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ABSTRACT

Current and future trends deanstrate that the increasing world population, dwindling arable
land, changing human diets and increased demand for (bio)energy present an opportunity to redesign
the way land is used to meet the future food, feed and bioenedgynands.The sustainable
integration of bioenergy and highly digestible livestock feed production systems has been touted as a
potential avenue to increase the economic returns to agriculture and simultaneously promote energy
security, particularly in deloping countries. To this €pn postharvest residues from sugarcane
processingi(e. sugarcane bagasse (SCB) and cane leaf matter (CLM)) have emerged as candidate
feedstock for integrated bioenergeg.g.bio-ethanol and biogas) and animal feeds produciio®outh
Africa and Brazillhe principal aim of this dissertation wasperform a systematic comparison of the
potential use of steam explosion (StEx) and ammonia fiber expansion "AREXpretreatment
technologies to overcome biomass recalcitrandereby generating highly digéble animal feeds,
and cellulosic ethanol and biogas production feedstocks from sugarcane residues for future integrated

biofuelanimal feed systems.

A sideby-side comparison of the effect of StEx and APEXetreatment of sugarcane
residues revealed PEX"to be the better pretreatment for maximising ethanol yields per Mg raw dry
material (RDM) from both SCB and CLM. Under industrially relevant solids loadih§% aind
dosages of 9.8 mg protein/g RDMEEX pretreated swarcane residues generatedhainol yields up
to 324 litres/Mg RDM, the highest ethanol yields reported in literature from sugarcane residues. In
contrast, éhanol yields from steam exploded sugarcane residues were limited to the range 205 to 257
litres’Mg RDM primarily due to the conmpinded effect of carbohydrate degradation during
pretreatment, enzyme inhibition and microbial inhibition comninantSaccharomyces cerevisiae

424A (LNFST) during fermentation.
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To cebottleneck microbial inhibition duringhe fermentation of nordetoxified StEx whole
a f dzNiePpozatial useof industrial xylose€ermentingS. cerevisiastrains as efficient and inhibitor
tolerant ethanologens was evaluate8. cerevisiastrains Cellu®' 4 and TPL demonstrated near
compkte glucose and xylose conspition, with high acetate resistancdyuran detoxification and
phenolic aldehyde detoxification phenotypddltimately, both strains facilitated the generation of
224 litres/Mg RDMrom nondetoxified StEx SCB whole sluaryder a prehydrolysis simultaneas
saccharification and efermentation (PSSCF) configuration. In comparisb@,same yeast strains
generated moderately higher ethanol yields (254 litres/Mg RDBDring the PSSC8f highly
fermentable AFE¥-treated SCBdemonstratinghat the differencen the potential ethanol yieldthat
can be recoveredrom the two pretreatment technologies can be significantly reduced by using

inhibitor-tolerant ethanologens.

With both AFEX and StEstreated sugarcane residues requiring enzyme dosages of 9.8mg
protein/g RDM to achieve high ethanol yields, the potential use a rtemperature Cellulose HI
activation (ClHactivation) process to enhance the digestibility of StiExXAFEX'-treated sugarcane
residue pelletsvas investigate@s apotential strategyto minimise the enzyme cost contribution per
unit volume ethanol producedCoupling AFEX sugarcane lignocelluloses with Gadidtivation
reducedof the enzymedosage requirementfy more than 60% (to ~3 mg protein/g RDM), whilst
achieving ethanol yieldgreater than 280 litres/Mg RDMIlhese results represented the lowest
enzyme dosage to achieve ethanol yields of 280 L/Mg RDM reported in literature. In contrast,
upgrading StEkreated sugarcane residue pellets could only facilitate ethanol yields upOfo 2

litres/Mg RDM at an enzyme dosage of ~3 mg protein/g RDM.

Besides ethanol production, both AFEXand StEx also demonstrated significant
improvements in the animal feed value of SCB and CLM."ARExted sugarcane residues were
characterized by 230%acrease in the noprotein nitrogen content of the biomass, and up 8%
and 26% improvement in thén-vitro true digestibility (IVTD) and metabolizable energy (ME),

respectively, relative to untreated control® € 0.05). Although StEx did not incredbe nitrogen
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content of the pretreated sugarcane residues, the IVTD and ME ofrgtied SCB and ®lLwere
improved by 54% and 7%, respectivétyx (0.05). These results demonstrated that both AFEX and StEx
pretreatment can simultaneouslgenerate highly digestibleanimal feeds andenhanced cellulosic

ethanol feedstocks from sugarcane residues.

The comination of the near optimal C/N ratios and structural modifications of Ar-EXated
sugarcane residuesso facilitated biogas production withethane yelds up to 299 L GHg VS, with
or without codigestion with dairy cow manure (DCMJ)o obtain compaable methane yields,
untreated and steam exploded (StExljgarcane residuesad to be cedigested with DCM, at mass
ratios providing initial C/N ratios the range of 18 to 33-urthermore, the solid digestates recovered
from the codigestion of the suga&ane lignocelluloses with DCM were enriched in nitregen
phosphatepotassium (NPK), suggesting that they could be used as biofertilizers or partial

replacements for the CLM that is typically left on the field during greaneharvesting.

The results frm this dissertation showed that both APEXnd StEx successfully enhanced the
ethanol production potential, methane production potential, and animal featle of sugarcane
residues, providing alternative models for the sugarcane industry to create bioenergy and food value
from sugarcane residueditimately, these results provide essential information and insights for
future technoeconomic and lifecycle analyses that are required to establish the preferred
pretreatment technology and processing strategies to enable economically viable and
environmentally sustainable integrated bioenergy and animal feed production from South African

sugarcane residues.
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OPsSOMMING

Huidige en toekomstige tendense dui daarop dat die tam in die wéreldbevolking,
drastiese afname ilewerkbare grond, verandarg in menslike diéte erverhoging in dievraag na
(bic0 SYSNHAS Qy 3ISt SSYyiKSAR oehr@krom @ ioskdonsigs voedSeNR v (i 6 S
voer- en bioenergiebehoeftes te voorsie Die volhoubare integrasie vamoduksiestelsels vibio-
SYSNHAS Sy K223a OSNISSNbBINBE SSSPH2SNI g2NR | a Qy
van landbou te verhoog ertselfdertyd energiesekerheid te bevorder, veral in ontwikkelende lande
Die naoesreste van suikerrietverwerking (d.w.s. suikerrietbagasse (SRB) en rietblaarmateriaal (RBM))
word as kandidaatvoerstof vir geintegreerde -eioergie (bv. bioetanol en bioga) en
veevoerproduksie in Suillfrika en Brasilié beskou. Die hoofdoel Wah SNRA S @SNXKI YRSt Ay
stelselmatige vergelyking ®nderneemvan die moontlike gebruik van stoomontploffidggd { G 9 EE¢ 0 Sy
ammoniakveseluitsetting (AFEX as voorbehandelirgjegnologieé om enersyds die
biomassaweerspannigheidan suikerrietrestete bowe te komen sodoende hoogs verteerbare
veevoer te skepen andersydsellulosiese etanelen biogasproduksievoerstof uit suikerrietreste te

vervaardig vir toekomstige geintegmele biobrandstofveevoerstelsels.

Wanneer die uitwerking van StExen AFEX'-voorbehandeling van suikerrietresteaas
mekaar beskou word, blykFEX' die beter voorbehandelinte weesvir maksimum etanolproduksie
per Mg onverwerkte droémateriaal (ODM)ir sowel SRB as RBM. Met industrieel relevante
vastestofladings van 17% e@yloss van 9,8 mg protien/g ODM bied AFEX"-voorbehandetle
& dzA 1 S NNJetaibedng &in X324 liter/Mg ODM, synde die hoogste etanollewering uit
suikerrietreste wat totnog toe in die literatuur aangemeld is. Daarteenoadiesetanolleweringvan

stoomontplofte suikerrietreste beperk tot tusset05 en 257 liter/Mg ODM, hoofsaaklik weens die
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saamgestelde uitwerking van koolstofafbreking gedurende voorbehandeling, enkibisia en

mikrobiese inhibisie vaBaccharomyces cerevisid24A (LNFST) gedurendéermentasie

Om die bottelnek van mikrobiese inhibisie gedurende dermentasie van nie
gedetoksifiseerd&tEXru-flodder uit die weg te probeer ruim, is die potensiéabguik van industriéle
xilosefermenterendeS. cerevisiastamme ook ondersoek. D& cerevisiastamme CelluX'4 en TP
1 het byna volledige glukosen xiloseverbruikihoé asetaatweerstarigheid, furaadetoksifikasieén
fenoliesealdehieddetoksifikaséfenotipes getoon en het dzA G SA Y RSt A | Qy Silyz2¢
224t AGSNka3d h5a 3IS0ASR A hidrofsy¥ gelyidydige vesdieting anS 3 y
gesamentlikeF S NXY Sy (i | & ADartéeqador{h¢die ®SICP van hoogs fermenteerbare RFEX
behandelde @ . efieyishoér etanollewering getoon (23iter/Mg ODM), watdaarop dui dat die
verskil in die moontlike etanollewering van die twee voorbehandelingstegnologieé beduidend

verminder kan word met behulp vanhibitorverdraagsametanologene.

Daarbenewenss daar ondersoek ingestel na die opgradering van ver @i of AFEXY-
0SKIYRSt RS &dz | SNNR Sli-akdveritgSprose§CiiNy RameRdnpdratudriony QY
die bottelnek van die hoé ensiemdosisvereistes verbonde aan hoé etanolleweengrobeer
verwyder. Die kombinasie valFEX"-suikerrietlignosdlulose enClll het die ensiemdosisvereistes
met meer as 60% verlaag (tot ~3 mg protéen/g ODM) en etanollewering tot meer as
280liter/Mg ODM verhoog Hierdie resultaat is die laagste ensie@ 8 A & GANI Qy Sl y2f¢
280L/Mg ODM wat tot dusver in die literatuur aangemeld is. Daarteenoor het die opgradering van
verpilde StExo SKI YRSt RS adzhA { SNNA S NS a 2@l IiteMg ODBAiby RFt £ S g SN
ensiemdosis var3 mg protéen/g ODM teweeggebring

Benewens die uitwerking op etanolproduksie, blyk soABEX" as StExook aansienlike
verbeteringe in die veevoerwaarde van SRB en RBM tot gevolg. tBididiomassa vaAFEX!-
behandeldesuikerrietresi S K S (A LA S&a 2 2 NdstRstofinhcudiieskik ginsvikd- y A S LINR
ware verteerbaarheidl\\WV) en metaboliseerbare energi®E)wasonderskeidelil69%en 26%thoér
as by onbehandelde kontrolé¢B < 005). HoewelStExnie die stikstofinhoud van die voorbehandelde
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suikerrietreste verhog het nie, het dielMWVV en ME van StExbehandelde SREBn RBV met
onderskeidelik54% en 7% verhoog (P < 005). Hierdie resultate toon dat soweAFEX as StEx
voorbehandeling terselfdertyd dogs verteerbare veevoer én beter sellulosiese etanolvoerstof uit

sukerrietreste kan oplewer

Die kombinasie van die byna optim&é\-verhoudings en strukturele aanpassings Y X"-
behandeldesuikerrietreste het ook biogasproduksie teweeggebring, et Y SGF I yf S SNA y 3
299 L Chlkg VS met 6f sonder gesamentte vertering met melkbeesmi{®BM). Om vergelykbare
metaanlewering te verkry, moes onbehandelde en stoomontpl¢8tHEx) suikerrietreste saam met
MBM verteer word, wat op massaskaal aanvankikg-verhoudings van tussetBen 35gelewer het
Daarbenewens was die vaste digestate wat uit diegesamentlike vertering van die
suikerrietlignosellulose en MBM herwin is, ryk in stikdtffaatkalium (NPK)wat daarop dui dat dit
as biobemesting of gedeeltelike plaasvervanger kan dien vir die RBM wat gewodniikrgde groen
oesting op landerye agrbly.

Die resultate van hierdie studie toon dat sowdfEX as StExdie etanolproduksiepotensiaal,
metaanproduksiepotensiaal en veevoerwaarde van suikerrietreste suksesvol verhoog, en sodoende
die suikerrietbedryf vaalternatiewe modelle voorsien omdsenergie en voedselwaarde te skdjie
bevindinge bied noodsaaklike inligting en insigte vir toekomstige tegdpomomiese en
lewensiklusontledings om te bepaal watter voorbehandelingstegnologie en verwerkingstratégieé d
beste sal werk om geintegreerd®mkenergie en veevoerproduksie uit Suififrikaanse suikerrietreste

ekonomies lewensvatbaar en omgewingsvolhoubaar te maak
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CHAPTERONE

INTRODUCTION

Liquid biofuels are considered as one of the leading altéraaransportation fuels with several commerci

facilities producing ethanol frorfirst-generation feedstocks such esreal grains andugarcane juiceSugarcane residues
have demonstrated sigficant promise assecondgeneration bioenergy feedstock allbwing for the integration of
biorefineries to existing sugar millgarticularly in developing regions such as Brazil andSaltaran AfricaHowever,
current and future trends demonstrate thalhié increasing world populatioalemand for animal products imuman diets
and demand for biofuelwiill require a reconfiguration of the wdgnd is used to meet the future foodnimalfeed and
biofuels demands. Hence, tliendamentalchallenge for unlocking the commercial appeal of bioenergy from sugart
residuedies not only in the economic conversion of these residues, but also on its potential interaction with anima

human bod, environmental impac¢tand domestic job creatiosectors.

This chapter introduces insights intiee use of two mature pretreatma technologies, steam explosion (StE
and ammonia fiber expansion (AFE)Xo enable the potential integration of biofuahd animal feed production to curren

biorefinery models, thereby creating more sustainable bioendegg-food production systems.

1.1. Background o The Grand Challenge

Worldwide energy consumption has increased significantly in the last centurijodnereases
in the world population and industrializatigd]. As of 2018, the International Energy Agency (IEA)
estimated that the total global comsnption of crude oil and liquid fuels equated to approximately 99
million barrels per day2,3]. According to the United Nations Human Development Index (HDI), a
YyEGA2yaQ LISNJIgdtonsaniption (Miludisy eldcHigitBedtiBd\Nand mobility), is a strong
AYRAOFG2NJ 2F GKIG a20ASdeQa oSt HO RhichlBa Sy (A I 1
composite metric of humarcapital development that aggregates meassref national health,
education, andvealth, demonstrates that approximately 5 kilowatts per pergan yearis required
for societies to achieve high levellnimandevelopment(Figure 1.1)5]. Hence, developing countries

will have to increase their per capita energy consumption to maximise their HDIresmigl oil prices,
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national economidnstability, and clhate change driven by the greenhouse gas (GHG) emissions

embrace lowcarbon energy sources as an alternative source of erérgy.
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Figure1.1: Relationship between human development index and papita primary enerc

consumption study for 70 developed and developing countiseshe year 2013[5]

Energy derived from plant biomass (bioenergy) is widely expected to contribute approximately

25% of the primry energy in future lovcarbon energy projections by the year 20%6].

Lignocellulosic biomass is considethd onlyalternative sustainable resource capable of producing

liquid biofuels at scales necessary to displacgignificant amount of petroleushased fuels whilst

meeting global sustainability godlg]. Currently, the USA and Brazil already produce more than 50

and 30 million cubic meters of ethanol from ediBlarch {.e.corn grains) and extractable sugaire (

cane juice) in firsgeneration (1G) biorefinerse respectivelys,8,9] Howeverjn developing countries

such as South Africa, the use of edible crops as biorefinery feedstock matepatsducerelatively

low value biofuels (ethanoljecomes a debatable soegronomic issue due to direct competition with

the food market. In addition tox Y LIS G A y 3

gAlK

0KS F22R YIN]SiGx

are generally expensive and cannot be considered as atéwngsolution due to the uavailability of

adzZFFAOASY

FINXYEFYR (2 LINPOARS Y2NB

i Kth ¥G mn

ethanol[10]. The progressive transition toward indigenous cellulosic segmreration (2G) biofuel
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production from firstgeneration (1G) resources..cereal crops) can potentially facilitate expanded
bioenergy production, whilst enabling environntah economic, and socieconomic benefits in both

developing and developed countries.

On the other handthe potential expansion of the scale of biofuel production from food crops
and even crop residues has been subject to debate due to its perceivemd dird indirect effects on
human food, animal feed and land ugel]. More than 706 of the global agricultural land resources
are dedicated to livestock production, particularly pasture and cropland reserved for animal feed crop
production [12]. The production of animal prodts (meat and dairy) is estimated to require more
than fivetimes as much land per unit of nutritional value and twetitges higher water footprint
compared to plantbased equivalentfl3,14] Due to projected changes in human diet, the per capita
consumption of animal products in developing countries is expected to increase by more than 70%
from current levels by the year 2050, further intensifying pressarertsure future food security and
efficient use of existing agricultural laf#l5]. Hence, if future biofuel production expansion is not
managed properly, it could potentially instigate ngpetition with food crop and animal feed
production from the available croplands, resultingetbonversion of highly productive cropland and
forested areas towards livestock fodder crop productidd,16,17] Furthermore, ecent socie
economic studies for the state 8&0o Paulo (Brazil) have shown that the HDI (particulzelper cajita
income and educationelels) for cattle producing municipalities were significantly lower than
municipalities with sugarcane and processing mills, demonstrating the benefit of exgaoidthe
sugarcane sectojl8,19] Hence, the grand challengerfexpanding sugarcane based bioenergy in
sugarcane and livestock dense regions lies inet@nomically viablg@roduction of bioenergy from
existing agriculturaland to meet sustainability goals and human development potential, whilst

securing future fod security[20].
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1.2. Research motivation

Sugarcane is one of the major agricultural crops mostly plantedvieldging countries (Brazil,
India, China, Southern Africa) and is widely considered as one of the leading candidaterigp
crops[21]. The sugarcane processing industry typically generates approximately 140 kg dry weight
bagasse (fibrous residue after juice extiian) and an equal amount (dry weight) of cane leaf matter
(green leaves, tops and trash) per ton of wet harvested ¢agg Presently, sugaene bagasse (SCB)
is burned in inefficient mill boilers to pduce heat and electricity for sugar milling operations, with
surplus energy exported to the gri®3,24] Improvements in the sugar mill operation energy
efficiency and investment in more energy efficient power cogeneration technology would liberate
surplus bagasse for futurddsefinery applicationg23,25] Further, it hagpreviously been common
practice to burn sugarcane cane leaf matter (CLM) on the fielehpreesting to facilitate easier and
cheaper sugarcane stalk collection and transportatiornthe sugar il [23,26,27] However, the
outlaw of open field cane burning and the adoption of greener mechanical sugarcane harvesting
techniqueshas the potential torelease milions of tons of CLM fovalorisationto bioethanol,
electricity and/or other valueadded products in a biorefinery settirjg8]. With a saturated global
sugar market, the use dhese sugarcane residues for bioenergy production or other commodity
markets €.g.animal feed biochemicalspresents aralternative model for adding economic value to

sugarcane redues for the sugar industry.

Among the leading thermochemical pretreatment options, steam explosion (StEx) and
ammonia fiber expansion (AFEXa trademark of MBI International) are two wstlidied and
scalable technologieAFEX' demonstrated at pilot saleand StEx at industrial scilthat are being
considered for overcoming biomass recalcitrance, given their different biomass deconstruction
patterns (acidic vs alkaline) and potential for néerm integration into existing sugarcane mills
[29,30] Numerous techneeconomic estimations haveomprehensively shown that integrating 2G
biorefineries to &isting sugar mills or autonomous distilleries (1G biorefineries) can significantly

reduce 2G biofuel production costs by leveraging on existing process utilities incluejege@tion
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(steam and electricity) and wastewater treatment operatiof3,31,32] However, the some of these
technoeconomic simulations are based pnocess yieldshat are projected to be podsle in the
future and not experimentally validatedat industrially relevant conditionsin particular, the
experimental data necessary for understanding the pervasive impacts of StEx anf inB&strially
relevant downstreamenzymatic hydrolysis and fi@entation with commercially available and
efficient enzyme cocktails and xylefs¥menting ethanologens is lacking in literature. Moreover, the
experimental validation of the primary downstream processing bottlenecks for msirignethanol
yields per unitsugarcane cultivation land for StEx and APgd¢ated SCB and CLM have not been
evaluated. The availability of this experimental data would provide valuable insights for developing
future techneeconomic and lifeycle analysimodels that are necessafpr comparing StEx or

AFEX-based sugarcane residue 2G biorefineries.

Furthermore, the same leading pretreatment technologies used for improving lignocellulose
fungal enzyme digestibility for ethanol production may also beduge improving ruminantifd.
cattle) digestibility of agricultural residud40,33,34] Currently, there is no experimental data
comparing the effect of StEx and APEdh the aninal feed value of SCB and CIGWen the synergies
between the sugarcane production chains for biofuels and livestock production, simultaneously
enhancing the ruminant digestible energy content and ethanol yields of "M StEx treated
sugarcane resides presents an opportunity fomore efficient land use for sustainably producing
animal feeds (and animal products) and bioenergy compared to the current cereal grain based

agricultural system (seligure 1.2[35].

The adoption of intensified livestock production practices is another stratieglyis being
consideredfor improving the land use effency for the livestock production sector whilst allowing
the sustainable expansion of biofuel producti¢®9]. However, intensive livestock farms are
characterized by significant manure production, whaontribute to GHG eimsions by the livestock
industry. Biogas production fronthe anaerobic digestiorof livestock manurds wellestablished

technology thaserves numerous purposes, includiogour management, bioenergy producticand
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reduction of GI& emissions from the manurg¢40]. However, the IowC/N ratio in animal manures
contributes toanaerobic digestioiinstability due to nutrient imbalance and ammonia toxicity, thus
resulting in low biogas production per unit mass of manédeernatively, o-digesting lignocelluloses
with animal manuress wickly considered a promising strategytiarness the synergies between the
two substrateg41]. However, the anaerobic biodegradability of lignocelluloses is limited by its slow
rate ofhydrolysis, requiring pretreatment to enhance its rate and extent okeaolic biodegradability
[40]. Although pretreatment technologies such as StEx have been investigated for enhancing the
anaerobic biodegradability of lignocelluloses, there are no saiglivestigating theiogasproduction
potential from AFEX pretreated lignocelluloses, neither in mondigestion nor cedigestion with
animal manureThe assessment of the -cligestion potential of these pretreated substrates would
deepen insights intohe potential use of sugarcane residues in intensive anfarals to ceproduce

bioenergy in the form of biogas, and nutrient rich digestates.

Cereal Grains Under-utilized b Cereal Grains StEx or AFEXM Pretreated
& Sugarcane crop residues ( ) & Sugarcane crop residues

N N

!

i

Human food

\ }
R 5
_.-—"'
E W 4 %
Livestock 1G biofuels M 4
Production ’ 7"_, ) s

L L

Human food for 4 4 4 4
expanded population 2Gbiogas

Figure 1.2:(a) Current agricultural system for producing food, feed and 1G biofuels from cgr@ials and sugarcaneb)( Future
scenario whereby StEx or AffE crop residues complement cereal grains and sugarcane for producing food, feed andeR€rdy
(bioethanol and biogas)
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This integrated approadhas the potential tgoromote moresustainable bienergyproduction
and increased food production to support the expanding human population anddigtanges while

simultaneously mitigating the potential for indirect land use cha{tleUC]36¢38].

1.3. Global objective

The global objective of this wovkasto perform asystematiccomparison of the potentialse
of StEx and AFE%o valorizesugarcane residigeintocellulosidioenergy productiorieedstockgincl.
ethanoland biogs)and animal feed$or future integrated biofuelanimal feed system<Considering

the global objectie, the principal aims of this work were:

I.  Toperform a sideby-side comparison ahe pervasive impacts of StEx and A™&eX ethanol
production fromSCBand @M andto identify the effect of the major processing bottlenecks
on estimatedethanol yields per unit sugarcane cultivation area.

Il.  To experimentally evaluate th@otential of pilot-scale StEx and APEXretreatment to
generate sugarcane residues Wwignhanced animdked value whilst simultaneously
enabling their use as ethanol production feedstock under industrially relevant conditions.

Ill.  Toinvestigate the potential benefit of edigestingStEx or AFEX-pretreated sugarcane
residueswith livestok manureas a bigasproduction andnanure management strategy for
intensified livestock production farms located in sugarcane dense regions

IV. To study the potentialise ofa room-temperature @lluloselll-activation process to
enhance the digestibility dbtEx or AFEX-treated sugarcane sidue pelletsthereby
allowingfor efficienthigh solids loading enzymatic hydrolysis and fermentation at low
enzyme dosages (< 10 mg protein/g glucan).

V. To evaluate thdermentability of steam exploded and nafetoxiiSR ¢ K2f S af dzNNE Q&

industrial xylosdermentingSaccharomyces cerevisisteains.
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1.4. Dissertation Outline

This dissertation is organized in nine chaptéigyre 1.3next page)CHAPTER @&esents a
critical literature review of the current state ohé cellulosic ethanol industry, sugarcane production
in the South African context, the fundamentals of StEx and ARiXtreatment, and the major
processing bottlenecks of cellulosic ethanol. Moreover, thiapter delves into the potential use of
StEx ad AFEX'to enhance the animal feed value of agricultural residwes the potential use of
pretreatment and cedigestion to enhance anaerobic digestion yields from lignocelluld3daPTER
3 details the research objectives and research contributions kgsized from the gaps identified from
the literature survey CHAPTER details the study of the effects of StEx and AFEX on downstream
enzymatic hydrolysis and fermentation of SCB and CLM and the ideitificdithe major processing
bottlenecks for maxinsing ethanol yields per unit sugarcane cultivation |IaBHAPTER fresents
insights into the potential used of pilgicale StEx and APEXretreatment in integrated biofuel
livestock production systems tsimultaneously enhance the animahlue and ethanol production
potential of SCB and CLMHAPTER ifesents a study into the potential incorporation of anaerobic
co-digestion StEx or AFEMreated sugarcane residuesith livestock manureas a bioenergy and
manure management strategy for intensive anirfeeding operationsiear sugarcane dense regions
CHAPTER é&xplores the potential use of a Cellulosedttivation step to upgrade StEx or APEX
sugarcane residuegfiets to enable low enzyme dosage ethanol productiGRlIAPTER @esents a
preliminary study for debottlenecking ethanol production from StEx treated SCB with the use of
industrialxylosefermenting ethanologens. LastigHAPTERdetails a summary of thmain findings
and perspectives into the potential use of StEx or AFEXintegratedbiofuetlivestock production

systems.
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CHAPTERITWO:

LITERATURE REVIEW

This chapter presents an overview of the role of steam explosion andAptEXeatmentas central units in the

biochemical production of ethanol, animal feeds and biogas from sugarcane lignocelluloses. Firstly, it introdu
status of the South African suganeindustry, global cellulosic biorefineries and the South Afridzestock poduction

sector. Furthermore, the structural composition of lignocellulosic biomass and its contribution to biomass recalc
is discussed. The fundamental mechanisms and literature reported progress of overcoming biomass recalcitrgn
StExand AFEX" are reviewedFor cellulosic ethanol production, this chapter also reviews recent trends to improvin

ethanol yield and productivity from agricultural residues.

In additionto pretreating sugarcane residues for the ethanol prodoctimarkets, his chapter also present:
insights into the potential use of pretreated sugarcane residues as animal feeds and anaerobic digestion feedst

localized bioenergy production. Finally, key gaps in literature identified from the literataveysaresumnarized

2.1 Sugarcane residues based cellulosic biorefineries d South African

context

2.1.1 Sugarcane production and residues availability

SugarcaneSaccharum spp. hybridss ane of the major agricultural crops available in South
Africa and is widely considered as one of the leading candidate bioenergy[2i0p8] South Africa
is one ofthe leading costtompditive sugarcane producers worldwide, with 14 mills distributed in the
KwazuldNatal, Mpumalanga and Eastern Cape regions and an average mill processing capacity of 300
tons of wet cane per hoy#0,41] Although sugarcane production has declined steadily since 1999
due to land reform, ageing facilities, low global sugar prices and sugar tax tariffs, South African mills
still produced approximately 15.07 million tonnes of sugarcane irR016/2017 seasorFHgure 2.)

[42].
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In comparison, Brazil, the global leader in sugarcane production, produced 651 million tonnes
of sugarcane during the 2016/2017 season (about 35% of the market share), with apteyiBR%
of the oveall cane juice produced used for producing fgsineration (1G) ethanol for transportation

fuels[43].

Sugarcane Tops/
Green Leaf Blades

\j

Sugarcane Stem

Dry Leaves \

Commercial Average Yield 80 tonnes/ha

South African Cane Yield (2016/17 season) 61 tonnes/ha

South African Cane Production (2016/17 season) 15 million tonnes/year
Brazilian Sugarcane Yield (2016/17 season) 75 tonnes/ha

Brazilian Sugarcane Production (2016/17 season) 768 million tonnes/year
Global Sugarcane Production (2016/17 season) 1891 million tonnesl/year

Figure2.1: The sugarcane whole plant morphologane yields and sugarcane composition

Mature sugarcane crops are typically composed of approximately 442 #ry sugarcane juice
(dry basis), 140 kg @CBand 140 kg of drfLM per ton of wet cang27]. In the South African
sugarcane production chain context, CLM has been previouslyetuon the stalk in opeair to
facilitate easier and cheaper bulk stalkleotion, storage and transportation to the sugar rj7,45]
Whilst this is an economically viable CLM disposal option, air burning generates particulate emissions,
affects nutrient cycling, and interferes with theilsecosysteni46,47]. In response t@n industrywide
effort to phaseout CLM burning, greeharvesting techniques are now being mandated, with
agronomic constraints requiring about 50% of the CLM to be left on the field to sustain soil fertility,
and the remaining fractio being available for valorisation into biofuels, fsieemicals, bieelectricity

or animal feed$26,28,48] Onceharvested the cane stems are transported to the sugar mills where
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