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Abstract

A Duality-Theoretic Perspective on Formal Languages
and Recognition

J. Rozanova

Thesis: MSc

April 2019

A connection between recognisable languages and profinite identities is
established through the composition of two famous theorems: Eilenberg’s the-
orem and Reiterman’s theorem. In this work, we present a detailed account of
the duality-theoretic approach by Gehrke et al. that has been shown to bridge
the gap and demonstrate that Eilenberg’s varieties and profinite theories are
directly linked: they are at opposite ends of an extended Stone-type duality,
instantiating a Galois correspondence between subobjects and quotients and
resulting in an equational theory of recognisable languages. We give an in-
depth overview of relevant components of algebraic language theory and the
profinite equational theory of pseudovarieties in order to show how they are
tied together by the duality-theoretic developments. Furthermore, we provide
independent proofs of the key Galois connections at the heart of these bridging
results.
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Notation

Much of the notation used in this work will be introduced in context or is
included in the preliminaries in the next section. However, we make a few
general comments about conventions that apply throughout:

• We use square brackets to indicate that we are applying a function point-
wise to a subset of the domain (for example, f [A] and f−1[B]). When
there are multiple set-theoretic levels, the context should make it clear
whether we are applying an image/preimage map to a subset or a col-
lection of subsets.

• We often shorten the algebraic signature of certain algebraic structures.
For example, a Boolean residuation algebra (B,∧,∨,¬, 0, 1, /, \) may be
written as (B, /, \) if we have already mentioned that it is a Boolean
algebra.

• The kernel of a homomorphism f will be denoted ∼f .

• We often switch from talking about topological algebras to the underlying
algebras or even to the underlying sets. This is expected to be clear from
the context, so we omit explicit reference to forgetful functors in diagrams
and proofs.

• Stone spaces may be seen as Priestley spaces with a discrete ordering,
and we freely treat them as such without making it explicit every time.
In the same way, finite algebras may be seen as finite topological algebras
with a discrete topology and we do not always include the topology in
the signature explicitly.

• Set theoretic complements are written as a unary operation ( )C , to
avoid overuse and ambiguity of the \ symbol. However, we do still use /
to symbolize quotienting by a congruence, and this distinction should be
clear from context as we choose to denote congruences in such a way that
they may not be confused with elements in the domain of a residuation
operation.
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NOTATION vii

• Usually, the same notation will be used for a function and its restriction
to an underlying set, unless we choose to make this explicit for clarity.
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Chapter 1

Introduction

Formal language theory is a rich field at the intersection of computer science,
mathematics and linguistics. Formal languages are purely syntactic construc-
tions; in the traditional case they are collections of strings made up of char-
acters from some finite alphabet. A language may be specified by various
structures such as automata, formal grammars, regular expressions or sen-
tences in formal logics. Given a specified language, such structures let us test
whether a word or string belong to that language. A standard application is
the parsing of computer code, where the compiler has to recognise if a string
of code belongs to the programming language it is built to recognise.

The notion of recognition is central to this study. An algebraic approach
to language theory headed by Eilenberg added monoids to the pool of struc-
tures which capture language recognition. The languages recognised by finite
monoids are exactly the regular (or “recognisable”) languages, those which
can be specified by a finite state automaton, regular grammar or regular ex-
pression. Although all of these structures recognise the same languages, the
algebraic tools from monoid theory have made a significant contribution. A fa-
mous example is Schutzenburger’s theorem [27], which gives a condition which
allows one to compute whether a language is “star-free”, i.e. can be recognised
by a regular expression which does not feature the Kleene star. This previ-
ously unsolved problem now boils down to checking whether a finite monoid
is aprediodic.

Many other such instances were studied, but the phenomenon was captured
more generally by Eilenberg’s variety theorem ([10]) which demonstrates that
there is a one-to-one correspondence between certain subclasses of regular lan-
guages and certain classes of finite monoids, which sometimes have a finite
decidable characterization in terms of equations. The relevant collections of
finite monoids are pseudovarieties, which have their own rich theory akin to
Birkhoff’s varieties in universal algebras. The study of pseudovarieties of fi-
nite monoids has an important role in finding the right characteristics of the
monoids which are of interest, such as the condition of aperiodicity in the

1

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 2

Schutzenburger case. A famous result by Reiterman [25] (although the pre-
sentation in this work is due to more recent treatments such as [21]) gives a
kind of “equational” theory for pseudovarieties of monoids via pseudoidentities.
Pseudoidenties are pairs of “profinite words” which live in the pro-completion
of the monoid of words on our fixed alphabet. The sets of pseudoidentities
that correspond to pseudovarieties are known as profinite theories.

This two-fold connection between Eilenberg classes of regular languages
and profinite theories has been identified as an instance of Stone duality, a
well-known dual equivalence of categories between Boolean algebras and Stone
spaces. It was shown by Gehrke and Pin (although it should be mentioned
that the first investigation of the stone dual of the Boolean algebra of regular
languages on a finite alphabet was done by Pippenger) that the Eilenberg
varieties of languages and profinite theories are dual to each other with respect
to an extended version of Stone duality, and this gives us a direct insight
into the connection between recognisable languages and pseudoidentities which
bypasses the reliance on recognition by monoids.

In this work, we present some background on algebraic language theory, the
theory of pseudovarieties and extended Stone duality so as to provide a more
self-contained account of the work relevant to the contributions of Gehrke et al.
in [14], [13] and [11], so far as is relevant to the case of traditional recognisable
languages. We delve into particular detail and provide independent proofs of
the Galois connections which have been shown to form the bridging connection
between Eilenberg’s language varieties and profinite theories.

The paper is organised as follows: In the first chapter, we provide a se-
lected background on the algebraic approach to formal language theory which
leads up to Eilenberg’s variety theorem. In the second chapter, we showcase
the connection between pseudovarieties and profinite algebras, culminating in
Reiterman’s characterisation of pseudovarieties in terms of pseudoidentities.
In the third chapter, we sketch the relevant parts of the duality theories that
have led to a direct bridge between Eilenberg’s language varieties and profinite
theories. We give independent proofs for the crucial Galois correspondences
underlying this bridging observation, and provide an exposition on Gehrke,
Gregorieff and Pin’s ([14],[13],[12]) ensuing work on the equational theory of
regular languages [14].
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Chapter 2

Algebraic Language Theory

2.1 Algebraic Formulation of Recognition

Traditionally, recognition in language theory is defined in terms of finite state
automata or regular expressions. We will work with the definition of recog-
nition in terms of finite monoids (see [20, Chapter IV] for a proof that the
definitions are equivalent). Either way, recognisable languages are essentially
those that have some form of finite representation, be it through a finite state
machine, a regular expression or a monadic second order sentence [7]. The
algebraic approach grew out of the study of syntactic monoids. This was
spearheaded by Schutzenburger, Myhill, Rabin and Scott [24]. Many develop-
ments arose from the algebraic approach, especially pertaining to connections
between membership of certain classes of recognisable languages and corre-
sponding algebraic properties of their syntactic monoids. A famous result is
that of Schutzenburger [27], which observed a correspondence between star-free
languages and aperiodic monoids. Several such correspondences were studied
before Eilenberg famously characterised these connections and captured them
in greater generality, and his theorem is the key result of this chapter.

For a finite set A of symbols, which we will henceforth refer to as an
alphabet, any finite sequence of symbols is called a word. For the purpose
of our discussion, throughout this work we arbitrarily fix a countable set of
symbols A = {a1, a2, . . . , an, . . .}. Without loss of generality, every time we
refer to any alphabet A, we default to A being a subset of A of equal size.

For a fixed alphabet A, the free monoid (A∗, ·) may be seen as the monoid
of words, with the product operation being concatenation of words. The empty
word, which we will denote by 1, is the identity of the concatenation operation.

Definition 2.1.1. A language for an alphabet A is any subset L ⊆ A∗.

Definition 2.1.2. A language L ⊆ A∗ is said to be recognised by a finite
monoid M if there exists a homomorphism σ : A∗ → M and a subset P ⊆ M

3
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CHAPTER 2. ALGEBRAIC LANGUAGE THEORY 4

such that L = σ−1[P ]. If there exists a finite monoid that recognises some
language L, then L is said to be recognisable.

Remark 2.1.3. When L is recognised by a monoid M , we often also say that
it is recognised by the homomorphism σ.

Lemma 2.1.4. A language L is recognisable if and only if it can be recognised
by a surjective monoid homomorphism σ : A∗ →M

Proof. If L is recognisable, the image of the existing monoid homomorphism
σ : A∗ →M is again a finite monoid, and it recognises L because L = σ−1[P ] =
σ−1[P ∩ σ[A∗]] and P ∩ σ[L] ⊆ σ[A∗].

Remark 2.1.5. In this case, we say that L is fully recognised by σ.

2.2 Properties of Recognition

For the rest of this subsection, we fix an arbitrary alphabet A.

Definition 2.2.1. The set of all recognisable languages of A∗ is calledRec(A∗).

Lemma 2.2.2. The subset Rec(A∗) contains ∅ and A∗, and is closed under
finite intersections, finite unions and complementation, so that it is a Boolean
subalgebra of P(A∗).

Proof. The sets ∅ and A∗ are recognised by the trivial monoid, so both are
in Rec(A∗). Let L1, L2 be recognisable languages. Thus there exist monoids
M1,M2, monoid homomorphisms σ1 : A∗ → M1 and σ2 =: A∗ → M2 and
subsets P1 ⊆M1, P2 ⊆M2 for which L1 = σ−1[P1] and L2 = σ−1[P2].
The language L1 ∩ L2 is recognised by σ : A∗ →M1 ×M2, the monoid homo-
morphism induced by the universal property of products, because

L = σ−1[P1 × P2].

The language L1 ∪ L2 is recognised by σ as well, because

L = σ−1[(M1 × P2) ∪ (P1 ×M2)].

The language (L1)C is recognised by σ1, since

(L1)C = σ−1[(P1)C ].

Thus, each of these languages is recognisable and Rec(A∗) is closed under the
Boolean operations.
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CHAPTER 2. ALGEBRAIC LANGUAGE THEORY 5

The binary operation on any monoid (M, ·) (including the concatenation
operation on (A∗, ·)) lifts to a binary operation on P(M) given by

K · L = {v · w | v ∈ K,w ∈ L}
for K,L ⊆ M . Furthermore, there exist binary operations /, \ : P(M) ×
P(M)→ P(M) such that

H ·K ⊆ L ⇐⇒ K ⊆ H\L ⇐⇒ H ⊆ L/K

for H,K,L ⊆ M . These operations / and \ are called the right and left
residuals of the lifted binary operation: we discuss residual operations in more
detail in chapter 4. In this context, they are given, for K,L ⊆ A∗, by:

K\L = {w ∈ A∗ | ∀v ∈ K(v · w ∈ L)}
L/K = {w ∈ A∗ | ∀v ∈ K(w · v ∈ L)}.

The Boolean algebra Rec(A∗) happens to be closed under these operations on
P(A∗). In fact, it is closed with respect to these operations with respect to
residuation by arbitrary subsets of A∗. The proofs of the next two results are
from [11].

Lemma 2.2.3. The Boolean algebra Rec(A∗) is closed under the left and right
residuals of the lifted concatenation operation on P(A∗) with respect to arbi-
trary subsets of A∗. Namely, for any L ∈ Rec(A∗) and any K ⊆ A∗, we have
K\L ∈ Rec(A∗) and L/K ∈ Rec(A∗).
Proof. Suppose L ∈ Rec(A∗), so that it is recogised by a surjective monoid
homomorphism σ : A∗ → M . For any K ⊆ A∗, σ also recognises K\L and
L/K, since σ−1[σ[K]\P ] = K\σ−1[P ] = K\L and σ−1[P/σ[K]] = σ−1[P ]/K =
L/K.

Lemma 2.2.4. A sublattice C ⊆ Rec(A∗) is closed under the left and right
residuals of the lifted concatenation operation on P(A∗) with respect to arbi-
trary subsets of A∗ if and only if it is closed under the left and right resid-
uals with respect to singletons, namely for any w ∈ A∗, {w}\L ∈ C and
L/{w} ∈ C.

Proof. Assuming the same set-up as in the previous proof, note that K\L =
σ−1[σ[K]\P ] and σ[K]\P =

⋂
v∈K σ(v)\P =

⋂
v∈K′ σ(v)\P for some finite

subset K ′ ⊆ K (since σ[K] ⊆M is finite). Hence,

K\L = σ−1[
⋂
v∈K′

σ(v)\P ]

=
⋂
v∈K′

σ−1[σ(v)\P ]

=
⋂
v∈K′

v\L.

The result follows.
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CHAPTER 2. ALGEBRAIC LANGUAGE THEORY 6

Lemma 2.2.5. Let A, B be two alphabets. If h : A∗ → B∗ is a homomorphism,
then L ∈ Rec(B∗) implies that h−1[L] ∈ Rec(A∗). In other words, Rec( ∗) is
closed under inverses of homomorphisms.

Proof. Suppose that σ : B∗ → M recognises L, so that L = σ−1[P ] for some
P ⊆ M . Then the language h−1[L] ⊆ A∗ is recognised by the the composite
σ ◦ h : A∗ →M , since h−1[L] = h−1[σ−1[P ]].

2.3 Syntactic Monoids and Pseudovarieties

Definition 2.3.1. Let L ∈ Rec(A∗). We may define a congruence ∼L on A∗

by
v ∼L w if and only if ∀x,y∈A∗(x · v · y ∈ L ⇐⇒ x · w · y ∈ L).

Then M(L) := A∗/ ∼L is called the syntactic monoid of L., and ∼L is called
the syntactic congruence of L. The quotient homomorphism ρL : A∗ →M(L)
is called the syntactic morphism.

This is easily seen to be a congruence, and the syntactic monoid plays a crucial
role in recognition.

Lemma 2.3.2. For a language L ∈ Rec(A∗), the syntactic congruence satu-
rates L, in the sense that L is equal to a union of congruence classes. As a
consequence, if the syntactic monoid is finite, it recognises L.

Proof. For each w ∈ L, if v ∼L w for any v ∈ A∗, then 1 · v · 1 ∈ L ⇐⇒
1 · w · 1 ∈ L. Hence, L =

⋃
w∈L ρL(w) and L = ρ−1

L [ρL[L]]. It follows that if
M(L) is finite, then L is recognised by it.

Lemma 2.3.3. Let L ∈ Rec(A∗) and let σ : A∗ → N be a surjective monoid
homomorphism with N being a finite monoid. Then σ recognises L if and
only if there exists a surjective homomorphism φ : N → M(L) such that the
following diagram commutes:

A∗ N

M(L)

σ

ρL
φ

Proof. Suppose that σ recognises L. We show that ker(σ) ⊆ ker(ρL): to this
end, let (v, w) ∈ ker(σ). Recall that L = σ−1[P ] for some P ⊆ N . For any
x, y ∈ A∗, x · v · y ∈ σ−1[P ] ⇐⇒ x · w · y ∈ σ−1[P ], since σ(v) = σ(w). As a
consequence, we get a surjective homomorphism φ as desired.
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CHAPTER 2. ALGEBRAIC LANGUAGE THEORY 7

On the other hand, assume that such a φ already exists. Then L is
recognised by N , since L = ρ−1

L [P ] for some P ⊆ M(L) and thus L =
σ−1[φ−1[P ]].

Corollary 2.3.4. A language L ⊆ A∗ is recognisable if and only if its syntactic
monoid is finite.

Definition 2.3.5. We say that a monoid M divides a monoid N (denoted
M ≺ N) if and only if M is the quotient of a submonoid of N .

Corollary 2.3.6. The syntactic monoid divides every finite monoid which
recognises L.

Proof. This is a consequence of lemma 2.3.3 and the observation in the proof
of lemma 2.1.4, where it is observed that any monoid recognising a language
L has a submonoid which fully recognises it.

Syntactic monoids provide a canonical way of associating a finite monoid to
a recognisable language, and they are a key component of Eilenbergs theorem.
This theorem connects certain collections of recognisable languages with classes
of monoids called pseudovarieties, which we now define. These are analogous to
varieties in unviversal algebra; the latter being closed under arbitrary products
ensures that no variety contains only finite algebras. Restricting this condition
to closure under finite products yields the notion of pseudovarieties.

Definition 2.3.7. A pseudovariety of finite algebras of a given signature is
a class of finite algebras closed under subalgebras, homomorphic images and
finite (including empty) products.

We restrict our attention to monoids for the purposes of language theory.
Much more will be said on the subject of pseudovarieties in 3, but we include
certain results here which are required for the Eilenberg theorem.

Definition 2.3.8. Let M be a set of finite monoids. The pseudovariety gen-
erated by M, denoted 〈M〉, is the smallest pseudovariety containing each
monoid in M.

Lemma 2.3.9. [20, XI, Proposition 1.1] A monoid belongs to the pseudova-
riety 〈M〉 if and only if it divides a finite product of monoids from M.

2.4 Varieties of Languages and Eilenberg’s

Theorem

The closure properties we have observed for Rec(A∗) are exactly the conditions
required to describe the collections of recognisable languages that correspond
to pseudovarieties of finite monoids. These are Eilenberg’s varieties of lan-
guages.
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CHAPTER 2. ALGEBRAIC LANGUAGE THEORY 8

Definition 2.4.1. A mapping A 7→ C(A) where C(A) ⊆ Rec(A∗) for finite
alphabets A is called a variety of languages if and only if

1. C(A) is a Boolean subalgebra of Rec(A∗),

2. C(A) is closed under the operations {w}\L and L/{w} for every L ∈ C(A)
and w ∈ A∗, and

3. C is closed under inverses of homomorphisms, in the sense that if A,B
are alphabets and h : A∗ → B∗ is a homomorphism, then L ∈ C(B)
implies that h−1[L] ∈ C(A).

We include one technical lemma on varieties of languages that is relevant
to Eilenberg’s theorem:

Lemma 2.4.2. [20, Lemma XIII.4.11] Let C be a variety of languages and let
L ∈ Rec(A∗) for some alphabet A. Then for every m ∈M(L), ρ−1

L (m) belongs
to C(A).

This version of the proof of Eilenberg’s theorem (which essentially com-
prises the remainder of this section) is from [20], although the original source
for the theorem is [10].

We begin by describing two mappings which will be shown to be mutually
inverse bijections. Given any pseudovariety V of finite monoids,

V 7→ CV

assigns to it a variety of languages of follows: For each alphabet A, CV(A) is
defined to be the set of all languages L ⊆ Rec(A∗) for which M(L) ∈ V. On
the other hand, given any variety of languages C,

C 7→ VC

assigns to it the pseudovariety generated by the collection of syntactic monoids:
that is to say, all monoids M(L) so that L ∈ C(A) for some finite alphabet A.

Lemma 2.4.3. For a pseudovariety of monoids V, CV is a variety of lan-
guages.

Proof. For any fixed alphabet A, let L1, L2, L ∈ CV(A). By inspection of
the proof of lemma 2.2.2, we see that L1 ∩ L2, L1 ∪ L2 will be recognised by
products of the syntactic monoids M(L1) and M(L2), and LC is recognised
by the syntactic monoid M(L). Because V is a pseudovariety, each of these
recognising monoids is contained in V.

Now let w ∈ A∗. Then {w}\L and L/{w} are recognised by the syntactic
monoid M(L), by the proof of lemma 2.2.3. A monoid recognising a language
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CHAPTER 2. ALGEBRAIC LANGUAGE THEORY 9

is in a pseudovariety V if and only if its syntactic monoid is in V (as a conse-
quence of theorem 2.3.6), so the syntactic monoids of each of these languages
will be contained in V. It follows that L1 ∩ L2, L1 ∪ L2 and LC will be in
CV(A).

Lastly, suppose that h : A∗ → B∗ and L ∈ CV(B). Then syntactic monoid
M(L) is in V, and we have seen in lemma 2.2.5 that the same monoid recognises
h−1[L]. Once again, this implies that M(h−1[L]) ≺M(L), so that M(h−1[L]) ∈
V and thus h−1[L] ∈ CV(A).

Theorem 2.4.4. The mapping V 7→ CV is injective.

Proof. Let V and W be pseudovarieties of finite monoids. We show that
V ⊆W if and only if CV(A) ⊆ CW(A) for every alphabet A.

The forward implication easily follows from the definitions; if for L ∈
Rec(A∗), M(L) ∈ V, then clearly M(L) ∈ W. For the converse, by propo-
sition XIII.4.8 in [20], there exists a finite alphabet A and a finite set of
languages L1, . . . , Ln ∈ CV(A) such that M is (up to isomorphism) a sub-
monoid of M(L1) × . . . ×M(Ln). Then L1, . . . , Ln ∈ CW(A) as well, so that
M ∈W.

As a consequence, V = W ⇐⇒ CV(A) = CW(A), so that the given map
is injective.

Theorem 2.4.5. The mappings V 7→ CV and C 7→ VC give a mutually inverse
bijective correspondence between pseudovarieties of finite monoids and varieties
of languages.

Proof. From theorem 2.4.4, we already know that the map V 7→ CV is injective.
To show that it is also surjective, let C be a variety of languages. Let D := CVC .
We will prove that C = D, so that C is in the image of the aforementioned
map. For every alphabet A, C(A) ⊆ D(A). Given L ∈ C(A), M(L) belongs to
VC by definition. Again by definition, L therefore belongs to D.

It remains to show that D(A) ⊆ C(A). To this end, let L ∈ D(A). From the
way D was defined, M(L) ∈ VC. Now since VC is generated by the collection
of all the syntactic monoids of C, there must exists alphabets A1, . . . , An and
n languages Li ⊆ Ai such that M(L) divides the monoid M := M(Li)× . . .×
M(Ln). Therefore there exists submonoid T of M of which M(L) is a quotient.
By lemma 2.3.3, T recognises L, so there exists a surjective monoid morphism
σ : A∗ → T and a subset P ⊆ T such that L = σ−1(T ). Note that each s ∈M
is equal to (s1, . . . , sn) with si ∈ M(Li). Let σi = πi ◦ σ and let ρi denote
the syntactic morphism ρi : A∗i → M(Li). Since each ρi is surjective, we may
define a monoid homomorphism ψi : A∗ → A∗i by mapping w ∈ A∗ to any
element in the non-empty set ρ−1

i (σi(w)). Then ρi ◦ ψi = σi. In summary, we
have the following commutative diagram:
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A∗ A∗i

T ⊆M M(Li)

σ
σi

ψi

ρi

πi

If we show that σ−1(s) ∈ C(A) for every s ∈ P , then because C(A) is a
lattice and T is finite, this will show that

L = σ−1[P ] =
⋃
s∈P

σ−1[P ]

is also in C(A). Fix any s ∈ P , and recall that (s1, . . . , sn) for some si ∈M(Li),
and so {s} =

⋂
1≤i≤n π

−1
i (si). By the commutativity of the above diagram,

σ−1(s) =
⋂

1≤i≤n

σ−1[π−1
i (si)]

=
⋂

1≤i≤n

σ−1
i (si).

Once again, closure under finite intersections means that we need only show
that for every 1 ≤ i ≤ n, we have σ−1

i (si) ∈ C(A).
Using the definition of σi, we know that σ−1(s) = ψ−1

i (ρ−1(si)). Since C
is closed under inverse morphisms, it will suffice to show that ρ−1

i (si) ∈ C for
each 1 ≤ i ≤ n. This follows from lemma 2.4.2.
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Chapter 3

Profinite Algebras and
Reiterman’s Theorem

3.1 Motivation and Construction of Profinite

Algebras

By Birkhoff’s theorem, varieties of algebras have characterisations in terms
of sets of identities given by pairs of elements of a term algebra with respect
to a fixed finitary algebraic type [4]. There is no immediate analogue for
Birkhoff’s theorem for pseudovarieties of finite algebras, as identities are no
longer enough to distinguish them. It is straightforward that all the finite
members of a variety constitute a pseudovariety (which is thus an equational
class of finite algebras), but the converse is not necessarily true [3].

It is possible to construct an object which plays the role of a “free alge-
bra” with respect to pseudovarieties. Its elements are generalized terms, pairs
of which are referred to as “pseudoidentities”. The project of this chapter is
to present these constructions and the ensuing Birkhoff-like theorem (due to
Reiterman in [25]) for pseudovarieties.

The appropriate construction is that of a certain cofiltered limit, which will
exhibit exactly the behaviour we would expect of such a free object. Pseudova-
rieties of finite algebras are not in general closed under cofiltered limits, and
therefore it is necessary to introduce the pro-completion of a category.

Definition 3.1.1. Let C be a category. A pro-object in C is a cofiltered
limit on C. The category Pro-C) of all the cofiltered limits of C is called the
pro-completion of C.

The reader is referred to [17] for a proof of the existence of the pro-
completion of a category, as well as for the proofs of two upcoming results

11
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which imply that we may work in the setting of topological algebras when
talking about objects in the pro-completion of a pseudovariety.

Note. For the up-coming discussion, we will fix an algebraic type F and a
variety of F -algebras V . Henceforth, by an “algebra” we mean a member of
V . We denote by Vf the category of its finite members.

Definition 3.1.2. A topological algebra is a topological space (X,Ω) such
that X is also an algebra whose operations f : Xn → X are continuous with
respect to the product topology on Xn. A topological algebra morphism is a
continuous homomorphism between topological algebras. A substructure of a
topological algebra is a subspace that is also a subalgebra.

Note. It is sufficient for us to work in the setting of Hausdorff topological
algebras. For brevity of notation, we will henceforth assume all the topological
algebras are Hausdorff.

A Stone-topological algebra is a topological algebra whose underlying topo-
logical space is a Stone space. The following two results establish an interesting
connection between objects in the pro-completion of a category of finite alge-
bras and Stone-topological algebras.

Proposition 3.1.3. [17] The pro-completion of the category Setf of finite sets
(denoted Pro-Setf) is the category Stone of stone spaces.

In light of the previous result, the next should be unsurprising:

Proposition 3.1.4. [17] The category Pro-Vf is equivalent to a full subcate-
gory of Stone-V.

Remark 3.1.5. For certain algebraic varieties such as monoids, groups and
lattices, it so happens that Pro-Vf is exactly equivalent to Stone-V , but this
is not in general true. There are various characterisations of algebras that
satisfy this property, such as [9, section 8].

We will thus treat Pro-Vf as a category of topological algebras, which
allows for the following definition:

Definition 3.1.6. A topological algebra is said to be profinite if it belongs to
Pro-Vf , which is to say that it is a cofiltered limit of objects in Vf considered
as topological algebras with the discrete topology.

Note. In the ensuing discussion on profinite structures, “finite algebra” will
often be considred shorthand for a finite topological algebra with the discrete
topology.

Cofiltered limits of topological algebras can be constructed as substructures
of products, so we first recall the product construction.
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Proposition 3.1.7. Let (Xi)i∈I denote an indexed family of topological alge-
bras of type F . We can define operations for each f ∈ F on the topological
space X =

∏
i∈I Xi such that X is also their product as a topological algebra.

Proof. For an n-ary operational symbol f , we define fX : Xn → X as follows.
Firstly, consider the diagram below and for each i ∈ I denote by ki the unique
continuous map that makes the square commute (arising from the universal
property of the product Xn

i ).

Xn Xn
i

X Xi

ki

π
(Xn)
j π

(Xni )

j

πi
i ∈ I, j ∈ {0, 1, ..., n}.

Likewise, define fX to be the unique continuous map that makes the sub-
sequent diagram commute, arising from the universal property satisfied by X.
Commutativity of this diagram also ensures that each of the projections πi is
a homomorphism.

Xn Xn
i

X Xi

ki

fX fXi

πi

i ∈ I.

Lastly, given a topological algebra P and continuous homomorphisms hi :
P → Xi, we need to show that the continuous map h : P → X induced
by the universal property of X as a product of topologial spaces is an F -
algebra homomorphism. This amounts to showing that the upper square in
the diagram below commutes, which is to say that for (a1, ..., an) ∈ P n we have
that h(fP (a1, ..., an)) = fX(h(a1), ..., h(an)). This follows by composing each
side with the projection πi for each i ∈ I, observing that the bottom triangle
commutes and that both πi and hi are homomorphisms.
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P n Xn

P X

Xi

fP fX

h

hi πi

The literature on profinite topological algebras usually refers to inverse
(or projective) limits rather than cofiltered limits. It has been shown (for
example in [1]) that these terms can be used interchangeably, since each in-
verse/projective system is a cofiltered diagram and every cofiltered diagram
can be composed with a functor from a co-directed (also known as down-
directed) poset with the same limit in the codomain category.

Definition 3.1.8. An inverse system in a category C is a contravariant di-
agram D : I → C such that I is a directed poset, considered as a category.
Equivalently, it is a covariant diagram D : I → C where I is a co-directed
poset. An inverse limit is the limit of an inverse system.

Note. For simplicity, we often conflate the diagram with the image of the dia-
gram, denoting an inverse system or directed system as a collection of objects
and leaving the morphisms implied.

The dual concept is of use later in this work and we provide the definition
here. Note that a direct limit is in fact a colimit categorically speaking, but
we stick with this nomenclature to keep in step with the algebraic literature.

Definition 3.1.9. A direct system in a category C is an inverse system in Cop.
Likewise, a direct limit in a category C is an inverse limit in Cop, which is a
colimit of a direct system in C.

The following construction of inverse limits of topological algebras gives
in particular a concrete description of the objects in Pro-Vf as topological
algebras.

Proposition 3.1.10. Let I be a directed poset and (Xi)i∈I an inverse system
of topological algebras. The inverse limit can be constructed as the following
subalgebra of the topological algebra product:

lim←−(Xi)i∈I = {(xi)i∈I ∈ X | ∀i ≥ j φi,j(xi) = xj},

where X =
∏

i∈I Xi.
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Proof. Let P denote the set above, equipped with the subspace topology. To
show that P is also a subalgebra, let f ∈ F with arity n and let

(x
(1)
i )i∈I , ..., (x

(n)
i )i∈I

be elements of P . By definition,

fX((x
(1)
i )i∈I , ..., (x

(n)
i )i∈I) = (fXi(x

(1)
i , ..., x

(n)
i ))i∈I .

Since for each i ≥ j we have that φi,j is a homomorphism and φi,j(x
(k)
i ) = x

(k)
j ,

it follows readily that φi,j(f
Xi(x

(1)
i , ..., x

(n)
i )) = fXj(x

(1)
j , ..., x

(n)
j ). Hence, P is a

subalgebra. From the definition it follows that P together with the restricted
projection morphisms (easily shown to be continuous homomorphisms) give a
cone over the inverse system in the sense that for every i ≥ j, diagram (a)

(a)

P

Xi Xj

φi,j

(b)

C

h(C)

X

Xi Xj

h

hi hj
πi πj

πi πj

φi,j

commutes. To show that this construction is universal, consider any other
such cone (hi : C → Xi)i∈I . Denote by h : C → X the unique continuous
homomorphism into X arising from its universal property as a product. The
image of h lies entirely in P , as can be shown by chasing elements of h(C)
around diagram (b). Since πi|P agrees with πi on elements of h(C), we get the
commutativity of the diagram required to assert that P is indeed the limit,
considering h as a morphism from C to P .

Definition 3.1.11. Inverse limits of an inverse system of finite topological
algebras are called profinite topological algebras or just profinite algebras. If
we fix a pseudovariety V of finite algebras, the limits of inverse systems of its
members are called pro-V algebras.
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Remark 3.1.12. From the preceding proof it can be deduced that P is also
the limit of the inverse system acquired by taking the projections (πi(Xi))i∈I .
Hence, we may assume without loss of generality that the projection mappings
from a given profinite algebra are surjective.

Remark 3.1.13. The underlying algebra of any profinite algebra belongs to
the same variety as the members of the inverse system used to construct it,
because it is a subalgebra of a product. For example, we are therefore justified
in calling an inverse limit of finite monoids a profinite monoid, as Birkhoff’s
variety theorem ensures that it will satisfy all of the same identities.

3.2 Properties of Profinite Algebras

We now mention a few useful properties of profinite algeras. For this section,
we fix a profinite algebra P which is the limit of an inverse system (Xi)i∈I of
finite algebras, with πi : P → Xi denoting the projection morphisms.

Lemma 3.2.1. The topology of P has a basis consisting of sets of the form
π−1
i (V ) for all open V ⊆ Xi.

Proof. Recall that if we were not to restrict the projection morphisms to P ,
this collection would form a subbase for X =

∏
i∈I Xi. It follows that the

above-mentioned sets are a subbase for P . The fact that I is directed implies
that for every open U ⊆ P and

⋂
i∈F π

−1
i (Vi) ⊆ U (where F ⊆ I is finite), we

can find Xk with i ≤ k from which we can construct V =
⋂
i∈F φ

−1
i,k (Vi). so

that π−1
k (V ) =

⋂
i∈F π

−1
i (Vi) ⊆ U .

Proposition 3.2.2. Profinite algebras are Stone spaces.

Proof. The inverse limit P is always a closed substructure of X =
∏

i∈I Xi.
To show this, note that for every x = (xi)i∈I 6∈ P there exist i ≥ j such that
φi,j(xi) 6= (xj). This allows for the construction of a neighborhood of x disjoint
from P , namely

Vx = π−1
i (Xi \ φ−1

i,j ({xj})).

Profinite algebras are inverse limits where all of the Xis are finite. By Ty-
chonoff’s theorem, their product is compact and thus the corresponding sub-
space is also. As a subspace of a product of Hausdorff spaces, P is again
Hausdorff. That P has a basis of clopen sets follows from the previous lemma,
as each πi is a continuous map to a finite topological algebra with the discrete
topology, so that every basic open set is clopen.

Remark 3.2.3. It follows that a pro-V algebra P is also the limit of the same
inverse system in the smaller category of Stone-topological algebras from our
fixed algebraic variety.
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Lemma 3.2.4. Let g : A → B and h : A → C be topological algebra homo-
morphisms such that h is surjective and A is compact. If ∼h⊆∼g, then there
exists a continuous homomorphism k : C → B such that k ◦ h = g.

Proof. A homomorphism exists by an analogous result in universal algebra. We
show that it is also continuous. To this end, consider a closed subset X ⊆ B.
From the surjectivity of h, it can be checked that k−1(X) = h(g−1(X)). By
the compactness of A, g−1(X) is compact because it is closed. By continuity
of h, we see that h(g−1(X)) is a compact subset of the Hausdorff space C and
hence closed.

Lemma 3.2.5. Let P be a profinite topological algebra. Every continuous
homomorphism g : P → T to finite algebra T factors through one of the
πi : P → Xi.

Proof. [21] Let ∼g and ∼i denote the congruences on P corresponding to g
and each πi. Because we have assumed topological algebras to be Hausdorff,
each is a closed subalgebra of P × P . Furthermore, it can be shown that
C := P × P\ ∼g is closed. This is a consequence of the fact that singletons
are open in the discrete space T , so that for (x, y) ∈ P × P we have that
g−1(g(x))× g−1(g(x)) is an open neighborhood of (x, y) contained in ∼g. Now
consider the closed set

⋂
i∈I(∼i), which is easily seen to be exactly the diagonal

on P × P so that C ∩
⋂
i∈I(∼i) = ∅. By the compactness of P , we can find

a finite subset F ⊆ I such that C ∩
⋂
i∈F (∼i) = ∅. Since I is directed, there

exists j ∈ I which is an upper bound to every i ∈ F . This in turn implies
that ∼j⊆∼i for every i ∈ F following from the definition of P , and finally
∼j⊆

⋂
i∈F (∼i) ⊆∼g. By lemma 3.2.4, we get a continuous homomorphism

gj : Xi → T such that gj ◦ πj = g.

3.3 Free Pro-V Algebras

We turn now to the construction of the free profinite algebra over a finite set
(which we sometimes refer to as an alphabet to maintain the connection with
formal language theory). More generally, we construct a free Pro-V algebra
for some pseudovariety V of finite V-algebras, which we now fix. Finite sets
are all that is needed to present the upcoming Birkhoff-like theorem, but note
that this can be generalised to free profinite algebras over profinite sets ([21]).

Definition 3.3.1. Let A be a finite set. Consider the category of all set mor-
phisms σ : A → Xσ from A to A-generated members of V, so that the sub-
algebra generated by σ(A) is exactly Xσ. Let the morphisms of this category
be the algebra homomorphisms φσ,τ : Xσ → Xτ for which τ = φσ,τ ◦ σ. Any
two homomorphisms for which this holds must be equal, for they will agree on
the generators of Xσ. Hence, this category is a preorder. It is also co-directed,
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with pairwise lower bounds given as follows: For any pair σ : A → Xσ and
τ : A→ Xτ , there is a set map θ : A→ Xσ ×Xτ given by the restriction to A
of the homomorphism θ : FA(V) → Xσ × Xτ which arises from the universal
property of the product construction. The image of this map is the required
A-generated finite algebra.

By taking the subcategory of only those Xσ which are exactly the distinct
finite quotients by a congruence of FA(V) (which we can always get by quoti-
enting by the kernel of σ), we obtain a skeletal subcategory which we denote
VA and thus we effectively have a co-directed poset.

The diagram sending σ : A → Xσ to Xσ and φσ,τ to itself is therefore an
inverse system, roughly illustrated below:

. . .

Xτ

Xσ . . .

. . .

φσ,τ

Figure 3.1: The constructed inverse system of finite topological monoids.

We define F̂A(V) to be the limit of this diagram in the category of topolog-
ical algebras, and refer to it as the free pro-V algebra over A. When V = Vf ,
we call it the free profinite algebra over A. We denote by ρσ the respective
projections of this limit.

Proposition 3.3.2. The free algebra FA(V) is isomorphic to a dense subalge-
bra of the free pro-V algebra F̂A(V).

Proof. Let i : A → F̂A(V) denote the map defined by a 7→ (σ(a))σ. If V is
non-trivial, there exists an algebra of size greater than that of A. Hence it is
possible to find an injective map to an algebra in V, and the map from A to the
subalgebra generated by this map is (up to isomorphism) in VA. Injectivity
of this map implies that i is also injective. By the universal property of the
free algebra FA(V), there exists a homomorphism i : FA(V) → F̂A(V) which
uniquely extends i in the manner that i ◦ j = i, where j is the usual inclusion
map from A into FA(V). It can be seen that i is a dense embedding. That it is
injective follows because both i and j are, and because i is a homomorphism.
To show that it is dense, consider x ∈ F̂A(V) and any open U containing x.
From the description of the basis in 3.2.1, for some σ : A→ Xσ there is a basic
open set ρ−1

σ (V ) for some open V ⊆ Xσ, with x ∈ ρ−1
σ (V ). For this σ, we get

the usual unique homomorphic extension σ : FA(V) → Xσ. We can see that
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FA(V)

FA(V)

A Xσ

σ

i

i

j

σ

ρσ ◦ i = σ by the commutativity of the rest of the below diagram (considered
in Set), as the two homomorphisms agree on the generators of FA(V).

Since Xσ is A-generated, σ is surjective and thus there exists a ∈ FA(V)
such that σ(a) = πσ(x). From this it follows that ρσ ◦ i(a) = σ(a) = ρσ(x), so
that i(a) ∈ ρ−1

σ (πσ(x)). Taking note that ρ−1
σ (ρσ(x)) ⊆ ρ−1

σ (V ), this completes
the proof that i(FA(V))∩ ρ−1

σ (V ) 6= ∅, so that i(FA(V) is dense in F̂A(V).

Lemma 3.3.3. The projection morphisms ρσ : F̂A(V) → Xσ are always sur-
jective.

Proof. For σ : A → Xσ in VA, by the definition of i as above it is clear that
ρσ ◦ i = σ̂. The homomorphism σ = ρσ ◦ i as they agree on generators. Then
ρσ is surjective because ρσ ◦ i is.

The free pro-V algebra on a set satisfies the following property, which
states that it is universal among A-generated pro-V algebras. Note first how
the definition of being generated by a finite set differs for topological algebras.

Definition 3.3.4. A topological algebra X is said to be generated by a finite
set A if there exists a homomorphism σ : FA(V) → X such that the image of
σ is topologically dense in X.

Proposition 3.3.5. Let σ : FA(V)→ P be a homomorphism generating a pro-
V algebra P . Then there exists a unique surjective continuous homomorphism
σ̂ : F̂A(V)→ P such that such that σ̂ ◦ i = σ.

Proof. The following diagram is included for clarity, but its commutativity will
be the result of this proof.
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F̂A(V)

FA(V) P

A Xi

σ̂

ρi

σ

i

πi

i

j

σi

By definition, P is the limit of some inverse system (Xi)i∈I of finite algebras
in V. Let σi : FA(V)→ Xi denote πi◦σ. This map is surjective, as can be seen
by recalling that we may assume πi to be surjective and observing that for each
x ∈ P , we have that π−1

i (πi(x))∩ σ(FA(V)) 6= ∅ by the density of the image of
σ in P . Hence, each Xi is an A-generated algbera so that σi : A → Xi is (up
to isomorphism) in VA, as described in the above construction of F̂A(V). We
therefore have access to the canonical projections ρσi (which we denote here
by ρi). These projections constitute a cone over (Xi)i∈I , because the latter is
necessarily (again up to isomorphism) a subdiagram of the inverse system of
which F̂A(V) is the limit. The universal property of P thus gives us a topo-
logical algebra morphism which we call σ̂ : F̂A(V) → P . It remains to show
that σ̂ extends σ in the sense that σ̂ ◦ i and is unique in doing so. The latter is
immediate because P is Hausdorff and any second continuous homomorphism
satisfying the same equation will agree with σ̂ on the dense subset i(FA(V)).
To show that it extends σ, it suffices to show that πi◦σ̂◦i = πi◦σ, equivalently
that ρi ◦ i = σi. It is enough to show that both sides agree on the generators of
FA(V), and we may observe that ρi ◦ i ◦ j = σi ◦ j by the definition of i = i ◦ j
in the preceding result.

Corollary 3.3.6. Any homomorphism σ : FA(V) → T to a finite algebra
T ∈ V extends uniquely to a topological algebra morphism σ̂ : F̂A(V) → T
such that i ◦ σ̂ = σ.

Proof. The subalgebra of T generated by σ is trivially an A-generated profinite
algebra (when considered as a topological algebra).

This can be considered an intermediate step to showing that F̂A(V) is the
free pro-V algebra over A, which we now deduce:

Theorem 3.3.7. Any homomorphism σ : FA(V) → S to a pro-V algebra S
extends uniquely to a topological algebra morphism σ̂ : F̂A(V) → S such that
i ◦ σ̂ = σ.
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Proof. To show that this follows from proposition 3.3.5, we demonstrate that
S has an A-generated topological subalgebra which is itself pro-V. Let (Xi)i∈I
denote the inverse system of finite algebras in V of which S is the limit. Let
Pi = πi ◦ σ(FA(V)) for each i ∈ I. The homomorphisms φi,j |Pi have their range
in Pj, so that the (Pi)i∈I with the φi,j |Pi constitute a new inverse system of
algebras in V indexed by I. Let P denote its limit. We may treat elements
of P as elements of the product of the (Xi)i∈I . Projecting these elements,
considering them included in each Xi and then chasing them along the φi,j we
see that they satisfy the required condition to lie in S.

The topology of P as a profinite algebra coincides with the subspace topol-
ogy because each open U ⊆ Pi is equal to V ∩ Pi for some open V ⊆ Xi and
thus π−1

i (V ) ∩ Pi = π−1
i (U), so that the profinite and subspace topology have

the same basis of open sets. Lastly, we show that σ is dense in P , so that P
is an A-generated pro-V algebra.

Firstly, note that the image of σ in fact lies in P since each σ(w) for
w ∈ FA(V) is of the form (πi ◦ σ(w))i∈I and we already have that πi ◦ φi,j |Pi ◦
σ(w) = πj ◦ σ(w).

Next, recall that that each x ∈ P lies in some basic open set π−1
i (U) for

some open U ⊆ Pi. It can be shown that π−1
i (U) meets σ(FA(V)) by observing

that πi(x) = σ(w) for some w ∈ σ(FA(V)) and that π−1
i (U) will contain this

σ(w). The result follows by composing the σ̂ we obtain from proposition 3.3.5
with the inclusion of P into S. The remaining details follow easily from the
analogous properties of σ̂ : F̂A(V)→ P .

This universal property and its consequences are the cornerstones of Reit-
erman’s theorem. The following corollary clarifies how the free pro-V algebras
behave with respect to subpseudovarieties and substitution of variables. We
also obtain a lemma which characterises members of V as quotients of free
pro-V algebras. These results are reminiscent of the machinery required for
Birkhoff’s variety theorem.

Corollary 3.3.8. Let g : A→ B be a map between finite sets, and W ⊆ V a
pseudovariety. Denote by iA and iB the respective natural inclusions of A and
B into the free pro-V and pro-W algebras and let σ = iB ◦g. Then there exists
a topological algebra morphism σ̂ : F̂A(V)→ F̂B(W) for which iB ◦ g = σ̂ ◦ iA.

Proof. All we need is to observe that F̂B(W) is pro-V and apply proposition
3.3.7.

Note. Of particular interest is the case where g is the identity from A to itself.
We then use the notation Π in place of σ̂ and refer to this as the canonical
projection of F̂A(V) onto F̂A(W). Because the latter is an A-generated topo-
logical algebra, Π is surjective so that we may see F̂A(W) as a topological
algebra quotient of F̂A(V).
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Lemma 3.3.9. Let σ : A→ F̂A(W) be a map, where W ⊆ V is a pseudova-
riety. Then the two extensions σ̂V : F̂A(V) → F̂A(W) and σ̂W : F̂A(W) →
F̂A(W) make the following diagram commute:

F̂A(V) F̂A(W)

F̂A(W)

A

Π

σ̂V

σ̂W

iV

iW

σ

Proof. The result follows because σ̂W◦Π◦iV = σ̂W◦iW = σ, so that σ̂W◦Π =
σ̂V by the uniqueness of the latter extension.

Lemma 3.3.10. A finite algebra T ∈ V lies in V if and only if it is the
continuous homomorphic image of a free pro-V algebra on some finite set.

Proof. Assume that T is a member of V. Because it is finite, it is generated
by some σ : A→ T and the forward direction follows immediately by corollary
3.3.6. To show the converse, let g : F̂A(V) → T be a surjective continuous
homomorphism. By lemma 3.2.5, g factors through some A-generated member
of V , say Xσ. Namely, there exists a homomorphism gσ : Xσ → T so that
gσ ◦ ρσ = g. Now gσ is surjective because both g and ρσ are, so the result
follows by closure of V under homomorphic images.

3.4 Profinite Terms, Pseudoidentities and

Reiterman’s Thereom

The universal property of F̂A(V) with respect to finite algebras in V gives us a
way to “interpret” elements of F̂A(V) for every assignment of the variables in A
to any algebra in V. Recall from universal algebra that each element of FA(V)
corresponds to a natural transformation which essentially gives an operation
u : Mn → M for each M ∈ V , where n = |A|. Not all such operations arise
in this manner, only those obtained by some finite application of operations
f ∈ F . These, which correspond one-to-one with elements of FA(V), are called
explicit operations. The larger collection is that of implicit operations, and it

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. PROFINITE ALGEBRAS AND REITERMAN’S THEOREM 23

so happens that for each set of variables A these are in bijection with with
elements of F̂A(V) via our schema for interpreting its elements in V-algebras.
This means we can treat free profinite algebras as generalised term algebras,
and its elements generalised terms.

Definition 3.4.1. A pro-V term over a finite set A is an element u of F̂A(V).
The interpretation of u in any pro-V algebra P given an interpretation σ :
A→ P of the variables is the element σ̂(u).

Definition 3.4.2. A pseudoidentity on A is a pair (u, v) where u, v ∈ F̂A(V).
An algebra T ∈ V satisfies this pseudoidentity if σ̂(u) = σ̂(v) for every
σ : A→ T , in which case we say that T |= u = v. For a pseudovariety W ⊆ V,
we say that W |= u = v if T |= u = v for every T ∈W. If Σ is a set of pseu-
doidentites over various alphabets, we say that T |= Σ iff T models each of
those identities arising from F̂A(V) for every finite set A.

Proposition 3.4.3. Let P be a limit of an inverse system (Xi)i∈I of finite
members of V and let (u, v) be a pseudoidentity. Then P |= u = v if and only
if each Xi |= u = v.

Proof. Suppose that P |= u = v and let τ : A → Xi. Define σ : A → P by
choosing σ(a) to be any element of π−1

i (τ(a)), so that τ = πi ◦ σ. Then the
diagram below commutes by uniqueness of the map extending τ . From this it
follows that τ̂(u) = ˆτ(v).

F̂A(V)

P

A Xi

σ̂
τ̂

πi

i

σ

τ

To show the converse, suppose each Xi |= u = v and let σ : A → P be
a map. Then πi ◦ σ is an interpretation of the elements of A in Xi, and the
extension π̂i ◦ σ is equal to σ̂ ◦ πi. The result follows since each σ̂(u) is of the
form (πi ◦ σ̂(u))i∈I .

We now fix a pseudovariety W ⊆ V. Let Σ denote the set of all the
pseudoidentities (u, v) on V such that W |= u = v. We refer as ΣA to the
subset of Σ consisting only of those pseudoidentities which are pairs of elements
of F̂A(V) for a given set A of variables.
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Proposition 3.4.4. Let (u, v) be a pseudoidentity on A. Then (u, v) ∈ ΣA

if and only if ΠA(u) = ΠA(v), where ΠA : F̂A(V) → F̂A(W) is the canonical
projection as described in the note following corollary 3.3.8.

Proof. Suppose that (u, v) ∈ ΣA. By the previous result, F̂A(W) |= u = v as
it is a pro-V algebra which is also pro-W. Recall that ΠA is the extension of
i : A→ F̂A(W), hence ΠA(u) = ΠA(v). On the other hand, if we assume that
ΠA(u) = ΠA(v) and let σ : A → F̂A(W) be any map. By lemma 3.3.9, the
extension σ̂V = σ̂W ◦ ΠA, so we may conclude that F̂A(W) |= u = v.

Corollary 3.4.5. Each ΣA = ∼ΠA, so that ΣA is a congruence on F̂A(V).

Theorem 3.4.6 (Reiterman). A collection of finite algebras W ⊆ V is a
subpseudovariety if and only if it is equal to the collection of all models for
some set of pseudoidentities on V.

Proof. Suppose that W is a pseudovariety. Let Σ denote all pseudoidentities
on V modeled by every algebra in W. Denote by [[Σ]] the set of all models
of Σ. Clearly W ⊆ [[Σ]]. To show equality, let T ∈ V be such that T |= Σ.
Since T ∈ V, by lemma 3.3.10 it is a continuous homomorphic quotient of
F̂A(V) and we let σ̂ : F̂A(V) → T denote this quotient map. Since W is a
pseudovariety, it is known that ∼ΠA= ΣA by proposition 3.4.4, and we may
deduce that ∼ΠA⊆∼σ̂ since we took T to be in [[Σ]]. By lemma 3.2.4, this

means we have an induced continuous homomorphism q : F̂A(W) → T such
that q ◦ ΠA = σ̂ which is necessarily surjective because σ̂ and ΠA are. The
converse is straightforward to prove.

Definition 3.4.7. A collection Σ of pseudoidentities is called a profinite theory
if it is the set of pseudoidentities modelled by some pseudovariety.

Profinite theories have been characterised, for example in [2], as described
in the theorem below (which we state in the case of monoids). We omit
the proof, which takes a lengthy detour through several of the alternative
characterisations of pseudoidentities via nets and filter congruences.

Theorem 3.4.8. A collection Σ of pseudoidentities is a profinite theory if and
only if:

1. Each ΣA is a congruence on F̂A(V).

2. For each (u, v) 6∈ ΣA there exists a clopen set U which is a union of
congruence classes such that u ∈ U and v 6∈ U .

3. Σ is closed under substitution, in the sense that for any two alphabets
A,B and any monoid homomorphism h : A∗ → B∗ (which, when com-

posed with the inclusion of B∗ into F̂B(V), yields a continuous homo-

morphism ĥ : F̂A(V) → F̂B(V) as in lemma 3.3.8), if (u, v) ∈ ΣA then

(ĥ(u), ĥ(v)) ∈ ΣB.
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Chapter 4

A Duality-Theoretic Perspective

The composition of Eilenberg and Reitermans’ theories yields an equational
characterisation of languages via their recognising monoids. In light of the
observed duality-theoretic connection that follows, the reliance on syntactic
structures can be bypassed and we may see Eilenberg’s language varieties as
model classes for systems of profinite equations in a more direct way. This
is the subject of this chapter and based on work done by Gehrke, Grigorieff
and Pin in [14] and [13]. It relies on a technical excursion into duality theory,
to which we devote a large portion of this chapter. The duality theories we
discuss feature Galois correspondences between certain subobjects and quo-
tients. These are central to this work and we give independent proofs for
these. Utilizing these connections and the result in [13] that the residuated
Boolean algebra of recognisable languages for a given alphabet is dual to its
free profinite monoid, we demonstrate the key idea of [13] that that language
varieties and profinite theories are at opposite ends of a dual equivalence of
categories. Their correspondence is an instance of translation between sub-
objects and quotients in dually equivalent categories, and can be understood
as a correspondence between profinite equational theories and their language-
based models.

4.1 Discrete Dualities

There are several famous categorical dual equivalences for various classes of
lattices and Boolean algebras. In some cases, the dual categories are topolog-
ical in nature. In simpler cases, the duals are non-topological categories such
as Set and Pos; we refer to these as discrete dualities, because they can be
seen as a restriction of the topological dualities to the cases where the duals
have the discrete topology. It is not our mission here to provide an exhaustive
catalogue of lattice dualities, but there is much benefit to introducing duality-
theoretic concepts in the discrete context, since many important intuitions

25
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could be missed by jumping into the complexity of the topological case. Thus
we spend some time developing discrete analogs of the theory we will use in
the topological case.

The starting point of discrete duality is two famous and well-known ob-
servations: firstly, the fact that every finite Boolean algebra is isomorphic to
the power set of its atoms. Secondly, Birkhoff’s representation theorem, which
observes that every finite distributive lattice can be represented by a finite
poset; every element is equal to the join of the join-irreducible elements below
it, and thus the lattice can be recovered from the poset of its join-irreducible
elements. We choose to give a summary of a more general result, namely the
dual equivalence between the category DL+ (whose members are complete and
completely distributive lattices whose completely join-irreducible elements are
completely join dense) and the category Pos of partially ordered sets or posets.
DL+ lattices are in a sense those lattices that behave rather like finite lattices,
at least enough so that it is possible to establish an analogous discrete duality.

Theorem 4.1.1. The category DL+ is dually equivalent to the category Pos,
with the relevent functors and natural isomorphisms given as follows:

DL+ Pos

J∞

D

J∞ C 7→ (J∞(C),≤C) (Completely join-
irreducibles )

D X 7→ D(X) (Down-closed sub-
sets)

J∞(C
h→ D) J∞(D)

h[→ J∞(C) (Lower adjoint of h)

D(X
g→ Y ) D(Y )

g−1

→ D(X) (Preimage)

ηA : A→ D(J∞(A)) a 7→ J∞(A)∩ ↓ a

η−1
A : D(J∞(A))→ A K 7→

∨
(K)

µX : X → J∞(D(X)) x 7→↓ x

µ−1
X : J∞(D(X))→ X M 7→

∨
M

Although we will not provide proofs of the various components of this dual-
ity, we will include some technical results which are useful later. In particular,
we prove the fact that the dual of a complete injective lattice homomorphism
h : C → D between two DL+ lattices, namely the lower adjoint h[, turns out
to be a surjective poset morphism h[ : J∞(D)→ J∞(C).
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Lemma 4.1.2. Let C and D be complete and completely distributive lattices.
For a complete lattice homomorphism h : C → D with upper and lower adjoints
h[ and h], the lower adjoint h[ maps completely join-irreducible elements of D
to completely join-irreducible elements of C.

Proof. Because h has an both upper and lower adjoints, it preserves arbitrary
joins and meets. If d ∈ D is completely join-irreducible, we wish to show that
h[(d) is completely join-irreducible. To this end, suppose h[(d) =

∨
S for a

subset S ⊆ C. Then

hh[(d) = h(
∨

(S)) =
∨

(h(S)).

Now d ≤ hh[(d)) by lemma A.1.7, so that d ≤
∨

(h(S). Since d was assumed
to be completely join-irreducible, d ≤ h(s) for some s ∈ S. By the Galois
property, h[(d) ≤ s. Since being completely join prime is equivalent to being
completely join-irreducible in completely distributive lattices, this completes
the proof.

Lemma 4.1.3. Let i : C → D be an inclusion morphism in DL+. The dual
morphism i[ : J∞(D)→ J∞(C) is surjective. 1

Proof. Let a ∈ J∞(C). Then a ∈ D and a =
∨
K for some K ⊆ J∞(D).

Recall that for x ∈ D, i[(x) =
∧
i−1(↑ x) (the least element of C that is above

x). Hence it must be that i[(a) = a. Because i[ has an upper adjoint, it is
completely join-preserving. Hence,

a = i[(a)

= i[(
∨

(K))

=
∨

(i[(K)).

Given that a is a completely join-irreducible element of C, a = i[(k) for some
k ∈ K.

This allows us to prove another useful technical result which we apply
liberally from this point forward:

Lemma 4.1.4. Let D be a DL+ and let C be a complete sublattice of D. Then
C is itself a DL+.

1This is easily deduced if we note that complete lattice embeddings are the monomor-
phisms in DL+ and surjective poset morphisms are the epimorphisms in Pos, given that
dual equivalences send monomorphisms to epimorphisms and vice versa. However, to avoid
routinely characterising epimorphisms and monomorphisms in every category we work with,
we will sometimes opt to prove these kind of properties explicitly for dual maps.
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Proof. By discrete duality for DL+ lattices, D is isomorphic to D(X), where
X = J∞(D). Without loss of generality, we may consider C a sublattice
of D(X) = D. Let i : C → D(X) denote the inclusion map. This is a
complete lattice morphism, so that i has both a lower and an upper adjoint.
Further more, by lemmas 4.1.2 and 4.1.3, it follows that its lower adjoint is a
surjective poset morphism i[ : J∞(D) → J∞(C) (notice that J∞(C) cannot
be empty because J∞(D) is not). We aim to show that any A ∈ C is a join
of completely join-irreducible elements of C; all other relevant DL+ properties
are inherited from D. It turns out that A =

⋃
{i[(↓ x) | x ∈ A}. Firstly,

x ∈ A implies ↓ x ⊆ A, and we know that i[(↓ x) is the least element of C
containing ↓ x. Hence i[(↓ x) ⊆ A for every x ∈ A. If some B ∈ C satisfies
i[(↓ x) ⊆ B for every x ∈ A, then ↓ x ⊆ B for all such x and thus A ⊆ B,
since A =

⋃
{↓ x | x ∈ A} (as is true for every element of D(X)).

4.1.1 Other Birkhoff-Style Discrete Dualities

Complete and completely atomic Boolean algebras are exactly whose who are
isomorphic to the power set of some set. The duality between CABAs and
sets can be recovered from the duality for DL+ lattices by observing that
every CABA can be seen as a DL+ which happens to have a complement for
every element, and that DL+ preserve complements. The completely join-
irreducible elements of a CABA are exactly its atoms, and the ordering on
atoms is discrete so that the dual poset is in fact just a set. The lattice of
down-closed sets for a poset with the discrete ordering is just the power set
of the underlying set. Hence, the duality between sets and CABAs, with its
functors respectively collecting atoms and taking the power set (and acting the
same way on morphisms), can be seen as a restriction of the DL+ duality to
CABAs and sets. We note also that finite lattices and finite Boolean algebras
are DL+ lattices and CABAs respectively, so Birkhoff’s representation theorem
and the duality for finite Boolean algebras fall within the scope of theorem 4.1.1
as well.

4.1.2 Galois Correspondence

Given any set, there is a lattice isomorphism between the complete lattice of
equivalence relations on that set and the complete lattice of complete Boolean
subalgebras of the power set. This elegant connection can be seen as the
correspondence between the lattices of Galois closed sets of a Galois connection
at opposite ends of the categorical duality between sets and CABAs. Gehrke
[13] shows that an analogous connection exists in the case of extended Stone
duality. We will end up presenting this result in detail, as it is central to
the duality-theoretic approach resulting in the profinite equational theory for
varieties of recognisable languages.
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We first demonstrate this correspondence for the case of DL+ lattices and
note that CABAs and equivalence relations are a restricted case. We show
in particular that we obtain a polarity whose respective Galois-closed sets are
complete sublattices and poset quotients. It is useful to first note that poset
quotients correspond one-to-one with preorders on the domain which extend
the partial order, as the Galois connection we now discuss is given in terms
of preorders on posets rather than poset quotients. However, the translation
to quotients allows for the easy application of discrete duality theory when
proving the following results.

Lemma 4.1.5. Any poset quotient q : (X,≤)→ (Y,≤) gives rise to a preorder
∆ on X which extends the partial order on X, and vice versa. These may be
recovered from each other in a one-to-one fashion.

Proof. Given a preorder ∆ on (X,≤), we may construct an equivalence relation
on X out of the preorder ∆ by setting x ∼ y ⇐⇒ ((x, y) ∈ ∆ and (y, x) ∈ ∆).
Let q∆ denote the quotient map and let (X/∆,�) denote the quotient set with
the partial order given by q∆(x) � q∆(y) ⇐⇒ x∆y. It is immediate from
the definition that this is well-defined and that the quotient map q∆ is a poset
morphism.

On the other hand, given an order-preserving quotient map q : X → Y , we
may define a preorder ∆q on X by setting (x, y) ∈ ∆q if and only if q(x) ≤ q(y)
in Y . This clearly extends the partial order on X, since q is order-preserving. It
is reflexive and transitive because the partial order on Y is, but antisymmetry
is not inherited in this way.

Lastly, for any x, y ∈ X:

(x, y) ∈ ∆q∆ ⇐⇒ q∆(x) � q∆(y) ⇐⇒ (x, y) ∈ ∆

and
q∆q(x) � q∆q(y) ⇐⇒ (x, y) ∈ ∆q ⇐⇒ q(x) ≤ q(y).

It follows that these quotients and preorders are in a one-to-one correspondence
and that X/∆ is order-isomorphic to Y .

Let (X,≤) be a poset and D(X) the DL+ of its down-closed subsets.
With this in mind, we construct a polarity as follows: Let R be the relation

on D(X)×(X×X) given by AR (x, x′) ⇐⇒ (x′ ∈ A⇒ x ∈ A). The polarity
(D(X), X ×X,R) yields the standard antitone Galois connection

E : P(D(X)) −→←− P(X ×X) : S.

Recall that for any U ⊆ D(X) and V ⊆ X ×X,

S(V ) = {A ∈ D(X) | ∀(x,x′)∈V (x′ ∈ A⇒ x ∈ A)}
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and
E(U) = {(x, x′) ∈ X ×X | ∀A∈U(x′ ∈ A⇒ x ∈ A)}.

The following properties are useful for categorising the galois-closed sets as
complete sublattices and preorders extending the order of the relevant poset.

Lemma 4.1.6. For any U ⊆ D(X), E(U) is a preorder on X which extends
its partial order. For any V ⊆ X ×X, S(V ) is a complete sublattice of D(X).

Lemma 4.1.7. Let ∆ be a preorder on X which extends its partial order, and
let q : X → X/∆ denote the corresponding quotient map as given in 4.1.5.
The range of the dual (preimage) map q−1 : D(X/∆) → D(X) is exactly the
sublattice S(∆).

Proof. Any A = q−1[M ] for some M ∈ D(X/∆) belongs to S(∆): for any
(y, y′) ∈ ∆, if it is given that y′ ∈ A, then q(y′) ∈M . By the definition of the
partial order on X/∆, q(y) � q(y′) and thus q(y) ∈M by the down-closure of
M , so that y ∈ A. On the other hand, any A ∈ S(∆) satisfies A = q−1[q[A]]:
any q(y) ∈ q(A) is equal to q(y′) for some y′ ∈ A, giving a pair (y, y′) such
that (y, y′) ∈ ∆ and (y′, y) ∈ ∆. Following the definition of S(∆), it must be
that y ∈ A as well.

Lemma 4.1.8. Let C be a complete sublattice of D(X). Let i : C → D(X)
denote the inclusion map. Its dual quotient, namely i[ : J∞(D(X))→ J∞(C),
gives rise to a preorder on J∞(D(X)) which extends its partial order. This
poset is isomorphic to X, so this allows us to construct a preorder ∆ on X
which extends its own partial order. Then ∆ = E(C).

Proof. We let ∆ ⊆ X × X be defined by setting (x, x′) ∈ ∆ if and only
if i[(↓ x) ≤ i[(↓ x′) in J∞(C), keeping in mind that the completely join-
irreducible elements of D(X) are sets of the form ↓ x for x ∈ X. This es-
sentially amounts to constructing the standard preorder on J∞(D(X)) arising
from i[ and defining the “same” preorder on X, up to isomorphism.

We may now prove that any (x, x′) ∈ E(C) lies in ∆: It follows from the
basic properties of adjoint maps (A.1.7) that x′ ∈ i[(↓ x′), since i[(↓ x′) is
the least M ∈ C such that ↓ x′ ⊆ i(M) in D(X). By the assumption that
(x, x′) ∈ E(C), we may observe that ↓ x′ ⊆ i[(↓ x′) implies ↓ x ⊆ i[(↓ x′), so
that x ∈ i[(↓ x′). The down-closure of i[(↓ x′) ensures that ↓ x ⊆ i(i[(↓ x′)),
and by the Galois property we may conclude that i[(↓ x) ≤ i[(↓ x′). We thus
see that (x, x′) ∈ ∆.

On the other hand, suppose we begin with some (x, x′) ∈ ∆. To the end of
showing that (x, x′) ∈ E(C), let M ∈ C and assume x′ ∈M . Since M ∈ C and
C is a DL+, there is a set K ⊆ J∞(C) such that M =

⋃
K. Then ↓ x′ ⊆

⋃
K,

and because ↓ x′ is completely join-irreducible in D(X) it follows that ↓ x′ ⊆ K
for some K ∈ K. Applying the Galois property after noticing that K = i(K)
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(which we can say because K ∈ C), we see that i[(↓ x′) ≤ K in J∞(C). From
the assumption that (x, x′) ∈ ∆, i[(↓ x) ≤ i[(↓ x′), and hence i[(↓ x) ≤ K.
Applying the Galois property here as before, we notice that ↓ x ⊆ i(K) ⊆M ,
so that x ∈M . We may thus conclude that ∆ ⊆ E(C), as required.

Theorem 4.1.9. The Galois closed sets of the above given Galois connection
are the complete sublattices of D(X) and preorders on X×X which extend the
partial order of X. More specifically:

1. Any ∆ ⊆ X × X is a preorder extending the partial order on X if and
only if ES(∆) = ∆.

2. Any C ⊆ D(X) is a complete sublattice of D(X) if and only if SE(C) =
C.

Proof.

1. If ES(∆) = ∆, the relevant deduction follows from lemma 4.1.6.
On the other hand, suppose that ∆ is a preorder on X extending its partial
order. It is already known that ∆ ⊆ ES(∆), because ES is a closure operator
as given in the preliminaries on Galois connections. Let q : X → X/∆ denote
the corresponding quotient as defined in lemma 4.1.5 and let (x, x′) ∈ ES(∆).
Since S(∆) = q−1[D(X/∆)], it follows that for every q−1[M ] ∈ S(∆) with
M ∈ D(X/∆), if x′ ∈ q−1[M ] then x ∈ q−1[M ]. In particular, for M =↓
q(x′) ⊆ X/∆, since x′ ∈ q−1[↓ q(x′)] we may conclude that x ∈ q−1[↓ q(x′)].
This implies that q(x) � q(x′) in X/∆, which means that (x, x′) ∈ ∆. Hence,
ES(∆) ⊆ ∆.

2. If SE(C) = C, the relevant deduction follows from lemma 4.1.6.
Conversely, if C is a complete sublattice of D(X), let q denote the quotient
map to the poset X/E(C), arising from the preorder E(C). It is already known
that C ⊆ SE(C), so we wish to show that SE(C) ⊆ C. By lemma 4.1.7,
SE(C) = q−1[D(X/E(C))]. To the end of showing A ∈ C, suppose that
A ∈ q−1[D(X/E(C))]. This assumption implies that A = q−1[M ] for some
M ⊆ X/E(C). Because q is surjective, q[A] = qq−1[M ] = M . We have
previously noted the connection between the preorder on X associated with
the quotient map q : X → X/E(C) and the preorder on J∞(D(X)) (which is
isomorphic to X) associated with the quotient map i[ : J∞(D(X))→ J∞(C);
in summary, q(x) ≤ q(x′) ⇐⇒ i[(↓ x) ≤ i[(↓ x′). This implies that there
is a well-defined order isomorphism between X/E(C) and J∞(C) given by
q(x) 7→ i[(↓ x). Let K denote the isomorphic copy of M in J∞(C). Since
M = {q(x) | x ∈ A}, we see that K = {i[(↓ x) | x ∈ A}. Because M is
down-closed, so is K, and thus K ∈ D(J∞(C)). The discrete dual of i[ is the
preimage map i[

−1
: D(J∞(C))→ D(J∞(D(X))). By discrete duality and the

preliminaries on categorical equivalences, the following diagram commutes:
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D(J∞(C)) C

D(J∞(D(X))) D(X)

η−1
C

i[
−1 i

η−1
D(X)

Chasing K around the diagram from the top left, we get that

i(η−1
C (K)) = η−1

D(X)(i
[−1

(K))∨
K =

∨
{↓ x | i[(↓ x) ∈ K}

=
∨
{↓ x | x ∈ A}

= A.

Now that A has been shown to be equal to a join of completely join irreducible
elements of C, we may conclude that A ∈ C.

Remark 4.1.10. The same result holds for any C in DL+ and its dual poset
J∞(C) if we set the relation R to be a R (x, x′) ⇐⇒ (x′ ≤ a⇒ x ≤ a), as can
easily be seen by recalling that by duality, C ∼= D(X) if we define X = J∞(C).
The Galois-closed sets are complete sublattices of C and preorders on J∞(C)
extending its partial order.

4.2 Stone-Type Dualities

A topological analog for the above discrete dualities was developed by Stone
[28], by observing the connection between prime filters and join-irreducible
elements. In the absence of a representative set of join-irreducible elements (or
atoms in the Boolean case), a Boolean algebra may be successfully represented
and retrieved from a certain topological space constructed out of its set of prime
filters. The category of Boolean algebras turns out to be equivalent to the
category of Stone spaces. This was later generalised for bounded distributive
lattices by Priestley [23], who noticed that the incorporation of the inclusion
ordering on the prime filter space gave rise to Priestley’s duality theorem,
giving a dual equivalence between the category of Bounded distributive lattices
and Priestley spaces.

Theorem 4.2.1. The category BDLat of bounded, distributive lattices is du-
ally equivalent to the category Pries, with the relevant functors and natural
isomorphisms given as follows:
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BDLat Pries

PFilt

ClopD

PFilt A 7→ (XA,≤,Ω)∗
(Prime filters, re-
verse inclusion,
Priestley topology)

ClopD X 7→ ClopD(X) (Clopen down-closed
subsets)

PFilt(A
h→ B) XB

h−1

→ XA (Preimage)

ClopD(X
g→ Y ) ClopD(Y )

g−1

→ ClopD(X) (Preimage)

ηA a 7→ {F ∈ XA | a ∈ F}

µX x 7→ {U ∈ ClopD(X) | x ∈ U}

∗ The Priestley topology Ω is generated by the set

{ηA(a) | a ∈ A} ∪ {ηA(a)C | a ∈ A}.

Remark 4.2.2. Keeping in mind that Priestley spaces are duals of bounded
distributive lattices, we shall henceforth often treat a Priestley space (X,Ω,≤)
as a prime filter space (XB,Ω,≤) of a corresponding bounded distributive
lattice B. To bypass having to constantly reference the isomorphism

(X,Ω,≤) ∼= (PFilt(ClopD(X)), τClopD(X),≤),

we refer to any element of x ∈ X by Fx, since we may consider it to be a prime
filter of B.

Remark 4.2.3. Note that the injectivity of ηA has always been proved using
some form of the axiom of choice (in particular, the prime ideal theorem),
so we do not have a concrete construction of η−1

A , only the assertion of its
existence.

Boolean algebras are special kinds of bounded distributive lattices (as de-
scribed in the order-theoretic preliminaries). A bounded distributive lattice
that happens to be a Boolean algebra always has the discrete ordering on its
set of prime filters, and so the resulting dual space is just a Stone space. In
the other direction, the lattice of clopen down-sets for a Priestley space with
the discrete ordering is merely the Boolean algebra of clopen sets. We may
thus see Stone duality as a specialisation of Priestley duality, but we will state
it in the table below nevertheless.
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Theorem 4.2.4. The category BA of Boolean algebras is dually equivalent
to the category Stone of Stone spaces, with the relevant functors and natural
isomorphisms given as follows:

BA Stone

PFilt

Clop

PFilt A 7→ (XA,Ω)∗ (Prime filters, Stone
topology)

Clop X 7→ Clop(X) (Clopen subsets)

PFilt(A
h→ B) XB

h−1

→ XA (Preimage)

Clop(X
g→ Y ) Clop(Y )

g−1

→ Clop(X) (Preimage)

ηA a 7→ {F ∈ XA | a ∈ F}

µX x 7→ {U ∈ Clop(X) | x ∈ U}

∗ The Stone topology Ω is generated by the set {ηA(a) | a ∈ A}.

4.2.1 Galois Correspondence

Much like in theorem 4.1.9, there is an analagous Galois correspondence con-
necting substructures and quotients across Priestley duality. We present a
different proof to the one in [13], to match the structure of our proof for the
discrete case and to highlight the observation that S(∆) and E(A) essentially
give the Priestley duals if we start with bounded lattice morphisms or Priestley
quotient morphisms. This gives some insight as to why the bounded sublattices
and Priestley quotients are the exactly Galois closed objects of this connec-
tion. We first give the result analagous to lemma 4.1.5, which shows that we
may talk interchangeably about quotients of Priestley spaces and compatible
preorders on the domain space in the following sense:

Definition 4.2.5. Let (XB,ΩXB ,≤) be a Priestley space dual to a bounded
distributive lattice B. A preorder ∆ on XB is said to be Priestley-compatible
if it satisfies

∀Fx,Fy∈XB((Fx, Fy) 6∈ ∆⇒

∃a ∈ B(a ∈ Fy and a 6∈ Fx and ηB(a) is a ∆-down-set)).
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Lemma 4.2.6. Any Priestley quotient q : (XB,ΩXB ,≤) → (Y,ΩY ,�) gives
rise to a Priestley-compatible preorder ∆ on XB which extends the partial order
on XB, and vice versa. These may be recovered from each other in a one-to-one
fashion.

Proof. Given a quotient map as stipulated, by lemma 4.1.5 we obtain a pre-
order ∆q on XB which extends its partial order. It remains to be shown
that this preorder is Priestley-compatible. To this end, suppose that for
some Fx, Fy ∈ XB, (Fx, Fy) 6∈ ∆q. Thus, q(Fx) 6� q(Fy), and since Y is a
Priestley space we obtain a clopen upset U ⊆ Y such that q(Fx) ∈ U and
q(Fy) 6∈ U . Let V denote the clopen down-set Y \U satisfying q(Fx) 6∈ V and
q(Fy) ∈ V . Since q is a topological quotient map, q−1[V ] is a clopen subset
of XB with Fy ∈ q−1[V ] and Fx 6∈ q−1[V ]. It is easy to verify that q−1[V ] is
a ≤-down-set using the fact that q is order-preserving. Thus q−1[V ] = ηB(a)
for some a ∈ B, given the characterisation of the clopen down-sets of XB

given by Priestley duality. To show that ηB(a) is a ∆q-down-set, suppose that
(Fx, Fy) ∈ ∆q and Fy ∈ q−1[V ]. From the former assumption we may deduce
that q(Fx) ≤ q(Fy). Now because q(Fy) ∈ V and V is down-closed, q(Fx) ∈ V
so that Fx ∈ q−1[V ] = ηB(a).

On the other hand, suppose ∆ is a Priestley-compatible preorder on XB.
As in 4.1.5, ∆ gives rise to a poset quotient q : XB → XB/∆. If we choose to
equip XB/∆ with the quotient topology, q is also continuous. The resulting
space (XB/∆,Ωq �) is a Priestley space; it is compact because the topological
quotient map q will preserve the compactness of XB. Towards showing that
the Priestley axiom holds, fix any q(Fx), q(Fy) ∈ XB/∆ such that q(Fx) 6�
q(Fy). The fact that (q(Fx), q(Fy)) 6∈ ∆ is equivalent. By the compatibility
of ∆, there exists some a ∈ B for which ηB(a) is ∆-down-closed and satisfies
Fx 6∈ ηB(a) and Fy ∈ ηB(a). Because ηB(a) is ∆-down-closed, we can show
that ηB(a) = q−1q[ηB(a)]: given any Fy′ ∈ XB such that q(Fy′) ∈ q[ηB(a)],
it follows that q(Fy′) = q(Fx′) for some Fx′ ∈ ηB(a). From the definition of
q, we know that (Fx′ , Fy′) ∈ ∆ and (Fy′ , Fx′) ∈ ∆. Hence, Fy′ ∈ ηB(a), and
we see that q−1q[ηB(a)] ⊆ ηB(a). The reverse inclusion is a basic set-theoretic
property.

Now q[ηB(a)] is clopen since q−1q[ηB(a)] is clopen, by virtue of its equality
to ηB(a). The equivalence (Fx, Fy) ∈ ∆ ⇐⇒ q(Fx) � q(Fy) ensures that
q[ηB(a)] is �-down-closed because ηB(a) is ∆-down-closed. Let U denote the
complement of q−1q[ηB(a)] in X/∆, which is a clopen up-set satisfying Fy ∈ U
and Fx 6∈ U . We may therefore conclude that the Priestley separation axiom is
satisfied, which completes the proof that the ordered topological space arising
as described from the Priestley-compatible preorder ∆ is in fact a Priestley
space.

Remark 4.2.7. Since Stone spaces are just Priestley spaces with a discrete
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ordering, they fall within the scope of this theorem and we may make the
following observations

Definition 4.2.8. Let (XB,ΩXB) be a Stone space dual to a Boolean algebra
B. A preorder ∆ on XB is said to be Stone-compatible if it is an equivalence
relation and it is Priestley-compatible with respect to the discrete ordering,
namely it satisfies

∀Fx,Fy∈XB((Fx, Fy) 6∈ ∆⇒
∃a ∈ B(a ∈ Fy and a 6∈ Fx and ηB(a) is a ∆-down-set)).

Remark 4.2.9. A Priestley-compatible preorder on a Stone space (considered
as a Priestley space with the discrete topology) yields a quotient space which
is a Priestley space. If, as described above, this preorder is an equivalence
relation, then the resulting Priestley space has the discrete topology (because
of the symmetry of ∆), and therefore is a stone space.

In a similar vein to the discrete context, we set up a polarity as follows:
Let B be a bounded distributive lattice and XB its dual Priestley space. Let
R be the relation on B × (XB ×XB) given by

aR (Fx, Fy) ⇐⇒ (a ∈ Fy ⇒ a ∈ Fx).

The polarity (B,XB ×XB, R) yields the standard antitone Galois connection

E : P(B) −→←− P(XB ×XB) : S

where for any U ⊆ B and V ⊆ XB ×XB:

S(V ) = {b ∈ B | ∀(Fx,Fy)∈V (b ∈ Fy ⇒ b ∈ Fx)}

and
E(U) = {(Fx, Fy) ∈ XB ×XB | ∀b∈U(b ∈ Fy ⇒ b ∈ Fx)}.

In the subsequent results and proofs, any mention of a lattice is assumed
to mean a bounded lattice.

Lemma 4.2.10. For any U ⊆ B and V ⊆ XB ×XB, S(V ) is a sublattice of
B and E(U) is a Priestley-compatible preorder on XB which extends its partial
order.

Proof. That S(V ) is a bounded sublattice of B follows from the defining char-
acteristics of prime filters, as well as the consequence that every prime filter
contains the top element but never the bottom element. Now, E(U) extends
the partial order on XB because

Fx ≤ Fy ⇐⇒ Fy ⊆ Fx

⇒ Fy ∩ U ⊆ Fx ∩ U
⇒ (Fx, Fy) ∈ E(V ).
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That E(U) is reflexive and transitive is easily seen. To show that E(U) is
Priestley-compatible, fix any (Fx, Fy) ∈ XB×XB with (Fx, Fy) 6∈ E(U). Negat-
ing the defining property of E(U), we get that there exists some b ∈ U with
b ∈ Fy and b 6∈ Fx. Further more, ηB(b) is E(U)-down-closed, which follows
immediately from the definition of E(U) and the fact that b ∈ U .

The next two results tell us that if we start with a bounded sublattice of B
or a Priestley quotient of XB (where we understand Priestley quotients to be
surjective, continuous, order-preserving maps between Priestley spaces), the
operations S and E on either end of the Galois connection end up reproducing
the dual map of the inclusion and quotient morphisms respectively. Of course,
E yields the Priestley-compatible preorder which gives rise to the correct mor-
phism, but this is not a problem. In both cases this is of course only up to
isomorphism, but we give a concrete characterisation as subsets in terms of
the “actual” maps dual to the starting inclusion and quotient.

Lemma 4.2.11. Let ∆ be a Priestley-compatible preorder on XB which ex-
tends its partial order, and let q : XB → XB/∆ denote the correspond-
ing quotient map as given in 4.2.6. The range of of the dual (preimage)
map q−1 : ClopD(XB/∆) → ClopD(XB) is equal to the isomorphic copy
of S(∆) in ClopD(XB) under the canonical Priestley duality isomorphism
ηB : B → ClopD(XB).

Proof. To show that q−1[ClopD(XB/∆)] = ηB(S(∆)), first suppose that b ∈
S(∆). It may be shown that ηB(b) = q−1q[ηB(b)]: Any Fx will be contained
in q−1q[ηB(b)] if and only if q(Fx) = q(Fy) for some Fy with b ∈ Fy. Because
b ∈ S(∆) and (Fx, Fy) ∈ ∆, it follows that b ∈ Fx as well (by the assumption
that b ∈ S(∆). This tells us that Fx ∈ ηB(b). The reverse inclusion is a
straightforward set-theoretic result.

Now because q is a toplogical quotient map, the fact that q−1q[ηB(b)] is
equal to the clopen set ηB(b) ensures that q[ηB(b)] is clopen. It is also down-
closed, for if q(Fy) ∈ q[ηB(b)] for some Fy and q(Fx) ≤ q(Fy) for some q(Fx) ∈
XB/∆, we know that q(Fy) = q(Fy′) with Fy′ ∈ ηB(b). Then (Fx, Fy′) ∈ ∆
because q(Fx) ≤ q(Fy′). This ensures that Fx ∈ ηB(b) as well, again because
b ∈ S(∆). We have shown that q[ηB(b)] ∈ ClopD(XB/∆) and may therefore
conclude that ηB(b) ∈ q−1q[ClopD(XB/∆)] and therefore that ηB[S(∆)] ⊆
q−1[ClopD(XB/∆)].

On the other hand, assume A ∈ q−1[ClopD(XB/∆)]. We aim to prove
that A = ηB(b) for some b ∈ S(∆). It follows from the assumption that
A = q−1[M ] for some M ∈ ClopD(XB/∆). From Priestley duality we know
that q−1 (which is dual to q) maps clopen down-sets to clopen down-sets, so
that A ∈ ClopD(XB). Thus we may characterise A as being equal to ηB(b)
for some b ∈ XB. Furthermore, by the surjectivity of q it is known that
q[ηB(b)] = qq−1[M ] = M , so that ηB(b) = q−1q[M ] = q−1q[ηB(b)].
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It follows that b ∈ S(∆), as we now show. Let (Fx, Fy) ∈ ∆, which tells us
that q(Fx) ≤ q(Fy). If b ∈ Fy, it follows that q(Fy) ∈ q[ηB(b)]. Since the latter
set is known to be down-closed we may deduce that q(Fx) ∈ q[ηB(b)], and so
Fx ∈ q−1q[ηB(b)] = ηB(b). Thus, A ∈ ηB[S(∆)].

We now see that S(∆) is isomorphic as a lattice to the image of ClopD(XB/∆)
in ClopD(XB). Let k : S(∆) → ClopD(XB/∆) denote the map defined
by a 7→ Ma, where Ma is the unique element of ClopD(XB/∆) such that
q−1[Ma] = ηB(a). It is known to be unique because of the injectivity of the
preimage map. From the preceding facts, it easily follows that k is bijective,
and we may verify that k preserves the lattice bounds and operations: Firstly,

q−1[Ma∧b] = ηB(a ∧ b)
= ηB(a) ∩ ηB(b)

= q−1[Ma] ∩ q−1[Mb]

= q−1[Ma ∩Mb],

which allows us to conclude that Ma∧b = Ma ∩Mb. Lastly, q−1[∅] = ∅ = ηB(0)
and q−1[XB/∆] = XB = ηB(1). Thus k is an isomorphism of lattices, and we
may conclude with the diagram below:

XB/∆ ClopD(XB/∆) S(∆)

XB ClopD(XB) B

q−1

∼=
k

iq

∼=
ηB

We may see the inclusion of S(∆) into B as dual to q, up to isomorphism.

Lemma 4.2.12. Let A be a bounded sublattice of B, and let i : A→ B denote
the inclusion map. Let q : XB → XB/E(A) denote the Priestley quotient map
associated with the Priestley-compatible preorder E(A) as defined in lemma
4.2.6. Then the two Priestley quotient maps q and the preimage map i−1 dual
to i yield the same Priestley-compatible preorder on XB, and their codomains
are isomorphic as Priestley spaces.
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Proof. Note that for any Fx, Fy ∈ XB

q(Fx) ≤ q(Fy) ⇐⇒ (Fx, Fy) ∈ E(A)

⇐⇒ ∀a∈A(a ∈ Fy ⇒ a ∈ Fx)
⇐⇒ Fy ∩ A ⊆ Fx ∩ A
⇐⇒ Fx ∩ A ≤ Fy ∩ A (In XA)

⇐⇒ i−1[Fx] ≤ i−1[Fy].

The fourth equivalence holds because the intersection of a prime filter of B with
the sublattice A yields a prime filter of A, and we recall that the prime filters
in XA are ordered by reverse inclusion. We can see that q and i−1 give rise
the same Priestley-compatible preorder on XB. Furthermore, the equivalence
q(Fx) ≤ q(Fy) ⇐⇒ i−1[Fx] ≤ i−1[Fy] can be seen to imply that there is a
well-defined order isomorphism j : XA → XB/E(A) given by i−1[Fx] 7→ q(Fx).
It is also continuous: to show this, let U be an open subset of XB/E(A). Then

j−1[U ] = {i−1[Fx] ∈ XA | j(i−1[Fx]) ∈ U}
= {i−1[Fx] ∈ XA | q(Fx) ∈ U}
= {i−1[Fx] ∈ XA | Fx ∈ q−1[U ]}
= i−1[q−1[U ]],

so that U is open in XA because q−1[U ] is, since q is a topological quotient
map and i−1 is continuous. This is enough to show that j is an isomorphism
of Priestley spaces, since they are compact and Hausdorff and we may refer to
preliminary fact A.2.2 to see that this continuous bijection will be a homeo-
morphism. The Priestley quotient map q corresponding to E(∆) can therefore
be seen as the dual of the inclusion map i : A→ B, up to isomorphism.

A XA XB/E(A)

B XB XB

i

∼=
j

i−1

=

q

The commutative square on the right shows us that q is dual to the inclusion
map.

Theorem 4.2.13. The Galois closed sets of the Galois connection given on
page 36 are the bounded sublattices of B and Priesley-compatible preorders on
XB ×XB which extend the partial order of XB. More specifically:
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1. Any ∆ ⊆ XB ×XB is a Priestley-compatible preorder extending the par-
tial order on XB if and only if ES(∆) = ∆.

2. Any A ⊆ B is a bounded sublattice of B if and only if SE(A) = A.

Proof.
1. If ES(∆) = ∆, the relevant consequence follows from lemma 4.2.10. On the
other hand, let (Fx, Fy) ∈ ES(∆).

Let i denote the inclusion of S(∆) into B, and let r : XB → XB/ES(∆)
denote the quotient map corresponding to the Priestley-compatible preorder
ES(∆). Referring to lemma 4.2.12 and the corresponding figure with A set
to be S(∆), we may observe that r(Fx) ≤ r(Fy) in XB/S(∆) if and only if
i−1[Fx] ≤ i−1[Fy] in XS(∆).

By lemma 4.2.11, we may obtain the images under the isomorphism k of
i−1[Fx] ⊆ S(∆) and i−1[Fy] ⊆ S(∆), which are in turn subsets of ClopD(XB/∆).
We denote these images byMx andMy respectively, and take note that they
are prime filters in ClopD(XB/∆) because k is a lattice isomorphism, and
because i−1[Fx] = Fx ∩ S(∆) (likewise for Fy). Recall that

Mx = k[i−1[Fx]] = {M ∈ ClopD(XB/∆) | q−1[M ] = ηB(a) and a ∈ Fx ∩ S(∆)},

and an analogous equation holds for My.
Furthermore,

i−1[Fx] ≤ i−1[Fy]⇒ i−1[Fy] ⊆ i−1[Fx]

⇒My ⊆Mx.

At this stage, we need to keep in mind the following diagram, which is known
to be commutative by Priestley duality:

XB/∆ PFilt(ClopD(XB/∆))

XB PFilt(ClopD(XB))

∼=
µXB/∆

q

∼=
µXB

(q−1)−1

Note that

µXB(Fx) = {U ∈ ClopD(XB) | Fx ∈ U}
= {ηB(a) ∈ ClopD(XB) | Fx ∈ ηB(a)}
= {ηB(a) ∈ ClopD(XB) | a ∈ Fx}.
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We may also observe that

(q−1)−1[µXB(Fx)] = {M ∈ ClopD(XB/∆) | q−1[M ] = ηB(a) and a ∈ Fx}
= {M ∈ ClopD(XB/∆) | q−1[M ] = ηB(a) and a ∈ Fx ∩ S(∆)}
=Mx,

where the next to last equality holds because q−1[ClopD(XB/∆)] = ηB[S(∆)].
Chasing Fx and Fy respectively around the diagram in figure on the previous

page, we find that Mx = µXB/∆(q(Fx)) and My = µXB/∆(q(Fy)). Since
µXB/∆ is an order isomorphism (as it is an isomorphism of Priestley spaces),
it is known that

My ⊆Mx ⇐⇒ Mx ≤My

⇐⇒ q(Fx) ≤ q(Fy).

We may conclude that the last fact holds, from which it follows that (Fx, Fy) ∈
∆. Thus, ES(∆) ⊆ ∆.

2. If SE(A) = A, the relevant consequence follows from 4.2.10. Con-
versely, If A is a bounded sublattice, then we have shown that E(A) is a
Priestley-compatible preorder on XB. Let q : XB → XB/E(A) denote the cor-
responding Priestley quotient and let i : A→ B denote the inclusion bounded
lattice homomorphism. Applying lemma 4.2.11, recall that ηB[SE(A)] =
q−1[ClopD(XB/E(A)], so that for any b ∈ SE(A) we know that ηB(b) = q−1[M ]
for some M ∈ ClopD(XB/E(A)). Recall also that XA

∼= XB/E(A), and let K
denote the isomorphic copy of M in XA under the isomorphism j as given in
lemma 4.2.12. Then

K = j[M ] = {i−1[Fx] | q(Fx) ∈M}.

Because q(Fx) ∈ M if and only if i−1[Fx] ∈ K by definition, it follows that
q−1[M ] = (i−1)−1[K] in XB. Chasing K around the following diagram (which
commutes by the definition of dual equivalence of categories A.3.4),

ClopD(XA) A

ClopD(XB) B

(i−1)−1

∼=
i

∼=

we find that K = ηA(a) for some a ∈ A and that (i−1)−1[K] = q−1[N ] = ηB(b).
Thus we may conclude that since ηB(b) = ηB(a), then b ∈ A. Hence, SE(A) ⊆
A.
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We give the analogous theorem for the Boolean case, which requires some
adjustment:

Theorem 4.2.14. Let B be a Boolean algebra and XB its dual Stone space.
Let R be the relation on B × (XB ×XB) given by

aR (Fx, Fy) ⇐⇒ (a ∈ Fy ⇐⇒ a ∈ Fx).

The polarity (B,XB ×XB, R) yields the standard antitone Galois connection

E ′ : P(B) −→←− P(XB ×XB) : S ′

where for any U ⊆ B and V ⊆ XB ×XB:

S ′(V ) = {b ∈ B | ∀(Fx,Fy)∈V (b ∈ Fy ⇐⇒ b ∈ Fx)}

and
E ′(U) = {(Fx, Fy) ∈ XB ×XB | ∀b∈U(b ∈ Fy ⇐⇒ b ∈ Fx)}.

The Galois-closed sets of this Galois connection are the Boolean subalgebras of
B and the Stone-compatible equivalence relations on XB.

Proof. First we show that each S ′(∆) is a Boolean subalgebra: that it is a
bounded sublattice follows much the same reasoning as in theorem 4.2.10. To
see that it is also closed under complements, observe that

b ∈ S ′(V ) ⇐⇒ ∀(Fx,Fy)∈V (b ∈ Fy ⇐⇒ b ∈ Fx)
⇐⇒ ∀(Fx,Fy)∈V (Fy ∈ ηB(b) ⇐⇒ Fx ∈ ηB(b))

⇐⇒ ∀(Fx,Fy)∈V (Fy 6∈ ηB(b) ⇐⇒ Fx 6∈ ηB(b))

⇐⇒ ∀(Fx,Fy)∈V (Fy ∈ (ηB(b))C ⇐⇒ Fx ∈ (ηB(b))C)

⇐⇒ ∀(Fx,Fy)∈V (Fy ∈ ηB(¬b) ⇐⇒ Fx ∈ ηB(¬b))
⇐⇒ ∀(Fx,Fy)∈V (¬b ∈ Fy ⇐⇒ ¬b ∈ Fx)
⇐⇒ ¬b ∈ S ′(V ).

Each E ′(U) is an equivalence relation: again, that it is a preorder follows much
the same reasoning as theorem 4.2.10. To see that it is symmetric follows by
inspection, by the symmetry of the condition of membership.

A crucial observation is that if a preorder ∆ on XB is also an equivalence
relation, then symmetry implies that

S ′(∆) = {b ∈ B | ∀(Fx,Fy)∈V (b ∈ Fy ⇒ b ∈ Fx)}
= S(∆).
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Similiarly, closure of a Boolean subalgebra A ⊆ B under complements allows
us to reason that

E ′(A) = {(Fx, Fy) ∈ XB ×XB | ∀a∈A(a ∈ Fy ⇒ b ∈ Fx)}
= E(A).

These two observations allow us to refer to results in the previous theorem.
Now, E ′S ′(∆) = ∆ if and only if ∆ is an equivalence relation: The forward

implication follows from the first observation in this proof. The the converse
is implied by the fact that ∆ is an equivalence relation, S ′(∆) is a Boolean
algebra and therefore E ′S ′(∆) = ES(∆) = ∆, by theorem 4.2.13.

By a similar argument, S ′E ′(A) = A if and only if A is a Boolean subalgebra
of B.

4.3 Extended Discrete and Stone-Type

Dualities

It was observed by Pippenger ([22]) that for any finite alphabet A, the Boolean
algebra Rec(A∗) happens to be dual to the Stone space underlying F̂A(Monf ),
the free profinite monoid over A (or equivalently, the profinite completion of
A∗). This is in itself interesting and led to topological characterisations of no-
tions in language theory, but it also hints at stronger and deeper result. Recall
that the Boolean algebra Rec(A∗) was also closed under certain cancellation
operations. Moreover, varieties of languages are systems of substructures of
(Rec(A∗), /, \) which interact with these operations in a way that is critical to
the Eilenberg theorem.

Extended versions of Stone duality allow us to take these operations into ac-
count: we will introduce some background theory on additional operations on
lattices and summarise the extended duality theories which show that Boolean
algebras and distributive lattices with certain kinds of additional operations
may be seen as dual to Stone spaces and Priestley spaces with additional re-
lational structure. Gehrke [13] has shown that under this extended version
of Stone duality, the entire structure (Rec(A∗), /, \) is dual to the Stone-
topological monoid F̂A(Monf ). This is the result we are working towards
with the background theory in this section.

As before, we ease into the relevant concepts by first illustrating them in
the case of discrete duality.

Let C be a DL+. An operation f : Cn → C only falls within the scope
of the duality in theorem 4.1.1 if it is a homomorphism of complete lattices,
but for many operations of interest this is not the case. However, we will see
that certain operations can be captured by incorporating additional structure
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on the dual poset, from which the original operation may be recovered on the
dual of the dual.

Definition 4.3.1. Let C be any lattice. An operation f : Cn → C is said to
preserve joins in the i-th coordinate if and only if for every (a1, ..., an) ∈ Cn

and bi in C:

f(a1, . . . , ai ∨ bi, . . . , an) = f(a1, . . . , ai, . . . , an) ∨ f(a1, . . . , bi, . . . , an).

An operation f : Cn → C is said to preserve arbitrary joins in the i-
th coordinate if and only if for every (a1, . . . , ai−1, ai+1, . . . , an) ∈ Cn−1 and

{a(j)
i | j ∈ J} ⊆ C:

f(a1, . . . ,
∨
j∈J

a
(j)
i , . . . , an) =

∨
j∈J

f(a1, . . . , a
(j)
i , . . . , an)

Definition 4.3.2. Let C be a DL+. An operation f : Cn → C is called a
complete operator if and only if it preserves arbitrary joins in every coordinate.

Since we are working in the DL+ setting, the action of any complete op-
erator is completely determined by its value at completely join-irreducible
elements. Let X = J∞(C), the poset dual to C. For any a ∈ Cn,

f(a) =
∨
{f(x) | x ∈ Xn and x ≤ a}.

From this, we may define a relation Rf ⊆ Xn ×X given by

xRfx ⇐⇒ x ≤ f(x).

This definition allows one to retrieve the operation f , since

f(x) =
∨
{x | xRfx},

and we have already seen that this is sufficient to fully recover f .
The complete lattice isomorphism ηC : C → D(X) allows us to define a

function fRf on D(X) so that the following diagram commutes:

Cn D(X)n

C D(X)

f

∼=
ηC×...×ηC

fRf

∼=
ηC

Those relations R ⊆ Xn ×X which arise from complete operators have a
the following characterisation:

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. A DUALITY-THEORETIC PERSPECTIVE 45

Definition 4.3.3. A relation R ⊆ Xn × X for a poset (X,≤) is said to be
order compatible if and only if for every x, x′ ∈ Xn and x, x′ ∈ X, if x′ ≥ x
and xRx and x ≥ x′, then x′Rx′.

In the case of a ternary relation, this is just the condition that

(≥ × ≥) ◦R◦ ≥= R.

It is straightforward to show that Rf is order compatible, and this property
also results in the fact that

fRf (U1, . . . , U2) = fRf (ηC(a1), . . . , ηC(an))

= ηC(f(a))

= {x ∈ X | ∃x [xRx and x ≤ a]}
= {x ∈ X | ∃x [xRx and x ∈ U1 × . . .× Un]}

where a := (a1, . . . , an) ∈ Cn such that Ui = ηC(ai), and with order compat-
ibility implying the third equality. This suggests a definition for fR for any
R ⊆ Xn ×X and U1, . . . , Un ∈ ↓ (X):

fR(U1, . . . , Un) = R[U1, . . . , Un, ]

= {x ∈ X | ∃x [xRx and x ∈ U1 × . . .× Un]}

As a result we have the following theorem:

Theorem 4.3.4. ([13]) Let C be a DL+ and X its dual poset. The functions
f 7→ Rf and R 7→ fR constitute a one-to-one correspondence between complete
n-ary operators on C and order compatible relations on Xn ×X.

This does extend to a full categorical duality, but we will rather state it in
the topological context and for a single binary operation. As usual, this result
subsumes the analagous result for complete and atomic Boolean algebras and
sets, since this is just the case where the ordering on X is discrete. A full
account of this discrete duality in the Boolean case, encompassing the duality
for morphisms, may be found in [15].

More can be said for operations with other lattice-theoretic preservation
properties, but of particular interest to us are so called residual maps and resid-
uated families of maps. For each a1, . . . , ai, . . . , an ∈ C, a complete operator
f : Cn → C yields a completely join-preserving function

f(a1, . . . , , . . . , an) : C → C

by fixing all but the i-th coordinate. Complete operators are necessarily mono-
tone, so by lemma A.1.7 we see that these maps have an upper adjoint which
we shall denote (f(a1, . . . , , . . . , an))].

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. A DUALITY-THEORETIC PERSPECTIVE 46

Definition 4.3.5. Let f : Cn → C be a complete operator. For each domain
coordinate i, the i-th residual of f is the map

f ]i : Cn → C

given by

f ]i (a1, . . . , ai−1, ai+1, . . . , an, a) = (f(a1, . . . , , . . . , an))](a)

for every a1, . . . , an, a ∈ C. We refer to f and its n residuals as a residuated
family of maps.

Lemma 4.3.6. A complete operator f : Cn → C and each of its n residuals
f ]i satisfy the following Galois property for every a1, . . . , an, a ∈ C:

f(a1, . . . , an) ≤ a ⇐⇒ ai ≤ f ]i (a1, . . . , ai−1, ai+1, . . . , an, a)

Proof. This is immediate from the definition of f ]i and the Galois property of
adjoint maps.

Lemma 4.3.7. For any complete operator f : Cn → C, each of its n residuals
preserves arbitrary meets in the last coordinate and sends arbitrary joins to
meets in every other coordinate.

Proof. By lemma A.1.7, the fact that each residual preserves meets in the last
coordinate is a consequence of (f(a1, . . . , , . . . , an))] being an upper adjoint.
Without loss of generality, we show that f ]i sends arbitrary joins in the first
coordinate to meets in the codomain. We therefore aim to show that

f ]i (
∨

T, . . . , ai−1, ai, . . . , an, a) =
∧
t∈T

f ]i (t, . . . , ai−1, ai, . . . , an, a).

Recall from lemma A.1.7 that (for every choice of i as the blank coordinate)

(f(
∨

T, . . . , , . . . , an))](a) =
∨
{s | f(

∨
T, . . . , s, . . . , an) ≤ a}

and for every t ∈ T ,

(f(t, . . . , , . . . , an))](a) =
∨
{s | f(t, . . . , s, . . . , an) ≤ a}.

Now, note that for any s ∈ C, f(t, . . . , s, . . . , an) ≤ f(
∨
T, . . . , s, . . . , an),

so that {s | f(
∨
T, . . . , an) ≤ a} ⊆ {s | f(t, . . . , an) ≤ a} for every t ∈

T . Since taking joins preserves order and by the previous two equations,
(f(

∨
T, . . . , , . . . , an))](a) ≤ (f(t, . . . , , . . . , an))](a) for every t ∈ T .

Furthermore, if b ∈ C is any upper bound for {(f(t, . . . , , . . . , an))](a) |
t ∈ T}, then by the galois property f(t, . . . , b, . . . , an) ≤ a for every t ∈ T ,
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from which it follows that
∨
t∈T f(t, . . . , b, . . . , an) ≤ a. By the fact that f

preserves arbitrary joins in each coordinate, f(
∨
T, . . . , b, . . . , an) ≤ a and

thus b ≤ (f(
∨
T, . . . , , . . . , an))](a). We conclude that

(f(
∨

T, . . . , , . . . , an))](a) =
∧
t∈T

(f(t, . . . , , . . . , an))](a),

which confirms the desired result by applying the definition of residuals.

Remark 4.3.8. The residuals of fR may be retrieved from the same relation
R via the construction

(U1, . . . , Un) 7→ (R[U1, . . . , Ui−1, , Ui+1, . . . , Un, U
C ])C .

Although the above results and upcoming analogues in the topological
setting apply for n-ary operations and their n residuals, for the benefit of
readability and for the purpose of applications to language theory we will
henceforth stick to binary operations. When a complete operator is binary,
we adapt an infix notation for the two residuals: for an operation f : C2 → C
written as a · b = f(a, b), for every a, b, c ∈ C we denote the the residuals by

c/b := f ]1(b, c)

a\c := f ]2(a, c).

The corresponding Galois property now becomes

a · b ≤ c ⇐⇒ a ≤ c/b ⇐⇒ b ≤ a\c.

These are often refered to as the left residual and the right residual respectively.
Note that in this case, the operation \ turns arbitrary joins into meets in the
first coordinate and preserves arbitrary meets in the second, while / turns
arbitrary joins into meets in the second coordinate and preserves arbitrary
meets in the first coordinate.

All n-ary complete operators have n residuals, but we can extend the notion
of residuation to operations that are not necessarily complete operators.

Definition 4.3.9. Let X be a poset. A binary operation · : X2 → X is
said to be residuated and has a left and a right residual if there exist binary
operations / : X2 → X and \ : X2 → X such that for every a, b, c ∈ X

a · b ≤ c ⇐⇒ a ≤ c/b ⇐⇒ b ≤ a\c.

We refer to (·, /, \) as a residuated family.

Lemma 4.3.10. A residuated family (·, /, \) of binary operators on a bounded
distributive lattice B satisfy the following lattice-theoretic preservation proper-
ties:
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OP[·]
The operation “·” preserves
finite joins in both coordi-
nates.

(a ∨ b) · c = (a · c) ∨ (b · c),
a · (b ∨ c) = (a · b) ∨ (a · c)

OP[\]

The operation “\” preserves
finite meets in the second
coordinate and sends finite
joins to meets in the first co-
ordinate.

(a ∨ b)\c = (a\c) ∧ (b\c),
a\(b ∧ c) = (a\b) ∧ (a\c)

OP[/]

The operation “/” preserves
finite meets in the first coor-
dinate and sends finite joins
to meets in the second coor-
dinate.

(a ∧ b)/c = (a\c) ∧ (b\c),
a/(b ∨ c) = (a · b) ∧ (a\c)

It is rudimentary to check these properties, but proofs may be found in
[5]. We may describe one-to-one correspondences between binary operations

on bounded distributive lattices satisfying each of the above properties respec-
tively and ternary order-compatible relations on the dual Priestley space X.
The order-topological properties corresponding to each of the above preserva-
tion properties are listed below:

REL[·]

1. For each x ∈ X, the set R[ , , x] is closed.

2. For all U, V clopen down-sets of X the set
R[U, V, ] is clopen.

REL[\]

1. For each x ∈ X, the set R[ , x, ] is closed.

2. For all U clopen down-set of X and V clopen
up-set of X, the set R[U, , V ] is clopen.

REL[/]

1. For each x ∈ X, the set R[x, , ] is closed.

2. For all U clopen down-set of X and V clopen
up-set of X, the set R[ , U, V ] is clopen.

The remaining theorems and intermittent remarks are specific cases of the
theory developed by Goldblatt in [16], although the form in which they appear
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here is largely based on Gehrke’s summary in [13]. The study of additional
operations and corresponding relations on the dual structure goes back to the
work of Jónsson and Tarski [18] on Boolean algebras with operators. We refer
the reader to the above sources for full details, as we have only extracted those
components which are useful in our application to formal language theory.

Theorem 4.3.11. Let B be a bounded distributive lattice and (X,≤,Ω) its dual
Priestley space. There is a one-to-one correspondence between operations on
D satisfying the preservation properties OP[·] (respectively OP[/] and OP[\])
and order compatible relations on X satisfyng REL[·] (respectively REL[/],
REL[\]). These correspondences are given as follows:

1. Given a binary operation · : B2 → B satisfying OP[·], we first define
a lifted version of this operation · : Filt(B)2 → Filt(B) on the lattice
Filt(B) of filters of B by

F ·G = 〈{a · b | a ∈ F, b ∈ G}〉Filt

for every F,G in Filt(B).

We may define a ternary relation R· on the dual prime filter space XB

by

R· = {(Fx, Fy, Fz) ∈ (XB)3 | Fx · Fy ≥ Fz}
= {(Fx, Fy, Fz) ∈ (XB)3 | Fx · Fy ⊆ Fz}

On the other hand, from a ternary order compatible relation R ⊆ (XB)3

satisfying REL[·], define a binary operation

·R : ClopD(XB)2 → ClopD(XB)

given by

U ·R V = R[U, V, ]

= {Fz | ∃Fx,Fy [Fx ∈ U and Fy ∈ V and R(Fx, Fy, Fz)]}.

These constructions give a one-to-one correspondence between binary op-
erations on B satisfying OP[·] and order-compatible ternary relations on
XB satisfying REL[·].

2. Given a binary operation / : B2 → B satisfying OP[/], we first define
a multisorted operation / : Idl(B)× Filt(B)→ Idl(B) by

I/F = 〈{a/b | a ∈ I, b ∈ F}〉Idl

for every F ∈ Filt(B) and I ∈ Idl(B).
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We may define a ternary relation R/ on the dual prime filter space XB

by
R/ = {(Fx, Fy, Fz) ∈ (XB)3 | Iz/Fy ⊆ Ix}

where Ix is the prime ideal (Fx)
C.

On the other hand, from a ternary order compatible relation R ⊆ (XB)3

satisfying REL[/], define a binary operation

/R : ClopD(XB)2 → ClopD(XB)

given by

V/RU = (R[ , U, V C ])C

= {Fx | ∀Fy ,Fz [(Fy ∈ U and R(Fx, Fy, Fz))⇒ z ∈ V ]}.

These constructions give a one-to-one correspondence between binary op-
erations on B satisfying OP[\] and order-compatible ternary relations on
XB satisfying REL[\].

3. Given a binary operation \ : B2 → B satisfying OP[\], we first define
a multisorted operation \ : Filt(B)× Idl(B)→ Idl(B) by

F\I = 〈{a\b | a ∈ F, b ∈ I}〉Idl

for every F ∈ Filt(B) and I ∈ Idl(B).

We may define a ternary relation R\ on the dual prime filter space XB

by
R\ = {(Fx, Fy, Fz) ∈ (XB)3 | Fx\Iz ⊆ Iy}

where Ix is the prime ideal (Fx)
C.

On the other hand, from a ternary order compatible relation R ⊆ (XB)3

satisfying REL[\], define a binary operation

\R : ClopD(XB)2 → ClopD(XB)

given by

U\RV = (R[U, , V C ])C

= {Fy | ∀Fx,Fz [(Fx ∈ U and R(Fx, Fy, Fz))⇒ z ∈ V ]}

These constructions give a one-to-one correspondence between binary op-
erations on B satisfying OP[\] and order-compatible ternary relations on
XB satisfying REL[\].
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Remark 4.3.12. More can be said if we start with a residuated family (·, /, \)
of binary operators on B: because it may be shown that

Fx · Fy ≥ Fz ⇐⇒ Fx\Iz ≤ Iy ⇐⇒ Iz/Fy ≤ Ix,

it follows that
R· = R\ = R/.

Furthermore, given an order-compatible ternary relation R on XB, the
family of binary operations (·R, \R, /R) on the DL+ of down-sets of XB is a
residuated family, as mentioned in remark 4.3.8. If they satisfy any one or any
combination of REL[·], REL[\] or REL[/], then the corresponding operations
restrict to ClopD(XB) and R is dual to each of those for which the condition
is satisfied [13].

The structure (Rec(A∗), /, \) is not closed under the binary operation “·”
for which / and \ are residuals, but the above results are leading us towards a
characterisation of a Boolean space (Priestley space with a discrete ordering)
which is dual to it. We first present a formalisation of such structures with
a definition of so-called residuation algebras (as given in[13]), and then pro-
ceed to give the relevant notion of morphisms which are dual to morphisms
preserving both the lattice and the residuation structure.

Definition 4.3.13. A bounded distributive lattice with two additional binary
operations (B, /, \) is called a residuation algebra if the operations respectively
satisfy OP[/] and OP[\], as well as the Galois property

∀a, b, c ∈ B b ≤ a\c ⇐⇒ a ≤ c/b.

Although residuation algebras do not have a binary operation for which /
and \ are residuals, one may define a binary operation on the corresponding
filter lattice for which a similar relationship to that in remark 4.3.12 holds.

Lemma 4.3.14. [13, Proposition 3.14] Let (B, /, \) be a residuation algebra
and let (XB,≤,Ω, R) be the dual Priestley space with the corresponding relation
R as given in theorem 4.3.11. One may define an operation · : Filt(B) ×
Filt(B)→ Filt(B) for every F,G ∈ Filt(B) by

F ·G = {c ∈ B | ∃a∈F (a\c ∈ G)}.

Then for every Fx, Fy, Fz ∈ XB:

R(Fx, Fy, Fz) ⇐⇒ Fx · Fy ≥ Fz ⇐⇒ Fx\Iz ≤ Iy ⇐⇒ Iz/Fy ≤ Ix.

The following notion of bounded morphisms included below may be credited
to Goldblatt [16].
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Definition 4.3.15. Let (X,R) and (Y, S) be Priestley spaces with ternary
order-compatible relations. Let φ : X → Y be a continuous, order-preserving
function.

If R and S satisfy REL[·], then φ is said to be a bounded morphism for
these relations with respect to the last coordinate if for any x1, x2, x3 ∈ X and
y1, y2 ∈ Y , it satisfies

BM[·]

1. R(x1, x2, x3)⇒ S(φ(x1), φ(x2), φ(x3))

2. (S(y1, y2, φ(x3)))⇒
∃x1, x2[(y1, y2) ≥ (φ(x1), φ(x2)) andR(x1, x2, x3)].

If R and S satisfy REL[\], then φ is said to be a bounded morphism for these
relations with respect to the second coordinate if x1, x2, x3 ∈ X and y1, y3 ∈ Y
it satisfies

BM[\]

1. R(x1, x2, x3)⇒ S(φ(x1), φ(x2), φ(x3))

2. (S(y1, φ(x2), y3))⇒
∃x1, x3[y1 ≥ φ(x1), φ(x3) ≥ y3 and R(x1, x2, x3)].

If R and S satisfy REL[/], then φ is said to be a bounded morphism for these
relations with respect to the first coordinate if for every x1, x2, x3 ∈ X and
y2, y3 ∈ Y it satisfies

BM[/]

1. R(x1, x2, x3)⇒ S(φ(x1), φ(x2), φ(x3))

2. (S(φ(x1), y2, y3))⇒
∃x2, x3[y2 ≥ φ(x2), φ(x3) ≥ y3 and R(x1, x2, x3)].

The goal of this chapter has been to present enough background on ex-
tended duality theory to state a full categorical duality theorem for residuation
algebras:

Theorem 4.3.16. The category of residuation algebras together with mor-
phisms preserving both \ and / (as well as the bounded lattice structure) is
dual to the category of Priestley spaces with relations satisfying REL[\] and
REL[/] together with morphisms satisfying BM[\] and BM[/].
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The functors are given exactly as for Priestley duality, together with the
above correspondence for additional operations and relations on the Priestley
dual. The full proof (in the more general case) may be found in [16].

Remark 4.3.17. We could also have introduced the concept of residuation
for all n-ary operations, and at every step along the way defined preservation
properties OP[i] for each of its n residuals, n Priestley compatibility properties
REL[i] for n + 1-ary relations, as well as definitions BM[i] for bounded mor-
phisms with respect to the i-th coordinate as output; these definitions follow
the same pattern as for the binary case. These definitions result in duality the-
orems for Priestley spaces with relations satisfying some subset of the REL[i]
properties with morphisms satisfying the corresponding subset of BM[i] prop-
erties and bounded distributive lattices with a corresponding number of n-ary
residuation operations [13, 16].

4.3.1 Residuation Ideals

We show that all Priestley topological algebras (including Boolean-topological
algebras) are extended Priestley duals of a residuation algebra. We have
already seen the correspondence between Priestley quotients and bounded
sublattices, and one may inquire as to what property on the corresponding
bounded sublattice corresponds to a Priestley quotient map being a morphism
of Priestley-topological algebras. This is answered in [13], and in this subsec-
tion we present their solution to this question.

Theorem 4.3.18. Let (X,≤,Ω, ·) be a Priestley-topological algebra with one
binary operation, and let R denote the graph of “·”. Then R satisfies REL[\]
and REL[/], so that (X,≤,Ω, ·) is the extended Priestley dual of a residuation
algebra.

Proof. We show that R satisfies REL[/]; the proof that R satisfies REL[\]
proceeds in much the same vein. Notice that for every x ∈ X,

R[x, , ] = {(x′, y) | R(x, x′, y)} = Gx·

where Gx· is the graph of the continuous function x · : X → X. The graph
of a continuous function is closed ([30]), and thus so is R[x, , ].

Now, let U be a clopen down-set of X and V a clopen up-set. The preimage
of V , namely ( · )−1[V ] is clopen by the continuity of “·”. Let π1 : X×X → X
denote the continuous projection map for the first coordinate. We may observe
that

R[ , U, V ] = {x ∈ X | ∃x′∈U,y∈VR(x, x′, y)}
= πi(( · )−1[V ] ∩ (X × U)).
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Because X is compact and Hausdorff, the projection of a clopen set is clopen.
Now (X × U) = π−1

i [U ], which is also clopen. Since a finite intersection of
clopen sets is clopen, these facts allow us to conclude that R[ , U, V ] is clopen,
so that R satisfies REL[/].

Remark 4.3.19. Although every Priestley-topological algebra is the dual of
a residuation algebra (with n residuation operations for each n-ary operation
on the topological algebra), the extended duals of residuation algebras and
Boolean residuation algebras are not always functional. In the Boolean case,
when the dual relation is functional, the resulting operation is necessarily
continuous, so that Boolean topological algebras are exactly the extended dual
spaces of Boolean residuation algebras whose dual relations are functional.
This result and characterisations of those (Boolean) residuation algebras whose
duals are topological algebras may be found in [13]. In summary, a residuation
algebra has a functional dual if the operation given in 4.3.14 sends prime filters
to prime filters. This property is refered to as the residuation algebra being
“join-preserving at primes”. In the Boolean case, this ensures that the dual
space is a topological algebra.

Definition 4.3.20. Let (B, /, \) be a residuation algebra. A subset A ⊆ B is
a residuation ideal if A is a bounded sublattice of B and for every a ∈ A and
b ∈ B, a/b ∈ A and b\ ∈ A.

Definition 4.3.21. Let (X,≤,Ω, R) be an Priestley space with an additional
(n + 1)-ary relation R, and let ∆ be a compatible preorder on X. Then ∆ is
called a relational congruence if for every x1, . . . , xn, x

′
1, . . . , x

′
n, z ∈ X we have

[(x′1, x1) ∈ ∆, . . . , (x′n, xn) ∈ ∆ and R(x1, . . . , xn, z)]

⇒ ∃z′ ∈ X[R(x′1, . . . , x
′
n, z
′) and (z.z′) ∈ ∆].

Theorem 4.3.22. Let (B, /, \) be a residuation algebra and (XB,≤,Ω, R) its
dual extended Priestley space. A bounded sublattice C ⊆ B is a residuation
ideal if and only if the corresponding compatible preorder ∆ on XB is a rela-
tional congruence on X.

Proof. Let C ⊆ B be a residuation ideal. The preorder ∆ is equal to E(C), as
given in the definitions preceding theorem 4.2.13. Let Fx, Fx′ , Fy, Fy′ , Fz ∈ XB

with (Fx, Fx′) ∈ ∆, (Fy, Fy′) ∈ ∆ and R(Fx, Fy, Fz). Recall that

∆ = {(Fx, Fy) ∈ XB ×XB | ∀c∈C [c ∈ Fy ⇒ c ∈ Fx]},

and we may see that Fx′∩C ⊆ Fx, Fy′∩C ⊆ Fy, Ix∩C ⊆ Ix′ and Iy ∩ C ⊆ Iy′ .
Let F = Fx′ ·Fy′ (where “·” is given by the construction in lemma 4.3.14) and
let I = ↓B (Iz ∩ C); the latter is an ideal because Iz ∩ C is, and it is easy to
verify that its down-closure will still be closed under joins. Towards showing
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that F and I are disjoint, assume a ∈ F and c ∈ C with a ≤ c. By the
definition of F , there exists some b ∈ Fx′ with b\a ∈ Fy′ . Because b\ is a
monotone map (as a consequence of OP[\]), a ≤ c implies that b\a ≤ b\c,
so that b\c ∈ Fy′ as well. Moreover, because the maps c/ and \c form an
antitone Galois connection, the composite (c/ )\c is a closure operator and
thus

b\c = (c/(b\c))\c and b ≤ (c/b)\c.

Now b\c ∈ Fy′ implies that b\c ∈ Fy, using the fact that Fy′ ∩ C ⊆ Fy and
that C is a residuation ideal. It follows that (c/(b\c))\c ∈ Fy, and by similar
reasoning we obtain (c/b)\c ∈ Fx, since Fx is up-closed. Hence, c satisfies the
condition for being in Fx · Fy. Now because R(Fx, Fy, Fz), by lemma 4.3.14 it
is know that Fx · Fy ≥ Fz, so that Fx · Fy ⊆ Fz and thus c ∈ Fz. Therefore,
c 6∈ Iz and so a 6∈↓B (Iz ∩C), and we may conclude that F and I are disjoint.
By the prime filter theorem, it follows that there exists a prime filter Fz′ with
F ⊆ Fz′ and Fz′ ∩ I = ∅. The latter equation implies that Iz ∩ C ⊆ Iz′ .
This in turn may be seen to imply that Fz′ ∩ C ⊆ Fz, so that (Fz, Fz′) ∈ ∆.
Finally, because Fx′ · Fy′ = F ⊆ Fz′ , we may conclude that R(Fx′ , Fy′ , Fz′).
On the other hand, suppose that ∆ is a relational congruence on X and let
C = S(∆), the corresponding bounded sublattice of B. We aim to show that
C is a residuation ideal of B. Let c ∈ C and b ∈ B. Note that b\c ∈ C
if for every (Fy, Fy′) ∈ ∆, b\cFy′ ⇒ b\c ∈ Fy, which holds if and only if
b\c ∈ Iy ⇒ b\c ∈ Iy′ . To show that this holds, fix (Fy, Fy′) ∈ ∆ and let
b\c ∈ Iy. Recall the construction of \R in theorem 4.3.11 and note that

b\c ∈ Iy ⇐⇒ b\c 6∈ Fy
⇐⇒ Fy 6∈ ηB(b\c)
⇐⇒ Fy 6∈ ηB(b\c)
⇐⇒ Fy 6∈ (ηB(b))\R(ηB(c))

⇐⇒ Fy 6∈ (R[ηB(b), , (ηB(c))C)])C

⇐⇒ Fy ∈ R[ηB(b), , (ηB(c))C)]

⇐⇒ ∃Fx,Fz∈XB [R(Fx, Fy, Fz) and b ∈ Fx and c ∈ Iz].

We may therefore fix some Fx, Fz for which the latter property holds. Now
since (Fy, Fy′) ∈ ∆ and (by reflexivity) (Fx, Fx) ∈ ∆, the fact that ∆ is a rela-
tional congruence implies that there exists Fz′ ∈ XB such that R(Fx, Fy′ , Fz′)
and (Fz, Fz′) ∈ ∆. From this last fact it follows that Iz ∩ C ⊆ Iz′ , and thus
since c ∈ Iz we may conclude that c ∈ Iz′ . Recall that R(Fx, Fy′ , Fz′) ⇐⇒
Fx\Iz′ ⊆ Iy′ , as per the definition in theorem 4.3.11. It follows that b\c ∈ Iy′ ,
which is what we were required to show.
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Remark 4.3.23. In the case that (XB,≤,Ω, R) is has the discrete topology
and is a Stone-topological algebra (so that B is a Boolean algebra and R is
functional and continuous and denoted by “·”), note that ∆ is an equivalence
relation and being a relational congruence implies that it is a congruence for
the algebraic operation “·”. We state the special case of this theorem for Stone
spaces:

Theorem 4.3.24. Let (B, /, \) be a Boolean residuation algebra such that
its dual extended Stone space (XB,Ω, ·) is a binary topological algebra. A
Boolean subalgebra C ⊆ B is a residuation ideal if and only if the corresponding
compatible equivalence relation ∆ on XB is a congruence on XB.

Proof. This follows from the previous remark and theorem 4.3.22 if we recall
that in the case that B is a Boolean algebra, C is Boolean subalgebra if and
only if its corresponding preorder ∆ is an equivalence relation.

4.4 Application to Formal Language Theory

As topological algebras, profinite algebras are necessarily Stone duals of a
Boolean residuation algebra with residuation operations corresponding to their
algebraic type.

Consider the diagram given in definition 3.3.1, which sets up the inverse
system of finite topological algebras represented in figure 3.1. In particular, we
illustrate this for the case of V is the variety of monoids so that FV(A) = A∗,
and V is the pseudovariety Monf of all finite monoids. Note that now VA

consists of all finite quotients of A∗, but in keeping with previous notation we
denote them by Xσ, where σ : A → Xσ is the unique morphism from A for
which the unique extension σ : FA(V) → Xσ is the quotient morphism. We

denote F̂Monf (A) by Â∗.
This gives us an inverse system of finite topological monoids. Remark 3.1.12

implies that each φσ,Ω is a surjective continuous homomorphism between the
Stone-topological monoids.

. . .

Xτ

Xσ . . .

. . .

φσ,τ

Taking the Stone dual of this inverse system, we get a direct system of
Boolean algebras.
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Furthermore, the fact that these continuous homomorphisms is surjec-
tive allows us to use the following theorem from [13] which ensures that the
duals of surjective Priestley-topological algebra morphisms (including Stone-
topological algebra morphisms) will preserve the residuation operations dual
to an additional operation on the Priestley spaces.

Theorem 4.4.1. [13] Let (X,≤,ΩX , ·) and (Y,≤,ΩY , ·) be Priestley topolog-
ical algebras with a single binary operation. If φ : X → Y is a surjective
homomorphism, then the dual bounded lattice homomorphism h : C → D
between residuation algebras (C, /, \) and (D, /, \) is a residuation algebra ho-
momorphism.

The morphisms dual to each φσ,τ are thus homomorphisms of Boolean
residuation algebras, and we have an direct system in this category. Because
these finite topological monoids have the discrete topology, the set of clopens
is just the power-set, and thus we may roughly represent this direct system as
follows:

. . .

P(Xτ )

P(Xσ) . . .

. . .

(φσ,τ )−1

A direct system of algebras of a fixed signature is generally given by a quo-
tient of the disjoint union with appropriately defined algebraic operations; we
direct the reader to Bourbaki [6] or Ribes and Zalesskii [26] for further details.
In this particular case, where the system of Boolean residuation algebras of
which we are taking the direct limit of may be embedded into the residuation
algebra P(A∗) in the following way, as can be seen by taking the discrete dual
of the above inverse system and the quotient morphisms from A∗:
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A∗

. . .

Xτ

Xσ . . .

. . .

τ

σ

φσ,τ

Figure 4.1: The inverse sys-
tem (Xσ)σ∈VA

consists of fi-
nite quotients of A∗ and ho-
momorphisms commuting with
these quotient morphisms, as
described in definition 3.3.1.

P(A∗)

. . .

P(Xτ )

P(Xσ) . . .

. . .

τ−1

(φσ,τ )−1

σ−1

Figure 4.2: Discrete dual of
the data on the left, applying
discrete duality between sets
and CABAs.

Viewing (A∗, ·) and each (Xσ, ·) as posets with the discrete order and
thus an order-compatible relation R which is the graph of “·”, we may apply
lemma 4.3.4 and the ensuing comments to see each is dual to the power-set
with a residuated family of binary operations. In particular, (P(A∗), ·, /, \) is
equipped with the lifted concatenation and its residuals. Note that this is ex-
actly the structure on P(A∗) that featured in the chapter on language theory.
However, since we are interested only in Boolean and residuation operations,
we ignore the “·” operation on each of these power-sets.

The direct limit turns out to be the following Boolean residuation subal-
gebra of (P(A∗), /, \):

lim−→(P(Xσ))σ∈VA
=

⋃
{σ−1[P(Xσ)] | σ : A→ Xσ ∈ VA}

=
⋃
{σ−1[P ] | P ∈ P(Xσ) and σ : A→ Xσ ∈ VA}

= Rec(A∗).

We already knowRec(A∗) to be closed under the relevant operations (by lemma
2.2.2). Now we also know that it is in fact the colimit of a direct system dual

to the inverse system of which Â∗ is the limit.
Since inverse limits are dual to direct limits (which, it is important to

recall, is a colimit), it would seem we have shown that which was claimed: that

Rec(A∗) is dual to Â∗. However, there is one important problem: the inverse

limit resulting in Â∗ is taken in the category of topological algebras, while the
direct limit Rec(A∗) is taken in the category of Boolean residuation algebras.
These do not exactly match as far as our knowledge of which categories are
dual to each other goes. Gehrke proved ([13]) that Â∗ is still the inverse limit of
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the same system in the category of extended Stone spaces which is dual to the
category of Boolean residuation algebras, which contains the category of Stone-
topological algebras. An alternative approach using canonical extensions is
given in [12], where it is shown that Rec(A∗) is in the category dual to Stone-
topological algebras, namely that it is join-preserving at primes (see remark
4.3.19).

The discussion in this section so far leads to the following result:

Theorem 4.4.2. [13] Let A be a finite set. Under extended Stone duality,
the Boolean residuation algebra (Rec(A∗), /, \) is the dual of the free profinite

monoid (Â∗, ·).

4.4.1 Equational Theory

In the chapter on Reiterman’s theorem, we explored the connection between
profinite identities and pseudovarieities. The chapter on formal language the-
ory conlcuded with Eilenberg’s theorem, detailing the connection between va-
rieties of languages and pseudovarieties of monoids. Now that we know that
(Rec(A∗), /, \) is the extended Stone dual of Â∗, we are now equipped to
describe a direct connection between various collections of languages and cor-
responding sets of profinite monoid identities.

We already have a system in place connecting sublattices, Boolean subalge-
bras, residuation ideals and Boolean residuation ideals of Rec(A∗) with certain

preorders and equivalence relations on Â.

We summarise the known one-to-one correspondences in the table in figure
4.3.

We already know from chapter 3 that elements of Â∗ are profinite terms
which have an interpretation in every finite monoid, and that pairs in Â∗ ×
Â∗ can be interpreted as profinite identities that may or may not hold in a
given monoid. Now, we use the correspondences above to develop a similar
interpretation of profinite identities with respect to recognizable languages
based on the relation in the discussion leading up to theorem 4.2.13.

Being the dual of the Boolean Algebra Rec(A∗), we may note that Â∗ ∼=
(PrF (Rec(A∗),Ω, ·), the extended dual prime filter space. Thus, we may as-

sociate each u ∈ Â∗ with a prime filter Fu ∈ PrF (Rec(A∗)), and this allows
us to give the following definitions:

Definition 4.4.3. Let L be recognisable language and let (u, v) ∈ Â∗ × Â∗.

1. We call (u, v) a profinite lattice identity when it is denoted u → v,
and we say that L |= u → v (read “L models u → v”) if and only if
L ∈ Fv ⇒ L ∈ Fu.
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Substructures
of Rec(A∗)

Subsets of
Â∗ × Â∗

Quotients of

(̂A∗)
Theorem

Bounded Sub-
lattices

Priestley-
Compatible
Preorders

Quotients
of Priestley
Spaces

4.2.13

Boolean Subal-
gebras

Stone-
Compatible
Equivalence
Relations

Quotients of
Stone Spaces

4.2.14

Residuation
Ideals

Priestley-
Compatible
Preorders which
are Relational
Congruences

Priestley-
Topological
Monoid Quo-
tients

4.3.22

Boolean Resid-
uation Ideals

Stone-
Compatible
Congruences

Stone-
Topological
Monoid Quo-
tients

4.3.24

Figure 4.3

2. We call (u, v) a profinite symmetric lattice identity when it is denoted
u ↔ v and we say that L |= u ↔ v if and only if L |= u → v and
L |= v → u.

3. We call (u, v) a profinite monoid inequality when it is denoted u ≤ v, and

we say that L |= u ≤ v if and only if for every x, y ∈ Â∗, L |= x · u · y →
x · u · y.

4. We call (u, v) a profinite monoid identity or a pseudoidenity when it is
denoted u = v, and we say that L |= u = v if and only if L |= u ≤ v and
L |= u ≤ v.

Definition 4.4.4. Let C ⊆ Rec(A∗). We say that C |= u → v (respectively
u↔ v, u ≤ v and u = v) if and only if L |= u→ v for every L ∈ C.

With these definitions in mind, the one-to-one correspondences in theorems
4.2.13 and 4.2.14 becomes a Galois connection between theories and models:

Corollary 4.4.5. Let R→ be the relation on Rec(A∗) × (Â∗ × Â∗) given by

LR→ (u, v) ⇐⇒ (L |= u → v). The polarity (Rec(A∗), Â∗ × Â∗, R→) yields
the standard antitone Galois connection
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Eqn→ : P(Rec(A∗)) −→←− P(Â∗ × Â∗) : Mod→

where for any U ⊆ Rec(A∗) and V ⊆ Â∗ × Â∗:

Mod→(V ) = {L ∈ Rec(A∗) | ∀(u,v)∈V (L |= u→ v)}

and
Eq→(U) = {(u, v) ∈ Â∗ × Â∗ | ∀L∈U(L |= u→ v)}.

The Galois-closed sets of this Galois connection are the bounded sublattices of
Rec(A∗) and the Priestley-compatible preorders on Â∗

Corollary 4.4.6. Let R↔ be the relation on Rec(A∗) × (Â∗ × Â∗) given by

LR↔ (u, v) ⇐⇒ (L |= u ↔ v). The polarity (Rec(A∗, Â∗ × Â∗, R↔) yields
the standard antitone Galois connection

Eqn↔ : P(Rec(A∗)) −→←− P(Â∗ × Â∗) : Mod↔

where for any U ⊆ Rec(A∗) and V ⊆ Â∗ × Â∗:

Mod↔(V ) = {L ∈ Rec(A∗) | ∀(u,v)∈V (L |= u↔ v)}

and
Eq↔(U) = {(u, v) ∈ Â∗ × Â∗ | ∀L∈U(L |= u↔ v)}.

The Galois-closed sets of this Galois connection are the Boolean subalgebras of
Rec(A∗) and the Stone-compatible equivalence relations on Â∗

To keep in step with this notation, we define Mod≤ and Mod= accordingly.

For a fixed alphabet A, we now have a one-to-one correspondence between
bounded lattices of recognisable languages and sets of profinite lattice identities
which are Priestley-compatible preorders, as well as for Boolean algebras of
recognisable languages and sets of profinite symmetric lattice identities which
are Stone-compatible equivalence relations. We do not have an analogous
Galois connection for residuation ideals, but as we will see below there is still
connection between residuation ideals and sets of profinite monoid inequalities.
The following proof was presented for a more general case in [13].

Lemma 4.4.7. Let C ⊆ (Rec(A∗), /, \) be a bounded sublattice. Then C is a
residuation ideal if and only if it is the set of models for some set of profinite
monoid inequalities.

Proof. Firstly, suppose that C is a residuation ideal. By theorem 4.3.22, C
corresponds to a Priestley-compatible preorder ∆ on (Â∗, ·) which is a re-
lational congruence for “·”. Recall that by theorem 4.4.5, C = Mod→(∆).
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Now, ∆ being a relational congruence implies that for every (x1, x2) ∈ ∆ and
(x′1, x

′
2) ∈ ∆, we have (x1 · x2, x

′
1 · x′2) ∈ ∆. We will show that C = Mod≤(∆).

It is trivial to see that Mod≤(∆) ⊆ Mod→(∆) = C by choosing x and y to
be the identity, so now it remains to fix some L ∈ C and show that for every
(u, v) ∈ ∆, L |= u ≤ v. To this end, let x, y ∈ Â∗. By reflexivity, (x, x) ∈ ∆
and (y, y) ∈ ∆. Because (u, v) ∈ ∆ and ∆ is a relational congruence for the
graph of “·”, it follows that (x ·u ·y, x ·v ·y) ∈ ∆. Thus, L |= x ·u ·y → x ·v ·y,
and because x and y were arbitrary, we may conclude that L |= u ≤ v. Hence,
C = Mod≤(∆).

To show the converse, suppose that C = Mod≤(∆) for some ∆ ⊆ Â∗× Â∗.
Let L ∈ C and (u, v) ∈ ∆. We aim to show that L |= u ≤ v implies that for
any K ∈ Rec(A∗), it must be that K\L |= u ≤ v, so that K\L ∈ C. To this

end, assume L |= u ≤ v, let x, y ∈ Â∗ and suppose that K\L ∈ Fx·v·y. By
Stone duality, this means Fx·v·y ∈ ηRec(A∗)(K\L). Recall that this is the Stone
duality isomorphism

ηRec(A∗) : Rec(A∗)→ Clop(Â∗),

which we will refer to as η for brevity throughout this proof. Let R ⊆ (Â∗)3

denote the graph of “·”. Recall that by remark 4.3.12, R gives rise to a
residuated family (·R, /R, \R) on P(Â∗), where ·R is just the lifting of · to

P(Â∗) and /R, \R restrict to Clop(Â∗) and are exactly the duals of “·”, so that

(Rec(A∗), /, \) ∼= (Clop(Â∗), /R, \R)).

By lemma 4.3.14,

η(K\L) = (η(K))\R(η(L))

= (R[η(K), , (η(L))C ])C .

Using the fact that ·R, /R, and \R are a residuated family, we may observe that

{Fx·v·y} ⊆ (η(K))\R(η(L)) ⇐⇒ η(K) ·R {Fx·v·y} ⊆ η(L).

Th latter property holds if and only if for every Fw ∈ η(K), it follows that
Fw·(x·v·y) ∈ η(L). Equivalently, L ∈ Fw·(x·v·y). Now because L |= u ≤ v, for
every Fw ∈ η(K), since L ∈ Fw·(x·v·y), it will also be true that L ∈ Fw·(x·u·y).
Following the same string of equivalences backwards, we may deduce that
η(K) ·R {Fx·u·y} ⊆ η(L) and thus Fx·u·v ∈ η(K\L). Hence, K\L |= x · u · y →
x ·v ·y for every x, y ∈ Â∗ and so K\L |= u ≤ v. The proof that K/L |= u ≤ v
is similar, and we see that C is a residuation ideal.

Theorem 4.4.8. Let C ⊆ (Rec(A∗), /, \) be a Boolean subalgebra. Then C is
a Boolean residuation ideal if and only if it is the set of models for some set
of profinite monoid equations.
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Proof. Suppose C is a Boolean residuation ideal. Then by theorem 4.4.7,
C = Mod≤(∆) for the corresponding Priestley-compatible preorder ∆ that
is also a relational congruence. Because C is a Boolean subalgebra, by the
proof of 4.2.13 we know that this ∆ is a Stone-compatible congruence. The
symmetry of ∆ will imply that Mod≤(∆) = Mod=(∆).

On the other hand, if C = Mod=(A) for some A ⊆ Â∗ × Â∗, closure of C
under complements ensures that for every (u, v) ∈ A, L |= u ≤ v if and only
if L |= v ≤ u. Hence, C = Mod≤(A) as well and theorem 4.4.7 allows us to
conclude that C is a residuation ideal.

We summarise the above connections between subsets of Rec(A∗) and pairs
of profinite monoid terms in the following theorem:

Theorem 4.4.9. A subset C ⊆ (Rec(A∗), /, \) is a:

1. bounded sublattice if and only if it is the set of models for a set of profinite
lattice equations.

2. Boolean subalgebra if and only if it is the set of models for a set of
profinite symmetric lattice equations.

3. residuation ideal if and only if it is the set of models for a set of profinite
algebra equations.

4. Boolean residuation ideal if and only if it is the set of models for a set
of profinite monoid identities or pseudoidentities.

As a consequence of the above results and one-to-one the correspondences
between

1. Bounded sublattices which are residuation ideals and Priestley-compatible
preorders which are relational congruences, and

2. Boolean subalgebras which are residuation ideals and Stone-compatible
congruences,

we essentially have a characterisation of those subsets of Â∗×Â∗ which give rise
to residuation ideals and Boolean residuation ideals of recognisable languages.

Lemma 4.4.10. There exists a one-to-one correspondence between Priestley-
compatible preorders on (Â∗, ·) which are relational congruences for “·” and
subsets of Rec(A∗) defined by a set of profinite monoid inequalities.

Proof. The bijection is given by mapping any Priestley-compatible preorder ∆
which is a relational congruence to the subset C = Mod→(∆). It is known by
theorem 4.3.22 that this will be a residuation ideal, and by theorem 4.4.7 C =
Mod→(∆) = Mod≤(∆). This map is injective because we already know that
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the correspondence ∆ 7→ C = Mod→(∆) is a bijection onto the set of bounded
sublattices of Rec(A∗). It is also surjective, because any C = Mod≤(A) for

some A ⊆ Â∗ × Â∗ will be a residuation ideal by theorem 4.4.7 and thus
equal to Mod→(∆) for a Priestley-compatible preorder ∆ which is a relational
congruence.

Lemma 4.4.11. There exists a one-to-one correspondence between Stone-
compatible congruences on (Â∗, ·) and subsets of Rec(A∗) defined by a set of
pseudoidentities.

Proof. The proof of lemma 4.4.10 can be adapted for this context, referencing
theorem 4.3.24 instead of theorem 4.3.22 and theorem 4.4.8 instead of theorem
4.4.7.

We have thus completed the description of Gehrke, Grigorieff and Pin’s
characterisation [13, 14, 12] of various substructures of Rec(A∗) as sets models
for different types of “equations” and identified the corresponding substruc-
tures of Â∗×Â∗ which give rise to them. This is summarised in the image below
and the table on the next page. For any bounded sublattice C, there is a cor-
responding Priestley-compatible preorder ∆ on Â∗. This preorder corresponds
to a quotient which is dual to the inclusion morphism of C into Rec(A∗).

C Â∗

Rec(A∗) Â∗/∆

q∆

Now ∆ is a set of profinite words, and the table below summarises the
corresondences we have shown in this chapter. The bounded sublattice C is
a substructure of a given type if and only if ∆ is a preorder or congruence of
the corresponding type. In this case, C is exactly the set of models of ∆ for
the given equation type.
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Substructures of
Rec(A∗)

Types of Equations Subsets of Â∗ × Â∗

Bounded Sublattices u→ v Priestley-Compatible
Preorders

Boolean Subalgebras u↔ v Stone-Compatible
Equivalence Relations

Residuation Ideals u ≤ v

Priestley-Compatible
Preorders which are
Relational Congru-
ences

Boolean Residuation
Ideals

u = v Stone-Compatible
Congruences

Remark 4.4.12. Upon careful inspection, one can see that the definition a
Stone-compatible congruence corresponds exactly to the conditions on each
ΣA in theorem 3.4.8, which gives a characterisation for Reiterman’s profinite
theories. We are therefore very close to a result which captures the composition
of Eilenberg and Reitermans’ theorems, but for one last component: behaviour
with respect to different alphabets. On the lattice side, we require closure
on the inverse morphisms, and on the profinite identities side, closure under
substitution.

Theorem 4.4.13. [13] Let C denote a mapping A 7→ C(A), where each C(A)
is a bounded sublattice of Rec(A∗). Let Σ denote the mapping A 7→ ΣA where

ΣA is the Priestley-compatible preorder on Â∗ corresponding to CA. p Then
C is closed under inverse morphisms if and only if the equational class Σ =⋃
A⊆AΣA is closed under substitution. The latter property is that for any

monoid homomorphism h : A∗ → B∗ which extends uniquely to ĥ : Â∗ → B̂∗

(by theorem 3.3.7, because we may consider it a homomorphism into B̂∗, if

(u, v) ∈ ΣA then (ĥ(u), ĥ(v)) ∈ ΣB.

Proof. Let h : A∗ → B∗ me a monoid homomorphism. Its preimage may
be restricted to h−1 : Rec(B∗) → Rec(A∗) by lemma 2.2.5. The Stone dual

of this morphism is (h−1)−1 : Â∗ → B̂∗, and because it agrees with h on

the elements of A∗, by theorem 3.3.5 it is equal to the unique extension ĥ.
Implicitly applying an isomorphism and treating the elements of Â∗ and B̂∗

as prime filters of Rec(A∗) and Rec(B∗) respectively (theorem 4.4.2), we have
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the following observation for every L ∈ Rec(B∗) and u ∈ Â∗:

L ∈ Fĥ(u) ⇐⇒ ĥ(u) ∈ ηRec(B∗)(L)

⇐⇒ u ∈ ĥ−1[ηRec(B∗)(L)] = ηRec(B∗)(h
−1(L))

⇐⇒ h−1(L) ∈ Fu.

Now, suppose C is closed under inverse homomorphisms. Fix two alphabets
A and B, a homomorphism h : A∗ → B∗ and let (u, v) ∈ Â∗. Let L ∈ C(B),
so that h−1[L] ∈ C(A) and thus h−1[L] |= u → v. We aim to show that

L |= ĥ(u) → (̂h)(v). For this purpose, assume that ĥ(v) ∈ ΣA. By the above
string of equivalences, this implies that h−1(L) ∈ Fv. Because h−1[L] |= u→ v,
we know that h−1(L) ∈ Fu, from which we may conclude L ∈ Fĥ(u) as needed.

On the other hand, suppose Σ is closed under substitution and let L ∈ C(B).
We are required to prove that h−1[L] ∈ C(A), which is equivalent to saying
h−1[L] |= u → v for every (u, v) ∈ ΣA. Fixing any (u, v) ∈ ΣA, we know that
(ĥ(u), ĥ(v)) ∈ ΣB so that L |= ĥ(u)→ ĥ(v). Now, assume that h−1[L] ∈ Fĥ(v).
Then L ∈ Fĥ(v), and by the next-to-last observation it follows that L ∈ Fĥ(u),

so that h−1[L] ∈ Fu, which is what we wished to prove.

Thus, mappings of the form A → C(A) where each C(A) is a Boolean
residuation ideal of Rec(A∗) correspond one-to-one to mappings A 7→ ΣA

where each ΣA ⊆ Â∗ × Â∗ is a Stone-compatible congruence on the profinite
monoid Â∗. Because this assignment is closed under substitution if and only
if C is closed under inverse morphisms, Σ is a profinite theory exactly when C
is a variety of recognisable languages.
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Conclusion and Further Work

Eilenberg’s theorem gave a one-to-one correspondence between varieties of lan-
guages and pseudovarieties of monoids. Reiterman’s theorem gave a one-to-one
correspondence between pseudovarieties of monoids and profinite theories, or
systems of Stone-compatible congruences on free profinite monoids closed un-
der substitution. The duality-theoretic observation that for each alphabet A,
the residuated Boolean algebra (Rec(A∗), /, \) is the extended stone dual of

the free profinite monoid Â∗ and the application of existing correspondences
between certain subobjects of Rec(A∗) and certain quotients of Â∗ yields a
short-cut linking varieties of languages and profinite theories. When com-
bined with Reiterman’s theorem, this may be seen as an alternative proof for
Eilenberg’s theorem.

Furthermore, the work in [14, 13] has yielded a correspondence for col-
lections of recognisable languages that are not varieties of languages - they
have other closure properties such as not being closed under complements
or under the residuation operations (these correspond to the bounded sub-
lattice and boolean subalgebra cases). The closure conditions for varieties of
languages correspond exactly to Boolean residuation ideals, which are the sub-
structures of Rec(A∗) that are exactly the duals of Stone-topological monoid
quotients (equivalently, the model classes for Stone-compatible congruences of
pseudoidentities). The classes of monoids corresponding to these alternative
classes of languages have not, to our knowledge, been characterised, and this
could potentially be an interesting direction for further work.

It is worth noting theorem 4.4.2 chapter 3 for the case of free monoids was
first shown in a weaker form by Pippinger [22]; that the underlying topological
space of the profinite completion of the free monoid was dual under stone du-
ality to the Boolean algebra of recongisable languages over that free monoid.
Incorporating the additional operations into the duality-theoretic understand-
ing of the connection between Rec(A∗) and Â∗ allowed for the characterisation
of those Boolean subalgebras dual to stone-compatible congruences, and these
are exactly the residuation ideals.

A fruitful consequence of the duality-theoretic perspective is that it has
served as a springboard for generalisation; the work in [13] and [11] applies
to algebras with any finite number of finitary operation and corresponding

67
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residuation algebras with as many residuation operations as there are input co-
ordinates to each of the corresponding algebraic operations. These ideas have
also been extended to a more category-theoretic approach, where the focus is on
T -algebras, monads and appropriately adapted definitions of recognition [29],
and the existence of such a dual equivalence is a key part of their constructions.
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Appendix A

Preliminaries

• We assume knowledge of the basics of universal algebra such as signa-
tures, homomorphisms, subalgebras, products, varieties of algebras, free
algebras and Birkhoff’s theorem. A standard reference is [8]. We gener-
ally denote varieties by calligraphic script such as V , and the free algebra
over a set A is denoted as FA(V).

• We assume basic knowledge of topological spaces such as separation prop-
erties, bases and subases, product constructions, and properties of con-
tinuous maps. A standard reference is [30]. We include some results and
definitions which are pertinent to chapters 3 and 4.

• We assume knowledge of basic category theoretic concepts such as cat-
egories, functors, natural transformations, diagrams and limits. A stan-
dard reference is [19]. We will generally denote categories in bold-face
script, such as Set or C.

• We assume basic knowledge of partially ordered sets (posets), lattices
and Boolean algebras. A standard reference is [23].

We include some definitions and lemmas which are pertinent to this work for
ease of reference, especially concepts from order theory and topology which
are relevant to the duality-theoretic work explored in chapter 3.

A.1 Ordered Structures

Definition A.1.1. Let L be a lattice. We call L

1. bounded if it has a greatest element 1 and a least element 0

2. distributive if for every a, b, c ∈ L ,we have a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

3. complete if
∨
S and

∧
S exist for every S ⊆ L

70
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4. completely distributive if arbitrary meets distribute over arbitrary joins,
and vice versa.

Definition A.1.2. Let L be a lattice and let a, b, x ∈ L and S ⊆ L. An
element x is called

1. join irreducible if a ∨ b = x⇒ x = a or x = b

2. meet irreducible if a ∧ b = x⇒ x = a or x = b

3. join prime if x ≤ a ∨ b⇒ x ≤ a or x ≤ b

4. meet prime if a ∧ b ≤ x⇒ a ≤ x or b ≤ x

5. completely join irreducible if x =
∨
S ⇒ x ∈ S

6. completely meet irreducible if x =
∧
S ⇒ x ∈ S.

Definition A.1.3. Let L be a lattice and S ⊆ L. We say that S is

1. join dense in L if every element of L is equal to the join of some finite
S ′ ⊆ S

2. meet dense in L if every element of L is equal to the meet of some finite
S ′ ⊆ S

3. completely join dense in L if every element of L is equal to the join of
some S ′ ⊆ S

4. completely meet dense in L if every element of L is equal to the meet of
some S ′ ⊆ S

5. a filter if S is up-closed and closed with respect to finite meets

6. a prime filter if S is a filter and a ∨ b ∈ S imply that a ∈ S or b ∈ S

7. an ideal if S is down-closed and closed with respect to finite joins

8. a prime ideal if S is an ideal and a ∧ b ∈ S imply that a ∈ S or b ∈ S.

Definition A.1.4. A lattice L is called a DL+ if it is complete, completely
distributive and if the completely join-irreducible elements are completely join
dense in L and the completely meet irreducible elements are completely meet
dense in L.
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Definition A.1.5. A bounded distributive lattice (B, 0, 1,∧,∨) is a Boolean
algebra if for every a ∈ B there exists a unique element ¬a such that

a ∧ ¬a = 0

a ∨ ¬a = 1.

It is complete if the underlying lattice is complete, and is a CABA (complete
and atomic Boolean algebra) if the underlying lattice is a DL+.

Definition A.1.6. Let (X,≤) and (Y,≤) be posets with monotone maps

f : X −→
←− Y : g.

If for each x ∈ X, y ∈ Y we have f and g satisfying the property

f(x) ≤ y ⇐⇒ x ≤ g(y)

then we say that f is the lower adjoint of g and g is the upper adjoint of f .
We refer to this as a monotone galois connection or just a galois connection.

Lemma A.1.7. Properties of Adjoints

1. Adjoints, when they exists, are unique.

2. A monotone map f : X → Y between posets with an upper adjoint f ]

satisfies

f ](y) =
∨

f−1(↓ y)

for every y ∈ Y. Moreover, f ](y) is the largest element x ∈ X such that
f(x) ≤ y.

3. A monotone map f : X → Y between posets with a lower adjoint f [

satisfies

f [(y) =
∧

f−1(↑ y)

for every y ∈ Y. Moreover, f [(y) is the least element x ∈ X such that
y ≤ f(x).

4. For every x ∈ X and y ∈ Y ,

ff ](y) ≤ y and x ≤ ff [(x).

5. A monotone map between complete lattices has a upper adjoint iff it
preserves arbitrary joins.

6. A monotone map between complete lattices has a lower adjoint iff it
preserves arbitrary meets.
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Definition A.1.8. Let (X,≤) and (Y,≤) be posets with antitone maps

f : X −→
←− Y : g.

If for each x ∈ X, y ∈ Y we have f and g satisfying the property

y ≤ f(x) ⇐⇒ x ≤ g(y)

We refer to this as an antitone galois connection.

Definition A.1.9. A unary operator f : X → X on a poset is know as a
closure operator if for every x ∈ X it satisfies

1. x ≤ x′ ⇒ f(x) ≤ f(x′)

2. f(x) = x

3. x ≤ f(x).

Lemma A.1.10. If f : X −→
←− Y : g form an antitone Galois connection, then

both f ◦ g and g ◦ f are closure operators.

Definition A.1.11. Let X,Y be sets and R ⊆ X×Y a relation between them.
Then the triple (X, Y,R) is a polarity.

Definition A.1.12. Let P = (X, Y,R) be a polarity. This gives rise to an
antitone Galois-connection

E : P (X) −→←− P (Y ) : S

Where for A ⊆ X, B ⊆ Y

E(A) = {y ∈ Y | ∀a ∈ A : aRy}
S(B) = {x ∈ X | ∀b ∈ B : xRb}.

The lattices of Galois-closed sets are

(P(X))G = {A ⊆ X | ES(A) = A}

and
(P(Y ))G = {B ⊆ Y | SE(B) = B}.

In the former, the meet operation is given by intersection and for A,A′ ∈
(P(X))G we have A ∨ A′ = ES(A ∪ A′). The complete lattice operations on
(P(Y ))G are defined accordingly. It is useful to note that as a consequence of
forming an antitone Galois connection, the composites ES and SE are closure
operators.
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A.2 General Topology

Definition A.2.1. Let (X,ΩX) be a topological space. Let ∼ an equivalence
relation on X and q : X → X/ ∼ denote the corresponding quotient map. The
quotient topology on (X/ ∼) is defined as ΩX/∼ = {U ⊆ X/ ∼| q−1[U ] ∈ ΩX}.
We call (X/ ∼,ΩX/∼) the quotient space.

Lemma A.2.2. A bijective continuous map between compact Hausdorff spaces
is a homeomorphism.

Proposition A.2.3. If B is a base for a topological space X and A ⊆ X is a
subspace, then the collection of B ∩ A for B ∈ B is a base for A.

Definition A.2.4. A topological space (X,Ω) is called zero-dimensional if
and only if it has a base of clopen sets.

Definition A.2.5. A topological space (X,Ω) is called a Stone Space if it is
compact, Hausdorff and zero-dimensional.

Definition A.2.6. An ordered topological space (X,Ω,≤) is totally order-
disconnected if and only if for every x, y ∈ X with x 6≤ y there exists a clopen
up-set U such that x ∈ U but y 6∈ U .

Definition A.2.7. An ordered topological space (X,Ω,≤) is called a Priestley
Space if it is compact and totally order-disconnected.

Theorem A.2.8. The following is true of Priestley spaces:

1. Every Priestley space is Hausdorff and zero-dimensional, and thus the
underlying topological space is a Stone space.

2. The product of Priestley spaces is again a Priestley space.

A.3 Category Theory

Definition A.3.1. A category C is filtered if every finite diagram to it has a
cocone. The dual notion is that of a cofiltered category.

Remark A.3.2. This is essentially the categorical version of a directed pre-
order.

Definition A.3.3. A diagram F : D→ C is filtered if D is a filtered category.
A filtered limit is the limit of a filtered diagram, likewise a cofiltered limit is
the limit of a cofiltered diagram.

We include the definition of equivalence of catogories, as it is central to
duality theory and we will be consistent in our use of the below notation.
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Definition A.3.4. Let C and D be categories. A pair of covariant functors

C D

F

G

is said to give an equivalence of categories if and only if there is exist natural
isomorphisms η : GF → 1C and µ : 1D → FG such that for every f : A→ A′

in C and g : B → B′ in D the following diagrams commute:

GF (A) A

GF (A′) A′

GF (f)

∼=
ηA

f

∼=
ηA′

B FG(B)

B′ FG(B′)

g

∼=
i

∼=

If these functors are instead contravariant, this is called a dual equivalence
of categories, and these are the connections studied in duality theory.
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