Visibility problems related to skip lists

HELMUT PRODINGER

Department of Mathematical Sciences
Stellenbosch University, 7602 Stellenbosch
South Africa
hproding@sun.ac.za

Abstract

For sequences (words) of geometric random variables, visibility problems related to a sun positioned in the north-west are considered. This leads to a skew version of such words. Various parameters are analyzed, such as left-to-right maxima, descents and inversions.

1 Introduction

Assume that X is a geometrically distributed random variable, $\mathbb{P}\{X = k\} = pq^{k-1}$, with $p + q = 1$, and a word $x = a_1a_2\ldots a_n$ of n independent outcomes of such a variable is given. An example is given in Figure 1, with $n = 14$, and the word is 3152522341111. Assume that there is a sun positioned in the north-west. Then certain nodes are lit, and others are not.

Figure 1: A word of length 14

The skip-list above is not directly related to a sun positioned in the north-west, but rather in the west. Such a scenario was recently studied in [2] in the context of bar-graphs. Further papers of Mansour and some of his co-authors about visibility questions are [5]; also compare [4].

A graphical depiction of geometrically distributed words (a combinatorial class that has been extensively studied in the past) as in Figure 1 stems from a data...
structure called a “skip-list.” It also has horizontal pointers, and they are related to a visibility problem, since the pointers are interrupted as indicated in Figure 2.

The following Figure 3 depicts lit vs. non-lit nodes.

Motivated by the recent paper [2], we study a sun positioned in the north-west and the number of lit nodes. The example in Figure 3 demonstrates this, and 14 nodes are lit.

A moment’s reflection tells us that the skew word $x^* = b_1 b_2 \ldots b_n$ with $b_i = a_i + i - 1$ is relevant here.

We are eventually led to the following observation: The number of lit nodes by a sun positioned in the north-west of word x is equal to the maximum value b_i of the associated skew word x^*.

In our running example this associated word is

$$x^* = 3 \ 2 \ 7 \ 8 \ 6 \ 7 \ 11 \ 9 \ 11 \ 13 \ 11 \ 12 \ 13 \ 14.$$

Let us indicate the left-to-right maxima in this skew word:

$$x^* = 3 \ 2 \ 7 \ 8 \ 6 \ 7 \ 11 \ 9 \ 11 \ 13 \ 11 \ 12 \ 13 \ 14.$$

The differences of two consecutive such records are 3, 4, 1, 3, 2, 1 (for this, we patched the word with a leftmost 0). The sum of these numbers is $14 = 3 + 4 + 1 + 3 + 2 + 1$, which, by telescoping, is also the largest value (the maximum) that occurs in the skew word. It is purely coincidental that the maximum 14 occurs at the last letter.

We are thus led to study the maximum of a random skew word of length n and the number of left-to-right maxima (which is 6 in the running example). The modification of the words that we call skew in this paper unfortunately does not allow us the elegant method of generating functions as in [8, 9].
We treat a few other combinatorial questions related to skew words as well, such as (the number of) descents and inversions. Again, these questions are somewhat harder to deal with compared to the non-skew (classical) versions.

We need some basic notation from q-calculus [1]:
\[
(x)_n := (1 - x)(1 - xq) \ldots (1 - xq^{n-1}) \quad \text{for} \quad n \geq 0 \quad \text{or} \quad n = \infty,
\]
as well as Cauchy’s identity (q-binomial theorem),
\[
\sum_{n \geq 0} \frac{(a)_n}{(q)_n} t^n = \frac{(at)_\infty}{(t)_\infty}.
\]

2 The maximum of random skew geometrically distributed words

Let \mathcal{M}_n be the maximum of a skew word. Its expectation can be computed as follows:
\[
\mathbb{P}(\mathcal{M}_n \leq j) = (1 - q^j)(1 - q^{j-1}) \ldots (1 - q^{j-n+1}) = \frac{(q)_j}{(q)_{j-n}},
\]
for $j \geq n$, otherwise it is zero. In the sequel, we will use this form:
\[
\mathbb{P}(\mathcal{M}_n > n + k) = 1 - \frac{(q)_{n+k}}{(q)_k}.
\]

Consequently,
\[
\mathbb{E}(\mathcal{M}_n) = n + \sum_{k \geq 0} \left[1 - \frac{(q)_{n+k}}{(q)_k} \right] = n + \lim_{t \to 1} \sum_{k \geq 0} \left[t^k - \frac{(q)_n(q^{n+1})_{k}}{(q)_{k}} \right]
\]
\[
= n + \lim_{t \to 1} \left[\frac{1}{1 - t} - \frac{(q)_n(q^{n+1}t)_\infty}{(t)_\infty} \right] = n + \lim_{t \to 1} \left[\frac{1}{1 - t} - \frac{(q)_n(q^{n+1}t)_\infty}{(1 - t)(qt)_\infty} \right]
\]
\[
= n + (q)_n \frac{d}{dt} \frac{(q^{n+1}t)_\infty}{(qt)_\infty} \bigg|_{t=1} = n + (q)_n \frac{d}{dt} \prod_{k \geq 1} \frac{1 - q^{n+k}t}{1 - q^kt} \bigg|_{t=1}
\]
\[
= n + (q)_n \frac{d}{dt} \prod_{k=1}^{n} \frac{1}{1 - q^k t} \bigg|_{t=1} = n - \frac{1}{(q)_n} \frac{d}{dt} \prod_{k=1}^{n} (1 - q^k t) \bigg|_{t=1}
\]
\[
= n + \sum_{k=1}^{n} \frac{q^k}{1 - q^k}.
\]
The sum is a q-analogue of a harmonic number, and it is customary to denote the limit by
\[
\alpha_q := \sum_{k \geq 1} \frac{q^k}{1 - q^k}.
\]
We compute the second derivative alone:

\[H_n(q) = \sum_{k=1}^{n} \frac{q^k}{1-q^k} = \alpha_2 + O(q^n). \]

Further,

\[
\mathbb{E}(M_n^2) = \sum_{k=0}^{n-1} (2k+1) + \sum_{k \geq n} \left[1 - \frac{(q)_k}{(q)_{k-n}} \right] (2k+1) \\
= n^2 + 2 \sum_{k \geq 0} \left[1 - \frac{(q)_{n+k}}{(q)_k} \right] (2k+2n+1) \\
= n^2 + (2n+1)H_n(q) + 2 \sum_{k \geq 0} \left[1 - \frac{(q)_{n+k}}{(q)_k} \right] k \\
= n^2 + (2n+1)H_n(q) + 2 \sum_{k \geq 0} (q^1)_{n+k} - (q)_n \sum_{k \geq 0} \frac{(q^{n+1})_{k}}{(q)_k}k \\
= n^2 + (2n+1)H_n(q) + 2 \lim_{t \to 1} t \left[\frac{1}{(1-t)^2} - \frac{1}{(1-t)(qt)_\infty} \right] \\
= n^2 + (2n+1)H_n(q) + 2 \lim_{t \to 1} t \left[\frac{1}{(1-t)^2} - \frac{1}{(1-t)(qt)_\infty} \right] \\
= n^2 + (2n+1)H_n(q) + (q)_n \left[\frac{2}{(t)_{\infty}} \right]_{t=1} \\
= n^2 + (2n+1)H_n(q) + (q)_n \frac{d^2 (q^{n+1}t)_{\infty}}{dt^2} \left|_{t=1} \right.
\]

We compute the second derivative alone:

\[
(q)_n \frac{d^2}{dt^2} (q^{n+1}t)_{\infty} \left|_{t=1} \right. = (q)_n \frac{d^2}{dt^2} \prod_{k=1}^{n} \frac{1}{1 - q^{k+1}} \left|_{t=1} \right. \\
= (q)_n \frac{d^2}{dt^2} \prod_{k=1}^{n} \frac{1}{1 - q^{k+1}} \left|_{t=1} \right. \\
= 2 \left(\frac{d}{dt} \prod_{k=1}^{n} (1 - q^{k}) \right)_{t=1}^2 - \frac{1}{(q)_n} \frac{d^2}{dt^2} \prod_{k=1}^{n} (1 - q^{k}) \left|_{t=1} \right. \\
= 2H_n^2(q) - 2 \sum_{1 \leq i < j \leq n} \frac{q^i q^j}{1 - q^{i+1}q^{j+1}} \\
= 2H_n^2(q) - H_n^2(q) + H_n^{(2)}(q) = H_n^2(q) + H_n^{(2)}(q),
\]

with a q-analogue of a harmonic number of second order

\[H_n^{(2)}(q) = \sum_{k=1}^{n} \left(\frac{q^k}{1-q^k} \right)^2. \]

Summarizing,

\[\mathbb{E}(M_n^2) = n^2 + (2n+1)H_n(q) + H_n^2(q) + H_n^{(2)}(q). \]
Therefore we have the variance:

\[\text{Var}(M_n) = \mathbb{E}(M_n^2) - \mathbb{E}^2(M_n) \]
\[= n^2 + (2n + 1)H_n(q) + H_n^2(q) + H_n^{(2)}(q) - (n + H_n(q))^2 \]
\[= H_n(q) + H_n^{(2)}(q). \]

Theorem 1. The expected value and the variance of the parameter \(M_n \) of a random skew geometrically distributed word of length \(n \) are given by

\[\mathbb{E}(M_n) = n + H_n(q), \]
\[\text{Var}(M_n) = H_n(q) + H_n^{(2)}(q). \]

3 Left-to-right maxima

Now we want to study the number of (strict) left-to-right maxima of the skew word \(x^* \). As a preparation, let \(\mathcal{Y}_m \) be the indicator variable of the event

"\(b_m = a_m + m - 1 \) is a left-to-right maximum in the skew word \(x^* \)."

For the standard case, such computations appear in [8, 9]. However, as explained in the introduction, this is more challenging, and we only managed to get the expected value.

The expected value is computed as follows:

\[\mathbb{E}(\mathcal{Y}_m) = \sum_{j \geq 1} pq^{j-1}(1 - q^{j+m-2}) \cdots (1 - q^j) \]
\[= p \sum_{j \geq 0} q^j (q^{m-1+j})_0 = p(q)_m \sum_{j \geq 0} q^j (q^m)_j \]
\[= p(q)_m \frac{(q^{m+1})_\infty}{(q)_\infty} = \frac{p}{1 - q^m}. \]

Consequently, the expected value of the number of left-to-right maxima is

\[\mathbb{E}(\mathcal{Y}_1 + \cdots + \mathcal{Y}_n) = p \sum_{j=1}^n \frac{1}{1 - q^j} = pn + pH_n(q) = pn + p\alpha + O(q^n). \]

4 Descents and inversions

First, we want to count the number of pairs such that \(a_i + i - 1 > a_{i+1} + i \), which means \(a_i > a_{i+1} + 1 \). Let \(\mathcal{D}_i \) be the corresponding indicator variable.

\[\mathbb{E}(\mathcal{D}_i) = \sum_{k \geq 1} pq^{k-1} \sum_{j > k+1} pq^{j-1} = \frac{q^2}{1 + q}. \]
Thus the expected value of the total number of descents is \((n - 1)\frac{q^2}{q+1}\).

In a similar style, assume that \(1 \leq i < j \leq n\) and let \(D_{ij}\) be the corresponding indicator variable \(\text{"a}_i + i-1 > \text{a}_j + j-1\).” Then

\[
E(D_{ij}) = \sum_{k \geq 1} pq^{k-1} \sum_{1 \leq h < \max\{1, k + i - j\}} pq^{h-1} = \frac{q^{1+j-i}}{1+q}.
\]

The expected number of inversions is then

\[
E(\text{inversions}) = \sum_{1 \leq i < j \leq n} E(D_{ij}) = \sum_{1 \leq i < j \leq n} \frac{q^{1+j-i}}{1+q} = \frac{1}{1+q} \sum_{1 \leq i, h < n} q^{1+h}
\]
\[
= \frac{n - 1}{1+q} \sum_{1 \leq h < n} q^{1+h} = \frac{(n-1)q^2(1-q^{n-1})}{1-q^2}.
\]

For \(q \to 1\), this expression tends to \(\frac{(n-1)^2}{2}\).

In the classical case, there exists a lot of literature on descents and also on inversions. An example for descents is [3], and two for inversions are [6, 7].

Acknowledgments

Thanks are due to K. Oliver for comments related to an earlier version of this paper, as well as to S.J. Selkirk for help with the final version.

References

(Received 24 Sep 2017; revised 13 May 2018, 7 Aug 2018)