
Predictive Models for
Smart Vineyards

by

F.R. Lüttich

Thesis presented in partial fulfilment of the requirements for the degree of
Master of Science in Engineering at Stellenbosch University

Supervisor: Prof. T.R. Niesler
Department of Electrical & Electronic Engineering

April 2019

Declaration

By submitting this thesis electronically, I declare that the entirety of the
work contained therein is my own, original work, that I am the owner of the
copyright thereof (unless to the extent explicitly otherwise stated) and that

I have not previously in its entirety or in part submitted it for obtaining
any qualification.

March 2019

Copyright c© 2019 Stellenbosch University

All rights reserved

Stellenbosch University https://scholar.sun.ac.za

Abstract

We investigate the application of machine learning algorithms to the predictive

analysis of environmental datasets compiled from two distinct vineyards. These

datasets include the soil temperature at various depths and locations, the soil

moisture content of the same locations and the bud-burst dates. Measurements

were taken regularly over the space of four months for one vineyard and over

twelve months for the other.

The prediction of the soil temperature from either ambient measurements or

from satellite data, as well as the prediction of soil moisture content and the

bud-burst dates were the primary objectives of our analysis. Linear regression,

feedforward neural networks and recurrent neural networks were considered as

algorithms. For the neural networks, several training strategies were considered.

It was found that neural networks outperform linear regression when predicting

soil temperatures from ambient temperature and humidity, and also when predicting

soil moisture content from ambient temperature, humidity and rainfall data. Although

recurrent neural networks (LSTMs) were able to achieve even better results when

the data was carefully prepared, these networks were sensitive to discontinuities

present in the data due to faulty sensor measurements. Feedforward neural networks,

on the other hand, were more robust to these errors. Since sensors placed in a

vineyard are exposed and must remain unattended, this is an important aspect to

consider. It was also found that soil temperatures could be predicted with a modest

loss in accuracy from freely-available satellite land temperature measurements.

Although cloud cover leads to sporadic non-availability of the measurements, they

represent a very attractive alternative to locally installed weather sensors since

they would no longer need to be installed or maintained.

For soil moisture content and bud-burst dates neural networks provided better

predictions than a näıve guess. While this indicates potential for such models,

these results must be re-examined using a larger dataset.

Although this thesis presents only preliminary results due to the lack and small

size of suitable datasets, our results nevertheless clearly indicate the potential of

machine learning techniques to assist viticulture.

i

Stellenbosch University https://scholar.sun.ac.za

Opsomming

In hierdie tesis ondersoek ons die toepassing van masjienleer algoritmes op die

voorspellende ontledings van omgewings data stelle saamgestel uit lesings van

twee verskillende blokke wingerde. Hierdie data stelle sluit lesings van die grond

temperatuur op verskillende dieptes en areas, ondergrondse water inhoud en die

“bud-burst” of bloeisel datums in. Data was versamel oor ’n tydperk van vier

maande vir die een blok en oor twaalf maande vir die ander blok wingerd.

Die voorspelling van grond temperatuur, vanaf of die omgewings temperatuur,

of vanaf satelliet data, asook van die grond vog inhoud en die bloeisel datums

was die primêre doelwitte van ons ontledings. Lineêre regressie, vorentoe-voerende

neurale netwerke (VVNNe) en wederkerende neurale netwerke (WNNe) was oorweeg

as algoritmes. Vir die neurale netwerke was verskeie opleidings strategië oorweeg.

Dit was gevind dat neurale netwerke, lineêre regressie oortref met voorspelling

van grond temperature vanaf omgewings temperature en humiditeit, asook met die

voorspelling van grond vog inhoud vanaf omgewings temperatuur, humiditeit en

reënval data. Alhoewel wederkerige neurale netwerke selfs beter resultate gelewer

het wanneer die data stelle noukeurig voorberei was, was hierdie netwerke sensitief

vir diskontinüıteite in die data as gevolg van foutiewe sensor lesings. Die VVNNe,

aan die ander kant, was meer robuus. Aangesien sensors in wingerde blootgestel

word aan die elemente, en hulle sonder toesig moet funksioneer vir uitgerekte

periodes, is hierdie ’n belangrike aspek om te oorweeg in enige formulerings.

Dit was ook gevind dat voorspellings rakende grond temperature, voorspel kon

word met ’n minimale verlies aan akkuraatheid vanaf vrylik beskikbare satelliet

land-oppervlak temperature. Alhoewel wolkbedekking lei tot sporadiese onderbreking

van die lesings, bly dit ’n aantreklike alternatief tot lokale weer sensors, aangesien

hulle nie op grondvlak gëınstalleer of onderhou hoef te word nie.

Grond vog lesings en bloeisel datums kon meer akkuraat voorspel word as

’n näıewe raaiskoot. Alhoewel hierdie bevindinge aandui dat hierdie bevindinge

potensiaal inhou, moet hierdie resultate her-evalueer word met groter data stelle

vir beter betroubaarheid.

Hierdie tesis verteenwoordig slegs voorlopige resultate, as gevolg van die gebrek

aan groot genoeg en geskikte data stelle, maar steeds dui ons resultate duidelik

die potensiaal van masjienleer tegnieke om wingerd-en-wynkunde beplannings by

te staan in die ontwikkeling van meer betroubare resultate.

ii

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

• Prof. Thomas Niesler, for the best supervision I could ever ask for. He

went through tremendous effort to make time to share his knowledge and

experience with me, even though he had many other responsibilities at the

same time.

• Dr Tara Southey, from the agricultural department for not only supplying

us with the data we used, but also helping us understand the data better,

as well as helping us understand which results would benefit viticulture the

most and why.

• My loving wife, Belinda, for all her love, support and understanding throughout

this time. This thesis would not have been possible without her.

• My parents for all their support and prayers throughout the last two years.

• All my family and friends that helped me get through this time. Special

thanks to my oldest friend, Corné Smith, for all the support and encouragement

he offered me throughout the time.

• Everyone in the DSP lab for all the help and chats throughout the years.

Special thanks to Raghav Menon for all the help in finding my feet with

machine learning.

• Winetech for supporting this research financially.

iii

Stellenbosch University https://scholar.sun.ac.za

Contents

1 Introduction 1

1.1 Manual environmental monitoring 2

1.2 Wireless Sensor Networks . 2

1.3 Machine Learning . 3

1.4 Aims and scope of this thesis . 4

1.5 Overview of this work . 4

2 Machine Learning in Viticulture 6

2.1 Harvest Yield Estimation . 6

2.2 Vineyard Pruning and Monitoring 8

2.3 Disease Detection . 8

2.4 Other machine learning applications in viticulture 10

2.5 Conclusion . 11

3 Methods 12

3.1 Linear Regression . 14

3.1.1 Cross-validation procedure 15

3.1.2 Calculating the error score 16

3.2 Neural Networks . 17

3.2.1 A brief introduction to Multilayer Perceptrons (MLPs) . . . 17

3.2.2 Training the MLP . 20

3.2.3 Backpropagation with gradient descent 21

3.2.4 Dropout . 23

3.2.5 Momentum . 25

3.2.6 Nesterov accelerated gradient 25

3.2.7 AdaGrad . 26

3.2.8 RMSProp . 27

3.2.9 AdaDelta . 27

iv

Stellenbosch University https://scholar.sun.ac.za

3.2.10 Adam . 28

3.3 Recurrent Neural Networks with Long-short Term Memory 29

3.3.1 Understanding RNNs . 29

3.3.2 Long Short-Term Memory 31

3.3.3 LSTM Walk Through . 33

3.4 Summary and conclusion . 36

4 Datasets 37

4.1 Soil Data . 38

4.1.1 Stellenbosch (Stb.) soil data 39

4.1.2 Somerset West (Ssw.) soil data 40

4.2 Mesoclimate Data . 42

4.2.1 Stellenbosch mesoclimate data 42

4.2.2 Somerset West mesoclimate data 42

4.3 Weather station data . 43

4.4 Stellenbosch Data overlap . 44

4.5 Soil moisture data . 45

4.6 Satellite LST data . 45

4.7 Graphical representation . 47

4.8 Mean squared error calculation . 48

4.9 Bud-burst dates . 49

4.10 Conclusion . 50

5 Experiments with Stb. Dataset 51

5.1 Linear Regression . 51

5.1.1 First experiment . 51

5.1.2 Second experiment . 52

5.1.3 Third experiment . 53

5.2 Neural Networks . 55

5.2.1 The first model . 56

5.2.2 Auto encoder pre-training 59

5.3 Scikit-learn Neural Network . 62

5.4 Pre-trained Neural Network . 63

5.5 Shuffling the data . 63

5.6 Input Parameter Weights . 64

5.7 Including dynamic information in the training data 65

v

Stellenbosch University https://scholar.sun.ac.za

5.7.1 Incorporating previous measurements 66

5.7.2 Incorporating previous minimum/maximum temperatures . . 66

5.8 Summary and conclusion . 67

6 Experiments with Ssw. Data 68

6.1 Predicting soil temperatures using microclimate logger data 68

6.2 Predicting soil temperature using freely available data 71

6.3 Predicting soil temperatures using a mixture of available data . . . 72

6.4 Predicting soil moisture levels using freely available data 74

6.5 Predicting bud-burst dates . 76

6.6 Recurrent Neural Networks with Long Short-Term Memory 79

6.6.1 LSTM Experiments . 79

6.6.2 One-step-ahead prediction of temperatures 83

6.6.3 Prediction soil temperatures from ambient temperatures . . 85

6.7 Summary of Ssw. dataset results 86

7 Summary, conclusions and future work 89

7.1 Soil temperature prediction . 89

7.1.1 Stellenbosch dataset . 90

7.1.2 Somerset West dataset . 91

7.2 Moisture content prediction . 92

7.3 Bud-burst date prediction . 93

7.4 LSTMs . 94

7.5 Future work . 94

References . 101

A A brief intro to Theano and Lasagne 102

A.1 Theano . 102

A.2 Lasagne . 106

Stellenbosch University https://scholar.sun.ac.za

List of Figures

3.1 Linear Regression Dataset . 15

3.2 Linear Regression Dataset rotation 16

3.3 The basic perceptron. 17

3.4 An example of an MLP, as used for classification or regression. . . . 19

3.5 Neural network with dropout . 24

3.6 Information flow in RNN vs FFNN. 29

3.7 Unrolled RNN . 30

3.8 Standard RNN structure . 32

3.9 Standard LSTM structure . 32

3.10 LSTM cell state . 33

3.11 LSTM gate . 33

3.12 LSTM forget gate . 34

3.13 LSTM input gate . 34

3.14 LSTM update cell state . 35

3.15 LSTM output gate . 35

4.1 Location of new vineyard . 38

4.2 Experimental layout for the Stb. soil data. 39

4.3 Soil temperature trends . 41

4.4 Absolute differences in average soil temperature measurements . . . 41

4.5 Data overlap timeline . 43

4.6 Data Overlap . 44

4.7 Temperature at various depths . 47

4.8 Temperature for row 1 and depth 4 for different treatment types . . 48

5.1 True and estimated ambient temperatures using linear regression

and soil temperatures as input. 52

5.2 True and estimated soil temperatures at depth 1 for row 4, block 2

when using polar transformed features for hour and day inputs. . . 55

vii

Stellenbosch University https://scholar.sun.ac.za

5.3 Best prediction vs. target value plot (temperature vs. sample

number) for the first experiment. The error is indicated by shading. 58

5.4 Worst prediction vs. target value plot (temperature vs. sample

number) for the first experiment. The error is indicated by shading. 58

5.5 General structure of an auto encoder 59

5.6 The three auto encoder networks used to pre-train the weights . . . 61

5.7 The final neural network pre-trained by three auto-encoders 61

5.8 Predictions plotted with target values after shuffling the data (temperature

vs. sample number). 64

6.1 Predictions vs. Measurements with all data as input 74

6.2 Predictions vs. Measurements for the moisture count predictor . . . 76

6.3 Inspiration for randomly generated sine waves. 80

6.4 Randomly generated wave vs. actual data. 81

6.5 Randomly generated wave vs. actual data. 82

6.7 Randomly generated sine waves. 83

6.8 Target dataset for first LSTM experiment 84

6.9 Trimmed dataset for LSTM . 84

6.10 LSTM results on cut data . 85

6.11 LSTM results when predicting from ambient temperatures trained

on a subset of the original data. 86

viii

Stellenbosch University https://scholar.sun.ac.za

List of Tables

4.1 Treatment labels and their respective amount of mulch for the soil

data. 39

4.2 Mean squared error (MSE) calculated over time between the ambient

air temperature and the soil temperature. 49

5.1 Example results from experiment 2 53

5.2 Prediction accuracy with different combinations of input parameters.

DoY denotes the day of the year (1-365). Both DoY and the hour

parameter are presented as sine and cosine components as described

in Section 5.1.3. The näıve guess corresponds to predicting the soil

temperature to be the same as the ambient temperature. 65

5.3 Comparison of regression performance achieved when incorporating

dynamic information in various ways. 66

5.4 Summary of all different neural net results 67

6.1 Summary of all bud-burst prediction results 78

6.2 Summary of all the Ssw. dataset results 88

ix

Stellenbosch University https://scholar.sun.ac.za

List of Abbreviations

Adam adaptive moment estimation

BP back propagation

BPTT back propagation through time

cm centimeter

DoY day of the year

FFNN feedforward neural network

HoM hour of measurement

HV high-vigour

km kilometer

LST land-surface temperature

LSTM long-short term memory

LV low-vigour

m meter

max maximum

min minimum

ML machine learning

MLP multilayer perceptron

mm millimeter

MV medium-vigour

NAG Nesterov accelerated gradient

NN neural network
◦C degrees Celsius

ReLU rectified linear unit

RH relative humidity

SGD stochastic gradient descent

SOFM self-organising feature map

Ssw. Somerset West

Stb. Stellenbosch

SVM support vector machine

Temp. temperature

VIs vegetation indices

WSN wireless sensor network

x

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

Agriculture is the process of cultivating land and breeding animals to provide

humans with essential products, including food, fibre and medicine. The development

of agriculture can be considered a breakthrough in human development that gave

rise to sedentary human civilisation. It gave rise to food surpluses that enabled

people to start living in cities. Without agriculture, humans would still be living

a nomadic lifestyle that would greatly hinder technological development.

Modern technologies such us motorised transportation, pesticides and fertilizers

have made it possible for agriculture to become increasingly efficient and produce

ever greater crop yields. This has allowed cities to expand and technology to

thrive. We have, however, reached a point where populations continue to increase

even as the land area available for agriculture has become limited. This has given

rise to an even greater need for agricultural efficiency and once again agriculture

is depending on technology for further advancement.

One of the oldest branches of agriculture, viticulture, which is the cultivation

and harvesting of grapes, and the field of oenology, which is the science and study

of wine and wine making, have become increasingly dependant on technology.

Oenology has evolved over the years to become a refined science where precise

measurements and data are required for optimal results. It follows a yearly pattern,

since the cultivation of grapevines and the growth of grapes are dependant on the

season. This means that each iteration of experimentation takes a year to complete

in full since the results of new experiments can only be observed after the harvest

season. When compared to other sciences, where one is limited mostly by the

1

Stellenbosch University https://scholar.sun.ac.za

number of work-hours that can be spent, this slow pace necessitates oenology to

extract as much data as possible from every harvest.

1.1 Manual environmental monitoring

At first, technology allowed the accurate measurement of environmental parameters

such as soil temperature, humidity and moisture. This was a great advancement

since now correlations could be made between certain environmental parameters

and the harvesting and outcome of the grapes. For example, one study by Burgos

et Al. in 2007 found that warmer soil temperatures decreased the days between

bud-burst and flowering [6]. Before such measurements were available, the experience

of the farmer had to be relied upon.

While such measurements are very useful, they also require a lot of time and

effort to acquire. Firstly, the devices, while not too expensive on their own, become

very expensive when required in large numbers to cover a farm or large vineyard.

Initially, the measurements also had to be collected manually by physically visiting

each measuring station, which could take up a lot of time. An associated limitation

was that it was usually not possible to monitor the data on the go, but only

after the data collection had been completed. This meant that should one of the

devices become faulty, this might become apparent only after all the data had

been collected.

1.2 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) are a relatively new technology that enables

multiple devices (such as the environmental monitoring devices) to be linked to

each other using radio communication channels. All measurement devices could

be connected in this way, either directly to the closest neighbours via chaining,

or to a master node. This master node would usually have an interface allowing

the operator to request the data from all measuring nodes without having to visit

each individually [20]. Certain WSNs also provide real-time feedback on all the

devices in the network, so that faulty devices can quickly be identified.

2

Stellenbosch University https://scholar.sun.ac.za

This technology, while still evolving, solves many of the problems associated

with isolated measurement devices. The WSN must still be installed on the

vineyard or farm, however. Even though WSNs have become cheaper and more

energy efficient, they remain a significant financial investment due to the large

number of sensors involved.

1.3 Machine Learning

Machine learning refers to a class of algorithms that learn to achieve a desired

outcome (such as regression or classification) through a process called “training”

in which the parameters of the algorithm are optimised based on example data.

Machine learning has gained massive popularity recently due to the increasing

availability of computational resources.

When considering the application of machine learning to viticulture, the idea

is to use measured environmental and other data to learn patterns and use these

to predict particular variables of interest to the farmer. It may even be possible to

use the software models’ predictions to replace environmental sensors completely.

This would reduce the time and money needed to install and maintain monitoring

systems.

According to Vazquez et al. the level of precision generally accepted as accurate

for remote sensing land surface temperature estimations is between 1 and 2◦C [38].

The accuracy of an average soil temperature sensor is around 0.4◦C 1. Hence, if a

machine learning model could perform with similar accuracy, it could be considered

accurate enough for practical use, reducing the need to install expensive hardware

sensors. To develop such machine learning algorithms, large and detailed datasets

are required for training.

1Based on temperature sensor No. 107 sold by Campbell ScientificR© (source: http://www.
campbellsci.com/soil-temperature).

3

Stellenbosch University https://scholar.sun.ac.za

1.4 Aims and scope of this thesis

This project aims to investigate ways in which machine learning techniques could

be used to help advance modern agriculture, specifically viticulture, by decreasing

the need for manual data collection and extraction. Specifically, this project will

investigate how accurately certain environmental parameters can be predicted by

using different machine learning models that were trained on either easily obtained

data, or data received from typical sensors used in the viticulture industry.

First we will consider the classic method of linear regression for a relatively

small dataset. The task we consider is the prediction of ambient temperature

from soil measurements, soil measurements from other soil measurements, as well

as predicting soil temperatures from ambient temperature measurements.

Next, a more complex and current model, the feedforward neural network, will

be used to perform the same task. Here, we also investigate the performance

of various pre-training techniques, as well as the addition of dynamic data as

additional inputs. A brief investigation was also done into the performance of

a model trained on one vineyard’s data to predict soil temperatures of another

vineyard.

After this, we explore the possibilities of predicting other variables like the

moisture content in the soil, as well as the bud-burst dates of vines.

Finally, we consider the application of recurrent neural networks in the form

of long-short term memory (RNNs with LSTM).

This study lays a foundation upon which further research can build. We will try

to provide some insight into which aspects of the data the considered algorithms

find most useful for prediction. This can help focus ongoing data collection efforts.

1.5 Overview of this work

This section describes the layout of this thesis by providing an outline of the

contents of each chapter.

4

Stellenbosch University https://scholar.sun.ac.za

Chapter 2 presents a brief summary of the literature on machine learning

applications in viticulture. It will be shown that most literature is focussed on

computer vision and imaging techniques and not on the precessing of environmental

sensor data.

Chapter 3 describes basics of the algorithms and methods used in this study.

This includes introductions to linear regression (Section 3.1), neural networks

(Section 3.2), as well as extentions to neural networks (Sections 3.2.5 - 3.2.10),

and also recurrent neural networks with long-short term memory (Section 3.3).

Chapter 4 presents a summary of the two datasets used in this study. The

first dataset concerns a vineyard in Stellenbosch and contains soil temperature

measurements and ambient measurements obtained from sensors located locally

in the vineyard taken over the space of one year. The second dataset concerns

a vineyard in Somerset West and contains soil temperature measurements taken

over a span of almost 4 years, although it turned out that not all this data was

usable. The Somerset West data also contains ambient measurements from sensors

located locally in the vineyard, six months of soil moisture content measurements,

as well as the bud-burst dates for the last four years. This chapter also explains

how satellite land-surface temperatures were obtained and converted for use in

our experiment.

Chapters 5 and 6 describe the experiments performed on the Stellenbosch and

Somerset West datasets respectively. These experiments include the prediction

of soil temperatures from ambient temperature and humidity measurements, the

prediction of soil temperature from freely-available satellite data, the prediction of

soil moisture content from ambient temperature, humidity and rainfall measurements,

and the prediction of bud-burst dates. Linear regression, feedforward neural

networks and recurrent neural networks (LSTMs) are considered. Finally, Chapter

7 concludes the thesis and recommends avenues of future work.

5

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Machine Learning in Viticulture

With the rise of machine learning applications in various industries, some research

has begun to consider the use of machine learning techniques in Viticulture.

However, in comparison with other areas of application such as human language

technology, the applications of machine learning to viticulture described in the

literature are limited. Furthermore, most applications in viticulture focus on

computer vision and image processing and not on sensor networks.

The five most relevant topics of research for applications of machine learning

in viticulture are:

• Harvest yield estimation.

• Grape disease detection.

• Vineyard management and monitoring.

• Quality evaluation.

• Grape phenology.

The application of machine learning to these research topics will be discussed

in the following sections.

2.1 Harvest Yield Estimation

Being able to estimate or forecast the yield is very important for the wine industry.

Yield refers to the size of the harvest, typically given as a mass in tonnes. Traditional

methods involve the manual and destructive sampling of the vine bushes, allowing

6

Stellenbosch University https://scholar.sun.ac.za

them to be inspected by hand to count and determine their weight, berry size,

and berry numbers. However, these methods are destructive and time-consuming.

A study in 2011 by Nuske et al considered using an automated computer vision

technique combined with a k-nearest neighbour classifier to detect and count green

grape berries against a green leaf background [25].

A small vehicle fitted with a visible light camera would drive along the rows

of the vineyard. They used several components to enable berry detection. First,

they used the radial symmetry transform to identify berry locations. After that,

a combination of colour and texture features followed by a k-nearest neighbour

classifier was used to classify the detected points. Finally, false positive detections

were removed for bunches which do do not have at least five berries in close

proximity to each other. They managed to predict the yield to within 9.8% of the

actual crop weight.

In 2012 the authors extended their work by utilising calibration data obtained

from previous harvests and a small set of hand-picked samples [26]. By using this

approach, they were able to improve their yield estimation accuracy by 4% and

3% for the harvest calibrated and hand-picked samples respectively.

Another study by Vincent Casser [7] addressed the problem of colour-based

grape detection for in-field images. They performed experiments in four different

situations: night time red berries, night time white berries, day time red berries

and day time white berries, attempting to classify individual berries. By using

feedforward neural networks (FFNNs) they were able to achieve an average classification

accuracy of 93%. A comparison with a support vector machine (SVM) showed that

the FFNN offered an advantage in terms of computation time.

A more recent study by Aquino et al. in 2017 [1], uses mathematical morphology

and pixel classification for grapevine berry counting. Firstly, a set of berry

candidates represented by connected components was extracted. Then, using

key features of these components, six descriptors were calculated and used for

false positive discrimination using a supervised approach. A low-cost smartphone

camera was used to assemble a dataset of 152 images. Two different classifiers were

7

Stellenbosch University https://scholar.sun.ac.za

tested, a three-layer neural network and an optimised SVM. The neural network

outperformed the SVM, yielding consistent recall and precision values of 0.9572

and 0.8705, respectively.

2.2 Vineyard Pruning and Monitoring

For studies relating to vineyard management, wireless sensor networks (WSNs) are

the most popular tool since they are efficient and useful for monitoring. There have

also been a few studies using computer vision and image processing to monitor

the health of the vines as well as for pruning management. However, these will

not be discussed here since our focus is on machine learning techniques.

A study by Perez et al. [29] considers grapevine bud detection under natural

field conditions to aid in winter pruning. The scale-invariant feature transform

(SIFT) was used to obtain low-level image features. Subsequently these were used

in a bag-of-features approach to build the image descriptors for an SVM image

classifier.

Classification was achieved by sliding a fixed size window over the original

image and classifying each part as containing or not containing the target object.

Test images were between 100 and 1600 pixels in size. Their results showed a

classification recall greater that 0.89 in patches containing at least 60% of the

original bud pixels, where the proportion of bud pixels in the patch is greater

than 20%, and the bud is at least 100 pixels in diameter. For patches that hold

more than 90% of the bud pixels, and these pixels represent between 20% and

30% of the patch (i.e. patches from three to five times larger buds), even better

results were obtained.

2.3 Disease Detection

Early detection of diseases is a very important research area in viticulture. Diseases

that are commonly found on grapes include downy mildew, powdery mildew,

anthracnose, grey mold and black rot. These are all caused by fungi. Grown

cell disease, on the other hand, is an example of a disease caused by bacteria.

These diseases can cause massive problems for the grapes and economic losses for

8

Stellenbosch University https://scholar.sun.ac.za

the vineyard. For example downy mildew can taint the flavour of wine [35] and

grey mold (botrytis) can decrease yield and wine quality [22].

There are several reasons why the detection of diseases is such a challenge

for machines. One is that the grapes may be covered by a natural bloom that

has similar visual characteristics to that of diseased berries. Another is that the

symptoms of the disease may differ depending on the variety and the developmental

stage of the grape. More than one disease may also be present at the same

time, adding a further challenge to automatic detection. One of the most difficult

problems faced, however, is that factors such as nutrient deficiencies, pesticides

and weather can produce similar symptoms to those of diseases.

Various studies have addressed this problem and a lot of these focus on applications

of computer vision. However, there are several studies that use machine learning

to attempt to address the problem.

One study, by Meunkaewjinda et al. [21], proposed an automatic diagnosis

system for grape leaf disease. First, in an attempt to remove background noise,

grape leaf segmentation was performed. A self-organising feature map (SOFM)

was used together with a neural network to recognise the colours of the grape

leaf. A modified SOFM model with a genetic algorithm for optimization was

used to perform the grape leaf disease segmentation. A SVM was then applied to

classify the grape leaf disease. The model categorised the leaf images into three

classes: either scab disease, rust disease or no disease. The system demonstrated

the potential for automatic diagnosis of grapevine diseases.

Another study by Li et al. in 2011 [19] proposed an image recognition technique

to identify and diagnose grape downy mildew and grape powdery mildew. First,

pre-processed images were compressed using nearest neighbour interpolation. The

k-means algorithm was then used to perform unsupervised segmentation of the

disease images. After fifty shape, colour and texture features were extracted

from the images, a SVM classifier was used to perform disease recognition. This

achieved recognition rates of 90% and 93.33% for downy mildew and powdery

mildew respectively.

9

Stellenbosch University https://scholar.sun.ac.za

After Indian vineyards suffered great losses from leaf diseases in the 1990s,

Sanjeev et al. proposed a diagnosis and classification approach for grape leaf

diseases using neural networks [31]. Grape leaf images with complex backgrounds

were input to the system. Green pixels were isolated by thresholding, followed

by noise removal using anisotropic diffusion. The grape leaf diseases were then

segmented using k-means clustering. Best classification results were achieved using

a feedforward neural network.

In a different study, Harshal et al. [39] used background removal segmentation,

leaf texture analysis and pattern recognition to detect downy mildew and black rot.

A unique fractal-based texture feature was used to characterise the leaf texture

and a multiclass SVM was used to classify the extracted pattern. An accuracy of

96.6% was achieved.

The detection of black rot, downy mildew, powdery mildew, anthracnose, gray

mold, and crown gall diseases was also considered by Shilpa et al. [13]. The

Haar wavelet transform was used for feature extraction and a feedforward neural

network for classification, leading to a classification accuracy of 93%.

2.4 Other machine learning applications in viticulture

One factor that is often used as an indicator for the optimal time for harvest is

the grape seed maturity. Using traditional methods to identify maturity is often

very time consuming and subjective, since it is often performed by human sensory

and visual analysis. There have been various studies trying to improve this by

application of image processing and machine learning techniques.

One such study was performed by Zuniga et al. in 2014 [42]. Their method was

based on seed images and allowed the classification of three seed classes: mature,

immature, and over-mature. The invariant colour model [10] was used for seed

segmentation, to avoid shadows and highlights. Using the results of a previous

study by Avila et al. [2] the c3 colour model [10] was chosen to transform the

values of the pixels. Classification was achieved by three multilayer perceptrons

(MLPs), one for each class. A recognition rate of 90% was achieved on the training

set and 86% on the test set.

10

Stellenbosch University https://scholar.sun.ac.za

Romero et al. had considered the estimation of vineyard water status using

multispectral imagery from an unmanned aerial vehhicle (UAV) platform and

machine learning algorithms [30].

In this work, several vegetation indices (VIs) derived from aerial multispectral

imagery were used to estimate the midday stem water potential (Ψstem) of grapevines.

Machine learning algorithms were used to evaluate relationships between Ψstem

and VIs. Simple regression models showed little to no correlation. However,

application of artificial neural networks with VIs as inputs showed high correlation

between the estimated and measured water potential. Correlations of R=0.8, 0.72

and 0.62 were obtained for the training, validation and test sets, respectively.

2.5 Conclusion

The fairly small set of studies described in this chapter demonstrates that there

is great potential for the application of machine learning in viticulture. However,

the literature study also shows that the work done so far is limited, and there

is great potential to further consider the practical challenges of viticulture by

the application of and analysis with machine learning algorithms. This thesis

will consider specifically the modelling and prediction of soil temperatures, soil

moisture content and bud-burst dates using machine learning techniques.

11

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Methods

One main objective of this study is to determine how accurately some measurements

can be predicted from other measurements that are easier to obtain. This can be

represented algebraically as

y ≈ ŷ = hθ(x) (3.1)

Here y is a vector [y0 ... yp−1] of P measurements we wish to approximate

using the set of q measurements x = [x0 ... xq−1]. The function hθ will be used

to accomplish this approximation and has r parameters [θ0 ... θr−1] which must

be estimated from the data x0 ... xN−1 so that the prediction ŷ most closely

approximates the true values y. Three forms of the function hθ will be considered

in this work: a linear model, a feed-forward neural network, and a recurrent neural

network.

To estimate the parameters θ of the model hθ(x), it is common experimental

procedure to split the available data x into a training, validation, and testing

partition. The parameters θ are estimated from the training partition, any additional

“hyper-parameters” are optimised on the validation set, and final independent

testing is performed on the test set.

Going into this study, we were not told specifically which tasks need to be

considered or which experiments should be run. Instead, the objective was a

fairly open-ended search for useful patterns in the data.

When considering experiments to perform using the data, we had to consider

12

Stellenbosch University https://scholar.sun.ac.za

a few things, most notably what exact data we have and the information that

it carries. We also later wanted to see if we could further improve on the first

experiments that were performed using only the smaller dataset. Lastly, the results

of the experiments should be of interest to the wine industry in some way.

Various different experiments were performed, namely:

1. Predicting ambient temperatures using soil temperatures.

2. Predicting soil temperatures using other soil temperatures.

3. Predicting soil temperatures using microclimate logger data.

4. Predicting soil temperatures using freely available data.

5. Predicting soil temperatures using a mixture of available data.

6. Predicting moisture levels of the soil using freely available data.

7. Predicting the bud-burst dates using soil temperatures.

8. Predicting soil temperatures given a series of previous soil temperatures.

The following chapters will describe the experiments that were performed and

the results that were obtained. All experiments use the data described in Chapter

4. The data sets will be referred to as:

• The soil data (from Section 4.1).

• The mesoclimate data (from Section 4.2).

• The weather station data (from Section 4.3).

• The rainfall data (from the weather station data in Section 4.3).

• The moisture data (from Section 4.5).

• The satellite data (from Section 4.6).

• The bud-burst data (from Section 4.9).

13

Stellenbosch University https://scholar.sun.ac.za

3.1 Linear Regression

Linear regression was applied to determine whether some measurements could be

inferred from others using a simple linear relationship.

The algorithm tries to predict values y, given inputs, x, by linear transformation

with parameters θ as shown below [9]:

y ≈ hθ(x) = θ · x (3.2)

Here, y is the true value that the model is trying to predict and hθ(x) is

the model’s prediction given inputs x. The squared error cost function, J(θ) is

minimised by iteratively adjusting the parameters θ. The cost function, J(θ) is as

follows [4]:

J(θ) =
1

2m

[
m∑
i=1

(hθ(x
i)− yi)2 + λ

n∑
j=1

θ2j

]
(3.3)

Where the second term,

λ
n∑
j=1

θ2j ,

is the regularization factor [3], using λ (lambda) to determine how much regularization

should be applied. The parameters θ are updated iteratively using the equations

below:

Repeat {

θ0 := θ0 − α

[
1

m

m∑
i=0

(hθ(x
i)− yi)xi0

]

θj := θj

(
1− α λ

m

)
− α

[
1

m

m∑
i=0

(hθ(x
i)− yi)xij

]
}, until convergeance

(3.4)

This will be repeated until convergence or for a fixed number of iterations. In

this formula, θ (theta) represents the parameters of the linear predictor. The first

of these, θ0, is known as the bias term and is not included in the regularization

term. Furthermore, x0 is defined to always equal 1 and hence has a separate

update equation. The meta-parameter α is the learning rate and determines how

harshly the parameters (θ) are updated after every step. The meta-parameter λ

14

Stellenbosch University https://scholar.sun.ac.za

(lambda) is the regularization parameter and in this case was set to 0.03 after

some testing. The number of entries in the dataset is represented by the variable

m. x and y respectively represent the input and target values in all sets. The

superscripts i represents the specific data point of the set (set rows) and the

subscript j represents the parameter number (set columns). The predicted values

will be output by the function hθ, which assumes the following form [3]:

hθ(x) = θ · x = x0.θ0 + x1.θ1 + x2.θ2 + ...+ xn.θn (3.5)

Where n is the number of input features. The input features are based on the

measurements which the model uses to predict the true value of y. All data is

normalised to have zero mean.

3.1.1 Cross-validation procedure

For all the linear regression experiments that follow, the same dataset and rotation

method was used. The dataset was split into 10 parts. The first 8 parts (80%)

were used as the training data. The next 10% was used as the validation set. The

last 10% was used as the unseen test data on which the final results of the model

were also calculated. The final error metric to be seen in the following experiments

are based on the predictions that the model makes on this final 10% of the dataset.

Figure 3.1: Linear regression dataset split.

Figure 3.1 graphically shows how the dataset is split up into its three parts.

After training and testing the model with this dataset, an average error was

obtained. The dataset was then shifted to the right by 10% and the training

and testing procedure was performed again. After 10 such shifts we will have

trained and tested on all the different parts of the dataset. The final error is the

15

Stellenbosch University https://scholar.sun.ac.za

average over all 10 of these runs. Figure 3.2 visually shows how the dataset rotates

for the first two runs.

Figure 3.2: Linear regression dataset split after rotation.

3.1.2 Calculating the error score

To calculate the error score of a model, the predicted outputs were compared with

the targets (true values). Each output was compared with its corresponding target

value by taking the absolute value of the difference divided by the target, as shown

in Equation 3.6.

error =
‖target− output‖

target
(3.6)

This results in a set of error values (one per target) between 0 and 1 which is

averaged to obtain the overall test-set error value. This can be repeated multiple

times (building and training the model from scratch), and the average overall error

used as the final error score representing the success of the model.

This measure of prediction accuracy is known as the mean absolute percentage

error (MAPE) or also as the mean absolute percentage deviation (MAPD). This

measure has two drawbacks, however. The first is that it is not appropriate when

the dataset contains zero values, since this causes a division by zero. The second

is that, for predictions that are too low, the error rate can never exceed 100%,

whereas for predictions that are to high there is no upper limit. This can cause

statistical models using MAPE to favour models that under-estimate over models

that over-estimate. Fortunately, since the temperatures measured are all positive,

the first issue is not encountered. Also, as will be seen, in this study the error

16

Stellenbosch University https://scholar.sun.ac.za

rates never come close to 100%. In fact, most errors will be in the region of 5%,

which should avoid under-estimating models being favoured.

Taking in to account that results from our dataset will not suffer any negative

consequences by using MAPE, MAPE was chosen because of how intuitive and

easy to read and interpret the error rate is.

3.2 Neural Networks

Neural networks are the second type of model considered in this study. Neural

networks are made up of multiple layers of linear weights, followed by non-linear

activation functions allowing the model to learn more complex non-linear relationships

than a simpler model like linear regression. The following section will give a brief

introduction to neural networks, and describe the neural network learning-techniques

that were used for experimentation.

3.2.1 A brief introduction to Multilayer Perceptrons (MLPs)

At the core of any neural network lies a small unit called the perceptron (the

neurons of the network). A perceptron is a really basic unit that works in a

similar way to a logic circuit component like a NAND gate for instance. We

depict a perceptron in Figure 3.4.

Figure 3.3: The basic perceptron.

In Figure 3.4 xj, (j in {1, 2, 3}) represents the inputs, and the arrows represent

the weights wj for each input. The inputs are multiplied by the weights and added

together to calculate the neurons activation, which is given by Equation 3.7.

17

Stellenbosch University https://scholar.sun.ac.za

z =
∑
j

wjxj (3.7)

The neuron is said to fire when the activation value passes a certain threshold.

The neurons output will then either be 1 or 0 depending on if it has fired or not

[9]. In algebraic terms:

output = 0 if
∑
j

wjxj < threshold

output = 1 if
∑
j

wjxj ≥ threshold
(3.8)

If we see xj and wj as two vectors of length j, we can simplify this equation

by rewriting the sum term as a dot product, i.e.
∑

j wjxj = w · b. Next, we can

move the threshold to the left of the equality and replace it by what is called the

bias (b), i.e. threshold = −b . One can think of the bias as an indication of how

easy it is for the neuron to fire. The lower the bias, the more easily the neuron

will activate. This allows us to rewrite Equation 3.8 as follows.

output = 0 if w · x+ b < threshold

output = 1 if w · x+ b ≥ threshold
(3.9)

A drawback of neurons such as these described above is that small changes

in the weights can cause big changes in the output of the network since, if the

weights change enough to push the activation of one neuron past the threshold

and fires, this can cause other neurons to fire, causing a chain reaction. One way

to avoid this is to include a continuous activation function in the neuron instead

of a hard threshold. With this change, the output of the neuron is described by

Equation 3.10 [4]:

18

Stellenbosch University https://scholar.sun.ac.za

output = a(z) ,

with z = w · x+ b
(3.10)

Here, a is the activation function. There are many popular activation functions

used in practice. One of these are called the sigmoid function which takes on the

following form:

a(z) =
1

1 + e−z
(3.11)

The sigmoid causes the neuron to have a smooth output function in response

to gradient changes in the input instead of the discontinuous step function it had

before. The output of the neuron will now also only change by a small amount as

a result of small changes to the weights, which is an important property when we

wish to train the weights by gradient descent. This particular function also has a

nice derivative which makes it even better to use as an activation function.

When multiple layers of these neurons are stacked together, they are referred

to as multilayer perceptrons or MLPs [4]. Even though the neurons used are hardly

ever perceptrons, but rather sigmoid neurons, this is still a widely used name. An

MLP usually consists of an input layer, one or more hidden layers, and the output

layer as can be seen in the figure below:

Figure 3.4: An example of an MLP, as used for classification or regression.

19

Stellenbosch University https://scholar.sun.ac.za

The size of the input layer will depend on what the network must learn from. If

it must classify an image, for example, the inputs may be the raw pixel values. The

hidden layers are any layers that are not the input or output layers, and the number

of neurons in these layers depend on multiple factors and are fine-tuned along

with a number of other hyper-parameters to find the best network configuration

for the problem. The size of the output layer will depend on the type of problem.

For classification purposes, the output layer often only consists of one neuron

(outputting either a 1 or a 0). For regression problems, the size depends on the

number of quantities that must be predicted.

3.2.2 Training the MLP

Before it can be used for classification or regression, a neural network must be

trained. This can be achieved by iteratively adjusting the weights in a process

called Gradient Descent towards the (hopefully global) optimum.

First a forward pass is performed. This consists of applying an input to the

network, and calculating the outputs of each layer using Equation 3.10. This is

repeated for each layer until the output is reached.

More formally, assume that all the weights and biases for each layer are contained

in matrices Wj and bj respectively. In this case j refers to the layer number, j = 1

for the input layer and j = n for the output layer. Next, recall that the activations

for all of the neurons in the j′th layer can be calculated by multiplying the value of

the neurons in layer j−1, adding the biases, and using that value in the activation

function. For the case of the sigmoid neuron this is:

aj(z) =
1

1 + e−z
(3.12)

and where aj is an array containing the activations for all the neurons in layer

j, and

z = wj−1 · aj−1 + bj (3.13)

By doing this for every layer of the network, one at a time, the inputs are

passed through the network until the output layer is reached. At this point all of

20

Stellenbosch University https://scholar.sun.ac.za

the neurons will have a computed activation value. There will be computed values

for each output which can be compared with the target values, and the difference

can be used to adjust the weights.

At this point it should be mentioned that the initial values for the weights and

biases are usually randomised. There are different methods for weight initialization

such as pre-training, and using different random distributions, but it should be

known that the weights are deliberately initialised before the network is given any

input values.

After completing the forward pass, the backward pass is executed. This

is achieved by a process called backpropagation, or backprop which propagates

the output error back through the nodes towards the input. The weights are

subsequently updated using a technique called gradient descent . It should be

noted that backprop with gradient descent is not the only technique that can be

used to train a neural network, but it is a very popular one, and it is also the

technique used for the neural network in this work.

3.2.3 Backpropagation with gradient descent

Using the notation that x denotes an input vector, we can then define y(x) as the

desired output of the model given the input x, or in other words, the target/ideal

value for the model given the input x. The goal is now to define an algorithm that

lets us find appropriate weights and biases so that the network can approximate

y(x) for every input value of x. To do this we will define a cost function [24]:

C(w, b) =
1

2n

∑
x

‖y(x)− a‖2 (3.14)

Here, w and b are the weights and biases respectively, n is the total number

of training inputs and a is the output of the model given the input x. Of course

a depends on w, b, and x, but has been omitted here for easy readability. This

specific cost function is known as the quadratic cost function, or also sometimes

the mean squared error (MSE).

By looking at this equation we can see that it will give us the squared error

21

Stellenbosch University https://scholar.sun.ac.za

between the model’s attempt at the right answer and the actual right answer,

summed over all different inputs x. To find the optimal weights and biases for our

model to perform well, we must minimise this function with respect to the weights

and biases. A cost C(w, b) = 0 is the minimum possible cost and indicates that

all the input values x in the summation in Equation 3.14 are mapped perfectly to

the correct output values.

Consider the minimisation of some cost function C(v) where v can be any

number of parameters v = v1, v2, To find the minimum, we will find the local

gradient of the function C at the current value of v and then move v by a small

amount in the direction of the negative gradient, i.e. downhill. If we do this

repeatedly, each time recomputing the gradient of the new value of v, we must

eventually reach a minimum where the gradient is zero.

Assuming for illustration that v is two dimensional, v = v1, v2, and suppose

we move a small amount δv1 in the v1 direction and δv2 in the v2 direction. This

will cause C to change as follows [24]:

∆C ≈ ∂C

∂v1
∆v1 +

∂C

∂v2
∆v2 (3.15)

We now define ∆v as a vector of changes in v, ∆v = (∆v1,∆v2), as well as the

gradient of C to be the vector of partial derivatives,
(
∂C
∂v1
, ∂C
∂v2

)
. We’ll denote this

vector as ∇C, i.e.:

∇C =

(
∂C

∂v1
,
∂C

∂v2

)
(3.16)

Having made these definitions, we can now rewrite ∆C as:

∆C ≈ ∇C ·∆v (3.17)

Using this equation we can deliberately choose ∆v so that ∆C is negative.

Suppose we choose

∆v = −η∇C (3.18)

where η is a small positive constant (known as the learning rate). It follows

that ∆C ≈ −η∇C · ∇C = −η‖∇C‖2. Since ‖∇C‖2 ≥ 0, it is guaranteed that C

22

Stellenbosch University https://scholar.sun.ac.za

will always decrease. Hence, we can use Equation 3.18 to compute a value for ∆v

and then update the parameters v by that amount [24]:

v → v′ = v − η∇C (3.19)

We can use this update rule again and again until, hopefully, a global minimum

is reached. Considering again our original problem, we see that v is a vector

containing our weights and biases. Therefore we can use the update rule in

Equation 3.19 to update the weights and biases by moving down the slope of

the cost function C(v) until we reach a minimum [24]. Thus we repeat:

wk → w′k = wk − η
∂C

∂wk
(3.20)

bl → b′l = bl − η
∂C

∂bl
(3.21)

until approximate convergence is achieved. In essence, this is how a neural

network is trained. It must be noted that this is a very simple explanation and

that a large body of literature is dedicated to the refinement of gradient descent

for neural network training.

3.2.4 Dropout

Many complex patterns can be learned by a neural network with a large number

of parameters and enough training time. There is however still a serious potential

problem with these networks called overfitting.

Overfitting is what happens when a neural network learns the patterns of the

training data well but fails to generalise to other, unseen, data. Overfitting leads

to very promising results on the training data, but poor performance on unseen

testing data. Dropout is a technique developed by Nitish Srivastava et al. to help

address this problem. According to the authors [34]:

“In a standard neural network, the derivative received by each parameter tells

it how it should change so the final loss function is reduced, given what all other

units are doing. Therefore, units may change in a way that they fix up the mistakes

of the other units. This may lead to complex co-adaptations. This in turn leads

23

Stellenbosch University https://scholar.sun.ac.za

to overfitting because these co-adaptations do not generalise to unseen data.”

Dropout simply ignores the weights of a few randomly chosen neurons at every

training iteration. The choice of these neurons is governed by a pre-selected

dropout probability. This strategy causes the weights of other neurons to become

unreliable, forcing every neuron to learn more robust features from the data, and

not rely too heavily on other neurons to correct for its mistakes.

Figure 3.5: An illustration of dropout. Reproduced from: Srivastava, Nitish, et
al. ”Dropout: a simple way to prevent neural networks from overfitting”, JMLR
2014 [34].

Dropout increases the number of training iterations needed for convergence.

However, the training time per epoch is also reduced.

Dropout was applied when training most models used in this study. It will

be made clear when it was not used for specific cases. In the machine learning

frameworks used in this study, dropout is implemented as a separate neural

network layer. Based on the dropout probability, this layer selects which units

in the previous layer are set to zero, and which to pass through. This effectively

removes the corresponding units preceding the dropout units from the network.

24

Stellenbosch University https://scholar.sun.ac.za

3.2.5 Momentum

When using gradient descent to update the network’s parameters, the equation

with which the weights update their values is shown in Section 3.2.3. We can

rewrite this equation in a form that is a bit easier to read as follows:

θt+1 = θt − α∇J(θt) (3.22)

In Equation 3.22, θt represents all the parameters at the current time step,

θt+1 the updated parameters, α the learning rate and ∇J(θt) the gradient of the

loss function with respect to the model parameters θt.

A problem with this standard formulation of gradient descent is that the

gradient of the loss function, ∇J(θ), changes very quickly after each iteration.

By keeping the learning rate, α, small, the model can still converge, but this may

take a very long time. When α is too large, the training process can diverge.

To help overcome this problem, a technique called momentum was proposed.

It is called momentum since it mimics the way in which a ball that rolls down a

hill builds up momentum in the direction it is travelling. This momentum allows

it to almost ignore minor bumps in the path and to keep going downhill. The

equations for gradient descent with momentum can be written as,

vt+1 = µvt − α∇J(θt)

θt+1 = θt + vt+1

(3.23)

Here, we introduce a new hyperparameter µ, which is the momentum parameter.

It simply dictates how much the direction of each weight update is influenced by

the previous update direction. This reduces oscillations between updates during

training.

3.2.6 Nesterov accelerated gradient

Momentum introduces a new problem, however. When the ball is rolling down

the hill and reaches the bottom, its momentum is often quite high and since it is

not self-aware it does not know to stop once the bottom of the hill (the minimum)

has been reached. In some cases this causes the ball to overshoot the minimum

25

Stellenbosch University https://scholar.sun.ac.za

and continue rolling uphill, possibly causing it to miss the minimum completely.

This problem was noticed by researcher Yurii Nesterov [23].

Nesterov accelerated gradient (NAG) is a way of giving the momentum term

a little bit of foresight. We know that momentum term vt+1 = µvt will move

the parameters θ. By computing θ − µvt we will have a rough approximation of

the next position of the parameters. This means we are effictively looking ahead

by calculating the gradients with relation to the approximate future parameters

instead of our current parameters.

vt+1 = µvt − α∇J(θt − µvt)

θt+1 = θt + vt+1

(3.24)

The NAG update method was used in many of the experiments in this study,

as it proved to work very well on our data.

3.2.7 AdaGrad

Adagrad was introduced by Duchi et al. in their 2011 paper “Adaptive subgradient

methods for online learning and stochastic optimization” [8].

Adagrad allows the learning rate α to scale differently for every parameter at

every time step based on the history of the gradients. This is done by simply

dividing the current gradient in the update step by the sum of the previous

gradients.

gt+1 = gt +∇J(θt)
2

θt+1 = θt −
α∇J(θt)√
gt+1 + ε

(3.25)

The main benefit of AdaGrad is that it eliminates the need to manually tune α.

The biggest disadvantage of AdaGrad is that the learning rate is always decreasing

and decaying. This can cause the learning process to become extremely slow and

even stop completely after extended training.

26

Stellenbosch University https://scholar.sun.ac.za

3.2.8 RMSProp

RMSProp was first introduced by Geoffrey Hinton in his undergraduate course

at the University of Toronto, and even though it is well-known and implemented

in many deep learning libraries, it was never released as a publication. Geoffrey

Hinton himself asked that citations should be made to his undergraduate course

slides [14].

The difference between RMSProp and AdaGrad is that the gt term is calculated

using an exponentially decaying average instead of a sum.

gt+1 = γgt + (1− γ)∇J(θt)
2 (3.26)

In Equation 3.26, gt is referred to as the second order moment of ∇J(θ). A

first order moment, mt can also be introduced.

mt+1 = γmt + (1− γ)∇J(θt) (3.27)

We then also add momentum,

vt+1 = µvt −
α∇J(θ)√

gt+1 −m2
t+1 + ε

(3.28)

and then finally update the weights, θ, as before,

θt+1 = θt + vt+1 (3.29)

3.2.9 AdaDelta

AdaDelta [41] is an extension of AdaGrad which tries to remove the problem of

the decaying learning rate. Instead of accumulating all past squared gradients, it

restricts the window of accumulated past gradients to a fixed size. It also uses

an exponentially decaying average of gt. However, it does not use the traditional

learning rate α as used in Equations 3.23 and 3.24 . Instead, it introduces xt, the

27

Stellenbosch University https://scholar.sun.ac.za

second moment of vt.

gt+1 = γgt + (1− γ)∇J(θ)2

xt+1 = γxt + (1− γ)v2t+1

vt+1 = −
√
xt + ε∇J(θt)√
gt+1 + ε

θt+1 = θt + vt+1

(3.30)

3.2.10 Adam

Adam is a more recent update rule that was first purposed by D.P. Kingma and

J.L. Ba in their 2014 paper “Adam: A Method for Stochastic Optimization” [18].

Adam is an abbreviation of Adaptive Moment Estimation. Like AdaDelta, Adam

also computes adaptive learning rates for each parameter in addition to storing

an exponentially decaying average of past squared gradients. It also stores an

exponentially decaying average of past gradients, similar to momentum.

mt+1 = γ1mt + (1− γ1)∇J(θt)

gt+1 = γ2gt + (1− γ2)∇J(θt)
2

m̂t+1 =
mt+1

1− γt+1
1

ĝt+1 =
gt+1

1− γt+1
2

θt+1 = θt −
αm̂t+1√
ĝt+1 + ε

(3.31)

The values γ1 and γ2 are also commonly know as the beta1 (β1) and beta2

(β2) parameters. Typical values for β1 and β2 are 0.9 and 0.999 respectively.

In practice Adam performs favourably compared to other learning methods.

It usually converges quickly and rectifies most of the problems exhibited by other

learning methods such as the vanishing learning rate or slow convergence.

Adam was used often to train neural networks in this study.

28

Stellenbosch University https://scholar.sun.ac.za

3.3 Recurrent Neural Networks with Long-short

Term Memory

One limitation of the feed-forward neural networks (FFNNs), that we have been

using to this point is that they have no concept of memory other than the weights

that they have learned. Their behaviour is solely dependent on the current input

example. This means that these models can sometimes struggle to make good

predictions for time-dependent data. Recurrent Neural Networks (RNNs) try to

address this by taking as input not only the current example, but also what has

been seen in the past.

3.3.1 Understanding RNNs

Like many machine learning algorithms, RNNs are not a new concept and were

already being used in the 1980s. They have, however, only recently started to

achieve convincing success, thanks to the growth in computational power, the

availability of massive datasets, as well as the invention of Long Short-Term

Memory (LSTM) in the late 1990s.

By having internal memory, RNNs are able to remember important observations

that they have seen in the past to help them better predict what is coming next.

Figure 3.6 presents a simple illustration of the difference between a FFNN and in

a RNN.

Figure 3.6: Information flow in a Recurrent Neural Network (RNN) and in a
Feed-Forward Neural Network (FFNN).

The FFNN learns weights that link the inputs to the outputs. In contrast, the

29

Stellenbosch University https://scholar.sun.ac.za

RNN learns weights not only for the current input, but also for previous neuron

outputs. In Figure 3.6, z−1 indicates a one step delay. RNNs are also trained by

gradient descent using an algorithm known as backpropagation through time.

Backpropagation through time (BPTT) can be understood as backpropagation

applied to an “unrolled” RNN. An unrolled RNN is a way of visualising the

processing of sequential inputs as a series of neural networks, as illustrated in

Figure 3.7. Figure 3.7 shows an unrolled RNN for T consecutive input vectors

x0...xt.

Figure 3.7: A RNN and it’s unrolled form for an input sequence consisting of T
consecutive input vectors x0...xt [27].

In this section, the notation used will be the following: ht refers to the output

of the unfolded RNN at time t and ht−1 to the output from the previous time step.

The parameter xt is the input to the network at time step t. St is the concatenation

of the values ht and Ct which is the network output and the cell state at time step

t, respectively. The cell state, Ct, will be explained in the following section.

In BPTT, the error is propagated backwards from the output at the last time

step ht to each input x0...xt. By unrolling the RNN, it becomes clear that the

error at any given time step depends on the error at previous time steps. Once the

error has been calculated for every time step, the weights can be updated. If there

are a large number of timesteps, BPTT can be very computationally expensive.

The reason why RNNs were initially not successful is due to two problems

encountered during BPTT training, namely vanishing gradients and exploding

gradients. Exploding gradients occur when the model assigns an extremely high

weight to one or more parameters, usually because of a long chain of multiplications

during backpropagation. Fortunately, there is an easy way to deal with exploding

30

Stellenbosch University https://scholar.sun.ac.za

gradients - by clipping the gradients at some threshold [27].

Vanishing gradients occur when the value of a gradient becomes too small,

causing the model to stop learning or to learn extremely slowly. This phenomenon

is usually due to a long chain of multiplications of small gradients. This is a much

harder problem to solve than exploding gradients since one cannot simply truncate

the gradients when they get too small. LSTMs provide a solution to this problem.

3.3.2 Long Short-Term Memory

The Long-Short Term Memory (LSTM) recurrent neural network was proposed

by Sepp Hochreiter and Juergen Schmidhuber in their 1997 paper titled “Long

Short-Term Memory” [16]. The crucial difference between LSTMs and regular

RNNs is their use of gated memory, that sidesteps the vanishing gradients problem

and therefore allows them to remember important information for longer. This

makes them much better at learning from data in which important events happen

with long time delays in between.

In this section the following notation will be used for the graphical explanations:

Each line in these illustrations carries an entire vector, from the output of one

node to the inputs of others. The orange circles represent pointwise operations,

like vector addition, while the yellow boxes are learned neural network layers. Line

merging denotes concatenation, while line forking denotes its content being copied

and the copies going to different locations.

LSTMs are able to remember their inputs over a long timespan, because they

save information using a process that is similar in some respects to computer

memory, incorporating the notions of read, write and delete. The network will

consider its input and assign an importance factor to the information. Based on

this, it will decide whether it wants to store or delete information. The importance

31

Stellenbosch University https://scholar.sun.ac.za

factors are governed by weights that are trained like all the other weights. Over

time, the network will learn to recognise whether information is important or not.

All RNNs are structured as a chain, with repeating modules. These modules

have a very simple structure, like a single tanh layer, in standard RNNs. In Figure

3.8, a chunk of a neural network, A, looks at some input xt and outputs a value

ht.

Figure 3.8: A single tanh unit in the repeating module of a standard RNN.

In a LSTM, we also see this chain-like arrangement, but the internal structure

of the module is different from the standard RNN. Instead of the single (tanh)

layer, LSTMs have four layers interacting in a very particular way [27].

Figure 3.9: The four layers in the repeating module of a standard LSTM.

A key aspect of the LSTM is the conveyor-belt-like property called the cell

state. It runs through the entire chain with only some minor external interactions

along the way. In Figure 3.10 below, one can see Ct representing the cell state at

timestep t.

32

Stellenbosch University https://scholar.sun.ac.za

Figure 3.10: The LSTM cell state running from time step t− 1 to t.

The process of removing or adding information to the cell state is carefully

regulated by small sigmoid layers followed by a point-wise multiplication operation.

These structures are called gates, as illustrated in Figure 3.11.

Figure 3.11: The LSTM gate unit consisting of a sigmoid layers as well as a
point-wise multiplication operation.

Since the sigmoid unit always has an output between 0 and 1, the gate can

control how much of each component of the cell state it should let through. A

LSTM has three of these gates to control the cell state. These gates are called the

input, output and forget gates respectively.

3.3.3 LSTM Walk Through

The first thing an LSTM cell does is decide what information from the previous

cell state it will keep, and what it will discard. It bases this decision on the values

of ht−1 as well as xt, and provides a number, ft, between 0 and 1 for each element

of the cell state vector Ct−1. This constitutes the “forget gate layer”.

In a real-world example, the LSTM might be trying to predict the next word

in a sentence. In this case the cell state might include the gender of the current

subject. When it sees a new subject, however, it has to forget about the previous

one.

33

Stellenbosch University https://scholar.sun.ac.za

Figure 3.12: The LSTM forget gate consists of a sigmoid layer as well as a
point-wise multiplication operation.

The equation that governs this behaviour is,

ft = σ(Wf · [ht−1, xt]) (3.32)

whereWf are the weights of the forget gate and [ht−1, xt] denotes the concatenation

of vectors ht−1 and xt [27].

Next, the LSTM cell must decide what new information is worth adding to

the cell state. This requires two steps. First, an “input gate layer” decides which

components it of the state vector to update with a sigmoid function. Next, a

vector of new candidate values, C̃t, that will be added to the state is generated.

Figure 3.13: The second step of the LSTM, consists of a sigmoid input gate and
a tanh to update the gated state vector components.

In mathematical terms,

it = σ(Wi · [ht−1, xt])

C̃t = tanh(WC · [ht−1, xt])
(3.33)

34

Stellenbosch University https://scholar.sun.ac.za

with Wi and WC representing the weights of the input gate and candidate

update layer respectively, while it are the gating decisions.

After the components of the state vector that should be updated have been

identified, the cell state, Ct−1, is updated to give the new cell state, Ct. To achieve

this, the old cell state vector is multiplied element-wise by ft to achieve forgetting

of the selected elements. Then the cell state is updated by the addition of it ∗ C̃t.
The result is the updated state vector [27].

Figure 3.14: When the cell state of the LSTM is updated, forgetting is executed
first, followed by updating with new candidate state values.

Ct = ft ∗ Ct−1 + it ∗ C̃t (3.34)

The final step is to determine the output from the state. First, the parts of

the cell state that will affect the output are identified by a sigmoid layer. Next,

the cell state Ct is passed through a tanh layer to scale the values between -1 and

1. Finally, these scaled values are multiplied element-wise with the sigmoid layer

to determine the output ht.

Figure 3.15: Determining the output of the LSTM unit from its state, previous
output and current input.

35

Stellenbosch University https://scholar.sun.ac.za

ot = σ(Wo · [ht−1, xt])

ht = ot ∗ tanh(Ct)
(3.35)

This concludes our description of a single step of a regular LSTM unit. In

practice, variants of the basic LSTM model are often used. However, these variants

follow a similar logic.

3.4 Summary and conclusion

This chapter has presented a brief introduction to the methods that will be applied

to our datasets. Linear regression, feedforward neural networks and recurrent

neural networks - specifically long-short term memory (LSTM) - were considered.

The way in which cross-validation will be used to train and evaluate these models

was also described.

36

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Datasets

Two different sets of data were used in this work. One was available at the outset,

while the second became available later.

Firstly, we were provided with a dataset that consisted of soil temperatures,

ambient temperatures and humidity, as well as local weather station data. This

dataset originated from a particular vineyard in Stellenbosch and will be referred

to as the Stellenbosch data or “Stb. data”.

Later, we were provided with a second dataset that consisted of soil temperatures,

ambient temperatures, humidity and rainfall from a local weather station, as well

as measurements of the plant phenology (growth stages), micro climate, water

status, vegetative data, reproductive data, and physiological data. This dataset

originated from a particular vineyard in Somerset West and will be referred to as

the “Ssw. data”.

37

Stellenbosch University https://scholar.sun.ac.za

Figure 4.1: A map indicating the location of the Somerset West vineyard. The
block in red is a zoomed in image showing the shape of the site. The area in red
roughly equals 1 km2.

Unfortunately, in both of the datasets, some data was incomplete or corrupt

and hence only a portion was suitable for the application of machine learning

algorithms. The data we took particular interest in are the soil temperatures, the

weather station data, the ambient sensor data, the moisture data, and some dates

termed the “bud-burst dates”. We also retrieved some land surface temperature

(LST) data from the MODIS satellite. These datasets will briefly be discussed in

the following sections.

4.1 Soil Data

This consists of two different datasets obtained on different dates. The first

consists of temperatures measured in the soil of a vineyard in Stellenbosch and

will henceforth be referred to as the Stellenbosch soil data, or “Stb. soil”. The

second was obtained at a much later date and consists of temperatures measured

in the soil of a vineyard in Somerset West. It will hereafter be referred to as the

Somerset West soil data, or “Ssw. soil”.

Most of the experiments we present first were done using the Stb. soil data

and most of the experiments we present later were done on the Ssw. soil data,

38

Stellenbosch University https://scholar.sun.ac.za

since the Ssw. dataset is larger.

4.1.1 Stellenbosch (Stb.) soil data

This dataset contains temperature readings taken at four different depths within

the soil and in different vine blocks. The measurements were taken within a single

vineyard over an area consisting of 4 rows and 5 blocks. A block is a 9 m stretch

consisting of six separate vine-plants. The two outer vines act as buffers while the

inner four are used for measuring. The depths considered were 5 cm, 10 cm, 20

cm, and 40 cm. Each block was subject to a different mulch depth added on top

of the soil. These treatments are labelled T1-T5, with T1 corresponding to the

least amount of mulch and T5 the largest amount of mulch. These mulch depths

are listed in Table 4.1

Treatment Label Mulch Depth

T1 Control (no mulch)

T2 2 cm

T3 4 cm

T4 8 cm

T5 16 cm

Table 4.1: Treatment labels and their respective amount of mulch for the soil data.

The experimental layout is shown in Figure 4.2. Each square represents a

single block, and is labelled with the treatment type.

Figure 4.2: Experimental layout for the Stb. soil data.

In the raw data, temperatures are listed for each row, block, and depth, while

39

Stellenbosch University https://scholar.sun.ac.za

the treatment type is inferred from Figure 4.2. In total there are therefore 80

columns (4 rows, 5 blocks, 4 depths) for each line of raw data, and each line

corresponds to a specific time and date.

The soil data stretches from 10:20 AM on 2016/09/28 to 09:32 AM on 2017/02/28.

Measurements were taken of irregularly-spaced intervals of time, with roughly an

hour (or a little more) between measurements. There are missing measurements

throughout the period. In particular, there is a relatively large gap in the data

from 2016/12/07 to 2016/12/19 where there are no entries. There are also 160

measurements indicated as “NA” scattered throughout the data which indicates

either missing or corrupted data-points.

Finaly, there is a large block of data, stretching from 2016/10/12 to 2016/10/24,

in which all entries for row 2 (413 rows * 20 columns = 8260 entries in total) are

given as -127. This most likely indicates a faulty sensor and should therefore also

be regarded as missing data and be disregarded for calculations.

4.1.2 Somerset West (Ssw.) soil data

Just like the Stellenbosch soil data set, this dataset contains temperature readings

taken within the soil. In this dataset soil temperatures were measured at three

distinct locations on a hill, namely low-vigour (top of the hill, least amount of

moisture), medium-vigour (middle of the hill, medium moisture), and high-vigour

(bottom of the hill, highest moisture). Unfortunately, data was only available for

the low-vigour (LV) and medium-vigour (MV) locations. In each case, temperatures

were measured at three different depths: 0-15 cm, 15-30 cm, and 30-60 cm. The

measurements were made at 15 minute intervals.

Data collection took place from 2012-11-26 to 2016-12-06. However, there are

many gaps in the data between 2014 and 2016. Moreover, the measurements taken

at the 0-15 cm depth as well as the 30-60 cm depth were seen to become faulty by

early April 2014.

40

Stellenbosch University https://scholar.sun.ac.za

Figure 4.3: An extract of the soil temperatures at three different depths (0-15 cm,
15-30 cm, 30-60 cm) for the medium vigour Somerset West vineyard. It is evident
that by April 2014 the measurements for the 0-15 cm and the 30-60 cm depths
begin to diverge from the measurements at the 15-30 cm depth, indicating a fault
in the measurement system.

Figure 4.4: The average difference in temperature measurements at different
depths for the medium vigour Ssw. soil data. Taking depth 2 (15-30 cm) as a
baseline, we can see that in 2013 all three measurements show approximately the
same temperature. From 2014 onward, however, average measured temperatures
at depths 1 and 3 start to differ greatly from depth 2, indicating a fault.

41

Stellenbosch University https://scholar.sun.ac.za

Hence, it was decided to only use the first 40000 entries of the dataset. This

corresponds to a little more than one year’s worth of data (2012-11-26 to 2014-02-12).

This is still substantially more than is available in the Stellenbosch soil dataset.

In particular, now we have data for all four seasons of the year and an algorithm

can learn from a wider spread of data.

4.2 Mesoclimate Data

The mesoclimate datasets contain temperature and humidity measurements taken

by sensors placed in the canopy of the vineyard. This means that the mesoclimate

data is geographically co-located with the soil temperature data. The readings

were taken at 30 minute intervals and seem to be complete (i.e. there are no gaps

in the data).

4.2.1 Stellenbosch mesoclimate data

The Stellenbosch mesoclimate data stretches from 12:30 PM on 2015/09/18 to

9 AM on 2017/03/08. Measurements are provided every 30 minutes. There are

no missing entries except for a large block from 2016/10/28 to 2016/12/07. This

dataset will henceforth be referred to as the Stellenbosch mesoclimate data, or

“Stb. meso”.

4.2.2 Somerset West mesoclimate data

The Somerset West mesoclimate data spans from 2012-11-26 to 2016-04-04. Although

there are still several gaps in the data, no faults in the measurements were suspected.

The data is relatively complete up to 2014-02-12, meaning that there is a good

degree of overlap with the soil temperature data. Figure 4.5 illustrates this.

42

Stellenbosch University https://scholar.sun.ac.za

Figure 4.5: A timeline indicating the overlap between the available low-vigour
(LV) and medium-vigour (MV) soil and the mesoclimate data for the Somerset
West vineyard. The data needs to overlap for it to be useful for training a machine
learning model. We see that the data overlaps relatively well, especially the LV
data. The orange block indicate some faulty soil measurements.

One small fault was however detected with the mesoclimate-sensors. Sometimes

the moisture builds up between the vines and cannot escape, causing the humidity

measurement to reach 100%. This is incorrect, since relative humidity in the air is

very unlikely to reach 100%. To address this problem, the humidity readings from

the mesoclimate sensors were compared with those of the closest local weather

station (weather station data discussion to follow in the next section). If the

measurement was either greater than 95% relative humidity (RH) or it differed

from the weather station reading by more than 30% RH, the weather station

reading was used to replace that entry.

4.3 Weather station data

In addition to the measurements taken in the vineyard itself, data was also available

from weather stations located on both farms on which the vineyards are located.

These weather stations measured the air temperature, humidity, wind direction

(0-360) and rainfall.

The weather station data from the Stellenbosch farm stretches from 2012/09/16

to 2016/12/07. The data was measured every hour and there are few missing

entries.

The weather station data from the Somerset West farm stretches from 2007-01-01

to 2014/06/25. Measurements were taken every hour and there are almost no

missing entries. This means we have access to weather station data across the

43

Stellenbosch University https://scholar.sun.ac.za

whole range of usable soil temperatures for the Somerset West data.

4.4 Stellenbosch Data overlap

The measurements in the three different Stb. datasets all span different periods of

time, with some overlap as shown in Figure 4.6. These overlapping portions will

be the most useful.

Because the Stb. weather station data ends at 2016/12/07 and because of the

missing mesoclimate data, there is only one month of data where all three datasets

overlap. This is from 2016/09/28 to 2016/10/28.

If we consider only the soil data and the mesoclimate data, the overlap is larger

and stretches from 2016/09/28 to 2016/10/28 and from 2016/12/19 to 2017/02/28

(a total of 3 months and 11 days). Since the mesoclimate data closely corresponds

to the weather station data, it may be defensible to omit the latter.

However, not all the data in this 11 month and 3 day period is usable, since

we have not yet taken into account corrupt soil data entries indicated as “NA”

or “-127”. After removing these entries, and also picking out the mesoclimate

entries that are closest to each soil data entry (so that each set has the same

number of entries) we are left with 1557 usable sets of measurements. This means

that 1557 time-aligned (same time/date) soil temperatures are known for every

row/block/depth combination as well as the air temperature and humidity at the

same time and dates are known.

Figure 4.6: Visual guide to the data overlap for the Stellenbosch vineyard.

44

Stellenbosch University https://scholar.sun.ac.za

4.5 Soil moisture data

Soil moisture measurements were gathered using a neutron probe. Neutron probes

are able to take very accurate readings of soil moisture content. The probe consists

of a nuclear unit, serving as a neutron source as well as a detector, a housing

to contain the electronic receptors, as well as a shield to safely transport the

radioactive device.

The nuclear unit is lowered down an aluminium access tube where the neutron

source will start scattering fast neutrons. These neutrons get deflected by hydrogen,

which is most commonly found in water particles underground, and are slowed

down. The source then detects and counts the returning slow neutrons. The

number of returning slow neutrons counted is directly related to the moisture

content in the soil [5].

Our dataset only consists of a few weekly measurements of the soil moisture

content. In our dataset, these values are typically in the range of 4000 to 8000

counts [32] with an average around 6600 counts.

These measurements are made at three different depths: 30 cm, 60 cm, and 90

cm. The data-set stretches from 2013-02-21 to 2014-12-01, however, the dataset

only contains 214 entries in total since the moisture was only measured once a

week for approximately three months in the start of the year and then again for

another three months at the end of the year. For example, in 2014 there are six

measurements made between January and March at the three depths and in low-,

medium-, and high-vigour blocks. That gives 6 ∗ 3 ∗ 3 = 54 entries for those three

months and then another 78 entries at the end of the year between August and

December.

4.6 Satellite LST data

In 1999, NASA launched a satellite named Terra-1. This satellite was specifically

designed to monitor change in the nature of the earth’s ecosystem at a global level.

Terra collects data about the earth using five different sensors integrated into the

satellite. These five sensors observe the oceans, land surface, atmosphere, snow

45

Stellenbosch University https://scholar.sun.ac.za

and ice and energy budget of the earth [37].

The Terra satellite images the entire surface temperature of the earth on a daily

basis using Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors.

The MODIS sensor has a good balance between temporal and spatial resolution

(daily measurements at a 1km2 resolution). This, together with the fact that

the data is freely available, makes it a very useful data source for land surface

temperatures. Terra operates on a descending orbit, meaning that the satellite

travels from north to south over the Earth’s surface. The Terra satellite has a

mean equatorial crossing time at 10:30 am.

Land surface temperature (LST) combines the results of surface-atmosphere

interactions and energy fluctuations between the atmosphere and the ground,

indicating how hot the surface of the earth would feel to the touch averaged over

1km2 tiles [40].

A major constraint of the MODIS LST measurements is that they are only

available in clear sky conditions, since the visible and thermal infra-red spectral

ranges cannot penetrate clouds [33]. Land surface temperatures in cloud-covered

areas are simply not available since temperatures at the top of the clouds are then

measured instead.

The satellite captures data at our location of interest twice a day: once late in

the morning, and once again at night. The data is downloaded as “.HDF” files,

which are then converted to normal “.tif” files using an open source application

called the MODIS re-projection tool (MRT). Each pixel of the file represents a

1km2 tile of the earth’s surface and allows the temperature to be determined

using Equation 4.1 below. This converts each pixel of the image to a temperature

in degrees Celsius. A short python script was written to process all downloaded

MODIS files and extract the temperature for the pixel covering our desired location.

Temp. in celsius = Pixel value ∗ 0.02− 273.15 (4.1)

The data we needed would stretch over the same span of time as the soil data,

which is from 2012-11-26 to 2014-02-12. A day-time and a night-time measurement

was available within every 24 hour period. Unfortunately, many data points are

46

Stellenbosch University https://scholar.sun.ac.za

missing because of the cloud contamination discussed earlier.

4.7 Graphical representation

Selected portions of the Stellenbosch data were plotted as 2D graphs in order to

develop an intuition for the trends and patterns in the measurements. Two types

of plots were made. One takes a specific row/block combination and plots the

temperature measurements at all four soil depths and the ambient temperature

(from the mesoclimate data) against time. Figure 4.7 shows one such plot.

Figure 4.7: Temperature at various depths and ambient temperature vs time (200
data points).

Figure 4.7 shows only 200 data points to make it easier to see the trends in

the data. Similar behaviour is seen over other time periods.

The second type of plot considers a specific row and depth and plots the

temperature measurements for different treatment types and the ambient temperature

against time. Figure 4.8 shows such a plot.

47

Stellenbosch University https://scholar.sun.ac.za

Figure 4.8: Temperature for row 1 and depth 4 for different treatment types as
described in Table 4.1 versus time (200 points).

The various maxima and minima on the graphs correspond to the daily highest

and lowest temperatures as observed during the day and night respectively. The

sudden dip on Jan 27 in Figure 4.8 is an example of a corrupt data point (-127)

as discussed earlier.

It can also be observed from Figure 4.7 that the deeper in the soil we measure,

the less the temperature varies. This is to be expected since the soil should stabilise

temperatures better than air.

4.8 Mean squared error calculation

It is hard to determine the correspondence between different measurements from

visual inspections of the data alone. A more objective approach is to calculate the

mean squared error (MSE). As a first analysis, we calculated the MSE between the

ambient temperature and the temperatures measured for each different combination

of depth and treatment type for the Stellenbosch soil data. The results are shown

in Table 4.2.

This table shows the mean squared error between the ambient temperature

and every depth/treatment type combination, normalised by the smallest value

to make it easier to interpret. The higher the MSE, the less the soil temperature

follows the ambient temperature. Hence the highest values indicate the most

48

Stellenbosch University https://scholar.sun.ac.za

Mulch Depth (treatment type)
Sensor Depth 0 cm 2 cm 4 cm 8 cm 16 cm

5 cm 1.098 1.15 1.117 1.07 1
10 cm 1.39 1.328 1.19 1.41 1.23
20 cm 1.52 1.64 1.537 1.7 1.54
40 cm 1.61 1.785 1.696 1.76 1.77

Table 4.2: Mean squared error (MSE) calculated over time between the ambient
air temperature and the soil temperature.

stable soil temperature.

We see that the deeper the sensor is located, the higher the MSE and the more

resistant the soil temperature is to a change in the ambient temperature. This

makes sense since soil should retain its temperature better than the air outside.

The results are however surprising when considering the mulch depth, which

we expected would dampen the temperature changes in the soil below. However,

it seems that the mulch depth has almost no effect on the change of temperature

since no trend is observable for the MSE at different mulch depths. This could

be due to a variation in the true amount of mulch due to the practical difficulty

of ensuring a uniform depth. However, it may also simply indicate that a mulch

covering does not substantially affect soil temperature.

4.9 Bud-burst dates

One final set of data we received for the Somerset West vineyard that was of

interest as a machine learning application are the bud-burst or bud-break dates.

Every winter, when the temperatures start to drop, the grapevines go into a

dormant (hibernation-like) state during which they drop their leaves and start to

undergo a number of processes in preparation for the cold temperatures of the

winter. Vines set themselves up with the biological equivalent of ’anti-freeze’ to

ensure they survive the winter [17].

Once the temperatures have risen sufficiently in spring time, the vines emerge

from their dormancy. They will start to grow small buds and the buds will then

49

Stellenbosch University https://scholar.sun.ac.za

give rise to new leaves and flowers. The bud-burst dates recorded are the dates

when these initial buds start to appear. These dates are useful since they indicate

that the growth stage of the vine has begun and it becomes possible to estimate

how long it will be until the vines reach their next important stages of growth.

Since bud-burst happens only once per year, this dataset consists of only 15

entries. The entries consist of one date per year per vigour level (Low, medium, or

high) for 2012 to 2016. Since we do not have corresponding data for the high-vigour

soil/ambient, only 10 of those entries are usable.

4.10 Conclusion

This chapter has described the datasets that will be used for experimentation.

One, smaller, dataset is available for a vineyard in Stellenbosch, and one, somewhat

larger, dataset is available for a vineyard in Somerset West. In both cases soil

temperatures at various depths, ambient temperatures and ambient humidity are

available. In addition some soil moisture content measurements and bud-burst

dates are available for the Somerset West dataset.

50

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Experiments with Stb. Dataset

This chapter describes experiments performed using the Stellenbosch vineyard

dataset. Experiments using the Somerset West dataset will be described in the

following chapter.

5.1 Linear Regression

Linear regression was applied to determine whether some measurements in the

dataset could be inferred from others.

Three sets of independent experiments were performed. Firstly the model

was provided with the soil temperature data as input and asked to predict the

ambient temperature. Secondly, the model was given certain parts of the soil

data and asked to predict other parts of the soil data. Lastly, and arguably most

importantly, the model was given ambient measurements and asked to predict the

soil temperatures.

5.1.1 First experiment

In the first experiment the soil temperature data, as presented in Section 4.1.1 was

used as training material, and the model was configured to predict the ambient

temperature of the corresponding time. Hence the model has 80 input variables,

corresponding to the 4 rows, 5 blocks and 4 depths of measurements, and one

output. On average, the model is able to estimate the ambient temperature to

within 1.24 ◦C (8.14%) of the true temperature. Figure 5.1 illustrates the typical

51

Stellenbosch University https://scholar.sun.ac.za

temperatures predicted by the model, with the error shown by shading. We see

that the model tends to under-estimate the temperatures at most of the peaks

and troughs.

Figure 5.1: True and estimated ambient temperatures using linear regression and
soil temperatures as input.

5.1.2 Second experiment

In the second experiment the model was given a certain subset of the soil data and

asked to predict a different, non-overlapping, subset of the soil data. For instance,

given the data for rows 1 and 4 at depths 1 and 4, predict the temperatures for

row 3 at depths 1 and 4. A linear regression model will then be calculated for

every output variable. For instance in the example mentioned above, a model will

be determined for each of the 5 blocks in the two depths it is trying to predict.

So 10 different models will be calculated in total (5x2).

Different configurations were tested in Experiment 2. It was usually possible to

predict temperatures to within 3.5% of their true value. It was found that smaller

errors could be achieved when more training data were available.

The addition of date and time as inputs was also evaluated. By including

the month, day, hour, and hour squared value of each measurement, four new

input variables were added. The inclusion of these parameters barely resulted in

an improvement in accuracy, however. The improvement was greatest when the

training data were few.

52

Stellenbosch University https://scholar.sun.ac.za

Table 5.1 shows a summary of some examples of the results achieved with

this experiment. The table includes results from the model before and after the

additional training inputs were added.

Table 5.1: Example results from experiment 2

Example Number 1 2 3

Rows input 1,4 2 2

Blocks input 1-5 1-5 1-5

Depths input 1,4 4 4

Total inputs 20 5 5

Predicted Rows 3 3 3

Predicted Blocks 1-5 1-5 1-5

Predicted Depths 1,4 1,4 4

Total predicted variables 10 10 5

Error with dates (◦C) 0.59◦C 0.4◦C 0.54◦C

Error with dates (%) 2.58 % 1.77 % 2.42 %

Error without dates (◦C) 0.49◦C 0.39◦C 0.56◦C

Error without dates (%) 2.17 % 1.76 % 2.55 %

One can see from the table that these extra input parameters rarely help the

model to perform better, and even when it does perform better, the performance

gain is very small.

5.1.3 Third experiment

For the final experiment, the model was configured to predict the temperatures

in the different parts of the soil when given ambient temperature and humidity as

well as time and date as inputs.

This however yielded poor results, achieving an average error rate of up to

2.7◦C or 12.29% depending on the point at which the temperature was being

53

Stellenbosch University https://scholar.sun.ac.za

predicted. It was established that one of the reasons the model was performing so

poorly was the format of the first two training parameters (the day of year and

hour parameters). Due to the discontinuous cyclic nature of these two parameters,

they can not have a linear relationship with the temperature. For example, the

time experiences a discontinuity for 23H59 to 00H00 at midnight every day. This

made it hard for the model to train on these parameters since it would struggle

to find a linear relationship between these parameters and the temperature.

To address this the time and date inputs were incorporated in a different way.

The hour of the measurement as well as the day of the year the measurement

was made were first extracted from the time and date. These were then used to

construct two features each as follows:

x[1] = cos

(
dayOfY ear ∗ 2π

365

)
x[2] = sin

(
dayOfY ear ∗ 2π

365

)
x[3] = cos

(
hour ∗ 2π

24

)
x[4] = sin

(
hour ∗ 2π

24

)
(5.1)

Here x[1] and x[2] represent the day, and x[3] and x[4] the hour. Equation

5.1 maps the hour and day onto a unit-circle, thereby removing the discontinuity

at 24H00/00H00 and 365/1 respectively. Specifically, 23H00 and 0H00 are close

together in this representation, while they are not when the raw time of day is

used. This causes the model to better understand the inputs leading to better

prediction results.

The ambient temperature and humidity were added as inputs 5 and 6 (x[5] and

x[6]) to yield a six-dimensional input vector used to predict the soil temperatures

using linear regression.

The model did quite well using this set of features. Figure 5.2 illustrates the

prediction results for this experiment.

54

Stellenbosch University https://scholar.sun.ac.za

Figure 5.2: True and estimated soil temperatures at depth 1 for row 4, block 2
when using polar transformed features for hour and day inputs.

The figure above shows the model attempting to predict soil temperatures at

row 4, block 2, depth 1. The error for this specific case is 1.57 ◦C on average (or

7.85%). The overall average error over all soil depths is 1.26 ◦C (or 5.56%) with

a standard deviation of 0.13 ◦C between the averages.

The log value of the ambient temperature was also considered as an additional

feature, but did not lead to a further reduction in error.

5.2 Neural Networks

Linear regression is a simple model that provides a good baseline. However, it

can model only linear dependencies between the inputs and outputs. Therefore

we next considered a more complex model that can learn non-linear relationships

in the data. Neural networks were chosen for this purpose. The neural network

experiments will try to solve the same task addressed by the linear regression model

in Section 5.1.3: predicting the soil temperatures given the ambient temperature.

This was discovered to be the most useful application for these datasets with

practical application in mind.

Unless stated otherwise, the neural networks described in the following were

coded in Python 2.7 using a library called Lasagne, that in turn builds upon

another library named Theano.

55

Stellenbosch University https://scholar.sun.ac.za

Theano is a library that makes setting up and solving symbolic expressions

much easier by allowing one to define variables, and then link these to a formula

which only requires input values later when called. This makes it easy to set up

all the dependent equations used by a neural network.

Lasagne allows the easy implementation of specific neural network structures

by defining all the different layers of the network and then stacking them together.

Once the initial network is set up, it is easy to revisit the different layers and

fine-tune them without disrupting the rest of the network.

A small section dedicated to the basics of Theano and Lasagne is presented in

Appendix A.

5.2.1 The first model

Since there are so many different ways to construct and fine-tune neural networks,

it was decided to start with the simplest network structure and to use this to

attempt to match the linear regression model. This was done by simply using one

input and one output layer, and linear neurons. This structure is equivalent to

the linear regression model and it was verified that this model achieved similar

results when given the same inputs as in Section 5.1.3, when predicting the soil

temperatures from the ambient temperature.

After this confirmation, the model complexity was increased slightly by adding

two hidden layers and a dropout layer [34] for each of the hidden layers as a form

of regularization. This meant that the model will be a standard feed-forward

network trained with backpropagation and stochastic gradient descent (SGD).

Many configurations were tested experimentally. It was found that a network

with two hidden layers delivered best results on our data. Fewer layers resulted

in disappointing results, which might be due to an inability to learn non-linear

patterns. More than two hidden layers also gave bad predictions, which is suspected

to be the result of overfitting to the data.

56

Stellenbosch University https://scholar.sun.ac.za

The meta-parameters that were optimised in this way include:

• Number of hidden layers

• Number of neurons in each layer

• Number of dropout layers as well as their dropout-probability

• The method of weight initialization

• Number of training epochs

• The mini-batch size

Due to this large number of meta-parameters, it was a lengthy process to

optimise the network structure setup even for our relatively small dataset. The

network that led to the best validation set performance was the following:

• Two hidden layers, for a total of four (dense) layers including the input and

output layers.

• 7 Neurons for the 7 input variables (same variables as for the linear regression

model), 150 neurons in the first hidden layer, 100 in the second hidden

layer, and 80 neurons in the output layers for the 80 different temperature

predictions.

• Two dropout layers (one for each of the hidden layers) with a 50% dropout

probability.

• The weights were initialised using Xavier initialization [11].

• The squared error function was used since this is a regression problem.

• The model will learn using momentum with Nesterov’s Accelerated Gradient

[36] using a learning rate (ε) of 0.01 and a momentum (µ) of 0.75.

• 500 training epochs.

• A batch size of 100 when training, and 210 (the size of the full validation

and test set) for validation and testing.

57

Stellenbosch University https://scholar.sun.ac.za

The first results

Using the error score defined in Section 3.1.2, this model obtained an average

error of 5.4%, which is slightly better than the linear regression model. Over all

of the 80 different measurement points (4 rows x 5 blocks x 4 depths) the best

prediction achieved an average of 3% error and the worst an average error of 10%

(averaged over the 210 input-samples). An example of the temperatures versus

measurement number of the predicted values versus the target values for the best

and worst measurement-points respectively is shown in the two graphs below, with

the error shaded in red.

Figure 5.3: Best prediction vs. target value plot (temperature vs. sample number)
for the first experiment. The error is indicated by shading.

Figure 5.4: Worst prediction vs. target value plot (temperature vs. sample
number) for the first experiment. The error is indicated by shading.

58

Stellenbosch University https://scholar.sun.ac.za

Inspection of the graphs indicates that most errors occur at the maximum

temperatures of each day, where the prediction is too low. It must also be noted

that no two iterations of network training will provide the exact same results since

the weights are randomly initialised. However, performance was seen to remain

highly consistent, and an average error of 6.5% (on a single training iteration) was

the highest error seen so far.

5.2.2 Auto encoder pre-training

For the second neural network model, an auto encoder was used to pre-train the

weights of the network. These pre-trained weights will then be used as the initial

weight values. The final weights were obtained by training from this initialisation

as described in Section 5.2.1, only with fewer training epochs.

An auto encoder is a neural network that is trained to re-create its input at its

output. Auto encoders are often shallow networks consisting of only one hidden

layer. Shallow auto encoders may however be stacked together to form deep auto

encoders. The network can be seen as consisting of two parts: an encoder function

h = f(x) and a decoder that produces a reconstruction r = g(h). This architecture

is shown in Figure 5.5 below.

Figure 5.5: General structure of an auto encoder, mapping input x to an output
(reconstruction) r through an internal representation h. The encoder part of the
network is represented by f, while the decoder part is represented by g.

If the structure of the auto-encoder allows it to simply learn the mapping

g(f(x)) = x, then it is not especially useful. Instead, auto-encoders are restricted

in ways that do not allow them to simply copy the input to the output. This

can be done by implementing a “bottleneck” layer in the middle of the network

that has fewer neurons than the input layer. By implementing this restriction, the

network is forced to pick the most important features from the input data to help

59

Stellenbosch University https://scholar.sun.ac.za

in the reconstruction process.

In our experiment, the auto-encoder has an input layer with seven neurons (for

the seven input parameters), followed by a hidden layer with 150 neurons (which

is the same size as the first hidden layer in the model we are trying to train), then

a bottleneck layer with only 5 neurons. After the bottleneck layer, a further two

layers of 150 and 7 neurons respectively complete the auto-encoder. What this

network must try to do it to learn weights that will give an output to resemble

the input as closely as possible.

When this network succeeds in reconstructing its inputs at the output, the

weights running from the input layer to the first hidden layer can be used to

initialise the weights of the final model (W1 in Figure 5.6). Then this input layer

is used to propagate the inputs through the first layer and obtain activations for

the 150 neurons in the first layer. Next, a second shallow network is constructed

using these 150 activations as the input, a single hidden layer with 100 neurons

(same as the final model), and then an output layer again with 150 neurons.

The second shallow network is now trained to reconstruct its 150 inputs at its

outputs. The weights of this second auto-encoder now form the second set of

pre-trained weights for the final model (W2 in Figure 5.6). This process continues

until pre-trained weights for all of the layers have been obtained. In our case,

the process was repeated a total of 5 times to obtain the final set of pre-trained

weights running from the second hidden layer to the output layer in the final model

(W3 in Figure 5.6). Figure 5.6 shows the three auto-encoders that were used to

obtain these pre-trained weights. The numbers at the bottom of the rectangles

represent the number of neurons in each layer. The arrows labelled W1, W2,

and W3 respectively indicate the sets of weights that were extracted and used to

initialise the weights of the final model.

60

Stellenbosch University https://scholar.sun.ac.za

Figure 5.6: The three auto encoder networks, labelled AE1, AE2, and AE3
respectively, used to pre-train the weights for the final network. W1, W2, and
W3 indicate the specific sets of weights used in the final model for the layers 1,
2, and 3 respectively. The rectangles represent a layer of the neural net with the
numbers at the bottom indicating the number of neurons in that layer.

Figure 5.7: The final neural network using the weights W1, W2 and W3,
pre-trained by the three auto-encoders. W1, W2 and W3 respectively indicate
the weights that were obtained from the three auto-encoders as shown in Figure
5.6. The rectangles represent a layer of the neural net with the numbers at the
bottom indicating the number of neurons in that layer.

Note that the architecture of the final model shown in Figure 5.7 is the same

as the first model observed in Section 5.2.1. The only difference is that this model

uses pre-trained weights learned from the auto-encoders as shown in Figure 5.6.

Using these pre-trained weights to initialise the weights of the network, we

trained a new network in the same way described in Section 5.2.1. This final

training must occur over fewer training epochs, otherwise the model may overfit

once again.

61

Stellenbosch University https://scholar.sun.ac.za

Auto encoder results

Auto encoder pre-training unfortunately did not provide substantially better results.

The network managed to achieve an average error rate of 5.37% when using auto

encoders pre training as described above.

The performance achieved by neural networks initialised using auto encoder

weights was not substantially better than that achieved without this pre-training

strategy. It therefore seems that the auto encoders are not learning patterns from

the data that were not already picked up during conventional training.

5.3 Scikit-learn Neural Network

For the third model, a different neural network library, Scikit-learn, was chosen.

This library is quick and easy to set up and to experiment with.

The “scikit-learn.neural network” package can be used to configure either a

classification or a regression type network. In this case we used the regression

model. The network architecture was set to be the same as the Lasagne model,

i.e. 7 neurons in, 150 neuron first hidden layer, 100 neuron second hidden layer,

and 80 output neurons. This model also uses rectified linear neurons (or “ReLu”)

and learns using the “Adam” update rule [18] with a learning rate of 0.001. At

the time of writing, the scikit-learn has no way of adding dropout layers to the

model. This is different to the Lasagne models which can include dropout layers.

The model was trained for 500 training epochs which is the same as the lasagne

model.

After giving the scikit-learn model the input data, it achieved very similar

results to the Lasagne model. Note that the parameters stated above were found

to produce the best results after trying many different parameter combinations.

The models trained with scikit-learn did exhibit more variance in terms of their

performance, with errors ranging from as low as 5.2% to as high as 6%. The

average overall performance was 5.4%, however, which is the same as that achieved

by the networks trained using Lasagne.

62

Stellenbosch University https://scholar.sun.ac.za

5.4 Pre-trained Neural Network

In this section we will use the weights learned using scikit-learn to initialise the

weights of a Lasagne model. The Lasagne model is then trained on the input data

for very few epochs to find the final adjustments to the weights.

At first, this did not really help, and in fact caused the error rate to increase

a bit. After some investigation, however, some favourable results were obtained.

First it was decided to also use the Adam weight update method in Lasagne

instead of Nesterov Momentum, to match the update method used in scikit-learn.

Next, the dropout layers were removed from the Lasagne network to match the

scikit-learn network architecture more closely. We could now expect the network

to always learn the same weights after a certain number of training epochs since

all random factors have been removed from the training procedure. Finally, the

number of training epochs used in Lasagne was reduced to ten, thereby limiting

this step to fine-tuning of the weights. So it would seem that the network only

needed to make some small final adjustments to the weights.

By using this procedure, the model achieved a 4.84% average prediction error

on the data. This is much better than was achieved with any of the previous

models. Since all randomness has been removed from the network development,

the results are exactly reproducible.

5.5 Shuffling the data

For all of the previous tests, the data was divided into 80% training, 10% validation

and 10% testing data. These sets represented blocks of data points that were

consecutive in time. It was decided to see if the model would still be able to fit

the data if the data sets are shuffled.

To implement this, the data points were shuffled before being divided into

80%-10%-10% training, validation, and test partitions as before. This actually

seemed to improve the overall results of the model since it was now forced to learn

different, better, patterns in the data.

63

Stellenbosch University https://scholar.sun.ac.za

When running the first model with shuffling, but all other parameters kept the

same, except training for 1000 epochs instead of 500, it achieved an average error

of 4.696% over 100 runs. This is a reduction of 0.7% from the 5.4% achieved

without shuffling. The figure below shows the results by plotting the targeted

values together with the predictions. Note that the data appears messy because,

due to the shuffling, consecutive points on the graph are no longer consecutive in

time.

Figure 5.8: Predictions plotted with target values after shuffling the data
(temperature vs. sample number).

When using the shuffled data in conjuction with the pre-trained weights obtained

in Section 5.4 the model achieved an average error of 4.2%, the best result so far.

5.6 Input Parameter Weights

To get a more quantitative indication of which inputs are most important for

predicting the output, different combinations of the inputs were omitted and the

effect on the predicted outputs evaluated. In each case, new neural networks were

trained. The hyper parameters, such as the number of neurons and number of

hidden layers were kept the same in order to allow direct comparison. Note that

whenever the ambient temperature was given as input, the log of that temperature

was also given. The table below shows the results the model achieved with different

combinations of input parameters:

64

Stellenbosch University https://scholar.sun.ac.za

Test No. Input parameters No. of inputs Average error

1 näıve guess 1 23.5%
2 Temperature 2 11.58%
3 Temperature + Humidity 3 10.96%
4 Temperature + Hour 4 9.58%
5 Temperature + Hour + DoY 6 4.9%
6 Temperature + DoY 4 5.27%
7 Hour 2 16.537%
8 Hour + DoY 4 5.56%
9 DoY 2 7.93%
10 All inputs 7 4.69%

Table 5.2: Prediction accuracy with different combinations of input parameters.
DoY denotes the day of the year (1-365). Both DoY and the hour parameter are
presented as sine and cosine components as described in Section 5.1.3. The näıve
guess corresponds to predicting the soil temperature to be the same as the ambient
temperature.

Looking at these results, some interesting conclusions can be drawn. It can

be seen once again that the humidity input has only a very small effect on the

prediction results. One very interesting result is that the model values the DoY

parameter much more than the hour of measurement. When given in combination

with the temperature, Test 5 (with DoY) makes an average error of only 5.27%

compared to Test 3 (with hour) that makes an average error of 9.58%. Even more

surprising is that when the model is given only the DoY, it is still able to make

rather good predictions, achieving an error of 7.93%. This is the lowest error

that the model achieves for a single input parameter (see Test 2 and Test 7 for

a comparison). This means that the Day-of-the-Year parameter is definitely the

input parameter that carries the most weight in this prediction by quite some

margin.

5.7 Including dynamic information in the training

data

Up to now, we have tried to estimate the output (soil temperature) given inputs

measured at the same time. In the following, we will extend the inputs of the

network to include also past measurements. This was done in two ways.

65

Stellenbosch University https://scholar.sun.ac.za

5.7.1 Incorporating previous measurements

For the first test, five extra features were added. These five features correspond to

five previous ambient temperature measurements, made 30, 60, 90, 120 and 150

minutes earlier. Over 100 runs, this reduced the average error to 4.436% from

the previous best of 4.696%. This corresponds to an improvement of 0.25%.

When given only the previous two measurements, an average error of 4.483%

was achieved.

5.7.2 Incorporating previous minimum/maximum temperatures

In this experiment, two features were added to the 7 used in previous experiments,

making up a total of 9 features for this training set (and 9 input neurons). These

two features were the minimum and the maximum temperature measured over the

previous 24 hours. This means that these features have a lot of repetition. For

instance, every measurement made on the 13th of April would contain the same

two values for the minimum and maximum temperature measured from April 12th.

Once again, this improved the results of the model, and helped to bring

down the average error to 4.02%. This is the best results achieved so far, even

outperforming the model with the pre-trained weights. The table below shows a

summary of the results:

Test Number Model No. of inputs Average error

1 No dynamic information 7 4.70%
2 + Previous 2 measurements 9 4.48%
3 + Previous 5 measurements 12 4.44%
4 + Min/Max temp. of previous day 9 4.02%

Table 5.3: Comparison of regression performance achieved when incorporating
dynamic information in various ways.

66

Stellenbosch University https://scholar.sun.ac.za

5.8 Summary and conclusion

This section serves as a short summary of the results obtained with the different

neural network models for the Stellenbosch dataset. All networks predict the soil

temperature at different places and depths while learning from the date/time of

measurement as well as the ambient temperature and humidity (unless stated

otherwise).

Test No. Model Section Avg. error

1 Näıve guess 5.2.1 23.5 %

2 Linear Regression 5.1.3 5.56%

3 First NN model (chronological data) 5.2.1 5.40%

4 Pre-trained /w Auto-encoders 5.2.2 6.5%

5 Scikit-learn Neural Net 5.3 5.40%

6 Pre-trained with Scikit-learn model 5.4 4.84%

7 Shuffled data (standard model) 5.5 4.70%

8 Shuffled /w pre-trained weights from test 4 5.5 4.2%

9 Given ambient temperature only 5.6 11.58%

10 Given Hour of measurement only 5.6 16.54%

11 Given Day of year only 5.6 7.93%

12 With previous 2 measurements 5.7 4.48%

13 With previous 5 measurements 5.7 4.44%

14 With previous day’s min/max 5.7 4.02%

Table 5.4: Comparison of the results of all the different neural network models
considered for the Stellenbosch dataset.

In conclusion, all regressors considered are able to achieve a much better

estimate of the soil temperature than the näıve guess, which assumes the soil

temperature to correspond to the co-located ambient temperature. The most

important information required by the regressor, besides the ambient temperature,

are the day of the year and the time of day, both represented as sine and cosine

components. Finally, including the maximum and minimum ambient temperatures

over the last 24 hours is an effective way of including dynamic information, and

substantially improves performance.

67

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Experiments with Ssw. Data

After performing the experiments, described in the previous chapter, a second

dataset became available. This data originates from a farm in Somerset West and

has been described in Chapter 4. This dataset contains many more entries and

spans more seasons than the Stb. data. This chapter describes the results of

experiments performed with this dataset.

6.1 Predicting soil temperatures using microclimate

logger data

This first experiment using the Ssw. dataset was the same experiment carried out

with the Stb. data in Section 5.2.1. In this case, however, more data is available,

stretching over a full year instead of just a few months.

Because of the data now extending over all four seasons, we were initially not

sure if the model would in fact be able to make better predictions, since the longer

timespan may also increase the difficulty of the prediction task. This was one of

the objectives of this experiment - to see if a neural network model could still

make reasonable predictions now that the dataset covers all four seasons.

A second objective was to see how well a neural network model could predict

the soil temperatures at a certain location after being trained on data obtained at

a different location. This will indicate how well the model is able to generalise to

unseen locations from a specific training dataset.

68

Stellenbosch University https://scholar.sun.ac.za

Again, the neural network model was implemented with Lasagne. It uses three

fully connected hidden layers with 150, 150 and 80 neurons (150-150-80), along

with two dropout layers for the last two hidden layers. After many iterations of

experimentation, the model consistently achieved lower error rates on the validation

set when dropout was applied in this way. The output layer consists of a single

neuron, indicating the soil temperature at a certain time, date, and depth. The

input layer has eight units, corresponding to the following inputs (to be explained

shortly):

1. Day of the year - cos

2. Day of the year - sin

3. Hour of measurement - cos

4. Hour of measurement - sin

5. Ambient Temperature (Celsius)

6. Relative Humidity (%)

7. Depth in soil (12.5 cm, 25 cm or 37.5 cm)

8. Vigour level (0,1 or 2)

The day of the year and hour of measurement inputs are split up into sine and

cosine components, as explained in Section 5.1.3. This helps the model make more

sense of the circular nature of these variables. The ambient temperature is from

the Ssw. mesoclimate dataset and contains very local temperature readings. The

humidity is also from the mesoclimate dataset, except when the humidity reading

was identified as corrupt, in which case the local weather station measurement

for that time was used instead (as explained in Section 4.2.2). The depth can

be either 12.5, 25 or 37,5 cm. These are not exact depths, but fall in the range

of depths (0-15 cm, 15-30 cm, 30-60 cm). The vigour levels can be either low,

medium or high. For this model we coded these as 0, 1, and 2 respectively.

Since adding dynamic information, in the form of minimum and maximum

temperatures of the previous day, worked so well on the Stb. dataset models, the

effect of adding this information for the Ssw. dataset was also considered.

69

Stellenbosch University https://scholar.sun.ac.za

The dataset of 40000 entries was split into subsets using the ratio 80-10-10,

with 80 % as the training set, 10 % as the validation set, and the final 10 % as the

test set. All values in the training set were normalised to lie in the range between

-1 and 1. The training data was shuffled during training.

Mini-batch gradient descent with Nesterov momentum, a learning rate of 0,001

and a momentum of 0,9 were used throughout. The mini-batch size was 256 (32000

/ 125) and training continued for 500 epochs.

To calculate the prediction error rate made by the model, the following formula

was used:

Error =
|target− output|

target
∗ 100% (6.1)

For example if the model gave an output of 15 ◦C, but the correct value was

10 ◦C, the error would be 50 %. The average error over all test samples was used

to assess model performance.

Results

Several (50) models were trained, and the average error over all these models were

taken. Error rates were compared to a näıve guess, which simply assumes that

the soil temperature is the same as the ambient temperature, to see if the model

is learning from the data. This näıve guess model achieved an average error of

21,71 %.

The average error over the 50 different models was 4,94 % with a standard

deviation of 0.18 %. This translates to a 1,02 ◦C error on average. When

the minimum and maximum temperatures from the previous day were added

as additional inputs, the models achieved an average error of 4.453 % with a

standard deviation of 0.27 %. This translates to an average error of 1.00 ◦C.

This shows that a neural network can learn valuable patterns in the temperature

data and make reasonably accurate predictions. However, when the same model

was tested on the Stb. soil temperature dataset, as is described in Section 4.1.1, it

achieved an average error of 18,56 %. This shows that the model unfortunately

70

Stellenbosch University https://scholar.sun.ac.za

cannot predict the soil temperatures well if it is trained on data from a different

location. It might be possible to train a model that can generalise better, but it

will need different input variables so that the model can understand the difference

in the location, for example, soil composition and distance to the ocean might be

useful variables.

6.2 Predicting soil temperature using freely available

data

As a next experiment, we considered whether it is possible to predict soil temperature

at various depths using only freely available data. As freely-available sources of

data we considered local weather stations and satellite surface temperature data.

First, we used the same model architecture as in Section 6.1: a neural network

with three fully connected hidden layers containing 150-150-80 neurons respectively,

and with a dropout layer added after each of the last two hidden layers. The

dropout layers have a dropout probability of 50 %. The output layer still consists

of a single unit for the predicted soil temperature. There are seven inputs, namely:

1. Day of the year - cos

2. Day of the year - sin

3. Hour of measurement - cos

4. Hour of measurement - sin

5. Depth in soil (12.5 cm, 25 cm or 37.5 cm)

6. Satellite daily temperature (Measured by day, ◦C)

7. Satellite daily temperature (Measured by night, ◦C)

As a second experiment, we additionally included rainfall data measured by

the local weather station (see Section 4.3) in the form of an exponential moving

average, weighted over the last 100 samples. All other hyperparameters remain

the same.

71

Stellenbosch University https://scholar.sun.ac.za

Results

The results were calculated in the exact same manner as the earlier experiment

of Section 5.2.1. Recall that performance should be compared to the näıve guess

which achieves an error of 21,71 %.

After training 50 different models and taking the average of their performance,

the average error was 5,57 % with a standard deviation of 0.76 %. This is only

slightly worse than the results of Section 6.1, which used locally-measured ambient

temperatures as well as a knowledge of the vigour level. This error rate corresponds

to an average error of 1.13 ◦C.

Experiment 2, with the added rainfall measurement as input, yielded an average

error of 5.33 % with a standard deviation of 0.77 %. This shows that adding

rainfall information does in fact help the model, but only slightly.

The vigour level was also added as input while experimenting with input

features, however, this barely resulted in any change to the performance of the

models. Vigour level is also not always freely available in all cases, which is the

focus point of this experiment.

6.3 Predicting soil temperatures using a mixture

of available data

In this section, we consider how well the model performs when provided with all

the data we have. This means that it was trained using all the training data used

in Section 6.1, as well as the day and night satellite temperatures, as well as the

rainfall data introduced in Section 6.2.

The neural network architecture remained unchanged except that in this case

there were 11 inputs. These inputs are:

1. Day of the year - cos

2. Day of the year - sin

3. Hour of measurement - cos

72

Stellenbosch University https://scholar.sun.ac.za

4. Hour of measurement - sin

5. Ambient temperature (◦C)

6. Relative humidity (%)

7. Depth in soil (12.5 cm, 25 cm, or 37.5 cm)

8. Vigour level (0,1 or 2)

9. Satellite daily temperature (measured by day, ◦C)

10. Satellite daily temperature (measured by night, ◦C)

11. Hourly rainfall as a moving average (mm)

All remaining hyper parameters were unchanged.

Results

The results were calculated in the same manner as the previous experiments, and

again the results should be compared with a näıve guess which achieves an error

of 21,71 %.

50 neural networks were trained using these inputs, in each case initialising

from a different set of random weights. On average, the networks achieved an

error of 4,34 % with a standard deviation of 0.36 %. This translates to an

average error of 0.93 ◦C.

This is an improvement over the previous experiments and indicates that the

local measurements and the wide-scale satellite and rainfall measurements are to

some extent complimentary. However, the improvement might not be considered

large enough to justify the costs and effort of obtaining all this additional data.

Figure 6.1 shows a comparison of the temperatures predicted by the neural

network and the actual measured soil temperature. One can see that the model

follows the trend very well, but underestimates the maxima en overestimates the

minima, keeping the error average low by making conservative predictions.

73

Stellenbosch University https://scholar.sun.ac.za

Figure 6.1: A graphical comparison of the temperatures predicted by the neural
network (blue) and the measured soil temperature (dotted black).

6.4 Predicting soil moisture levels using freely

available data

In this section we will attempt to predict something other than soil temperatures.

We will predict the moisture content in the soil. If this can be predicted accurately

enough, the moisture sensors would not be required, thereby greatly simplifying

vineyard monitoring.

The moisture content in the soil is measured by water-counts as explained in

Section 4.5. These are integer values ranging (in our dataset) from 4587 to 9662

with an average of 6165. The higher the count, the more water content in the soil.

The architecture of the neural network is similar to that used before. Three

fully connected hidden layers were used again, this time containing 80, 50, 50

neurons respectively and only one dropout layer after the input layer. After

multiple iterations of evaluation using different architectures, it consistently led

to better results on the validation set when using dropout in this manner. The

Adam update method [18] was used, and training continued for 7000 epochs. This

architecture, as well as the hyperparameters, were selected after evaluating the

model on the validation set. The input layer consists of 17 inputs as follows:

74

Stellenbosch University https://scholar.sun.ac.za

1. Day of the year - cos

2. Day of the year - sin

3. Vigour level (0,1,2)

4. Depth in soil (12.5 cm, 25 cm, 37.5 cm)

5. Satellite land-surface temperature (LST) (current day, ◦C)

6. Satellite land-surface temperature (previous night, ◦C)

7 - 12. Average weekly day-time and night-time LST, for each of the last 3 weeks

13. Humidity (current day, %)

14 - 16. Average weekly humidity (for each of the last 3 weeks)

17. Total rainfall within the last 30 days

Results

The error rate was calculated in the same manner as it was for the temperature

predictions in Sections 6.1 - 6.3. Model performance should also again be compared

with a näıve guess. In this case the näıve guess was simply the average moisture

level over the entire training dataset (6165). This näıve guess achieves an error of

11,6 %.

After training 50 models from random initialisations, an average error of 8.01%

was achieved on the test set with a standard deviation of 1.75 %. The model made

errors between 380 and 800 with an average of 510 counts (from the test set score).

This result demonstrates that the model is learning something from the data,

and scores better than a näıve guess. However, the model prediction is not much

better than a näıve guess.

It must be kept in mind that the model was trained with very little data. It is

possible that better performance can be achieved for a larger training set.

75

Stellenbosch University https://scholar.sun.ac.za

Figure 6.2: A graphical comparison of the soil moisture content predicted by the
neural network (blue) and the measured moisture counts (dotted black).

6.5 Predicting bud-burst dates

As mentioned in Section 4.9, the bud-burst date is an important date in the growth

stage of the grape vine. According to the data available to us, bud-burst seems to

happen in the same month every year (September). Knowing if it is more likely

to happen at the beginning of the month or the end could help the viticulturists

prepare for an earlier-than-expected harvest date.

Since the bud-burst only occurs once per year, we had very little data to work

with. In total, we had eight bud-burst dates over the span of four years, one date

every year for the medium vigour vine-block and one every year for the low-vigour

block.

Due to the small amount of data available, leaving-one-out cross-validation

was employed. The models were trained on seven of the eight data points and

then used to predict the eighth. This was repeated eight times, each time leaving

out a different year and block. The final result was the average of these eight

experiments.

The models were trained with 17 inputs, which included mostly data from

the three months preceding the bud-burst month of September (June, July, and

76

Stellenbosch University https://scholar.sun.ac.za

August). This was done because, after many test runs, it was found that the model

performed best when only considering the previous 3 months’ data as input. The

input parameters are the following:

1 - 3. Average monthly humidity (June, July and Aug.)

4 - 6. Average monthly air temperature (June, July and Aug.)

7 - 9. Average monthly rainfall (June, July and Aug.)

10. Average air temperature for the whole year up to September

11. Accumulated rainfall for the whole year

12. Moving average: air temperature (50 days)

13. Moving average: humidity (50 days)

14. Moving average: rainfall (50 days)

15. Moving average: soil temperature (50 days)

16 - 17. Binary columns to indicate low-vigour or medium-vigour

The models were set up to predict the day in September on which bud-burst

will happen. In other words, if the models predicts “5”, it is predicting that

bud-burst will happen on the 5th of September.

Three different models were tested, namely linear regression, second order

polynomial regression, and a neural network. 100 neural network models were

trained, each from randomly initialised weights, and applied for each of the 8

experiments. The overall result was taken as the average of those 100 repetitions.

The models were all built and trained using the Scikit-learn library. All

the input parameters were normalised before training. The neural network was

built with four hidden layers of sizes 120-100-100-80, and uses the Adam training

method.

Results

The models were trained on seven data-points and used to predict the eighth

point. This was repeated for all eight available bud-burst dates. The score was

then average over all eight runs.

77

Stellenbosch University https://scholar.sun.ac.za

As before, the model was compared with a näıve guess. This time, the näıve

guess was the bud-burst date of the previous year. When using this näıve guess,

an average error of 8.75 days is made, with a standard deviation of 3.38 days.

The best näıve guess was only off by 1 day, but worst by 16 days.

The linear regression model improved on the näıve guess, making an average

error of 6.21 days with a standard deviation of 5.02 days. The model’s best guess

was off by 1.13 days, and the worst by 15.46 days.

The second-order polynomial regression model performed best of all, making an

average error of 4.15 days with a standard deviation of 4.29 days. The polynomial

model’s best guess was off by 0.9 days, and its worst by 10 days.

The neural network also performed well, falling just short of the polynomial

regression model, with an average error of 4.79 days and a standard deviation of

4.02 days. In this case the best guess was off by 0.09 days, and the worst by 9.78

days.

Model Avg error Max error Min error σ

näıve guess 8.75 days 16 days 1.00 day 5.38 days

Linear regression 6.21 days 15.46 days 1.13 days 5.02

Polynomial regression 4.15 days 10.00 days 0.9 days 4.29 days

Neural network 4.95 days 9.78 days 0.09 days 4.02 days

Table 6.1: Comparison of the results of the bud-burst date prediction with different
models.

The neural network and the polynomial regression model did quite well, but

with the polynomial regression model making less than half the average error than

a näıve guess, as well as having a much shorter training time, would be the model

of choice. Even though the model does quite well on average, it is not perfect,

and with a maximum error of 10 days might not be seen as very trustworthy

yet. Out of the eight runs, the linear regression model was closer to the correct

bud-burst day than the näıve guess 6/8 times. The polynomial regression model

was closer 5/8 times and the NN model was closer 4/8 times. This makes a small

case in the preference of the linear regression model, since it was closer to the true

78

Stellenbosch University https://scholar.sun.ac.za

bud-burst day more than the other models even though the average error is higher.

Further improvements will be needed to make this application practical in a

real world scenario. However, it should be borne in mind that in this case our

training set was particularly small. More training data should bring down the

error rates.

6.6 Recurrent Neural Networks with Long Short-Term

Memory

Since the introduction of long short-term memory (LSTM) recurrent neural networks,

some outstanding results have been achieved on problems that require learning

from sequential data, especially on data with long term dependencies. Since our

data is mostly sequential, it might be expected that LSTMs should perform well.

LSTMs were trained to perform the same predictive tasks as the feedforward

neural networks presented in Chapters 5.2.1 and 6.1: predicting soil temperature

from ambient temperature. These experiments were split into two sub-experiments:

predicting the soil temperature given a series of previous soil temperatures, and

predicting soil temperatures given a series of previous ambient temperatures.

6.6.1 LSTM Experiments

Instead of building a LSTM network from scratch, we used an existing, working,

LSTM and modified it to suit our data. Our experiments are therefore based

on a Keras-based LSTM application designed to predict Google stock prices, and

available on Github [28].

The unmodified model takes the closing stock price over 60 sequential days

as input and attempts to predict the closing price on the 61st day. Training is

performed by moving sequentially through the training set, each time considering

the current price as target and the most recent 60 as input.

The model was built using four LSTM layers of 50 neurons each. Each of

79

Stellenbosch University https://scholar.sun.ac.za

these four layers was followed by a dropout layer with a 20% dropout probability

to reduce overfitting. The four LSTM layers were followed by a 50 neuron dense

layer, and then a single neuron as the output layer. Both the dense layer and the

output neuron used rectified linear units (ReLU) activations.

After confirming that the model did indeed perform well on the Google stock

price data, it was tested on synthetic data that was designed to have similar

characteristics to the soil temperature measurements. This dataset was generated

by summing a sine and a cosine component with random patterns of noise. An

extract of actual soil temperatures from our data is shown in Figure 6.3. This

extract illustrates the observed characteristics of the soil temperature data that

inspired the function we used to generate synthetic data.

Figure 6.3: An extract of the soil temperature dataset that served as inspiration
for Equation 6.2.

Figure 6.3 shows the cyclic nature of the daily temperatures, but also various

signal components present in the data. One such component is the linearly

increasing trend that the cyclic temperatures follow. Another component is the

large discontinuities that are a result of missing or faulty measurements in the

data. We also assume that there is a small element of Gaussian noise present

in each measurement. Due to missing measurements, not every day contains the

same number of measurements. This causes the period of the of oscillations to

vary slightly. All of these attributes together form the basis for the design of

Equation 6.2.

y = 2cos

(
2πf1t

r(t)

)
+ 2sin (2πf2t+ k)) +K0(t) +K1(t) + w(t) (6.2)

80

Stellenbosch University https://scholar.sun.ac.za

The function, r(t) linearly changes the period of the cosine component over a

random, but limited, number of samples. For example, it might scale the period

by a factor of 2 over the space of 250 samples and then scale it by a factor of 0.7

over the next 400 samples. After that it might not scale it at all for the next 300

samples and so on. This mimics the varying number of measurements available

for each day.

The components, K0(t) and K1(t) represent the step offset and the linearly

increasing trend respectively, as illustrated in Figure 6.3. Finally, w(t) represents

additive Guassian noise.

Figure 6.4: A randomly generated wave in red, and an extract from the real soil
temperature data in black.

Figure 6.4 shows a small portion of the soil temperature dataset, and a portion

of the synthetic data. This figure serves as an illustration to motivate the design of

Equation 6.2. The cosine component models the daily temperature fluctuations,

while the two piecewise-offset functions model the discontinuous jumps as well as

the slowly increasing average observed in the soil temperature. The discontinuous

jumps observed is a result of missing data. Hence, Equation 6.2 allows us to

generate synthetic data with characteristics similar to those of the measured soil

temperatures.

The LSTM model was trained to do one-step-ahead prediction on the synthetic

data, using the Nesterov momentum optimiser. It was trained for 10 epochs at a

time and consistently managed to fit the data well as illustrated in Figures 6.5 to

6.7 where the model is able to follow the trend of the held-out test data closely.

81

Stellenbosch University https://scholar.sun.ac.za

Figure 6.5 shows the LSTM predictions on synthetic data that strongly resembles

the real soil temperature measurements, while the illustrations in Figure 6.7 show

the LSTM predictions on various other randomised waveforms.

Figure 6.5: A randomly generated wave in red, with the LSTM predictions in blue
and an extract from the real soil temperature data in black.

82

Stellenbosch University https://scholar.sun.ac.za

Figure 6.7: Portions of three randomly generated sine waves using Equation 6.2,
shown in red, as well as the LSTM prediction in blue. This shows that the LSTM
follows the randomly generated wave well.

6.6.2 One-step-ahead prediction of temperatures

The tests with the synthetic data in the previous section established that the

LSTM is able to model data that is, at least to the eye, similar to the measured

soil temperatures. Next, experiments were performed on the real soil temperature

data. Again, the model was configured to do one-step-ahead prediction receiving

the most recent 60 soil temperatures as input and predicting the next soil temperature.

In each of the following experiments, a total of 100 models was trained, each model

was initialised with random weights, and the average error across all 100 models

reported.

When trained on the soil temperatures, the LSTM was not able to make

good one-step-ahead predictions. Investigation into the behaviour of the networks

indicated that the discontinuities in the data (as seen in Figure 6.4) were contributing

to this poor performance. The data was therefore subsequently filtered to exclude

these discontinuities so that every training example, consisting of 60 consecutive

temperatures, was continuous. Thus, the discontinuities were removed from the

data to which the LSTM was applied.

83

Stellenbosch University https://scholar.sun.ac.za

Figure 6.8: Full dataset of soil temperatures as used in the first LSTM experiment.

When considering the full set of soil temperatures, as shown in Figure 6.8,

one can see big temperature jumps at several points. These discontinuities were

removed from the data by considering only samples 2400 - 8600 for training and

samples 8600 - 9600 for testing, as illustrated in Figure 6.9.

Figure 6.9: Soil temperature dataset as used for the first LSTM experiment,
with the discontinuity-free training set indicated by the red block and the
discontinuity-free test set by the blue block.

10% of the training data was kept aside as a validation set. The model was then

trained using early stopping (training stopped after 5 epochs had passed without

an increase in the validation score). After training and testing the LSTM on this

smaller set of data, a much better result of 3.18% over 100 runs was achieved.

This demonstrates that the LSTM can predict continuous temperature data quite

well. Figure 6.10 illustrates the test-set temperatures together with the predicted

84

Stellenbosch University https://scholar.sun.ac.za

values.

Figure 6.10: The test-set soil temperatures plotted in red and the one-step-ahead
LSTM temperature predictions plotted in blue once discontinuities have been
avoided by using the training and testing subset shown in Figure 6.9.

6.6.3 Prediction soil temperatures from ambient temperatures

Finally, we wanted to determine how well the LSTM would perform if given

ambient temperatures as input, while still required to predict the soil temperatures.

This experiment is directly comparable to that which was performed with the

FFNNs in Sections 5.2.1 and 6.1 with the difference that the smaller discontinuity-free

sub-sets shown in Figure 6.9 were used.

An average error of 4.6% over 100 models with a standard deviation of 0.16%

was achieved. The resulting soil temperature predictions for this experiment are

shown in Figure 6.11 .

85

Stellenbosch University https://scholar.sun.ac.za

Figure 6.11: The test-set soil temperatures plotted in red and the one-step-ahead
LSTM temperature predictions in blue when using ambient temperatures as input
and using the training and testing subsets shown in Figure 6.9.

When relative humidity measurements were included as additional inputs, an

average error of 4.35 % with a standard deviation of 0.18% over 100 models was

achieved. This result is comparable to the FFNN experiment described in Section

6.1, where the model achieved an average error of 4.94 %. However, when the

FFNN model described in Section 6.1 is trained and tested on the same subset of

data used by the LSTM, it achieved an average error of only 6.32 % with a standard

deviation of 0.28 %, and an average error of 6.03 % with a standard deviation of

0.22 % when the previous day’s minimum and maximum temperatures were added

as additional inputs. hence, when tested under matching conditions, the LSTM is

able to outperform the FFNN.

6.7 Summary of Ssw. dataset results

Table 6.2 summarises the results of the experiments performed with the Somerset

West dataset, as described in this chapter.

In this table, the ambient temperature and humidity measurements are referred

to as “Ambient”, and it is specifically indicated when only one of the two is used

as input. The satellite land-surface temperatures, as described in Section 4.6, are

referred to as “Sat. LSTs”. Also recall that the experiments in Sections 6.6.2 and

6.6.3 (test numbers 8 - 12) only use a subset of the full soil temperature dataset,

as explained in Section 6.6.3.

86

Stellenbosch University https://scholar.sun.ac.za

We can conclude that it is possible to predict soil temperatures, soil moisture

and bud-burst dates with accuracies better than a näıve guess. For the soil

temperatures, best predictions were provided by the recurrent neural networks

(LSTMs). However, these networks were also shown to be particularly sensitive

to errors in the data caused by faulty sensors. The feedforward networks provided

performance that was almost as good, while not exhibiting the same sensitivity.

The accuracies achieved for soil moisture content and bud-burst ddates were

not as good as those achieved for the soil temperatures. However, in both cases

(and especially for the bud-burst dates) the datasets were also much smaller. It

is possible that substantially better performance might be achieved if more data

were available.

87

Stellenbosch University https://scholar.sun.ac.za

Test no. Model Section Targets Inputs Avg. error

1 näıve Guess 6.1 Soil Temp. Ambient 21.71 %

2 FFNN 6.1 Soil Temp. Ambient 4.94 %

3 FFNN 6.1 Soil Temp. Ambient +

Min/Max1

4.45 %

4 FFNN 6.1 Stb. dataset

soil temp.

Ambient 18.56 %

5 FFNN 6.2 Soil Temp. Sat. LSTs 5.67 %

6 FFNN 6.2 Soil Temp. Sat. LSTs +

Rainfall

5.52 %

7 FFNN 6.3 Soil Temp. All data

from Ssw.

5.4 %

8 LSTM 6.6.2 Soil Temp. Soil Temp. 3.18 %

9 LSTM 6.6.3 Soil Temp. Ambient

Temp. only

4.6 %

10 LSTM 6.6.3 Soil Temp. Ambient 4.35 %

11 FFNN 6.6.3 LSTM Soil

Temps.

LSTM

Ambient

6.32 %

12 FFNN 6.6.3 LSTM Soil

Temps.

LSTM

Ambient +

Min/Max

6.03 %

13 näıve Guess 6.4 Moisture

Content

Avg. of

training data

9.42 %

14 FFNN 6.4 Moisture

Content

Sat. LSTs +

Rainfall

8.28 %

15 näıve Guess 6.5 Bud-burst

dates

Prev. Date 8.75 days

16 Linear

Regression

6.5 Bud-burst

dates

Ambient +

Rainfall +

Soil Temps

6.21 days

17 Polynomial

Regression

6.5 Bud-burst

dates

Ambient +

Rainfall +

Soil Temps

4.15 days

18 FFNN 6.5 Bud-burst

dates

Ambient +

Rainfall +

Soil Temps

4.95 days

Table 6.2: Summary of the results of the experiments performed using the
Somerset West dataset.

1Minimum and Maximum temperature over the last 24 hours.

88

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Summary, conclusions and future

work

In this chapter, we will summarise the most important results presented in this

thesis, and draw conclusions based on these results. We will also identify avenues

along which the work could be extended in the future.

The experiments presented in this thesis can largely be grouped as follows:

1. Predicting soil temperatures.

2. Predicting moisture content.

3. Predicting the bud burst date.

Most effort was spent on predicting soil temperatures, since that is where the

most data was available.

7.1 Soil temperature prediction

A main focus of this thesis was the prediction of soil temperatures at various

depths in a vineyard. Various configurations of inputs and model structures were

considered in an attempt to gain some insight into which inputs are important

and which models work best. The experiments were split into two groups, one

performed on the smaller Stellenbosch dataset, and one performed on the larger

Somerset West dataset.

89

Stellenbosch University https://scholar.sun.ac.za

7.1.1 Stellenbosch dataset

The Stellenbosch dataset was the first to become available during the course of

this project, and therefore the subject of the first experiments. The aim was to

predict the temperatures measured at different depths in the soil from the other

information available in the dataset, such as local ambient temperature, local

humidity, as well as the depth of measurement.

When using linear regression, soil temperatures could be predicted with an

average error of 5.56%. This was a surprisingly good result for such a simple

model. A feedforward neural network, with the same inputs, was able to achieve

the only slightly better average error of 5.4%.

Next, pre-training strategies were considered. Auto-encoder pre-training afforded

only marginal gains in performance, achieving an average error of 5.37%. However,

these models are much more complicated to set up.

A different style of pre-training was also tested. This was achieved by first

training a neural network using Scikit-learn to predict the soil temperatures. Then,

the weights obtained by that model were used to initialise a feedforward neural

network model implemented in Lasagne. Feedforward neural networks trained in

this way achieved an average error of 4.84% when predicting soil temperatures.

A very insightful discovery was made by shuffling the training data instead of

presenting it chronologically during training. This brought the average error down

from 5.4% to 4.69%. When shuffling the training data as well as pre-training,

the average error was reduced even further to 4.2%.

Up to this point, all models were being trained to predict soil temperatures

from contemporaneous ambient temperatures and humidities. The next step was

to provide the model with some dynamic information in the form of previous

measurements. Best results were obtained when the model was provided with the

minimum and maximum temperature measurements of the previous day as inputs

during training. This brought the average error down to 4.02%. This was also

the best result achieved for the Stellenbosch data.

90

Stellenbosch University https://scholar.sun.ac.za

7.1.2 Somerset West dataset

The Somerset West (Ssw.) dataset, which became available mid-way through

the project, was considerably larger than the Stellenbosch dataset. In particular,

the data spanned an entire year, and therefore provided scope to encapsulate

the information of all four seasons. Hence the results obtained for this dataset

might be viewed as more representative of a real-world practical application of

our models.

In all cases, the performance of soil temperature prediction models for the Ssw.

data were compared with a näıve guess, which is the result achieved when the soil

temperature is taken to be the same as the ambient temperature. This näıve guess

achieves an average error of 21.71%.

A neural network trained on contemporaneous input was able to achieve an

average error of 4.94%. When the network was given the previous day’s minimum

and maximum temperature as additional inputs, the average error reduced to

4.45%. This not only shows that a feed-forward neural network can make a much

more accurate prediction than a simple guess, but also that it can achieve results

that are accurate enough to be considered as a replacement for locally-installed

soil temperature sensors.

It was however also shown that a model trained on the Ssw. data performed

poorly when required to predict the soil temperatures of the Stb. site, with an

average error of 18.56%. This shows that models trained on data obtained from

one particular location do not generalise well to another location. Further work is

needed to determine how this mismatch can be minimised.

Up to this point all experiments focussed on estimating the soil temperature

at a particular depth from ambient, but nevertheless local, temperature and

humidity measurements. Such local measurements require sensors and associated

communication infrastructure to be installed and maintained in the vineyard, and

therefore are still expensive to obtain.

A next set of experiments therefore considered whether soil temperatures can

be estimated on the basis of freely available satellite data, thereby eliminating

91

Stellenbosch University https://scholar.sun.ac.za

the need for locally placed sensors. This includes freely available satellite land

surface temperatures, as well as hourly rainfall data collected from a local weather

station. This model managed to achieve an average error of 5.67% when using

only satellite data and 5.52% when considering also the rainfall data. The sparsity

of the rainfall data might lead to the model assigning a very low importance to

the rainfall input, leading to very small improvements in the results. This must

be compared with the 4.94% error that is achieved when using temperature and

humidity measured locally in the vineyard. Since no locally-measured data is used

at all by this model, but local soil temperatures are expected from it, this good

performance was a surprise and one could argue that it is the most important

result of this study.

If more effort were invested into collecting freely available data, the model

might achieve even better results. For example, other sources of satellite data

could be considered. It might then be possible to train a model that is accurate

enough to completely replace ground sensors and the associated measurement

network in the vineyard. This could potentially save costs.

The neural network model was also trained using both local and satellite data.

This model managed to achieve an average error of 4.5%. This is a very good

result, showing that the accuracy of the model continues to increase when given

additional information.

With respect to the soil temperature prediction experiments, two key results

can be re-emphasised. Firstly, when using freely available data from satellite

and local weather stations, it is possible to achieve performance that is almost

as good as that achieved using local measurements. Secondly, it was established

that currently, the presented models are not good at generalising to geographical

locations different from those they were trained on.

7.2 Moisture content prediction

A second focus of this thesis was the prediction of soil moisture content.

As a näıve guess, the average moisture content in the training dataset was

92

Stellenbosch University https://scholar.sun.ac.za

used. This näıve guess achieved an average error of 9.42%.

For this task, the best neural network model achieved an error that was only

slightly better at 8.28%.

For the soil moisture experiments, the training set was extremely limited and

it is likely that these results would improve if more data was available.

7.3 Bud-burst date prediction

A final focus of this study was an attempt to predict the bud-burst date, which is

the date at which the vineyard buds leave their dormant state for the first time

after winter. Three model architectures were tested, namely, linear regression,

second order polynomial regression, and a feedforward neural network. The training

data was again extremely limited (even more so than with the moisture data).

Using the previous year’s bud-burst date as a näıve guess, an average error of

8.75 days was achieved. The linear regression model achieved an average error

of 6.21 days, with its worst guess off by 15.46 days. The polynomial regression

model achieved an average error of 4.15 days, with its worst guess off by 10 days.

Finally, the neural network model achieved an average error of 4.95 days, with

its worst guess off by 9.78 days.

Although the training data was extremely limited, these experiments indicate

that the models are indeed learning to predict the bud-burst dates from the data.

To take this experiment further, more data needs to be collected. It may

very-well be possible to train a model to make reasonable bud-burst predictions,

but not with only 8 training examples. Although the polynomial model achieved

the best results here, the neural network might achieve better results when more

training examples are available.

93

Stellenbosch University https://scholar.sun.ac.za

7.4 LSTMs

LSTM recurrent neural networks were set up to perform one-step-ahead prediction

of soil temperatures. Each training example consisted of 60 consecutive soil

temperature measurements, and the model was asked to predict the 61st measurement.

At first, the model exhibited poor performance, achieving an average error of just

19.88 % over 100 runs. After removing discontinuities due to faulty measurements

from the data, however, performance improved dramatically to an average error

of 3.18 %.

Finally, the model was trained using 60 consecutive ambient temperatures as

input to predict the soil temperature at the 61st time step. This experiment

is the most closely comparable with the previous experiments performed using

feedforward neural networks. Once discontinuities had again been removed from

the data, an average error of 4.6 % was achieved. When the humidity was

provided as an additional input, performance improved to an average error of

4.35 %.

These results show that there is definitely potential in using LSTMs for soil

temperature prediction. These models achieved better results than the feedforward

neural networks considered in this study and did so with a relatively small dataset

(7000 points). It would seem, however, that these models are much more sensitive

to discontinuities in the data. This means that data collection and preparation

would need to be much more precise if recurrent neural networks are used. The

model will lose a lot of accuracy whenever sensors stop working properly and cause

discontinuities in the data.

7.5 Future work

This study has shown that the machine learning algorithms used here have great

potential in predicting environmental variables. Although the data was not collected

specifically for machine learning, the algorithms were able to learn patterns from

it. There are various different avenues for pursuing further research using the

techniques described in this study. Some of the avenues one can pursue to achieve

better results, or build upon this research are listed below:

94

Stellenbosch University https://scholar.sun.ac.za

• Additional input information can be provided to the neural networks. This

study was limited to the data that was available. There could be other

measurable environmental variables that might increase neural network model

performance. For example, soil properties such as the soil composition,

distance to the ocean, or even geographical coordinates should there be

enough data from multiple study sites. These type of properties might also

increase these models’ capacity to generalise across different vineyards.

• Data collection quality can be improved. When considering the raw of data

we obtained for this study, it seemed extensive. However, after removing

faulty measurements to prepare the data for machine learning application, a

much smaller dataset remained. Furthermore, discarding faulty measurements

left gaps in the data and these gaps can cause problems for machine learning

models. This was especially true in the case of the LSTM models, where the

discontinuities almost completely prevented the model from fitting to the

data. The corruption of the data was in most cases due to sensors becoming

faulty. These faulty measurements are sometimes difficult to detect. By

reducing the incidence of such corrupt datapoints, the scope of application

of machine learning methods will be improved.

• Data collection quantity can be increased. This point is related to the

previous one. Machine learning models generally benefit from more training

data. This is particularly true for the soil moisture and bud-burst date

prediction experiments. Even though the results are better than a näıve

guess, the dataset is too small to take these results as representative of the

real-world problem. More data is needed to train and validate the methods.

• More variations of LSTM models can be considered. The LSTM models

showed great potential in this study, even though the dataset was quite

small. As briefly mentioned in Section 3.3, there are many variations of

LSTM networks and perhaps some of these would be better suited to our

problem.

• Machine learning models are good at finding abstract patterns in data that

we humans cannot always see. With the right input data, models could

potentially learn to predict more abstract or high-level properties. Such

properties could include things such as measurable taste properties (e.g.

95

Stellenbosch University https://scholar.sun.ac.za

acidity), general wine quality, or even the yield size. The datasets required

for this research are however not currently available.

These are just a few potential applications directly applying machine learning

on viticulture data. With continued cooperation with viticulturists, machine

learning could bring great benefits to the industry.

96

Stellenbosch University https://scholar.sun.ac.za

Bibliography

[1] A. Aquino, M. P. Diago, B. Millán, and J. Tardáguila, “A new methodology

for estimating the grapevine-berry number per cluster using image analysis,”

Biosystems Engineering, vol. 156, pp. 80–95, 2017.

[2] F. Avila, M. Mora, C. Fredes, and P. Gonzalez, “Shadow detection in complex

images using neural networks: application to wine grape seed segmentation,”

in International Conference on Adaptive and Natural Computing Algorithms.

Springer, 2013, pp. 495–503.

[3] C. M. Bishop, Pattern Recognition, M. Jordan, J. Kleinberg, and B. Schölkopf,

Eds. Springer, 2006.

[4] C. M. Bishop et al., Neural networks for pattern recognition. Oxford

university press, 1995.

[5] M. Bridge, “Neutron probes and soil moisture,” https://www.

naturalresources.sa.gov.au/samurraydarlingbasin/publications/

neutron-probes-and-soil-moisture, August 2015, online; accessed August

2018.

[6] S. Burgos, N. Dakhel, and M. Docourt, “Le comportement thermique des sols

: caractérisation et influence sur la vigne.” Global warming, which potential

impacts on the vineyards?, March 2007.

[7] V. Casser, “Using Feedforward Neural Networks for Color Based Grape

Detection in Field Images,” 2016, online; Accessed November 13, 2018.

[8] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online

learning and stochastic optimization,” Journal of Machine Learning Research,

vol. 12, no. Jul, pp. 2121–2159, 2011.

97

Stellenbosch University https://scholar.sun.ac.za

https://www.naturalresources.sa.gov.au/samurraydarlingbasin/publications/ neutron-probes-and-soil-moisture
https://www.naturalresources.sa.gov.au/samurraydarlingbasin/publications/ neutron-probes-and-soil-moisture
https://www.naturalresources.sa.gov.au/samurraydarlingbasin/publications/ neutron-probes-and-soil-moisture

[9] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, 2nd ed. New

York: Wiley, 2001.

[10] T. Gevers and A. W. Smeulders, “Color-based object recognition,” Pattern

Recognition, vol. 32, no. 3, pp. 453–464, 1999.

[11] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep

feedforward neural networks,” in Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics, 2010.

[12] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,”

in Proceedings of the Fourteenth International Conference on Artificial

Intelligence and Statistics, 2011.

[13] S. G. Gujjar and S. Angadi, “Plant Clinic - A Mobile App for Grape

Plant Disease Recognition and Remedies,” IJSRD - International Journal

for Scientific Research & Development, vol. 3, no. 11, 2016.

[14] G. Hinton, “Neural Networks for Machine Learning,” https://www.cs.

toronto.edu/∼tijmen/csc321/slides/lecture slides lec6.pdf/, online; accessed

05-Feb-2019.

[15] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.

Salakhutdinov, “Improving neural networks by preventing co-adaptation of

feature detectors,” arXiv preprint arXiv:1207.0580, July 2012.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[17] A. W. R. Institute, “Bud dormancy and budburst,” https://www.awri.

com.au/wp-content/uploads/1 phenology bud dormancy and budburst.pdf,

online; accessed August 2018.

[18] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[19] G. Li, Z. Ma, and H. Wang, “Image recognition of grape downy mildew and

grape powdery mildew based on support vector machine,” in The proceesings

of the International Conference on Computer and Computing Technologies in

Agriculture, 2011.

98

Stellenbosch University https://scholar.sun.ac.za

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf/
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf/
https://www.awri.com.au/wp-content/uploads/ 1_phenology_bud_dormancy_and_budburst.pdf
https://www.awri.com.au/wp-content/uploads/ 1_phenology_bud_dormancy_and_budburst.pdf

[20] A. Matese, S. Di Gennaro, A. Zaldei, L. Genesio, and F. Vaccari, “A wireless

sensor network for precision viticulture: The NAV system,” Computers and

Electronics in Agriculture, no. 69, pp. 51–58, 2009.

[21] A. Meunkaewjinda, P. Kumsawat, K. Attakitmongcol, and A. Srikaew,

“Grape leaf disease detection from color imagery using hybrid

intelligent system,” in 5th International Conference on Electrical

Engineering/Electronics, Computer, Telecommunications and Information

Technology, 2008.

[22] N. Nair and G. Hill, “Bunch rot of grapes caused by Botrytis cinerea,” Plant

Diseases of International Importance, vol. 3, pp. 147–169, 1992.

[23] Y. Nesterov et al., “Gradient methods for minimizing composite

objective function,” http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.332.931&rep=rep1&type=pdf, July 2007, available online; Accessed Jan

2019.

[24] M. A. Nielsen, Neural Networks and Deep Learning. Determination Press,

2015.

[25] S. Nuske, S. Achar, T. Bates, S. Narasimhan, and S. Singh, “Yield estimation

in vineyards by visual grape detection,” in Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2011.

IEEE, 2011, pp. 2352–2358.

[26] S. Nuske, K. Gupta, S. Narasimhan, and S. Singh, “Modeling and calibrating

visual yield estimates in vineyards,” in Field and Service Robotics. Springer,

2014, pp. 343–356.

[27] C. Olah, “Understanding LSTM Networks,” http://colah.github.io/posts/

2015-08-Understanding-LSTMs, August 2015, online; accessed July 2018.

[28] Parasgr7, “Recurrent Neural Network (LSTM) with Keras Framework,”

https://github.com/Parasgr7/Google-Stock-Price-Prediction.

[29] D. S. Pérez, F. Bromberg, and C. A. Diaz, “Image classification for detection

of winter grapevine buds in natural conditions using scale-invariant features

transform, bag of features and support vector machines,” Computers and

Electronics in Agriculture, vol. 135, pp. 81–95, 2017.

99

Stellenbosch University https://scholar.sun.ac.za

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.332.931&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.332.931&rep=rep1&type=pdf
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs

[30] M. Romero, Y. Luo, B. Su, and S. Fuentes, “Vineyard water status estimation

using multispectral imagery from an UAV platform and machine learning

algorithms for irrigation scheduling management,” Computers and Electronics

in Agriculture, vol. 147, pp. 109–117, 2018.

[31] S. S. Sannakki, V. S. Rajpurohit, V. Nargund, and P. Kulkarni, “Diagnosis

and classification of grape leaf diseases using neural networks,” in Fourth

International Conference on Computing, Communications and Networking

Technologies (ICCCNT). IEEE, 2013, pp. 1–5.

[32] S. Shafian and S. J. Maas, “Index of soil moisture using raw Landsat image

digital count data in Texas high plains,” Remote Sensing, vol. 7, no. 3, pp.

2352–2372, 2015.

[33] T. Southey, “Integrating climate and satellite remote sensing to assess

the reaction of Vitis vinifera L. cv. Cabernet Sauvignon to a changing

environment,” Ph.D. dissertation, Stellenbosch University, March 2017.

[34] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from

overfitting.” Journal of Machine Learning Research, vol. 15, no. 1, 2014.

[35] B. E. Stummer, I. L. Francis, T. Zanker, K. A. Lattey, and E. S. Scott,

“Effects of powdery mildew on the sensory properties and composition of

Chardonnay juice and wine when grape sugar ripeness is standardised,”

Australian Journal of Grape and Wine Research, vol. 11, no. 1, pp. 66–76,

2005.

[36] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of

initialization and momentum in deep learning,” in International Conference

on Machine Learning, 2013.

[37] K. Thome, “Terra, The EOS flagship,” http://terra.nasa.gov, NASA, online;

accessed July 2018.

[38] D. P. Vazquez, F. O. Reyes, and L. A. Arboledas, “A comparative study

of algorithms for estimating land surface temperature from AVHRR data,”

Remote Sensing of Environment, vol. 62, no. 3, pp. 215–222, 1997.

100

Stellenbosch University https://scholar.sun.ac.za

http://terra.nasa.gov

[39] H. Waghmare, R. Kokare, and Y. Dandawate, “Detection and classification

of diseases of Grape plant using opposite colour Local Binary Pattern

feature and machine learning for automated Decision Support System,” in

3rd International Conference on Signal Processing and Integrated Networks

(SPIN), 2016. IEEE, 2016, pp. 513–518.

[40] Z. Wan, “MODIS land-surface temperature algorithm theoretical basis

document (LST ATBD),” Institute for Computational Earth System Science,

Santa Barbara, vol. 75, 1999.

[41] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” arXiv

preprint arXiv:1212.5701, 2012.

[42] A. Zuñiga, M. Mora, M. Oyarce, and C. Fredes, “Grape maturity estimation

based on seed images and neural networks,” Engineering Applications of

Artificial Intelligence, vol. 35, pp. 95–104, 2014.

101

Stellenbosch University https://scholar.sun.ac.za

Appendix A

A brief intro to Theano and

Lasagne

This section will give a very brief introduction to Theano and Lasagne. These are

basic software tools used extensively in this thesis.

A.1 Theano

The best short description of Theano comes from the documentation of Theano

itself:

“Theano is a Python library that lets you to define, optimise, and evaluate

mathematical expressions, especially ones with multi-dimensional arrays (numpy.ndarray).

Using Theano it is possible to attain speeds rivaling hand-crafted C implementations

for problems involving large amounts of data. It can also surpass C on a CPU by

many orders of magnitude by taking advantage of recent GPUs.”

Theano is not a programming language itself, since you still code in Python,

but like a programming language you will have to define variable names and types,

build expressions describing how to use these variables together, and compile these

expressions to use them for computation. The next part will show three examples

of different things Theano can be used for.

First, we will start with setting up a basic algebraic expression.

102

Stellenbosch University https://scholar.sun.ac.za

import theano

from theano import tensor

declare two symbolic floating-point scalars

a = tensor.dscalar()

b = tensor.dscalar()

create a simple expression

c = a + b

convert the expression into a callable object that takes (a,b)

as input and computes a value for c

f = theano.function([a,b], c)

bind 1.5 to ’a’, 2.5 to ’b’, and evaluate ’c’

x = f(1.5, 2.5)

x == 4.0

> True

In this example the variable type “dscalar” was used, but there are ofcourse

many different variable types one can use including different matrix-type variables.

The next example will show the reader how to use Theano to compute and

evaluate the logistic (sigmoid) function given as:

s(x) =
1

1 + e−x
(A.1)

The goal is to apply the function to each individual element of a matrix of

doubles. The following code excerpt shows this can be achieved:

import theano

import theano.tensor as T

define a variable as a matrix of doubles

x = T.dmatrix()

define the expression for the function

s = 1 / (1 + T.exp(-x))

103

Stellenbosch University https://scholar.sun.ac.za

logistic = theano.function([x], s)

logistic([[0,1], [-1, -2]])

this yields a 2x2 array:

>>>array([[0.5 , 0.73105858],

[0.26894142 , 0.11920292]])

In the previous example x is defined as a “dmatrix(’x’)”. The string “x” added

to the definition simply adds a tag or name to the variable x which can be used

later on for debugging purposes.

Theano also allowsone to define a function with an internal state using something

called shared variables. For instance, consider an accumulator. At the beginning,

the state is initialised to zero. Then, on each function call, the state is incremented

by the functions argument.

Let us define the accumulator function. It adds its argument to the internal

state, and returns the old state value.

from theano import shared

create a shared variable called ’state’ and an integer scalar

named ’inc’

state = shared(0)

inc = T.iscalar(’inc’)

define the accumulator function taking ’inc’ as input, returning

’state’ as output, as well as updating the variable state with

the value of state+inc when called

accumulator = function([inc], state, updates=[(state, state+inc)])

This code introduces a few new concepts. The shared function constructs

so-called shared variables. These variables’ value may be shared between multiple

functions. The other new thing in this code is the “updates” parameter of function.

It must be supplied with a list of pairs of the form (shared-variable, new expression).

It can also be a dictionary whose keys are shared variables and values are the new

expressions. Either way, it means “whenever this function runs, it will replace the

104

Stellenbosch University https://scholar.sun.ac.za

value of each shared variable with the result of the corresponding expression.” In

the code above, our accumulator replaces the state’s value with the sum of the

state and the increment amount.

Using the code from above:

>>> print(state.get_value())

0

>>> accumulator(1)

array(0)

>>> print(state.get_value())

1

>>> accumulator(300)

array(1)

>>> print(state.get_value())

301

The last example will show how one goes about computing the derivative of a

simple function, f(x) = x2.

import theano

from theano import tensor as T

x = T.dscalar()

y = x ** 2

gy = T.grad(y, x)

f = theano.function([x], gy)

>>> f(4) # yields:

array(8.0)

As seen from the few examples above, Theano can be very helpful when

working with symbolic expressions and their derivatives. Since this is what you

are constantly working with when constructing neural networks, one can see why

you would use Theano as a base to build upon.

105

Stellenbosch University https://scholar.sun.ac.za

A.2 Lasagne

The next library used in these experiments is called Lasagne. This library is

strongly dependent on Theano since it constantly uses its symbolic variable expressions.

In this example, we will build a small neural network to try and classify the

digits given by the MNIST dataset. This network will be similar to the smallest

network used by Geoffrey Hinton in his 2012 paper, “Improving neural networks

by preventing co-adaptation of feature detectors” [15]. Only certain extracts of

the code will be shown in order to convey the idea behind Lasagne. For a

more complete tutorial on Lasagne, visit the Lasagne documentation website at

lasagne.readthedocs.io.

When using Lasagne it is important to note that you will have to import

Theano as well as numpy alongside Lasagne. While Lasagne is built on top of

Theano, it is meant as a supplement to it and not a replacement. You will still

use small parts of Theano code alongside your Lasagne code.

import numpy as np

import theano

import theano.tensor as T

import lasagne

Lasagne helps you to define an arbitrarily structured neural network by stacking

multiple layers together. The first layer will always be an input layer. The neural

network must have a function in which the outline of the network is constructed.

Here that function is called “build mlp()”. Other hyper-parameters, as well as

the training process are accessed in another function. The following begins the

definition of the “build mlp()” function and defines the input layer of the network.

def build_mlp(input_var):

l_in = lasagne.layers.InputLayer(shape=(None, 1, 28, 28),

input_var=input_var)

The numbers in the shape tuple represents, in order: (batchsize, channels, rows,

106

Stellenbosch University https://scholar.sun.ac.za

lasagne.readthedocs.io

columns). With the batchsize set to None the network will accept input data of

any size. There is only one channel since these are black and white images, and the

28 rows and columns represent the pixel size of the the MNIST characters (28x28).

Before adding the first hidden layer, we’ll apply 20% dropout to the input

data. Dropout is a process in which neurons in a layer are randomly eliminated

with a certain probability. This technique was first used by Geoffrey Hinton in the

same 2012 paper [15] in an attempt to prevent neurons from becoming dependent

on other neurons in the same hidden layer and relying on them to learn certain

features in the data. To add a dropout layer, one simply uses the following:

l_in_drop = lasagne.layers.DropoutLayer(l_in, p=0.2)

It takes only two parameters. The first is to link the layer to the correct

previous layer - in this case the input layer. The second parameter, p, is the

dropout probability.

Next, we add the first (fully connected) hidden layer known in Lasagne as

a dense layer. Then we add a dropout layer to the first hidden layer, followed

by another hidden layer, as well as a dropout layer for the second hidden layer.

Finally, we will add the output layer. A brief explanation will follow after the

code is shown.

1st hidden layer with 800 neurons and rectified linear non-linearity

l_hid1 = lasagne.layers.DenseLayer(

l_in_drop, num_units=800,

nonlinearity=lasagne.nonlinearities.rectify,

W=lasagne.init.GlorotUniform())

Dropout layer with dropout probability of 0.5

l_hid1_drop = lasagne.layers.DropoutLayer(l_hid1, p=0.5)

2nd hidden layer with 800 neurons, ReLU non-linearity

l_hid2 = lasagne.layers.DenseLayer(

l_hid1_drop, num_units=800,

107

Stellenbosch University https://scholar.sun.ac.za

nonlinearity=lasagne.nonlinearities.rectify)

Dropout layer

l_hid2_drop = lasagne.layers.DropoutLayer(l_hid2, p=0.5)

Output layer with 10 neurons (outputs) and softmax non-linearity

l_out = lasagne.layers.DenseLayer(

l_hid2_drop, num_units=10,

nonlinearity=lasagne.nonlinearities.softmax)

return l_out

Notice that every layer is defined with a parameter that links it to the previous

layer. Then it is only necessary to return the output layer and lasagne can still

access the whole network. The num units parameter defines the number of neurons

in the layer. The nonlinearity parameter will determine the activation function

that the network will apply to the values of that layer, in this case we use the

Rectified Linear Unit or ReLU as coined by Glorot et. al. in 2011 [12]. The last

parameter, W, is the weight initialization method. This method initialises the

values of the weights before the model starts training. The exact values of the

weights are usually randomised values spread over a certain distribution depending

on which initialization method was used. Lasagne has many options built in, but

“GlorotUniform” is the default and therefore gets omitted after the first layer since

it’s not needed unless a different initialization is desired.

We can now define the main() function. It begins like this:

Load the dataset

X_train, y_train, X_val, y_val, X_test, y_test = load_dataset()

Prepare Theano variables for inputs and targets

input_var = T.dmatrix(’inputs’)

target_var = T.dmatrix(’targets’)

Create neural network model

network = build_mlp(input_var)

The first line loads the data into numpy arrays. This function is not part of

Lasagne and must be provided yourself. It then defines symbolic theano variables

108

Stellenbosch University https://scholar.sun.ac.za

for the input and target variables. They are not tied to any data yet and their

dimensionality will depend on what you link it with later. We then call the

build mlp() defined earlier to create a variable for the network.

The next step is to define the loss and update expressions to be minimised in

training.

Generate Theano expression for network output given input variable linked to

the network’s input layer.

prediction = lasagne.layers.get_output(network)

Define Theano expression for the categorical cross-entropy loss between network

output and targets.

loss = lasagne.objectives.categorical_crossentropy(prediction, target_var)

Take the mean of the loss to get scalar value

loss = loss.mean()

Collect all Theano SharedVariable instances making up the trainable parameters # of the layer

params = lasagne.layers.get_all_params(nework, trainable=True)

Generate an update expression for each parameter

updates = lasagne.updates.nesterov_momentum(

loss, params, learing_rate=0.01, momentum=0.9)

Here, we get the network’s current prediction by simply propagating the input

through the network. We then measure the loss by in this case using the cross-entropy

function to measure the loss since we are dealing with a classification problem. We

then transform the loss into a scalar value by taking it’s mean. We then create a

theano variable, params, which contains all the weights and biases for the network.

The next line will then cause the network to update these parameters by using a

certain update function (nesterov-momentum in this case).

After all of these Theano expressions are defined we can compile a function to

performing a training step:

train_fn = theano.function([input_var, target_var], loss, updates=updates)

This tells Theano to generate and compile a function taking two inputs (a

mini-batch of images and a vector of corresponding targets) and returning a single

output (the training loss). Additionally, each time it is invoked, it applies all

109

Stellenbosch University https://scholar.sun.ac.za

parameter updates in the updates dictionary (as shown in the Theano shared

variable explanation in section A.1), thus performing a gradient descent step with

Nesterov momentum. For validation, we compile a second function:

val_fn = theano.function([input_var, target_var], [test_loss, test_acc])

This one also takes a mini-batch of images and targets, then returns the

(deterministic) loss and classification accuracy, not performing any updates.

Finally, we can write the training loop:

for epoch in range(num_epochs):

In each epoch, we do a full pass over the training data:

train_err = 0

train_batches = 0

start_time = time.time()

for batch in iterate_minibatches(X_train, y_train, 500, shuffle=True):

inputs, targets = batch

train_err += train_fn(inputs, targets)

train_batches += 1

And a full pass over the validation data:

val_err = 0

val_acc = 0

val_batches = 0

for batch in iterate_minibatches(X_val, y_val, 500, shuffle=False):

inputs, targets = batch

err, acc = val_fn(inputs, targets)

val_err += err

val_acc += acc

val_batches += 1

At the very end, we re-use the “val fn()” function to compute the loss and

accuracy on the test set, finishing the script.

110

Stellenbosch University https://scholar.sun.ac.za

