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Abstract 

Pedestrians are the most vulnerable road users in the road environment, particularly in the 

developing world. To gain a better understanding of pedestrian crash causation, the built 

environment has been given much attention in the international traffic safety research. 

However, research of this nature is still scarce in the developing world, including South Africa. 

This study investigates the link between the built environment and the incidence of pedestrian 

crashes. The study used pedestrian crash data collected in Cape Town over a 3-year period 

between 2012 and 2014. The research method involved screening, geocoding and 

supplementing poor quality secondary data on pedestrian crashes. Moreover, the study applies 

a variety of analytical methods including univariate, bivariate, geospatial and multivariate 

analyses. Four GIS-based spatial analysis methods were used to identify clusters of pedestrian 

crashes within the study area. These methods include the planar kernel density estimation 

(KDE), the Anselin local Moran’s I, the Getis-Ord Gi* and the Optimized Hot Spot Analysis 

(OHA). Two modelling techniques, the Generalised Linear Modelling (GLM) and 

Geographically Weighted Regression (GWR) modelling were used to relate the built 

environment and population variables to total; intersection; and killed and seriously injured 

(KSI) pedestrian crashes. For this analysis, the data was aggregated and analysed at the census 

suburb level. Among other results, it was found that population; land use mix; traffic signals; 

roundabouts/mini-circles; industrial use; four- and multi-legged intersections; and high 

mobility roads are associated with greater numbers of pedestrian crashes. The study also 

revealed that pedestrian crashes are positively related to socio-economic deprivation. In 

addition, spatial variations of the associations in the models were investigated and discussed. 

Hotspots of pedestrian crashes were identified mostly in the South Eastern regions of Cape 

Town which are also areas where economically-disadvantaged residents are concentrated. The 

presented models can be used to predict future pedestrian crashes using information that is 

easily available at the city level. The models are also crucial for the planning of safe walking 

environments which are particularly needed in South Africa and other developing countries.  
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Opsomming 

Voetgangers is die kwesbaarste padgebruikers in die padomgewing, veral in die ontwikkelende 

wêreld. Om ŉ beter begrip van voetgangerbotsing oorsake te verkry, is baie aandag aan die 

geboude omgewing gegee in internasionale verkeerveiligheid navorsing. Navorsing van hierdie 

aard is egter steeds skaars in die ontwikkelende wêreld, insluitend Suid-Afrika. Hierdie studie 

ondersoek die skakel tussen die geboude omgewing en die voorkoms van voetgangerbotsings. 

Die studie het voetgangerbotsing data, ingesamel in Kaapstad oor ŉ drie-jaar periode tussen 

2012 en 2014, gebruik. Die navorsingsmetode het sifting, geo-kodering en die aanvulling van 

lae-kwaliteit sekondêre data oor voetgangerbotsings ingesluit. Verder pas hierdie studie ŉ 

verskeidenheid van analitiese metodes toe, insluitend univariante, bivariante, geo-ruimtelike 

en multivariante analises. Vier GIS-gebaseerde ruimte-analise metodes is gebruik om 

voetgangerbotsing-bundels in die studiearea te identifiseer. Hierdie metodes sluit die planêre 

kerndigtheidsberaming (KDB), die Anselin plaaslike Moran's I, die Getis-Ord Gi * en die 

Geoptimaliseerde Warmkol Analise (GWA) in. Twee modelleringstegnieke, die 

Veralgemeende Lineêre Modellering (VLM) en Geografies Geweegde Regressie (GGR) 

modellering is gebruik om die geboude omgewing en populasie veranderlikes te verbind aan 

totale, interseksie, en noodlottige en ernstig beseerde (NEB) voetgangerbotsings. Vir hierdie 

analise is die data gesommeer en geanaliseer op die sensus voorstad vlak. Dit is, onder andere, 

bevind dat populasie, grondgebruik samestelling, verkeerseine, verkeersirkels/mini-sirkels, 

industriële gebruik, vier- en multi-been interseksies, en hoë mobiliteitspaaie geassosieer word 

met groter hoeveelhede voetgangerbotsings. Die studie het ook onthul dat voetgangerbotsings 

positief verbind is aan sosio-ekonomiese ontneming. Daarbenewens is ruimtelike variasies van 

die assosiasies in die modelle ondersoek en bespreek. Warmkolle van voetgangerbotsings is 

meestal in die Suid-Oostelike streke van Kaapstad, wat ook areas is waar ekonomies 

benadeelde inwoners gekonsentreerd is, geïdentifiseer. Die voorgestelde modelle kan gebruik 

word om toekomstige voetgangerbotsings te voorspel deur inligting te gebruik wat maklik op 

die stadsvlak beskikbaar is. Die modelle is ook noodsaaklik vir die beplanning van veilige loop 

omgewings wat veral in Suid-Afrika en ander ontwikkelende lande benodig word.

Stellenbosch University  https://scholar.sun.ac.za



i 

 

Acknowledgement 

I wish to thank the following organisations and individuals who were instrumental in the 

completion of my PhD research:  

I would like to express my deepest appreciation to my God and saviour, Jesus Christ for being 

with me and pouring out His kindness and love on me throughout this journey. His grace and 

strength has enabled me to embark on and complete this task and all glory, praise and honour 

belong to Him alone. 

Thank you to my study leader, Prof Marion Sinclair, for her guidance, advice and mentorship. 

Your enthusiasm and continuous support in this project as well as over the years is deeply 

appreciated. 

Thank you to Ilse Combrinck at the Transport and Urban Development Authority (TDA) Cape 

Town who provided the pedestrian crash data used in this work. I appreciate your friendliness 

and willingness to assist me. 

Thank you to the Strategic Development Information and GIS (SDI & GIS) for providing me 

with spatial data on land use and transportation systems.  

Thank you to Leon Croukamp from Stellenbosch University for his assistance in obtaining GIS 

software needed for this project. 

My deepest appreciation goes to my wife Saajidah Nteziyaremye. Thank you for your words 

of wisdom, constant prayers, joyful demeanour and unstinting support throughout this venture 

that has greatly encouraged and emboldened me during times of difficulty. Thank you also for 

your professional input and intellectually stimulating conversations. You are a blessing to me 

in more ways than I can count. 

Thank you to my family and friends for their emotional support and encouragement. 

Stellenbosch University  https://scholar.sun.ac.za



i 

 

TABLE OF CONTENTS 

Declaration................................................................................................................................. i 

Abstract ..................................................................................................................................... ii 

Opsomming ............................................................................................................................. iii 

Acknowledgement ..................................................................................................................... i 

LIST OF FIGURES ............................................................................................................... vii 

LIST OF TABLES ................................................................................................................. xii 

Chapter 1: Introduction .......................................................................................................... 1 

1.1 Background .......................................................................................................................... 1 

1.2 Problem statement ................................................................................................................ 1 

1.3 Aims and objectives ............................................................................................................. 2 

1.4 Definition of terms ............................................................................................................... 3 

1.5 Assumptions ......................................................................................................................... 5 

1.6 Scope of the study ................................................................................................................ 6 

1.7 Delineations and limitations ................................................................................................ 7 

1.8 Thesis statement ................................................................................................................... 7 

1.9 Significance of the study ...................................................................................................... 7 

1.10 Thesis approach ................................................................................................................. 8 

1.11 Chapter overview ............................................................................................................. 11 

Chapter 2: Literature review ................................................................................................ 12 

2.1 Introduction ........................................................................................................................ 12 

2.2 Pedestrian casualty profile ................................................................................................. 12 

2.2.1 Pedestrian casualty profile worldwide ........................................................................ 12 

2.2.2 Pedestrian casualty profile in South Africa ................................................................. 13 

2.3 Risk factors of pedestrian crashes ...................................................................................... 14 

2.3.1 The built environment as a risk factor of pedestrian crashes ...................................... 15 

2.3.1.1 Definition of the built environment ...................................................................... 15 

2.3.1.2 Influence of the attributes of the built environment on pedestrian crashes .......... 20 

2.3.2 Factors influencing pedestrian crash occurrence ........................................................ 30 

Stellenbosch University  https://scholar.sun.ac.za



 

2.3.2.1 Behavioural aspects .............................................................................................. 30 

2.3.2.2 Alcohol related factors .......................................................................................... 32 

2.3.2.3 Vehicle-related factors .......................................................................................... 34 

2.3.2.4 Roadway and environment factors ....................................................................... 35 

2.3.3 Factors influencing pedestrian exposure to risk .......................................................... 38 

2.3.3.1 Definitions and measures of exposure .................................................................. 38 

2.3.3.2 Influence of traffic volume on pedestrian safety .................................................. 40 

2.3.3.3 Socio-economic variables ..................................................................................... 40 

2.4 Impact of the built environment and pedestrian safety in Cape Town .............................. 42 

2.4.1 General information on the City of Cape Town .......................................................... 42 

2.4.2 The influence of the built environment on pedestrian safety in Cape Town .............. 44 

2.5 Measure of the attributes of the built environment ............................................................ 47 

2.5.1 Measures of land use patterns ..................................................................................... 47 

2.5.2 Measures of land use mix ............................................................................................ 48 

2.5.2.1 Accessibility-based measures ............................................................................... 48 

2.5.2.2 Intensity based measures ...................................................................................... 49 

2.5.2.3 Pattern-based measures ......................................................................................... 49 

2.5.3 Urban form measures .................................................................................................. 50 

2.5.3.1 Street connectivity measures ................................................................................ 50 

2.6 Literature on traffic crash modelling ................................................................................. 52 

2.7 Concluding notes on the literature survey ......................................................................... 55 

Chapter 3: Research Methodology ....................................................................................... 56 

3.1 Introduction ........................................................................................................................ 56 

3.2 Methodology ...................................................................................................................... 56 

3.2.1 Research instrumentation ............................................................................................ 56 

3.2.2 Data collection............................................................................................................. 57 

3.2.2.1 Data types and sources ......................................................................................... 57 

3.2.3 Data quality and limitations ........................................................................................ 70 

3.2.3.1 Minimum data requirements ................................................................................. 70 

3.2.3.2 Data deficiencies ................................................................................................... 71 

3.2.4 Sampling of pedestrian casualty data .......................................................................... 78 

3.2.5 Data processing ........................................................................................................... 83 

3.2.5.1 Processing data on land use .................................................................................. 84 

Stellenbosch University  https://scholar.sun.ac.za



 

3.2.5.2 Processing street connectivity data ....................................................................... 94 

3.2.5.3 Processing data for transportation systems ........................................................... 95 

3.2.5.4 Processing pedestrian casualty data ...................................................................... 97 

3.2.6 Data analysis ............................................................................................................... 97 

3.2.6.1 Univariate analysis ............................................................................................... 97 

3.2.6.2 Bivariate analysis .................................................................................................. 97 

3.2.6.3 Geospatial analysis ............................................................................................. 101 

3.2.6.4 Multivariate analysis........................................................................................... 119 

3.2.6.5 Crash data modelling process ............................................................................. 122 

Chapter 4: Results and discussions .................................................................................... 129 

4.1 Univariate and bivariate analyses of pedestrian casualties .............................................. 129 

4.1.1 Analysis of pedestrian casualty frequency ................................................................ 129 

4.1.1.1 Temporal variation of pedestrian casualty frequency ......................................... 129 

4.1.1.2 Pedestrian casualty frequency by gender and age .............................................. 130 

4.1.1.3 Pedestrian casualty frequency by time of day .................................................... 133 

4.1.1.4 Pedestrian casualty frequency by day of week ................................................... 134 

4.1.1.5 Pedestrian casualty frequency by week of month .............................................. 138 

4.1.1.6 Pedestrian casualty frequency by quarters of calendar year ............................... 140 

4.1.2 Description of pedestrian casualties by injury severity ............................................. 144 

4.1.2.1 Overall description of pedestrian injury severity ............................................... 144 

4.1.2.2 Description of pedestrian fatalities ..................................................................... 151 

4.1.2.3 Description of KSI pedestrian casualties ............................................................ 157 

4.1.3 Description of pedestrian behavioural aspects .......................................................... 164 

4.1.3.1 Distribution of pedestrian behavioural aspects ................................................... 164 

4.1.3.2 Gender differences in pedestrian behavioural aspects ........................................ 166 

4.1.3.3 Age differences in pedestrian behavioural aspects ............................................. 169 

4.1.4 Analysis of intersection-related pedestrian casualties ............................................... 172 

4.1.4.1 Profile of pedestrian casualties by type of road facility ..................................... 172 

4.1.4.2 Pedestrian casualties by intersection configuration type .................................... 174 

4.1.4.3 Pedestrian casualties by intersection control type .............................................. 175 

4.1.4.4 Pedestrian casualties by intersection configuration and control type ................. 176 

4.1.4.5 Injury severity by intersection configuration type .............................................. 177 

4.1.4.6 Injury severity by intersection control type ........................................................ 179 

Stellenbosch University  https://scholar.sun.ac.za



 

4.2 Geospatial analyses of pedestrian causalities .................................................................. 182 

4.2.1 Geospatial analysis for the entire dataset of pedestrian crashes ................................ 182 

4.2.1.1 Spatial distribution of pedestrian casualties across the City of Cape Town ....... 182 

4.2.1.2 Geostatistical analysis of pedestrian casualties across the study area ................ 184 

4.2.2 Geospatial analyses of intersection-related pedestrian casualties ............................. 188 

4.2.2.1 Geospatial analysis by the use of local statistics of spatial autocorrelation ....... 188 

4.2.2.2 Geospatial analysis by the use of planar kernel density estimation (KDE) ........ 193 

4.2.3 Geospatial analyses of pedestrian casualties by injury severity ................................ 198 

4.2.4 Design characteristics of intersections locations for pedestrian casualties ............... 201 

4.2.4.1 Descriptive statistics for intersection index scores across the study area ........... 201 

4.2.4.2 Geospatial analysis of intersection index scores ................................................ 202 

4.3 Comparison of the methods of cluster analysis ............................................................... 208 

4.4 Results from multivariate analysis of pedestrian casualties ............................................ 210 

4.4.1 Description of dependent variables ........................................................................... 210 

4.4.2 Description of explanatory variables......................................................................... 212 

4.4.3 Results from Generalised Linear Models .................................................................. 214 

4.4.3.1 GLM model performance: Goodness-of-fit measures ........................................ 214 

4.4.3.2 Parameter estimates from the Negative Binomial Regression Model 1 ............. 215 

4.4.3.3 Parameter estimates from Negative Binomial Regression Model 2 ................... 217 

4.4.3.4 Parameter estimates from Negative Binomial Model 3 ...................................... 220 

4.4.3.5 Sensitivity of variables over different days of a week........................................ 222 

4.4.4 Model results from Geographically Weighted Regression (GWR) models .............. 227 

4.4.4.1 Parameter estimates for GWR Models ............................................................... 227 

4.4.4.2 Evaluation of GWR model performance ............................................................ 241 

4.4.5 Comparison of the model results ............................................................................... 245 

4.4.5.1 Parameter estimates comparison ........................................................................ 245 

4.4.5.2 Model performance comparison ......................................................................... 253 

4.5 Summary of key results ................................................................................................... 257 

4.5.1 Results from univariate and bivariate analyses of pedestrian casualties ................... 257 

4.5.1.1 Pedestrian casualty frequency ............................................................................ 257 

4.5.1.2 Injury severity description .................................................................................. 258 

4.5.1.3 Pedestrian behaviour and actions prior to the incidence of crashes ................... 259 

4.5.1.4 Locations of pedestrian crashes .......................................................................... 260 

4.5.2 Results from geospatial analyses............................................................................... 261 

Stellenbosch University  https://scholar.sun.ac.za



 

4.5.3 Results from multivariate analyses ........................................................................... 262 

4.5.3.1 Results from Generalised Linear Models (GLMs) ............................................. 262 

4.5.3.2 Results from Geographically Weighted Regression (GWR) Models ................. 264 

4.5.3.3 Model comparison .............................................................................................. 266 

4.6 Result discussions ............................................................................................................ 269 

4.6.1 Discussing the results from univariate and bivariate analyses .................................. 269 

4.6.2 Discussing the results from multivariate analyses .................................................... 273 

Chapter 5: Conclusions ....................................................................................................... 281 

5.1 Key findings of the study ................................................................................................. 281 

5.2 Original contributions of the study .................................................................................. 286 

5.3 Transferability of model results ....................................................................................... 286 

5.4 Practical implications of the study ................................................................................... 287 

5.4.1 Pillar 1: Road Safety Management: Improve road safety data systems .................... 288 

5.4.2 Pillar 2: Safer road and mobility: .............................................................................. 289 

5.4.3 Pillar 4: Safer road users ........................................................................................... 293 

5.5 Limitations of the study ................................................................................................... 294 

5.6 Considerations for future research ................................................................................... 295 

References ............................................................................................................................. 297 

Appendices ............................................................................................................................ 329 

APPENDIX A ........................................................................................................................ 330 

Descriptions of zonings and subzonings ............................................................................ 330 

APPENDIX B ........................................................................................................................ 334 

Data completeness for land use data and transportation systems data ............................... 334 

APPENDIX C ........................................................................................................................ 336 

Computational details of land-use mix by the Relative Entropy Index ............................. 336 

APPENDIX D ........................................................................................................................ 339 

Crash details collected on the Accident Report form in South Africa ............................... 339 

APPENDIX E ........................................................................................................................ 340 

APPENDIX E1: Output report from Incremental Spatial Autocorrelation tool ................ 340 

APPENDIX E2: Output report from Incremental Spatial Autocorrelation tool ................ 341 

APPENDIX F......................................................................................................................... 342 

APPENDIX F1: Model results for weekday pedestrian casualties (Model 4) ................... 342 

Stellenbosch University  https://scholar.sun.ac.za



 

APPENDIX F2: Model results for Saturday pedestrian casualties (Model 5) ................... 343 

APPENDIX F3: Model results for Sunday pedestrian casualties (Model 6) ..................... 344 

APPENDIX G ........................................................................................................................ 345 

APPENDIX G1: Summary statistics for local estimates from GWR Model 1B ............... 345 

APPENDIX G2: Summary statistics for local estimates from GWR Model 2B ............... 346 

APPENDIX G3: Summary statistics for local estimates from GWR Model 3B ............... 347 

APPENDIX H ........................................................................................................................ 348 

APPENDIX I ......................................................................................................................... 365 

APPENDIX I1: Local estimates for predictors in GWR Model 1B .................................. 366 

APPENDIX I2: Local estimates for predictors in GWR Model 2B .................................. 370 

APPENDIX I3: Local estimates of predictors in GWR Model 3B .................................... 374 

 

Stellenbosch University  https://scholar.sun.ac.za



vii 

 

LIST OF FIGURES 

Figure 1-1: Conceptual framework adopted in this study .......................................................... 6 

Figure 1-2: Research process ................................................................................................... 10 

Figure 2-1: Road traffic deaths by type of road user (WH0, 2013) ......................................... 13 

Figure 2-2: Risk factors of pedestrian crashes [adopted from Peden et al. (2004)]................. 14 

Figure 2-3: The three-level approach of pedestrian behavioural analysis (Papadimitriou et al., 

2009) ........................................................................................................................................ 36 

Figure 2-4: Eight planning districts of the City of Cape Town (City of Cape Town, 2015a) . 42 

Figure 2-5: City of Cape Town population by district, 2015 ................................................... 43 

Figure 2-6: Histogram of Cape Town population, 2011(City of Cape Town, 2012b) ............ 43 

Figure 2-7: Roads with high pedestrian crash rates in Cape Town (City of Cape Town’s 

Transport Authority, 2005) ...................................................................................................... 45 

Figure 3-1: Flowchart for the coding process of pedestrian crash locations ........................... 63 

Figure 3-2: Google image of a roadside kilometre marker on a freeway facility .................... 64 

Figure 3-3: Google image of kilometre marker on a concrete median barrier ........................ 65 

Figure 3-4: An example of VBA buttons with an assigned macro to count the number of 

intersections and culs-de-sac.................................................................................................... 67 

Figure 3-5: Data quality deficiencies associated with historical crash records (adopted from 

Elvik et al. (2009)). .................................................................................................................. 78 

Figure 3-6: Plot of power versus sample size .......................................................................... 83 

Figure 3-7: Aggregating and screening processes for land use data ........................................ 86 

Figure 3-8: Differences in spatial selection methods: "Intersect" versus "Are within" spatial 

queries ...................................................................................................................................... 88 

Figure 3-9: User interface of the Online Zoning Viewer for the City of Cape Town ............. 89 

Figure 3-10: Flowchart of activities performed during processing data on transportation 

systems ..................................................................................................................................... 96 

Figure 3-11: Criteria for selecting appropriate Post Hoc Tests (Shingala & Rajyaguru, 2015)

................................................................................................................................................ 101 

Figure 3-12: Geospatial analysis: Analytic procedure (Mitchel, 2005) ................................. 102 

Figure 3-13: Interpretation of z-scores and p-values for the Global Moran's I statistic ........ 108 

Figure 3-14: An example of the Moran scatterplot with its four quadrants........................... 113 

Figure 3-15: Flowchart of exploratory spatial data analysis in ArcMap ............................... 118 

Stellenbosch University  https://scholar.sun.ac.za

file:///C:/Users/16849558/Documents/Final%20Versions/Edited/PhDThesis_P%20Nteziyaremye.docx%23_Toc531172603
file:///C:/Users/16849558/Documents/Final%20Versions/Edited/PhDThesis_P%20Nteziyaremye.docx%23_Toc531172611
file:///C:/Users/16849558/Documents/Final%20Versions/Edited/PhDThesis_P%20Nteziyaremye.docx%23_Toc531172617
file:///C:/Users/16849558/Documents/Final%20Versions/Edited/PhDThesis_P%20Nteziyaremye.docx%23_Toc531172620
file:///C:/Users/16849558/Documents/Final%20Versions/Edited/PhDThesis_P%20Nteziyaremye.docx%23_Toc531172620
file:///C:/Users/16849558/Documents/Final%20Versions/Edited/PhDThesis_P%20Nteziyaremye.docx%23_Toc531172625


 

Figure 3-16: Example of graphical representation of factor loading for demographic variables

................................................................................................................................................ 125 

Figure 3-17: Steps of modelling process followed in the study............................................. 128 

Figure 4-1: Frequency of pedestrian casualties in Cape Town for the 2005-2014 period ..... 130 

Figure 4-2: Pedestrian casualties by gender........................................................................... 130 

Figure 4-3: Pedestrian casualties by age and gender ............................................................. 131 

Figure 4-4: Pedestrian casualties by time of day in Cape Town............................................ 133 

Figure 4-5: Pedestrian casualty frequency by day of week ................................................... 134 

Figure 4-6: Estimated Marginal Means of daily casualty count ............................................ 135 

Figure 4-7: Estimated Marginal Means of weekly count of pedestrian casualties ................ 140 

Figure 4-8: Weekly counts of pedestrian casualties across the quarters of calendar year ..... 141 

Figure 4-9: Estimated Marginal Means of Weekly count of pedestrian casualties ............... 142 

Figure 4-10: Distribution of pedestrian casualties by injury severity .................................... 144 

Figure 4-11: Distribution of pedestrian injury severity by gender ........................................ 145 

Figure 4-12: Distribution of injury severity by ethnicity ....................................................... 147 

Figure 4-13: Distribution of injury severity by day of week ................................................. 149 

Figure 4-14: Distribution of injury severity by month of year .............................................. 151 

Figure 4-15: Distribution of pedestrian fatalities by age and gender..................................... 151 

Figure 4-16: Pedestrian fatalities and male-to-female fatality ratio by age ........................... 152 

Figure 4-17: Distribution of pedestrian deaths by time and gender....................................... 153 

Figure 4-18: Pedestrian fatalities and male-to-female ratios by time of day ......................... 154 

Figure 4-19: Estimated Marginal Means of daily count of pedestrian deaths ....................... 157 

Figure 4-20: Distribution of KSI pedestrian casualties by age and gender ........................... 158 

Figure 4-21: KSI pedestrian casualties and male-to-female KSI ratio by age ....................... 159 

Figure 4-22: Distribution of KSI pedestrian casualties by time and gender .......................... 160 

Figure 4-23: KSI pedestrian casualties and male-to-female KSI ratio by time of day .......... 160 

Figure 4-24: Means of daily KSI pedestrian casualties ......................................................... 161 

Figure 4-25: Location of pedestrians on a road facility prior to a road crash ........................ 165 

Figure 4-26: Pedestrian location by gender ........................................................................... 167 

Figure 4-27: Pedestrian actions by gender ............................................................................. 168 

Figure 4-28: Distribution of pedestrian location by age group .............................................. 169 

Figure 4-29: Distribution of pedestrian manoeuvres by age group ....................................... 170 

Figure 4-30: Distribution of pedestrian actions by age group ............................................... 171 

Figure 4-31: Distribution of pedestrian casualties by road facility........................................ 172 

Stellenbosch University  https://scholar.sun.ac.za

file:///C:/Users/16849558/Documents/Final%20Versions/Edited/PhDThesis_P%20Nteziyaremye.docx%23_Toc531172627


 

Figure 4-32: Distribution of injury severity by road facility ................................................. 173 

Figure 4-33: Pedestrian casualties by type of intersection configuration .............................. 174 

Figure 4-34: Pedestrian casualties by type of intersection control ........................................ 175 

Figure 4-35: Pedestrian casualties by type of intersection control and configuration ........... 177 

Figure 4-36: Frequency distribution of injury severity by intersection configuration type ... 177 

Figure 4-37: Percentage distribution of injury severity by intersection configuration type .. 178 

Figure 4-38: Frequency distribution of injury severity by intersection control type ............. 179 

Figure 4-39: Percentage distribution of injury severity by intersection control type ............ 180 

Figure 4-40: Spatial distribution of pedestrian casualty ........................................................ 183 

Figure 4-41: Spatial distribution of average annual ............................................................... 183 

Figure 4-42: Spatial distribution of pedestrian casualty locations ......................................... 185 

Figure 4-43: Cluster analysis of pedestrian casualties by the Getis-Ord Gi* tool ................. 185 

Figure 4-44: Cluster analysis of pedestrian casualties by Moran I tool ................................. 186 

Figure 4-45: Cluster analysis of pedestrian casualties by the OHA tool ............................... 186 

Figure 4-46: Spatial distribution of intersection-related pedestrian casualties in Cape Town

................................................................................................................................................ 189 

Figure 4-47: Clusters of intersection-related pedestrian c ..................................................... 190 

Figure 4-48: Clusters of intersection-related pedestrian ........................................................ 190 

Figure 4-49: Clusters of intersection-related pedestrian ........................................................ 191 

Figure 4-50: Clusters of intersection-related pedestrian ........................................................ 191 

Figure 4-51: Hot spot locations detected by the OHA Weighted Point technique ................ 192 

Figure 4-52: Hot spots of intersection-related pedestrian ...................................................... 194 

Figure 4-53: Hot spots of intersection-related pedestrian ...................................................... 194 

Figure 4-54: Hot spots of intersection-related pedestrian ...................................................... 195 

Figure 4-55: Hot spots of intersection-related pedestrian ...................................................... 195 

Figure 4-56: Hot spots of intersection-related pedestrian ...................................................... 196 

Figure 4-57: Hot spots of intersection-related pedestrian ...................................................... 196 

Figure 4-58: Relationship between pedestrian casualties and the road network structure .... 197 

Figure 4-59: Cluster analysis of KSI pedestrian casualties ................................................... 199 

Figure 4-60: Cluster analysis of KSI pedestrian casualties ................................................... 199 

Figure 4-61: Cluster analysis of slight injuries by the ........................................................... 200 

Figure 4-62: Cluster analysis of slight injuries by the ........................................................... 200 

Figure 4-63: Descriptive statistics for intersection index scores ........................................... 201 

Figure 4-64: Summary report generated by the Global Moran's I statistic ............................ 202 

Stellenbosch University  https://scholar.sun.ac.za



 

Figure 4-65: Clusters and outliers for locations of intersection-related pedestrian casualties

................................................................................................................................................ 204 

Figure 4-66: Intersection: Francie Van Zijl Dr X Boulevard Park X Tienie Meyer Bypass 

(Source: Google) .................................................................................................................... 205 

Figure 4-67: Intersection: M7 (Jakes Gerwel Dr) X Milton Rd X Road to Wingfield Aerodrome 

(Source: Google) .................................................................................................................... 205 

Figure 4-68: Intersection: M7 (Jakes Gerwel Dr) X Frans Conradie Dr X Rd to Wingfield 

House (Source: Google) ......................................................................................................... 206 

Figure 4-69: Intersection: Bottelary Rd X Kruis St X Langverwacht Rd (Source: Google) . 206 

Figure 4-70: Intersection: Adderley St X Strand St (source: Google) ................................... 207 

Figure 4-71: An example of clipped KDE hot spots with casualty points and the road network

................................................................................................................................................ 209 

Figure 4-72: Summary statistics for the entire sample of pedestrian casualties .................... 211 

Figure 4-73: Summary statistics for intersection-related pedestrian casualties ..................... 211 

Figure 4-74: Summary statistics for Killed and Seriously Injured (KSI) pedestrian casualties

................................................................................................................................................ 212 

Figure 4-75: Local estimates for GWR Model 1A: (1) Prop_AgeLess15; (2) Prop_Black; 

(3)Prop_MidInc; (4) Prop_GB.MU9Cat ................................................................................ 230 

Figure 4-76: Local estimates for GWR Model 1A: (5) Inters_grt3leg; (6) Round_Circ; (7) 

Prop_Signal ............................................................................................................................ 231 

Figure 4-77: Local estimates for GWR Model 2A: (1) Log_Popu; (2) Prop_White; (3) 

Prop_SR9Cat; (4) Prop_GB.MU9Cat .................................................................................... 236 

Figure 4-78: Local estimates for GWR Model 2A: (5) Inters_grt3leg; (6) Round_Circ; (7) 

Prop_Signal ............................................................................................................................ 237 

Figure 4-79: Local estimates for GWR Model 3A: (1) Prop_Black; (2) Prop_Age15-24; (3) 

Prop_Age 25-54; (4) Prop_NotWork..................................................................................... 240 

Figure 4-80: Local estimates for GWR Model 3A: (5) Inters_grt3leg .................................. 241 

Figure 4-81: Standardised residuals for GWR Model 1A ..................................................... 242 

Figure 4-82: Standardised residuals for GWR Model 1B ...................................................... 242 

Figure 4-83: Standardised residuals for GWR Model 2A ..................................................... 243 

Figure 4-84: Standardised residuals for GWR Model 2B ...................................................... 243 

Figure 4-85: Standardised residuals for GWR Model 3A ..................................................... 244 

Figure 4-86: Standardised residuals for GWR Model 3B ...................................................... 244 

Figure 4-87: Spatial distribution of residuals for Models 1: GWR, Poisson and NB ............ 254 

Stellenbosch University  https://scholar.sun.ac.za



 

Figure 4-88: Spatial distribution of residuals for Models 2: GWR, Poisson and NB ............ 255 

Figure 4-89: Spatial distribution of residuals for Models 3: GWR, Poisson and NB ............ 256 

Figure 5-1: Strategic plan for interventions adopted in the South African National Road Safety 

Strategy 2016-2030 (Department of Transport, 2014) .......................................................... 288 

 

Stellenbosch University  https://scholar.sun.ac.za



xii 

 

LIST OF TABLES 

Table 3-1: List of codes used in collecting data on crash locations and their interpretations . 59 

Table 3-2: Descriptions of zonings and subzonings applicable to the City of Cape Town (City 

of Cape Town, 2015) ............................................................................................................... 73 

Table 3-3: Quality of pedestrian casualty data in the Western Cape: Period 2005-2014 ........ 75 

Table 3-4: Quality of pedestrian casualty data in the Cape Town area: Period 2005-2014 .... 75 

Table 3-5: Incorrect age records in the pedestrian casualty dataset ......................................... 77 

Table 3-6: Statistical Test Decision Matrix (Rossi, 2012) ....................................................... 81 

Table 3-7: Summary output of the power and sample size calculation ................................... 82 

Table 4-1: Pedestrian casualties by age and gender ............................................................... 132 

Table 4-2: Descriptive statistics of daily pedestrian casualty counts .................................... 134 

Table 4-3: Levene's Test for homogeneity of variance .......................................................... 136 

Table 4-4: Results from the Games-Howell Post Hoc Test ................................................... 137 

Table 4-5: Descriptive statistics of weekly pedestrian casualty count .................................. 138 

Table 4-6: Levene's Test for homogeneity of variance .......................................................... 138 

Table 4-7: Results from the Bonferroni Post Hoc Test .......................................................... 139 

Table 4-8: Descriptive statistics of quarterly pedestrian casualty count ................................ 142 

Table 4-9: Levene’s test for homogeneity of variance .......................................................... 143 

Table 4-10: Results from the Bonferroni Post Hoc test for quarterly pedestrian casualty data

................................................................................................................................................ 143 

Table 4-11: Distribution of injury severity by gender ........................................................... 145 

Table 4-12: Pedestrian casualties by ethnicity ....................................................................... 146 

Table 4-13: Cross-tabulation of injury severity and pedestrian gender ................................. 148 

Table 4-14: injury severity by day of week ........................................................................... 149 

Table 4-15: Pedestrian injury severity by month of year ....................................................... 150 

Table 4-16: Pedestrian fatalities by age and gender .............................................................. 152 

Table 4-17:  Descriptive statistics of daily counts of pedestrian deaths ................................ 154 

Table 4-18: Levene's test for homogeneity of variance ......................................................... 155 

Table 4-19: Results from the Games-Howell post hoc test ................................................... 156 

Table 4-20: KSI pedestrian casualties by age and gender ..................................................... 158 

Table 4-21: Descriptive statistics of daily counts of KSI pedestrian casualties .................... 161 

Table 4-22: Levene’s test for homogeneity of variance ........................................................ 162 

Table 4-23: Results from the Games-Howell post hoc test ................................................... 163 

Stellenbosch University  https://scholar.sun.ac.za



xiii 

 

Table 4-24: Pedestrian casualties by pedestrian position ...................................................... 164 

Table 4-25: Pedestrian casualties by type of manoeuvres ..................................................... 165 

Table 4-26: Pedestrian actions prior to a road crash .............................................................. 166 

Table 4-27: Pedestrian location by gender ............................................................................. 167 

Table 4-28: Pedestrian manoeuvres by gender ...................................................................... 168 

Table 4-29: Pedestrian casualty rate by intersection configuration type ............................... 174 

Table 4-30: Pedestrian crash rate by intersection control type .............................................. 176 

Table 4-31: Rates of fatalities and KSI pedestrian casualties per 100 intersections ............. 179 

Table 4-32: Rates of fatalities and KSI casualties by intersection control type .................... 181 

Table 4-33: Hot and cold spot suburbs of pedestrian casualties in Cape Town .................... 187 

Table 4-34: PAI for cluster analysis methods applied in the study ....................................... 208 

Table 4-35: Descriptive statistics of explanatory variables ................................................... 213 

Table 4-36: Model comparisons using goodness-of-fit measures ......................................... 214 

Table 4-37: Model estimates for NB Model 1 ....................................................................... 215 

Table 4-38: Model estimates for NB Model 2 ....................................................................... 218 

Table 4-39: Model estimates for NB Model 3 ....................................................................... 220 

Table 4-40: Estimates for NB Model 4, NB Model 5 and NB Model 6 ................................ 223 

Table 4-41: Output of goodness of fit parameters for the GWR models ............................... 228 

Table 4-42: Explanatory variables for GWR models 1 ......................................................... 229 

Table 4-43: Summary statistics of local estimates for GWR Model 1A ............................... 232 

Table 4-44: Explanatory variables for GWR Models 2 ......................................................... 233 

Table 4-45: Summary statistics of local estimates for GWR Model 2A ............................... 234 

Table 4-46: Explanatory variables for GWR Models 3 ......................................................... 238 

Table 4-47: Summary statistics of local estimates for GWR Model 3A ............................... 238 

Table 4-48: Estimates for GLMs and GWR Models: Models 1 ............................................ 246 

Table 4-49: Estimates for GLMs and GWR Models: Models 2 ............................................ 247 

Table 4-50: Estimates for GLMs and GWR Models: Models 3 ............................................ 248 

Stellenbosch University  https://scholar.sun.ac.za



1 

 

Chapter 1: Introduction 

1.1 Background 

The safety of pedestrians in the road environment has been a global concern since the 

introduction of motorised travel modes in the late nineteenth century. According to the World 

Health Organization (WHO), pedestrian deaths account for 22 percent of about 1.2 million road 

traffic deaths occurring every year worldwide (World Health Organization, 2015). On the 

African continent, pedestrian deaths represent 39 percent of all traffic-related deaths occurring 

on the African region (World Health Organization, 2015).  

South Africa is ranked among the countries with the highest rate of traffic-related deaths 

worldwide and with higher proportions of pedestrian deaths. Disproportionate rates of traffic 

deaths among different road user categories are well documented in South Africa, with 

pedestrians representing over a third of all traffic deaths according to data published by the 

Road Traffic Management Corporation (RTMC, 2016, 2017). The majority of vehicle-

pedestrian crashes occur when pedestrians are crossing the roadway, and behavioural factors 

significantly influence the occurrence of vehicle-pedestrian crashes (Albers et al., 2010). 

A variety of variables affect the incidence and the severity of a pedestrian crash. These factors 

relate to the behaviour of road users, road geometric characteristics as well as vehicle and 

environmental factors. Engaging in risky behaviour on the part of both pedestrians and 

motorists is the major factor contributing to pedestrian crashes in South Africa. Research has 

shown that about 75 percent of crashes in South Africa are attributed to human factors (Vogel 

& Bester, 2005) and similar trends may be expected for pedestrian-vehicle crashes. 

Contributing factors which are consistently reported to be associated with pedestrian crashes 

are speeding; driver’s disregard of pedestrians; jaywalking; illegal crossings on freeways; 

alcohol use; and poor visibility of pedestrians at night times (Luke & Heyns, 2014; RTMC, 

2011; Sinclair & Zuidgeest, 2016). Roadway and environmental factors such lack of pedestrian 

facilities, inadequate road design and lighting conditions are other factors that may increase the 

likelihood of pedestrian crashes (Ojungu-Omara & Vanderschuren, 2006; Vogel & Bester, 

2005). 

Urban environments are often locations of higher crash risk for pedestrians due to the presence 

of high traffic volumes, higher density of streets and higher pedestrian activity. Recently, the 

influence of the urban built environment on pedestrian safety has been given attention in road 
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safety research. The aspects of the built environment which are often included in safety 

analyses are land use patterns, urban design features and elements of transportation systems. 

Research on the relationships between the attributes of the built environment and the incidence 

of pedestrian crashes is often coupled with black spot analysis to detect high-risk locations for 

pedestrians on the transportation system. However, research in this area is still scarce in the 

developing world. 

Active transport modes such as walking and cycling are currently being promoted in many 

countries for their health and environmental benefits. Promoting these modes is one of the 

strategies adopted in practice to alleviate negative consequences resulting from motorised 

traffic, such as traffic crashes, congestion, delays, traffic delays, land consumption, air and 

noise pollution among others (Ewing et al., 2011; Gomez-Ibanez et al., 2009). Research in 

South Africa demonstrated that more than half of the low- and middle-income households rely 

on walking to reach school, work, shops and other services (Behrens, 2002). As walking is 

already an important transport mode in South Africa and as people are currently encouraged to 

walk more, the effort to reduce pedestrian crashes is crucial to make walking environments 

safer. One way of achieving this goal, is to rethink how the built environment is planned and 

designed.  

In terms of prevention, road safety investigations play an important role in uncovering a range 

of factors which may contribute to the high incidence of pedestrian crashes. Road safety 

analysis is a prerequisite for road safety programs to ensure a safe and efficient transportation 

system. There is a variety of approaches that are aimed at quantitatively estimating the safety 

of transportation systems. The most widely used approaches are statistical methods and 

geospatial analysis methods. The latter approach has become popular owing to recent advances 

in Geographical Information Systems (GIS). There has been a growing interest among traffic 

researchers to use GIS as a tool to enhancing visual presentation, helping to discover and 

visualise spatial patterns and communicating information in more expressive way. Both 

methods are applied in this study to investigate the associations between the attributes of the 

built environment and pedestrian crashes in the context of South African urban spaces.  
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1.2 Problem statement 

Road planning practice in South Africa has been concerned with improving the mobility of 

motorised travel modes with little or no consideration given to the needs and safety of non-

motorised travel modes. In addition, the built environment in South African cities differs in 

many respects from other cities in the world. The form of the built environment in South Africa 

has been shaped by past policies of racially segregated human settlements and this has 

inevitably affected travel behaviour as well as the extent to which pedestrian safety was 

prioritised. Another key challenge in urban planning practice in South Africa has been a lack 

of coordination between land use and transportation systems. All these factors have led to 

higher vulnerability of pedestrians marked by a disproportionate share of crash risk particularly 

in urban environments.  

Pedestrian crashes occur as a result of one or more factors, namely human, road environment 

and vehicle factors. Despite the general recognition that human factors play a significant role 

as a contributory factor to pedestrian crashes, research has shown that the design of the built 

environment plays a significant role in influencing road user behaviour, and as such has the 

potential to impact the incidence and the severity of pedestrian crashes. This topic has attracted 

the attention of many researchers in the field of road safety in the effort to provide safe walking 

environments which are given higher priority in the contemporary planning practice. However, 

research of this nature is dominated by the developed world where travel patterns, motorisation 

level, infrastructure, availability of funds, policies and other safety-related aspects differ from 

those in the developing world. Contextual differences often pose limitations when applying 

safety-related research findings from the developed world and stress the need to conduct 

research of this nature in the developing world.  

In South Africa, a few attempts have been made to investigate the relationships between 

pedestrian crashes and site-specific elements (e.g. intersections, schools, etc.) or street-scale 

elements (e.g. crosswalks, sidewalks, intersection design elements etc.). From literature 

searches, it would seems that research into the associations between pedestrian crashes and the 

built environment at a macro-scale level is non-existent in South Africa. Therefore, little is 

known about the influence of the built environment features on the frequency and severity of 

pedestrian crashes in the context of South Africa. 
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Traditionally, road safety analyses are carried out by using a variety of analytical methods with 

statistical methods and geospatial analyses being the most widely applied. Estimating road 

safety using these methods requires good quality, reliable and accurate information on crash 

occurrence. It also requires other zonal information on road facilities and traffic operational 

characteristics, travel behaviour (e.g. vehicle kilometres travelled), exposure variables (e.g. 

traffic volumes, pedestrian volumes and speed), land use, and population characteristics. In the 

context of South Africa and other many countries in the developing world, this information is 

not always available and data which is available is often subjected to a number of data 

deficiencies. Data on road traffic crashes collected by transportation agencies in South Africa 

is not geocoded and this deficiency poses serious limitations when applying conventional 

methods of safety analysis such as statistical methods and GIS-based spatial analyses. This 

study attempted to overcome these challenges by developing a methodology to improve 

historical crash data and by gathering additional information necessary for the application of 

statistical methods and geospatial methods. This allowed the researcher to investigate a number 

of research questions which are formulated as follows: 

1. Is there a measurable link between the built environment and pedestrian crashes? 

2. If the link exists, what is its extent? 

3. If the link exists, does it vary spatially? 

4. What are the characteristics of pedestrian crashes in the study area? 

5. Where are pedestrian crashes more likely to occur? 

6. Where are hot spots for pedestrian crashes located in the study area? 

7. How suitable are the crash analysis methods used in this study to the context of South 

Africa? 

8. Are the findings from this study comparable to those in the international literature? 

1.3 Aims and objectives 

This study investigates the link between the built environment features and the incidence of 

pedestrian crashes in the context of the South African urban environment. The specific 

objectives of this study are: 

1. To investigate the extent to which the frequency of pedestrian crashes are associated 

with the built environment and population characteristics through the use of statistical 

methods. The specific intentions within this objective are: 
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a. To identify the aspects of the built environment that are related to the incidence 

of pedestrian crashes; 

b. To identify population characteristics that are associated with pedestrian 

crashes; 

c. To quantify the associations between pedestrian crashes, the built environment 

and population characteristics; 

d. To investigate spatial variability of associations across the study area 

2. To evaluate the performance of statistical methods used in this study to predict the 

incidence of pedestrian crashes. 

3. To identify high-risk locations for pedestrian crashes through the use of geospatial 

analysis techniques. 

4. To evaluate the performance of geospatial analysis methods applied in this study for 

the identification of hot spots for pedestrian crashes. 

5. To describe pedestrian crash profiles and contributing factors. Within this objective, the 

specific intents are: 

a. To describe pedestrian casualties by demographic characteristics 

b. To analyse pedestrian casualties by location of crash occurrence 

c. To describe pedestrian casualties by injury severity 

d. To assess design deficiencies at intersections where pedestrian crashes took 

place 

e. To identify pedestrian behavioural aspects and actions contributing to 

pedestrian crash occurrence. 

1.4 Definition of terms 

Connectivity of the street network: The directness and availability of alternative routes from 

one point to another within a street network. 

Crash rate: The number of crashes in accordance with a measure of exposure (e.g. population, 

pedestrian/vehicle volumes, time and distance). 

Cul-de-sac: It is a dead-end street or an endpoint of a link that has no other connections. 

Exposure: The proximity to potentially harmful situations in traffic environment or a 

precondition that must be present in order to have a traffic crash. 
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Fatality: A death resulting from a road traffic crash (usually within a 30 day period after the 

crash occurrence). 

Injury: An injury is defined as physical damage to a human body caused either by sudden 

transfers of energy exceeding the threshold of physiological tolerance or by the lack of one or 

more vital elements, such as oxygen. 

Intersection: The endpoint of a link that connects to other links. 

Intersection-related pedestrian casualty: the term is used in this study to signify any 

pedestrian casualty that occurred at an at-grade junction of roads.  

Land use mix: The relative proximity of different types of land use within a given area. 

Land use: The distribution of spatially located activities across a geographic area, including 

the location and the density of different activities, where activities are grouped into relatively 

broad categories, such as residential use, commercial use, industrial use, offices, parks, 

transport facilities, schools, brownfield sites, open spaces, etc. 

Link: A road segment between two nodes. 

Midblock-related pedestrian casualty: A pedestrian casualty that occurred on a link or a 

section of the road between two consecutive road junctions. 

Pedestrian casualty: In this study, a pedestrian casualty is defined as any pedestrian who was 

killed or injured, and any person who was involved in a crash with a vehicle but for which the 

injury severity was not known.  

Police reported crash: A crash that is reported to the police and is recorded in the crash 

database.  

Street density: The measure of the length of a road network per unit of area. 

The built environment: The built environment in this study consists of land use, urban design, 

and transportation systems, and encompasses patterns of human activity within the physical 

environment. 
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Traffic crash: A term that is sometimes preferred to traffic accident due to the fact that it 

reflects an element of causality rather than an unavoidable event caused by chance or occurring 

without human responsibility. 

Transportation system: The physical infrastructure of roads, sidewalks, bicycle paths, 

railroad tracks, bridges as well as the level of transport services provided.  

Urban form: The design of the city and the physical elements within it, including both their 

arrangement and their appearance. The term urban form and urban design are used 

interchangeably in this study. 

Vulnerable road users (VRUs): A group of road users most at risk in traffic in view of their 

susceptibility to injury in the event of a crash, and generally these include pedestrians, cyclists 

and motorcyclists.  

1.5 Assumptions 

The study is based on pedestrian casualty data including people who were killed, injured, those 

without injuries or those whose injuries were not known but there was evidence that they were 

involved in car crashes. However, it is recognised in this study that a single pedestrian crash 

event could result in more than one pedestrian casualties. This implies that that the number of 

pedestrian casualties does not necessarily reflect the same number of pedestrian crash events. 

In spite of that, the study considers a pedestrian casualty as a proxy for a pedestrian crash and 

assumes that the findings obtained by using pedestrian casualty data could be generalised to 

pedestrian crashes.  

The types of land use included in this study are the zonings and subzonings allocated to each 

property located within the boundaries of the city as approved by the zoning scheme regulations 

of the City of Cape Town. However, literature searches could not find any study on the extent 

to which the zoning map of Cape Town is representative of the actual land use development. 

A quick test on a small sample of properties in the zoning map was carried out in this study to 

verify whether the permitted land use development matches the actual use. The results of this 

test confirmed that the zoning map is sufficiently accurate and that it can be used as an 

acceptable proxy for land use development. Therefore, it is assumed in this study that the 

permitted land use designated in the zoning maps is the same as the actual land use 

development.  
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1.6 Scope of the study 

The conceptual framework adopted in this study was inspired and supported by previous 

researchers who recognise the existence of both the direct and indirect link between the built 

environment and pedestrian crash occurrence (Cho, Rodríguez & Khattak, 2009; Ewing & 

Dumbaugh, 2009; Miranda-Moreno, Morency & El-Geneidy, 2011; Ukkusuri, Miranda-

Moreno, Ramadurai & Isa-Tavarez, 2012; Wier, Weintraub, Humphreys, Seto & Bhatia, 2009). 

The concept is illustrated in Figure 1-1. In this conceptualisation, exposure variables which are 

vehicular speed, traffic volumes and pedestrian activities play a mediating role in the link. 

Salient elements of the framework that are concerned in this study are the built environment, 

socio-demographic variables (or population characteristics) and pedestrian crashes. In the 

context of this study, data on exposure variables (i.e. pedestrian volumes, traffic volumes and 

vehicular speed) was not available at the census suburb level and could not be included in the 

study. It follows that the current study is concerned with only the link between the built 

environment and pedestrian crashes and does not report on the mediating effect of exposure 

variables.  

 

Figure 1-1: Conceptual framework adopted in this study 
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1.7 Delineations and limitations 

Pedestrian safety is affected by a number of factors as portrayed in the conceptual framework 

illustrated in Figure 1-1. Among factors that influence pedestrian safety, the aspects of the built 

environment (i.e. land use patterns, urban design features and transportation systems) and 

population characteristics (i.e. demographic and socio-economic characteristics) are the only 

aspects of the conceptual framework included in the modelling processes. The analysis of 

behavioural aspects reported in historical crash records are restricted to descriptive analyses in 

this study. Pedestrian crash data used in this study was retrieved from police-reported crash 

data collected in the City of Cape Town. Due to the limited information detail of the crash data 

used in this study, the study does not examine the relationships between pedestrian crashes and 

other aspects presented in the conceptual framework such as weather conditions, vehicle 

factors, driver behaviour, alcohol impairment, crime and so forth. Furthermore, certain 

geospatial analyses such as Kernel Density Estimation (KDE) were restricted to only 

intersection-related pedestrian crashes since the description of crash locations in the crash data 

does not allow proper location identification for non-intersection pedestrian crashes (i.e. 

crashes occurring on links or road sections between two consecutive intersections).  

1.8 Thesis statement 

This study is based on the idea that spatially aggregated data on the built environment and 

population characteristics can be used to predict the incidence of pedestrian crashes. The thesis 

statement in this study is formulated as follows: “There is a measurable link between the 

attributes of the built environment and the incidence of pedestrian crashes”. 

1.9 Significance of the study 

Understanding the influence of the attributes of the built environment on pedestrian safety is 

of vital importance for both research and practice in the effort to address pedestrian safety 

problems and develop safer walking environments in urban spaces. From a theoretical 

perspective, this study adds to the limited existing body of knowledge on the influence of the 

built environment and population characteristics on pedestrian crashes. To the South African 

context, this might be the first research attempt to examine the associations between the built 

environment and pedestrian crash incidence at a metropolitan scale.  
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From a practical perspective, understanding the influence of the aspects of the built 

environment on pedestrian crash risk through research is a crucial step towards the 

development of evidence-based safety interventions and strategic plans appropriate to the 

South African context. For instance, the objectives of this study are in line with the vision of 

the National Road Safety Strategy (NRSS) for the 2016-2030 period currently being 

implemented in South Africa, which is to ensure “safe and secure roads” (Department of 

Transport, 2014). The expected new insights from this study would support a number of 

priority areas for interventions identified in the NRSS, including identifying and addressing 

high risk locations; developing and redefining infrastructure design aimed at protecting 

vulnerable road users; identifying and addressing shortcomings in road safety data management 

system; developing comprehensive programmes to improve road user behaviour; and 

increasing road research relevant to South Africa. A better understanding of the influence of 

the built environment on pedestrian crash risk can assist with the achievement of the NRSS 

goals and may guide interventions aiming at addressing pedestrian safety problems and 

supporting the planning of safe walking environments.  

1.10 Thesis approach  

This research is an empirical study that uses a mix of analytical methods, including descriptive 

analysis, inferential analysis, geospatial analyses and modelling techniques. The research 

questions are of three types: descriptive, causal and predictive. Figure 1-2 illustrates a summary 

of the research process adopted to achieve the research objectives. The research process 

illustrated in Figure 1-2 indicates how the research was conducted and outlines the expected 

outcomes from the study. 

The literature review provides a summary of existing works relevant to the research topic and 

was structured according to emergent themes. A preliminary scan of existing literature 

influenced the choice of the research topic and the formulation of the research problem. After 

the development of the proposal, a secondary literature survey was performed to provide a 

theory base from the previous works that underpin the key subjects of the research topic. The 

secondary literature review also provided information on how other scholars have approached 

studies of the similar area of interest to achieve their research objectives. 

The study used two types of data - primary data and secondary data - both collected from 

different sources including local governmental agencies and online open data. The choice of 
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the method used in this study was guided by the existing theory base from previous research. 

In addition, the choice of the method also depended on the nature of data that was available for 

the analysis. The research approach illustrated in Figure 1-2 presents research strategies for 

responding to the research questions and proving the thesis statement. 

The study attempted to address data deficiencies by improving data on pedestrian crashes and 

the built environment. The improved data was used to investigate associations between the 

built environment and pedestrian crashes and this was performed in four main steps:  

 Geocoding and mapping a dataset of pedestrian casualties in ArcMap; 

 Aggregating and measuring the attributes of the built environments at the census suburb 

level; 

 Identifying clusters (hot spots and cold spots) of pedestrian casualties using two 

geospatial methods: local statistics of spatial autocorrelation and the planar kernel 

density estimation (KDE); 

 Using statistical methods to investigate associations between the built environment and 

pedestrian casualties in the City of Cape Town. 
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Figure 1-2: Research process 
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1.11 Chapter overview 

Chapter 1 provides the introduction of the study. This chapter outlines the background, the 

research problem, the aims and objectives, the definitions of terms, the assumptions, the scope 

of the study, the delineations and limitations of the study, the significance of  the study the 

thesis and the research approach. Chapter 2 provides a theoretical basis of the research problem 

through a review of existing literature relevant to the research questions investigated in this 

study. Chapter 3 describes the methodological approach applied to investigate the research 

questions. Chapter 4 presents and discusses the results of empirical analyses and Chapter 5 

presents the conclusions drawn from the results, the original contributions of the study, 

practical implications of the study, limitations, and considerations for future research. 
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Chapter 2: Literature review 

2.1 Introduction 

The literature review chapter provides a review of previous works relevant to the scope of this 

study. The chapter provides the theoretical background to the research questions stated in the 

first chapter. The chapter also feeds into the identification of appropriate methods applied in 

this study to investigate the research questions. The body of the literature is broken down into 

the following sub-chapters: 

1. Pedestrian casualty profile  

2. Risk factors of pedestrian crashes 

3. The built environment as a risk factor of pedestrian crashes 

4. Measures of the attributes of the built environment 

5. Associations between the built environment and the incidence of pedestrian crashes in 

South Africa. 

6. Crash modelling techniques and  

7. Concluding notes on the literature review. 

2.2 Pedestrian casualty profile 

2.2.1 Pedestrian casualty profile worldwide 

Road traffic injuries are currently regarded as a global public health problem by the World 

Health Organization (WHO). More than 1.2 million people die each year as a result of road 

traffic crashes and about 50 million more people sustain non-fatal injuries globally (World 

Health Organization, 2015). The burden of road traffic injuries is disproportionately distributed 

across different geographical locations on the globe with low- and middle-income countries 

being the most affected regions. While the global traffic fatality rate is 17.4 per 100 000 

population, the traffic fatality rates in low-and middle-income regions stand at 24.1 and 18.4 

deaths per 100 000 population, respectively (World Health Organization, 2015).  

In addition to geographical differences, there is also an imbalance in the burden according to 

the type of road user. The risk of dying as a result of a road traffic crash is higher for vulnerable 

road users (pedestrians, cyclist and motorcyclists) than for car occupants in all countries. 

According to WHO (2015), half of road traffic deaths recorded globally are vulnerable road 

users. The African region has the highest pedestrian fatality rate when compared with other 
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parts of the globe. While pedestrian deaths account for 22 percent globally, the proportion of 

pedestrians killed in the African region stands at 39 percent (World Health Organization, 2015). 

The lowest proportion of pedestrian deaths (13 percent) is recorded in the South-East Asia 

region (see Figure 2-1).  

 

Figure 2-1: Road traffic deaths by type of road user (WH0, 2013) 

2.2.2 Pedestrian casualty profile in South Africa 

According to many sources, South Africa is ranked among the countries with the highest rate 

of road traffic deaths in the world. In the study conducted by the World Health Organization 

(WHO), South Africa was ranked 177th of the 182 countries that participated in the study with 

a traffic mortality rate of 31.9 per 100 000 population (World Health Organization, 2013). 

Approximately 14 000 people die every year as a result of traffic crashes (RTMC, 2016). 

Disproportionate rates of traffic deaths among different road user categories are well 

documented, with pedestrians representing nearly 40 percent of all traffic deaths in South 

Africa according to data published by the Road Traffic Management Corporation (RTMC, 

2016, 2017). Of these pedestrian deaths, approximately a quarter of them are children and 

young people below the age of 20 years (RTMC, 2016, 2017). It has been reported that 

transport-related injuries are among the leading causes of injury and death among children in 

South Africa. According to data collected by ChildSafe South Africa, road traffic injuries (RTI) 

are ranked to be the second leading cause of injury among children aged 0 to 12 years, 

representing 15.7 percent of all child injuries and 25 percent of all hospitalised cases (Herbert 
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et al., 2012). In Cape Town, pedestrian crash figures are higher than national figures and 

pedestrian crashes represent more than 60% of all traffic-related deaths (Liebenberg & Garrod, 

2005).  

2.3 Risk factors of pedestrian crashes 

Research has identified a number of factors influencing pedestrian safety. In general, four main 

risk factors influence the incidence and severity of pedestrian crashes (Peden et al., 2004): 

a) The exposure to risk, which is described by the amount of movement within a 

transportation system, commonly defined as traffic volume, pedestrian volume and 

speed (Lassarre et al., 2007; Ukkusuri et al., 2012); 

b) The underlying probability of a crash given a particular exposure; 

c) The probability of injury; and 

d) The outcome or severity of injury. 

The main risk factors of pedestrian crashes can be summarised in four categories: (1) factors 

influencing exposure to risk; (2) factors influencing crash occurrence; (3) factors influencing 

injury severity; and (4) factors influencing post-crash care (Peden et al., 2004). Following this 

classification, risk factors reviewed in this study are summarised in Figure 2-2. Elements of the 

built environment identified in Figure 2-2 as risk factors are colour-coded in blue.  

 

Figure 2-2: Risk factors of pedestrian crashes [adopted from Peden et al. (2004)].  
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2.3.1 The built environment as a risk factor of pedestrian crashes 

This section provides the definition of the built environment and a detailed description of the 

attributes of the built environment. In addition, the section provides a review of studies that 

documented the relationships between the attributes of the built environment and the incidence 

of pedestrian crashes. 

2.3.1.1  Definition of the built environment 

The built environment is a broad concept that has been described by different authors according 

to their research purposes. The attempt to describe the built environment has originated from a 

number of studies that, from around 1990, introduced the framework of dimensions of the built 

environment while considering the impact of the built environment on travel behaviour and 

physical activity (Ouyang & Bejleri, 2014). Three dimensions or 3Ds were originally defined 

by Cervero and Kockelman (1997) to describe the built environment characteristics. These 

dimensions include density, diversity and design.  

A few years later, the concept of 3Ds was extended to 5Ds by including other two dimensions, 

destination accessibility and distance to transit (Ewing & Cervero, 2010). According to these 

authors, these dimensions are defined as follows. Density is defined as a measure of variables 

of interest per unit of area. Diversity is characterised as the number of land use types in a given 

area and the degree to which they are represented in a spatial unit of analysis (land area, floor 

are etc.). Design relates to characteristics of street networks in a given area. Destination 

accessibility is referred to as the measure of ease of accessing destinations. Distance to transit 

is defined as the shortest distance from residences or places of employment to the nearest transit 

station or stop. A number of other studies have integrated other dimensions into the concept of 

the built environment such as demand management (encompassing parking supply and cost) 

and demographic variables (Ewing & Cervero, 2010). 

In this study, the built environment is defined as the physical environment that is human-made 

or human-altered with the intention to facilitate and enhance opportunities for human activities 

(Smith & Brooks, 2013). The four main elements of the built environment concerned with this 

study include density; land use patterns; urban design features; and the transportation system. 

These are the characteristics of the built environment which have been often included in 

research which is concerned with travel behaviour and traffic safety (e.g. Handy et al., 2002; 

TRB, 2005).  

Stellenbosch University  https://scholar.sun.ac.za



16 

 

1. Density 

Density is usually expressed as the number of population, jobs or households or other aspects 

of interest per  unit of area (Ewing & Cervero, 2010; Handy et al., 2002). Population density 

is the density measure that is often included in safety analyses and is usually expressed in 

population numbers per hectare of land. Job density is often included in studies that are 

concerned with travel behaviour and this measure has been adopted in traffic safety research 

as well (Miranda-Moreno et al., 2011; Quistberg et al., 2015).  

2. Land use patterns 

Land use patterns relates to the distribution of spatially located activities across a geographic 

area, including the location and the density of different activities, where activities are grouped 

into relatively broad categories, such as residential, commercial, office, industrial, parks, 

transport facilities, schools, brownfield sites, open spaces, etc. (TRB, 2005). 

3. Urban form 

Urban form is a term that has a broad meaning. Generally, urban form refers to the aesthetic, 

physical, and functional qualities of the built environment, such as the design, arrangement and 

appearance of buildings and streetscapes, and relates to both land use patterns and the 

transportation system (Handy et al., 2002; TRB, 2005). Many research have identified a 

number of urban form features that are related to non-motorised transport modes, such as street 

connectivity, accessibility, density and land use mix (Badoe & Miller, 2000; Hess et al, 2001; 

Wedagama et al., 2008). 

i. Street connectivity 

Connectivity refers to the number of transportation connections (road segments, walking and 

cycling paths) linking people to their destinations (Marshall, 2005). Connectivity and 

permeability are often used interchangeably, although a distinction between the two terms is 

underlined by several researchers. Permeability is defined by the extent to which urban form 

permits or restricts movement of people or vehicles in different directions(Forsyth & 

Southworth, 2008; Pafka & Dovey, 2017). Based on this definition, the extent to which an area 

is permeable is dependent not only on the number or density of connections but also on the 

capacity of those connections to carry people and vehicles. Consequently, widening roads 

within a street network of an urban area would make that area more permeable but leaves its 

Stellenbosch University  https://scholar.sun.ac.za



17 

 

connectivity unaltered (Marshall, 2005). Nevertheless, this distinction is often overlooked in 

research due to difficulties in objectively measuring the permeability of an urban area.  

Connectivity is an important factor in urban design practice as it impacts the efficiency of 

public transport, travel choices, emergency access and the liveability of a community (Chandra 

& Quadrifoglio, 2013). A highly connected street or path network has many short links, a high 

density of intersections and a small number of dead-ends (or cul-de-sacs). It is also recognised 

that a well-connected road system offers more route options and decreases travel times by 

allowing more direct trips between destinations in a neighbourhood (Victoria Transport Policy 

Institute, 2012).  

ii. Accessibility 

Research has adopted the directness of a trip between an origin and a destination as a central 

aspect of defining and measuring another dimension of urban form called accessibility. 

Accessibility is defined as the directness of links and availability of alternative routes between 

origins and destinations within a road network (Handy et al., 2002). From a pedestrian/cyclist 

point of view, short travel times and more route options are the main influential factors for 

walking and cycling. This claim makes accessibility an important feature of urban design which 

is very sensitive to the attractiveness of non-motorised modes. 

iii. Land use mix 

Increasing transportation-related problems (traffic crashes, congestions, delays, air and noise 

pollution) have pushed planners and policy makers to consider the design of cities which are 

accessible, sustainable and conducive to human-scaled transportation modes such as walking 

and cycling. Land use mix is the forefront of the New Urbanism 1 which is concerned with 

creating human-scale, walkable, functional and sustainable neighbourhoods (Ohm & 

Sitkowski, 2004). The benefits of land use mix are evaluated through its impact on travel 

behaviour, environmental, social and economic contexts (Musakwa & van Niekerk, 2012).  

Land use mix is defined as the relative proximity of different land use types in a given area or 

the degree to which different land use types are contained in a given geographic area (Handy 

et al., 2002). It can be taken as a measure of diversity previously mentioned in the works by 

                                                 
1 New Urbanism is an urban planning and design approach based on principles of reducing car dependence and 

creating liveable and walkable neighbourhoods by locating high-density housing, jobs and commercial sites closer 

to each other (Ohm & Sitkowski, 2004). 
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Cervero & Kockelman (1997) and Ewing & Cervero (2010). From a transportation perspective, 

numerous scholars have reported that land use mix has a powerful influence on travel choice 

behaviour (Bashirul Haque et al., 2013; Hannan, 2013; Leck, 2006; Rajamani et al., 2003; 

Sarkar & Chunchu, 2016; Sarkar & Mallikarjuna, 2013; Zhang et al., 2012). Land use mix 

shortens trip lengths by locating origins and destinations closer to each other (Ewing et al., 

2011). Short distances between origins and destinations have the potential to induce changes 

in travel behaviour since the use of non-motorised transport modes is most favourable for short-

distance trips (Rietveld, 2000). Factors such as the distance from home to a commercial centre 

play a central role in choosing a transport mode to use to reach the destination in question. In 

addition, land use mix is thought to improve accessibility and to promote transit use(Ewing & 

Cervero, 2010).  

From economical point of view, land use mix has been proven to reduce private vehicle use,  

to raise property values and to promote better employment mix and to boost street activity 

(Matthews & Turnbull, 2007; Yang, Song & Choi, 2016). From an environmental perspective, 

land use mix helps to reduce land consumption (Gehrke & Clifton, 2015). Furthermore, a 

reduction in vehicle miles travelled is associated with a decrease in emissions and energy 

consumption (Liu & Shen, 2011; Steemers, 2003; Zhang et al., 2012). From a social context, 

neighbourhoods with higher levels of land use mix are deemed to be livelier and have the 

potential to promote a “sense of place2” for local community (Song, Merlin & Rodriguez, 2013) 

and to support spatial as well as community integration (Musakwa & van Niekerk, 2012). 

A review of the literature has shown inconsistency in the definition of the concept of land use 

mix. Some definitions diverge on certain points such as the number and types of land use 

required to have a mixed-use development and dimensions of land use spread. According to 

some literature, a mixed-use development can be achieved by combining at least two main land 

use types (Aygoren, 2004). In other literature, a mixed-use development is characterised by a 

combination of three or more functionally and physically integrated revenue-producing uses 

such as retail, entertainment, office, residential, hotel, cultural or recreational (Rabianski et al., 

2009; Witherspoon et al., 1976). According to the Institute of Transportation Engineers (ITE), 

a mixed-use development consists of a combination of at least two land use types for which 

land use interaction can be achieved by the use of local streets, without the need for using major 

                                                 
2 A sense of place refers to “lens through which people experience and make meaning of their experiences in and 

with place” (Adams, 2013) and reflects both place attachment (i.e. a bond between people and a place) and place 

meaning (i.e. symbolic meanings people attribute to a place) (Kudryavtsev, Stedman & Krasny, 2012). 
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streets. The land use types may include residential, retail, restaurant, hotel, office and/or 

entertainment (Institute of Transportation Engineers, 2012, 2017). 

In addition to the number and the types of land use, spatial dimensions (i.e. horizontal and 

vertical) also shape the typology of the concept of land use mix. Vertical land use mix can be 

achieved by mixing different types of land use in a single vertical building or development 

when, for instance, at least one floor of a building accommodates different activities allocated 

for revenue-producing uses (retail, office, recreational etc.) while other floors accommodate 

residential use (Sarkar et al., 2014). The vertical clustering of land use types is often referred 

to as multiple land use (Rabianski et al., 2009). On the other hand, horizontal land use mix 

consists of different single-use buildings on adjacent or near-adjacent parcels of land (Sarkar 

et al., 2014).  

This dimension-based typology was extended by Hoppenbrouwer and Louw (2005) who 

included punctual and temporal dimensions in their definition of land use mix. The authors 

argued that land use mix can be achieved by integrating two or more distinct land use types 

within a single point in space which is referred to as shared premises dimension. A simple 

example of this concept is a combination of housing and employment opportunities in a single 

building. The shared premises dimension is praised in some literature as the ultimate form of 

land use mix as two or more activities are accommodated within the walls of a single building 

(Louw & Vries, 2002). This notion is currently facilitated by technological advances in 

telecommunication whereby homeworking3 and remote working4 are receiving greater 

recognition as alternative way to commuting to the traditional office. Furthermore, a single 

space can accommodate various land use types at different times. For example, a school hall 

can be used as a worship place during evenings or on Sundays, and a conference hall can be 

transformed into a theatre or cinema during evenings or weekends. This temporal dimension 

of land use mix is also denoted as sequential use of space (Hoppenbrouwer & Louw, 2005). 

Sequential land use in one structure is supported by adaptation of a space to host different 

activities and the nature of human activities concerned.  

In addition to the four dimension-based typologies, geographical scales are other aspects of 

land use mix that gained researchers’ attention in the effort to provide the best methodological 

analyses of land use mix (Gehrke & Clifton, 2015). It should be noted that a larger geographical 

                                                 
3 Homeworking refers to working from a dwelling located in a residential area (Louw and Vries, 2002). 
4 Remote working refers to working from home, hotel, coffee shop, co-working space etc. (Gerdenitsch, 2017). 
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area is more likely to encompass a wide variety of land use types than a smaller one. A mixture 

of land use types can be analysed and measured at different geographical scales, such as 

metropolitan regions, census aggregations, neighbourhoods, urban blocks, buffers around 

individual urban form aspects (e.g. roads, households), and so forth. From this perspective, 

defining and analysing land use mix requires two conceptual considerations: quantity and 

distance (Gehrke & Clifton, 2015). From this approach stems another notion of land use mix 

which reflects how land use types or activities within close proximity potentially have an 

influence over each other across a limited spatial range (Song et al., 2013). It is from this 

perspective that the concept of land use mix is employed in this study. In summary, land use 

mix is defined in this study as a balanced blend of land use types (including residential, 

commercial, industrial, recreational, cultural and institutional uses) co-located in an integral 

way that allows interaction between activities, supports sustainable development and enhances 

neighbourhood amenity across a limited spatial range.  

4. Transportation systems 

The transportation system refers to the physical infrastructure of roads, sidewalks, bicycle 

paths, railways and so on, and services that provide the spatial links or connectivity among 

activities (Handy et al., 2002).  

2.3.1.2 Influence of the attributes of the built environment on pedestrian crashes  

This section provides a review of previous studies that reported on the associations between 

the attributes of the built environment and pedestrian crashes and the injury severity. The 

review of existing literature is broken down according to the attributes of the built environment.  

1. Influence of land use patterns on pedestrian crashes 

While examining the relationships between the built environment and pedestrian crashes, a 

larger number of studies found that land use influences the frequency of pedestrian crashes and 

the injury severity resulting from the occurrence of a pedestrian crash. Literature searches have 

found that the majority of studies that reported on the relationship between land use and 

pedestrian crashes were undertaken in North America. 

A study by Kim et al. (2010) examined crash data collected over a 3-year period collected in 

the city and county of Honolulu, Hawaii. The study applied a binary logistic regression 

technique to model eight dichotomous dependent variables using data on demographic 
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variables, land use and accessibility, aggregated within uniform grids of 0.1 square miles (or 

0.259 square kilometres). Six land use categories included in the analysis were agricultural, 

business, commercial, high-density residential, low-density residential and military use. 

Results from the model developed for pedestrian crashes indicated that business and 

commercial uses were strongly associated with increased numbers of pedestrian crashes. In 

addition, the model showed a fairly positive relationship between low-density residential and 

pedestrian crashes.  

The influence of land use on pedestrian crashes was reported in a study undertaken by Wier et 

al. (2009) in California, US. The study used the ordinary least squares regression (OLS) method 

to model pedestrian crashes collected in the City of San Francisco over a 5-year period, using 

data on population characteristics, exposure variables and the built environment. Data was 

aggregated at the census tract level and the analysis covered a study area consisting of 176 

census tracts. The study included street characteristics and land use characteristics as proxy 

variables for the built environment. Seven variables describing land use were extracted from 

zoning district data and these include land area and proportions of commercial use; industrial 

use; neighbourhood commercial use; residential use; high-density residential use; and a mix of 

residential and commercial uses (referred to as “residential-neighbourhood commercial use”). 

The study found that the proportion of land area zoned for commercial use and residential-

neighbourhood commercial use were positively associated with pedestrian crashes. Land area 

had a negative relationship with pedestrian crashes, simply because an increase in land area 

potentially results in a decrease of population density (Wier et al., 2009).  

Ukkusuri et al. (2012) carried out a study with one of the purposes being to investigate the 

extent to which pedestrian safety is related to land use and road design characteristics. The 

study used data on land use, socio-demographic characteristics, transit supply, road network 

and travel characteristics as well as pedestrian crash data collected in the City of New York 

over a 5-year period. The data was aggregated at two different levels – zip code and census 

tract level. The study included nine variables describing land use which were the proportion of 

residential, commercial, industrial, office space, retail space, and open space land uses as well 

as the total number of schools, parks and acres of parks. Separate models were developed for 

counts of pedestrian crashes and counts of fatal pedestrian crashes using the generalised linear 

modelling (GLM) technique. Model results for both the total number of pedestrian crashes and 

the number of fatal pedestrian crashes at the census tract level indicated that tracts with greater 
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intensity of industrial, commercial and open space uses were more likely to experience larger 

numbers of pedestrian crashes. Moreover, the number of schools in a census tract was found to 

be positively related to the frequency of both pedestrian crashes and fatal pedestrian crashes. 

The analysis of elasticities showed that the number of schools had a greater impact on the 

frequency of pedestrian crashes than other land use variables. However, residential use was 

found to be associated with fewer pedestrian crashes and fewer pedestrian fatalities. The model 

results regarding the effect of land use on pedestrian crashes at the zip code level were quite 

consistent with those at the census tract level, except the fact that the relationships were not 

statistically significant in most of the cases.  

Using crash data collected between 2003 and 2007 in the San Antonio-Bexar County 

metropolitan region in the United States, Dumbaugh and Li (2010) investigated the influence 

of the built environment on urban crash incidence. The authors first developed a GIS-based 

dataset consisting of crash and urban form data. Separate models for crashes involving 

motorists, pedestrians and cyclists were developed using the negative binomial regression 

modelling technique. Model results for vehicle-pedestrian crashes indicated that strip 

commercial use and big-box stores5 (i.e. megastores) were related to increased numbers of 

vehicle-pedestrian crashes. According to the model for vehicle-pedestrian crashes, each 

additional commercial use would result in 3 percent increase in vehicle-pedestrian crashes and 

each additional big-box store would result in 8.7 percent increase in vehicle-pedestrian crashes. 

However, negative associations were found between pedestrian-scaled retail uses –commercial 

or retail use of 20,000 square feet (1858 square metres) or less and having a flour-area ratio of 

1.0 or greater – and the number of vehicle-pedestrian crashes (Dumbaugh & Li, 2010). 

In another the study undertaken in the US, Zhang et al. (2015) investigated associations 

between the road network structure and non-motorist crashes. Their study applied the 

geographically weighted regression (GWR) technique to model non-motorist crashes collected 

in 321 census tracts in Alemada County, California.  The models were based on the built 

environment data including variables describing the road network, land use and transportation 

system as well as other zonal variables, such as traffic behaviour and demographic variables. 

Land use characteristics were described using three proxy variables, including the number of 

commercial properties, the number of housing units and the rate of housing units built before 

                                                 
5 In the study by Dumbaugh and Li (2010), a big-box store is defined as a retail use having a building area of at 

least 50,000 square feet (4645 square metres) and with a floor-area ratio (FAR) of 0.4 or less. 
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19506. The authors found that the number of commercial properties in a census tract was 

positively related to the frequency of pedestrian and cyclist crashes. Their findings suggest that 

areas with more commercial properties are more likely to experience greater numbers of 

pedestrian and cyclist crashes. According to the authors, this finding can be explained by the 

presence of higher volumes of pedestrians and cyclists in areas with more commercial activities 

such as shopping, dining and entertainment. 

In England, Wedagama et al. (2006) analysed pedestrian and cyclist crash data collected 

between 1998 and 2001 in Newcastle upon Tyne. The authors applied the generalised linear 

modelling (GLM) to data on non-motorised crashes (as outcome variables), and data on land 

use, population and intersection facilities (as explanatory variables). The data was aggregated 

at the Enumeration District as the spatial unit of analysis. The study area was split up into two 

analysis zones, Newcastle City Centre and Gosforth. Separates models were developed for each 

analysis zone, road user category (pedestrians and cyclists) and each of four subsamples of 

casualty data – child/adult by working hours/non-working hours. For the entire study area, 

model results for the pedestrian casualty subsamples demonstrated that retail7 and community 

use were associated with increased number of pedestrian casualties during working hours. For 

the city centre zone (i.e. Newcastle City Centre), more pronounced positive relationships 

between retail use and pedestrian casualties were found during non-working hours. The authors 

argued that the predominance of certain retail activities after working hours, such as bars, 

public houses and restaurants are the possible explanation of these relationship trends. In 

addition, the model results showed that industrial use was positively related to pedestrian 

casualties in the city centre zone while the opposite (i.e. negative relationship) was found in 

the suburban zone. In this study, residential use was excluded from the analysis as it was found 

highly correlated with population density (Wedagama et al., 2006).  

Again, the same team of researchers carried out a study in the UK to investigate associations 

between urban land use and injury severity by focusing on three pedestrian categories: children 

(under 16 years); adults (between 16 and 64 years); and elderly (older than 64 years) 

(Wedagama et al., 2008). As with their previous study, the authors analysed pedestrian casualty 

                                                 
6 The inclusion of this variable was based on the research evidence that the safety performance of neighbourhoods 

built before 1950 differs from those built more recently in the US (Marshall & Garrick, 2010). 
7 According to the Office of the Deputy Prime Minister (ODPM), retail includes shops (e.g. shops, boutiques, post 

offices, travel agencies, filling stations , car dealerships, internet cafes, etc.), financial and professional services 

(e.g. banks, insurance brokers, betting offices etc.), public houses and bars (e.g. pubs, wine bars, etc.) as well as 

restaurants and cafes (Office of the Deputy Prime Minister, 2006). 
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data collected in the city of Newcastle upon Tyne during the period between 1998 and 2001, 

and applied the generalised lineal modelling technique to fit the data. The developed models 

include five variables to describe land use patterns: industrial use; offices; retail; community8 

building; and leisure9 building. The model results indicated that only retail use was 

significantly associated with increased number of killed and seriously injured (KSI) and 

slightly injured casualties among adult pedestrians. However, the authors reported the absence 

of associations between land use and injury severity among child and elderly pedestrians. The 

models for adult pedestrians indicated that an increase in retail land use by just 1 percent would 

result in an increase in the number of KSI adult pedestrians by 30 percent over weekdays, and 

by 50 percent during weekend non-working hours. Moreover, the authors found that an increase 

in retail intensity by 1 percent would result in slight injuries among adult pedestrians increasing 

by 40 percent and 30 percent during weekdays and weekend non-working hours, respectively.  

2. The influence of land use mix on the incidence of pedestrian crashes 

The influence of land use mix on the frequency of pedestrian crashes and injury severity was 

investigated in a study carried out by Amoh-Gyimah et al. (2016). The authors used three 

modelling techniques, the random parameter negative binomial (RPNB), the non-spatial 

negative binomial (NB) and the conditional autoregressive model (CAR), to model total, 

serious injury and minor injury pedestrian crashes. In this study, land use mix was measured 

by the Balance Index (BAL). For the entire sample of pedestrian crashes, the Balance Index 

had estimates of 1.17; 0.89; and 1.49 for NB, CAR and RPNB, respectively. For minor injury 

pedestrian crashes, the estimates of BAL were found to be 1.30; 1.03; and 1.44, for NB, CAR 

and RPNB, respectively. For serious injury pedestrian crashes, the magnitude of BAL estimates 

reduced to 0.99; 0.87; and 1.36 for NB, CAR and RPNB, respectively. The interpretation given 

to partial effect results is that an  increase of 1 percent in land use mix would result in an 

average increase of 11.68; 5.91; and 4.51, for total, minor injury and serious injury pedestrian 

crashes, respectively (Amoh-Gyimah et al., 2016). 

3. Influence of urban design features on pedestrian crashes 

The influence of urban design features on the incidence of pedestrian crashes has been 

confirmed in numerous studies. Associations between pedestrian crashes and the number of 

                                                 
8 Community buildings comprise health, educational, community and religious buildings, police stations, and fire 

stations (Land use Change in England to 1997: LUCS-14) 
9 Leisure building consists of, for instance, museums, cinemas, theatres, bowling alleys, sport halls, holiday camps 

etc. (Land use Change in England to 1997: LUCS-14) 
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intersections aggregated at a uniform gird of 0.1 square miles (i.e. 0.259 square kilometres) 

was found in study conducted by Kim et al. (2010) carried out in the US. In another US study, 

the number of intersections per road length was shown to be significantly associated with a 

reduced risk of sustaining a fatal injury for pedestrians (Mohan et al., 2017). The results from 

this study also demonstrated that the length of the road network was associated with higher 

pedestrian fatality rates. With regard to street density, Zhang et al.(2015) reported a negative 

correlation between street density and the number of pedestrian and cyclist crashes in their 

study conducted in the US. The authors argued that presence of safety countermeasures in 

densely populated areas are the possible explanation for this finding. 

4. Influence of transportation system features on pedestrian crashes 

The impact of the urban road network on road safety has been documented in previous research 

(Moeinaddini et al., 2014; Mohan et al., 2017). Some studies have tested the relationship 

between the urban road network and traffic safety in general. A small number of studies have 

examined this relationship specifically focusing on associations between elements of the road 

network structure and pedestrian crashes. Studies that are reviewed in this study fall in the 

second category.  

The structure of road network has been documented in a number of studies for its potential 

impact on traffic safety. A study by Mohan et al. (2017) used a stratified random sample method 

on a five-year dataset (between 2005 and 2010) to investigate the influence of the road network 

structure and intersection density on road traffic fatality rates in 16 American cities. Three 

major road types were included in the analysis and these are: Primary roads (generally divided, 

limited-access highways coded as “S1100”); secondary road (main arterial roads coded as 

“S1200”); and paved non-arterial street, road, or byway with a single lane of traffic in each 

direction (coded as “S1400”). The number of intersections on different road types was 

expressed in terms of intersection density (intersections per km of roads, intersections per 

squared km and the ratio of km of various road types per square km of area). Eight models 

were developed separately depending on the outcome variable considered in regression models, 

with one model applied to a dataset of pedestrian fatalities. The pedestrian model includes two 

explanatory variables describing intersection density: (1) Length (in km) of various road types 

(“S1100”, “S1200” and “S1400”) per square kilometre of area; and (2) the number of 

intersections per linear kilometre. The results from the pedestrian fatality model demonstrated 

that an increase in non-arterial roads (“S1100” and “S1400”) was slightly but nevertheless 
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significantly associated with increased pedestrian fatality rates. Interestingly, the authors found 

that an increase in both the number of intersections per road and in the length of main arterial 

roads (“S1200”) were associated with reduced pedestrian fatality rates. The authors argued that 

the latter finding may be justified by the fact that few pedestrians walk on main arterial roads 

in the United States.  

Hanson et al. (2013) evaluated injury severity among pedestrians using a case-control 

methodology on pedestrian crash data collected between 2007 and 2009 in New Jersey, United 

States. Results from this study demonstrated that pedestrians are more likely to sustain more 

severe injuries when: (1) crashes occurred on roads with six or more lanes with a median; (2) 

it was dark (i.e. no street lighting is provided); and (3) sidewalks and buffers between the road 

and the sidewalk (e.g. the presence of planted areas, bicycle lanes, on-street parking on one or 

both sides of the street) were not present. In addition, pedestrian crashes on high speed roads 

were more likely to result in severe injuries, confirming that speed is an important factor 

determining the severity of crash outcome. The authors also found that elderly pedestrians 

(aged 65 years and older) are more likely to sustain severe injuries than other age-groups.  

The study by Dumbaugh and Li (2010) included two variables describing the road network 

structure – freeways miles and arterial miles – in the model developed for pedestrian crashes. 

The model results demonstrated that arterial roads were associated with higher numbers of 

vehicle-pedestrian crashes. The model estimates indicated that an increase of one mile 

(1.61km) linear length of arterial roads would contribute to 9.3 percent increase in vehicle-

pedestrian crashes. However, freeway facilities were found to be associated with fewer 

numbers of vehicle-pedestrian crashes in this study.  

The influence of street characteristics such as functional road class on the incidence of 

pedestrian crashes was investigated in the US by Wier et al. (2009). The authors used the 

ordinary least squares regression model on pedestrian crash data collected over a 5-year period 

and aggregated at the census tract level. Four road classes – residential streets, arterial streets 

without public transit, arterial streets with public transit, and a combination of freeways and 

highways – are among variables included in the model to describe the street network. The 

model results demonstrated that arterial streets without public transit were significantly 

associated a greater number of pedestrian crashes. However, the authors did not discuss why 

the absence of transit on arterial streets would increase the likelihood of pedestrian crash 

incidence. 
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Ukkusuri et al. (2012) reported on the relationship between the road width and pedestrian crash 

risk. The authors found that the proportion of wide roads (width larger than 50 feet) was 

positively related to pedestrian crash frequency. The authors also found that pedestrian crash 

risk was greater on roads with more than four lanes. With regards to road class, the authors 

found that local roads were associated with a reduced pedestrian crash risk while primary roads 

without access restriction increased the likelihood of pedestrian crash occurrence. Similar 

findings on the influence of functional road class emerged in the study by Mohan et al. (2017). 

The authors reported that the likelihood for pedestrians to sustain a fatal injury increases with 

higher proportions of higher road classes (main arterials and highways).  

In Greece, Papadimitriou (2016) used a field survey to develop an integrated methodology for 

the analysis of pedestrian behaviour and exposure in urban areas. Among the objectives of the 

study, two were (1) to identify and to quantify the combined effect of road, traffic and human 

factors on pedestrian behaviour and exposure; and (2) to establish the link between pedestrian 

behaviour and exposure in the light of the effects of road, traffic and human factors. The results 

of this study demonstrated that pedestrian behaviour and exposure were significantly affected 

by road type, traffic volume and pedestrian risk-taking. Increased risk exposure was found on 

principal urban arterials – where risk-taking behaviour is low but the associated exposure is 

very high – and minor arterials – where risk-taking behaviour is more frequent and the 

associated exposure is still high (Papadimitriou, 2016).  

Zhang et al. (2015) applied the geographically weighted regression (GWR) technique to 

examine the associations between the road network structure and traffic crashes affecting non-

motorized modes (walking and cycling). The road network structure was described using three 

measures: “Average geodesic distance”10; “network betweenness centrality”11; and “overall 

clustering coefficient”12. Further information on these three topological measures of the road 

network can be found in Zhang et al. (2011); Crucitti et al. (2006); Hanneman & Riddle (2005); 

and Zhang et al. (2012). With respect to the three structural measures of the road network, the 

results showed that road networks with higher values of average geodesic distance, higher 

                                                 
10 Average geodesic distance shows how far each road is from other roads and is defined as the number of links 

in the shortest possible route from one node to another (Zhang et al., 2015). 
11 Network betweenness centrality reflects how much a network is centred on some individual streets and is 

defined as the frequency with which a point falls between pairs of other points on the shortest paths connecting 

them (Zhang et al., 2015). 
12 The overall clustering coefficient indicates the tendency for a road network to be centred toward local 

subnetworks or how a single node is close to its neighbouring nodes in a subnetwork of streets (Zhang et al., 

2015). 
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betweenness centrality, and greater clustering coefficients were associated with lower non-

motorist crash frequency. According to the authors, these findings suggest that road networks 

that are more indirectly connected, more centred and with a greater number of sub-clusters (i.e. 

with some roads highly clustered in several subnetworks as part of the network) may contribute 

to a safer environment for pedestrians and cyclists. Based on their findings, the authors inferred 

that the cul-de sac road network (i.e. characterised by higher geodesic distance, higher 

betweenness centrality and a higher clustering coefficient) may be associated with lower 

pedestrian and cyclist crash frequencies. 

Several other studies have documented the impact of street network on pedestrian safety. 

Gårder (2004) used state-wide pedestrian crashes collected in United States and reported that 

the vast majority (71 percent) of pedestrian crashes occurred on straight sections of the road 

network with adequate sight distances. Curves were locations of only 4 percent of pedestrian 

crashes, whereas straight roads with a grade accounted for 19 percent of pedestrian crashes. 

Pedestrians were reported to face a greater crash risk on wider streets – streets with more than 

2 lanes. In addition, the author found that 21 percent of fatal pedestrian crashes were reported 

on local streets, 23 percent on collectors and 56 percent on arterial roads. Arterial roads and 

major collectors alone were locations for 75 percent of all fatal pedestrian crashes. 

Furthermore, the author reported higher pedestrian crash risk at locations with higher vehicular 

speeds (average speed greater than 32 km/h) and strong associations between crash severity 

and speed.  

Other aspects of the transportation system that have been documented in many studies include 

intersection geometry and type of traffic control. Ukkusuri et al. (2012) observed that all-way-

stop and three way intersections were associated with a reduced pedestrian crash risk. In 

addition, the authors reported that the likelihood of a pedestrian crash occurrence increased 

with the presence of intersections with four and five approaches. The authors argued that the 

latter finding can be attributed to high levels of pedestrian activity as well as higher traffic 

volumes and vehicular speeds at four- and multi-legged intersections compared with those at 

intersections controlled by the all-way-stop sign and those at three-legged intersections. 

Zhang et al. (2015) used census tract data to investigate associations between road crashes 

affecting non-motorised modes and zonal factors including intersection configuration types, 

among others. The model results demonstrated positive associations between the number of 

four-legged intersections and the crash rate. This finding implies that areas with more four-
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legged intersections are likely to experience a greater number of pedestrian and cyclist crashes 

(Zhang et al., 2015). The authors provided two reasons that may account for this finding. The 

first possible reason was a greater number of traffic conflicts between motorists and non-

motorized modes compared with the three-legged intersection type. The second reason was the 

fact that a greater number of four-legged intersections are found in downtowns which are 

characterised by higher levels of pedestrian and cyclist activity (i.e. higher pedestrian and 

cyclist volumes). 

In the study by Dumbaugh and Li (2010), four-legged intersections were shown to be 

associated with increased numbers of pedestrian crashes. The authors reported that an increase 

of one intersection of this type would result in 0.9 percent increase in the number of pedestrian 

crashes. Contrary to this finding, the authors revealed that the three-leg intersection type was 

associated with fewer pedestrian crashes.  

Gårder (2004) used pedestrian crash data collected in the US and analysed crash frequency 

according to intersection configuration type. The author found that pedestrian crashes were 

most frequent (19 percent) at three-legged intersections compared to other type of intersection 

geometry. The four-legged intersection type accounted for 17 percent of pedestrian crashes and 

driveways were locations for only 5 percent of pedestrian crashes (Gårder, 2004). The author 

also reported that marked crosswalks controlled by traffic signals were associated with a greater 

pedestrian crash risk than uncontrolled crosswalks, suggesting that pedestrian crash risk is 

greater at signalised crossing locations. 

A number of accessibility variables such as the number of bus stops have been reported in 

several studies as being associated with a greater pedestrian crash risk. As an example, a study 

carried out by Ukkusuri et al. (2012) reported that the increased number of subway stations 

and the proportion of commuters who use active modes increase the likelihood of pedestrian 

crash occurrence. Similar findings were reported by Kim et al. (2010) who observed that the 

number of bus stops was associated with increased pedestrian crash risk. One variable 

describing accessibility, the number of bus lines in the census tract, was included in the study 

by Zhang et al. (2015). The authors found this variable was significantly associated with a 

greater number of pedestrian and cyclist crashes. Two possible reasons were provided to 

explain this finding: The presence of higher volumes of pedestrians and cyclists attracted by 

transit systems and the presence of facilities for non-motorised modes in the vicinity of bus 

stops (Zhang et al., 2015).  
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2.3.2 Factors influencing pedestrian crash occurrence 

2.3.2.1 Behavioural aspects 

Researchers have long known that the most significant factor exacerbating pedestrian-vehicle 

crash incidence is risky behaviour on the part of pedestrians, of which can include failure to 

adhere to the right of way of vehicles, contravening traffic signals, failure to use designated 

crosswalks and pedestrian facilities, running into the roadway, entering the roadway parked 

vehicles, alcohol intoxication and travelling in the direction of traffic rather than against it 

(Baltes, 1998; Hunter et al., 1996; Stutts et al., 1996). 

In South Africa, behavioural aspects were reported to have significantly influence the 

occurrence of pedestrian crashes (Albers et al., 2010). Human factors are the main contributory 

factors of road crashes in South Africa, leading to more than 75% of all traffic crashes (Ojungu-

Omara & Vanderschuren, 2006; Vogel & Bester, 2005). With respect to pedestrian safety, 

jaywalking is the most risky behaviour, contributing nearly to half of deaths among pedestrians 

(Ojungu-Omara & Vanderschuren, 2006). 

Pedestrians are naturally not the only party who may be at fault or cause traffic crashes. With 

respect to driver contributing factors, failure to yield to pedestrians, distractions, reckless 

driving and intoxication are common factors on the part of drivers that contribute to pedestrian-

vehicle crashes (Hunter et al., 1996). As an example, drivers’ failure to yield the right-of-way 

to pedestrians was reported to be the predominant contributing factor of pedestrian crashes in 

the US, and this behavioural pattern was often linked with speeding (Hunter et al., 1996).  

1. Age-related factors 

The age of a pedestrian has a significant effect on crash risk and injury. In the US, an 

examination of crash data collected in 2010 revealed that the highest fatality rate was among 

pedestrians aged 25-44 years old (NHTSA, 2012). A third of all pedestrian fatalities affected 

pedestrians in this age group. In this study, children younger than 15 years old and elderly 

pedestrians (65 years and older) were found to be at a greater risk of sustaining life-threatening 

injuries in the event of a crash. While a high percentage of crashes (29.9 percent) involved 

children, a smaller number of these crashes (10.4 percent) represented the number of fatalities 

among pedestrians in this group.  
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A study into crash occurrence and injury severity among children and elderly pedestrians 

demonstrated that child pedestrians are also at a greater risk of experiencing severe physical 

trauma in crashes (Kröyer, 2015). Unlike elderly pedestrians, children demonstrated greater 

resilience in recovering from injuries and therefore they have a greater chance of surviving 

crashes than elderly pedestrians (Kröyer, 2015). 

In South Africa, Mabunda et al. (2008) analysed a database of 7 433 pedestrian deaths that 

occurred between 2001 and 2004 in four South African cities. The authors found that the 

average age of pedestrians killed in traffic crashes was 33 years old and almost 50 percent of 

all pedestrian fatalities affected young adults aged 20-39 years old. In the study by Matzopoulos 

(2004), the age group from 0 to 14 years old was the most involved in pedestrian fatalities. The 

number of traffic fatalities observed in the 0-14 age group represented 65 percent of all traffic-

related fatalities analysed in this study. Another South African study conducted in 2001 by the 

National Injury Mortality Surveillance System (NIMSS) reported that pedestrian fatalities 

among children and adolescent (i.e. ages between 0 and 19 years old) represented 60 percent 

of all road traffic crashes recorded in Cape Town (Prinsloo, 2001). Consistent results were also 

found in another South African study by du Toit and van As (2001). The authors reported that 

that traffic fatalities among child pedestrians under 8 years of age represented nearly half (49 

percent) of all traffic fatalities. 

2. Gender-related factors 

In general, trends for fatal pedestrian crashes by gender show that males are always 

overrepresented in pedestrian crashes. In the US, Hunter et al. (1996) reported that the ratio of 

male to female fatalities varied from 3.6 to 1 in the 21 to 24 age group, and from 1.3 to 1 in the 

oldest age group. However, the trends for non-fatal pedestrian crashes by gender were 

somewhat different as the dominance of males was not seen in every age category. Females 

were overrepresented in the 21-24 and 65-74 age groups, with male-to-female ratios ranging 

from 0.6 to 1 and 0.8 to 1 in respective age groups. The authors argued that the discrepancy in 

the male-to-female ratio could be attributed to fundamental differences between the behaviour 

of males and females in different age groups. The study concluded that males were 

overrepresented in pedestrian crashes, and the crash risk among males was greater in fatal 

crashes than in non-fatal accidents. 
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Gårder (2004) analysed fatal pedestrian crashes for the 1994-1998 period in the State of Maine, 

US. The author reported that females represented 37 percent of the fatal injured pedestrians 

while males represented 63 percent.  

In South Africa, male pedestrians were found overrepresented in fatal crashes recorded 

between 2001 and 2004, accounting for 76 percent of total fatal crashes (Mabunda et al., 2008). 

A male-to-female ratio of 3.3 was found in this study, suggesting that the likelihood of 

sustaining a fatal crash is more than 3 times higher for male pedestrians than female 

pedestrians. The highest level of gender imbalance in fatal pedestrian crashes was found in the 

20-39 age group, with male-to-female ratio being 4.6 (Mabunda et al., 2008). Few other South 

African researchers also confirmed gender differences in pedestrian crashes. The analysis of 

pedestrian crashes in these studies indicated that young males were at the highest crash risk 

compared to other pedestrian categories (MacKenzie et al., 2008).  

2.3.2.2  Alcohol related factors 

Alcohol is a psychoactive drug, usually ingested in a drink in the form of ethanol or ethyl 

alcohol (Shinar, 2007). The concentration of alcohol in the blood is expressed by means of a 

standard measure, the Blood Alcohol Concentration (BAC). As an example, a BAC of 100% 

is equivalent to a concentration of 1 gram (1000 milligram) of alcohol per 1 millilitre of blood. 

Thus 5 milligram of alcohol per 1 millilitre of blood would yield a BAC equivalent to 0.5 %. 

While measuring the BAC, the road user is asked to blow into a portable breather tester to 

analyse their lung air. According to Vanlaar (2005), the breath alcohol concentration is 

proportional to the BAC by a factor of 2.27. Thus, as an example, a breath alcohol concentration 

of 0.44 mg alcohol per litre of exhaled air is equivalent to 1mg/ml in the blood, or 0.10% BAC. 

The level of alcohol impairment is directly related to the amount of alcohol consumed. 

However, with regards to sensitivity to alcohol, gender differences may take place. A higher 

BAC will be produced in a female than a male of equal weight after the consumption of the 

same amount of alcohol  (Shinar, 2007). This is because the alcohol impairment is a function 

of its dilution in the blood, and water constitutes 58 percent of an average man’s weight, 

whereas it is only 49 percent of women’s weight (Shinar, 2007). 

Intoxicated pedestrians are more likely to be involved in alcohol-related crashes as their 

impairment affects their ability to judge distances and vehicular speeds especially in darkness, 

resulting in longer perception-reaction times and poor decision-making (Dultz & Frangos, 
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2013). For instance, Oxley et al.(2006) carried out an experimental study and reported that 

alcohol intoxication affects pedestrian’s crossing behaviour by impairing their ability to select 

safe gaps in traffic. In United States, an analysis of pedestrian crash data revealed that alcohol 

impairment was reported in 17 percent of  fatal pedestrian crashes (Gårder, 2004).  

In South Africa, 6 billion litres of alcohol beverages are consumed every year (Meel, 2007) 

and the estimation of adult per capita consumption of absolute alcohol is between 9 and 10 

litres per year, placing South Africa amongst the higher alcohol consumption nations (Parry & 

Bennetts, 1998). The social costs of alcohol-related trauma and traffic crashes in South Africa 

far exceed the revenue collected (Meel, 2007). Thus, alcohol misuse and abuse is a major 

burden on South African society and has a great impact on the incidence of road traffic crashes.  

Alcohol impairment has been reported to be a contributing factor in 76 percent of all deaths 

after interpersonal violence in South Africa (Van der Spuy, 2000). In Cape Town, alcohol was 

reported as a leading cause of traffic fatalities among pedestrians and was found to be a 

contributing factor in 61 percent of all pedestrian fatalities. Of these alcohol-related fatalities, 

more than half (59.5 percent) of the examined victims had BACs at or above 0.08% (Van der 

Spuy, 1991). In another South African study, an examination of blood samples collected in 

2003 by the National Injury Mortality Surveillance System (NIMSS) indicated that 53 percent 

of traffic fatalities tested for alcohol had positive BACs (Matzopoulos, 2004). Of these alcohol-

related fatalities, pedestrians were the most impaired road users representing 61 percent. A high 

prevalence of alcohol use among pedestrians is a concern in South Africa. Moreover, Mabunda 

et al. (2008) analysed pedestrian fatalities for the 2001-2004 period and found that more than 

half (58 percent) of the 4 004 individuals tested were positive for alcohol. 

Significant gender differences in the distribution of alcohol-related crashes have been reported 

in a number of studies. Male pedestrians are generally overrepresented in alcohol-related 

crashes. For example, the proportion of male pedestrians involved in alcohol-related crashes 

was found to be 76.7 percent while that of female pedestrians stood at 23.3 percent in South 

Africa (Peden et al., 1996). In the study by Mabunda et al. (2008), higher levels of alcohol 

concentrations were found among male pedestrian fatalities (mean BAC of 0.22 g/100 ml) than 

female pedestrian fatalities (mean BAC of 0.21 g/100ml). There were also more male fatalities 

(62.3 percent) tested positive for alcohol than female fatalities (42 percent). 
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Age is also one of the contributory factors of alcohol-related crashes involving pedestrians. 

Several studies have identified pedestrian age groups that are prone to alcohol impairment.  In 

South Australia, Hutchinson et al. (2009) reported that 71 percent of pedestrians involved in 

alcohol-related crashes were in the 20-49 age group. In the United States, alcohol-related 

pedestrian crashes were observed predominantly in the 21-45 age group, whereas crashes 

involving sober pedestrians peaked among pedestrians younger than 18 years old and those 

older than 55 years old (Jehle & Cottington, 1988; Wilson et al., 2003). In South Africa, the 

study by Mabunda et al. (2008) who used crash data from the NIMSS for the 2002-2004 period 

revealed that the majority of pedestrian fatalities tested positive for alcohol were in the 20-44 

age group and the 45-and-older age group – 60.9 percent of tested cases in the  20-44 age group  

were found positive for alcohol and 53.6 percent of  tested cases in the 45-and-older age group 

were found positive for alcohol (Mabunda et al., 2008). Contrary to these findings, 

Matzopoulos (2004) who used crash data collected in Cape Town did not found a significant 

difference in  age distribution by alcohol involvement. 

2.3.2.3 Vehicle-related factors 

In South Africa, vehicles factors contribute in about 10 percent of total crashes and fatalities 

or  in December 2002 in South Africa (NDoT, 2003 cited in Ojungu-Omara & Vanderschuren, 

2006; Vogel & Bester, 2005). The major contributing vehicle factors are tyre bursts, brakes 

and light (NDoT, 2003 cited in Ojungu-Omara & Vanderschuren, 2006). According to statistics 

published by the Road Traffic Management Corporation (RTMC) in South Africa, vehicle 

factors contributed to 14.1 percent of all fatal crashes recorded between 2004 and 2014 

(Department of Transport, 2014). The literature search could not find a South African study 

that reported on the contribution of vehicle factors to pedestrian crashes. In the United States, 

vehicle factors contributed to 12 percent of pedestrian crashes, where extended mirrors, 

defective brakes, foggy/dirty windshield, defective tires, defective lights and oversized 

vehicle/load were the main predominant factors contributing to pedestrian crashes (Hunter et 

al., 1996). In another US study, trucks and vans were reported to be the types of vehicles that 

killed and injured a greater number of pedestrians (Gårder, 2004). While these vehicle types 

consisted of less than a third of all vehicles during the analysis period, they accounted for 46 

percent and 36 percent of the vehicles involved in fatal pedestrian crashes and in non-fatal 

pedestrian crashes, respectively (Gårder, 2004).  
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2.3.2.4 Roadway and environment factors 

The design of roadway and the pedestrian environment has an effect on pedestrian safety and 

pedestrian behaviour. Good roadway design holds considerable promise in enhancing 

pedestrian safety. The presence, width, spacing and quality of sidewalks and pedestrian 

crosswalk, signal timings, and distance between crosswalks all affect the actions, behaviour 

and safety of pedestrians. A good pedestrian environment reduces the conflict between 

motorists and pedestrians, promotes and reinforces pedestrian behaviour and reduces the 

opportunity for pedestrians to resort to unsafe behaviour. 

Urban road structure plays a significant role in pedestrian walking and crossing decisions, 

pedestrian compliance with traffic rules and the associated safety implications (Papadimitriou, 

2016). Several studies have sought to understand pedestrian walking and crossing choices in 

the urban environment by using three levels of behavioural analysis; strategic level, tactical 

level and operational level (Hoogendoorn & Bovy, 2004; Ishaque & Noland, 2008; 

Papadimitriou et al., 2009). According to these studies, pedestrian choices at the strategic level 

include for instance elaborating a list of activities to perform and deciding on departure time. 

At the tactical level, pedestrians make a number of off-road decisions such as scheduling 

activities, choosing activity areas and selecting routes to take to reach the selected activity 

places. Along the trip however, pedestrians can make on-road decisions to respond to 

unpredicted conditions met during the trip. Such conditions may be adverse weather conditions, 

external factors (e.g. presence of obstacles, stimulation of the walking environment) and 

internal or personal factors such as time-pressure, attitudes of pedestrians, etc. (Hoogendoorn 

& Bovy, 2004). At the operational level, pedestrians make instantaneous decisions regarding 

walking tasks such as adjusting walking speeds, avoiding obstacles, crossing the road, 

interacting with other pedestrians or other road users and so forth (Papadimitriou et al., 2009).  

The three-level approach of pedestrian behavioural analysis is illustrated in Figure 2-3. More 

information on the interdependences among the three pedestrian behavioural levels depicted in 

Figure 2-3 is provided in the studies by Ishaque & Noland (2008) and by Papadimitriou et al. 

(2009). Some features of urban road structure have the potential to influence pedestrian choices 

made at the three behavioural levels.  

Much research has investigated the influence of design features of the road networks on 

pedestrian choices (e.g. mode choice, route choice) and behaviour. Route directness has been 

reported in many studies as an important design feature influencing pedestrian route choice 
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(Stangl, 2012). Route directness pertains both the length of the route and the ease to reach their 

destinations with the smallest amount of effort possible – mostly expressed in terms of the 

number of direction changes encountered along the way (Hoogendoorn & Bovy, 2004; Stangl, 

2012; Venter et al., 2014). Pedestrian are more inclined to choose the shortest route and this 

has been confirmed in a big number of studies (Behrens, 2010; Cantillo et al., 2015; Jamil et 

al., 2015; Sinclair & Zuidgeest, 2016). 

 

Figure 2-3: The three-level approach of pedestrian behavioural analysis (Papadimitriou et al., 

2009) 

Other design features which play an important role in influencing pedestrian route choice 

behaviour include attractiveness of the walking environment, expected amount of interactions 

with other road users, crossing distances, pedestrian facilities, pedestrian movement network, 

transport services available along the route, to name a few (Hodgson et al., 2004). In South 

Africa, few studies have highlighted conditions on different functional road classes that 

influence pedestrian route choice and crossing behaviour (Behrens, 2010; Sinclair & Zuidgeest, 

2016).  

With regard to environmental factors affecting pedestrian safety, Hunter et al. (1996) showed 

that poor visibility was the major contributing factor to pedestrian crashes in the United States. 

Other researchers also showed that poor luminous intensity is the major contributory factor of 

many pedestrian crashes at night time (Elvik, 1995; Plainis et al., 2006).  

Road safety research in South Africa has shown that the roadway and environmental factors 

contribute to approximately 15 percent of road crashes in South Africa (Ojungu-Omara & 

Vanderschuren, 2006; Vogel & Bester, 2005). In the category of roadway and environmental 
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factors, poor visibility, slippery road and poor road pavement are deemed to cause a significant 

number of road traffic crashes (Ojungu-Omara & Vanderschuren, 2006). With regard to 

pedestrian safety, poor visibility has been reported in many studies to be the main contributing 

factor to a significant number of pedestrian crashes, and this explains why higher pedestrian 

crash rates are observed during night times. For example, Mabunda et al. (2008) reported that 

over 45 percent of pedestrian fatalities occurred during hours of darkness (between 18:00 and 

24:00) with the highest incidence reported between 18:00 and 21:00. The same study also found 

a link between the time of fatal pedestrian crash occurrence and certain age groups of 

pedestrians. Pedestrian fatalities among children and adolescents peaked in the late afternoon 

between 16:00 and 19:00 whereas fatalities among young adult pedestrians (20-39 years age 

group) peaked between 18:00 and 21:00. Most of the female and elderly pedestrian fatalities 

occurred between 18:00 and 23:00, but another significant number of fatalities among these 

pedestrian categories (female and elderly pedestrians) occurred in the morning between 06:00 

and midday (Mabunda et al., 2008). 

Further evidence of the implications of poor visibility on pedestrian safety was reported by 

Liebenberg & Garrod (2005). These authors reported that approximately 60 percent of 

pedestrian crashes recorded in 2002 in Cape Town occurred under conditions of poor visibility, 

such as night times, or dawn/dusk conditions. Pedestrian fatalities that occurred in dawn and 

dusk conditions accounted for 21 percent and those that took place during night-time conditions 

accounted for 43 percent of all pedestrian fatalities recorded in Cape Town (Liebenberg & 

Garrod, 2005). 

The influence of road infrastructure features on pedestrian crash occurrence were documented 

in several South African studies. Ribbens (1996) reported that more than half of pedestrian 

crashes occurred when pedestrians were crossing at a non-designated crossing point. An early 

study conducted in the 1980s also reported an increasing incidence of pedestrian crashes at 

signalised intersections (located in the central business district, on main arterials, and in 

suburban shopping areas) compared to that at uncontrolled intersections (Ribbens, 1985). The 

author identified further causal factors of pedestrian crashes, including non-compliance with 

traffic signals by both motorists and pedestrians, pedestrians walking/running into vehicles, 

turning vehicle-pedestrian conflicts, and visibility problems.  

In a more recent study, Nteziyaremye and Sinclair (2013) investigated pedestrian behaviours 

at various pedestrian crossing facilities in the Western Cape. This study observed pedestrian 
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crossing behaviour including walking speeds, gaze behaviour, delays, pedestrian-vehicle 

conflicts, and temporal and spatial compliant behaviour. Difficulty in negotiating crossing 

facilities was measured by walking pedestrian speeds, the number and the type of evasive 

actions, waiting times at the kerbsides and in the middle of the roadway, the number of head 

movements performed in visual search and unsafe crossing behaviour. Signalised intersections 

and mid-block crosswalks on four-lane undivided roads emerged to be the facilities with the 

highest levels of discomfort and safety risk for pedestrians. In this study, crossing against the 

red man signal was observed in the range from 82 percent to 87 percent of the observed crossing 

events at signalised pedestrian crossings (Nteziyaremye and Sinclair, 2013). 

2.3.3 Factors influencing pedestrian exposure to risk 

2.3.3.1 Definitions and measures of exposure 

Pedestrian exposure is defined as a rate of pedestrian contact with motorised traffic that can 

create opportunity for road traffic crashes (Greene-Roesel et al., 2007; Lassarre et al., 2007). 

Researchers in the field of traffic safety have applied various metrics to estimate pedestrian 

exposure to crash risk. These metrics can be grouped into four main categories: area-based 

measures; trip-based measures; point-based measures; and activity-based measures (Lam et al., 

2014; Lam at al., 2013; Yao et al., 2015). Data on these measures can be collected in two ways. 

The first approach is to gather data while trips are in progress by the use of traffic counters or 

video observations while the second approach involves collecting data after trips are completed 

by means of surveys and interviews (Wolfe, 1982). 

Area-based methods involve the use of variables such as population size or population density, 

the number of registered vehicles or the number of licenced drivers within a unit of area (e.g. 

census tracts, TAZs or buffer zones) as proxy measures of pedestrian exposure (Van den 

Bossche et al., 2005; Chakravarthy et al., 2010; Cottrill & Thakuriah, 2010; Wier et al., 2009). 

An advantage of these methods is that they make use of data that is readily available from 

census or travel surveys (Lam et al., 2014). However, these measures are criticised for 

obscuring the intensity of pedestrian activities within a geographic unit and for being subjected 

to potential bias commonly referred to as the ‘issue of the Modifiable Areal Unit 

Problem’(MAUP) (Lam et al., 2014). The MAUP refers to the situation in which statistical 

inferences and interpretations in spatial analyses are influenced by both the shape and scale of 

spatial units used to aggregate data (Wong, 2009; Xu, Huang & Dong, 2018).  
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Alternatively, pedestrian exposure is quantified by using trip-based measures which take 

account of the distance travelled, time spent travelling or the number of trips made (Van den 

Bossche et al., 2005; Jonah & Engel, 1983). The most widely used measure of this category is 

vehicle kilometres travelled (VKT) or vehicle miles travelled (VMT) to quantify distance 

travelled by motor vehicles on the road network during a given period of time (Abbas, 2004; 

Van den Bossche et al., 2005; Hakim et al., 1991; Pei et al., 2011).  

In some studies, the total distance travelled by motor vehicles is estimated based on fuel and 

energy efficiency data (Blum & Gaudry, 2000; Fournier & Simard, 2000; Fridstrøm et al., 

1995; Jaeger & Lassarre, 2000; Tegnér et al., 2000). In South Africa, data on monthly fuel 

sales collected at the province level was used as a proxy of travel-related exposure in a study 

by Sukhai et al. (2011). In a similar way, other studies have attempted to quantify pedestrian 

exposure by the use of pedestrian kilometres travelled (PKT) (e.g. Lam et al., 2013). However, 

a couple of shortcomings associated with the use of trip-based exposure measures have been 

pointed out in literature. These measures require data which is often not easy to obtain, and 

when the data is available, it is often kept in a format that cannot be used in whatever type of 

analysis, or data can be less relevant depending on the scope of analysis (Van den Bossche et 

al., 2005). Furthermore, trip-based exposure measures examine a single trip type at a time and 

fail to consider trip chaining effects and collecting data on large study areas involves high costs 

(Lam et al., 2014).  

Point-based exposure measures use volumes usually collected by counting the number of 

vehicles or pedestrians passing through a designated measurement point during a given 

observation period (Davis & Braaksma, 1988). Similar to the trip-based exposure measures, 

problems arise when applying this method to a large study area. Traffic volumes can be easily 

collected on a section of a road but counts for regional and local roads are rarely available (Van 

den Bossche et al., 2005). Specifically for pedestrians, the method can be suitable while 

collecting pedestrian volumes at specific areas of interest such as intersections, but the method 

is not easily adopted to collect pedestrian volumes on the whole road network or links (Lam et 

al., 2014).  

Recently, several researchers proposed activity-based approaches in the effort to address the 

shortcomings associated with the previous exposure metrics (Lam et al., 2014, 2013). The 

activity-based measures use travel diary data to collect individuals’ travel behaviour in the 

context of time geography (Lam et al., 2014, 2013). Two activity-based methods have been 
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used in research and these are the space-time path (STP) and potential path tree (PPT), both 

developed by Lam et al. (2014). More detail on the activity-based approaches can be found in 

Lam et al. (2013) and in Lam et al. (2014).  

2.3.3.2 Influence of traffic volume on pedestrian safety 

Traffic volume is an important exposure risk factor for pedestrian crashes. Research in traffic 

safety has demonstrated a correlation between pedestrian crashes and traffic volume. In the 

study by Wier et al. (2009) carried out in the US, traffic volume was shown to be the variable 

with the strongest correlation with pedestrian crashes. Again in the US, Zhang et al. (2015) 

reported a negative association between vehicle miles travelled (VMT) and pedestrian and 

cyclist crash rates in 65 to 68 percent of census tracts. This finding suggests that areas with 

higher traffic volumes on the road network are likely to have fewer pedestrian and cyclist 

crashes, simply because fewer people are using these non-motorised modes (Zhang et al., 

2015).  

In Canada, Miranda-Moreno et al. (2011) analysed crash data collected in the City of Montreal  

and found a significant influence of traffic volume on pedestrian crash frequency at signalised 

intersections. The results from this study indicated that a reduction of 30 percent of traffic 

volume would lead to a reduction of 35 percent in the total number of injured pedestrians and 

a reduction of 50 percent in pedestrian crash risk at signalised intersections.  

In contrast, a few studies have reported inconsistent results with regard to the impact of traffic 

volume on the incidence of pedestrian crashes. In Hong Kong, Yao et al. (2015) applied the 

Negative Binomial regression technique to motorist and pedestrian crash data. The authors 

found that traffic volume, measured in annual average daily traffic (AADT), was negatively 

related to the frequency of vehicle-pedestrian crashes. This finding suggests that pedestrian 

crash risk is greater on roads with lower traffic volumes. Reduced pedestrians’ attention in 

situations of low vehicular traffic volumes was given as a possible reason that may increase 

the likelihood of pedestrian crash occurrence (Yao et al., 2015).  

2.3.3.3 Socio-economic variables 

Research has shown a relationship between pedestrian crash risk and low socio-economic 

status of populations (Cubbin & Smith, 2002; Marcin et al., 2003; Zoni, Domínguez-Berjón et 

al., 2016). A study that analysed crash data in Hawaii reported significant associations between 

pedestrian crashes and socio-economic variables, such as the number of jobs and the number 
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of people living below the poverty level (Kim et al., 2010). In the study by Wier et al. (2009) 

carried out in San Francisco, an analysis of pedestrian crash data aggregated at the census tract 

level indicated that pedestrian crash risk is higher among resident populations living below the 

poverty level and among employed populations.
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2.4 Impact of the built environment and pedestrian safety in Cape Town 

2.4.1 General information on the City of Cape Town 

The City of Cape Town is a large metropolitan area covering a land area of 2,461 square 

kilometres (Statistics South Africa, n.d.). Cape Town is the oldest city in South Africa, and has 

the second biggest population of all other South African Cities (City of Cape Town, 2012a). 

The City of Cape Town is the second largest metropolitan municipality after Johannesburg 

(WESGRO, 2016). The City of Cape Town includes eight planning districts and these are the 

Northern District, Blaauwberg, Cape Flats, Table Bay, Southern District, 

Khayelitsha/Mitchell’s Plain, Helderberg District and Tygerberg District (City of Cape Town, 

2015a) (see Figure 2-4).  

 

Figure 2-4: Eight planning districts of the City of Cape Town (City of Cape Town, 2015a)  

Stellenbosch University  https://scholar.sun.ac.za



43 

 

Based on the 2015 population data, the distribution of the population by district is illustrated 

in Figure 2-5. In 2011, the population of Cape Town was 3 740 025 and this figure corresponds 

to an increase of 29.3 percent since 2001. The number of households in 2011 was 1 068 572, 

corresponding to an increase of 37.5 percent since 2001. Of the city’s households, 14 percent 

(144 000 households) are reported to live in informal dwellings (City of Cape Town, 2012b).  

 

Figure 2-5: City of Cape Town population by district, 2015 

As the population histogram for Cape Town shows, the majority of the population are around 

the ages of 25 to 29 years for both males and females (City of Cape Town, 2012b). There is an 

apparent graph tapering in the age groups between 5 and 19 years (see Figure 2-6) and the dip 

might be the result of the infant mortality pattern that prevailed between 1996 and 

2011(Statistics South Africa, 2015).  

 

Figure 2-6: Histogram of Cape Town population, 2011(City of Cape Town, 2012b) 
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2.4.2 The influence of the built environment on pedestrian safety in Cape Town 

The demand for transport and travel mode patterns are influenced by the nature of built-up 

areas and open spaces and their spatial distribution in the area. The past land use planning in 

South African cities created fragmented and dispersed urban activity patterns by promoting 

rigid mono-functional zoning of land. The 2004 State of the Cities Report states that “the 

Apartheid city was a political economy of space that had two central features: racially-based 

spatial planning and a political economy that meant development for some at the expense of 

the majority” (SAC Network, 2004). Apartheid urban planning was shaped by policies of strict 

social segregation which reserved well-located land for the specific races and classes and 

forced the poor people, especially poor Black residents to live in sprawling, overcrowded and 

dysfunctional settlements which are devoid of work and economic opportunities, social 

services and recreational facilities (SAC Network, 2004; Turok, 1994).  

A deliberate separation of population groups through vacant land, railway lines, highways and 

major arterial roads, also perpetuated the victimization of poorer communities (SAC Network, 

2011). This resulted in longer travel distances and higher expenditures on public transport for 

the poor and unattractiveness of non-motorized travel modes. In addition, the access to 

important urban amenities across railway lines, freeways and major arterial roads affects the 

safety of residents of those poorer communities as they are forced to either cross these physical 

barriers in unsafe manners or endure longer travel distances to safely cross at designated 

crossing facilities. There is compelling evidence that the most hazardous locations of pedestrian 

crashes in the City of Cape Town are located in or adjacent to informal settlements and along 

wider and high-speed roads (City of Cape Town’s Transport Authority, 2005).  

A few studies have reported on the impact of the road network structure on pedestrian safety 

in Cape Town.  As illustrated in Figure 2-7, the highest rates of pedestrian crashes over a 6-

year period (1997-2002) were found on a segment of Lansdowne Road situated between 

Strandfontein Road and Baden Powell Drive, followed by a section of the N1 (City of Cape 

Town’s Transport Authority, 2005). The majority of roads ranked to be the most hazardous 

locations for pedestrian crashes are urban freeways facilities (see Figure 2-7).  These are also 

locations where pedestrian injuries resulting from road traffic crashes tend to be more severe 

(i.e. serious injuries and fatal injuries), highlighting the impact of vehicular speed on pedestrian 

injury severity. However, it is not clear whether an exposure measure (e.g. number of 
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pedestrian crashes by km linear length) was applied to the number of pedestrian crashes 

analysed in this study. 

 

Figure 2-7: Roads with high pedestrian crash rates in Cape Town (City of Cape Town’s Transport 

Authority, 2005)  

Freeway facilities are locations of a significant number of pedestrian crashes in South Africa. 

About 2 000 pedestrian crashes occur annually on freeway facilities (Ribbens, 1996). A number 

of unsafe pedestrian behaviours, such as pedestrians walking through the interchange area to 

destinations on the other side of the freeway; pedestrians using the interchange as a modal 

transfer point; and pedestrians engaging in retail activities significantly contribute to pedestrian 

crash occurrence on freeway facilities (Ribbens, 1996).  

In Cape Town, Behrens (2010) carried out an investigation into pedestrian crossing behaviour 

on selected arterials and freeways in Cape Town. Different patterns of pedestrian crossing 

behaviour, including distance between footpath crossings, the nearest formal crossing facility 

and pedestrian movement desire lines were observed. Additionally, an exploratory roadside 

intercept survey was conducted to explore pedestrian crossing attitudes and reasons for illegal 

crossing preferences. The results showed that 62 percent of crossing events on freeways and 

93 percent of crossing events on arterials were illegal. Even though the distribution of footpath 

crossing distances from the nearest crossing facility showed a greater use of freeway crossing 
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facilities compared to arterial crossing facilities, patterns of crossing were found to be strongly 

associated with the location of crossing facilities in relation to dominant pedestrian movement 

desire lines. The results from the intercept survey on grade-separated facilities revealed that 

the most common reason to choose a particular route was the desire to walk the shortest route, 

followed by concerns for personal security (Behrens, 2010). 

The next stage of the study by Behrens (2010) investigated pedestrian crossing points on two 

arterials (Klipfontein Road and Buitengracht Street), a major collector (Cavendish Street) and 

two freeways (the N2 and the R300) all located in Cape Town. Results showed that only 15 

percent of crossings occurred at the crossing facility on Klipfontein Road. The remaining (85 

percent) were distributed away from the designated crossing points. On Buitengracht Street, a 

rate ranging from 1 to 5 percent of crossing events was observed at the designated crossings 

and the remaining (95-99 percent) were observed away from the designated crossing points, 

with the highest concentration being located at 61-70 metres from the crossing facility. A high 

rate of spatial compliance (80 percent) was observed on Cavendish Street. According to the 

author, the higher level of spatial compliance was attributed to the presence of a crossing 

facility located close to the pedestrian movement desire lines for that particular road. On 

freeways, the study indicated that the concentration of crossing points was between 100 and 

300 metres from the nearest crossing facility, whereas only 5 to 15 percent was located at 

crossing facilities (Behrens, 2010).
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2.5 Measure of the attributes of the built environment 

The built environment has been subjected to close scrutiny over a wide array of studies for its 

potential correlations with travel behaviour, health problems, traffic crashes, and so forth. 

Numerous researchers have studied the built environment at various scale levels, from building 

or site level to the neighbourhood and regional levels. These researchers have used three 

approaches to measure the attributes of the built environments: Objective measure, subjective 

measure and a combination of both measures (Lin & Moudon, 2010; Saelens & Handy, 2008).  

Two studies carried out by Lin and Moudon (2010) and Saelens and Handy (2008) provide a 

review of existing studies that applied the three approaches of measuring the built environment. 

Objective measures of the built environment involve the use of field-collected data and data 

stored in different non-spatial and spatial databases to describe and quantify the attributes of 

the built environment (Lin & Moudon, 2010; Orstad et al., 2017). Subjective measures are self-

reported perceptions on the aspects of the built environment obtained from survey 

questionnaires (Humpel et al., 2004; Lin & Moudon, 2010; Nyunt et al., 2015; Orstad et al., 

2017). Objective measures of the built environment have benefited from the recent emergence 

of Geographical Information Systems (GIS) technology (Koohsari et al., 2015). GIS is an 

automated system designed to capture, store, manipulate, analyse, manage and present spatial 

data (Dangermond, 1992). GIS provides an easier and cost-effective alternative for analysing 

and measuring the built environment especially for large study areas. This subchapter provides 

a review of objectives measures used in literature to quantify aspects of the built environment. 

2.5.1 Measures of land use patterns 

Land use patterns are usually measured in terms of proportion of a particular land use types 

within a geographic unit of analysis, number of properties of a particular use within a unit of 

analysis or intensity of use. Land use intensity is often described in terms of counts (e.g. number 

of land-use types), percentage (e.g. percentage of parcels with residential use) and proportions 

(e.g. jobs-to-housing ratio) of specified land-use types within a geographic unit of analysis 

(Gehrke & Clifton, 2015; Song & Rodriguez, 2005). Land use intensity can also be measured 

in terms of density such as employment density (i.e. number of employees per area of analysis) 

(Brownson et al., 2009; Song et al., 2013). 

Stellenbosch University  https://scholar.sun.ac.za



48 

 

2.5.2 Measures of land use mix 

As defined in the sections above, the concept of land use mix reflects the quantity and 

interaction between land use types within a particular limited space. Existing methodological 

approaches of mixed land-use measures are often grouped according to two conceptual 

elements: land-use interaction and geographic scale (Gehrke & Clifton, 2015). Put simply, 

some measures of land use mix are used to quantify the interaction between co-located land 

use types and another set of measures seek to quantify this interaction with a great emphasis 

on controlling the effect of size on spatial units of analysis. 

Measures of land-use interaction are often classified into three categories: accessibility, 

intensity and pattern measures (Brownson et al., 2009; Song & Rodriguez, 2005). From a 

broader perspective, accessibility measures denote the ability of individuals to access human 

activities important to their quality of life and wellbeing or simply, the ease with which 

individuals can reach a particular land-use (Morris et al., 1979; Song & Rodriguez, 2005) 

Intensity measures describe the extent or magnitude to which land use types are represented in 

an area and pattern measures describe the manner in which land use types are spatially 

distributed and arranged within an area (Gehrke & Clifton, 2015; Song & Rodriguez, 2005). 

2.5.2.1  Accessibility-based measures 

Reaching spatially separated land use activities involves human effort, time, cost, availability 

of services, individual willingness to partake in a particular activity and attractiveness of an 

activity. Some of these constraints encapsulate a behavioural dimension (e.g. perceived activity 

attractiveness and service supply, travel choices) and others reflect a spatial separation 

dimension such as distance, travel time and cost (Morris et al., 1979). As a result, measures of 

land use mix which attempt to conceptualise accessibility in terms of these constraints vary 

widely depending on intended application. In this study, a review of these measures is restricted 

to those which encapsulate the notion of spatial proximity of land use types. Two main 

categories of measures commonly used include distance-based measures and gravity-based 

measures (Brownson et al., 2009; Kwan, 2013; Du Plessis, 2015; Song & Rodriguez, 2005). 

Distance-related measures quantify spatial separation in terms of linear or street network 

distance between an origin location and a closest specified land-use type. Gravity-based 

measures capture the level of attractiveness of each potential destination land-use and weigh 

that attraction by the willingness to travel (distance decay function) or simply, travel costs as 
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impedance to travel to a destination from an origin location. The travel impedance function is 

also referred to as travel disutility, and is expressed in terms of distance, travel time and money. 

Travel time is the most common form of travel disutility adopted in gravity-based measures 

and accessibility in this sense represents the cumulative number of land-use types accessible 

within a given amount of travel time from a point of origin (Chen et al., 2011). A gravity-based 

measure can quantify, for instance, the number of jobs that are reachable within 30 minutes by 

car or transit.  

Although not widely explored by research, a further concept referred to as “temporal 

availability” is explored in several studies (Gehrke & Clifton, 2015; Kwan, 2013). This novel 

idea uses the concept of time-geography (Miller, 2005) as a conceptual framework to shed light 

on the failure of current accessibility-based measures to account for temporal availability of 

land use. Within this conceptualisation, in addition to spatial constraints, time constraints (e.g. 

facility or service opening hours, transit schedules) are also important factors that influence the 

accessibility of activities in urban spaces. In many circumstances, spatial proximity doesn’t 

always account for better accessibility. Staying in close proximity to a governmental service 

does not necessarily means that the service is more accessible to a person as space-time 

constraints (e.g. work schedules  and service opening hours) can hinder the service accessibility 

(Kwan, 2013). Integrating the notion of temporal availability into accessibility measures is 

believed to improve the accuracy levels of accessibility measures (Gehrke & Clifton, 2015; 

Kwan, 2013) and therefore, consideration of spatial-temporal accessibility measures is 

recommended for future research.  

2.5.2.2 Intensity based measures 

Intensity-based measures describe land use mix in terms of counts (e.g. number of land-use 

types), percentage (e.g. percentage of parcels with residential use) and proportions (e.g. jobs-

to-housing ratio) of specified land-use types within a geographic unit of analysis (Gehrke & 

Clifton, 2015; Song & Rodriguez, 2005). Measures in terms of density such as employment 

density (number of employees per area of analysis) also fall within the category of intensity-

based measures (Brownson et al., 2009; Song et al., 2013). 

2.5.2.3 Pattern-based measures 

These measures quantify the spatial distribution and configuration (spatial arrangement) of 

different land use types within a spatial unit of analysis. Song and Rodriguez (2005) categorised 
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these measures into three groups: evenness and diversity measures; exposure measures; and 

clustering measures. Common measures of evenness and diversity include (1) the Balance 

Index; (2) Entropy measures; (3) the Herfindahl-Hirschman Index; (3) the Gini Coefficient and 

(4) the Atkinson Index (Song & Rodriguez, 2005). The exposure Index and Clustering Index 

represent the remaining categories, respectively. A further classification of these measures into 

integral and divisional measures is proposed in the study carried out by Song et al. (2013) based 

on sensitivity to area-wide land-use distribution. Integral measures reflect land use balance and 

are determined based on overall distribution of land use types within an area. In contrast, 

divisional measures provide an assessment of the evenness of land use types and make use of 

significantly smaller subdivisions (Song et al., 2013). 

2.5.3 Urban form measures 

The features of urban form that are commonly considered in many studies include land use 

mix, connectivity and accessibility. 

2.5.3.1 Street connectivity measures 

There is a growing interest in the literature of urban planning and transportation studies to 

identify an appropriate approach to measuring street connectivity. A review of this literature 

provides various quantitative measures of connectivity most commonly used by researchers 

and practitioners. This section describes several measures of street connectivity commonly 

used by previous studies. 

1. Connectivity measures based on block density and size 

Numerous studies have used block characteristics as a tool to measure connectivity. A block is 

defined as the smallest fully enclosed polygon bounded on all sides by streets, roads, railway 

tracks or geopolitical boundaries lines (Ewing et al., 2003; Frank et al., 2000). The quality and 

the quantity of connections within a street network depend heavily on the length and size of 

blocks.  

Block length was applied in a small group of studies as a standard tool to measure connectivity 

(Berrigan et al., 2010; Cervero & Kockelman, 1997a; Cervero & Radisch, 1996; Handy et al., 

2003). The Block length is usually the distance measured from the kerb of one intersection to 

the kerb of the next intersection (kerb-to-kerb distance). When working on large study areas, 

some researchers simplified the measurement of the average block length by dividing the total 
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roadway length by number of the blocks adjacent to the road (Parks & Schofer, 2006). Shorter 

block lengths mean more street intersections and more intersections provide flexibility and a 

greater number of route alternatives between locations. Neighbourhoods that are considered 

most pedestrian-friendly have shorter blocks and higher intersection density. Higher 

intersection densities means more links (road segments between intersections) with slower 

speed as traffic must slow down and possibly stop, thus providing more opportunity for 

pedestrians to safely cross the roadway and access their destinations. Many cities have 

regulations on block length to allow adequate intersection spacing. For instance, according to 

several sources, the maximum block lengths in the US usually ranges from 300 to 600 feet or 

91.4 to 182.9 meters (Association, 2006; Handy et al., 2003). In South Africa, a fairly short 

block with a length of approximately 100 meters is considered as the most appropriate (CSIR 

Building and Construction Technology, 2005). 

Another set of studies has used block size as a standard tool of connectivity measure.  Contrary 

to block length that considers only one dimension of the block (length), block size captures a 

two-dimensional structure of the block (length and width). Studies that have adopted this 

approach assessed connectivity within a given study area in terms of average block area (Ewing 

et al., 2014; Hess et al., 1999; Krizek, 2000; Marshall & Garrick, 2010). In addition to these 

studies that based connectivity measure on average block area, other (though fewer) studies 

determined block size in terms of block perimeter and an average block perimeter was adopted 

as a proxy of connectivity level within a study area (e.g. Song & Knaap, 2004). Other 

researchers have used block density as another block-related proxy measure of connectivity 

(Berrigan et al., 2010; Cervero & Radisch, 1996; Frank et al., 2000; Parks & Schofer, 2006; 

Song & Knaap, 2004). In these studies, block density was defined as the number of blocks per 

unit area of urban land. 

2. Intersection density 

A large number of studies used intersection density as a measure of connectivity (Berrigan et 

al., 2010; Dill, 2004; Ewing & Cervero, 2010; Marshall & Garrick, 2010; Parks & Schofer, 

2006). In these studies, intersection density refers to the number of street intersections per unit 

area. As a supplement to other connectivity measures, proportions or density of a specific type 

of intersection (e.g. T-intersection, four-way intersections or intersection with more than three 

legs) are another way of measuring connectivity employed by a few studies (Cervero & 

Kockelman, 1997a; Greenwald & Boarnet, 2001; Parks & Schofer, 2006; Wood, Frank & 
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Giles-Corti, 2010). Intersection density has also been determined at street scale level in many 

other studies, as the number of street intersections per kilometre or mile of street network length 

(Kang & Oh, 2016; Larsen & El-Geneidy, 2011; Troped et al., 2010). 

3. Density of cul-de-sac 

A cul-de-sac is a dead-end street mostly ending in a circular turnaround. Research has shown 

that a large number of cul-de-sacs within a given area is a hindrance for walking and cycling 

because of longer walking distances to destinations as a result of limited permeability of the 

area (Marshall & Garrick, 2010; Rajamani et al., 2003). Density of the cul-de-sacs as a measure 

of connectivity has been adopted in a number of studies. For some studies, the density was 

calculated as the number of cul-de-sacs per locality (Cervero & Radisch, 1996) or percentage 

of cul-de-sac (dead-end) intersections in a street network (Rajamani et al., 2003). For other 

studies, the density was calculated as the number of cul-de-sacs per unit area (Marshall & 

Garrick, 2010). Aside from the density of cul-de-sacs, literature searches have found an 

uncommon measure of connectivity in the study by Song & Knaap (2004), expressed in terms 

of median length of cul-de-sac, measured in linear units. 

2.6 Literature on traffic crash modelling 

Over the past few decades, modelling traffic crashes has been a very important topic in road 

safety research. Researchers in traffic safety employ various techniques for analysing crash 

data. The most widely used and simplest technique in safety estimation is the use crash 

frequency as an indicator of crash incidence on a road network or certain segments of the roads 

(Abdulhafedh, 2016). Crash frequency is defined as the number of crashes occurring at a 

particular site, facility or road network  in a given period, often in one-year period (AASHTO, 

2010). However, the use of crash frequency in safety analyses is undermined by a number of 

limitations including those related to natural fluctuation in crash data due to the random nature 

of crash events, changes in roadway characteristics, land uses and other exposure variables 

(AASHTO, 2010). To deal with these shortcomings, many researchers in the field of road 

safety use statistical methods to estimate expected crash frequency as a function of a variety of 

potential contributing factors.  

Crash modelling was initially based on the standard ordinary least-squares (OLS) regression 

model which assume a normal distribution of errors. However, researchers realised that the 

application of OLS regression is not appropriate to model count data (Lord & Mannering, 
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2010). Crash data is known to be discrete, random and non-negative events. Modelling this 

type of data requires the application of regression methods or other approaches that are 

appropriate in handling count data or the integer nature of the data such as the Poisson 

regression model (Lord & Mannering, 2010). Researchers thus began applying the Poisson 

regression model and its derivatives including the negative binomial regression model and 

zero-inflated model, all being part of an advanced modelling technique called the Generalised 

Linear Models (GLMs) (Caliendo et al., 2007; Ukkusuri et al., 2011). The GLMs are the most 

common modelling techniques (Lord & Mannering, 2010; Noland & Oh, 2004; Washington et 

al., 2010) to have been used in traffic safety research (e.g. Hadayeghi et al., 2010; Li et al., 

2013; Pirdavani et al., 2014). 

Parameter estimates in the traditional Generalised Linear Modelling (GLM) are estimated to 

quantify the average associations between the explanatory variables and the outcome variables 

for the entire study area, with the assumption that these associations do not vary across the 

study area (Amoh-Gyimah et al., 2017; Hadayeghi et al., 2010). However, research in traffic 

safety recognises that spatial data such as crash counts are not generally independent 

(Hadayeghi et al., 2010). Using geospatial analysis techniques, numerous studies conducted 

with a particular focus on spatial patterns have confirmed the presence of spatial dependencies 

among different variables across geographic areas (Flahaut, 2004; Flahaut et al., 2003; Geurts 

et al., 2005; Huang et al., 2010; Moons et al., 2009). To address the issue of spatial dependence 

among variables, these studies highlighted the importance of integrating spatial autocorrelation 

in the modelling process of spatial data (Aguero-Valverde & Jovanis, 2008; Flahaut, 2004; 

Guadamuz-Flores & Aguero-Valverde, 2017).  

In the process of modelling spatial data, spatial variations in explanatory variables may be 

observed, especially when the study area is relatively large (Pirdavani et al., 2014). Research 

has confirmed the existence of the spatial variation in numerous variables such as population, 

employment, road characteristics and other environmental characteristics across geographic 

areas (LaScala et al., 2000; Levine et al., 1995). Spatial variations in relationships are referred 

to as spatial heterogeneity or spatial non-stationary (Fotheringham et al., 2002; LeSage & Pace, 

2009). The inability to capture spatial heterogeneity could lead to inconsistent and parameter 

estimates (Mannering et al., 2016; Washington et al., 2010). Parameter estimates in the 

traditional GLMs are a set of fixed coefficients generated globally over the entire study area. 

However, crash frequency is influenced by a number of zonal variables (such as land use, 
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population characteristics, traffic volumes, pedestrian volumes, speed, roadway and 

environmental variables) that vary over the study area. Accordingly, the influence of some of 

these variables may be more pronounced in certain locations but this influence may be weak in 

other locations (Hadayeghi et al., 2010).  

To account for heterogeneity across observations, several modelling techniques were 

developed by researchers and are currently being applied in crash modelling. Among them, the 

Geographically Weighted Regression (GWR) modelling is the most commonly used technique 

(Li et al., 2013) and has been reported to generate more accurate parameter estimates than the 

traditional GLM (Delmelle & Thill, 2008; Erdogan, 2009; Hadayeghi, Shalaby & Persaud, 

2003; Li et al., 2013; Zhao & Park, 2004). The parameter estimates in GWR modelling are 

allowed to vary over the study area to account for spatial variations in relationships among 

observations (Li et al., 2013; Zhang et al., 2015).  

The basic GWR modelling technique assumes that errors are normally distributed (Zhang et 

al., 2015). However, this assumption is often not supported in crash modelling (Hadayeghi et 

al., 2010; Zhang et al., 2015). To increase the accuracy of parameter estimates, the GWR 

technique has been adapted to generalised linear models (Poisson regression and Negative 

Binomial models) to form geographically weighted Generalised linear models (GWGLMs) 

(Fotheringham et al., 2002). The GWR modelling used in conjunction with a Poisson 

regression (i.e. with a Poisson distribution for errors) is referred to as Geographically Weighted 

Poisson Regression (GWPR). The model used in conjunction with Negative Binomial 

regression (i.e. incorporating the over-dispersion of count data or with negative binomial 

distribution for errors) is termed the Geographically Weighted Negative Binomial (GWRNBR) 

(Fotheringham et al., 2002). The GWPR approach has been applied more frequently than the 

GWRNBR approach in safety research, owing to the claim that the GWPR does generate 

accurate estimates (Hadayeghi et al., 2010). Nonetheless, a recent study by Gomes, Cunto and 

da Silva (2017) has reported that the GWPR model performs better than the GWPR model in 

capturing the spatial heterogeneity of crash frequency. Another reason explaining the frequent 

use of the GWPR approach is the availability of software tools (such as the GWR 4.08 

software) that support GWR with a Poisson regression structure (Amoh-Gyimah et al., 2017; 

Li et al., 2013; Zhang et al., 2015).  
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2.7 Concluding notes on the literature survey 

This chapter involves a review of existing literature relevant to the research questions and the 

theoretical framework adopted in this study. The key implications of the literature review 

chapter can be summarised as follows: 

 The chapter provided an enhanced understanding on the risk factors of pedestrian 

crashes internationally and in the context of South Africa.  

 The literature reviewed in this chapter guided the development of the methods applied 

in this study to investigate the research questions. 

 The findings from the reviewed works helped to validate, compare and discuss the 

results produced in this study. 
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Chapter 3: Research Methodology 

3.1 Introduction 

This chapter describes the methodological approach used to investigate the relationships 

between the built environment and the patterns of pedestrian crashes in urban spaces. The 

chapter provides a description of the procedures followed to achieve the research objectives, 

including the research design, data acquisition, data sampling, data processing and data 

analysis. It also provides an outline of research tools and software packages used to gather, 

process and analyse research data. 

The first purpose of procedures presented in this chapter was to obtain reliable quantitative and 

qualitative data on the built environment and pedestrian crashes within the study area, which 

was aggregated at the level of the suburb. The second purpose was to identify relationships 

between the attributes of the built environment and pedestrian crash incidence through 

statistical methods. 

3.2 Methodology 

3.2.1  Research instrumentation 

The study was conducted by using research tools including hardware, software applications 

and web applications, accessed via the Stellenbosch Smart Mobility Lab (SSML) at 

Stellenbosch University. Tools such as hardcopy and electronic books, databases, journals and 

thesis were accessed via the university library and other local as well as international online 

databases. These tools served as a means of gathering research ideas and for accessing 

information on existing literature relevant to the research topic. The web-based application 

“Refworks” enabled the management of references and the creation and organization of the 

researcher’s reference database specific to this study. The data collection process required two 

web database applications - Google Maps, and Online Zoning Viewer. The Online Zoning 

Viewer is an open source database containing property details and other spatial features such 

as streets, boundaries of wards and suburbs for the City of Cape Town. The data processing 

and analysis were made possible by the use of 4 software applications; MS Excel 2013, ArcGIS 

version 10.3.1, IBM-SPSS Version 24.0 and STATISTICA version 13.3. 

Stellenbosch University  https://scholar.sun.ac.za



57 

 

3.2.2 Data collection 

3.2.2.1  Data types and sources 

The study made use of two categories of data:  primary and secondary data. Primary data is 

directly gathered by the researcher, whereas secondary data includes information gathered by 

someone else (Mouton, 2001). Secondary data was collected by various institutions at national, 

provincial and local levels. Observations were the source of information for primary data and 

were conducted on transport facilities to either supplement information on secondary data or 

gather information on different variables under investigation.  

1. Primary data 

i. Data related to crash locations 

Primary data was collected using google (street view and satellite) images and aerial 

photographs. The data consists of a list of design features associated with the location of a 

pedestrian crash and the geographical coordinates of the pedestrian crash location. An 

additional 15 columns were added to the Excel spreadsheet of pedestrian crash details obtained 

from the Cape Town city’s Transport and Urban Development Authority (TDA) to 

accommodate the additional primary data. These additional columns were labelled as (1) 

Accuracy; (2) Facility Type; (3) Control Type; (4) Number of lanes; (5) Node; (6) Node Type; 

(7) Intersecting Roads; (8) Crossing Distance_Minor; (9) Crossing Distance_Major; (10) 

Crosswalks; (11) Refuges; (12) Sidewalks; (13) Street lighting; (14) Longitude and (15) 

Latitude. Dropdown lists were created in a separate spreadsheet to allow for consistent coding 

of information and to facilitate data entry. In addition, a unique identification number (I.D) was 

assigned to an individual pedestrian crash to distinguish it from others. 

Coding of design features for intersection-related pedestrian crashes 

A pedestrian crash for which the location is described as a “node” was considered to be an 

intersection-related pedestrian crash. As previously noted, crash locations were provided with 

reference to a number of features including node description, name of a suburb, SAPS station 

and other pertinent road features such as bridges, kilometre marker and so forth. The researcher 

used a combination of these details to identify a pedestrian crash location on Google maps. 

Once the location had been determined, design features were confirmed using Google Maps 

imagery (Street View, 2D and 3D Earth’s satellite) and aerial photographs, and this data was 

then coded into the Excel spreadsheet of pedestrian crashes. Geographical coordinates 
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(longitude and latitude) of the central point of the intersection were also retrieved from Google 

Maps and reproduced into the pedestrian crash database. A list of codes and their interpretation 

is given in Table 3-1.  
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Table 3-1: List of codes used in collecting data on crash locations and their interpretations 

Data Item  
Codes Interpretation Example/Comment 

Accuracy 

 

Yes 
Crash location with accurate descriptions 
such as node name, kilometre marker, or 
a unique feature 

"STRAND ST X LOOP ST, CBD" 
"N2, KM 8.3 MARK" 
"N2, UNDER R300 BRIDGE" 

 

Close 
Crash location described  only by street 
name or adjacent nodes or interchange 
with ambiguous directions 

"RIEBEEK STR, CBD" 
"VANGUARD DR, HIGHLANDS DR // MORGENSTER 
RD" 
"VANGUARD DR X N2, UNKNOWN DIRECTION 

 

No Vague or  ambiguous location of crash 
"N1, UNKNOWN LOCATION" 
"PRIVATE PROPERTY, GOODWOOD" 
"HOUT BAY MAIN RD, UNKNOWN NODE" 

Facility Type 

 Freeway Road with full access control  N2, N1, N7, M7, M5, M3, R300 

 
Intersection A node or a junction 

3-legged, 4-legged, staggered and  traffic 
circle/roundabout 

 Mid-block A link or between two adjacent nodes "N2, MEW WAY // R300" 

 

Private property 
Location away from a public road such as 
Driveway, open parking areas, parking in 
buildings 

Reported information 

 
Shoulder 

Emergency stopping lane adjacent to 
travelled way  

Reported information 

 

Sidewalk/Verge 

A sidewalk (separated from a roadway) or 
a verge of the road. A verge is an area 
between the roadway edge and the road 
reserve boundary 

Reported information 

Mid-block 
control 

 
Signalised 

Intersection or mid-block location 
controlled by traffic signals 

"M4, PED XING AT ROSEHOPE, ROSEBANK" 

 
Unsignalised 

Intersection without controls or with 
control device other than signals 

Uncontrolled intersection and intersection controlled by 
YIELD OR STOP signs, traffic circles, roundabouts 
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Lane Number 
 

1 to 10 lanes 
Number of lanes at a mid-block location in 
both directions 

Applicable only for non-intersection crashes 

Node Type 

 3Leg Three-legged intersection T-intersection 

 4Leg Four-legged intersection Cross intersection 

 Mleg Multi-legged intersection Intersection with more than  four legs 

 Staggered Staggered intersection Staggered T-intersection 

 Roundabout/Minicircle Traffic circle "BHUNGA AVE X NDABENI ST (CIRCLE), LANGA" 

 
Gravel Intersection Intersection on unpaved roads "RADIO RD X BLUEGUM ST, KLIPHEUWEL" 

Intersection 
control 

 
Signal  

Traffic lights or "Robots" (South African 
Context) 

  

 
1Way Traffic 

Intersection with one-way traffic on one or 
more legs 

Intersection controlled by No entry (R3) sign 

 

1Way STOP 
Three-legged intersection where a single 
minor road approach is controlled by a 
STOP sign 

Intersections where a minor street is a private driveway 
are excluded in this study 

 

2Way STOP 

Four-legged intersection where a major 
road is uncontrolled and two minor road 
approaches are controlled by a STOP 
sign 

  

 

3way STOP 

Four-legged intersection where one 
approach is uncontrolled while three other  
approaches are controlled by a STOP 
sign 

In most cases, the uncontrolled approach has one-way 
traffic 

 

4Way STOP 

Four-legged intersection where all four 
approaches are controlled by a STOP 
sign and the principle of "first come, first 
served" is applied 

  

 YIELD Intersection controlled by YEILD sign   

 Uncontrolled Intersection without any control device   
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Access types 

 FI Full intersection It allows all possible movement of travel 

 PI Partial intersection It allows left-in, left-out and right-in movements of travel 

 MI Marginal intersection It allows left-in and left-out movements of travel 

Intersecting 
Roads 

 
Minor & Major 

Roads with different functional 
classification 

"KOEBRG RD X FREEDOM WAY,MILNERTON" 

 
Same size 

Roads with the same functional 
classification 

"KLIPFONTEIN RD X DUINEFONTEIN RD" 

CrossDist_Minor 

 

1 to 10 lanes 
Width of a portion of an intersection leg of 
a minor road where pedestrians are 
exposed to traffic in both directions 

"4 lanes" denotes a crossing distance on a minor road 
of four lanes excluding medians and refuges  

CrossDist_Major 

 

1 to 10 lanes 
Width of a portion of an intersection leg of 
a major road where pedestrians are 
exposed to traffic in both directions 

"8 lanes" denotes a crossing distance on a major road 
of eight lanes excluding medians and refuges  

Crosswalks 
 

C/L 
C= Number of crosswalks 
L= Number of intersection legs 

1/3 denotes presence of only one designated crosswalk 
at a three-legged intersection 

Refuges 
 

R/L 
R = Number of refuges 
L= Number of intersection legs 

2/4 denotes presence of two  refuges (splitter islands or 
medians) at a four-legged intersection 

Slipway 
 

S/L 
C= Number of slipway 
L= Number of intersection legs 

A slipway is a roadway that passes to the left of the 
main junction without intersecting the junction 

Sidewalks 
 

S/E 
S= Number of available sidewalks 
E= Number of expected sidewalks 

6/8 denotes presence of six sidewalks at an intersection 
where eight sidewalks are expected (four-legged) 

Street  lighting 

 
Yes Presence of at least one street light pole  

Presence was recorded regardless the number of street 
lights and their status 

 No Absence of street lights   

Coordinates 
 

Longitude & Latitude 
Geographical coordinates of a crash 
location 

Information obtained from Google Maps 
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Intersection design features were checked for each intersection-related pedestrian crash. These 

included alignment and number of legs (three legs, four legs, multi legs, staggered, roundabout 

or mini-circle); type of control (traffic signals, STOP sign, YIELD sign, and uncontrolled); 

access types (full, partial and marginal intersections); geometric features of road approaches 

(number of lanes, major road versus minor road, splitter island, slipway), pedestrian facilities 

(number of crosswalks, crossing distances, refuges and sidewalk) and road amenities (e.g. 

street lights). The availability of details and ability to visualize them on both Google imagery 

and aerial photographs determined the nature of design features to include in the intersection 

safety analysis.  

Based on the design layout, intersections were categorized into three-legged, four-legged, 

multi-legged, staggered, roundabout/mini-circle and gravel intersections. A multi-legged 

intersection is defined as an intersection having more than four legs. An intersection is 

considered as staggered when access spacing (distance between the centre lines of consecutive 

intersection) was less than 50 metres. Otherwise, the two adjacent intersections were treated as 

two isolated T-junctions. The access spacing of 50 metres is the minimum access spacing 

recommended on priority-controlled local streets in South African urban areas (Committee of 

Transportation Officials, 2014). Staggered intersections were recorded as either “left-right” 

(LR) or “right-left” (RL) according to the order of the turning movements of a vehicle travelling 

on the minor road and crossing the major road. Figure 3-1 illustrates the main steps followed 

in the coding process of intersection-related pedestrian crashes.  

Coding of design features for midblock-related pedestrian crashes 

Inaccurate crash locations for midblock-related pedestrian crashes significantly limited the 

level of detail regarding road design features that were recorded at midblock locations. The 

number of lanes, the type of control (signalised or unsignalised) and the road class are the only 

design features which were recorded for this category of pedestrian crashes.  

Midblock-related pedestrian crashes which were reported to have occurred at a pedestrian 

crossing or within 50 metres from a pedestrian crossing (pedestrian crashes containing the 

record “At crossing” and “Within 50 m from” in the column labelled “Pedestrian Location”) 

were filtered out for special treatment. A pedestrian crash of this category is deemed to have 

occurred at an at-grade designated crosswalk located at a specific link reported in the crash 

database.  
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The researcher used the name of the road to identify the link on Google Map and a meticulous 

search was performed along the link using Google Street View and aerial photographs to 

identify the accurate location of the crosswalk. Considerable care was taken to ensure that the 

scanned link was contained within the boundaries of the reported SAPS station. When a unique 

designated crosswalk was detected, the researcher confirmed with certainty the pedestrian 
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Figure 3-1: Flowchart for the coding process of pedestrian crash locations 
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crash location, and the corresponding geographical coordinates were retrieved from Google 

Maps. Following this, the number of lanes and type of controls were recorded and an entry 

“Yes” was recorded in the data field labelled “Accuracy”.  

When more than one designated crosswalk was found on the link, the design features, together 

with the geographical coordinates of the predominant type of crosswalk at the link, were 

captured and the accuracy was referred to as “Close”. In circumstances where no crosswalk 

was found, the design features at the central point of the street segment and the crash location 

was reconsidered as a non-designated (or informal) midblock crossing. Interestingly, the 

crosswalk scanning revealed significant cases where speed humps/bumps were recorded as 

designated crosswalks in the crash database. For these particular cases, the crash location was 

also reconsidered as informal pedestrian crossings except in the case of a raised pedestrian 

crossing. 

In a few cases, crash locations on freeway facilities were indicated using kilometre markers 

which were helpful for identifying the crash location using Google Street View as shown in 

Figure 3-2 and Figure 3-3.  

 

Figure 3-2: Google image of a roadside kilometre marker on a freeway facility
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Figure 3-3: Google image of kilometre marker on a concrete median barrier  

Pedestrian crashes for which the data entry in the “Pedestrian Location” column was 

“Unknown” and “Not at crossing” were treated separately. For convenience purposes, the 

central point of the street segment represented the crash location. The corresponding 

geographical coordinates were captured to allow further analyses despite imprecise crash 

location details. A summary of the main steps followed in the process of coding midblock-

related pedestrian crashes is provided in Figure 3-1 on Page 63. 

ii. Data on street connectivity 

As documented in the literature review section, street connectivity refers to the number of 

connections on a road network, including road segments, walking and cycling paths linking 

people to their destinations (Marshall, 2005). The literature review chapter presented a variety 

of techniques adopted by previous studies to measure street connectivity. Among the reviewed 

measures of street connectivity, four proxy measures were applied in this study and these 

comprise intersection density, the number of intersections with more than three legs, street 

density and the ratio of intersections to cul-de-sacs. These street connectivity measures are the 

most widely used in traffic safety research and their estimation requires data which is easily 

available at a citywide scale. The number of each type of intersections and culs-de-sac is crucial 

information for the determination of intersection density, the number of intersections with more 

than three legs and the ratio of intersections to culs-de-sac. These counts were aggregated at 

the census suburb level and further calculations were performed on aggregated counts to 

determine the four proxy measures of street connectivity. 
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Street density was determined using spatial data on the road network of the City of Cape Town. 

Intersection and cul-de-sac counting was performed manually by type of intersection control 

and configuration for each census suburb. Intersections were classified into 11 categories, 

which are: (1) four-legged signalised, (2) four-legged two way stop, (3) four-legged four way 

stop, (4) three-legged signalised, (5) three-legged one way stop, (6) three-legged one way stop, 

(7) three-legged two way stop, (8) three-legged three way stop, (9) staggered, (10) 

roundabout/mini-circle and (11) gravel road/uncontrolled. Both Google maps and aerial 

photographs (processed in ArcMap) were used to visualise the type of control and the 

intersection configuration. Further details on the determination of the proxy measures of street 

connectivity are provided in the data processing section.  

To facilitate the counting process, a macro (i.e. a computer code written for Excel using the 

Visual Basic for Applications (VBA) programming language) was written in Excel such that 

each click on a cell added 1 to another cell specified in the code. This is to say that the number 

of clicks on a specific cell was counted in another separate cell. Each of the 12 categories of 

intersections was assigned a button named after the type of intersection or cul-de sac and a cell 

above the button was designated to display the number of clicks performed. Each time a 

particular type of intersection or a cul-de sac was identified on a suburb street network 

(extracted from the national road network using ArcMap); a click was performed on the 

corresponding button. At the end of the process, the total number of clicks performed on the 

button was displayed in the cell above the button and this number corresponded to the number 

of intersections of a particular type or the number of cul-de-sacs available within the boundary 

of the suburb of interest. A screenshot of the worksheet buttons with an assigned macro is 

illustrated in Figure 3-4. 
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Figure 3-4: An example of VBA buttons with an assigned macro to count the number of 

intersections and culs-de-sac 

2. Secondary data 

i. Demographic data 

The City of Cape Town through the Strategic Development Information and GIS Department 

(SDI & GIS) provided demographic data compiled from the 2011 population census. The data 

consists of two formats; data in MS Excel format and a GIS-related database. Data in MS Excel 

format is aggregated at the census suburb level with a similar level of detail for all 190 census 

suburbs that constitute the City of Cape Town. A census suburb as defined by Statistics South 

Africa is “a spatial division into which the country is demarcated for the purpose of census 

enumeration, as well as to facilitate data processing and analysis” (Statistics South Africa, 

2010). The demographic data includes information about population, age, adult education, 

employment status, number of households, average household size and dwelling type. Each 

information type is provided in separate spreadsheets for each census suburb and summary 

statistics are provided. Spatial data (i.e. GIS-related database) consists of a digital map of Cape 

Town and its 190 census suburbs as well as demographic data (population, household size, 

average household size and area) provided in the attribute table.  

ii. Pedestrian crash data 

The City of Cape Town, through the Transport and Urban Development Authority (TDA), 

provided data on pedestrian crashes that occurred in the entire city from January 2005 until 

December 2014. A set of 13 characteristics are available to describe each pedestrian casualty 

included in the database. These details include node description, Police station, crash date, day 

of week, time of crash occurrence, severity of injury, population group, gender, age, pedestrian 
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position, pedestrian location, pedestrian manoeuvre, and pedestrian action. The data is recorded 

in Excel format and contain monthly summary statistics organised in different spreadsheets 

using Excel pivot table tools. 

iii. Data on the built environment 

Land use data 

The City of Cape Town’s Strategic Development Information and GIS Department supplied 

digital spatial data and maps of land use available within the City of Cape Town. The data is 

in the form of a GIS-related dataset containing both spatial data (identifying the geographic 

location of each land parcel) and attribute data (data in tabular format describing characteristics 

of each land parcel). 

Data on transportation systems 

Geospatial data on transportation systems of the City of Cape Town were obtained from the 

Strategic Development Information and GIS Department. The data consists of GIS layers of 

street network and public transport routes. More specifically, data on street network includes 

the overall street network of the city and GIS layers of the City’s freeways, expressways, local 

distributors, primary arterials, secondary arterials and roads reclassified to secondary arterials. 

Data on public transport systems consists of railway lines, railway stations, bus routes, mini-

bus taxi routes, routes and stations for integrated rapid transit (IRT). 

Aerial photographs 

Aerial photographs covering the whole area of the City of Cape Town were also obtained from 

the Strategic Development Information and GIS Department. The majority of these 

photographs were taken in 2013 and a small proportion of them were taken in 2014. They were 

provided in the Enhanced Compression Wavelet (ECW) format. Aerial photographs were used 

as to collect supplementary information on land uses and to gather more detailed information 

on transportation systems.  

Online open data 

Additional sources of information freely available online was used either as a supplement to 

the information provided by the City of Cape Town or where information is missing, found 

incorrect or available but requires verifications. A number of online sources accessed are 

summarised in the following sections.  
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Geographical data on SAPS boundaries 

Geospatial data on boundaries of South African Police Service (SAPS) stations located within 

the City of Cape Town were downloaded from the website of the SAPS. The information 

included relates to the SAPS stations existing until the year 2015. SAPS boundaries were used 

in conjunction with information provided in crash dataset (node descriptions for example) to 

easily locate a pedestrian crash on the map.  

Google images 

Google images were used in conjunction with aerial photographs, especially when more 

detailed information was required. Two Google map-related products were used in this study: 

street view images were utilized to gather data on characteristics of existing transport facilities 

and on design features of crash locations. Google Maps were used to display satellite and street-

level imagery. Google mapping service also assisted in locating pedestrian crashes and 

obtaining geographical coordinates (latitude and longitude) of targeted locations. 

Online Zoning Viewer of the City of Cape Town 

The Online Zoning Viewer is an open source containing information similar to that of the GIS 

layer of land use. The viewer allows the user to access and view details of all properties within 

the City of Cape Town (City of Cape Town, n.d.). The information in this open source database 

is more recent than the one in the GIS layer and this advantage facilitated the researcher to 

access information that was missing or incorrectly gathered in the dataset for land use. The user 

interface of the Online Zoning View can be viewed in Figure 3-9 presented later in Section 

3.2.5 (on Page 89).  

Online open sources for crash location identification 

In circumstances where the name of the street provided in the crash dataset was not found using 

the Google search engine, an advanced search was undertaken by using other online databases 

such as www.geographic.org (Photius Coutsoukis and Information Technology Associates, 

n.d.). This online database was useful in instances where a pedestrian crash was reported using 

an old name of the street which cannot be found using the Google search engine or using the 

Google Maps tool. This case was frequently encountered while identifying crash locations in 

informal settlements of the city or neighbourhoods that have been recently upgraded from 

informal to formal settlements.  
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3.2.3 Data quality and limitations 

3.2.3.1  Minimum data requirements 

In general, road crash investigations require a comprehensive, detailed and up-to-date crash 

database as well as skilled personnel with the ability to conduct scientifically sound analyses 

and interpret the results (Ogden, 1996). A good database requires a set of accurate and 

comprehensive information related to road crashes enabling the analyst to undertake 

meaningful and statistically reliable analyses. For these purposes, prerequisite information   

such as crash data, facility data and traffic flow data are paramount (AASHTO, 2010).  

Crash data encompasses records including narratives describing the overall aspects of the crash 

occurrence. Although the level of detail may differ from jurisdiction to jurisdiction, the most 

basic crash dataset should generally describe the following elements (AASHTO, 2010; Ogden, 

1996; PIARC Technical Committee on Road Safety, 2007): 

 Accurate crash location: this data element provides information on where the crash 

occurred by the use of a reference localization system including administrative entity 

number/name, geographical coordinates, node/link identifier, road name, kilometre 

post markers, road layout, type of control, and other pertinent road features.   

 Date and time: information on when the crash occurred in terms of year, month, day of 

month, day of week and time of day. 

 Information pertaining to people involved in the crash with their characteristics (e.g. 

age, gender, alcohol test and result, etc.), vehicles in the crash, animals or roadside 

objects. 

 Crash consequences in terms of crash severity and casualty class: a crash may result in 

varying levels of injury (fatal, serious and slight) or property damage. Crash severity 

refers to a person while casualty class refers to the most severe injury sustained by any 

victim of the crash. 

 Crash type classification: according to traffic movements of conflicting road users 

before the crash or (e.g. rear-end, head-on, sideswipe, angle, run off road, turning, etc.). 

 Environmental conditions: lighting conditions, weather, pavement surface conditions, 

etc. 

 Narratives of how the accident occurred and subjective contributory factors of the crash 

(if the coding system allows the inclusion). 
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Road facility data should describe the most basic physical features of the crash site such as 

roadway classification, geometric details (number of lanes, number of legs, presence of 

medians or refuges, shoulder width, curve, grade, sag, crest, etc.) type of control, speed limits, 

road surface conditions, etc. This information should enable a basic safety assessment which 

aims at identifying locations with an unacceptable level of crash rate within the road network, 

unveiling possible circumstances and factors contributing to the crash occurrence and guiding 

the development of appropriate countermeasures (AASHTO, 2010; PIARC Technical 

Committee on Road Safety, 2007).  

Traffic flow data are common information required to estimate the potential probability of a 

traffic crash occurring. Traffic volumes are the most frequently used form of exposure 

measures and they are usually expressed in terms of average annual daily traffic (AADT). Other 

exposure measures which are used in crash investigations include total number of vehicles 

entering the intersection (EV), vehicle-kilometres travelled (VKT) and pedestrian volumes 

(AASHTO, 2010). Nevertheless, traffic flow data are not always available and this sometimes 

forces safety analysts to resort to using a range of proxy measures of exposure. Exposure data 

such as traffic volumes are usually obtained from other sources including transportation 

agencies or local road authorities.  

To some extent, and more specifically for this study, supplementary data are desirable in certain 

circumstances for in-depth examination of particular variables and relationships. In general, 

minimum data requirements for this particular set of data depend on the nature and the purposes 

of the study. From the reviewed literature, studying the influence of the built environment on 

pedestrian safety at an area-wide scale has required a range of information related to 

population, vehicle fleet, transportation systems, land use, urban design and so on. In addition 

to police-reported crash data, information applicable to this type of study can be obtained from 

various sources such as reports from local authorities, hospitals, local knowledge of the area, 

interviews with road users, surveys, focus groups, traffic conflict studies, site investigations 

and so on. 

3.2.3.2  Data deficiencies 

1. Socio-demographic data 

For certain census suburbs, the area is completely covered by an institution (e.g. hospital, 

learning institution), or a facility (e.g. airport). These census suburbs are inhabited by 
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population mainly living in collective living quarters such as hotels, hostels, students’ 

residences, hospitals, military camps, prisons and so forth. In these instances, data on 

population, household size and average household size is reported as zero in the socio-

demographic data received from the Strategic Development Information and GIS Department 

(SDI & GIS), City of Cape Town. The same variables are also reported as zero for certain 

census suburbs regarded as industrial or commercial areas. This was the case for the following 

census suburbs: Cape Town International Airport, Epping Industria, Killarney Gardens, 

Silvermine, Tygerberg Hospital and University of Cape Town. A large number of the 

population living in collective living quarters or industrial/commercial areas led to inflated 

average household size (ranging from 7 to 170) for census suburbs such as University of 

Western Cape/Peninsula Technikon, College, Castle Rock, Bellville Teachers’ Training, 

Stikland Hospital, and V & A Waterfront, among others. 

2. Land use data 

The dataset of land-use for the City of Cape Town comprises data on zonings and subzonings 

ascribed to each land parcel located within the boundaries of the City of Cape Town 

Metropolitan Municipality. All land parcels, buildings and structures within the area of 

jurisdiction of the City of Cape Town Metropolitan Municipality are designated for a particular 

development or land use category or zoning according to zoning scheme regulations of the city. 

According to bylaws for planning and building development, zoning (when used as a noun) is 

defined as a land use category identified by means of a specific notation and prescribed by 

rules regulating the purposes for which land may be used and rules governing how land may 

be developed for that particular land-use category (City of Cape Town, 2015b)  

The zoning scheme for the City of Cape Town acknowledges nine main zonings which are (1) 

single residential; (2) general residential; (3) community; (4) local business; (5) general 

business and mixed use; (6) industrial; (7) utility, transport and national port; (8) open space 

and (9) agricultural, rural and limited use. Certain zonings such as general residential, general 

business and mixed use zonings and industrial zonings are subdivided into subzonings which 

are regulated by different development rules. Detailed information about different zonings and 

subzonings adopted in the City of Cape Town is found in the planning bylaws of the City of 

Cape Town (City of Cape Town, 2015b). A list of zonings and subzonings adopted in the 

zoning scheme of the City of Cape Town are provided in Table 3-2 and descriptions of different 
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zonings and subzonings are provided in APPENDIX A. The zonings and subzonings are 

considered in this study as types of land use. 

Table 3-2: Descriptions of zonings and subzonings applicable to the City of Cape Town (City of 

Cape Town, 2015b) 

1. Single residential zonings 
  Single residential zoning 1: Conventional housing (SR1) 
  Single residential zoning 2: Incremental housing (SR2) 
2. General residential zonings 
  General residential subzoning 1: Group housing (GR1) 
  General residential subzonings (GR2, GR3, GR4,GR5 & GR6) 

3. Community zonings 
  Community zoning 1: Local (CO1) 
  Community zoning 2: Regional (CO2) 
4. Local business zonings 
  Local business zonings 1: Intermediate business (LB1) 
  Local business zoning 2: Local business (LB2) 
5. General business  and mixed use zonings  
  General business subzonings (GB1, GB2, GB3, GB4, GB5, GB6 & GB7) 
  Mixed use subzoning (MU1, MU2 & MU3) 
6. Industrial zonings 

  General industrial subzonings (GI1 & GI2) 
  Risk industry zoning (RI) 
7. Utility, transport and national zonings 
  Utility zonings (UT) 
  Transport zoning 1:Transport Use  (TR1) 
  Transport zonings 2 : Public road and public parking (TR2) 
  National port zoning (NP) 

8. Open space zonings 
  Open space zoning 1: Environmental conservation (OS1) 
  Open space zoning 2: Public open space (OS2) 
  Open space zoning 3: Special open space (OS3) 

9. Agricultural, rural and limited use zonings 
  Agricultural zoning (AG) 
  Rural zoning (RU) 

  Limited use zoning (LU) 

 

The dataset of land use includes 751 128 land parcels designated for various developments or 

land use categories. Each land parcel is spatially represented by a polygon and its dimensions 

(length and area) are provided in the attribute table. Of the 751 128 land parcels, land-use types 

or zonings were not yet assigned for 14 716 land parcels which constitute nearly 2 percent of 

all land parcels (see APPENDIX B). 
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3. Data on transportation systems 

Data on transportation systems in the City of Cape Town consists of 13 separate GIS layers of 

street network and public transport routes and stations. The GIS layers include a layer for a 

national coverage of street network, layers for five road classes (i.e. freeways, expressways, 

local distributors, primary arterials, secondary arterials) available in the city with the exception 

of the access road class, a layer of minibus-taxi routes, a layer for bus routes (Golden Arrow 

Bus Services), a layer for Integrated Rapid Transit (IRT) bus routes, a layer for IRT bus stops, 

a layer for railway lines and a layer for railway stations. 

The attribute table for the street network layer contains a range of items for each road segment 

including posted speed limit, road name, class, and the length of segment, to name a few. 

Attribute tables of route layers for public transport systems contain items such as route name, 

origin, destination and length for each segment. For IRT and bus stations, the attribute tables 

contain information such as the name of the station, the identification number (if available), 

street name, shelter type, and so on. The name of the railway station is the only information 

provided in the attribute table of the railway stations layer. The spatial data of transportation 

systems was obtained in March 2014 and is the most recent data available to the researcher. As 

a result, the data set does not include upgrades or new developments that occurred after the 

reception of the data. The completeness of the datasets is provided in APPENDIX B. 

4. Pedestrian casualty data 

Pedestrian casualty data was obtained in MS Excel format and this consists of information on 

police-reported traffic crashes involving pedestrians in the Western Cape Province from the 

2005-2014 period. The datasets comprises 73 785 pedestrian casualty records (each record 

holds information concerning one specific pedestrian casualty). Of these pedestrian casualties, 

534 cases were found to have been duplicated and the removal of duplicated cases led to a 

dataset of 73 251 pedestrian casualties. Pedestrian casualty records are organized in Excel 

worksheet rows while different characteristics of pedestrian causalities are arranged in 

columns. The crash worksheet contains 13 field names (i.e. column headings) coded as follows: 

node description, Police station, crash date, day of the week, time of crash occurrence, severity 

of injury, population group, gender, age, pedestrian position, pedestrian location, pedestrian 

manoeuvre, and pedestrian action. Data description and the quality of information provided for 

different variables are shown in Table 3-3.  
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Table 3-3: Quality of pedestrian casualty data in the Western Cape: Period 2005-2014 

Data fields 
Number of 
variables 

Missing 
variables 

Unknown 
variable Total 

% 
Completeness 

Node description 73243 8 0 73251 100.0 

Police station 73251 0 0 73251 100.0 

Accident date 73251 0 0 73251 100.0 

Day of the week 73251 0 0 73251 100.0 

Time 73251 0 0 73251 100.0 

Injury severity 67439 0 5812 73251 92.1 

Population Group 55063 0 18188 73251 75.2 

Gender 54500 0 18751 73251 74.4 

Pedestrian position 41934 0 31317 73251 57.2 

Pedestrian location 40270 0 32981 73251 55.0 

Pedestrian manoeuvre 40441 0 32810 73251 55.2 

Pedestrian action 42054 0 31197 73251 57.4 

Of the 73 251 pedestrian casualties recorded in the Western Cape Province, 54 744 pedestrian 

casualties occurred within the boundaries of the City of Cape Town for a 10-year period 

extending from 2005 to 2014. Data description of the 10-year casualty data in Cape Town and 

the quality of casualty records are provided in Table 3-4. 

Table 3-4: Quality of pedestrian casualty data in the Cape Town area: Period 2005-2014 

Data fields 
Number of 
variables 

Missing 
variables 

Unknown 
variable Total 

% 
Completeness 

Node description 54742 2 0 54744 100.0 

Police station 54744 0 0 54744 100.0 

Accident date 54744 0 0 54744 100.0 

Day of the week 54744 0 0 54744 100.0 

Time 54744 0 0 54744 100.0 

Injury severity 49642 0 5102 54744 90.7 

Population Group 40103 0 14641 54744 73.3 

Gender 39979 0 14765 54744 73.0 

Pedestrian position 27147 0 27597 54744 49.6 

Pedestrian location 25898 0 28846 54744 47.3 

Pedestrian manoeuvre 26493 0 28251 54744 48.4 

Pedestrian action 27740 0 27004 54744 50.7 
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A comparison of data completeness from Table 3-3 and Table 3-4 shows that the casualty 

dataset for the entire Western Cape Province exhibits a higher level of data completeness than 

that of the City of Cape Town. 

Pedestrian crash locations are described by referring to street intersections. Names of 

intersecting streets are used to describe a node. Although the Excel column is labelled “node 

description”, the descriptions provided include both street nodes and mid-block or link 

locations. In some cases, crash locations are described by using further descriptions such as 

kilometre marker (although this is rare), suburb name, type of facility (e.g. circle, interchange 

bridge, railway bridge, pedestrian bridge, transit terminal), a name of a popular property or 

business (e.g. estate name, supermarket, petrol station etc.) or the nearest cross streets or nodes 

for non-intersection locations. Symbols are also used as a way to describe a crash location. For 

example, the node of Imperial Street and Alpine Street in the suburb of Mitchells Plain is 

described by the following notation: “IMPERIAL STRX ALPINE STR, MITCHELLS 

PLAIN”. A link or midblock location on R300, between Stock road and New Eisleben road is 

denoted by: “R300, STOCK RD//NEW EISLEBEN RD”. The latter notation is sometimes 

utilized when describing a crash location between two adjacent suburbs, like in the following 

example: “KLOOF RD, SEA POINT//CAMPS BAY”. 

The name of the local South African Police Service (SAPS) station whose officers attended 

and reported a crash is provided for every pedestrian injury. The column of injury severity 

consists of five categories, which are, “Killed”, “Serious”, “Slight”, “No injury” and 

“Unknown”. The population group column contains ethnic groups of injured pedestrians, 

which are recorded as “Black”, “White”, and “Coloured”, “Asian”, “Other and “Unknown”. 

Pedestrian position prior to a crash is described in terms of six locations: “Median”, 

“Roadway”, “Shoulder of the road”, “Sidewalk/verge”, “Other”, and “Unknown”. The 

pedestrian location column contains information regarding the use of formal crossing points by 

the pedestrian and this information is recorded in six notation categories: “At crossing”, 

“Jaywalking”, “Not at crossing”, Within 50 m from”, “Somewhere” and “Unknown”. The 

pedestrian manoeuvre column indicates the pedestrian movement direction in relation to 

moving traffic and this is denoted as “Back to traffic”, “Crossing road”, Facing traffic”, “Other” 

and “Unknown”. The last column of the dataset includes pedestrian actions during a crash and 

these are categorized in ten records: “None”, “Lying down”, “Playing”, “Running”, “Sitting”, 

“Standing”, “Walking”, “Working”, “Other” and “Unknown”. 
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Nearly 50 percent of the information is recorded as “Unknown” in the columns labelled as 

pedestrian position, pedestrian location, pedestrian manoeuvre and pedestrian action. 

Pedestrian gender and ethnicity is also recorded as unknown in nearly a quarter of reported 

pedestrian injuries. Injury severity is unknown in about 8 percent of recorded injuries and the 

column of node descriptions contains 8 blank cells. Regarding the age of injured pedestrian, “0 

age” is reported for 38 522 pedestrians, representing 52.6 percent of all reported pedestrian 

casualties. Ages deemed unrealistic (ages greater than 100 years old) are also reported for 137 

pedestrian casualties as shown in Table 3-5. Of these 137 casualties, age greater than 120 years 

old was observed in 16 cases.  

Table 3-5: Incorrect age records in the pedestrian casualty dataset 

Age outliers 
Cape Town 

2012 
Cape Town 

2013 
Cape Town 

2014 
Cape Town 
2012-2014 

Western Cape 
2005-2014 

0 Age 2806 2862 2651 8319 38522 

Age>100 0 1 1 2 137 

The above-mentioned data quality deficiencies are a component of crash data limitations and 

are extensively reviewed in the literature review. These limitations and their potential sources 

are summarized in Figure 3-5. Road safety assessment in this study was carried out with 

awareness that crash records used as source of information are inevitably imperfect. However, 

historical crash records still remain the main source of information on crash occurrence in 

South Africa as well as in many other countries. Furthermore, they are the only source of 

information on crash events which is available for the study area in question.  
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Figure 3-5: Data quality deficiencies associated with historical crash records (adopted from Elvik 

et al. (2009)). 

3.2.4 Sampling of pedestrian casualty data 

The target population for this study are pedestrians involved in road traffic crashes in the urban 

spaces. The City of Cape Town Metropolitan Municipality (CPT) was chosen as the study area 

for this study. The choice of the study area was based on the scale of safety concerns affecting 

pedestrians in this municipality. According to many reports and studies, more than half of road 

traffic deaths on the city’s road network affect pedestrians, a figure which is above the average 

value for the Western Cape Province and for the whole country (Mitullah et al., 2017; 

Provincial Government of The Western Cape, 2007). Furthermore, the choice was motivated 

by a number of subjective reasons such as spatial proximity to the University of Stellenbosch 

at which the current study was conducted, the ease for the researcher to access data for the 

study, familiarity with the study area and personal interest and connection with the study area. 
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The dataset of pedestrian casualties comprises 73 251 pedestrian casualties recorded within the 

Western Cape Province for the time period extending from 2005 to 2014. Since the study could 

not include all pedestrian casualties observed over a 10-year period, there was a need to select 

an appropriate sample size representing the target population of pedestrian casualties. In fact, 

crash investigations carried out over long periods of study hold a main advantage of being 

statistically significant ensuring that the limitations due to natural fluctuation of crash 

frequencies are minimized.  

In practice, five years of observed crash data is the most suitable analysis period for statistical 

reliability (Nicholson, 1987). However, shorter analysis periods ranging from 1 to 3 years are 

very common in research and practice especially when early identification of immediate safety 

problems is the target (Ogden, 1996). Crash investigations over short periods are also 

considered in instances where significant changes in explanatory variables may take place 

within the study period. As a rule of thumb, a study period of three to five years is 

recommended (Golembiewski & Chandler, 2011). 

With respect to the recommendations above-mentioned, a decision was taken to focus on a 

three-year crash period, starting from 2012 to 2014.  The choice of this study period emerged 

from a number of reasons: Firstly, reported crashes in this period were the most recent at the 

time they were obtained (year 2015). Secondly, the time frame corresponds to the date range 

of the aerial photographs (captured in year 2013) and the majority of imagery available on 

Google Street View (captured from 2009 to 2015) for the City of Cape Town at the time the 

data was collected and processed. Thirdly, it was chosen due to considerations of potential 

within-period variation in explanatory variables. There have been some changes in the 

transportations system of the City of Cape Town, notably the expansion of the bus rapid transit 

(BRT) system. Accompanying this is a rapid population growth mainly as a result of internal 

and international migration inflows, requiring new land development in the city. Lastly, the 

study faced a serious challenge of data quality which required significant effort on the part of 

the researcher to undertake remedial strategies to minimize the negative impact on the study’s 

results and inferences. Collecting additional information on crash locations for a large 

metropole like Cape Town and treating missing data in the land-use dataset was a laborious 

process which was constrained by time limitations  

For the 2012-2014 study period, there were 13 868 pedestrians involved in road traffic crashes 

in the City of Cape Town. Of these casualties, the crash location could not be identified for 
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only 15 cases due to a vague description of a node or mid-block (e.g. “Cape Town”), a crash 

location was reported as “unknown” and a description using a street name was given which 

could not be identified on Google Maps and other search engines. The removal of these 15 

casualties led to a final sample of 13 853 pedestrian casualties. Of these casualties, 4 672 (33.72 

percent) were reported to have occurred in 2012; 4 529 (32.70 percent) were reported to have 

occurred in 2013 and 4 652 (33.58 percent) were reported to have occurred in 2014.  

To evaluate whether the sample size of 13,853 pedestrian casualties is big enough to enable 

sound statistical results and appropriate inferences, the technique of statistical power analysis 

was performed in STATISTICA. The objectives of this technique was first to evaluate the 

smallest sample size required to detect effect at the desired level of confidence (Field, 2013; 

Murphy et al., 2009). Secondly, given the time constraints and laborious processes involved in 

crash data preparation, the technique helped the researcher to select an appropriate sample size 

to avoid the selection of a larger sample that could be costlier for minimal gain.  

Sample size calculation usually makes use of information on the entire population to determine 

the size of a small subset of the population that can be used to draw inferences about the whole 

population. As explained previously in this section, it is often inappropriate to use crash data 

collected over long analysis periods. For this reason, an entire statistical population of road 

traffic crashes could not be used in this study to determine an appropriate sample size of 

pedestrian crashes to use in the analysis. Nevertheless, it is still crucial to evaluate the sample 

size that will have a statistical effect and to determine the size of that effect. The ability of a 

test to detect an effect is known as its statistical power (Field, 2013).  

The inferential statistics distinguishes two types of error that can arise while testing statistical 

hypotheses: a Type I and a Type II error (Field, 2013; Montgomery & Runger, 2014). The Type 

I error rejects the null hypothesis H0 when in fact it is true, while the Type II error fails to reject 

the null hypothesis H0 when in reality it is false (Montgomery & Runger, 2014). Decisions in 

hypothesis testing are often explained using a statistical decision matrix illustrated in Table 

3-6. 
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Table 3-6: Statistical Test Decision Matrix (Rossi, 2012) 

Test Decision 

True State of the Population 

Effect Absent 
H0 is True 

Effect Present 
H0 is False 

Test result: p < α 
Test decision: Reject H0 
Conclusion: “Effect present" 

Type I Error Power 

p = α p= 1-β 

  
   

Test result: p ≥ α 
Test decision: Do not reject H0  
Conclusion: “Effect absent" 

Correct decision Type II Error 

p= 1-α p = β 

    

 

Where α is the probability of a Type I Error and β is the probability of a Type II error. 

 𝛼 = 𝑃(𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟) = 𝑃(𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑤ℎ𝑒𝑛 𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒) 

𝛽 = 𝑃(𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟) = 𝑃(𝑓𝑎𝑖𝑙 𝑡𝑜 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑤ℎ𝑒𝑛 𝐻0 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒) 

In statistical power analysis, the power of a statistical test is defined as the probability of 

rejecting the null hypothesis H0 when in fact it is false (i.e. when the alternative hypothesis is 

true)(Cohen, 1992a; Montgomery & Runger, 2014). Put in another way, it is the measure of 

how good a test is or the probability that a given test will find an effect assuming that one exists 

in the population (Field, 2013). The technique of statistical power analysis mainly deals with 

Type II error. As illustrated in Table 3-6, the power is estimated as 1 − 𝛽 and can be interpreted 

as the probability that a statistical test will correctly reject a false null hypothesis (Montgomery 

& Runger, 2014; Rossi, 2012). Cohen (1992a) suggested that the maximum acceptable 

probability of a Type II error (i.e.𝛽-level) would be 0.2 (or 20 percent). This implies that ideally 

the power of a statistical test (1 − 𝛽) should be at least 0.80 to detect a reasonable effect.  

Simply put, the power of a statistical test is the probability of obtaining a statistically significant  

result and the power depends on the significance criterion (α) , the sample size (N), and the 

population effect size (ES) (Cohen, 1992a). Conventionally, the probability of a Type I error 

(α-level) is 0.05 (Cowles & Davis, 1982; Nickerson, 2000). By setting the value of α-level and 

the desired power (1 − 𝛽), it is possible to estimate the necessary sample size that will have a 

statistically significant effect. The null hypothesis tested is that there is no effect in the 

population as illustrated in Table 3-6. 
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Table 3-7: Summary output of the power and sample size calculation 

 

Sample Size Calculation 
One Proportion, Z, Chi-Square Test 
H0: Pi = Pi0 

Value 

Null Proportion (Pi0) 0.5000 

Population Proportion (Pi) 0.5138 

Alpha (Nominal) 0.0500 

Actual Alpha (Exact) 0.0501 

Power Goal 0.9000 

Actual Power (Normal Approx.) 0.8999 

Actual Power (Exact) 0.9000 

Required Sample Size (N) 13783 

The statistical power analysis was carried out in STATISTICA software tool. By setting the α-

level at 0.05 and the desired power at 0.90 (i.e. 90 percent chance of detecting an effect if one 

genuinely exists), the required sample size was found to be 13 783 pedestrian casualties which 

is slightly smaller than the actual sample size used in this study (i.e. 13 853 pedestrian 

casualties). This finding suggests that the power for the sample size of 13 853 pedestrian 

casualties is slightly greater than 0.90. Furthermore, it can be observed on the plot of power 

against sample size illustrated in Figure 3-6 that the sample size required to achieve the power 

of 0.80 (considered as the minimum acceptable level) is smaller than the actual sample size 

used in this study.  Therefore, from a statistical point of view, the sample size of 13 783 

pedestrian casualties is sufficiently large to produce accurate and reliable inferences.  
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Figure 3-6: Plot of power versus sample size 

Regarding other datasets (i.e. land-use data, transportation system data and population census 

data), sampling was not necessary since the data was collected for the entire target population, 

that is, the target study area. 

3.2.5 Data processing 

Data processing in this study denotes the process of manipulating raw data (both primary and 

secondary data) with the intention of converting it into meaningful information which is easier 

to analyse. In general, data processing involves 4 steps which are (1) raw data aggregation; (2) 

data screening; (3) data transformation and (4) data organization for statistical analysis. Raw 

data aggregation involves extracting data for a particular unit of analysis from the main dataset. 

Data screening in this study denotes a process of identifying and correcting errors or 

abnormalities in the dataset prior to performing data analysis. The main intention of this process 

is to minimize the negative impacts on the results of the study. Data transformation entailed 

procedures to convert variables into new variables through computation. As an example, 

variables “population number” and “size of the area” were converted into the variable 

“population density” through the process of data transformation. The last step of “data 
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organization for statistical analysis” involved data summation and ordering data into databases 

to facilitate analysis. 

3.2.5.1  Processing data on land use 

1. Raw data aggregation 

The objective of processing data for land use patterns was to acquire land zoning features (or 

land use categories) aggregated at suburb level. Zoning features for a given suburb were 

extracted from the overall zoning spatial data in ArcMap and the attribute table of extracted 

features was copied into an Excel spreadsheet for further processing. This procedure was 

performed in 28 steps grouped into four stages: (i) Selecting a census suburb from a shapefile 

of the 2011 census suburbs of the City of Cape Town; (ii) extracting a layer of the suburb from 

the shapefile of the 2011 census suburbs; (iii) selecting zoning features contained within the 

boundaries of the suburb and (iv) creating a layer of zoning features for the suburb. 

2. Data screening 

Screening data on land use patterns was performed in four main steps: (i) selecting railway 

lines and public road coded as “TR1” and “TR2” from the zoning dataset; (ii) removing “TR1” 

and “TR2” from the zoning dataset; (iii) excluding zoning features which are not contained 

within the boundaries of the suburb and (iv) treating missing data in the zoning dataset. These 

steps can be viewed on a flowchart presented in Figure 3-7. 

As mentioned in previous sections, zoning data consists of characteristics of land which is used 

for diverse purposes. Land designated for transport purposes is classified into two zoning 

categories: “TR1” and “TR2”. The “TR1” category includes land used for railway lines and 

bus routes, while the “TR2” category comprises land dedicated for public streets and roads 

among other use. However, these types of land use (railway lines, bus routes, public streets and 

roads) are already encapsulated in the transportation system datasets in the form of line 

segments. Accordingly, it was decided to remove them from the zoning data to avoid data 

duplication. Nevertheless, the land used for transport purposes, other than those mentioned 

above, were kept in the zoning dataset since they were not included in the transportation system 

categories. This was land used for (a) airports, (b) harbours, (c) public transport terminals, 

ranks and holding areas, (d) cable car stations and (e) premises for public parking. 
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In general, extracting features for a unit of analysis in ArcMap requires the use of the "Select 

by Location” tool/option. Among various methods supported in ArcMap for spatial selection, 

two methods, “intersect the source layer feature” and “are within the source layer feature”, 

appeared to be the most appropriate for the purpose of the procedure. The spatial query 

“intersect” allows the selection of features which either fully or partially overlaps the source 

layer while “are within” is a spatial query allowing the selection of features completely 

contained inside the geometry of the source layer (ESRI, n.d.). Initially, the spatial query “are 

within” was expected to provide the best selection results but the method failed to include 

zoning features that touch the boundaries of the suburb (i.e. source layer). An example of the 

selection outcome for both the “intersect” and “are within” spatial queries for the suburb of 

Observatory is illustrated in Figure 3-8.  

It can be observed from Figure 3-8 (on Page 88) that the zoning selection by the “are within” 

spatial query results in missing zoning features (mostly those that touch the boundaries of the 

suburb) which need to be identified and then added to the dataset of extracted features for the 

suburb. On the other hand, the zoning selection by the “intersect” spatial query does include a 

number of zoning features extending outside the boundaries of the suburb, i.e. zoning features 

contained within the boundaries of adjacent suburbs. For these reasons, both selection methods 

are susceptible to introducing errors in the analysis if no remedial measure is taken ascertain 

that zoning features are completely contained inside the suburb boundaries. Two options of 

remedial measures were anticipated; (1) using “intersect” as a spatial query, identifying zoning 

features extending outside the boundaries of the suburb and removing them manually or (2) 

using “are within” spatial query, identifying missing zoning features and adding them to the 

dataset of extracted zoning features for the suburb. The evaluation of the remedial measures 

qualified the use of “intersect” as the most appropriate spatial query and this approach 

introduced a third stage of data processing cited earlier in this section.  

The fourth stage of data processing entailed the treatment of missing variables in the individual 

dataset of extracted zoning features for a given suburb. For the entire City of Cape Town, the 

type of zoning was not assigned for 14 716 land parcels out of a total of 751 128 land parcels 

(i.e. approximately 2 percent of all land parcels) included in the overall zoning dataset. As such 

there was a need for a strategy to deal with the incompleteness of the spatial dataset of land 

use. Attempts to obtain a more complete land use dataset were unsuccessful and a decision to 

obtain information on missing data from other sources was considered. The Online Zoning 

Stellenbosch University  https://scholar.sun.ac.za



86 

 

Viewer appeared to be the most complete and updated land use dataset for the City of Cape 

Town.  
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Figure 3-7: Aggregating and screening processes for land use data 
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The Zoning Viewer is an online tool for viewing maps and accessing detailed information on 

individual properties. The zoning viewer of the City of Cape Town consists of a toolbar 

including functionalities such as zoom in, zoom out, pan, zoom full extent, identify mode and 

clear map graphics. The planning viewer area comprises a number of features including layers, 

legend, search, print and measure. Two layers are available, one for base data and another for 

aerial photographs. The legend provides a list of symbols and colour codes used for the 

identification of different zonings or land uses as well as other features displayed in the 

application. The search function allows four searching options; by property number, by farm 

number, by street number and by ward number. 
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Figure 3-8: Differences in spatial selection methods: "Intersect" versus "Are within" spatial 

queries 

The measure function enables three different measuring options: area measurement, distance 

measurement and measurement by means of geographical coordinates (longitude and latitude). 

Base data displayed in the map area includes detailed information (zoning description, ward 

number, subcouncil, street address and property number) for each individual property, 

boundaries for properties, wards, sub councils and centrelines of public and private roads. The 

user interface of the Online Zoning Viewer for the City of Cape Town is illustrated in Figure 

3-9. 
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Figure 3-9: User interface of the Online Zoning Viewer for the City of Cape Town
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3. Data transformation 

With reference to the reviewed measures of land use interaction, this study included two 

categories of land use measure; (i) intensity-based measure expressed as a proportion of a 

particular land use to total land area of the unit of analysis and (ii) pattern-based measures 

expressed in terms of entropy index (ENT) and Herfindahl-Hirschman Index (HHI). The 

inclusion of these two measures was guided by recommendations from the study by Song et al. 

(2013) who underlined three contextual factors governing the choice of the measure: the 

number of land use types incorporated in the measure, the relative ease of calculation and the 

scale of the unit of analysis. In addition to these recommendations, there are research claims 

that these two measures are strongly correlated and can be hence used interchangeably as an 

indicator of mixed land use Song et al. (2013). For these reasons, it was decided to include 

these measures into the current study to test the measure that seems to be the most appropriate 

for the context of the study area.  

In contrast to the intensity-based measure applicable to this study, land use mix could not be 

determined directly from the zoning data received from the City of Cape Town. Quantifying 

land use mix required a transformation of land use data which was obtained after the fourth 

stage of data processing (i.e. treating missing variables) into indices defined below. 

i. Entropy Index 

The entropy index is defined as a measure of variation, dispersion or diversity which takes into 

account the relative percentage of two or more types of land use within an area (Turner et al., 

2001). The Entropy Index is the most widely accepted and commonly used measure of land 

use mix (Bordoloi, Mote, Sarkar & Mallikarjuna, 2013; Gehrke & Clifton, 2015; Manaugh & 

Kreider, 2013; Yue, Zhuang, Yeh, Xie, Ma & Li, 2017) and is generally calculated using the 

following equation: 

 
𝐸𝑁𝑇 =

−[∑ 𝑃𝑗 ln(𝑃𝑗)𝑘
𝑗=1 ]

ln(𝑘)
 

 

(1) 

Where 𝑃𝑗  denotes the percentage of each land use j in the area and 𝑘 is the number of different 

land use types in the area. Assuming that: 

𝐶 =Area (𝑚2)of land designated for commercial purposes 

𝑅 =Area (𝑚2)of land designated for residential purposes 
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𝑂 =Area (𝑚2)of land designated for office purposes 

𝑇 =Total area (𝑚2)of land use in a region 

The entropy index for these types of land use is calculated as follows:  

 𝐸𝑁𝑇 =
− [(

𝐶
𝑇 × ln (

𝐶
𝑇)) + (

𝑅
𝑇 × ln (

𝑅
𝑇)) + (

𝑂
𝑇 × ln (

𝑂
𝑇))]

ln(3)
 (2) 

The entropy index ranges from 0 to 1, with 0 implying  homogenous land use or a single use 

while 1 implies a perfect mix of land use types (i.e. all types of land use are equally distributed) 

within a unit of analysis.  Three percentiles were used to rank the Entropy index following 

common practice from existing literature and other studies (Surjono & Ridhoni, 2017). These 

percentiles are entropy indices between 0-0.33, 0.34-0.66 and 0.67-1 and were classified into 

low, medium and high, respectively. 

ii. Herfindahl-Hirschman Index (HHI) 

The Herfindahl-Hirschman Index (HHI) originated in the field of economics and was initially 

used to measure market concentration (Ordover et al., 1982). The US Department of Justice 

(DOJ) ranks market concentrations by the use of the HHI: below 1500 the market is 

unconcentrated, between 1500 and 2500 the market is moderately concentrated and above 2500 

the market rated to be highly concentrated (Hisrich & Kralik, 2016). When applied to 

quantifying a mixture of land use, the HHI is simply the sum of squares of the share of each 

individual land use type in a particular area.  This definition is expressed mathematically by 

the following formula: 

 

𝐻𝐻𝐼 = ∑(100 × 𝑃𝑗)
2

𝑘

𝑗=1

 (3) 

Where 𝑃𝑗  denotes the percentage of each land use j in the area and 𝑘  is the number of different 

land use types in the area The HHI ranges from 0 to 10000, with 0 denoting a perfect mix of 

land use types while 10 000 implies a single land use. 

iii. Addressing limitations associated with measuring land use mix 

Although the entropy index and the Herfindahl-Hirschman index are relatively easy to calculate 

and comprehend, these indicators are subjected to a number of inherent drawbacks (Manaugh 

& Kreider, 2013; Song et al., 2013). First, they are sensitive to the size of the geographic entity 
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under analysis. Large areas tend to have a wider variety of land use types than smaller ones, 

implying that scores obtained by these two  indicators may be influenced by the scale of the 

unit of analysis (Dark & Bram, 2007; Song et al., 2013). Second, they fail to capture the 

arrangement or spatial separation of land use types within the unit of analysis (Manaugh & 

Kreider, 2013; Song et al., 2013). Third, these two measures do not distinguish types of land 

use under analysis (Manaugh & Kreider, 2013; Song et al., 2013). As an example, an area with 

55% residential use, 35% commercial use and 10% office use will produce the same scores of 

HHI and entropy index as an area with 10% agricultural use, 35 % residential use and 55% 

commercial use. Lastly, as the HHI is the sum of squares of individual percentages of land use 

types, it is sensitive to the size of the most prevalent land use (Song et al., 2013). 

To compensate for these drawbacks, this study adopted an approach proposed in the study by 

Song et al. (2013). Using this approach, the geography of reference is considered as well 

balanced and the percentage of individual land use type within the unit of analysis is determined 

relative to that of the same land use type in the reference geography. It follows then that a 

smaller area with a land use distribution similar to that of the reference geography will score 

an entropy index close to 1 while an area with a land use distribution deviating substantially 

from that of the reference geography will score an entropy measure close to 0 (Song et al., 

2013). By extending this approach to HHI, an area with land use distribution similar to that of 

the reference geography will score a HHI close to 0, while an area with land use distribution 

deviating substantially from that of the reference geography will score a HHI close to 10,000. 

The modified formula proposed by Song et al. (2013) was applied to calculate the percentage 

of each land use type (𝑃𝑗 ) relative the distribution of the same land use type within the 

reference geography.  

Assuming that:  

 Each land use type available in the geography of reference is denoted by j 

 Each unit of analysis is denoted by i 

 The total amount of land use types j in the geography of reference is denoted by Z 

 The amount of each land use j in the unit of analysis i is xij 

 The total amount of all land use types j in the unit of analysis i is denoted by Xi 

 The amount of each land use type j in the geography of reference is denoted by Xj 

 The total number of units of analysis is denoted by n 
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 The total number of all land use types available in the geography of reference is K 

Mathematically, it follows that: 

o The total area of land use types in a given unit of analysis is expressed as: 

 

∑ 𝑥𝑖𝑗 = 𝑋𝑖

𝑘

𝑗=1

 (4) 

 

o The total area of a particular land use type within the geography of reference is 

expressed as: 

 
∑ 𝑥𝑖𝑗 = 𝑋𝑗

𝑛

𝑖=1

 (5) 

 

o The total area of all land use types within the geography of reference can be expressed 

as:  

 

∑ 𝑋𝑖 = ∑ 𝑋𝑗 = 𝑍

𝑘

𝑗=1

𝑛

𝑖=1

 (6) 

 

o The percentage of a particular land use type in the unit of analysis is: 

 𝑟𝑖𝑗 =
𝑥𝑖𝑗

𝑋𝑖
 (7) 

The sum of these percentages in each unit of analysis should be equal to 1:  

 

∑ 𝑟𝑖𝑗 = 1

𝑘

𝑗=1

 (8) 

 

The percentage of each land use type in a particular unit of analysis relative to 

reference geography is expressed in two steps:  

i. By creating quotients  𝑞𝑖𝑗: 

 𝑞𝑖𝑗 =
𝑟𝑖𝑗

𝑡𝑗
 (9) 

These quotients are no longer percentages and can take any value less or 

greater than 1. For each unit of analysis the sum of these quotients is 

expressed as: 

 

∑ 𝑞𝑖𝑗

𝑘

𝑗=1

 (10) 

 

ii. By creating adapted land use percentages 𝑃𝑖𝑗 which will be used in the 

mathematical expression to calculate the entropy index and the HHI: 
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 𝑃𝑖𝑗 =
𝑞𝑖𝑗

∑ 𝑞𝑖𝑗
𝑘
𝑗=1

 (11) 

In this study, the entropy index proposed by Song et al. (2013) is referred to as the “Relative 

Entropy” (coded as “RelENT”). The reference geography is the Cape Town Metropolitan 

Municipality and the unit of analysis is a census suburb. Accordingly, the number of all census 

suburbs of the study area is 190 ( 𝑛 = 190 ). The two forms of entropy index (i.e. ENT and 

RelENT) and the HHI were determined for the entire City of Cape Town and individual census 

suburbs which constitute the City of Cape Town. Initially, land use mix was measured using 

all 34 zoning and subzoning categories available in the City of Cape Town. In an effort to 

achieve the most appropriate measure of land use mix, 34 zonings and subzonings/ subzones 

were grouped into nine main zoning categories, namely, (1) single residential zonings (SR); 

(2) general residential zonings (GR); (3) community zonings (CO); (4) local business zonings 

(LB); (5) general business and mixed use zonings (GB_MU); (6) industrial zonings (GI); (7) 

utility and transport zonings (UT_TR); (8) open space zonings (OS) and (9) agricultural, rural 

and limited use zonings (AG_RU_LU). A further grouping of these nine zoning categories 

resulted in four categories based on whether the main activity allocated is residential, 

commercial/service, recreational and agricultural use. The four main groups of land use 

identified by this categorization include (i) residential use (i.e. SR & GR), (ii) service and 

commercial use (i.e. CO, LB, GB_MU, GI & UT_TR), (iii) open space use (OS) and (iv) 

agricultural, rural and limited use (AG_RU_LU). 

Land use mix for the entire city of Cape Town and individual census suburbs was measured 

firstly using 34 land use categories (𝑘 = 34) then using nine land use categories (𝑘 = 9) and 

lastly by considering the four land use categories (𝑘 = 4). Measuring land use mix using three 

aggregation levels of land use types was intended to help select the appropriate measure of land 

use mix to include in the modelling process. In addition, it was also intended to gain insight 

regarding the influence the numbers of land use types have on the outcome of land use mix 

measure. The computational process for the modified version of the entropy index and the HHI 

involved 5 steps which are outlined in APPENDIX C. 

3.2.5.2  Processing street connectivity data 

Street connectivity data (i.e. counts of different types of intersections, cul-de-sacs and total 

length of street network) was aggregated at the suburb level and then transformed into four 

standard measures of connectivity. These measures include intersection density, percentage of 

Stellenbosch University  https://scholar.sun.ac.za



95 

 

intersections with more than three legs, ratio of intersections to cul-de-sacs and street density. 

Two measures of intersection density were calculated; the intersection density as a ratio of 

intersection counts to the area of the suburb and as a ratio of intersection counts to the total 

length of the street network within the boundaries of the suburb. The number of intersections 

with more than three legs was determined as the sum of all four-legged and multi-legged 

intersections, staggered intersections and roundabouts or traffic circles with more than three 

legs. The percentage of intersections with more than three legs was calculated as the ratio of 

the sum of the intersection of the types above-mentioned to the total number of all intersections 

within the boundaries of the suburb. The ratio of intersections to cul-de-sacs was determined 

by dividing the total number of all intersection types in the suburb by the number of dead end 

streets or cul-de-sacs present in the same suburb. Street density was determined as the total 

length of the street network per unit of area. It is important to note that spatial data on the street 

network represents each carriageway by a line segment. It follows that all dual carriageways, 

freeways or divided highways are represented by double line segments. In this sense, the length 

of the street network should be understood as the length of carriageways (i.e. roadways 

separated by a central reservation or other physical barriers). 

3.2.5.3  Processing data for transportation systems 

1. Raw data aggregation 

Data on transportation systems was initially extracted from spatial data (i.e. road network and 

public transport systems) and then aggregated at suburb level in Excel spreadsheets. The 

procedure followed the same steps as those applied to land use patterns which are: selecting a 

census suburb, extracting a layer of the suburb, selecting features and creating a layer of 

selected features.  

2. Data screening 

The road network for the City of Cape Town includes roads of different classes with walking 

trails being the lowest class. This class of road is coded as “RUR” and “RWW” in the spatial 

dataset. The inclusion of this class of roads into the analysis has the potential to inflate the 

length of the extracted street network of suburbs, especially those regarded as rural suburbs 

with a significant coverage of roads of this class. With this in mind, it was decided to exclude 

this class from the analysis. After the removal of the trail class, road segments extending 

outside the boundaries of the suburb of interest were removed from the extracted dataset. Road 

segments which were partially included inside the boundaries of the suburb were trimmed to 
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the boundaries and a new measurement of the trimmed segment was taken and saved into the 

Excel dataset. A flowchart of the screening process for transportation system data is illustrated 

in Figure 3-10. The last step within the data screening process entailed the summation of 

segment lengths for each class of road and the summation of data points such as railway and 

bus stations. 
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Figure 3-10: Flowchart of activities performed during processing data on transportation 

systems 
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3.2.5.4  Processing pedestrian casualty data  

The objective of this step in the process was to create a shapefile of georeferenced pedestrian 

crash data and aggregate them at suburb level. Pedestrian crash data in Excel format was 

imported into ArcGIS through its integrated application, namely ArcCatalog and ArcMap. The 

imported Excel dataset was then converted into a shapefile in ArcMap to allow data 

visualization and facilitate spatial queries on the data.  The aggregation of pedestrian crashes 

with particular characteristics was carried out by using GIS functionality of spatial joins using 

the polygon map layer for the 2011 census suburbs as the input data. Counts of pedestrian 

casualties aggregated at both metropolitan and suburban level were then converted into 

frequencies, then normalized to facilitate a comparison of crash frequencies across the census 

suburbs. 

3.2.6 Data analysis 

3.2.6.1  Univariate analysis 

Univariate analysis involves a description of a dataset by reviewing the distribution of 

observations and providing a measure of central tendency (i.e. mean, mode and median) and 

dispersion (i.e. range, variance, standard deviation, maximum, minimum and quartiles) (Field, 

2013; Kent, 2015).  

3.2.6.2  Bivariate analysis 

Bivariate analysis involves looking at associations between pairs of variables and trying to 

understand how those associations work. Inferential statistics is an example of bivariate 

analysis commonly used to draw conclusions about the population based on evidence from a 

sample (Field, 2013; Kent, 2015). Hypothetical testing and confidence interval procedures 

depend on whether the test is parametric or nonparametric. Generally, parametric tests make 

certain assumptions about parameters (or characteristics) of the population distribution upon 

which a test is based while nonparametric tests make few or less stringent assumptions about 

the distribution of the underlying population (Montgomery & Runger, 2007; Sheskin, 2011). 

Traditionally, parametric tests assume that the distribution of the underlying population follows 

a normal distribution and their application are restricted to (i) normally distributed data, (ii) 

data with homogeneity of variance, (iii) continuous data (i.e. interval or ratio data) and (iv) data 

that are independent of one another (Field, 2013). Whether data is normally distributed or not 
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affects a number of procedures including parameter estimates, confidence intervals, 

hypothetical testing, and error estimates while fitting the model (Field, 2013).  

1. Assumptions applicable in bivariate analysis 

Before analysing data in STATISTICA software tool, the four assumptions mentioned above 

were tested to ensure that the right statistics has been applied. This was done in five steps which 

are (1) checking outliers; (2) checking additivity and linearity; (3) checking normality of the 

distribution; (4) checking homogeneity of variance and (5) checking independence (Field, 

2013). 

Step 1: Checking outliers 

Detecting outliers in a distribution of data was done with the use of STATISTICA software 

and MS Excel. The processing of detecting outliers followed the “outlier labelling rule” 

(Hoaglin et al., 1986). The first step of this process was to build histograms and boxplots (or 

box-whisker diagrams) and to display percentiles and outliers in the output summaries of 

STATISTICA. The next step was to look at the plotted histogram of the sample and identify 

observations at the tails of the distribution that appear differently from others (i.e. observations 

that may look like outliers). The 25th percentile (or lower quartile) value (denoted here as 

“Q1”) and the 75th percentile (or the upper quartile) value (denoted here as “Q3”) were two of 

the most useful indicators required to apply the outlier labelling rule. These values were 

displayed in the output table of percentiles. An Excel spreadsheet was then created to calculate 

lower and upper limits using the outlier labelling rule. Lastly, observations that fell outside the 

calculated lower and upper limits were labelled as outliers.  

To compute the lower and upper limits, the interquartile range (IQR) was determined for the 

distribution. The IQR is the difference between the lower quartile (Q1) value and the upper 

quartile (Q3) value (i.e.𝐼𝑄𝑅 = 𝑄3 − 𝑄1). The IQR was multiplied by 2.2 to obtain demarcation 

points determining the outliers. The lower limit was calculated by 𝑄1 − (2.2 × 𝐼𝑄𝑅) and the 

upper limit by 𝑄3 + (2.2 × 𝐼𝑄𝑅). Any observation that is lower than  𝑄1 − (2.2 × 𝐼𝑄𝑅) or 

greater than 𝑄3 + (2.2 × 𝐼𝑄𝑅)  was labelled as an outlier. The 2.2 multiplier was 

recommended by Hoaglin and Iglewicz (1987) based on simulation research and is claimed to 

have greater validity than the more commonly used 1.5 multiplier introduced by (Tukey, 1977). 

It was reported that the 1.5 multiplier leads to inaccurate outlier spotting in approximately 50 

percent of applied cases (Hoaglin et al., 1986).  
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Step 2: Checking linearity 

The assumption of linearity predicts that there is a linear relationship between the explanatory 

variables and the outcome variables. This assumption was tested in STATISTICA by the use 

of scatter plots. For this assumption to be met, the scatter plot should follow a linear pattern. 

Otherwise, a non-linear model is appropriate to describe the relationship. 

Step 3: Checking normality of the distribution 

The normality of the distribution was checked in STATISTICA by using a combination of 

methods including (i) visual inspection of the shape of the histogram and the boxplots, (ii) the 

“probability-probability plot” (P-P plot), (iii) measures of shape (kurtosis and skewness), (iv) 

the Kolmogorov-Smirnoff test and (v) the Shapiro-Wilk test.  

With the help of STATISTICA, it can be visualized whether the plotted histogram are bell-

shaped (i.e. normally distributed) or not. In the same way, a visual examination of the boxplots 

can indicate whether they are approximately symmetrical (i.e. Q1 and Q3 are located 

approximately at the same distance away from the median and the whiskers of the plot are 

approximately of the same height) and do not appear too sharp or too flat (Field, 2013). The 

normal P-P plot is another graphical method of inspecting normality. For a normal distribution, 

the data points should be close to the ideal diagonal line. Normality is assessed visually by the 

closeness of data points to the diagonal line. A significant deviation of data points from the 

diagonal line indicates that the normal distribution is not adequate to describe the data 

(Montgomery & Runger, 2007). According to Field (2013), the distribution is viewed as 

deviating from normality when data points sag consistently below or above the diagonal line 

(i.e. indication of kurtosis) or when data points deviate from the diagonal line in the ‘S’ shape 

(i.e. indication of skewness). 

Skewness refers to where data is piled up on the distribution (i.e. whether data is heavily 

weighted towards the left or the right) while kurtosis indicates how flat or peaked the 

distribution is. For a normal distribution, STATISTICA produces skewness and kurtosis 

measures that are close to zero. A positive value of skewness indicate that data is heavily 

weighted towards the left of the distribution (i.e. higher probability for low scores in the 

distribution) whereas the negative value indicates a pile up of data on the right side of the 

distribution (i.e. higher probability of high scores in the distribution). A positive kurtosis value 

depicts a sharp distribution with heavy tails while a negative value is indicative of a flat 
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distribution with light tails (Field, 2013). Skewness and kurtosis values were converted into z-

values to test whether these values differ significantly from 0 (i.e. expected value for a perfect 

normal distribution). The computation of z-scores was carried out in Excel by dividing the 

skewness or kurtosis measure by the corresponding standard error: 

  𝑧𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 𝑆 𝑆𝐸𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠;  𝑧𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 𝐾 𝑆𝐸𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠  ⁄⁄  (12) 

where S denotes skewness measure and K denotes kurtosis measure. It was concluded that 

skewness and kurtosis measures were significantly different from 0 if z-scores were found 

greater than -1.96 or 1.96 at 95% confidence interval or greater than -2.58 or 2.58 at 99% 

confidence interval or greater than -3.29 or 3.29 at 99.9 % confidence interval. 

The Kolmogorov-Smirnov (Kolmogorov, 1933; Smirnov, 1936) and Shapiro-Wilk tests 

(Shapiro & Wilk, 1965) are based on hypothetical tests of whether the distribution of the 

sample deviates significantly from a normal distribution. The null hypothesis for these tests is 

that where the data are normally distributed and if the p-value is below 0.05, the null hypothesis 

is rejected and the inference is that the distribution of the sample is significantly different from 

a normal distribution. However, these tests were excluded as they are considered inappropriate 

for large samples because they are likely to produce p-values that are below 0.05 even when 

the interpretation of the skewness and kurtosis values justifies the normality of the distribution 

(Field, 2013). 

Step 4: Checking variance homogeneity 

The assumption of homogeneity of variance means that the variance of the outcome variable 

should be equal for all levels (or groups) of the predictor variable (Field, 2013). Homogeneity 

of variance can be tested for both normally distributed data (i.e. parametric data) and non-

normally distributed data (non-parametric data). The assumption of homogeneity of variance 

is assessed using Levene’s test (Levene, 1960) which tests the null hypothesis that different 

groups have equal variance. If Levene’s test is non-significant (i.e. p-value greater than 0.05), 

the null hypothesis is accepted and the assumption of homogeneity of variance is approved. 

2. Inferential statistics applied in the analysis 

Two methods of inferential statistics were applied in this study to draw inferences on the 

statistical population. These are t-test, to test hypotheses about the means of two normal 

distributions, and analysis of variance (ANOVA), to test whether there are any statistically 
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significant between the means of three or more groups. When the ANOVA test is significant, 

it indicates that the means of various groups are statistically different from each other. 

However, it does not tell which groups are different (Montgomery & Runger, 2014). To 

investigate this issue, post-hoc tests were used to perform some follow-ups test to identify the 

specific differences. There are many post-hoc procedures and these differ based on their 

assumptions of variance and sample size, and depending whether the test is parametric or non-

parametric (Shingala & Rajyaguru, 2015). Two post-hoc procedures applied in in this study 

are the Games-Howell and Bonferroni post-hoc procedures, and both were selected based on 

criteria illustrated in Figure 3-11.  

 

Figure 3-11: Criteria for selecting appropriate Post Hoc Tests (Shingala & Rajyaguru, 2015) 

3.2.6.3 Geospatial analysis  

Generally, geospatial analysis refers to an approach of processing geographical or spatial data 

and applying statistical analyses to it. In this study, geospatial analysis was carried out with the 

use of ArcMap and following an analytical procedure proposed by Mitchel (2005). This 

procedure is illustrated in Figure 3-12 presented below. 
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Figure 3-12: Geospatial analysis: Analytic procedure (Mitchel, 2005) 

1. Formulating the research question 

Each process of geospatial analysis was performed with the intention of responding to a 

specific research question as formulated in the first chapter of this dissertation. Geospatial 

analysis enabled the examination of the location of pedestrian crashes with particular 

characteristics and made use of collected information to study the relationship between 

attribute variables and the locations of pedestrian crashes. The following research questions 

were addressed through this process: (i) where are pedestrian crashes located? (ii) How are 

pedestrian crashes spatially distributed? (iii) What are the environmental characteristics of 

pedestrian crash locations? In addition to addressing the research questions, spatial analysis 

can also allow for the examination of where and how factors affecting pedestrian crashes are 

spatially distributed and concentrated. Analysing these explanatory variables in their spatial 

context can in turn generate understanding of the relationships between pedestrian crash 

location and the built environment.  

2. Understanding the nature of spatial data 

Geographical data consists of two main categories: vector data and raster data (Bossler et al, 

2010; Pandey, 2014; De Smith et al., 2015). Vector data comprises 3 types of data: points (i.e. 

Report the findings

Question the results

Test the significance of the statistic

Interprete the statistic

Calculate the statistic

Choose a method

Understand your data

Formulate the research question
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with x and y coordinates), line or arc (series of points between two nodes) and area polygons 

or lines with the same start and end points (Lloyd, 2010). Raster data is made up of discrete 

cells (or pixels) of equal size, arranged in columns and rows. Each cell is associated with a 

numeric value or class and positional information. Groups of grid cells sharing the same 

attribute value characterize geographic features of the same type (Wade & Sommer, 2006). The 

analytic tasks and statistical techniques applicable to spatial data often depend on the type of 

the data, its quality, strengths and weakness. In addition, it will be shown later in this chapter 

that the choice of the statistic largely depended on whether there was an attribute value attached 

to the feature or not (see Figure 3-15 on Page 118). Therefore, an understanding of the nature 

of the dataset and its qualitative aspects is an essential step in the overall process of geospatial 

analysis. For this study, spatial data comprises all types of data, namely, point, line, polygons 

and raster data. 

3. The choice of method for geospatial analysis 

The literature contains a wide variety of approaches to geospatial analysis performed with the 

intention to study spatial location and distribution of phenomena of interest. These approaches 

apply a range of statistical techniques designed to analyse and predict the values attached to 

spatial phenomena. For this reason, they are commonly referred to as spatial statistics or 

geostatistics (Wade & Sommer, 2006). 

Geostatistics is a sub-branch of the statistics discipline and makes use of standard statistical 

techniques such as exploratory data analysis, descriptive and inferential statistics, and 

modelling techniques. Descriptive statistics for spatial data summarizes a sample of spatial data 

by producing quantitative measures of central tendency, frequency of spatial distributions and 

measures of spread or dispersion of spatial data. Geostatistical techniques concerned with the 

central tendency are also referred to as centrographic techniques (Wheeler et al., 2013). 

Inferential statistics makes use of hypothetical tests from observed patterns of a sample of 

spatial data to draw conclusions about the general population from which the sample is drawn. 

Inferential statistics involves two tasks: estimation of parameters and hypothetical testing 

(Lloyd, 2010; Oyana & Margai, 2016).  

With regards to this study, geospatial analysis involved two main tasks: creating and 

manipulating maps layers and running exploratory spatial data analysis (ESDA). The first tasks 

involved activities such as creating map layers in ArcMap from available spatial data, 

navigating the created maps and checking attribute data connected to features, adding layers to 
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the group layers, editing attribute tables (creating new attributes and joining tables), 

aggregating data (selecting and exporting a subset of a feature class), and performing spatial 

queries (i.e. selecting and extracting certain data based on its geographical location). 

Exploratory spatial data analysis (ESDA) encompasses a range of techniques to (i) visualize 

data in a spatial framework through maps and other graphics; (ii) identify patterns of spatial 

association and spatial clustering through spatial correlation and regression analysis, (iii) detect 

remarkable and significant patterns such as atypical locations (i.e. spatial outliers) and (iv) 

suggest different spatial regimes or other forms of spatial heterogeneity (Anselin & Bao, 1997). 

The measure of global and local spatial autocorrelation is the central focus of the ESDA 

(Anselin & Bao, 1997; Anselin, 1998). This approach of spatial analysis makes use of 

descriptive statistics and suggests hypotheses about spatial autocorrelation and features 

clustering to quantify spatial patterns. Techniques of spatial autocorrelation which were applied 

to this study are described in the following sections. 

4. Visual inspection of mapped data 

After creating map layers and performing spatial queries in ArcMap, data visualisation was the 

starting point for the exploratory spatial data analysis. Data visualization involves techniques 

of data graphing and mapping using a combination of visual elements such as choropleth maps, 

graphs, histograms, charts, boxplots, scatter plots, and 3D maps (Kim, 2009; Wade & Sommer, 

2006). A choropleth map is a thematic map portraying differences in the phenomenon being 

mapped (or categorized classes of the mapped phenomenon) by the use of divided geographical 

areas or polygons that are coloured, patterned or shaded in relation to the attribute value 

attached to the mapped phenomenon (De Smith et al., 2015; Wade & Sommer, 2006). The 

main purpose of these visualization techniques was to present spatial patterns and depict 

information in a way that is easily understandable.  

GIS-related techniques applied in this study for geospatial visualization include categorizing 

spatial data and designing symbology for each category, controlling selected feature classes or 

values to be displayed, mapping quantities associated with mapped phenomena, choosing 

appropriate classification methods (i.e. natural breaks, quantile, equal interval and standard 

deviation), checking and dealing with spatial outliers, creating a map series, mapping density 

values (i.e. dot densities or surface densities), creating and mapping buffers, clipping features, 

mapping percent changes in value, creating map layouts, adding graphs to a layout and print 

map outputs.  
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5. Pattern analysis 

i. Concepts and definitions 

The techniques of spatial data visualization, especially those utilizing classification schemes 

(i.e. natural breaks, quantile, equal interval and standard deviation) introduces subjectivity in 

the analysis since the responsibility to choose an appropriate procedure lies with the analyst 

(De Smith et al., 2015). These techniques serve a purpose for visual inspection of spatial data 

but they cannot prove statistically whether there is a spatial pattern in the mapped data. To 

answer this question, geospatial analysts have resorted to using spatial statistical analyses and 

inferential statistics to analyse spatial dependence and spatial heterogeneity. Spatial 

heterogeneity simply refers to the uneven distribution of observations across the geographical 

area (Anselin, 2010) while spatial dependence refers to the similarity of attribute values of a 

single variable in spatial proximity or closeness (Griffith, 2017).  

The First Law of Geography, according to Waldo Tobler, is that “all things are related, but 

nearby things are more related than distant things” (Tobler, 1970). Nevertheless, as seen 

previously in Section 3.2.6.2, most classical statistical theory and practice assume that 

observations are independent of one another, identically distributed (i.e. homogeneity of 

variance) and usually conform to a normal distribution or a bell-shaped curve (Chun & Griffith, 

2013; Field, 2013). These assumptions are in contrast with Tobler’s First Law of Geography 

which states that observations are often spatially dependent due to their relatively close 

locations on the earth’s surface (Brus et al., 2014; Chun & Griffith, 2013; Malczewski, 1999). 

This situation is commonly referred to as “spatial autocorrelation” in the literature of geospatial 

analysis (Griffith, 2017). It introduces a deviation from the assumption of independent 

observations applied by classic statistical analysis (Chun & Griffith, 2013; Griffith, 2017). 

Spatial autocorrelation explores how an attribute value of a variable at one location in space is 

related to the attribute value of that same variable in a nearby location (Dixon et al., 2016; 

Rogerson, 2001). The prefix “auto-” attached to “correlation” is indicative of correlated 

attribute values within a single variable. The analysis of spatial autocorrelation produces 

indices measuring the way observations are spatially distributed and quantifying the magnitude 

of spatial association (or correlation) between neighbouring observations.  

The analysis of spatial autocorrelation can be carried out from either a global perspective or a 

local perspective. Global autocorrelation statistics provide a single summary value for the 

entire study area, depicting whether spatial observations display clustering or not, regardless 
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of the presence of local dependence in the attributes values within the study area (Loo & Yao, 

2012; Wong & Wang, 2017). These statistics allow an assessment of overall clustering patterns 

across the entire study area but are unable to identify locations where clustering occurs (Zhu, 

2016). In contrast to global autocorrelation measures, local autocorrelation statistics are 

concerned with detecting clustering tendency (such as hot spots, cold spots and spatial outliers) 

at the local level (Anselin & Bao, 1997; Loo & Yao, 2012; Wong & Wang, 2017; Zhu, 2016). 

ii. Global spatial autocorrelation measures 

The theory of spatial autocorrelation was first pioneered by Moran (1948) and Geary (1954) 

and popularized later by a number of other scholars (Chun & Griffith, 2013; Cliff & Ord, 1973, 

1981; Dixon et al., 2016; Krige, 1966; Matheron, 1971). The Moran’s index (or Moran’s I), 

the Geary ratio (GR) also known as Geary’s contiguity ratio or Geary’s C ratio and the Getis-

Ord G statistic are the most widely used measures of global spatial autocorrelation (Loo & 

Yao, 2012; Wong & Wang, 2017). 

The Global Moran’s Index 

The global Moran’s index is a measure of covariance that relates directly to the Pearson 

product-moment correlation coefficient “r”, calculated for two variables, X and Y, as follows 

(Chun & Griffith, 2013; Griffith, 2003):  

 
𝑟 =

∑ (𝑥𝑖 − 𝑥̅𝑛
𝑖=1 )(𝑦𝑖 − 𝑦̅) 𝑛⁄

  √∑ (𝑥𝑖 − 𝑥̅)𝑛
𝑖=1

2
𝑛⁄   √∑ (𝑦𝑖 − 𝑦̅)𝑛

𝑖=1
2

𝑛⁄

 
(13) 

Where 𝑥𝑖 and 𝑦𝑖 are paired values of two variables for observation i; 𝑥̅ and 𝑦̅  are the respective 

means of these two variables. To measure global spatial autocorrelation, the spatial relationship 

between all pairs of nearby georeferenced values is captured using a 𝑛 × 𝑛  binary spatial 

weight or spatial matrix generally denoted by C, with its cells being denoted by 𝑐𝑖𝑗 . If two 

locations are designated as neighbours (i.e. areal units or cells that are immediately adjacent or 

areal units or cells sharing a common non-zero length boundary), then the value of  𝑐𝑖𝑗 .is 1, 

otherwise the value of f  𝑐𝑖𝑗  is equal to 0 (Chun & Griffith, 2013; Griffith, 2003; O’sullivan & 

Unwin, 2010). Accordingly, the 2n data values are treated as a set of n spatial data values for a 

variable y, with the covariance being weighted by the sum of the elements of the weight matrix 

C (Chun & Griffith, 2013). The equation (13) then becomes: 
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𝐼 =

∑ ∑ 𝑐𝑖𝑗
𝑛
𝑗=1 (𝑦𝑖 − 𝑦̅𝑛
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𝑛
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𝑛
𝑖=1⁄

  √∑ (𝑦𝑖 − 𝑦̅)𝑛
𝑖=1

2
𝑛⁄   √∑ (𝑦𝑖 − 𝑦̅)𝑛

𝑖=1
2

𝑛⁄

 
(14) 

Where 𝐼 is the Moran’s index; 𝑐𝑖𝑗 are the elements (i.e. 0 or 1) of the weight matrix C; the term 

∑ ∑ 𝑐𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1  is the sum of all the elements of the weight matrix C; 𝑦𝑖  and 𝑦𝑗   are the attribute 

values for the aerial unit or cell 𝑖  and 𝑗  ; 𝑦̅  is the mean attribute value for the 𝑛  areal units; 

and the term (𝑦𝑖 − 𝑦̅) denotes the deviation from the mean attribute value within the same 

variable. The equation for the Moran’s I is usually simplified as follows: 

 
𝐼 =

𝑛

∑ ∑ 𝑐𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

 
∑ ∑ 𝑐𝑖𝑗

𝑛
𝑗=1  (𝑦𝑖 − 𝑦̅)(𝑦𝑗 − 𝑦̅)𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)𝑛
𝑖=1

2  (15) 

The Moran’s I can be positive or negative and generally ranges between +1 and -1. Positive 

spatial autocorrelation implies a tendency towards clustering, that is to say that nearby 

geographical areas tend to have observations with similar attribute values (i.e. high values tend 

to be located near high values, medium values near medium values and low values near low 

values). Negative spatial autocorrelation implies that observations with dissimilar attribute 

values occur near one another (i.e. high values tend to be surrounded by nearby low values and 

low values tend to be surrounded by nearby high values) or the tendency towards dispersion 

(Dixon et al., 2016; Griffith, 2003). A Moran’s I that has a value of zero is indicative of 

independent observations in the dataset, a random pattern or the absence of spatial 

autocorrelation between attribute values of the same variable y (Dixon et al., 2016; Griffith, 

2003; Zhu, 2016). 

The statistical inference on the global Moran’s I uses the calculated value of Moran’s I and 

both z-score and p-value to evaluate whether the spatial pattern of observations is clustered, 

dispersed or random (see Figure 3-13).  
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Figure 3-13: Interpretation of z-scores and p-values for the Global Moran's I statistic 

The z-score for the global Moran’s I statistics is computed as follows: 

 
𝑧𝐼 =

𝐼 − 𝐸(𝐼)

√𝑉(𝐼)
 

(16) 

Where 𝐸(𝐼) is the expected value of  𝐼  when the null hypothesis 𝐻𝑂 is true, and 𝑉(𝐼)  is the 

variance of 𝐼 . 𝐸(𝐼)  is expressed as follows:  

 
𝐸(𝐼) =

1

𝑛 − 1
 (17) 

Where 𝑛 is the sum of areal units within the study area. The null hypothesis Ho states that the 

spatial pattern is random (i.e. spatial independence) with zero spatial autocorrelation. When the 

calculated p-value is statistically significant, the null hypothesis is rejected, implying that the 

spatial pattern is either clustered or dispersed (Mitchell, 2005; Zhu, 2016). 
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The Geary Ratio 

The Geary ratio (GR) or Geary’s C ratio is the second popular measure of global spatial 

autocorrelation and an alternative measure to the Moran’s index (Griffith, 2003; O'Sullivan & 

Unwin, 2010; Wong & Wang, 2017). While the Moran’s I is based upon the measure of 

covariance (i.e. mean deviations) between attribute values, the GR uses the sum of squared 

differences between paired values of the variable y instead of the product (as it is in the case 

of Moran’s I) to assess the similarity of attribute values of a given variable y (Acevedo, 2012; 

Wong & Wang, 2017; Zhou & Lin, 2008). The GR is based upon the unbiased estimates (i.e. 

division by division by n-1 instead of n) and can be expressed as follows (Griffith, 2003; Wong 

& Wang, 2017):  

 

𝐺𝑅 =
𝑛 − 1

2 ∑ ∑ 𝑐𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

 
∑ (𝑦𝑖 − 𝑦𝑗)

2
(∑ 𝑐𝑖𝑗

𝑛
𝑗=1 )𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 

 

(18) 

The appearance of the number 2 in the denominator of the first term stems from the calculation 

of the Moran’s I statistic which involves both   𝑐𝑖𝑗  and   𝑐𝑗𝑖  (Chun & Griffith, 2013). The GR 

is more sensitive to local variations than the Moran’s I and the sensitivity of the GR can be 

attributed to the denominator of first term (i.e. 2 ∑ ∑ 𝑐𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 ) and the numerator term 

∑ (𝑦𝑖 − 𝑦𝑗)
2

(∑ 𝑐𝑖𝑗
𝑛
𝑗=1 )𝑛

𝑖=1  because it gives smaller values for similar values in nearby locations 

and accentuates large deviations, since differences in attribute values of variable y are squared 

(Chun & Griffith, 2013; O'sullivan & Unwin, 2010; Wong & Wang, 2017). The interpretation 

of GR can be sometimes confusing; the GR values ranges from 0 to 2 (or 0 < 𝐺𝑅 < 2). A low 

value of GR less than 1 (i.e. 0 ≤ 𝐺𝑅 < 1) indicates a positive spatial correlation, a value of 1 

indicates the absence of spatial autocorrelation, and a high value greater than 1  indicates a 

negative spatial autocorrelation (O'Sullivan & Unwin, 2010; Zhou & Lin, 2008).  

The drawbacks of sensitivity to local variations coupled with those related to the interpretation 

of the GR makes the Moran’s index the most appealing and preferred index of spatial 

autocorrelation (Chun & Griffith, 2013). In addition, The Moran’s I offers computational ease 

and facilitates a number of extensions that increase its application and usefulness (De Smith et 

al., 2015). Accordingly, the Moran’s I is the most popular index of spatial autocorrelation 

frequently implemented in most spatial analytical tools, such as  ArcMap Spatial Statistics 

Toolbox, the AUTOCORR function in Idrisi and others (de Smith et al., 2015). 
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The Getis-Ord General G statistic 

The Getis-Ord General G statistic or simply G-statistic (Getis & Ord, 1992) is another popular 

measure of global spatial autocorrelation, formally expressed as follows (Wong & Wang, 

2017):  

 
𝐺 =

∑ ∑ 𝑐𝑖𝑗𝑦𝑖𝑦𝑗
𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑦𝑖𝑦𝑗
𝑛
𝑗=1

𝑛
𝑖=1

 

 

(19) 

Where 𝑦𝑖  and 𝑦𝑗 are attribute values for aerial units or cell 𝑖  and 𝑗; and the term ∑ ∑ 𝑐𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1  

is the sum of all the elements of the spatial weight matrix C between 𝑖  and 𝑗, carrying a value 

of 0 or 1. Following the equation above, the G-statistic can be regarded as a ratio of the 

association of attribute values within nearby locations (depicted by 𝑐𝑖𝑗 ) to the association of 

attribute values over the entire study area (Wong & Wang, 2017). As seen previously, when 

two locations are designated as neighbours, the weight matrix 𝑐𝑖𝑗 carries a value 1, otherwise 

𝑐𝑖𝑗 takes a value of 0. When relatively large attribute values are within neighbouring locations, 

the value of G-statistic becomes relatively large (owing to the sum of products). When 

relatively small attribute values are designated as neighbours, the value of G-statistic becomes 

relatively small. This implies that higher values of G-statistic are indicative of a cluster of 

higher attribute values or the presence of a hot spot (i.e. high values next to high values) and 

lower values of G-statistic indicate the presence of a cold spot (i.e. low values next to low 

values) (Wong & Wang, 2017). The statistical inference on the G-statistic is calculated as 

follows: 

 
𝑧𝐺 =

𝐺 − 𝐸(𝐺)

√𝑉(𝐺)
 

 

(20) 

Where 𝐸(𝐺) is the expected value of G-statistic and 𝑉(𝐺) is the variance of 𝐺. 𝐸(𝐺)  is 

calculated as follows: 

 
𝐸(𝐺) =

∑ ∑ 𝑐𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

𝑛(𝑛 − 1)
 (21) 

Where 𝑛 is the sum of areal units within the study area. The variance of G-statistic is expressed 

as 𝑉(𝐺) =  𝐸(𝐺)2 − [𝐸(𝐺)]2. 

The expected value of G-statistic corresponds to the null hypothesis  𝐻𝑂  which assumes that 

the y values are randomly distributed in space (or there is no spatial clustering of y values). 

When the p-value appears small and statistically significant, the null hypothesis is rejected and 
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the alternative hypothesis is that the spatial pattern is not random. In this, the sign of the z-

score becomes important in determining whether the clustering of y values consists of high 

values (i.e. hot spots) or low values (i.e. cold spots). A positive value of z-score (i.e. 𝐺 >

𝐸(𝐺) ) indicates the presence of a hot spot or high-high cluster while a negative z-score 

indicates the presence of a cold spot or low-low cluster (Getis & Ord, 1992; Mitchell, 2005; 

Wong & Wang, 2017). However, it is worth noting that the interpretation of z-scores for the 

G-statistic differs from that of z-scores for the global Moran’s I and results from these two 

statistics are often not comparable (Mitchell, 2005; Wong & Wang, 2017). 

iii. Local spatial autocorrelation measures 

Local spatial autocorrelation statistics are used when the intention is to detect geographic 

variation in events or phenomena at a local scale within the study area (Anselin et al., 2013; 

O'sullivan & Unwin, 2010). Local statistics of autocorrelation were developed in the effort to 

deal with general concerns associated with the computation of global statistics. These concerns 

include the assumption of homogeneity over the entire region, the presence of localized clusters 

of similar or dissimilar values within the study region and a situation wherein a mixture of 

positive and negative spatial autocorrelation tend to cancel each other out, leading to a failure 

to detect a spatial autocorrelation (Chun & Griffith, 2013; O'sullivan & Unwin, 2010). 

However, the concept of local statistics introduces computational difficulties, requiring 

substantial simulation-based methods to test simultaneously multiple localized patterns within 

the study area (Chun & Griffith, 2013; O'sullivan & Unwin, 2010).  

Local indices of spatial association (LISA) introduced by Anselin (1995) and the Getis-Ord 

local statistics, Gi and Gi* developed by Getis and Ord (1992) and Ord and Getis, (1995) are 

the two statistics used in the study of spatial autocorrelation. Global statistics of spatial 

autocorrelation are regarded as average of n local statistics, implying that local statistic can be 

derived by a spatial disaggregation of the global statistics at a small geographic unit (Chun and 

Griffith, 2013; Wong & Wang, 2017). The widespread application of these statistics in recent 

years have been prompted by their implementation in commercial GIS software and their 

ability to detect significant local patterns which can be visually displayed on a map (Anselin et 

al., 2013). 

The Local Indices of Spatial Association (LISA) 

The local indices of spatial associations (LISA) comprise both local versions of global Moran’s 

I and Geary ratio (Wong & Wang, 2017) and relate to the Moran scatterplot (Anselin, 1995, 
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1996). The Moran scatterplot is one of the graphical methods used to depict and qualitatively 

measure the spatial autocorrelation. Other graphical methods used for the same purpose include 

a semi-variogram, a covariogram and a correlogram (Chun & Griffith, 2013; De Smith et al., 

2015; Griffith, 2017). The Moran scatterplot portrays a bivariate relationship between the y 

value of the i-th areal unit and its corresponding lagged value (i.e. the sum of spatially weighted 

values of neighbours) on a two-dimensional diagram using Cartesian coordinates (Anselin et 

al., 2013; Griffith, 2017). The value of  𝑦𝑖 is first converted to a z-score (that is 𝑧𝑖 =

(𝑦𝑖 − 𝑦̅) √𝑉(𝑦)⁄ , with V(y)  denoting the variance of  y ) and this is plotted against its 

corresponding sum of spatially weighted z-scores of neighbours (i.e. ∑ 𝑐𝑖𝑗𝑧𝑗
𝑛
𝑗=1  ). Following 

this, each local Moran ( 𝐼𝑖 ) is the product of the pair of values on the horizontal (i.e.  𝑧𝑖 ) and 

the vertical axis (i.e. ∑ 𝑐𝑖𝑗𝑧𝑗
𝑛
𝑗=1 ). Hence, the local Moran can be expressed as follows (Wong 

& Wang, 2017): 

 
𝐼𝑖 = 𝑧𝑖 ∑ 𝑐𝑖𝑗𝑧𝑗

𝑛

𝑗=1

 
(22) 

The Moran scatterplot is partitioned into four quadrants distinguished by a trend line (i.e. zero 

value on the horizontal and vertical axis). These four quadrants portray the four types of local 

spatial association; the upper right quadrant represents high values surrounded by high values 

(HH), the lower left quadrant represents low values surrounded by low values (LL), the upper 

left quadrant represents low values surrounded by high values (LH) and the lower right 

quadrant represents high values surrounded by low values (HL). Furthermore, the HH and LL 

quadrants reflect a positive spatial autocorrelation while both LH and HL quadrants correspond 

to a negative spatial autocorrelation (Chun & Griffith, 2013; Griffith, 2017). Figure 3-14 

illustrates an example of the Moran scatterplot with the four quadrants. 
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Figure 3-14: An example of the Moran scatterplot with its four quadrants 

The statistical inference on the local Moran’s Ii is conducted by calculating the z-scores from 

the expected value and the variance of the local Moran’s  𝐼𝑖  under the assumption of normal 

distribution of attribute variables: 

 
𝑧𝐼𝑖

=
𝐼𝑖 − 𝐸(𝐼𝑖)

√𝑉(𝐼𝑖)
 

(23) 

Where: 𝐸(𝐼𝑖) =
− ∑ 𝑐𝑖𝑗

𝑛
𝑗=1

(𝑛 − 1)
⁄  (24) 

 The measure of variance of the local Moran’s index  𝑉(𝐼𝑖) is relatively complex but 

computational details can be found in Anselin (1995).  

The Getis-Ord, local statistics, Gi and Gi* 

The Getis-Ord local statistics, Gi and Gi* (Getis & Ord, 1992; Ord & Getis, 1995) are other 

local versions of spatial autocorrelation statistics. While the local Moran’s I relates to the 

Moran scatterplot, the Gi and Gi* relates more to a semi-variogram (Chun & Griffith, 2013). 

A semi-variogram is a plot depicting spatial dependence by plotting distance variability 

between two geographic locations and fitting a model through the plotted pairs of observations 

(De Smith et al., 2015; Wade & Sommer, 2006). The Gi and Gi* are defined as the ratio of the 

sum of values in neighbours of areal unit 𝑖 , within a distance band 𝑑 , to the sum of values in 
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all areal units (excluding the value in areal unit 𝑖 for the Gi statistics, but including it for the 

Gi*statistic) (Fischer & Wang, 2011). It follows then that the distinction between the Gi and 

Gi* statistics depends on whether a focal attribute value (𝑦𝑖) is included in calculations or not 

(Chun & Griffith, 2013; Griffith, 2017). Mathematically, these local statistics can be expressed 

by the following equations (Fischer and Wang, 2011; Wong & Wang, 2017): 

 
𝐺𝑖 =

∑ 𝑐𝑖𝑗(𝑑)𝑧𝑗
𝑛
𝑗≠𝑖

∑ 𝑧𝑗
𝑛
𝑗≠𝑖

 
(25) 

 

𝐺𝑖
∗ =

∑ 𝑐𝑖𝑗(𝑑)𝑧𝑗
𝑛
𝑗=1

∑ 𝑧𝑗
𝑛
𝑗=1

 (26) 

where 𝑧𝑗  is the deviation from the mean of the neighbouring value. Further development of the 

𝐺𝑖
∗
 formula leads to the following mathematical equation: 

 

𝐺𝑖
∗ =

∑ 𝑐𝑖𝑗(𝑑)𝑦𝑗 − 𝑌̅ ∑ 𝑐𝑖𝑗(𝑑)𝑛
𝑗=1

𝑛
𝑗=𝑖

𝑆𝑌 √[𝑛 ∑ 𝑐𝑖𝑗
2(𝑑) − (∑ 𝑐𝑖𝑗

𝑛
𝑗=1 )

2𝑛
𝑗=1 ] (𝑛 − 1)⁄

 

 

(27) 

where 𝑦𝑗   denotes the attribute value of areal unit j; 𝑐𝑖𝑗(𝑑) is the spatial weight linking areal 

unit i and j; and 𝑛 is the total number of all areal units and: 

 
𝑌̅ =

∑ 𝑦𝑗
𝑛
𝑗=1

𝑛
 (28) 

 

𝑆𝑦 = √
∑ 𝑦𝑗

2𝑛
𝑗=1

𝑛
− (𝑌̅)2 (29) 

The Getis-Ord Gi* statistic is the most widely used local version of Getis-Ord statistic and is 

implemented in GIS applications. The Gi* values are z-scores and are used to test statistical 

significance (Zhu, 2016). A statistically significant positive z-score indicates a clustering of 

high values or hot spot (high values surrounded by high values), a statistically significant 

negative z-score refers to a clustering of low values or cold spot (i.e. low values surrounded by 

low values) and z-scores close to zero may be indicative of a random pattern or clustering of 

moderate values (Griffith, 2017; Wong & Wang, 2017). 
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iv. Kernel density estimation (KDE) 

KDE is a widely used technique for spatial analysis and a powerful tool for visualization of 

spatial patterns of features (Bíl et al., 2013; Thakali et al., 2015; Xie & Yan, 2013). The method 

uses a search radius distance (or bandwidth) defined by a kernel function. Several kernel 

density functions are provided in literature. The Bandwidth and the grid cell size are two main 

parameters which affect the results for the hotspot analysis(Hashimoto et al., 2016; Thakali et 

al., 2015). In this study, a grid cell of 30m X 30m was chosen as appropriate given the size of 

the study area and the processing time required for the identification of hot spot in ArcMap. 

Different bandwidths ranging to 200m to 1,895m were tested in this study to achieve a better 

visualisation of hot spots of pedestrian casualties within the study area and to study the 

sensitivity of hot spot patterns with respect to the bandwidth size. 

6. Exploratory spatial data analysis (ESDA) using ArcMap 

This study applied three local statistics of spatial autocorrelation and the planar kernel density 

estimation (KDE) to identify clusters of pedestrian casualties within the City of Cape Town. 

The applied statistics of spatial autocorrelation are the Anselin Local Moran’s I (also denoted 

in ArcMap as “Cluster and Outlier Analysis”), the Getis-Ord Gi* (or the “Hot Spot Analysis” 

in ArcMap) and the Optimized Hot Spot analysis. These statistics produce z-scores and p-

values that help to ascertain the presence of spatial associations between features under the 

study. Unlike the local statistics of spatial autocorrelation, the kernel density estimation (KDE) 

does not generate statistical inference on the existence of spatial associations between features.  

 The Anselin Local Moran’s I is able to identify both statistically significant clusters and spatial 

outliers of features. The tool displays two forms of clustering, the HH (i.e. features of high 

values surrounded by other features of high values or simply hot spots) and the LL (i.e. features 

of low values in close proximity to other features of low values also denoted as cold spots). In 

addition, the statistic also has the ability to highlight two forms of spatial outliers: the HL (i.e. 

features of high values surrounded by other features of low values) and the LH (i.e. features of 

low values surrounded by those of high values). The Anselin Local Moran’s was applied to 

features with an attribute value attached to them such as polygons (e.g. census suburbs with 

the associated count of pedestrian casualties that occurred within the boundaries of the suburbs) 

or point data (e.g. intersection point with the assigned index score for the design and the 

provision of pedestrian facilities)  

Stellenbosch University  https://scholar.sun.ac.za



116 

 

The Hot Spot Analysis tool or Getis-Ord Gi* was applied in a similar way as the Anselin Local 

Moran’s I to features with an attribute value attached to them. The tool allows the identification 

of statistically significant hot and cold spots by the use of the Getis-Ord G* Statistic. With this 

statistic, clusters are identified at different confidence levels (e.g. 90%, 95% and 99% 

confidence intervals). 

The Optimized Hot Spot Analysis tool was applied to incident data (i.e. feature with no attribute 

value attached to them such as crash points) or weighted features. The tool provides three 

options of incident data aggregation; (1) count of incident point within fishnet grids, (2) count 

of incident points within existing polygons (e.g. census suburbs in the context of this study) 

and (3) creation of weighted points by snapping nearby incident points. After running one of 

these aggregation procedures, the tool runs the Getis-Ord Gi* statistic using default parameters 

set or calculated by the tool.  

In addition to local statistics of spatial autocorrelation, the plan kernel density estimation 

(KDE) was applied to visualize where clusters of pedestrian casualties appear using six 

different bandwidth values: 200m; 400m, 500m; 800m, 1 000m and 1 895m. Different 

bandwidth values tested in this study were used in previous studies and the adoption of these 

bandwidth values was intended to allow a comparison between the findings of the current study 

and those from other scholars’ works. The density surface produced by the Optimized Hot Spot 

analysis tool was based on the optimal fixed distance of 1895 meters (value automatically 

calculated by the tool based on the characteristics of the input pedestrian crash dataset). As a 

result, kernel density estimation (KDE) with 1895 m bandwidth was included in the analysis 

to allow a comparison between hotspots identified by the KDE and the Optimized Hot Spot 

Analysis tool. Figure 3-15 presents the flowchart for the exploratory data analysis in ArcgGIS. 

7. Comparison of methods of cluster analysis 

The prediction accuracy index (PAI) was used in this study to evaluate the performance of each 

method used to detect hot spots. The method was developed by Chainey et al. (2008) and its 

application has spread to research in road (e.g. Thakali et al., 2015). The prediction accuracy 

index is calculated as follows: 

 𝑃𝐴𝐼 =
(

𝑛
𝑁) × 100

(
𝑚
𝑀) × 100

 

 

(30) 
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where n is the count of events (i.e. casualties in this studies) identified in hot spot regions; N is 

the total number of events; m is the length of the road network covered in hot spot regions; and 

M is the total length of road network in the study area. Higher values of PAI indicate a better 

performance of the technique for hot spot detection (e.g. Thakali et al., 2015). 
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Figure 3-15: Flowchart of exploratory spatial data analysis in ArcMap 
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3.2.6.4 Multivariate analysis 

This study applied two modelling techniques to investigate associations between the attributes 

of the built environment and the incidence of pedestrian crashes. These techniques are the 

Generalised linear modelling (GLM) and the geographically weighted regression (GWR) 

modelling. A description of these modelling techniques and the goodness of fit measures for 

the model comparison is provided in this section. A flowchart of exploratory spatial data 

analysis in ArcMap 

1. Generalised linear models (GLMs) 

Generalised Linear Models (GLMs) are the modelling techniques widely used in the context 

of traffic safety (Amoh-Gyimah et al., 2017). Crash data are count data (i.e. On-negative 

integers) for which the distribution often follows a Poisson or negative binomial (NB) 

distribution (Washington et al., 2010). A GLM usually comprises three components: a random 

component; a systematic component; and a link function that connects the random and 

systematic components to represent a linear prediction (Lord & Persaud, 2000). For the Poisson 

distribution, the underlying assumption is that the variance is equal to the mean of observations 

(Xu & Huang, 2015). The Poisson distribution is the most common starting point to model 

crash outcomes (Lord & Mannering, 2010; Washington et al., 2010).  

For the Poisson regression model applied in this study, the probability of a census suburb i (i.e. 

spatial unit of analysis) having  𝑦𝑖 number of pedestrian casualties per unit of time period (i.e. 

three years in this study) is given by the following formula: 

 𝑃(𝑦𝑖) =
𝑒𝑥𝑝(−𝜆𝑖)𝜆𝑖

𝑦𝑖

𝑦𝑖!
 (31) 

where 𝑃(𝑦𝑖) is the probability of a census suburb 𝑖 having 𝑦𝑖  number of pedestrian casualties 

over a three-year period with the underlying Poisson mean 𝜆𝑖. The term 𝜆𝑖 denotes the expected 

number of pedestrian casualties in a census suburb 𝑖 over a three-year period. The Poisson 

parameter 𝜆𝑖 is modelled as a function of explanatory variables 𝑥𝑖 , of which the most widely 

used functional form is written as follows:  

 𝑙𝑜𝑔(𝜆𝑖) = 𝛽0 + 𝛽𝑥𝑖 + 𝜀𝑖 
 

(32) 
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where 𝛽0 is the intercept, 𝑥𝑖   is a row vector of explanatory variables for census suburb 𝑖,  𝛽 is 

a row vector of coefficient estimate of model covariates 𝑥𝑖 and 𝜀𝑖 is a random residual term or 

the error term which reflects heterogeneity that accounts for unobserved factors and other 

random disturbances such as omitted explanatory variables and intrinsic randomness (Huang, 

Zhou, Wang, Chang & Ma, 2017).  

However, the underlying assumption that the variance is equal to the mean is not often upheld 

when modelling count data such as traffic crashes. In many instances, the variance exceeds the 

mean of crash counts and this phenomenon is referred to as over-dispersion of the distribution. 

To account for the issue of over-dispersion, the negative binomial (NB) regression modelling 

has widely been applied. To estimate the NB regression model, Poisson parameter 𝜆𝑖 is 

specified as a function of explanatory variables plus a gamma-distributed error term (Amoh-

Gyimah et al., 2017). Using a log-linear function, the NB regression model can be specified 

as:  

 𝑙𝑜𝑔(𝜆𝑖) = 𝛽0 + 𝛽𝑥𝑖 + 𝜀𝑖 + 𝜃𝑖 
 

(33) 

Where 𝜃0 is a gamma-distributed error term with mean 1 and variance 𝛼; 𝜆𝑖 is the parameter 

of a Poisson distribution (i.e. expected number of pedestrian casualties in a census suburb 𝑖); 

𝛽 is a row vector of coefficient estimate of model covariates. The addition of the gamma-

distributed error term allows the variance to differ from the mean to the extent that 𝑣𝑎𝑟(𝑛𝑖) =

𝜆𝑖 + 𝛼𝜆𝑖
2
 (Amoh-Gyimah et al., 2017; Xu & Huang, 2015).  

2. Geographically Weighted Regression (GWR) models 

In addition to the Generalised Linear Models, this study employed another modelling approach, 

the Geographically Weighted Regression (GWR) Model to quantify the associations between 

the aspects of the built environment and pedestrian crash incidence. The particularity of this 

modelling approach lies in its ability to address the issue of spatial correlation and stationary 

relationships between explanatory variables and outcome variable (Amoh-Gyimah et al., 2017; 

Fotheringham et al., 2002). This study applied the geographically weighted regression (GWR) 

modelling approach to develop models that are able to allow parameter estimates to vary across 

the study area.  

The conventional approach to the empirical analyses of spatial data is to build a global model 

that assumes homogeneous (stationary) cross-spatial relationships between dependent and 
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independent variables (Lewandowska-Gwarda, 2018). The global regression model is 

expressed mathematically in the following form:  

 𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑘𝑥𝑖𝑘 + 𝜀𝑖

𝑘

 (34) 

where 𝑦𝑖   is the explanatory variable is observed in census suburb 𝑖; 𝛽0  is the intercept; 𝑘 is 

the total number of explanatory variables; 𝛽𝑘 is the parameter of the 𝑘th explanatory variable 

observed in census suburb 𝑖; 𝜀𝑖 is the error term for the estimation in census suburb 𝑖. The row 

vector of coefficient estimate 𝛽𝑘 is estimated globally (for the entire study area) and does not 

change across the study area. Therefore, this model is called a “global” model (Zhang et al., 

2015).  

In the GWR modelling approach, local rather than parameters 𝛽 are estimated by extending 

this traditional regression equation as follows: 

 𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘 + 𝜀𝑖

𝑘

 (35) 

where (𝑢𝑖 , 𝑣𝑖) means the two-dimensional coordinates of the centroid of the 𝑖th location (i.e. 

census suburb in this study) in space; 𝛽𝑘(𝑢𝑖, 𝑣𝑖) is unknown functions of geographical locations 

and 𝜀𝑖is the error term with mean zero and common variance 𝜎2. 𝛽𝑘(𝑢, 𝑣) are locally estimated 

at each location (𝑢𝑖 , 𝑣𝑖) by the weighted least-squares procedure in which some distance-decay 

weights are used. Each set of the estimated coefficients at n locations can produce a map of 

variation which may give useful information on non-stationarity of the regression relationship. 

Spatial heterogeneity of relationships between explanatory variables and the outcome variable 

was explored through a comparison of estimates of local models and those in the global model 

developed for the entire study area. The global models were estimated by the use of Ordinary 

Least Square (OLS) tool implemented in ArcMap 10.3.1. With OLS, a single (i.e. global) 

coefficient is estimated for each explanatory variable and a number of other parameters (e.g.  

Standard errors, t-statistic, the probability (p-value) indicating statistical significance, Variance 

Inflation Factor (VIF) and robust probability) are generated in the output report as well. Unlike 

the global parameters estimated by OLS, GWR Models enables local variations in parameter 

estimates across the study area. This means that the regression coefficients  𝛽𝑘 take different 

value for each geographic unit of analysis.  
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The initial step for running GWR Models and interpreting their results was to estimate 

parameters of the global models using candidate variables suggested by the Exploratory 

Regression tool. The global models were run by the use of the OLS tool implemented in 

ArcMap 10.3.1. 

3.2.6.5 Crash data modelling process 

This section presents steps followed in the Generalised Linear and Geographically Weighted 

Regression (GWR) Modelling processes as illustrated in Figure 3-17.  

1. Importing data into the modelling tools 

The first step of modelling process was importing prepared data into the statistical analysis 

tool. For the Generalised Linear Modelling procedure, data were imported from Excel 

spreadsheets into STATISTICA software tool. For the GWR modelling procedure, data were 

imported from Excel spreadsheets into ArcMap.  

2. Running the exploratory data analysis  

For the Generalised Linear Modelling, Exploratory Data Analysis (EDA) involved the 

following steps:  

 Checking missing data and other mistakes; 

 Univariate visualization of each variable of the dataset, with summary statistics; 

 Bivariate visualization (e.g. correlational analysis) and summary statistics to study 

relationships between each exploratory variable and the outcome variable as well as 

relationships among exploratory variables (i.e. assessment of multicollinearity); 

 Checking assumptions associated with model fitting (e.g. equality of mean and variance 

of data); 

 Identifying the most influential variables; 

For GWR modelling, Exploratory Spatial Data analysis (ESDA) was applied to spatial data 

and this entailed the following steps:  

 Visualize spatial data through maps and graphs (e.g. choropleth maps, histograms, 

charts, boxplots, etc.); 

 Identify patterns of spatial association and spatial clustering through spatial 

autocorrelation and regression analysis; 
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 Detect spatial outliers; 

 Check assumptions associated with model fitting (e.g. a normal distribution of errors 

for GWR models); 

 Examine other spatial patterns such as spatial heterogeneity across the study area. 

3. Selecting candidate variable to include into the modelling process 

i. Selecting variables for Generalised Linear Models 

Factor analysis and correlational analysis were used to explore a set of 110 variables included 

in the overall dataset comprising information on pedestrian casualties and the aspects of the 

built environment all aggregated at the census suburb level. Factor Analysis was supplemented 

by Pearson correlation coefficient and Spearman test firstly to assess how each explanatory 

variable is correlated to the outcome variable and secondly to detect potential predictors with 

significant associations in the models. This section describes specifically the technique of 

Factor Analysis applied in this study to select the most influential variables to include into the 

Generalised Linear Modelling process. 

Definition of Factor Analysis 

Factor analysis is a mathematical technique used to reduce a large number of variables into a 

smaller set of latent variables (known as “factors”) based on shared variance (Child, 2006; 

Loehlin & Beaujean, 2017; Yong & Pearce, 2013). “Factors” (also referred to as “latent 

variables”) represent clusters of variables that correlate highly with each other (Field, 2013). 

Factor analysis consists of two main factor analysis techniques: Exploratory Factor Analysis 

(EFA) and Confirmatory Factor Analysis (CFA) (Child, 2006; Yong & Pearce, 2013). While 

the EFA attempts to uncover complex patterns of a large set of variables by exploring the 

underlying structure of the dataset and testing predictions, the CFA involves hypothesis testing 

techniques and uses path analysis diagrams to represent variables and factors (Child, 2006; 

Cudeck, 2000; Field, 2013; Hoyle, 2000). 

Choosing the Factor Analysis method 

Factor analysis was used in this study for two purposes: (1) to explore interrelationships among 

explanatory variables (i.e. identify variables that have more in common with each other) and 

(2) to reduce the number of explanatory variables into fewer variables that are manageable for 

the modelling process. Hence, the Exploratory Factor Analysis (EFA) was selected as the factor 

analysis technique appropriate for the purposes of the analysis.  
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Theoretical framework of Factor Analysis 

The total variance of a particular variable consists of three components: variance that is shared 

with other variables (common variance); variance that is specific to that variable (unique 

variance); and error or random variance (sometimes referred to as unreliability of variance) 

which is also specific to one variable (Field, 2013; Yong & Pearce, 2013). The proportion of 

common variance present in a variable is referred to as the “communality”. In such a way, a 

variable with no unique variance and error variance would have a commonality of 1 while a 

variable that shares none of its variance with other variables would have a communality of 0 

(Field, 2013; Yong & Pearce, 2013). The concept of communality is very important in factor 

analysis as the analysis is concerned by finding common variance (i.e. communalities between 

variables). Accordingly, variables with low communalities (less than 0.20 so that 80% variance 

is unique) are usually eliminated from the analysis.  

Graphical representation 

Factors are represented in a coordinate system by the axes, and variables are lines or vectors 

(Cattell, 1973). When a variable is in close proximity to a certain factor, this means that the 

variable is associated with that particular factor. The strength of the relationship between the 

variable and each factor is portrayed by the coordinates of that variable along each axis. 

Variables that have large coordinates on the same axis are assumed to measure different aspects 

of some common underlying dimension. The coordinate of a variable along a classification 

axis is known as a “factor loading” (Field, 2013). For instance, Figure 3-16 illustrates factor 

analysis of untransformed demographic variables included in the modelling process in this 

study. All 13 variables can reduced to two factors.  The circles represent clusters of variables 

that have higher loading factor loadings (i.e. a strong correlation) which can be represented by 

a single variable (or a factor). The first cluster loads onto factor 1 and consists of (1) population 

number; (2) number of households; (3) population younger than 15 years old; (4) population 

in the 15-24 age group; and (5) population in the 25-54 age group. The second cluster loads 

onto factor 2 and includes: (1) Coloured population; (2) population with other ethnicity; and 

(3) population aged 55 years and older. When there are three factors within the data, a third 

factor is represented by a third axis, creating thus a 3-D graph.  
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Figure 3-16: Example of graphical representation of factor loading for demographic variables 
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Procedure for Factor Analysis 

Without going into the detail about the computational aspects of factor analysis, 5 main steps 

involved in factor analysis are (1) descriptive statistics; (2) factor extraction; (3) factor rotation; 

(4) factor scores; and (5) Options. Further computational details for these steps can be found 

in Field (2013) and in Yong and Pearce (2013). Factor Analysis was run by using 

STATISTICA software tool.  

ii. Selecting variables for GWR Models 

Before the modelling process, a test for multicollinearity between candidate explanatory 

variables was run by using the Exploratory Regression tool implemented in ArcMap. This tool 

runs diagnostic tests on the candidate explanatory variables and provides a summary which is 

useful in choosing variables with greater performance (highest adjusted R-squared values). The 

tool also highlights variables which exhibit severe multicollinearity. The Ordinary Least 

Square (OLS) tool implemented in ArcMap was applied to the best passing models to provide 

global models (with a single coefficient for each variable included).Subsequently, the same 

models were run using the Geographically Weighted Regression tool also implemented in 

ArcMap. Using the t-test, the local estimates from GWR models were compared with global 

estimates from OLS models to evaluate spatial heterogeneity of relationship across the study 

area. The absence of spatial heterogeneity was confirmed when the t-test showed non-

significant results at 95 percent confidence interval (i.e. p>0.05) for a particular explanatory 

variable.  

4. Data transformation 

The Exploratory Data Analysis (ESDA), Exploratory Spatial Data Analysis (ESDA) and Factor 

Analysis helped to identify variables with distributional problem (problems with normality), 

outliers, lack of linearity or unequal variance and multicollinearity among exploratory 

variables. Data transformation was adopted to correct these problems and to improve model 

results by allowing models to include a bigger number of explanatory variables. Two types of 

transformation were applied to explanatory variables: Log transformation for the variable 

“population” and the use of proportion for variables that can be broken down into categories. 

However, certain variables were not transformed using proportions if they represent a single 

category of an aspect (e.g. roundabouts/mini-circles, ratio of intersections to culs-de-sacs, 

population density street density and entropy index) or if the variable is a specific measure or 

proxy of an a particular aspect (e.g. number of intersections with more than three legs is used 
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as a proxy of urban design). As certain census suburbs have no population (zero population), a 

log value of zero could not be computed. Subsequently, a constant of 1 was added to all 

population data (adding 1 to the population number of each census suburb). Therefore, the log 

transformation used the following formula:  

 
𝐿𝑜𝑔(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) = 𝑙𝑜𝑔(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 + 1) (36) 

5. Selecting the best performing models 

For the Generalised Linear Modelling, numerous test trials were conducted in order to find out 

the best model for each dataset of pedestrian casualties.  For each candidate model, the 

prediction performance was assessed by using a number of goodness-of-fit measures which tell 

how well the model fits the data. For the Poisson Regression model and the Negative Binomial 

model, the STATISTICA software tool generated a number of goodness-of-fit measures such 

as the ratio of the deviance to the degrees of freedom (deviance/df), the Pearson chi-Square, 

the Akaike’s Information Criterion (AIC), the Bayesian Information criterion (BIC) and the 

corrected version of the Akaike’s Information Criterion (AICc). Competing models were 

compared using these measures of goodness-of-fit. A model that provided a ratio of the 

deviance to the degree of freedom close to one was chosen as a better fit to the observed data 

(El-Basyouny & Sayed, 2009; Kim et al., 2007). When comparing the performance of many 

models, AIC, AICc and BIC are the measures often used to compare the performance of 

models. The model with lowest values of AIC, AICc or BIC is regarded as the best model since 

higher values are indicative of a failure of model to fit the data (Burnham, Anderson & 

Huyvaert, 2011; Washington et al., 2010). Following this, the final GLM models presented in 

this studies are the ones that had the lowest values of AIC, AICc or BIC or simply put, the best 

performing models. 

With respect to GWR modelling, the goodness-of-fit measures generated by the GWR tool 

include the local R2 and the corrected Akaike’s Information Criterion (AICc). The GWR model 

performance can also be assessed by visualizing mapped residuals (e.g. raw residuals or 

standardised residuals).  
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Figure 3-17: Steps of modelling process followed in the study 
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Chapter 4: Results and discussions 

This section presents the results and discussions from the three types of analysis applied in this 

study. The analysis involved three analytical approaches which are: 

 Univariate and bivariate analyses 

 Geospatial analysis and 

 Multivariate analysis. 

4.1 Univariate and bivariate analyses of pedestrian casualties 

4.1.1 Analysis of pedestrian casualty frequency 

4.1.1.1 Temporal variation of pedestrian casualty frequency 

Crash data analysed in this study comprises 13 853 pedestrian casualties (i.e. killed, injured 

and those whose injury severity was unknown or not recorded) collected by the police in Cape 

Town between 2012 and 2014. Of these pedestrian casualties, 4 672 casualties (33.7 percent) 

were recorded in 2012, 4 529 casualties (32.7 percent) were recorded in 2013 and 4 652 

casualties (33.6 percent) occurred in 2014. In terms of annual crash frequency, these figures 

are equivalent to an average crash frequency of 4 618 pedestrians involved in collisions with 

vehicles each year in the Cape Town area. An analysis of annual frequencies of pedestrian 

causalities recorded in Cape Town between 2005 and 2014 shows a decrease of 28.56 percent 

(from 6 512 pedestrian casualties in 2005 to 4 652 pedestrian casualties in 2014) However, 

trends in pedestrian casualties did not vary significantly over the last 3-year period selected for 

this study (see Figure 4-1). By using the Cape Town’s population size (i.e. the population size 

in 2013) as a proxy measure of pedestrian exposure, an annual rate of 123.5 pedestrian 

casualties per 100 000 population is found for the entire study area. 
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Figure 4-1: Frequency of pedestrian casualties in Cape Town for the 2005-2014 period 

4.1.1.2 Pedestrian casualty frequency by gender and age 

As expected, male pedestrians were found overrepresented in pedestrian crashes. The analysed 

crash data comprise 6 274 (45.3 percent) male pedestrian victims and 3 761 female victims. 

These figures indicate a male-to-female ratio of 1.67 to 1. The gender of the victim was 

recorded as “unknown” for 3 761 (27.0 percent) pedestrians involved in road traffic crashes. 

The distribution of pedestrian casualties by gender is illustrated in Figure 4-2.  

 

Figure 4-2: Pedestrian casualties by gender 

The analysed crash data comprises 8 310 pedestrian casualty cases with age of 0 years records 

and these constitute 60 percent of all reported pedestrian casualties. With the exclusion of these 

cases (since they appear to be unrealistic), the mean age for the remaining 5 543 cases is 29.5 

years (SD=18.532). The lowest age observed for the analysed crash data is 1 year and the 

highest age is 108 years. It is not certain whether this is accurate- more likely it is an error and 

should have been either 18 years or 10 years. The analysis of casualties according to the age of 

pedestrians is carried out at three levels of analysis: by analysing the entire sample of pedestrian 
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casualties, by restricting the analysis to killed and seriously injured (KSI) pedestrians and by 

considering only cases in which injuries were reported as fatal (i.e. coded as “Killed”). In 

addition, gender was also included in the analysis of these three datasets. This section presents 

only the analysis of the entire sample of pedestrian casualties and further analyses related to 

injury severity are presented later in Section 4.1.2.  

Figure 4-3 presents the distribution of pedestrian casualties according to age groups and gender. 

It is important to note that the overall figures include cases with unknown gender which are 

not represented in Figure 4-3. The results show disproportionate casualty frequencies across 

age groups and genders. Looking at the overall figures, the group with the highest casualty 

frequency are pedestrians aged between 6 and 10 years, followed by those aged between 26 

and 30 years and then the 31-35 year group. Interestingly, the casualty frequencies for 11-15 

and 16-20 age groups are far lower than that of adjacent age groups in which pedestrian casualty 

frequency peaks. The frequency of casualties reduces dramatically among pedestrians older 

than 55 years old and part of this reduction may be due to the lower rate of exposure they 

experience.  

 

Figure 4-3: Pedestrian casualties by age and gender 
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Figure 4-3 and Table 4-1 show a disproportionate casualty frequency between male and female 

pedestrians. The male-to-female ratio for pedestrian casualties varies across the age groups (see 

Table 4-11) with values greater than one in almost all age groups. Examining the top five age 

groups with the highest male-to-female ratio for pedestrian casualties (41-45 age group), the 

casualty frequency among males is nearly double that of females. Males are also at a higher 

casualty risk than females in the 31-35 age group (M:F=1.90), the 6-10 age group (M:F=1.89), 

the 66-70 age group (M:F=1.73) and the 26-30 age group (M:F=1.66). Interestingly, the 

casualty frequency among females emerges approximately twice as high as that of males in the 

76-80 age group, however here the actual numbers are very small. 

Table 4-1: Pedestrian casualties by age and gender 

Age group Female Male Unknown Total M:F 

1-5 185 282 66 533 1.52 

6-10 198 375 89 662 1.89 

11-15 144 170 44 358 1.18 

16-20 138 180 30 348 1.30 

21-25 179 260 48 487 1.45 

26-30 205 341 84 630 1.66 

31-35 165 313 66 544 1.90 

36-40 144 227 50 421 1.58 

41-45 119 249 44 412 2.09 

46-50 112 182 40 334 1.63 

51-55 108 170 28 306 1.57 

56-60 72 114 21 207 1.58 

61-65 49 57 18 124 1.16 

66-70 26 45 3 74 1.73 

71-75 20 27 5 52 1.35 

76-80 13 6 2 21 0.46 

81+ 12 17 1 30 1.42 
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4.1.1.3 Pedestrian casualty frequency by time of day 

The analysis of pedestrian casualties by time of crash occurrence indicates that pedestrians are 

at the highest risk of being involved in road crashes during peak traffic times. As illustrated in 

Figure 4-4, the highest incidence of pedestrian crashes is observed between 7:00 AM and 8:00 

AM. Seven percent of the recorded pedestrian casualties occurred during this time period. 

Another peak of pedestrian casualties emerges during early evening hours, stretching over the 

time period from 4:00 PM until 7:00 PM. The lowest incidence of pedestrian crashes is 

observed during early hours of the morning from 3:00 AM until 5:00 AM (see Figure 4-4).  

 

Figure 4-4: Pedestrian casualties by time of day in Cape Town 
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4.1.1.4 Pedestrian casualty frequency by day of week 

Figure 4-5 shows the distribution of daily pedestrian casualty frequency over a virtual week, 

with a peak being identified over Saturday (2 340 pedestrian casualties) and Friday (2 335 

pedestrian casualties). The lowest frequencies is identified over Wednesday (1 751 pedestrian 

casualties) and over Thursday and Sunday (1 821 pedestrian casualties).  

 

Figure 4-5: Pedestrian casualty frequency by day of week 

After identifying a disproportionate distribution of pedestrian casualties over the week, the 

daily frequencies of pedestrian casualties were generated from the 3-year casualty dataset and 

mean daily frequencies were calculated. The descriptive statistics of the daily counts of 

pedestrian casualties is presented in Table 4-2 and Figure 4-6.  

Table 4-2: Descriptive statistics of daily pedestrian casualty counts 

Day of week Mean 
Std. 

Deviation N 

Monday 12.58 4.798 146 

Tuesday 11.74 3.569 151 

Wednesday 11.05 3.746 149 

Thursday 11.64 4.372 151 

Friday 15.05 4.429 149 

Saturday 15.01 5.375 153 

Sunday 11.54 4.347 153 
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Total 12.64 4.790 1096 
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Holiday dates were included in the analysis to allow more insights on crash risk on these 

particular days. It is worth noting that this analysis included only 12 national public holidays 

for each year of the 2012-2014 period as determined by the Public Holidays Act (Act no36 of 

1994) (South African Government, n.d.). For instance, the analysis did not include all dates of 

school holidays or Christmas holiday season. Data on holiday dates was collected from the 

official website of the South African Government (South African Government, n.d.) and were 

checked using other websites  such as  www.timeanddate.com. 

 

Figure 4-6: Estimated Marginal Means of daily casualty count 

Individual mean differences were analysed using the Analysis of Variance (ANOVA) test to 

ascertain whether there a statistically significant difference among the mean values of daily 

pedestrian casualties. Two underlying assumptions of the ANOVA test, namely the normality 

of distributions and homogeneity of variance, were tested in IBM-SPSS Statistics and the test 

results determined the choice of the Post-hoc test applied in the analysis. The Post-hoc test 

provided specific information on which means are statistically different form each other. 

Results from the Levene’s test for homogeneity of variance are presented in Table 4-3.
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Table 4-3: Levene's Test for homogeneity of variance 

Levene's Test of Equality of Error Variancesa 

  
Levene 
Statistic 

df1 df2 Sig. 

Daily casualty 
count 

Based on Mean 6.399 7 1088 0.000 

Based on Median 5.372 7 1088 0.000 

Based on Median and with 
adjusted df 

5.372 7 861.627 0.000 

Based on trimmed mean 5.892 7 1088 0.000 

Tests the null hypothesis that the error variance of the dependent variable is equal across groups. 

a. Dependent variable: Daily casualty count 
 

The results in Table 4-3 indicate that the Levene’s test is significant at the 5% level (i.e. p<0.05) 

which implies that the null hypothesis (i.e. the variance is equal across different days of week) 

is rejected and the assumption of homogeneity of variance is negated. As presented previously 

in Section 3.2.6.2 and in Figure 3-11 (on Page 101), the choice of an appropriate Post Hoc test 

depends on the assumptions of equal variances and equal group sample sizes. For this analysis, 

the sample size differs (i.e. numbers in the column labelled “N” in Table 4-2) across different 

groups which are days of week in this particular context. Following the approach presented in 

Figure 3-11, the Games-Howell test was chosen as an appropriate post hoc procedure to test 

mean differences when variances and group sample sizes are not equal. The results from the 

Games-Howell post hoc test are presented in Table 4-4. The Games-Howell post hoc procedure 

compared means of all groups (days of week) with each other. Marked p-values (labelled as 

“Sig.”) are significant at the 5% level (p<0.05). 

Overall, the mean values of daily pedestrian casualty counts were found consistent over 

Mondays, Tuesdays, Wednesdays, Thursdays, Sundays and holidays (i.e. mean differences 

over these days are not significant at the 5% level). Pedestrian casualties occurred more 

frequently over Fridays and Saturdays and the mean daily frequencies on these days were 

similarly higher compared with other days of week (p<0.05). The results from the Games-

Howell post hoc test are illustrated in Table 4-4. The descriptive statistics and the post hoc test 

on the dataset of daily pedestrian casualty counts show apparently two distinct groups; the 

Friday and Saturday group and the rest of other days of week. The frequency of pedestrian 

casualties emerges to be particularly higher over Fridays and Saturdays. Pedestrian casualty 

frequency is seen to be consistent through the rest of other days of week. 
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Table 4-4: Results from the Games-Howell Post Hoc Test 

(I) Day of week 
Mean 
Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Mon Tue 0.83 0.492 0.691 -0.67 2.34 

Wed 1.53 0.502 0.051 0.00 3.06 

Thu 0.93 0.533 0.654 -0.69 2.56 

Fri -2.48* 0.538 0.000 -4.12 -0.84 

Sat -2.44* 0.589 0.001 -4.23 -0.64 

Sun 1.04 0.530 0.511 -0.58 2.66 

Holid 0.42 1.145 1.000 -3.19 4.02 

Tue Mon -0.83 0.492 0.691 -2.34 0.67 

Wed 0.69 0.423 0.723 -0.60 1.98 

Thu 0.10 0.459 1.000 -1.30 1.50 

Fri -3.31* 0.465 0.000 -4.73 -1.89 

Sat -3.27* 0.523 0.000 -4.87 -1.67 

Sun 0.21 0.456 1.000 -1.19 1.60 

Holid -0.42 1.112 1.000 -3.94 3.10 

Wed Mon -1.53 0.502 0.051 -3.06 0.00 

Tue -0.69 0.423 0.723 -1.98 0.60 

Thu -0.60 0.470 0.910 -2.03 0.84 

Fri -4.01* 0.475 0.000 -5.46 -2.56 

Sat -3.97* 0.532 0.000 -5.59 -2.34 

Sun -0.49 0.467 0.967 -1.91 0.94 

Holid -1.11 1.117 0.973 -4.64 2.42 

Thu Mon -0.93 0.533 0.654 -2.56 0.69 

Tue -0.10 0.459 1.000 -1.50 1.30 

Wed 0.60 0.470 0.910 -0.84 2.03 

Fri -3.41* 0.508 0.000 -4.96 -1.86 

Sat -3.37* 0.562 0.000 -5.09 -1.66 

Sun 0.11 0.500 1.000 -1.42 1.63 

Holid -0.52 1.131 1.000 -4.09 3.05 

Fri Mon 2.48* 0.538 0.000 0.84 4.12 

Tue 3.31* 0.465 0.000 1.89 4.73 

Wed 4.01* 0.475 0.000 2.56 5.46 

Thu 3.41* 0.508 0.000 1.86 4.96 

Sat 0.04 0.566 1.000 -1.69 1.77 

Sun 3.52* 0.505 0.000 1.98 5.06 

Holid 2.89 1.134 0.196 -0.68 6.47 

Sat Mon 2.44* 0.589 0.001 0.64 4.23 

Tue 3.27* 0.523 0.000 1.67 4.87 

Wed 3.97* 0.532 0.000 2.34 5.59 

Thu 3.37* 0.562 0.000 1.66 5.09 

Fri -0.04 0.566 1.000 -1.77 1.69 

Sun 3.48* 0.559 0.000 1.77 5.18 

Holid 2.85 1.158 0.232 -0.79 6.50 

Sun Mon -1.04 0.530 0.511 -2.66 0.58 

Tue -0.21 0.456 1.000 -1.60 1.19 

Wed 0.49 0.467 0.967 -0.94 1.91 

Thu -0.11 0.500 1.000 -1.63 1.42 

Fri -3.52* 0.505 0.000 -5.06 -1.98 

Sat -3.48* 0.559 0.000 -5.18 -1.77 

Holid -0.62 1.130 0.999 -4.19 2.94 

Holid Mon -0.42 1.145 1.000 -4.02 3.19 

Tue 0.42 1.112 1.000 -3.10 3.94 

Wed 1.11 1.117 0.973 -2.42 4.64 

Thu 0.52 1.131 1.000 -3.05 4.09 

Fri -2.89 1.134 0.196 -6.47 0.68 

Sat -2.85 1.158 0.232 -6.50 0.79 

Sun 0.62 1.130 0.999 -2.94 4.19 
Based on observed means. 
 The error term is Mean Square (Error) = 20.718. 

*. The mean difference is significant at the .05 level. 
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4.1.1.5 Pedestrian casualty frequency by week of month 

Three categorical variables termed “pay week”, “second week after pay week” and “other 

week” were included in the analysis of weekly pedestrian casualty counts to assess fluctuations 

of pedestrian casualty frequency depending on financial situation. Weekly pedestrian casualty 

frequency is defined as a sum of pedestrian casualties occurring from Monday at 00:00 AM to 

Sunday at 11:59 PM. “Pay week” is defined as the week (from Monday to Sunday) that contains 

the first date on a month (e.g. 1st of March). The “second week after pay week” is defined as 

the week following the pay week. “Other week” denotes the remaining weeks of a month other 

than “pay week” and “second week after pay week”. The descriptive statistics of weekly 

pedestrian casualty frequencies is presented in Table 4-5.  

Table 4-5: Descriptive statistics of weekly pedestrian casualty count 

Dependent Variable: weekly count of pedestrian casualties 

Weekly financial status Mean Std. Deviation N 

Pay week 98.19 12.801 36 

2nd week after pay week 87.29 13.503 35 

Other week 85.09 12.186 85 

Total 88.61 13.638 156 

The mean differences among the three groups of categorical variables were tested using the 

ANOVA test. The results from the Levene’s test for homogeneity of variance demonstrate that 

the test is not significant (p>0.05), suggesting that the null hypothesis (i.e. equal variance across 

the groups) is valid (see Table 4-6). 

Table 4-6: Levene's Test for homogeneity of variance 

Levene's Test of Equality of Error Variancesa 

  
Levene 
Statistic 

df1 df2 Sig. 

weekly count of 
pedestrian 
casualties 

Based on Mean 0.245 2 153 0.783 

Based on Median 0.225 2 153 0.799 

Based on Median 
and with adjusted df 

0.225 2 151.094 0.799 

Based on trimmed 
mean 

0.241 2 153 0.786 

Tests the null hypothesis that the error variance of the dependent variable is equal across groups. 

a. Dependent variable: weekly count of pedestrian casualties 
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Following the approach of post hoc procedure presented in Figure 3-11, the Bonferroni post 

hoc test was chosen for its suitability to test individual mean differences across groups with 

equal variances and unequal sample sizes. 

Table 4-7: Results from the Bonferroni Post Hoc Test 

Multiple Comparisons 

Dependent Variable: weekly count of pedestrian casualties 

Bonferroni 

(I) Weekly financial status 
Mean 

Difference (I-J) 
Std. 
Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Pay week 2nd week after 
pay week 

10.91* 2.998 0.001 3.65 18.17 

Other week 13.10* 2.512 0.000 7.02 19.18 

2nd week after 
pay week 

Pay week -10.91* 2.998 0.001 -18.17 -3.65 

Other week 2.19 2.537 1.000 -3.95 8.33 

Other week Pay week -13.10* 2.512 0.000 -19.18 -7.02 

2nd week after 
pay week 

-2.19 2.537 1.000 -8.33 3.95 

Based on observed means. 
 The error term is Mean Square (Error) = 159.530. 

*. The mean difference is significant at the .05 level. 

The Bonferroni post hoc test indicates that the mean value of weekly casualty counts over “pay 

weeks” is statistically different from that of other weeks of the month (i.e. “2nd week after pay 

week” and “other weeks”) at the 5% level. The test also shows that the individual mean 

differences between “2nd week after pay week” and “other weeks” are not statistically 

significant at the 5% level. This finding suggests that pedestrian casualties occurred more 

frequently over pay weeks compared with other weeks of the month. The mean differences 

across the three groups are illustrated in Figure 4-7. 
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Figure 4-7: Estimated Marginal Means of weekly count of pedestrian casualties 

4.1.1.6 Pedestrian casualty frequency by quarters of calendar year 

The 3-year dataset of weekly pedestrian casualties was broken down into four quarters of the 

calendar year to assess seasonal trends of pedestrian casualty frequencies. As illustrated in 

Figure 4-8, each quarter contains 13 weeks and each year comprises four quarters (labelled “1st 

quarter”, 2nd quarter” “3rd quarter” and “4th quarter”). For the 3-year study period, the sample 

size for each quarter comprises 39 variables which are weekly pedestrian casualty counts (i.e. 

the sample size for each individual quarter is 39).  

A plot of weekly counts of pedestrian casualties over different quarters of calendar year and 

for each year included in the analysis is displayed in Figure 4-8. The three plots displayed in 

this figure show weekly fluctuations in pedestrian casualties. On average, it can be noticed that 

higher weekly counts of pedestrian casualties are predominantly observed in the third quarter 

of calendar year. A glance at the three plots of the weekly frequencies of pedestrian casualties 

shows that overall fluctuations (i.e. difference between the least and highest weekly 

frequencies) emerge to be more pronounced over the third quarter of calendar year. However, 

when the plots for each year are analysed separately, the highest weekly frequencies of 

pedestrian casualties as well as more marked fluctuations are identified over the last quarter of 

the year 2014.  
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Figure 4-8: Weekly counts of pedestrian casualties across the quarters of calendar year 
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Table 4-8: Descriptive statistics of quarterly pedestrian casualty count 

Dependent Variable: Weekly count of pedestrian casualties 

Quarter of calendar year Mean 
Std. 

Deviation 
N 

1st quarter 82.95 13.157 39 

2nd quarter 89.21 10.556 39 

3rd quarter 93.10 14.906 39 

4th quarter 89.18 14.056 39 

Total 88.61 13.638 156 

The descriptive statistics of quarterly casualty data is presented in Table 4-8. The mean weekly 

counts of pedestrian casualties peaks over the 3rd quarter of calendar year (i.e. from July to 

September). The 3rd quarter includes two winter season months (July and August) with the 

month of September falling into the spring season in South Africa. The mean values of 

quarterly pedestrian casualties plotted in Figure 4-9 demonstrate a temporal variation in 

pedestrian casualty frequencies over different quarters of calendar year, with a peak being 

detected over the third quarter and a minimum mean value over the first quarter. 

 

Figure 4-9: Estimated Marginal Means of Weekly count of pedestrian casualties 
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The Levene’s test for homogeneity of variance is presented in Table 4-9. The test is not 

significant at the 5% level and the null hypothesis that variances across different quarters of 

the calendar year are equal is accepted.  

Table 4-9: Levene’s test for homogeneity of variance 

Levene's Test of Equality of Error Variancesa 

  
Levene 
Statistic 

df1 df2 Sig. 

weekly count of 
pedestrian casualties 

Based on Mean 1.253 3 152 0.293 

Based on Median 1.090 3 152 0.355 

Based on Median 
and with adjusted df 

1.090 3 142.369 0.356 

Based on trimmed 
mean 

1.254 3 152 0.292 

Tests the null hypothesis that the error variance of the dependent variable is equal across groups. 

a. Dependent variable: weekly count of pedestrian casualties 

The Bonferroni post hoc procedure was carried out to test whether individual means across 

different quarters of calendar year are statistically significant. The results from this test are 

indicated in Table 4-10. 

Table 4-10: Results from the Bonferroni Post Hoc test for quarterly pedestrian casualty data 

Multiple Comparisons 

Dependent Variable: Weekly count of pedestrian casualties 

Bonferroni 

(I) Quarter of calendar year 
Mean 

Difference (I-J) Std. Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

1st quarter 2nd quarter -6.26 3.005 0.234 -14.29 1.78 

3rd quarter -10.15* 3.005 0.006 -18.19 -2.12 

4th quarter -6.23 3.005 0.239 -14.26 1.80 

2nd quarter 1st quarter 6.26 3.005 0.234 -1.78 14.29 

3rd quarter -3.90 3.005 1.000 -11.93 4.14 

4th quarter 0.03 3.005 1.000 -8.01 8.06 

3rd quarter 1st quarter 10.15* 3.005 0.006 2.12 18.19 

2nd quarter 3.90 3.005 1.000 -4.14 11.93 

4th quarter 3.92 3.005 1.000 -4.11 11.96 

4th quarter 1st quarter 6.23 3.005 0.239 -1.80 14.26 

2nd quarter -0.03 3.005 1.000 -8.06 8.01 

3rd quarter -3.92 3.005 1.000 -11.96 4.11 

Based on observed means. 
 The error term is Mean Square (Error) = 176.076. 

*. The mean difference is significant at the .05 level. 
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The results from the Bonferroni post hoc test demonstrate that the mean difference is 

statistically significant (p<0.05) only between the 1st quarter and the 3rd quarter of calendar 

year. The difference between the mean values for the 1st quarter and the 3rd quarter is also 

visually apparent in Figure 4-9.  

4.1.2 Description of pedestrian casualties by injury severity 

4.1.2.1 Overall description of pedestrian injury severity 

Injury severity was assigned for almost all pedestrian casualties with the exception of only 60 

cases for which injury severity was recorded as unknown. The sample comprises 500 

pedestrian fatalities (3.6 percent); 3 502 pedestrian casualties (25.3 percent) with injuries rated 

as serious; 6 525 pedestrian casualties (47.1 percent) with injuries assigned as slight and 3 266 

cases (23.6 percent) in which the pedestrian did not sustain any injury resulting from a road 

crash (see Figure 4-10). Applying the 2013 population size as a proxy of pedestrian exposure 

to KSI and fatality figures, an annual rate of 35.7 KSI pedestrian casualties per 100 000 

population and an annual fatality rate of 4.5 per 100 000 population are found in this study.  

 

Figure 4-10: Distribution of pedestrian casualties by injury severity 

1. Injury severity by gender 

Table 4-11 and Figure 4-11 present the distribution of injury severity disaggregated by gender. 

The results show that male pedestrians are more likely to sustain severe injuries than females. 

While the proportion of male pedestrians in the sample is 62.2 percent (with the exclusion of 

cases in which gender is not known), male pedestrians represent 74.2 percent, 65.6 percent and 

59.1 percent of pedestrian fatalities, serious injuries and slight injuries, respectively. On the 
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contrary, while their proportion in the sample is only 37.8 percent, female pedestrians represent 

25.8 percent, 34.4 percent and 40.9 percent of fatalities, serious injuries and slight injuries, 

respectively. These figures suggest that male pedestrians are more likely to be overrepresented 

in more severe injuries (i.e. fatal and serious injuries) while female pedestrians tend to be 

overrepresented in slight injuries. 

Table 4-11: Distribution of injury severity by gender 

  

Injury severity 

Total No 
Injury 

Slight Serious Killed Unknown 

Gender of 
pedestrian 

Female Count 467 2163 1063 120 5 3818 

% within Injury 
severity 

37.8% 40.9% 34.4% 25.8% 41.7% 37.8% 

Male Count 768 3130 2024 345 7 6274 

% within Injury 
severity 

62.2% 59.1% 65.6% 74.2% 58.3% 62.2% 

Total 

Count 1235 5293 3087 465 12 10092 

% within Injury 
severity 

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

 

Figure 4-11: Distribution of pedestrian injury severity by gender
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2. Injury severity by ethnicity 

With respect to the ethnic group of pedestrians, the results show that Black African and 

Coloured pedestrians are more frequently involved in road crashes as pedestrians. Black 

African and Coloured casualties represent 36.8 percent and 30.8 percent of all pedestrian 

casualties, respectively. Pedestrian casualties among White and Asian people account for 3.1 

percent and 0.4 percent, respectively. The sample includes a significant proportion (28.7 

percent) of pedestrian casualty cases for which the ethnic group is not known (see Table 4-12).  

Table 4-12: Pedestrian casualties by ethnicity 

 Ethnic group 

Injury severity 

Total 
No 

Injury Slight Serious Killed Unknown  
Asian Count 16 25 13 1 0 55 

% within Ethnic group 0.5% 0.4% 0.4% 0.2% 0.0% 0.4% 

Black Count 503 2420 1894 274 6 5097 

% within Ethnic group 15.4% 37.1% 54.1% 54.8% 10.0% 36.8% 

Coloured Count 445 2504 1134 173 5 4261 

% within Ethnic group 13.6% 38.4% 32.4% 34.6% 8.3% 30.8% 

White Count 69 246 104 9 2 430 

% within Ethnic group 2.1% 3.8% 3.0% 1.8% 3.3% 3.1% 

Other Count 6 17 5 1 0 29 

% within Ethnic group 0.2% 0.3% 0.1% 0.2% 0.0% 0.2% 

Unknown Count 2227 1313 352 42 47 3981 

% within Ethnic group 68.2% 20.1% 10.1% 8.4% 78.3% 28.7% 

Total Count 3266 6525 3502 500 60 13853 

% within Ethnic group 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Figure 4-12 and Table 4-12  present the distribution of injury severity according to ethnic group 

of pedestrian casualties. An uneven distribution of injury severity across the ethnic groups is 

apparent particularly for the KSI casualties and for the “no injury category”. The highest 

frequencies of KSI pedestrian casualties as well as fatalities were identified among Black 

African and Coloured pedestrians.  

Of all pedestrian fatalities recorded in the sample, Black African pedestrians represent 54.8 

percent and Coloured pedestrians represent 34.6 percent (see Table 4-12). The proportions of 

KSI casualties for the respective ethnic groups are 54.1percent and 32.7 percent. Furthermore, 

an interesting finding has been higher proportions of injury severity recorded as “unknown” 

among Black African and Coloured pedestrians; 10.0 percent and 8.3 percent of casualties were 

recorded as unknown among these two groups, respectively (see Table 4-12).  
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Figure 4-12: Distribution of injury severity by ethnicity 

Having no injury reported as a result of a pedestrian crash was found to be related to a higher 

level of underreporting of other characteristics of the victim such age, gender and the ethnic 

group. Of pedestrian casualties with a no injury record, 68.2 percent also had no ethnicity 

recorded (see Table 4-12). Furthermore, 54 percent of all cases in which the gender of 

pedestrians was unknown had injury severity recorded as “No injury” and the gender of 

pedestrians was not known for 62.2 percent of all “No Injury” cases (see Table 4-13). Further 

investigation into the “no injury” records by personal communication with the Data Analyst 

within the Transport and Urban Development Authority (TDA) of the City of Cape Town 

revealed that “No injury” cases were classified by data capturers when there was no indication 

of the injury severity sustained by the pedestrian victim but there was an indication that the 
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Table 4-13: Cross-tabulation of injury severity and pedestrian gender 

Injury severity * Pedestrian gender Cross tabulation 

  

Gender of pedestrian 

Total Female Male Unknown 

Injury 
severity 

No Injury Count 467 768 2031 3266 

% within Injury severity 14.3% 23.5% 62.2% 100.0% 

% within Gender 12.2% 12.2% 54.0% 23.6% 

Slight Count 2163 3130 1232 6525 

% within Injury severity 33.1% 48.0% 18.9% 100.0% 

% within Gender 56.7% 49.9% 32.8% 47.1% 

Serious Count 1063 2024 415 3502 

% within Injury severity 30.4% 57.8% 11.9% 100.0% 

% within Gender 27.8% 32.3% 11.0% 25.3% 

Killed Count 120 345 35 500 

% within Injury severity 24.0% 69.0% 7.0% 100.0% 

% within Gender 3.1% 5.5% 0.9% 3.6% 

Unknown Count 5 7 48 60 

% within Injury severity 8.3% 11.7% 80.0% 100.0% 

% within Gender 0.1% 0.1% 1.3% 0.4% 

Total Count 3818 6274 3761 13853 

% within Injury severity 27.6% 45.3% 27.1% 100.0% 

% within Gender 100.0% 100.0% 100.0% 100.0% 

 

3. Pedestrian injury severity by day of week 

The examination of the distribution of injury severity across the days of week reveals that 

pedestrians are more likely to sustain severe injuries (i.e. KSI casualties) over the weekend (i.e. 

Saturday and Sunday). As indicated in Table 4-14 and Figure 4-13, the number of pedestrian 

fatalities peaks over the weekend, with 23 percent and 19.6 percent of all pedestrian fatalities 

occurring over Saturdays and Sundays, respectively. Significant proportions of pedestrian 

fatalities are also observed over Fridays and Thursdays representing 14.4 percent and 12.4 

percent, respectively. The lowest number of pedestrian fatalities (7.6 percent) is identified on 

Wednesdays. 
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Table 4-14: injury severity by day of week 

  

Injury severity 

Total 
No 

Injury Slight Serious Killed Unknown 

Day of 
week 

Mon Count 448 989 428 56 11 1932 

% within Injury 
severity 

13.7% 15.2% 12.2% 11.2% 18.3% 13.9% 

Tue Count 482 889 414 59 9 1853 

% within Injury 
severity 

14.8% 13.6% 11.8% 11.8% 15.0% 13.4% 

Wed Count 424 874 408 38 7 1751 

% within Injury 
severity 

13.0% 13.4% 11.7% 7.6% 11.7% 12.6% 

Thu Count 422 901 430 62 6 1821 

% within Injury 
severity 

12.9% 13.8% 12.3% 12.4% 10.0% 13.1% 

Fri Count 561 1126 564 72 12 2335 

% within Injury 
severity 

17.2% 17.3% 16.1% 14.4% 20.0% 16.9% 

Sat Count 549 961 706 115 9 2340 

% within Injury 
severity 

16.8% 14.7% 20.2% 23.0% 15.0% 16.9% 

Sun Count 380 785 552 98 6 1821 

% within Injury 
severity 

11.6% 12.0% 15.8% 19.6% 10.0% 13.1% 

Total Count 3266 6525 3502 500 60 13853 

% within Injury 
severity 

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

 

 

Figure 4-13: Distribution of injury severity by day of week 
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4. Pedestrian injury severity by month of year 

The month of the year in which pedestrian crashes occurred was recorded for all 13 853 

pedestrian casualties analysed in this study. The analysis of monthly frequencies of pedestrian 

casualties shows a peak in the month of August, with two minor peaks emerging in May and 

November. The lowest incidences of pedestrian casualties is observed over the period 

extending from December until February (see Table 4-15 and Figure 4-14). 

Table 4-15: Pedestrian injury severity by month of year 

  

Injury severity 

Total 
No 

Injury Slight Serious Killed Unknown 

Month of 
crash 
occurrence 

January Count 205 523 274 25 5 1032 

% within Month  19.9% 50.7% 26.6% 2.4% 0.5% 100.0% 

February Count 227 509 266 30 11 1043 

% within Month  21.8% 48.8% 25.5% 2.9% 1.1% 100.0% 

March Count 271 565 263 38 6 1143 

% within Month  23.7% 49.4% 23.0% 3.3% 0.5% 100.0% 

April Count 254 509 288 54 7 1112 

% within Month  22.8% 45.8% 25.9% 4.9% 0.6% 100.0% 

May Count 296 578 311 52 2 1239 

% within Month  23.9% 46.7% 25.1% 4.2% 0.2% 100.0% 

June Count 265 538 296 41 6 1146 

% within Month  23.1% 46.9% 25.8% 3.6% 0.5% 100.0% 

July Count 301 549 283 41 8 1182 

% within Month  25.5% 46.4% 23.9% 3.5% 0.7% 100.0% 

August Count 308 594 313 48 3 1266 

% within Month  24.3% 46.9% 24.7% 3.8% 0.2% 100.0% 

September Count 271 565 311 55 3 1205 

% within Month  22.5% 46.9% 25.8% 4.6% 0.2% 100.0% 

October Count 316 562 298 34 0 1210 

% within Month  26.1% 46.4% 24.6% 2.8% 0.0% 100.0% 

November Count 298 577 313 44 2 1234 

% within Month  24.1% 46.8% 25.4% 3.6% 0.2% 100.0% 

December Count 254 456 286 38 7 1041 

% within Month  24.4% 43.8% 27.5% 3.7% 0.7% 100.0% 

Total Count 3266 6525 3502 500 60 13853 

% within Month  23.6% 47.1% 25.3% 3.6% 0.4% 100.0% 

The distribution of injury severity across the months of the year is presented in Figure 4-14. 

The results indicate that injury severity is fairly evenly distributed across the months of the 

year. Nonetheless, April appears to be the month with the highest incidence of pedestrian 

fatalities (4.9 percent), followed by September (4.6 percent) and May (4.2 percent). The lowest 

incidence of pedestrian fatalities is detected in January (2.4 percent), followed by October (2.8 

percent) and lastly February (2.9 percent). 
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Figure 4-14: Distribution of injury severity by month of year 

4.1.2.2 Description of pedestrian fatalities 

1. Pedestrian fatalities by age and gender 

By restricting the analysis to only fatally injured pedestrians, the highest incidence of 

pedestrian fatalities is observed in the 31-35 age group, followed by the 1-5 age group, the 26-
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Figure 4-15: Distribution of pedestrian fatalities by age and gender
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Further insight into the male-to-female fatality ratios indicates that all the ratios are greater 

than one, suggesting that male pedestrians are always overrepresented in fatal pedestrian 

crashes across all the age groups (see Table 4-16 ). As illustrated in Figure 4-16, the highest 

male-to-female ratios are identified in the 36-40 age group (M:F=11), the 6-10 age group 

(M:F=5), the 41-45 age group (M:F=5), the 81+ age group (M:F=5) and the 66-70 age group 

which has the same ratio as the age group 46-50 (M:F=4). 

Table 4-16: Pedestrian fatalities by age and gender 

Age group Female Male Unknown Total M:F 

1-5 11 19 2 32 1.73 

6-10 3 15 0 18 5.00 

11-15 3 8 0 11 2.67 

16-20 4 9 0 13 2.25 

21-25 6 17 1 24 2.83 

26-30 9 18 2 29 2.00 

31-35 8 26 1 35 3.25 

36-40 2 22 0 24 11.00 

41-45 3 15 0 18 5.00 

46-50 4 16 1 21 4.00 

51-55 7 11 0 18 1.57 

56-60 4 6 0 10 1.50 

61-65 3 5 0 8 1.67 

66-70 1 4 0 5 4.00 

71-75 0 1 0 1   

76-80 0 1 0 1   

81+ 1 5 0 6 5.00 

 

 

Figure 4-16: Pedestrian fatalities and male-to-female fatality ratio by age 
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2. Pedestrian fatalities by time and gender 

The distribution of pedestrian fatalities by gender and the time of crash occurrence is displayed 

in Figure 4-17. It can be seen from this figure that male pedestrians are more frequently 

involved in fatal crashes than female pedestrians.  

 

Figure 4-17: Distribution of pedestrian deaths by time and gender 
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Figure 4-18: Pedestrian fatalities and male-to-female ratios by time of day 
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Individual mean differences were evaluated using the ANOVA test. The assumption of 

homogeneity of variance was tested by the Levene’s test. The results from the Levene’s test 

presented in Table 4-18 indicates that the test is not significant at the 5% level, implying that 

the variance is not equal across the days of week. 

Table 4-18: Levene's test for homogeneity of variance 

Levene's Test of Equality of Error Variancesa 

  
Levene 
Statistic 

df1 df2 Sig. 

Killed 

Based on Mean 8.898 7 1088 0.000 

Based on Median 6.533 7 1088 0.000 

Based on Median 
and with adjusted df 

6.533 7 992.578 0.000 

Based on trimmed 
mean 

10.117 7 1088 0.000 

Tests the null hypothesis that the error variance of the dependent variable is equal across 
groups. 

a. Dependent variable: Killed 

The Games-Howell post hoc test was applied to test differences in mean values of daily 

pedestrian fatality counts across different days of week. The results from the Games-Howell 

test are presented in Table 4-19. Marked p-values are statistically significant at the 5% level. 

Differences in mean values emerged as not significant (p>0.05) between: 

 Saturday and Sunday 

 Saturday and Friday and  

 Weekdays (Monday to Friday) and holidays. 

Differences in mean values were found to be statistically significant between:  

 Saturday and weekdays from Monday to Thursday 

 Saturday and holidays 

 Sunday and Monday 

 Sunday and Wednesday. 
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Table 4-19: Results from the Games-Howell post hoc test 

(I) Day of week 
Mean 

Difference (I-J) 
Std. Error Sig. 

95% Confidence Interval 

Lower 
Bound 

Upper Bound 

Mon Tue -0.03 0.065 0.999 -0.23 0.16 

Wed 0.10 0.063 0.744 -0.09 0.29 

Thu -0.06 0.069 0.987 -0.27 0.15 

Fri -0.12 0.076 0.761 -0.35 0.11 

Sat -.39* 0.081 0.000 -0.64 -0.14 

Sun -.27* 0.079 0.016 -0.51 -0.03 

Holid 0.03 0.106 1.000 -0.30 0.36 

Tue Mon 0.03 0.065 0.999 -0.16 0.23 

Wed 0.14 0.065 0.432 -0.06 0.34 

Thu -0.03 0.071 1.000 -0.24 0.19 

Fri -0.09 0.078 0.958 -0.33 0.15 

Sat -.35* 0.083 0.001 -0.61 -0.10 

Sun -0.24 0.081 0.073 -0.48 0.01 

Holid 0.07 0.108 0.999 -0.27 0.40 

Wed Mon -0.10 0.063 0.744 -0.29 0.09 

Tue -0.14 0.065 0.432 -0.34 0.06 

Thu -0.16 0.069 0.268 -0.37 0.05 

Fri -0.22 0.076 0.077 -0.46 0.01 

Sat -.49* 0.081 0.000 -0.74 -0.24 

Sun -.37* 0.079 0.000 -0.61 -0.13 

Holid -0.07 0.106 0.998 -0.40 0.26 

Thu Mon 0.06 0.069 0.987 -0.15 0.27 

Tue 0.03 0.071 1.000 -0.19 0.24 

Wed 0.16 0.069 0.268 -0.05 0.37 

Fri -0.06 0.081 0.996 -0.31 0.19 

Sat -.33* 0.086 0.004 -0.59 -0.07 

Sun -0.21 0.084 0.198 -0.47 0.05 

Holid 0.09 0.110 0.990 -0.25 0.44 

Fri Mon 0.12 0.076 0.761 -0.11 0.35 

Tue 0.09 0.078 0.958 -0.15 0.33 

Wed 0.22 0.076 0.077 -0.01 0.46 

Thu 0.06 0.081 0.996 -0.19 0.31 

Sat -0.27 0.092 0.073 -0.55 0.01 

Sun -0.15 0.090 0.705 -0.43 0.12 

Holid 0.15 0.115 0.887 -0.20 0.51 

Sat Mon .39* 0.081 0.000 0.14 0.64 

Tue .35* 0.083 0.001 0.10 0.61 

Wed .49* 0.081 0.000 0.24 0.74 

Thu .33* 0.086 0.004 0.07 0.59 

Fri 0.27 0.092 0.073 -0.01 0.55 

Sun 0.12 0.094 0.918 -0.17 0.41 

Holid .42* 0.118 0.013 0.05 0.79 

Sun Mon .27* 0.079 0.016 0.03 0.51 

Tue 0.24 0.081 0.073 -0.01 0.48 

Wed .37* 0.079 0.000 0.13 0.61 

Thu 0.21 0.084 0.198 -0.05 0.47 

Fri 0.15 0.090 0.705 -0.12 0.43 

Sat -0.12 0.094 0.918 -0.41 0.17 

Holid 0.30 0.117 0.171 -0.06 0.66 

Holid Mon -0.03 0.106 1.000 -0.36 0.30 

Tue -0.07 0.108 0.999 -0.40 0.27 

Wed 0.07 0.106 0.998 -0.26 0.40 

Thu -0.09 0.110 0.990 -0.44 0.25 

Fri -0.15 0.115 0.887 -0.51 0.20 

Sat -.42* 0.118 0.013 -0.79 -0.05 

Sun -0.30 0.117 0.171 -0.66 0.06 

Based on observed means. 
 The error term is Mean Square (Error) = .468. 
*. The mean difference is significant at the .05 level. 
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Generally, the results show that pedestrian fatalities are more likely to occur over Fridays, 

Saturdays and Sundays and this finding is in line with that presented previously in Figure 4-13 

on Page 149. Trends of temporal variations in daily frequencies of pedestrian fatalities as well 

as individual mean differences are illustrated Figure 4-19. 

 

 

Figure 4-19: Estimated Marginal Means of daily count of pedestrian deaths 

4.1.2.3 Description of KSI pedestrian casualties 

1. KSI pedestrian casualties by age and gender 

The KSI category was recorded for 4,002 cases representing 28.9 percent of all pedestrian 

casualties. The analysis of KSI pedestrian casualties by age and gender was carried out on a 

sub-dataset of 2 135 pedestrian casualties obtained after excluding cases with zero age records 

from the dataset of 4 002 KSI pedestrian casualties. The distribution of KSI pedestrian 

casualties by age and gender is presented Table 4-20 and displayed graphically in Figure 4-20. 

It can be seen from Figure 4-20 that two apparent peaks of KSI pedestrian casualties emerge 

in the 1-10 and 26-35 age groups among male pedestrians while KSI cases peak in the 21-30 

and 1-10 age groups among female pedestrians. The distribution for both males and females 

shows a symmetric dip in KSI pedestrian casualties in the 11-20 age group. As expected, the 

lowest frequencies for both genders emerge among elderly pedestrians aged over 60 years old. 
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Figure 4-20: Distribution of KSI pedestrian casualties by age and gender 

Table 4-20 presents frequencies of KSI pedestrian casualties and the corresponding male-to-

female ratios by age group. In all age groups, males are overrepresented in KSI pedestrian 

casualties, except for the 76-80 age group with a male-to-female ratio of 0.50 (see Table 4-20). 

Table 4-20: KSI pedestrian casualties by age and gender 

Age group Female Male Unknown Total M:F 

1-5 75 137 17 229 1.83 

6-10 57 150 26 233 2.63 

11-15 33 61 11 105 1.85 

16-20 43 70 8 121 1.63 

21-25 69 110 19 198 1.59 

26-30 75 140 19 234 1.87 

31-35 51 143 13 207 2.80 

36-40 41 114 15 170 2.78 

41-45 36 120 7 163 3.33 

46-50 45 85 11 141 1.89 

51-55 40 80 12 132 2.00 

56-60 36 47 9 92 1.31 

61-65 14 24 4 42 1.71 

66-70 11 16 1 28 1.45 

71-75 4 10 0 14 2.50 

76-80 6 3 1 10 0.50 

81+ 7 9 0 16 1.29 

1-5

6-10

11-15

16-20

21-25

26-30

31-35

36-40

41-45

46-50

51-55

56-60

61-65

66-70

71-75

76-80

81+

140 120 100 80 60 40 20 0 0 20 40 60 80
Frequency

KSI pedestrian casualties by age and gender

Male Female

Stellenbosch University  https://scholar.sun.ac.za



159 

 

The total KSI casualty counts and the male-to-female KSI ratio for each of the 17 age groups 

are illustrated in Figure 4-21. The figure shows two apparent peaks in the two age groups 

ranging from 1 to 10 years old and in the three age groups ranging from 21 to 35 years old. The 

top five age groups in which the male-to-female KSI ratio emerges to be the highest are the 41-

45 age group (M:F=3.33); the 31-35 age group (M:F=2.80); the 36-40 age group (M:F=2.78); 

the 6-10 age group (M:F=2.63); and the 71-75 age group (M:F=2.50). It is worth noting that 

that the male-to-female ratio values are more pronounced for the KSI casualties than those for 

the sample of overall pedestrian casualties (see Table 4-1 on Page 132). In general, this suggests 

that male pedestrians are more likely to sustain more severe injuries (i.e. fatal or serious 

injuries) when involved in road traffic crashes. 

 

Figure 4-21: KSI pedestrian casualties and male-to-female KSI ratio by age 

2. KSI pedestrian casualties by time and gender 

Figure 4-22 shows temporal variations of daily counts of KSI casualties according to gender. 

Again, male pedestrians emerge always to be at a higher risk of being fatally or seriously 

injured in road traffic crashes than females and the risk appears more pronounced during certain 

times of the day. For both female and male pedestrians, the highest frequencies of KSI 

pedestrian casualties are observed between 8:00 AM and 9:00 AM and between 6:00 PM and 

7:00 PM. KSI pedestrian casualties are least frequently observed between 4:00 AM and 5:00 

AM for both genders. 
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Figure 4-22: Distribution of KSI pedestrian casualties by time and gender 

The distribution of KSI pedestrian casualties by time of crash occurrence and the corresponding 

male-to female KSI ratios are displayed in Figure 4-23. The top five male-to-female KSI ratios 

presented in descending order are observed between: 4:00 AM and 5:00 AM (M:F=4.00); 10:00 

AM and 11:00 AM (M:F=3.90); 08:00 PM and 09:00 PM (M:F=3.49); 03:00 AM and 04:00 

AM (M:F=3.00); and 10:00 PM and 11:00 PM (M:F=3.14).  

 

Figure 4-23: KSI pedestrian casualties and male-to-female KSI ratio by time of day
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3. KSI pedestrian casualties by day of week 

The results from the descriptive statistical analysis of daily counts of KSI pedestrian casualties 

are presented in Table 4-21 and mean values are plotted in Figure 4-24. A peak of daily KSI 

casualty counts is observed on Saturday (5.30; S.D=2.47). Higher values of daily casualty 

counts are also identified on Sunday (4.12; S.D=2.27), Friday (4.09; S.D=2.15) and holidays 

(3.82; S.D=2.73).  

Table 4-21: Descriptive statistics of daily counts of KSI pedestrian casualties 

Dependent Variable: Daily counts of KSI pedestrian casualties 

Day of week Mean Std. Deviation N 

Monday 3.08 1.876 146 

Tuesday 2.98 1.655 151 

Wednesday 2.72 1.709 149 

Thursday 3.17 2.077 151 

Friday 4.09 2.151 149 

Saturday 5.30 2.468 153 

Sunday 4.12 2.272 153 

Holidays 3.82 2.730 44 

Total 3.65 2.237 1096 

 

Figure 4-24: Means of daily KSI pedestrian casualties
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The results presented in Table 4-22 indicate that the Levene’s test is significant at the 5% level 

and this leads to conclusion that the assumption of homogeneity of variances across the groups 

is violated. Subsequently, the Games-Howell post hoc test was used to investigate individual 

mean differences in situations of unequal variances and group sample sizes. 

Table 4-22: Levene’s test for homogeneity of variance 

Levene's Test of Equality of Error Variancesa 

  
Levene 
Statistic 

df1 df2 Sig. 

KSI 
cases 

Based on Mean 6.617 7 1088 0.000 

Based on Median 5.368 7 1088 0.000 

Based on Median 
and with adjusted df 

5.368 7 1020.313 0.000 

Based on trimmed 
mean 

6.270 7 1088 0.000 

Tests the null hypothesis that the error variance of the dependent variable is equal 
across groups. 
a. Dependent variable: KSI cases 

The results from the Games-Howell post hoc test are presented in Table 4-23. The results 

demonstrate that the individual mean values of daily KSI pedestrian casualties are quite similar 

(i.e. mean differences are not significant at the 5% level) between the following groups: 

 Friday and Sunday 

 Sunday and holidays 

 Weekdays (Monday to Friday) and holidays. 

On the contrary, individual mean differences are statistically significant (i.e. mean values are 

statistically different) between the following groups:  

 Weekdays from Monday to Thursday and Friday 

 Weekdays from Monday to Friday and Saturday 

 Weekdays from Monday to Thursday and Sunday 

 Saturday and other days of week 

 Holidays and Saturdays. 

Generally, it can be summarised that pedestrians are mostly likely to sustain fatal and serious 

injuries as a result of road traffic crashes on Saturdays, and the likelihood of the incidence of 

KSI pedestrian casualties is generally higher over weekends, holidays and Fridays (see Figure 

4-24).
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Table 4-23: Results from the Games-Howell post hoc test 

(I) Day of week Mean 
Difference (I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Mon Tue 0.10 0.206 1.000 -0.53 0.72 

Wed 0.36 0.209 0.682 -0.28 1.00 

Thu -0.09 0.229 1.000 -0.79 0.61 

Fri -1.02* 0.235 0.001 -1.74 -0.30 

Sat -2.23* 0.253 0.000 -3.00 -1.45 

Sun -1.05* 0.240 0.000 -1.78 -0.31 

Holid -0.74 0.440 0.694 -2.13 0.64 

Tue Mon -0.10 0.206 1.000 -0.72 0.53 

Wed 0.26 0.194 0.879 -0.33 0.86 

Thu -0.19 0.216 0.989 -0.85 0.47 

Fri -1.11* 0.222 0.000 -1.79 -0.44 

Sat -2.32* 0.241 0.000 -3.06 -1.58 

Sun -1.14* 0.228 0.000 -1.84 -0.45 

Holid -0.84 0.433 0.534 -2.20 0.53 

Wed Mon -0.36 0.209 0.682 -1.00 0.28 

Tue -0.26 0.194 0.879 -0.86 0.33 

Thu -0.45 0.219 0.457 -1.12 0.22 

Fri -1.38* 0.225 0.000 -2.06 -0.69 

Sat -2.58* 0.244 0.000 -3.33 -1.84 

Sun -1.41* 0.231 0.000 -2.11 -0.70 

Holid -1.10 0.435 0.205 -2.47 0.27 

Thu Mon 0.09 0.229 1.000 -0.61 0.79 

Tue 0.19 0.216 0.989 -0.47 0.85 

Wed 0.45 0.219 0.457 -0.22 1.12 

Fri -.93* 0.244 0.004 -1.67 -0.18 

Sat -2.14* 0.262 0.000 -2.93 -1.34 

Sun -.96* 0.250 0.004 -1.72 -0.20 

Holid -0.65 0.445 0.822 -2.05 0.75 

Fri Mon 1.02* 0.235 0.001 0.30 1.74 

Tue 1.11* 0.222 0.000 0.44 1.79 

Wed 1.38* 0.225 0.000 0.69 2.06 

Thu .93* 0.244 0.004 0.18 1.67 

Sat -1.21* 0.266 0.000 -2.02 -0.39 

Sun -0.03 0.255 1.000 -0.81 0.75 

Holid 0.28 0.448 0.999 -1.13 1.68 

Sat Mon 2.23* 0.253 0.000 1.45 3.00 

Tue 2.32* 0.241 0.000 1.58 3.06 

Wed 2.58* 0.244 0.000 1.84 3.33 

Thu 2.14* 0.262 0.000 1.34 2.93 

Fri 1.21* 0.266 0.000 0.39 2.02 

Sun 1.18* 0.271 0.001 0.35 2.00 

Holid 1.48* 0.457 0.038 0.05 2.92 

Sun Mon 1.05* 0.240 0.000 0.31 1.78 

Tue 1.14* 0.228 0.000 0.45 1.84 

Wed 1.41* 0.231 0.000 0.70 2.11 

Thu .96* 0.250 0.004 0.20 1.72 

Fri 0.03 0.255 1.000 -0.75 0.81 

Sat -1.18* 0.271 0.001 -2.00 -0.35 

Holid 0.31 0.451 0.997 -1.11 1.72 

Holid Mon 0.74 0.440 0.694 -0.64 2.13 

Tue 0.84 0.433 0.534 -0.53 2.20 

Wed 1.10 0.435 0.205 -0.27 2.47 

Thu 0.65 0.445 0.822 -0.75 2.05 

Fri -0.28 0.448 0.999 -1.68 1.13 

Sat -1.48* 0.457 0.038 -2.92 -0.05 

Sun -0.31 0.451 0.997 -1.72 1.11 
Based on observed means. 
 The error term is Mean Square (Error) = 4.335. 
*. The mean difference is significant at the .05 level. 
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4.1.3 Description of pedestrian behavioural aspects  

4.1.3.1  Distribution of pedestrian behavioural aspects 

In South Africa, a police officer who attends a road traffic crash involving one or more 

pedestrians is required to fill in the accident report form with particulars describing pedestrian 

behaviour or actions before the incidence of a road crash. These particulars include position, 

location, manoeuvres, pedestrian action and colour of clothing. The accident report form 

provides four options for the position record. These are (1) roadway, (2) sidewalk/verge, (3) 

shoulder of the road and (4) median. Particulars describing pedestrian location are (1) within 

marked crossing, (2) within 50 meters of crossing and (3) not at crossing. Pedestrian 

manoeuvres are describes using three options which are (1) facing traffic, (2) back to traffic 

and (3) crossing road. Pedestrian actions are broken down into eight categories: (1) Walking, 

(2) running, (3) standing, (4) playing, (5) standing, (6) lying down, (7) working and (8) other. 

The options provided to record the colour of clothing are (1) light, (2) dark, (3) light & dark, 

(4) reflective and (5) other. Of these particulars, only the colour of clothing was not provided 

in the pedestrian casualty dataset obtained from the City of Cape Town. A copy of the accident 

report form used in South Africa to gather information on road crashes is provided in 

APPENDIX D.  

1. Analysis of casualties by pedestrian position 

As illustrated in Table 4-24, a large proportion (85.6 percent) of pedestrian crashes occurred 

when pedestrians were on the roadway. Approximately 10 percent of pedestrian casualties 

occurred when pedestrians were on sidewalks, verges or hard shoulders. 

Table 4-24: Pedestrian casualties by pedestrian position 

  Frequency Percent 

Pedestrian  
position 

Median 133 1.0 

Roadway 11856 85.6 

Shoulder of road 573 4.1 

Sidewalk/Verge 1074 7.8 

Unknown 217 1.6 

Total 13853 100.0 
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2. Analysis of casualties by pedestrian location  

The distribution of pedestrian casualties by pedestrian location is illustrated in Figure 4-25. 

The proportions presented in this figure indicate that the vast majority of pedestrian casualties 

occurred when pedestrians were located outside designated crossing points on the road 

network. Of all pedestrian casualties included in the study, 12 192 casualty cases (88.0 percent) 

are reported to have occurred outside the crossing points. Only 5.7 percent (790 cases) occurred 

at designated crossing facilities and 4.3 percent (596 cases) are reported to have occurred within 

50 metres from a designated crossing point. 

 

Figure 4-25: Location of pedestrians on a road facility prior to a road crash 

3. Analysis of casualties by pedestrian manoeuvres 

The distribution of pedestrian casualties by type of manoeuvres is presented in Table 4-25. The 

results demonstrate that 81.3 percent of pedestrians were involved in road crashes while 

crossing the road. This finding clearly shows that crossing the road is task associated with a 

higher crash risk for pedestrians. The results also indicate that in 8.6 percent of pedestrian 

casualties, pedestrians were walking with their back to the traffic when a crash occurred. 

Pedestrians who were hit by vehicles while walking facing the oncoming traffic represent 7.8 

percent of all pedestrian casualties. 

Table 4-25: Pedestrian casualties by type of manoeuvres 

  Frequency Percent 

Pedestrian 
manoeuvres 

Back to traffic 1194 8.6 

Crossing road 11258 81.3 

Facing traffic 1082 7.8 

Other 12 0.1 

Unknown 307 2.2 

Total 13853 100.0 
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4. Analysis of casualties by pedestrian actions 

The most frequent action in which pedestrians were engaged during the time of a road crash 

was found to be walking and this was reported in 61.3 percent of pedestrian casualty cases (see 

Table 4-26). A quarter of all pedestrian casualties occurred when pedestrians were running. 

Eight percent of pedestrians were standing, three percent were sitting and 1.8 percent of 

pedestrians were playing when they were hit by vehicles. The sample also includes 68 

pedestrian casualties (0.5 percent) who were working on the road (most likely they were road 

construction or maintenance workers). 

Table 4-26: Pedestrian actions prior to a road crash 

  Frequency Percent 

Pedestrian action Lying down 84 0.6 

Playing 244 1.8 

Running 3457 25.0 

Sitting 418 3.0 

Standing 1094 7.9 

Walking 8487 61.3 

Working 68 0.5 

None 1 0.0 

Total 13853 100.0 

 

4.1.3.2 Gender differences in pedestrian behavioural aspects  

In this section, gender is analysed in relation to the behavioural aspects previously presented. 

The intention here is to investigate whether there are gender differences in behaviour performed 

by pedestrians before the incidence of a road crash. 

1. Pedestrian location by gender 

With respect to pedestrian location, the results show similar behaviour patterns among females 

and male pedestrians (see Table 4-27 and Figure 4-26). Of all female pedestrian casualties, 

86.6 percent (3 292 cases) were involved in road crashes while being outside a designated 

crossing point. For male pedestrians, crossing outside a designated crossing point is found in 

88.5 percent of pedestrian casualty cases. However, the proportion of females who were hit by 

vehicles at designated crossing locations is shown to be greater than that of (7. 7 percent versus 

5.1 percent). 
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Table 4-27: Pedestrian location by gender 

  

Location of pedestrian 

Total 
At 

crossing 
Not at 

crossing 
Within 

50m from Unknown 

Gender  Female Count 294 3292 164 68 3818 

% within Gender 7.7% 86.2% 4.3% 1.8% 100.0% 

Male Count 320 5552 284 118 6274 

% within Gender  5.1% 88.5% 4.5% 1.9% 100.0% 

Unknown Count 176 3348 148 89 3761 

% within Gender 4.7% 89.0% 3.9% 2.4% 100.0% 

Total Count 790 12192 596 275 13853 

% within Gender  5.7% 88.0% 4.3% 2.0% 100.0% 

 

 

Figure 4-26: Pedestrian location by gender 

2. Pedestrian manoeuvres by gender 

The distribution of pedestrian manoeuvres by gender is shown in Table 4-28. The analysis 

reveals similar patterns of pedestrian manoeuvres between females and males except for 

walking with the back to the traffic. This particular behaviour was found to be slightly more 

common among males than among female (9.9 percent versus 9.2 percent). 
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Table 4-28: Pedestrian manoeuvres by gender 

  

Pedestrian manoeuvres 

Total 
Back to 
traffic 

Crossing 
road 

Facing 
traffic Other Unknown 

Gender  Female Count 377 3046 313 2 80 3818 

% within Gender  9.9% 79.8% 8.2% 0.1% 2.1% 100.0% 

Male Count 580 5044 510 7 133 6274 

% within Gender  9.2% 80.4% 8.1% 0.1% 2.1% 100.0% 

Unknown Count 237 3168 259 3 94 3761 

% within Gender  6.3% 84.2% 6.9% 0.1% 2.5% 100.0% 

Total Count 1194 11258 1082 12 307 13853 

% within Gender  8.6% 81.3% 7.8% 0.1% 2.2% 100.0% 

 

3. Pedestrian actions by gender 

A breakdown of pedestrian actions by gender is presented in Figure 4-27. The results show 

slight differences in proportions of pedestrian actions between males and females. Gender 

differences in terms of performed actions arose in running (21.1 percent for females versus 

25.6 percent for males), playing (1.2 percent for females versus 2.3 percent males), sitting (2.6 

percent for females versus 3.3 for males), standing (9.3 percent for females versus 7.8 percent 

for males) and walking (65.0 percent for females versus 59.9 percent for males).  

 

Figure 4-27: Pedestrian actions by gender
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4.1.3.3 Age differences in pedestrian behavioural aspects 

1. Pedestrian locations by age group 

Figure 4-28 shows the distribution of pedestrian locations by age group. Pedestrian casualties 

occurring outside a designated crossing facility are most frequently observed among child 

pedestrians aged 10 years and younger, followed by the middle aged group between 21 and 35 

years old. The peaks of pedestrian casualties taking place both at a crossing facility and within 

50 metres from a crossing point are identified among middle aged groups (i.e. from 21 to 50 

years old) and among child pedestrians in the 6-10 age group. Overall, pedestrians who were 

hit by vehicles while at designated crossing points represent less than 10 percent in all age 

groups, except for the 56-60 age group (10.1 percent) and the 81+ age group (10.0 percent). 

Furthermore, the highest proportion (20 percent) of pedestrians who were hit by vehicles within 

50 metres from a formal crossing point is found among pedestrian casualties aged 81 years and 

older. 

 

Figure 4-28: Distribution of pedestrian location by age group
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2. Pedestrian manoeuvres by age group 

Figure 4-29 presents the distribution of pedestrian manoeuvres by age group. In all age groups, 

the results show that pedestrian crashes in which pedestrians were walking facing the oncoming 

traffic are more frequent than those in which pedestrians were walking in the same direction as 

the traffic (i.e. with their back to the traffic). When manoeuvres are analysed in terms of 

proportions in each age group, walking in the same direction as the traffic during a pedestrian 

crash is most frequently observed among elderly pedestrians aged over 65 years old, with 

proportions ranging from 16 to 22 percent. The lowest proportions (less than 8 percent) of 

pedestrians who were hit by vehicles while walking facing the oncoming traffic emerge among 

child pedestrians aged between 1 and 10 years and elderly pedestrians aged 81 years and older. 

 

Figure 4-29: Distribution of pedestrian manoeuvres by age group
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3. Pedestrian actions by age group 

Figure 4-30 illustrates the distribution of pedestrian actions according to age groups. Running, 

playing, sitting, standing and walking are the actions most predominantly observed among 

child pedestrians in the 1-10 age group. The frequencies of lying down and working peak 

among the middle aged groups, in the 26-35 and the 31-50 age ranges, respectively. 

 

Figure 4-30: Distribution of pedestrian actions by age group
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4.1.4 Analysis of intersection-related pedestrian casualties 

In addition to data recorded by the police regarding pedestrian behaviour, information on 

design characteristics of intersections where pedestrian crashes occurred is examined in this 

study. The analysis of this information allows the identification of high-risk locations for 

intersection-related pedestrian casualties and enables greater insights into intersection design 

features that may have influenced the incidence of pedestrian crashes. The analysis involves 

pedestrian casualties that occurred at road junctions (or nodes) for which the exact location was 

successfully identified and mapped in ArcMap. The descriptive analysis presented in this 

section is broken down into three separate sub-sections: (1) profile of pedestrian casualties by 

type of road facility; (2) an analysis of pedestrian casualties by intersection configuration type; 

and (3) an analysis of pedestrian casualties by intersection control type.  

4.1.4.1 Profile of pedestrian casualties by type of road facility 

The types of road facilities involved in the analysis are intersection locations (or nodes) and 

non-intersection locations (i.e. midblock locations or links). The analysis of additional 

information collected on crash locations reveals that 10 313 pedestrian casualties occurred at 

non-intersection locations, representing nearly three quarters (74.4 percent) of all pedestrian 

casualties in the sample. Intersection-related pedestrian casualties represent 25.6 percent (i.e. 

3 540 casualties) of the total number of pedestrian casualties (see Figure 4-31). 

 

Figure 4-31: Distribution of pedestrian casualties by road facility
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The distribution of injury severity according to the type of road facility (i.e. node or link) is 

presented in Figure 4-32. While fatalities represent 3.6 percent of all pedestrian casualties in 

the sample, fatalities account for 3.0 percent and 3.8 percent of pedestrian casualties occurring 

at intersections and links, respectively. While KSI cases account for 28.9 percent of the total 

number of pedestrian casualties, KSI cases that are recorded at intersections represent 24. 8 

percent and those identified at midblock locations represents 30.3 percent. The results from the 

univariate analysis show that KSI pedestrian casualties occur more frequently at midblock 

locations than at intersections.  

 

  

Figure 4-32: Distribution of injury severity by road facility

1
0

6 3
9

47
7

2

2
7

3
0

1
8

3
3

4
6

9
2

8
1

6

2
4

5
0

1
3 4
7

N O D E L I N K

FR
EQ

U
EN

C
Y

INJURY SEVERITY  BY  ROAD 
FACIL ITY

Killed Serious Slight

No Injury Unknown

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Node Link

Injury severity by road facility

Unknown

No Injury

Slight

Serious

Killed

Stellenbosch University  https://scholar.sun.ac.za



174 

 

4.1.4.2 Pedestrian casualties by intersection configuration type 

Of pedestrian casualties categorised as intersection-related, 2 021 casualty cases (56.3 percent) 

are identified at four-legged intersections while 1 398 casualty cases (38.9 percent) are found 

at three-legged intersections. Roundabouts and mini-circles are locations for 129 pedestrian 

casualties (3.6 percent) and 43 casualties (1.2 percent) are detected at intersections classified 

as staggered (see Figure 4-33).  

 

Figure 4-33: Pedestrian casualties by type of intersection configuration 

To achieve a better understanding of crash risk associated with each type of intersection 

configuration, pedestrian casualty frequencies are normalised with respect to the total number 

of each intersection types in the study area. This procedure enables the estimation of pedestrian 

casualty rate (expressed as the number of pedestrian casualties per 100 intersection types) by 

assuming equal pedestrian traffic and pedestrian volumes. Pedestrian casualty rates estimated 

at each intersection configuration type enable a rough comparison of pedestrian crash risk at 

different types of intersection. The results of this analysis are presented in Table 4-29.  

Table 4-29: Pedestrian casualty rate by intersection configuration type 

Intersection configuration type 
Pedestrian 
casualties 

Number of 
intersections  

Ped. casualty rate by 
intersection type [per 100 
intersections] 

3-legged 1398 45217 3.09 

4-legged 2021 10432 19.37 

Roundabout/Mini-circle 129 649 19.88 

Staggered 43 518 8.30 

 

1398

2021

129

43

0 500 1000 1500 2000 2500

3-legged

4-legged

Round/Circ

Staggered

Frequency

Pedestrian casualties by intersection configuration

Stellenbosch University  https://scholar.sun.ac.za



175 

 

The highest rate of pedestrian casualties is found at roundabouts and mini-circles (19.88 

pedestrian casualties per 100 intersections), followed by four-legged intersections (19.37 

pedestrian casualties per 100 intersections). The lowest pedestrian casualty rate is identified at 

three-legged intersections.  

4.1.4.3 Pedestrian casualties by intersection control type 

Figure 4-34 illustrates the distribution of pedestrian casualties according to the type of 

intersection control. With the exclusion of the intersection configuration, intersections with 

traffic signals are found to have the highest proportion (43.6 percent) of pedestrian casualties, 

followed by 1-way stops (28.3 percent). Another significant proportion is exhibited by 2-way 

stops (17.6 percent). The lowest proportion of pedestrian casualties was found at intersections 

controlled by 2-way yield sign at which only four pedestrian casualties were recorded. 

 

Figure 4-34: Pedestrian casualties by type of intersection control 

Pedestrian casualty rates by the type of intersection control are estimated by normalising 

pedestrian casualty counts against the number of intersection control types in the study area. 

Again, this is done under the assumption of equal pedestrian and traffic volumes at different 

types of controls. In this way, rates are estimated in terms of the number of pedestrian casualties 

recorded per 100 intersections of a particular control type. This analysis excludes pedestrian 
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due to the difficulty in distinguishing the YIELD sign from the STOP sign on aerial google 

photographs. The highest casualty rate is found at signalised intersections (120.14 pedestrian 

casualties per 100 intersections), followed by roundabouts and min-circles controlled by the 

YIELD sign (19.20 pedestrian casualties per 100 roundabouts/mini-circles) and intersections 

controlled by the 4-Way STOP sign at the third place, with a rate of 11.81 pedestrian casualties 

per 100 intersections (see Table 4-30). The lowest pedestrian casualty rate is identified at 

intersections controlled by the 1-Way STOP sign with 2.35 pedestrian casualties per 100 

intersections. 

Table 4-30: Pedestrian crash rate by intersection control type 

Control type 

Pedestrian 
casualties 

Number of 
intersections  

Ped. casualty rate by 
intersection type [per 
100 intersections] 

Signal 1539 1281 120.14 

1-Way STOP 1011 43087 2.35 

2-Way STOP 625 8523 7.33 

3-Way STOP 58 973 5.96 

4-Way STOP 135 1143 11.81 

YIELD_Roundabouts/Mini-Circles 124 646 19.20 

Uncontrolled 41 502 8.17 

 

4.1.4.4 Pedestrian casualties by intersection configuration and control type 

The results from a bivariate analysis of pedestrian casualties by both control type and 

intersection configuration are presented in Figure 4-35. Intersection configuration is analysed 

in four categories: three-legged intersections; four-legged intersections, roundabouts and mini-

circles; and staggered intersections.  

At three-legged intersections, pedestrian casualties are most frequently identified at 

intersections controlled by 1-Way STOP (996 casualties), followed by those controlled by 

traffic signals (295 casualties). At four-legged intersections, the highest frequency of pedestrian 

casualties is found at intersections controlled by traffic signals (1 239 casualties), followed by 

those controlled by the 2 Way STOP sign (576 casualties). At roundabouts and mini-circles, 

five pedestrian casualties are found at signalised roundabouts and 124 pedestrian casualties are 

detected at roundabouts/mini-circles controlled by the YELD sign (see Figure 4-35).
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Figure 4-35: Pedestrian casualties by type of intersection control and configuration 

4.1.4.5 Injury severity by intersection configuration type 

The frequency distribution of injury severity at various intersection configuration types is 

illustrated in Figure 4-36. Both KSI casualties and pedestrian fatalities are predominantly 

identified at four-legged and three-legged intersections. 

  

Figure 4-36: Frequency distribution of injury severity by intersection configuration type
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Of all pedestrian casualties identified at four-legged intersections, 24.9 percent are KSI 

casualties and 3.7 percent are fatal injuries. Of all pedestrian casualties observed at three-legged 

intersections, 25.3 percent are KSI casualties and 2.8 percent are fatal injuries. At roundabouts 

and mini-circles, 24.0 percent and 0.8 percent of casualties are KSI casualties and fatal injuries, 

respectively. Of pedestrian casualties recorded at staggered intersections, 29.9 percent are KSI 

casualties and 2.3 percent are fatal injuries. All pedestrian casualties with unknown injury 

severity are observed only at three- and four-legged intersections. Another worth noting 

observation from this analysis has been higher proportions of “no injury” cases at four-legged 

intersections and roundabouts/mini-circles. Overall, nearly half of pedestrian casualties at the 

four types of intersection configuration resulted in slight injuries.  

 

Figure 4-37: Percentage distribution of injury severity by intersection configuration type 

In terms of fatality and KSI casualty rates per 100 intersections, three-legged intersections 

emerge as the safest facilities for pedestrians- the lowest rates of fatalities and KSI pedestrian 

casualties are identified at these facilities (see Table 4-31). The highest rates of fatalities and 

KSI pedestrian casualties are experienced at four-legged intersections. Roundabouts and mini-

circles are also identified as locations of high KSI casualty rates after the four-legged 

intersection type.  
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Table 4-31: Rates of fatalities and KSI pedestrian casualties per 100 intersections 

Configuration 
type 

Pedestrian 
fatalities 

KSI 
pedestrian 
casualties 

Intersection 
number 

Ped. fatality 
rate per 100 

intersections 

KSI ped. 
casualty rate per 
100 intersections 

3-legged 39 354 45217 0.09 0.78 

4-legged 75 504 10432 0.72 4.83 

Round/Circ 1 31 649 0.15 4.78 

Staggered 1 9 518 0.19 1.74 

 

4.1.4.6 Injury severity by intersection control type 

Figure 4-38 illustrates the frequency distribution of injury severity according to intersection 

control type. Large numbers of pedestrian casualties are predominantly observed at signalised 

intersections and intersections controlled by the 1-Way STOP and 2-Way STOP signs. Large 

numbers of pedestrian fatalities and KSI pedestrian casualties are also found at these three types 

of intersection controls as displayed in  

Figure 4-38.  

 

Figure 4-38: Frequency distribution of injury severity by intersection control type
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The percentage distribution of injury severity at each type of intersection control is displayed 

in Figure 4-39. Unexpectedly, the highest proportions of both fatalities and KSI pedestrian 

casualties are observed at intersections controlled by the YIELD signs. Of all pedestrian 

casualties observed at intersections controlled by the 1-Way YIELD sign, a quarter of them are 

serious injuries, 8.3 percent are fatal injuries and KSI pedestrian casualties represent 33.3 

percent. Moreover, the highest proportion of “no injury” cases is detected at the intersections 

with 2-Way YIELD sign. However, these findings are based on a small number of crash events 

(only16 pedestrian casualties) that occurred at intersections controlled by the YIELD sign. An 

analysis of a sample containing a large number of pedestrian crashes at intersections controlled 

by the YIELD sign may lead to more meaningful findings. The second highest proportions of 

pedestrian fatalities are found at intersection controlled by traffic signals and STOP signs. 

 

Figure 4-39: Percentage distribution of injury severity by intersection control type 

Numbers of pedestrian fatalities and KSI casualties normalised against the number of 

intersection types are presented in Table 4-32. With the exclusion of pedestrian casualties 
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Under the assumption of equal traffic and pedestrian volumes, the fatality rate at signalised 

intersections is six times as high as that at roundabouts and mini-circles. In similar way, the 
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Table 4-32: Rates of fatalities and KSI casualties by intersection control type 

Control type Ped. 
fatalities 

KSI ped. 
casualties 

Intersection 
number 

Ped. fatality 
rate per 100 
intersections 

KSI ped. casualty 
rate per 100 
intersections 

Signals 1539 363 1281 120.14 28.34 

1Way STOP 1011 259 43087 2.35 0.60 

2Way STOP 625 156 8523 7.33 1.83 

3Way STOP 58 14 973 5.96 1.44 

4Way STOP 135 41 1143 11.81 3.59 

YIELD_Round/Circ 124 9 646 19.20 1.39 

Uncontrolled 41 29 502 8.17 5.78 
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4.2 Geospatial analyses of pedestrian causalities 

The results presented in this section were obtained from geospatial analyses applied to four 

datasets of pedestrian casualties. These datasets include: 

 The entire sample of pedestrian casualties  

 The dataset of intersection-related pedestrian casualties 

 The dataset of pedestrian fatalities and KSI casualties that occurred at intersections. 

 The dataset of intersection-related pedestrian casualties who sustained slight injuries. 

4.2.1 Geospatial analysis for the entire dataset of pedestrian crashes 

4.2.1.1 Spatial distribution of pedestrian casualties across the City of Cape Town 

Figure 4-40 presents the spatial distribution of pedestrian casualty counts aggregated at the 

census suburb level. In this figure, it can be observed that the frequency of pedestrian casualties 

is highest in the Khayelitsha/Mitchell’s Plain regions, Stand, Delft, Bellville, Elsies Rivier, and 

the CBD of Cape Town. The spatial distribution of pedestrian casualties normalised against the 

population number is illustrated in Figure 4-41. These are exposure-based rates expressed in 

terms of annual average pedestrian casualties per 100,000 population for the 2012-2014 period. 

Based on this measure, the highest pedestrian casualty rates were found in Epping Industria, 

Paarden Eiland, Gardens Beam, Marconi Beam, Cape Town CBD and Table Mountain Nature 

Reserve suburbs. However, it is important to note that these census suburbs are less populated 

which led to inflated pedestrian casualty rates.  
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Figure 4-40: Spatial distribution of pedestrian casualty  

 counts for the 2012-2014 period 

 

Figure 4-41: Spatial distribution of average annual  

pedestrian casualties per 100,000 people 
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4.2.1.2 Geostatistical analysis of pedestrian casualties across the study area 

Three geostatistical methods were applied to the dataset of all pedestrian casualties aggregated 

at the census suburb level. These geostatistical methods include the Anselin Local Moran’s I 

(or Local Moran’s I statistic), the Getis-Ord Gi* and the Optimized Hot Spot analysis. The 

expected outcome of these analyses was the identification (with levels of statistical 

significance) of census suburbs regarded as hot spots or cold spots of pedestrian casualties as 

well as those in which the spatial pattern of pedestrian casualties is random (i.e. locations with 

no spatial autocorrelation among crash locations). 

The spatial distribution of all pedestrian casualties analysed in this study is illustrated in Figure 

4-42. The Hot Spot analysis (Getis-Ord Gi*) highlights one suburb identified as a cold spot at 

95% confidence level and 27suburbs detected as hot spot locations of pedestrian casualties at 

different significance levels- 17 suburbs at 99%, 5 suburbs at 95% and 5 suburbs at 90% 

confidence levels ( see Figure 4-43 and Table 4-33). With the use of the Local Moran’s I tool, 

14 suburbs are identified as hot spots. However, no cold spot or outlier was spotted in the study 

area by the Local Moran’s I statistic (see Figure 4-44 and Table 4-33). The Optimized Hot Spot 

Analysis tool detects 13 census suburbs as hot spot locations of pedestrian causalities at 99 %, 

2 suburbs at 95 % and 5 suburbs at 90% confidence levels (see Figure 4-45 and Table 4-33).  

The three local statistics produce consistent results with regard to certain census suburbs, and 

this confirms that pedestrian casualties are clustered in those areas of the city. However, mixed 

results emerge for a number of suburbs which are qualified as hot spot locations of pedestrian 

casualties by one statistical method while other methods fails to spot casualty clustering in 

those census suburbs (see Table 4-33). Suburbs which were detected as being hot spot or cold 

spot locations by at least two statistical methods are confirmed in this study as being hot spot 

or cold spot locations of pedestrian casualties in Cape Town. In this way, 21 suburbs out of 

190 are identified as being hot spot locations for pedestrian casualties in the City of Cape Town. 

These census suburbs are (1) Mitchells Plain, (2) Khayelitsha, (3) Mfuleni, (4) Philippi, (5) 

Delft, (6) Crossroads, (7) Nyanga, (8) Gugulethu, (9) Cape Town International Airport, (10) 

Bishop Lavis, (11) Freedom Park Airport, (12) Belhar, (13) Philippi Small Holdings, (14) 

Blackheath, (15) Blue Downs, (16) Bellville South, (17) Manenberg, (18) Kuils River, (19) 

Parow, (20) Eerste River and (21) Elsies River. For the entire study area, only one suburb, the 

Cape Peninsula National Park is found to be a cold spot for pedestrian casualties (see Figure 

4-43).  
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Figure 4-42: Spatial distribution of pedestrian casualty locations 

 

Figure 4-43: Cluster analysis of pedestrian casualties by the Getis-Ord 

Gi* tool 
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Figure 4-44: Cluster analysis of pedestrian casualties by Moran I tool 

 

Figure 4-45: Cluster analysis of pedestrian casualties by the OHA tool 
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Table 4-33: Hot and cold spot suburbs of pedestrian casualties in Cape Town 

OHA Getis-Ord Gi* 
Local Moran's I 
statistic 

Mitchells Plain Mitchells Plain Mitchells Plain 

Khayelitsha Khayelitsha Khayelitsha 

Eerste River Eerste River   

Mfuleni Mfuleni Mfuleni 

Philippi Philippi Philippi 

Delft Delft Delft 

Crossroads Crossroads Crossroads 

Nyanga Nyanga Nyanga 

Gugulethu Gugulethu Gugulethu 

Cape Town International Airport Cape Town International Airport   

Montevideo     

Bishop Lavis Bishop Lavis   

Freedom Park Airport Freedom Park Airport   

Belhar Belhar Belhar 

UWC/CPUT     

Philippi Small Holdings Philippi Small Holdings   

Blackheath Blackheath   

Blue Downs Blue Downs Blue Downs 

Bellville Teachers' Training College     

Bellville South Bellville South   

  Macassar   

  Manenberg Manenberg 

  Kuils River Kuils River 

  Parow Parow 

  Tygerberg Hospital   

  Elsies River Elsies River 

  Heideveld   

  Bonteheuwel   

  Brackenfell   

  Ruyterwacht   

  Cape Peninsula National Park   

 

 

 

OHA Getis-Ord Gi* Local Moran I 

Hot spot at 99% CI Hot spot at 99% CI HH cluster

Hot spot at 95% CI Hot spot at 95% CI

Hot spot at 90% CI Hot spot at 90%CI

Cold spot at 95 CI

LEGEND
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4.2.2 Geospatial analyses of intersection-related pedestrian casualties 

4.2.2.1  Geospatial analysis by the use of local statistics of spatial autocorrelation 

The spatial distribution of intersection-related pedestrian casualties in Cape Town is illustrated 

in Figure 4-46. At a glance, a visual assessment of the spatial pattern of pedestrian casualties 

in Figure 4-46 can help to detect the presence of localised casualty clusters in the study area. 

All three local statistics – the Anselin Local Moran’s I, the Getis-Ord Gi*, and the Optimized 

Hot Spot Analysis (OHA) – have succeeded in identifying clusters of pedestrian casualties. 

However, some variations in the shape and size of clusters detected by the three geospatial 

analysis tools are apparent. The hot spot identified by the Anselin Local Moran’s I tool is very 

close in terms of size and shape to that identified by the Getis-Ord Gi* tool at 99% confidence 

level ( see Figure 4-47 and Figure 4-48). As it was noticed previously for the entire sample of 

all pedestrian casualties, the Getis-Ord Gi* always outperforms other local statistics in 

identifying relatively larger hot spot areas than other statistics.  

For a dataset of intersection-related pedestrian casualties aggregated at the suburb level, hot 

spot areas detected by the Local Moran’s I consist of 14 census suburbs. One census suburb, 

Tygerberg Hospital, is identified by the tool as being a “Low-High” outlier. This finding 

suggests that while Tygerberg Hospital (as a census suburb) has fewer intersection-related 

pedestrian casualties, the neighbouring suburbs are characterised by higher numbers of 

intersection-related pedestrian casualties. This is not a surprising finding given the fact that 

Tygerberg Hospital suburb is totally covered by a public hospital and a learning institution 

where traffic patterns and risk exposure in general differ from those of the neighbouring 

suburbs.  

At 99% confidence level, the hot spot identified by the Getis-Ord Gi* statistic consists of 14 

census suburbs with 11 of these matching the hot spot region detected by the Local Moran’s I. 

The size of the hot spot highlighted by the Getis-Ord Gi* extends on 40 census suburbs. In 

addition, two census suburbs, Silvermine and Cape Peninsula National Park, are detected by 

the Getis-Ord Gi* tool as cold spot areas of intersection-related pedestrian casualties at 90% 

and 95% confidence levels, respectively (see Figure 4-48).
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Figure 4-46: Spatial distribution of intersection-related pedestrian casualties in Cape Town 
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Figure 4-47: Clusters of intersection-related pedestrian c 

asualties by the Local Moran's I tool 

 
Figure 4-48: Clusters of intersection-related pedestrian  

casualties by the Getis-Ord Gi* tool 
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Figure 4-49: Clusters of intersection-related pedestrian  

casualties by the OHA Fishnet method 

 
Figure 4-50: Clusters of intersection-related pedestrian  

casualties by the OHA Weighted Point method 
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The two techniques of the Optimized Hot Spot Analysis tool which are applied to intersection-

related pedestrian casualties are the fishnet grid and the weighted point techniques. The hot 

spots detected by the respective tools are illustrated in Figure 4-49 and Figure 4-50.  

With the use of the OHA weighted point technique, proximal pedestrian casualty locations are 

aggregated into a single point which is given a weight reflecting the number of pedestrian 

casualty points that were aggregated together. With the application of this technique to the 

dataset of intersection-related pedestrian casualties, a number of weighted points are detected 

as hot spots at 90 % to 99 % confidence. The weighted points (i.e. intersection-related casualty 

locations) are mapped in Figure 4-50 and a closer look at these points is displayed in Figure 

4-51. The weighted points identified as hot spot locations of intersection-related pedestrian 

casualties show localised spatial clustering on the transportation system of the study area. Five 

spatial clusters of pedestrian casualties have been identified and these consist of intersection 

locations highlighted in black circles in Figure 4-51.  

 

Figure 4-51: Hot spot locations detected by the OHA Weighted Point technique 

The most significant clustering emerges in the area extending over four census suburbs which 

are Goodwood, Thornton, Ruyterwacht and Elsies River. The majority of the hot spot locations 

in this region are found on a section of Voortrekker Road (R102) between Jakes Gerwel Drive 

(M7) and Giel Basoon Drive (M12). Another significant clustering is apparent in Khayelitsha 

and Mfluleni suburbs between the R300 and Spine Road (M32). Furthermore, several hot spot 

locations are detected in four census suburbs of Cape Town Central. These are Cape Town 

CBD, Zonnebloem and Woodstock. A few hot spot locations are noticeable in the suburbs of 
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Heideveld and Bonteheuwel between Jakes Gerwel Drive (M17) and Robert Sobukwe Road 

(M10). Lastly, three weighted points located in Belhar between Robert Sobukwe Road (M10) 

and Stellenbosch Arterial (M12) are also detected as hot spot locations of intersection-related 

pedestrian casualties.  

As seen in Figure 4-49, the hot spot locations identified by the OHA fishnet method extend on 

a larger area compared to those detected by the Getis-Ord Gi* tool displayed in Figure 4-48 

and the Local Moran’s I tool shown in Figure 4-47. Moreover, unlike the Getis-Ord Gi*and 

the Local Moran’s I tools, both techniques of OHA, the fishnet and weighted point techniques, 

are unable to detect cold spot locations of intersection-related pedestrian casualties in the study 

area.  

4.2.2.2 Geospatial analysis by the use of planar kernel density estimation (KDE) 

The planar kernel density estimation (KDE) technique is another geospatial analysis tool 

applied in this study to identify hotspots of pedestrian casualties. With the KDE technique, hot 

spots are detected using a cell size of 30 metres and different bandwidths ranging from 200 

metres to 1895 metres. The latter bandwidth was adopted from the OHA density surface 

method and the exact value of this bandwidth is applied to the KDE technique for comparison 

purposes.  

The hot spot locations detected by KDE using the bandwidth sizes of 200 m; 400 m; 500 m; 

100 m; and 1895 m are respectively mapped in Figure 4-52; Figure 4-53; Figure 4-54; Figure 

4-55; Figure 4-56; and Figure 4-57. One important observation from these analyses is that an 

increase of bandwidth size offers a better visualisation of mapped hotspots on a road network. 

However, larger bandwidth sizes result in wider hot spot regions with less variability between 

areas. Therefore, it is recommended to apply an optimal bandwidth for Kernel Density 

Estimation, which is often a subjective matter.  

. 
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Figure 4-52: Hot spots of intersection-related pedestrian  

casualties by KDE 200m bandwidth 

 
Figure 4-53: Hot spots of intersection-related pedestrian  

casualties by KDE 400m bandwidth 
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Figure 4-54: Hot spots of intersection-related pedestrian  
casualties by KDE 500m bandwidth 

 
Figure 4-55: Hot spots of intersection-related pedestrian  

casualties by KDE 800m bandwidth 
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Figure 4-56: Hot spots of intersection-related pedestrian  

casualties by KDE 1000m bandwidth 

 
Figure 4-57: Hot spots of intersection-related pedestrian  

casualties by KDE 1895.82m bandwidth
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A close examination of hot spot locations of pedestrian casualties can easily detect a 

relationship between the incidence of pedestrian casualties and the road network structure. For 

instance, as seen in Figure 4-58, the application of Kernel Density Estimation with the 

bandwidth of 500 metres to the dataset of intersection-related pedestrian casualties clearly 

shows that the large majority of hot spot locations are identified on two classes of road: arterial 

roads (i.e. primary and secondary arterial roads) and urban freeways (i.e. freeways and 

expressways). Hot spot locations detected on urban freeways consist mainly of at-grade 

junctions where two freeways or a freeway and another road of a lower class (mostly arterial 

roads) intersect.  

 

Figure 4-58: Relationship between pedestrian casualties and the road network structure 
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4.2.3 Geospatial analyses of pedestrian casualties by injury severity 

The results from geospatial analyses carried out on pedestrian injuries, KSI pedestrian 

casualties and pedestrian casualties who sustained slight injuries are presented in Figure 4-59 

to Figure 4-62. The results clearly show that the hot spot locations of KSI pedestrian casualties 

are more clustered than those of pedestrians who sustained slight injuries.  

 

Stellenbosch University  https://scholar.sun.ac.za



199 

 

 
Figure 4-59: Cluster analysis of KSI pedestrian casualties  

by the OHA Fishnet method 

 
Figure 4-60: Cluster analysis of KSI pedestrian casualties  

by the OHA Density Surface method 
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Figure 4-61: Cluster analysis of slight injuries by the  

OHA Fishnet method 

 

Figure 4-62: Cluster analysis of slight injuries by the  

OHA weighted point method 
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4.2.4 Design characteristics of intersections locations for pedestrian casualties 

An index score ranging from 0 to 100 is calculated for each intersection identified as a 

pedestrian casualty location. This index reflects the characteristics of pedestrian facilities 

provided at an intersection and the extent to which an intersection accommodates pedestrians 

and facilitates them to negotiate it safely. The index is calculated using four proxy indicators 

including: the length of a pedestrian crossing (expressed in number of travel lanes); the number 

of pedestrian refuges available at an intersection; the availability of designated pedestrian 

crossings; and availability of sidewalks. A score of 0 is indicative of the lowest level of 

pedestrian accommodation at an intersection while the opposite is indicated by a score of 100. 

The overall index is an arithmetic mean of index scores of the four proxy indicators of 

pedestrian accommodation at an intersection. Although all intersections concerned with this 

analysis are locations of at least one pedestrian casualties, it should be pointed out that index 

scores assigned to intersections do not reflect the level of pedestrian safety in terms of casualty 

frequency or injury severity.  

4.2.4.1  Descriptive statistics for intersection index scores across the study area 

The distribution of index scores assigned to the dataset of intersection-related pedestrian 

casualties is illustrated in Figure 4-63. Index scores are estimated for intersection locations 

where a total of 3 533 pedestrian casualties occurred. The mean index score for the entire 

sample is found to be 71.1 (SD=13.73). The lowest index score emerges to be 32.63 and 

intersections with the highest level of pedestrian accommodation have a score of 97.23. 

Furthermore, percentile results indicate that a quarter of all analysed pedestrian casualty 

locations have an index score greater than 82.41. 

 

Figure 4-63: Descriptive statistics for intersection index scores
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4.2.4.2  Geospatial analysis of intersection index scores 

The Local Moran’s I statistic was applied to the dataset of intersection-related pedestrian 

casualties with index scores as attribute values attached to pedestrian casualty locations. 

Intention behind the use of this tool is to assess spatial patterns of pedestrian casualty locations 

with respect to the magnitude of index scores attached to them. Simply put, the analysis is 

intended to determine whether there is a statistical clustering tendency among: (1) casualty 

locations with lower index scores (i.e. Low-Low Cluster); (2) casualty locations with higher 

index scores (i.e. High-High Cluster); (3) casualty locations with higher index scores 

surrounded by those with lower index scores (i.e. High-Low Outlier); and (4) casualty locations 

with lower index scores surrounded by those with higher index scores (i.e. Low-High Outlier).  

The first step of this analysis was to ascertain whether there is a clustering tendency in the 

entire dataset. This was done by running the Global Moran’s I index in ArcMap. The summary 

report generated by the Global Moran’s I statistic is provided in Figure 4-64. According to this 

report, the Moran’s Index is found to be 0.908215. This is a positive value which suggests that 

there is a positive autocorrelation in the dataset. In other words, the value of Moran’s Index 

implies that there is a tendency for casualty locations with similar index scores to cluster 

together (i.e. High-High and Low-Low Clusters). The produced z-score informs that the spatial 

autocorrelation is statistically significant.  

 

Figure 4-64: Summary report generated by the Global Moran's I statistic
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After testing the spatial association in the dataset, the Local Moran’s I statistic was applied to 

identify localised clustering in the dataset. This process involves first the determination of 

average distance required for any given pedestrian casualty location to have at least one 

neighbouring pedestrian casualty location. This was carried out in ArcMap using the tool 

“Calculate Distance Band from Neighbour count”. The results generated by this tool indicate 

that the average critical distance (or distance bandwidth) of 120.54 meters is required for any 

given casualty location to have at least one neighbour. The next step involves the determination 

of a scale at which the spatial autocorrelation is the most pronounced. This was done in ArcMap 

by using the tool “Incremental Spatial Autocorrelation”. The critical distance of 200 metres 

was used as the starting distance to search the maximum autocorrelation with an increment of 

100 metres. The results from this process are presented in APPENDIX E. According to this 

test, the clustering of pedestrian casualty locations is maximum at a distance of 900 metres. 

This is subsequently the distance value that was used in the input of the Cluster and Outlier 

Analysis (i.e. Local Moran’s I) tool to detect clusters and outliers in the dataset of intersection-

related pedestrian casualties.  Mapped clusters (cold spots and hot spots) and outliers resulting 

from the aforementioned processes are illustrated in Figure 4-65.  

The most interesting clusters are the Low-Low clusters (i.e. “Cluster: Low” according to Figure 

4-65) which reflect clusters of pedestrian casualty locations with lower values of intersection 

index scores. The Cluster and Outlier Analysis tool identifies 302 pedestrian casualty locations 

with lower intersection index scores. These are the locations that need remedial treatments to 

improve pedestrian safety at these facilities. Significant clusters of casualty locations with poor 

intersection index scores are identified in a number of suburbs including Strand, Macassar, 

Eerste River, Blackheath, Khayeltisha, Philippi, Kuils River, Dunoon, Fisantekraal, Hout Bay, 

to name a few. Low-High Outliers are also locations of a great concern as they represent 

pedestrian casualty locations with poor level of pedestrian accommodation in comparison to 

that of the neighbouring locations. The presence of High-High Clusters (or hot spot locations) 

indirectly implies that pedestrian crashes may be influenced by contributory factors other than 

the intersection design elements involved in the determination of index scores. 
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Figure 4-65: Clusters and outliers for locations of intersection-related pedestrian casualties 

Stellenbosch University  https://scholar.sun.ac.za



205 

 

Google images taken at several intersections which scored the lowest index scores (i.e. score 

less than 50) are presented in Figure 4-66; Figure 4-67; Figure 4-68; Figure 4-69 and Figure 

4-70. A visual inspection of these intersections clearly shows two common characteristics,  the 

lack of pedestrian crossing facilities and longer crossing distances. A thorough examination 

also reveals that sidewalks are not provided at all approaches of the intersections.  

 

Figure 4-66: Intersection: Francie Van Zijl Dr X Boulevard Park X Tienie Meyer Bypass (Source: 

Google) 

 

Figure 4-67: Intersection: M7 (Jakes Gerwel Dr) X Milton Rd X Road to Wingfield Aerodrome 

(Source: Google) 
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Figure 4-68: Intersection: M7 (Jakes Gerwel Dr) X Frans Conradie Dr X Rd to Wingfield House 

(Source: Google) 

 

Figure 4-69: Intersection: Bottelary Rd X Kruis St X Langverwacht Rd (Source: Google) 
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Figure 4-70: Intersection: Adderley St X Strand St (source: Google) 
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4.3 Comparison of the methods of cluster analysis 

Table 4-34 presents the calculated vales of Prediction Accuracy Index (PAI) for the planar 

KDE with different bandwidth sizes ranging from 400 metres to 1895 metres and two 

techniques of Optimized Hot Spot Analysis. The PAI values presented in Table 4-34 indicate 

the performance of the analysis tool in predicting hot spots of events (i.e. pedestrian casualties). 

The larger the PAI value the better the performance of the geospatial analysis tool. An example 

of clipped hot spot regions which were analysed to estimate the PAI values for each tool is 

provided in Figure 4-71.  

Table 4-34: PAI for cluster analysis methods applied in the study 

 

According to PAI values calculated for each geospatial analysis technique, the kernel density 

estimation (KDE) with 400 m bandwidth emerges as the best performing tool when compared 

with other analysis tools. The Optimized Hot Spot Analysis (OHA) tool which aggregates 

incident data into fishnet grids shows the lowest performance in predicting hot spots of 

pedestrian casualties when compared with the rest.

OHA 

Density 

Surface

OHA 

Fishnet

KDE 400m 

Bandwidth

KDE 500m 

Bandwidth

KDE 800m 

Bandwidth

KDE 

1000m 

Bandwidth

KDE 

1895.82m 

Bandwidth

The number of 

pedestrian casualties in 

hotspots regions

2005 2746 3204 3104 2683 2492 2007

Length of the road 

network in  hotspot 

regions [m]

2603547 6866060 2876973.61 2982414.87 2991129.42 2922941.9 2603658.7

Area of hotspot regions 

[m
2
]

1.42E+08 5.08E+08 145290600 152874000 157570200 155487600 141626700

Total length of the road 

network [m]
13695025 13695025 13695025 13695025 13695025 13695025 13695025

Total area of the study 

area [m
2
]

2.46E+09 2.46E+09 2459962106 2459962106 2459962106 2.46E+09 2.46E+09

PAI 2.931 1.522 4.239 3.961 3.414 3.245 2.934

Stellenbosch University  https://scholar.sun.ac.za



209 

 

 

Figure 4-71: An example of clipped KDE hot spots with casualty points and the road network 
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4.4 Results from multivariate analysis of pedestrian casualties 

This study applied three modelling approaches to uncover associations between the attributes 

of the built environment and the incidence of pedestrian casualties. The three modelling 

approaches tested in this study are the Poisson Regression Model, the Negative Binomial (NB) 

Regression Model and the Geographically Weighted Regression (GWR) Model. The three 

modelling techniques were applied to three datasets of pedestrian casualties. The first dataset 

includes a sample of all pedestrian casualties, the second dataset consists of intersection-related 

pedestrian casualties and the third datasets comprises killed and seriously injured (KSI) 

pedestrian casualties. Models developed based on the respective datasets of pedestrian 

casualties are referred to as Models 1, Models 2, and Models 3.  

4.4.1 Description of dependent variables 

The descriptive statistics for the three outcome variables: (1) All pedestrian casualties; (2) 

intersection-related pedestrian casualties and (3) Killed and Seriously Injured (KSI) pedestrian 

casualties is described in Figure 4-72, Figure 4-73 and Figure 4-74, respectively. In addition, 

these figures also provide the results of the test for normality performed on the distribution of 

the outcome variables by using a combination of methods such as visual inspection of the shape 

of the histogram, boxplots and the normal P-P plot, kurtosis and skewness measures, 

Kolmogorov-Smirnoff and Shapiro-Wilk tests. These tests indicate that the distributions of the 

three samples do not follow a normal distribution. For the three distributions, the values of the 

variance values are significantly higher than the mean values, implying that the three datasets 

of pedestrian casualties are subjected to over-dispersion. Accordingly, the application of the 

Poisson regression model may not be appropriate as the basic underlying assumption of this 

modelling procedure is that the mean should be equal to the variance.
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Figure 4-72: Summary statistics for the entire sample of pedestrian casualties 

 

 

Figure 4-73: Summary statistics for intersection-related pedestrian casualties
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Figure 4-74: Summary statistics for Killed and Seriously Injured (KSI) pedestrian casualties 

4.4.2 Description of explanatory variables 

Table 4-35 presents summary statistics of explanatory variables tested in the modelling 

procedures. In total, 42 candidate explanatory variables were included in this process. Of these 

variables, 10 variables describe socio-demographic characteristics (i.e. population number, 

age, and ethnicity) and a further 10 variables reflect the socio-economic status (education level, 

employment, income level, and dwelling type) of the population in the study area. The variables 

describing the attribute of the built environment include three types of entropy scores (coded 

as ENT_AllCat, ENT_9Cat and ENT_4Cat) for land use mix; seven variables relating to land 

use patterns; three variables defining urban design (coded as Ratio_inters-cds, Inters_grt3leg 

and StrDens); and eight variables relate to elements of the transportation system in the study 

area.
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Table 4-35: Descriptive statistics of explanatory variables 

Variable Definition 
Mean Min Max S.D. 

Log_Popu Logarithm of the population 3.698 0.000 5.593 0.893 

Prop_Black Proportion of the Black population 26.102 0.000 99.285 27.164 

Prop_Coloured Proportion of the Coloured population 34.709 0.000 97.323 31.489 

Prop_Asian Proportion of the Asian population 2.098 0.000 21.985 3.001 

Prop_White Proportion of the White population 32.721 0.000 96.518 32.676 

Prop_Other Proportion of other population 2.792 0.000 22.310 3.149 

Prop_AgeLess15 Proportion of children (younger than 15 years) 19.570 0.000 31.299 7.566 

Prop_Age15_24 Proportion of young adults (15-24 years) 17.425 0.000 97.028 10.081 

Prop_Age25_54 Proportion of middle-age (25-54 years) 44.927 0.000 81.818 9.888 

Prop_Age55_plus Proportion of elderly (55 year and older) 16.499 0.000 54.475 10.405 

Prop_LowEd Proportion of the population with low education level 10.977 0.000 72.644 11.331 

Prop_AvgEd 
Proportion of the population with average education 
level 

57.037 0.000 100.000 18.666 

Prop_HighEd 
Proportion of the population with higher education 
level 

29.355 0.000 86.957 22.741 

Prop_NotWork Proportion of non-workers 16.063 0.000 80.144 14.974 

Prop_Work Proportion of workers 81.305 0.000 100.000 19.920 

Prop_LowInc Proportion of the population with low income level 43.325 0.000 100.000 27.619 

Prop_MidInc Proportion of the population with middle income level 31.060 0.000 100.000 17.265 

Prop_UpperInc Proportion of the population with upper income level 22.457 0.000 78.947 18.768 

Prop_FormalDwe Proportion of formal dwellings 84.491 0.000 100.000 26.553 

Prop_InformalDwe Proportion of informal dwellings 9.979 0.000 99.085 20.137 

ENT_AllCat 
Entropy score measured by the use of 34 land use 
types 

0.354 0.000 0.677 0.161 

ENT_9Cat 
Entropy score measured by the use of 9 land use 
types 

0.484 0.000 0.876 0.225 

ENT_4Cat 
Entropy score measured by the use of  4 main land 
use types 

0.563 0.000 0.979 0.270 

Prop_SR9Cat Proportion of single residential use 29.003 0.000 89.017 24.220 

Prop_GR9Cat Proportion of general residential use 7.439 0.000 64.119 10.745 

Prop_CO9Cat Proportion of community use 8.837 0.000 100.000 17.084 

Prop_GI9Cat Proportion of general industrial use 5.786 0.000 97.462 16.814 

Prop_UT.TR9Cat Proportion of utility and transport use 7.474 0.000 100.000 20.486 

Prop_OS9Cat Proportion of open space use 15.775 0.000 94.840 17.356 

Prop_AG.RU.LU9Cat Proportion of agricultural, rural and limited use 20.742 0.000 100.000 30.347 

Ratio_inters-cds Ratio of intersections to culs-de-sac 4.282 0.469 16.833 2.878 

Inters_grt3leg Number of intersections with more than 3 legs 60.311 0.000 583.000 92.606 

StrDens Street density 13.742 0.620 31.813 6.277 

Prop_Freeways Proportion of freeway roads 5.554 0.000 46.617 8.422 

Prop_Expressways Proportion of expressway roads 2.017 0.000 44.165 4.449 

Prop_PrimaryArter Proportion of primary arterial roads 4.515 0.000 33.953 5.986 

Prop_SecondArter Proportion of secondary arterial roads 8.096 0.000 59.120 8.401 

Prop_LocalDistr Proportion of local distributor roads 2.178 0.000 43.409 5.033 

Prop_LocalStr Proportion of local streets 77.640 35.363 100.000 12.626 

Round_Circ Number of roundabouts and mini-circles 3.416 0.000 38.000 6.042 

Prop_Signal Proportion of signalised intersections 2.813 0.000 23.011 3.174 
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4.4.3 Results from Generalised Linear Models 

4.4.3.1 GLM model performance: Goodness-of-fit measures 

Table 4-36 summarises the goodness-of-fit measures of the two forms of Generalised Linear 

Model (GLM) developed in this study, the Poisson Regression model and the Negative 

Binomial Regression model (NB model). A comparison of the performance of the Poisson 

regression model and the NB model shows that the latter model has always produced lower 

values of different types of residuals (e.g. deviance, scaled deviance, Pearson Chi², scaled 

Pearson Chi² and likelihood residuals) than those produced by the Poisson regression model 

(see Table 4-36). The three Poisson regression models generated values of the ratio of the 

deviance to the degree of freedom (Dev/Df) which are 15 times higher, 4.9 times higher and 

5.2 times higher than those generated by the NB model, for Model 1, Model 2 and Model 3, 

respectively. As seen in Table 4-36, the goodness-of-fit measures demonstrate that the 

Negative Binomial model performed better than the Poisson Regression model in fitting 

pedestrian casualty data.  

Table 4-36: Model comparisons using goodness-of-fit measures 

 
Poisson Regression Models 

Negative Binomial Regression 
Models 

 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

Degree of freedom (Df) 172 172 175 172 172 175 

Deviance (Dev) 3250.1874 1000.1563 1115.2777 215.711 204.2907 214.9342 

Dev/Df 18.8964 5.8149 6.373 1.2541 1.1877 1.2282 

Scaled Deviance 3250.1874 1000.1563 1115.2777 215.711 204.2907 214.9342 

Scaled Deviance/Df 18.8964 5.8149 6.373 1.2541 1.1877 1.2282 

Pearson Chi² 4465.6003 1171.766 1319.5221 198.6804 230.333 245.4777 

Pearson Chi²/Df 25.9628 6.8126 7.5401 1.1551 1.3391 1.4027 

Scaled P. Chi² 4465.6003 1171.766 1319.5221 198.6804 230.333 245.4777 

Scaled P. Chi²/Df 25.9628 6.8126 7.5401 1.1551 1.3391 1.4027 

AIC 4181.6336 1673.1636 1782.989 1618.3324 1151.243 1148.8588 

AICc 4185.6336 1677.1636 1785.7476 1622.803 1155.7136 1152.0033 

BIC 4240.0801 1731.61 1831.6943 1680.0258 1212.9365 1200.8112 

Loglikelihood -2072.8168 -818.5818 -876.4945 -790.1662 -556.6215 -558.4294 

Following the assessment of the performance of the two GLM models, the analysis and 

discussion presented in this section is based on the results generated by the Negative Binomial 

models and the Geographically Weighted Regression models. 
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4.4.3.2 Parameter estimates from the Negative Binomial Regression Model 1 

Table 4-37 presents the parameter estimates for the best Negative Binomial model developed 

based on the entire sample of pedestrian casualties. The model comprises 17 explanatory 

variables that were shown to have a significant effect on the frequency of pedestrian casualties. 

The sign and the magnitude of the coefficient estimates (B) are indicative of the effect each 

explanatory variable has on the outcome variable (i.e. the number of pedestrian casualties). A 

coefficient B with a positive sign implies that the variable is associated with an increase in the 

number of pedestrian casualties while the variable with a negative sign is associated with a 

decreased number of pedestrian casualties. To make the interpretation of the coefficients (B) 

more straightforward, the exponentiated coefficient “Exp (B)” was calculated in Excel 

spreadsheets and added to the estimate output generated by STATISTICA software tool. All 

variables in the final model are significant at the 5% level. However, the parameter estimates 

of the intercept are not statistically significant (p>0.05). Values marked in blue in Table 4-37 

are not statistically significant at the 5% level. 

Table 4-37: Model estimates for NB Model 1  

Variables 

AllPedCas - Parameter estimates 
Distribution : NEGATIVE BINOMIAL 
Link function: LOG 

Estimate 
(B) 

Standard 
Error 

Wald 
Stat. 

Lower 
CL 

95.0% 

Upper CL 
95.0% 

p Exp(B) 

Intercept 0.2826 0.4518 0.3912 -0.6029 1.1682 0.5317 1.3266 

Log_Popu 1.3675 0.1438 90.4719 1.0857 1.6492 0.0000 3.9253 

Prop_White -0.0132 0.0032 17.1956 -0.0195 -0.0070 0.0000 0.9869 

Prop_AgeLess15 -0.0426 0.0124 11.8643 -0.0669 -0.0184 0.0006 0.9583 

Prop_Age15_24 -0.0405 0.0076 28.4604 -0.0554 -0.0257 0.0000 0.9603 

Prop_Age25_54 -0.0222 0.0074 9.1091 -0.0367 -0.0078 0.0025 0.9780 

Prop_AvgEd -0.0129 0.0051 6.3629 -0.0229 -0.0029 0.0117 0.9872 

Prop_UpperInc -0.0204 0.0064 10.3044 -0.0328 -0.0079 0.0013 0.9798 

ENT_9Cat 1.1577 0.3595 10.3721 0.4532 1.8623 0.0013 3.1826 

Prop_GI9Cat 0.0242 0.0041 35.0876 0.0162 0.0323 0.0000 1.0245 

Inters_grt3leg 0.0030 0.0008 12.2772 0.0013 0.0046 0.0005 1.0030 

StrDens 0.0216 0.0108 4.0305 0.0005 0.0427 0.0447 1.0218 

Prop_Freeways 0.0323 0.0072 19.9158 0.0181 0.0464 0.0000 1.0328 

Prop_Expresways 0.0585 0.0132 19.6145 0.0326 0.0844 0.0000 1.0603 

Prop_PrimaryArter 0.0239 0.0103 5.3240 0.0036 0.0441 0.0210 1.0241 

Prop_SecondArter 0.0160 0.0072 4.8441 0.0017 0.0302 0.0277 1.0161 

Round_Circ 0.0352 0.0106 11.0020 0.0144 0.0560 0.0009 1.0358 

Prop_Signal 0.0729 0.0218 11.1239 0.0300 0.1157 0.0009 1.0756 

Dispersion 0.4426 0.0534   0.3380 0.5472     

Marked values are not statistically significant at 95% confidence interval (i.e. p>0.05)
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The top five variables with the highest absolute values of the coefficient “B” are (1) the log of 

population (B=1.3675); (2) the entropy index (B=1.1577); (3) the proportion of signalised 

intersection (B=0.0729); (4) the proportion of expressways (B=0.0585) and (5) the proportion 

of the population younger than 15 years old (B= -0.0426). 

The NB Model 1 includes 11 explanatory variables with positive associations with the number 

of pedestrian casualties. The coefficient estimates of each of the 11 variables can be interpreted 

using the exponentiated coefficients “Exp (B)” presented in Table 4-37. The parameter “Exp 

(B)” tells that, if other explanatory variables in the model are held constant:  

 An increase of one unit in Log of population (i.e. a 10-fold increase in population 

number) would result in an increase in the number of pedestrian casualties by a factor 

of 3.925; 

 An increase of one unit in entropy index measured using nine land-use categories 

(“ENT_9Cat”) would get the number of pedestrian casualties increased by a factor of 

3.183; 

 A one percent increase in the number of signalised intersections would result in an 

increase of 7.56 percent of the total number of pedestrian casualties; 

 An increase of one percent in the proportion of expressways would cause an increase 

of 6.03 percent in the number of pedestrian casualties; 

 An addition of one extra roundabout or mini-circle to the total number of these facilities 

would increase the number of pedestrian casualties by 3.58 percent; 

 An increase of one percent in the proportion of freeway facilities would result in an 

increase of 3.28 percent in the number pedestrian casualties; 

 An increase of one percent in the proportion of primary arterial roads would contribute 

to an increase of 2.41 percent in the number of pedestrian casualties; 

 An increase of one percent in the proportion of secondary arterial roads would get the 

number of pedestrian casualties increased by 1.61 percent; 

 A one unit in the proportion of land used for industrial purposes (i.e. General Industry 

land use) would be associated with an increase of 2.45 percent in the number of 

pedestrian casualties; 

 Increasing street density by one unit (i.e. one kilometre road per square kilometre of 

land area) would result in 2.18 percent increase in the number of pedestrian casualties; 
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 An addition of one four- or multi-legged intersection would result in 0.3 percent 

increase in the number of pedestrian casualties.  

The model results point out six demographic variables which are negatively associated with 

the number of pedestrian casualties. The coefficient estimates of these variables explain that:  

 An increase of one percent in the proportion of the population with an average 

education level (i.e. some secondary studies and Grade 12) would reduce the number 

of pedestrian casualties by 1.28 percent; 

 A one percent increase in the proportion of the White population would be associated 

with a decrease of 1.31 percent in the number of pedestrian casualties; 

 An increase of one percent in the proportion of the population with upper income (i.e. 

earning a monthly income higher than R25,601) would lead to a reduction of 2.02 

percent in the number of pedestrian casualties; 

 An increase of one percent in the proportion of the population in the 15-24 age range 

would result in 3.97 percent decrease in the number of pedestrian casualties; 

 A one percent increase in the proportion of the population in the 25-54 age range would 

contribute to a decrease of 2.2 percent in the number of pedestrian casualties; 

 An increase of one percent in the proportion of the population younger than 15 years 

old would get the number of pedestrian casualties decreased by 4.17 percent. 

4.4.3.3 Parameter estimates from Negative Binomial Regression Model 2 

Table 4-38 presents the parameter estimates for the NB model developed based on the dataset 

of intersection-related pedestrian casualties. This model is referred to as NB Model 2. Similar 

to NB Model 1, 17 explanatory variables that are included in NB Model 2 are all statistically 

significant (i.e. p<0.05). The top five variables with the highest absolute values of the 

coefficient “B” are: (1) the log of population (B=1.9470); (2) the entropy index (B=1.6102); 

(3) the proportion of signalised intersections (B=0.1234); (4) the proportion of expressways 

(B=0.0795); and (5) the proportion of freeways (B=0.0692). Of the 17 explanatory variables 

of NB Model 2, 11 variables have positive associations with the number of intersection-related 

pedestrian casualties while six demographic variables are shown to have negative associations 

with the number of intersection-related pedestrian casualties.
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Table 4-38: Model estimates for NB Model 2 

Variables 

IntersPedCas - Parameter estimates  
Distribution : NEGATIVE BINOMIAL 
Link function: LOG 

Estimate 
(B) 

Standard 
Error 

Wald 
Stat. 

Lower 
CL 

95.0% 

Upper 
CL 

95.0% 

p Exp(B) 

Intercept -5.0606 1.5921 10.1029 -8.1811 -1.9401 0.0015 0.0063 

Log_Popu 1.9470 0.1510 166.2123 1.6510 2.2430 0.0000 7.0074 

Prop_AgeLess15 -0.0460 0.0158 8.4439 -0.0771 -0.0150 0.0037 0.9550 

Prop_Age15_24 -0.0562 0.0103 29.6206 -0.0765 -0.0360 0.0000 0.9453 

Prop_Age55_plus -0.0277 0.0093 8.8287 -0.0460 -0.0094 0.0030 0.9727 

Prop_AvgEd -0.0245 0.0056 19.3274 -0.0354 -0.0136 0.0000 0.9758 

Prop_NotWork -0.0350 0.0072 23.5936 -0.0491 -0.0209 0.0000 0.9656 

Prop_UpperInc -0.0573 0.0063 82.5747 -0.0696 -0.0449 0.0000 0.9444 

ENT_9Cat 1.6102 0.3862 17.3878 0.8534 2.3671 0.0000 5.0038 

Prop_GI9Cat 0.0245 0.0045 29.9836 0.0157 0.0333 0.0000 1.0248 

Ratio_inters-cds 0.0529 0.0225 5.5256 0.0088 0.0969 0.0187 1.0543 

Prop_Freeways 0.0692 0.0165 17.6544 0.0369 0.1014 0.0000 1.0716 

Prop_Expressways 0.0795 0.0200 15.7909 0.0403 0.1188 0.0001 1.0828 

Prop_PrimaryArter 0.0533 0.0189 7.9638 0.0163 0.0903 0.0048 1.0547 

Prop_SecondArter 0.0365 0.0165 4.8580 0.0040 0.0689 0.0275 1.0371 

Prop_LocalStr 0.0330 0.0155 4.5344 0.0026 0.0634 0.0332 1.0336 

Round_Circ 0.0297 0.0105 8.0416 0.0092 0.0503 0.0046 1.0302 

Prop_Signal 0.1234 0.0231 28.4753 0.0781 0.1688 0.0000 1.1314 

Dispersion 0.4108 0.0615   0.2902 0.5314     

Using the exponentiated coefficients “Exp (B)” presented in Table 4-38, the coefficient 

estimates “B” of the 11 explanatory variables (with positive associations with the frequency of 

pedestrian casualties) suggest that,  when other explanatory variables in NB Model 2 are held 

constant: 

 A one unit increase in Log of population would result get the number pedestrian 

casualties increased by a factor of 7.00; 

 An increase of one unit in entropy index measured using nine land-use categories 

(“ENT_9Cat”) would result in an increase in the number of pedestrian casualties by a 

factor of 5.00; 

 Increasing the proportion of signalised intersections by one percent would result in 

13.14 percent increase in the number of pedestrian casualties; 

 A one percent increase in the proportion of expressways would result in 8.28 percent 

increase in the number of pedestrian casualties; 
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 Elevating the proportion of freeways by one percent would contribute to an increase of 

7.16 percent in the number of pedestrian casualties; 

 An increase of one percent in the proportion of primary arterial roads would lead to an 

increase of 5.47 percent in the number of pedestrian casualties; 

 An increase of one percent in the proportion of secondary arterial roads would result in 

3.71 percent increase in the number of pedestrian casualties; 

 Increasing the proportion of local streets by one percent would contribute to a rise of 

3.36 percent in the number of pedestrian casualties; 

 A one unit increase in the ratio of intersections to cul-de-sacs would result in 5.43 

percent increase in the number of pedestrian casualties; 

 One additional roundabout or mini-circle to the total number of these facilities would 

result in an increase of 3.02 percent in the number of pedestrian casualties; 

 An increase of one percent in the proportion of land zoned as General Industry (GI) 

would result in 2.48 percent increase in the number of pedestrian casualties. 

With respect to the six explanatory variables shown to have negative relationships with the 

frequency of intersection-related pedestrian casualties, their parameter estimates indicate that, 

while holding the other explanatory variables constant in the model: 

 An increase of one percent in the proportion of the population with upper income would 

contribute to a decrease of 5.56 percent in the number of pedestrian casualties; 

 An increase of one percent in the proportion of the population in the 15-24 age group 

would result in a decrease of 5.47 percent in the number of pedestrian casualties; 

 A one percent increase in the proportion of the population younger than 15 years old 

would reduce the number of pedestrian casualties by 4.50 percent; 

 A one percent increase in the proportion of the population classified as not in the labour 

force (i.e. unemployed and discouraged workers) would result in 3.44 percent decrease 

in the number of pedestrian casualties; 

 A one percent increase in the proportion of the population aged 55 years and older 

would result in 2.73 percent decrease in the number of pedestrian casualties; 

 An increase of one percent in the proportion of the population with an average 

education level would contribute to a decrease of 2.4 percent in the number of 

pedestrian casualties. 
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4.4.3.4 Parameter estimates from Negative Binomial Model 3  

The parameter estimates for Negative Binomial Model 3 (NB Model 3) fitted to KSI pedestrian 

casualties are described in Table 4-39. NB Model 3 comprises 14 explanatory variables shown 

to be statistically significant. The top five variables which show a prevailing influence on the 

number of KSI pedestrian casualties are: (1) the log of population (B=1.5511); (2) the entropy 

index (B=0.8852); (3) the proportion of signalised intersections (B=0.0829); (4) the proportion 

of the population aged 55 years and older (B= -0.0496) and (5) the proportion of the population 

in the 15-24 age group (B= -0.0453). Of the 14 explanatory variables in NB Model 3, seven 

demographic variables emerge with negative values of the coefficient B while the other half of 

the variables are shown with positive values of the coefficient B. 

Table 4-39: Model estimates for NB Model 3 

Variables 

KSI - Parameter estimates  
Distribution : NEGATIVE BINOMIAL 
Link function: LOG 

Estimate 
(B) 

Standard 
Error 

Wald 
Stat. 

Lower CL 
95.0% 

Upper CL 
95.0% 

p Exp(B) 

Intercept -0.2856 0.4791 0.3555 -1.2246 0.6533 0.5510 0.7515 

Log_Popu 1.5511 0.1687 84.5105 1.2204 1.8818 0.0000 4.7166 

Prop_AgeLess15 -0.0354 0.0151 5.5136 -0.0650 -0.0059 0.0189 0.9652 

Prop_Age15_24 -0.0453 0.0100 20.4844 -0.0649 -0.0257 0.0000 0.9557 

Prop_Age55_plus -0.0496 0.0092 28.8671 -0.0677 -0.0315 0.0000 0.9516 

Prop_AvgEd -0.0159 0.0061 6.7725 -0.0280 -0.0039 0.0093 0.9842 

Prop_NotWork -0.0181 0.0072 6.3818 -0.0322 -0.0041 0.0115 0.9821 

Prop_MidInc -0.0129 0.0049 6.9497 -0.0225 -0.0033 0.0084 0.9872 

Prop_UpperInc -0.0418 0.0064 42.2392 -0.0544 -0.0292 0.0000 0.9591 

ENT_9Cat 0.8852 0.3583 6.1022 0.1829 1.5875 0.0135 2.4235 

Prop_GI9Cat 0.0186 0.0041 20.2964 0.0105 0.0267 0.0000 1.0188 

Inters_grt3leg 0.0032 0.0007 18.7940 0.0018 0.0047 0.0000 1.0032 

Prop_Freeways 0.0345 0.0077 19.9692 0.0193 0.0496 0.0000 1.0351 

Prop_Expresways 0.0337 0.0133 6.3744 0.0075 0.0598 0.0116 1.0342 

Prop_Signal 0.0829 0.0212 15.3167 0.0414 0.1244 0.0001 1.0864 

Dispersion 0.3975 0.0614   0.2772 0.5178     

Marked values are not statistically significant at 95% confidence interval (i.e. p>0.05)
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Using the exponentiated coefficients “Exp (B)”, the parameter estimates with positive values 

indicate that, when the other variables in NB Model 3 are held constant: 

 A one unit increase in Log of population would increase the number of KSI pedestrian 

casualties by a factor of 4.72; 

 A one unit increase in entropy index measured using nine land-use categories 

(“ENT_9Cat”) would get the number of KSI pedestrian casualties increased by a factor 

of 2.42; 

 Raising the proportion of signalised intersections by one percent would contribute to 

an increase of 8.64 percent in the number of KSI pedestrian casualties; 

 An increase of one percent in the proportion of freeways would result in 3.51 percent 

increase in the number of KSI pedestrian casualties; 

 An increase of one percent in the proportion of expressways would contribute to a rise 

of 3.42 in the number of KSI pedestrian casualties; 

 A one unit increase in the proportion of the general industrial use (GI) would be 

associated with an increase of 1.88 percent in the number of KSI pedestrian casualties; 

 An addition of one extra four-or multi-legged intersection would be associated with an 

increase of 0.32 percent in the number of KSI pedestrian casualties. 

The model results for the explanatory variables with negative values of the coefficient B 

suggest that, while holding the other variables constant in NB Model 3: 

 A one percent increase in the proportion of the population aged 55 years and older 

would contribute to 4.84 percent decrease in the number of KSI pedestrian casualties; 

 An increase of one percent in the proportion of the population in the 15-24 age group 

would result in a decrease of 4.43 percent in the number of KSI pedestrian casualties; 

 An increase of one percent in the proportion of the population with upper income  would 

be associated with a reduction of 4.09 percent in the number of KSI pedestrian 

casualties; 

 An increase of one percent in the proportion of the population younger than 15 years 

old would result in 3.48 percent decrease in the number of KSI pedestrian casualties; 

 A one percent increase in the proportion of the population classified as not in the labour 

force (i.e. unemployed and discouraged population) would result in 1.79 percent 

decrease in the number of KSI pedestrian casualties; 
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 A one percent increase in the proportion of the population with an average education 

level would be associated with a decrease of 1.58 percent in the number of KSI 

pedestrian casualties; 

 A rise of one percent in the proportion of the population with middle income (earning 

a monthly income ranging from R6 401 to R25 600) would result in a reduction of 1.28 

percent in the number of KSI pedestrian casualties.  

4.4.3.5 Sensitivity of variables over different days of a week 

In addition to the three models developed in this study (i.e. Model 1, Model 2 and Model 3), 

three additional models were included in the analysis to test the sensitivity of parameter 

estimates over different days of the week. One model was developed for pedestrian casualties 

that occurred on weekdays (Model 4). Another model was developed for Saturday pedestrian 

casualties (Model 5) and the last one was developed for Sunday pedestrian casualties (Model 

6). Public holidays were excluded from this analysis since exposure on holidays may differ 

depending on the holiday being celebrated. For instance, exposure over long weekends may 

differ from that of a single public holiday, as long weekends are associated with increased trip 

distances (inter- and intra-provincial travels) and an increase in social and recreational 

activities involving travelling in rural and unfamiliar road environments.  

The three additional models were developed using the Negative Binomial regression modelling 

and with reference to the 17 explanatory variables of NB Model 1, to enable a better basis for 

the comparison of parameter estimates. The coefficients B for NB Model 4, NB Model 5 and 

NB Model 6 are demonstrated in Table 4-40 and the full outputs for the three models are 

provided in APPENDIX F. The estimates in Table 4-40 with red font colour are found to be 

not statistically significant (p>0.05). The rows highlighted in blue illustrate variables with 

decreasing values of coefficient B, while those in yellow represent variables with increasing 

values of coefficient B. 
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Table 4-40: Estimates for NB Model 4, NB Model 5 and NB Model 6 

 

Parameter estimates  
Distribution : NEGATIVE BINOMIAL 
Link function: LOG 

Variables 
NB Model 4 NB Model 5 NB Model 6 
Estimate (B) Estimate (B) Estimate (B) 

Intercept -0.2127 -1.0284 -1.2010 

Log_Popu 1.4715 1.4657 1.4108 

Prop_White -0.0113 -0.0116 -0.0203 

Prop_AgeLess15 -0.0489 -0.0349 -0.0093 

Prop_Age15_24 -0.0408 -0.0454 -0.0693 

Prop_Age25_54 -0.0252 -0.0216 -0.0122 

Prop_AvgEd -0.0152 -0.0149 -0.0217 

Prop_UpperInc -0.0202 -0.0333 -0.0297 

ENT_9Cat 1.0756 0.8049 0.6821 

Prop_GI9Cat 0.0295 0.0171 0.0051 

Inters_grt3leg 0.0027 0.0028 0.0031 

StrDens 0.0279 0.0062 0.0076 

Prop_Freeways 0.0357 0.0181 0.0352 

Prop_Expressways 0.0607 0.0318 0.0224 

Prop_PrimaryArter 0.0153 0.0161 0.0302 

Prop_SecondArter 0.0099 0.0068 0.0188 

Round_Circ 0.0368 0.0260 0.0195 

Prop_Signal 0.0912 0.0808 0.0494 

Dispersion 0.4197 0.3131 0.3274 

Marked values are not statistically significant at 95% confidence interval (i.e. p>0.05) 

The test for sensitivity of estimates over different days of the week was conducted by 

comparing the coefficients B of the three models- Model 4, Model 5 and Model 6. The 

sensitivity analysis intends to test possible mediating effects of exposure variables- pedestrian 

volumes, traffic volumes and vehicular speed- which are not captured in the analysis due to 

lack of data. Variables such as population, land use mix and road class are considered in this 

study as rough proxy variables for exposure. The number of population and land use mix are 

considered as rough proxy variables of pedestrian activity or pedestrian trip density, while road 

class is considered as a rough proxy of vehicular speed and traffic volumes. The sensitivity 

analysis is based on the hypothesis that exposure varies over different days of the week. For 

instance, research in South Africa has demonstrated that traffic volumes on weekdays are 

higher than those on weekends (Jongh & Bruwer, 2017; Sampson, 2017). However, with 

respect to pedestrian volumes, not much is known about temporal variation in pedestrian 

activity in South Africa.  
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Although not based on research evidence, one would presuppose that pedestrian activity or 

pedestrian trip density is reduced on Saturdays and that the lowest activity is expected on 

Sundays. Reduced pedestrian activity on Saturdays may be justified by decreased density of 

both commuting trips and walking trips to access services (e.g. schools, governmental services 

etc.). In addition to the reduced number of trips for commuting and accessing services, a 

decrease in the number of shopping trips would contribute to further reductions in pedestrian 

activity on Sundays. Many shops in South Africa are closed and some are opened for limited 

hours on Sundays. Therefore, the expectation that Sunday is the day of week with minimum 

pedestrian activity may be a reasonable claim. However, it is worth noting that trends in 

pedestrian activity may also depend on the location. For example, places of leisure might 

experience more pedestrian activity on weekends than weekdays (e.g. beaches; shopping malls 

such as Canal Walk Shopping Centre, Waterfront and to name a few; theme parks and water 

amusement parks, etc.) while the situation for places of business (e.g. industrial areas, CBD) 

would tend to be the inverse. Therefore, the magnitude of the contribution (measured by the 

coefficient B) of proxy variables of exposure (e.g. land-use mix, road class, population) to the 

number of pedestrian casualties is expected to vary over different days of week and across 

different locations within the study area. 

The estimates (coefficient B) of the three models developed for the test of sensitivity are 

presented in Table 4-40. A decreasing contribution to the outcome variable across the three 

models (from Model 4 to Model 6) is apparent for 10 explanatory variables (variables colour-

coded in blue in Table 4-40). These variables are: 

 The proportion of the White population 

 The proportion of the population in the 15-24 age group 

 The proportion of the population with an average education level 

 The proportion of the population with upper income 

 Entropy index 

 The proportion of land zoned as General Industry (GI) 

 Street density 

 The proportion of expressways 

 The number of roundabouts and mini-circles and  

 The proportion of signalised intersections. 
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The model results clearly show that the highest influence of the aforementioned variables on 

the number of pedestrian casualties is expected on weekdays. Reduced influence is expected 

on Saturdays and the least contribution of these variables to the pedestrian casualty frequency 

is expected on Sundays. The entropy index which reflects the extent to which land use types 

are mixed emerged among these variables. The varying influence of entropy index suggests 

that pedestrian casualties mainly related to pedestrian activity are more likely to occur on 

weekdays than on weekends. In a similar way, the results indicate that pedestrian casualties 

mostly influenced by population characteristics such the number of the population with upper 

income, average education level, and in the 15-24 age group are more likely to occur on 

weekdays than weekends. The reason for this finding could be reduced trip density among 

commuters (who earn more income and are more likely to be educated than unemployed and 

discouraged workers) and young adults (mostly learners and young workers) over weekends. 

The same reason could explain why industrial use is more associated with pedestrian casualties 

on weekdays than weekends: industrial activity is usually more intense on weekdays than 

weekend. With respect to roadway characteristics that are concerned by this analysis, temporal 

variations in traffic volume could be the reason for varying influence of roadway characteristics 

on pedestrian casualty frequency.  

In contrast, four variables (colour-coded in yellow) have an increasing influence on pedestrian 

casualty counts across the days of week, with greater influences being shown during the 

weekends. These variables include: 

 The proportion of the population younger than 15 years  

 The proportion of the population in the 25-54 age group 

 The  number of four- and multi-legged intersections and 

 The proportion of primary arterial roads.  

These findings explain that the associations between pedestrian casualty frequency and two 

age groups (population in the 25-54 age group and those younger than 15 years) are more 

pronounced on weekends than weekdays. The explanation for this could be that children 

younger than 15 years who are predominantly school-age children are free from school on 

weekends and consequently, the level of children’s activity such as playing and wandering off 

the street is greater. Moreover, alcohol involvement may play an important role in greater 

associations between pedestrian casualty frequency and the number of people in the 25-54 age 

range on weekends. For instance, a recent study conducted in South Africa has reported that 
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the prevalence of binge drinking is highest among males and females aged 25-34 years (Vellios 

& Van Walbeek, 2017). It is also documented that rates of heavy alcohol consumption in South 

Africa are higher on weekends than on weekdays (Econometrix, 2013; National Department of 

Health, 2007).  

Alcohol involvement may also be the possible reason for greater relationships between 

pedestrian casualty frequency and roadway characteristics such as four- or multi-legged 

intersections and arterial roads. Although traffic volume is recognised as the main determinant 

in pedestrian crashes, evidence has emerged in several studies that in certain circumstances low 

traffic is associated with increased number of pedestrian crashes (Yao et al., 2015). The main 

reason that could explain this relationship may be reduced pedestrians’ attention when traffic 

is low, which may lead to collisions with motorists (Harrell, 1991; Yao et al., 2015). This might 

also be another possible explanation of stronger relationships between pedestrian casualty 

frequency and the two roadway factors (four- or multi-legged intersections and arterial roads).  
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4.4.4 Model results from Geographically Weighted Regression (GWR) models 

As with the Generalised linear models (GLM) used in this study, six geographically weighted 

regression (GWR) models were developed to investigate associations between the aspects of 

the built environment and pedestrian casualty counts at the census suburb level. The specific 

advantage of the GWR modelling procedure over the GLM is the ability to capture non-

stationary or spatially varying relationships between pedestrian casualty counts and the 

explanatory variables representing the built environments. Six models were developed using 

the GWR tool implemented in ArcMap 10.3.1 software. The analysis with the GWR models is 

intended to respond to the second and the third research questions investigated in this study 

(i.e. “If the link between pedestrian crashes and the built environment exists, what is its extent 

and how is it spatially distributed?”)  

4.4.4.1 Parameter estimates for GWR Models 

Parameter estimates in the GWR model are allowed to vary spatially and this ability allows for 

an exploration of local variations of a range of parameter estimates across the study area. With 

the GWR models, local parameter estimates were produced for each census suburb and these 

include the (1) condition number; (2) the local R2; (3) predicted values (i.e. predicted pedestrian 

casualty count for the context of this study); (4) intercept.; (5) coefficients of explanatory 

variables; (6) residuals; (7) standard error; (8) coefficients of standard error; (9) and 

standardised residuals. 

Each GWR model comprises 190 sets of parameter estimates and each explanatory variable 

included in the model has 190 coefficients corresponding to the 190 census suburbs of the City 

of Cape Town. A model with lower value of the Corrected Akaike’s Information (AICc) was 

selected to study the relationship between the explanatory variables and the outcome variable. 

Three outcome variables analysed using GWR models include: (1) all pedestrian casualties 

(GWR Model 1); (2) intersection-related pedestrian casualties (GWR Model 2); (3) and killed 

and seriously injured (KSI) pedestrian casualties (GWR model 3).  

For each outcome variable, two GWR models were developed to allow for a greater range of 

explanatory variables as some important variables of the built environment could not all be 

included in a single model because of the issue of spatial correlation among variables (i.e. 

multicollinearity issue). The multicollinearity was assessed by the variance inflation factor 

(VIF). For each outcome variable, the model with the best goodness of fit measure (i.e. the 
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lowest value of AICc) was selected and denoted by the letter “A”. The second model (denoted 

by the letter “B”) was selected based on a trade-off between goodness of fit measures and 

inclusion of explanatory variables of interest in the model (especially those describing urban 

form land use and transportation system) but which were not captured in the models A. In total, 

six GWR models were developed and parameters reflecting the goodness of fit measures for 

these six models are summarised in Table 4-41. By examining the values of AICc, it can be 

noticed that all Models A have minimum values of AICc, indicating that they perform better 

than Models B.  

Table 4-41: Output of goodness of fit parameters for the GWR models 

Indicators 
GWR 

 Model 1A 
GWR 

Model 1B 
GWR 

Model 2A 
GWR 

Model 2B 
GWR 

Model 3A 
GWR 

Model 3B 

Bandwidth 16671.88 801924.95 22753.21 273412.97 19897.58 18314.71 

Residual Squares 469723.60 715569.02 47695.47 130105.28 119394.01 114275.91 

Effective Number 32.23 15.02 22.25 16.21 19.14 33.89 

Sigma 54.56 63.95 16.86 27.36 26.43 27.06 

AICc 2082.07 2138.79 1628.99 1817.54 1797.06 1818.43 

R 2 0.87 0.80 0.79 0.43 0.74 0.75 

R2Adjusted 0.85 0.79 0.76 0.38 0.72 0.70 

 

1. Explanatory variables for GWR Model 1 

Initially, the 11 explanatory variables included in the GLMs to model pedestrian casualty 

counts at the census suburb level were considered for the GWR Model 1. When there were 

issues of either global or local multicollinearity among variables in the model, ArcMap could 

not compute the results for the GWR model and an error “no 040038” that states that: “results 

cannot be computed because of severe model design problems” appeared. To address this issue, 

the Exploratory Regression tool implemented in ArcMap software was used as a starting point 

to select the best model with maximum performance indicators (e.g. Adjusted R2, AICs) and 

minimum level of multicollinearity measured by the Variance Inflation Factor (VIF). Models 

with higher values of VIF were not selected since higher VIF values imply that two or more 

variables are redundant (i.e. may be telling the same story).  

For the entire sample of pedestrian casualties, GWR Model 1A and GWR model 1B were 

selected for the analysis. The first model consists of seven explanatory variables and the second 

comprises 14 explanatory variables. Explanatory variables included in GWR Models 1 are 

summarized in Table 4-42. 
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Table 4-42: Explanatory variables for GWR models 1 

Var No 
GWR 

 Model 1A 
GWR 

Model 1B 

1 Prop_Black Log_Popu 

2 Prop_AgeLess15 Prop_AgeLess15 

3 Prop_MidInc Prop_AvgEd 

4 Prop_GB.MU9Cat Prop_UpperInc 

5 Inters_grt3leg ENT_9Cat 

6 Round_Circ Prop_GI9Cat 

7 Prop_Signal Inters_grt3leg 

8   StrDens 

9   Prop_Freeways 

10   Prop_Expressways 

11   Prop_PrimaryArter 

12   Prop_SecondArter 

13   Round_Circ 

14   Prop_Signal 

 

2. Local parameter estimates for GWR Model 1 

This section provides a description of local parameter estimates for the best GWR Model 1 

based on the goodness of fit measure (i.e. GWR Model 1A). The GWR Model 1A was 

calibrated based on the explanatory variables presented in Table 4-42. The spatial distribution 

of local estimates for each explanatory variable included in GWR model 1A is illustrated in 

Figure 4-75 and Figure 4-76. On these figures, a pattern of spatial non-stationarity can be seen 

by examining variations in the coefficients of explanatory variables. Summary statistics of the 

coefficient values behind the choropleth maps (i.e. thematic maps patterned in proportion to 

values of variable displayed on the map) in Figure 4-75 and Figure 4-76 are provided in Table 

4-43. Local estimates with a positive sign indicate that the corresponding explanatory variable 

is associated with increased number of pedestrian casualties whereas a negative sign implies 

that the variable is associated with a reduced number of pedestrian casualties.  

The t-test indicates variables that show significant varying influence on the number of 

pedestrian casualties (i.e. spatial heterogeneity in the relationship between those variables and 

pedestrian casualty counts). Unlike the GLMs, the number of roundabouts and mini-circles is 

found to be associated with a decreased number of pedestrian casualties in GWR Model 1A. 

Contradictory findings also arise with respect to the influence of the proportion of population 

younger than 15 years. In GWR Model 1 A, this variable shows a positive influence on the 

number of pedestrian casualties while the opposite is found in the NB Model 1.
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Figure 4-75: Local estimates for GWR Model 1A: (1) Prop_AgeLess15; (2) Prop_Black; 

(3)Prop_MidInc; (4) Prop_GB.MU9Cat 
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Figure 4-76: Local estimates for GWR Model 1A: (5) Inters_grt3leg; (6) Round_Circ; (7) 

Prop_Signal 
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The t-test computed to detect significant variations in local estimates demonstrates that five 

variables of the model are statistically significant at the 5% level (i.e. p<0.05). The proportion 

of the Black population and the proportion of signalised intersections are statistically non-

significant (i.e. p>0.05), suggesting that the local coefficients for these two variables are not 

significantly different from those of the global model (OLS model). In other words, this means 

that there are no significant variations in the local estimates of these variables across the study 

area. The results of the t-test are presented in Table 4-43. 

Table 4-43: Summary statistics of local estimates for GWR Model 1A 

Local parameters 

Summary statistics of local estimates for GWR Model 1A 

Mean Minimum Maximum Std.Dev. 
Global   
Model 

t-value df p 

Coeff Intercept -46.032 -58.573 16.840 13.236 -42.499 -3.679 189 0.000 

Coeff Prop_Black 0.743 0.263 1.663 0.255 0.716 1.463 189 0.145 

Coeff Prop_AgeLess15 1.796 -0.712 2.381 0.587 1.452 8.064 189 0.000 

Coeff Prop_MidInc -0.682 -0.992 -0.165 0.172 -0.634 -3.869 189 0.000 

Coeff Prop_GB.MU9Cat 0.862 -2.504 2.105 0.786 1.227 -6.397 189 0.000 

Coeff Inters_grt3leg 1.374 0.820 1.562 0.115 1.417 -5.057 189 0.000 

Coeff Round_Circ -3.497 -6.021 -1.553 1.053 -4.536 13.596 189 0.000 

Coeff Prop_Signal 4.284 -0.896 5.609 1.131 4.384 -1.212 189 0.227 

Local R2 0.811 0.760 0.958 0.033 0.825 -5.722 189 0.000 

Residual -1.619 -145.540 221.686 49.826 0.000 -1.271 189 0.205 

Std. Residual -0.047 -5.873 5.792 1.117 0.000 -2.023 189 0.044 

Marked values are not statistically significant at 95% confidence interval (i.e. p>0.05) 

The spatial patterns of local estimates are described in reference to the eight planning districts 

of the City of Cape Town illustrated in Figure 2-4 on Page 42. The spatial patterns of local 

estimates illustrated in Figure 4-75 and Figure 4-76 demonstrate that:  

 The influence of the proportion of the Black population on pedestrian casualties is 

greatest in the south eastern suburbs (Helderberg district); 

 The influence of the proportion of the population younger than 15 years old on the 

pedestrian casualty frequency is most pronounced in the central parts of the City of 

Cape Town (City Bowl, Table bay and Tygerberg districts); 

 The proportion of the population with a middle income level has the greatest negative 

influence on pedestrian casualty counts in Khayelitsha/Mitchells Plain and Cape Flats 

district In other words, the proportion of the population earning a middle income level 

is greatly associated with a reduced number of pedestrian casualties in these regions; 
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 The proportion of mixed use and general business use has a more pronounced influence 

on the number of pedestrian casualties in the western parts of the city (Blaauwberg and 

Table Bay districts); 

 A positive relationship between the number of four- and multi-legged intersections and 

the frequency of pedestrian casualties is most significant in the south eastern parts of 

Cape Town (Khayelitsha/Mitchells Plain, Cape Flats and Tygerberg district); 

  A negative relationship between the number of roundabouts/mini-circles and the 

frequency of pedestrian casualties is most marked in the eastern regions of Cape Town 

(Northern district, Tygerberg and Khayelitsha districts). 

For GWR Model 1B, summary statistics of local estimates are presented in APPENDIX G 

(APPENDIX G1 on Page 345) and the spatial distribution of local estimates of the predictors 

is illustrated in APPENDIX H (APPENDIX H1 on Page 365).  

3. Local parameter estimates for GWR Model 2 

Explanatory variables included in GWR Models 2 are shown in Table 4-44. GWR Model 2A 

comprises seven explanatory variables while GWR Model 2B consists of 15 explanatory 

variables. 

Table 4-44: Explanatory variables for GWR Models 2 

Var No 
GWR 

 Model 2A 
GWR 

Model 2B 

1 Log_Popu Log_Popu 

2 Prop_White Prop_AgeLess15 

3 Prop_SR9Cat Prop_Age15_24 

4 Prop_GB.MU9Cat Prop_AvgEd 

5 Inters_grt3leg Prop_NotWork 

6 Round_Circ Prop_UpperInc 

7 Prop_Signal ENT_9Cat 

8   Prop_GI9Cat 

9   Ratio_inters-cds 

10   Prop_Freeways 

11   Prop_Expresways 

12   Prop_PrimaryArter 

13   Prop_SecondArter 

14   Round_Circ 

 15   Prop_Signal 
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Local parameter estimates for GWR Model 2A are presented in Table 4-45. The model includes 

seven explanatory variables to estimate the number of intersection-related pedestrian 

casualties. Of the seven explanatory variables, three variables emerge with negative values of 

local coefficients. These variables are: (1) the proportion of the White population; (2) the 

proportion of the single residential use (Prop_SR9Cat) and (3) the number of roundabouts and 

mini-circles.  

Table 4-45: Summary statistics of local estimates for GWR Model 2A 

Local parameters 

Summary statistics of local estimates for GWR Model 2A 

Mean Minimum Maximum Std.Dev. 
Global   
Model 

t-value df p 

Coeff Intercept -15.686 -21.780 5.364 3.839 -15.378 -1.107 189 0.270 

Coeff Log_Popu 4.134 -3.023 5.772 1.171 4.055 0.940 189 0.349 

Coeff Prop_White -0.077 -0.100 0.044 0.021 -0.065 -7.915 189 0.000 

Coeff Prop_SR9Cat -0.096 -0.134 -0.007 0.027 -0.092 -2.459 189 0.015 

Coeff Prop_GB.MU9Cat 0.716 0.093 0.920 0.147 0.718 -0.129 189 0.897 

Coeff Inters_grt3leg 0.348 0.247 0.395 0.026 0.325 12.257 189 0.000 

Coeff Round_Circ -1.447 -1.949 -0.388 0.298 -1.318 -5.990 189 0.000 

Coeff Prop_Signal 1.960 1.140 2.134 0.179 2.018 -4.497 189 0.000 

Local R2 0.756 0.613 0.857 0.027 0.759 -1.829 189 0.069 

Residual -0.142 -35.973 77.518 15.885 0.000 -0.638 189 0.524 

Std. Residual -0.010 -2.361 5.440 1.052 0.000 -0.830 189 0.408 

Marked values are not statistically significant at 95% confidence interval (i.e. p>0.05) 

The t-test shows that five explanatory variables are statistically significant at the 5% level, with 

the exception of logarithm of population (Log-Popu) and the proportion of mixed use and 

general business use (Prop_GB.MU9Cat). This explains that spatial heterogeneity (i.e. 

variation in relationships across the study area) is not statistically significant for these two 

variables. Local estimates of each explanatory variable in GWR Model 2A are mapped in 

Figure 4-77 and Figure 4-78. An examination of the spatial patterns of the mapped local 

estimates shows that: 

 Population number (Log_Popu) is more positively related to the frequency of 

intersection-related pedestrian casualties in the south eastern parts of the city 

(Helderberg district) and east-central parts ( Khayelitsha/Mitchells Plain and Tygerberg 

districts) ; 

 The proportion of the White population is greatly associated with a reduced number of 

intersection-related pedestrian casualties in the east-central parts of the city (Tygerberg 

and Khayelitsha /Mitchells Plain districts); 
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 The proportion of the single residential use is greatly related to a reduced number of 

intersection-related pedestrian casualties in the western regions of Cape Town (Table 

Bay district, certain suburbs of South Peninsula and Blaauwberg districts); 

 A positive influence of the proportion of mixed use and general business use on the 

frequency of intersection-related pedestrian casualties is most pronounced in the 

western parts of Cape Town (Blaauwberg and Table Bay districts); 

 The number of four- and multi-legged intersections is greatly associated with increased 

number of intersection-related casualties in northern and western parts of the city 

(Northen, Blaauwberg and Table Bay districts); 

 A negative relationship between the number of roundabouts/mini-circles and 

intersection-related pedestrian casualties is most prominent in Northen and Tygerberg 

districts; 

 The proportion of signalised intersection is most distinctly associated with increased 

number of intersection-related pedestrian casualties in Table Bay, Khayelitsha 

/Mitchells Plain, Cape Flats districts as well as in certain suburbs of Tygerberg and 

Southern districts. 

Summary statistics of local estimates for GWR Model 2B are shown in APPENDIX G 

(APPENDIX G2 on Page 346) and the spatial patterns of local estimates of the predictors in 

GWR Model 2B are illustrated in APPENDIX H (APPENDIX H2 on Page 370). 
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Figure 4-77: Local estimates for GWR Model 2A: (1) Log_Popu; (2) Prop_White; (3) 

Prop_SR9Cat; (4) Prop_GB.MU9Cat 
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Figure 4-78: Local estimates for GWR Model 2A: (5) Inters_grt3leg; (6) Round_Circ; (7) 

Prop_Signal 
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4. Local parameter estimates for GWR Model 3 

Table 4-46 presents explanatory variables included in GWR Models 3. In GWR Model 3A, 

KSI pedestrian casualty counts are estimated by five explanatory variables while the same 

outcome variable is estimated by eight predictors in GWR Model 3B.  

Table 4-46: Explanatory variables for GWR Models 3 

Var No 
GWR 

 Model 3A 
GWR 

Model 3B 

1 Prop_Black Log_Popu 

2 Prop_Age15_24 Prop_Coloured 

3 Prop_Age25_54 Prop_White 

4 Prop_NotWork Inters_grt3leg 

5 Inters_grt3leg Prop_Freeways 

6   Prop_Expressways 

7   Prop_PrimaryArter 

8   Prop_SecondArter 

Summary statistics of local parameter estimates for GWR Model 3A are presented in Table 

4-47. In this model, five explanatory variables were included to predict the number of KSI 

pedestrian casualties. Among these variables, the proportion of the population in the 15-24 age 

group and the proportion of the population in the 25-54 age group are negatively associated 

with the frequency of KSI pedestrian casualties. The analysis of spatial homogeneity of local 

estimates by the use of the t-test demonstrates that the proportion of the population in the 25-

54 age group is statistically non-significant at the 5% level. 

Table 4-47: Summary statistics of local estimates for GWR Model 3A 

Local parameters 

Summary statistics of local estimates for GWR Model 3A 

Mean Minimum Maximum Std.Dev. 
Global   
Model 

t-value df p 

Coeff Intercept 7.135 -0.997 18.777 3.587 7.550 -1.597 189 0.112 

Coeff Prop_Black 0.542 0.124 1.220 0.182 0.516 1.982 189 0.049 

Coeff Prop_Age15_24 -0.382 -0.804 0.318 0.163 -0.358 -2.005 189 0.046 

Coeff Prop_Age25_54 -0.523 -0.969 -0.200 0.155 -0.524 0.103 189 0.918 

Coeff Prop_NotWork 0.477 0.005 0.837 0.123 0.438 4.438 189 0.000 

Coeff Inters_grt3leg 0.384 0.217 0.434 0.042 0.378 2.174 189 0.031 

Local R2 0.680 0.552 0.775 0.042 0.668 3.740 189 0.000 

Residual -1.355 -90.005 177.811 25.097 0.000 -2.641 189 0.009 

Std. Residual -0.068 -4.977 8.396 1.103 0.000 -3.436 189 0.001 

Marked values are not statistically significant at 95% confidence interval (i.e. p>0.05) 
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Local estimates of the predictors in GWR Model 3A are mapped in Figure 4-79 and Figure 

4-80. An examination of the spatial patterns of local coefficients for each explanatory variable 

shows that: 

 The contribution of the proportion of the Black population to the frequency of KSI 

pedestrian casualties is most significant in the south eastern parts of the city 

(Helderberg, Khayelitsha /Mitchells Plain and Cape Flats districts and partially in 

Tygerberg district); 

 The proportion of the population in the 15-24 age group and that of the population in 

the 25-54 age group are most significantly associated with reduced numbers of KSI 

pedestrian casualties in the south eastern parts of Cape Town (Helderberg, Khayelitsha 

/Mitchells Plain and Cape Flats districts as well as certain suburbs of Tygerberg 

district); 

 The proportion of the population who are not working ( unemployed and discouraged 

workers) is greatly associated with increased number of KSI pedestrian casualties in 

the south eastern and central parts of Cape Town (Helderberg, Khayelitsha /Mitchells 

Plain, Cape Flats and Tygerberg districts); 

 A positive relationship between the number of four- and multi-legged intersections and 

the frequency of KSI pedestrian casualties is most marked in the southern part of the 

city (Southern district, Khayelitsha /Mitchells Plain district, Cape Flats district as well 

as a part of Tygerberg district).  

Summary statistics of local estimates for GWR Model 3B are provided in APPENDIX G 

(APPENDIX G3 on Page 347) and the spatial distribution of local estimates for the predictors 

in GWR Model 3B is shown in APPENDIX I (APPENDIX I3).
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Figure 4-79: Local estimates for GWR Model 3A: (1) Prop_Black; (2) Prop_Age15-24; (3) 

Prop_Age 25-54; (4) Prop_NotWork 
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Figure 4-80: Local estimates for GWR Model 3A: (5) Inters_grt3leg 

4.4.4.2 Evaluation of GWR model performance  

The performance of GWR models was assessed by examining the goodness-of-fit measures 

previously provided in Table 4-41 on Page 228. In addition to these measures, an examination 

of raw residuals (i.e. the difference between the predicted and the observed number of 

pedestrian casualties for each census suburb) can tell how good a model fits the data. A 

comparison of goodness-of-fit measures such as R2, Adjusted R2 and AICc shows that GWR 

Models A have a better fitting performance than GWR Models B. For a better visualisation, 

raw residuals were standardised and mapped in ArcMap. Standardised residuals have a mean 

of zero and a standard deviation of 1 (ESRI, n.d.). A negative residual value (either raw or 

standardised) means that the predicted value is greater than the observed value (i.e. over-

prediction) while a positive residual value explains the opposite (under-prediction). A residual 

value close to zero implies that the predicted value is very close to the actual value. The spatial 

distribution of the standardised residuals for the six GWR models is illustrated from Figure 

4-81 to Figure 4-86. An analysis of mapped residuals helps to identify locations where the 

model performs well or poorly in predicting the outcome variable.  
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Figure 4-81: Standardised residuals for GWR Model 1A 

 

Figure 4-82: Standardised residuals for GWR Model 1B 
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Figure 4-83: Standardised residuals for GWR Model 2A 

 

Figure 4-84: Standardised residuals for GWR Model 2B 
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Figure 4-85: Standardised residuals for GWR Model 3A 

 

Figure 4-86: Standardised residuals for GWR Model 3B 
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4.4.5 Comparison of the model results 

4.4.5.1 Parameter estimates comparison 

Although the two modelling approaches (GLMs and GWR Models) applied in this study did 

not include the same number of explanatory variables, it is worth examining differences and 

similarities of parameter estimates generated by the two modelling techniques. The estimates 

(coefficients B) for GLMs and GWR Models applied in this study to fit the three datasets of 

pedestrian casualties (all pedestrian casualties, intersection-related pedestrian casualties and 

KSI pedestrian casualties) are summarised in Table 4-48, Table 4-49 and Table 4-50, 

respectively. In the two techniques of GLMs (NB models and Poisson regression models), all 

the demographic predictors are shown to be negatively associated with the frequency of 

pedestrian casualties, apart from the logarithm of population. The results from the best GWR 

Models (i.e. Models A) show the dominance of variables describing the population 

characteristics (socio-demographic and socio-economic variables) in the models, with the 

exception of GWR Model 2A. Of the seven variables in GWR Model 1A, three are 

demographic and the remaining variables describe land use, urban design and the transportation 

system. Of the five variables in GWR Model 3A, four are demographic whereas GWR Model 

2A contains only two demographic variables. These findings are indicative of the powerful 

influence that demographic factors have on the frequency and the severity of pedestrian 

crashes. 

In GWR Models, three explanatory variables do not maintain a negative sign in all models. 

These variables are: (1) the proportion of the population younger than 15 years (in GWR 

Models 1); (2) the proportion of the Black population (in GWR Models 1 and GWR Models 

3); and (3) the proportion of the population who are not working (in GWR Models 3). The 

logarithm of population retains a positive sign in both GLMs and GWR Models. The 

coefficients for the logarithm of population in all three NB Models vary from 1.368 to 1.947 

while the mean values of local coefficients for the same variable vary from 4.134 to 23.772 in 

GWR Models. .
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Table 4-48: Estimates for GLMs and GWR Models: Models 1 

Variables 

Model 1: All pedestrian casualties 

Parameter estimates 

NB Poisson 
GWR Model 1A GWR Model 1B 

Mean Minimum Maximum Mean Minimum Maximum 

Intercept 0.283 -0.436 -46.032 -58.573 16.840 -33.446 -33.468 -33.426 

Log_Popu 1.368 1.537       8.437 8.424 8.457 

Prop_Black     0.743 0.263 1.663       

Prop_White -0.013 -0.008             

Prop_AgeLess15 -0.043 -0.036 1.796 -0.712 2.381 1.589 1.589 1.590 

Prop_Age15_24 -0.041 -0.035             

Prop_Age25_54 -0.022 -0.001             

Prop_AvgEd -0.013 -0.021       -0.369 -0.370 -0.369 

Prop_MidInc     -0.682 -0.992 -0.165       

Prop_UpperInc -0.020 -0.032       -0.888 -0.888 -0.888 

ENT_9Cat 1.158 0.823       -27.864 -27.892 -27.838 

Prop_GI9Cat 0.024 0.015       -0.032 -0.033 -0.031 

Prop_GB.MU9Cat     0.862 -2.504 2.105       

Inters_grt3leg 0.003 0.002 1.374 0.820 1.562 1.374 1.374 1.374 

StrDens 0.022 0.021       0.590 0.589 0.592 

Prop_Freeways 0.032 0.026       0.406 0.405 0.406 

Prop_Expresways 0.059 0.032       0.396 0.396 0.397 

Prop_PrimaryArter 0.024 0.019       -0.194 -0.196 -0.194 

Prop_SecondArter 0.016 0.017       0.406 0.406 0.406 

Round_Circ 0.035 0.013 -3.497 -6.021 -1.553 -3.492 -3.495 -3.491 

Prop_Signal 0.073 0.078 4.284 -0.896 5.609 5.037 5.034 5.040 

Marked values are not statistically significant at 95% confidence interval (i.e. p>0.05) 

 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



247 

 

Table 4-49: Estimates for GLMs and GWR Models: Models 2 

Variables 

Model 2: Intersection-related pedestrian casualties 

Parameter estimates 

NB Poisson 
GWR Model 2A GWR Model 2B 

Mean Minimum Maximum Mean Minimum Maximum 

Intercept -5.061 -4.926 -15.686 -21.780 5.364 -48.186 -48.250 -48.140 

Log_Popu 1.947 2.020 4.134 -3.023 5.772 23.772 23.641 23.933 

Prop_White     -0.077 -0.100 0.044       

Prop_AgeLess15 -0.046 -0.045       -0.337 -0.346 -0.332 

Prop_Age15_24 -0.056 -0.069       -0.376 -0.381 -0.373 

Prop_Age55_plus -0.028 -0.039             

Prop_AvgEd -0.025 -0.024       -0.194 -0.197 -0.190 

Prop_NotWork -0.035 -0.041       -0.211 -0.212 -0.210 

Prop_UpperInc -0.057 -0.060       -0.605 -0.607 -0.604 

ENT_9Cat 1.610 1.583       5.281 5.110 5.553 

Prop_SR9Cat     -0.096 -0.134 -0.007       

Prop_GI9Cat 0.025 0.014       0.120 0.117 0.124 

Prop_GB.MU9Cat     0.716 0.093 0.920       

Inters_grt3leg     0.348 0.247 0.395       

Ratio_Inters-cds 0.053 0.074       0.625 0.614 0.635 

Prop_Freeways 0.069 0.060       0.179 0.177 0.181 

Prop_Expressways 0.080 0.080       0.351 0.347 0.354 

Prop_PrimaryArter 0.053 0.062       0.316 0.313 0.318 

Prop_SecondArter 0.037 0.063       0.102 0.100 0.104 

Prop_LocalStr 0.033 0.033 -1.447 -1.949 -0.388       

Round_Circ 0.030 0.015 1.960 1.140 2.134 0.999 0.990 1.005 

Prop_Signal 0.123 0.101       2.546 2.523 2.564 
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Table 4-50: Estimates for GLMs and GWR Models: Models 3 

Variables 

Model 3: KSI pedestrian casualties 

Parameter estimates 

NB Poisson 
GWR Model 3A GWR Model 3B 

Mean Minimum Maximum Mean Minimum Maximum 

Intercept -0.286 0.023 7.135 -0.997 18.777 1.081 -14.763 64.421 

Log_Popu 1.551 1.934       8.955 -0.317 14.686 

Prop_Black     0.542 0.124 1.220       

Prop_Coloured           -0.492 -1.273 -0.084 

Prop_White           -0.624 -1.314 -0.152 

Prop_AgeLess15 -0.035 -0.054          

Prop_Age15_24 -0.045 -0.079 -0.382  -0.804  0.318        

Prop_Age25_54     -0.523 -0.969 -0.200       

Prop_Age55_plus -0.050 -0.065             

Prop_AvgEd -0.016 -0.019             

Prop_NotWork -0.018 -0.012 0.477 0.005 0.837       

Prop_MidInc -0.013 -0.013             

Prop_UpperInc -0.042 -0.046             

ENT_9Cat 0.885 0.419             

Prop_GI9Cat 0.019 0.009             

Inters_grt3leg 0.003 0.001 0.384 0.217 0.434 0.343 0.201 0.426 

Prop_Freeways 0.035 0.037       -0.035 -0.192 0.930 

Prop_Expressways 0.034 0.021       0.209 -0.377 0.622 

Prop_PrimaryArter           0.227 -0.045 0.641 

Prop_SecondArter           0.336 -0.256 0.739 

Prop_Signal 0.083 0.094             

Marked values are not statistically significant at 95% confidence interval (i.e. p>0.05) 
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With respect to the attributes of the built environment, the number of four- and multi-legged 

intersections are shown to be positively associated with the frequency of pedestrian casualties 

in two of the three NB Models (Model 1 and Model 3), with the coefficients B ranging from 

0.0030 to 0.0032. The number of four- and multi-legged intersections emerges statistically 

significant in five of the six GWR Models, in which the variable is positively related to the 

frequency of pedestrian casualties. In these models, the mean values of local coefficients vary 

from 0.348 to 1.384.  

The model results indicate that the proportion of signalised intersections is positively related 

to the frequency of pedestrian casualties in all GLMs, GWR Models 1 and GWR Models 2. 

The coefficients B in NB Models vary from 0.073 to 0.123. The mean values of local 

coefficients B are in the range of 2.546 to 5.037. However, this variable does not emerge 

statistically significant in GWR Models 3. 

Two types of land use are shown to be statistically significant in the best GWR Models (Models 

A). These are the proportion of the single residential use (Prop_SR9Cat) which demonstrates 

a negative mean value of local estimates in GWR Model 2A and the proportion of mixed use 

and general business use (Prop_GB.MU9Cat) with positive mean values of local estimates in 

both GWR Model 1A and GWR Model 2A. The proportion of the general industrial use 

(Prop_GI9Cat) is significant in GWR Model 1B with a negative mean value of local estimates 

(mean value of B= -0.032). However, local estimates of this variable demonstrate a positive 

mean value of local estimates (mean value of B=0.120) in GWR Model 2B. For GLMs, the 

proportion of the general industrial use (Prop_GI9Cat) is the only land use type that has a 

statistically significant influence in these models. For the NB Models, the coefficient B is in 

the range from 0.019 to 0.026.  

The number of roundabouts and mini-circles (Round_Circ) demonstrates a negative 

relationship with the frequency of pedestrian casualties in two of four GWR Models that have 

this variable as a predictor. Negative mean values of local estimates range from -3.492 to -

3.497 in GWR Model 1A and GWR Model 1B. However, this variable has positive values of 

local estimates in GWR Model 2A and GWR Model 2B, ranging from 0.999 to 1.960. In 

GLMs, this variable is shown to be statistically significant in two models (Model 1 and Model 

2), with positive relationships with the frequency of pedestrian casualties. The coefficient B is 

0.035 and 0.030 in NB Model 1 and NB Model 2, respectively. 
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Another intersecting observation is the absence of the entropy index (ENT_9Cat) in the best 

GWR Models. This variable is statistically significant in GWR Model 1B and GWR Model 2B 

with mean values of local coefficients of -27.86 and 5.28, respectively. However, it is important 

to note that the explanatory variables in Models B were selected with the intention to have 

similar variables to those included in GLMs for comparison purposes. For instance Model 1B 

and GWR Model 2B were selected based not necessarily on their performance, but on their 

inclusion of entropy index and the variables describing functional road class. In all GLMs, the 

entropy index is the second most powerful predictor of pedestrian casualties after the logarithm 

of population (Log_Popu). The coefficients B in NB Models are in the range from 0.885 to 

1.610. 

The exploratory regression analyses carried out in ArcMap to find the best models 

demonstrated that the entropy index emerges in a very limited number of models that passed 

all of the necessary ordinary least of square (OLS) diagnostic tests. In other words, models 

containing the entropy index as an explanatory variable performed poorly in predicting the 

frequency of pedestrian casualties. For instance, of 135 models that include seven to 10 

explanatory variables, only six models with entropy index passed the diagnostic tests of the 

exploratory regression tool for the entire sample of pedestrian casualty (Model 1). In addition, 

these six passing models are also characterised by higher values of maximum variance inflation 

factor (VIF), ranging from 2.55 to 6.41. The magnitude of these VIF values suggests the 

presence of a higher level of multicollinearity among explanatory variables. In summary, land 

use mix measured by entropy index was not found to be a reliable predictor of pedestrian 

casualties using the GWR modelling technique.  

Similarly to the entropy index, none of variables describing functional road classes (i.e. the 

proportions of freeways, expressways, primary arterial roads and secondary arterial roads) 

emerged in the GWR Models A. The inclusion of these variables in the model was one of the 

selection criteria for the three GWR Models B. The GWR Models B intend to examine the 

spatial variation of the influence of the variables of functional road class on pedestrian 

casualties. Generally, the three GWR Models containing four variables of functional road class 

demonstrate positive associations with the frequency of pedestrian casualties, apart from the 

proportion of primary arterial roads in GWR Model 1B and the proportion of freeways in GWR 

Model 3B. A further analysis of t-test confirms that the spatial heterogeneity for all four 

variables is statistically significant. Therefore, the GWR models successfully capture the 
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spatial heterogeneity of the relationship between road class and the frequency of pedestrian 

casualties. Among the four variables of road class, only the proportion of freeways and 

proportion of expressways are shown to have significant relationships with the frequency of 

pedestrian casualties in all GLMs. Two other variables (the proportion of primary arterial roads 

and the proportion of secondary arterial roads) emerged statistically significant only in Model 

1 and Model 2 of GLMs. A significant influence of the proportion of local streets on the 

frequency of pedestrian casualties is shown only in Model 2 of the Generalised Linear 

Modelling technique.  

Other variables of the built environment which are shown to be related to the frequency of 

pedestrian casualties include street density (Model 1 of GLMs and GWR Model 1B) and the 

ratio of intersection to culs de sac (Model 2 of GLMs and GWR Model 2B). Street density has 

a coefficient B of 0.022 in NB Model 1 while the local coefficients B in GWR Model 1B have 

a mean value of 0.590. In NB Model 2, the ratio of intersections to culs de sac has a coefficient 

B of 0.053, while the mean value of local coefficients B in GWR Model 2B is 0.625.  

Another important observation concerning local parameter estimates from the GWR Models is 

that, while the mean value of local coefficients might be either positive or negative, some 

census suburbs in study area have demonstrated parameter estimates with a counterintuitive 

sign. This phenomenon is identified for a total number of 10 explanatory variables in four GWR 

Models as illustrated on mapped results from Figure 4-75 to Figure 4-80 (GWR Models A) and 

APPENDIX H (GWR Models B) as well as in the summary statistics of parameter estimates 

provided from Table 4-48 to Table 4-50. Parameter estimates with a counterintuitive sign have 

been identified for the following variables: 

1) The proportion of the population younger than 15 years, the proportion of mixed use 

and general business use and the proportion of signalised intersections in GWR Model 

1A; 

2) Log of population and the proportion of the White population in GWR Model 2A; 

3) The proportion of the population in the 15-24 age range in GWR Model 3A; 

4) Log of population and the proportions of the four road class types (i.e. freeways, 

expressways, primary arterial roads and secondary arterial roads) in GWR Models 3B.
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The issue of counterintuitive signs is common for the GWR modelling technique and has been 

reported in previous studies that used this modelling techniques (Amoh-Gyimah et al., 2017; 

Guo, Ma & Zhang, 2008; Hadayeghi et al., 2010; Li et al., 2013; Pirdavani et al., 2014; Zhang 

et al., 2015). The possible reason explaining the issue of counterintuitive signs is the presence 

of multicollinearity among certain variables in some spatial units of analysis even though 

multicollinearity among variables may not exist globally (Pirdavani et al., 2014). The issue of 

counterintuitive signs could also arise as a result of some explanatory variables that may be 

less significant or even insignificant in some spatial units of analysis producing thus 

unexpected signs (Amoh-Gyimah et al., 2017). 

In total, 13 explanatory variables describing the built environment are statistically significant 

in GWR Models. For each explanatory variable, the intensity and spatial distribution of local 

estimates for the three datasets (all pedestrian casualties, intersection-related pedestrian 

casualties and KSI pedestrian casualties) were compared. The comparison also encompasses 

mapped quantities aggregated at census suburb level to assess the relevance of the spatial 

relationships depicted by the parameter estimates. The comparison is illustrated in APPENDIX 

H. 

From the mapped model results, it can be seen that the intensity and the direction of the 

influence of the variables describing the built environment and population characteristics on 

the frequency of pedestrian casualty generally vary spatially across the study area. However, 

for a small number of predictors, the spatial heterogeneity is not statistically significant. These 

predictors include the proportion of the Black population and the proportion of signalised 

intersections for GWR Model 1A; the logarithm of population and the proportion of mixed use 

and general business use for GWR Model 2A; and the proportion of the population aged 25-54 

years old for GWR Model 3A. 
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4.4.5.2 Model performance comparison 

The goodness-of-fit measures for GLMs summarized in Table 4-36 and those in Table 4-41 

clearly demonstrate that the NB models have the lowest value of Corrected Akaike’s 

Information (AICc), suggesting that the NB model is the most suitable to fit pedestrian casualty 

data in this study. The values of AICc for GWR models are found to be lower than those 

produced by the Poisson regression model, making the GWR models the second best models 

to fit pedestrian casualty data. Nevertheless, the ability of GWR Models to explore local 

variations of parameter estimates makes this modelling technique the most suitable when the 

interest is to evaluate whether the relationships are spatially consistent across the study area. 

Another approach when assessing the predictive quality of models is to look at the value of 

model residuals. An evaluation of residuals indicates how far the predicted values deviate from 

the observed ones. Raw residuals (the difference between the observed and the predicted 

values) were produced in STATISTICA while fitting the Poisson Regression and Negative 

Binomial models to pedestrian casualty data. A dataset of raw residuals was then imported in 

ArcMap and standardised residuals were mapped in ArcMap for each GLM procedure (NB and 

Poisson regression models) to allow for a comparison with those produced in ArcMap from the 

GWR models. GLMs are compared with GWR Models A as these are considered as the best 

models in terms of performance assessed by goodness-of-fit measures provided in Table 4-41. 

A comparison of the spatial pattern of the standardised residuals is shown in Figure 4-87 

(Model 1 for GLMs and GWR Model); Figure 4-88 (Model 2 for GLMs and GWR Model); 

and Figure 4-89 (Model 3 for GLMs and GWR Model). Negative standardised residuals which 

significantly deviate from 0 indicate over-prediction of the outcome variable whereas those 

with higher positives values reflect under-prediction of outcome variable by the model.  
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Figure 4-87: Spatial distribution of residuals for Models 1: GWR, Poisson and NB 
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Figure 4-88: Spatial distribution of residuals for Models 2: GWR, Poisson and NB 
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Figure 4-89: Spatial distribution of residuals for Models 3: GWR, Poisson and NB 
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4.5 Summary of key results 

This section presents a summary of the results obtained from the mix of analysis methods 

applied to pedestrian casualty data to investigate the link between the built environment and 

pedestrian crashes. The analysis techniques include descriptive analysis, inferential analysis, 

geospatial and statistical modelling techniques. 

4.5.1 Results from univariate and bivariate analyses of pedestrian casualties 

4.5.1.1 Pedestrian casualty frequency 

 On average, 4,618 pedestrians were involved in road traffic crashes annually in the City 

of Cape Town. 

 Of all recorded pedestrian casualties, males represent 45 percent while females account 

for 28 percent. The remaining proportion (27 percent) consists of pedestrian casualties 

for which the gender of the victim was unknown. 

 The age of the victim was recorded as “0” in sixty percent (8, 310 cases) of pedestrian 

casualties.  

 The highest frequency of pedestrian casualties is found among child pedestrians in the 

6-10 age group, followed by the 26-30 age group for both male and female victims.  

 Male pedestrians are overrepresented in more severe injuries (i.e. fatal and serious 

injuries) while female pedestrians are overrepresented in slight injuries. 

 There is an apparent dip in pedestrian casualty trends for both males and females in the 

11-20 age group.  

 Disproportionate casualty frequencies among female and male pedestrians are apparent 

in certain age groups: the first three highest male-to-female ratio emerges in the 41-45 

age group, followed by the 31-35 age group and lastly in the 6-10 age group. In contrast, 

the frequency of female pedestrian casualties in the 76-80 age group is found to be 

twice as high as that of male casualties in the same age group. The profile of underlying 

population in the study area justifies this unexpected finding. 

  The highest frequencies of pedestrian casualties are observed during morning and 

evening peak traffic hours (7:00 to 8:00 AM and 4:00 pm to 6:00 PM). 

 The mean daily counts of pedestrian casualties peaks on Friday (15.05±4.43) and 

Saturday (15.01±5.38) and the lowest mean daily counts is observed on Wednesday 

(11.05±3.74). 
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 The frequency of pedestrian casualties is highest during the pay week (i.e. the week of 

the month that contains the first date on a month), followed by the second week after 

the pay week and the lowest frequency is observed in other remaining weeks of a month. 

The respective mean weekly counts are found to be 98.19 (±12.80); 87.29 (±13.50) and 

85.09 (±12.19).  

 Weekly casualty counts analysed according to the quarters of calendar year peak over 

the third quarter (93.10 ±14.90) and the lowest casualty counts are observed over the 

first quarter (82.95 ±13.16). 

4.5.1.2 Injury severity description 

 Fatally injured pedestrians represent 4 percent of the total sample; seriously injured 

pedestrians account for 25 percent; slightly injured pedestrians represent 47 percent; 

and “no injury cases” are reported for 24 percent of the total sample. 

 The annual casualty rate is found to be 123.5 pedestrian casualties per 100,000 

population for the entire study area. The annual KSI rate stands at 35.7 KSI pedestrian 

casualties per 100,000 population and the annual fatality rate is found to be 4.5 

pedestrian fatalities per 100,000 population. 

 Males are found overrepresented in more severe injuries than females: while males 

account for 62.6 percent of the total sample, they represent 74.2 percent of fatal 

pedestrian injuries.  

 The risk of being involved in both fatal crashes and KSI casualties is found to be highest 

among Black African pedestrians followed by Coloured pedestrians. 

 The number of pedestrian fatalities peaks over the weekend (Saturdays and Sundays) 

and another minor peak is observed on Fridays. The lowest number of pedestrian 

fatalities is observed on Wednesdays.  

 Injury severity is fairly evenly distributed across the months of the year.  

 Pedestrian fatalities are most predominant among middle-aged groups (age groups 

between 26-40 years) and children aged 5 years old and younger.  

 There are three apparent dips in female fatalities: in the 6-15 age range, 36-45 age range 

and the 71-80 age range.  

 There are three apparent dips in male fatalities: in the 11-10 age range and the 71-80 

age range. 
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 Pedestrian fatalities peak between 7:00 PM and 8:00 PM and a second peak emerges 

between 8:00 AM and 9:00 AM.  

 Pedestrian fatalities are more likely to occur during late afternoon hours and night times 

(between 3:00 PM and 12:00 PM). 

 There is a dip in KIS casualties in the 11-20 age range for both females and males and 

another dip is found in the 41-45 age group for female KSI casualties. 

 The highest frequency of KSI pedestrian casualties is observed on Saturdays (mean 

daily count: 5.30±2.47), followed by Sundays (mean daily count: 4.12±2.27) and 

Fridays (mean daily count: 4.09±2.15).  

 Two peaks of KSI pedestrian casualties are observed between 6:00 PM and 7:00 PM 

and between 8:00 AM and 9:00 AM.  

 Pedestrian fatalities are found to occur more frequently during late afternoon hours and 

night times (between 2:00 PM and 10:00 PM). 

4.5.1.3 Pedestrian behaviour and actions prior to the incidence of crashes 

 The vast majority (88 percent) of pedestrian casualties are found to have occurred 

outside of a designated crossing point. Only 5.7 percent of pedestrian casualties are 

observed at a designated crossing point and 4.3 percent of the total sample are found to 

have occurred within 50 metres of a pedestrian crossing facility. 

 The majority (81.3 percent) of pedestrian casualties occurred when pedestrians were 

crossing the road. 

 Before the incidence of pedestrian crashes, pedestrians who were walking with their 

back facing the traffic account for 8.6 percent and those who were walking facing the 

traffic represent7.8 percent of the total sample. 

 The most common actions performed by pedestrians prior to a pedestrian crash are: 

walking (61.3 percent); running (25.0 percent); standing (7.9 percent), sitting (3.0 

percent) and playing (1.8 percent).  

 Crossing outside a designated crossing point is most frequently observed among young 

children of 5 years of age and younger (94.2 percent); children in the 6-10 age group 

(92.1 percent) and elderly pedestrian in the 76-80 age group (90.5 percent). 

 Crossing within 50 metres of a crossing facility is observed more frequently among 

elderly pedestrians aged 81 and older (20 percent) and those in the 71-75 age group (9.6 

percent). 
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 Running is commonly observed among the three age groups of children and 

adolescents: the 1-5 age group (38.1 percent); the 6-10 age group (37.0 percent) and 

the11-15 age group (28.5 percent). Likewise, playing is most frequently observed in 

the same age groups, representing 9.4 percent, 6.3 percent and 2.0 percent in the 

respective age groups.  

4.5.1.4 Locations of pedestrian crashes 

 Approximately three quarters (74 percent) of pedestrian casualties occurred at non-

intersection locations (links) and 26 percent of pedestrian casualties took place at 

intersection locations.  

 Of intersection-related pedestrian casualties; 

o 56.3 percent occurred at four-legged intersections 

o 38.9 percent occurred at three-legged intersections 

o 3.6 percent are found at roundabouts and mini-circles 

o 1.2 percent are observed at staggered intersections. 

 Pedestrian casualty rates (casualties per 100 intersection configuration types) at 

different intersection types are found as follows: 

o Four-legged intersection (19.37) 

o Roundabouts/mini-circle (19.88) 

o Staggered intersections (8.30) 

o Three-legged (3.09). 

 The following proportions of the total sample of pedestrian casualties are found 

according to the type of intersection control: 

o 43.6 percent are found at signalised intersections 

o 28.3 percent were observed at 1-Way Stop intersections  

o 17.6 percent occurred at 2-Way Stop intersections 

o 3.8 percent took place at 4-Way Stop intersections 

o 1.6 percent were found at 3-Way Stop intersections 

o 1.2 percent occurred at uncontrolled intersections 

o 0.3 percent were reported at 1-Way Yield intersections and  

o 0.1 percent took place at 2-Way Yield intersections. 

 Pedestrian casualty rates (casualty counts per 100 intersection control types) by 

intersection control type are found as follows:  

o Signalised intersections (120.14) 
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o 4-Way Stop intersections (11.81) 

o Uncontrolled intersections (8.17) 

o 2-Way Stop intersections (7.33) 

o 3-Way Stop intersections (5.96) 

o 1-Way Stop intersections (2.35). 

 Injury severity by intersection configuration type:  

The highest frequencies of both KSI casualties and pedestrian fatalities are found at 

four-legged and three-legged intersections. 

 Injury severity by intersection control type: 

o Higher proportions of pedestrian fatalities are found at 1-Way Yield 

intersections and  signalised intersections; 

o Higher proportions of KSI pedestrian casualties are observed at 1-Way Yield 

intersections and 4-Way Stop intersections. 

4.5.2 Results from geospatial analyses 

 The highest frequency of pedestrian casualties are found in the Khayelitsha/Mitchells 

Plain regions, in Stand, Delft, Bellville, Elsies Rivier, and the CBD of Cape Town. 

 Geospatial analyses by Moran’s I , Getis-Ord Gi, and OHA tools demonstrate that 

pedestrian casualties are concentrated in the south-eastern regions of the City of Cape 

Town: 

o Khayelitsha/Mitchells Plain districts 

o Cape Flats districts 

o Certain suburbs of Tygerberg district 

 Similarly, hot spots of intersection-related pedestrian casualties are found in: 

o Khayelitsha/Mitchells Plain districts 

o Certain suburbs of Tygerberg district 

o Table Bay district (CBD of Cape Town, Woodstock, Foreshore Green Point, 

V&A Waterfront and Schotschekloof suburbs). 

 Cold spots of intersection-related pedestrian casualties are identified in Silvermine and 

Cape Peninsula National Park suburbs which are part of Southern district.  

 Cluster analysis of intersection-related pedestrian casualties by Weighted Point 

Method: 

o The most significant clustering is observed in the area extending over four 

census suburbs which are Goodwood, Thornton, Ruyterwacht and Elsies River 
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o  Another significant clustering is identified in Khayelitsha and Mfluleni 

between the R300 and Spine Road (M32) 

o Several other hot spots are detected in three census suburbs of Table Bay 

district: Cape Town CBD, Zonnebloem and Woodstock 

o A few noticeable hot spots are evident in Heideveld and Bonteheuwel suburbs 

between Jakes Gerwel Drive (M17) and Robert Sobukwe Road (M10). 

 Hotspot analysis by kernel density estimation (KDE): Hot spots of intersection-related 

pedestrian casualties are identified:  

o On arterial roads 

o At junctions of arterial roads and urban freeways and  

o On local roads of the CBD of Cape Town.  

4.5.3 Results from multivariate analyses 

4.5.3.1 Results from Generalised Linear Models (GLMs) 

 Negative binomial (NB) models have demonstrated a better prediction performance 

than Poisson regression models. 

 NB Model 1 (i.e. the model fitted to the entire sample of pedestrian casualties) consists 

of 17 explanatory variables.  

o The following are variables shown to have significant influence (absolute value 

of the coefficient B greater than 0.03) on the frequency of pedestrian casualties 

in NB Model 1, in descending order:  

1) Log of population 

2) Entropy index 

3) The proportion of signalised intersections 

4) The proportion of expressways 

5) The proportion of the population younger than 15 years (negative 

associations) 

6) The proportion of the population in the 25-54 age range (negative 

associations) 

7) The number of roundabouts and mini-circles 

8) Proportion of freeways. 

o All demographic variables, apart from the logarithm of population, are shown 

to be negatively associated with the frequency of pedestrian casualties. 
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 NB Model 2 (i.e. the model fitted to the dataset of intersection-related pedestrian 

casualties) includes 17 explanatory variables. 

o Variables with significant influence (absolute value of the coefficient B greater 

than 0.03) on the frequency of pedestrian casualties in NB Model 2 are: 

1) Log of population 

2) Entropy index 

3) The proportion of signalised intersections 

4) The proportion of expressways 

5) The proportion of freeways 

6) The proportion of the population with upper income 

7) The proportion of the population in the 15-24 age range 

8) The proportion of primary arterial roads 

9) The ratio of intersections to culs-de-sacs 

10) The proportion of the population younger than 15 years; 

11) The proportion of secondary arterial roads 

12) The proportion of not working population; 

13) The proportion of local streets. 

o All demographic variables except for the logarithm of population are negatively 

associated with the frequency of intersection-related pedestrian casualties. 

 NB Model 3 (i.e. the model fitted to the dataset of KSI pedestrian casualties) includes 

14 explanatory variables. 

o Variables with significant influence (absolute value of the coefficient B greater than 

0.03) in NB Model 3 in descending order are: 

1) Log of population 

2) Entropy index; 

3) The proportion of signalised intersections 

4) The proportion of the population aged 55 years and older 

5) The proportion of the population in the 15-24 age range 

6) The proportion of the population with upper income 

7) The proportion of the population younger than 15 years 

8) The proportion of freeways 

9) The proportion of expressways. 
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o All demographic variables apart from the logarithm of population are negatively 

associated with the frequency of intersection-related pedestrian casualties. 

o Sensitivity analysis of model estimates over different days of week:  

o The following variables have demonstrated a greater influence on the 

frequency of pedestrian casualties during weekdays than on weekends: 

 Entropy index 

 The general industrial use 

 The number of roundabouts and mini-circles; 

 The proportion of signalised intersections 

 The proportion of expressways 

 Log of population 

 The proportion of the White population 

 The proportion of the population in the 15-24 age range. 

o The following variables have demonstrated a reduced influence on the 

frequency of pedestrian casualties on weekdays than on weekends: 

 The proportion of the population younger than 15 years old 

 The proportion of  the population in the 25-54 age range 

 The number of four- and multi-legged intersections  

 The proportion of primary arterial roads. 

4.5.3.2 Results from Geographically Weighted Regression (GWR) Models 

 Two GWR models (GWR Model A and GWR Model B) were developed for each of 

the three datasets of pedestrian casualties. 

  The best GWR models (Models A) are dominated by demographic variables as 

follows: 

o Three out of seven explanatory variables are demographic in GWR Model 1A 

o Two out of seven explanatory variables are demographic in GWR Model 2A 

o Four out of five explanatory variables are demographic in GWR Model 3A. 

 The following variables describing the built environment variables are statistically 

significant in GWR Models A: 

o GWR Model 1A: 

 The proportion of general business use and mixed use 

 The  number of four- and multi-legged intersections  

 The number of roundabouts and mini-circles and 
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 The proportion of signalised intersections. 

o GWR Model 2A: 

 The proportion of the single residential use 

 The proportion of general business use and mixed use 

 The number of four- and multi-legged  

 The proportion of local streets and 

 The number of roundabouts and mini-circles. 

o GWR Model 3A: 

 The number of roundabouts and mini-circles. 

 GWR Models B were developed to assess the influence of land use mix (entropy index) 

and functional road class 

 Generally, demographic variables are found to be negatively associated with the 

frequency of pedestrian casualties, with the exception of: 

o The proportion of the population younger than 15 years old (GWR Model 1A 

and GWR Model 1B) 

o Log of population (GWR Model 1B; GWR Model 2A; GWR Model 2B and 

GWR Model 3B) and 

o The proportion of the Black population (GWR Model 1A; GWR Model 3A). 

 Generally, the built environment variables are found to be positively associated with 

the frequency of pedestrian casualties, apart from: 

o Entropy index (GWR Model 1B) 

o The proportion of primary arterial roads (GWR Model 1B) 

o The number of roundabouts and mini-circles old (GWR Model 1A and GWR 

Model 1B) 

o The proportion of the single residential use (GWR Model 2A) 

o The proportion of local streets (GWR Model 2A) and 

o The proportion of freeways (GWR Model 3B). 

 The following variables have demonstrated local parameter estimates with 

counterintuitive signs in GWR Models; 

o In GWR Model 1A: 

 The proportion of the population younger than 15 years old 

 The proportion of general business use and mixed use and 

 The proportion of signalised intersections. 
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o In GWR Model 2A: 

 Log of population and 

 The proportion of the White population. 

o In GWR Model 3A: 

 The proportion of the population in the 15-24 age range. 

o In GWR Model 3B: 

 Log of population 

 The proportion of freeways 

 The proportion of expressways 

 The proportion of primary arterial roads and 

 The proportion of secondary arterial roads. 

 The t-test has indicated that spatial heterogeneity is not significant for the following 

variables: 

o GWR Models 1: 

 The proportion of the Black population and 

 The proportion of signalised intersections. 

o GWR Models 2: 

 Log of population 

 The proportion of general business use and mixed use and 

 The number of roundabouts and mini-circles. 

o GWR Models 3: 

 The proportion of the population in the 25-54 age group 

 The proportion of the Coloured population and 

 The number of four- and multi-legged intersections. 

4.5.3.3 Model comparison 

 Comparison of model performance: 

o NB Models have shown the best performance in fitting pedestrian casualty data 

o GWR Models emerge as the second best performing models 

o GWR Models perform well in capturing spatial heterogeneity of relationships 

across the study area. 

 Comparisons of model estimates: 

o The following explanatory variables have emerged in all four Models 1(NB 

Model 1, Poisson Model 1, GWR Model 1A and GWR Model 1B): 
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 The proportion of the population younger than 15 years old 

 The number of four- and multi-legged intersections 

 The number of roundabouts and mini-circles and 

 The proportion of signalised intersections 

o Two explanatory variables have emerged in all four Models 2 (NB Model 2, 

Poisson Model 2, GWR Model 2A and GWR Model 2B): 

 Log of population and  

 The number of roundabouts and mini-circles. 

o One explanatory variable is found in all four Models 3 (NB Model 3, Poisson 

Model 3, GWR Model 3A and GWR Model 3B): The number of four- and 

multi-legged intersections. 

o In all three modelling procedures (NB, Poisson Regression , and GWR): 

 Log of population is found to be significantly associated with an 

increased number of pedestrian casualties, with the coefficient B ranging 

from 1.37 to 23.77; 

 Entropy index has positive associations with the frequency of pedestrian 

casualties, with the exception of GWR Model 1B; 

 The variables describing the road network structure are generally 

positively associated with the number of pedestrian casualties, except 

for: 

1) The proportion of primary arterial roads in GWR Model 1B 

2) The proportion of local streets in GWR Model 2A and 

3)  The proportion of freeways in GWR Model 3B. 

 The number of roundabouts and mini-circles is found to be positively 

associated with the frequency of pedestrian casualties, except for GWR 

Model 1A and GWR Model 1B; 

 The proportion of signalised intersections has positive associations with 

the frequency of pedestrian casualties in all three modelling procedures; 

 The variables describing urban design (i.e. the number of four- and 

multi-legged intersections, street density and the ratio of intersections to 

culs-de-sacs) are all positively related to the frequency of pedestrian 

casualties. 

 Two variables of land use have positive associations with the frequency 

of pedestrian casualties: 
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1) The proportion of general business use and mixed use  

2) And the proportion of the general industrial use. 

 The majority of demographic variables are found to be negatively 

related to the frequency of pedestrian casualties. 
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4.6 Result discussions 

4.6.1 Discussing the results from univariate and bivariate analyses 

The results from this study show that an average of 4 618 pedestrians were involved in road 

traffic crashes each year in the City of Cape Town for the 2012-2014 period. For the entire 

study area, the annual casualty rate stands at 123.5 pedestrian casualties per 100 000 

population. The annual KSI rate reported in this study stands at 35.7 KSI pedestrian casualties 

per 100 000 population while the annual fatality rate stands at 4.5 pedestrian fatalities per 100 

000 population. The figures of KSI and pedestrian fatality rates found in this studies for the 

City of Cape Town are lower than those usually reported in previous works (e.g. RTMC, 2016, 

2017). This discrepancy may be explained by higher levels of injury misclassification among 

pedestrian casualties in the police-reported crash records  

In this study, male pedestrians are found overrepresented in the analysed sample of pedestrian 

casualties and male dominance is observed in all injury severity types. This is not a new finding 

as previous studies have consistently reported the same findings (Gårder, 2004; Hunter et al., 

1996; Mabunda et al., 2008). The predominance of male pedestrians in road traffic crashes may 

be attributed in part to their inherent risk taking behaviour. Risk-taking behaviour among male 

pedestrians has been confirmed in a number of previous studies. For instance, numerous studies 

that examined pedestrian crossing behaviour found that male pedestrians are more likely to be 

risk takers when they cross streets than females (Holland & Hill, 2007; Keegan & O’Mahony, 

2003; Latrémouille, Thouez, Ranou, Bergeron, Bourbeau & Bussière, 2004; Moyano Dı́az, 

2002; Rosenbloom, 2009; Rosenbloom, Nemrodov & Barkan, 2004; Tom & Granié, 2011; 

Yagil, 2000). Other factors that exacerbate male crash risk may be a greater level of alcohol 

consumption compared with that of females. International research has consistently reported 

that male pedestrians are overrepresented in alcohol-related crashes (Holubowycz, 1995a,b; 

Ortiz & Ramnarayan, 2017; Öström & Eriksson, 2001; Prijon & Ermenc, 2009). Research in 

South Africa has also confirmed that alcohol consumption is more predominant among male 

pedestrians than female pedestrians (Mabunda et al., 2008; Peden et al., 1996; Van der Spuy, 

1991).  

An examination of pedestrian casualties by age demonstrates that the highest casualty 

frequency emerges among child pedestrians in the 6-10 age group. The explanation for this 

could be the fact that children in this age group tend to travel more independently unlike the 

younger ones who are more likely to be accompanied by adults when they travel (Peden, 
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Oyegbite, Ozanne-Smith, Hyder, Branche, Rahman, Rivara & Bartolomeos, 2008). Children 

are also more likely to spend more time away from home and spend more time playing. 

Children living in socioeconomically disadvantaged areas are particularly predisposed to the 

greatest crash risk as children may spend more time playing in streets owing to the lack of safe 

places to play (Toroyan & Peden, 2007). In addition, school-going children in the 6-10 age 

group often travel independently to school on foot in economically deprived areas. They tend 

to walk with their friends who are also in the same age range and peer pressure can influence 

their behavioural and direct them to behave in a risky manner on the road. As novice 

pedestrians, child pedestrian in this age range lack experience and skills to understand the road 

environment and this affect their ability to perceive hazards and to respond appropriately to 

them.  

Another reason behind the higher crash risk among child pedestrians is their small stature that 

limits their visibility in road environment (Wilson, Baker, Teret, Schock & Garbarino, 1991). 

Furthermore, it is well documented that developmental factors such as limited attention to 

navigate the road environment, difficulty seeing over vehicles, lack of the knowledge and skills 

of traffic movement, difficulty in judging vehicular speed and discerning appropriate gaps 

between traffic streams all have a great impact on children involvement in road crashes 

(Thomson, Tolmie, Foot & McLaren, 1996; Toroyan & Peden, 2007). When hit by vehicles, 

children are more likely than adult to sustain a head or neck injury (Peden et al., 2008; Wilson 

et al., 1991), which suggests a greater likelihood of more severe injury.  

The study results reveal a dip in casualty profile among children aged between 11 and 20 years 

old for both females and males. The dip in the same age group is also apparent when casualties 

are analysed by considering the injury severity. This dip arguably has its origin in the 

underlying population pyramid of Cape Town created using the 2011 population census data 

(see Figure 2-6 on Page 43 ). The analysis of pedestrian casualties by gender also demonstrates 

another dip for female casualties in the 36-45 age group. Two possible reasons that could 

explain this finding may be a reduced exposure to traffic environment or/ and lower level of 

risk-taking behaviour among females of this age group. However, research into levels of 

exposure and age differences in risk-taking behaviour particularly among female pedestrians 

is inexistent in South Africa in order to substantiate these claims. 

The time of day that pedestrian crashes are most likely to occur are found to be morning peak 

traffic hours (7:00 AM to 8:00 AM) and evening peak traffic hours (4:00 PM to 6:00 PM). 
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There is no surprise for this finding as these time periods host the heaviest traffic volumes and 

highest levels of pedestrian flow rates. The finding is thus indicative of the influence of traffic 

and pedestrian volumes on the incidence of pedestrian crashes, which has been reported by 

many researchers (e.g. Wier et al., 2009; Miranda-Moreno, Morency and El-Geneidy, 2011; 

Yao, Loo and Lam, 2015; Zhang et al., 2015).  

The results also demonstrate a peak of pedestrian casualties on Fridays and Saturdays and the 

lowest frequency of pedestrian casualties on Wednesdays. For fatally injured casualties, the 

peak emerges over the weekend (Saturdays and Sundays) and this is line with the findings from 

a number of previous local studies (Burstein, Fauteux-Lamarre & As, 2016; Mabunda et al., 

2008). One crucial contributing factor reported in many studies is increased travel speeds over 

the weekend due mainly to less traffic on the road. Tom Tom historical traffic data accessed 

through Stellenbosch Smart Mobility Lab shows that average speeds on the Cape Town’s road 

network are generally higher on weekends than weekdays. Moreover, alcohol impairment 

among both motorists and pedestrians has been pointed out in several studies as the 

predominant reason of higher rates of crashes involving pedestrians. Research in road safety 

acknowledges a correlation between alcohol and speeding: several studies found that alcohol-

impaired motorists are more likely to be involved in speeding-related crashes (Liu, Chen, 

Subramanian & Utter, 2005; Road Safety Directorate, 2008).  

The results of this study also demonstrate variations in the frequency of pedestrian casualties 

across the weeks of a month. Pedestrian casualties are found most likely to occur during the 

pay week (i.e. week contains the first data on a month) and during the following week (second 

week after pay week). The explanation of these trends could be that pedestrian activity is the 

highest during pay week. Survey data in Cape Town indicates that walking is the main mode 

of transport for low- and middle-income households, accounting for 61 percent and 43 percent, 

respectively (Behrens, 2002). Of these walking trips, the vast majority are undertaken for 

shopping, social and recreational activities.  Behrens (2002) reported that 73 percent and 47 

percent of all shopping trips are made on foot by low-income households and middle-income 

households, respectively. For social activities, 92 percent are made on foot by low-income 

households and 53 percent of trips are undertaken by foot by middle-income households. 

Finally, 73 percent and 44 percent of all trips done for recreational purposes are made on foot 

by low-income households and middle-income households, respectively (Behrens, 2002). 

Although not supported by research evidence, it may not be wrong to expect that the pay week 

hosts a greater number of walking trips made for leisure, social and shopping activities, 
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increasing thus pedestrian exposure to traffic environment. Higher pedestrian crash risk could 

be also influenced by alcohol consumption as drinking behaviour may be related to financial 

status (World Health Organization, 2011). 

The examination of pedestrian behaviour and actions prior to a road crash reveals that the vast 

majority (88 percent) of pedestrians were involved in road crashes while being outside of 

designated crossing points. Only 5.7 percent of pedestrians were at designated crossing points 

prior to the crash occurrence and 4.3 percent were within 50 metres of a pedestrian crossing 

facility. These findings highlight a significant role played by pedestrian behaviour (i.e. spatial 

complaint behaviour) in the incidence of pedestrian crashes. Higher frequencies of pedestrian 

crashes at non-designated crossing points could be attributed to higher levels of spatial non-

compliant behaviour which has been reported in several studies conducted in South Africa 

(Behrens, 2010; Nteziyaremye & Sinclair, 2013; Ribbens, 1996). Several qualitative studies 

pointed out a number of motivations that determine unsafe pedestrian crossing/walking 

choices, including time saving, distance saving (i.e. shortest route), fear from crime, minimal 

effort, habits, traffic volumes, presence of alternative choice, effects of group dynamics (e.g. 

crossing where most people cross) and location of pedestrian desire lines (Behrens, 2010; 

Sinclair and Zuidgeest, 2016; Behrens and Makajuma, 2017). However, it is important to 

recognise that unsafe crossing behaviour is sometimes enabled by a lack of alternative facilities 

(i.e. absence of crossing facilities) and poorly located or insufficient pedestrian crossing 

facilities. For instance, pedestrians are required to walk longer distances of about 5 kilometres 

to reach the nearest grade-separated pedestrian facility at certain locations on freeway facilities 

in Cape Town (Sinclair and Zuidgeest, 2016). 

The results of this study also highlight a number of crossing styles that predispose pedestrians 

to a higher crash risk. A significant proportion of pedestrians were hit by vehicles while running 

(25 percent) or standing in the middle of the roadway to find an appropriate gap (7.9 percent). 

These are common crossing strategies among pedestrians and similar findings are reported in 

a small number of previous studies. For instance, an observational study on pedestrian crossing 

behaviour in Stellenbosch (South Africa) by way of videotaped images revealed that crossing 

the road while running and standing in the middle of the roadway to select a gap in the traffic 

stream are common crossing styles adopted by many pedestrians, particularly at signalised and 

wider intersections with four-lane approaches (Nteziyaremye & Sinclair, 2013).  
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With respect to pedestrian casualty locations, the results from univariate analyses demonstrate 

that higher rates of pedestrian casualties are found at four-legged intersections, roundabouts 

and mini-circles, signalised intersections and intersections controlled by the four-way stop 

signs, when pedestrian casualties are normalised against the number of these facilities. With 

regard to injury severity, more severe pedestrian injuries are most frequently observed at 

signalised intersections and intersections controlled by the Yield sign. However, the finding 

regarding the influence of the Yield sign is based on a very small number of cases (16 casualties 

only) reported at these intersections and the paucity of casualty data at this intersection type 

may affect the reliability of this finding. Nevertheless, the fact that motorists are not forced to 

stop completely at an intersection controlled by the Yield sign may predispose pedestrians to 

more severe injuries if they collide with vehicles.  

4.6.2 Discussing the results from multivariate analyses 

The model results confirm the findings of univariate and bivariate analyses, with the number 

of four- and multi-legged intersections, the number of roundabouts and mini-circles, and the 

proportion of signalised intersections all emerging as significant predictors of pedestrian 

casualties in almost all the developed models.  

Pedestrian safety at roundabouts has not been studied extensively locally as well as 

internationally. Praises attributed to the modern roundabout as being safer than other methods 

of intersection control originate from a number of studies that included a very small sample of 

pedestrian crash data or no pedestrian crash data at all (Retting, Persaud, Garder & Lord, 2001; 

Robinson, Rodegerdts, Scarborough, Kittelson, Troutbeck, Brilon, Bondzio, Courage, Kyte, 

Mason & Flannery, 2000). Improved pedestrian safety associated with the modern roundabout 

is often based on reduced number of pedestrian-vehicle conflicts and reduced vehicular speed 

(Stone, Chae & Pillalamarri, 2002). Although few studies confirmed that the modern 

roundabout is safer for pedestrians (Jordan, 1985; Ulf & Jorgen, 1999) this claim is not always 

supported, especially in the South African context as it has been shown in this study. 

A number of factors could explain a greater crash risk for pedestrians at roundabouts and mini-

circles. When approaching these facilities, the attention of left-turning motorists is much 

focused to the right to judge an appropriate gap in order to merge into the traffic stream, and 

this could lead to a failure to detect pedestrians who are crossing from the left side of the 

approach. Navigating roundabouts and mini-circles can be a challenging task for pedestrians 

as traffic is always moving and pedestrians have to choose an appropriate gap in the traffic 
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stream. Confusion about the right-of-way at roundabouts may also cause conflicts between 

pedestrian and motorists. Non-yielding behaviour of motorists may also be a cause of 

frustration and can lead to longer delays for pedestrians. Pedestrian crosswalks at the exit points 

of roundabouts or traffic circles are positioned sometimes in a way that enables exiting 

motorists to obstruct the traffic movement in the circulatory roadway when yielding to 

pedestrians. The design of roundabout exits can thus discourage drivers from yielding to 

pedestrians who are crossing at roundabouts or mini-circles. In addition, roundabouts and mini-

circles pose safety and comfort problems to visually impaired pedestrians who may find it more 

difficult to choose a gap by judging traffic sound (Stone et al., 2002). In conclusion, 

roundabouts and mini-circles are proved to be safer for motorists but pedestrian safety may be 

compromised at these facilities. 

Another important finding from this study is the influence of the number of four- and multi-

legged intersections on the frequency of pedestrian casualties. The number of possible traffic 

conflicts between motorists and pedestrians increases for each increase of intersection 

approach, suggesting that pedestrian exposure to risk is greater at intersections with more 

approaches. This may be the possible reason behind the higher crash risk observed at four-

legged and multi-legged intersections. Another possible reason that may explain this finding is 

the higher intensity of pedestrian activity in locations with greater concentrations of these type 

of intersections. The findings of this study with regard to the contribution of the number of 

four-legged and multi-legged intersections to the frequency of pedestrian casualties are 

consistent with findings reported in previous studies (Dumbaugh & Li, 2010; Gårder, 2004; 

Ukkusuri et al., 2012; Zhang et al., 2015).  

The results from multivariate analyses have indicated that the proportion of signalised 

intersections is associated with increased numbers of pedestrian casualties. A number of factors 

may explain these findings. Traffic signals are usually provided based on a number of factors 

related to the existing operation and safety at a particular intersection. According to the South 

African Road Traffic Signs Manual, traffic signals are provided based mainly on the queue 

length warrant (Department of Transport, 2012). The queue length is indirectly indicative of 

the presence of high traffic volumes and pedestrian flows as well as longer delays caused to 

road users at an intersection. Simply put, traffic signals are mainly warranted at intersections 

where heavy traffic and pedestrian flows exist. The installation of traffic signals at an 

intersection is aimed at primarily improving traffic flow and facilitating access by distributing 

priority amongst road users (Department of Transport, 2012). It does not always guarantee an 

Stellenbosch University  https://scholar.sun.ac.za



275 

 

increase in road safety and this is emphasised in the South African Road Traffic Signs Manual. 

Although the effect of traffic volume on pedestrian safety was not directly investigated in this 

study, there is evidence in the reviewed literature that traffic volume is an important risk factor 

for pedestrian crashes (Wier et al., 2009; Miranda-Moreno et al., 2011; Zhang et al., 2015). 

The presence of heavy traffic volumes and pedestrian flows at signalised intersections increases 

pedestrian exposure to risk which may lead to the deterioration of pedestrian safety. Traffic 

signals are often installed at wide intersections with multi-lane approaches to accommodate 

high traffic volumes. To negotiate these facilities, pedestrians are often exposed to longer 

crossing distances and longer waiting times. When waiting time increases, pedestrians are more 

likely to take chances, increasing the risk of a crash occurring. 

Behavioural aspects of both pedestrian and motorists also contribute significantly to pedestrian 

crash occurrence at signalised intersections. It is a common occurrence in South Africa that 

turning motorists fail to yield to pedestrians who are crossing at signalised intersections during 

the pedestrian green time. Non-yielding behaviour of turning motorist has been reported in 

several studies as being the motive of both spatial and temporal non-complying behaviour 

among pedestrians. For instance, on-street personal surveys conducted in Stellenbosch in the 

Western Cape Province revealed that non-yielding behaviour of turning motorists  is among 

the motives for crossing outside a designated crossing point and for violating the red man signal 

(Nteziyaremye, 2013). Speeding is another driver-related unsafe behaviour that can influence 

the incidence and severity of pedestrian crashes. The South African Road Traffic Signs Manual 

stipulates that speed limit on any approach of a signalised intersection or signalised 

pedestrian/cyclist crossing shall not exceed 80 km/h. However, vehicular speeds higher than 

this speed limit are often observed at signalised facilities where pedestrian flows exist. 

Pedestrian unsafe crossing behaviour at signalised intersections and signalised mid-block 

crossings are also an important factor contributing to higher crash rates observed at these 

locations. In South Africa, non-compliance with traffic signals is very common among 

pedestrians. It is reported that more than 80 percent of pedestrians crossing at signalised 

facilities do not comply with traffic signals (Nteziyaremye & Sinclair, 2013). Temporal non-

complying behaviour is influenced by a number of motives including among others, low traffic 

volumes (i.e. no traffic is present), time saving, beliefs that it is safe to cross when vehicles are 

stopped, failure to notice pedestrian signals at intersections, driver non-yielding behaviour, 

mistrust of pedestrian signals (e.g. green man signal is too short), longer waiting times, 
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perception that pedestrian signal controls are defective (e.g. pushbutton are not working) and 

familiarity and experience with crossing during red man signal (Nteziyaremye, 2013).  

Perception of comfort and safety together with the actual crash risk observed at signalised 

intersection in this study are compelling evidence that the installation of traffic signals improve 

the efficiency and capacity of the intersection but on the other hand it leads to diminished safety 

for pedestrians.  

The model results have demonstrated two types of land use that are positively related to the 

frequency of pedestrian casualties. These are the general industrial use (GI) and a combination 

of general business (GB) and mixed use (MU). These findings suggest that areas with greater 

intensity of these two type of land use are likely to experience more pedestrian crashes. 

However, one land use type, the single residential use (SR) is found to be negatively associated 

with intersection-related pedestrian casualties using the GWR modelling technique.  

According to the Cape Town Planning By-Law, the general business use includes business 

premises, places of instructions, place of assembly, place of entertainment, hotel, conference 

facility, service trades, authority use, utility services, and shopping malls, among others. The 

industrial use is ascribed to any property developed primarily for manufacturing and related 

processes. The mixed land use (as a type of land use) is simply defined as a mixture of business, 

industrial and residential development either horizontally or vertically (e.g. multi-storey 

developments consisting of ground level retail/business and residential use above it). Industrial 

use applies for instance to industry, restaurants, service stations, motor repair garage, scrap 

yard, agricultural industry and so on (City of Cape Town, 2015b). Areas with greater intensity 

of these types of land use are more likely to attract many walking trips, increasing thus the 

intensity of pedestrian activity in these locations. Therefore, a greater intensity of pedestrian 

activity and more walking trips attracted in areas with greater intensity of industrial, business 

and mixed use are the underlying cause of pedestrian crashes. 

With regard to the influence of land use on the frequency of pedestrian crashes, similar findings 

to those reported in this study exist in literature. For instance, a number of studies have found 

that a number of land use types including business, the number of megastores, retail or 

commercial industrial use, are associated with elevated numbers of pedestrian crashes 

(Dumbaugh & Li, 2010; Kim et al., 2010; Ukkusuri et al., 2011, 2012, Wedagama et al., 2008, 

2006; Wier et al., 2009; Zhang et al., 2015).  
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The single residential use (SR), according to the Cape Town Planning By-Law, encompasses 

two categories of land use based on socio-economic circumstances of the city: the conventional 

housing (SR1) and the incremental housing (SR2). The conventional housing includes 

primarily single-family dwelling houses located in low- to medium-density neighbourhoods 

providing a safe and pleasant living environment. On the other hand, the incremental housing 

land use is ascribed to dwellings located in an informal settlement or those in an area that has 

been upgraded from an informal to a formal settlement, but the upgrading has not yet reached 

an appropriate stage required to be rezoned to SR1 or another appropriate zoning (City of Cape 

Town, 2015b).  

Usually, land use and urban activities create opportunities for land use-transport interaction 

(Rietveld & Bruinsma, 1998). This interaction can happen at two levels: between zones (i.e. 

inter-zonal) or within a zone (i.e. intra-zonal) (Wedagama et al., 2008). There is a possibility 

that areas with a greater intensity of the residential use tend to be mono-functional 

neighbourhoods. A census suburb with predominantly residential use creates opportunity for 

inter-zonal trips. Inter-zonal trips tend to cover long distance trips which require the use of 

motorised modes (mainly private cars or public transport). The negative association between 

the residential land use and the frequency of pedestrian casualties suggests that there is a lower 

likelihood of experiencing pedestrian crashes in areas dominated by the residential land use. 

This is perhaps due to fewer walking trips between zones (i.e. inter-zonal walking trips) and 

lesser pedestrian activity in these areas. Another possible explanation of this finding may be a 

lower density of high-class roads (i.e. high-speed roads) within residential neighbourhoods, 

suggesting these areas attract low traffic volumes and motorists in these areas travel at lower 

speeds.  

Similar findings on the influence of the single residential use on the frequency of pedestrian 

crashes are reported in a small number of previous studies (e.g. Pulugurtha et al., 2013; 

Ukkusuri et al., 2012) while contradicting findings (i.e. positive associations between the single 

residential use and the incidence of pedestrian crashes) are reported in many other studies (e.g. 

Amoh-Gyimah et al., 2016; Guo et al., 2017; Loukaitou-Sideris et al., 2007; Siddiqui et al., 

2012; Wier et al., 2009). Mixed results suggest that the direction of the association (negative 

or positive) between the single residential use and the frequency of pedestrian casualties may 

be context-specific.  
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Land use mix measured by the entropy index emerged among the explanatory variables which 

are strongly associated with increased numbers of pedestrian casualties. This finding is quite 

consistent with those reported by many previous studies (Amoh-Gyimah et al., 2016; Guo et 

al., 2017; Pulugurtha et al., 2013; Tian, Ewing, White, Hamidi, Walters, Goates & Joyce, 2015; 

Zahabi, Strauss, Manaugh & Miranda-Moreno, 2011). The literature indicates that a greater 

level of land use mix tends to reduce trips length, subsequently encouraging walking trips and 

the use of other non-motorised modes (Cervero & Kockelman, 1997a; Clifton, Ewing, Knaap 

& Song, 2008; Ewing, Greenwald, et al., 2011; Frank, Greenwald, Kavage & Devlin, 2011; 

Gehrke & Clifton, 2017; Handy, 2005; Tian et al., 2015). Moreover, land use mix promotes 

public transport use (Cervero & Kockelman, 1997b; Ewing, Greenwald, et al., 2011; Tian et 

al., 2015) which is often used in conjunction with walking trips. In light of this research, strong 

associations between land use mix and the frequency of pedestrian casualties observed may be 

attributed to increased numbers of walking trips or a greater level of pedestrian activity which 

in turns leads to higher pedestrian exposure to risk. It is important to note that this finding does 

not imply that pedestrian crashes are caused by a mix of land use types – it is likely that the 

cause itself is the increased pedestrian activity associated with a mixture of land use types.  

Looking at the magnitude of the associations revealed by Generalized Linear Models (GLM), 

the results demonstrate a reduced contribution of land use mix on the frequency of KSI 

pedestrian casualties (coefficient B=0.885 in NB Model 3) compared with that for the entire 

sample (coefficient B=1.158 in NB Model 1) and that of intersection-related pedestrian 

casualties (coefficient B=1.610 in NB Model 2). These findings suggest that land use mix is 

still associated with increased numbers of KSI pedestrian casualties but the magnitude of this 

association is less marked compared with that observed for the entire sample and intersection-

related pedestrian casualties. Again, a higher degree of land use mix is indicative of greater 

pedestrian activity which is also a factor related to exposure variables such as traffic and 

pedestrian volumes. As traffic volumes and pedestrian numbers increase, speed decreases and 

the amount of kinetic energy transferred during a vehicle-pedestrian crash is less likely to cause 

serious or fatal injuries. Therefore, the reduced contribution of land use mix on the frequency 

of KSI pedestrian casualties could be explained by lower vehicular speeds in areas of greater 

intensity of pedestrian activity. The findings on the influence of land use mix on pedestrian 

injury severity are consistent with those reported in the study by Amoh-Gyimah et al. ( 2016) 

who found that .pedestrian crash risk is higher in urban areas with a greater level of land use 

Stellenbosch University  https://scholar.sun.ac.za



279 

 

mix but the likelihood for a pedestrian crash to result in more severe injuries is somewhat 

reduced.  

A cross-comparison of estimates from the three models developed using separate datasets of 

pedestrian casualties that occurred on weekdays (Model 4), Saturdays (Model 5) and Sundays 

(Model 6) demonstrate temporal variations of the influence of land use mix on the frequency 

of pedestrian casualties. As land use mix and other attributes of the built environment are not 

subjected to daily variations, varying associations may be attributed to other confounding 

variables which are not captured in the link between the built environment and pedestrian 

crashes. The most plausible variables which may be at play are exposure variables, namely 

traffic volume, pedestrian activity and vehicular speed. Hence, daily variations in traffic 

volumes, pedestrian activity and vehicular speed may be the underlying cause of varying 

contribution of land use mix to pedestrian casualties. Consequently, it can be presumed that 

traffic volumes, pedestrian activity and vehicular speed are the main exposure variables that 

play the mediating role in the link between the built environment and pedestrian crashes. The 

interpretation given to this finding affirms the conceptual framework adopted in this study and 

is supported by several other studies (Ewing & Dumbaugh, 2009; Miranda-Moreno et al., 2011; 

Stoker, Garfinkel-Castro, Khayesi, Odero, Mwangi, Peden & Ewing, 2015; Ukkusuri et al., 

2012).  

As it was expected, variables describing the road network structure (i.e. classes of road) are 

generally shown to have positive associations with the frequency of pedestrian casualties. In 

the majority of the developed models, two types of road class- urban freeways and arterial 

roads- demonstrate significant positive associations with the frequency of pedestrian casualties. 

These findings are consistent with those reported in many other studies (Dumbaugh & Li, 2010; 

Gårder, 2004; Mohan et al., 2017; Theofilatos, Yannis, Kopelias & Papadimitriou, 2016; 

Ukkusuri et al., 2012; Wier et al., 2009). The underlying reason behind the higher pedestrian 

crash risk may be higher levels of pedestrian exposure in terms of traffic volumes, pedestrian 

flows and vehicular speed.  

The variables describing the population characteristics have also emerged significant in all 

developed models. This is not a surprising finding as the population number is a potential proxy 

for pedestrian activity and is often regarded as an important risk factor for pedestrian crashes. 

This justification is consistent with the positive association shown by the percentage of 

workers. High risk is expected for commuters since they tend to travel more often, which 
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elevates their risk exposure in the road environment. These findings are consistent with those 

reported in previous research (Amoh-Gyimah et al., 2016; Lee, Abdel-Aty & Jiang, 2015; 

Miranda-Moreno et al., 2011; Wang, Yang, Lee, Ji & You, 2016; Wier et al., 2009). 

The results also show that high-income areas are more likely to experience fewer pedestrian 

casualties. Given the historical context of South Africa, it is not surprising that race was related 

to pedestrian casualties since it is often regarded as a proxy for socio-economic status. The 

Apartheid policies of land use planning forced the poor people (mostly the Back population) 

to live in sprawling and overcrowded settlements deprived of economic opportunities and basic 

services (Turok, 1994). Vehicle ownership in these areas is lower compared to that of wealthier 

ones. This explains why residents of the poorer communities are the most affected by 

pedestrian crashes as a large number of their trips are made on foot in road environments with 

inadequate walking facilities. The findings on the effect of socio-economic deprivation are 

consistent with those reported by previous research studies (Cottrill & Thakuriah, 2010; 

Graham & Glaister, 2003; Loukaitou-Sideris, Liggett & Sung, 2007; Siddiqui, Abdel-Aty & 

Choi, 2012). 
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Chapter 5: Conclusions  

This chapter provides a summary of key findings, the original contribution of the study, 

transferability of model results, the practical implications of the study, the limitations that 

challenged the development of this study, and considerations for future research.  

5.1 Key findings of the study 

This section presents the key findings from this study and these are presented with reference to 

the research questions explored in this study. The main findings of the study are summarised 

below: 

1) The variety of analytical methods applied in this studies demonstrated that pedestrian 

crashes are related to the attributes of the built environment and population characteristics. 

This finding responds to the first research question investigated in this study which was 

concerned with finding a measurable link between the built environment and pedestrian 

crashes (“Is there a measurable link between the built environment and pedestrian 

crashes?”). It has been found in this study that a number of variables describing population 

characteristics, land use patterns, urban design, and transportation systems are associated 

with the incidence of the three types of pedestrian casualties included in the analysis (the 

entire sample of pedestrian casualties, intersection-related and KSI pedestrian casualties). 

The revealed relationships can be described in four components:  

i. The relationships between population characteristics and pedestrian crashes  

The incidence of pedestrian crashes and the resulting injury severity are 

significantly influenced by six population characteristics (socio-demographic and 

socio-economic variables), which are population number, age, income level, 

education level, employment status and race. All these socio-economic factors are 

interrelated, resulting in comparable findings. A noteworthy comment about the 

influence of race in the context of South Africa is that race is related to socio-

economic status and can used as an indicator of socio-economic status. The four 

population groups identified as being at greater crash risk are male pedestrians, 

child pedestrians (younger than 10 years old), middle-aged pedestrians (especially 

those in the 26-35 age group), and pedestrians living in socio-economically 

disadvantaged areas. 
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ii. The relationships between land use patterns and pedestrian crashes  

The study has revealed powerful associations between land use mix and pedestrian 

crashes. These statistical associations imply that land use mix increases pedestrian 

activities thereby increasing pedestrian exposure to road crashes. The magnitude of 

the statistical associations between pedestrian crashes and land use mix infers that 

the latter may be used as a crude proxy of pedestrian activity or pedestrian volumes 

for the study area. In addition, positive associations were found between pedestrian 

casualty counts and two types of land use: general industrial use; and a combination 

of general business and mixed use. In summary, the findings suggest that higher 

frequencies of pedestrian crashes are experienced in areas with higher levels of land 

use mix and areas with greater intensity of business use or industrial use. 

iii. The relationships between urban design features and pedestrian crashes  

Three proxy variables of urban design have showed positive associations with the 

frequency of pedestrian casualties. These are street density, intersections having at 

least four legs and the ratio of intersections to culs-de-sacs.  

iv. The relationships between transportation system features and pedestrian crashes  

Functional road class, the type of intersection configuration and the type of 

intersection control have all showed significant influence on the incidence and the 

severity of pedestrian crashes. More specifically, elements of the transportation 

system including urban freeways and arterial roads, roundabouts and mini-circles, 

intersections having at least four approaches as well as intersections controlled by 

traffic signals were found to be associated with higher frequencies of pedestrian 

crashes.  

The revealed statistical relationships are indicative of the existence of a measurable link 

between the built environment and pedestrian crashes, confirming the thesis investigated 

in this study. The first and second research questions have been addressed through a 

thorough description of the relationships (i.e. nature and magnitude of associations) 

between the built environment and pedestrian crashes.  

2) While the associations investigated through the use of Generalised Linear Models (GLM) 

are static (i.e. homogenous), those explored through the use of Geographically Weighted 

Regression (GWR) showed geographical variations across the study area. These variations 
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were in terms of direction (i.e. positive or negative associations) and intensity. Further 

analysis by the use of t-test successfully highlighted variables subjected to significant 

spatial variations (i.e. spatial heterogeneity of associations) and those that are not. The third 

research question (“If the link exist, does it vary across space?”) investigated in this study 

has been addressed through the examination of spatial heterogeneity of the associations. 

Generally, the findings suggest that the link between the built environment and pedestrian 

crashes is subjected to spatial variations in both direction and intensity.  

3) The findings on characteristics of pedestrian casualties in Cape Town (i.e. the fourth 

research question investigated in this study) are summarised in four components: casualty 

trends, behavioural aspects, temporal factors and locations of pedestrian crashes:  

i. An annual casualty rate of 123.5 pedestrian casualties per 100,000 population was 

found for the entire study area. The annual KSI rate found in this study stands at 

35.7 KSI pedestrian casualties per 100,000 population and the annual fatality rate 

was 4.5 pedestrian fatalities per 100,000 population. The figures of KSI and 

pedestrian fatality rates found in this studies for the City of Cape Town are lower 

than those reported in previous works, suggesting that injury misclassification may 

be the underlying cause of the discrepancy in pedestrian casualty rates.  

ii. In addition to population characteristics and the attributes of the built environment 

explored through univariate, bivariate and multivariate analyses, the study shed 

light on behavioural and temporal factors that contribute to the incidence of 

pedestrian crashes. With respects to pedestrian behavioural aspects, spatial non-

compliant behaviour (i.e. crossing outside a designated pedestrian crossing point 

and within 50 metres from a designated crossing point) was found to be the major 

contributing factor to pedestrian crashes. Running and midway standing emerged 

as unsafe crossing styles that were contributory factors in a significant number of 

pedestrian crashes. Moreover, the incidence of a number of pedestrian crashes was 

found to be linked to certain pedestrian activities taking place in the road 

environment, such as playing and working.  

iii. Concerning temporal patterns, the findings demonstrated that the time of day, the 

day of week, the week of month and the quarter of year have all a significant 

influence on the incidence of pedestrian crashes. The frequency of pedestrian 
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casualties was the highest during traffic peak times, on Fridays, Saturdays and 

Sundays, during the pay week, and over the third quarter of calendar year.  

iv. Looking at pedestrian casualty locations on the Cape Town’s transportation system, 

approximately three quarters of all pedestrian casualties were identified at non-

intersection locations (i.e. links) and 26 percent took places at intersections. Two 

intersection configuration types were found to be associated with the highest 

casualty rates. These are four-legged intersections and roundabouts/mini-circles. 

Similarly to multivariate analyses, univariate analysis also highlighted traffic 

signals as the intersection control type significantly associated with higher 

frequencies of pedestrian casualties.  

v. Briefly, pedestrian crashes were found more likely to occur: in socioeconomically 

disadvantaged areas which accommodate higher proportions of poorer population, 

and where many trips are made on foot; at midblock locations; at signalised 

intersections; at four-legged intersections; and roundabouts/ mini-circles locations. 

These findings have addressed the fifth research question investigated in this study 

(“Where pedestrian crashes are more likely to occur?”). 

4) The study investigated the sixth research question (“Where are hot spots for pedestrian 

crashes located in the study area?”) by applying a variety of geospatial analysis methods.  

Geospatial analysis methods that used polygons (i.e. census suburbs in this study) as 

Incident Data Aggregation Method were applied to the entire sample of pedestrian 

casualties. These methods highlighted a number of census suburbs considered as hot spots 

of pedestrian casualties. The regions identified as hot spots of pedestrian casualties are the 

districts of Khayelitsha, Mitchell’s Plain, Cape Flats and certain census suburbs of 

Tygerberg district. The same regions and a number of census suburbs of Table Bay district 

were also identified as hot spots of intersection-related pedestrian casualties. Furthermore, 

other geospatial analysis techniques that use point density detected individual hot spots of 

intersection-related pedestrian casualties. These hot spots are mainly located on arterial 

roads, at junctions of arterial roads and urban freeways and on local roads of the CBD of 

Cape Town. 

5) Geospatial analysis techniques applied in this study to detect clusters of pedestrian 

casualties across the study area include the three local statistics of spatial autocorrelation 
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(the Anselin Local Moran’s I, the Getis-Ord Gi* and the Optimized Hot Spot analysis) and 

the planar kernel density estimation (KDE). Although the three local statistics of spatial 

autocorrelation use different methods of Incident Data Aggregation, they generally 

produced comparable results on high-risk locations for pedestrian crashes. Looking at the 

size of the identified hot spot regions, the largest hot spot region was detected by the OHA 

which uses the fishnet method, followed by the Getis-Ord Gi* and lastly the Anselin Local 

Moran’s I. However, the latter technique showed one advantage over other techniques −the 

ability to identify outliers (High-Low outliers and Low-High outliers). The Prediction 

Accuracy Index (PAI) was used to assess the performance of three geospatial analysis tools 

(OHA that uses density surface, OHA that uses fishnet aggregation methods and KDE) 

applied to the dataset of intersection-related pedestrian casualties. The KDE with 400 m 

bandwidth was confirmed to be the best performing tool to detect hot spots of pedestrian 

casualties in this study. 

6) The goodness-of-fit measures qualified the Negative Binomial regression modelling as the 

best performing modelling procedure in fitting pedestrian casualty data. The 

Geographically Weighted Regression (GWR) modelling came out at second place in terms 

of performance. However, the GWR models proved to be a useful tool for their particular 

ability to detect spatial variations of relationships between the explanatory variables and 

pedestrian casualties, and to draw conclusion concerning local determinants of the 

incidence of pedestrian crashes. The existence of over-dispersion in the pedestrian casualty 

data rendered the Poisson regression modelling inappropriate to represent the data. Overall, 

the analytical methods applied in this study for road safety investigations have produced 

consistent results, and the conclusion can be drawn that they are generally suitable for the 

context of South Africa, with the exception of Poisson regression modelling. This inference 

addresses the seventh research question investigated in this study.  

7) The findings from this study have been discussed in reference to the existing literature 

relevant to the research questions. In the ‘Result Discussion’ section, parallels between the 

findings of this study and those reported in the reviewed previous works have been drawn. 

The similarity of findings has been highlighted and a discussion of contrasting findings 

have been provided. This was the concern of the last research question investigated in this 

study. The general conclusion on this point is that despite certain contextual differences 
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regarding the determinants of pedestrian safety, the study produced findings that are in line 

with those in the existing international literature.  

5.2 Original contributions of the study 

This research is novel in the context of South Africa in four aspects. Firstly, the study developed 

a methodology of improving and supplementing poor quality secondary data on pedestrian 

crashes. Secondly, the study applied a wide variety of geospatial and statistical modelling 

methods to validate the results and to test the performance of the methods (the appropriateness 

of the methods to the South African context). Thirdly, the study included a large number of 

variables describing the built environment in the safety analysis. This type of research is scarce 

around the world, especially in South Africa. Lastly and most importantly, the study proposes 

new predictive models which are useful in a twofold way: (a) the models are useful in 

understanding the nature and the magnitude of relationships between the built environment and 

pedestrian crashes; (b) the models can be used to predict future pedestrian crashes using 

information that is easily available at the city level.  

5.3 Transferability of model results 

The proposed models, when tested and calibrated locally, are expected to be replicable in other 

South African cities and other developing countries, as the fundamental relationships between 

land use, intersection design and roadway design are all proxies for pedestrian activity which 

is a direct cause of pedestrian crashes. The models utilised information that is easily available 

in most cities across the world, where city planning offices are functioning. They remove the 

need for traffic flow data and for the more difficult collection of pedestrian flows and volumes. 

They allow for the identification of pedestrian crash hotspots at the disaggregated level of the 

census suburb, which is again the unit of analysis that most cities are familiar with. More work 

is needed to test the easy replicability of these models within South Africa and Africa, but for 

now they offer a method of pedestrian risk assessment that relies solely on data on the attributes 

of the built environment and population characteristics. However, it is worth noting that GWR 

models provide a set of local estimates that are specific to each geographic unit. As a result, 

the GWR models are not spatially transferable, suggesting that cities need to develop their own 

models using local data on road crashes and the built environment.  
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5.4 Practical implications of the study 

This study has enhanced the understanding of the influence of attributes of the built 

environment on pedestrian safety in urban areas. The role of aspects including population 

characteristics, land use patterns, intersection design and control types as well as road structure 

have been explored through a variety of analytical methods with statistical modelling being the 

most essential method. The new insights from this study have significant and long-lasting 

implications for the practice in South Africa and other developing countries. The findings of 

this study highlight priority areas that needs urgent attention to make walking safer in urban 

environments. This goal is in accordance with the commitments of the National Road Safety 

Strategy (NRSS) adopted in South Africa for the 2016-2030 period. Accordingly, the practical 

implications of the study are presented in this section with reference to priority areas identified 

in the NRSS 2016-2030 for interventions.  

The NRSS 2016-2030 adopted the principles of the Safe Systems Approach and was developed 

in line with commitments and a framework of actions proposed in the United Nations Decade 

of Action for Road Safety 2011-2020 (UNDA) (Department of Transport, 2014). The UNDA 

framework for actions consists of the five pillars that guide strategic plans and activities over 

the Decade of Action.  The five pillars include: (1) Road safety management; (2) Safer roads 

and mobility; (3) Safer vehicles; (4) Safer road users; and (5) Post-crash response (World 

Health Organization, 2013). The strategies of the NRSS which are in connection with the 

findings of this study are outlined in red frames in Figure 5-1. The way this study can assist 

with the achievement of Pillar 1, 2 and 4 is addressed in the section that follows. 
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Figure 5-1: Strategic plan for interventions adopted in the South African National Road Safety 

Strategy 2016-2030 (Department of Transport, 2014) 

5.4.1 Pillar 1: Road Safety Management: Improve road safety data systems 

Limitations in the National Crash Data are one of the eight key challenges identified in the 

NRSS under Pillar 1. This study created an opportunity to explore one type of crash data 

system, which is police-reported crash database. Throughout the investigation of the research 

questions, the study identified a number of crash data deficiencies that need to be addressed. 

These deficiencies include duplication of records, missing records, inaccurate records, 

imprecise crash locations and omission of other crash records critical for the establishment of 

trends relating to pedestrian crashes and other types of crashes as well. It is therefore crucial to 

direct interventions on these data limitations to improve both the quality and management of 

crash data. Improved crash data quality would foster research in road safety as crash data 

limitations are often a source of frustrations among road safety researchers in South Africa. 

The research outcomes of this study came from an extensive effort geared towards improving 

the existing crash database and have demonstrated that high-quality crash database holds 

tremendous benefits for local research in road safety, countermeasure design and monitoring 

of interventions.  
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5.4.2 Pillar 2: Safer road and mobility:  

The safer roads and mobility pillar focus on road design and the environment that offer 

protection to all road users. As they are the most vulnerable road users, pedestrians require 

special protection in road environments. To achieve safer road and pedestrian movement, road 

design practices should give priority to pedestrian needs and should ensure that risks faced by 

pedestrians in road environments are minimised. In addition, high-risk locations for pedestrians 

should be identified through road safety risk assessments and road safety audits.  

In connection with these key strategies under the Pillar 2, the findings from cluster analysis 

identified high-risk locations for pedestrians on the Cape Town’s road network that need 

thorough investigations both in terms of conventional traffic safety studies and road safety 

audits. In addition, the findings on hot spots locations are of a great relevance as they can guide 

where road safety interventions should be prioritised. The identified hot spots of the different 

pedestrian casualty types communicate, albeit indirectly, the type of road safety remedial 

scheme that is needed. For instance, hot spots of KSI pedestrian casualties may necessitate 

speed reduction plans such as traffic calming measures (where they are appropriate), speed 

enforcement initiatives, or spatial separation of motorised and non-motorised modes. In the 

same way, hot spots of intersection-related pedestrian casualties may be addressed by 

improvements in intersection design that prioritises pedestrian safety and caters for pedestrian 

needs. In addition to guiding remedial treatments, findings on hot spots of pedestrian crashes 

can guide the allocation of funding for safety improvement initiatives at local level. For 

instance, greater priority should be given to the census suburbs identified as hot spot regions 

of pedestrian crashes while allocating funding for pedestrian safety improvements.  

The findings of this study show that pedestrian safety is significantly affected by the aspects of 

the built environment including road structure, intersection design and land use planning. These 

findings suggest that changes in the design and the planning of these aspects should be part of 

the strategies geared towards addressing the pedestrian safety problem in South African urban 

spaces. Key strategies should include rethinking how streets and highways are designed and 

modifying land use planning and urban design practices to accommodate and encourage 

walking. The majority of high-crash locations for pedestrians identified in this study are located 

in socioeconomically disadvantaged areas which host mostly poorer communities living in 

informal settlements, or those living in areas that were upgraded from an informal to a formal 

settlement. As these areas were not initially in the planning schemes of the city, they lack basic 
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urban infrastructure such as roads, pedestrian paths, street lights, and access to main roads (to 

name a few) and where infrastructure is provided it is often in poor condition (e.g. roads are 

not maintained regularly, or inadequately provided). In addition, the risk exposure is greater 

for pedestrians living in these areas as they spend a great deal of time walking to reach urban 

services located far from their homes. The findings of this study reflect the fact that walking is 

the primary mode of transport for the poorer communities and the associated safety problems 

should be given much consideration in informal settlement upgrading programmes. A 

concerted effort is also needed from both urban planners and transportation engineers to 

accommodate pedestrians in the management of future spatial growth of urban environments.  

Providing self-explaining and forgiving roadway environments for all road users is one of the 

strategic themes under Pillar 2 of the NRSS 2016-2030. In the light of the findings of this study 

on the role played by the built environment in the incidence of pedestrian crashes, self-

explaining and forgiving road environment for pedestrians could be achieved by the 

implementing the following interventions:  

1) Minimising pedestrian exposure on roads with high traffic volumes and high speed 

roads (e.g. arterial roads and urban freeways). This can be achieved by using measures 

such as : 

a. Spatial separation of pedestrians from motorised traffic by means of sidewalks, 

separated walking paths, overpasses and underpasses; 

b. Temporal separation at intersections and mid-blocks (i.e. by means of 

pedestrian signals) to eliminate or reduce conflicts between pedestrians and 

motorists; 

c. Provision of minimum crossing distances by means of raised medians, 

pedestrian refuges and lane narrowing or kerb extensions. 

2) Managing speed by using strategies such as: 

a. Traffic calming measures (vertical deflections and horizontal deflections) on 

roads where these measure are warranted; 

b. School zones to limit speed during certain hours in the vicinity of a school; 

c. Shared zones where both pedestrians and motorized traffic utilised the same 

road space that has been adapted for very low vehicular speed, but vehicles must 

always give way to pedestrians (Austroads, 2008). However, special attention 

should be given to a number of negative aspects associated with the 
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implementation of shared zones. These include: (1) the relative high cost of 

implementing shared zones; (2) drivers’ failure to observe speed restrictions 

when pedestrian volumes are low; (3) need for enforcement and educational 

initiatives to encourage understanding and compliance among road users; and 

(4) concerns that pedestrian safety might be compromised by non-complying 

motorists (Austroads, 2008); 

d. Pedestrianisation (e.g. creating pedestrian only zones) in areas of high 

pedestrian activity by restricting vehicular access;  

e. Speed enforcement measures (speed enforcement officers and speed cameras). 

3) Integrating pedestrian needs into transport planning: this can be attained by: 

a. Providing pedestrian facilities where pedestrian movements are expected; 

b. Addressing missing links (non-continuous walking routes) to ensure that 

walking environments are connected; 

c. Removing physical obstacles from walking paths; 

d. Providing roadway environments with universal design features to 

accommodate pedestrians with special needs (children, pedestrian with 

disabilities and elderly pedestrians); 

e. Addressing pedestrian needs at major generators (e.g. mixed use with high 

pedestrian activity, urban centres, schools, transit termini, hospitals, 

commercial areas, parks and recreational places); 

f. Minimising waiting times and provide adequate time for pedestrians to cross at 

signalised intersections; 

g. Providing pedestrian amenities that encourage walking (e.g. pedestrian-scale 

lighting, trees, landscaping, shelters etc.); 

h. Providing safer walking environments in socioeconomically disadvantaged 

areas that hosts higher proportions of population who relies on walking as a 

primary transport mode.  

4) Enhancing pedestrian conspicuity on the roadway by:  

a. Providing street lighting for night-time visibility; 

b. Using colours and textures of materials (e.g. road pavement) to emphasize the 

presence of pedestrian movement in pedestrian zones or at pedestrian crossings; 

c. Providing adequate sight distances at intersections and roundabouts; 

d. Keeping signs in good conditions (must be reflectorized or illuminated and with 

an adequate vertical clearance);  
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e. Keeping markings for pedestrian crossings in good conditions.  

5) Integrating land use and transport planning by:  

a. Designing cities in such a way that residences, workplaces, schools, shops and 

other facilities are in close proximity so that trips to reach human activities can 

be made by walking;  

b. Providing safe play areas and other recreational facilities in poorer communities 

to curb the problem of children who are hit by cars while playing in streets.  

In light of the role played by traffic signals and the size of an intersection (i.e. number of 

intersection legs) in pedestrian crash occurrence, engineering countermeasures directed at these 

locations comprise those requiring site-specific remedial actions and those implemented at a 

regional or city level. Site-specific engineering interventions include those that have the 

potential to impact pedestrian crossing behaviour at an individual intersection. Certain of these 

interventions hold the potential to encourage spatial compliant behaviour (crossing at 

designated crossing locations) among pedestrians. These are, for instance, installing guard 

railing to channel pedestrian movement at designated crossing points and spatial separation by 

means of pedestrian underpasses or overpasses at wider intersections where crossing is most 

challenging. Another set of interventions can be deployed to encourage pedestrian compliance 

with traffic signal. These may include, for instance, the adoption of signal strategies that 

shorten waiting times for pedestrians (e.g. pedestrian actuated traffic signals such as Pelican 

and Puffin), those that inform about the waiting times (e.g. countdown timer), provisions of 

pedestrian phases, and all-red periods (Martin, 2006). However, it should be recognised that 

these countermeasures tend to increase delays to motorised traffic and signal timing should be 

optimised with proper consideration of a trade-off between pedestrian safety and intersection 

efficiency. 

Engineering interventions implementable at a regional or city level may entail changes in the 

design of road networks aiming at enhancing pedestrian comfort and safety. According to the 

South African Road Traffic Signs Manual, a reduced number of intersections requiring traffic 

signals on a road network could be achieved by channelizing traffic to alternative routes that 

have fewer intersections, or alternatively to intersections that can handle traffic signals more 

adequately (Department of Transport, 2012). These changes would reduce the number of 

intersections requiring traffic signals and the size of intersection (in terms of the number of 

travel lanes per approach). The adoption of network management strategies such as 
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redistribution of traffic on the road network by means of street closures, one-way systems and 

traffic calming measures can help to prevent wider signalised intersections which pose major 

comfort and safety problems to pedestrians. Local research is needed to evaluate safety benefits 

of these countermeasures and to ensure that their provision matches pedestrian needs and 

characteristics.  

5.4.3 Pillar 4: Safer road users 

The safer road user pillar entails strategies aiming at improving road user behaviour and 

increasing protection for vulnerable road users. The finding of this study highlighted pedestrian 

behaviours and actions that should be addressed by behavioural change interventions. For 

instance, educational programmes should be directed to pedestrians to instruct them how to 

operate as pedestrians on the road legally and safely. These programmes should target not only 

elementary school students but also other category of pedestrians who are at a greater crash 

risk, such as middle-aged groups and pedestrians living in poorer communities who depends 

on walking and public transport as primary modes of travel. Educational initiatives should aim 

at increasing awareness of risk associated with certain pedestrian behaviour such as temporal 

and spatial non-complying behaviour (i.e. jaywalking, red light violation), unsafe crossing 

strategies (e.g. running, midway stopping, crossing between stopped cars), drinking and 

walking, adult supervision in child pedestrian safety and the risk of being inconspicuous in the 

road environment and how to avoid this.  

Although this study has not reported on driver factors that contribute to pedestrian crash 

occurrence, it is well documented locally and internationally that speeding, drinking and 

driving, and drivers’ disregard of pedestrians in the road environment are the major 

contributing factors to pedestrian crashes. In addition to the basic traffic safety education 

directed to motorists during the licensing process, effective educational programs should be 

directed regularly to drivers of all categories (e.g. novice drivers, experienced drivers, transit 

drivers, truck drivers etc.) to enhance awareness of risks associated with the unsafe driving 

behaviour and to instruct them about safe operation around pedestrians and other vulnerable 

road users. 
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5.5 Limitations of the study 

This research is subject to several limitations:  

1) Omission in reporting certain crash information: The crash data provided by the 

City of Cape Town did not have records such as alcohol level of pedestrian involved in 

road crashes, visibility conditions, colour of clothes and weather conditions (e.g. wet 

pavement, visibility, etc.). The lack of this information has significantly restricted this 

study from reporting on the effect of alcohol factors on pedestrian safety and carrying 

out further analysis on the influence of weather conditions and pedestrian visibility on 

the outcome of pedestrian casualties in the study area. 

2) Incorrect records in the crash database: This was predominantly found in recording 

the age of pedestrians involved in car crashes. This study showed that more than 60 

percent of pedestrian casualties were aged 0 years old, a finding which is unrealistic. It 

seems that in circumstances where age is not known age is recorded as zero age. The 

incorrect recording of variable age is a common challenge for road safety analysis and 

has been reported by other scholars in South Africa.  

3) A crash database which is not georeferenced: Inadequate description of crash 

locations particularly at non-intersection locations posed a great challenge to geocoding 

a subsample of midblock-related pedestrian casualties. This restricted certain methods 

of cluster analysis (e.g. hot spot analysis by KDE and other geospatial analysis 

techniques that use point density as a method of Incident Data Aggregation) to only 

intersection-related pedestrian casualties. Cluster analysis that included midblock-

related pedestrian casualties was limited to geospatial analysis methods that use 

polygons (census suburbs in the context of this study) as the method of Incident Data 

Aggregation. Subsequently, the study was not able to identify high-risk locations for 

non-intersection pedestrian crashes on the road network. In addition, effort to obtain a 

geocoded database of pedestrian casualties and the procedures involved in data 

screening and data preparation for analysis were laborious and time consuming. These 

procedures occupied a significant part of time frame work for this study. 

4) Limitation on the analytical methods used in this study: the standard planar Kernel 

Density Estimation (KDE) is one of the cluster analysis methods used in this study to 

identify high-risk locations for pedestrians on the Cape Town’s road network. This 

technique produces a smooth density surface of spatial point events over a 2-D 

geographic space. However, events such as road crashes occur on a road network which 
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is a 1-D linear space. As a result, the planar KDE is likely to overestimate the density 

values as it covers space beyond the road network space. The Network Kernel Density 

Estimation (NKDE) is more appropriate for hot spot analysis on a road network, 

unfortunately this tool is not implemented in ArcMap which was the analytical tool 

used in geospatial analyses in this study. Therefore, the results on hot spots obtained 

using the standard planar KDE could have been improved by the use of The Network 

Kernel Density Estimation (NKDE). In a similar way, this study used the 

Geographically Weighted Regression tool implemented in ArcGIS to model spatially 

varying relationships pedestrian casualties and a set of predictors including variables 

describing the aspects of the built environment and population characteristics. This tool 

calibrates the basic GWR models that assume that the error terms are normally 

distributed. Simply put, a normal distribution of error terms was assumed in the GWR 

Models produced in this study. However, this assumption is often violated when fitting 

models for count data such as crash data. In this regard, a modelling procedure that 

combines the GWR modelling and any form of Generalised Linear Modelling (Poisson 

or Negative Binomial regression models) would have been beneficial to this study. 

Therefore, the GWR model results would have been improved by the use a software 

tool that supports the calibration of Geographically Weighted Generalised Linear 

Models (GWGLM). 

5.6 Considerations for future research 

Based on delineations and limitations highlighted in this study, four future research directions 

for pedestrian safety analysis are suggested as below. 

1. As the majority of pedestrian crashes were identified at midblock locations, much 

research is needed to identify high-risk locations for midblock-related pedestrian 

crashes on the road network, of course with the help of better quality crash data. The 

research effort should be coupled with investigations into micro and macro environment 

factors associated with midblock-related pedestrian crashes in South Africa. 

2. Research is needed to investigate the effect of spatial unit of analysis on the 

relationships between pedestrian crash counts and explanatory variables such as the 

attributes of the built environment and demographic characteristics in the context of 

South Africa. Research of this nature may consider, for instance, micro-level safety 
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analysis employing data aggregated in various spatial units, such as buffers of different 

dimensions around a crash location, traffic analysis zones (TAZs), districts, or grid-

based schemes. This would shed light on the effects of modifiable areal unit problem 

(MAUP) on crash modelling results in traffic safety studies.  

3. In the effort to gain more insight into the circumstances that lead to pedestrian crashes 

in South Africa, thorough research is needed into other factors contributing to 

pedestrian crashes which are not covered in this study. These are, for instance, driver-

related factors, vehicle factors, weather factors, vehicular speed, alcohol involvement, 

transit characteristics and social psychological determinants of unsafe behaviour. 

4. To address the methodological limitations underlined previously in this study, further 

research could assist with evaluating whether the results obtained in this study could be 

improved by the use of alternative analytical methods such as the Network Kernel 

Density Estimation (NKDE) for crash cluster analysis and Geographically Weighted 

Generalised Linear Models (GWGLM) for crash modelling.
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APPENDIX A 

Descriptions of zonings and subzonings 

 

 

ZONINGS DESCRIPTIONS

1. Single residential zonings The single residential zonings accommodate predominantly single-family 

dwelling houses in low-to medium density neighbourhoods with a safe 

and pleasant living environment. Two single residential zonings, one for 

conventional housing and another for incremental housing are considered 

in recognition of different socio-economic conditions of citizens in the City.

Single residential zoning 1: 

Conventional housing (SR1)

The SR1 zoning accommodates largely single-family dwelling houses and 

additional use rights in low-to medium-density residential neighbourhoods, 

on small or large land parcels.

Single residential zoning 2: 

Incremental housing (SR2)

The SR2 zoning incorporates dwelling houses that were upgraded from 

an informal settlement to a formal settlement. SR2 may also apply to 

individual land parcels or blocks containing an informal settlement.

2. General residential zonings The general residential zonings are designed with the aim to promote 

healthy, safe and pleasant living environments in high-density urban 

settlements. Different zonings and subzonings allow diverse levels of 

development intensity, particularly relating to height and floor space.

General residential subzoning 1: 

Group housing (GR1)

The GR1 zoning is planned to accommodate group housing in medium-

density residential developments where aesthetics, architectural form and 

inter-relationship between various components of the development are 

taken into consideration. 

General residential subzonings 

(GR2, GR3, GR4,GR5 & GR6)

These subzonings encourage high-density residential development, 

including blocks and flats. Diverse subzones are subjected to different 

development rules, particularly with respect to height and floor space, to 

allow a variety of building forms. The GR2 subzoning includes flats of 

relatively low height and small floor space. The GR3 and GR4 subzonings 

accommodate flats of medium height and floor space. The GR5 and GR6 

subzonings cater for high-rise flats. The predominant use in these 

subzoninds is residential but limited mixed-use development can be 

permitted. 

3. Community zonings Community zonings accommodate land used for social needs of 

communities such as educational, religious, welfare or health services. 

There are two community zonings depending on the size of the 

community served by the zoning. 

Community zoning 1: Local 

(CO1)

The CO1 zoning serves social needs (education, worship and health) of 

local community. However other use with greater social impact to 

community can be approved by the city. 

Community zoning 2: Regional 

(CO2)

The CO2 zoning comprises land developed to serve community social 

needs (health, welfare, worship and education) at a local or regional 

scale.
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ZONINGS DESCRIPTIONS

4. Local business zonings Local business zonings create a suitable interface between business 

districts and adjacent residential areas. Office use of low impact and 

associated use are permitted but retail use of higher impact is controlled. 

Local business zonings 1: 

Intermediate business (LB1)

The LB1 zoning serves as a buffer or interface between residential areas 

and general business zonings or other high-intensity non-residential uses. 

The prevailing uses should be for residential, office and associated 

purposes, but limited retail activities are permitted with the City's approval.

Local business zoning 2: Local 

business (LB2)

The LB2 zoning accommodates low-intensity commercial and mixed-use 

developments.

5. General business  and 

mixed use zonings 

The general business zonings include uses such as business, residential 

and community uses. They are planned to support economic 

development in business and development corridors. Industrial 

development in these zonings is restricted. By contrast, mixed use 

zonings comprise developments with a complete mixture of land uses 

including industrial, business and residential development.

General business subzonings 

(GB1, GB2, GB3, GB4, GB5 & 

GB7)

The GB zonings cater for general business activity and mixed-use 

development of a medium-to high-intensity. Different development rules 

apply to the different subzonings of GB1-GB7, particularly with regard to 

permitted height and floor space, in order to allow a variety of building 

forms within the city.

Mixed use subzoning (MU1, MU2 

& MU3)

The MU zonings accommodate a mixture of business, industrial and 

residential development. These zonings are particularly suitable at the 

interface between general business and industrial zonings. Different 

development rules apply to the different subzonings of MU1, MU2 and 

MU3, particularly with regard to permitted height and floor space.

6. Industrial zonings The industrial zonings are planned to accommodate manufacturing and 

related processes, ranging from general industrial uses which may have 

some impact on surrounding areas, to hazardous or noxious uses which 

have a potentially high impact and must be carefully managed. Two 

different subzonings; (GI1&GI2 and RI) are considered in this subzoning 

depending on associated environmental impacts. 

General industrial subzonings 

(GI1 & GI2)

The GI zoning accommodates all forms of industry, except noxious trade 

and risk activity. Some allowance is made for non-industrial activities, but 

these should not compromise the general use of the area zoned for 

industry.

Risk industry zoning (RI) The RI zoning include those industries which are noxious in terms of 

smell, product, waste or other objectionable consequence of their 

operation, or which carry a high risk in the event of fire or accident.
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ZONINGS DESCRIPTIONS

7. Utility, transport and 

national zonings

Certain government activities which cannot be classified into other 

zonings are included in the utility zonings. Transport zonings are designed 

to facilitate efficient operation of the various transport systems. Another 

zoning included in this category is the national port zoning.

Utility zonings (UT) The UT zoning accommodates utility services such as electrical 

substations and water reservoirs, which may be supplied by a municipal, 

government or private agency. This zoning category also includes 

government or authority uses, such as prisons and military bases, which 

are not covered by another use or zoning category. 

Transport zoning 1:Transport 

Use  (TR1)

The TR1 zoning provides for transportation systems, excluding public 

roads and public streets, but including all other transport undertakings 

which serve the public such as airports, harbours, railway lines, bus, 

railway and other depots associated with public transport uses, public 

transport terminuses, ranks or holding areas, and cable car stations.

Transport zonings 2 : Public road 

and public parking (TR2)

The TR2 zoning includes public streets and roads, whether constructed 

or still to be constructed, as well as premises for the public parking of 

operable motor vehicles. Such parking may be provided in buildings or 

open parking areas, with or without the payment of a fee. On-site parking 

for a permitted activity in any zoning is considered to be an associated 

use and do not represent a separate use category that requires separate 

zoning or approval.

National port zoning (NP)  The NP zoning is provided as a zoning in which land use within a national 

port is controlled by an approved port development framework plan.

8. Open space zonings This zoning consists of 3 different types of open space fulfilling different 

functions. Certain open spaces have particular importance as nature, 

cultural heritage or environmental areas and a separate zoning facilitates 

the management of these areas. Within this zoning provision is made for 

the development of amenities to meet the needs of tourists and visitors. 

Other open spaces have a more active role in addressing the sporting 

and recreation needs of the community.

Open space zoning 1: 

Environmental conservation 

(OS1)

The OS1 zoning provides for the conservation of environmental 

resources, although cultural heritage resources may also be included. 

Provision is made for limited, low-impact uses associated with 

conservation, such as environmental education, associated infrastructure 

and facilities for tourists and visitors with the approval of the City.

Open space zoning 2: Public 

open space (OS2)

The OS2 zoning accommodates active and passive recreational areas on 

public land, as well as protection of landscape and heritage areas 

including woodlands, ridges, watercourses, wetlands and the coastline.

Open space zoning 3: Special 

open space (OS3)

The OS3 zoning includes active or passive recreation and open spaces 

on land that is not designated as public open space. This land may be 

owned by private or public bodies, but does not have the status of public 

open space which requires particular protection.
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ZONINGS DESCRIPTIONS

9. Agricultural, rural and 

limited use zonings

This zoning is planned to protect land suitable for agriculture and to help 

to maintain its aesthetic and cultural value. Aside from sustaining a 

valuable economic sector, agricultural land can help to promote stability of 

the urban edge, conserve naturally sensitive areas and maintain rural 

characteristics which are valued by the community. 

Agricultural zoning (AG) The AG zoning promotes and protects agriculture on farms as an 

important economic, environmental and cultural resource. 

Rural zoning (RU) The RU zoning accommodates smaller rural properties that may be used 

for agriculture, but which may also be occupied as places of residence by 

people who seek a country lifestyle, and who view agriculture as a 

secondary reason for occupying their property. 

Limited use zoning (LU) The LU zoning is a transitional mechanism to deal with land that was 

zoned as undetermined in previous zoning schemes. The aim is to 

progressively phase this zoning out and so no property should be rezoned 

to this zoning.
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APPENDIX B  

Data completeness for land use data and transportation systems data 

Data 
category 

Dataset Data fields Completeness of fields 

Available 
data/Total 
number of 
features 

% 

Land use Zoning Category Zoning /subzoning 
type 

736412/751128 98 

area 751128/751128 100 

Road 
network 

Road segment Road name 172447/247006 70 

Road number 20955/247006  8 

 Segment length 247006/247006  100 

Speed limit 218006/247006  88 

Average speed 247006/247006  100 

Centre coordinates 
(X&Y) 

247006/247006 100 

Segment length 247006/247006 100 

Classified 
road 
network 

Freeways Road name 350/436 80 

Road number 416/436 95 

Speed limit 418/436 96 

Segment length 422/436 97 

Expressways Road name 130/139 94 

Road number 128/139 92 

Speed limit 131/139 94 

Segment length 133/139 96 

Local distributors Road name 392/435 90 

Road number 6/435 1 

Speed limit 81/435 19 

Segment length 129/435 30 

Primary arterials Road name 411/482 85 

Road number 323/482 67 

Speed limit 431/482 89 

Segment length 450/482 93 

Secondary arterials Road name 1026/1041 99 

Road number 428/1041 41 

Speed limit 977/1041 94 

Segment length 964/1041 93 

Reclassified to 
secondary arterial 

Road name 2/2 100 

Road number 0/2 0 

Speed limit 0/2 0 

Segment length 0/2 0 

Minibus-taxi routes Route name 1466/1466 100 
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Public 
transport 
systems 

Origin & Destination 1447/1466 99 

Segment length 1466/1466 100 

Bus route (Golden 
Arrow Bus Services) 

Route name 1985/1985 100 

Origin & Destination 1985/1985 100 

Segment length 1985/1985 100 

Integrated Rapid 
Transit (IRT)_Bus 

Route name 135/135 100 

Origin & Destination 135/135 100 

Service Type 46/135 34 

Segment length 127/135 94 

Railway routes Route name 158/158 100 

Segment length 158/158 100 

Railway stations Station name  92/92 100 

IRT Bus stops Stop name 632/632 100 

Stop number 238/632 38 

Road name 496/632 78 

Shelter type 248/632 39 
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APPENDIX C  

Computational details of land-use mix by the Relative Entropy Index 

Step 1: Calculation of distribution of land use types within the study area 

 

 

 

Step 2: Calculation of percentages of land use type (𝒓𝒊𝒋 ) in the unit of analysis as 

specified in Equation (7) 

 

 

SR1
1

SR2
2 . .

AG
k

1 x1,1 x1,2 x1,k ∑x1,j

2 x2,1 x2,2 . . x2,k ∑x2,j

3 x3,1 x3,2 . . x3,k ∑x3,j

. . . . . . .

. . . . . . .

. . . . . . .

190(n) x190,1 x190,2 . . x190,k ∑x190,j

Xj ∑xi,1 ∑xi,2 . . ∑xi,k Z=∑∑xi,j

tj (∑xi,1)/Z (∑xi,2)/Z (∑xi,K)/Z 1

land use type (j)

Suburb (i) Xi=∑xij

SR1
1

SR2
2 . .

AG
k

1 r1,1 r1,2 r1,k ∑r1,j

2 r2,1 r2,2 . . r2,k ∑r2,j

3 r3,1 r3,2 . . r3,k ∑r3,j

. . . . . . .

. . . . . . .

. . . . . . .

190(n) r190,1 r190,2 . . r190,k ∑r190,j

Suburb (i)

Land use percentage rij=(xij)/Xi

Ri=∑rij
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Step 3: Calculation of quotients 𝒒𝒊𝒋 as specified in Equation (9) 

 

 

 

 

Step 4: Calculation of land use percentages 𝑷𝒊𝒋  as specified in Equation (10) 

 

 

 

 

 

SR1
1

SR2
2 . .

AG
k

1 q1,1 q1,2 q1,k ∑q1,j

2 q2,1 q2,2 . . q2,k ∑q2,j

3 q3,1 q3,2 . . q3,k ∑q3,j

. . . . . . .

. . . . . . .

. . . . . . .

190(n) q190,1 q190,2 . . q190,k ∑q190,j

Suburb (i)

Quotients qij=(rij)/tj

Qi=∑qij

SR1
1

SR2
2 . .

AG
k

1 P1,1 P1,2 P1,k 1

2 P2,1 P2,2 . . P2,k 1

3 P3,1 P3,2 . . P3,k 1

. . . . . . .

. . . . . . .

. . . . . . .

190(n) P190,1 P190,2 . . P190,k 1

∑PijSuburb (i)

Adapted land use percentages Pij=(qij)/∑qij
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Step 5.A: Calculation of the Relative Entropy Index as specified in Equation (1) 

 

 

 

 

Step 5.B: Calculation of Herfindahl-Hirschman Index (HHI) following Equation (3) 
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2 . .
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k
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APPENDIX D  

Crash details collected on the Accident Report form in South Africa 
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APPENDIX E 

APPENDIX E1: Output report from Incremental Spatial Autocorrelation tool 
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APPENDIX E2: Output report from Incremental Spatial Autocorrelation tool 
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APPENDIX F 

APPENDIX F1: Model results for weekday pedestrian casualties (Model 4) 

Variables 

WeekdayPedCas - Parameter estimates  
Distribution : NEGATIVE BINOMIAL 
Link function: LOG 

Estimate 
(B) 

Standard 
Error 

Wald 
Stat. 

Lower CL 
95.0% 

Upper CL 
95.0% 

p Exp(B) 

Intercept -0.2127 0.4631 0.2109 -1.1203 0.6949 0.6461 0.8084 

Log_Popu 1.4715 0.1482 98.6201 1.1811 1.7619 0.0000 4.3557 

Prop_White -0.0113 0.0032 12.4662 -0.0176 -0.0050 0.0004 0.9887 

Prop_AgeLess15 -0.0489 0.0127 14.8253 -0.0737 -0.0240 0.0001 0.9523 

Prop_Age15_24 -0.0408 0.0077 27.9716 -0.0560 -0.0257 0.0000 0.9600 

Prop_Age25_54 -0.0252 0.0074 11.4901 -0.0398 -0.0106 0.0007 0.9751 

Prop_AvgEd -0.0152 0.0052 8.6228 -0.0253 -0.0050 0.0033 0.9850 

Prop_UpperInc -0.0202 0.0065 9.7594 -0.0328 -0.0075 0.0018 0.9800 

ENT_9Cat 1.0756 0.3617 8.8420 0.3666 1.7845 0.0029 2.9317 

Prop_GI9Cat 0.0295 0.0041 51.0211 0.0214 0.0376 0.0000 1.0299 

Inters_grt3leg 0.0027 0.0008 10.2284 0.0010 0.0043 0.0014 1.0027 

StrDens 0.0279 0.0109 6.5990 0.0066 0.0492 0.0102 1.0283 

Prop_Freeways 0.0357 0.0073 23.8080 0.0213 0.0500 0.0000 1.0363 

Prop_Expresways 0.0607 0.0132 21.0301 0.0348 0.0866 0.0000 1.0626 

Prop_PrimaryArter 0.0153 0.0106 2.0751 -0.0055 0.0361 0.1497 1.0154 

Prop_SecondArter 0.0099 0.0075 1.7136 -0.0049 0.0246 0.1905 1.0099 

Round_Circ 0.0368 0.0105 12.4075 0.0163 0.0573 0.0004 1.0375 

Prop_Signal 0.0912 0.0220 17.2345 0.0481 0.1343 0.0000 1.0955 

Dispersion 0.4197 0.0521   0.3177 0.5218     
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APPENDIX F2: Model results for Saturday pedestrian casualties (Model 5) 

Variables 

SatPedCas - Parameter estimates  
Distribution : NEGATIVE BINOMIAL 
Link function: LOG 

Estimate 
(B) 

Standard 
Error 

Wald 
Stat. 

Lower CL 
95.0% 

Upper CL 
95.0% 

p Exp(B) 

Intercept -1.0284 0.5482 3.5187 -2.1029 0.0461 0.0607 0.3576 

Log_Popu 1.4657 0.1698 74.4759 1.1328 1.7986 0.0000 4.3305 

Prop_White -0.0116 0.0039 9.0913 -0.0192 -0.0041 0.0026 0.9884 

Prop_AgeLess15 -0.0349 0.0151 5.3599 -0.0644 -0.0054 0.0206 0.9657 

Prop_Age15_24 -0.0454 0.0100 20.6743 -0.0649 -0.0258 0.0000 0.9557 

Prop_Age25_54 -0.0216 0.0087 6.1220 -0.0387 -0.0045 0.0134 0.9786 

Prop_AvgEd -0.0149 0.0061 6.0366 -0.0268 -0.0030 0.0140 0.9852 

Prop_UpperInc -0.0333 0.0078 18.3696 -0.0485 -0.0181 0.0000 0.9672 

ENT_9Cat 0.8049 0.3934 4.1857 0.0338 1.5760 0.0408 2.2365 

Prop_GI9Cat 0.0171 0.0046 13.8550 0.0081 0.0262 0.0002 1.0173 

Inters_grt3leg 0.0028 0.0008 11.8357 0.0012 0.0043 0.0006 1.0028 

StrDens 0.0062 0.0119 0.2735 -0.0171 0.0295 0.6010 1.0062 

Prop_Freeways 0.0181 0.0083 4.7518 0.0018 0.0343 0.0293 1.0182 

Prop_Expresways 0.0318 0.0143 4.9144 0.0037 0.0599 0.0266 1.0323 

Prop_PrimaryArter 0.0161 0.0120 1.8013 -0.0074 0.0395 0.1796 1.0162 

Prop_SecondArter 0.0068 0.0090 0.5671 -0.0109 0.0244 0.4514 1.0068 

Round_Circ 0.0260 0.0104 6.2916 0.0057 0.0463 0.0121 1.0263 

Prop_Signal 0.0808 0.0238 11.5565 0.0342 0.1274 0.0007 1.0841 

Dispersion 0.3131 0.0601   0.1954 0.4309     
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APPENDIX F3: Model results for Sunday pedestrian casualties (Model 6) 

Variables 

SunPedCas - Parameter estimates  
Distribution : NEGATIVE BINOMIAL 
Link function: LOG 

Estimate 
(B) 

Standard 
Error 

Wald 
Stat. 

Lower 
CL 

95.0% 

Upper 
CL 

95.0% 

p Exp(B) 

Intercept -1.2010 0.6122 3.8486 -2.4009 -0.0011 0.0498 0.3009 

Log_Popu 1.4108 0.1901 55.0630 1.0381 1.7834 0.0000 4.0991 

Prop_White -0.0203 0.0044 21.5622 -0.0288 -0.0117 0.0000 0.9799 

Prop_AgeLess15 -0.0093 0.0170 0.2971 -0.0427 0.0241 0.5857 0.9908 

Prop_Age15_24 -0.0693 0.0148 21.8033 -0.0983 -0.0402 0.0000 0.9331 

Prop_Age25_54 -0.0122 0.0103 1.4025 -0.0325 0.0080 0.2363 0.9878 

Prop_AvgEd -0.0217 0.0071 9.1942 -0.0357 -0.0077 0.0024 0.9786 

Prop_UpperInc -0.0297 0.0086 11.8281 -0.0466 -0.0128 0.0006 0.9707 

ENT_9Cat 0.6821 0.4348 2.4614 -0.1700 1.5342 0.1167 1.9780 

Prop_GI9Cat 0.0051 0.0052 0.9527 -0.0052 0.0154 0.3290 1.0051 

Inters_grt3leg 0.0031 0.0009 13.1275 0.0014 0.0048 0.0003 1.0031 

StrDens 0.0076 0.0130 0.3422 -0.0179 0.0332 0.5586 1.0077 

Prop_Freeways 0.0352 0.0086 16.5398 0.0182 0.0521 0.0000 1.0358 

Prop_Expresways 0.0224 0.0165 1.8481 -0.0099 0.0548 0.1740 1.0227 

Prop_PrimaryArter 0.0302 0.0127 5.6400 0.0053 0.0551 0.0176 1.0307 

Prop_SecondArter 0.0188 0.0101 3.4876 -0.0009 0.0386 0.0618 1.0190 

Round_Circ 0.0195 0.0112 3.0104 -0.0025 0.0415 0.0827 1.0197 

Prop_Signal 0.0494 0.0262 3.5563 -0.0019 0.1007 0.0593 1.0506 

Dispersion 0.3274 0.0715   0.1873 0.4675     
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APPENDIX G 

APPENDIX G1: Summary statistics for local estimates from GWR Model 1B 

Local parameters 

Summary statistics for local estimates from GWR Model 1B 

Mean Minimum Maximum 
Std. 
Dev. 

Global   
Model 

t-value df p 

Coeff Intercept -33.446 -33.468 -33.426 0.010 -33.449 3.146 189 0.002 

Coeff Log_Popu 8.437 8.424 8.457 0.006 8.435 6.580 189 0.000 

Coeff Prop_AgeLess15 1.589 1.589 1.590 0.000 1.589 15.085 189 0.000 

Coeff Prop_AvgEd -0.369 -0.370 -0.369 0.000 -0.369 -6.824 189 0.000 

Coeff Prop_UpperInc -0.888 -0.888 -0.888 0.000 -0.888 -113.262 189 0.000 

Coeff ENT_9Cat -27.864 -27.892 -27.838 0.008 -27.877 21.484 189 0.000 

Coeff Prop_GI9Cat -0.032 -0.033 -0.031 0.000 -0.032 11.391 189 0.000 

Coeff Inters_grt3leg 1.374 1.374 1.374 0.000 1.374 35.194 189 0.000 

Coeff StrDens 0.590 0.589 0.592 0.000 0.591 -18.974 189 0.000 

Coeff Prop_Freeways 0.406 0.405 0.406 0.000 0.406 -11.429 189 0.000 

Coeff Prop_Expressways 0.396 0.396 0.397 0.000 0.397 -63.822 189 0.000 

Coeff Prop_PrimaryArter -0.194 -0.196 -0.194 0.000 -0.194 4.970 189 0.000 

Coeff Prop_SecondArter 0.406 0.406 0.406 0.000 0.406 -13.461 189 0.000 

Coeff Round_Circ -3.492 -3.495 -3.491 0.001 -3.493 8.346 189 0.000 

Coeff Prop_Signal 5.037 5.034 5.040 0.001 5.038 -5.445 189 0.000 

Local R2 0.803 0.803 0.803 0.000 0.803 -0.286 189 0.776 

Residual -0.004 -190.434 389.895 61.531 0.000 -4.303 189 0.000 

Std. Residual 0.001 -3.252 6.957 1.035 0.000 0.134 189 0.893 
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APPENDIX G2: Summary statistics for local estimates from GWR Model 2B 

Local parameters 

Summary statistics for local estimates from GWR Model 2B 

Mean Minimum Maximum Std.Dev. 
Global   
Model 

t-value df p 

Coeff Intercept -48.186 -48.250 -48.140 0.018 -48.054 -100.585 189 0.000 

Coeff Log_Popu 23.772 23.641 23.933 0.046 23.736 10.664 189 0.000 

Coeff Prop_AgeLess15 -0.337 -0.346 -0.332 0.003 -0.338 2.628 189 0.009 

Coeff Prop_Age15_24 -0.376 -0.381 -0.373 0.001 -0.376 -2.433 189 0.016 

Coeff Prop_AvgEd -0.194 -0.197 -0.190 0.001 -0.194 -5.670 189 0.000 

Coeff Prop_NotWork -0.211 -0.212 -0.210 0.000 -0.210 -52.152 189 0.000 

Coeff Prop_UpperInc -0.605 -0.607 -0.604 0.001 -0.604 -21.137 189 0.000 

Coeff ENT_9Cat 5.281 5.110 5.553 0.076 5.269 2.338 189 0.020 

Coeff Prop_GI9Cat 0.120 0.117 0.124 0.001 0.119 13.898 189 0.000 

Coeff Ratio_inters-cds 0.625 0.614 0.635 0.005 0.618 18.212 189 0.000 

Coeff Prop_Freeways 0.179 0.177 0.181 0.001 0.177 15.897 189 0.000 

Coeff Prop_Expressways 0.351 0.347 0.354 0.001 0.349 26.267 189 0.000 

Coeff Prop_PrimaryArter 0.316 0.313 0.318 0.001 0.312 58.669 189 0.000 

Coeff Prop_SecondArter 0.102 0.100 0.104 0.001 0.101 18.442 189 0.000 

Coeff Round_Circ 0.999 0.990 1.005 0.003 0.999 0.751 189 0.454 

Coeff Prop_Signal 2.546 2.523 2.564 0.006 2.548 -6.060 189 0.000 

Local R2 0.425 0.424 0.426 0.000 0.425 5.264 189 0.000 

Residual -0.007 -40.681 138.223 26.237 0.000 -1.576 189 0.117 

Std. Residual 0.001 -1.655 5.192 1.014 0.000 0.175 189 0.861 
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APPENDIX G3: Summary statistics for local estimates from GWR Model 3B 

Local parameters 

Summary statistics for local estimates from GWR Model 3B 

Mean Minimum Maximum Std.Dev. 
Global   
Model 

t-value df p 

Coeff Intercept 1.081 -14.763 64.421 11.429 3.283 -2.655 189 0.009 

Coeff Log_Popu 8.955 -0.317 14.686 3.117 7.823 5.003 189 0.000 

Coeff Prop_Coloured -0.492 -1.273 -0.084 0.211 -0.462 -1.911 189 0.058 

Coeff Prop_White -0.624 -1.314 -0.152 0.226 -0.571 -3.249 189 0.001 

Coeff Inters_grt3leg 0.343 0.201 0.426 0.047 0.349 -1.815 189 0.071 

Coeff Prop_Freeways -0.035 -0.192 0.930 0.177 -0.002 -2.604 189 0.010 

Coeff Prop_Expresways 0.209 -0.377 0.622 0.096 0.250 -5.814 189 0.000 

Coeff Prop_PrimaryArter 0.227 -0.045 0.641 0.100 0.120 14.590 189 0.000 

Coeff Prop_SecondArter 0.336 -0.256 0.739 0.181 0.178 12.127 189 0.000 

Local R2 0.658 0.564 0.863 0.044 0.649 2.897 189 0.004 

Residual -1.080 -77.690 177.204 24.565 0.000 -1.636 189 0.103 

Std. Residual -0.055 -5.086 8.396 1.112 0.000 -2.122 189 0.035 
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APPENDIX H 
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Comparison of local estimates of ENT_9Cat produced by GWR Models 
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Comparison of local estimates of Inters_gr3Leg: GWR Model 2A and GWR Model 1B 
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Comparison of local estimates of Inters_gr3Leg: GWR Models 3A&B 
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Comparison of local estimates of Prop_Freeways for GWR Models 
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Comparison of local estimates of Prop_Expressways for GWR Models 

 

 

Stellenbosch University  https://scholar.sun.ac.za



354 

 

Local estimates of Prop_PrimaryArter for GWR Models 
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Local estimates of Prop_SecondArter for GWR Models 
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Local estimates of Round_Circ for GWR Models 1A and GWR Model 1B 
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Local estimates of Round_Circ for GWR Models 2A and GWR Model 2B 
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Local estimates of Prop_Signal for GWR Models 1A and GWR Model 1B 
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Local estimates of Prop_Signal for GWR Models 2A and GWR Model 2B 
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Local estimates of Prop_GB.MU9Cat for GWR Models 1A and GWR Model 2A 
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Local estimates of Prop_GI9Cat for GWR Models 1B and GWR Model 2B 
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Local estimates of Prop_SR9Cat for GWR Models 2A 
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Local estimates of StrDens for GWR Model 1B 
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Local estimates of Ratio_Inters-cds for GWR Models 2 
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APPENDIX I 
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APPENDIX I1: Local estimates for predictors in GWR Model 1B 
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APPENDIX I2: Local estimates for predictors in GWR Model 2B 
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APPENDIX I3: Local estimates of predictors in GWR Model 3B 
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