Extinction Risk in Fluctuating and

Heterogeneous Environments
by

Asmaa Omer Tiraab Tbaeen

Thesis presented in partial fultilment of the requirements
for the degree of Master of Science in Mathematics in the
Faculty of Science at Stellenbosch University

Supervisor: Prof. Cang Hui & Co-Supervisor: Dr. Pietro Landi

December 2019

The financial a ssistance o f the Stellenbosch University and N ational R esearch F oundation (NRF) to-
wards this research is hereby acknowledged.



Stellenbosch University https://scholar.sun.ac.za

Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof
(save to the extent explicitly otherwise stated), that reproduction and pub-
lication thereof by Stellenbosch University will not infringe any third party
rights and that I have not previously in its entirety or in part submitted it
for obtaining any qualification.

Copyright © 2019 Stellenbosch University
All rights reserved.



Stellenbosch University https://scholar.sun.ac.za

Abstract

Extinction Risk in Fluctuating and Heterogeneous

Environments

Asmaa Omer Tiraaab Tbaeen
Department of Mathematical Sciences,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc
December 2019

We model the effects of demographic and environmental stochasticity in the
logistic, Gompertz and Ricker models. We focus on factors affecting extinc-
tion risk in a lone population as well as in pairs of competing populations. A
thorough numerical analysis of extinction probability is given. We find that
colored environmental noise causes reductions in extinction risk, and that
correlation between the environmental noise experienced by two compet-
ing populations increases extinction risk. The Ricker model exhibits a high
rate of persistence in comparison with the logistic and Gompertz models.
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Uittreksel

Uitwissing Risiko in Wisselende en Heterogene Omgewings
(“Extinction Risk in Fluctuating and Heterogeneous Environments”)

Asmaa Omer Tiraaab Tbaeen
Departement Wiskuudige Wetenskappe,
Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MSc
Desember 2019

Ons hoofdoelwit is om die bevolkingsdinamika in veranderlike omgewing
te bestudeer. Ons beskou demografiese en omgewingsstogastisiteit in die
logistieke, Gompertz- en Ricker modelle. Ons ondersoek die dinamiek van
‘n enkele bevolking en kompetisie in tweebevolkings modelle. 'n Deeglike
numeriese analise van uitwissing waarskynlikheide word gegee. Ons toon
aan dat die Ricker-model 'n hoé tempo van voortbestaan toon in vergely-
king met die logistieke en Gompertz-modelle. Ons verken 'n reeks parame-
ters deur die simulasies.
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Chapter 1

Introduction

1.1 History

Over the last two centuries, ecologists have developed a plethora of models
and techniques in order to better understand population dynamics. We be-
gin with a brief overview of some of the key moments in this history. The
exponential growth model, introduced by Robert Malthus [59], was one of
the first models to study population dynamics, and has since been exten-
sively studied by many ecologists and applied mathematicians [2, 6, 28].

A short while later, Pierre Francois Verhulst [83] published the logistic pop-
ulation growth model. In the Verhulst model, population growth follows
a sigmoid curve shape, with initially fast (exponential) growth, slowing
down over time as the population approaches a ‘carrying capacity’ defined
by the environmental conditions. This introduced the concept of density-
dependent population models; since then many different model formaliza-
tions have been defined, such as the Ricker and Gompertz models [24, 72].
Alfred James Lotka [53] developed two differential equations to describe
a prey-predator interaction. Independently from Lotka. Vito Volterra also
developed an equivalent model describing the relationship between two
species. The Lotka-Volterra model can be used to explore various types of
interspecific relationships such as competition, mutualism, predation, and
parasitism. Since then, numerous studies have extended these models to
address a variety of problems [2, 5, 56].

Ecologists began to question their studies and findings for more clarity and
improvement, searching for realistic and convenient models. While the
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models just mentioned all have applicability to ecosystem stability, the sub-
ject received increasing attention around the time that Robert May pub-
lished his ground-breaking paper relating the stability of an ecosystem to
its complexity [61]. Not long after, a model was published incorporating
the effects of random environmental fluctuations on the stability theorem
[15, 14].

The study of stochastic population dynamics started in 1949, with David
G. Kendall [39] who studied the stochastic fluctuations in age distributions.
This was followed by several studies of random environmental variation
looking at how this randomness affects the fate of local residents and how
this will extend to affect the global ecosystem [49, 73]. Furthermore, in ex-
tending these studies new concepts and approaches emerged such as the
minimum viable population, quasi-extinction level, and population viabil-
ity analysis (PVA) [23, 71, 76].

1.2 Why use population models?

Population models are a transformation of real dynamics to the forms of
mathematical models, and their purpose is to study population dynamics.
Mathematical models allow their users to gain a better understanding in
order to answer many important questions such as: how does a popula-
tion grow, interact and disperse? What makes some populations persist
when others go extinct? What underpins ecosystem stability and facili-
tates species coexistence? Models are useful for addressing and directing
the study of interactions within and between population and environments,
such as density-dependence, competition, and seasonal dynamics. Models
are widely used in decision-making around the management of ecological
resources. Modeling interactions makes it possible to identify valuable pat-
terns and trends in population dynamics.

Population models are used in the study of endangered populations and
agricultural management. Common examples include determining what
conditions allow for a maximum harvest, avoiding biological invasions from
unwanted populations (including diseases), and protecting and endangered
species or ecosystem [1, 18, 19].
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1.3 Study objectives and research questions

One of the major problems in ecological studies is how to estimate the prob-
ability of extinction for any population. The persistence or coexistence of
a population or community is affected by its structure as well as the envi-
ronment(s) in which it lives, e.g. population (or community) size, diversity,
environmental stochasticity, the quality and strength of interactions within
and between species, etc [12, 44, 58].

Sustained species persist and coexist as a consequence of stabilizing mech-
anisms. Stabilizing mechanisms vary widely and include fluctuation inde-
pendent as well as fluctuation dependent mechanisms. For instance, rare
prey species experience some protection due to their low rates of encoun-
ters with the predators (or competitors), and environmental variations af-
fect each population differently in each season [10]. The persistence or the
stability of any population depends on several factors, including the pop-
ulation growth rate, the magnitude of the environmental or demographic
stochasticity, the rate of recovery from low species density, and many oth-
ers[12].

In general, in studying the stability of an ecological populations, analytic
as well as numerical tools are used, for example when applying qualitative
stability analysis to deterministic models. In this research, we use stochastic
models to study the persistence, coexistence, stability, and extinction of the
species population. We focus on the following questions:

1. How does the position in each model of incorporated environmental
noise (added either to the growth rate, carrying capacity, or directly to
the model) affect the model’s predictions for species persistence?

2. How does temporal autocorrelation in the environmental stochastic-
ity (coloured noise) affect the population dynamics, persistence and
species coexistence?

3. What effects do the levels of environmental variance and demographic
variation have on the persistence and extinction rates predicted by
each model?

These question are explored using both single-population models and com-
petitive two-population models.
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1.4 Thesis overview

We begin in Chapter 2 with a brief overview of the three density-dependent
models we utilise in the rest of this work. In Chapter 3, we study the
stochastic dynamics of a single species, with environmental and/or de-
mographic stochasticity. We incorporate stochasticity into the three mod-
els in various ways, adding environmental noise to different parts of each
model. We explore the effects of environmental noise variance, environ-
mental noise autocorrelation, and demographic stochasticity with a range
of demographic growth parameter values. We compare the effects of these
various assumptions on quasi-extinction and extinction probabilities using
numerical simulations.

In Chapter 4, we study the persistence and coexistence of two competing
species using variants of the stochastic logistic, Gompertz and Ricker mod-
els. We again examine the effects of noise variance, autocorrelation, position
in the model, etc., and in addition explore the effects of different correlation
levels between the environmental noise effects experienced by the each of
the two species.

In our study, we focus on the use of numerical simulations, supplemented at
times with theoretical analyses and statistical approaches. We utilise three
different models, characterising the effects of a wide range of assumptions
regarding the role of environmental noise and demographic stochasticity in
the dynamics of population extinctions.
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Chapter 2

Population Models in Discrete
Time

In this chapter, we give a short description of the deterministic single pop-
ulation models which form the basis for the models used in Chapters 3-5.

2.1 Logistic model

In the logistic model, the size of the population is regulated by its “carrying
capacity”. This stands in contrast with exponential growth model, where
populations grow without limit: this would be very unusual to happen in
nature. The logistic model is introduced by Pierre-Francois Verhulst [53]
where the population growth is proportional to the population size and the
resource availability. The self-regulating growth-per-timestep can be de-
scribed by the following equation:

N
Nis1 = Ny = AN(1 - =), (2.1)

where N; is the population size, A represents the growth rate (including
reproduction as well as death/survival) and k is the carrying capacity. If
Nt = k then Nt_|_1 =0.

2.2 Ricker model

W. Ricker [72] introduced his discrete time model to describe the dynamical
population growth of cannibalistic fish for the purpose of fishery stock man-

5
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agement, though it has since been used as base for a variety of modelling
applications [4, 30, 50]. In the Ricker model the population size at time step
t + 1, base on the population at time ¢, is given by:

N,
Nip1 = Nt =%, (2.2)
where N; is the population size, A represents the growth rate, and k is the
population carrying capacity. If N; = k then N; 1 = 0.

2.3 Gompertz model

The Gompertz model is introduced by Benjamin Gompertz [24]. It has been
studied extensively in contexts of industrial ecology such as cell line pro-
duction and commercial agriculture, as well as in medical contexts as a
model for tumor growth [22, 80, 89]. In the Gompertz model, the popu-
lation size at time ¢ + 1 is given by:

k
Nii1— Ni = AN 108(@)1 (2.3)

where N; is the population size at time t, A is the population growth rate,
and k is the carrying capacity.
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Figure 2.1 — Sample trajectories of the deterministic logistic, Ricker and
Gompertz models. Initial population size Ny = 10, intrinsic growth rate
A = 1.2 and carrying capacity k = 100.

Figure 2.1 shows deterministic growth in the logistic, Ricker and Gompertz
models. We observe that the logistic model (red curve) exhibits the slow-
est overall growth and Gompertz model (black curve) exhibits the fastest
growth. We plot N; against N;; (Figure 2.2) as a reference point for our
analyses. The most clear difference between the models is how they re-
spond to large population sizes: clearly the Ricker model is much more
forgiving to overpopulation, which causes extinction much more easily in
the Gompertz and logistic models.
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Figure 2.2 — Plot of N; against N;; for the deterministic logistic, Ricker and
Gompertz models with intrinsic growth rate A = 1.2 and carrying capacity
k = 100.

2.4 Growth rate

The population growth depends on the sum of each individual’s perfor-
mance. Here we characterise the demographic growth parameters A for
each model in terms of the population sizes for two consecutive years. In
the logistic model, the demographic growth parameter for year t is given

by:
k(Nit1— Ni)

Ni(k— N;)

For the Ricker model, the demographic growth parameter is given by:

A= (2.4)

kln(NtH)
(k — Nt) ln(Nt) '

A= (2.5)

For Gompertz model, the demographic growth parameter is given by:

N1 — Ny

A= (2.6)
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Chapter 3

Stochasticity in single-population
models

3.1 Introduction

Organisms interact with and depend on their environments. These envi-
ronments vary in both random and predictable ways, and such variations
affect the dynamics of resident populations. Various aspects of the system
dynamics exhibit noisy characteristics, and may be broadly categorised into
variations in the number of birth and death events from one individual to
another (“demographic stochasticity”), and variations in the average repro-
ductive (growth) rate from season to season (“environmental noise”) [42].
Variations in birth and death rates may depend on factors such as popu-
lation size, age structure or the number of females in the population. Be-
tween successive time steps (seasons), the magnitude of the environmental
variation could be large or small. The presence of variation motivates us to
consider both the deterministic and the stochastic elements when analysing
population models [43].

In modeling and analysing real population dynamics from collected data,
the magnitude of the random variations is often augmented by the observa-
tion (measurement) error, or by taking small sample sizes, therefore, it will
effect the analysis outcome [52]. In early attempts to predict changes in pop-
ulation sizes, scientists used deterministic models; such models produce
point estimates for future populations based on an initial population and
use predefined environmental and demographic parameter values. Real en-
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vironments are however varying randomly, and every individual organism
is unique. Attempts to capture these variable and not-fully-predictable ele-
ments of the real world inspired the field of stochastic population modeling.
Stochastic models estimate the probability distributions for potential out-
comes of a system over time, they are widely used to analyse temporal
changes in the population dynamics. Stochastic models allow us to apply
different kinds of analysis that deterministic models do not allow. For exam-
ple, using stochastic models we are able to estimate the probability distribu-
tions of possible population size, or extinction probabilities for various fu-
ture times [34, 42, 29]. Source of stochasticity that contribute to the dynam-
ics of any population may be categorised into three groups: demographic
stochasticity, environmental stochasticity and estimated error stochasticity
[43].

With variety of stochastic continuous models analysis, the stochastic dis-
crete models has been received very much less attraction, because of the
difficulties of analysing the models even without the adding any stochastic
term (for example, chaotic behaviour and bifurcation theory) [55, 92].

3.2 OQOutline

In this chapter, we study the effects of stochasticity in logistic, Ricker and
Gompertz models. We simulate these three models with demographic and
different white and coloured environmental noise (pink and red). We ex-
plored the effects of these forms of noise on the probability distributions of
persistence and extinction risk, the average population size and its variance.
In the following sections, we present the analytical and theoretical back-
ground for evaluating stochastic population dynamics using these different
models. We then examine the effects of adding demographic and environ-
mental noise on the dynamics of logistic, Ricker and Gompertz models, and
compare the results. Individual fitness values are sampled from Poisson dis-
tributions (demographic stochasticity), while environmental noise is gener-
ated via a normal distribution, using different processes to obtain white,
pink and red noise.



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. STOCHASTICITY IN SINGLE-POPULATION MODELS 11

3.3 Models description

In this section we are going to give short description of the models, we
developed these models with different types of stochasticity and noise to
address the potential impact of changes and noises.

3.3.1 Demographic stochasticity

Demographic stochasticity drives fluctuations in birth and death rates caused
by individual variability as well as population social and spatial structure.
We define demographic stochasticity as the variation in the number of off-
spring produced per individual in the population [43]. The discrete events
of birth and death happen on a random (probabilistic) basis so that, for in-
stance, in our analysis repeating any simulation with the same initial values
will lead to different outcomes. While if the individuals in the population
are identical they will have the same probability of the birth and death, there
will still be demographic stochasticity in the average population growth.
There are two major sources of demographic stochasticity:

¢ Within-individual scale reflects the probabilistic nature of birth and
death events.

* Between-individual scale reflects the fact that each individual has a
different probability distribution of birth and death events due for ex-
ample to variations in genotype and body size.

3.3.1.1 The demographic assumptions
We model populations of asexual individuals which reproduce annually.

* Every year, each individual either dies, survives without reproducing,
or survives and reproduces (0 <— 1,1 < 1,24 <« 1).

* The total fitness of the population at time ¢ is made up of contributions
from each individual at that time; we represent this as f; which is a
contribution from the individual i. We used Poisson distribution to
sample individual fitnesses. Therefore, the total population fitness is
given by,

F=Y_f, (3.1)
i=1
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¢ To model population dynamics, we use the average growth rate. In
this case, the mean population fitness is given by the average (stochas-
tic) growth rate A;

M=F=

I |-

Y fie (3.2)
i=1

3.3.1.2 Demographic variance

Future generations depend on the reproductive success (fitness) of individ-

uals from previous generations. Part of the unpredictability /variability of

future population sizes comes from the variability in individual fitnesses.

Demographic variance is defined as the variance in individual fitness, and

it is given by,

Var(ANy)
Ny 7

Where, AN; is the rate of change in the population size N;, 07 is the demo-

0% = (3.3)

graphic variance.

3.3.2 Environmental stochasticity

Random fluctuations in environmental conditions influence average birth
and death rates of resident populations. Environmental stochasticity refers
to unpredictable spatial and temporal fluctuations in environmental condi-
tions; for the purposes of population modelling we may restrict our defini-
tion to the effect that such fluctuations have on the residents. Environmental
stochasticity influences how population sizes fluctuate and affects the fate
of populations. In other words, environmental stochasticity, which is a ba-
sic feature of any natural system, may be represented as variations in the
parameters influencing population growth from year to year.

For many years, the environmental noise has been modeled using a white
spectrum that influences the population dynamics. There are however nu-
merous studies suggesting that most environmental noise is in practice not
white, but instead is usually correlated [77] ( pink or red) noise; i.e. the en-
vironmental condition for next year is more likely to be same as the previ-
ous year. Recent studies have emerged which utilise coloured noise spectra
[29, 34, 35]. The assumption of a white spectrum is generally thought to be
an unrealistic choice for representing the noise in many population studies,
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so in order to present more realistic models, we have moved beyond the
scope of the white spectrum.

Multiple existing studies examining the effects of environmental variation
used white noise to generate this variation, so that there is no temporal au-
tocorrelation in the environmental fluctuations [69]. A more recent study
analyses time series data of population dynamics while gradually increas-
ing in the magnitude of the temporal autocorrelation [25, 63].

Noise spectra may be referred to by the level of temporal correlation in time
series data they generate; equivalently, a noise spectrum may be charac-
terised by the relationship between frequency and “power spectral density
PSD” which it exhibits. The power spectral density describes the distribu-
tion of power into frequency components. Time series data is said to be
white when there is no dominant frequency (uniform power spectral den-
sity). Low frequencies dominate the time series data of pink and red noise,
while high frequencies dominate the time series data of blue noise [54].
The power spectral densities of pink noise fluctuations are inversely pro-
portional to their frequencies (117) [31, 36, 79], while those of red noise fluctu-
ations are inversely proportional to their frequencies squared (flz) [37, 79].
The population dynamics could be represented by the difference equation:

Niy1 = NeF(Ay, Ny). (3.4)

There are at least three different ways to incorporate the environmental
stochasticity into models of population dynamics. We can add the environ-
mental noise ‘to the model” directly, to the growth rate, or to the carrying
capacity. For example, the logistic model with the environmental noise in-
fluence in the model, growth rate and carrying capacity will set

Nip1=ANe(1——)+ S, (3.5)

where N; is the population size, S; the environmental noise, At = A+ S is
growth rate with both demographic and environmental stochasticity and k;
is the carrying capacity with environmental noise (k; = k+ S¢). When we
add environmental noise into the Ricker model we have:

- N,
N1 = NteAt(l_th) + 5S¢, (3.6)
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Finally, when we add environmental noise into the Gompertz model we
have:

- k
Nijq = /\tNtLog(ﬁtt) +5, (3.7)

Note that, in the model, the environmental noise is included in one position
only.

In our analysis, we utilise various types of noise, generated using modified
normal distributions. The aim of this section is to explore different place-
ments of environmental noise in the three models. We want to find out:
where does environmental stochasticity most influence population dynam-
ics.

3.3.2.1 White, pink and red noise

White, pink and red noise distributions are used extensively in stochastic
population models to represent environmental fluctuations. White noise is
a term used to describe uncorrelated random time series signals, with zero
mean and constant variance. The points in white noise time series are inde-
pendent (i.e. uncorrelated) and the signal power, also called “power spec-
tral density (PSD)”, is equally distributed between frequencies. In other
words, white noise time series have, on average, equal energy in every
equally-sized frequency interval.

Noise may be more generally characterised by its power spectral density. In
this work, we consider power-law noise, with spectral densities of the form
S(f) flﬁ The exponent § in the power spectral density describes how
power is distributed among frequencies in the noise; for white noise, = 0
and the power spectral density (PSD) is flat.

“Pink” and “red” describe noise signals for which g = 1 and 8 = 2 respec-
1
2
have non-zero autocorrelation, and their power decreases as the frequency

tively, and as such are often referred to as % and - noise. Such noise signals
increases. As a result, the lower frequencies are dominant in pink noise, and
even more so in red noise. Pink and red noise series may be obtained by fil-
tering white noise, to reduce the presence of high frequencies. The most
well-known way to generate red noise is the autoregressive process [52];
there are several processes with which one may generate pink noise, such
as recurrence models, non-linear stochastic differential equations, Fourier
transformation and wavelets [31, 36, 37, 38, 75, 79]. Based on Timmer and
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Koenig algorithm [79], we generated each iﬂ spectrum using Python pro-
gram. We tested the autocorrelation and PSD of the samples generated in
order to validate the algorithm’s implementation.

Timmer and Koenig’s algorithm generates power-law noise by first gener-
ating a Fourier transform with randomised amplitude and phase, then per-
forming an inverse Fourier transform to obtain data in the time domain -
the power-law noise [79].

—— White noise
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—— Red noise h
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Figure 3.1 — Red, pink and white noise samples. (Above) Time series illus-
trate varying levels of autocorrelation. (Below) Power spectral densities of
the three time series.

3.3.2.2 Variance 02, autocorrelation p and Beta j3

The variance ¢? refers to the spread of the time series data, i.e., how far
their width is from the mean. Variance is particularly useful in predicting

, 88].

Autocorrelation p is the degree of similarity in the time series data over the

the future states or the performance of the any population dynamics [

successive time interval. It is the same as calculating the correlation be-
tween two different time series, except that the same time series is actually
used twice. Correlation is a statistical technique that can show whether and
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how strongly pairs of variables are related [41, 74]. Beta 8 is the PSD ex-
ponent which describes how the power is distributed among frequencies in
the noise.

The differences between white, pink and red noise can also be described in
terms of 02, p and B [82, 37] - we summarise the properties of these three
noise colours below:

» White noise has constant 0%, o = 0 and 8 = 0.
* Pink noise has increasing ¢ ( « log(t)),0 < p < land B = 1.
e Red noise has increasing 02 (x t),0 < p < 1and 8 = 2.

In this work, we explore the effects of a variety of environmental noise
types: white noise with variances ¢? € [0,30], noise with unit variance and
Bel-15)

Exploring the effects of different types of environmental noise, with dif-
ferent parameter values, is a long process. In this work we consider the
following scenarios:

e White environmental noise with o2 € [0,30].
¢ Noise with unit variance and g € [—1,5].

¢ Pink and red noise with unit variance and autocorrelation p = 0.85
and p = 0.9 respectively.

3.4 Simulations

We simulated time series of population dynamics according to the stochas-
tic logistic, Ricker and Gompertz model, which are useful in many conser-
vation biology applications. We consider fluctuations in the environment
affecting the annual population growth, where, N; is the population size in
year t, with A; as the demographic growth rate at year t. We repeated those
simulations with only demographic stochasticity, then with only environ-
mental noise S; in different positions and finally with both demographic
and environmental stochasticity to capture the dynamics.

The noise S; that was added as the environmental fluctuations factor can be
white, pink, or red, in order to see weather the different colours of noise in
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different positions will affect population growth differently. We simulated
population dynamics for 20 “years” in environments, the initial population
size is 10 and the carrying capacity is set to 100. The variance of the envi-
ronmental noise is 1 and with zero mean (white, pink and red); the auto-
correlation in the pink and red noise time series is .85 and .9 respectively.
We simulated the demographic growth A; using a Poisson distribution with

mean 1.2.

3.4.1 Demographic noise

In this section we model the effects of the demographic stochasticity. In-
dividual fitness values are sampled from a Poisson distribution; the mean
titness value provides the contribution of demographic stochasticity to the
average growth rate A;. The initial conditions implemented for the simu-
lation of all three models are: initial population size is 10, the individual
fitness values are sampled from a Poisson distribution with mean A = 1.2
and the carrying capacity is set to 100.
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Figure 3.2 — Sample trajectories of the Logistic, Gompertz and Ricker models
with demographic stochasticity included in the growth rate. Initial popula-
tion Ny = 10, carrying capacity k = 100 and each individual’s reproductive
success is sampled from a Poisson distribution with A = 1.2.

We calculated the average growth and the variance of each model. Each
trajectory has growth rate (A;) at time t. The trajectory j has A;; growth rate
at time f. p the average of Ay, across j, i.e. we took the average of all the
simulation in yearly bases, the we calculated the variance of this averages.
As expected from the deterministic model, the stochastic logistic model ex-
hibits much slower average growth than the Gompertz and Ricker mod-
els. Surprisingly however, the average growth rate in the stochastic Ricker
model is higher than in the stochastic Gompertz model as shown in Figure:
3.3, the plot of the expected N1 against N;. Clearly, in this version of the
logistic model and with only demographic stochasticity, the population can-
not reach the value of the “carrying capacity” parameter (100), but instead

forms its own carrying capacity.
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Figure 3.3 — Sample trajectories of Ny and N;y; of the logistic, Gompertz
and Ricker models with demographic stochasticity included in the growth
rate, with different Poisson mean parameter. Initial population Ny = 10,

carrying capacity k = 100.

Table 3.1 — The average growth rate u and its variance o2 of the aver-
age trajectory from 20 trajectories; with demographic growth rate in the
logistic, Gompertz and Ricker models (no environmental noise included).
The demographic stochasticity is sampled from a Poisson distribution with

A =12
Model | o?
Logistic model | 0.1 | 0.07
Gompertzmodel | 1 | 0.7
Ricker model | 1.1 | 1.9
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3.4.2 Environmental noise
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Figure 3.4 — Simulations of the logistic, Ricker and Gompertz models with
white, pink and red environmental noise. In the first column, white (a) pink
(d) and red (g) environmental noise is added to the growth rate A; in the
second column white (b) pink (¢) and red (h) environmental noise is added
to the model; in the third column white (c) pink (f) and red (i) environ-
mental noise is added to the carrying capacity k. In all cases Ny = 10, base
carrying capacity k = 100 and simulations run for 20 years of reproduction.
All three models are included in each of the figures.

In this section we model the effects of white, pink and red environmental
noise in the population demographics. The average growth rate A = 1.2.
The variance of the environmental noise is 1 and with zero mean (white,
pink and red); the autocorrelation in the pink and red noise time series is
p = 0.8 and p = 0.9 respectively. We explore the respective effects of adding
the environmental noise term to the growth rate A, directly to the model or
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to the carrying capacity k. The initial conditions implemented for the simu-
lation of all three models are: initial population size is 10, and the carrying
capacity is set to 100.

3.4.3 Demographic stochasticity with different colours of

environmental noise

In this section we model the effects of white, pink and red environmental
noise in the presence of demographic stochasticity. Individual fitness values
are sampled from a Poisson distribution; the mean fitness value provides
the contribution of demographic stochasticity to the average growth rate A;.
We explore the respective effects of adding the environmental noise term to
the growth rate, directly to the model or to the carrying capacity.

For instance, some ecologists consider the environmental variation to be
mainly affecting the carrying capacity, and so add it to the carrying capac-
ity. Others focus on the effect directly in the growth rate, while still others
model environmental variations as random errors, so they just added ran-
dom terms directly to the model at each time step. Here we consider all
three cases, and we compare in how the population will grow with different
models and different parameters configurations. There is autocorrelation in
the pink and red noise, therefore, there is an environmental autocorrelation
included in the models. Put simply, this means that the growth each year is
likely to be similar to that in the previous year.

In all scenarios, we simulate trajectories for 20 years, and calculate the av-
erage trajectory of 100 model populations, focussing on the variance and
the mean of this average trajectory. We set the initial population size to 10
and the base carrying capacity to 100. Individual fitness values are sampled
from a Poisson distribution with A = 1.2. The variance of the environmen-
tal noise is 1 and with zero mean (white, pink and red); the autocorrelation
in the pink and red noise time series set to p = 0.8 and p = 0.9 respectively.
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Figure 3.5 — Sample trajectories of the logistic, Ricker and Gompertz models
with white environmental noise in different positions. In the first row the
environmental noise is added to the growth rate A;; in the second row it is
added to the model; in the third row it is added to the carrying capacity. In
all cases initial population Ny = 10, base carrying capacity k = 100 and sim-
ulations run for 20 years. The black line represents the average population
size at each time-step.
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Figure 3.6 — Sample trajectories of the logistic, Ricker and Gompertz models
with pink environmental noise in different positions. In the first row the
environmental noise is added to the growth rate A;; in the second row it is
added to the model; in the third row it is added to the carrying capacity. In
all cases initial population Ny = 10, base carrying capacity k = 100 and sim-
ulations run for 20 years. The black line represents the average population

size at each time-step.
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Figure 3.7 — Sample trajectories of the logistic, Ricker and Gompertz mod-
els with red environmental noise in different positions. In the first row the
environmental noise is added to the growth rate A; in the second row it is
added to the model; in the third row it is added to the carrying capacity. In
all cases initial population Ny = 10, base carrying capacity k = 100 and sim-
ulations run for 20 years. The black line represents the average population
size at each time-step.

Based on the above simulations, we notice the following:

¢ A common trend between all three models is that adding demographic

and environmental stochasticity slows the growth and decreases the

effective carrying capacity.

* In the presence of demographic stochasticity, the three models behave

quite differently (Figure 3.2). Once the population has reached a stable

level, the variance between population values in the logistic model is
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much lower (0.07) than the variances observed with the Gompertz and
Ricker models (0.7 and 1.9 respectively).

* Adding white, pink and red environmental noise (without demographic
noise) to a constant growth rate (i.e. A + S;,) leads to large variability
in the simulation trajectories. This causes extinction in some of the tra-
jectories (this occurs mostly in the first few years) while others settle
around the base carrying capacity (figure 3.4, first row). In compar-
ison, when adding the noise to the carrying capacity (i.e. k + S;) or
to the model (i.e. F(N;, A) + S¢) populations grow more quickly and
directly to their carrying capacity k (figure 3.4, second and third rows).

* The autocorrelation in pink and red noise causes more variability around
the carrying capacity, with more autocorrelation having a stronger ef-
fect with red noise (figure 3.4).

¢ Including the white environmental noise in the growth rate and with
the demographic stochasticity i.e. (At = A+ Sy, Figure 3.5 - first row),
the results is increasing in the average growth relative to the model
with only demographic stochasticity (no environmental noise) shown
in Tab: 3.1 and 3.2, also, the variance is relativity lower. The logistic
model has the highest variance which explains why the trajectories
vanished when we adding the noise into the A;. In case of adding the
white noise to the k or to the model, the behaviour of each model were
very similar Figures: 3.5-second and third row.

¢ In all the models, adding both demographic and pink environmental
noise to the growth rate (Figure 3.6 - first row), results in decreasing
the average growth relative to the model with white environmental
noise (Figures 3.5 - first row), and also increases population variance
is relativity higher.

¢ Adding pink noise into the carrying capacity or into the model di-
rectly results in average growth rates which are pretty similar to those
obtained with white environmental noise (Figures 3.5).

¢ In simulations with demographic stochasticity adding red environ-
mental noise into the growth rate (i.e. At = A+ Sy, Figure 3.7), tend
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to increase the variance in comparison with the effect of adding white
and pink noise (see Table 3.2).

* The Ricker model shows strong persistence in all the realizations dur-
ing the 20 years of the simulation time interval. The logistic model
shows very week persistence in comparison with Gompertz model in
all the realizations during the 20 years of the simulation time interval.

3.5 Extinction probabilities

Volker and Christian analyse the mean time to extinction by considering in
their analysis only the populations for which actual extinction happened,
and ignoring the persisting populations [84]. Here we analyse the distri-
bution of extinction and persistence probabilities using the same method
as [84], but including the persisting population. The study is given in the
following steps,

1. Write a program to simulate the population dynamics for a long pe-
riod of time, say 300 years.

2. Repeat the program at least 1000 times and record the time when each
population goes extinct, without ignoring when the populations that
persist for 1000 years; i.e. when and/or whether each population goes
extinct.

3. Generate a histogram of extinction times, and normalize the histogram
by dividing all histogram bars by the total number of simulation runs.

4. Estimate the probability p(#') of the population going extinct in the
time interval # from the normalized histogram bars. From this, we
obtain the cumulative probability Py(t) of the population being extinct
by time t' (i.e. the bars are successively added up to time t'). The
final value in the cumulative probability plot is the total probability of
extinction in 300 years.

Cp = P(E, < t|[E, < T)P(E, < T), (3.8)

where Cp is the cumulative distribution function, and Ej represents
when the extinction happens. Simply it means the probability if being
extinct at time f, where t € [0, T].
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Example 3.5.1. Suppose we run 1000 simulations of the population dynamics for
1000 years. If 150 populations do not go extinct (persist for 1000 years), then 850
model populations must go extinct.

Normalising the sorted data of yearly extinction event counts (dividing it by 1000),
and successively summing up the normalized probability will yield the total prob-
ability of going extinct in the next 1000 years: 85%, yielding a total persistence
probability of 1 — total probability of extinction = 15%.

A quasi-extinction level (QEL) is a threshold population size, chosen such
that once the population reaches or falls below the QEL, extinction becomes
highly likely, if not inevitably. The quasi-extinction level (QEL) helps to
build a practical perspective of population viability analyses (PVA) in order
to preserve endangered species.

In this section we estimate extinction and quasi-extinction probabilities for
each of the models (quasi-extinction level of 5), including different colors
of environmental noise (white, pink and red) in different positions. We per-
form similar simulations to those described above, but with quasi extinction
we consider a population to be “extinct” when its size dips below the level
5.

Figure 3.8 shows cumulative extinction probabilities over 1000 years for the
three models (logistic, Gompertz and Ricker), with demographic stochastic-
ity, based on 1000 simulations per model.
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Figure 3.8 — Cumulative extinction probabilities of the logistic, Ricker and
Gompertz models with demographic stochasticity. Ny = 10, k = 100 and
individual fitnesses are sampled from a Poisson distribution with A = 1.2.

We used the cumulative distribution to find total extinction and persistence
probabilities E, and P, = (1 — E,) for all the models. The extinction prob-
ability of each model is listed in Table 3.3. We notice that in the Gompertz
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model, extinction happens only in the first few years of the simulations,
since small population size increase the demographic stochasticity.
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Figure 3.9 — Cumulative extinction probabilities as functions of time for lo-
gistic, Ricker and Gompertz models with red, pink and white environmen-
tal noise in different positions, and demographic growth rate. In the first
row the environmental noise is added to the growth rate A; in the second
row it is added to the model; in the third row it is added to the carrying
capacity. In all cases initial population Ny = 10, base carrying capacity
k = 100, and mean individual fitness A = 1.2. Each point represents the
average of 1000 simulations, run for 1000 years.

Figure 3.9 below shows cumulative extinction probabilities for the three
models, with white, pink and red environmental noise. We again used the
cumulative distribution to find the extinction probability E, and the persis-
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tence probability P,(1 — E,) for all the models. Extinction probabilities are
listed in Table 3.3.

From the extinction probability Figure 3.9: Ricker model has the highest
persistence rate among the three models followed by Gompertz and lastly
logistic model. Surprisingly, regardless of the colour of the environmental
noise, Ricker and with the noise added to the model or to k has the same
extinction probability. Red environmental noise results in a lower extinction

rate in comparison with white and pink noise in all the models.
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Figure 3.10 — Cumulative quasi-extinction probabilities as functions of time
for logistic, Ricker and Gompertz models with red, pink and white environ-
mental noise in different positions. In the first row the environmental noise
is added to the growth rate A; in the second row it is added to the model;
in the third row it is added to the carrying capacity. In all cases initial pop-
ulation Ny = 10 and base carrying capacity k = 100. Each curve represents
the average of 1000 simulations, run for 1000 years.
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3.6 Sensitivity to demographic stochasticity and

environmental noise

3.6.1 Demographic stochasticity

In this section, we use the logistic, Gompertz and Ricker models with yearly
fluctuations in the demographic rate caused by demographic stochasticity
affecting the growth. We simulate the distribution of the extinction proba-
bility and the mean and variance of the population sizes on a 1000 simula-
tions per parameter value, each for 300 years.

(a) (b) (c)

- Logsitic model - Gompertz model - Ricker model
1.0 £10 £10 Extinction probabil
08 Qo8 Bos
e Q Q
o6 206 206
o e Extinction probability Q S
c c c
S04 §o04 §o4
Co2 Co2 Co2
c c c
X 00 X 0.0 X 00
0 1 2 3 2 5 0 1 2 3 a 5
Poisson parameter A Poisson parameter A Poisson parameter A
(d) (e) ()

I Logsitic model 9 Gompertz model 9 Ricker model
@ w60 & 100
e A\ pulation size n Average n
f = 60 [=4 =4
© © 40 ©
S 40 = S 60
Q Q Q
o [=} =} 40
Qg Qo Q
Q [ [
o o o 20
© © ©
e o o
go g o g o
3 0 1 2 3 4 5 x 0 1 2 3 4 5 X 0 1 2 3 4 5
Poisson parameter A Poisson parameter A Poisson parameter A
(8) (h) (i)
g Logsitic model g Gompertz model g Ricker model
£ 8003 poputationsie variance H < 8000
< = 600 5
> 600 > > 6000
& K a00 &
» 400 o} & 4000
5 s s
S 200 S 200 S 2000
K K] o
=3 =3 3
[S a o a o
8 0 1 2 3 2 5 I 0 1 2 3 2 5 I 0 1 2 3 2 5
Poisson parameter A Poisson parameter A Poisson parameter A

Figure 3.11 — Extinction probability, average population size and population
size variance as functions of the mean individual fitness A;. In the logistic
and Gompertz models, population variances increase with A; up to critical
values, which correspond to the critical A; values for extinction. Interest-
ingly, the Ricker model does not exhibit this despite similar behaviour in
terms of extinction probability and average population size.

The initial population size is 10, and the carrying capacity is 100. The demo-
graphic growth is extracted from Poisson distribution with A € [0,5]. We
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only applied a demographic stochasticity to the three models.

The exponential nature of the Ricker model ensures much higher persis-
tence up to a critical value of approximately 2.6, after which the population
goes extinct due to the crowding effect. In the logistic and Gompertz mod-
els, the range of the persistence window is smaller than that in the Ricker
model. In the logistic and Gompertz models, the average population size
and variance increases with A up to critical values, which correspond to the
critical A values for extinction. Interestingly, the Ricker model does not ex-
hibit this despite similar behaviour in terms of extinction probability and
average population size.

3.6.2 Demographic stochasticity and white environmental

noise

To explore the effects of adding noise to the logistic, Gompertz and Ricker
models, we simulated the population dynamics for 300 years with demo-
graphic and white environmental noise. We varied the variance of the en-
vironmental noise, and added the noise to different positions in the mod-
els. When adding the noise to the growth rate A; we explored variances
o2 € [0,6]; when adding the noise to the model or into k we explored vari-
ances 0 € [0,30]. We calculated the extinction probabilities, average popu-
lation sizes' and total population variances based on a 1000 simulations for
300 years of reproduction.

For all simulations, we used an initial population size Ny = 10 and a base
carrying capacity k = 100. The demographic growth is extracted from a
Poisson distribution with A = 1.2. White noise is generated from a normal

distribution with zero mean and constant variance.

! Average population sizes include populations which go extinct, so average population
size is a combination of extinction probability, time to extinction and the sizes of popula-
tions which survive.
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Figure 3.12 — Total extinction probability over 300 years of logistic, Ricker
and Gompertz models with demographic and white environmental noise,
as functions of the variance of the environmental noise. In the first row the
environmental noise is added to the growth rate A;; in the second row it is
added to the model; in the third row it is added to the carrying capacity. In
all cases initial population Ny = 10, base carrying capacity k = 100, and
mean individual fitness A = 1.2. Each curve represents the average of 1000
simulations.

Increasing the variance of environmental noise increases the extinction risk
in all the models and in all the noise positions (A, k and directly to the
model). Including white noise in the demographic growth A; for the logis-
tic and Gompertz models results in a smaller variance interval ~ [0,1.2]
for which population persistence is possible, while it is ~ [0, 6] in Ricker
model. In other words, it appears the Ricker model is appropriate for mod-
elling populations which can tolerate high population variance driven by
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environmental noise. The risk of extinction when adding noise to A; is very
high compared to the risk when adding noise into the carrying capacity k
or directly to the model. The average of population size decreases with in-
creasing noise variance in all the models. This is unsurprising, since as the
level of environmental variance increases, the likelihood of extreme events
will also increase.
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Figure 3.13 — Average population sizes for 300—year; 1000 simulations of
logistic, Ricker and Gompertz models with demographic and white envi-
ronmental noise, as functions of the variance of the environmental noise. In
the first row the environmental noise is added to the growth rate A; in the
second row it is added to the model; in the third row it is added to the carry-
ing capacity. In all cases initial population Ny = 10, base carrying capacity
k = 100, and mean individual fitness A = 1.2.
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Figure 3.14 — Population size variances of logistic, Ricker and Gompertz
models with demographic and white environmental noise, as functions of
the variance of the environmental noise. In the first row the environmental
noise is added to the growth rate A4; in the second row it is added to the
model; in the third row it is added to the carrying capacity. In all cases initial
population Ny = 10, base carrying capacity k = 100, and mean individual
fitness A = 1.2. Each point represents the average of 1000 simulations of 300
years.

3.6.3 Demographic stochasticity and coloured

environmental noise

In this section, we simulate the dynamics of the logistic, Ricker and Gom-
pertz models with demographic stochasticity and coloured environmental
noise, exploring values of the power-law exponent § € [—-1,5] (e.g. B =0
gives white noise, § = 1 pink noise and B = 2 red noise). We observe
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the distributions of extinction probability and, average population size and
total population variance based on 1000 simulations per § value, each run
for 300 years. In all cases the initial population size Ny = 10 and carrying
capacity k = 100. The individual fitness values are sampled from a Pois-
son distribution with mean A = 1.2. The autocorrelation observed in the
coloured noise time series varies in the interval [—0.8,0.95].
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Figure 3.15 — Extinction probability of Logistic, Ricker and Gompertz model
with demographic and environmental noise, the power low of the noise
frequency B of the environmental noise in range [—1,5]. The first column,
the noise added to the model; the second column, the noise added to the
model and in the third column, the noise is added to the carrying capacity.
The initial population size is Ny = 10 and the carrying capacity is k = 100
for period of 300 year. The plots shows the last year prediction.
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Figure 3.16 — The population size variance in Logistic, Ricker and Gompertz
model with demographic and white noise environmental noise. the power
low of the noise frequency B of the environmental noise in range [—1,5].
The first column, the noise added to the model; the second column, the
noise added to the model and in the third column, the noise is added to the
carrying capacity. The initial population size is Ny = 10 and the carrying
capacity is k = 100 for period of 300 year. The plots shows the last year
prediction.

The Gompertz and Ricker models show increasing population persistence
with increasing f-values when the noise is added to k or directly to the
model. In all three models, when adding the noise into the demographic
growth rate A, increasing f increases the risk of extinction as well as the
population variance and, in the logistic and Gompertz models, the average
population size. This could suggest that a higher proportion of extinctions
may be driven by overpopulation rather than low reproductive rates, when
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B-values are high. In the Ricker model however, the average population
size is decreases with increasing f, though the total population variance is
increased with increasing . The Ricker and Gompertz model exhibit high
persistence compared with the logistic model throughout the range of

values.
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Figure 3.17 — The population size variance in Logistic, Ricker and Gompertz
model with demographic and white noise environmental noise. the power
low of the noise frequency B of the environmental noise in range [—1,5].
The first column, the noise added to the model; the second column, the
noise added to the model and in the third column, the noise is added to the
carrying capacity. The initial population size is Ny = 10 and the carrying
capacity is k = 100 for period of 300 year. The plots shows the last year
prediction.
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3.7 Population viability analysis

Population viability analysis (PVA) is based on biological and mathemati-
cal principles which are used together in assessing the extinction risk for a
population of interest. It is a test to characterise the factors that are most
important for the population’s survival. Generally speaking, there are two
principal factors which influence the population viability: the demographic
rates and the temporal environmental variability [5, 21]. The temporal en-
vironmental variability is always accounted for when conducting a PVA,
independent of the population size or structure, while demographic rates
are considered particularly important when population size is small. Small
populations are naturally vulnerable (i.e. closer in number to extinction),
and in addition face larger demographic stochasticity; they are also subject
to environmental stochasticity, though in some cases this may be reduced
in smaller populations. The main factors influencing the distribution of ex-

tinction risk:

1. The stochastic growth rate A; and its variance are two important fac-
tors in determining the distribution of extinction probabilities.

2. Stochastic variations in the growth rate may be due to:

* Density-independent factors such as the variation in the environ-
mental conditions from year to year, or catastrophes (i.e. extreme
events).

* Density-dependent factors and effects such as resource shortages,
predation, parasitism, and demographic stochasticity (chance vari-
ation in births and deaths).

3. The life history and current population size.

3.7.1 The use of PVA
PVAs may be used to:

1. Estimate the probability distribution of future population sizes (im-
plicitly including extinction risk).

2. Compare the relative risk between populations in the community. We
can attempt to predict whether or not there will be a decline in all
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or most of the populations in a given habitat. Furthermore, we can
estimate our probability of success if we attempt to save particular (or
all) populations in the habitat, and which populations need to receive
the management attention first. We can also select most promising
populations after determining which population we could save and
which we could not.

3. Determine the relative risk of the community members, for example,
we can estimate the probability distribution of the community mem-
bers, i.e., whether the community persists or not.

4. Determine how many years of the censused data would be required to
make reasonable conclusions about the population growth, survival,
and reproduction and inform habitat conservation plans and manage-
ment decisions.

5. Determine and identify the contributions from each life stage to the
population growth, and inform targeted management or intervention.

6. Estimate the optimal number of individuals to release in order to es-
tablish a new population, or the number of individuals that may be
removed from existing population without endangering the remain-
ing population.

7. Determine how large a reserve is needed to gain a desired level of
protection from extinction. If we can estimate the amount of space
each individual needs, we may use PVA models to ask how large the
area of the reserve should be (or of what quality, given a fixed size) to
achieve low probability of extinction risk for certain population.

8. Set limits on the allowed harvest from a population that are compati-
ble with its continued existence. Direct harvesting reduces the popu-
lation size and thus increases the extinction risk. The same applies to
other causes of indirect mortality related to human activity.

9. Decide how many populations are needed to protect a species from re-
gional or global extinction. We can combine the analyses of extinction
risk for populations, and identify the probability that at least one pop-
ulation will continue to exist at a given future time. We might ask how
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much safety from extinction an entire species could gain if we were to
preserve particular numbers and combinations of extant populations.

3.7.2 Assumptions in PVAs

PVAs may be conducted under various sets of assumptions, and there is to
this day no generalized rule or clear set of common assumptions for PVAs.
Choices of assumptions depend on the dynamics of the particular popula-
tions under consideration, as well as the availability of environmental and
demographic data [57]. Nonetheless, we cite some common assumptions
used in previous PVAs:

3.7.2.1 Common assumptions of PVAs utilising density-independent
models

1. The parameters u and ¢? are constant over time, and independent of
the population size.

2. The population growth rate is independent of the population size i.e.
there is no density dependence.

3. The demographic stochasticity is ignored for the derivation of extinc-
tion probability formula. Environmental trends are ignored.

3.7.2.2 Common assumptions of PVAs utilising density-dependent
models

1. The parameters y and o2 are constant over time.

2. There is no autocorrelation in the environmental noise; in most analy-
ses only white noise is considered.

3. There are no extreme events (catastrophes) or bonanzas (good years).
Catastrophes, such as ice storms, wildfires, droughts cause rapid re-
duction in population sizes, while bonanzas such as (good years) may
cause high levels of reproductive success/survival. In these analy-
sis, the extinction probability is derived under the assumption of only
small changes to the base parameter values, causing relatively low
rates of change in the population size.
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4. No observation error: observed population sizes are treated as true
population sizes.

5. Allindividuals are modelled as identical, and populations are without
structure.

3.7.3 Minimum viable population size (MVP)

A minimum viable population is a threshold number of individuals suffi-
cient to maintain a population. It is a crucial level for which the extinc-
tion probability is sufficiently small and should ensure a high survival rate
over a specified time interval. The existence of a minimum viable population
(MVP), implies that there is some threshold population size which ensure a
high survival probability of the population for some given time interval, de-
spite the effects of demographic and environmental noise as well as natural
catastrophes [70].

3.8 The theory of the mean time to extinction

The mean time to extinction in population growth models depends mainly
on the carrying capacity K and the mean growth rate A. In deterministic
models, the growth rate is the key feature of determining whether the pop-
ulation will go extinct: if (A < 1), i.e. the population has an average growth
rate of less than one, the population will go to extinction in a time period
proportional to the logarithm of the initial population size Ny. If A > 1
the population will continue growing to an infinite time when we use the
simple exponential model (dd_zy = AN), or stay at the carrying capacity for-
ever when we use the logistic, Ricker, Gompertz (or almost any density-
dependent) model.

Russel Lande [42] manages to estimate the mean time to extinction for the
ceiling model; he concludes that the mean time to extinction is either expo-
nential of carrying capacity or is a power of (k). He spotted that the differ-
ences in the mean time to extinction distribution can be understood based
on the mean and the variance of the long-term population growth rate A.

By using the diffusion approximation and with the condition A > 02, the
mean time to extinction MTE shows a convex relationship with the carry-
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ing capacity K. Otherwise, MTE curves have a concave relationship with K,
unless there is a high correlation in the environmental noise [42]. The vari-
ation in environmental noises and the growth rates explain why carrying
capacity and mean time to extinction have different relationships when we
assessing the population viability analysis.

Ovaskainen & Meerso [67] deduce two different assumptions to analyse the
mean time to extinction (MTE), and that variation is according to the model

description, whether environmental noise is present or not.

1. Under the first assumption, i.e., if there is no environmental noise,
then the mean time to extinction (MET) is proportion to the exponent
of K, [67], and is represented by,

MTE = Cy(Ay, K)eb(Aeva)K,

(3.9)
b(/\t, Ud) = %,

Equation (3.9) shows that the constant C; is depends on the carrying
capacity and the growth rateA;. b is depend on the growth rate A, and
the variance of the demographic noise ¢2.

2. With uncorrelated environmental noise, MET is proportional to K*
[67], and it is given by,

MTE = Cy(As, K)KCAr2e),

c(Ar,v4) = 21

o2’

(3.10)

Equation (3.10) shows that the constant C; is same as C; depends on the

carrying capacity K and the growth rate A;. The constant c is depend on the

growth rate A4, and the environmental noise variance ‘73-
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Figure 3.18 — Simple illustration of the MTE, the parameter b have the values
[0.03,0.04,0.05], the parameter c has the values [0.3,0.4,0.5], C1 = C2 = 10.
Note that b and a are depends on the growth rate and the variance of the
environmental and demographic noise.

3.9 Results

To explore the problem of assessing extinction risk with demographic and
environmental variability, we compared mean extinction times in white,
pink and red noise environments. We find large differences in the proba-
bilities of extinction and persistence between the three models, and observe
that:

1. The logistic model exhibits the slowest average growth rate.

2. The Ricker model has the highest persistence, followed by Gompertz
model.

3. The logistic model exhibits different behaviour with white, pink and
red environmental noise. Populations tend to persist in environments
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with coloured noise.

4. Coloured noise promotes extinction in the Ricker model when added
to )Lt.

The common results from the simulations are as follows.

1. If the growth rate A; is negative, eventually the population goes ex-
tinct, independent of the variance of the growth rate.

2. If the growth rate A; is positive, there is still a risk of falling the under
the quasi-extinction level where there is no recovery.

3. Extinction risk depends on the average growth rate, and the variance
of the growth rate.

4. In small populations, the demographic noise reduces the population
growth rate, therefore increases the extinction risk.

5. The variance of environmental fluctuations is an important feature in
determining extinction risk; high variance directly increases the ex-
tinction risk of a population (figure 3.12).

6. High levels of autocorrelation in coloured environmental noise appear
to promote population persistence, even though sometimes the corre-
lation of bad years causes extinctions which might not have otherwise
occurred.
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Chapter 4

Stochasticity in Competition
Models

4,1 Outline

In this chapter, we study the effects of demographic and environmental
stochasticity in the logistic, Gompertz, and Ricker competition models. The
rest of the chapter is laid out as follows. We begin with some theoretical
background on which to build our stochastic competition models. We then
run simulations with the three models, exploring the effects of demographic
stochasticity alone. We also run simulations with correlated and uncorre-
lated white environmental noise. We explore the effects of these forms of
noise on the probability distributions of extinction risk, average population
size and total population variance.

4.2 Model descriptions

In this section, we give a short description of the logistic, Gompertz, and
Ricker models with two competing species. We describe the incorporation
of various types of stochasticity in these models.

4.2.1 Logistic Lotka-Volterra model

In real life, many species compete for limited resources - primarily food, wa-
ter and nesting space. Lotka Volterra competition models are widely used to
model systems of two or more interacting populations, such as populations

47
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competing for access to resources (or otherwise inhibiting one another). The
Lotka Volterra equations were independently derived by Alfred Lotka and
by Vito Volterra in 1925 and 1926 respectively, and are some of the most fa-
mous equations for modeling ecological dynamics [16, 17, 40]. We utilise a
stochastic logistic Lotka-Volterra competition model of the form:

n
j—1%iiNj,

N; ,
1 kl

= AN, (1= ( (4.1)

t+1

Our goal here is to investigate the dynamics of two competing species ex-
periencing demographic stochasticity and environmental noise.

Suppose we have two competing populations, where N; and N; represent
the population sizes. The Lotka-Volterra model for this situation would
include two interspecific interaction terms, in addition to the intraspecific
interaction terms of the single-population logistic model. We use a two-
species competitive Lotka-Volterra model of the form:

~aq,1Ny, g o N,

N1t+1 = AltNlt(l k1 ) (42)
®r>1N1, + ar >N
N, = Ag, Ny, (1 — 20 = 2270, (4.3)

where the inter-specific interaction coefficients a;; > 0 represent the effect
of species j on species i. The coefficient «;; represents the effect of species i
on itself (intraspecific), and we set #;; = 1 in all cases. The a-values do not
have to be equal. We set a;; > 0 Vi, j since the interspecific interaction is
competitive, and each population will inhibit the other’s growth. We refer
to the population exerting the larger competitive pressure as the ‘stronger’
population and the population experiencing the larger competitive pres-
sure as the ‘weaker” population. The competition interaction coefficients
are assumed to be fixed over the course of each simulation. In our sim-
ulations, each species has its own growth rate A;, but the same carrying
capacity (k1 = kp).

The deterministic model suggests four expected outcome for competition
models, x12,421 < 1 the two population would be able to coexist together.
x12,021 > 1 both population are endangered. In case of 1, > 1 and
ay1 < 1, population 2 would be dominant and effect the other population
negatively, causing extinction of population 1.
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4.2.2 Ricker competition model

The general form of the discrete stochastic Ricker competition model has for
each population an equation of the form:

n . .N-
Liz1%,Nj,

N; . = NiteAit(l_( : K; )), (4.4)

t+1

We investigate the dynamics of the Ricker model having two competing
populations with various types of environmental and demographic stochas-
ticity. N1 and N, represent the abundance of population one and population
two, respectively. The Ricker model for two competing species is given by:

Nl +aq 2N2
Ay, (1= —=1)
Ni,,, = Ny A (4.5)
%) 1N1 +Np
)\2 (17 ’ t t)
Ni,,, = Npe™ B, (4.6)

where a; ; > 0 represents the competitive impact of population j on popula-

tion 1.

4.2.3 Gompertz competition model

The general form of the discrete stochastic Gompertz competition model
has for each population an equation of the form:

k:
= A, N, (log (=~ 47
t+1 AltNlt( Og( ?:1 ‘Xi,ijt ))/ ( )

N;

We investigate the dynamics of the Gompertz model with two competing
population with various types of environmental and demographic stochas-
ticity. N1 and N, represent the abundance of population one and population
two, respectively. The Gompertz model for two competing species is there-
fore given by:

kq
Ny, = A1tN1t(log(m), (4.8)
ko
Ny, . = Ay N, (log(——————), 49
2t‘Jrl 2t Zt( Og(“z/lN]_t + Nzt) ( )

where a; ; > 0 represents the competitive impact of population j on popula-
tion i.
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4.2.4 Correlation between environmental noise series

Correlation coefficients are used to measure the direct relationship between
two time series: they describe how two time series are actually linked. Time
series data are positively related if they move in the same direction (i.e in-
creasing and decreasing at the same time) and are negatively (or inversely)
related if they move in opposite directions (i.e. one increases when the other
decreases).

Correlation between the effects of unpredictable environmental conditions
occurs widely in nature: bad weather is often bad for a wide variety of pop-
ulations, and good weather is often good for many in the community. The
specific effects for each population will however vary, and will not neces-
sarily be the same. The level of correlation between them may vary widely
from situation to situation, but for species with similar life histories the cor-
relation is likely to be large. In the following sections of environmental noise
analysis, we explore the effects of correlated as well as uncorrelated white

noise in the competition models.

4.3 Results and discussion

4.3.1 Demographic stochasticity

We simulate the three models with only demographic stochasticity for 100
years. We calculate the extinction probabilities, average population sizes
and total population variances. The demographic growth is calculated based
on individual fitness values sampled from a Poisson distribution with mean
A € [0,5].

The two species coexistence window for logistic and Gompertz models are
~ (M € [15,3.1],A;, € [1.2,3.7]) and (A € [1,1.9],A; € [0.6,2.2]) respec-
tively (Figures 4.1). Coexistence within these windows occurs only when A4
is slightly larger than A,, i.e. along a line with a slightly smaller slope than
the dotted lines in Figure 4.1. The Ricker model exhibits starkly different
behaviour: population 1 persistence range is depend on population 2 exis-
tence, and regions of coexistence are relatively small. The largest region of
probable coexistence occurs when A; is small (< 1) and A, € [1.7,2.7], but
even here the compromise between survival of the two populations is evi-
dent. Population 1 persists for a very small range of A, when A4 is small,
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but persists for a much larger range of A, ([0,1]) when A; is quite large
(> 3). As might be expected, the overall area of parameter space for which
the weaker population 1 persists is much smaller than that of population 2.
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Figure 4.1 — Contour plots of extinction probabilities (a — ¢), average pop-
ulation sizes (d — f) and population variances (g — i) as functions of the
mean demographic rate parameters A and A, for models with demographic
stochasticity only. Initial population sizes are N; = N, = 10, carrying ca-
pacities are k1 = k, = 100 and the inter-specific interaction coefficients are
ay1 = 1.5and a; , = 1.1. Plots reflect averages from 1000 realisations of 100
years for each A / Ay combination.

Also interesting is the strong boundary imposed on either population’s sur-
vival by the other population’s growth rate: when either population’s growth
rate is above three, the other population cannot persist. Since this effect does
not depend on the persistence of the population with the large growth pa-
rameter, we hypothesize that these extinctions (of both populations) take
place early in the simulations, driven by large fluctuations in the popula-
tion(s) with the large growth parameter(s). The regions of applicability of
the logistic and Gompertz models appear to be very similar - Figures 4.1a
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and 4.1b are essentially scaled versions of one another, and quite separate
from that of the Ricker model. The competition interaction is a core player
in determining the fate of populations.

4.3.2 Quasi extinction probabilities

We simulate the three models with demographic stochasticity, uncorrelated
white environmental noise and correlated white environmental noise.
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Figure 4.2 — Quasi-extinction probabilities of stochastic logistic, Gompertz
and Ricker competition models with a quasi-extinction level of 5, includ-
ing uncorrelated (0 = 0, columns 1 & 2) and correlated (o = 0.95, columns
3 & 4) white environmental noise. Demographic stochasticity is sampled
from Poisson distributions with A = 1.2. We incorporated the noise in the
growth rates Ay; and Ay, in the carrying capacities ki and ko or added it
directly to the models. Initial population sizes are N; = N, = 10, base car-
rying capacities are k; = k, = 100, and inter-specific interaction coefficients
are (v12 = 1.1, a1 = 1.5). Results are the average of 1000 realizations, each
run for 100 years.

We calculate the quasi-extinction probabilities of both populations, and com-
pare between the simulations with correlated vs uncorrelated noise. In all
the simulations, the initial population sizes Nj, = Np, = 10, the carrying
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capacity k; = k, = 100, and the environmental noise is generated from a
normal distribution with zero mean and variance 0.4 for logistic and Gom-
pertz models, variance 1 for Ricker model'. The demographic stochasticity
is based on individual fitness values sampled from a Poisson distribution
with mean A = 1.2 for both population. We included the noise in the growth
rates A1, and A,,, the carrying capacities k; and k; or added it directly to the
models. Results are the average of 1000 realizations each run for 100 years,
with a quasi-extinction level of 5. In all scenarios, we assumed population
N, to be stronger, with ap 1 = 1.5 and x1, = 1.1.

The differences with these levels of environmental variances are relatively
minor, but noticeable nonetheless. Perhaps most prominent is the increased
relative extinction risk when noise is added to the growth rates, compared
with the other positions (compare for example figure 4.2 b with d, f with
h, or i with k). This makes sense: if both populations experience a boom
at the same time, in the next time step each will experience an increased
level of both intra-specific and inter-specific pressure. Adding noise to the
growth rates caused the greatest volatility in Chapter 3, so it is to be ex-
pected that a small destabilizing factor will have more effect when involved
in the growth rates than when added to the other positions. This idea is
supported by the fact that the effect is least obvious for the logistic model,
which exhibits generally slower and less volatile growth growth rate (see
Chapter 2). Correlation in the Gompertz model has a much larger effect on
population 2’s persistence than on population 1’s.

Once again we notice a stark qualitative difference between the Ricker and
the other two models. In the Ricker model, environmental noise correla-
tion causes increased risk for the weaker population 1, but decreased risk for
population 2.

We repeat the procedure, this time looking only for “true” extinctions, i.e.
with a quasi-extinction level of 1 (Figure 4.3). The results do not differ dras-
tically from those calculated for a quasi-extinction level of 5.

In all three models the effects of the competition interaction terms are very
clear, population 1 is driven very quick to extinction while population 2 per-
sists for longer. The environmental noise has maximal effect when included
in the growth rate A;.

!We choose a variance values (¢? = 0.4 & 1) for which we could easily observe the
differences between correlated and uncorrelated noise (see Figures 4.10, 4.11 & 4.12).
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Figure 4.3 — Cumulative extinction probabilities of stochastic logistic, Ricker
and Gompertz competition models with and uncorrelated (p = 0) and cor-
related (p = 0.95) white environmental noise. The individual fitnesses sam-
pled from Poisson distributions with A = 1.2. We added the noise to the
growth rates Ay, and A4, directly to the models or to the carrying capaci-
ties k1 and ky. Initial population sizes are Ny = N, = 10, base carrying
capacities are ky = k, = 100, and inter-specific interaction coefficients are
a1 = 1.1, ap1 = 1.5. Quasi-extinction level = 5. Results reflect averages
from 1000 simulations of 100 years.
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4.3.3 Demographic stochasticity with white environmental

noise

In this section, we simulate the models with different levels of environmen-
tal noise variance 02, with and without correlation. Demographic stochas-
ticity is always included. We sampled the environmental noise series from a
normal distribution with zero mean and variances ¢? € [0,1] when adding
the noise to the growth rate, and ¢ € [0,10] when adding the noise to the
carrying capacity k or directly to the model. We begin by examining the ef-
fects of each population’s environmental noise variance, with no correlation
between the time series. We then compare the quasi-extinction probabilities
as functions of time for highly correlated versus uncorrelated environmen-
tal noise. Finally, we compare the effects of noise variances for different

levels of noise correlation.

4.3.3.1 Uncorrelated noise

We begin by comparing the effects from different variances of uncorrelated
white environmental noise in the three competition models. We generate
demographic stochasticity based on individual contributions to the demo-
graphic growth parameter sampled from a Poisson distribution with mean
A = 1.2. The unsynchronised white environmental noise is generated from
a normal distribution. The noise time series S; and S, correspond to popu-
lations 1 and 2. The competition interaction coefficients are a1, = 1.1 and
X271 = 1.5.
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Figure 4.4 — Contour plots of extinction probabilities, the average popula-
tion sizes and the total population variance as functions of the environmen-
tal variance parameter o2 for logistic, Gompertz and Ricker models with de-
mographic stochasticity and uncorrelated white environmental noise added
to the growth rates A and Ap. (a — c¢) The extinction probabilities (d — f)
The average population sizes (g — i) The variance in the average popula-
tion sizes. Initial population sizes are Ny = N, = 10, carrying capacities are
ki = ky = 100 and the inter-specific interaction coefficients are a1, = 1.1
and ap; = 1.5. Plots reflect averages from 1000 realisations of 100 years for
each Ay / A, combination.

Comparing Figures 4.4, 4.5 and 4.6 we notice as in the previous section that
including the noise in the model causes the highest extinction risk in the
Ricker model, while noise in the growth rate A; causes the highest risk in the
logistic and Gompertz models. Adding the noise to the carrying capacity k
has the smallest total effect, and the least obvious relationships between
noise variance and summary metrics.

From the contour plots in Figure 4.4 first row, with increasing the environ-
mental variance the extinction risk tends increases.
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Interestingly, in the Gompertz and logistic models with noise added to A;
(Figure 4.4a and 4.4b), when the weaker population experiences higher en-
vironmental variance, it is able to drive the stronger population to extinc-
tion and thus ensure its survival. The ability of the stronger population
to drive its rival to extinction does not however depend very much on its
noise variance - provided the variance of the weaker population’s noise is
low enough, the stronger population will drive it to extinction and persist.
In the Ricker model however, the persistence of either population depends
on the variance experienced by both populations, with higher variance caus-
ing increased persistence(/extinction) for the weaker(/stronger) popula-
tion.

Changing the variance of the noise when adding it to the carrying capacity
causes a relatively minor impact in the distributions of extinction probabili-
ties, the average population sizes and population variances (take note scales
in Figure 4.5). Strangely, when the noise is added to the carrying capacity,
extinction probabilities for both populations appear to be determined pri-
marily by one population’s variance: population 1 in the Gompertz model
and population 2 in the Ricker model. the The fact that we having a normal
distribution with big variance have great impact on theses distributions, is
because of how the carrying capacity is regulating the population size and
as such high variance mean high fluctuations and therefore, high risk for
both population with no much impact from the interspecific coefficients.
When noise is added to the model (Figure 4.6) we see perhaps the most
complex relationships between variances and extinction probabilities, with
stark differences between the three models. In the logistic model, extinc-
tion probabilities are closely linked, and extinction increases most gradu-
ally with variance when the variances are equal (non-equal variances cause
extinction at lower amounts of total variance amounts. In the Gompertz
model, variance in the noise experienced by population 2 has a stabilising
effect on population 1 (likely by controlling the size of population 2), while
the variance of population 1 has a destabilizing effect on population 2. In
the Ricker model, only the weaker population is at risk of extinction when
noise is added directly to the model, and this risk is lower, the higher the
environmental variance experienced by the stronger population.
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Figure 4.5 — Contour plots of extinction probabilities, the average popula-
tion sizes and the total population variance as functions of the environmen-
tal variance parameter o2 for logistic, Gompertz and Ricker models with de-
mographic stochasticity and uncorrelated white environmental noise added
to the carrying capacities. (a — c¢) The extinction probabilities (4 — f) The
average population sizes (¢ — i) The variance in the average population
sizes. Initial population sizes are Ny = Np = 10, carrying capacities are
ki = ky = 100 and the inter-specific interaction coefficients are a1, = 1.1
and ap 1 = 1.5. Plots reflect averages from 1000 realisations of 100 years for
each Ay / A, combination.
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Figure 4.6 — Contour plots of extinction probabilities, the average popula-
tion sizes and the total population variance as functions of the environmen-
tal variance parameter o2 for logistic, Gompertz and Ricker models with de-
mographic stochasticity and uncorrelated white environmental noise added
to the models. (a — ¢) The extinction probabilities (d — f) The average pop-
ulation sizes (g — i) The variance in the average population sizes. Initial
population sizes are N; = N, = 10, carrying capacities are k; = kp = 100
and the inter-specific interaction coefficients are a1, = 1.1 and ap; = 1.5.
Plots reflect averages from 1000 realisations of 100 years for each A; / A
combination.

4.3.3.2 Correlated noise

In this section we compare the effects from different variances of correlated
white environmental noise in the three competition models. The goal is to
show the rule of the correlated white environmental noise in the popula-
tion growth and persistence. We generated the demographic stochasticity
based on individual fitness values sampled from a Poisson distribution with
mean A = 1.2. The white environmental noise is generated from a normal
distribution. The noise time series S; and S, correspond to populations 1
and 2. The correlation between the two white environmental noise time se-
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ries is p = 0.95. The competition interaction coefficients are a;, = 1.1 and
X271 = 1.5.
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Figure 4.7 — Contour plots of extinction probabilities, the average popula-
tion sizes and the total population variance as functions of the environmen-
tal variance parameter o7 for logistic, Gompertz and Ricker models with
demographic stochasticity and correlated white environmental noise added
to the growth rates Aq and Ap. (a4 — ¢) The extinction probabilities (d — f)
The average population sizes (¢ — i) The variance in the average popula-
tion sizes. Initial population sizes are Ny = N = 10, carrying capacities are
ki = ko = 100 and the inter-specific interaction coefficients are a1, = 1.1
and ap 1 = 1.5. Plots reflect averages from 1000 realisations of 100 years for
each Ay / Ay combination.
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Figure 4.8 — Contour plots of extinction probabilities, the average popula-
tion sizes and the total population variance as functions of the environmen-
tal variance parameter o? for logistic, Gompertz and Ricker models with
demographic stochasticity and correlated white environmental noise added
to the carrying capacities. (a — c¢) The extinction probabilities (4 — f) The
average population sizes (¢ — i) The variance in the average population
sizes. Initial population sizes are Ny = Np = 10, carrying capacities are
ki = ky = 100 and the inter-specific interaction coefficients are a1, = 1.1
and ap 1 = 1.5. Plots reflect averages from 1000 realisations of 100 years for

each Ay / A, combination.
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Figure 4.9 — Contour plots of extinction probabilities, the average popula-
tion sizes and the total population variance as functions of the environmen-
tal variance parameter o7 for logistic, Gompertz and Ricker models with
demographic stochasticity and correlated white environmental noise added
to the models. (a — ¢) The extinction probabilities (d — f) The average pop-
ulation sizes (g — i) The variance in the average population sizes. Initial
population sizes are N; = N, = 10, carrying capacities are k; = kp = 100
and the inter-specific interaction coefficients are a1, = 1.1 and ap; = 1.5.
Plots reflect averages from 1000 realisations of 100 years for each A; / A
combination.

Correlation in the noise added to the growth rates appears to reduce the
tolerance of the populations to environmental variance. The results when
noise is added to the carrying capacity are even less clear when the noise is
correlated. Correlation in the noise added directly to the Gompertz and lo-
gistic models causes a distinct qualitative shift (Figure 4.6 b/c vs Figure 4.9
b/c). In the Gompertz model increased chance of extinction for population
2 now occurs for low rather than high environmental variance experienced
by population 1, while in the logistic model the fates of the two populations
are now negatively rather than positively correlated.
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4.3.4 Comparing correlation levels

In this section, we explore the effect of different levels of correlation in the
environmental time series noises. We simulated the three models, logistic,
Gompertz and Ricker with demographic stochasticity and correlated white
environmental noise, for 100 years per simulation. We then calculated the
extinction probability, the average population size and the total population
variance for both populations. The change in the correlation values results
in a change in the distribution outcome. We only consider adding the noise
in the growth rate A;.
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Figure 4.10 — Contour plots of extinction probabilities, average population
sizes and total population variances as a functions of the total environmen-
tal variances (7621 and (7622. We are simulating a logistic competition model
with demographic stochasticity and correlated white environmental noises.
We added the noise to each population of the growth rate. The two white
noise time series correlation levels are p = 0.95 (a,d, ), p = 0.5 (b, e, h) and
p =0 (c, f,i). Initial population sizes are Ny = N, = 10, carrying capacities
are k1 = kp = 100 and the inter-specific interaction coefficients are a1, = 1.1
and ap 1 = 1.5. Plots reflect averages from 1000 realisations of 100 years for
each Ay / A combination.
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Figure 4.11 — Contour plots of extinction probabilities, average population
sizes and total population variances as a functions of the total environ-
mental variances (7621 and 0322, for Gompertz competition model with demo-
graphic stochasticity and correlated white environmental noises added to
the population growth rates. The correlation levels between the white noise
time series are p = 0.95 (a,d,g), p = 0.5 (b,e,h) and p = 0 (c, f,i). Initial
population sizes are Ny = N, = 10, carrying capacities are k; = k, = 100
and 1, = 1.1 and ap; = 1.5. Plots reflect averages from 1000 realisations
of 100 years for each A; / A combination.
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Figure 4.12 — Contour plots of extinction probabilities, average population
sizes and total population variances as a functions of the total environ-
mental variances %21 and (7622, for Ricker competition model with demo-
graphic stochasticity and correlated white environmental noises added to
the growth rate. The correlation levels between the white noise time series
are p = 0.95 (a,d,g), p = 0.5 (b,e,h) and p = 0 (c, f,i). Initial population
sizes are N; = N = 10, carrying capacities are k1 = ky = 100 and the inter-
specific interaction coefficients are a1, = 1.1 and ap; = 1.5. Plots reflect
averages from 1000 realisations of 100 years for each A1 / A, combination.

In the logistic and Gompertz models, correlation in the noise reduces the tol-
erance of populations to the total variance, presumably via the same mech-
anism discussed in Section 4.3.3.2.

In the Ricker model, an odd reversal of dependencies occurs when even
moderate correlation appears in the noise. Regions with the least/most
(population 1/2) extinction risk occur with uncorrelated noise on the sides
of the plots, i.e. when one variance is low and the other high (Figure 4.12a).
With correlated noise, the lowest/highest (population 1/2) extinction risk
occurs in the upper right hand corner, when both variances are large. The
reason for this shift are not clear.
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Chapter 5
Conclusion

In this work, we studied the behaviour of single and two population stochas-
tic logistic, Gompertz and Ricker models, focussing on outcomes related to
extinction risk. We examined the effects of two broad types of stochasticity.
We explored the effects of various environmental noise colours, total envi-
ronmental noise variance, and environmental noise correlation, comparing
within and between noise “locations” in the model. We also explored the
effects of changing the Poisson parameter(s) from which individual contri-
butions to the demographic growth parameters are sampled.

We found across all the models that adding the noise into the growth pa-
rameter A; has a large effect in the probability distributions of extinction
risk. However, the effects of demographic stochasticity are small once pop-
ulation sizes become large.

There is an ongoing debate in the field of PVA modelling as to whether
noise colour contributes to or detracts from extinction risk. We found that
coloured noise generally causes a slight decrease in the extinction risk. In-
cluding environmental noise in the models influences the population dy-
namics, for instance, increasing the variance of the environmental noise in-
creases the extinction risk. The Ricker model has high persistence rate and
logistic model has the highest extinction risk.

We found that correlation between environmental noise for two popula-
tions generally increases the extinction risk. Conservationists might con-
sider developing methods through which to reduce the correlation of envi-
ronmental noise effects on different species. Bear in mind that we have only
explored the effects of one type of environmental noise correlation/non-
correlation - that is, through totally random effects. As is usually the case
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with the development of an area of modelling interest, there is much room
for expert contribution and specific tailoring of this model to explore other
types of non-correlation (for example, including damping of the effects on
one population, or negative correlation).

A number of effects observed are somewhat counter-intuitive, and warrant
further investigation. We suggest that such investigation focus on the par-
ticular paths to extinction (e.g. simultaneous population booms) determin-
ing the dynamics in each scenario. In addition, future work should relate
the findings presented in this work with real-world data and management
options.

Model choice is a crucial decision when performing PVA’s to inform man-
agement decisions. Indeed, in many cases the models examined here could
suggest very different management strategies, with potentially disastrous
results should a model be inappropriately chosen. Model selection falls out-
side the scope of his work, but we refer readers to [1, 33] for a review of the
topic.

We conducted a comprehensive set of simulations to investigate the impli-
cations of model choice, incorporation of stochasticity, parametric assump-
tions and noise quality for Population Viability Analyses. Our work con-
tributes to ongoing debates regarding noise colour and correlation, and pro-
vides valuable information regarding the sensitivity of extinction outcomes

to various modelling assumptions.
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Appendix A

A.1 Glossary

A.1.1 Stochasticity

Stochasticity is any event characterized by random chance or a random
probability distribution. In ecological communities, stochasticity is the noise
that interacts with the population dynamics. The scale and type of noise is
determined by the population density and ecological behaviour for each
species in the population.

A.1.2 Correlation

A correlation is a measure of a linear association between two random vari-
ables. The correlation is always in a range [—1, 1]; stronger when its closer
to +1.

A.1.3 Autocorrelation

The autocorrelation is a correlation between the time series and its own past.
The “value’ of a time-series autocorrelation depends on the time separation
for which it is calculated.

A.1.4 Coloured noise

Coloured noise refers to noise with non-zero temporal autocorrelation struc-
ture. White noise is uncorrelated in time, so that future environmental con-
ditions do not depend on past environmental conditions. The variations
in environmental conditions represented by different coloured noise, red
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or pink noises, when the environment vary slower and they have positive
correlation. Blue noise, the environment vary faster, and it has negative

correlation.

A.2 Simple model of stochastic population
growth

The main goal of modelling dynamics of any populations is to understand
how population size changes through time, and how these changes are re-
sults of a crucial factors for example, the environmental (whether biotic or
abiotic) and demographic elements.

Here we examine a population that grows in discrete time segments, with
non-overlapping generations. Suppose iy, iy, ..., iy represent individual fit-
ness values, which we define as the individual contributions to the popula-
tion at time ¢ + 1 (including both reproduction and/or survival). Suppose
that this individual contribution is distributed with a mean u (N, e;) and
variance O'Z(Nt, et) that depend on the population size N; and environmen-
tal state e;. Therefore, the growth of the future population N;; will be
depend on the past population N;, and on the environmental conditions at
time ¢, mathematically would be represented by,

Niy1 =11+ + ... +iy, (A1)
The expected population on the next generation is:
E[Nt_|_1|Nt, Et] = E[Zl + i2 + ...+ ZN] = “Ll(Nt, et)Nt; (AZ)

This is a simple example of stochastic population model represented by the
mean and variance of demographic and environmental factors. Where u
is representing the growth rate. This is an example of a stochastic density
dependent growth model.
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Stochastic exponential growth model

600 -

500 A

400 -

300 A

Population size

200 A

100 A

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time

Figure A.1 — A simulation of stochastic exponential growth model. The ini-
tial population one size = 20, the environmental noise generated form nor-
mal distribution with zero mean and variance one, the black curve is the
average exponential growth.
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Appendix B

Summary of variables used

Below is a list of the various variables used in this work.

Table B.1 — Summary of variables used

| Symbol | Meaning
2

o; Environmental variance

(75 Demographic variance

QEL Quasi extinction level

Ey, Extinction probability

CDF Cumulative distribution function
MTE Mean time to extinction

PSD Power spectral density

Iy Correlation coefficient
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