woody encroachment and densification can potentially act as a carbon sink 

due to increase in woody biomass (Scholes & Archer 1997). Invasion of grassland by IAPs 

reduces productivity for livestock production due to decreased rangeland productivity. Invasive 

species are known to alter local conditions and use available resources more efficiently, thereby 

outcompeting native species. In addition, the previously perceived value of IAPs as an 

ecosystem service is reducing due to increased rural–urban migration and the increase in 
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number of households supplied with electricity. Therefore, the cost of IAPs in the study areas 

will soon outweigh the benefits, resulting in a net negative trade-off, which has implications for 

national-scale invasion management strategies, such as the Working for Water programme in 

South Africa. Though grasslands are predicted to decrease in favour of woody invasive plant 

species and cultivated land, this study predicted a decrease of 12% and 6% respectively in net 

carbon storage and water use by vegetation.  

Changes in land cover will affect the net ecosystem carbon exchange (NEE) and analysis 

of remotely sensed data products, such as NDVI, NPP and ET provides insight into 

patterns of landscape function such as browning, carbon storage and water use. Local 

knowledge can be used in combination with time series data to provide an enhanced 

understanding of degradation in rangeland productivity, relating degradation either to 

the impact of climate or to land management practices. Potential consequences of land 

cover change, especially on the net ecosystem carbon exchange, can be mapped and 

modelled using satellite derived albedo. The availability of dense time series satellite 

images enables degradation to be assessed not merely in terms of land cover change 

vectors but with more sophistication by identifying trends or abrupt changes across the 

time series. 

7.2 CONTRIBUTION TO KNOWLEDGE 

Various authors have conducted research on the grasslands of the Eastern Cape, e.g. 

investigating black wattle encroachment (Oelofse et al. 2016) and woody expansion into the 

grassy biome (Skowno et al. 2017). Others have monitored rangeland conditions (Yapi et al. 

2018), ET dynamics (Gwate et al. 2018) or drought dynamics and vegetation productivity in 

different land management systems (Graw et al. 2017), predominantly following an ecological 

landscape perspective (Gouws & Shackleton 2019). None has, however, approached 

ecosystems dynamics and land management through the lens of land cover change analysis, 

land change modelling and time series analysis using remote sensing.  

This research developed land cover change trajectories using a land cover label (Benini et al. 

2010) to match process flows in the landscape. However, since map error may be responsible 

for incorrect interpretations of land cover change (Pontius & Lippitt 2006), various methods of 

quantifying map error were applied in this study area. The first method (Chapter 3) considered 

location of map error to compute a range of map error values based on probability (Pontius & 

Li 2010) while the second method (Chapter 3) used proportional accuracy and areas of change 

(Fuller, Smith & Devereux 2003). Chapter 4 presents hypothetical error to derive map error by 
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comparing change intensity with uniform change (Aldwaik & Pontius 2013). This popular 

intensity analysis framework has been used extensively for studies world-wide but has not yet 

been applied in the Eastern Cape. In response to critique by Comber et al. (2017) on the 

interpretation of the change budget components, Pontius (2019) introduced formulae to 

compute quantity, exchange and shift intensity (Chapter 4) that have not yet been applied and 

published elsewhere. Finally, the application of geographically weighted contingency matrices 

(Comber et al. 2017) specifically for use in change analysis, implements a novel method of 

mapping spatially explicit quantity, exchange and shift disagreement (Chapter 4). 

Chapter 5 describes land change modelling for a future time step. The change/disagreement 

budget was applied on the land cover change between the current land cover and the future land 

cover. Even though the change/disagreement budget is applied to different land cover maps 

than proposed (Pontius & Chen 2006; Pontius & Millones 2011), it provides a novel approach 

to compare the measured land cover maps and the future scenario for which there is no 

validation data.  

Prior to the present study, the effect of land cover change, both observed and modelled, on 

surface albedo and consequently the surface energy balance, has not been explored in this 

region before (Chapter 6). Additionally, the link between modelled landscape change, surface 

albedo and changes in catchment water and carbon fluxes have not been investigated 

previously. The novelty lies in the analysis of a dense time series consisting of 15 years of data 

to improve our understanding of surface energy balance, water and carbon sequestration 

parameters for catchments under two different land management regimes. The study uses 

previous land cover change and future scenario analyses, combined with the season-trend model 

output to quantify carbon sequestration and water use, both for areas of no change (persistent 

classes) and areas that have transitioned from one land cover to another. The study combined 

the use of traditional and cutting-edge remote sensing techniques (e.g. using Google Earth 

Engine) to develop peak season albedo from Landsat, while scientifically robust techniques 

(implemented in R software) were used to process MODIS data.  

7.3 LIMITATIONS OF THE STUDY 

As with most studies, this research was limited by several factors. The quality of available data 

was a major limiting factor. Some inherent limitations found with using the existing input data 

include:  

(1) Imperfect input data was available, however the size and location or these errors were 

unavailable due to lack of sample data; 
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(2) No accuracy assessment had been done on the 1990 land cover dataset, but accuracy 

was reported to be similar to another dataset for which comparable processing and 

modelling had been used (Chapter 4); 

(3) The reported accuracy of the 2000 land cover dataset was extremely low (67%) and 

though the quality of this dataset was improved through post-classification editing 

(Chapter 3), some errors may have been overlooked or systematic errors may have been 

introduced; 

(4) The 2014 land cover dataset was classified from a single-date image (Chapter 3), 

therefore, not capturing seasonal variation;  

(5) A new aggregated land cover classification system was used to accommodate the 

different land cover legends of each dataset (Chapter 3), which could have led to 

generalisations; and 

(6) The datasets were created by different operators and may thus have been affected by 

operator bias.  

Each of these factors increased the uncertainty of the land cover change products. Additionally, 

the future land cover dataset could not be validated.  

Various shortcomings were identified in the land change modelling (Chapter 5). These included 

the selection of the particular model, the explanatory variables used, and the process followed. 

A prospective approach based only upon past trends was used while more value would be 

gained by introducing alternative future scenarios (Paegelow & Camacho 2008). In addition, it 

was found that the Land Change Modeller in IDRISI is limited when developing alternative 

scenarios (Pérez-Vega, Mas & Ligmann-Zielinska 2012). 

For some land cover labels used to describe landscape transitions, opposing albedo change 

directions were found under the same label (Chapter 6) that may have a confounding effect on 

the results. Further work is required to untangle the influence of albedo within each land cover 

transition. 

7.4 RECOMMENDATIONS FOR FUTURE RESEARCH 

This study found that, in order to provide a better distinction between different wooded classes, 

higher spatial resolution imagery need to be considered, especially to distinguish between 

spectrally homogenous vegetation types. The introduction of new sensors, such as the European 

Space Agency’s Sentinel-2 satellites, with higher temporal, spatial and spectral resolution, may 

provide a more suitable option for such analyses in the future.  
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Some land cover change transitions showed opposing albedo change vectors that confounded 

correlation results among these variables. Therefore, it is recommended that separate transition 

classes be analysed for opposing vectors.  

Using geographically weighted local measures of change showed much potential. Local 

statistics not only supported the identification of potential map error, but also provided a 

spatially explicit manner to dynamically visualise accuracy and characterise error in maps and 

models. Spatially explicit approaches can accommodate spatial autocorrelation found in 

remotely sensed data and address the spatial non-stationarity directly, which will improve 

modelling of landscape processes. It is recommended that software implementing these 

methods be expanded to include bandwidth smoothing optimization. Such software should be 

made available to the wider remote sensing community. 

The availability of analysis ready satellite data and cloud computing platforms provide new 

possibilities for generating land cover maps. Applying deep learning algorithms, spatio-

contextual information and novel inputs, such as land cover transitions and combinations of 

multi-scale, multi-sensor data, can improve map accuracies. This avenue of research is strongly 

recommended.  

Further research is recommended to explore the use of higher resolution satellite data to 

effectively model carbon storage and water use. The Google Earth Engine platform provides 

shared geoprocessing algorithms (Gorelick et al. 2017) and access to long-term data (Hansen 

& Loveland 2012), that can be used to generate detailed maps (Forkel et al. 2013) to model 

future scenarios.  

7.5 CONCLUDING THOUGHTS 

This narrative has confirmed that land cover and land use dynamics have significant effects on 

the natural environment and are important drivers of change in the landscape and its function. 

Human activities continue to change and exert pressure on the natural environment, triggering 

changes in land management and land use practices. To facilitate changes in these practices, 

adequate knowledge of the processes at play in the landscape are essential. One of the main 

drivers of grassland transformation was identified as encroachment by woody plants of 

indigenous or invasive origin, which exerts a major influence on ecosystem services that the 

landscape can provide, specifically for water supply and carbon storage, as well as function 

such as feed production for food security.  
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This study used existing, independent land cover maps and modelled future land cover maps to 

determine land cover change trajectories in a grassland-dominated landscape in the Eastern 

Cape of South Africa. The main land cover change trajectories investigated were those that are 

crucial to quantify water and carbon fluxes. In the remote sensing community, image 

classification accuracy is a required and stringent process, while maps with relative low 

accuracy are often generated and used unquestioningly by those investigating ecosystem 

services. This points to the importance of a simple method to identify map error. If higher 

reliability of change results should be required for operational purposes, accuracies of 99% for 

each independently mapped land cover dataset must be obtained. This is unlikely, and therefore 

some uncertainty in both the classification results and the change results must be accepted. 

Although map error was present in the land cover maps and was subsequently propagated in 

the modelling, change analysis using (1) an indicator approach and (2) the intensity analysis 

framework, provide bounds of accuracy at global scale, which is useful to assess the confidence 

of derived results. In addition, hot spots of map error could be determined through local 

spatially explicit change analysis performed using geographically weighted contingency 

matrices.  

This study confirmed that land cover dynamics have significant consequences for the natural 

environment. The expected decrease in net carbon storage and water use modelled from a land 

cover change scenario confirms the impact of land cover change on ecosystems and the services 

they provide. Land management practices in the two tenure systems (freehold versus 

communal) have important repercussions. As human actions continue to change and exert 

pressure on the natural environment, the modelling results suggest that rehabilitation and land 

management initiatives should be targeted in catchments under a dualistic farming system, 

rather than those that are predominantly commercial systems. To effectively manage complex 

ecosystems, accurate change maps are required to explain and quantify both drivers and impacts 

of land change. As interdisciplinary research and land change science seek to understand, 

explain and project land use and land cover dynamics associated with human-environment 

interaction, integrating information from various research communities is essential to support 

land management. 
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APPENDIX A.  SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

Table A-1 Accuracy assessment of the ENLC 2000 (T1) per catchment 

Table A-2 Accuracy assessment of DLC 2014 (T2) per catchment  

Table A-3 Theoretical accuracy of land cover change analysis  
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Table A-1  Accuracy assessment of the ENLC 2000 (T1) per catchment based on sample points. Rows 

represent map categories; columns show reference categories 

T35B ENLC 2000 

Class UG FITBs BRS Wb Wl CLs FP UrBu Total 
Map Area 

ha % 

UG 1172 105 39 1 25 37 67 0 1446 29912 76 

FITBs 39 202 0 0 0 12 2 0 255 3306 8 

BRS 0 0 0 0 0 0 0 0 0 3 0 

Wb 0 0 0 15 0 1 0 0 16 33 0 

Wl 26 0 0 1 129 51 22 0 229 1220 3 

CLs 19 18 0 0 17 421 15 0 490 2417 6 

FP 11 6 0 0 2 1 501 0 521 2566 7 

UrBu 1 6 0 0 0 11 0 0 18 91 0 

Total 1268 337 39 17 173 534 607 0 2975 39547 100 

T12A ENLC 2000 

Class UG FITBs BRS Wb Wl CLs FP UrBu Total 
Map Area 

ha % 

UG 1088 61 5 2 4 25 0 27 1212 20,948 75 

FITBs 23 563 2 0 0 6 0 0 594 2733 10 

BRS 0 0 0 0 0 0 0 0 0 3 0 

Wb 1 0 0 3 0 0 0 0 4 1 0 

Wl 13 0 0 0 2 0 0 0 15 14 0 

CLs 15 3 0 0 0 230 0 13 261 2403 9 

FP 1 128 0 0 0 0 0 0 129 397 1 

UrBu 35 3 0 0 0 12 0 185 235 1365 5 

Total 1176 758 7 5 6 273 0 225 2450 27,866 100 

S50E ENLC 2000 

Class UG FITBs BRS Wb Wl CLs FP UrBu Total 
Map Area 

ha % 

UG 1284 103 15 10 48 128 4 33 1625 27,510 62 

FITBs 28 595 0 6 0 8 29 0 666 4328 10 

BRS 1 0 0 0 0 0 0 0 1 13 0 

Wb 0 0 0 430 1 2 0 0 433 1368 3 

Wl 2 0 0 0 24 11 0 0 37 193 0 

CLs 45 12 0 1 0 837 0 8 903 7269 16 

FP 1 119 0 0 0 0 624 1 745 2027 5 

UrBu 32 3 0 0 1 32 1 233 302 2050 5 

Total 1393 832 15 447 74 1018 658 275 4712 44,759 100 
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Table A-2  Accuracy assessment of DLC 2014 (T2) per catchment based on sample points. Rows represent 

map categories; columns show reference categories 

T35B DLC 2014 

Class UG FITBs BRS Wb Wl CLs FP UrBu Total 
Map Area 

ha % 

UG 1255 158 6 2 95 15 12 1 1544 31607 80 

FITBs 28 167 0 0 1 0 0 0 196 1599 4 

BRS 2 0 13 0 0 1 0 0 16 65 0 

Wb 0 2 0 39 6 0 0 0 47 17 0 

Wl 15 6 0 17 63 0 2 0 103 463 1 

CLs 17 8 0 1 17 400 0 2 445 2444 6 

FP 14 0 0 0 0 0 186 0 200 3274 8 

UrBu 2 0 0 0 0 0 0 6 8 77 0 

Total 1333 341 19 59 182 416 200 9 2559 39547 100 

T12A DLC 2014 

Class UG FITBs BRS Wb Wl CLs FP UrBu Total 
Map Area 

ha % 

UG 766 68 2 2 2 10 0 21 871 19,007 68 

FITBs 20 290 0 0 0 1 0 0 311 3450 12 

BRS 0 0 4 0 0 0 0 1 5 43 0 

Wb 4 0 0 9 0 0 0 0 13 1 0 

Wl 8 0 0 0 53 0 0 0 61 17 0 

CLs 54 8 6 0 0 192 0 17 277 2537 9 

FP 0 0 0 0 0 0 11 0 11 95 0 

UrBu 28 2 0 0 0 5 0 178 213 2716 10 

Total 880 368 12 11 55 208 11 217 1762 27,866 100 

S50E DLC 2014 

Class UG FITBs BRS Wb Wl CLs FP UrBu Total 
Map Area 

ha % 

UG 1261 137 0 12 73 39 0 20 1542 25,354 57 

FITBs 27 1018 0 1 0 8 37 0 1091 4812 11 

BRS 3 1 7 0 0 0 0 0 11 85 0 

Wb 0 0 0 125 0 0 0 0 125 1301 3 

Wl 3 0 0 0 5 0 0 0 8 57 0 

CLs 20 16 0 3 18 985 0 6 1048 8107 18 

FP 1 2 0 0 0 0 344 3 350 806 2 

UrBu 9 4 0 0 2 0 0 209 224 4237 10 

Total 1324 1178 7 141 98 1032 381 238 4399 44,759 100 

 

Table A-3  Theoretical accuracy of land cover change analysis 

 Datasets 

Catchments ENLC 2000 (T1) DLC 2014 (T2) 
% Land cover 

change  

T35B 81 83 67 

T12A 87 88 76 

S50E 83 87 72 

Overall 84 85 71 
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APPENDIX B.  SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

Figure B-1 Spatial distribution of overall difference, quantity, exchange and shift difference 

computed at 3 km bandwidth 
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Figure B-1  Spatial distribution of overall difference, quantity, exchange and shift difference computed at 3 km 

bandwidth 
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APPENDIX C.  SUPPLEMENTARY MATERIAL FOR CHAPTER 5 

Table C-1  MLP Sub-models for S50E with associated explanatory variables and performance 

indicators 

Table C-2  MLP Sub-models for T35B with associated explanatory variables and performance 

indicators 
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Table C-1  MLP Sub-models for S50E with associated explanatory variables and performance indicators 

Sub-model 
Explanator
y variables 

Transition / 
Persistence Class 

Minimum 
cells 

transition / 
persist 

Class 
skill 

measure 
(ratio) 

Sub-model 
Accuracy 

(%) 

Sub-
model 
skill 

RMS 

Train Test 

If: FITBs 
intensification 

Elev 
Slope 
D_FP 
D_FITBs 
D_rd 
D_res 

UG to FITBs 
CLS to FITBs 
FP to FITBs 

1 846 
0.442 
0.800 
0.759 

69.4 0.632 0.269 0.273 
Persistence : UG 
Persistence : CLS 
Persistence : FP 

7 918 
0.464 
0.679 
0.660 

Ia : Agricultural 
intensification 

Elev 
Slope 
Asp 
D_res 
EV 

UG to CLS 
FITBs to CLS 
Wb to CLS 
Wl to CLS 
UrBu to CLS 

32 

0.869 
-0.111 
-0.111 
0.352 
-0.032 

50.3 0.448 0.245 0.253 

Persistence : UG 
Persistence : FITBs 
Persistence : Wb 
Persistence : Wl 
Persistence : UrBu 

508 

0.673 
0.722 
1.000 
0.236 
0.524 

Iu: Urban 
intensification 

Elev 
D_FITBs 
D_rd 
D_res 

UG to UrBu 
FITBs to UrBu 
CLS to UrBu 

1 875 
-0.105 
0.840 
0.478 

54.3 0.452 0.320 0.320 
Persistence : UG 
Persistence : FITBs 
Persistence : CLS 

30 778 
0.419 
0.605 
0.462 

R: Afforestation 

Elev 
Asp 
D_FP 
D_FITBs 

UG to FP 
FITBs to FP 

342 
0.540 
0.487 

49.4 0.325 0.379 0.386 

Persistence : UG 
Persistence : FITBs 

30 778 
0.462 
-0.169 

D: 
Deforestation 

Elev 
Asp 
D_riv 
D_rd 

FP to UG 
FP to BRS 

137 
0.127 
0.843 

66.5 0.498 0.380 0.397 

Persistence : FP 7 918 0.519 

A: 
Abandonment 

Elev 
Slope 
Asp 

CLS to UG 
UrBu to UG 

503 
0.193 
0.506 

37.5 0.166 0.415 0.421 

Persistence : CLS 
Persistence : UrBu 

20 948 
0.099 
-0.139 

Dn: Natural 
dynamic 

Elev 
Slope 
Asp 
D_riv 

UG to Wb 
UG to Wl 
Wb to UG 
Wl to UG 

32 

0.325 
0.198 
-0.167 
-0.167 

39.1 0.290 0.313 0.320 

Persistence : UG 
Persistence : Wb 
Persistence : Wl 

162 
0.570 
0.922 
0.271 

De: 
Degradation 

Elev 
Slope 
Asp 
D_riv 
D_res 
EV  

UG to BRS 409 0.431 

69.8 0.395 0.400 0.446 

Persistence : UG 252 574 0.359 

Re: 
Reclamation 

Elev 
Slope 
D_riv 
D_res 
EV 
D_FITBs 

FITBs to UG 13 843 0.087 

62.5 0.249 0.472 0.475 

Persistence : FITBs 30 778 0.414 
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Table C-2  MLP Sub-models for T35B with associated explanatory variables and performance indicators 

Sub-model Explanatory 
variables 

Transition/ 
Persistence Class 

Minimum 
cells 

transition / 
persist 

Class 
skill 

measure 
(ratio) 

Sub-model 
Accuracy 

(%) 

Sub-
model 
skill 

RMS 

Train Test 

If: 
FITBs 
intensification 

Elev 
Slope 
D_FP 
D_rd 
D_riv 
EV  

UG to FITBs 
CLS to FITBs 

222 
0.675 
0.423 

67.9 0.572 0.320 0.327 
Persistence : UG 
Persistence : CLS 

19 736 
0.207 
0.539 

Ia : 
Agricultural 
intensification 

Elev 
Slope 
D_rd 
D_riv 
EV  

UG to CLS 
FITBs to CLS 
FP to CLS 
Wl to CLS 
UrBu to CLS 

122 

0.346 
0.967 
0.945 
0.663 
0.436 

65.0 0.611 0.214 0.220 
Persistence : UG 
Persistence : FITBs 
Persistence : FP 
Persistence : Wl 
Persistence : UrBu 

309 

0.436 
0.665 
0.444 
0.648 
0.521 

Iu: Urban 
intensification 

Elev 
Slope 
D_FP 
D_rd 
D_riv 

UG to UrBu 
FITBs to UrBu 

187 
0.903 
0.900 

82.8 0.771 0.331 0.327 
Persistence : UG 
Persistence : FITBs 

7 586 
0.536 
0.739 

R: 
Afforestation 

Elev 
D_FP 
D_rd 
EV  

UG to FP 
FITBs to FP 
Wl to FP 
CLS to FP 

569 

0.926 
0.910 
0.968 
1.000 

89.3 0.878 0.166 0.173 
Persistence : UG 
Persistence : FITBs 
Persistence: Wl 
Persistence: CLS 

1 996 

0.710 
0.925 
0.777 
0.812 

D: 
Deforestation 

Elev 
Asp 
EV  

FP to UG 
FP to Wl 

437 
0.341 
0.787 

53.0 0.295 0.430 0.434 

Persistence : FP 23 904 -0.254 

A: 
Abandonment 

Elev 
D_FP 
EV  

CLS to UG 
UrBu to UG 
CLS to Wl 

387 
0.27 

0.5833 
0.528 

42.7 0.284 0.345 0.345 

Persistence : CLS 
Persistence : UrBu 

309 
-0.250 
0.270 

Dn: Natural 
dynamic 

Elev 
Slope 
Asp 
  

FITBs to Wl 
UG to Wl 
Wb to UG 
Wl to UG 

155 

0.514 
-0.143 
0.460 
-0.143 

36.5 0.274 0.305 0.311 
Persistence : UG 
Persistence : Wb 
Persistence: FITBs 
Persistence : Wl 

65 

0.336 
0.536 
0.633 
-0.143 

De: 
Degradation 

Asp 
EV  
D_FP 
D_FITBs 

UG to BRS 605 0.351 

71.2 0.423 0.447 0.447 
Persistence : UG 306 061 0.498 

Re: 
Reclamation 

Elev 
Slope 
D_rd 
D_FP 
EV 

FITBs to UG 26 674 0.017 

54.7 0.094 0.493 0.496 
Persistence : FITBs 7 586 0.170 
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APPENDIX D. SUPPLEMENTARY MATERIAL FOR CHAPTER 6 

Table D-1 Correlation coefficients per land cover class and transition 

Table D-2 Total and significant change in PSA per catchment T35B, reported in percentage 

area and PSA change (highlighted in light grey) 

Table D-3 Total and significant change in PSA per catchment S50E, reported in percentage 

area and PSA change (highlighted in light grey) 
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Table D-1 Correlation coefficients per land cover class and transition. Correlations for S50E are presented above the diagonal in italics, and correlations for T35B are presented 

below the diagonal. *p < 0.05 

 UG 
T35B: n=1516 S50E: n=1249 

FB 
T35B: n=45 S50E: n=136 

CL 
T35B: n=92 S50E: n=323 

FP 
T35B: n=123 S50E: n=42 

UB 
T35B: n=3 S50E: n=103 

 

1.PSA 

2.NPP 

3.NDVI 

4.ET 
 

1 2 3 4 

- -0.24 -0.08 0.09 

-0.01 - 0.00 -0.04 

-0.20 0.33 - 0.86* 

0.11 0.19 0.84* - 
 

1 2 3 4 

- -0.10 -0.02 0.14 

0.02 - -0.33 -0.07 

-0.09 0.41 - 0.90* 

0.13 0.27 0.83* - 
 

1 2 3 4 

- -0.37 -0.30 -0.20 

-0.12 - -0.09 -0.13 

-0.58* 0.26 - 0.88* 

-0.34 0.15 0.87* - 
 

1 2 3 4 

- -0.18 -0.06 0.03 

0.30 - 0.70* 0.55* 

-0.62* 0.18 - 0.92* 

-0.39 0.13 0.90* - 
 

1 2 3 4 

- -0.30 -0.52* -0.35 

-0.42 - -0.06 -0.10 

-0.45 0.27 - 0.86* 

-0.17 0.14 0.79* - 
 

 If 
T35B: n=54 S50E: n=101 

A 
T35B: n=28 S50E: n=39 

De 
T35B: n=3 S50E: n=3 

Re 
T35B: n=108 S50E: n=70 

Dn 
T35B: n=60 S50E: n=15 

 

1.PSA 

2.NPP 

3.NDVI 

4.ET 
 

1 2 3 4 

- -0.40 -0.07 0.11 

0.04 - 0.17 0.10 

-0.03 0.41 - 0.88* 

0.29 0.31 0.84* - 
 

1 2 3 4 

- -0.23 -0.19 -0.15 

0.14 - -0.18 -0.13 

-0.37 0.24 - 0.91* 

-0.25 0.17 0.88* - 
 

1 2 3 4 

- -0.13 -0.45 -0.35 

-0.28 - 0.14 -0.05 

-0.36 0.32 - 0.81* 

-0.21 0.13 0.84* - 
 

1 2 3 4 

- -0.32 -0.17 -0.01 

0.14 - -0.08 -0.07 

-0.22 0.34 - 0.90* 

-0.05 0.21 0.83* - 
 

1 2 3 4 

- -0.01 -0.37 -0.34 

0.66* - -0.07 -0.19 

-0.38 -0.32 - 0.82* 

-0.20 -0.19 0.89* - 
 

 Ia 
T35B: n=41 S50E: n=117 

Iu 
T35B: n=2 S50E: n=120 

R 
T35B: n=60 S50E: n=6 

D 
T35B: n=23 S50E: n=35 

 

 

1.PSA 

2.NPP 

3.NDVI 

4.ET 
 

1 2 3 4 

- -0.32 -0.45 -0.29 

-0.14 - -0.08 -0.15 

-0.54* 0.22 - 0.87* 

-0.29 0.11 0.87* - 
 

1 2 3 4 

- -0.28 -0.40 -0.22 

-0.38 - -0.07 -0.11 

-0.63* 0.19 - 0.87* 

-0.29 0.05 0.81* - 
 

1 2 3 4 

- -0.56* 0.11 -0.01 

0.63* - -0.20 -0.04 

-0.61* -0.38 - 0.90* 

-0.29 -0.29 0.86* - 
 

1 2 3 4 

- -0.75* -0.81* -0.67* 

0.70* - 0.86* 0.75* 

-0.63* -0.55* - 0.93* 

-0.31 -0.42 0.87* - 
 

 

UG-grasslands, FB-shrublands, CL-croplands, FP-forest/plantation, UB-urban,  
If-woody encroachment, A-abandonment, De-degradation Re- reclamation, Dn-natural dynamics,  
Ia-increased cultivation, Iu-increased urban, R-afforestation, D-deforestation   
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Table D-2 Total and significant change in PSA per catchment T35B, reported in percentage and PSA change (highlighted in light grey). 

Study 
area 

 Total area Significant change Negative sig. change Positive sig. change 

 % PSA change % PSA change % PSA change % PSA change 

 LC MOD LS MOD LS MOD LS MOD LS MOD LS MOD LS MOD LS MOD LS 

T35B   -0.001 0.003 11.1 11.3 -0.013 0.004 7.9 4.3 -0.026 -0.039 3.2 7.0 0.019 0.031 

T35B UG 70.4 69.3 0.000 0.005 4.0 5.3 0.000 0.017 2.1 0.7 -0.017 -0.023 1.9 4.6 0.018 0.023 

FB 2.1 1.7 -0.001 0.001  0.1  0.012  0.0  -0.029  0.1  0.030 

CL 4.3 4.5 0.003 0.009 0.5 0.9 -0.001 0.029 0.2 0.2 -0.029 -0.038 0.3 0.7 0.023 0.045 

FP 5.7 5.4 -0.015 -0.012 2.5 2.2 -0.031 -0.038 2.5 2.1 -0.031 -0.039  0.1  0.020 

UB 0.1 0.1 -0.005 0.011 0.0 0.0 -0.024 0.030 0.0 0.0 -0.024 -0.020  0.0  0.039 

P 82.7 81.0 -0.001 0.004 7.4 8.4 -0.011 0.007 5.0 2.8 -0.025 -0.039 2.4 5.6 0.018 0.030 

If 2.5 2.3 -0.002 -0.003 0.2 0.1 -0.006 -0.003 0.1 0.1 -0.022 -0.030 0.1 0.1 0.018 0.029 

A 1.3 1.3 0.002 0.009 0.1 0.2 -0.008 0.022 0.0 0.0 -0.028 -0.033 0.0 0.2 0.012 0.031 

De 0.1 0.1 -0.003 0.005  0.0  0.022  0.0  -0.022  0.0  0.031 

Re 5.0 6.0 0.000 0.004 0.3 0.4 -0.009 0.023 0.2 0.1 -0.022 -0.025 0.1 0.4 0.023 0.031 

Ia 1.9 1.7 0.005 0.012 0.0 0.4 0.023 0.033  0.1  -0.031 0.3 0.3 0.023 0.045 

Iu 0.1 0.1 -0.004 0.012  0.0  0.029  0.0  -0.030  0.0  0.038 

R 2.8 2.8 -0.014 -0.013 1.0 1.0 -0.029 -0.034 1.0 0.9 -0.029 -0.038  0.1  0.020 

D 1.1 0.9 -0.019 -0.008 0.6 0.2 -0.031 -0.021 0.6 0.2 -0.031 -0.032  0.0  0.022 

Dn 2.8 2.4 -0.005 0.003 0.8 0.3 -0.021 0.008 0.7 0.1 -0.027 -0.034 0.1 0.3 0.024 0.025 

 T 17.6 17.8 -0.004 0.001 3.4 2.8 -0.017 -0.002 2.7 1.4 -0.027 -0.040 0.7 1.4 0.023 0.036 

UG-grasslands, FB-shrublands, CL-croplands, FP-forest/plantation, UB-urban,  
If-woody encroachment, A-abandonment, De-degradation Re- reclamation 
Ia-increased cultivation, Iu-increased urban, R-afforestation, D-deforestation 
Dn-natural dynamics  
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Table D-3. Total and significant change in PSA per catchment S50E, reported in percentage and PSA change (highlighted in light grey) 

Study 
area 

 Total catchment Significant change Negative sig. change Positive sig. change 

 % PSA change % PSA change % PSA change % PSA change 

  MOD LS MOD LS MOD LS MOD LS MOD LS MOD LS MOD LS MOD LS 

S50E   0.004 0.004 8.5 16.1 0.016 0.017 1.9 4.1 -0.018 -0.026 6.6 12.0 0.026 0.032 

 UG 50.8 50.2 0.004 0.004 3.1 6.3 0.017 0.016 0.6 1.0 -0.012 -0.023 2.5 5.3 0.024 0.023 

FB 6.4 6.6 -0.002 -0.006 0.7 1.5 -0.023 -0.018 0.5 1.3 -0.032 -0.026 0.1 0.2 0.013 0.027 

CL 15.3 15.6 0.005 0.008 1.3 2.4 0.018 0.028 0.2 0.3 -0.012 -0.028 1.1 2.2 0.024 0.034 

FP 2.0 1.8 -0.004 -0.006 0.3 0.6 -0.013 -0.019 0.3 0.5 -0.017 -0.034 0.0 0.1 0.018 0.044 

UB 4.9 4.7 0.007 0.008 0.3 0.7 0.015 0.023 0.0 0.1 -0.016 -0.022 0.2 0.6 0.020 0.027 

P 87.7 85.5 0.004 0.004 5.4 10.9 0.013 0.013 1.3 2.9 -0.023 -0.027 4.1 8.0 0.025 0.027 

If 4.8 5.3 0.005 0.006 0.9 1.3 0.012 0.016 0.4 0.6 -0.023 -0.028 0.5 0.8 0.038 0.050 

A 1.8 1.8 0.005 0.006 0.0 0.3 0.002 0.021  0.1  -0.026 0.0 0.2 0.002 0.031 

De 0.1 0.1 -0.003 0.000  0.0  0.009  0.0  -0.031  0.0  0.037 

Re 3.3 3.5 0.003 0.003 0.2 0.5 0.012 0.008 0.0 0.2 -0.003 -0.024 0.1 0.3 0.017 0.034 

Ia 5.5 4.8 0.005 0.010 0.2 0.9 0.009 0.029 0.1 0.1 -0.017 -0.029 0.1 0.8 0.027 0.033 

Iu 5.7 5.9 0.006 0.005 0.4 0.8 0.021 0.015 0.0 0.2 -0.008 -0.027 0.4 0.7 0.024 0.026 

R 0.3 0.2 0.004 0.001  0.0  0.002  0.0  -0.026  0.0  0.036 

D 1.7 1.5 0.032 0.056 0.8 0.9 0.038 0.068  0.0  -0.026 0.8 0.9 0.038 0.070 

Dn 0.7 0.6 -0.001 -0.001  0.1  0.002  0.0  -0.035 0.0 0.0  0.027 

 T 24.0 23.8 0.007 0.009 3.0 5.0 0.023 0.029 0.5 1.1 -0.020 -0.027 2.5 3.9 0.032 0.045 

UG-grasslands, FB-shrublands, CL-croplands, FP-forest/plantation, UB-urban,  
If-woody encroachment, A-abandonment, De-degradation Re- reclamation 
Ia-increased cultivation, Iu-increased urban, R-afforestation, D-deforestation 
Dn-natural dynam
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