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Abstract

This thesis presents the development of an optimisation suite for a com-

mercial, discrete-event simulation software package. It is demonstrated in

this work that the capabilities of the simulation software are limited in the

context of stochastic multi-objective optimisation problems and can, thus,

be improved using existing knowledge in the literature. The suite devel-

oped in this work utilises, therefore, modern and more effective techniques

from the literature to tackle stochastic multi-objective optimisation prob-

lems. Its purpose is that of being a third-party multi-objective optimisation

solver that can be integrated with the commercial discrete-event simulation

software in order to assist it in its limitations. The suite is validated us-

ing well-known problems in the literature and the relevance of the solution

approach proposed in this thesis is demonstrated.
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Opsomming

Hierdie tesis handel oor die ontwikkeling van ’n optimeringsuite vir ’n kom-

mersiële sagtewarepakket wat diskrete gebeure simuleer (oftewel “DES”-

sagteware). Die studie toon dat die funksies van die DES-sagteware beperk

is in die konteks van stogastiese optimeringsprobleme met veelvuldige doel-

witte, en dat dit met behulp van bestaande kennis in die literatuur verbeter

kan word. Daarom gebruik die suite wat in die studie ontwikkel is moderne

en doeltreffender tegnieke uit die literatuur om stogastiese optimeringsprob-

leme met veelvuldige doelwitte die hoof te bied. Die doel is dat die suite as

’n derdepartyoplosser van optimeringsprobleme met veelvuldige doelwitte

moet dien wat by die kommersiële DES-sagteware gëıntegreer kan word en

sodoende die beperkinge daarvan te bowe kan kom. Die suite word met bek-

ende probleme in die literatuur gestaaf en die relevansie van die voorgestelde

oplossingsbenadering word aangetoon.
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Chapter 1

Introduction

This chapter serves as an introduction to the thesis. Background information for the

research is presented, followed by a full description of the problem this study will

attempt to solve. The thesis objectives and the research methodology are also discussed.

The chapter concludes with a description of the structure of the document.

1.1 Background

Many problems that industrial engineers must solve often require that multiple ob-

jectives be simultaneously optimised while searching for the best decisions. These

problems occur across various industries and with varying levels of complexity.

Consider, for instance, the following simple example: A company may want to

improve (maximise) the performance of a product while trying to minimise cost at the

same time (Yang, 2010). It can be seen here that the two objectives the company is

trying to achieve are in conflict, as high performance often comes at a cost. The problem

may be complicated further, however, if one or both the objectives were subject to a

random factor (sometimes referred to as “noise”). For instance, performance in this case

may be dependent on the reliability of a component in the product that is subject to

random variations. This noise element must be taken into account while the problem

is being solved, to ensure that the solution is valid. When randomness is part of a

problem, the problem is said to be stochastic, as opposed to being deterministic. In

such cases, computer simulation is often strongly recommended as the solution tool for

the problem. Additionally, if the complexity of the problem were such that it could not
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be described analytically, computer simulation is again strongly recommended (Law &

Kelton, 2000). Using simulation, the noise in the problem is dealt with by means of

numerous observations (on the potential decisions to be made) supported by statistics-

based data. And in cases where there are no analytical descriptions (or analytical

description is difficult to do), a simulation model is used to serve as a black-box evaluator

that adequately mimics the behaviour of the real problem.

In general, problems as the one just described are referred to as multi-objective

optimisation (MOO) problems. The conflicting objectives in an MOO problem make it

difficult to isolate a single best solution to the problem. This is because a solution (i.e.

a decision or set of decisions) that optimises one or some objectives does not necessarily

optimise the rest of them, in fact, improvement in one dimension (i.e. objective) in this

case is often synonymous with deterioration in at least one other dimension. Thus, if

no particular preference is attributed to any objective, it becomes important to identify

all (or as many as possible) optimal (or near-optimal) options that exist in order to

have knowledge of the different alternatives available, so as to make a more informed

decision. The set of optimal options or solutions in this case form what is referred to

in the literature as the Pareto optimal set.

Finding the Pareto optimal set in many real-life situations is not an easy task as

the solution space to a problem can be very large. Moreover, especially when computer

simulation is being used, this can become a time-consuming and impractical process

if every potential solution is to be evaluated. In such cases, efficient techniques are

needed to intelligently search the solution space in order to evaluate, mostly, promising

options only. Combining these techniques together with simulation is known in the

literature as simulation optimisation (SO); an umbrella term for techniques used to

optimise stochastic simulation problems (Amaran et al., 2014).

There are many optimisation methods used today to optimise simulation processes.

The survey by Amaran et al. (2014) presents a considerable number of such methods

(e.g. response surface methodology, gradient-based methods, direct search etc.); and

among them are random search methods or metaheuristics.

The term metaheuristic generally refers to approximate algorithms for optimisation

that are not specifically expressed for a particular problem. Ant colony optimisation,

genetic and evolutionary algorithms, simulated annealing and tabu search (in alphabet-

ical order) are typical representatives of the class of metaheuristic algorithms (Blum

2
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et al., 2011). Most metaheuristic algorithms are nature-inspired as they have been

developed based on some abstraction of nature (Yang, 2010).

An important question, nonetheless, is what algorithm to use when solving a prob-

lem? According to Yang (2010), this depends on many factors. Among them he lists:

the type of problem, the solution quality, the available computing resource, the time

limit before which a problem must be solved as well as the balance of advantages and

disadvantages of each algorithm. This thesis focuses on the first two factors listed.

1.2 Problem description

As already mentioned in the previous section, many solution approaches exist that

can help assist a decision-maker in dealing with stochastic optimisation problems. The

most efficient and practical ones are generally those that involve the use of optimisation

libraries or suites that implement various algorithms, including metaheuristics. Many

such optimisation suites are, in effect, powerful tools in practice and are sometimes

embedded in discrete-event simulation software products to form integral units that

can solve stochastic optimisation problems with more efficiency and with more conve-

nience relative to other existing methods. Nonetheless, these solution approaches (e.g.

optimisation suites) are sometimes limited in their effectiveness when attempting to

handle stochastic optimisation problems in the multi-objective context.

One example of such a product is the commercial, discrete-event simulation software

package Tecnomatix Plant Simulation (TPS). TPS has been proven to be a powerful

tool at the disposal of an industrial engineer when conducting complex simulation

studies (Bamporiki & Bekker, 2017). The software package also provides for a built-

in optimisation library for stochastic optimisation problems. The library embedded in

TPS is, however, best suited for stochastic optimisation problems in the single objective

context. In effect, although the optimisation suite has a solution approach that can be

used to solve MOO problems, it is not the most effective approach there is and better

approaches exist that are more effective.

The goal in this thesis is to equip TPS with a multi-objective optimisation suite that

would allow the simulation software to handle stochastic multi-objective optimisation

problems more effectively. The MOO suite is thus to be developed as a third-party

3
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library to be integrated with TPS, and be ready for use whenever the need to solve a

MOO stochastic problem with TPS arises.

1.3 Thesis scope and objectives

The purpose of this thesis is to develop an optimisation product that should enable Tec-

nomatix Plant Simulation to deal with stochastic multi-objective optimisation problems

more effectively.

In order to successfully develop this product (i.e. the MOO suite), the following

objectives are to be pursued in this thesis:

1. To do a comprehensive literature study on the topics pertaining to this study,

including:

• Multi-objective optimisation,

• Simulation optimisation and SO in the MOO context, and

• Solution approaches in the literature for SO and MOO problems (including

metaheuristics).

2. To design and develop the optimisation suite. This will require:

• Understanding the concept and the workings of third-party libraries incor-

porated within simulation software products,

• Knowledge of how to design and develop such libraries, and

• Knowledge of how to create user-interfaces for such libraries.

3. To incorporate the developed optimisation suite with Tecnomatix Plant Simula-

tion. This will require a good understanding of the workings of TPS in addition

to the knowledge that is needed for Objective 2.

4. To validate the optimisation suite by demonstrating its workings on well-known

problems.

In as far as will be possible, considering the vastness of the MOO and SO fields, as

well as the knowledge that the student/author will acquire, the optimisation suite to

4
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be developed will attempt to be as effective a tool as it possibly could be, in order to

successfully achieve the purpose of this thesis.

This study will only rely on existing algorithms in the literature for MOO and SO

problems. The focus will be placed on understanding them for effective implementation

and possible hybridisation purposes. The modification of existing algorithms for the

purpose of this study falls outside the thesis scope.

1.4 Research methodology

The methodology procedure to be followed in this thesis, in order to develop the opti-

misation suite to be integrated with Tecnomatix Plant Simulation, is as follows:

1. Rigorously study the existing literature with respect to all the topics mentioned

in Objective 1 to acquire a comprehensive understanding of the knowledge that

is available.

2. Develop knowledge in computer applications and software: their design, develop-

ment and implementation. Here if need be, experts in the field will be consulted

for assistance and short courses will be followed, in order to successfully achieve

Objectives 2 and 3.

3. Select a number of algorithms for the optimisation suite based on the knowledge

acquired in the literature.

4. Code and test the workings of the selected algorithms using an appropriate lan-

guage or platform.

5. Integrate the optimisation suite into Tecnomatix Plant Simulation and ensure

that it works as expected; thus completing all the objectives and successfully

accomplishing the purpose of the thesis.

1.5 Structure of the document

The present chapter introduces the workings of this document. It provides background

information that has ultimately led to the problem at hand, and it fully describes the
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problem itself. Moreover, it also specifies the objectives of the thesis as well as the

research methodology to be followed in order to successfully complete the project.

In Chapter 2, a literature study on multi-objective optimisation and simulation

optimisation is presented. The focus in the chapter is placed on the study of existing

solution approaches and the directions being suggested by experts in the SO and MOO

fields for future developments.

Chapter 3 provides a study of Tecnomatix Plant Simulation’s current capabilities

(and limitations) in the SO and MOO context. The chapter also serves as a motivation

for the product to be developed in the succeeding chapters of the thesis.

The development process of the optimisation suite begins in Chapter 4 where

an architectural design is presented and a solution approach proposed, following the

knowledge acquired in the literature and the results obtained in the previous chapter.

The algorithms selected for the optimisation suite are also fully described in the chapter.

Having established the conceptual works of the optimisation product and having

supported the reasoning behind the solution approach it utilises, the content of Chap-

ter 5 is the actual development and implementation of the optimisation suite. Here,

the techniques used to integrate the third-party library with TPS are fully described.

Also, the user-interface for TPS is presented and described in great detail.

In Chapter 6, the MOO suite is validated using problems in the literature with

known solutions.

Having been validated, the optimisation suite is now ready to be tested further using

case study problems. Chapter 7 is used for this purpose. Specifically, the solution

approach proposed in this study is tested and its relevance is demonstrated.

Finally, Chapter 8 concludes the research. A summary of the work is provided,

followed by a description of the shortcomings experienced in the project and a proposal

for future works.
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Chapter 2

Literature study

Decision-making under uncertainty and in the presence of conflicting objectives is an

important field of study in industrial engineering. Industrial engineers and/or business

leaders in practice are expected to guide the operations of various systems/problems

by making decisions under such conditions. The literature, as will be seen shortly,

is not short of techniques that can assist decision-makers in attempting to solve or

find solutions to problems under these circumstances. However, many “elegant” and

tractable solution approaches are often limited in the face of uncertainty and conflicting

objectives. Researchers continue to strive nonetheless in their quest for improving

existing techniques and finding new ways of tackling these problems more effectively

and where possible, with better efficiency.

In this chapter, stochastic multi-objective optimisation problems are discussed. The

focus is put on the solution approaches that currently exist in the literature and in

practice for these problems, as well as on the direction being taken and suggested by

researchers with regards to future developments.

2.1 Multi-objective optimisation

In general, a multi-objective optimisation problem is formulated as follows, without

loss of generality:

7
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Minimise f(x) = [f1(x), f2(x), ..., fk(x)]T (2.1)

Subject to

gj(x) ≤ 0, j = 1, 2, ..., Ng, (2.2)

hi(x) = 0, i = 1, 2, ..., Nh (2.3)

where k is the number of conflicting objective functions, Ng is the number of in-

equality constraints, and Nh is the number of equality constraints. x ∈ X is a vector

of decision variables and X is the feasible decision or solution space formally defined

as {x | gj(x) ≤ 0, j = 1, 2, ...Ng and hi(x) = 0, i = 1, 2, ...Nh}. Similarly, f(x) ∈ Y is

a vector of objective functions and Y is the feasible objective space formally defined as

{f(x) | x ∈ X}. For each element in X, there exists an equivalent element in Y (Deb,

2005).

Though (2.1) says “Minimise (or Maximise)” f(x), not all components of f(x) fol-

low, necessarily, the same optimisation direction. In effect, the example presented in

Section 1.1, showed that the performance and cost objectives had opposite optimisation

directions (i.e. performance was maximised while cost was minimised). Nonetheless,

it is possible through the duality principle (Deb, 2005), to use the same optimisation

direction for all the objectives in f(x). According to this principle, if one desires to

solve, say, the example in Section 1.1 by using a technique that uses a minimisation

approach, one must multiply the performance objective by −1. The objective must

then, of course, be converted back to its original form once the problem is solved.

Multi-objective optimisation problems as described here have more than one optimal

solution. These are often referred to as Pareto optimal solutions. The reason why this

is the case is due to the existing conflict between the objectives, causing the candidate

solutions (i.e. the decision vectors) to “score” unevenly on the different objectives.

It becomes, therefore, difficult to declare one single solution as the ultimate best (see

Section 1.1) but rather a set, the Pareto optimal set. The set of Pareto optimal solutions

(or Pareto set for short), consequently, consists of all decision vectors for which the

corresponding objective vectors cannot be improved in a given dimension (i.e. objective

function) without worsening another. In other words, they form a set of trade-offs

(Chankong & Haimes, 1983).
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Throughout this study, the terms system design (or simply design) as well as sce-

nario will be used interchangeably in addition to decision vector and solution, to refer

to x.

Following are definitions from Coello Coello (2009) that formally describe the Pareto

optimality (minimisation) concept in a deterministic context:

Definition 2.1: Given two vectors u = (u1, u2, ..., uk)
T ,v = (v1, v2, ..., vk)

T ∈ Y it

is said that u ≤ v if ui ≤ vi for i = 1, 2, ..., k, and that u < v if u ≤ v and u 6= v.

Definition 2.2: Given two vectors u,v ∈ Y , it is said that u dominates v (denoted

by u ≺ v) if u < v.

Definition 2.3: It is said that a vector of decision variables x∗ ∈ X is Pareto

optimal if there does not exist another x ∈ X such that f(x) ≺ f(x∗).

Definition 2.4: The Pareto optimal set Sp is defined by: Sp = {x ∈ X | x = x∗}.
Definition 2.5: The Pareto front Spf , which is the set of all Pareto optimal

solutions’ equivalents in the objective space, is defined by: Spf = {f(x) ∈ Y | x ∈ Sp}.
The decision vectors in Sp are called non-dominated and there is no x in X such

that f(x) dominates f(x∗). The dominance concept it illustrated in Figure 2.1, where

the red solutions are considered to be non-dominated and the blue ones dominated.

The red solutions form, therefore, the Pareto front.

Obj. 2
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Figure 2.1: An example of Pareto optimal solutions for two minimised objectives.

The goal, when solving a MOO problem, is therefore to obtain for (2.1) the Pareto

optimal set Sp by identifying in X all the decision vectors x∗ that satisfy the constraints
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(2.2) and (2.3), if they exist.

Goldberg (1989) developed a Pareto ranking algorithm that finds Sp with respect to

a user-specified threshold th, when given a set of N decision vectors xi (i = 1, 2, ..., N)

and their respective f(x) values. th is an integer value that allows the algorithm to

include in Sp, x /∈ Sp that are dominated by, at most, th x(s) (x ∈ Sp). Now consider

W, a matrix with N rows and n + m + 1 columns, where n is the number of decision

variables in x and m is the number of objective functions (m > 1). Goldberg (1989)’s

algorithm, thus, is as presented in Algorithm 1.

Algorithm 1 Pareto ranking algorithm (minimisation)

1: Input: W and th.

2: Set j = n+ 1.

3: Sort the working matrix W with the values in column j in descending order.

4: Set rp = 1.

5: Set ri = rp.

6: If W(rp, j + 1) ≥W(ri + 1, j + 1), increment the rank value in W(rp, n+m+ 1).

7: Increment ri.

8: If W(rp, n+m+ 1) < th and ri < N return to Step 6.

9: Increment rp.

10: If rp < N return to Step 5.

11: Increment j.

12: If j < n+m− 1, return to Step 3, otherwise return the rows in W with rank value

not exceeding th as the non-dominated members of Sp.

The reality in practice, however, is that Sp can only be approximated as in many

cases it is hard to know with certainty whether the true set was obtained. In effect,

many real-world problems are such that X is very large and cannot be fully explored

practically. Moreover, the problems are often subject to stochastic elements, meaning

that the true values of f(x) ∈ Y can only be estimated.

Although this work focuses on methods for approximating the entire Pareto set,

it is important to state that in some cases this may not be necessary. There exist

situations in practice where the decision-maker does already have particular preferences

for some objectives over others prior to the problem being solved. For example, a

decision-maker in the example considered in Section 1.1, may desire a solution whereby

performance maximisation is given more importance or more “weight” relative to cost
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minimisation. While the Pareto set would, in principle, have such a solution as one

of the trade-offs, computational effort could be reduced significantly by focusing solely

on finding the unique solution that matches the “preference” of the decision-maker via

an appropriate method. Literature is not short of methods for solving MOO problems

in this way. In particular, these methods are generally classified into two main groups

often referred to as Scalarisation and Constraint methods. The interested reader can

refer to Marler & Arora (2004), where a comprehensive survey on different methods for

solving multi-objective optimisation problems is presented. Nevertheless, according to

Li et al. (2015), it is not always easy to assign fair weights to various objectives, that

truly reflect the decision-maker’s bias. Moreover, the complexity of some problems may

not allow these methods to work correctly (more detail about this will be provided in

Chapter 3). So though these methods may be effective in certain cases, using techniques

that attempt to find the entire Pareto set is ultimately the ideal approach. In this study,

the author refers to such techniques as Pareto approach methods/techniques or MOO

methods/techniques that use the Pareto approach. This is done to distinguish them

from MOO methods that focus on finding single optimal solutions.

So far in this chapter, most of the discussion has been limited to the deterministic

context. This is a context whereby it is assumed that there is no random, or stochastic

element affecting the correct analysis of a problem. In the next section, simulation

optimisation is introduced. The simulation optimisation field is concerned with meth-

ods for solving stochastic optimisation problems using simulation (i.e. discrete-event

simulation, for the purpose of this study).

The simulation optimisation field is vast and has been researched very actively over

many years. The oldest contribution towards the SO field in this literature study dates

back as far as the year 1954, while the newest contribution is from 2018. It is in this

particular field that some of the most significant advances in solution approaches for

real-world optimisation problems are being developed.

2.2 Simulation optimisation

The term simulation optimisation is an umbrella term for techniques used to optimise

stochastic simulation problems (Amaran et al., 2014) or simply SO problems. The
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term SO problem is used here to refer to optimisation problems solved with computer

simulation for reasons mentioned in Section 1.1.

In their work, Fu et al. (2000) distinguished between two kinds of approaches for

solving SO problems: one where a constraint set (possibly unbounded and uncountable)

is provided, over which an algorithm seeks improved solutions, and another where a

fixed set of alternatives is provided a priori and the so called ranking and selection

(R&S) procedures are used to determine the best alternative. According to Fu et al.

(2000), the focus in the first approach is on the searching mechanism, whereas in the

second approach, statistical considerations are paramount.

In a similar way, Yoon & Bekker (2017) have also distinguished between SO prob-

lems based on their solution space size which, in the words of the researchers, determines

the fundamental approaches needed to solve them. They have categorised, on one hand,

SO problems with a relatively small solution space (small-scale SO problems) for which

R&S procedures are sufficient to find the best solutions and, on the other hand, SO

problems with a large solution space (large-scale SO problems) for which intelligent

search mechanisms, with or without the partnership of R&S procedures, are needed for

seeking the optimal or near-optimal solutions.

Both researches are in agreement regarding how to approach SO problems. It is

clear that the size of the solution space matters.

2.2.1 Decision variables and solution space size

Given that potential solutions to an SO problem are not definitive nor known in ad-

vance, it is important to study the size of the solution space of the problem at hand

in order to solve it accordingly. The size of a solution space can be determined by the

nature of the decision variables of interest; that is, whether the decision variables are

discrete, continuous or mixed; as well as by the boundaries over which the decision

variable values are allowed to be selected. Decision variables that can be defined in

this manner are often referred to as quantitative decision variables. Besides them, an-

other type also exists that is sometimes referred to as categorical or qualitative (Law

& Kelton, 2000) (see for example the problem in Section 3.1).

SO problems with qualitative decision variables are generally small in scale (i.e.

the size of their solution space is generally small). SO problems with quantitative

decision variables, on the other hand, can be either small or large in scale. When the
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potential solutions to be evaluated are known in advance and no searching mechanism is

needed, then the problem can again be treated as a small-scale problem, despite having

quantitative decision variables. When none of the previous applies, then the problem

should be treated as a large-scale problem if “actual” optimality is to be attained or

approximated.

Simulation problems (i.e. stochastic problems solved with discrete-event simula-

tion) are generally treated as small-scale problems in simulation studies. Optimisation

in this case is reduced to the identification or selection of the best solution(s) out of

all potential solutions being considered. But unless such problems are truly small-scale

problems, then the solutions found are not “truly” optimal. In effect, when a problem

that should be treated as a large-scale problem is reduced to a small-scale one, the

approach being taken for the problem is fundamentally wrong. Hence, large-scale and

small-scale problems must be differentiated and solved accordingly.

2.2.2 Solution approaches for SO problems in the literature

It is important to mention that in a large portion of the literature on SO, those specif-

ically on large-scale SO, there is a clear separation between solution approaches (or

algorithms) used when decision variables are continuous and when they are discrete.

In other words, after the size of the space has been determined as being large, it is the

nature of the decision variables that dictates which approach (i.e. search mechanism)

is to be used to solve the problem.

Hong & Nelson (2009a) actually divide SO problems into three categories rather

than simply two because of this, with each category requiring distinctive solution ap-

proaches. In the first category, the solution space has a small number of solutions (often

less than 100, according to the researchers) and the decision variables are numerical

or categorical. (This category is identical to the small-scale SO category described

earlier.) In the second and third categories, the solution space is large. In the second

category in particular, decision variables are exclusively continuous. Problems in this

category are also referred to as continuous optimisation via simulation (COvS) prob-

lems. (Optimisation via simulation (OvS) is another term for simulation optimisation

in the literature.) Finally, in the third category, decision variables are exclusively dis-

crete. Problems in this category are also known as discrete optimisation via simulation

(DOvS) problems. As mentioned already, for each of these categories, the researchers
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present in their work a number of solution approaches that are distinctively different

from each other (some of them will be discussed in Section 2.5.2). An earlier and sim-

ilar work in the literature by Andradottir (1998) also presents a review of methods for

solving SO problems by distinguishing them as done by Hong & Nelson (2009a).

In this study, however, the author is interested in a class of search mechanisms that

is not limited by the nature of decision variables. In other words, the algorithms in this

class can be used for both discrete and continuous large-scale problems without the

need to be distinctively different for each case. The reason for this choice will be made

known as the study progresses. The earlier distinction of SO problems as simply being

small or large (in solution space scale) in order to determine the solution approaches

to be used to solve them is therefore, somewhat, justified for the purpose of this work.

Before discussing small-scale and large-scale SO problems further, SO problems

with multi-objectives are first introduced and discussed next.

2.3 Multi-objective simulation optimisation

Multi-objective simulation optimisation (MOSO) problems are MOO problems subject

to noise (or stochastic behaviours) or simply SO problems with multiple, conflicting

objectives. They are often formulated as, without loss of generality,

Minimise (E[f1(x, ξ)], E[f2(x, ξ)], ..., E[fk(x, ξ)])
T (2.4)

Subject to

x ∈ X (2.5)

where the expression fi(x, ξ), i = 1, 2, ..., k represents the varying or changing values

that objective i can take on when system design x is selected in the presence of random

element ξ, which is responsible for the noise or randomness in the system. E[fi(x, ξ)]

is the expected value of objective i. Because it is difficult to obtain the true value of

E[fi(x, ξ)] due to ξ, it is sufficient in practice to rather seek for an estimate of the true

value that can be obtained with enough confidence, when a number of n simulation

replications (or observations) are made.

Consider the notation fij(x, ξ) where j = 1, 2, ..., n represent the jth observation

made for objective i, then

14

Stellenbosch University  https://scholar.sun.ac.za



2.4 Small-scale SO problems

Ê[fi(x, ξ)] =
1

n

n∑
j=1

fij(x, ξ), (2.6)

is an estimate value for objective i.

Due to the use of estimates (or sample means) in the case of MOSO problems,

the Pareto optimal set obtained is sometimes called the “observed Pareto set” or the

“approximate Pareto set”. In this work, it will simply be referred to as Pareto set. The

term “observed” in this study is thus implied as all the problems considered are MOSO

problems, unless stated otherwise. Similarly, note that all the definitions in Section 2.1

apply here in the stochastic sense e.g. fi(x) = E[fi(x, ξ)] etc.

The MOSO problem as defined in this section represents the framework of all prob-

lems that will be considered in this thesis, with expression (2.5), however, applicable

for the case of large-scale problems only; and k = 2.

2.4 Small-scale SO problems

Small-scale SO problems are problems whose potential solutions are known or pres-

elected (see Section 2.2.1). Such problems can be solved with ranking and selection

procedures. There are also other methods used in the literature to solve these prob-

lems which will be briefly mentioned in this section. The focus in this study, however,

is on ranking and selection.

2.4.1 Ranking and selection

R&S procedures are statistical methods developed to select the best system design or

a subset that contains the best system design from a set of n competing alternatives

(Goldsman & Nelson, 1994). Efficient R&S procedures also aim, in the process, to

minimise the total number of simulation replications required while preserving a de-

sired confidence level. Two important R&S procedures dominate the literature: the

indifference-zone (IZ) methods and the optimal computing budget allocation (OCBA)

methods. They are discussed in this section.

R&S procedures (or algorithms) find their origin in the 1950s within the statistics

community. Bechhofer (1954) was the first to introduce the concepts of indifference-

zone and probability of correct selection P(CS). His work aimed to improve on the then
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(and possibly still) popular method of analysis of variances (ANOVA) “deficiencies”.

Following his contribution, R&S drew the attention of the simulation community due to

its potential usefulness in stochastic simulation output analysis and many researchers

have since built upon the foundations laid by Bechhofer (1954). In particular, Dudewicz

& Dalal (1975) then Rinott (1978) further improved on Bechhofer’s work, proposing

more efficient IZ methods. Rinott’s method (Rinott, 1978) particularly, which is dis-

cussed later in this section, is one of the simplest and well-known R&S procedures and

will be used in this study to illustrate the basic concept behind IZ methods (Kim &

Nelson, 2007).

2.4.1.1 Indifference-Zone methods

The main idea behind IZ methods is to guarantee, with a probability of at least P ∗,

that the system design ultimately selected is the best (Bechhofer, 1954). Kim & Nelson

(2007) provide a comprehensive survey on recent advances on the topic and they discuss,

in detail, a number of IZ methods. In Yoon & Bekker (2017), which is another survey, a

procedure by Chen & Lee (2009) is presented that attempts to use the IZ concept in the

MOO context. The study, however, remains an empirical study and does not guarantee

the probability of correct selection requirement P(CS) ≥ P ∗ for the final Pareto optimal

set (Yoon, 2018). This was achieved in Yoon (2018), where the researcher presents a

new IZ multi-objective R&S procedure with P(CS) ≥ P ∗ guaranteed.

IZ methods make use of a parameter δ, which is set by the experimenter or the

decision-maker to be the smallest actual difference that is important to detect. If the

difference between the estimated means of any two system designs is within δ, then

the difference between them is viewed as being, for practical purposes, insignificant;

meaning that the decision-maker is indifferent (hence the name indifference-zone) in

selecting or ignoring these system designs depending on how they compare with other

competing system designs outside the IZ. To illustrate how the IZ methods work, the

following two-stage IZ method, namely Procedure R by Rinott (1978) is repeated here

(Algorithm 2).

The constant h∗ in Step 4 is the solution to the following double integral equation:

∫ ∞
0

∫ ∞
0

h∗√
(n0 − 1)( 1x + 1

y )
f(x)dx

k−1 f(y)dy = P ∗, (2.7)
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Algorithm 2 Procedure R

1: Select the probability requirement P ∗, the indifference-zone value δ∗, and the first-

stage sample size n0 ≥ 2.

2: Run n0 simulations for each system i (i = 1, ..., k).

3: Calculate sample variances S2
i (n0)(i = 1, ..., k).

4: Let Ni = max

{
n0,

⌈(
h∗Si(n0)

δ∗

)2⌉}
, where dxe denotes the smallest integer greater

than or equal to x, and h∗ is the solution to (2.7).

5: Run additional Ni − n0 simulation replications for system i (i = 1, ..., k).

6: Compute the overall sample means X̄i(Ni)(i = 1, ..., k) and present system b as the

best system, where b = arg mini X̄i(Ni).

where f denotes the probability density function (pdf) of the χ2 distribution with

n0 − 1 degrees of freedom.

Procedure R as well as other IZ methods use the least favourable configuration

(LFC) assumption, which prevents them from taking advantage of the sample mean

information (Yoon, 2018), making them more conservative than they should be. Yoon

(2018) developed a more efficient IZ method based on Procedure R, the MY procedure,

which follows the Bayesian probabilistic approach, instead of the LFC assumption, for

its probability of correct selection formulation. The procedure is presented in Algorithm

3.

2.4.1.2 Optimal Computing Budget Allocation methods

OCBA methods have been developed to address the efficiency issue related to the

many simulation replications that are often utilised during R&S procedures. OCBA

methods follow the Bayesian probabilistic theory. The main idea here is to maximise

the probability of correct selection P(CS) by intelligently controlling the number of

simulation replications based on the mean and variance information in the face of

limited computing budget (Lee et al., 2010). OCBA has also been successfully adapted

for multi-objective problems. Lee & Goldsman (2004), for example, incorporated the

concept of Pareto optimality in OCBA and used the method to find non-dominated

system designs.

Many OCBA methods exist in the literature for single and multi-objective problems.

The survey by Lee et al. (2010) lists a number of them and points to further references
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Algorithm 3 Procedure MY

1: Select the probability requirement P ∗ = 1− α, the indifference-zone value δ∗, and

the first-stage sample size n0 ≥ 2. Let I = {1, 2, ...,M} be the set of systems in

competition, and let β = α
M−1 .

2: Simulate n0 replications for all M systems, and calculate sample means X̄i(n0) and

sample variances S2
i (n0). Let Ni = n0 (i = 1, ...,M), and let b = arg mini X̄i(Ni).

3: Delete system i (i 6= b) from I if

Ni ≥

⌈(
hSi(Ni)

δi

)2
⌉

and Nb ≥

⌈(
hSb(Nb)

δi

)2
⌉
, (2.8)

and delete system b from I if

Nb ≥

⌈(
hSb(Nb)

δi

)2
⌉

for all i 6= b, (2.9)

where δi = max{δ∗, X̄i(Ni)− X̄b(Nb)}, and dxe denotes the smallest integer greater

than or equal to x, and h is the solution of:

∫ ∞
0

∫ ∞
0

h√
(Ni − 1) 1x + (Nb − 1) 1y

f1(x)dx

 f2(y)dy = 1− β, (2.10)

where f1 and f2 denote the pdf of the χ2 distribution with Ni−1 and Nb−1 degrees

of freedom, respectively.

4: If |I| = 0, then stop and present system b as the best system. Otherwise, go to

Step 5.

5: Take one additional observationXi,Ni+1 from each system i ∈ I, and setNi ← Ni+1

(∀i ∈ I). Set I = {1, 2, ...,M} and update X̄i(Ni), S
2
i (Ni) and b = arg mini X̄i(Ni),

go to Step 3.
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for more.

2.4.2 Other algorithms for small-scale SO

Besides R&S methods, there are other procedures available for solving small-scale SO

problems. These are often referred to as multiple comparison procedures. In these

procedures a number of simulation replications are performed on all the potential de-

signs, and conclusions are made by constructing confidence intervals on the performance

metric (Amaran et al., 2014). (See also Tekin & Sabuncuoglu (2004) and Rosen et al.

(2008).)

2.5 Large-scale SO problems

It was said earlier in this chapter that the focus in solving large-scale SO problems was

on the search mechanisms used to explore the vast, and sometimes complex, solution

spaces (Fu et al., 2000). It was also said in Chapter 1 that techniques capable of finding

good enough solutions in reasonable computational time were favoured in practice.

These are the techniques that were alluded to by the author in Section 2.2.2. In effect,

many large-scale SO problems can be expensive to run in terms of time, money or

resources (Amaran et al., 2014). The use of efficient techniques or search mechanisms

in solving these problems is therefore key.

Though the literature has a number of techniques for solving large-scale SO prob-

lems as discussed in Section 2.2.2, metaheuristics seem to be preferred in practice

(Amaran et al. (2014), Fu (2002)). For more details on reasons why that is the case,

the reader can refer to Fu (2002), where the researcher contrasts between the focus of

researchers in the SO field and the techniques being adopted in practice. Nevertheless,

it is widely known that many of the solution approaches that are specifically devised to

handle large SO problems in the research community (see Andradottir (1998) and Hong

& Nelson (2009a)) are often limited in practice. A brief discussion on these methods is

provided in this section.

Metaheuristic algorithms such as the genetic algorithm (GA) (briefly discussed

in Section 3.2.1), the simulated annealing (SA), the tabu search (TS), cross-entropy

method (CEM) and the ant colony optimisation (ACO), however, have been proven

to be effective search mechanisms for many practical large-scale complex deterministic
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problems, including those with multi-objectives. This logically makes them good can-

didates for large-scale SO problems as well, despite some of their own limitations. In

the next section, an attempt to formally define metaheuristics is made and the different

metaheuristics mentioned above are discussed in more detail.

2.5.1 Metaheuristics

Metaheuristics are a class of approximate solution methods that have developed dra-

matically since their inception in the early 1980s. They are designed to attack complex

(deterministic) optimisation problems where classical heuristics and optimisation meth-

ods have failed to be effective and efficient (Osman & Laporte, 1997).

The literature has a number of formal definitions for the word metaheuristic (see

for example Blum et al. (2008)). There does not seem to be a consensus on a singular

definition for the word, possibly due to the generality of the metaheuristic concept.

Most definitions seem to include many important aspects of the workings of many

metaheuristics. However, the more one learns about new metaheuristics (which there

are a large number of), the more one realises how challenging it is to cover, in a single

concise definition, what a metaheuristic is exactly. The following formal definition was

thus selected as it tries not to be very specific and, in the author’s opinion, captures

well the broadness of the concept (Dorigo et al. (2006)):

A metaheuristic is a set of algorithmic concepts that can be used to de-

fine heuristic methods applicable to a wide set of different problems. In

other words, a metaheuristic is a general-purpose algorithmic framework

that can be applied to different optimisation problems with relatively few

modifications.

Most metaheuristics are created to address, in an approximative way, determinis-

tic optimisation problems for which no exact algorithms exist to solve the problems

efficiently i.e. in a practical manner. Metaheuristics are able to do this because they

are not problem structure-dependent (at least not as much as many methods in the

research community), a characteristic that makes them robust heuristics according to

Hong & Nelson (2009a). Rather, they rely on simple principles of nature that they are

able to model in generic mathematical frameworks and apply to a variety of optimisa-

tion problems. But why nature? According to Yang (2010), nature has evolved over
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millions of years and has found perfect solutions to almost all the problems she met. We

can thus learn the success of her problem-solving (ability) and develop nature-inspired

heuristic algorithms.

Metaheuristics are generally globally convergent; meaning that if iterated long

enough, under the right user-defined parameters, they may converge to the optimum

(or optima, in the case of MOO problems). But in any case, they guarantee at least

good solutions in a reasonable amount of computational time.

For the purpose of this study, the metaheuristics presented next are believed to be

good candidates for the SO context, due to their effectiveness in solving deterministic

problems. They are discussed in some detail, narratively and using pseudo-codes, and

additional references are provided for more information. A brief discussion on other

methods (non-metaheuristics) available for SO problems is also provided at the end of

the section.

2.5.1.1 Simulated annealing

The simulated annealing algorithm is believed to be the oldest among the metaheuris-

tics. According to Weise (2009), Kirkpatrick et al. (1983) pioneered the utilisation

of SA for global optimisation in the early 1980s after being inspired by the work of

Metropolis et al. (2002). The algorithm developed was initially applied to various com-

binatorial (discrete) optimisation problems and since then, there have been extensive

studies on the topic.

The SA algorithm mimics the annealing process in material science where a mate-

rial (e.g. metal or glass) is strengthened through heat treatment that is followed by

a carefully controlled cooling process. This allows the material to reach a stable state

whereby its defects are removed and its strength is increased (Radin (1998), Bandy-

opadhyay et al. (2008), Gendreau & Potvin (2010)).

Let X be the solution space and f : X → Y be an objective function defined on

the solution space. The goal is, without loss of generality, to find a global minimum

x∗ ∈ X such that f(x∗) ≤ f(x) for all (x ∈ X). Now, define N(x) as a set of solutions

constituting the neighbourhood function for x. Associated with every solution or system

design (x ∈ X), therefore, are neighbouring solutions N(x) that can be attained from

x in a single iteration or a single move. Algorithm 4 illustrates how the metaheuristic

works (Eglese, 1990).
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Algorithm 4 Simulated annealing metaheuristic

1: Select an initial state x ∈ X, an initial temperature T > 0.

2: Set temperature change counter t = 0.

3: while n < N(t) do

4: Generate state x′, a neighbour of x.

5: Calculate δ = f(x′)− f(x).

6: if δ < 0 then

7: x← x′

8: else

9: if random(0, 1) < exp(−δ/T ) then

10: x← x′

11: end if

12: end if

13: n← n+ 1.

14: end while

15: t← t+ 1.

16: T ← T (t).

17: Until stopping criterion is true.

Applications of SA are numerous and the range of problems the algorithm is able

to solve is vast. The reader is referred to Gendreau & Potvin (2010), Weise (2009) and

Osman & Laporte (1997) for more detail. There are also many MOO variants of the

SA algorithm. As an example, Bandyopadhyay et al. (2008) adapted the SA algorithm

for MOO problems. The researchers proposed AMOSA, a simulated annealing-based

multi-objective optimisation that finds a set of trade-off solutions.

2.5.1.2 Tabu search

According to Weise (2009), Glover (1986) initially introduced the basic ideas of tabu

search and later in future works (Glover (1989), Glover (1990)), developed it into a

general framework.

TS is one of many metaheuristics devised to overcome the limitations of traditional

local search (LS) heuristics by using extended search strategies where traditional LS

would normally stop. According to Blum et al. (2008), the basic idea of TS is the

explicit use of search history, both to escape from local optima and to implement a
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strategy for exploring the search space.

TS introduces into the LS scheme the concept of memory, in the form of the so-

called tabu list (Blum et al., 2008) (a list that, momentarily, remembers a number of

prohibited candidate solutions) to help avoid the local optima trap.

Suppose a function f(x) is to be minimised over some domain. TS-based algorithms

can be generalised in two main steps, namely, the initialisation and the search step

(Gendreau & Potvin, 2010). Consider the following notation (Hertz & de Werra (1990),

Gendreau & Potvin (2010)): x is the current or incumbent solution, x∗ the best-known

solution, f∗ the performance of x∗, N(x) the neighbourhood of x, x′ the admissible

subset of N(x) i.e. non-tabu candidate solutions, and T the tabu list. Algorithm 5

illustrates how the metaheuristic works.

Algorithm 5 Tabu search metaheuristic

1: Initialisation:

2: Construct initial solution x0.

3: Set x∗ ← x0, f
∗ ← f(x0), T ← ∅.

4: Search:

5: while termination condition is not met do

6: Select x = arg minx′∈N(x)[f(x′)].

7: if f(x) < f∗ then

8: f∗ ← f(x), x∗ ← x

9: end if

10: Record x in T and delete the oldest entry if necessary.

11: end while

According to Hertz & de Werra (1990), TS is one of the most efficient metaheuristics

for handling large optimisation problems. Hertz (1991) used TS to solve a large-scale

timetabling problem. In Toth & Vigo (2003), TS is used for a wide class of combinatorial

optimisation problems while Caballero et al. (2007) adapted a metaheuristic for multi-

objective combinatorial optimisation problems based on TS to solve a multi-objective

location routing problem.

2.5.1.3 Cross-entropy method

The cross-entropy method was motivated by an adaptive algorithm for estimating prob-

abilities of rare events in complex stochastic networks (Rubinstein, 1997). It was soon
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realised that a simple cross-entropy modification of Rubinstein (1997) could be used

for solving difficult optimisation problems as well (Rubinstein, 1999).

The CEM involves an iterative procedure where each iteration can be broken down

into two phases (de Boer et al., 2005). Before the iterative procedure, however, the

CEM associates with each optimisation problem a rare event estimation problem, the

so-called associated stochastic problem (ASP) (Kroese et al., 2006). After the ASP is

defined, the two iterative phases are as follows:

1. Generate a random data sample according to a specified mechanism.

2. Update the parameters of the random mechanism based on the data to produce

a “better” sample in the next iteration.

So the algorithm first samples randomly from a chosen probability distribution over

the space of decision variables. For each sample, a corresponding function evaluation

is obtained. Based on the function values observed, a predefined percentile of the best

samples is picked. A new distribution is then built around this “elite set” of points

via a fitting method such as the maximum likelihood ratio estimator and the process is

repeated. Algorithm 6 illustrates how the metaheuristic works (Amaran et al., 2014).

Algorithm 6 Cross-entropy method metaheuristic

1: Requirement: θ, an initial set of parameters for a pre-chosen distribution p(x; θ)

over the set of decision variables; s, a number of simulations to be performed; e,

the number of elite samples representing the top δ percentile of the s samples.

2: while not converged or within simulation budget do

3: for i = 1→ s do

4: Sample xi from p(x; θ).

5: ti ← simulate(xi).

6: end for

7: E ← ∅.
8: for i = 1→ e do

9: Ei ← arg mini/∈E ti.

10: end for

11: p(x; θ)← fit(xE).

12: end while
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The CEM is often classified as a model-based metaheuristic. These are metaheuris-

tics that attempt to build a probability distribution over the space of solutions and use

it to guide the search process (Amaran et al., 2014).

In the literature, Alon et al. (2005) applied the CEM to the well-known buffer

allocation problem in a SO context. Bekker & Aldrich (2011) adapted the CEM for

MOO and validated the proposed algorithm to known test problems. In Bekker (2012),

the algorithm in Bekker & Aldrich (2011) is integrated with the Arena software package

and used to solve MOSO problems.

2.5.1.4 Ant colony optimisation

Inspired by the research done by Deneubourg et al. (1983) on real ants, Dorigo et al.

(1996) developed the ant colony optimisation algorithm (Weise, 2009).

ACO is one of many swarm intelligence methods. Swarm intelligence is a relatively

new approach to problem-solving that takes inspiration from the social behaviours of

insects and of other animals (Dorigo et al., 2006).

ACO is a set of search algorithms that takes inspiration from the foraging behaviour

of real ants. Most ant species’ way of foraging enables them to find the shortest paths

between food sources and their nests. When foraging, a swarm of ants communicates

indirectly in their local environment by the laying of scent chemicals or pheromone,

creating trails that link the food source with their nest (Yang, 2010). The first members

of the colony that find their way to the food source do it randomly by trying different

routes. Future members, however, are able to decide on what routes to follow thanks to

the pheromone deposited by the members of the colony gone before them. The higher

the pheromone concentration on a route, the higher the probability it will be selected by

an ant. Experiment shows that as time progresses, the shortest route will start to have

higher traffic density, causing a gradual increase on its pheromone concentration while

the pheromone of the other routes experiencing low traffic evaporates progressively.

Eventually, the great majority of ants in the colony converge into a single route, the

shortest one.

In ACO algorithms, artificial ants are stochastic solution construction procedures

that build candidate solutions for the problem under consideration by exploiting ar-

tificial pheromone information that is adapted based on the ants’ search experience

(Gendreau & Potvin, 2010). The pheromone trails are simulated via a parameterised
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probabilistic model that is called the pheromone model. It consists of a set of model

parameters whose values are called the pheromone values. These values act as the mem-

ory that keeps track of the search process. The basic ingredient of ACO algorithms is

a constructive heuristic that is used to, probabilistically, construct solutions using the

pheromone values. Algorithm 7 illustrates how the metaheuristic works (Dorigo et al.,

2006).

Algorithm 7 Ant colony optimisation metaheuristic

1: Set parameters.

2: Initialise pheromone trails.

3: while termination condition is not met do

4: Construct ant solutions.

5: Apply local search (optimal).

6: Update pheromones.

7: end while

ACO algorithms are often classified as both model- and population-based meta-

heuristics; population-based because they use a set of solutions rather than a single

solution at each iteration. In the literature, ACO is mostly used for discrete opti-

misation problems, though variants of the metaheuristic for continuous problems also

exist. In Merkle et al. (2002), the researchers use ACO to solve a resource-constrained

scheduling problem whereas Bella & McMullen (2004) use a variant of the algorithm to

solve a vehicle-routing problem. Efforts have also been made to adapt ACO for MOO

problems and variants of the algorithm for this purpose can be found in Gendreau &

Potvin (2010).

2.5.2 Other search mechanisms

It was mentioned in Section 2.5.1 that metaheuristics are generally devised for de-

terministic problems. There are other search mechanisms, however, that have been

specifically designed for SO problems. The main distinguishing aspect of these tech-

niques is that, contrary to metaheuristics, they all have a “noise handling strategy”

in the form of simulation allocation rules (SAR) embedded in their algorithmic proce-

dures. Despite such an advantage, nonetheless, most of these algorithms are generally

less robust than metaheuristics. Unlike metaheuristics that can be easily adapted to
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different problems (e.g. problems with decision variables with different nature), here

algorithms can be too problem-specific, a factor that often limits their use in practice.

There is thus a clear distinction between SO methods for continuous problems and

SO methods for discrete problems here. In the literature, these methods are better

known as COvS and DOvS (as seen before in Section 2.2.2) algorithms.

2.5.2.1 COvS algorithms

COvS methods have been researched intensively in the past, arguably more than DOvS.

COvS algorithms include, among others, the stochastic approximation, the gradient

estimation and the sample path optimisation methods. For more detail, the reader

is referred to Andradottir (1998), Tekin & Sabuncuoglu (2004) and Hong & Nelson

(2009a), which give reviews on the topic.

2.5.2.2 DOvS algorithms

In recent years, research on DOvS methods have been trying to close the gap on

some of the advances made in the COvS field. There are many DOvS algorithms

that can be found in the literature (Andradottir (1998), Hong & Nelson (2009a), Yoon

& Bekker (2017)). Among them is the Convergent Optimization via Most Promising

Area Stochastic Search (COMPASS) algorithm due to Hong & Nelson (2009b).

COMPASS solves DOvS problems by implementing an adaptive region called the

most promising area, where preferable solutions can be found with high probability. It

has been shown that, in both constrained and unconstrained search space, the algorithm

asymptotically converges to one of the local optima (Li et al., 2015). Li et al. (2015)

also successfully adapted the algorithm for MOO problems with the Pareto approach.

Algorithm 8 illustrates how the method works (Hong & Nelson, 2009a).

Despite the “non-metaheuristics” having some statistical features in the form of

their SAR, these are often not as efficient nor as effective as those used in R&S pro-

cedures. There are therefore efforts being made, in this particular field, to further

improve the noise-handling ability of these large-scale SO algorithms. For example, Xu

et al. (2010) suggested that OCBA be used as the SAR for COMPASS to improve the

efficiency of the algorithm. Efforts to improve SO methods are thus continuously being

made to make the algorithms more effective.
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Algorithm 8 COMPASS algorithm

1: Build the most promising area in each iteration around the current sample best

solution based on geometry.

2: Sample new solutions from the most promising area in each iteration.

3: Simulate new solutions and solutions that define the most promising area a little

bit more.

4: Calculate the cumulative sample average for each active solution, and choose the

solution with the best cumulative sample average. Go to Step 1.

Metaheuristics are also continuously being improved in various ways. One way

to make them more effective is to combine them with other algorithms in order to

benefit from the synergy. This concept is known as hybridisation and is discussed in

the following section.

2.6 Hybrid metaheuristics

The concept of hybrid metaheuristics has been commonly accepted only in recent years,

even if the idea of combining different metaheuristic strategies and algorithms dates

back to the 1980s (Blum et al., 2008).

According to Blum et al. (2011), quite an impressive number of algorithms have been

reported in the literature that do not purely follow the paradigm of a single traditional

metaheuristic. On the contrary, they combine various algorithmic components, often

originating from algorithms of other research areas on optimisation.

Blum et al. (2008) and Talbi (2013) distinguish between two main categories of

hybrids: the first consists of metaheuristics that are combined with other metaheuristics

while the second consists of metaheuristics that are combined with other techniques

in fields such as operations research and artificial intelligence. For the purpose of

this thesis, the author is interested in the second category. Talbi (2013) presents a

taxonomy of hybrid metaheuristics in an attempt to provide a common terminology

and classification mechanism of these algorithms. The researcher (i.e. Talbi (2013))

argues that the taxonomy could be used to classify any hybrid. In an earlier work

(Talbi, 2002), the researcher collected a comprehensive number of hybrids developed

up to that point in time and demonstrated that they could all be classified using the

taxonomy.
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The taxonomy has two parts, namely, a hierarchical classification and a flat clas-

sification. The focus in this study is placed on the hierarchical classification (Figure

2.2). The flat classification, which provides additional detail on the hierarchical classi-

fication, can be left out without harm for the purpose of this work. A discussion about

Figure 2.2 from Talbi (2013) is presented next.

Figure 2.2: Hierarchical classification of hybrid metaheuristics.

The hierarchy structure has two levels. At the top, one can distinguish between

low- and high-level hybridisations. The low-level hybridisation addresses the functional

composition of a single optimisation method. In this hybrid class, a given function

of a metaheuristic is replaced by another algorithmic procedure (could be another

metaheuristic) so as to make the hybrid better. In high-level hybrids, on the other

hand, the algorithms being brought together remain self-contained and there is no

direct relationship to their internal workings.

At the bottom, we distinguish between the relay and the teamwork hybridisations.

In relay hybrids, a set of algorithms is applied one after the other, each using the output

of the previous as its input, acting in a pipeline fashion; while in teamwork hybrids,

algorithms cooperate to simultaneously carry out a search in a solution space.
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Four classes are derived from this hierarchical taxonomy and they are discussed in

the following subsections.

2.6.1 Low-level Relay Hybrids (LRH)

This class of hybrids groups algorithms in which a given heuristic is embedded into

a trajectory or single point-based metaheuristic (S-metaheuristic). The idea here is

to enhance the performance of the S-metaheuristic by adding to it an aspect or as-

pects of the heuristic (possibly another S-metaheuristic) that can make the principal

S-metaheuristic more efficient.

For example, Martin et al. (1992) enhanced SA’s performance by combining it with

a multiple-start local search heuristic. Multiple-start local search heuristics seek for

the global optimum by restarting the search at different starting points every time the

algorithm reaches a local optimum. All local optima are subsequently compared after

a user-defined number of restarts and the best solution is chosen as the approximate

global optimum. It is this ability to sample from different local optima that makes the

heuristic a good hybrid candidate for the SA algorithm. Recalling the description of

the SA algorithm in Section 2.5.1.1, the benefit of embedding the heuristic in SA is

that the neighbouring solution x′ ∈ N(x) is no longer generated at random but with

the help of the heuristic, thus making the search mechanism more effective.

2.6.2 Low-level Teamwork Hybrids (LTH)

In this hybrid class, S-metaheuristic algorithms are embedded into population-based

metaheuristics (P-metaheuristics). It is known that P-metaheuristics are powerful in

the exploration of the solution space and sometimes weak in its exploitation. On the

other hand, S-metaheuristics are known to be powerful optimisation methods in terms

of exploitation and rather weak in terms of exploration. The two classes can thus be

complementary and the goal of this hybrid class is to exploit this complementarity.

In the work of Huang & Liao (2008), ACO is combined with a variant of TS to create

a hybrid algorithm that merges the exploration strength of ACO and the exploitation

capabilities of TS. More specifically, considering the description of the ACO algorithm

(Section 2.5.1.4), once all artificial ants have constructed their own solutions, the best

one is first improved by the embedded local search (TS) algorithm (i.e. given that the

best solution is x then N(x) is exploited first) before the pheromone trails are updated.
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2.6.3 High-level Relay Hybrids (HRH)

In this class, self-contained metaheuristics are executed in a sequence. For example, the

initial solution of a given S-metaheuristic may be generated by some other algorithm,

and its results fed to yet a different algorithm and so on. Contrary to the low-level

hybrids, here the internal workings of each algorithm remain intact.

The industrial strength COMPASS (ISC) (Xu et al., 2010) that will be discussed

in Section 2.7.3 can be considered as an HRH hybrid. The hybrid, developed to solve

large-scale discrete SO problems, uses three self-contained algorithms that operate in

a sequential manner, each one contributing with its own strength in order to enhance

the overall performance of the hybrid. The process is initiated by a search done by

a P-metaheuristic, then a non-metaheuristic exploits the P-metaheuristic results and

finally, an R&S procedure is used to ensure correct selection.

2.6.4 High-level Teamwork Hybrids (HTH)

Finally, the HTH class involves several self-contained algorithms performing a search in

parallel, and cooperating to find an optimum. The advantage of parallel computing is

that it reduces the elapsed time to obtain the same solution as reached with a sequential

scheme. Additionally, the technology is also likely to find solutions of better quality

than sequential computing (Falco et al., 1997).

In their work, Falco et al. (1997) parallelised the SA algorithm using a framework

that, according to the researchers, can be used for other metaheuristics as well. The

hybrid is based on a set of SA sequential processes arranged in a given topology and

on the exchange of good solutions among neighbouring SA processes only.

Although the discussion above only used single-objective algorithms as examples,

the taxonomy is also applicable to their MOO variants. For more detail and additional

references the reader is referred to Talbi (2013).

2.7 Optimisation suites for SO problems

Hybrid metaheuristics are commonly used in optimisation suites for SO problems where

they serve as search engines, the principle features of these products. One reason why

hybrids are popular with optimisation suites is perhaps the existing need in practice for
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as efficient and as effective decision-supporting tools as possible, capable of handling a

wide range of problems.

In Amaran et al. (2014), the reader can find a comprehensive list of current com-

mercial optimisation suites, including their vendors and the optimisation techniques

they utilise. In the following sections, one of the listed products in Amaran et al.

(2014), namely, OptQuest, is briefly discussed. According to Hong & Nelson (2009a),

OptQuest is a good representative of optimisation suites in practice. It is a product

that is widely used, being integrated into 13 simulation products. Another optimisation

suite, a non-commercial this time, will also be discussed.

2.7.1 General discussion on optimisation suites

The goal of optimisation suites is to optimise complex systems, which are those that

cannot be easily formulated as mathematical models and solved with classical optimisa-

tion tools. Many real-world optimisation problems in business, engineering and science

are indeed too complex to be given tractable mathematical formulations (Laguna &

Marti, 2003).

Optimisation suites achieve their goal by orchestrating the simulation of a sequence

of system designs so that the best design (or designs in the MOO context) is hopefully

obtained i.e. the design that is as close as possible to optimum. This process is

referred to, in this study, as the SO process and is illustrated in Figure 2.3 (Law &

Kelton, 2000). SO processes are generally time consuming. Ideally, it is desirable

for an SO process to both spend the least possible amount of computational time,

and guarantee convergence in the form of optimality and correct selection. Because

of the use of metaheuristics, the former desire is often satisfied while the latter, not

so much. In effect, statistical considerations in optimisation suites are often not as

rigorous as they should be, especially in the case of commercial optimisation suites.

Efforts, however, in the research community are being made to improve this. The

industrial strength COMPASS, an academic optimisation suite, tries to provide better

statistical considerations in its SO process. For Fu (2002), ideally, the SO process must

move from the one in Figure 2.3 to the one in Figure 2.4.
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Figure 2.3: A typical SO process.

2.7.2 OptQuest: A commercial suite

The OptQuest suite (Laguna, 2011) is a powerful hybrid metaheuristic optimisation

suite that uses a variety of algorithms including the CEM, GA, and more. Though it

is not made available to the general public how these algorithms are all orchestrated,

many papers do give an explanation of how the suite default algorithm works. OptQuest

default algorithm is a hybrid that uses the implementations of three metaheuristics,

namely, the scatter search (SS), which serves as the main search strategy, the tabu

search and the neural network (NN).

The SO process works as follows (Eskandari et al., 2011): The SS, which is a P-

metaheuristic, generates a starting set of designs and designates a subset of best designs

to be reference solutions or points. Then the algorithm forms a linear combination of

subsets of current reference points and generates new points. In the next step, the SS

algorithm selects a combination of the best solutions, uses them as starting points for a

new application of its search mechanism and repeat these steps until a specified number
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Figure 2.4: SO process future needs.

of iterations or until it reaches a stopping criteria. The TS uses adaptive memory to

prohibit the search from re-investigating solutions that have already been evaluated

and to guide the search to a globally optimal solution while the NN is used to screen

out solutions that are likely to be poor without allowing the simulation to evaluate

them (a sort of SAR).

OptQuest has two available stopping rules; one lets the SO process run until a user-

specified number of configurations have been completed, while another lets the process

run until a user-specified amount of wall-clock time has elapsed. In addition, the user

must also specify the population size, which is the number of system configurations

simultaneously being considered (Law & Kelton, 2000).

From the author’s assessment, the OptQuest default algorithm described here can

be classified as a combination of LTH (as TS is embedded in SS) and HRH as the

hybrid formed by SS and TS is self-contained and feeds its results to NN, which is also

self-contained.
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2.7.3 Industrial Strength COMPASS: An academic suite/solver

The industrial strength COMPASS (Xu et al., 2010) divides the optimisation process

into three stages: a global stage that explores the entire feasible region and identifies

several regions possibly with competitive locally optimal solutions; a local stage that

exploits the local information and finds a locally optimal solution for each of the regions

identified in the global stage; and a clean-up stage that selects the best solution among

all identified locally optimal solutions and estimates the true value of the selected

solution.

The ISC hybrid uses a niching genetic algorithm for the global stage, the COMPASS

algorithm for the local stage, and a R&S procedure for the clean-up stage. It also defines

meaningful and testable transition rules between the stages. As mentioned in Section

2.6.3, it is the author’s opinion that the ISC algorithm is an HRH hybrid.

2.8 Chapter summary

In this chapter, the author provided a literature study on simulation optimisation (SO),

pertaining to the purpose of this thesis. Specifically, an effort was made to try to cover

the major SO solution approaches that are available today.

Multi-objective problems were also discussed and it was discovered that many ex-

isting algorithms (metaheuristics mostly) do have MOO variants.

In the next chapter, the author presents a study conducted on Tecnomatix Plant

Simulation current SO techniques for both small- and large-scale SO problems.
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Chapter 3

Solving SO problems with

Tecnomatix Plant Simulation

In this chapter, the current SO capabilities (and limitations) of Tecnomatix Plant

Simulation are demonstrated by briefly discussing two problems that have been solved

by the author using the software, namely, the mechanised car park (MCP) problem

and the buffer allocation problem (BAP).

As it was mentioned in Chapter 1, TPS has been proven to be a powerful tool for

conducting complex simulation studies. In the first problem that will be discussed, one

of the goals was to demonstrate that such a problem could, indeed, be solved with TPS

as the problem had previously been solved using a different software package (Bekker

& Viviers, 2008). The goal was successfully achieved and the solution to the problem

deemed valid.

Elements in this chapter were first presented in an article co-authored by the author

for a conference proceedings (Bamporiki & Bekker, 2017).

3.1 The mechanised car park problem

Parking shortage issues are not new. The mechanised car park concept, however, was

a relatively new approach for tackling the issue at the time it was first considered in

2005 (Bekker & Viviers, 2008). The concept was still in its design phase when a study

was conducted as a simulation study to evaluate the effectiveness of the approach

from a business standpoint. The study was successfully completed and its results are
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documented in Bekker & Viviers (2008). In 2016, a similar study was to be conducted,

this time on a different and more modern simulation software package and with a

new set of goals. The goals of the new study were essentially twofold: To solve the

MCP problem again (i.e. find operational policies that would “optimise” the system’s

outputs), and to demonstrate in the process the capabilities of the new simulation

software. The study is the subject of this section and is briefly discussed below.

A mechanised car park is an automated parking system that provides parking ser-

vices whereby the only request made to a client is to park and lock the car at an

entrance parking lot on ground level. The car is then taken and stored by the main

dynamic mechanisms of the system: a hoist and a vehicle transfer car (VTC). When

the client returns, the system retrieves and delivers the car back to its owner using the

same mechanism.

The system structure can be described as a parking garage consisting of shelves with

closely packed cages (parking bays) where cars are stored. It is a multilevel structure

that consists of m horizontal levels and three vertical layers, namely, the front, the

back and the middle layer. The back layer is populated with parking bays (PBs). The

front layer is similar to the back layer with the only exception that some of its PBs

are lost in order to provide for n number of hoist shafts. The middle layer serves as

a canal for VTCs and connects the front and back layers. Figure 3.1 illustrates the

concept. The n PDs are park-drive areas where the cars are dropped off and retrieved

from the MCP by clients whereas the n queue lanes are the different entrances to the

MCP where clients wait should the PDs be occupied. (See Figure 3.1.)

The MCP problem, thus, consists of finding efficient ways of operating the system

such that the system’s outputs (i.e. the MCP problem objective functions) are opti-

mised. This is achieved by effectively utilising the system’s resources (i.e. hoists and

VTCs) through a set of operational policies. The goal is to maximise the system’s

throughput (TR) i.e. the total number of cars stored in the MCP over a period of time,

and minimise the system’s waiting time (WT ) i.e. the average time a client spends in a

queue before being serviced. The MCP problem is complex. Its main modelling chal-

lenge, for example, lies in the fact that the same resources must handle both storage

and retrieval tasks, and must thus be capable of telling the difference between the two.

Moreover, the system is subject to the stochastic element, ξ, caused by clients’ random

arrivals and returns to the MCP.
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3.1 The mechanised car park problem

Figure 3.1: Schematic drawing of a mechanised car park (Bekker & Viviers, 2008).

The system designs x in this problem are, therefore, the different set of policies to

be generated by the analyst. x in this case is a decision vector such that x = (x1, x2, x3)

where x1 is the parking bay allocation (PBA) or storage policy, x2 is the entrance lane

assignment (ELA) policy and x3 is the priority choice between arrival and departure

service (PAD) policy. These policies are identified to be the main factors capable of

influencing the MCP’s outputs (i.e. TR(x, ξ)) and WT (x, ξ)). Since only a relatively

small number of system designs can be generated, the MCP problem can be considered

as a small-scale SO problem. Furthermore, the set of decision variables in this problem

is an example of categorical/qualitative decision variables (see Section 2.2.1).

It is important to mention here that although this problem has two objective func-

tions, it is not a multi-objective problem (as defined in Section 2.1) because the two

objectives are not in conflict. In effect, maximising TR(x, ξ) equates to minimising

WT (x, ξ) and vice versa.

3.1.1 Solving a small-scale SO problem with Tecnomatix

It is possible to do R&S with TPS using one of the software’s statistical tools for output

analysis i.e. analysis of variance (ANOVA). The software itself does not, directly,
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provide for an R&S procedure such as those presented in Chapter 2. However, a simple

procedure can be devised using TPS ANOVA. The procedure is briefly described below.

Once all system designs are identified, an initial number of replications r (e.g.

10) is used to run the simulation model with a confidence level of 95% (the default

value in TPS). TPS then outputs results for all system designs (i.e. the estimated

objective function values) with their respective confidence intervals (CI). If the analyst

is satisfied with the largest CI half-width (h) observed, then the ANOVA results (which

are provided automatically by the software) are used to select the best system design.

If, on the other hand, the analyst/user is not happy with h, they reduce it to a desired

value h∗. With this, a new number of replications r∗ can be calculated using the formula

by Law & Kelton (2000):

r∗ = r

⌈
h

h∗

⌉2
. (3.1)

The simulation model is then run again and the ANOVA results are used to deter-

mine the best solution. ANOVA (as done by TPS) does a pairwise comparison between

all system designs of interest. The analysis is based on the hypothesis (H0) that the

means of all r or r∗ observations made on any two system designs (e.g. µi and µj ,

i 6= i) being compared are equal (i.e. H0 : µi = µj , i 6= j). A probability (p) is then

calculated to indicate evidence against this hypothesis. If p is equal or smaller than

a certain threshold value (often 5%) then this is considered strong evidence against

the hypothesis and the two system designs being compared are said to differ statisti-

cally significantly. Otherwise, they are said to be, statistically-wise, identical. With

this information, the analyst can then select the best solution with confidence. In cases

where more than one objective function is being considered, a separate ANOVA is made

for each. The result of ANOVA in TPS is presented in a table format containing all

p-values, from which the analyst must make a selection based on the observed p-values.

3.1.2 Specifics of the MCP problem solved

In the MCP problem that was solved with TPS, the number of levels was l = 11 and

the number of hoist shafts was n = 6. In total, the system had 440 PBs with 40 PBs

in each level.
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10 PBA, 3 ELA and 1 PAD (first come first served) policies were generated, amount-

ing to an overall of 30 system designs that were evaluated for efficiency. It is important

to note that during the study, it was found that PBA policies, in general, had way more

influence on the system’s outputs than ELA policies. The approach that was used to

generate PBA policies will now be discussed briefly.

It was discovered that the MCP could be viewed as a matrix (Figure 3.2) with each

cell representing a PB. Thus, various ways of searching this matrix for available PBs

could be created with TPS, taking into account the limited number of resources (i.e.

hoists and VTCs). Ten search patterns were created to look for unoccupied PBs in the

matrix (PBA1-PBA10). These were combined with three ELA policies (ELA1-ELA3)

to generate a total of 30 system designs. All system designs used a first come, first

served approach with regards to the PAD policy.

Figure 3.2: Schematic view of the MCP as a matrix.

3.1.3 Results and limitations

An extract of the actual results that were obtained for the problem is presented here

and the current limitations of the software are discussed.

Table 3.1 presents the top nine results that were obtained. It can be seen that some

of these results are very close to each other. This is, in effect, where R&S procedures

draw their importance as these numbers are mere estimates. The closer their true

values, the higher the chances that the observed better one is not the actual better one

(Teng et al., 2010). For example, though System design 1 appears to be numerically

the best, we learn from Table 3.2 that actually, the difference between System designs

1 and 2 is not statistically significant. Thus, the analyst can either choose to go for

a higher r (i.e. a lower h), or, because the desired h (i.e. h∗) was already selected
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Table 3.1: Top nine results for the MCP problem.

System design PBA Policy ELA Policy TR WT

1 3 1 5775 04:58.4

2 3 2 5766 05:02.2

3 3 3 5751 05:08.8

4 5 1 5171 08:17.9

5 5 3 5168 08:20.7

6 5 2 5153 08:25.2

7 9 3 4812 08:42.3

8 9 1 4804 08:42.3

9 9 2 4795 08:46.3

Table 3.2: TR ANOVA results.

System design 2 3 4 5 6 7 8 9

1 0.089 0 0 0 0 0 0 0

2 0.008 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0.534 0.003 0 0 0

5 0.015 0 0 0

6 0 0 0

7 0.241 0.013

8 0.198

in this case, be indifferent in choosing between the two designs (with regards to TR).

Note that a similar table to Table 3.2 also exists for WT and may give the analyst more

information about Designs 1 and 2. For example, the WT ANOVA results may indicate

a significant difference between Designs 1 and 2, in which case, the analyst would no

longer be indifferent in choosing between them but rather choose the better of the two.

A major drawback in this R&S procedure is that r∗ replications are allocated to all

system designs. Although this guarantees that all designs have h values that are within

the desired h∗, the approach is not efficient as it can be computationally expensive.

(This is an example of a procedure that uses the LFC assumption mentioned in Section

2.4.1.1). There are more efficient techniques in the literature (see Section 2.4.1) that
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have the ability to intelligently allocate simulation replications among system designs

while still maintaining the desired confidence level. Moreover, even though one may

consider the results obtained here as good, it follows from the work done by Bechhofer

(1954) that ANOVA is not the ideal approach for R&S purposes. (See Section 2.4.1.)

In the next subsection, the second problem is discussed. The problem demonstrates

Tecnomatix Plant Simulation capabilities but also limitations in handling large-scale

SO problems, especially those with multi-objectives.

3.2 The buffer allocation problem

Production systems are often organised with machines connected in series and separated

by buffers. This arrangement is often called a flow line or a production line (Gershwin

& Schor, 2000). The buffer allocation problem is a well-known problem in the design

of production lines.

The basic setting of the BAP is the following (Bekker (2012), Alon et al. (2005)).

Consider a production line consisting of m machines in series, numbered 1, 2, ...,m.

Jobs are processed by all machines in sequential order. The processing time at machine

i has, generally, a fixed distribution with rate µi, i = 1, 2, ...,m. The machines are

assumed to be unreliable and their failures are operation dependent failures (ODFs)

with Poisson distributions having parameters λi while their repair times are exponential

with parameters βi, i = 1, 2, ...,m. All processing, failure and repair times are assumed

to be independent of each other.

The machines are separated by m−1 storage areas or niches in which jobs i.e. work-

in-progress (WIP) can be stored (Figure 3.3). The total number of storage spaces, or

buffer spaces, is unknown and must be minimised and the required number of buffer

spaces can be determined by estimating the WIP.

Figure 3.3: A typical series of m machines with m− 1 niches.
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When a machine breaks down, this can have consequences for other machines up-

stream or downstream in the production line. Particularly, an upstream machine can

become blocked when its successor has failed, while a downstream machine can even-

tually become starved if its predecessor has failed.

The objective functions in this case are the throughput rate TR(x, ξ) (to be max-

imised) and WIP (to be minimised), denoted by WP (x, ξ). The values of the objective

functions are estimated by means of simulation models of the BAPs as the system is

subject to the stochastic element, ξ, caused by the machines’ failures as well as repair

and processing times. Also, because these objectives are conflicting, the problem is a

multi-objective simulation-optimisation problem and can be formulated as

Minimise (E[−TR(x, ξ)], E[WP (x, ξ)])T

Subject to

x ∈ N.

x = (x1, ..., xm−1) is the decision vector, where xi is the number of buffer spaces at

niche i. Because xi is a discrete number and there are potentially an infinite number

of alternatives for x, this BAP is a combinatorial optimisation problem and thus has a

large solution space, so it is a large-scale SO problem.

3.2.1 Solving a large-scale SO problem with Tecnomatix

TPS uses a built-in optimisation suite/solver that enables SO. The suite uses a genetic

algorithm metaheuristic for the task. Though there are many variants of the GA in the

literature, their core principle is similar. The author briefly explains how GAs work

from Konak et al. (2006).

GAs are inspired by the biological principle of evolution with the survival of the

fittest being a fundamental property. In nature, weak and unfit members of species

within their environment are faced with extinction by natural selection while stronger

ones have greater chances of surviving by passing their genes on to future generations

via reproduction. GAs base their search mechanism on these principles.

In the GA terminology, x ∈ N is called a chromosome (Konak et al., 2006). Chro-

mosomes are made of units called genes. In many variants of the GA, genes are binary
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digits and chromosomes correspond to unique x ∈ N. Thus, the actual values of x are

encoded in binary form during the search process and decoded again to evaluate the

fitness of the results found (e.g. TR(x, ξ)). GAs operate iteratively with a collection of

chromosomes, called population. In every iteration, fitter chromosomes exchange their

genes with one another to form new chromosomes that are carried in the following

iteration. In this way, future populations have progressively fitter chromosomes as the

search progresses. When the search is carried out for long enough, convergence usually

occurs, meaning that one chromosome has achieved a level of fitness that can hardly

be improved. An iteration in GA terms is also referred to as a generation.

When making use of the optimisation suite, the analyst must specify the desired

number of generations as well as the size of a population via the suite user-interface

(the GAWizard). Also, the analyst specifies the objective functions of interest, the

optimisation direction (min or max), the solution space to be searched and the desired

number of observations r∗ to be applied to each chromosome that must be evaluated.

Note that unlike in the previous problem, here r∗ is selected “blindly”.

For multi-objective problems, TPS GA does not use the Pareto approach. Instead,

MOO problems are treated as single-objective problems by using the weighting sum

approach (a scalarisation method) (see Marler & Arora (2004)). The solution found by

the optimisation suite is therefore a single solution and not a Pareto set.

3.2.2 Specifics of the BAP solved

In the BAP that was solved with TPS, the number of machines was m = 5. All repair

and processing times were assumed to be exponentially distributed whereas machine

failures followed a Poisson distribution. Table 3.3 summarises the information about

all machines.

Table 3.3: Machines information for the BAP.

Machine 1 2 3 4 5

Processing times (µi) 60 min 55 min 50 min 46 min 43 min

ODFs (λi) 20 20 20 20 20

Repair times (βi) 120 min 120 min 120 min 120 min 120 min

The input parameters in the optimisation suite were as follows. The optimisation

direction was chosen to be maximisation and the objective functions were, consequently,
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entered as TR(x, ξ) and −WP (x, ξ). For the purpose of the experiment, both objectives

were given weights indicating that they were equally important to the analyst (i.e. 0.5).

(Note that the selected weights must add up to 1.) The number of generations was

chosen to be 20 while the population size was made 20. To create the feasible solution

space X, xi was constrained such that 1 ≤ xi ≤ 20 and r∗ was made, arbitrarily, 15.

3.2.3 Results and limitations

The single solution obtained by the suite was x = (6, 6, 4, 2) with TR = 85.77 and

WP = 18.

To test the quality of the result obtained, the model was run further with more

constrained feasible solution spaces while using the same weights. The results obtained

are summarised in Table 3.4.

Table 3.4: GA solutions for more constrained solution spaces.

Solution space Solution obtained TR WP

1 ≤ xi ≤ 15 x = (5, 5, 3, 2) 85.26 15

1 ≤ xi ≤ 10 x = (6, 8, 5, 3) 85.63 22

1 ≤ xi ≤ 8 x = (6, 7, 5, 3) 85.97 21

1 ≤ xi ≤ 5 x = (5, 5, 3, 2) 85.26 15

Comparing the first solution obtained to those in Table 3.4, one can easily observe

that increases in total buffer spaces (WP ) do not change, essentially, the throughput

values. Thus, for practical purposes, it would be ideal for a decision-maker to know

about the solutions in Table 3.4, especially those with better WP results then the

original solution. Observe also that except for the solution at solution space 1 ≤ xi ≤
10, every other solution in Table 3.4 is not dominated by the original solution obtained.

Moreover, because in the original run the solution space was the largest, it is possible

that at some point during the search mechanism, the algorithm evaluated solutions in

Table 3.4. Assuming that it did, why output the original solution and not, for example,

the solution at solution space 1 ≤ xi ≤ 15? which may arguably be a better option.

And assuming that it did not, then this is a problem that Branke et al. (2008) have

predicted for MOO algorithms that use a weighting sum method when faced with a
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“non-convex problem”. And it is not often easy to check for convexity in the case of

SO problems (Branke et al., 2008).

Additionally, the author also ran the BAP model with different weight selections

while keeping the solution space size unchanged (i.e. 1 ≤ xi ≤ 20). The experiment is

summarised in Table 3.5.

Table 3.5: BAP results for different weights selection.

.
TR weight WP weight Solution TR WP Note

0 1 NA NA NA Negative fitness value found

0.2 0.8 NA NA NA Negative fitness value found

0.4 0.6 (5, 5, 4, 2) 63.72 16

0.5 0.5 (6, 6, 4, 2) 85.77 18

0.6 0.4 (10, 8, 7, 4) 108.32 29

0.8 0.2 (13, 10, 9, 7) 155.93 39

1 0 (18, 11, 9, 12) 205.46 50

Note that all the solutions in Table 3.5 are non-dominated. Also note that the

optimisation procedure was unable to handle negative fitness values while processing,

in which case it returned an error message and, consequently, no results.

Assuming that the original solution obtained by the suite is Pareto-optimal (which

it is supposed to be), using an MOO algorithm with the Pareto approach would, in

principle, output all the non-dominated solutions in Tables 3.4 and 3.5; hence, giving

insight to the decision-maker on the quality of potential solutions as well as a wider

range to choose from. But as will be shown in Chapter 7, the original solution obtained

in this section is actually not Pareto-optimal; meaning that this BAP is probably a

non-convex problem.

Furthermore, it can also be seen that there are no statistical considerations (R&S)

involved when dealing with large-scale SO problems in TPS. This is another drawback.

In Fu et al. (2000), the researchers state that statistics must come into play (when solv-

ing large-scale SO problems) if any convergence results are to be rigorously established

for search algorithms.
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3.3 Chapter summary

In this chapter, the author demonstrated the current capabilities and limitations of

TPS with respect to both small and large-scale SO problems in the MOO context.

The goal of this thesis is to develop a product that will allow TPS to deal with

MOSO problems better than it currently does. As far as the author is aware (see

Chapter 2), there is at present no optimisation suite that uses MOO algorithms with

the Pareto approach and rigorous statistical techniques (R&S) in solving large-scale

MOSO problems, not even OptQuest. ISC does have R&S, but ISC does not do MOO.

The product to be developed in this thesis (in the succeeding chapters), and its

solution approach to MOSO problems, is thus a step forward towards achieving the

ideal sought by Fu et al. (2000) (Figure 2.4) in the MOO context.
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Chapter 4

Solution architecture and

selected algorithms

Existing solution techniques for SO problems in the literature; and how a simulation

software package, namely, Tecnomatix Plant Simulation, utilises some of them in the

MOO context were studied in Chapters 2 and 3, respectively. The results obtained in

Chapter 3 showed that TPS SO capabilities were limited and could be improved.

The goal in this thesis is to develop a solution approach, in the form of an optimisa-

tion suite that addresses TPS limitations, as illustrated in Chapter 3. Specifically, the

goal is to develop an optimisation suite that uses a metaheuristic approach that deals

with MOSO problems more effectively; that is, a metaheuristic approach that utilises

the Pareto approach. Moreover, the goal is also to provide the optimisation suite with

a rigorous statistical R&S technique that can be used in both small- and large-scale

MOSO context.

In this chapter, the author presents and describes the architectural design of the

solution approach as well as the algorithms that were selected for the optimisation suite

to be developed.

4.1 Solution architecture

The author desired the optimisation suite to be accessible from TPS as a third-party

library containing the necessary functions (i.e. the solution algorithms) that would

control the SO process of a user-defined MOSO problem of the form of the framework
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discussed in Section 2.3. The author also wanted to make the suite a stand-alone,

callable module that would link with TPS at run time in a similar way as OptQuest.

The suite to be developed was named the multi-objective optimisation solver library,

shortened as the MOOSolver library or simply MOOSolver. Similar to the TPS current

optimisation suite and similar to OptQuest, the user would provide MOOSolver with

the necessary parameters of the simulation model to be solved. The flow diagram in

Figure 4.1 illustrates a high-level architectural design of the concept and shows the

inter-process communication between MOOSolver and TPS.

Figure 4.1: Architectural design of the SO process for TPS using MOOSolver.
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4.1.1 Large-scale approach

As was suggested by Fu et al. (2000) regarding future developments of optimisation

suites (see Section 2.7), MOOSolver will attempt to solve large-scale MOSO problems

by including rigorous statistical analysis in the SO process. This, however, will be done

as a hybrid approach of type HRH (Section 2.6.3). In other words, the metaheuris-

tic responsible for the search mechanism and the R&S responsible for the statistical

analysis are to be self-contained and the results of the metaheuristic are to be “fed”

to the R&S procedure after the search process is complete. For reasons that will be

discussed in Section 4.2.2.2, the process was made an interactive one with the user in-

volved in selecting the systems to be fed to the R&S procedure once the search process

is complete.

The author believes that, ideally, the hybrid SO process should be of type LRH

(Section 2.6.1), in other words, using the R&S procedure as an integral part of the

metaheuristic (an approach that is beyond the current scope of this work as it entails

tampering with the inner workings of the algorithms). However, using the HRH ap-

proach in an interactive manner turns out to have its own advantages. In effect, giving

the user the opportunity to first see all the good solutions found by the metaheuris-

tic before the R&S procedure is used, allows the user to select from the approximate

Pareto set (which can be overwhelmingly large sometimes), solutions or systems that

they may have biased interest in. Only these preferred solutions are then fed to the

R&S procedure for further statistical analysis. This approach (using R&S on the user-

preferred solutions) can save a tremendous amount of computational time in practice

as R&S procedures can take long to process. In fact, the computational time factor is a

challenge that the author anticipates for an LRH approach i.e. how does one practically

integrate R&S in an MOO metaheuristic? But as already mentioned, this is beyond

the scope of the present work.

The interactive HRH approach proposed in this thesis, hence reduces the large-

scale problem to a small-scale one that uses preselected solutions that are known to

be good. Because the metaheuristic cannot guarantee the statistical soundness of the

approximated Pareto set, the R&S is used to clean the potential “noise” in the user-

preferred systems by providing better estimates and guaranteeing correct selection. In
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effect, some solutions that present themselves as members of the Pareto set may no

longer be, after running the R&S procedure.

When solving a large-scale problem with MOOSolver, therefore, the user would

provide the following parameters to the optimisation suite:

1. The number of decision variables.

2. The simulation model decision variables as well as the nature of the decision

variables.

3. The decision variables’ limits that will create a feasible solution space for the

problem.

4. The objective functions as well as the optimisation direction of each objective.

Note that unlike the current TPS optimisation suite, MOOSolver will incorporate

the duality principle in its MOO algorithms so that the user would not have to

do it manually (see Section 3.2).

5. The number of observations to be used per solution during the search mechanism.

6. And finally, the algorithms’ parameters (for both the metaheuristic and the R&S

procedure), which will be discussed in Section 4.2.

4.1.2 Small-scale approach

MOOSolver will solve small-scale MOSO problems using a modern, more effective and

more efficient indifference-zone based R&S procedure. The procedure is presented in

Section 4.2.2.

The SO process will require the user to provide the suite with the following param-

eters:

1. The system designs or scenarios to be compared.

2. The initial number of observations.

3. The indifference-zone values of the respective objective functions.
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4. And finally, just as in the previous section, the decision variables, the number of

decision variables, the objective functions as well as their respective optimisation

directions.

In what follows, the algorithms that were selected for MOOSolver are presented and

described in great detail. The information given in the succeeding section is important

for the effective use of the final product to be developed.

4.2 Selected algorithms

For the purpose of this project, two algorithms were selected for the suite. One for the

search mechanism and the other for rigorous statistical R&S analysis.

The selected search algorithm is the cross-entropy method for multi-objective op-

timisation (MOO CEM) (Bekker, 2012) while the statistical, ranking and selection

algorithm is the MMY procedure (Yoon, 2018). MOO CEM is believed to be a good

search mechanism for large-scale MOSO problems which are often computationally

demanding. MOO CEM is, in effect, known to be a relatively fast converging meta-

heuristic (Bekker, 2012). MMY, on the other hand, is believed to be an effective and

an efficient modern R&S procedure, ideal for MOSO problems.

4.2.1 The MOO CEM metaheuristic

The MOO CEM is a multi-objective adaptation of the CEM metaheuristic described in

Section 2.5.1.3. The algorithm was developed by Bekker (2012). The author dedicates

this section to the full description of the MOO CEM as it is the principal algorithm

of the MOOSolver library. The description is based on the works of Bekker & Aldrich

(2011).

The algorithm adapts the CEM for MOO problems by using a number of key con-

cepts. The first one is that of a Working matrix. The MOO CEM metaheuristic uses a

Working matrix that consists of N rows and n+m+1 columns, where N is an arbitrary

number of solutions (i.e. the population size), n is the number of decision variables

(DVs) and m is the number of objectives. Sample values of the first DV are stored

in column 1, the second DV in column 2, and so on up to column n. The objective

function values for objective 1 are stored in column n + 1, for objective 2 in column
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n+2, and for objective m in column n+m. The last column is used to store the Pareto

ranking value of each solution. The structure is shown in Table 4.1.

Table 4.1: Structure of the working matrix.

Decision variables Objectives Rank

x11 x12 · · · x1n f11 f12 · · · f1m ρ1
...

...
...

...
...

...
...

xN1 xN2 · · · xNn fN1 fN2 · · · fNm ρN

The metaheuristic generates new populations by creating a sequence of probability

density functions (pdfs) for each DV in every iteration (this is the “specified” mechanism

alluded to in phase one of the CEM in Section 2.5.1.3). To form a sample vector xi from

a pdf hi(·; V̂t−1), a truncated normal distribution is used for each decision variable. For

the n DVs defined over ranges [li, ui], li is the lower limit and ui the upper limit of DV

xi, 1 ≤ i ≤ n. The truncated normal distribution hT i, defined in the range [li, ui] and

having mean µi and variance σ2i , is given by

hT i(x) =


0, x < li,

hn(x)∫ ui
li

hn(x)d(x)
, li ≤ x ≤ ui,

0, x > ui.

The function hn(x) is the normal pdf defined on −∞ < x <∞.

Using truncated distributions makes it easy to contain the search. As required by

the CEM, an arbitrarily large value for σi (i.e. the standard deviation) is initially

assigned, using σi = 10 · (ui − li). The first n columns of the working matrix are filled

with sample values from each applicable truncated normal distribution.

Next, each of the objective functions is evaluated using the row vectors X1i, ..., XNi

of Table 4.1. This yields two or more performance vectors fj(x) with 1 < j ≤ m.

The best combinations of objective functions are found by doing a Pareto-ranking

using Algorithm 1 in Section 2.1.

The values of the decision variables in the non-dominated set (i.e. the elite matrix )

provided by Algorithm 1 are used to construct a histogram for each decision variable.

The histogram concept is the second key concept used to adapt the CEM into a MOO

algorithm. The histograms provide guiding information for the MOO CEM algorithm

and are maintained while the algorithm is searching for non-dominated solutions.
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The concept works as follows: for a decision variable that is defined in the range

[li, ui], the lower boundary of the first class is set equal to li, and the upper boundary of

the last class is set equal to ui. Next, the upper boundary of the first class is set equal to

the minimum value of the decision variable xi in the elite matrix, i.e. min(Elite(·, i)).
The lower boundary of the last class is equal to the maximum value of the decision

variable in the elite matrix, namely max(Elite(·, i)). A number of equal-sized classes

are formed between these two boundaries using (max(Elite(·, i))−min(Elite(·, i)))/r
if r of these classes are formed, resulting in a total number of r + 2 classes (see Figure

4.2).
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Figure 4.2: Example of a histogram for decision variable xi and r = 3.

The class boundaries for the histogram of decision variable xi are recorded in a

vector Ci = {ci1, ci2, ..., ci(r+2), ci((r+2)+1)}, with ci1 = li and ci((r+2)+1) = ui. Note

that Ci contains r + 3 elements because the histogram has r + 2 classes, and that the

class widths of the first class ([ci1, ci2]) and the last class ([ci(r+2), ci((r+2)+1)]) can be

different from each other and from the widths of the r classes.

The elite matrix has the same columns as the working matrix shown in Table 4.1,

and the values in column i, 1 ≤ i ≤ n are used to determine frequency values for decision

variable xi. The decision variable values are classified according to the following rule:

xij belongs to the class [cik, ci(k+1)) if cik ≤ xij < ci(k+1), 1 ≤ k ≤ r+ 2. The histogram

frequency values are recorded in a vector Ri = {τi1, τi2, ..., τi(r+1), τi(r+2)}, where τi1 is
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equal to the frequency count of decision variable xi in the range [ci1, ci2), τi2 represents

the count in range [ci2, ci3), and so on.

In preparation for the next iteration of the algorithm, the new population of possible

solutions is formed proportionally according to the class frequencies for each decision

variable: suppose the elite matrix contains Er rows and there are τik occurrences in

class [cij , ci(j+1)) for a given decision variable xi, then bNτik/Erc values will be created

from this class range for this variable (the population size is N and 1 ≤ k ≤ r + 2).

When the proportional numbers do not add up to N due to the rounding down of

the proportion calculation, the small difference is arbitrarily added to the last class.

When generating observations from a class range [cij , ci(j+1)], temporary µ′ik and σ′ik

values are used. These values are associated with the specific histogram class ranges,

so for the class [cik, ci(k+1)) for decision variable xi, the parameter estimators are µ′ik =

cik +U(ci(k+1) − cik), whereas σ′ik = (ci(k+1) − cik), 1 ≤ k ≤ r+ 2 and U is a uniformly

distributed random number.

To prevent premature convergence, the histogram frequencies are adjusted during

each iteration t with a preset probability of typically 0.1−0.3. To do so, the maximum

frequency over all classes is determined for a given decision variable. The frequency in

each class is then subtracted from this value, resulting in an inverted histogram as shown

in Figure 4.3. This ensures that search ranges that were given small proportions of

population candidate allocations receive higher proportions of allocations, while search

ranges with high proportions of population allocations receive fewer allocations after

frequency inversion.

The algorithm will readjust the frequencies according to the rankings returned by

the candidates so that a class that does not contribute to the elite matrix effectively

becomes eliminated as the search progresses. The histogram concept also allows for the

accommodation of discontinuous search spaces.

To ensure exploitation in the MOO context, the process described above is repeated

ol times as an outer loop of the algorithm. This is the third concept used to adapt the

CEM for MOO. After each loop, the elite matrix is ranked again and the number of

classes of the histograms is incremented. Increasing the number of classes as the search

progresses makes it possible to maintain good combinations of decision variable values

as the resolution of the decision variable spaces becomes finer.
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Figure 4.3: The inverted histogram of Figure 4.2.

The parameter vectors (µi, σi) are updated using (4.1) and (4.2) respectively, and

the values in the DV columns of the elite matrix.

µ̂i,t = αmµ̃i,t + (1− αm)µ̂i,t−1 (4.1)

σ̂i,t = αmσ̃i,t + (1− αm)σ̂i,t−1 (4.2)

where t is the iteration count index and αm = 0.7 in all cases. This process is continued

until the σi-value of each decision variable has decreased below a common threshold

epsilon (ε). On algorithm termination, the elite matrix should contain the solutions

members of the Pareto set, as well as their associated objective functions values.

To support exploration and exploitation of the search, the initial ranking threshold

th is relaxed and a value of two is selected. When a new loop starts and a new popula-

tion is formed, the elite matrix is trimmed and the threshold is set to one. When the

algorithm terminates, the existing elite matrix is refined a final time, and the threshold

then used is zero, which means all solutions selected are non-dominated. This con-

stitutes the fourth and final concept. The algorithm is presented in pseudo-code as

Algorithm 9.
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Algorithm 9 MOO CEM metaheuristic

1: Set Elite = ∅, t = 1, ol = 1.

2: Initialise decision variable vectors xi = ∅, 1 ≤ i ≤ n.

3: For each decision variable xi, 1 ≤ i ≤ n, initialise a histogram class vec-

tor Ci = {ci1, ci2, ..., ci(r+2), ci((r+2)+1)} and histogram frequency vector Ri =

{τi1, τi2, ..., τi(r+1), τi(r+2)}.
4: Set i = 0.

5: Set k = 0.

6: Increment k.

7: Do for frequency element τik in Ri.

8: Generate a class-based ṽ′ in the range [cik, ci(k+1)), 1 ≤ k ≤ r + 2.

9: Generate a subsample y according to the pdf hT i(xi, ṽ
′) with xi ∈ [cik, ci(k + 1))

and |y| = τik, 1 ≤ k ≤ r + 2.

10: Append y to xi.

11: If k < r + 2 return to Step 6.

12: Increment i.

13: If i ≤ n, return to Step 5.

14: Compute the Nm performance values using xi, 1 ≤ i ≤ n.

15: Rank the performance values using the Pareto ranking of Algorithm 1 with a relaxed

th = 2 to obtain an updated elite matrix Elite.

16: Form new histogram class vectors Ci and histogram frequency vectors Ri based on

Elite, 1 ≤ i ≤ n.

17: Use the values in Elite and compute ṽit for all 1 ≤ i ≤ n.

18: Smooth the vectors ṽit for all 1 ≤ i ≤ n, using (4.1) and (4.2).

19: If all σi,t > ε or less than the allowable number of evaluations has been done,

increment t and reiterate from Step 4.

20: Rank the elite matrix using the Pareto ranking of Algorithm 1 with th = 1.

21: Increment ol.

22: If ol is less than the allowable number of loops, return to Step 2.

23: Rank the elite matrix using the Pareto ranking of Algorithm 1 with th = 0 to obtain

the final elite matrix.
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4.2.2 The MMY procedure

Procedure MMY is the multi-objective variant of the MY procedure presented in Section

2.4.1.1. It is the first MOO R&S procedure with the indifference-zone approach in the

literature, that guarantees correct selection following the Bayesian probabilistic theory

(Section 2.4.1.1). The algorithm was selected to equip MOOSolver with a modern,

efficient multi-objective R&S procedure.

Table 4.2 provides the notation used in procedure MMY, which is presented in

Algorithm 10.

Table 4.2: Notation for procedure MMY.

M the number of systems in the problem;

S the feasible solution set, i.e., S = {1, ...,M};
I the set of systems that are still in competition;

H the number of objectives;

K the objective set, i.e., K = {1, ...,H};
Ni the total number of simulation replications assigned to system i;

X̄ik(Ni) the sample mean of system i for objective k based on Ni observations;

Sp the observed Pareto set based on X̄ik (i ∈ S and k ∈ K);

Scp the observed non-Pareto set based on X̄ik (i ∈ S and k ∈ K);

n0 the number of simulation replications at the first stage;

δ∗k the indifference-zone value for objective k;

P ∗ the minimum required value for P(CS).

Following are some definitions used in the procedure. Let

δijk = max{δ∗k, X̄jk(Nj)− X̄ik(Ni)} (4.3)

and dxe denotes the smallest integer greater than x. Consider a pair of systems (i, j)

where system i is observed as non-dominated and system j can be any other system in

S. This pair (i, j) (i ∈ Sp and j ∈ S, j 6= i) is relevant to Steps 4 and 5 in Algorithm

10.

For each pair (i, j) (i ∈ Sp and j ∈ S, j 6= i), let

K1 = {k | |X̄jk − X̄ik| ≤ δ∗k, k ∈ K} (4.7)
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Algorithm 10 Procedure MMY

1: Select the probability of correction requirement P ∗ = 1 − α, the indifference-zone

value δ∗k for each objective k ∈ K, and the first-stage sample size n0 ≥ 10. Set

I = {1, 2, ...,M} and β = α
M .

2: Simulate n0 replications for all M systems, and calculate sample means X̄ik(n0)

and sample variances S2
ik(n0) (i ∈ S and k ∈ K). Let Ni = n0.

3: Observe the Pareto set Sp and the non-Pareto set Scp based on the sample means

X̄ik(Ni) (i ∈ S and k ∈ K) using Algorithm 1 without the indifference-zone con-

cept.

4: For each system i ∈ Sp and j ∈ S (j 6= i) with K1 = K, check if the following two

conditions are met:

Ni >

⌈
max
k

(
h1Sik(Ni)

δijk

)2
⌉

and Nj >

⌈
max
k

(
h1Sjk(Nj)

δijk

)2
⌉
, (4.4)

where h1 is the solution to (4.9), and K1 is defined in (4.7).

5: For each system i ∈ Sp and j ∈ S (j 6= i) with K1 6= K, check if the following two

conditions are met:

Ni >

⌈(
h2Sik′(Ni)

δijk′

)2
⌉

and Nj >

⌈(
h2Sjk′(Nj)

δijk′

)2
⌉
, (4.5)

where k′ is defined in (4.8) and h2 is to solution to (4.10).

6: Delete system i from I if conditions (4.4) or (4.5) are satisfied for all j ∈ S (j 6= i).

7: For each system j ∈ Scp, find system i ∈ Sp as defined in (4.11). Check if the

following two conditions are met:

Ni >

⌈
max
k

(
h3Sik(Ni)

δijk

)2
⌉

and Nj >

⌈
max
k

(
h3Sjk(Nj)

δijk

)2
⌉
, (4.6)

where h3 is the solution to (4.12).

8: Delete system j from I if conditions in (4.6) are satisfied.

9: If |I| = 0, then stop and present the current Pareto set Sp as the final solution set.

Otherwise, for each system i ∈ Sp ∩ I, that is, systems in Sp that were not deleted

from I in Step 6, add system j ∈ S (j 6= i) to I if it does not satisfy conditions

(4.4) or (4.5). Similarly, for each system j ∈ Scp∩I, that is, systems in Scp that were

not deleted from I in Step 8, add the corresponding system i ∈ Sp to I if it does

not satisfy (4.6). Go to Step 10.

10: Take one additional observation Xi,k,Ni+1 from each system i ∈ I, and set Ni ←
Ni + 1 (∀i ∈ I). Set I = {1, 2, ...,M} and update X̄ik(Ni) and S2

ikik(Ni) for all

i ∈ S and k ∈ K, and go to Step 3.
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and

k′ = arg max
k∈K

Φ

X̄jk(Nj)− X̄ik(Ni)√
S2
ik(Ni)

Ni
+

S2
jk(Nj)

Nj

 (4.8)

where Φ denotes the cumulative distribution function (cdf) of the standard normal dis-

tribution. Note that K1 and k′ should be defined for every pair of (i, j) (i ∈ Sp and j ∈
S, j 6= i). Step 4 in Algorithm 10 deals with (i, j) pairs when K1 = K, that is, system

i and j are observed to be indifferent to each other, while Step 5 considers the case

when K1 6= K.

The constants h1 (in Step 4) and h2 (in Step 5) are the solution to the following

equations, respectively:

∫ ∞
0

∫ ∞
0

Φ

 h1√
(Ni − 1) 1x + (Nj − 1) 1y

 f1(x)dx

 f2(y)dy

H = 1− γ, (4.9)

and

∫ ∞
0

∫ ∞
0

Φ

 h2√
(Ni − 1) 1x + (Nj − 1) 1y

 f1(x)dx

 f2(y)dy = 1− γ, (4.10)

where γ = β
M−1 , and f1 and f2 denote the pdf of the χ2 distribution with Ni − 1 and

Nj − 1 degrees of freedom, respectively. The system that dominates system j with the

maximum probability can be found with

i = arg max
i′∈Sp

P (i′ ≺ j)

≈ arg max
i′∈Sp

H∏
k=1

Φ

X̄jk(Nj)− X̄i′k(Ni′)√
S2
i′k(Ni′ )

Ni′
+

S2
jk(Nj)

Nj

 . (4.11)

60

Stellenbosch University  https://scholar.sun.ac.za



4.2 Selected algorithms

Note that such i should be defined for every j ∈ Scp. This pair of systems (i, j) (i ∈
Sp, j ∈ Scp) is considered in Step 7 in Algorithm 10. The constant h3 in the same step

of the algorithm is the solution to

∫ ∞
0

∫ ∞
0

Φ

 h3√
(Ni − 1) 1x + (Nj − 1) 1y

 f1(x)dx

 f2(y)dy

H = 1− β, (4.12)

where β = α
M , and f1 and f2 denote the pdf of the χ2 distribution with Ni − 1 and

Nj − 1 degrees of freedom, respectively.

4.2.2.1 The relaxed Pareto set approach

An important particularity of the MMY procedure is that it outputs an approximate

relaxed Pareto set with respect to the indifference-zone values selected by the user. In

effect, one would expect an IZ-based MOO R&S procedure to include the IZ concept

during its Pareto ranking step; however, this is not the case in procedure MMY as

pointed out in Step 3 of Algorithm 10. The relaxed Pareto set approach is, in effect,

one that is not strict about the IZ concept with regards to solutions that should be

considered as non-dominated. Yoon (2018) found in her work that using a strict IZ

regime can cause the R&S algorithm to run indefinitely when comparing a pair of

systems whose true means are very close. Hence, the researcher (i.e. Yoon (2018))

proposed going instead for a relaxed Pareto set in order to avoid this. This approach

therefore makes the procedure, one that is safer and more flexible in practice.

Moreover, the researcher (i.e. Yoon (2018)) also argues in her work that allowing

the final Pareto set to possibly consider as Pareto-optimal solutions, non-dominated

solutions (under no IZ regime) that would otherwise be seen as dominated under a

strict IZ regime, gives the decision-maker a more comprehensive final set.

To illustrate the concept, consider Figure 4.4 where the solutions in red are non-

dominated solutions and those in black are dominated ones. The IZ value for both

objectives in this figure is selected as 0.5. A relaxed Pareto set (Figure 4.4(c)) contains

all non-dominated systems that do not have indifferent systems (solutions in red), at

least one system from a group of indifferent systems (solutions in green); and regarding

systems classified as non-dominated without the IZ concept, but dominated under the

IZ regime (solutions in blue), a relaxed Pareto set may or may not contain them.
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(a) Pareto set without IZ.
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(b) Pareto set with IZ.
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(c) Relaxed Pareto set.

Figure 4.4: Pareto set examples (Yoon, 2018).
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4.2.2.2 MMY implementation challenge

The major challenge in implementing the MMY procedure is the hi values calcula-

tion (i = 1, 2, 3). hi values are solutions to double integral equations that are time-

consuming to solve as they are solved numerically. It is therefore impractical to dy-

namically calculate these values when the procedure is being executed. Instead, these

values are calculated beforehand and saved in tables (i.e. an h1 table contains h1 values

etc.) which the procedure can then look-up during execution. Generating these tables,

however, is another challenge. It can be observed in (4.9), (4.10) and (4.12), that they

all account for the total number of systems M being considered by the procedure. This

means that every hi table is unique to a specific number of total systems being consid-

ered by the procedure. In other words, for a problem where e.g. M = 8, the procedure

will look-up a different set of h tables than one where e.g. M = 9.

Now, consider using the results of a metaheuristic that uses the Pareto approach

directly as inputs to the R&S procedure. This would mean that the R&S procedure

must have a set of h tables for every possible number of solutions in the approximated

Pareto set obtained by the metaheuristic. This is in effect a difficult thing to do, in

addition to being impractical as the set of solutions could be relatively very large.

This is what led the author to consider the interactive approach and actually limit the

number of systems that the user can select from the approximate Pareto set. In this

study, this number was limited to up to 10, meaning that nine set of h tables had to

be calculated beforehand (i.e. 1 < M ≤ 10). Note that the author kept P ∗ constant

with a value of 90.

4.3 Chapter summary

In this chapter, the solution approach proposed for the purpose of this study was

described. Additionally, the selected algorithms for the MOO optimisation suite were

also presented and described in detail.

In the next chapter, the development and implementation of the MOO optimisation

suite are presented.
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Chapter 5

Development and implementation

In this chapter, the author describes the development and implementation of the MOO-

Solver library. In the opening section of the chapter, a discussion on the suite itself is

presented. This is followed by discussions on the interfaces that were used to integrate

the suite with TPS. First, a discussion on the C-Interface inter-process communication

(IPC) technology (also simply referred to as C-Interface or C for short) is presented.

A subsection on the limitations of the C-Interface then follows in order to put the next

section into context, which is a discussion on the COM-Interface IPC technology (also

simply referred to as COM-Interface or COM for short). In the last section, the author

presents the MOOSolver user-interface for TPS.

5.1 MOOSolver: A Dynamic-link Library solver for MOSO

problems

Following the architectural design in the previous chapter, MOOSolver was developed

and implemented as a dynamic-link library (DLL). A DLL is a module that contains

functions and data that can be used by another module (an application or another

DLL). Unlike in the case of statically linked libraries, the programs or applications

that call a DLL are connected to it at runtime rather than at linking or compiling

time.

DLLs can define two kinds of functions: exported and internal. The exported

functions are intended to be called by other modules, as well as from within the DLL
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where they are defined. Internal functions, on the other hand, are typically intended

to be called only from within the DLL where they are defined.

The MOOSolver DLL was developed in C++ using Microsoft Visual Studio 2017.

According to the C++ resources network website (www.cplusplus.com): C++ is de-

signed to be a compiled language, meaning that it is generally translated into machine

language that can be understood directly by the system, making the generated program

highly efficient.

The MOSO problems for which MOOSolver is intended are expected to be computa-

tionally intensive. A program written in a “highly efficient” language is thus important

if these problems are to be solved effectively.

5.1.1 The C-Interface

An interface defines a set of methods (or functions) that an object can support, without

dictating anything about the implementation. The interface marks a clear boundary

between code that calls a method and the code that implements the method (Microsoft,

2010).

According to the Help guide of the Tecnomatix Plant Simulation software, the

features and functionalities of the software can be extended considerably by integrating

functions programmed in C/C++. The integration is made possible through the C-

Interface, which comes as part of the TPS software package.

The C-Interface makes it possible to load an external DLL and call the functions in

the DLL from the simulation software. Moreover, the C-Interface also makes it possible

to manipulate the simulation software from within the DLL. A two-way interaction can

thus exist between the two platforms.

The opportunity provided by the C-Interface was exploited in the manner illustrated

by the diagram in Figure 5.1 in order to implement the simulation optimisation process

designed in Chapter 4. The diagram shows in greater detail how the inter-process

communication between MOOSolver and TPS was made possible via the C-Interface

set of functions. Positioned on the boundary between the two platforms in the diagram

are the interfacing functions that were used. The functions are colour-coded to indicate

the platform where they are defined (or implemented). In what follows, the author

explains in further details each step in Figure 5.1.
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Figure 5.1: The C-Interface inter-process communication procedure.

Begin SO process: This is the starting point of the SO process. After a model

has been developed and all the necessary information about it has been provided to

MOOSolver, the user initiates the SO process.
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Load library: After the SO process has been initiated by the user, a method

named callback takes over. Callback loads the MOOSolver library by locating it and

establishing a connection between TPS and the suite.

It is through the callback method that TPS communicates with MOOSolver. Call-

back is part of a set of objects in TPS created and dedicated to facilitate the inter-

process communication between TPS and MOOSolver via the C-Interface. These ob-

jects form part of the MOOSolver user-interface in TPS and will be mentioned one by

one as this section progresses.

Read user-defined parameters: This step of the process reads the information

about the simulation model as defined by the user. The information is then passed to

MOOSolver via the CallLibrary C-Interface function.

Optimisation procedure: Upon receiving the simulation model parameters, the

suite triggers the optimisation procedure. This is where, in the case of large-scale prob-

lems, the metaheuristic begins its execution and seeks for a set of candidate solutions.

When found, the elements in the set are passed to TPS via the ExecuteMethod function

to be evaluated.

Now, evaluation via simulation (that is, evaluation via the use of a discrete-event

simulation software package) can be done without running actual simulations if the

model happens to be, for some reason, deterministic with an analytical formulation of

its objective functions. In such a case, the elements to be evaluated are evaluated by

executing the method where the objective functions are defined (as illustrated in the

diagram). The goal, however, is to use MOOSolver for MOSO problems that require

actual simulation runs during the evaluation process. A C-Interface function, namely

RunSimulation, exists in effect for this very purpose. However, as will be explained

shortly, the function in question is unable to fulfil its task properly in the context of

the SO process as designed in Section 4.1. The function is thus of no use here. The

author proceeds first with the description of the C procedure before discussing the

present issue (i.e. How to evaluate non-deterministic problems) further. (This will be

done in Section 5.1.2.)

Evaluation process: This step includes the evaluation of the solutions found by

the metaheuristic (or those provided by the user in the case of small-scale problems)

as well as the halting of the SO process while the evaluation process is in progress.

After evaluation, the results are stored in a temporary store, which is another object
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(a Table/Array object) in TPS dedicated for MOOSolver. These results can then be

accessed by the MOOSolver library via the ReadObject C-Interface function.

Pareto ranking: After the solutions have been evaluated, they are ranked using

Algorithm 1. The non-dominated solutions are retained, while the dominated ones are

discarded according to the rules of the algorithm being executed (i.e. MOO CEM or

MMY).

A convergence check then follows to determine whether the SO process should be

terminated. There are two events, whichever occurs first, that typically terminate the

process. The first event happens when a stopping condition has been reached such as, in

the case of the metaheuristic, the maximum number of evaluations allowed, and in the

case of the R&S procedure, the depletion of the simulation budget. The second event,

on the other hand, happens when the quality of newly found solutions begin to have

little to no difference after the algorithm has run sufficiently long in the metaheuristic

case, and in the R&S case, this happens when the necessary number of simulation runs

have been made to all solutions being compared. The second condition is governed by

the user-defined parameter ε (see Section 4.2.1) in the metaheuristic case, while in the

R&S case, it is done by the user-defined indifference-zone values (see Section 4.2.2).

Display Pareto solutions: When the convergence check is positive, the SO pro-

cess is set to stop. Otherwise, the process goes back to the Optimisation procedure

step. Before the process ends, the final Pareto set (the approximated one, that is) is

displayed in a table format (using another dedicated TPS object) via the WriteInObject

C-Interface function.

Free library: The SO process is terminated after the principal connection estab-

lished between TPS and MOOSolver via the C-Interface is finally closed. This is done

by freeing the MOOSolver library in the callback method.

5.1.2 Limitations of the C-Interface

The goal of integrating the suite with the simulation software is so that simulation

runs can be executed from the suite (on non-deterministic problems) as part of the SO

process. In other words, simulation runs are to be an integral part of the SO process to

support the optimisation procedure while it is in progress (please refer to Figure 4.1).
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The issue, however, is that a TPS application cannot be commanded to execute

a simulation run while other methods are being executed within the same applica-

tion. More specifically, while the method calling MOOSolver in TPS (i.e. the callback

method) is processing, it is not possible to, simultaneously, execute simulation runs

from the suite. What happens instead is, the simulation runs are postponed and exe-

cuted only after all methods processing in TPS are completed (including the method

calling the suite). This is a limitation that makes it impossible to have a valid SO

process using the design in Figure 4.1. The design requires, in effect, that simulation

runs be executed while the calling method is still processing.

In order to implement the designed architecture, therefore, this obstacle had to be

overcome somehow. This was achieved by using a COM-Interface within the existing

C-Interface to open a second, supporting, TPS application. This approach was sug-

gested to the author by a TPS expert via the TPS forum in the Siemens community

website. In summary, when using the COM technology, an instance of the TPS appli-

cation of interest (the discrete-event simulation model of interest, to be more precise)

can be opened as a background process, and simulation runs can be executed via this

supporting application rather than the original one. This is possible because the sup-

porting application exists as an independent module or object and is unaware of the

existing, ongoing, C-Interface IPC procedure between the original TPS application and

MOOSolver.

5.1.3 The COM-Interface

The component object model technology (COM) is defined by Microsoft (2010) as a

binary-interface standard for software components. It is a language-neutral way of

implementing methods that can be used in environments different from the one in

which they were created, even across machine boundaries. It is used to enable inter-

process communication object creation in a large range of programming languages.

Unlike in the C-Interface case, COM only offers a one-way communication process

between the two platforms of interest. A critical aspect of COM is, in effect, how client

and server platforms interact. A COM client is whatever application or object gets a

pointer to a COM server and uses its services by calling the methods (or functions) of its

interfaces. A COM server, on the other hand, is any application or object that provides

services to a COM client; these services are in the form of interface implementations
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(i.e. the COM-Interface functions) that can be called by any client that is able to get

a pointer to these interfaces on the server object. The client object, in this study, is

MOOSolver while the server object is TPS.

It is thus possible to manipulate TPS from the suite (the client) but not the other

way round. Using the COM-Interface set of functions, MOOSolver can execute simu-

lation runs by opening TPS in the background and loading an instance of the model of

interest. This model being opened using the COM technology is totally independent

of its original version being executed using the C-Interface. As a result, both IPC

procedures can execute simultaneously and simulations run while the callback method

in TPS is still processing.

The background process reads the solutions from the optimisation procedure and

controls the evaluation process. Results from the evaluation process can then be ac-

cessed by the primary process once the simulation runs are completed.

The procedure described above is illustrated in Figure 5.2 and following are detailed

descriptions of each step in the figure.

Initialise COM library: When using COM, a strict protocol must be followed by

the client object in order to successfully establish a connection with the server object.

Any process that uses COM must both initialise and un-initialise the COM library. The

COM technology implements some important services in this library, among which are

a small number of fundamental functions that facilitate, for example, the creation of the

server object and a standard mechanism to allow, e.g., the client object to control how

memory is allocated within its process, particularly memory that needs to be passed

between cooperating objects (i.e. client and server) so that it can be freed properly

(Microsoft, 2010).

Create instance of TPS as an object: After the COM library has been suc-

cessfully initialised, the client object (i.e. TPS) is created in the background (i.e. TPS

opens in the background) and its COM-Interface set of functions is now available to

the client object (i.e. MOOSolver). The first COM-Interface function to be used is

LoadModel, to which the ID of the model being currently used via C is passed in order

to open another instance of it. If successful, the model opens in the background.

Read solutions and run simulations: In these steps, MOOSolver reads the so-

lutions to be evaluated from the original model and writes them to the background

model via the function SetValue. Once that is completed, MOOSolver resets and runs
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Figure 5.2: The COM-Interface inter-process communication procedure.

the background model via the COM-Interface functions ResetSimulation and StartSim-

ulation, respectively.

While simulations run wait: The procedure is paused while simulations are

being run in the background. When the simulations are complete, MOOSolver gets

access to the simulations results via the GetValue function. Once MOOSolver has the
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results, the main procedure (i.e. the C-Interface IPC procedure) proceeds.

Un-initialise COM library: It is important to un-initialise the COM library once

the SO process is complete. This step includes realising (i.e. freeing) the COM library

as well as closing the supporting model and TPS application in the background. This

step is critical as, if not done properly, the processes in the background can remain

open long after the main model and application have been closed; an incident that is

undesirable for computers.

Note that the procedures described in Figures 5.1 and 5.2 are hidden from the user.

The user simply initiates the entire SO process via a user-interface in TPS and waits

for the final results. This user-interface is the subject of the next section.

5.2 MOOSolver: The user-interface for TPS

The MOOSolver user-interface for TPS is a Dialog object which allows user interac-

tion with the suite. Many elements that form part of this object have already been

described in the previous section where they were referred to as dedicated TPS objects

for MOOSolver. This section focuses mainly on the graphical user-interface (GUI) and

its elements. The GUI is the principal medium through which the user provides infor-

mation about the simulation model to the suite. It is also the principal medium through

which the user receives results from the suite. Unlike some of the other elements of

the user-interface defined earlier (e.g. the callback method and the temporary stores),

which are principally used in the background (i.e. outside the user’s sight), the GUI

and its features are for direct interaction between the user and the MOOSolver library.

The design of the GUI was inspired by that of the TPS built-in optimisation suite GUI,

namely, the GAWizard. The MOOSolver GUI for TPS was subsequently named the

MSWizard.

This section is divided into two parts; in the first part, the author describes the GUI

features used to input information about the simulation model as well as those used to

input user-selected parameters for the algorithms. In the second part, the GUI features

used to present (to the user) output results obtained by the suite are described.
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(a) Define tab. (b) Run tab.

(c) Optimisation Parameters tab.

Figure 5.3: MSWizard GUI principal tabs.

5.2.1 GUI input features

The MSWizard has three main tabs named Define, Run and Optimisation Parameters.

Screen-shots of the wizard can be seen in Figure 5.3. The following paragraphs describe

the functions of each tab.

In the first tab (Figure 5.3(a)), the user defines the simulation model parameters.

The tab has three sections called group boxes. In the group box Decision variables,

the user specifies the number of decision variables (DVs) in the model as well as their
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respective paths (i.e. location) within the simulation model (see Figure 5.4). In the

same table where the DV paths are specified, the user also provides all DVs respective

boundaries as well as the DVs respective nature (i.e. whether they are discrete or

continuous); the DVs boundaries are the limits (or constraints) that create a feasible

solution space for the problem, following the MOSO framework of Chapter 2.

Figure 5.4: Decision variables definition table.

In the second group box, the user defines the objective functions (OFs) following

a similar approach to that of the first group box (see Figure 5.5). In addition to the

paths of each OF, the user also specifies their respective optimisation directions.

Figure 5.5: Objective functions definition table.
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The last group box is for the number of observations that the user wants MOOSolver

to use for each solution that will be evaluated (i.e. a “blindly” selected n∗ similar to

that of Section 3.2.1).

In the second tab (Figure 5.3(b)), the user runs the algorithms once all the param-

eters have been correctly inserted. The first group box contains the button for starting

the MOO CEM while the second group box contains the button for starting the MMY

procedure. Before running the algorithms however, the user must specify additional

parameters in the third and final tab.

Figure 5.6: MMY Scenarios table.

In the final tab (Figure 5.3(c)), the user specifies the MOO CEM parameters as

well as the MMY parameters. For the MOO CEM, the user must select the values

for epsilon, the maximum number of evaluations, the number of outer loops as well as

the population size. (Please refer to Section 4.2.1 for descriptions on these parameters

pertaining to their respective roles within the metaheuristic.) For the MMY, the user

must specify the scenarios/systems or solutions to be compared as well as the respective

IZ values of the objective functions (entered in the OFs definition table (Figure 5.5)).

As already mentioned, MOOSolver allows the user to select up to 10 scenarios (see

Figure 5.6) for reasons discussed in Section 4.2.2.2. Note that the columns in Figure
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5.6 are to follow the order according to which the DVs were defined. In other words, if

DV 1 was defined before DV 2 in the columns of the DVs definition table (Figure 5.4),

then the values for DV 1 in the scenarios table must be in the first column and those for

DV 2 in the second column etc. Note also that the MMY procedure has a preselected

probability of correct selection value (90%) as was specified in Section 4.2.2.

5.2.2 GUI output features

The results obtained by MOOSolver are presented to the user in tables. In this section,

the author describes the table formats for both the MOO CEM and the MMY.

Table 5.1: MOO CEM output table format.

Decision variables Objectives

x11 · · · x1n f11 · · · fm
...

...
...

...

xN1 · · · xNn fN1 · · · fNn

The output presented to the user at the end of the MOO CEM run, is a table that

contains information about the approximate Pareto set obtained by the metaheuristic.

The table has the format illustrated in Tale 5.1, where n is the number of decision

variables in solution xi, i = 1, ..., N , N the total number of solutions in the approximate

Pareto set and m the number of objective functions, which in this study is always 2.

As the table can be overwhelmingly large, a better way of presenting the approx-

imate Pareto set to the user is by plotting a Pareto front that contains the results to

all the solutions in the Pareto set. Examples of Pareto fronts obtained by MOOSolver

can be observed in Chapters 6 and 7. All the points in a Pareto front are results to

specific solutions in the Pareto set and are hence, sometimes, referred to as solutions

themselves. Using Pareto fronts is also a way of exploiting the fact that the number

of objectives MOOSolver can handle at present is 2. In effect, when the number of

objectives grows past 2 and 3, it becomes difficult to generate insightful graphical or

visual representations of the Pareto set; the user, in this case must settle for the use of

tables.

The output presented to the user at the end of the MMY run, on the other hand, is a

table that contains information about the scenarios or solutions compared to each other
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by the procedure. The table format is illustrated in Table 5.2, where n is the number of

decision variables in system xi, i = 1, ...,M , M the total number of preselected systems

fed to the procedure and m the number of objective functions, which is again always 2

in this study.

Table 5.2: MMY output table format.

Decision variables Objectives Variances Rank Runs Status ID

x11 · · · x1n f11 · · · f1m S2
11 · · · S2

1m ρ1 R1 St1 ID1

...
...

...
...

...
...

...
...

...
...

xM1 · · · xMn fM1 · · · fMm S2
M1 · · · S2

Mm ρM RM StM IDM

Additionally, S2
ij is the variance information of objective function j of system xi,

j = 1, ...,m; ρi is the Pareto rank of system xi indicating the total number of systems

in the set that dominate system xi. An integer value greater than 0 in this column

indicates that system xi is dominated by ρi systems in the set and is thus not a correct

selection. Ri is the total number of observations that was run for system xi during the

execution of the procedure while Sti is the status of system xi indicating whether the

necessary number of observations were run for the system. Since the procedure has a

limited simulation budget to be run for every system (for practical purposes), if the

budget were exhausted before the procedure could guarantee the statistical soundness of

the system (with respect to the parameters used by the procedure in Step 1 of Algorithm

9), the Status column would indicate it. When a value of 0 is displayed for system xi,

this indicates that the procedure was able to run the necessary number of observations

for the system. Any other value (typically 1 or 2, which have themselves specific

meanings in the context of the procedure implementation) indicates that the system

needed more observations than allowed (in order to guarantee statistical soundness).

Finally, IDi is the ID of system xi with respect to the order in which the system

was initially fed to the procedure by the user (via the Scenarios table). Since the

order in which the systems are given to the procedure changes during the execution of

the procedure, using IDs to identify each system once the runs are complete is more

convenient than doing so with the help of decision variables.
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5.3 Chapter summary

In this chapter, the development and implementation of the multi-objective optimisa-

tion suite were presented. In particular, the inter-process communication procedures

used to integrate the suite with TPS were fully described. Moreover, the user-interface

for TPS and its features were also described in great detail. In the next chapter, the

product developed in this chapter is validated.
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Chapter 6

Validation

In the previous chapter, the development and implementation of MOOSolver was pre-

sented. MOOSolver, which is an optimisation suite for MOSO problems, was developed

as a dynamic-link library and integrated with Tecnomatix Plant Simulation using, si-

multaneously, C and COM inter-process communication technologies. It was also men-

tioned in Chapter 4 that two algorithms were selected for the suite, namely, the MOO

CEM metaheuristic and the MMY procedure.

In this chapter, the suite is validated by using known MOO test problems as well

as a variant of the buffer allocation problem discussed in Chapter 3. The MOO test

problem will help validate the implementation of the MOO CEM and the BAP, that of

the MMY procedure. Valid results also mean, automatically, that the IPC procedures

used to integrate MOOSolver with TPS, namely C and COM, were both successful.

6.1 MOO test problems

The author used known MOO test problems to validate the implementation of the MOO

CEM metaheuristic as well as the C-Interface inter-process communication procedure.

The MOO test problems were modelled as deterministic models in TPS. In total, five

test problems were used from Coello Coello et al. (2007) and they are presented in

Table 6.1. The results obtained by MOOSolver for the five problems are shown in

Figures 6.1 and 6.2 where they were compared with results obtained by a MATLAB

implementation of the MOO CEM together with the known true results of the test

problems.
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Table 6.1: Standard MOO test functions.

Function Definition Constraints

MOP1 f1(x) = x2 −105 ≤ x ≤ 105

(Min) f2(x) = (x− 2)2

MOP2 f1(x) = 1− exp

(
−
∑n

i=1

(
xi − 1√

n

)2)
−4 ≤ xi ≤ 4

(Min) f2(x) = 1− exp

(
−
∑n

i=1

(
xi + 1√

n

)2)
i = 1, ..., n, n = 3

MOP3 f1(x, y) = −[1 + (A1 −B1)
2 + (A2 −B2)

2] −π ≤ x, y ≤ π
(Max) f2(x, y) = −[(x− 3)2 + (y + 1)2] A1 = 0.5 sin 1− 2 cos 1 + sin 2− 1.5 cos 2,

A2 = 1.5 sin 1− cos 1 + sin 2− 0.5 cos 2,

B1 = 0.5 sinx− 2 cosx+ sin y − 1.5 cos y,

B2 = 1.5 sinx− cosx+ sin y − 0.5 cos y,

MOP4 f1(x) =
∑n−1

i=1

(
−10 exp(−0.2)

√
x2i + x2i+1

)
−5 ≤ xi ≤ 5

(Min) f2(x) =
∑n−1

i=1

(
|xi|a + 5 sin(xi)

b
)

i = 1, 2, 3, a = 0.8, b = 3

MOP6 f1(x, y) = x 0 ≤ x, y ≤ 1

(Min) f2(x, y) = (1 + 10y)
[
1−

(
x

1+10y

)α
− x

1+10y sin(2πqx)
]

q = 6, α = 2

The comparisons in Figures 6.1 and 6.2 show that the MOO CEM implementation

in MOOSolver is valid. Additional (and more rigorous) tests for the metaheuristic can

be found in Bekker & Aldrich (2011). For the purpose of this study, the results obtained

in this chapter are considered sufficient validation material as the algorithm used here

(Algorithm 9) is the same as the one in Bekker & Aldrich (2011). More importantly,

the results in this section validate the C-Interface IPC procedure (Figure 5.1) developed

to integrate the suite with the discrete-event simulation software.

(a) MOP1 by MOOSolver. (b) MOP1 in MATLAB.

Figure 6.1: Comparison between MOO test problems results obtained by MOOSolver

(a) and results obtained in MATLAB together with the known results (b).
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(a) MOP2 by MOOSolver. (b) MOP2 in MATLAB.

(c) MOP3 by MOOSolver. (d) MOP3 in MATLAB.

(e) MOP4 by MOOSolver. (f) MOP4 in MATLAB.

(g) MOP6 by MOOSolver. (h) MOP6 in MATLAB.

Figure 6.2: Comparison between MOO test problems results obtained by MOOSolver

(a, c, e, and g) and results obtained in MATLAB together with the known results (b,

d, f and h).
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6.2 The buffer allocation problem

In her work, Yoon (2018) solved the BAP as a small-scale SO problem with preselected

solutions using a MATLAB implementation of the MMY algorithm. She used the

BAP to validate the procedure. The same BAP is solved here with MOOSolver and a

similar validation approach is used. The results obtained here are compared to those

in Yoon (2018). Successful comparison would thus validate the MMY implementation

in MOOSolver and, consequently, the COM-Interface IPC procedure as well.

The validation process in Yoon (2018) was as follows: Ten scenarios were preselected

to be compared using the MMY procedure. To ensure the validity of the results obtained

by the procedure, 10 000 observations were run per scenario before using the procedure

and the means obtained from these observations were considered as true means. The

Pareto ranking algorithm (Algorithm 1) was subsequently used to determine the true

relaxed Pareto set, which would be used to validate the estimated relaxed Pareto set

to be obtained by the MMY procedure. The same true relaxed Pareto set is used in

this study to validate the MOOSolver implementation of the procedure.

6.2.1 Specifics of the BAP solved in Yoon (2018)

It was assumed for this variant of the BAP that a total of, say, nt buffer spaces was

available to be arranged in the 4 niches considered for the BAPs in this study (i.e.

the number of machines in series for all the BAPs in this study is m = 5, see Figure

3.3). The problem had therefore a total number of
(
nt+m−2
m−2

)
feasible solutions. With nt

selected as 6 in this case, the total number of potential solutions amounted to
(
9
3

)
= 84.

From the 84, 10 were selected and the true mean values to their respective objective

functions were obtained in the manner described in the previous paragraph. Because

the total number of storage spaces used in this case was known and kept constant,

objective WP of Chapter 3 was calculated differently here. Instead of being the sum of

buffer spaces used in a solution like in Chapter 3, here it is rather the average work-in-

progress rate; still to be minimised. The selected IZ values for TR and WP were 0.2 and

0.12, respectively. Additional information about the problem is summarised in Table

6.2, and observations on the BAP model were made over a period of 100 days. The

system was treated as a terminating system.
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Table 6.2: Machines information for the BAP.

Machine 1 2 3 4 5

Processing times (µi) 60 min 55 min 50 min 46 min 43 min

ODFs (λi) 100 100 100 100 100

Repair times (βi) 120 min 120 min 120 min 120 min 120 min

6.2.2 Results and validation

The ten solutions preselected and their estimated true mean performances are shown

in Tables 6.3 and 6.4, respectively.

Table 6.3: Selected solutions in the BAP.

System 1 2 3 4 5

(x1, x2, x3, x4) (1,1,1,3) (1,1,2,2) (1,2,1,2) (1,2,2,1) (2,1,1,2)

System 6 7 8 9 10

(x1, x2, x3, x4) (2,1,2,1) (2,2,1,1) (3,1,1,1) (1,3,1,1) (1,1,3,1)

Table 6.4: Estimated true means in the BAP.

System 1 2 3 4 5

(TR,WP ) (16.42, 1.65) (16.66, 1.76) (16.97, 2.02) (17.14, 2.13) (17.04, 2.42)

System 6 7 8 9 10

(TR,WP ) (17.28, 2.55) (17.48, 2.83) (17.23, 3.19) (17.18, 2.37) (16.73, 1.86)

From Table 6.4, the true relaxed Pareto set can thus be obtained following the

definition in Section 4.2.2.1. Figure 6.3 illustrates the true relaxed Pareto set for the

BAP in this section. It follows from the figure that, except Systems 5 and 8, every

other system in the set can be considered as relaxed Pareto-optimal.

With this information at hand, the MMY in MOOSolver could then be tested for

validation. The result obtained by the suite is summarised in Table 6.5. The table

shows that every system in the set preselected can be considered as relaxed Pareto-

optimal except for Systems 5 and 8. The status column indicates, in effect, that the

necessary number of observations was made for all considered systems. The reader

can also observe that the highest number of observations made on a system during the
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Figure 6.3: The true relaxed Pareto set for the BAP (Yoon, 2018).

execution of the procedure was 143 (made on System 9), which is way less than 10

000. With the lowest number of observations made being 15, one can only imagine

how inefficient using an LFC-based approach (see Section 3.1.3) would be in this case.

The result in Table 6.5 is in effect valid when compared to the true relaxed Pareto set.

This, therefore, validates the implementation of the MMY procedure in MOOSolver and

shows the efficiency of the procedure. Consequently as a result, the COM-Interface IPC

procedure (Figure 5.2) is also valid.

Table 6.5: BAP result as obtained by MOOSolver.

Solution TR WP S2
TR

S2
WP

Rank Runs Status ID

(1,1,1,3) 16.44 1.49 0.06 0.04 0 36 0 1

(1,1,2,2) 16.69 1.62 0.07 0.05 0 37 0 2

(1,1,3,1) 16.76 1.71 0.06 0.09 0 37 0 10

(1,2,1,2) 17.00 1.85 0.08 0.07 0 41 0 3

(2,1,1,2) 17.08 2.18 0.07 0.05 2 77 0 5

(1,2,2,1) 17.17 1.96 0.08 0.09 0 41 0 4

(3,1,1,1) 17.18 2.82 0.08 0.05 3 15 0 8

(1,3,1,1) 17.22 2.14 0.07 0.15 0 143 0 9

(2,1,2,1) 17.31 2.32 0.07 0.07 0 41 0 6

(2,2,1,1) 17.50 2.55 0.08 0.10 0 41 0 7
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6.3 Chapter summary

In this chapter, the author validated the multi-objective optimisation suite developed

in the previous chapters. To do this, standard deterministic MOO test problems were

used as well as a variant of the buffer allocation problem in the literature with known

solutions. The BAP is a stochastic problem.

In the next chapter, the MOO suite is used to solve well know problems from the

literature as well as in practice and the solution approach proposed in Section 4.1.1 is

tested.
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Chapter 7

Case studies

In the previous chapter, the optimisation suite was successfully validated using standard

MOO deterministic test problems as well as a variant of the buffer allocation problem,

which is a MOO stochastic problem.

In this chapter, the author uses the suite to solve MOSO case studies. The purpose

of this chapter is to demonstrate that MOOSolver can, in effect, handle problems that

are modelled within the framework described in Chapter 2. The first problem is the

same buffer allocation problem presented in Chapter 3 where it was solved with the

TPS built-in optimisation suite whereas the second problem is a known inventory-

management problem. The problems are solved using the HRH approach proposed in

Section 4.1.1.

7.1 The buffer allocation problem

This problem was described in Section 3.2 where it was solved using the TPS built-in

optimisation suite. In this section, the problem is solved again using the MOOSolver

library. The results obtained by the MOO suite are then compared to those obtained

in Chapter 3.

7.1.1 Specifics of the problem solved

All the specifics of the BAP in Chapter 3 are also used here. The small difference,

however, is in the feasible solution space. Whereas in Chapter 3 the solution space

was made 1 ≤ xi ≤ 20, here it is made 0 ≤ xi ≤ 20. In effect, in the original version
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(Bekker, 2012) of the BAP used in this study, Bekker (2012) considered the possibility

of having no buffer at all at xi. Using the optimisation suite in TPS, however, the GA

could not, for some reason, handle such a space and kept returning error messages. The

author had to, therefore, adjust the space slightly from 0 ≤ xi ≤ 20 to 1 ≤ xi ≤ 20.

Despite the small difference, it is believed that the results from both chapters can still

be compared.

The MOO CEM parameters were selected as follows: The maximum evaluations

value was made 5 000, the number of outer loops was made 100, epsilon was made 1

and the population size was made 100.

The number of observations per solution was, arbitrarily, selected as 15 (assumed

to be high enough) and observations were made over a simulation period of 10 days (all

similar to the BAP in Chapter 3). The system was treated as a terminating system.

7.1.2 Results and discussion

After running the MOO CEM, the approximate Pareto front shown in Figure 7.1 was

obtained with a total of 78 solutions. This section will be divided into two parts. In

the first part, the author will compare the results obtained by MOOSolver with those

in Section 3.2.3 while in the second part, the results obtained by the MOO suite will

be analysed further using the proposed interactive HRH approach.

Figure 7.1: Pareto front obtained by MOOSolver for the BAP.
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7.1.2.1 Pareto vs. Weighting sum approaches

Table 7.1: Comparing solutions obtained in Chapter 3 with similar and better solutions

from the approximate Pareto set obtained by MOOSolver.

Weighting sum solutions Pareto solutions

x1 = (5, 5, 4, 2) TR = 64.74 WP = 16 x11 = (4, 4, 3, 2) TR = 180.60 WP = 13

x12 = (5, 4, 3, 2) TR = 182.07 WP = 14

x13 = (5, 5, 3, 2) TR = 185.53 WP = 15

x2 = (6, 6, 4, 2) TR = 87.77 WP = 18 x21 = (6, 5, 5, 2) TR = 188.93 WP = 18

x22 = (6, 6, 4, 3) TR = 189.73 WP = 19

x3 = (10, 8, 7, 4) TR = 108.80 WP = 29 x31 = (8, 8, 5, 4) TR = 196.80 WP = 25

x32 = (9, 5, 8, 4) TR = 197.47 WP = 26

x33 = (9, 5, 7, 6) TR = 198.47 WP = 27

x34 = (8, 10, 6, 4) TR = 200.00 WP = 28

x35 = (10, 8, 8, 4) TR = 201.33 WP = 30

x4 = (13, 10, 9, 7) TR = 155.93 WP = 39 x41 = (1, 1, 1, 1) TR = 146.90 WP = 4

x42 = (1, 2, 1, 1) TR = 152.80 WP = 5

x43 = (2, 2, 1, 1) TR = 156.27 WP = 6

x44 = (2, 3, 1, 1) TR = 161.20 WP = 7

x45 = (3, 3, 2, 1) TR = 169.80 WP = 9

x46 = (3, 3, 2, 2) TR = 172.27 WP = 10

x5 = (18, 11, 9, 12) TR = 205.60 WP = 50 x51 = (13, 9, 6, 6) TR = 202.07 WP = 34

x52 = (13, 10, 8, 8) TR = 204.67 WP = 39

x53 = (14, 13, 9, 10) TR = 205.20 WP = 46

The BAP in this chapter was first presented in Section 3.2, where it was solved

as a large-scale SO problem using the TPS built-in optimisation suite, which uses a

weighting sum approach in solving MOO problems. Having analysed the results in that

section, it was proposed that using a MOO technique that utilises the Pareto approach

would be a better choice than using one that utilises a weighting sum one. In this

section, the benefit of using the Pareto approach is demonstrated by comparing the

results obtained by MOOSolver to those obtained in Section 3.2.

To compare the results in both chapters, the author selected from the approximate

Pareto set obtained by MOOSolver, solutions whose TR or WP values were similar

to those obtained in Table 3.5 of Chapter 3. Because the Pareto approach outputs

a large number of solutions, every solution obtained by the weighting sum approach
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Figure 7.2: Visualisation of the comparison made in Table 7.1.

in Table 3.5 is placed against similar solutions obtained by the Pareto approach with

respect to either the solutions’ TR or WP performances. The idea here is to showcase

possible missed opportunities in the form of Pareto solutions obtained by the Pareto

approach, which the weighting sum approach could not find, given the weights that

were selected. Table 7.1 illustrates the comparison, while Figure 7.2 provides a better

visualisation of the comparison. (Note that the solutions were “numbered” to improve

their visualisation.)

The comparison in Table 7.1 (and Figure 7.2) shows the superiority of the Pareto

approach in this case. Even though the approach does not give decision-makers the

convenience of selecting weights that exhibit their preferences, it provides them instead

with a set of relatively high-quality solutions they can choose from, which in the author’s

assessment, is a better option to have (better than the weight selection convenience).

In addition, it can be argued that decision-makers may know their preferences better

once they actually know the alternatives they have.

In the next section, it is assumed that having seen the approximate Pareto set, a

decision-maker can easily select from it a subset they prefer. This set is subsequently

analysed further for more accurate estimates and a guaranteed correct selection.
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7.1.2.2 Further analysis of the MOOSolver results

In this section, the results obtained by MOOSolver using the MOO CEM are analysed

further with the MMY procedure. The large-scale approach proposed in Section 4.1.1

is therefore used. Just as a reminder to the reader, the goal of the approach is to reduce

the large-scale MOSO problem into a small-scale one that preselects a number of good

solutions (as obtained by the metaheuristic). These preselected solutions or scenarios

are those the decision-maker has a biased interest towards, relative to the other solutions

in the approximate Pareto set. It is therefore assumed that the decision-maker desires

to have better result estimates for these solutions as well as a guarantee of making a

correct selection out of the set.

Two experiments will be conducted in this section in order to test the interactive

HRH approach. In the first experiment, it is assumed that the decision-maker has an

interest in solutions that achieve a WP performance no larger than 50 and a TR value

of at least 180. Figure 7.3 illustrates the decision-maker’s bias.

Figure 7.3: The decision-maker’s assumed preference in the first experiment for the

interactive HRH approach in the BAP.

From the set of possible solutions from which the decision-maker can choose, there-

fore, it is assumed that those presented in Table 7.2 are the ones they select as scenarios

to be analysed further by the MMY procedure in MOOSolver.
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Table 7.2: Decision-maker’s preselected scenarios from Figure 7.3 and their respective

results before using the MMY procedure.

ID Solution TR WP

1 (4,4,3,2) 180.60 13

2 (5,5,3,2) 185.53 15

3 (5,6,4,4) 188.07 19

4 (6,6,4,4) 190.20 20

5 (8,7,4,4) 194.20 23

6 (8,9,5,4) 197.13 26

7 (9,5,7,6) 198.47 27

8 (13,9,6,6) 202.07 34

9 (16,9,9,5) 203.07 39

10 (14,13,9,10) 205.20 46

With this selection, it is also assumed that the decision-maker chooses IZ values δ∗

of 3.5 and 2 for throughput (TR) and total sum buffers (WP ), respectively. The MMY

procedure is now ready to be run after specifying explicitly to the suite via the wizard

(MMY Parameters group box) that the number of scenarios selected is 10 (see Figure

5.6). Table 7.3 illustrates the results returned by MOOSolver for this first experiment.

Table 7.3: MMY results by MOOSolver in the first experiment for the interactive HRH

approach in the BAP.

Solution TR WP S2
TR

S2
WP

Rank Runs Status ID

(14,13,9,10) 198.28 46 138.84 0.00 0 217 0 10

(16,9,9,5) 196.53 39 121.43 0.00 0 191 0 9

(13,9,6,6) 195.69 34 119.67 0.00 0 189 0 8

(9,5,7,6) 190.80 27 115.44 0.00 1 206 0 7

(8,9,5,4) 191.47 26 105.73 0.00 0 206 0 6

(8,7,4,4) 188.67 23 93.02 0.00 0 173 0 5

(6,6,4,4) 185.25 20 113.13 0.00 0 203 0 4

(5,6,4,4) 184.23 19 100.26 0.00 0 210 0 3

(5,5,3,2) 179.28 15 91.19 0.00 0 231 0 2

(4,4,3,2) 175.36 13 92.69 0.00 0 146 0 1
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The first difference that can be noticed in Table 7.3 when compared to Table 7.2

is the different estimate values for TR. Table 7.3 provides, of course, better estimates

for the selected solutions. Thus, before going further, the decision-maker can already

discard solutions whose estimates now fall outside their preferred limits (illustrated here

in Figure 7.3). Observe for example that Solutions 1 and 2 have now TR values that

are less than the user-preferred threshold in this first experiment. Moreover, according

to the Rank column of Table 7.3, Solution 7 should not be selected by the decision-

maker either as it is now dominated (in the relaxed Pareto set sense). The reader can

also observe that the variance values in column S2
WP

are all 0. This is because WP

in this variant of the BAP is calculated as the total sum of buffers used in a solution,

which remains constant in every observation made on the solution. This is in contrast

to the WP in Chapter 6 which is calculated as the average WIP in the system and

thus varies with every observation, as shown in the variance column (S2
WP

) of Table

6.5. Also observe the relatively high number of runs for this experiment in the Runs

column, probably indicating that the IZ values selected in this case are relatively small.

Nonetheless, the values in the Status column inform the decision-maker that correct

selection with accuracy of at least 90% is guaranteed (see Section 5.2.2).

In the second experiment, the decision-maker’s assumed preference is made as shown

in Figure 7.4. The IZ values are kept the same as in the first experiment (δ∗ = [3.5, 2])

and the preselected scenarios are as shown in Table 7.4.

Table 7.4: Decision-maker’s preselected scenarios from Figure 7.4 and their respective

results before using the MMY procedure.

ID Solution TR WP

1 (7,6,3,5) 190.93 21

2 (8,10,6,4) 200.00 28

3 (8,9,5,4) 197.13 26

4 (8,6,5,4) 194.47 23

5 (8,8,5,4) 196.80 25

6 (8,6,4,4) 193.40 22

7 (8,7,4,4) 194.20 23

The second experiment tells the decision-maker that, only Solutions 2, 3 and 5 in

Table 7.4 are within their preferred limits (Figure 7.4) with respect to the solutions
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Figure 7.4: The decision-maker’s assumed preference in the second experiment for the

interactive HRH approach in the BAP.

Table 7.5: MMY results by MOOSolver in the second experiment for the interactive

HRH approach in the BAP.

Solution TR WP S2
TR

S2
WP

Rank Runs Status ID

(8,10,6,4) 192.42 28 122.78 0.00 0 191 0 2

(8,9,5,4) 191.54 26 104.28 0.00 0 191 0 3

(8,8,5,4) 190.51 25 92.92 0.00 0 162 0 5

(8,6,5,4) 189.14 23 87.39 0.00 0 155 0 4

(8,7,4,4) 188.53 23 86.74 0.00 0 155 0 7

(8,6,4,4) 188.33 22 98.95 0.00 0 155 0 6

(7,6,3,5) 185.14 21 98.30 0.00 0 155 0 1

new estimate values. Note also that this is all with respect to the chosen IZ values (in

both experiments) as they are the parameters that control how many observations are

necessary per solution in order to guarantee correct selection. This means that had

the decision-maker chosen larger IZ values, perhaps the discarded solutions (1, 4, 6

and 7) would have remained within the desired limits. But in this case they are not.

Nonetheless, they still do form part of correct selection from what is indicated in the

Rank column. In effect, for this experiment, all the preselected scenarios are relaxed

Pareto-optimal.
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This concludes the BAP case study. In this section, the author was able to demon-

strate the relevance of the solution approach proposed in this thesis as well as the benefit

of using the Pareto approach when solving MOO problems. In the following section,

another problem is considered and the interactive HRH approach is tested further.

7.2 The (s, S) inventory problem

In this section, a variant of the well-known (s, S) inventory problem described in detail

by Bashyam & Fu (1998), is considered. The problem is adjusted for the purpose of

this study (based on the work of Bekker & Aldrich (2011)) to conform with the MOSO

framework described in Chapter 2.

Consider a system in which a single, discrete commodity is sold to customers who

arrive according to a Poisson process, with a rate of arrival λ. The inter-arrival times

are thus exponentially distributed with mean β. Assume the demand of customer c is

distributed according to a given distribution and all demands are processed according

to an exponential distribution with a mean of µ. The manager of this process will wait

until the inventory is consumed below the reorder point s, and then reorder a quantity

S. A lead time before delivery follows a given distribution, during which customers

still demand the commodity. Figure 7.5 shows typical characteristics of the process

described.

Table 7.6: Notation for the (s, S) inventory problem.

It the inventory level at time t when customer c arrives;

SL the service level;

Dc the number of units demanded by customer c;

Nc the total number of customers arriving in period [0, T ];

Ic the total inventory cost during period [0, T ];

Sc the number of units that cannot be supplied to customer c.

Now, consider the notation in Table 7.6. When the inventory reaches zero and the

replenishment has not arrived, a stockout period follows during which customers cannot

be served. All demands during that period are considered lost sales, which must be

avoided from a profit point of view.
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Figure 7.5: Typical characteristics of the (s, S) inventory process (Bekker, 2012).

The service level is given by

SL =

∑Nc
c=1Dc −

∑Nc
c=1 |Sc|∑Nc

c=1Dc

· 100% (7.1)

while stockout follows from

Sc = 0 : It ≥ Dc, (7.2)

Sc = It −Dc : It < Dc. (7.3)

It is assumed that the holding area is infinite and the supplier reliable, i.e. each

time an order is placed, the correct number of units is received after the lead time

has elapsed. If It ≥ Dc when customer c places an order, the customer is satisfied

and considered a happy customer otherwise they are dissatisfied and considered a lost

opportunity. Backlogs are not allowed. When the replenishment quantity arrives, It is

adjusted according to It + S. The decision variables in this problem are s and S, and

the performance measures (objectives) are the total inventory cost Ic over period [0, T ]

and the service level SL.
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7.2.1 Specifics of the problem solved

The specifics of the problem considered in this study are as follows: The arrival rate

is λ = 3 customers every hour, the inter-arrival time has thus a mean of β = 20 min.

The demand of customer c is distributed according to bWeibull(1, 8)c and demands

are processed according to µ = 18 min. Lead time before delivery follows a triangular

distribution (14,12,20) in hours. Additionally, carrying inventory incurs a cost. Holding

cost is taken as ZAR 10/unit/unit time, and the administration fee of a reorder is taken

as ZAR 100.

The MOSO question is thus: Given that the decision variables are arbitrarily limited

as: 0 < s ≤ 500 and 0 < S ≤ 500. For what values of s and S will Ic be at a minimum

while SL is at maximum, in the presence of element ξ caused by customers’ arrivals,

demands and order lead times. The problem can be formulated as

Minimise E[Ic((s, S), ξ)],

Maximise E[SL((s, S), ξ)]

Subject to

0 < s ≤ 500 and 0 < S ≤ 500.

The manager of this process will want to service all customers while carrying as

little inventory as possible. Note that the objectives are conflicting, and their values

are measured in different units.

The problem was modelled in TPS and solved using MOOSolver. The [0, T ] period

was taken to be 50 days while the number of observations per solution was made,

arbitrarily, 10 (10 was assumed to be high enough). The simulation model was treated

as a terminating system.

The MOO CEM parameters were selected as follows: The maximum evaluations

value was made 1 800, epsilon was made 2.5, the number of outer loops was made 10

and the population size was made 30.

7.2.2 Results and discussion

After running the MOO CEM, the approximate Pareto front shown in Figure 7.6 was

obtained with a total of 317 solutions. In this section, two experiments will be con-
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sidered where the IZ values of the OFs will be varied. It will be assumed that the

decision-maker’s preference with respect to the approximate Pareto set obtained will

remain the same in both experiments. The goal here is again to test the proposed

interactive HRH approach, but this time, through the analysis of the change in the

results obtained by the MMY procedure when the IZ values are varied for the same set

of selected solutions.

Figure 7.6: Pareto front obtained by MOOSolver for the (s, S) inventory problem.

The decision-maker’s preference in this problem is as shown in Figure 7.7. In other

words, they are only interested in solutions of which the total inventory cost does not

exceed ZAR 20 000 and with service level at least 85%. The specific solutions selected

from the subset are shown in Table 7.7.

In the first experiment, the IZ values are chosen as δ∗ = [350, 2] for the total

inventory cost and the service level, respectively. The results obtained after running

the MMY procedure are shown in Table 7.8.

The results obtained in this experiment indicate that all the solutions selected are

relaxed Pareto-optimal. Additionally, except for Solution 7 whose SL estimate now falls

outside the limits illustrated in Figure 7.7, all other solutions are within the preference

limits set by the decision-maker. It can also be observed that it did not take many

observation runs in this experiment to guarantee correct selection; this is probably

because the IZ values selected were relatively large.
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Figure 7.7: The decision-maker’s assumed preference in the two experiments for the

interactive HRH approach in the (s, S) inventory problem.

Table 7.7: Decision-maker’s preselected scenarios from Figure 7.7 and their respective

results before using the MMY procedure.

ID Solution Ic SL

1 (400, 415) 19 983.37 95.23

2 (319, 384) 16 082.11 87.63

3 (340, 350) 16 510.60 88.85

4 (388, 366) 18 677.84 93.30

5 (387, 393) 19 116.79 93.95

6 (349, 381) 17 220.49 90.78

7 (304, 366) 15 229.99 85.12

8 (368, 387) 18 119.63 92.54

9 (349, 353) 16 923.18 89.98

In the second experiment, the IZ values are made smaller. The respective values

of 250 and 0.5 are now selected for the total inventory cost and the service level,

respectively. The results obtained by the MOO suite are presented in Table 7.9.

The interesting fact about the results in Table 7.9 is that despite the significant

increase in the number of runs for most solutions, the new estimates obtained are not
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Table 7.8: MMY results by MOOSolver in the first experiment for the interactive HRH

approach in the (s, S) inventory problem.

Solution Ic SL S2
Ic

S2
SL

Rank Runs Status ID

(400, 415) 19 916.67 94.99 107 867.70 1.07 0 22 0 1

(387, 393) 19 074.36 93.74 89 341.15 0.98 0 19 0 5

(388, 366) 18 611.53 93.15 85 465.04 0.93 0 18 0 4

(368, 387) 18 115.15 92.24 113 963.96 1.22 0 22 0 8

(349, 381) 17 254.48 90.59 61 037.42 1.33 0 18 0 6

(349, 353) 16 889.57 89.79 78 010.87 1.14 0 18 0 9

(340, 350) 16 477.48 88.66 62 945.17 1.33 0 24 0 3

(319, 384) 15 999.15 87.32 64 612.75 2.24 0 24 0 2

(304, 366) 15 247.81 84.97 57 848.71 2.62 0 17 0 7

Table 7.9: MMY results by MOOSolver in the second experiment for the interactive

HRH approach in the (s, S) inventory problem.

Solution Ic SL S2
Ic

S2
SL

Rank Runs Status ID

(400, 415) 19 792.22 94.60 159 104.45 1.23 0 105 0 1

(387, 393) 18 900.63 93.31 142 068.94 1.34 0 118 0 5

(388, 366) 18 318.51 92.50 173 160.90 1.67 0 186 0 4

(368, 387) 17 955.93 91.72 136 602.77 1.77 0 131 0 8

(349, 381) 17 043.05 89.70 104 588.56 1.96 0 145 0 6

(349, 353) 16 706.73 89.11 114 825.09 2.00 0 160 0 9

(340, 350) 16 309.58 88.03 99 679.23 2.15 0 171 0 3

(319, 384) 15 898.34 86.61 87 061.41 1.99 0 124 0 2

(304, 366) 15 153.71 84.38 61 931.82 2.10 0 44 0 7

very different from the ones in the previous experiment. In fact, the relaxed Pareto

set is the same. The reader can see, nonetheless, how a change in IZ values influences

the computational effort in order to guarantee correct selection. Just for interest, the

IZ values are reduced further in an attempt to reach the simulation budget limit in

MOOSolver and illustrate the kind of output results the decision-maker can, typically,

expect in such a situation. To do so, the IZ values are made 100 and 0.25 for Ic and

SL, respectively. Given the number of observation runs that were needed in the second

experiment with δ∗ = [250, 0.5], this should make MOOSolver reach its current limit.
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The results of this test are shown in Table 7.10.

Table 7.10: MMY results by MOOSolver in the (s, S) inventory problem for, relatively,

very small IZ values.

Solution Ic SL S2
Ic

S2
SL

Rank Runs Status ID

(400, 415) 19 728.34 94.48 138 262.73 1.01 0 250 1 1

(387, 393) 18 845.56 93.34 141 759.60 1.38 0 250 2 5

(388, 366) 18 301.64 92.47 167 480.00 1.73 0 250 2 4

(368, 387) 17 915.15 91.70 129 755.29 1.76 0 250 2 8

(349, 381) 17 033.30 89.71 106 781.61 2.13 0 250 1 6

(349, 353) 16 708.90 89.13 109 951.38 2.06 0 250 2 9

(340, 350) 16 298.12 88.03 101 501.87 2.09 0 250 1 3

(319, 384) 15 864.93 86.55 86 376.63 2.10 0 250 1 2

(304, 366) 15 137.62 84.33 74 629.82 2.22 0 130 0 7

The results of Table 7.10 are a good example of a case where the number of sim-

ulation runs required to guarantee correct selection exceeds the budget. Except for

Solution 7, every other solution in Table 7.10 needs additional observation runs, given

the relatively small choice of IZ values. This is indicated by the Runs, as well as the

Status columns. When the value in column Runs is 250 for a solution (250 is the

current limit allowed by MOOSolver) and the Status column (of the same solution)

has a value greater than 0, this is an indication that the budget limit was reached be-

fore the procedure could ensure the “statistical soundness” of the given solution (with

respect to the IZ values selected) relative to the other solutions in the set. In effect,

the procedure does pairwise comparisons whereby each solution is compared to every

other solution in the set. Thus, in order for the Status column to show a value of 0

(indicative of guaranteed correct selection) for a particular solution, the solution must

“pass” all the pairwise comparison “tests”. In Table 7.10, only Solution 7 achieves this.

Solution 7 is therefore, for argument sake, the only solution that can be selected with a

guarantee of at least 90% that its estimated values for Ic and SL are what they appear

to be in the table in relation to all the other estimated values (again, given the selected

IZ values in this case). As was mentioned in Section 5.2.2, the values 1 and 2 in the

Status column have technical meanings in the implementation context of the MMY
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procedure for MOOSolver. It is sufficient for the user or the decision-maker to know

that a value greater than 0 in this column indicates “no correct selection guaranteed”.

7.3 Chapter summary

In this chapter, the author solved two well-known problems in the literature, namely,

the buffer allocation problem and the (s, S) inventory problem. These problems were

solved using the multi-objective optimisation suite, namely MOOSolver, developed in

the previous chapters. In the BAP case, it was demonstrated using the results obtained

by the suite that the algorithm used for large-scale problems provides higher quality

solutions than the current approach used in Tecnomatix Plant Simulation. And in

the case of both problems, namely the BAP and the (s, S) inventory problem, the

author demonstrated the relevance of the approach proposed in this study for large-

scale MOSO problems.
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Chapter 8

Summary and conclusions

This chapter concludes the research presented in this document. The chapter is divided

into three parts; in the first part, a summary of the thesis is presented. In the second

part, the shortcomings experienced during the project are described while in the last

part, proposals for future work are made.

8.1 Thesis summary

The aim in this study was to develop a MOO optimisation suite for Tecnomatix

Plant Simulation in order to strengthen the simulation software capabilities in han-

dling stochastic MOO problems.

To do this, the literature was studied first in Chapter 2. The idea here was to

gain as much information as needed regarding the existing solution approaches for

stochastic MOO problems. It was found that the stochastic optimisation field is, in

effect, vast, with many existing solution techniques. Nonetheless, it was also found

that many techniques in the literature were not perfect and that there was potential

for improvements and contributions, especially in the MOO context.

In Chapter 3, the limitations of Tecnomatix Plant Simulation were demonstrated

by solving two problems in both the small-scale and the large-scale SO contexts. The

results obtained served as a confirmation that there was, indeed, a gap between what

was being done by the software and what exists in the literature. This motivated further

the need for developing the MOO suite that is the main subject of this thesis.

The conceptual design of the MOO suite as well as its proposed solution approach
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was subsequently described in Chapter 4. The selected algorithms used in the pro-

posed solution approach were described in full detail in this chapter.

In Chapter 5, the development and the implementation of the optimisation suite

was presented. The focus of the chapter was placed on the integration process used

to merge the suite and the discrete-event simulation software. Additionally, the user-

interface developed specifically for TPS was described in great detail.

In Chapter 6, the product developed in the last two chapters was validated using

problems that have known solutions. The goal here was, essentially, twofold. One, to

ensure that the inter-process communication procedures used in the previous chapter

was successfully implemented and two, to also ensure that the selected algorithms were

implemented correctly. The results obtained in this chapter showed that the MOO

suite development and implementation were valid.

Having a valid MOO tool for stochastic problems, it was now to be tested using

well-known problems in practice and in the literature; this was done in Chapter 7.

The goal of the chapter was also to test the solution approach proposed in this study

and its relevance; the goal was successfully achieved.

8.2 Thesis shortcomings

The initial idea for the thesis was the development of a hybrid MOO suite that included

more than one metaheuristic. In effect, the word hybrid was understood in this case as

the “bringing together” of different, separate, metaheuristics to be implemented within

the optimisation suite and be used in order to compare their respective results to each

other. Having done the literature study, however, more was learned concerning the

hybrid metaheuristic field and the aims of the study were subsequently adjusted from

using many metaheuristics to combining metaheuristics with additional techniques in

order to make the optimisation suite an effective tool for MOSO problems.

Nonetheless, the author had considered using more than one metaheuristic in the

context of having each of them handle problems of different decision variables nature.

This could not be done, as can be observed in the study, due to time constraints. In

effect, the optimisation suite uses a metaheuristic that specialises in the optimisation of

problems with continuous decision variables. But as was mentioned in this study also

(Chapter 2), metaheuristics are flexible algorithms and they can be used for various

103

Stellenbosch University  https://scholar.sun.ac.za



8.3 Future work propositions

kinds of problems without the need to be modified greatly. This was thus a perfect

example of this, as the selected metaheuristic (Chapter 4) was used to solve problems

with discrete decision variables (Chapter 7) and yet still achieved quality results. It

is nonetheless important to, at least, explore the possibility of using specialised meta-

heuristics for discrete problems (on discrete problems) and this thesis fell short on doing

so.

8.3 Future work propositions

The stochastic multi-objective optimisation field is a very interesting one with enough

room for contributions and improvements.

It is the author’s opinion that many solutions in the literature and in practice are

imperfect. This thesis is a good illustration of this reality. And even though the work

presented in this thesis made an attempt to add onto the MOSO field, it still has aspects

that can/could be improved or built upon. This section looks into such aspects, which

are presented as potential future works.

1. First, the literature showed that there are many existing metaheuristics (and other

search mechanisms for that matter). Adding additional metaheuristics (perhaps

even exploring the potential of non-metaheuristics) to the suite and providing

solid rationales for doing so is thus a definite possible, valuable, contribution to

add onto the works that was started by this thesis. This proposal can also be

supported by the discussion in the previous section.

2. Then, multi-objective optimisation is often limited to two objectives in the lit-

erature. Exploring a possible increase in the number of objectives the suite can

handle would make an interesting topic of study. This will of course pose problems

of efficiency, and demand effective implementations to ensure the practicality of

the solution approaches. Multi-objective optimisation is in effect by itself a com-

putationally demanding task, and when combined with simulation, the efficiency

challenge increases all the more. This is certainly not an easy one, but as the

author has learned throughout this project, a true engineer thrive in the face of

“limitations” and “problems”. The most important things are to know the final

destination and be persistent in journey.
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3. Finally, better integration of rigorous statistical techniques and metaheuristics in

the simulation optimisation context (i.e. using a LRH approach in place of the

HRH proposed in this work, as was already proposed in this study) is another

challenging and interesting area of study in the SO field that will certainly benefit

from future contributions.

8.4 Chapter summary

This chapter provided a close to this research. A summary of the work accomplished

was presented, followed by the shortcomings of the thesis. Finally, areas for potential

future works based on the study done in this thesis were suggested.
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Appendix A

Additional tests for the MOO
CEM metaheuristic

In this appendix, the author provides additional tests for the MOO CEM metaheuristic.

In the first section, a Chi-square goodness-of-fit test is performed on the standard MOO

test problem MOP4 (see Table 6.1). In the second section, results for different tests

(using different MOO CEM parameters) for the buffer allocation problem of Chapter

7 are presented.

A.1 The Chi-square goodness-of-fit test for MOP4

The purpose of this test is to support the validation of the MOO CEM implementation

in MOOSolver provided in Chapter 6.

In this section, the author reports on the results of 101 runs of the MOO suite in

solving the MOP4. To perform the Chi-square test (which would validate, or not, the

results being reported), the hyperareas (HAs) for each run were calculated. (The HAs

were calculated as the areas under the obtained Pareto fronts in each run.) These were

then compared to the known hyperarea (i.e. the reference HA) for the MOP4.

To perform the Chi-square goodness-of-fit test, the following equation is used

χ2
calc =

k∑
i=1

[(
Oi − Ei
Ei

)2
]
,

where k is the number of runs made, which is 101; Oi is the reference hyperarea

(denoted as Ref. HA in Table A.1) in run i, i = 1, 2, ..., k. It is the known HA for

MOP4 and is constant in all runs; and Ei is the HA for run i, i = 1, 2, ..., k, obtained
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A.1 The Chi-square goodness-of-fit test for MOP4

by running the metaheuristic via MOOSolver. χ2
calc is the calculated Chi-square value

which must be compared to a critical Chi-square (χ2
crit) value. χ2

crit is obtained by

using k (to calculate the degrees of freedom i.e. k−1), the Chi-square distribution (i.e.

the upper critical one-tailed values) and a significance level α, which is usually 5%. It

follows from the Chi-square distribution that χ2
crit = 124.34 in this case.

Next, a null hypothesis H0 is made, which is that the results obtained by the

MOO CEM implementation in MOOSolver for MOP4 (with the selected optimisation

parameters) are a valid approximation of that of the known result to the problem.

According to the Chi-square goodness-of-fit test, if χ2
calc > χ2

crit, H0 must be rejected.

Otherwise, there is no sufficient evidence to reject H0.

The results from the 101 runs, which are recorded in Table A.1 (in the HA columns),

were used to perform the test. χ2
calc was calculated as 38.516, which is less than 124.34.

There is thus no sufficient evidence to reject H0, and therefore the implementation of

the algorithm can be deemed valid (in the MOP4 context) based on the test result.

For the reader’s interest, the Pareto fronts for some of the runs (randomly selected)

are illustrated in Figures A.1 and A.2, where they are compared to the known Pareto

front. Note that the known Pareto front has approximately 870 solutions.

(a) Run no. 3 (130 solutions). (b) Run no. 12 (113 solutions).

Figure A.1: Selected Pareto fronts for the MOP4 test problem solved with MOOSolver.
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A.1 The Chi-square goodness-of-fit test for MOP4

(a) Run no. 40 (124 solutions). (b) Run no. 47 (86 solutions).

(c) Run no. 66 (84 solutions). (d) Run no. 81 (95 solutions).

(e) Run no. 90 (78 solutions). (f) Run no. 95 (80 solutions).

Figure A.2: Selected Pareto fronts for the MOP4 test problem solved with MOOSolver.
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A.2 Results for the MOO CEM parameters test performed for the buffer
allocation problem

A.2 Results for the MOO CEM parameters test performed
for the buffer allocation problem

Tables A.2 and A.3 illustrate the results that were obtained (i.e. run times and number

of solutions) by varying the MOO CEM parameters (as well as the number of obser-

vations) for different runs of the buffer allocation problem of Chapter 7. In particular,

Table A.2 contains the results of Tests 1, 2 and 3 while Table A.3 contains the results

for Test 4.

The tests in Table A.2 focus on the impact of changing the number of observations

as well as the number of loops while the maximum number of evaluations and other pa-

rameters are kept constant. Test 1 uses a value of 50 for the number of loops parameter

whereas Test 2 and 3 use 20 and 80, respectively. Judging from the run times of the

different tests, it was concluded that a value of 20, for the number of loops parameter,

is too little for this problem.

Table A.2: Test results for the BAP using different parameters of the MOO CEM.

Test 1.0 Test 1.1 Test 1.2 Test 2.0 Test 2.1 Test 2.2 Test 3.0 Test 3.1 Test 3.2

No. Observations 5 15 25 5 15 25 5 15 25

Epsilon 1 1 1 1 1 1 1 1 1

Alpha 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

No. Loops 50 50 50 20 20 20 80 80 80

Pop. Size 50 50 50 50 50 50 50 50 50

Inverse probability 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Max. Evaluation 10000 10000 10000 10000 10000 10000 10000 10000 10000

Run time 03:55 min 14:39 min 20:03 min 02:12 min 05:26 min 09:22 min 04:16 min 13:35 min 23:24 min

No. Solutions 86 111 117 79 98 87 108 108 117

The tests in Table A.3, on the other hand, focus on the impact of changing the

maximum number of evaluations while the other parameters are kept constant. Test 4

was used, in particular, to verify whether convergence toward a potential true Pareto

front was occurring, as the number of evaluations allowed was being increased. Selected

Pareto fronts from this test were compared and the comparison is illustrated in Figure

A.3. Figure A.3 shows that convergence does, in effect, occur. Note, for example, how

the Pareto fronts for Test 4.4 and Test 4.5 are virtually the same. Test 4.4 parameters

were used to solve the BAP in Chapter 7.
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A.2 Results for the MOO CEM parameters test performed for the buffer
allocation problem

Table A.3: Test results for the BAP using different parameters of the MOO CEM.

Test 4.0.0 Test 4.0.1 Test 4.0.2 Test 4.0.3 Test 4.1 Test 4.2 Test 4.3 Test 4.4 Test 4.5

No. Observations 15 15 15 15 15 15 5 15 15

Epsilon 1 1 1 1 1 1 1 1 1

Alpha 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

No. Loops 100 100 100 100 100 100 100 100 100

Pop. Size 100 100 100 100 100 100 100 100 100

Inverse probability 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Max. Evaluation 100 200 500 800 2000 3000 4000 5000 10000

Run time NA 26 sec 52 sec 01:05 min 02:58 min 04:06 min 05:45 min 06:21 min 12:56 min

No. Solutions NA 28 35 33 50 61 70 78 105

Figure A.3: Comparison of Pareto fronts obtained by varying the MOO CEM’s Maxi-
mum evaluation parameter for the BAP (Bamporiki & Bekker, 2018).
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Appendix B

How to build a
MOOSolver-ready model in
Tecnomatix Plant Simulation

In this appendix, directives on how to build a discrete-event, multi-objective simulation

model in Tecnomatix Plant Simulation that is ready to serve as the simulation evaluator

for the simulation optimisation process conducted by MOOSolver, are provided.

It is assumed that, at this point, the user has validly built a model in TPS under

the MOOSolver problem framework presented in Chapter 2 and desires to utilise the

simulation optimisation services of the MOOSolver library to find approximate Pareto

solutions to their problem.

Before providing the model parameters to the MOO suite graphical user-interface

for TPS (MSWizard), a few things must be checked and/or done in order to allow for

a valid SO process. They are presented in a stepwise manner below.

B.1 Step one: The EventController object

• Ensure that their is an EventController object on the same frame as the model

(Figure B.1).

• Please do not rename the object (it should not, actually, be possible to rename

this particular object).

• Use the object to verify that the model returns correct values for the objective

functions. The user should run the object once or twice to ensure that their model
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B.2 Step two: Decision variables and Objective functions

Figure B.1: The EventController object in the frame.

works as they desire.

B.2 Step two: Decision variables and Objective functions

• Ensure that the decision variables and objective functions are Variable objects.

• Ensure also that they are located on the same frame as the model.

Figure B.2: DVs and OFs in the frame.

• Next, ensure that the data types for both the DVs and OFs variable objects in

the frame are real (Figure B.3). This is not to say, in the DVs case for example,

that the nature of the DVs are continuous. This is simply done to facilitate the

inter-process communication between TPS and MOOSolver. In effect, the MOO-

Solver code works with variables of type real during the optimisation procedure.

Since there is a direct exchange of information between the suite and TPS at this

particular phase of the SO process, all the variables involved during the process in
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B.2 Step two: Decision variables and Objective functions

TPS (DVs and OFs) must have data types that are consistent with that which is

used by MOOSolver. As for the DVs nature, they are specified via the MSWizard

(see next appendix) and the suite takes them into account during the SO process

to do the necessary conversions.

Figure B.3: DVs and OFs data types in the frame.

• It is important to also ensure that the Initial value check boxes for both DVs and

OFs are unchecked.

Figure B.4: The Initial value check boxes for all DVs and OFs Variable objects must
be unchecked.

• If the model has an Init method in it, it is important to ensure, in cases where the

method contains the DVs, that the DVs are not assigned values in this method.
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B.2 Step two: Decision variables and Objective functions

This is in effect the same as enabling initial values for the DVs via the Variable

object, as discussed before. The problem with having initial values for DVs is

that they overwrite the values that MOOSolver proposes as candidate solutions

to be estimated via simulation during the optimisation procedure; hence making

the SO process invalid. This must be avoided.
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Appendix C

MSWizard: a walk-through on
how to use the MOOSolver
user-interface for Tecnomatix
Plant Simulation

MSWizard is the MOOSolver graphical user-interface for Tecnomatix Plant Simulation.

In the previous appendix, directives on how to build a MOOSolver-ready model were

provided assuming that the user had a valid model already. Here, it is assumed that

the model is both valid and MOOSolver-ready. Next are a number of steps that should

help the user utilise the MSWizard effectively.

C.1 Step One: Placing the MSWizard in the frame

• The user must ensure that the MSWizard is in the same frame as their model

(Figure C.1).

Figure C.1: MSWizard in frame.
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C.1 Step One: Placing the MSWizard in the frame

• To do this, the user must go to the Home tab and click on the Manage Class

Library icon (Figure C.2).

Figure C.2: Opening the Manage Class library icon on the Home tab in TPS.

• On the window that opens, the user must go to the Libraries tab and click on

the check box to the left of MSWizard. Click Apply then OK (Figure C.3).

Figure C.3: Activating the MSWizard in TPS.

• On the Class Library pane, the MSWizard icon should now be visible. The user

can now drag the MSWizard object and drop it in the same frame as their model

(Figure C.4).
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C.2 Step Two: Defining the MOSO problem to MOOSolver

Figure C.4: The MSWizard in the Class Library pane, ready to be dragged and dropped.

C.2 Step Two: Defining the MOSO problem to MOO-
Solver

In this step, the user defines their MOSO problem to MOOSolver via the MSWizard.

With the MSWizard now in the frame, the user must right click the object and choose

the Show Dialog option. The MSWizard GUI should now be opened. On the Define

tab of the wizard, the user must do the following:

• First, specify the number of DVs that their model contains (Figure C.5).

Figure C.5: Specify the number of DVs in the model.

• Then, click on the Open button next to Variables definition in the Decision

variables group box, to open the DVs definition table. When the table opens,
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C.2 Step Two: Defining the MOSO problem to MOOSolver

before the user is able to enter the DVs parameters, they must Deactivate

the Inherit Contents option on the List tab, by clicking on the Inherit Contents

icon as shown in Figure C.6. Once deactivated, it should no longer have the blue

shade around it and the user should now be able to enter the DVs parameters

into the table.

Figure C.6: Deactivating the Inherit Contents icon.

• Next, the user must enter the DVs location in the appropriate cells in the table

(Figure C.7), up to 10 DVs can currently be entered. The number of DVs entered

must be consistent with the number of DVs specified previously (Figure C.5).

DVs locations can be entered in two ways: by manually typing them out in

the cells, in which case care must be taken in following the right format i.e.

.Models.NameOfTheFrame.NameOfTheDV; or by dragging and dropping

them from the frame to the cells.

Figure C.7: Entering the DVs’ locations or paths into MSWizard.

• Then, the user must specify the DVs’ boundaries as well as each DV’s respective

nature (Figure C.8). Click Apply and close the table.
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C.2 Step Two: Defining the MOSO problem to MOOSolver

Figure C.8: Entering the DVs boundaries and natures into MSWizard.

• Similarly for OFs, the user must open the OFs definition table, deactivate the

inherited contents, enter the OFs’ locations (Figure C.9, Step 2) and enter the

OFs’ respective optimisation directions (Figure C.9, Step 3). If solving a small-

scale problem, then the IZ values for each OF must be specified as well (Figure

C.9, Step 4), otherwise click Apply and close the table.

Figure C.9: Entering the OFs parameters into MSWizard.

• Finally, the user must specify the desired number of observations per solution

which the metaheuristic will utilise during the optimisation procedure (Figure

C.10). Click Apply and go to the Optimisation Parameters tab.
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C.3 Step Three: Running the MOOSolver suite

Figure C.10: Entering an arbitrary number of observations per solution for the meta-
heuristic.

C.3 Step Three: Running the MOOSolver suite

Now that the MOSO problem has been defined, it is time to solve it. The steps are as

follows:

• The user must first specify the optimisation parameters of the algorithm they

desire to run, in the Optimisation Parameters tab (Figure C.11).

Figure C.11: The MSWizard Optimisation Parameters tab.

C.3.1 Running the MOO CEM

• For the MOO CEM, the user must ensure that they provide appropriate values

for the metaheuristic’s parameters (Figure C.12). It is advised to run the meta-

heuristic a number of times while adjusting the parameters each time. This way,

the results obtained by each set of parameters can be compared (see Section A.2).

• Before running the metaheuristic, the user must save the model. This is

important because MOOSolver opens an instance of the model of interest as a
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C.3 Step Three: Running the MOOSolver suite

Figure C.12: Specifying the optimisation parameters for the MOO CEM.

background process during the SO process. To ensure that the model to be opened

has the latest updates or changes made since the last save, it is recommended

to always save before running.

• To run the metaheuristic, the user must press the Start button in the Simulation-

Optimisation group box in the Run tab (Figure C.13). The message shown in

Figure C.14 is then displayed, to which the user must press OK.

Figure C.13: Starting the MOO CEM.

• When the execution is complete, the message shown in Figure C.15 is displayed,

to which the user must press OK. A table containing the approximate Pareto

solutions also appears on the screen when the execution is complete (Figure C.16).

The table has the format illustrated in Table 5.1. Once closed the table can always

be accessed again, by pressing on the Results button (Figure C.13).
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C.3 Step Three: Running the MOOSolver suite

Figure C.14: Prompt message by MOOSolver before execution.

Figure C.15: Prompt message by MOOSolver when the MOO CEM run is complete.

Figure C.16: The MOO CEM results table.

C.3.2 Running the MMY

• For the MMY, the user must ensure that they provide the R&S procedure’s

parameters (Figure C.17). Particularly, the user must first specify the number

of scenarios to be compared (Figure C.17, Step 1); then they must define the

scenarios (i.e. specify the DVs’ values for each scenario) in the MMY Scenarios
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C.3 Step Three: Running the MOOSolver suite

table (Figure C.18, Step 2); finally, if not done already when defining the OFs,

the user must specify their desired IZ values for each OF in the OFs definition

table (Figures C.17, Step 3; and C.9, Step 4).

Figure C.17: Specifying the optimisation parameters for the MMY procedure.

Figure C.18: Defining scenarios for the MMY procedure.

• In the case where the user is utilising solutions from the metaheuristic’s results

as scenarios for the R&S procedure, the user can simply copy their preferred

solutions (the DVs values) from the MOO CEM results table (Figure C.19) and

paste them in the Scenarios table.

• Before running the R&S procedure, the user must save the model. This is
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C.3 Step Three: Running the MOOSolver suite

Figure C.19: Selecting scenarios for the MMY procedure from the MOO CEM results
table.

important because MOOSolver opens an instance of the model of interest as a

background process during the SO process. To ensure that the model to be opened

has the latest updates or changes made since the last save, it is recommended

to always save before running.

• To run the R&S procedure, the user must press the Start button in the Ranking

and Selection group box in the Run tab (Figure C.20). The message shown in

Figure C.14 is then displayed, to which the user must press OK.

Figure C.20: Starting the MMY procedure.

• When the execution is complete, the message shown in Figure C.21 is displayed,

to which the user must press OK. A table containing the R&S results also appears

on the screen when the execution is complete (Figure C.22). The table has the

format illustrated in Table 5.2. Once closed, the table can always be accessed

again by pressing on the Results button (Figure C.20).
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C.4 Troubleshooting

Figure C.21: Prompt message by MOOSolver when the MMY run is complete.

(a) Part one.

(b) Part two.

Figure C.22: The MMY results table.

C.4 Troubleshooting

In Appendix B, directives were given that must be followed in order to successfully

make use of the MOOSolver suite. Moreover, Sections C.2 and C.3 provide detailed

steps to be followed when making use of the MSWizard. Following these instructions

and carefully defining a model’s parameters into the wizard should ensure that technical

errors are avoided, and that the MOOSolver execution is done smoothly.

Nevertheless, we are humans and involuntary lack of attention may lead to mistakes
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C.4 Troubleshooting

such as forgetting to ensure that one or two directives from Appendix B are followed,

typos, inconsistencies in the parameters definition process etc.

In this section, three typical errors that can occur are presented as well as the

reasons why they may occur and what the user should do when they occur.

C.4.1 Error type one: Severe run time error in C-Interface

The following mistakes may cause this error to occur:

• An inconsistency in the parameters definition process e.g. entering the number

of DVs as, for example, 4 and yet defining only three. Or, similarly, entering a

number of scenarios that is inconsistent with those defined.

• A typo or typos, specifically in the DVs definition process.

When MOOSolver is executed in the presence of these mistakes, TPS error messages

such as the one in Figure C.23, may be displayed. The user must ensure that no such

messages are returned by TPS upon execution of the suite. If presented with such

messages, however, the user must do the following:

Figure C.23: A typical TPS error message that may be caused by a typo.

1. Close the error message.

2. The following error message i.e. Figure C.24a may then be displayed, followed

by another one i.e. Figure C.24b. They must both be closed.

3. Then, as a result of this error, the TPS application closes automatically while,

simultaneously, saving a backup for the model.
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C.4 Troubleshooting

(a) First message.

(b) Second message.

Figure C.24: Possible error messages caused by the severe run time error in C-Interface
error type.

4. Before opening TPS again, the user must first ensure that they manually close the

TPS application that was opened as a background process when they executed

MOOSolver. (This is because TPS background processes opened by MOOSolver,

close automatically only after a MOOSolver execution has been successful; which

is not the case here.) To do so, they must open the Task Manager by simultane-

ously pressing: Ctrl + Alt + Delete on the keyboard. In the Task Manager, find

the TPS application in question (it should be among other background processes

being run by the computer), and close it. Some computers clearly distinguish

between main and background processes while others do not. In cases where the

computer does not make the distinction, the user must be careful in selecting the

right TPS application to close if there are other TPS applications opened.

5. When opening TPS anew, the message in Figure C.25 should be presented to the

user. If the user is not sure whether they saved their model before execution,

they must choose Yes. The saved backup model should then open. This version
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C.4 Troubleshooting

of the model still has the errors that caused the application and the model to

crash. The user must, therefore, check for potential mistakes before attempting

another execution of the optimisation suite. Moreover, the user must note that

the backup model has a new, generic name. They may want to save the model

as, and give it back its original name. On the other hand, the user may also

choose No, in which case they can open their model themselves. This model may

or may not have the error that caused the model to crash depending on when

it was last saved before execution. But since it is recommended to always save

before execution, chances are that the mistakes are still present; and so the user

must still check for potential mistakes before attempting another execution of the

optimisation suite.

Figure C.25: Possible TPS message after the application crashed.

C.4.2 Error type two: Error in external C function

As far as the author has tested the optimisation suite, only one kind of mistake seem to

be the cause of this error: typos in variables definition. When MOOSolver is executed

in the presence of such mistakes, TPS error messages such as the one in Figure C.23,

may again be displayed. The user must ensure that no such messages are returned

by TPS upon execution of the optimisation suite. If presented with such messages,

however, the user must do the following:

1. Close the error message.

2. The following error message may then be displayed i.e. Figure C.26. It must be

closed.
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C.4 Troubleshooting

Figure C.26: A possible error message caused by the error in external C function error
type.

3. Unlike in the previous error type case, this error does not, typically, cause TPS

to crash. Once all error messages are closed, the user may proceed with fixing the

mistakes that caused the error. However, a TPS background process may have

been opened and be active. The user must, therefore, check the Task Manager

first (see Section C.4.1) and possibly close it.

C.4.3 Error type three: Infinite loop

The last error type is the possibility for the SO process to be caught in an infinite loop.

A typical error message that may indicate this is illustrated in Figure C.27. Although

this error message does not always mean infinite loop, it would normally disappear

after a short while if there is no infinite loop. In the case of an infinite loop, it remains

on the screen. The following mistakes may cause this error type:

Figure C.27: The error message signifying a possible infinite loop error type.

• Using initial values for the DVs.

137

Stellenbosch University  https://scholar.sun.ac.za



C.5 Final recommendation

• Using data types other than real for DVs and OFs.

• Typos.

When this error type occurs, the user must do the following:

1. Go to the Task Manager (see Section C.4.1) and close both the main and the

background TPS processes.

2. Open TPS anew and open the model. There is no backup models saved in this

case.

3. Fix the mistakes and execute the optimisation suite again.

C.5 Final recommendation

In general, multi-objective SO problems take longer to run than their single-objective

counterpart. It is hence recommended to the user to be a little conservative in their

optimisation parameters selection when solving their problems for the first time using

MOOSolver. Doing this will serve as a way of giving them an idea of how long they

should expect to wait after the MOO suite is executed with their preferred parameters.
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