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ABSTRACT 
 

Current and future trends demonstrate that the increasing world population, dwindling arable 

land, changing human diets and increased demand for (bio)energy present an opportunity to redesign 

the way land is used to meet the future food, feed and bioenergy demands. The sustainable 

integration of bioenergy and highly digestible livestock feed production systems has been touted as a 

potential avenue to increase the economic returns to agriculture and simultaneously promote energy 

security, particularly in developing countries. To this end, post-harvest residues from sugarcane 

processing (i.e. sugarcane bagasse (SCB) and cane leaf matter (CLM)) have emerged as candidate 

feedstock for integrated bioenergy (e.g. bio-ethanol and biogas) and animal feeds production in South 

Africa and Brazil. The principal aim of this dissertation was to perform a systematic comparison of the 

potential use of steam explosion (StEx) and ammonia fiber expansion (AFEXTM) as pretreatment 

technologies to overcome biomass recalcitrance, thereby generating highly digestible animal feeds, 

and cellulosic ethanol and biogas production feedstocks from sugarcane residues for future integrated 

biofuel-animal feed systems. 

A side-by-side comparison of the effect of StEx and AFEXTM pretreatment of sugarcane 

residues revealed AFEXTM to be the better pretreatment for maximising ethanol yields per Mg raw dry 

material (RDM) from both SCB and CLM. Under industrially relevant solids loadings of 16% and 

dosages of 9.8 mg protein/g RDM, AFEXTM pretreated sugarcane residues generated ethanol yields up 

to 324 litres/Mg RDM, the highest ethanol yields reported in literature from sugarcane residues. In 

contrast, ethanol yields from steam exploded sugarcane residues were limited to the range 205 to 257 

litres/Mg RDM primarily due to the compounded effect of carbohydrate degradation during 

pretreatment, enzyme inhibition and microbial inhibition of recomninant Saccharomyces cerevisiae 

424A (LNH-ST) during fermentation.  
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To debottleneck microbial inhibition during the fermentation of non-detoxified StEx whole 

ǎƭǳǊǊȅΩǎΣ the potential use of industrial xylose-fermenting S. cerevisiae strains as efficient and inhibitor 

tolerant ethanologens was evaluated. S. cerevisiae strains CelluXTM 4 and TP-1 demonstrated near 

complete glucose and xylose consumption, with high acetate resistance, furan detoxification and 

phenolic aldehyde detoxification phenotypes. Ultimately, both strains facilitated the generation of  

224 litres/Mg RDM from non-detoxified StEx SCB whole slurry under a pre-hydrolysis simultaneous 

saccharification and co-fermentation (PSSCF) configuration. In comparison, the same yeast strains 

generated moderately higher ethanol yields (254 litres/Mg RDM) during the PSSCF of highly 

fermentable AFEXTM-treated SCB, demonstrating that the difference in the potential ethanol yields that 

can be recovered from the two pretreatment technologies can be significantly reduced by using 

inhibitor-tolerant ethanologens.  

With both AFEXTM and StEx-treated sugarcane residues requiring enzyme dosages of 9.8mg 

protein/g RDM to achieve high ethanol yields, the potential use a room-temperature Cellulose IIII-

activation (CIIII-activation) process to enhance the digestibility of StEx- or AFEXTM-treated sugarcane 

residue pellets was investigated as a potential strategy  to minimise the enzyme cost contribution per 

unit volume ethanol produced. Coupling AFEXTM sugarcane lignocelluloses with CIIII-activation 

reduced of the enzyme dosage requirements by more than 60% (to ~3 mg protein/g RDM), whilst 

achieving ethanol yields greater than 280 litres/Mg RDM. These results represented the lowest 

enzyme dosage to achieve ethanol yields of 280 L/Mg RDM reported in literature. In contrast, 

upgrading StEx-treated sugarcane residue pellets could only facilitate ethanol yields up to 201 

litres/Mg RDM at an enzyme dosage of ~3 mg protein/g RDM.  

Besides ethanol production, both AFEXTM and StEx also demonstrated significant 

improvements in the animal feed value of SCB and CLM. AFEXTM-treated sugarcane residues were 

characterized by 230% increase in the non-protein nitrogen content of the biomass, and up to 69% 

and 26% improvement in the in-vitro true digestibility (IVTD) and metabolizable energy (ME), 

respectively, relative to untreated controls (P < 0.05). Although StEx did not increase the nitrogen 
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content of the pretreated sugarcane residues, the IVTD and ME of StEx-treated SCB and CLM were 

improved by 54% and 7%, respectively (P < 0.05). These results demonstrated that both AFEX and StEx 

pretreatment can simultaneously generate highly digestible animal feeds and enhanced cellulosic 

ethanol feedstocks from sugarcane residues.  

The combination of the near optimal C/N ratios and structural modifications of AFEXTM-treated 

sugarcane residues also facilitated biogas production with methane yields up to 299 L CH4/kg VS, with 

or without co-digestion with dairy cow manure (DCM). To obtain comparable methane yields, 

untreated and steam exploded (StEx) sugarcane residues had to be co-digested with DCM, at mass 

ratios providing initial C/N ratios in the range of 18 to 35. Furthermore, the solid digestates recovered 

from the co-digestion of the sugarcane lignocelluloses with DCM were enriched in nitrogen-

phosphate-potassium (NPK), suggesting that they could be used as biofertilizers or partial 

replacements for the CLM that is typically left on the field during green cane harvesting.   

The results from this dissertation showed that both AFEXTM and StEx successfully enhanced the 

ethanol production potential, methane production potential, and animal feed value of sugarcane 

residues, providing alternative models for the sugarcane industry to create bioenergy and food value 

from sugarcane residues. Ultimately, these results provide essential information and insights for 

future techno-economic and life-cycle analyses that are required to establish the preferred 

pretreatment technology and processing strategies to enable economically viable and 

environmentally sustainable integrated bioenergy and animal feed production from South African 

sugarcane residues. 
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OPSOMMING 
 

Huidige en toekomstige tendense dui daarop dat die toename in die wêreldbevolking, 

drastiese afname in bewerkbare grond, verandering in menslike diëte en verhoging in die vraag na 

(bio-ύŜƴŜǊƎƛŜ Ωƴ ƎŜƭŜŜƴǘƘŜƛŘ ōƛŜŘ ǾƛǊ ŘƛŜ ƘŜǊƻƴǘǿŜǊǇ Ǿŀƴ ƎǊƻƴŘƎebruik om in toekomstige voedsel-, 

voer- en bio-energiebehoeftes te voorsien. Die volhoubare integrasie van produksiestelsels vir bio-

ŜƴŜǊƎƛŜ Ŝƴ ƘƻƻƎǎ ǾŜǊǘŜŜǊōŀǊŜ ǾŜŜǾƻŜǊ ǿƻǊŘ ŀǎ Ωƴ ƳƻƻƴǘƭƛƪƘŜƛŘ ōŜǎƪƻǳ ƻƳ ŘƛŜ ŜƪƻƴƻƳƛŜǎŜ ƻǇōǊŜƴƎǎ 

van landbou te verhoog en terselfdertyd energiesekerheid te bevorder, veral in ontwikkelende lande. 

Die naoesreste van suikerrietverwerking (d.w.s. suikerrietbagasse (SRB) en rietblaarmateriaal (RBM)) 

word as kandidaatvoerstof vir geïntegreerde bio-energie- (bv. bio-etanol- en biogas-) en 

veevoerproduksie in Suid-Afrika en Brasilië beskou. Die hoofdoel van ƘƛŜǊŘƛŜ ǾŜǊƘŀƴŘŜƭƛƴƎ ǿŀǎ ƻƳ Ωƴ 

stelselmatige vergelyking te onderneem van die moontlike gebruik van stoomontploffing όά{ǘ9Ȅέύ Ŝƴ 

ammoniakveseluitsetting (AFEXTM) as voorbehandelingstegnologieë om enersyds die 

biomassaweerspannigheid van suikerrietreste te bowe te kom en sodoende hoogs verteerbare 

veevoer te skep, en andersyds sellulosiese etanol- en biogasproduksievoerstof uit suikerrietreste te 

vervaardig vir toekomstige geïntegreerde biobrandstof-veevoerstelsels. 

Wanneer die uitwerking van StEx- en AFEXTM-voorbehandeling van suikerrietreste naas 

mekaar beskou word, blyk AFEXTM die beter voorbehandeling te wees vir maksimum etanolproduksie 

per Mg onverwerkte droëmateriaal (ODM) vir sowel SRB as RBM. Met industrieel relevante 

vastestofladings van 17% en Ωƴ dosis van 9,8 mg proteïen/g ODM, bied AFEXTM-voorbehandelde 

ǎǳƛƪŜǊǊƛŜǘǊŜǎǘŜ Ωƴ etanollewering van tot 324 liter/Mg ODM, synde die hoogste etanollewering uit 

suikerrietreste wat tot nog toe in die literatuur aangemeld is. Daarteenoor is die etanollewering van 

stoomontplofte suikerrietreste beperk tot tussen 205 en 257 liter/Mg ODM, hoofsaaklik weens die 
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saamgestelde uitwerking van koolstofafbreking gedurende voorbehandeling, ensieminhibisie en 

mikrobiese inhibisie van Saccharomyces cerevisiae 424A (LNH-ST) gedurende fermentasie.  

Om die bottelnek van mikrobiese inhibisie gedurende die fermentasie van nie-

gedetoksifiseerde StEX-ru-flodder uit die weg te probeer ruim, is die potensiële gebruik van industriële 

xilose-fermenterende S. cerevisiae-stamme ook ondersoek. Die S. cerevisiae-stamme CelluXTM 4 en TP-

1 het byna volledige glukose- en xiloseverbruik, hoë asetaatweerstandigheid, furaandetoksifikasie- én 

fenoliese-aldehied-detoksifikasiefenotipes getoon, en het ǳƛǘŜƛƴŘŜƭƛƪ Ωƴ ŜǘŀƴƻƭƭŜǿŜǊƛƴƎ Ǿŀƴ 

224 ƭƛǘŜǊκaƎ h5a ƎŜōƛŜŘ ƛƴ Ωƴ ƪƻƴŦƛƎǳǊŀǎƛŜ Ǿŀƴ ǇǊŜ-hidrolise- gelyktydige versuikering en 

gesamentlike ŦŜǊƳŜƴǘŀǎƛŜ όάt{{/CέύΦ Daarteenoor het die PSSCF van hoogs fermenteerbare AFEXTM-

behandelde Sw. Ωƴ effens hoër etanollewering getoon (254 liter/Mg ODM), wat daarop dui dat die 

verskil in die moontlike etanollewering van die twee voorbehandelingstegnologieë beduidend 

verminder kan word met behulp van inhibitorverdraagsame etanologene.  

Daarbenewens is daar ondersoek ingestel na die opgradering van verpilde StEx- of AFEXTM-

ōŜƘŀƴŘŜƭŘŜ ǎǳƛƪŜǊǊƛŜǘǊŜǎǘŜ ŘŜǳǊ ƳƛŘŘŜƭ Ǿŀƴ Ωƴ CIIII-aktiveringsproses (CIIII) by kamertemperatuur om 

die bottelnek van die hoë ensiemdosisvereistes verbonde aan hoë etanollewering te probeer 

verwyder. Die kombinasie van AFEXTM-suikerrietlignosellulose en CIIII het die ensiemdosisvereistes 

met meer as 60% verlaag (tot ~3 mg proteïen/g ODM) en etanollewering tot meer as 

280 liter/Mg ODM verhoog. Hierdie resultaat is die laagste ensiemŘƻǎƛǎ ǾƛǊ Ωƴ ŜǘŀƴƻƭƭŜǿŜǊƛƴƎ Ǿŀƴ 

280 L/Mg ODM wat tot dusver in die literatuur aangemeld is. Daarteenoor het die opgradering van 

verpilde StEx-ōŜƘŀƴŘŜƭŘŜ ǎǳƛƪŜǊǊƛŜǘǊŜǎǘŜ Ωƴ ŜǘŀƴƻƭƭŜǿŜǊƛƴƎ Ǿŀƴ ǎƭŜƎǎ 201 liter/Mg ODM by Ωƴ 

ensiemdosis van ~3 mg proteïen/g ODM teweeggebring. 

Benewens die uitwerking op etanolproduksie, blyk sowel AFEXTM as StEx ook aansienlike 

verbeteringe in die veevoerwaarde van SRB en RBM tot gevolg te hê. Die biomassa van AFEXTM-

behandelde suikerrietresǘŜ ƘŜǘ ǘƛǇƛŜǎ ƻƻǊ Ωƴ нол҈ ƘƻšǊ ƴƛŜǇǊƻǘŜïenstikstofinhoud beskik, en in vitro- 

ware verteerbaarheid (IVWV) en metaboliseerbare energie (ME) was onderskeidelik 69% en 26% hoër 

as by onbehandelde kontroles (P < 0,05). Hoewel StEx nie die stikstofinhoud van die voorbehandelde 
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suikerrietreste verhoog het nie, het die IVWV en ME van StEx-behandelde SRB en RBM met 

onderskeidelik 54% en 7% verhoog (P < 0,05). Hierdie resultate toon dat sowel AFEX- as StEx-

voorbehandeling terselfdertyd hoogs verteerbare veevoer én beter sellulosiese etanolvoerstof uit 

suikerrietreste kan oplewer.  

Die kombinasie van die byna optimale C/N-verhoudings en strukturele aanpassings van AFEXTM-

behandelde suikerrietreste het ook biogasproduksie teweeggebring, met Ωƴ ƳŜǘŀŀƴƭŜǿŜǊƛƴƎ Ǿŀƴ ǘƻǘ 

299 L CH4/kg VS, met óf sonder gesamentlike vertering met melkbeesmis (MBM). Om vergelykbare 

metaanlewering te verkry, moes onbehandelde en stoomontplofte (StEx-) suikerrietreste saam met 

MBM verteer word, wat op massaskaal aanvanklike C/N-verhoudings van tussen 18 en 35 gelewer het. 

Daarbenewens was die vaste digestate wat uit die gesamentlike vertering van die 

suikerrietlignosellulose en MBM herwin is, ryk in stikstof-fosfaat-kalium (NPK), wat daarop dui dat dit 

as biobemesting of gedeeltelike plaasvervanger kan dien vir die RBM wat gewoonlik gedurende groen 

oesting op landerye agterbly. 

Die resultate van hierdie studie toon dat sowel AFEXTM as StEx die etanolproduksiepotensiaal, 

metaanproduksiepotensiaal en veevoerwaarde van suikerrietreste suksesvol verhoog, en sodoende 

die suikerrietbedryf van alternatiewe modelle voorsien om bio-energie en voedselwaarde te skep. Die 

bevindinge bied noodsaaklike inligting en insigte vir toekomstige tegno-ekonomiese en 

lewensiklusontledings om te bepaal watter voorbehandelingstegnologie en verwerkingstrategieë die 

beste sal werk om geïntegreerde bio-energie- en veevoerproduksie uit Suid-Afrikaanse suikerrietreste 

ekonomies lewensvatbaar en omgewingsvolhoubaar te maak. 
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CHAPTER ONE: 
INTRODUCTION 

 

 

 

 

 

 

 

 

 

1.1. Background ð The Grand Challenge 

Worldwide energy consumption has increased significantly in the last century due to increases 

in the world population and industrialization [1]. As of 2018, the International Energy Agency (IEA)  

estimated that the total global consumption of crude oil and liquid fuels equated to approximately 99 

million barrels per day [2,3]. According to the United Nations Human Development Index (HDI), a 

ƴŀǘƛƻƴǎΩ ǇŜǊ ŎŀǇƛǘŀ ǊŀǘŜ ƻŦ ŜƴŜǊgy consumption (including electricity, heating and mobility), is a strong 

ƛƴŘƛŎŀǘƻǊ ƻŦ ǘƘŀǘ ǎƻŎƛŜǘȅΩǎ ǿŜŀƭǘƘ ŀƴŘ ǇƻǘŜƴǘƛŀƭ ǘƻ ŘŜǾŜƭƻǇ ǘƘŜƛǊ ƘǳƳŀƴ ǇƻǘŜƴǘƛŀƭ [4]. HDI, which is a 

composite metric of human capital development that aggregates measures of national health, 

education, and wealth, demonstrates that approximately 5 kilowatts per person per year is required 

for societies to achieve high level of human development (Figure 1.1) [5]. Hence, developing countries 

will have to increase their per capita energy consumption to maximise their HDI amid rising oil prices, 

Liquid biofuels are considered as one of the leading alternative transportation fuels with several commercial 

facilities producing ethanol from first-generation feedstocks such as cereal grains and sugarcane juice. Sugarcane residues 

have demonstrated significant promise as second-generation bioenergy feedstock, allowing for the integration of 

biorefineries to existing sugar mills, particularly in developing regions such as Brazil and sub-Saharan Africa. However, 

current and future trends demonstrate that the increasing world population, demand for animal products in human diets 

and demand for biofuels will require a reconfiguration of the way land is used to meet the future food, animal feed and 

biofuels demands. Hence, the fundamental challenge for unlocking the commercial appeal of bioenergy from sugarcane 

residues lies not only in the economic conversion of these residues, but also on its potential interaction with animal feed, 

human food, environmental impact, and domestic job creation sectors. 

This chapter introduces insights into the use of two mature pretreatment technologies, steam explosion (StEx) 

and ammonia fiber expansion (AFEXTM) to enable the potential integration of biofuel and animal feed production to current 

biorefinery models, thereby creating more sustainable bioenergy-feed-food production systems. 
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national economic instability, and climate change driven by the greenhouse gas (GHG) emissions or 

embrace low-carbon energy sources as an alternative source of energy [5,7]. 

 

 

 

 

 

 

 

 

 

 

Energy derived from plant biomass (bioenergy) is widely expected to contribute approximately 

25% of the primary energy in future low-carbon energy projections by the year 2050 [6]. 

Lignocellulosic biomass is considered the only alternative sustainable resource capable of producing 

liquid biofuels at scales necessary to displace a significant amount of petroleum-based fuels whilst 

meeting global sustainability goals [7]. Currently, the USA and Brazil already produce more than 50 

and 30 million cubic meters of ethanol from edible starch (i.e. corn grains) and extractable sugars (i.e. 

cane juice) in first-generation (1G) biorefineries, respectively [5,8,9]. However, in developing countries 

such as South Africa, the use of edible crops as biorefinery feedstock materials to produce relatively 

low value biofuels (ethanol) becomes a debatable socio-economic issue due to direct competition with 

the food market. In addition to cƻƳǇŜǘƛƴƎ ǿƛǘƘ ǘƘŜ ŦƻƻŘ ƳŀǊƪŜǘΣ мD ŜǘƘŀƴƻƭ ǇǊƻŘǳŎǘƛƻƴ ŦŜŜŘǎǘƻŎƪΩǎ 

are generally expensive and cannot be considered as a long-term solution due to the unavailability of 

ǎǳŦŦƛŎƛŜƴǘ ŦŀǊƳƭŀƴŘ ǘƻ ǇǊƻǾƛŘŜ ƳƻǊŜ ǘƘŀƴ мл ǇŜǊŎŜƴǘ ƻŦ ŘŜǾŜƭƻǇŜŘ ŎƻǳƴǘǊƛŜǎΩ ŦǳŜƭ ƴŜŜŘǎ ǿƛth 1G 

ethanol [10]. The progressive transition toward indigenous cellulosic second-generation (2G) biofuel 

Figure 1.1: Relationship between human development index and per capita primary energy 
consumption study for 70 developed and developing countries for the year 2013. [5] 
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production from first-generation (1G) resources (e.g. cereal crops) can potentially facilitate expanded 

bioenergy production, whilst enabling environmental, economic, and socio-economic benefits in both 

developing and developed countries.  

On the other hand, the potential expansion of the scale of biofuel production from food crops 

and even crop residues has been subject to debate due to its perceived direct and indirect effects on 

human food, animal feed and land use [11]. More than 70% of the global agricultural land resources 

are dedicated to livestock production, particularly pasture and cropland reserved for animal feed crop 

production [12]. The production of animal products (meat and dairy) is estimated to require more 

than five-times as much land per unit of nutritional value and twenty-times higher water footprint 

compared to plant-based equivalents [13,14]. Due to projected changes in human diet, the per capita 

consumption of animal products in developing countries is expected to increase by more than 70% 

from current levels by the year 2050, further intensifying pressure to ensure future food security and 

efficient use of existing agricultural land [15]. Hence, if future biofuel production expansion is not 

managed properly, it could potentially instigate competition with food crop and animal feed 

production from the available croplands, resulting the conversion of highly productive cropland and 

forested areas towards livestock fodder crop production [11,16,17]. Furthermore, recent socio-

economic studies for the state of São Paulo (Brazil) have shown that the HDI (particularly the per capita 

income and education levels) for cattle producing municipalities were significantly lower than 

municipalities with sugarcane and processing mills, demonstrating the benefit of expanding of the 

sugarcane sector [18,19]. Hence, the grand challenge for expanding sugarcane based bioenergy in 

sugarcane and livestock dense regions lies in the economically viable production of bioenergy from 

existing agricultural land to meet sustainability goals and human development potential, whilst 

securing future food security [20].    
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1.2. Research motivation  

Sugarcane is one of the major agricultural crops mostly planted in developing countries (Brazil, 

India, China, Southern Africa) and is widely considered as one of the leading candidate bio-energy 

crops [21]. The sugarcane processing industry typically generates approximately 140 kg dry weight 

bagasse (fibrous residue after juice extraction) and an equal amount (dry weight) of cane leaf matter 

(green leaves, tops and trash) per ton of wet harvested cane [22]. Presently, sugarcane bagasse (SCB) 

is burned in inefficient mill boilers to produce heat and electricity for sugar milling operations, with 

surplus energy exported to the grid [23,24]. Improvements in the sugar mill operation energy 

efficiency and investment in more energy efficient power cogeneration technology would liberate 

surplus bagasse for future biorefinery applications [23,25]. Further, it has previously been common 

practice to burn sugarcane cane leaf matter (CLM) on the field pre-harvesting to facilitate easier and 

cheaper sugarcane stalk collection and transportation to the sugar mill [23,26,27]. However, the 

outlaw of open field cane burning and the adoption of greener mechanical sugarcane harvesting 

techniques has the potential to release millions of tons of CLM for valorisation to bioethanol, 

electricity and/or other value-added products in a biorefinery setting [28]. With a saturated global 

sugar market, the use of these sugarcane residues for bioenergy production or other commodity 

markets (e.g. animal feed, biochemicals) presents an alternative model for adding economic value to 

sugarcane residues for the sugar industry. 

Among the leading thermochemical pretreatment options, steam explosion (StEx) and 

ammonia fiber expansion (AFEXTM, a trademark of MBI International) are two well-studied and 

scalable technologies (AFEXTM demonstrated at pilot scale and StEx at industrial scale) that are being 

considered for overcoming biomass recalcitrance, given their different biomass deconstruction 

patterns (acidic vs alkaline) and potential for near-term integration into existing sugarcane mills 

[29,30]. Numerous techno-economic estimations have comprehensively shown that integrating 2G 

biorefineries to existing sugar mills or autonomous distilleries (1G biorefineries) can significantly 

reduce 2G biofuel production costs by leveraging on existing process utilities including co-generation 
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(steam and electricity) and wastewater treatment operations [23,31,32]. However, the some of these 

techno-economic simulations are based on process yields that are projected to be possible in the 

future and not experimentally validated at industrially relevant conditions. In particular, the 

experimental data necessary for understanding the pervasive impacts of StEx and AFEXTM industrially 

relevant downstream enzymatic hydrolysis and fermentation with commercially available and 

efficient enzyme cocktails and xylose-fermenting ethanologens is lacking in literature. Moreover, the 

experimental validation of the primary downstream processing bottlenecks for maximising ethanol 

yields per unit sugarcane cultivation land for StEx and AFEXTM-treated SCB and CLM have not been 

evaluated. The availability of this experimental data would provide valuable insights for developing 

future techno-economic and life-cycle analysis models that are necessary for comparing StEx or 

AFEXTM-based sugarcane residue 2G biorefineries.  

Furthermore, the same leading pretreatment technologies used for improving lignocellulose 

fungal enzyme digestibility for ethanol production may also be used for improving ruminant (incl. 

cattle) digestibility of agricultural residues [10,33,34]. Currently, there is no experimental data 

comparing the effect of StEx and AFEXTM on the animal feed value of SCB and CLM. Given the synergies 

between the sugarcane production chains for biofuels and livestock production, simultaneously 

enhancing the ruminant digestible energy content and ethanol yields of AFEXTM and StEx treated 

sugarcane residues presents an opportunity for more efficient land use for sustainably producing 

animal feeds (and animal products) and bioenergy compared to the current cereal grain based 

agricultural system (see Figure 1.2) [35].  

The adoption of intensified livestock production practices is another strategy that is being 

considered for improving the land use efficiency for the livestock production sector whilst allowing 

the sustainable expansion of biofuel production [39]. However, intensive livestock farms are 

characterized by significant manure production, which contribute to GHG emissions by the livestock 

industry. Biogas production from the anaerobic digestion of livestock manure is well-established 

technology that serves numerous purposes, including: odour management, bioenergy production, and 
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reduction of GHG emissions from the manures [40]. However, the low C/N ratio in animal manures 

contributes to anaerobic digestion instability due to nutrient imbalance and ammonia toxicity, thus 

resulting in low biogas production per unit mass of manure. Alternatively, co-digesting lignocelluloses 

with animal manures is widely considered a promising strategy to harness the synergies between the 

two substrates [41]. However, the anaerobic biodegradability of lignocelluloses is limited by its slow 

rate of hydrolysis, requiring pretreatment to enhance its rate and extent of anaerobic biodegradability 

[40]. Although pretreatment technologies such as StEx have been investigated for enhancing the 

anaerobic biodegradability of lignocelluloses, there are no studies investigating the biogas production 

potential from AFEXTM pretreated lignocelluloses, neither in mono-digestion nor co-digestion with 

animal manure. The assessment of the co-digestion potential of these pretreated substrates would 

deepen insights into the potential use of sugarcane residues in intensive animal farms to co-produce 

bioenergy in the form of biogas, and nutrient rich digestates. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: (a) Current agricultural system for producing food, feed and 1G biofuels from cereal grains and sugarcane. (b) Future 
scenario whereby StEx or AFEXTM crop residues complement cereal grains and sugarcane for producing food, feed and 2G bioenergy 
(bioethanol and biogas). 
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This integrated approach has the potential to promote more sustainable bioenergy production 

and increased food production to support the expanding human population and dietary changes while 

simultaneously mitigating the potential for indirect land use changes (ILUC) [36ς38]. 

1.3. Global objective  

The global objective of this work was to perform a systematic comparison of the potential use 

of StEx and AFEXTM to valorize sugarcane residues into cellulosic bioenergy production feedstocks (incl. 

ethanol and biogas) and animal feeds for future integrated biofuel-animal feed systems. Considering 

the global objective, the principal aims of this work were:  

I. To perform a side-by-side comparison of the pervasive impacts of StEx and AFEXTM on ethanol 

production from SCB and CLM and to identify the effect of the major processing bottlenecks 

on estimated ethanol yields per unit sugarcane cultivation area. 

II. To experimentally evaluate the potential of pilot-scale StEx and AFEXTM pretreatment to 

generate sugarcane residues with enhanced animal feed value, whilst simultaneously 

enabling their use as ethanol production feedstock under industrially relevant conditions.  

III. To investigate the potential benefit of co-digesting StEx- or AFEXTM-pretreated sugarcane 

residues with livestock manure as a biogas production and manure management strategy for 

intensified livestock production farms located in sugarcane dense regions 

IV. To study the potential use of a room-temperature Cellulose IIII-activation process to 

enhance the digestibility of StEx- or AFEXTM-treated sugarcane residue pellets, thereby 

allowing for efficient high solids loading enzymatic hydrolysis and fermentation at low 

enzyme dosages (< 10 mg protein/g glucan).  

V. To evaluate the fermentability of steam exploded and non-detoxifiŜŘ ǿƘƻƭŜ ǎƭǳǊǊȅΩǎ ǳǎƛƴƎ 

industrial xylose-fermenting Saccharomyces cerevisiae strains. 
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1.4. Dissertation  Outline  

This dissertation is organized in nine chapters (Figure 1.3, next page). CHAPTER 2 presents a 

critical literature review of the current state of the cellulosic ethanol industry, sugarcane production 

in the South African context, the fundamentals of StEx and AFEXTM pretreatment, and the major 

processing bottlenecks of cellulosic ethanol. Moreover, this chapter delves into the potential use of 

StEx and AFEXTM to enhance the animal feed value of agricultural residues, and the potential use of 

pretreatment and co-digestion to enhance anaerobic digestion yields from lignocelluloses. CHAPTER 

3 details the research objectives and research contributions synthesized from the gaps identified from 

the literature survey. CHAPTER 4 details the study of the effects of StEx and AFEX on downstream 

enzymatic hydrolysis and fermentation of SCB and CLM and the identification of the major processing 

bottlenecks for maximising ethanol yields per unit sugarcane cultivation land. CHAPTER 5 presents 

insights into the potential used of pilot-scale StEx and AFEXTM pretreatment in integrated biofuel-

livestock production systems to simultaneously enhance the animal value and ethanol production 

potential of SCB and CLM. CHAPTER 6 presents a study into the potential incorporation of anaerobic 

co-digestion StEx or AFEXTM treated sugarcane residues with livestock manure as a bioenergy and 

manure management strategy for intensive animal feeding operations near sugarcane dense regions. 

CHAPTER 7 explores the potential use of a Cellulose IIII-activation step to upgrade StEx or AFEXTM 

sugarcane residue pellets to enable low enzyme dosage ethanol production. CHAPTER 8 presents a 

preliminary study for de-bottlenecking ethanol production from StEx treated SCB with the use of 

industrial xylose-fermenting ethanologens. Lastly, CHAPTER 9 details a summary of the main findings 

and perspectives into the potential use of StEx or AFEXTM in integrated biofuel-livestock production 

systems.   
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CHAPTER TWO: 

LITERATURE REVIEW 
 

  

 

 

 

 

 

 

2.1 Sugarcane residues based cellulosic biorefineries ð South African 

context  

 Sugarcane production and residues availability  

Sugarcane (Saccharum spp. hybrids) is one of the major agricultural crops available in South 

Africa and is widely considered as one of the leading candidate bioenergy crops [21,39]. South Africa 

is one of the leading cost-competitive sugarcane producers worldwide, with 14 mills distributed in the 

Kwazulu-Natal, Mpumalanga and Eastern Cape regions and an average mill processing capacity of 300 

tons of wet cane per hour [40,41]. Although sugarcane production has declined steadily since 1999 

due to land reform, ageing facilities, low global sugar prices and sugar tax tariffs, South African mills 

still produced approximately 15.07 million tonnes of sugarcane in the 2016/2017 season (Figure 2.1) 

[42].  

 

This chapter presents an overview of the role of steam explosion and AFEXTM pretreatment as central units in the 

biochemical production of ethanol, animal feeds and biogas from sugarcane lignocelluloses. Firstly, it introduces the 

status of the South African sugarcane industry, global cellulosic biorefineries and the South African livestock production 

sector. Furthermore, the structural composition of lignocellulosic biomass and its contribution to biomass recalcitrance 

is discussed. The fundamental mechanisms and literature reported progress of overcoming biomass recalcitrance using 

StEx and AFEXTM are reviewed. For cellulosic ethanol production, this chapter also reviews recent trends to improving the 

ethanol yield and productivity from agricultural residues.  

In addition to pretreating sugarcane residues for the ethanol production markets, this chapter also presents 

insights into the potential use of pretreated sugarcane residues as animal feeds and anaerobic digestion feedstocks for 

localized bioenergy production. Finally, key gaps in literature identified from the literature survey are summarized.  
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Commercial Average Yield 80 tonnes/ha

South African Cane Yield (2016/17 season) 61 tonnes/ha

South African Cane Production (2016/17 season) 15 million tonnes/year

Brazilian Sugarcane Yield (2016/17 season) 75 tonnes/ha

Brazilian Sugarcane Production (2016/17 season) 768 million tonnes/year

Global Sugarcane Production (2016/17 season) 1891 million tonnes/year
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In comparison, Brazil, the global leader in sugarcane production, produced 651 million tonnes 

of sugarcane during the 2016/2017 season (about 35% of the market share), with approximately 52% 

of the overall cane juice produced used for producing first-generation (1G) ethanol for transportation 

fuels [43].  

 

 

 

 

 

 

 

 

 

 

Mature sugarcane crops are typically composed of approximately 142 kg of dry sugarcane juice 

(dry basis), 140 kg of SCB, and 140 kg of dry CLM  per ton of wet cane [27]. In the South African 

sugarcane production chain context, CLM has been previously burned on the stalk in open-air to 

facilitate easier and cheaper bulk stalk collection, storage and transportation to the sugar mill [44,45]. 

Whilst this is an economically viable CLM disposal option, air burning generates particulate emissions, 

affects nutrient cycling, and interferes with the soil ecosystem [46,47]. In response to an industry-wide 

effort to phase-out CLM burning, green-harvesting techniques are now being mandated, with 

agronomic constraints requiring about 50% of the CLM to be left on the field to sustain soil fertility, 

and the remaining fraction being available for valorisation into biofuels, bio-chemicals, bio-electricity 

or animal feeds [26,28,48]. Once harvested, the cane stems are transported to the sugar mills where 

Figure 2.1: The sugarcane whole plant morphology, cane yields and sugarcane composition 


