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Abstract

The service delivery of public healthcare is severely threatened due to insufficient resources.
A current South African public healthcare organisation responsible for processing pathological
specimens makes use of a public transportation network containing laboratories of multiple tiers
corresponding to different processing capabilities in its business model. The effective transporta-
tion of specimens between facilities in this network may potentially lead to significant financial
cost savings.

The quest to establish a mathematical model for the transportation of specimens in this trans-
portation network has led to the formulation of a novel variant of the celebrated vehicle routing
problem (VRP) in the operations research literature, called the tiered-facility vehicle routing
problem with global cross-docking (TVRPGC). This tri-objective combinatorial optimisation
problem calls for the efficient route scheduling of a vehicle fleet tasked with the transportation
of pathological specimens. The objectives of the model are to minimise the total distance covered
by the fleet (so as to save on transportation variable costs), to minimise the number of vehicles
required for specimen collection (so as to save on transportation fixed costs), and to minimise
the travel time of the vehicle which spends the longest time on the road (so as to ensure speci-
men integrity and balance driver workload). The model constraints take into account maximum
driver autonomy (a constraint on the time a vehicle may spend on the road), specimen collection
demand, permissible workloads at the various facilities in the network of processing laboratories,
and requirements in terms of which laboratories are capable of processing the various specimens.
Crucially, the model also allows for the novel feature of local hand-over of specimens at facilities
between vehicles.

The aforementioned model is validated, and exact and approximate solution techniques are
developed for the model and implemented on a computer. These techniques draw inspiration
from a thorough study of the prototype VRP in the literature — the capacitated VRP.

Investigations are launched into (i) the computational complexity of the exact solution proce-
dure, (ii) the quality of solutions returned by the approximate solution technique with respect
to a real-life instance of the TVRPGC within a South African pathology healthcare service
provider context, and (iii) the desirability of a facility clustering-based approach toward decom-
posing instances of the TVRPGC into smaller problem subinstances.
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Uittreksel

Dienslewering in publieke gesondheidsorg word noemenswaardig deur onvoldoende hulpbronne
gekniehalter. ’n Huidige Suid-Afrikaanse gesondheidsorg-organisasie wat verantwoordelik is vir
die analasie en verwerking van patologiese monsters maak van ’n publieke vervoernetwerk met
laboratoria van verskeie verwerkingskapasiteite in sy besigheidsmodel gebruik. Die doeltref-
fende vervoer van monsters tussen fasiliteite in hierdie netwerk mag potensieel tot beduidende
finansiële kostebesparings lei.

Pogings tot die daarstelling van ’n wiskundige model vir die verskeping van monsters in hierdie
vervoernetwerk het gelei na die formulering van ’n nuwe variasie op die gevierde voertuigroe-
teringsprobleem (VRP) in die operasionele navorsingsliteratuur wat as die veelvlakkige-fasiliteit
voertuigroeteringsprobleem met globale kruiskonsolidasie (VVRPGK) bekend staan. Hierdie drie-
doelige kombinatoriese optimeringsprobleem vra na die doeltreffende roete-skedulering van ’n
vloot voertuie geoormerk vir die verskeping van patologiese monsters. Die doele van die model
is om die totale afstand wat deur die vloot voertuie afgelê word, te minimeer (besparing van
verskepingsveranderlike-koste), om die getal voertuie in die vloot wat vir monsterverskeping
benodig word, te minimeer (besparing van verskepingsvastekoste), en om die tydsduur van die
voertuig wat die langste tyd op die pad deurbring, te minimeer (handhawing van monster-
integriteit en die balansering van voertuigbestuurderwerkslading). Die modelbeperkings neem
in ag die maksimum bestuurderoutonomie (’n beperking op die tydsduur wat ’n bestuurder op
die pad mag deurbring), aanvraag na monsterverskeping, toelaatbare werksladings by die on-
derskeie fasiliteite in die netwerk van verwerkingslaboratoria, en vereistes in terme van watter
laboratoria daartoe in staat is om die onderskeie monsters te verwerk. Die kruks van die model
is egter die nuwe kenmerk waarvolgens lokale kruiskonsolidasie van monsters tussen voertuie by
enige fasiliteit toegelaat word.

Die bogenoemde model gevalideer daar word ook eksakte en benaderde oplossings-
tegnieke vir die model ontwikkel en rekenaarmatig gëımplementeer. Hierdie tegnieke vind in-
spirasie uit ’n deeglike studie van die prototipe VRP in die literatuur — die gekapasiteerde
VRP.

Daar word ondersoek ingestel na (i) die berekeningskompleksiteit van die eksakte oplossingsmeto-
dologie, (ii) die kwaliteit van oplossings gelewer deur die benaderde oplossingstegniek in die
konteks van ’n realistiese VVRPGK geval in die Suid Afrikaanse patologiese gesondheidsdiens,
en (iii) die wenslikheid van ’n fasiliteitsgroeperingsbenadering tot dekomposisie van VVRPGK
gevalle na kleiner probleemdeelgevalle.
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CHAPTER 1

Introduction

Contents
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Informal problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Dissertation objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Dissertation scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Dissertation organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Background

Healthcare is one of the quintessential pillars of any civilised society, with the first evidence of
surgery dating back to the stone age [402] and the profession of a medical doctor being evident
in the hieroglyphics of the ancient Egyptians, dating back to 3 000 BC [269]. After hygiene
and nutrition, the advancement of healthcare has been the third-most prevalent factor in the
increase of the average human life expectancy [179], with modern medicine now being able to
combat fatal afflictions of yesteryears. These advancements have resulted in a doubling of the
average life expectancy over the past 200 years, with a highest average life expectancy of 89.52
being achieved in the Principality of Monaco [236].

Unfortunately, the benefits of these advancements have not been distributed equally. The global
discrepancies in these benefits are highlighted in Figure 1.1, which clearly illustrates that Africa
has been the greatest laggard in respect of the benefits of healthcare. Philosophically speaking,
the value of a human life is priceless, but in reality this number varies from R3.4 million to R24.2
million based on the value of a statistical human life1 [68]. However controversial the notion of
placing a value on a human life, it is widely accepted that every individual should have access
to healthcare.

In a utopian society, free high-quality healthcare would be available to everyone. Unfortunately,
however, only a select few have the resources available to guarantee them access to quality
healthcare — a situation reminiscent of Orwell’s notion that “all animals are equal but some
animals are more equal than others” [331]. The vast majority of the world population relies on
public health care provided by the state, with over 400 million people not having access to even

1The economic term value of a statistical human life is a measure of how much wealth an individual is willing
to exchange for small changes in mortality risks. If, for example, a 100 000 people were each willing to spend a
R100 to decrease their chances of mortality, the estimated statistical value of a human life would be R10 million.

1
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2 Chapter 1. Introduction

Figure 1.1: National life expectancies (in years) [450].

the most basic form of healthcare [449]. States have varying levels of resources and expertise
at their disposal, with most developing states being severely under-resourced. Figure 1.2 illus-
trates the vast discrepancies in the ratios of trained physicians to patients in each country, with
Tanzania and Malawi registering 50 000 patients per physician [241].

A blanket approach to public health care policies and infrastructure is not possible due to the
typically large geographic fluctuation of resources, demographics and region-specific needs, as
outlined above. A conference was therefore held in January 2008 in Maputo, Mozambique with
a view to establish, in collaboration with the World Health Organisation, the Centre for Disease
Control and Prevention, the United States Agency for International Development, the American
Society for Clinical Pathology, the Clinton Foundation, the Bill and Melinda Gates Foundation
and the Supply Chain Management System [396], recommendations for health care services of
developing nations with limited resources. This conference gave rise to inter alia a framework for
tiered, integrated national networks of pathology laboratories with the aim of strengthening these
laboratory capacities in resource-limited countries. Amongst several other African states, South
Africa took part in the development of this framework (and is also a signatory of the subsequent
Maputo Declaration). A prominent South African pathological medical service provider, in fact,
currently makes use of such a tiered laboratory network. Its laboratories are partitioned into
four tiers: primary laboratories (tier 1), district laboratories (tier 2), regional laboratories (tier
3) and national laboratories (tier 4). Several other organisations in other countries also already
employ tiered laboratory networks, such as the National Health Service of the United Kingdom,
the Ethiopian Public Health Institute of Ethiopia, and the public healthcare services of eight
different African countries [453].

The number of facility tiers in such pathological laboratory systems and the sophistication of
specimen testing performed at each tier typically vary, depending on the population served, the
physical infrastructure available (including road conditions), basic resources available (such as
water and electricity) and the availability of trained technical personnel in-country [396]. The
tier allocation is, however, typically nested in the sense that a facility of tier i can process any
type of pathological specimen that can be processed at a facility of tier j if j < i, but certain
specimen types exist which can be processed at a facility of tier i that cannot be processed at any
facility of a lower tier. Facilities of the lowest tier represent customers at which the commodities
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Figure 1.2: Global physician-to-patient ratios [241].

originate and have to be collected — these facilities have no specimen processing or storage
capabilities — their only role is to introduce new specimens into the system. Facilities of higher
tiers may or may not introduce new specimens into the system, but their distinguishing feature
is that they all offer specimen processing capabilities.

The efficient management of the pathological specimen transportation logistics2 of a tiered
network is crucial for its effective implementation. An often overlooked component in the de-
velopment and operation of such a tiered pathological system is logistics costs and supply chain
management. The healthcare sector is associated with notoriously poor industry standards in
supply chain management [177]. Innovative logistics management is expected to help provide
better quality service delivery by pathological medical service providers whilst lowering the cost
of healthcare provision.

Pathology service provision, and especially publicly provided pathology service provision, face
severe financial pressure in a number of countries. In South Africa, for example, the National
Health Laboratory Service is currently in a financial crisis with debts exceeding R5-billion [10],
while in the United Kingdom the National Health Service pathology section has embarked on a
long-term rationalisation process with a view to reduce costs significantly [92]. Although speci-
men collection and transportation are crucial activities to the operation of a pathology service,
these activities do not represent specialised laboratory services or require large numbers of staff
with specialised skills. Accordingly, these activities should be prioritised when investigating
mechanisms by which to reduce pathology service delivery costs.

2Logistics has played an integral role in global development for over 5 000 years [127], but the term was only
coined during the wars between the ancient Greek city states and the budding Roman empire when military
officers, called Logistikas, were assigned duties related to the supply and distribution of resources [45]. The first
evidence of logistics may, however, be found in the material handling technology used during the construction
of the Egyptian pyramids, progressing through to the use of Greek rowing vessels which laid the foundation for
intercontinental trade, eventually leading to the defeat of the Germans during World War II and finally resulting
in the modern commercial notion of supply chain management [127].
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4 Chapter 1. Introduction

The provision of decision support, based on a mathematical modelling approach, to logistics
managers tasked with routing decisions for a fleet of vehicles dedicated to pathological specimen
collection is therefore expected to be of considerable financial benefit to a pathology service.

1.2 Informal problem description

The problem considered in this dissertation is that of decision support aimed at the improvement
of the transportation network system efficiency associated with the collection and delivery re-
quirements of commodities in a tiered-facility processing system (such as the type of pathological
specimen collection described in §1.1). A mathematical modelling approach towards achieving
such a decision support capability gives rise to a new type of vehicle routing problem (VRP),
henceforth called the tiered-facility vehicle routing problem with global cross-docking (TVRPGC).

Each commodity within a TVRPGC network is required to be transported from a collection
facility and delivered to a facility capable of processing the commodity. The efficiency of the
transportation process may be improved by the pursuit of three objectives, namely

• to minimise the total distance travelled by vehicles during the commodity collection and
delivery process (a variable cost objective),

• to minimise the maximum length of time that any commodity collection and delivery
vehicle spends on the road (a driver autonomy-related objective aimed at the avoidance
of driver fatigue and the preservation of commodity integrity), and finally

• to minimise the maximum number of vehicles utilised during the specimen transportation
process (a fixed cost objective).

The ability of a facility to process a commodity depends on the type of commodity as well
as the personnel and equipment present at the facility. Within a TVRPGC network, certain
commodities may typically only be processed at facilities of a certain tier or higher. The facility
tiers are therefore assumed to exhibit nested processing capabilities in the sense that a facility
of a specific tier can process all commodity types that are processable at facilities of lower tiers,
but there are certain types of commodities that are processable at the facility tier in question
which are not processable at any lower tiered facility.

If, upon arrival at a facility, it is found that a commodity has been delivered to a facility
that does not have the required processing capabilities, the commodity will require additional
transportation to a higher-tiered facility. A commodity may therefore possibly have to be
transported to several intermediate facilities due to the processing limitations of the different
tiers of facilities before being delivered to a laboratory of a suitable tier for its processing.
A facility may consequently exhibit a positive or a negative demand for commodities of any
particular type, depending on whether commodities of this type are required to be collected
from or deposited at the facility.

The facilities of a TVRPGC organisation are only available for commodity collection and delivery
during specific time windows (i.e. during certain hours of the day). The number of commodity
transportation vehicles available is also limited, and the maximum time that a vehicle can travel
before returning to its home depot should typically remain below a pre-specified limit.

The different types of commodities are all associated with varying expiration time windows,
depending on the nature of the commodities and the storage techniques utilised to maintain
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commodity integrity. Commodities must therefore be delivered to facilities that are able to
process them within a certain time frame.

The TVRPGC described above is rich in requirements and complexity, and exhibits novel fea-
tures not accommodated by the existing VRP models in the academic literature. These novel
aspects include:

• Facilitation of global cross-docking of commodities (handover of commodities from one
vehicle to another at any facility within the network) so as to allow for the eventual
delivery of commodities at facilities of appropriate tiers.

• Construction of a daily commodity transportation vehicle routing schedule, but allowing
for the possibility that the daily routes of the vehicles are not exactly the same every day
(due to stochastic variability of commodity samples entering the system).

• Roads of the same distance may not be traversable within the same time due to differing
road conditions (some roads perhaps being in rural areas, for example, and hence inducing
difficult travel conditions).

The problem is furthermore multi-objective in nature, requiring the pursuit of Pareto-optimal
(trade-off) solutions instead of unique optimal solutions as is traditionally the case in VRP
models. For these reasons, a novel VRP model is established in this dissertation in order
to accommodate the unique requirements of the type of commodity transportation problem
described above. An approximate, efficient solution methodology for the TVRPGC is also
designed, implemented and tested.

Although specifically tailored to the pathological specimen transportation problem described
in §1.1, it is anticipated that the TVRPGC may admit various other applications. One such
alternative application may involve the collection and delivery of parcels for a national postal
service. The tiers of sorting facilities in this application may be determined by the intended
destinations of parcels, such as local, regional, provincial, national or international destinations.
Once delivered at a sorting facility, a parcel may require additional transportation to a sorting
facility of an appropriate tier.

1.3 Dissertation objectives

The following nine objectives are pursued in this dissertation:

I To conduct a thorough survey of the literature related to the multi-objective combinatorial
optimisation problem considered in this dissertation with a view to develop an understand-
ing of how similar mathematical models have been formulated and solved in the past for
similar problems. In particular, literature related to the following areas is to be consulted:

(a) vehicle routing problems in general, and the archetypal capacitated vehicle routing
problem (CVRP) in particular,

(b) methods of data clustering into groups according to a similarity measure, as well as
measuring the quality of such clustering,

(c) exact methods for solving combinatorial optimisation problems, and

(d) (meta)heuristic methods for solving combinatorial optimisation problems.
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II To study the CVRP in depth with a view to lay a sound foundation for a later mathematical
model formulation applicable to the TVRPGC. This study is to take the form of:

(a) a personal computer implementation of a suitable mathematical model for the CVRP
(which may be generalised at a later stage so as to incorporate the additional require-
ments of the TVRPGC) within a software environment that will allow exact solution
of small instances of the CVRP,

(b) a verification and a validation of the model implementation in Objective II(a) in
the context of benchmark test instances of various sizes from the literature (i.e. of
different levels of complexity) for which optimal solutions are known,

(c) the design and implementation of suitable metaheuristics capable of approximately
solving large instances of the model derived in pursuit of Objective II(a),

(d) a verification and a validation of the metaheuristic algorithmic implementation of
Objective II(c) in the context of the same benchmark test instances considered in
pursuit of Objective II(b), and

(e) an investigation into the improvement in solution time gained and the trade-off degra-
dation in solution quality incurred by incorporating a heuristic clustering step aimed
at vehicle service zone formation when solving the model of Objective II(a) before im-
plementing the exact solution technique of Objectives II(a)–(b) or the metaheuristic
solution technique of Objectives II(c)–(d).

III To formulate a mathematical model for the TVRPGC in the form of a tri-objective combi-
natorial optimisation problem, taking into account all the constraints dictated by typical
practical situations. This formulation should build upon the basic underlying CVRP model
formulation of Objective II(a).

IV To establish hypothetical TVRPGC test instances of various sizes (i.e. of different levels
of complexity) for the model of Objective III, and to make these available online.

V To ascertain the complexity associated with solving the TVRPGC model of Objective III
exactly by implementing the model within an appropriate exact solution software envi-
ronment, and then attempting to solve the model exactly in the context of the small test
instances of Objective IV.

VI To design and implement a metaheuristic solution approach capable of solving even the
large TVRPGC test instances of Objective IV. This should include a parameter evalu-
ation experiment aimed at identifying suitable values for all the parameters required in
implementation of the metaheuristic within the context of the test instances.

VII To validate the approximate solution approaches of Objective VI with respect to a real-
world TVRPGC case study in the context of pathological specimen collection by a health-
care service provider.

VIII To investigate the potential extent of improvements in solution time that may be gained
and the corresponding trade-off degradations in solution quality incurred by incorporat-
ing a heuristic clustering step aimed at vehicle service zone formation when solving the
TVRPGC model of Objective III, before implementing the metaheuristic solution tech-
niques of Objective VI in the context of the model test instances of Objective IV.

IX To suggest sensible, related future work which may be pursued in follow-up studies to the
research reported in this dissertation.
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1.4 Dissertation scope

The range of facilities, vehicle fleet composition, demand requirements and modelling approaches
that may be considered in the context of a TVRPGC transportation network is extensive. In
order to narrow down the scope of the TVRPGC, the following scope delimitations are adopted
in this dissertation:

• The attributes of individual commodities transported within the network and all the dif-
ferent types of processing that they require at facilities are not modelled explicitly. Since
there may be numerous types of commodities and even more types of possible processing
requirements to which they may be subjected at facilities, the modelling of all these indi-
vidual requirements would be impractical. Modelling consideration is therefore limited to
the overall flow of commodities within the TVRPGC transportation network as opposed to
individual commodity processing requirements. More specifically, the set of commodities
is partitioned into subsets corresponding to the lowest facility tiers at which they may be
processed.

• Route scheduling only involves the main routing operations of a tiered facility network.
Emergency routing requirements (as a result of unforseen, urgent demand or vehicle break-
down) and other ad hoc demands are not considered.

• The locations, demand, and operating hours of every facility are assumed to be known
before the onset of the route scheduling planning window.

• Commodity deterioration is limited to the travel time required to deliver a commodity
to any facility in the TVRPGC network as it is assumed that once a commodity reaches
any facility it can be stored and preserved in such a manner that the deterioration of the
commodity is slowed down to the point where it is henceforth negligible.

• The delivery of a commodity to an appropriate facility tier (capable of processing it) may
occur over several TVRPGC planning periods, depending on the number of facility tiers
present, as the routing schedule of vehicles is only designed to ensure the delivery of a
commodity to a strictly higher tier at the end of a TVRPGC planning period than that
of the tier at which it was initially collected during that period and, as such, it may
take a commodity several planning periods to eventually arrive at a facility capable of its
processing.

1.5 Dissertation organisation

This dissertation comprises fourteen further chapters, following this introductory chapter. These
chapters are partitioned into four parts. The first such part is a literature review and consists of
three chapters. The first of these chapters, Chapter 2, is devoted to a general introduction to and
brief history of various incarnations of the VRP. The classical VRP is discussed in some detail and
descriptions are provided of numerous variations on the VRP that are present in the literature.
These variations are further elaborated upon in terms of their underlying network structure, the
type of transportation requests accommodated, the intra-route constraints enforced, the vehicle
fleet composition available, various inter-route constraints enforced and, finally, the optimisation
objectives adopted.
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Chapter 3 is devoted specifically to the CVRP — the archetypal VRP — because this problem
forms the basis on which a model for the TVRPGC is later established. Various solution ap-
proaches that have been proposed in the literature for solving the CVRP are described. The
chapter initially contains a presentation of different model formulations of the CVRP available
in the literature, and this is followed by a review of various classical exact solution approaches
that have been proposed for solving these mathematical models. More recent exact solution
approaches are then described. The discussion next progresses towards approximate solution
approaches put forward for solving instances of the CVRP, starting with a number of classical
heuristics that have appeared in the literature. More powerful metaheuristics and hybrids of
these methods are finally reviewed and appropriate measures of the quality of solutions returned
by these methods are discussed in the closing sections of the chapter.

The literature on clustering methods is briefly reviewed in Chapter 4, because one of the ob-
jectives in this dissertation is to ascertain the desirability of decomposing large instances of
the CVRP and the TVRPGC into smaller instances of these respective problems by following
a clustering approach in respect of customers. The different clustering paradigms available in
the literature, and the applications of clustering algorithms within each of these paradigms, are
elaborated upon. Crucial features of any successful clustering algorithm are described, such as
the determination of an appropriate number of clusters, validating the clustering returned by
an algorithm and a methodology for the comparison of the quality of results returned by differ-
ent clustering techniques. Finally, admissibility criteria are presented for clustering algorithms
in the form of available methodologies for assessing the sensitivity and stability of clustering
algorithm results.

Part II of the dissertation consists of four further chapters, which are focused on the formulation
of models for the CVRP, their relevant solution methodologies and, finally, the use of clustering
algorithms for partitioning the customer sets of large, real-life CVRP instances into smaller
sub-problems that are easier to solve. The first chapter of Part II, Chapter 5, consists of a brief
model assumption section, a description of the particular mathematical model for the CVRP
adopted in this dissertation and a discussion on the properties of this mathematical model as
well as the viability of solving the model exactly.

Two metaheuristics for solving instances of the CVRP model of Chapter 5 are described in
Chapter 6. The first is a genetic algorithm and the second is an ant colony optimisation imple-
mentation. Details pertaining to the genetic algorithm, as well as its constituent components
(such as the representation of chromosomes, the construction of an initial population, the selec-
tion of the parent chromosomes and, finally, the crossover and mutation operators employed) are
described. A selection of these components are then elaborated upon, highlighting the particular
algorithmic implementation process followed in this dissertation within the context of the CVRP.
The ant colony optimisation algorithm is similarly presented, accompanied by descriptions of
its key components (such as the pheromone trail updating method adopted, the initial heuristic
matrix generation method implemented and the tour refinement methodology employed).

In Chapter 7, a metaheuristic parameter evaluation experiment is carried out for both the genetic
algorithm and the ant colony optimisation algorithm of Chapter 6. This parameter evaluation
is performed in respect of three well-known CVRP benchmark instances with varying degrees
of complexity. The performances of the algorithms are then compared, after which a brief
discussion on the results obtained concludes the chapter.

The final chapter of Part II, Chapter 8, contains a presentation of a clustering approach that may
be followed to decompose large CVRP instances into smaller, more manageable sub-problems.
Key features of the algorithm (such as the determination of the number of clusters and the steps
undertaken to determine which clustering algorithm to implement) are presented. The inclusion
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of this clustering approach within an (approximate) CVRP solution framework is validated
against several well-known benchmark instances and the results are finally discussed briefly.

The specific modelling and solution approaches pertaining to the TVRPGC is the topic of Part
III of this dissertation, which contains three chapters. A novel TVRPGC model formulation
is presented and validated in respect of a small, hypothetical test instance in Chapter 9. The
discussion on the mathematical model formulation contains descriptions of the parameters, vari-
ables, objectives and constraints employed. The potential and versatility of the mathematical
model is demonstrated and the results are discussed to consolidate the importance of establish-
ing a mathematical programming model of the TVRPGC. The need for an approximate solution
technique applicable to realistically sized instances of the TVRPGC model is also highlighted
in this chapter.

A tri-objective ant colony optimisation algorithm, tailored to the specific requirements of the
TVRPGC, is subsequently designed and implemented in Chapter 10. The chapter is focused
around key aspects of the algorithm, including pheromone monitoring, initial heuristic determi-
nation, route construction paradigms, non-dominated front determination and constraint han-
dling. The algorithm contains several parameters and a thorough parameter evaluation is there-
fore also performed in order to determine a set of suitable values for these parameters in the
context of slightly modified, well-known CVRP instances in Chapter 11. A brief discussion of
the results closes both the chapter and Part III.

Part IV of the dissertation consists of two chapters, which are focused on the application of the
ant colony optimisation algorithm to a real-life instance of a TVRPGC. The first chapter of
this part, Chapter 12, contains a detailed description the real-life instance with all the relevant
information presented in such a manner so as to allow for future researchers to replicate the
study while still maintaining client confidentiality. The second chapter of the part, Chapter 13,
is dedicated to a real-world validation of the approximate solution approaches developed in this
dissertation for the TVRPGC by means of a practical case study based on the data presented in
Chapter 12. The results of the case study are discussed and the potential benefits of adopting
the proposed solution methodology in future endeavours within the South African healthcare
sector are highlighted.

Part V contains the summary and conclusion of the dissertation, and consists of two final chap-
ters. The first chapter of this part, Chapter 14, contains a concise summary of the contributions
of the dissertation as well as an appraisal of these contributions. Chapter 15 finally closes the
dissertation and contains a number of recommendations in respect of future work following on
the work reported in this dissertation.
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CHAPTER 2

Vehicle Routing Problems
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This chapter contains a brief introduction to the VRP in §2.1 according to a taxonomy proposed
by Toth and Vigo [428]. Examples of the most prevalent VRP variants are included to illustrate
the real-life applicability of the modifications proposed to the original, classical VRP in each
variation. The first class of variants arises from modifications of the underlying network structure
and is elaborated upon in §2.2. This is followed by a discussion on variations arising from
different transportation requests in §2.3. Variations induced by various intra-route and inter-
route constraints are discussed in §2.4 and §2.5, respectively. The discussion then turns to the
different vehicle fleet characteristics in §2.6. In the VRP literature, three different classes of
objectives are typically pursued. These three broad classes are described briefly in §2.7. The
chapter closes in §2.8 with a brief summary of the work presented in the chapter.

2.1 Introduction

The VRP was first introduced in an article by Dantzig and Ramser [107] in 1959. They were
interested in the real-world application of delivering gasoline to gas stations. The first math-
ematical model for the VRP was proposed in the paper, formulated simply as the celebrated
Travelling Salesman Problem1 (TSP) with the addition of a capacity constraint. An algorith-
mic solution approach was also suggested for the VRP. The algorithm proposed by Dantzig

1The problem of finding a minimum-weight closed route in a weighted, complete graph, visiting every vertex
of the graph exactly once.

13
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and Ramser was limited to small instances of the problem, but in 1964 Clarke and Wright [87]
proposed an efficient greedy heuristic for obtaining good solutions to larger instances of the
VRP. While the VRP is a generalisation of the TSP, it is much more difficult to solve than the
TSP. Exact algorithms exist for the TSP which routinely solve instances with hundreds or even
thousands of vertices [12] while the best exact algorithms for the VRP can currently only solve
instances with roughly a hundred vertices [27, 174].

With such great forerunners, significant research interest has been generated by the problem,
leading to extensive publications on a number of variations on the problem, with a Google
scholar search of the words vehicle routing problem returning over 35 900 entries. In practice,
vehicle routing may encapsulate one of the most significant success stories in operations research
[198]. This success is demonstrated in the case of United Parcel Service (UPS), for example,
where 103 500 drivers follow computer generated vehicle routes every day. These drivers, who
implement a solution to a customised VRP variant, visit 7.9 million customers and handle an
average of 15.6 million packages per annum [433].

Toth and Vigo [428] have suggested a classification system for variations on the VRP in terms
of:

• The underlying network structure,

• the type of transportation requests,

• the constraints that affect each vehicle route individually (intra-route constraints),

• the vehicle fleet composition and their home locations,

• various inter-route constraints, and

• the optimisation objectives.

The remainder of this chapter is devoted to a description of a number of variations on the
classical VRP of Dantzig and Ramser [107], following the above taxonomy.

2.2 Network Structure

In the VRP, tasks are associated with points in space which are usually modelled as the vertices
of a geo-spatial graph. The VRP may therefore be considered as a vertex routing problem as
opposed to an Arc Routing Problem (ARP) in graph theory in which tasks are associated with
connections or links between the vertices. ARPs find real-life application in street sweeping
and inspection, salt gritting and snow removal [97, 145, 454]. In urban areas, the vertices of
the geo-spatial graph are densely populated and a large variety of tasks, such as finding good
garbage collection routes, may be modelled as ARPs. General Routing Problems (GRPs) allow
for a mixture of tasks associated with the vertices and edges of a graph [330]. Another key
difference between a VRP and an ARP is the granularity of the underlying data and network
resolution [428].

A further important problem characteristic of the VRP is the nature of the underlying data.
If these data are symmetric and the movement of vehicles between vertices is unrestricted, the
problem can be modelled on an undirected underlying graph. If, however, there is restriction of
movement between vertices or the associated data related to vehicle flow are asymmetric, the
problem has to be modelled on a directed, mixed or windy graph (see, for example, [210]).
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2.3 Types of Transportation Requests

Following the taxonomy introduced by Toth and Vigo [428], the following popular VRP varia-
tions based on the nature of transportation requests occur in the literature:

Distribution of goods from a depot to customers. This is the most widely associated
type of transportation request in the family of VRPs.

Delivery and Collection. In this case, items are collected from customers in addition to
delivering items to customers, usually at the beginning or the end of the supply chain.
This problem variation is also referred to as a many-to-one VRP when it is acceptable to
assume that the collection and delivery begins and ends at the depot. The earliest and
simplest problem variation in this class is the VRP with backhauls (VRPB) [426]. This
variation deals with a bi-partitioned set of customers — the one subset requiring items
to be delivered while the other subset requires items to be returned to the depot. This
variation is limited to mutually exclusive delivery and collection subsets of customers, while
the VRP with Simultaneous Pickup and Delivery (VRPSD) [313] deals with customers who
have both types of transportation requests. A relaxation of the VRPSD is the VRP with
Divisible Deliveries and Pickups [206], which allows for the collections and deliveries to be
performed over separate trips by the same vehicle.

Simple Visits and Vehicle Scheduling. The first descriptor in this problem variation is
applicable when the service required is simply to visit a location or customer as in the TSP;
the location does not require any service. Another possibility (encapsulated by the second
descriptor) is that certain vehicle route segments have to follow a sequence or schedule
specified a priori.

Alternative and Indirect Services. Real-life situations exist where services can be per-
formed in an alternative manner, such as delivering a parcel to either a customer’s work
address, home address or a central drop-off point within a vicinity of pre-specified radius
from the customer. The Multi-Vehicle Covering Tour Problem (MVCTP) [212] is the in-
stance where the vehicle visits a point that is close enough to the customer. This problem
is, for example, applicable in the delivery of medicine to rural villages [212].

Point-to-Point Transportation. This problem variation deals with the transportation of
goods or people between two specific points. The one point usually acts as a collection
point and the other as a delivery point. In most instances, these locations are not the
depot and applications arise in freight transportation and in passenger transport systems.
The variation is referred to as a many-to-many VRP, and called the Pickup-and-Delivery
Problem (PDP) [120] when applied to goods transportation or the Dial-a-Ride-Problem
(DARP) [428] when applied to passenger transport.

Repeated Supply. This problem variation is associated with goods delivery where a cus-
tomer requires repeated supply over an extended planning horizon. There are two major
subcategories within this variation, namely the Periodic VRP (PVRP) [98] and the In-
ventory Routing Problem (IRP) [70]. The PVRP involves a two-stage planning process.
Visiting patterns are decided upon during the first stage from a set of admissible patterns
specified by the customers. The second stage involves solving the VRP for each day. The
IRP exhibits uniqueness from the other variants as the model is not aimed at responding
to customer demand; the delivery company instead determines when to visit a customer
and how much stock to deliver in order to prevent stock-outs. A variant of the IRP is the
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Vendor Managed Inventory Problem (VMIP) [130]. The IRP is often applied in supply
chain management settings to reduce the well-known bullwhip effect [281]. The VMIP
assumes the use of dynamic data to monitor the customer’s stock levels and schedules
deliveries accordingly.

Non-split and Split Services. In each of the above-mentioned variations it is assumed that
all service tasks are completed by a single vehicle. These variations are collectively referred
to as non-split VRPs. There are, however, cases where the demand exceeds the capacity
of a vehicle or, as Dror and Trudeau [146] showed, savings can be incurred by splitting
service requests into several smaller requests. The Split Delivery VRP (SDVRP) [146]
allows for shipments to be split into arbitrarily smaller shipments.

Combined Shipment and Multi-modal Service. This problem variation is similar to
the SDVRP, but differs from it in the sense that the individual shipments remain intact
while several vehicles transport the shipment from supplier to customer through the use
of intermediate transfer points. This is referred to as a combined shipment VRP and is
commonly applied in multi-modal transport networks.

Routing with Profits and Service Selection. This problem variation deals with the case
where limited resources, such as a limited fleet size, lead to only a subset of the customers
being serviced. It was first introduced as a TSP variation and only later extended to
a VRP variation. The classical approach towards solving this type of problem was to
perform a two-stage decision process with request acceptance preceding a vehicle routing
stage. There are, however, financial benefits to performing these stages simultaneously
[428]. According to Feillet [156], there are three categories of the problem variation. The
first category contains instances in which the routing costs and profits are combined into
a single objective and is referred to as Capacitated Profitable Tour Problem (CPTP) [14].
The second category applies to instances where the objective is to maximise profit with an
upper bound on route length, referred to as the Team Orienteering Problem (TOP) [15].
The final category is referred to as the Prize Collecting VRP (PCVRP) [416], where there
is a lower bound on profit to be collected and the objective is to minimise the routing
cost. More recently there has also been interest in this problem variation where customers
are able to be serviced by a privately owned fleet or an outsourced fleet. This approach is
resorted to when capacity of the fleet is exceeded or for economic reasons [350].

Dynamic and Stochastic Routing. The Dynamic VRP [424] is a variation in which relevant
system conditions only become available during operations, whereas the term stochastic
refers to the system conditions being uncertain, but the uncertainty is linked to a prob-
ability distribution. The dynamic component usually relates to customers’ locations and
demand profiles, while the stochastic element usually results from uncertain demand and
travel time [428].

2.4 Intra-route Constraints

A key factor in defining a specific variation on the classical VRP is the constraints that determine
the feasibility of the vehicle routes.

The first class of general constraints of this form is the class of loading constraints. These con-
straints constitute the simplest type of constraint as they can be written as an overall bound on
a resource consumed at each vertex [428]. A VRP formulation may consist of several capacity
constraints which limit the loading of vehicles, such as volume, weight and space constraints. In
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VRP variants where multi-dimensional packing problems are also considered, such as in [186,
238], the capacity constraints become more complicated as the shipment and cargo containers
used to load vehicles have to be described in either two or three dimensions. Further capacity
complexity is also experienced when the delivery fleet consists of vehicles with multiple com-
partments as, for example, in [119] where the vehicle capacity is modelled as a one-dimensional
vector consisting of partitioned sets.

Route length constraints also form a simple class of constraints that can be applied globally to
limit various types of resource consumption along the edges of the VRP graph. These constraints
can either be modelled as spatial distance constraints or as route duration constraints.

Intra-route constraints arise either from a limited number of available vehicles, small vehicle
capacities or other constraints that limit the number of stations visited within a route so that
feasibility can only be achieved through reuse of vehicles. The reuse of vehicles has become
more popular with the advent of renewable energy vehicles which have a limited range and are
required to refuel/recharge regularly [155, 391].

Time window constraints control the scheduling of resources in a VRP. These constraints usually
limit the period during which a customer can receive items, but more complex applications have
arisen recently as a result of legislation limiting the driving schedules of drivers and enforcing
mandatory resting periods. These constraints may also be used to incorporate time-dependent
travel time durations into the model so as to consider the period of the day, which affects
traffic flow. This type of constraint can typically be partitioned into three subclasses, namely,
resource allocation constraints (which repartition activities among resources), sequencing con-
straints (which ensure the execution order of resources) and scheduling constraints (which facili-
tate the selection of execution dates relating to the sequence of customer visitation [124]). Time
window constraints may alternatively be classified according to their effect on the feasibility of
routes. Time windows spanning relatively long periods are referred to as soft time windows as
they have little effect on micro-scheduling, while time windows spanning relatively short periods
are referred to as hard time windows.

2.5 Inter-route Constraints

Inter-route constraints are global constraints that affect the feasibility of routes, depending on
how routes are constructed. The first such class of constraints involves workload distribution
in an attempt to achieve fairness in route construction. This class of constraints is usually
formulated in terms of the difference between the maximum and minimum route distances/times
covered by vehicles. This value should remain within a certain threshold. Balancing the workload
of course also relates to time windows [428].

The second class of inter route constraints occurs when different vehicles have to compete for
globally limited resources, as in [227], for example. The simplest example of this kind of con-
straint relates to multi-depot problems where only a certain number of vehicles can be present
at a depot or involves route characteristics such as how many vehicles may cross a certain edge
of the VRP graph.

The third class of inter-route constraints is concerned with the synchronisation of routes as in
the VRP with Multiple Synchronisation (VRPMS) constraints [142].

Drexl [142] offered a classification of synchronisation-related VRP modelling constructs in terms
of the following five criteria:

Task synchronisation. This notion may be considered a clustering component of a VRP as
one must decide which vehicle or vehicles are assigned to a specific task. The tasks can be
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separated according to volume as in the SDVRP or by periods as in the PVRP, or may be
transshipped between vehicles as in the Cross-docking VRP [288].

Operation synchronisation. This type of synchronisation occurs when different vehicles are
required to perform a service, either at the same location or at different locations, but in
a certain order of precedence. This notion is exemplified in [192] where a pair of service
technicians perform services for each customer, with the first technician having to set up a
supply at some source before the second technician can perform the service at the customer
site.

Movement synchronisation. This kind of synchronisation occurs when two or more vehicles
must perform an itinerary along their routes at the same time. Such a case occurs in [382],
for example, where the routes of snow ploughers have to be scheduled in such a manner
that they are on the same arc of the VRP graph at the same time instant.

Load synchronisation. This type of synchronisation ensures that the correct load amounts
are collected, delivered, and transshipped among all vehicles at all locations and their
combinations when interacting.

Resource synchronisation. This kind of synchronisation is similar to the previously men-
tioned inter-route constraint where, at any time instant, the consumption of resources
must remain within certain capacities in order to be considered feasible.

The above-mentioned notions of synchronisation usually occur in combinations, as illustrated in
[143], for example, where a vehicle transfers a portion of its load to a trailer at which time this
vehicle is exclusively available for this operation and the transfer time depends on the volume of
load transferred. According to Drexl [142], the most studied variants of the VRPMS are location
routing problems and the N-echelon VRP [103, 343, 429], the PDPTW with transshipments [447],
and the simultaneous vehicle and crew routing and scheduling problem [144, 211].

2.6 Vehicle Fleet Characteristics

A popular variation on the classical VRP is called the multi(ple) depot VRP [367]. In this
type of VRP, a homogeneous fleet of vehicles is considered, which start and end their routes at
different depots. It is quite simple to extend the standard formulation of the VRP to incorporate
this characteristic. In principle, each vehicle can have a unique depot, but a limited number of
vehicles are usually assigned to a depot as a result of limited capacity at the depot. In some
instances, the multiple depots can act as intermediate replenishment facilities [105]. Instances
of this type of VRP frequently rely strongly on the reuse of vehicles.

Another VRP variation is applicable when the fleet of vehicles is heterogeneous and is called
the Heterogeneous/Mixed Fleet VRP (HFVRP) [26]. The HFVRP allows for vehicles that differ
either in their capacities, speeds, fixed costs, variable costs or the set of customers that they
can service. In this VRP, the fleet is partitioned into a number of subsets of homogeneous
vehicles. This affects the model formulation in the sense that general characteristics are replaced
by vehicle-specific coefficients. Many variations of this type of VRP exist in the literature,
exhibiting a wide variety of characteristics. According to Toth and Vigo [428], the following
vehicle fleet-related characteristics vary across formulations of VRPs in the literature:

• The vehicle fleet may either be limited or unlimited. Using sufficiently large fleet sizes,
however, results in the problem simplifying to the unlimited variant.
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• The fixed costs associated with the vehicles are either ignored or considered. These fixed
costs are only applicable when not all vehicles are utilised. A vehicle’s fixed cost is associ-
ated with the maintenance of the vehicle and the effort required to assign a driver to the
vehicle. Considering this type of overhead cost may be crucial in some applications. The
magnitude of fixed costs generally depends on the ownership of the fleet (i.e. whether the
fleet is owned by the decision maker or by a third party).

• The routing costs along the edges of the VRP graph are either vehicle-dependent or vehicle-
independent.

A summary of the classification of the different VRP variants mentioned above, as presented by
Toth and Vigo [428], may be found in Table 2.1.

Table 2.1: Heterogeneous VRP variants classification. Adapted from [428].

Acronym Problem Name
Fleet
Size

Fixed
Costs

Routing
Costs

HVRPFD
Heterogeneous VRP with Fixed
Costs and Vehicle-dependent Rout-
ing Costs

Limited Considered Dependent

HVRPD
Heterogeneous VRP with Vehicle-
dependent Routing Costs

Limited Ignored Dependent

FSMFD
Fleet Size and Mix VRP with Fixed
Costs and Vehicle-dependent Rout-
ing Costs

Unlimited Considered Dependent

FSMD
Fleet Size and Mix VRP with
Vehicle-dependent Routing Costs

Unlimited Ignored Dependent

FSMF
Fleet Size and Mix VRP with Fixed
Costs

Unlimited Considered Independent

Another fleet characteristic VRP variation accommodates the use of trailers in the formulation.
The Truck-and-Trailer Routing Problem (TTRP) [75] allows for the use of at least two groups
of vehicles, namely normal vehicles without trailers, called Single Trucks (STs), and Truck-and-
Trailer Combinations (TTCs). The use of trailers is an attractive option in most VRPs due to the
added capacity, but it has costs associated with it. There may also be site-dependency conditions
that define whether a customer is visitable by a TTC. The visitability condition usually depends
on the manoeuvrability of the TTC and/or limited space at the customer. Customers that
are accessible by TTCs are referred to as regular customers in such VRP formulations, while
inaccessible customers are called truck customers. There are three types of routes in this type of
VRP. The first is a pure ST (where an ST visits any type of customer), the second is a pure TTC
(where a TTC only visits regular customers) and finally there is a mixed TTC (where a TTC
visits all types of customers but is required to decouple the trailer at appropriate customers
before visiting a truck customer and returning to the relevant customer at a later stage to
recouple the trailer).

Drexl [141] generalises the TTRP according to three characteristics. The first characteristic is
whether the fixed costs associated with vehicles and trailers are considered, the second charac-
teristic is whether there are optional locations for the temporary storage of trailers and alternate
loading areas, and the third characteristic is whether or not there are time window considera-
tions.
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2.7 Problem Objectives

The objective of a VRP normally involves pure routing cost minimisation. There are, however,
instances in which other objectives are considered. In fact, there are three main categories of
VRP objectives according to Toth and Vigo [428], namely single-objective VRPs, hierarchical
objective VRPs, and multi-criteria VRPs.

2.7.1 Single-objective Optimisation

There are numerous variations on the classical single-objective VRP. The simplest modification
is the specification of desirable arcs or edges and subsequently the avoidance of undesirable
arcs or edges. This modification allows the VRPB and site-dependent VRP to be transformed
into a standard CVRP [428]. In another variation, selection of tasks is allowable and a profit
component is added [156]. Alternatively, variable costs are included in the formulation so as to
obtain a heterogeneous fleet VRP.

In the service industry, customer satisfaction is crucial and is often considered the overriding ob-
jective. Alternatively, this objective can be incorporated into a VRP formulation in conjunction
with a cost objective by adopting a weighted latency formulation [428].

An alternative formulation is considered in the cumulative capacitated VRP (CCVRP), where
the objective is to minimise the sum of arrival times at customers. This type of VRP is usually
applied in a humanitarian context for disaster relief [325] or in cases where waiting times are
undesirable in the context of customer satisfaction. An objective related to customer dissatis-
faction is applied to a VRP with a soft time window in [225], where the objective is to minimise
the time that every delivery request is on board a vehicle.

A common alternative objective is the adoption of a min-max objective in an attempt to minimise
the travel distance, travel duration or workload of the busiest route. This type of objective is
often incorporated as an alternative to enforcing balancing constraints, but a perfectly balanced
solution often results in highly inefficient routes [428]. Generally speaking, most attributes
related to utilised or consumed resources can be represented in the form of cost functions [428].
The use of penalties in VRP formulations also helps to guide metaheuristics in solving problem
instances approximately, because these techniques often consider both feasible and infeasible
solutions (in which case infeasible solutions are penalised in the objective function).

In the recent green vehicle routing problem [41], energy consumption and pollution emissions are
considered which lead to more complex objective functions. It was shown in [41], for example,
that the inclusion of energy emission and fuel consumption in the formulation significantly
increases the effort required to obtain good solutions.

2.7.2 Hierarchical Objectives

In formulations of VRPs there are often conflicting objectives, such as minimising route length,
route duration, delivery completion time and customer dissatisfaction. The minimisation of the
number of vehicles used conflicts with these objectives and so a common hierarchical approach
to solving these problems involves first minimising the number of vehicles utilised and then, with
this number fixed, minimising the subsidiary objectives. In the VRPTW, a common heuristic
approach is to apply hierarchical optimisation, with the first iteration focusing on minimising
the number of vehicles, while the second iteration is concerned with the minimisation of the
route length [428]. This approach is followed in [58], where an instance of the VRPTW is solved

Stellenbosch University  https://scholar.sun.ac.za



2.7. Problem Objectives 21

approximately by means of a two-stage heuristic and the results are compared with the results
obtained by different heuristics. A promising solution approach in this context, in terms of both
the solution time required and the objective function value, is that of Bräysy [57], who employed
a two-stage local search and variable neighbourhood search algorithm.

2.7.3 Multi-criteria Optimisation

In a multi-objective optimisation problem the objective is to

minimise f(x) = (f1(x), f2(x), . . . , fd(x)) (2.1)

subject to x ∈ M, (2.2)

where d ≥ 2 is the number of objective functions, M is the feasible solution space and x =
(x1, x2, . . . , xγ) is the decision variable.

Multi-objective VRPs are mainly employed in three ways according to Jozefowiez et al. [250]:
to extend classic academic problems in an attempt to improve their practical application, to
generalise classic problems, and to study real-life cases where the objectives have been defined
clearly by the decision maker. When extending classic academic problems, the problem defini-
tion usually remains unaltered and new objectives are simply added. The objectives thus added
normally involve driver workload [282], customer satisfaction [397], and commercial distribution
[370]. Another occurence of multi-objective vehicle routing optimisation arises in the generali-
sation of problems by adopting additional objectives instead of enforcing certain constraints. In
the literature, this approach has been applied mostly in the context of the VRPTW, where the
time window constraints are replaced by one or several objectives [32, 182, 181, 328, 357, 414].

Boffey et al. [48] mention another example of generalising a standard routing problem, called the
bi-objective covering tour problem (BCTP) [249] in which the standard covering tour problem
(CTP) [187] is generalised. In the standard CTP, the aim is to find a tour on a network in
which the nodes visited are at most a given distance d away from the customers. In the BCTP,
the parameter d is removed and replaced by an objective that aims to maximise coverage. In
[372], a bi-objective model formulation is also adopted to determine a route through a subset of
markets in order to collect a set of products while simultaneously minimising the travel distance
and purchasing cost. Such problems are usually solved as single-objective problems in which the
two objective functions are combined into a single composite function [250].

Several examples of multi-objective routing problems applied to real-life instances are described
in [250]. These include the following:

Transport delivery routing. El-Sherbeny [401] solved a Belgian transportation problem in
which a given amount of goods had to be delivered to a set of customers in pursuit of eight
objectives.

Urban school-bus route planning. Bowerman et al. [52] solved a problem involving school-
bus route planning for urban areas. A set of students living in different locations required
access to buses that would transport them from their residences to school and vice versa.
The authors proposed a multi-objective model formulation with four objectives, namely the
minimisation of total route length, the minimisation of walking distance for the students,
fair workload distribution to the drivers, and fair distribution of distances travelled by
each bus.

Urban garbage collection. Lacomme et al. [267] solved the garbage collection problem of
Troyes, where the garbage had to be collected along the city streets and delivered to a
garbage treatment facility. Two objectives were considered, namely minimisation of the
total route distance and minimisation of the longest route.
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Merchandise transport routing. Tan et al. [414] solved a bi-objective routing problem for a
Singapore logistics company involving the routing of truck-and-trailer vehicles that could
be separated in order to reach otherwise inaccessible locations. Different time windows
were considered for the customers and the vehicle fleet size was not fixed.

Hazardous product distribution. Giannikos [189] solved the problem of transporting haz-
ardous products while considering four main objectives. The four objectives were min-
imisation of the total operating cost, equitable distribution of risks among city centres,
minimisation of the perceived risks and equitable distribution of the disutility caused by
the operation of the treatment facilities.

Tour planning for mobile healthcare facilities. Doerner et al. [131] attempted to solve a
tour planning problem for mobile healthcare facilities associated with an emerging country
experiencing population growth. The limited resources in such a context typically leads
to a restricted healthcare budget and the authors proposed a cost-effective route plan for
mobile healthcare facilities. Selection of the stops of the mobile facilities occurred in pursuit
of the following objectives: maximisation of the efficiency of the workforce deployment and
maximisation of average accessibility to the public.

Over the last several years, numerous techniques have been proposed for modelling multi-
objective optimisation problems. According to Jozefiewz et al. [250], these techniques can be
grouped into three broad categories: scalar methods, Pareto methods and methods that do not
relate to either category. Scalar methods involve the use of mathematical transformations such
as weighted linearisation, whereas trade-offs between the objective function values are directly
compared across solutions in Pareto methods [115].

Scalar techniques exhibit several disadvantages as they usually take the form of weighted linear
objective function formulations which require the objectives to be weighted according to impor-
tance. In addition, this method only facilitates determination of solutions on the convex hull of
the Pareto-optimal set [188]. The advantage of this method is its simple implementation and the
fact that it can be solved using any single-objective heuristic. Weighted linear aggregation has
been applied to multi-objective routing problems in conjunction with problem-specific heuristics
[282, 472], local search algorithms [337, 370] and genetic algorithms [328].

In an alternative scalar approach, the method of goal programming may be utilised. According to
this approach, a point in the objective function space (goal) is chosen, and a search is conducted
to minimise the distance between the current solution and the goal. The main drawback or
difficulty associated with this approach is selecting the goal.

Another scalar approach is referred to as the ε-constrained method (described in some detail
in [90, 334]). According to this approach, the problem is formulated as a single-objective opti-
misation problem and the other objectives are considered as constraints, expressed in the form
gi(x) ≤ εi. The ε-constrained method is a generalisation of Pareto outcomes as it forms a
very similar formulation to the single-objective problem and therefore it can be solved by the
standard branch-and-cut algorithm developed for single-objective optimisation problems [181].

A final scalar approach is encapsulated in the class of Lexicographic methods, in which each
objective is assigned a priority value and the problem is then solved as a series of intermediate
single-objective problems in descending order of objective function importance. Once an objec-
tive has been optimised, its value is fixed and it becomes a constraint in a new formulation of
the problem.

Pareto methods were mainly introduced by Golberg [194] to be used in conjunction with genetic
algorithms which apply the notion of Pareto dominance directly [250]. Although the notion of
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Pareto-optimality does not allow any specific compromise or trade-offs between the objective
functions to be favoured, it is a useful, flexible aid to decision makers.

Non-scalar and non-Pareto algorithms may also be found in the literature. The first such solu-
tion approach was the Vector Evaluated Genetic Algorithm (VEGA). It was initially proposed by
Schaffer [388] and was the first use of a genetic algorithm for solving a multi-objective optimisa-
tion problem. The VEGA partitions a population of candidate solutions into d sub-populations
during each iteration, where d is the number of objectives. This creates a smaller population in
which genetic operators are applied.

There have also been numerous variations on well-known multi-objective metaheuristics that
have been tailored to solve different variations of the VRP (elaborated upon in the following
chapter).

2.8 Chapter Summary

A brief history of the celebrated classical VRP was given in §2.1, describing its origin and
first real-life application. The remainder of the chapter was devoted to a description of the
large number of variations on the classical VRP that have occurred in the literature since the
late 1950s. The narrative was organised according to the VRP taxonomy proposed by Toth and
Vigo [428]. This taxonomy includes variations based on the underlying network structure (§2.2),
the type of commodity transportation requests (§2.3), the types of constraints that affect each
individual vehicle’s route (called intra-route constraints, §2.4), various inter-route constraints
(§2.5), the types of constraints that affect the vehicle fleet composition (§2.6), and the problem
objectives specified (§2.7).
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This chapter contains a literature review on formulations of the CVRP and solution methodolo-
gies that have been adopted to solve instances of the CVRP. These solution approaches range
from exact methodologies presented in §3.2 and §3.3, respectively. These exact methodologies
adopt various techniques in solving smaller instances of the CVRP, such as applying valid cuts
(§3.4), pricing (§3.5) and branching and route enumeration (§3.6). Exact methodologies are
typically limited to solving smaller instances of the CVRP. Accordingly, heuristics and meta-
heuristics capable of solving large problem instances are described in §3.7 and §3.8, respectively.
Recently developed hybrid metaheuristics capable of solving large problem instances efficiently
to within a few percent of optimality are presented in §3.9. The aspects to consider when se-
lecting an approximate solution approach are described briefly in §3.10 and the chapter closes
in §3.11 with a brief summary of its content.

3.1 Model formulations

This opening section contains a review of three classical model formulations of the CVRP. These
formulations are the edge-set formulation of Laporte and Norbet [275] (§3.1.1), the set partition
formulation of Balsinki and Quandt [29] (§3.1.2) and the capacity-indexed formulation of Pessoa
[346] (§3.1.3).

25
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3.1.1 The edge-set formulation of Laporte and Norbet

Let G = (V, E) be a complete graph with vertex set V = {0, 1, . . . , n} and edge set E , where the
vertices in N = {1, . . . , n} represent the customers and the vertex 0 denotes the depot. Let ce
denote the cost of traversing the edge e ∈ E and let qi denote the demand of customer i ∈ N .
Suppose each vehicle is capacitated in the sense that it can satisfy a total demand of at most Q,
and that there are K such vehicles. Given a nonempty subset S ( V, define q(S) =

∑
i∈S qi and

r(S) = dq(S)/Qe, and let δ(S) denote the set of edges with exactly one endpoint in S. Finally,
let xe be a decision variable denoting the number of times the edge e ∈ E is traversed. Then the
objective in the CVRP formulation of Laporte and Norbet [275] is to

minimise
∑
e∈E

cexe (3.1)

subject to ∑
e∈δ({i})

xe = 2, i ∈ N , (3.2)

∑
e∈δ({0})

xe = 2K, (3.3)

∑
e∈δ(S)

xe ≤ 2r(S), S ⊆ N , S 6= ∅, (3.4)

xe ∈ (0, 1), e ∈ E , E /∈ δ(0), (3.5)

xe ∈ {0, 1, 2}, e ∈ δ(0). (3.6)

The objective function (3.1) is aimed at minimising the total cost associated with edges selected
for inclusion in vehicle routes. Constraint set (3.2) ensures that exactly two edges incident
with customer i are traversed, one to reach the customer and one to leave the customer, while
constraint (3.3) ensures that edges are selected to comprise exactly K routes, one for each
vehicle, with each route starting and ending at the depot. Constraint set (3.4), also referred to
as the subtour elimination constraints in the literature, contains exponentially many constraints1

together requiring that the number of routes entering and leaving each subset S ⊆ N is at most
the number of vehicles required to satisfy the demand of all customers in S. This constraint set
also prohibits the formation of disjoint subtours within vehicle routes. Finally, constraint sets
(3.5) and (3.6) specify the integral nature of the decision variables, which are binary for all edges
not incident to the depot. The reason for additionally allowing decision variables corresponding
to edges incident with the depot to take on the value 2 is to accommodate potential routes from
the depot which include only one customer.

3.1.2 The set partitioning formulation

Balinski and Quandt [29] proposed an alternative formulation of the CVRP for K vehicles. Let
Ω be the set of all possible closed routes including the depot which respect the vehicle capacity
constraint. The formulation incorporates the cost cr of route r ∈ Ω and a parameter air which
denotes the number of times customer i ∈ N is visited along route r ∈ Ω. Finally, the binary
variable λr takes the value 1 if route r ∈ Ω is utilized, or the value 0 otherwise. The objective
is to

minimise
∑
r∈Ω

crλr (3.7)

1According to the Binomial Theorem [22], there are
∑|N|

i=1

(|N|
i

)
= 2|N| − 1 constraints in constraint set (3.4).
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subject to ∑
r∈Ω

airλr = 1, i ∈ N , (3.8)∑
r∈Ω

λr = K, (3.9)

λr ∈ {0, 1}, r ∈ Ω. (3.10)

The objective function (3.7) again aims to minimise the total cost of all the routes selected.
Constraint set (3.8) ensures that each customer is visited exactly once, while constraint set (3.9)
enforces the selection of exactly K routes, one for each of the K vehicles. Finally, constraint set
(3.10) ensures that the decision variables are binary.

Toth and Vigo [428] noted that one of the advantages of adopting the formulation (3.7)–(3.10)
is that its linear programming relaxation often exhibits a small optimality gap. A significant
disadvantage of the formulation, however, is the exponential size of the set Ω in relation to |N |.

It was found in the 1980s, however, that the above formulation may be rendered more practical
by changing the definition of Ω so as to obtain a more tractable pricing problem. The new
definition of Ω is generalised to denote the set of all walks leaving the depot and returning to
the depot in such a manner that the capacity constraint is not violated. The same customer can
be visited multiple times in such a walk, but the demand satisfaction is summed depending on
the number of times a customer is visited.

The model (3.7)–(3.10) is also sometimes called the q-routes2 formulation of the CVRP and
was used in a Lagrangian relaxation3 solution approach developed by Christofides et al. [84].
The selection of the definition of Ω plays an integral part in the design of algorithms for solving
the model, but even if Ω only contains elementary routes4, the bounds provided by the above
formulation are not feasible for use within an exact algorithm for large problem instances and
may require reinforcement by the introduction of additional cuts [428].

3.1.3 Capacity-indexed formulation

The so-called capacity-indexed formulation of the CVRP was proposed by Pessoa [346], and is an
extension of the formulation of the Asymmetric CVRP (ACVRP). Let Gd = (V,A) be a directed
graph with vertex set V = {0, 1, . . . , n} and arc set A, where N = {1, . . . , n} again denotes the
set of customers and the vertex 0 denotes the depot. In this formulation it is assumed that the
demand qi exhibited by customer i ∈ N is an integer in the set Q = {1, . . . , |Q|}. Let ca denote
the cost of traversing the arc a ∈ A, and define for any nonempty subset S ( V the notation
δ−(S) = {(i, j) ∈ A : i ∈ V\S, j ∈ S} and δ+(S) = {(i, j) ∈ A : i ∈ S, j ∈ V\S}. That is, δ−(S)
denotes the set of all arcs entering S and δ+(S) denotes the set of all arcs leaving S. Finally,
let xqa be a binary variable taking the value 1 if the arc a ∈ A is selected and the demand of the
vertex at the end of a is q ∈ Q, or the value 0 otherwise. Then the objective is to

minimise
∑
a∈A

ca
∑
q∈Q

xqa (3.11)

2A q-route is a route along which the total demand is exactly q, starting from the depot, passing through a
subset of customers and then returning to the depot.

3Lagrangian relaxation is the approach where constraints that are hard to satisfy are allocated a weight, called
a Lagrangian multiplier, and assigned to the objective function — a process in which the constraints in question are
said to have been dualised into the objective function. The problem of minimising/maximising the Langrangian
function of the dual variables (the vector of Lagrangian multipliers) is known as the Lagrangian dual problem
whose solution provides a bound on the optimal objective function value of the original optimisation problem.

4An elementary route is a route in which no vertex occurs more than once.
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subject to ∑
a∈δ−({i})

∑
q∈Q

xqa = 1, i ∈ N , (3.12)

∑ ∑
a∈δ+({0})

xqa = K, (3.13)

∑
a∈δ−({i})

xqia −
∑

a∈δ+({i})

xq`−qia = 0, i ∈ N , q = {qi, . . . , |Q|}, (3.14)

xqa ∈ {0, 1}, a ∈ A, q ∈ Q, (3.15)

xq
δ+({i}) = 0, i ∈ N , q ∈ Q. (3.16)

The objective function (3.11) yet again aims to minimise the total cost of all arcs included in
vehicle routes. Constraint set (3.12) ensures that exactly one arc approaching customer i ∈ N is
selected and that the demand exhibited by that customer is exactly one of the values in the set
Q. Constraint (3.13) ensures that exactly K arcs leaving the depot are selected, while constraint
set (3.14) is a conservation of demand satisfaction flow-type constraint, ensuring that if an arc
entering vertex i is selected, then an arc departing from vertex i and entering some other vertex
` must be selected. The arc selection must satisfy the demand of both vertices i and `, and
must also respect the vehicle capacities. Constraint set (3.15) ensures the binary nature of the
decision variables, while constraint set (3.16) finally ensures that all routes end at the depot.
The reason for interest in the capacity-indexed formulation (3.11)–(3.16), is the fact that cuts
can be expressed over the variables in a robust5 manner [428].

3.2 Classical exact CVRP solution approaches

The foundations of exact solution methodologies for instances of the CVRP were derived from
the extensive work in the field of solving the TSP exactly [428], but considerable progress is still
required for real-life instances of the CVRP to be solved satisfactorily (i.e. within reasonable
time frames). Three classes of exact algorithms for the CVRP are reviewed in this section,
namely the classes of branch-and-bound algorithms (§3.2.1), set-partitioning algorithms (§3.2.2)
and branch-and-cut algorithms (§3.2.3).

3.2.1 Branch-and-bound algorithms

From the time of the early work of Christofides and Eilon [82] until the late 1980s, the most
successful algorithms for the CVRP were mainly tree-search algorithms based on the Branch-
and-Bound (BaB) method [428]. These algorithms employed techniques similar to those applied
to the TSP, involving basic combinatorial relaxations6 based either on the Shortest Spanning
Tree7 (SST) problem or the Assignment Problem8 (AP) [428]. These approaches were limited

5According to the classification system proposed by de Aragao and Uchoa [112], a cut is robust when the value
of the dual variable corresponding with it can be associated with the costs in the pricing sub-problem.

6These relaxations involve the exclusion of the subtour elimination constraint set (3.4) and the inclusion of an
extended graph G′ obtained by adding K − 1 copies of the depot.

7A shortest spanning tree of an edge-weighted graph is a spanning tree (i.e. a connected, acyclic subgraph on
the same vertex set as that of the larger weighted graph) whose weight (the sum of the weights of its edges) is no
larger than the weight of any other spanning tree of the graph.

8The classical assignment problem is the problem of finding a minimum cost assignment of n agents to n tasks
(one agent per task).
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to instances with tens of customers, and through the introduction of Lagrangian relaxations
these algorithms were strengthened to their best possible performances. The next step was the
introduction of the notion of cutting planes9.

There are three basic ways in which to obtain bounds for BaB algorithms in the context of the
CVRP. The first such method is to generate bounds by adopting an assignment and matching
modelling approach. The first occurrence of such a relaxation was a slight variation on the
relaxation proposed by Little et al. [293] for the TSP. The corresponding relaxation for the
CVRP is applicable to the standard formulation for a directed CVRP, but ignores the constraint
that prohibits sub-tour formation. The resulting problem is referred to as the Transportation
Problem10 (TP). Infeasibility of any CVRP solution to this relaxed problem is likely to be as
a result of either the vehicle capacity constraint being exceeded or there being subtours that
do not visit the depot. Some of the early relaxation algorithms altered the graph of the TP by
adding K−1 copies of the depot, where K denotes the vehicle fleet size [428]. This transformed
the problem into an equivalent AP with each customer connected to one of the depot copies.
This relaxation approach was first adopted by Christofides and Eilon [82] in 1969 who solved
two instances of the symmetric CVRP (SCVRP) with six and thirteen customers, respectively,
and by Laporte et al. [274] in 1986 who applied it to an instance of the ACVRP in conjunction
with a BaB algorithm. This relaxation approach, when applied to the SCVRP, results in the
so called b-matching problem11. The b-matching solution approach has been shown empirically
to outperform the AP-based solution approach for instances ranging from 44 to 199 customers
[425].

The second manner in which to obtain bounds is based on the use of spanning trees and shortest
paths. The relaxations associated with instances of the SST problem are obtained by weakening
the constraints related to the flow of vehicles through the set of vertices. The relaxed constraint
only acts to impose restrictions on the connectivity of the solutions and ignores the degree re-
quirements of the vertices. Christofides [82] was the first to attempt this relaxation approach
by applying the 1-tree12 relaxation methods introduced by Held [226] in the context of the TSP.
Fischer [164] applied this approach directly to an instance of the SCVRP, but adopted a re-
laxed k-tree13 approach instead and attempted to determine a k-tree with a depot degree of 2K
while still imposing a capacity constraint. The quality of the k-tree bound is, however, experi-
mentally rather poor [425]. It has nevertheless successfully been incorporated into an efficient
Lagrangian bound [428]. The relaxation of the SCVRP in [84], applicable to the formulation
(3.7)–(3.10), employs the routes generated to determine overall bounds for the algorithm so as
to improve efficiency. Adopting this approach, Christofides et al. [84] solved CVRP instances
with 25 customers to optimality. The approach was later improved upon by Hadjiconstantinou
et al. [213] and currently the notion of a q-route plays an integral role in the widely used class
of branch-and-cut-and-price algorithms for the CVRP [428].

The final manner in which to generate bounds for BaB algorithms is by adopting Lagrangian and

9In mathematical optimisation, the cutting-plane method iteratively refines the feasible domain through the
introduction of additional linear inequalities, called cuts, without eliminating optimal solutions.

10In the transportation problem, an optimal plan is sought for the distribution of units of products from several
points of origin to several destinations.

11The b-matching problem requires the determination of the minimum cost associated with tours covering all
the vertices in a manner such that the tour degree of vertex vi is bi, where bi = 2 for each customer vertex i ∈ N
and bi = 2|K| for the depot vertex i = 0.

12A 1-tree of a graph G = (V, E) with vertex set V = {1, . . . , n} is a shortest spanning tree on the vertices in
{2, . . . , n} together with two edges incident to vertex 1. This results in a 1-tree having exactly one cycle, which
contains vertex 1, and vertex 1 always having a degree of two.

13A k-tree is a chordal graph all of whose maximal cliques have the same size, namely k + 1, and all of whose
minimal clique separators also have the same size, namely k [339].

Stellenbosch University  https://scholar.sun.ac.za



30 Chapter 3. The Capacitated Vehicle Routing Problem

additive approaches. The use of combinatorial relaxations typically result in poor results and,
when used in conjunction with a BaB approach, it is limited to small instances [428]. Fischer
[164] and Miller [311] adopted a Lagrangian relaxation approach toward solving the CVRP, du-
alising some of the relaxed constraints. Good Lagrangian multiplier values may be determined
by means of standard gradient optimisation methods14 [428]. The major difficulty associated
with using Lagrangian relaxation, however, is the exponential cardinality of the set of relaxed
constraints which restricts the explicit dualisation of all of the constraints into the objective
function [428]. This problem may be alleviated by iteratively adding to the Lagrangian relax-
ation only those constraints that are violated by successive relaxation solutions [164, 311]. The
approach of Fischer [164] required between 2 000 and 3 000 iterations to perform the subgradient
optimisation, but resulted in the overall Lagrangian bound being significantly better than that
achieved by the previously adopted K-tree relaxation approach. It allowed for instances of the
data sets in [82] and [83] containing a hundred vertices to be solved to optimality within 60 000
seconds. The approach of Miller [311] produced a very tight Lagrangian bound to within 98% of
the optimal objective function value for the eight test instances of the data set in [82] containing
at most fifty vertices, which were each solved within 15 000 seconds.

Slight improvements on these Lagrangian bounds were reported by Martinhon [302] who com-
bined the use of so called comb inequalities15 and multistar inequalities16. Fischetti and Toth
[162] achieved improvements with respect to the AP bound by combining several relaxations into
an overall additive bounding procedure17. Hadjiconstantinou et al. [213] adopted an interesting
additive approach in the context of the set partitioning formulation (3.7)–(3.10) of the CVRP
together with the dual of its linear programming relaxation. They combined different relaxation
approaches based upon the notions of q-routes and shortest paths to obtain feasible solutions to
the dual problem which could then be used as valid lower bounds.

Almost all the branching techniques that have been applied in the literature to VRPs have their
origins in studies related to the TSP. The first such technique is referred to as branching on arcs,
and was introduced by Christofides [82] in 1969. According to this scheme, partial routes are
extended, starting from the depot, until a certain vertex is reached. The problem is modelled
as a TSP by eliminating the real depot and replacing it by K artificial depots, all located in
the same position, where K denotes the number of vehicles deployed. The algorithm tests,
before branching to a new node in the search tree, whether any constraints are violated and,
if violations occur, then the branch under consideration is eliminated from the search tree. In
[302], the arc selection procedure is based on the effect it has on the Lagrangian solution and
when no such partial solution exists, the arc joining the customer exhibiting the largest unserved
demand with the depot is selected. In most BaB algorithms for the CVRP, a best-bound-first
search protocol is adopted as branching scheme, where branching is performed on the pending
node of the branching tree that is deemed the most likely (according to an estimate) to produce
the optimal solution [428].

14Gradient optimisation methods are algorithms designed in such a manner to solve problems of the form
min
xxx∈Rn

f(xxx), with the search direction defined by the gradient of the function f at the current point xxx ∈ R.
15Comb inequalities are a highly useful cutting plane class of valid inequalities for the TSP, which involve

connectivity violations on arc flows over vertex subsets (referred to as handle and teeth vertices) of customers in
the graph representation of the distribution network.

16A multistar consists of the complete subgraph on a subset of nucleus vertices, together with a mutually
exclusive subset of satellite vertices. Edges join every satellite vertex to every nucleus vertex. A multistar
inequality restricts the manner in which the two subset graphs are connected by constraining the total weight of
all selected edges between the respective subsets.

17An additive bounding procedure allows for the combination of different lower bounding procedures, each
exploiting a different substructure of the problem under consideration. Additive bounds are considerably more
effective than AP bounds when implemented in a BaB algorithm [428].
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A variety of reduction rules have also been incorporated in CVRP model formulations in order
to reduce the solution space and hence increase the computational speed of CVRP algorithms.
These rules again have their origins in work related to the TSP. The solution space may, for
example, be reduced by removing selected arcs that cannot belong to optimal solutions. Such
reduction rules may either be applied directly to the original problem formulation or to solutions
of subproblems in the BaB search tree. The resulting arcs define complete routes and paths,
with some of them entering or leaving the depot node. Reduction of the search space occurs
when complete routes of the imposed set are removed from the search space to create a reduced
graph. There are generally two types of reduction rules [428]. The first type aims to remove all
arcs from the graph which, if used, would produce infeasible solutions in terms of the capacity
constraint associated with the vehicles. The second type of reduction rule aims to remove all
arcs form the graph which, if used, would not improve the incumbent solution.

Fischetti [161] proposed a dominance test which improves the performance of the branching
scheme. The dominance rule analyses a node of the BaB search tree where a partial visitation
sequence of customers i, . . . , j is fixed and can be considered fathomed18 if there exists a lower
cost ordering of the customers in a visitation sequence starting with customer i and ending with
customer j [428], with the improved ordering usually being determined through the application
of heuristics.

3.2.2 Early set partitioning algorithms

As mentioned, the set partitioning formulation of §3.1.2 utilises an exponential number of bi-
nary variables. The definition of the set Ω is an integral part of this formulation as it implicitly
considers the feasibility of routes. In attempts to reduce the cardinality of Ω, alternative formu-
lations involve only considering maximal-feasible circuits among those with the same cost and
restricting the dual solution space by only considering non-negative values.

The major drawback of the set partitioning formulation is the large number of variables required
to solve the problem which, in non-tightly constrained instances with dozens of customers, can
easily run into the billions [428]. A counteractive approach to this problem is to utilise a column
generation19 approach to solve the linear programming relaxations of these models, as described
in [56]. The column generation method initially starts with a small subset of routes Ω′ ⊆ Ω
and then proceeds to solve the linear relaxation of the corresponding reduced model, obtaining
the optimal dual variables associated with the constraints. Utilising this dual information, the
column generation problem, also called the pricing problem, searches for routes not in Ω′ with
the most negative reduced costs or proves that no such routes exist [428]. If no such route
exists, the current solution to the problem is optimal and the procedure terminates. Otherwise,
if a route is found, a new iteration is performed. The bounds produced by this approach are
typically extremely tight [428], which has led to extensive research in this field resulting in
superior Branch-and-Cut-and-Price (BCP) algorithms being developed.

18A node in a BaB search tree is fathomed if it represents a feasible solution to the original problem or can be
eliminated because of knowledge that further branching from the node cannot lead to an optimal solution.

19Column generation exploits the notion that most variables will be non-basic (and hence assume a value of zero)
in an optimal solution. Therefore only a subset of variables need to be considered when solving the optimisation
problem. Column generation leverages this notion, generating only the variables which have the potential to
improve the objective function.
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3.2.3 Branch-and-cut algorithms

Branch-and-Cut (BaC) algorithms are based on the seminal work by Laporte [276] in which he
considered a relaxation of the standard undirected CVRP with the capacity constraints and the
integrality of variables removed. A solution to such a relaxation of the CVRP is either feasible
for the standard CVRP, in which case the algorithm terminates, or otherwise the solution is
infeasible, in which case the algorithm continues to consider alternative solutions.

Within a BaC algorithm a large variety of cuts can be applied. These cuts include:

• TSP-related valid inequalities. A first attempt to generate valid inequalities involved gen-
eralising constraints that were initially developed for the TSP.

• Capacity constraints. The computation of the value of r(S) in (3.4) determines the set to
which the inequality belongs. If the smallest value for the quantity r(S) =

∑
i∈S qi/Q,

is considered, the inequalities are referred to as fractional capacity inequalities. When
r(S) = d

∑
i∈S qi/Qe is considered, the inequalities are referred to as rounded capacity

inequalities. The constraints are referred to as weak capacity inequalities when S is given
and a legitimate value for r(S) is the optimal value for the corresponding bin packing
problem. Finally, when r(S) is equal to the minimum number of vehicles required to
service all vertices of S, the inequalities are referred to as global capacity constraints.

• Framed capacity inequalities. First introduced by Augerat [18], these constraints are an
extension of the weak generalised capacity constraints described above and produce a lower
bound on the number of vehicles required to service the set of customer vertices.

• Comb inequalities. Introduced by Chvátal [86] and Padberg [209] for the symmetric TSP,
these inequalities may be transformed into tight triangular form and may then be used as
valid inequalities for the CVRP [428]. Comb inequalities are defined in terms of certain
vertex sets called the handle and the teeth, as described in Footnote 15.

• Hypotour inequalities. Sets of constraints aimed at determining subgraphs of G which
cannot include feasible solutions to the CVRP [428].

• Multistar inequalities. Introduced by Hall [13] for the CVRP with unit demands, see
Footnote 16.

Ralphs et al. [358] proposed a BaC algorithm that separates the capacity constraints of the
CVRP by means of three heuristics. If the heuristics fail to identify a violated inequality, they
proposed the use of a decomposition algorithm for determining additional constraints. The first
stage involves expanding the original problem instance graph through the addition of |K| − 1
copies of the depot with corresponding edges. According to the fractional solution obtained from
the extended graph, a decomposition algorithm determines whether the solution can be written
as a convex combination of Hamiltonian cycles20 [428]. If so, these Hamiltonian cycles are
analysed to find violated capacity constraints. If not, the branching stage is initiated. Finally,
when the fractional solution can no longer be decomposed, a Farkas inequality21 is created. The

20A Hamiltonian path is a path in a (directed or undirected) graph that visits each vertex exactly once. A
Hamiltonian cycle is a closed Hamiltonian path.

21A Farkas inequality states that when considering two subsystems, one or the other contains the solution, but
not both or none. In mathematical terms, let A be a real m× n matrix. Let bbb be an m-dimensional real vector.
Then, exactly one of the following statements is true:

1. There exists an xxx ∈ Rn such that Axxx = bbb and xxx ≥ 0.
2. There exists a yyy ∈ Rm such that yyyTA ≥ 0 and yyyTbbb < 0.
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first stage of the decomposition algorithm hinges on a priori knowledge of Hamiltonian cycles.
Then an enumerative search is performed to determine a preset number of cycles. Following
the enumerative search, a column generation algorithm is initiated to create additional cycles
dynamically.

Lysgaard et al. [297] proposed a new BaC algorithm. The algorithm involves four novel separa-
tion techniques for the generation of valid inequalities: rounded capacity constraints22, strength-
ened comb inequalities, framed capacity inequalities23 and hypotour inequalities24. The algo-
rithm uses techniques introduced by Letchford et al. [283] to separate homogeneous multistar
and partial multistar inequalities. In addition, it also employs mixed integer Gomory cuts25 to
perturb the current fractional solution at the root node [428].

The BaC algorithm of Achuthan et al. [1] employs separation of rounded capacity constraints
through the use of heuristics and was later improved upon by Achuthan et al. [2] who separated
additional inequalities related to multistar constraints. Baldacci et al. [27] presented a new
integer programming formulation derived from a two-commodity network modelling approach.
Since the flow variables in such an approach can be expressed in terms of arc variables, all
the constraints of the standard CVRP are still applicable to the new model. Baldacci et al. [27]
separated four families of inequalities: rounded capacity inequalities, hypotour inequalities, comb
inequalities and generalised capacity constraints.

3.3 More recent exact approaches

Since the pioneering work of Desrosiers et al. [125], column generation has been the favoured
approach for designing exact algorithms for the VRPTW. This methodology has performed
exceptionally well in dealing with instances involving hard time windows. In the case of soft
time windows, the problem can be considered as a CVRP in which the column generation
technique under-performs. The favoured technique for exactly solving instances of the CVRP
during the early 2000s was BaC algorithms that separate complex families of cuts by polyhedral
investigation [319]. Such algorithms worked well for small problem instances, but instances of
larger than 50 customers were not thus solvable.

Then Fukasawa et al. [174] developed an algorithm utilising a combination of column generation
and cut generation called a BCP algorithm. The algorithm employs robust cuts. This allows
the structure and size of the sub-problem to remain unchanged [428]. Non-robust cuts alter

22Rounded capacity constraints were introduced by Naddef and Rinaldi [320]. Determining r(S) in (3.4) is
NP-Hard, since it is equivalent to finding an optimal solution to the two-dimensional bin packing problem. By
replacing r(S) with k(S) = max{dd(S)/De , da(S)/Ae}, where D and A represent the respective capacities and
a(S) denotes a subset such that a(Si) ≤ A for each cluster Si, a valid lower bound is obtained. These constraints
are known as rounded capacity cuts.

23Framed capacity inequalities are a highly successful cutting plane class of valid inequalities for the CVRP,
and may be defined for some S ⊆ N as

x(δ(S)) +

p∑
i=1

x(δ(Si)) ≥ 2r(S,Ω) + 2

p∑
i=1

r(Si),

where Ω = (S1, . . . ,Sp) is a partition of S and r(S,Ω) is the minimum number of vehicles required to service S,
given that the capacity inequality for each subset Si holds with equality [297].

24The hypotour inequality for some set S ⊂ E requires that at least one edge in S appears in the feasible CVRP
solution [297].

25A Gomory cut [200] is a linear constraint with the property that it is strictly stronger than its parent. This
is achieved by enforcing appropriate integer-linear forms so as to generate valid linear inequalities that cut off an
undesirable fractional solution from the relaxed solution space.
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the size or structure of the sub-problem, and each additional cut therefore renders the problem
harder, which makes robustness a desirable attribute. Baldacci et al. [27] and Jepsen et al. [245],
however, showed that non-robust cuts can be used effectively if they are separated in a controlled
way, avoiding an excessive impact on pricing.

Fukasawa et al. [174] presented a BCP algorithm that is able to solve various benchmark instances
containing up to 135 customers to optimality. The columns included by the algorithm are linked
by q-routes which avoid k-cycles. The algorithm is therefore a relaxation of elementary routes
that allow multiple visits to a customer on condition that at least k distinct customers are visited
between successive visits of the same customer. The separated cuts imposed are robust with
respect to q-route pricing and the algorithm is able to identify when column generation at the
root node is too slow, in which case it automatically switches to a BaC paradigm.

Baldacci et al. [27] also developed a CVRP solution approach based on column and cut gener-
ation. The algorithm’s columns are linked with elementary routes. The cuts are effective, but
non-robust. Strengthened capacity cuts and clique cuts26 are, however, separated, which makes
the pricing harder. A sequence of cheaper lower bounding procedures produces good estimates
of the optimal values of the dual variables. The expensive pricing procedure is only dealt with
during the last stage, with the dual variable achieving a good upper bound convergence. The
algorithm does not branch as it finishes at the root node by enumerating all elementary routes
with reduced costs smaller than the duality gap [428]. The set-partitioning problem containing
all these routes is then passed on to a Mixed Integer Programming (MIP) solver. The algorithm
is able to solve almost all the CVRP instances covered in [174], usually in much less time, but
due to the exponential aspect of some of the constraints it has failed in some instances, assigning
large numbers of customers to single vehicles.

Pessoa et al. [346] developed an improved version of the algorithm proposed by Fukasawa et
al. [174]. The cuts form an extended formulation which incorporate capacity indices, as in the
formulation (3.11)–(3.16), and are also separated. Through the use of dynamic programming,
the complexity of forming q-routes is not altered. Pessoa et al. [346] borrowed the idea of
utilising route enumeration in combination with an MIP solver from Baldacci et al. [27], with
the added feature of using a hybridisation in conjunction with traditional branching so as to
avoid premature failure when the root gap is too large.

Baldacci et al. [28] also introduced an improved version of their original algorithm [27]. A new
relaxation (called ng-routes27) was introduced which is superior to the notion of q-routes without
the use of k-cycles. This relaxation was employed in the earlier bounding procedure and was used
to accelerate the pricing of elementary routes. The latter part of the algorithm is also further
enhanced through the consideration of multiple dual solutions. Subset row cuts28 and weak
subset row cuts29 are separated, which has a reduced effect on pricing compared to when clique
cuts are generated. The end result is a faster and more robust algorithm than that proposed in
[27], which has the ability to solve instances with a large number of customers per vehicle.

26A clique cut is a complete subgraph of some given graph. A clique cut is a relationship among a set of binary
variables with the property that at most one variable in the group can be positive in any integer feasible solution.
Clique cuts construct a graph respecting this property and through optimisation methods finds maximal cliques
in the graph.

27ng-Routes are used to solve the pricing subproblem. They are elementary forward routes which are used to
determine paths for vehicles to follow.

28Introduced by Jepsen et al. [245], subset row cuts are a family of inequalities that are specifically linked to
the rows of the set packing problem. A set packing problem seeks to ascertain whether there is some collection
of k subsets within a list of subsets, all from a given set S, that are pairwise disjoint (no two of them share an
element).

29Weak subset row cuts are weak dominance criteria employed when using label-setting algorithms to solve the
pricing problem.
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Contardo [96] utilised non-robust cuts and route enumeration in a novel manner. The columns
in his approach are associated with q-routes without 2-cycles, which yields a relatively poor
relaxation, while the partial elementarity of the routes is enhanced by non-robust strong-degree
cuts30. Subset row cuts, robust cuts from the set partitioning formulation (3.7)–(3.10) and
strengthened capacity cuts are also separated. The enumeration of all the elementary routes is
aimed at the generation of a pool of columns until the duality gap is sufficiently small to produce
a pool of reasonable size (the pricing starts through inspection). At this stage, an aggressive
separation of non-robust cuts takes place, resulting in very small optimality gaps. This yields
computational results that are reportedly very consistent and the approach has been used to
solve instances with 151 customers and 12 vehicles [96].

Røpke [378] improved on the algorithm of Fukasawa et al. [174] by incorporating two key differ-
ences. The first difference is that more effective ng-routes are utilised as opposed to q-routes
avoiding k-cycles. The second key difference is that a highly sophisticated and aggressive branch-
ing procedure is performed, resulting in drastically reduced enumeration trees. The algorithm
yields similar results to those reported in [28] and [96]. Running the algorithm for a long time, it
was shown to be able to solve CVRP instances with 151 customers and 12 vehicles to optimality.

Contardo and Martinelli [96] improved upon the work of Contardo [96] through the use of
ng-routes instead of q-routes avoiding 2-cycles and through the application of the decremental
state space relaxation31 technique introduced by Righini and Salani [374]. The performance of
the dynamic pricing scheme was improved and the authors incorporated the method proposed
in [239], which results in the edge variables being fixed through reduced costs.

Pecin et al. [340] developed a BCP algorithm that incorporates features from all the above-
mentioned approaches. The algorithm is able to solve CVRP instances of up to 200 customers
and 16 vehicles to optimality within a reasonable time. The introduction of a limited memory
subset row cut is the most important novel feature of this algorithm as it weakens the traditional
subset row cuts and can be altered dynamically. This results in the cuts being considerably less
costly during pricing without reducing their effectiveness. The method utilises capacity indices
from [346] which allows for fixing of variables by reduced costs, thus improving on the results
reported in [239]. The columns in the BCP algorithm are associated with ng-routes and column
generation stabilisation can also be implemented through dual smoothing [344]. The dynamic
programming pricing utilises bi-directional searches, which is a slight variation on the method
proposed by Righini and Salani [373], as the concatenation phase is not necessarily performed at
half capacity. The algorithm performs aggressive hierarchical, strong branching which may be
seen as a hybridisation of route enumeration and branching. The algorithm is able to perform
a rollback and remove the offending cuts (cuts that are responsible for making the algorithm
slower) when a round of non-robust cuts results in the pricing taking too long.

3.4 The generation of valid cuts

Various families of inequalities that have been used to reinforce the edge-set formulation of §3.1.1
and the set partitioning formulation of §3.1.2 are described in more detail in this section.

30Introduced by Contardo et al. [95], strong degree cuts are a family of valid inequalities that have been proven
to impose partial elementarity.

31Introduced by Righini and Salani [374], decremental state space relaxation iteratively reduces the relaxation
of the solution space according to the structure of the optimal solution of the relaxed problem.
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3.4.1 Cuts over the edge variables

Besides the rounded capacity cuts in (3.4), numerous families of valid CVRP cuts have been in-
troduced over the edge variables. The paper [296] contains a reference to the package CVRPSEP
of heuristic separation techniques for the families of framed capacities, rounded capacity, multi-
stars, strengthened combs and extended hypertours. These families play a significant role in BaC
algorithms for the edge-set formulation of §3.1.1 but only rounded capacity cuts and strength-
ened comb inequalities can improve the set partition formulation of §3.1.2 [428]. The reason for
the lack of improvement by the other families in the latter CVRP formulation is that the other
families are already included implicitly in (3.8) and (3.9). Letchford and Salazar-González [284],
for example, proved that all generalised large mutlistar cuts are directly implied by (3.8) and
(3.9), even if the definition of Ω includes all q-routes.

3.4.2 Strengthened capacity cuts

Baldacci et al. [27] introduced a family of cuts which is defined over the variables in the set
partitioning formulation of §3.1.2. For every nonempty set S ⊆ N and r ∈ Ω, a binary variable
ζSr takes the value 1 when at least one vertex is visited along route r within the set S. The
strengthened capacity cuts are ∑

r∈Ω

ζSrλr ≥ r(S), S ⊆ N . (3.17)

Constraint set (3.17) monitors the flow of routes and ensures that all customers are visited at
least once. It is a strong inequality as it is not deceived by routes that enter and leave S more
than once [428]. Strengthened capacity cuts are non-robust in nature as they alter the pricing
sub-problem and it is therefore necessary to continue solving it through dynamic programming
in order to add an additional binary dimension that monitors whether a partial route has already
visited S or not.

3.4.3 Subset row cuts

Jepsen et al. [245] introduced a family of cuts defined over the variables of the set partitioning
formulation of §3.1.2. Given a set C ⊆ N and a multiplier p satsfying 0 < p < 1, a (C, p)-subset
row cut has the form ∑

r∈Ω

⌊
p
∑
i∈C

air

⌋
λr ≤ bp|C|c , (3.18)

where air is the number of times customer i is visited by route r, and is valid as it can be
achieved by a Chvátal-Gomory rounding32 that corresponds to (3.8) [428]. There is a special
class of subset row cuts called 3-subset row cuts, where |C| = 3 and p = 1/2. In the more
recent literature this class is favoured above the more general clique cuts employed by Baldacci
et al. [27] as they are more suitable to column generation, which has a less pronounced impact
on the pricing sub-problem [428]. With that said, 3-subset row cuts still require an additional
binary dimension that indicates the parity of the number of visits made to a node in C.

32Chvátal-Gomory rounding is the procedure of applying Chvátal-Gomory cuts to valid inequalities. A Chvátal-
Gomory cutting plane for a problem P is an inequality of the form cTx ≤ bδc, where c is an integral vector and
cTx ≤ δ is valid for P [154].
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3.4.4 Strong degree cuts

Contardo et al. [94] introduced a family of cuts related to strengthened capacity cuts over a set
S of cardinality 1 referred to as strong degree cuts. Given a vertex i ∈ N and a route r ∈ Ω,
a binary variable coefficient ζir is defined to take the value 1 if r visits i. The corresponding
degree cut takes the form ∑

r∈Ω

ζirλr ≥ 1. (3.19)

For these cuts, the definition of Ω has to allow for the inclusion of non-elementary routes. This
results in the strengthened degree cuts forbidding routes with cycles containing certain vertices.

3.4.5 Limited memory subset row cuts

The use of limited memory subset row cuts was first introduced in [340] and is a generalisation
of the notion of (C, p)-subset row cuts. It requires an additional set M satisfying C ⊆ M ⊆ N ,
and can be written as ∑

r∈ω
α(C,M, p, r)λr ≤ bp|C|c, (3.20)

where the coefficient α is a function of C,M, p and r, and is computed using another algorithm.
The advantage of employing limited memory-subset row cuts over classical subset row cuts is
their reduced impact on the labelling algorithms used in the pricing scheme [428]. In practical
instances, even with hundreds of customers, the minimal sets of routes seldom have a cardinality
exceeding 15. Pecin et al. [340] used a two-phase strategy to obtain small memory sets. The
first stage involves identifying violated (C, p)-subset row cuts, with the second stage identifying
a minimal set M such that limited memory subset row cuts achieve the same violation.

3.5 Pricing approaches

Different approaches that have been implemented to handle the pricing subproblem occurring
when attempting to solve an instance exactly, are described in more detail in this section.

3.5.1 q-routes and elementary routes

The pricing sub-problem for solving the linear relaxation of the set partitioning formulation of
§3.1.2 by column generation has been modelled numerous times as a Shortest Path Problem
with Resource Constraints (SPPRC). The problem is defined over a directed graph, with an
unrestricted cost function. The objective is to find a shortest path whose resource consumptions
do not exceed the capacity. The pricing of q-routes corresponds to a SPPRC with a single
resource, but the pricing of elementary routes requires the definition of n additional resources.
When pricing an SPPRC, the approach is to create a label, which denotes the vertices visited
along a route, an approach first introduced by Desrochers et al. [121]. These labels are created
iteratively and appended to existing labels only if all the resource constraints are still satisfied.

The main concern when designing a forward dynamic label setting algorithm for the SPPRC
is how to mitigate the efficiency deterioration due to the growth of the list family. Executive
decisions therefore have to be made at each iteration, such as keeping the path with the smaller
cost of two paths ending in the same vertex. When pricing q-routes, the basic dominance rule is
enough to keep the total complexity of the problem pseudo-polynomial. For elementary routes,

Stellenbosch University  https://scholar.sun.ac.za



38 Chapter 3. The Capacitated Vehicle Routing Problem

however, the complexity is exponential [428]. In attempts at reducing the complexity of pricing
elementary routes, the following ideas have been put forward:

• Incorporating stronger dominance rules. The basic dominance rule used in earlier labelling
algorithms can be improved by considering the monotonic effect of resource consumption
in possible extensions of the label [428]. This approach was shown in [73] to achieve an
improvement over the basic dominance rule by considering the expected improvement of
reduced costs that could be experienced by traversing certain nodes.

• Implementing a bidirectional search. The ratio of customers per vehicle is a strong indicator
of algorithmic performance. In an attempt at better exploiting this fact, Righini and Salani
[373] reduced the capacity constraint by half, which results in a smaller family of lists. The
final routes can be created during a concatenation phase through the exploitation of the
symmetry of the CVRP. An adverse effect of this approach is that the concatenation phase
is quite costly in itself and has not been proven to be better than a conventional forward
search.

• Introducing completion bounds. If a lower bound, B(L), can be imposed on the costs of
all the routes that can be obtained through extending a list L and B(L) > 0, then the list
L can be removed from the family.

• Employing decremental state space relaxation. First proposed by Boland et al. [49], this
technique starts by only considering those q-routes which are likely to contain cycles.
The vertices that are visited numerous times are included in the next iteration of the
label setting algorithm and as the algorithm progresses, the set of customers that are not
visitable increases until elementary routes are constructed.

3.5.2 q-Routes with k-cycle elimination

The basic concept behind this approach is that a vertex i cannot be revisited unless k other
customers have been visited between successive visitations of vertex i. It was realised early
on by Christofides et al. [85] that through the use of 2-cycle elimination, the definition of Ω
significantly improves the bounds generated by set partitioning relaxation with a negligible
effect on the complexity of the sub-problems that result. When pricing ordinary q-routes, the
pricing algorithm utilises so-called buckets in which, through basic dominance rules, instances
are limited to at most one label. With 2-cycle elimination, however, the buckets can hold two
labels. When performing k-cycle elimination for k ≥ 3, the label storage decision requirements
become more intricate. Algorithms have been proposed for this purpose by Hoshino and de
Souza [233], and by Irnich and Villeneuve [240]. In [240], the number of labels kept within the
buckets was limited to a maximum of k!, but the number of labels kept during a run exhibited
high variation. In [233], a more efficient label selection procedure was proposed, involving the
use of deterministic finite automata. For certain instances, 4-cycle elimination is not sufficient to
obtain bounds close to the optimal solution and it was suggested in [174] that k-cycle elimination
above the value k = 4 is not feasible.

3.5.3 ng-Routes

A simple alternate approach to cycle-elimination for obtaining partial elementarity is to select
a subset S of customers that cannot be revisited. This label-setting algorithm is limited to
instances where S has a size similar to the size of N . Otherwise it is not likely to produce
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near-elementary routes. Baldacci et al. [28] proposed a more efficient manner to obtain partial
elementarity in routes by exploiting the fact that cycles are likely to appear when pricing non-
elementary routes [428]. They used a more limited memory mechanism that only considers
edges associated with a small cost and is restricted to relatively small neighbourhoods. This
allows for cycles to be constructed over a vertex only if certain constraints are maintained. The
application of ng-routes is pseudo-polynomial. In order to deal with large instances, Pecin et
al. [341] proposed an adaptation of decremental solution space relaxation with the initial stage
utilising ng-routes. This adaptation is able to deal with instances of up to 200 customers.

3.5.4 Pricing with non-robust cuts

The variations of label-setting algorithms for dealing with non-robust cuts require an additional
dimension in the labels, typically one dimension per cut [428]. For the SPPRC, for instance,
the additional definition is monotonically increasing along a path. In the case of subset row
cuts, however, the dimensions related to cuts never inhibit path extensions and are used more
commonly to reward or penalise certain path extensions. The dominance rules associated with
non-robust cuts also need to be modified. These modifications include adding two terms to
a simple cost inequality. The terms added are lower bounds that monitor the potential gains
resulting from extending a path in a certain manner. Contardo et al. [94] showed that the impo-
sition of non-robust cuts may be a more efficient manner by which to impose route elementarity
than the conventional definition of resources avoiding vertex revisitations.

3.5.5 Column generation concerns

Column generation is normally used to solve linear programs with large numbers of variables.
The efficiency of the method is related to how many variables it is expected to deal with.
For the CVRP set partitioning formulation of §3.1.2, for instance, the number of variables is
approximately equal to

(
n

n/K

)
[428]. The expected number of iterations before convergence on

pricing is therefore highly dependent on the number of customers per route. In instances with
a large value of n/K, additional treatments are typically required, such as those mentioned in
[147, 344], where a form of dual stabilisation is used to assist convergence of such problems. In
any case, regardless of the number of customers per route, it is advisable to implement faster
pricing heuristics when utilising column generation. Such heuristics mainly involve altering the
label-setting algorithm in three main ways. The so-called scaling technique involves running the
label-setting algorithm with a factor g. The demand and capacity are divided separately by g.
The sparsification technique consists of only selecting possible extensions from a subset of edges
that are likely to result in routes with negative reduced cost. The technique of bucket pruning
involves only storing a small set of labels per bucket which means that many non-dominated
solutions that are unlikely to result in optimal solutions, are not considered.

3.6 Branching vs. route enumeration

Two main approaches employed in the literature towards reducing the duality gap during solution
of the CVRP are compared in this section. These approaches are typically applied either because
it is no longer possible to find additional violated cuts or because very incremental improvements
in the lower bound are observed. When imposing non-robust cuts, additional separation may
result in excessively expensive pricing subproblems [428]. Various branching and enumeration
methodologies put forward in recent articles are discussed in this section.
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3.6.1 Branching

Branching can be applied to both the edge-set formulation of §3.1.1 and the set partitioning
formulation of §3.1.2, but directly applying it to the set partitioning formulation may lead to
the formulation of non-robust cuts. This can be avoided by applying the branching technique
on the edge variables of the edge-set formulation and employing branching constraints to create
robust cuts for the set partitioning formulation.

Fukasawa et al. [174] implemented branches over sets in a BCP context, with the sets being
selected through strong branching. Every set in a collection of candidate sets is evaluated
heuristically by applying a small number of column generation iterations to its children nodes.
In [374], a much better BCP is utilised in which simpler branching occurs over individual edges.
The strong branching phase initially starts by assessing thirty candidate edges and then ranking
them. The best candidate edges are then fully evaluated and, if successful, a candidate induces
the incumbent solution. The remaining edges achieving a high probability of improving the
incumbent solution are then better evaluated. This strong process of branching is the key to the
success of the approach and is aided by the collection of statistics along the enumeration tree,
allowing for the solution of an instance with 151 customers and 12 vehicles.

Despite the success of strong branching BCP, it still remains very pricing-intensive, even with
the use of smart accelerating ideas [428].

3.6.2 Route enumeration

Baldacci et al. [27] utilised route enumeration in an attempt to reduce the duality gap after the
root node. The key facet of their approach is that a route can only be part of a solution that
improves the upper bound if:

• its reduced cost is smaller than the gap, and

• there are no other routes visiting the same vertex which achieve a smaller cost.

The enumeration can then be performed by a label-setting algorithm producing a set R ⊂ Ω.
Through the use of an MIP solver limited to R, the enumeration then proceeds subject to a
known upper bound implemented as a cut-off. The next stage determines whether the restricted
path is infeasible or not. If infeasible, it proves that the solution attaining the upper bound is
optimal.

The efficiency of the label-setting algorithm depends on the cardinality of the set R, and this
cardinality depends, in turn, on the duality gap and the number of customers per route. For
small ratios of n/K, the set R is likely to be small, even with a large associated gap, and in
general these cases allow for sets of no larger than a few tens of thousands of routes to be created.
This allows for the resulting restricting model to be solved very timeously.

The above-mentioned enumeration process was improved upon by Baldacci et al. [28], who con-
sidered two dual solutions with associated lower bounds. The first dual solution is obtained
earlier in the algorithm, while the second dual solution relates to the final solution at the root
node.

A different improvement approach was followed by Contardo [96], who tested at intervals whether
the current solution is likely to lead to a set of fewer than five million routes. If the test is positive,
the set is stored in a pool, and column and cut generation proceeds. From this point onwards,
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the pricing procedure proceeds by applying a straightforward inspection as opposed to employing
a conventional label-setting algorithm. This allows for aggressive separation of non-robust cuts
and after each improvement of the lower bound, the pool is reduced by performing reduced cost
fixing. In most instances, the column and cut generation algorithm terminates with a zero gap,
but if this is not the case, the corresponding pool is sent to an MIP solver.

3.6.3 Hybridising branching and route enumeration

Route enumeration plays an integral role in some of the best-performing CVRP algorithms,
but it is still an inherently exponential space procedure that is susceptible to failure when
applied to larger/harder instances. The hybrid strategy applied in [346] and [347] performs
route enumeration until a limit of 80 000 iterations is reached, after which a BCP algorithm
continues via branching.

In a more sophisticated approach by Pecin et al. [340], route enumeration is attempted on every
node v, allowing for large sets to be analysed. The procedure is structured in the following
manner:

• If the enumeration is successful, the node v continues to be considered by pricing through
inspection. An unlimited number of subset row cuts and clique cuts are separated and
routes are eliminated through fixing by reduced costs. Once the final set has fewer than
20 000 routes, the node is considered further by an MIP solver, while if the set is too large,
the BCP algorithm performs branching.

• The enumeration in most instances is successful, but if the enumeration fails, aggressive
hierarchical strong branching is performed [428].

3.7 Classical heuristics

Recent development of decomposition algorithms has allowed for CVRP instances of roughly a
hundred customers to be solved to optimality according to varying time requirements. Real-life
CVRP instances, however, often require much larger numbers of customers to be accommodated
subject to predictable time requirements, which calls for the efficiency of heuristics. Furthermore,
exact algorithms are typically very problem-specific and the development of flexible heuristics
that are able to handle a variety of objectives and side constraints is therefore a desirable
prospect.

VRP heuristics are almost as old as the problem itself. In the seminal paper by Dantzig and
Ramser [107], the authors introduced a simple heuristic based on successive matchings of vertices
through the solution of linear programs and the elimination of fractional solutions by trial and
error [428]. Since then a wide variety of constructive and improvement heuristics have been
proposed, culminating in the recent development of powerful metaheuristics that are able to
compute solutions within seconds that lie within less than one percent of the best known objective
function values for relatively large problem instances [428]. Metaheuristics have dominated the
research evolution of approximate VRP solution techniques over the past ten years, with the
notion of hybridisation at the forefront of this evolution.

3.7.1 Broad overview

Classical heuristics may be classified into three broad categories, namely [425]:

Constructive heuristics, which do not include an improvement phase, but rather iteratively
build a feasible solution while continually considering solution cost.
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Two-phase heuristics, which involve decomposing the problem into its two natural compo-
nents, route construction and feasible clustering of vertices into routes. The cluster-first,
route-second paradigm involves first clustering the vertices into feasible clusters and then
constructing vehicle routes from the clusters. Conversely, a route is constructed on all ver-
tices and then segmented into feasible routes respecting the vehicle capacities according
to the route-first, cluster-second paradigm.

Improvement methods, which aim to enhance any feasible solution by performing ordering
exchanges on a sequence of edges and vertices.

Examples of members of the three categories of heuristics described above are reviewed in the
remaining subsections of this section. The distinction between improvement and constructive
methods is, however, often blurred as most constructive approaches contain an improvement
stage at some point [425]. Most of the heuristics developed for VRPs also apply directly to
the CVRP in particular, and they are usually able to accommodate an unspecified number of
vehicles.

3.7.2 Constructive heuristics

The two main techniques applied in the class of constructive heuristics involve either merging
together existing routes iteratively by utilising a savings criterion or gradually assigning vertices
at an insertion cost to smaller, existing vehicle routes.

3.7.2.1 The Clarke and Wright savings algorithm

The seminal paper by Clarke and Wright [87] contains the proposal of perhaps the best-known
heuristic for the VRP. The algorithm is based on the notion of savings incurred by including
an additional vertex in an existing route. The algorithm is usually applied to instances where
the number of vehicles is a decision variable and works equally well for instances on directed or
undirected graphs. The algorithm works as follows:

Step 1 Calculate the savings sij = ci0 + c0j − cij for i, j = 1, . . . , n and i 6= j, where 0 denotes
the depot. Construct n initial vehicle routes (each route containing only one vertex and
the depot) and then order the savings in a nonincreasing manner.

Step 2 There are two main paradigms that can be applied in Step 2, namely:

• A parallel version: Starting from the beginning of the savings list, do the following:
Given a savings value sij , determine whether there exist two routes, one containing
the arc (0, j) and the other containing the arc (i, 0), that can feasibly be merged.
If so, merge these two routes by removing (0, j) and (i, 0), and introducing (i, j), as
illustrated in Figure 3.1.

• A sequential version: Consider sequentially every route (0, i, . . . , j, 0), determining
a savings value ski or sj` that can feasibly be utilised to combine the current route
with a separate route containing either the arc (k, 0) or the arc (0, `). If possible,
implement the merge and repeat this operation with respect to the newly formed
route. If no feasible merges remain, consider the next route and repeat the same
procedure. Stop when no feasible route merges remain.

Toth and Vigo [425] showed that the parallel version dominates the sequential version, producing
better results in less time.

Stellenbosch University  https://scholar.sun.ac.za



3.7. Classical heuristics 43

0 0

Figure 3.1: An illustration of the Clarke and Wright savings method.

3.7.2.2 Enhancements of the Clarke and Wright algorithm

The Clarke and Wright algorithm tends to create good results initially, but less-improving routes
towards the end, often also including some circumferential routes [425]. This disadvantage was
remedied by Gaskell [178] who proposed general savings of the form sij = ci0 + c0j −λcij , where
λ represents a shape parameter. The parameter λ controls the emphasis placed on the distance
between the vertices to be joined, with a larger value resulting in a higher emphasis placed. It
was shown in [197] that values of λ between 0.4 and 1 produce good results.

The Clarke and Wright algorithm is rather time-consuming due to the fact that all savings
have to be computed, stored and sorted. The savings heuristic requires two main issues to be
addressed, namely the method of determining the maximum saving values and parameter stor-
age requirements. Determining the maximum savings is the most time-demanding component.
Three approaches may be considered in this respect [425]. The first approach involves a full
sort being implemented in a straightforward manner, while the second approach involves an
iterative limited sort that can be performed by means of a heap data structure [197]. The third
approach involves an iterative computation of the maximum saving value [335]. Paessens [335]
showed that sij > s̄ in instances whenever c0i > s̄/2 and c0j > s̄/2, where s̄ denotes the current
maximum savings value. Paessens also reported numerical results illustrating that the iterative
determination of maximum savings values tends, on average, to be the best approach.

In attempts at increasing the savings method’s performance, some authors have only considered
a small subset of all possible savings. Paessens [335], for example, disregarded all edges (i, j)
satisfying cij > α maxk∈{1,...,n}c0k for some constant α. Nelson et al. [324] investigated the use
of more complex data structures based on heaps in a bid to limit storage requirements which
result in more efficient updating operations. They illustrated four different methods utilising
adjacency information aimed at disregarding all edges associated with an interior vertex.

3.7.2.3 The matching-based savings algorithm

In both the papers [8] and [123], the authors independently proposed very similar algorithms
that are interesting modifications of the savings algorithm. The algorithms involve calculation
of the values spq = t(Sp) + t(Sq) − t(Sp ∪ Sq) at each iteration, where Sk is the set of vertices
included in route k and t(Sk) is the length of an optimal TSP solution on the vertices in Sk.
Then a maximum-weight matching problem is solved over the vertices within the set Sk using
the values spq as matching weights. Routes that correspond to an optimal matching are also
merged if feasible.

Wark and Holt [446] proposed an alternative matching heuristic involving the merger of clusters
of vertices at their endpoints. The matching weights are defined as ordinary savings, or alterna-
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tively in a manner favouring mergers of clusters whose route lengths and capacity requirements
are far below the allowable values. Initialising with n back-and-forth routes33, the algorithm
successfully merges clusters resulting in only a few lines of columns of the savings matrix to be
updated. This approach generates a tree of sets of clusters from which a best solution can be
determined.

3.7.2.4 Sequential insertion heuristics

Mole and Jameson [317] proposed an algorithm involving the expansion of routes, one at a time.
They employed two parameters λ and µ to expand the route under construction, by calculating

β(i, k, j) = µc0k − cik + ckj − λcij . (3.21)

The algorithm works as follows:

Step 1 Determine whether all vertices have been assigned to routes. If so, then stop. Otherwise,
construct a back-and-forth route (0, k, 0) with k representing any unassigned vertex.

Step 2 For every unassigned vertex k, determine the feasible insertion cost (3.21). If there
are no feasible insertions, return to Step 1. Otherwise, insert the best vertex k∗ into the
emerging route.

Step 3 Optimise the current route using the 3-opt procedure34, as described in [290].

An alternative sequential insertion heuristic was proposed by Christofides et al. [83]. The heuris-
tic also employs user-controlled parameters λ and µ, and functions in two phases, as follows:

Phase 1 Sequential route construction

• Step 1: Initialise a route index with the value 1.

• Step 2: Calculate the insertion cost of all unassigned vertices which are able to
initialise route k.

• Step 3: Insert the vertex with the lowest feasible insertion cost into the route under
construction and perform a 3-opt optimisation.

• Step 4: If all vertices have been added, initialise a new path for construction.

Phase 2 Parallel route construction

• Step 1: Initialise k routes, where k represents the number of routes obtained at the
end of Phase 1.

• Step 2: Associate all unassigned routes (i.e. determine which routes should be se-
lected to have the respective construction techniques applied) while still considering
feasibility and determining the minimum association cost matrix35.

33A back-and-forth route exits from the depot, visiting a single customer, and then returning directly to the
depot.

34A 3-opt analysis involves deleting three edges from a path, reconnecting the edges in all other possible
ways, evaluating each reconnection, and then selecting the best one. This process is repeated for all different
combinations of three edges. The most improving reconfiguration is implemented. This mechanism can be carried
out in O(n3) time [425].

35The minimum association cost matrix contains the cost of assigning a vertex to a route.
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• Step 3: Insert the unassigned vertices which minimise the overall route costs. Perform
this operation until it is no longer possible to insert vertices into the route under
construction. Perform 3-opt optimisation on the newly constructed route.

• Step 4: If it is still possible to construct new routes, go to Step 2. Otherwise, stop.

A comparison of the two methods described above was performed by Christofides [83]. The
finding was that the sequential insertion heuristic of Christofides [83] was superior as it is able,
on average, to generate better results in less computing time.

3.7.2.5 Two-phase methods

The family of two-phase heuristics occur in two paradigms, namely, a cluster-first, route-second
paradigm and a route-first, cluster-second paradigm. Within the cluster-first, route-second
paradigm there are several different methods. The simplest of these is referred to as the elemen-
tary clustering method. This method involves the formation of a single clustering of the vertex
set and then proceeds to perform route construction on each cluster. Another method within
this paradigm is the truncated branch-and-bound method. A third method in this paradigm is
the petal algorithm, which generates a large family of overlapping clusters and forms the clusters
from which a feasible route is constructed.

The elementary clustering method

The elementary clustering method was initially referred to as the sweep algorithm and was first
introduced by Wren [457], but popularised by Gillet and Miller [190]. The sweep algorithm is
limited to planar36 instances of the VRP, where feasible clusters are initially formed by rotating
a ray centered at the depot. Route construction is then performed by solving an instance of the
TSP for each cluster.

There are a number of variations on this algorithm that apply different post-optimisation phases
in which pairwise exchanges of vertices are performed over different clusters [425]. A simple
implementation of this algorithm involves representing each vertex i by its polar coordinates
(θi, ρi), where ρi represents the ray length and θi represents the angle. A vertex i is selected
arbitrarily and assigned a value θ∗i = 0. The remaining angles are measured relative to (0, i∗).
The vertices are ranked in increasing order of their θi-values. The algorithm then works as
follows:

Step 1 Select an unused vehicle k.

Step 2 Selecting the vertex with the smallest θi-value, assign the vertex to vehicle k as long as
the maximum route length and the capacity constraint are not violated.

Step 3 Optimise each vehicle route by solving the corresponding TSP instance.

A variation on the elementary clustering method was proposed by Fisher and Jaikumar [165].
Their variation clusters by solving a Generalised Assignment Problem (GAP) as opposed to
following the standard geometric approach [425]. The algorithm works as follows:

Step 1 Select a seed vertex jk ∈ V to initialise each cluster k.

Step 2 Calculate the cost Cik of assigning a customer i to cluster k as Cik = min{c0i + cijk +
cjk0, c0jk + cjki + Ci0} − (c0jk + cjk0).

36A graph is planar if it can be drawn in the plane without any pair of its edges crossing [455].
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Step 3 Solve a GAP based on the associated Cij-values, customer weights qi and vehicle ca-
pacity Q.

Step 4 Solve a TSP for each of the clusters formed through the GAP solution.

The number of vehicles is a fixed a priori and the authors proposed a geometric partitioning
approach according to customer weights in which the plane is partitioned into K cones. The
seed vertices are dummy customers placed along the rays that bisect the cones. After cluster
determination, the TSP instances are solved to optimality by adopting a constraint relaxation-
based approach [425], as illustrated in [309].

Another variation on the elementary clustering method was introduced by Bramel and Simchi-
Levi [55]. Their algorithm is a two-phase heuristic in which the seeds are determined during the
first stage by solving a capacitated location problem37, with the remaining vertices gradually
included into the relevant routes during the second stage. The first stage involves locating K
seeds among n customer locations in a manner that minimises the total distance from customers
to their closest seed while still respecting the vehicle capacity constraint. The second stage
involves constructing vehicle routes by inserting at each step the customer with the smallest
insertion cost to the assigned route seed.

The truncated branch-and-bound method

The truncated BaB method was proposed by Christofides et al. [83] for problems with a fixed
number of vehicles. The algorithm may be seen as a simplification of an earlier algorithm
proposed by Christofides [81] and utilises a search tree that has as many levels as there are
vehicle routes, with each level containing a set of feasible and non-dominated routes. The
algorithm employs a variable Fh which denotes the set of unrouted vertices at level h and
functions as follows:

Step 1 Let h = 1 and Fh = V \ {0}.

Step 2 If Fh = ∅, then stop. Otherwise, select an unrouted vertex i ∈ Fh and generate a set
Ri of routes containing i and vertices in Fh. The routes are gradually generated according
to a linear combination of two criteria, namely savings and insertion cost.

Step 3 Evaluate the quality of each route in terms of both the standard TSP objective function
and the length of the shortest spanning tree over the unrouted customers.

Step 4 Determine the route with the minimum resulting function value. The function in this
case refers to a combination of the solution of the associated TSP and the length of the
shortest spanning tree over the unrouted customers. Set h← h+1 and let Fh = Fh−1\Sr∗ ,
where Sr∗ represents the vertex set of route r. Return to step 2.

In terms of solution quality, elementary clustering algorithms and the truncated BaB algorithm
have been reported to outperform other constructive approaches [425].

The petal algorithm

The petal algorithm is an extension of the sweep algorithm [425]. It generates several routes,
referred to as petals, and makes a final route selection by solving a set partitioning problem38 in

37A capacitated location problem is the problem of assigning customers to clusters subject to a capacity con-
straint imposed on the number of customers per cluster.

38A set partitioning problem requires the partitioning of items in a given set into smaller subsets.
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which the objective is to

minimise
∑
k∈S

dkxk (3.22)

subject to ∑
k∈S

aikxk = 1, i = 1, . . . , n, (3.23)

xk ∈ {0, 1}, k ∈ S, (3.24)

where S represents the sets of routes, xk = 1 if route k belongs to the selected solution (or else
xk = 0), aik is a binary parameter that is equal to 1 if vertex i belongs to route k, and dk is the
cost associated with petal k. This algorithm was proposed by Balinski and Quandt [29], but is
limited to small instances of S. In both the papers [169] and [380], the authors introduced rules
for generating a promising subset S ′ ( S to be used in the heuristic approach. These heuristic
rules were further improved upon in [366] where the subset S ′ was modified not only to include
single vehicle routes, but also configurations consisting of two embedded or intersecting routes.
This extension is referred to as the 2-petals algorithm in the literature.

The route-first, cluster second paradigm

The first phase of two-phase methods in the route-first, cluster second paradigm of Beasley [39]
involves creating a large TSP tour, and neglecting the VRP side constraints. The second phase
then involves a decomposition of this tour into feasible vehicle routes. Beasley [39] describes how
the second phase involves simply solving a standard shortest-path problem on an acyclic graph
in O(n2) time. In the shortest-path algorithm, the cost Cij of travelling between the vertices i
and j is taken as c0i + c0j + `ij , where `ij represents the cost of travelling from i to j along the
TSP tour of the first phase.

3.7.3 Improvement heuristics

Improvement heuristics for the VRP may be applied to each vehicle route separately which
allows any heuristic for the TSP to be applied. Alternatively, improvement heuristics may also
be applied to several vehicle routes at once. The latter type of application allows for exploitation
of multi-route structures.

3.7.3.1 Single-route improvements

Most of the single-route improvement procedures in the literature may be described in terms of
Lin’s [290] λ-opt mechanism [425]. Several improvements have been proposed on the standard
λ-opt mechanism. Lin and Kernighan [291] suggested modifying λ dynamically throughout the
search, whereas Renaud et al. [365] developed a restricted version of the 4-opt mechanism which
creates a subset of promising reconnections between two so-called chains. An empirical study
performed by Johnson and McGeoch [247], led to the conclusion that the dynamic λ-approach
in [291] produced the best results, on average.

3.7.3.2 Multiroute improvements

Thompson and Psaraftis [422] introduced a general b-cyclic, k-transfer solution scheme. The
scheme considers a circular permutation of b routes and k customers from every route, and
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(a) Before (b) String cross (after)

(c) String exchange (after) (d) String relocation (after)

Figure 3.2: Multiroute improvement operations.

exchanges them to the next route of the cyclic permutation. Van Breedam [434] subsequently
proposed an improved scheme involving string cross, string exchange, string mix, and string
relocation methods (which may simply be viewed as special cases of 2-cyclic exchanges [425]):

• The string cross operation involves exchanging two strings (or chains) of vertices through
crossing two edges of two different routes, as illustrated in Figures 3.2(a) and 3.2(b).

• The string exchange operation involves exchanging two strings of at most k vertices be-
tween two routes, as illustrated in Figures 3.2(a) and 3.2(c) for k = 1.

• The string relocation operation involves exchanging a single string of at most k vertices
from one route to another, as illustrated in Figures 3.2(a) and 3.2(d) for k = 1. Here k is
normally limited to a value of 1 or 2.

• The string mix operation is a selection of the best solution emanating from the string
relocation operation and string exchange operation.

The scheme of Van Breedam [434] requires specification of a set of input parameters that influ-
ence the behaviour of the local improvement procedure. These parameters include the initial
solution, the string length k, the evaluation procedure for a string of length k > 1, and an op-
eration selection strategy. Van Breedam [434] noted that better-quality results are obtained in
less computing time when the algorithm is provided with a good initial solution. Furthermore,
the best solutions are obtained, on average, when using string exchange with k = 2, but this
operation requires twice as much computing time as when using a value of k = 1.

3.8 Metaheuristics

Metaheuristics applicable to the VRP may be classified broadly into population-based methods
and trajectory-based methods [428]. Population-based methods evolve a population of solutions
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which are combined iteratively in an attempt to create better populations over time and are based
on mechanisms inspired by nature. The general procedure of implementation of these algorithms
is to generate an initial population randomly, then evaluate the fitness of each individual of this
population and perform various operations to generate a new population. Population-based
algorithms, when applied to multi-objective problems, are concerned with three main issues
[91]:

• How to select individuals in order to give preference to non-dominated solutions over
dominated solutions,

• how to retain identified non-dominated solutions throughout the search process in order
to eventually report non-dominated solutions with respect to previous populations, and

• how to maintain diversity within the population so as to avoid convergence to a local
optimum.

Trajectory-based methods, on the other hand, explore the solution space by moving at each it-
eration from one solution to another, neighbouring solution as a result of applying local changes
within a specified neighbourhood of the current solution [428]. Trajectory-based methods there-
fore require a neighbourhood relation definition in terms of the solution space. Typically, every
candidate solution has numerous neighbours and the choice to move to a particular neighbour
of the current solution is based on information limited to the neighbourhood.

3.8.1 Population-based algorithms

The class of population-based metaheuristics is inspired by natural concepts such as evolution,
the movement of animals, and natural communication methods. Members of this class utilise
high-level guidance strategies based on various memory structures, such pools of solutions rep-
resented by chromosomes, neural networks, or pheromone matrices [428]. The most successful
VRP metaheuristics all implement a local search component to guide the algorithm to a promis-
ing set of solutions and thus most population-based metaheuristics in the VRP literature are
inherently hybrid in nature [428].

3.8.1.1 Genetic algorithms

Genetic algorithms (GAs) are the most popular population-based metaheuristics in the VRP
literature. The notion of a GA was first introduced by Holland [232] in 1976 — it is a prob-
abilistic search algorithm based on natural selection. A GA is initialised by selecting a set of
candidate solutions called a population. A single solution in this population is often referred to
as a chromosome. The population size typically remains constant throughout the iterative pro-
cess and the fitness of each chromosome is evaluated according to the VRP objective function.
Chromosomes are probabilistically selected to form the next generation based on their fitness
values and have reproduction operators performed on them.

When generating a new generation, the operations of mutation and crossover are randomly
applied, and the average fitness values of the populations are calculated and compared. This
process is repeated until a certain termination criterion is met, which is typically based on a
convergence property of the average fitness value. GAs are popular due to the crossover and
mutation mechanisms that allow the algorithm to escape from local optima.
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The first successful application of a GA to a VRP was demonstrated in [351]. The application
combined genetic operators (selection and crossover) with an effective local search mechanism
that replaced the conventional mutation operator. The GA operators were applied to giant-tour
solutions which allowed for simple permutation-based crossovers. The local search component
was applied to the complete solution representation. Diversity management is, however, crucial
in GAs so as to avoid local optima.

A simple GA can be described as follows. Initialise the algorithm by randomly generating a
population of chromosomes X 1 = {x1

1, . . . ,x
1
n}. Then at each iteration t ∈ {1, . . . , T}, apply

steps 1 through to 3 below k times with k ≤ N/2. Finally, apply Step 4:

• Step 1: (Reproduction phase) Select two parent chromosomes from X t.

• Step 2: (Recombination phase) Produce two offspring chromosomes from the selected
parent chromosomes by means of a crossover operator.

• Step 3: (Mutation phase) Apply a random mutation to the offspring solution.

• Step 4: (New generation creation phase) Form X t+1 from X t by removing 2k chromosomes
from X t and replacing them with the 2k offspring chromosomes.

This algorithm utilises a parameter T , which represents the number of generations, and a pa-
rameter k which represents the number of chromosomes selected per generation. The algorithm
aims to improve the set of chromosomes over the course of various iterations until a suitable set
of high-quality solutions is obtained.

In Step 1, the parents are typically selected probabilistically with a bias in favour of the best
chromosomes. In Step 2, the offspring solutions are typically generated by applying a crossover
operator to chromosome vector representations of two parents. In Step 3, the offspring solutions
are slightly modified by altering vector entries with a small probability, called the mutation
probability. Finally, Step 4 represents the generation replacement mechanism.

GAs perform particularly well in VRP instances where complicated constraints, such as time
windows, are present and are able to produce highly competitive results due to the robust
nature of the algorithmic structure. According to Yang [463], the two most notable advantages
of employing GAs to solve VRP instances are their ability to deal with complex optimisation
problems and their suitability to parallelism. They are also robust in nature, being able to
deal with a wide variety of objective functions whether stationary or non-stationary, linear or
nonlinear, continuous or discontinuous, and with or without random noise.

An interesting GA was proposed by Schmitt and John [390] for the time-constrained CVRP. This
variation adopts a route-first, cluster-second paradigm which allows for genetic operators to be
applied to megaroutes over all vertices. A solution is obtained by applying a sweep algorithm,
starting with the vertex in the first position of the generated string.

Efficient GAs have recently been proposed for the CVRP. The algorithm proposed by Nagata and
Bräysy [321] utilises an adaptation of the edge-assembly crossover operator which had previously
achieved success in the context of the TSP [428]. This approach employs a crossover operator
that considers the graph associated with the merger of partial chromosomes of the two parents.
It then selects several cycles within the graph, rotating between the edges of the parents. The
offspring are created by removing and adding the selected edges from and to the respective
parents. A repair procedure is necessary as the resulting graph does not always represent a
feasible VRP solution (it may contain subtours and/or tours not connected to the depot). The
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vehicle capacity constraint may also be violated and thus a greedy heuristic is applied to merge
disconnected routes and a local search is performed to reduce the capacity infeasibility.

Vidal et al. [435] presented a hybrid GA that builds upon the one proposed earlier by Prins
[351] through employing an advanced diversity control mechanism. It incorporates a bicriteria
evaluation of the individuals in each population. The evaluation is based on solution quality and
the contribution of solutions to population diversity. Vidal et al. proposed an interesting fitness
function φP for evaluating the desirability of a solution S in population P. The fitness function
is a weighted sum of the rank of S (in terms of solution quality) with respect to the solution
cost φcost and in terms of maintaining its diversity φdiv within the population. The diversity
term is modelled as the Hamming distance39 between solutions. The fitness function is given by

φP(S) = φcost(S) +

(
1− µelite

|P|

)
φdiv(S), (3.25)

where µelite is a parameter governing the relative weight of the respective terms. This improved
fitness function allows the algorithm to depend on an efficient granular local search without
risking premature population convergence [428].

3.8.1.2 Ant colony optimisation

Ant colony optimisation (ACO) was first introduced in the early 1990s by Dorigo [137] and its
working is based on the foraging behaviour of ants. At the core of the method of ACO lies the
notion of indirect communication between ants through a pheromone trail, which allows them
to find attractive paths between their current locations and a source of interest.

In general, the ant colony optimisation algorithm generates an approximate solution to an
optimisation problem by iterating through two steps [47]. The first step involves constructing
candidate solutions using a pheromone model (a parameterised probability distribution over the
solution space), while the second step involves manipulating the pheromone values through the
use of candidate solutions in an attempt to bias the search towards higher quality solutions.

The basic model of the algorithm proposed by Dorigo [137] in the context of a VRP associates
two values with each edge (vi, vj) of a complete, weighted graph G on the set of all customers.
The first value is the so-called visibility nij (the inverse of the length of the edge between vertex i
and vertex j), and the second value is the pheromone trail Γij . The visibility parameter is static,
while the pheromone trail is updated dynamically. During each iteration, r artificial ants begin
at each vertex of the graph and construct r new tours through the use of a probabilistic nearest
neighbour heuristic equipped with a modified distance measure. The modified distance measure
is derived from the parameters nij and Γij in a manner that favours vertices close together and
incident with edges associated with high pheromone levels. After each iteration, the pheromone
levels associated with the edges are updated by allowing a small fraction 1− ρ, with ρ ∈ [0, 1],
of the pheromone values to be removed and placed on the edges of the new tours created during
the iteration. The pheromone trail is increased by ∆k

ij = 1/Lk for each ant k having traversed
edge (vi, vj), where Lk is the length of the tour constructed by the ant. The trail value for the
edge (vi, vj) is also updated by the substitution

Γij ← ρΓij + ρ
r∑

k=1

∆k
ij . (3.26)

39In information theory, the Hamming distance between two strings of equal length is the number of positions
in which the corresponding symbols are different. It measures the minimum number of substitutions required to
change one string into the other, or the minimum number of errors that can transform one string into the other.
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The value of the evaporation parameter ρ plays an important role during the initial stages of
the search, preventing convergence to a poor solution, but must be almost insignificant during
latter stages of the search so as to avoid conditioning the search too strongly towards the end.

According to Ding et al. [129], there are inherent weaknesses within the method of ant colony
optimisation, namely:

• The search usually becomes trapped at a locally optimal solution,

• it often requires considerable computation time to obtain the final solution, and

• parameter adjustment is difficult in order to obtain good solutions.

The general conclusion drawn from the papers [138, 139] is that despite the excellent results
produced on occasion by the method of ACO, it requires hybridisation with a local optimiser to
remain competitive with other metaheuristics and local search algorithms. Kawamural et al. [255]
proposed a complex hybrid of the ACO metaheuristic with a 2-opt improvement procedure and
probabilistic acceptance rules that mirror those of simulated annealing. This hybridisation was
applied to two CVRP instances containing 30 and 60 customers, respectively, and was able to
find an optimal solution in both cases.

Bullnheimer et al. [66] proposed a hybrid ant system in which vehicle routes are first improved
through 2-opt optimisation before any trail updates are performed. The algorithm also incor-
porates vehicle capacity and distance savings into the vertex selection process. The algorithm is
further improved by the use of elitist ants, which are assumed always to return to the incumbent
solution. In the paper, the authors performed computation experiments in respect of fourteen
problem instances given in [83]. The results indicate that it is beneficial to apply the 2-opt
optimisation procedure and to employ elitist ants.

Bullnheimer et al. [65] refined the algorithm proposed in [66], by:

• Adding a distance savings component directly to the visibility component and removing
the computationally expensive capacity term from the algorithm,

• reducing the neighbourhood of candidate vertices to bn/4c, and

• limiting the trail update to the best five solutions found during each iteration, and weight-
ing the pheromone levels according to the solution’s rank.

These refinements led to shorter computation time requirements and better quality solutions.

Reimann et al. [364] developed a more successful algorithm than the one proposed in [65]. The
algorithm generates new solutions through a savings-based procedure and a local search method.
The savings function differs from that in the standard Clarke and Wright algorithm and can be
described as χij = ταij − s

β
ij , where ταij is the pheromone value that measures the effectiveness of

combining vertices i and j in the previous iteration, with α and β being user-controlled parame-
ters. The combination of the two vertices is based on the probability pij = χij/(

∑
(h,`)∈Ωk

χh`),
where Ωk represents the set of feasible (i, j)-combinations resulting in the k best savings.

More recently, Reed et al. [363] proposed first clustering the vertices and then applying the ACO
algorithm to the clustered vertices in what they refer to as an ant colony system algorithm.
They improved upon the basic method of ant colony optimisation in the following key areas:

• Route construction: The ants’ movements to new vertices are determined by means of
a pseudorandom proportional rule which incorporates a random, uniformly distributed
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variable. This adaptation allows, with a small probability, for an ant to make the best
move based on the pheromone trails and heuristic knowledge; otherwise, it implements the
standard selection rule.

• Pheromone updating : The algorithm utilises two types of pheromone updating, namely
global and local updates. A local update is performed every time an ant traverses an edge
while a global update is only performed when an ant produces the best tour uncovered so
far. This allows for faster convergence as route construction is focused around the best
tour.

The algorithm was able to solve VRP instances with over 500 customers to optimality, but in
larger instances the clustering mechanism leads to poorer solutions.

3.8.1.3 Particle swarm optimisation

Particle swarm optimisation (PSO) was first introduced by Kenndy and Eberhart [256] and is
an evolutionary algorithm which originated from modelling the unpredictable choreography of
a flock of birds. In PSO, the population of candidate solutions is referred to as the swarm and
each potential solution to the problem is referred to as a particle. The underlying algorithm of
PSO is based on an update rule of the form

xi(t) = xi(t− 1) + vi(t), (3.27)

where xi(t) is the position of a solution at time t and vi(t) is a velocity term that controls
the movement of the particle within the search space through the solution space. PSO has
become popular according to Reyes-Sierra and Coello [369] due to the main algorithm being
relatively simple and its implementation being straightforward. Additionally, there is extensive
source code available online for implementing the method. The second reason for its popularity
is that PSO has been found to be very effective in a wide variety of applications and that it
produces good results at a very reasonable computational effort. PSO is also popular due to its
quick convergence on the current best solution, but the convergence is not necessarily around a
globally best solution and the updating equations do not satisfy global convergence constraints
[157].

PSO has been applied successfully by Ai and Kachitvichyanukul [4] to the VRP with simulta-
neous pickup and delivery, where it outperformed several competing algorithms in respect of
well-known benchmark instances. The algorithm employs a velocity function based on three
terms, namely inertia, cognitive learning and social learning terms. Typically, PSO is imple-
mented in a hybridised manner [78, 193, 299] as a local-improvement method when applied as
an approximate solution approach to VRPs.

3.8.2 Trajectory-based algorithms

Trajectory-based algorithms start from an initial solution xt and move iteratively to the next
solution xt+1 within a predefined neighbourhood N(xt) of xt, for t ∈ [0, 1, 2, . . . , T ], where
T denotes the number of iterations allotted to the algorithms. Five popular trajectory-based
algorithms are reviewed briefly in this section.
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3.8.2.1 Simulated annealing

The main principle behind the method of simulated annealing is that a random solution is
drawn at each iteration from within a neighbourhood of the current solution. The method
can be described as follows for a minimisation problem with an objective function f : During
iteration t of the search, a solution x is drawn from the neighbourhood N(xt) of the current
solution xt. If f(x) ≤ f(xt), then xt+1 = x. Otherwise,

xt+1 =

{
x, with probability pt

xt, with probability 1− pt,

where pt is normally a decreasing function of t and the difference f(x)− f(xt). Three common
stopping conditions for the iterative search processes, such as the method of simulated annealing,
include [425]:

• The objective function value of the incumbent solution has not improved by π1% for at
least k1 consecutive cycles.

• The number of accepted moves has been less than π2% for k2 consecutive cycles.

• A total of k3 iterations have been performed (in other words T = k3).

An early implementation of simulated annealing within the context of the CVRP can be found
in [375]. The authors defined the neighbourhood structure using several mechanisms. These
mechanisms included reversing part of a route, exchanging vertices between separate routes,
and moving a part of a route into a new section of the same route.

Osman [332] introduced a more successful implementation of simulated annealing to solve CVRP
instances. It utilises better starting solutions, the parameters are adjusted during a trial phase,
better neighbourhoods are explored, and the cooling schedule is adaptive. The overall algorithm
adopts a two-phase solution approach. The first phase utilises the Clarke and Wright algorithm
to generate an initial solution. The second phase then involves implementation of a simulated
annealing search to refine the solution. The cooling procedure was also novel at that stage.
The typical approach was to implement a decreasing cooling function, but Osman introduced
a cooling function that decreases continually as long as the current solution is modified. The
results produced by this approach were generally good, but occasionally it missed an optimal
solution by quite a significant margin and it rarely uncovered an optimal solution.

A considerable amount of research has recently been conducted on variations of simulated anneal-
ing, either as straight heuristics or as components of metaheuristics. Vincent [437] introduced
a multi-start simulated annealing algorithm. This algorithm differs from the conventional form
as it acts within a multi-start hill climbing context, the neighbourhood construction is different,
local search procedures are performed after each temperature reduction in the multi-start algo-
rithm, and the initial solution is generated in a novel manner. The results obtained from this
algorithm are promising, with the algorithm finding the most best new solutions for a number
of benchmark instances when competing against four other algorithms.

3.8.2.2 Deterministic annealing

The method of deterministic annealing is very similar to simulated annealing, except that a
deterministic rule is used for acceptance of a move during each iteration. Standard implemen-
tations of this technique involve threshold acceptance (introduced by Dueck and Scheuer [151])
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and record-to-record travel (introduced by Dueck [150]). According to the threshold-accepting
algorithm, a solution x ∈ N(xt) is accepted during iteration t if f(x) < f(xt) + θ1, with θ1

being a user-controlled variable. In record-to-record travel, on the other hand, the best solu-
tion encountered during the search is x∗ (record). During iteration t, a solution x is accepted
if f(x) < θ2x

∗, with θ2 again being a user-controlled parameter (usually with a value slightly
larger than 1).

Golden et al. [196] applied the record-to-record algorithm to twenty large instances of the CVRP
and compared the results thus obtained to those obtained by the tabu search of Xu and Kelly
[461]. They demonstrated that the record-to-record algorithm was able to produce results in
much less computation time and in general produced a higher quality solution. More recent
implementations of determinisitc annealing within the context of the CVRP may be found in
[207, 287], which employ slight variations of the decision inequality to produce effective results,
while still being easy to implement.

3.8.2.3 Tabu search

The tabu search algorithm moves from a solution xt to the best non-tabu solution xt+1 within
a neighbourhood N(xt) of xt during iteration t. The algorithm avoids cycling by declaring
revisitation of solutions that share attributes with xt as forbidden or tabu. The forbidden
visitation status of a solution may be revoked whenever the current solution corresponds to a
new best known solution.

One of the earlier attempts at applying tabu search to the CVRP is due to Willard [452]. He
proposed a method that transforms the solution into a giant tour through replication of the
depot. Neighbourhoods are defined as all feasible solutions that are attainable from the current
solution by means of 2-opt or 3-opt exchanges. The next solution is selected as the best non-tabu
element of the neighbourhood of the current solution during each iteration.

A slightly improved version of the aforementioned algorithm was introduced by Pureza and
Franca [354], where the neighbourhood of the solution is defined by moving a vertex to a different
vehicle route or swapping vertices between routes. The results returned by this algorithm were
slightly better than the results produced in [452], but still relatively poor. The improved tabu
search managed to illustrate that more complex search mechanisms are required to obtain good
results for VRP instances.

Another novel neighbourhood definition was introduced by Osman [332]. He defined the neigh-
bourhood of the current solution by means of the so-called λ-interchange generation mechanism.
This mechanism includes a combination of 2-opt moves, vertex reassignments and interchanges.
There are two implementable search strategies in the tabu search of Osman [332]. The first
strategy searches the entire neighbourhood and then selects the best non-tabu solution. The
second search strategy searches the neighbourhood until it discovers a non-tabu solution that
improves the incumbent solution. The latter approach produced excellent results [425] but still
has room for improvement.

A rather involved variant of tabu search was introduced by Laporte et al [184]. The algorithm is
referred to as a tabu-route algorithm and introduced numerous novel aspects to the tabu search
algorithm. The neighbourhood of a solution is defined as all solutions reachable by removing
a vertex from a vehicle route of the solution and adding it into another route containing its p
nearest neighbours, using a generalised insertion procedure [185]. This either eliminates a route
or creates a route. The algorithm also considered routes that are infeasible — facilitated by
incorporating a penalty component into the objective function, thus reducing the chances of the
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solution becoming trapped at a local optimum. The algorithm produces high-quality results and
often yields an optimal solution [425].

Xu and Kelly [461] introduced an interesting tabu search variation. The neighbourhood defini-
tion is more sophisticated, involving swapping vertices between two routes, global repositioning
and local route optimisation. The algorithm is governed by several parameters which are dy-
namically adjusted throughout the search. A pool of solutions is stored and periodically used
to reinitiate the search with new parameters. The algorithm produces high-quality results, ob-
taining the best known solution to a number of VRP benchmark instances, but it requires large
computation times and parameter tuning tends to be cumbersome [425].

Rochat and Tailard [376] adopted an adaptive memory procedure. Implementation of an adap-
tive memory involves keeping track of a pool of good solutions that is dynamically updated.
More specifically, some of the elements of the pool are periodically extracted and combined in
order to produce new good solutions. The extraction procedure gives a larger weighting to routes
belonging to the best solutions and results in the algorithm producing good results when applied
to benchmark data [425]. Similar approaches were presented in [417, 418] for solving the CVRP.
The key difference between these searches and the one presented by Rochat and Tailard [376] is
that new partial solutions are constructed by combining promising vertex sequences present in
the adaptive memory. The solutions are then refined by applying a tabu search.

Toth and Vigo [427] introduced a granular tabu search solution approach. The main concept
behind this approach is that edges with large weights are less likely to form part of an optimal
solution. Therefore, through eliminating edges which exceed a granularity threshold, several
unpromising solutions are not considered during the search process. Neighbouring solutions are
generated by means of a limited number of exchanges within the same route or between two
routes. The algorithm is able to produce excellent results in limited computation time [425].

More recently, Zachariadis and Kiranoudis [466] introduced a tabu search algorithm that also
produces good results. They implemented a penalised static move descriptor algorithm (PSMDA)
which penalises the cost labels for static move descriptors used in the 2-opt approach. This di-
versifies the search process while still applying a neighbourhood reduction policy so as to reduce
the computational time requirements. They employed the algorithm proposed by Paessens [335]
to generate an initial solution and then refined this solution by applying the PSMDA. The al-
gorithm was applied to the benchmark data proposed by Golden et al. [199], was able to solve
large instances to within 0.19% of the best known solution, and exhibited good stability [466].

3.8.2.4 Iterated Local Search

The origins of the method of iterated local search can be traced back to the paper by Baxter
[36]. It is a simple heuristic and is easily implemented in conjunction with other local search
heuristics, such as steepest descent or tabu search. The underlying concept behind this solution
approach is to apply an embedded local search algorithm until a stopping condition is met,
and then perturbing or distorting the results in order to obtain a new starting point for the
embedded algorithm. This procedure is repeated until a certain stopping criterion is met, such
as that the maximum number of iterations have been performed or that an acceptable quality
solution has been obtained.

The perturbation operation is the most crucial aspect of the algorithm. This operator is
application-specific and has to be designed with care so as to allow for significant alterations to
the solution which are not easily undone by the embedded algorithm, while also not completely
destroying the structure of the original solution [428].
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Chen et al. [79] applied an iterative variable neighbourhood search descent algorithm in the
context of VRPs. The perturbation operator employed exchanges a number of consecutive cus-
tomers within a vehicle route. The results thus obtained were compared with those obtained
when implementing a random restarting point and illustrate conclusively that utilising a pertur-
bation operator yields superior results. Uchoa and Ochi [409] proposed a hybrid metaheurisitc
which combines an iterative local search heuristic with a set partitioning algorithm to create
vehicle routes. The perturbation operator performs combined exchanges of customers.

3.8.2.5 Variable neighbourhood search

Variable neighbourhood search is a metaheuristic for building heuristics, aimed at solving com-
binatorial and global optimisation problems. The basic concept is to apply systematic change
in a neighbourhood combined with a local search.

This method was proposed by Mladenović and Hansen [316] as a general search procedure. It
works in conjunction with several neighbourhoods, which are often of increasing complexity [428]
and is usually embedded with a 2-opt or 3-opt mechanism. The algorithm starts with an initial
solution and iteratively applies these mechanisms on the neighbourhoods in a descending fashion
until no further improvements are possible. After the last neighbourhood has been applied, a
new cycle may be initialised.

Variable neighbourhood search was successfully applied to a large-scale VRP by Kytöjoki et
al. [266]. The algorithm comprises seven improvement heuristics that are both inter-route and
intra-route based. The initial solution is constructed sequentially until all customers have been
routed. A route is first initialised with a seed customer and then customers are added one by
one to this route. The initial route construction is terminated before the route is a 100% full
so as to allow the improvement phase more room to work with. The second phase incorporates
all seven improvement heuristics to refine the solution. The algorithm was able to solve the
large CVRP instances proposed in [199] to within 1.71% of the best-known solution and when
applied to the benchmark data in [287], it was able to solve these instances to within 0.41% of
the best-known solution.

3.9 Hybridisations

Hybridisations are algorithms that rely on combined concepts borrowed from various algorith-
mic paradigms, such as large neighbourhoods, local searches, collective intelligence sharing,
solution perturbation mechanisms, integer programming techniques, population-based searches,
constraint programming, data mining, tree searches and parallel computing [428]. This field
offers considerable promise and some of the more discernible families of algorithms within this
broad class are discussed very briefly in this section.

3.9.1 Population-based search and local search

Population-based heuristics have been complemented by local search procedures for a long time.
The converse approach, where local search procedures are complemented by population and
recombination concepts, is more recent. This approach is referred to as Adaptive Memory
Programming in the literature and a full description of this solution approach is given in [413].
Throughout the search process, recurrent fragments from elite solutions are stored in an adaptive
memory component and subsequent routes utilise this information as a starting point in order
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to create new solutions. This approach has led to successful heuristics for the CVRP, as may
be seen in [376, 417]. Another key concept is guidance. This concept extracts and utilises
promising sequences of solutions, as demonstrated in [278]. An alternative manner in which
promising sequences of solutions can be exploited is through data mining, as illustrated in [385].

3.9.2 Meta-meta hybridisations

A common hybrid approach is to combine several concepts borrowed from different metaheuris-
tics. These can either be applied concurrently or sequentially. Kytöjoki [266] combined variable
neighbourhood search with an approach known as guided local search. The approach temporarily
penalises certain solutions so as to be able to escape from local optima. A common approach in
this research area is to perform multiple restarts from different initial solutions, as demonstrated
in [99, 352, 368].

In addition to restarts, Prins [352] performed several random local searches from the incumbent
solution, resulting in a population of solutions at each iteration. Cordeau and Maischberger
[99] combined several concepts, such as pertubation, tabu memory and a guided local search
objective — all within in a parallel context to solve instances of the CVRP.

3.9.3 Hybridisations with large neighbourhoods

In a variable network search, the variety of neighbourhoods is crucial [428]. One possible method
of improving the variety of neighbourhoods is to rely on structurally different neighbourhoods by
employing SWAP or RELOCATE operators, neighbourhoods based on ruin-and-recreate moves
or ejection chains [428]. Pisinger and Ropke [349] offered a good example through their use of
the Adaptive Large Neighbourhood Search (ALNS) algorithm. The algorithm utilises a roulette
wheel mechanism to select structurally different large neighbourhoods. Mester and Bräysy [306]
introduced a complex hybridisation that uses guided local search, large neighbourhoods based
on ejection chains and an evolutionary strategy based on a one-to-one exchange principle.

3.9.4 Hybridisations with mathematical programming solvers

A matheuristic is the combination of metaheuristics with mathematical programming solvers
or other exact algorithms. A successful strategy is to store high-quality routes in a pool and
then apply an integer programming solver to the set covering formulation of the CVRP. Such
matheuristics have been applied successfully to CVRP instances with large numbers of short
routes, as demonstrated in [208, 318, 409]. Non-matheuristics40 have also been applied to
instances of the VRP; such an approach is illustrated in [400]. The method utilises constraint
programming algorithms for solution reconstruction.

3.9.5 Parallel algorithms

Parallel and cooperative search mechanisms have led to hybrid heuristics that are capable of
producing good solutions to the CVRP. Cranic and Toulose [104] adopted a high-level parallelism
which is able to consider different solutions and search trajectories in different threads. At any
stage during the search procedure, the algorithm maintains a population of solutions which

40The term non-matheuristics refers to the incorporation of constraint programming in the solution approach,
as opposed to matheuristics that typically incorporate integer programming techniques.
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can be analysed, exchanged and stored. Parallel searches are therefore able to complement
the exploration capacities of population-based searches and the fast improvement mechanisms
of local searches [428]. The most successful parallel algorithms benefit from heterogeneous
collaborating solvers, such as genetic algorithm and tabu search cooperation [278], shaking and
set covering solvers41 [208], or multiple tabu searches with different neighbourhood structures
[246].

3.9.6 Decompositions or coarsening phases

Many of the more recent metaheuristics are complemented by a coarsening or decomposition
phase, allowing them to handle large instances of the CVRP efficiently. A common approach is
to rely on the customer-to-route assignments of an existing solution and then combine subsets
of different routes and customer assignments to create subproblems. Several methods may be
used to define the subsets [428]. These include generating customer subsets

• randomly,

• relative to a proximity criterion between routes,

• through increasing the polar angle associated with the depot, and

• partitioning the geometric space into sections.

An alternative instance size reduction technique consists of identifying recurring edges in good
solutions, which may then be merged temporarily, allowing focus to be shifted to the remaining
decision variables [442].

3.9.7 Diversification vs. intensification

The balance between diversification and intensification is crucial in the design of any metaheuris-
tic. Most metaheuristics aim to strike a fine balance between the two search strategies when
attempting to solve a CVRP instance. The different strategies are summarised in Table 3.1.

3.9.8 Unified algorithms

Recently, there has been an increasing number of variants of the CVRP with additional con-
straints, objectives and decision variables [428]. These additional features can be accommodated
by the numerous hybrid heuristics that are available in the literature, but it is becoming more
important for heuristics to be flexible enough to be applied to numerous variants instead of
being problem-specific heuristics.

There are algorithms that are flexible enough to deal with several multi-attribute VRPs, such as
the unified tabu search. This algorithm was proposed by Cordeau et al. [100] and is able to solve
classical VRPs as well as PDPs with any combination of multiple depots, multiple planning
periods, duration constraints, and time windows.

The algorithm was later improved by Cordeau and Maischberger [99], who incorporated it into a
parallel iterated tabu search heuristic. Similarly, the ALNS algorithm of Pisinger and Ropke [349]
is able to solve VRPs and PDPs with multiple depots, backhauls, vehicle-customer compatibility
constraints, and time windows efficiently.

41The parallel algorithm developed by Groer et al. [208] incorporates a metaheuristic algorithm referred to as
a shaker to provide initial solutions, which are then passed to an MIP solver, referred to as set covering solver,
to solve a set-covering problem with columns (vehicle routes) of the routes provided by the metaheuristics.
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The iterated local search algorithm of Ochi et al. [409] is able to solve numerous problems
with multiple depots, heterogeneous fleets, and simultaneous or mixed pickups and deliveries
efficiently. Vidal et al. [436] proposed a unified hybrid genetic search algorithm with the intention
of being highly flexible. This was achieved by limiting problem-specific features to small modular
components. This allows the algorithm to be competitive in the context of thirty different
problems [428].

The design of more unified solvers poses a serious challenge, depending on the nature and number
of attributes considered. As long as only a few characteristics are considered, a unified method
for merging all attributes is feasible. There are, however, certain attributes, such as soft time
windows or loading constraints, which lead to time consuming solution evaluation and local
search procedures. The use of dummy variables or values when dealing with a unified algorithm
can have adverse effects on the computation time. Also, special care has to be taken in the
calibration of parameters which may be highly correlated to problem-specific components and
thus when creating more flexible algorithms, it is necessary to study the number of parameters
and their sensitivity with respect to several problem features.

3.10 Aspects to consider when selecting a metaheuristic

When selecting a metaheuristic for implementation, there are several factors to consider. The
first such factor is the computational time requirements of the heuristic. Most real-life instances
of the CVRP require solutions within a limited time period and so heuristics that are able to
generate solutions in a timely manner are favoured. Another factor to consider is the solution
quality achieved by the metaheuristic. Most real-life instances of the CVRP are not exactly
solvable and so it is desirable that a metaheuristic should be able to obtain solutions to such
instances that are close to optimal. The simplicity of a metaheuristic is also a key determining
factor. The algorithm should be simple in the sense that it should be easy to understand, im-
plement and fine-tune its parameter values. The metaheuristic should also not have too many
parameters and the sensitivity of solution quality with respect to these parameter values should
be considered. It is also desirable that the metaheuristic should be able to solve alternative vari-
ations of the VRP with minimal alterations (i.e. the metaheuristic should be flexible). Another
determining factor is the robustness of the metaheuristic — it should be able to generate good
solutions consistently.

3.11 Chapter summary

The focus in this chapter was on the different methodologies that can be employed to obtain so-
lutions to VRP instances and, more specifically, to the archetypal CVRP. In §3.1, three different
CVRP model formulations were reviewed and this was followed in §3.2 by descriptions of clas-
sical exact solution approaches for the CVRP. Three main solution approaches were covered in
this section and the progression and improvement of the methods in this class were documented.
This naturally led to §3.3, in which the working of newer and more powerful exact algorithms
was described. The discussion focussed on the progression over time of the various modern
solution approaches and the key novel features of each approach resulting in the continuous
improvement in this research area.

The main families of valid inequalities that have been utilised in more recent work to reinforce
the formulations of §3.1 were discussed in §3.4, focusing on the family of cutting planes and
various specialised inequality constructs used to reinforce CVRP formulations.
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62 Chapter 3. The Capacitated Vehicle Routing Problem

In §3.5, the main ideas proposed in the literature for pricing routes were discussed. The two
main techniques utilised to reduce the duality gap of column and cut generation over the set
partitioning formulation were further discussed in §3.6. The latter section also included an
example of a hybrid approach that is a combination of the methods of branching and route
enumeration.

In §3.7, various classical heuristic VRP solution approaches were reviewed and grouped into two
overarching classes, namely constructive heuristics and improvement heuristics. More powerful
metaheuristic VRP solution algorithms were discussed in §3.8. These algorithms were again
grouped into two broad categories, namely population-based algorithms and trajectory-based
algorithms. Real-life applications and results obtained by the various approximate solution
approaches for these applications were compared.

Recently, most of the VRP algorithms have tended to be combinations of concepts from multiple
solution approaches. These hybridisations were discussed briefly in §3.9. Finally, the key aspects
that should be considered when selecting a metaheuristic for implementation were summarised
in §3.10.
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Clustering Algorithms
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Clustering involves an unsupervised classification of patterns into groups [244], and various dif-
ferent clustering approaches exist in the literature. This chapter opens with a brief introduction
in §4.1 to the notion of clustering and its applications, and this is followed by a brief description
in §4.2 of the more commonly adopted approaches when attempting to solve clustering prob-
lems. Typically adopted approximate data clustering approaches are presented in §4.3, with the
focus shifting to clustering approaches applied to VRPs in §4.4. Key aspects present within all
clustering algorithms, such as the determination of a suitable number of clusters, is elaborated
upon in §4.5, and this is followed by a description of procedures available in the literature to
validate the clusters produced by a clustering algorithm in §4.6. The discussion then turns to
the criteria typically employed when evaluating the sensitivity of a cluster in §4.7, referred to
as an admissibility analysis, and the chapter finally closes in §4.8 with a brief summary of its
content.

4.1 Introduction

Organisation of data into sensible groupings is one of the most fundamental modes of under-
standing and learning [244]. Classification has played an integral role in the history of human
development, facilitating understanding of novel phenomena. Humans naturally aim to iden-
tify descriptive features and further compare these features with known objects and phenomena
during the learning process [307]. The classification of similar objects into groups is therefore
an important human activity [254].

63
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Classification of objects into smaller groups has furthermore always played an integral role in
science. During the eighteenth century, Linnaeus1 [292] and Sauvages2 [114] provided extensive
classifications of plants, animals, diseases and minerals. Hertzsprung and Russel [229] were able
to classify stars according to their light intensity and surface temperature. There are numerous
other examples of scientific contributions hinging on the ability to classify objects into groups
[16, 61, 421].

Cluster analysis is the formal study of algorithms and methods for grouping observations, while
clustering is an unsupervised machine learning technique used to group unlabelled objects to-
gether which are similar to one another in a multidimensional feature space, typically with the
purpose of discovering some inherent structure within the data [59]. Data clustering is truly
ubiquitous and has been employed in numerous applications [3, 126, 468].

The development of the research field of cluster analysis has left its mark in numerous other fields
including taxonomy, psychology, statistics, mathematics, engineering, and medical research, with
its first official appearance in 1939 in a study of sociological data [430], although references to
clustering date back to Aristotle and Theophrastos in the fourth century B.C. Data clustering has
evolved dramatically over the more than six decades since its formal inception, with the subject
now appearing at the forefront of several interesting research fields such as high-throughput
genomic data [46, 118, 173], mining big data [44, 458] and machine learning applications [371,
460].

Real-life instances of the CVRP require the need for transporting commodities from providers
to various geographically dispersed customers or delivery stations. The cost of delivery can
sometimes be greatly affected by grouping these customers or delivery stations together into
clusters based on their needs or demands while still considering problem-specific constraints.

Clustering activities usually strive for inner homogeneity of data residing in the same cluster
[251]. In the context of the pathological specimen transportation application described in Chap-
ter 1, the geographical locations of the customers in a cluster must be similar, while other
characteristics such as processing capabilities of laboratories and potential legislation issues of
multi-provincial service areas might also affect clustering. The magnitude of a problem instance,
due to the number of facilities, may perhaps call for an effective clustering algorithm to segregate
the problem instance into more manageable sub-problem instances.

Three criteria differentiate between the manners in which objects are clustered: the degree of
granularity desired, the distance measure employed and the clustering objective [89].

4.2 Data clustering approaches

Clustering is, in general, a difficult combinatorial optimisation problem which has been shown
to be NP-complete [180]. There are numerous different approaches towards solving clustering
problems in the literature. A taxonomy of these approaches was suggested by Jain et al. [244],
and an elaboration on this taxonomy is illustrated graphically in Figure 4.1.

The two broad categories of clustering methods mentioned in the previous section are shown in
Figure 4.1. Algorithms in the two categories follow different paradigms when clustering. Hierar-

1Carl Linnaeus established three kingdoms, namely Regnum Animale, Regnum Vegetabile and Regnum Lapi-
deum in his seminal work Systema Naturae in which classifications are based on five levels (kingdom, class, order,
genus and species).

2Francois de Sauvages established a methodical nosology for diseases in which the classification system involves
ten major classes of disease.
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Clustering

Hierarchical Partitional

Mixture ResolvingComplete Link Square Error Graph TheoreticSingle Link Mode Seeking

Expectation 

maximisation
-means

Minimum Variance

Scale-SpaceSimilarity-Based Markov Chain      
Monte Carlo

Decision Tree

Other Methods

Figure 4.1: A taxonomy of clustering approaches (adapted from [244]).

chical clustering methods begin with singleton clusters and iteratively combine clusters until no
more profitable combinations exist. In contrast, partitional clustering methods iteratively par-
tition clusters until a certain termination criterion is met — typically, a pre-defined parameter
stipulating the number of clusters sought.

4.2.1 Hierarchical clustering algorithms

Typically, hierarchical clustering algorithms are variations on the well-known single-link [406],
complete-link [257], and minimum-variance (Ward’s method) [445] algorithms — the most pop-
ular being the single-link and complete-link algorithms [244]. The main difference between these
two algorithmic approaches toward data clustering is the manner in which they characterise the
similarity between pairs of clusters. According to the single-link approach, the distance between
two clusters is taken as the minimum of the distances between all pairs of data points drawn
from the two clusters (one point in each cluster), while according to the complete-link approach,
the distance between two clusters is taken as the maximum of all pairwise distances between
two data points in different clusters. Both approaches adopt a bottom-up clustering paradigm,
where clusters are iteratively merged to form larger and larger clusters based on the respective
distance fitness functions.

It has been shown by Baeza-Yate [20] that the complete-link algorithm typically produces tightly
bound or compact clusters, while Nagy [322] showed that the single-link algorithm suffers from
the so-called chaining effect — the tendency to produce clusters that are elongated in feature
space. It has also been observed, from a pragmatic point of view, that the complete-link algo-
rithm tends to produce more useful hierarchies in numerous applications [243].

Hierarchical algorithms are typically considerably more versatile than partitional algorithms,
as they are more adept at handling data sets that do not exhibit isotropic clusters3 [322]. Day
[110], however, noted that the time and space complexities of partitional algorithms are typically
lower than those of hierarchical algorithms.

Hierarchical agglomerative clustering algorithms begin with singleton clusters and recursively
merge clusters through the use of a proximity matrix to form larger and larger clusters until
the desired number of clusters is reached. A tree representing such a structure is referred to
as a dendrogram in the literature and allows for the exploration of the clustering hierarchy at
different levels of granularity [43]. If one cluster dominates, highly skewed trees may form which,
depending on the problem instance, could be beneficial (such as, for example, when balanced
workload is not an objective within an assignment problem instance — in this case the data

3Isotropy is uniformity in all orientations. Accordingly, isotropic clusters are clusters that exhibit a similar
nature for all features considered within the data provided.

Stellenbosch University  https://scholar.sun.ac.za



66 Chapter 4. Clustering Algorithms

points would represent tasks, while clusters would represent sets of tasks to be assigned to the
various agents).

Leung et al. [285] proposed a hierarchical clustering algorithm inspired by human visual research
based on scale-space theory. In this context, clustering is interpreted as a blurring process in
which each data point is regarded as a light point and a cluster is represented as a blob. The
algorithm merges blobs, initially consisting of a single light source, until the entire image becomes
one light blob.

Li and Biswas [286] proposed the similarity-based agglomerative clustering algorithm which is
able to handle both continuous and nominal data. The algorithm employs the Goodall similarity
measure4 [201] which focuses attention on less common matches of feature values in order to
calculate the proximity of mixed data type observations.

Castro et al. [71] introduced a Markov chain Monte Carlo-based clustering method and an ag-
glomerative likelihood tree algorithm, both of which are based on the maximum likelihood
principle5. The algorithms are able to handle errors within the similarity matrix as they utilise
a generative tree-structured model that represents relationships between the objects as opposed
to directly modelling properties of the objects.

Basak and Krishnapuram [34] developed an unsupervised decision tree algorithm, with the most
prominent property of the decision tree being its facilitation of the interpretation of the clustering
results by virtue of a set of rules suggested by Quinlan [355]. The algorithm initialises at the
root node of the decision tree and partitions the data based on a specified feature according to
four different criteria emanating from information theory [205]. This process is repeated until
the number of data points contained within a clustering node is less than some prespecified
parameter. This algorithm was later incorporated into the commercialised software package of
Basak and Krishnapuram [35] which produces a personalised list of items for a specified user.

4.2.2 Partitional clustering algorithms

Partitional algorithms aim to optimise a given clustering by iteratively relocating data points
between clusters until a (locally) optimal partition is attained. These algorithms obtain a single
partition of the data as opposed to an entire clustering structure. They are advantageous in
applications that involve large data sets for which clustering according to a dendrogram is not
feasible, although partitioning the data into a specified number of non-empty sets is in itself a
computationally expensive task [462]. Even small-scale clustering problems, such as clustering
30 data points into three clusters, can lead to approximately 2× 1014 possible partitions [294].

Partitional clustering algorithms often provide clearer insight into the main structure of the
data since the larger clusters are generated during the early stages of implementation of the
algorithm and are typically less likely to suffer from accumulated erroneous decisions, which
cannot be corrected during the subsequent hierarchical process [254].

The major concern associated with the use of partitional algorithms is selecting a suitable
number of output clusters. A recommendation for the number of clusters is given by Dubes

4The Goodall similarity measure incorporates typical measures of similarity of attributes between different
data points. It also incorporates a probability component based on the likelihood of a random sample of two
data points having similar values to the data features under consideration. The cumulative probability of the
observed pair is then calculated and the different probabilities yielded by the different attributes are combined.
A similarity matrix is finally calculated based on the complements of these combined probabilities.

5Given an experimental observation, one should utilise as point estimates of parameters of a distribution those
values that yield the largest conditional probability for that observation, irrespective of the prior probability
assigned to the parameters.
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[148], but ultimately it should be determined empirically for better, context-specific results.
Combinatorial searches for an optimal number of clusters is often infeasible and has led to the
heuristic practice of executing the algorithm multiple times with different starting states, and
then selecting the best configuration [244].

The most frequently used clustering criterion in partitional clustering algorithms is the squared
error criterion, which is typically very effective in accommodating isolated and compact clusters.
The squared error value associated with a clustering, containing nc clusters, is

e2 =

nc∑
j=1

nj∑
i=1

||xji − cj ||
2, (4.1)

where xji denotes data point i belonging to the cluster j, cj denotes the centroid of cluster j,
and nj denotes the number of data points within cluster j.

The most commonly used partitional clustering method is the k-means method [298]. This
method assigns each data point to the cluster whose centre is nearest to it, with the centre being
the centroid of all the data points already within the cluster. The algorithm keeps reassigning
data points to clusters until a convergence criterion is met. Numerous improvements have been
proposed for the standard k-means algorithm, such as the addition of a priority measure affecting
cluster selection [180], the inclusion of a Minkowski distance metric in the clustering criterion
[111], and the introduction of various improved initialisation procedures [7, 21, 72]. The k-means
algorithm is popular due to its easy implementation and linear time complexity in terms of the
number of data points that have to be clustered. The major drawback of the k-means algorithm
is that the quality of its solutions depends on a reasonable initial partition. No efficient and
universal method exists for determining initial partitions that leads to high-quality clustering
results [462].

The best known graph theoretic partitional clustering algorithm is based on constructing a
shortest spanning tree on the data, where the edge weights represent the inter-data distances.
Edges with the largest weights are deleted from the tree so as to generate clusters of data points
that are close to one another in feature space. The class of hierarchical algorithms is also related
to graph theoretic clustering, as the graphs associated with single-link clusters are subgraphs of
a minimum spanning tree of the data [203] and those associated with complete-link clusters form
maximal complete subgraphs (which is related to vertex colouring of graphs) [25]. Hartuv and
Shamir [224] treated clusters as highly-connected subgraphs, where “highly-connected” refers
to graph connectivity (defined as the minimum number of edges whose deletion will disconnect
a graph). Hartuv and Shamir recursively applied a minimum weight cut procedure aimed at
disconnecting the graph by deleting the minimum number of edges so as to identify these highly-
connected subgraphs.

There are several variations in the class of mixture-resolving algorithms, although the underlying
assumption of these variations is the same. This assumption is that the data points to be
clustered are drawn from one of several distributions, and the main goal is to identify the
parameters of these distributions. Most of the clustering approaches in the class of mixture-
resolving algorithms assume that the individual data points of the mixture under consideration
follow a Guassian distribution [244]. More traditional mixture-resolving algorithms iteratively
obtain a maximum likelihood estimate of the parameter vectors of the component densities [243].
More recent mixture resolving algorithms have tended to employ expectation maximisation
procedures for estimating data distribution parameters [315]. Non-parametric techniques for
density-based clustering also exist, such as the algorithm developed by Jain and Dubes [243].
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This algorithm was inspired by the Parzen window approach6 toward non-parametric density
estimations.

The so-called mean shift algorithm is the most popular member of the class of mode-seeking
algorithms [152]. The algorithm was introduced in 1975 by Fukunaga [175], but was made
popular through the work of Cheng [80] and Comaniciu and Meer [93], who showed how finding
the modes of a non-parametrically estimated probability density function could be implemented
successfully to segment images.

4.2.3 Other clustering algorithms of note

Two additional clustering approaches which do not fall within the general taxonomy provided
in Figure 4.1 are described in this section.

4.2.3.1 Rearrangement clustering

Once a cluster has been constructed, it is typically not revisited, although relocation schemes
are sometimes utilised to redistribute data points between clusters in the spirit of seeking an
improved clustering [43]. Rearrangement clustering requires the problem to be specified in
matrix form. The rows in the matrix represent the data points that require clustering, while its
columns represent their features [89]. The rearrangement scheme aims to maximise the overall
similarity of data clustered together by rearranging the rows of the matrix. Since the columns
of the matrix are independent of its rows, the columns can also be rearranged.

Transforming a rearrangement clustering problem into a TSP is relatively straightforward and
facilitates leveraging of the capabilities of modern TSP solvers, such as Concorde [12], which
are capable of solving large TSP instances quickly [88]. Transforming a clustering problem into
a TSP instance has been suggested by several authors in the literature [6, 248]. The main
notion behind this approach is that data points within clusters are visited consecutively and
movements between clusters require sufficiently larger jumps than the distances between data
points of the same cluster. Climer and Zhang [89] suggested adding nc dummy cities which
have large constant distances to all other cities and are infinitely far away from each other, if
a clustering of the data containing nc clusters is sought. An optimal TSP solution will then
automatically find the boundaries of nc clusters, because the dummy cities will separate the
most distant cities.

4.2.3.2 Constrained clustering

Clustering is inherently an ill-posed problem — the goal is to partition data into some unknown
number of clusters based on intrinsic information alone, while any external or side information
may, in fact, be extremely useful in finding good data clusters [242].

In many clustering algorithms that have to deal with high-dimensional data, the focus is on
determining the features according to which the data should be classified, whereas in the context
of the VRP these features are easily determinable and it is the constraint aspect of the clustering
that requires attention [356]. Constrained clustering or semi-supervised clustering has been
addressed by relatively few authors in the literature, and those papers that have focused on
constrained clustering have only dealt with a single type of constraint. The results of Bradley

6According to the Parzen window approach, bins are sought which achieve large counts in a multidimensional
histogram of the input data.
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et al. [53] illustrated that constrained clustering methods are less likely to become trapped at
local minima. There are two aspects to consider when using side information in clustering. The
first is determining how the side information should be specified and the second is to consider
how side information is gathered in practice [76]. Several important questions have arisen since
the use of background or contextual data in clustering algorithms, such as which constraints are
most useful, and how they should be propagated to neighbouring points [439].

Tung et al. [432] claimed that the fundamental difference between unconstrained and constrained
clustering problems is that feasible solutions to the constrained problem instances may not be
able to satisfy the nearest representative property (i.e. that points should be assigned to the clus-
ter with the representative closest to them). Tung et al. [432] imposed existential constraints7

on individual clusters. Constrained clustering algorithms treat user-defined constraints as hard
constraints and criteria such as the nearest representative property as soft constraints. The algo-
rithms can typically accommodate only a single user-defined (hard) constraint, unless multiple
conjunctive constraints have sets of pivots that may be manipulated independently [356]. Con-
straints that require averaging and summation also cannot be accommodated in the framework
proposed by Tung et al. [432].

In traditional clustering approaches, including fuzzy neural networks and hybrid clustering, only
geometric data attributes are typically considered, resulting in data points similar to each other
in respect of non-geometric attributes remaining scattered [289]. The dual algorithm presented
by Lin et al. [289] operates in the constraint (geometric shape) and optimisation (objective
function) domain. The authors implemented a stable approach in which the complete-link
algorithm is used to cluster and a support vector machine8 (SVM) to classify. This approach
was experimentally shown to provide more stable and effective results than those resulting from a
modification of the similarity measure in the optimisation domain involving explicit specification
of a penalty in the constraint domain and then applying a traditional clustering algorithm.

4.3 Metaheuristic clustering

The basic objective of optimisation search techniques is to find global or approximately global
optima for NP-hard combinatorial optimisation problems with large solution spaces. As men-
tioned, clustering may be regarded as a combinatorial optimisation problem [462]. Simple local
search algorithms, such as hill-climbing algorithms, may therefore be utilised to solve cluster-
ing problems, but these algorithms are susceptible to becoming trapped at local optima. More
complex metaheuristic search algorithms, such as evolutionary algorithms [167], simulated an-
nealing [258], tabu search [191], and deterministic annealing [231], have been applied successfully
to clustering problems [462].

Hall et al. [217] designed a GA that is able to perform clustering. Several other studies have also
successfully applied genetic operators to clustering problems with frameworks similar to that

7Let W ⊂ D be any subset of pivot objects in a database D. Let Oi ∈ D represent an object and let c be
a positive integer. An existential constraint on a cluster C` is a constraint of the form count(Oi|Oi ∈ C`,Oi ∈
W ) ≥ c.

8Introduced by Cortes and Vapnik [101], an SVM is a non-probabilistic linear binary classifier. The standard
SVM accommodates a set of input data and predicts to which of two classes each data point belongs, after having
built a model from a set of training examples, each marked as belonging to one of two categories. An SVM model
is a representation of the examples as points in feature space, mapped in a manner such that the categories are
divided by a gap that is as wide as possible. A good separation is obtained by the hyperplane that has the largest
distance to the nearest training data point of any class, as the larger this margin, the lower the generalisation
error of the classifier [101].
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described by Hall et al. [217], but they differ in their definitions of an individual in the popu-
lation, their solution encoding schemes, their fitness function definitions and their evolutionary
operators [102, 303, 431]. The algorithm proposed by Tseng and Yang [431], for example, also
incorporates a heuristic function to approximate the number of clusters. GAs are typically very
effective in improving the performance of k-means clustering algorithms. Babu and Murty [19],
for example, successfully implemented a GA for approximating an optimal initial seed selection
for a k-means clustering algorithm. Krishna and Murty [263] later improved upon the algorithm
of Babu and Murty [19] by proposing a fully hybridised genetic k-means algorithm which is
capable of determining optimal clusterings for several benchmark data sets. Lozano and Lar-
ranaga [295] applied a GA to a hierarchical clustering problem in which they reformulated the
clustering problem as an optimisation problem where the algorithm attempts to find the closest
ultrametric distance [222] for a given dissimilarity (adopting the Euclidean norm). Tseng and
Yang [431] used a single-linkage algorithm to partition the data into small subsets, before apply-
ing GA-based clustering in an attempt to reduce computational complexity. The fitness function
was designed to adjust the different effects of the within-class and between-class distances as
the search progresses.

Al-Sultan [410] designed a tabu search clustering algorithm in which a set of candidate solutions
is generated from the current solution by employing a search strategy. The candidate clusterings
that attain a pre-defined quality level in respect of the tabu search’s objective function are
appended to the tabu list (if not already in the tabu list). This is repeated until all candidates
have been evaluated, after which the next iteration commences. Sung and Jin [411] introduced
superior search processes with the incorporation of a packing and releasing procedure into their
algorithm. Delgado et al. [117] presented a tabu search which may be applied to fuzzy clustering
problems9 and which produces good solutions in relatively short computation times. Scott et
al. [394] proposed a hybridised clustering algorithm incorporating a tabu list within a GA to aid
in the promotion of population diversity and computational efficiency.

Brown and Huntley [62] put forward a simulated annealing algorithm for evaluating different
clustering criteria, while Selim and Alsultan [395] investigated the effect of input parameters on
cluster formation when using simulated annealing as the clustering technique. Bandyopadhyay
[31] proposed a simulated annealing reversible jump Markov chain Monte Carlo algorithm in
which the clusters are independent of user choices and the algorithm is able to handle fuzzy
clustering problems through the use of the Xie-Beni index criterion10 [459]. The cluster cen-
tres are dynamically adjusted by applying five different operators, each with a different search
paradigm associated with it.

The main drawback of employing algorithms such as those described in this section to solve clus-
tering problems lies in their parameter value selection. Search methods such as these typically
introduce more parameters than other methods and there are no theoretical guidelines to assist
in this parameter selection. Hall et al. [217] provided some methods for determining parameter
values, but most of the criteria are still determined empirically.

9Fuzzy clustering refers to objects being allowed to appear in multiple clusters with certain degrees of mem-
bership [467].

10The criterion is based on a validity function that is capable of identifying compact fuzzy partitions without
assuming the number of substructures inherent in the data. The validity function depends on the data set, a
geometric distance measure, the distance between cluster centroids, and the fuzzy partitions generated by any
fuzzy algorithm implemented.
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4.4 Clustering algorithms applied to the VRP

Chandran et al. [74] developed a clustering algorithm for solving the multiple-TSP. The objective
in this problem is to balance the workload/distance between clusters of customers, with each
cluster visited by a single salesman. The problem may also be interpreted in the context of a
single salesman working over several days, visiting one cluster per day. The cluster length is
determined by a nearest neighbour-type calculation [356]. A range of clusters is examined and
the solution with the lowest coefficient of variation is chosen. The clusters are built iteratively
by selecting those clusters that are furthest apart, making them the seeds. All unassigned points
are then allocated to the nearest feasible seed.

Yücenur et al. [465] introduced a geometric shape-based genetic clustering algorithm for assigning
clusters in the context of the multi-depot VRP. The number of depots is known in advance and
each customer is assumed to receive a single visit by some vehicle. A random radius is determined
for each depot and customers are assigned to the depot within whose radius they fall. Any point
that lies outside these radii is assigned to the depot achieving the smallest Euclidean distance
between the data point and the depot’s cluster circumference. The algorithm achieves the same
results as a simple nearest neighbour algorithm, but requires substantially less computation
time.

Sahoo [412] introduced a balanced clustering algorithm which focuses on improving the shapes
of vehicle routing clusters. The algorithm was inspired by an observation that most VRP
objectives are concerned with minimising time and the number of vehicles required, but that
visual attractiveness is also a key factor. A visually appealing cluster has the property that
clusters are mutually exclusive (do not overlap). The working of the proposed algorithm consists
of two phases, with the first phase focusing on route shapes. An initial solution is generated using
a balanced clustering algorithm with insertion. Stops are based on time window and location
constraints, and are balanced so that a single vehicle can serve each route. The algorithm also
provides a solution to a waste collection problem with a homogeneous fleet of vehicles. The
second phase employs a metaheuristic to improve the routes constructed during the first phase.

Beasley and Christofides [38] proposed an algorithm for providing a solution to VRPs with
sparse feasibility graphs. The routes are constructed according to postal districts as opposed to
the conventional home level11.

Dondo and Cerdá [134] proposed a three-phase MILP model for the VRPTW that initially clus-
ters customers in an attempt to create several smaller subproblems allowing for larger problem
instances to be solved to optimality. During the first phase a feasible set of customer clusters
is determined, while the vehicles are assigned to the clusters during the second phase. The
customers are finally ordered according to vehicle arrival times during the third phase.

4.5 Determining the number of clusters

Automatically determining the number of clusters into which a data set should ideally be clus-
tered has been one of the more difficult challenges associated with cluster analysis [242]. As

11The authors created a special algorithm as they were concerned that single customers would be left isolated.
They therefore created a feasibility graph using Delaunay triangulation. The graph was adjusted to accommodate
geographic features such as rivers. A Delaunay triangulation partitions the plane into triangles according to a
given set of vertices. The triangulation is not unique and each vertex of the triangulation has to be on the
circumference of a circle coinciding with the corners of the triangle.
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mentioned, the typical approach is to execute a clustering algorithm multiple times with differ-
ent numbers of clusters and then select the best clustering based on some pre-defined criterion.
Figueiredo and Jain [160] designed a method for estimating the optimal number of clusters by
combining the minimum message length criterion12 [440, 441] with a Guassian mixture model
[149]. Their approach begins by creating a large number of clusters and then successively merges
these clusters together if the merger leads to a decrease in the minimum message length criterion.

Hansen and Yu [219] developed a related approach, but instead adopted the principle of minimum
description length13 for selecting clusters. The other criteria suggested in the literature for
determining the number of clusters include the Bayes information criterion [392], the akaike
information criterion [381], and gap statistics [423]. The key assumption, when partitioning data
into optimal clusters, is that an optimal clustering is most resilient to random perturbations.
The so-called Dirichlet process [158, 361] introduces a non-parametric prior for the number of
clusters. It is more commonly applied to probabilistic models in order to determine a posterior
distribution for the number of clusters, from which the most likely number of clusters may be
determined. Despite all of the above criteria it remains difficult to determine an optimal number
of clusters — this is often a subjective, empirically-based decision.

4.6 Cluster validation

The validity of data clusters has to be considered as clustering algorithms tend to generate
clusters irrespective of whether there are natural clustering features present in the data. Cluster
validity may be ascertained based on three different types of criteria: internal criteria, relative
criteria, or external criteria [243]. Validity indices based on internal criteria assess the fit
between the structure imposed through clustering and the features of the data, using only the
features of the data. Relative indices involve a comparison of multiple structures (generated by
different clustering algorithms) and a decision as to which algorithm produces superior clusters.
Indices based on external criteria measure the quality of clusters by matching the clustering
structure to a priori information.

Lange et al. [273] introduced the notion of cluster stability to validate data clusters. Cluster
stability is a measure of variation in the clustering solution over sub-samples drawn from the
input data. Different measures of variation can be used to determine different stability measures.
David and Von Luxburg [438] suggested that the distance between model-based algorithms (k-
means, Guassian, etc.) be used as a measure of the clustering stability. Shamir and Tisby [398]
defined stability as the generalisation ability of the clustering algorithm. They argued that since
many algorithms may be shown to be asymptotically stable, the rate at which the asymptotic
stability is reached with respect to the number of samples drawn is a meaningful measure of
stability.

4.7 Admissibility analysis of clustering algorithms

Fischer and Van Ness [163] performed a study in which they formally analysed clustering al-
gorithms with the intention of comparing them and providing guidance in respect of clustering
algorithm selection. They introduced a set of admissibility criteria for clustering algorithms

12In an optimal code, the binary message length of an event E with probability P (E) is given by length(E) =
log2(P (E)) [399].

13The minimum description length principle is a principle in which the best hypothesis for a given set of data
is the one that leads to the best compression of the data.
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that test the sensitivity of clustering algorithms with respect to imposed changes that do not
affect the core structure of the data. A cluster of points is called A admissible if it satisfies a
criterion A. Four such criteria are:

1. Convexity. A clustering algorithm is convex admissible if the clusters generated by the
algorithm exhibit convex hulls that do not intersect.

2. Cluster proportion. A clustering algorithm is cluster-proportion admissible if the cluster
boundaries produced by the algorithm do not change despite duplicating some of the
clusters an arbitrary number of times.

3. Cluster omission. A clustering algorithm is cluster-omission admissible if, when removing
one of the clusters from the data set and executing the clustering algorithm again in respect
of the remaining data, it produces identical clusters, excluding the removed cluster, as those
produced before the cluster was removed.

4. Monotonicity A clustering algorithm is monotone admissible if the clusters generated by
the clustering algorithm do not change even after performing a monotone alteration on
the elements within the similarity matrix.

Fischer and Van Ness [163] proved that it is impossible to construct clustering algorithms that
satisfy certain combinations of admissibility criteria. For example, if an algorithm is monotone
admissible, it cannot be a hierarchical clustering algorithm.

A similar algorithmic comparative analysis was undertaken by Kleinberg [259], who considered
the following three criteria:

1. Scale invariance. A clustering algorithm is scale invariant if an arbitrary scaling of the
similarity matrix does not affect the clusters produced.

2. Richness. A clustering algorithm is rich if it is able to achieve all possible partitions on
the data.

3. Consistency. A clustering algorithm is consistent if, when shrinking within-cluster dis-
tances and stretching between-cluster distances, the clusters generated remain the same.

4.8 Chapter summary

The basic theory behind clustering algorithms was reviewed very briefly in this chapter. A brief
introduction to clustering was presented in §4.1 and a motivation for the need of clustering
algorithms was given.

There are numerous suggestions in the literature as to clustering techniques for partitioning data
into clusters, some of which were discussed briefly in §4.2. A selection of approximate solution
approaches proposed for clustering problems was briefly reviewed in §4.3. Notable literature
pertaining to clustering algorithms proposed for solving the VRP specifically was also discussed
in §4.4.

The first stage in performing clustering is determining the number of clusters, which is a non-
trivial procedure. Various approaches that may be employed to determine a suitable number of
clusters for a given data set were elaborated upon in §4.5.
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In §4.6, the importance of validating the clusters generated by a clustering algorithm was con-
sidered, as clustering algorithms tend to cluster data irrespective of whether or not there are
natural partitioning features present in the data. The chapter closed in §4.7 with a discussion
on measures that may be employed when comparing the performances of clustering algorithms.
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CHAPTER 5

CVRP Model Formulation
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A description of the mathematical model adopted in this dissertation for the CVRP is pre-
sented in this chapter. A number of necessary assumptions required to formulate the model are
presented along with the relevant model objective and constraints. The model is verified by
implementing it in a commercially available MIP solver and solving the model in the context of
a small problem instance from the literature for which an exact solution is known. The viability
of an exact approach towards solving the model is also investigated by solving the model for
larger problem instances and noting the solution times required. The chapter closes with a brief
summary.

5.1 Introduction

The VRP has received considerable academic and industry attention since its inception, as
outlined in Chapter 3. There have been numerous proposals in terms of mathematical model
formulations for the CVRP, including the edge-set formulation of Norbet (described in §3.1.1),
and the set partitioning formulation (described in §3.1.2). This chapter contains an alternative
mathematical model for the CVRP. The aim of this model formulation is to serve as a foundation
to be elaborated upon later in this dissertation when a mathematical model is formulated for
the TVRPGC. This model borrows constructs from the various CVRP models reviewed in
Chapter 3. The mathematical models presented in §3.1.1 and §3.1.2 are, however, inherently
more powerful than the model presented in this chapter (as they are able to facilitate solution
of much larger instances within acceptable time frames), but they lack the required flexibility
to allow the alterations required to arrive at a model of the TVRPGC.

77
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5.2 Model assumptions

In the mathematical model proposed in this chapter, certain assumptions are required in order
to render possible a mathematical description of capacitated vehicle routing operations. These
assumptions, although simplifying the model, still offer the same functional capabilities of other
models proposed in the literature, and are described as follows:

1. The nature of customers. The transportation network consists of several customers, with
the defining characteristic of a customer being that it exhibits a demand for goods collection
by a vehicle. All demand for the goods collected at any customer in the transportation
network has a certain volume associated with it, and these goods are required to be
delivered to the depot. Each customer in the network may only have its demand satisfied
fully by a single vehicle and only one vehicle may visit it over the planning horizon under
consideration.

2. The nature of vehicles. It is assumed that all vehicles in the fleet are homogeneous and
that the fleet size is known a priori. The vehicles are homogeneous in the sense that they
traverse all arcs in the network at the same cost and they all have the same maximum
vehicle capacity for goods collection associated with them.

3. Home depot allocation. The transportation network consists of a single home depot for all
vehicles within the fleet at which all the vehicles must begin and end their goods collection
routes. The location of the depot is fixed.

5.3 Mathematical model formulation

This section contains a detailed description of the sets of constraints and the objective function
required to translate the CVRP into a formal mathematical model. After defining the model pa-
rameters and variables in §5.3.1 and §5.3.2, respectively, the model is formulated mathematically
in §5.3.3.

5.3.1 Model parameters

Denote the set of vertices in the transportation network by N and let G = (N , E) be an undi-
rected, weighted graph with vertex set N and edge set E representing all possible connections
between vertices in N , with the weight of an edge (i, j) ∈ E representing the expected cost cij of
a vehicle traversing that edge. Let V represent the set of homogeneous vehicles that constitute
the goods collection fleet. As mentioned in §5.2, the homogeneity of the vehicles implies that
all vehicles have the same maximum capacity, Cmax, and that any two vehicles which traverse a
given arc in E incur the same associated cost. Furthermore, let h ∈ N be the vertex that acts
as the home depot for all vehicles. Finally, denote the demand volume for goods collection at
customer i ∈ N by di and let dh = 0.

5.3.2 Model variables

In the model formulation, decision variables are required to keep track of the movement of
vehicles throughout the transportation network. In order to keep track of which vehicle is
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required to visit which customer, the decision variable

xijk =

{
1, if vehicle k ∈ V travels directly from vertex i ∈ N to j ∈ N ,

0, otherwise

is defined. An auxiliary variable ujk is adopted in the spirit of Miller et al. [310] to monitor the
permutation order in which vehicle k ∈ V visits customer j ∈ N . This variable is employed to
break subtours. More specifically, a customer that is visited later is assigned a larger value for
this variable than a customer that is visited earlier in the route of any vehicle k ∈ V.

5.3.3 Model objective and model constraints

The model proposed in this chapter follows the typical convention of most CVRPs in the liter-
ature in that the model aims to minimise the total cost associated with goods collection. This
objective may be formulated mathematically as

minimise
∑
i∈N

∑
j∈N

∑
k∈V

cijxijk. (5.1)

The model contains numerous constraints reflecting the various requirements of a standard
CVRP. The first such constraint is that every customer in the transportation network must be
visited by a single vehicle during the planning horizon. The constraint set∑

i∈N

∑
k∈V

xijk ≥ 1, j ∈ N (5.2)

enforces this requirement. In addition, the flow conservation constraint set∑
i∈N

xijk −
∑
`∈N

xj`k = 0, k ∈ V, j ∈ N \ {h} (5.3)

states that if any vehicle k ∈ V arrives at customer j, then that same vehicle must traverse
an arc departing from customer j, for all j ∈ N \ {h}. All vehicles within the transportation
network must furthermore begin and end their routes at the depot. This requirement is enforced
by the constraint set ∑

i∈N\{h}

xhik −
∑

j∈N\{h}

xjhk = 0, k ∈ V. (5.4)

The key feature of the CVRP is the capacity of any vehicle in terms of the volume of goods that
it is able to transport. The constraint set∑

i∈N

∑
j∈N

djxijk ≤ Cmax, k ∈ V (5.5)

ensures that the total volume of goods collected by vehicle k ∈ V does not exceed the maximum
capacity of the vehicle. Finally, as mentioned in §5.3.2, subtour elimination is required. The set
of constraints

uhk = 1, k ∈ V (5.6)

2 ≤ uik ≤ |N |, i ∈ N \ {h}, k ∈ V (5.7)

and
uik − ujk + 1 ≤ (|N | − 1)(1− xijk), i ∈ N \ {h}, j ∈ N \ {h}, k ∈ V (5.8)

is an adaptation of the well-known MTZ subtour elimination constraints [310]. The constraints
together monitor the order in which a vehicle k ∈ V visits customers in N , with a customer
i ∈ N being visited earlier than a customer j ∈ N by some vehicle k ∈ V resulting in the variable
ujk having a larger value than uik.
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5.4 A small worked example

The logic of the mathematical model of §5.3.3 is verified in this section, by implementing it
in a commercially available mixed integer linear programming solver within the context of a
well-known CVRP benchmark instance of Christofides and Eilon [82].

The benchmark instance size was chosen to be large enough to offer some computational com-
plexity, but also small enough to be solved within a reasonable amount of time. The benchmark
instance contains 22 customers who are serviced by four vehicles, with Customer 1 acting as the
home depot for all vehicles. The location and demand of each customer is shown in Table 5.1.
The capacity of each vehicle is 6 000 demand units and the cost coefficient cij is taken as the
Euclidean distance between the locations of customers i and j in the plane.

Table 5.1: Locations and demand for customers of the benchmark instance E-n22-k4 in [82].

Customer X-coordinate Y-coordinate Demand

1 145 215 0
2 151 264 1 100
3 159 261 700
4 130 254 800
5 128 252 1 400
6 163 247 2 100
7 146 246 400
8 161 242 800
9 142 239 100
10 163 236 500
11 148 232 600
12 128 231 1 200
13 156 217 1 300
14 129 214 1 300
15 146 208 300
16 164 208 900
17 141 206 2 100
18 147 193 1 000
19 164 193 900
20 129 189 2 500
21 155 185 1 800
22 139 182 700

The mathematical model of §5.3.3 was implemented in CPLEX 12.5 [235] in respect of the bench-
mark instance described above, and the instance was solved on an i7-4770 processor running at
3.40 GHz with a working memory limit of 6Gb within the Windows 7 operating system. An
initial feasible solution was found within 0.64 seconds, while it required 112 320 seconds (31.2
hours) to reach an optimal solution. This optimal solution is illustrated in Figure 5.1, which
incurs a total travel cost (as distance in this case) of 375. The solution in Figure 5.1 corresponds
exactly to the optimal solution reported by Christofides and Eilon [82].
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Figure 5.1: An optimal solution to the benchmark instance E-n22-k4 in [82] involving twenty two
customers and four vehicles.

5.5 The complexity of solving two larger CVRP instances

In order to illustrate the computational complexity associated with computing an exact solution
for the CVRP, two larger instances of the model of §5.3 were also implemented in CPLEX 12.5
on the same computer described earlier — one with 51 customers (and 5 vehicles) and one with
76 customers (and 8 vehicles). The branch-and-cut algorithm implemented by CPLEX was
allocated 10 hours, 20 hours, 30 hours and 40 hours of run time, respectively, and the optimality
gaps were recorded in each case.

Table 5.2: Deviation from known optimal for the instances E-n51-k5 and E-n76-k8.

Benchmark
instance

Optimality gap
10 hours

Optimality gap
20 hours

Optimality gap
30 hours

Optimality gap
40 hours

E-n22-k4 4.81% 3.16% 0.05% —
E-n51-k8 37.43% 33.52% 33.28% 31.70%
E-n76-k8 43.21% 39.24% 37.83% 34.86%

The results in Table 5.2 clearly indicate that the time complexity associated with computing an
exact solution to the model of §5.3 for large problem instances is prohibitively large. For this
reason it is desirable to investigate to what extent this time complexity may be mitigated at the
expense of solution quality by a metaheuristic solution approach.
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5.6 Conclusion

The mathematical model presented in this chapter may be solved to optimality within a rea-
sonable time by means of an off-the-shelf commercially available MIP solver for small problem
instances as was illustrated in §5.4. The exponential nature of the time complexity associated
with solving the mathematical formulation is, however, such that exact solutions are not attain-
able for larger instances within a reasonable computational budget. Although there are more
efficient model formulations in the literature [96, 174, 340] facilitating exact solutions of the
CVRP instances involving 200 customers and 12 vehicles, the computation times required to
reach these exact solutions are prohibitive. For this reason, metaheuristic solution procedures
are developed for the CVRP in the following chapter. Although these procedures rarely yield ex-
act solutions, they are nevertheless capable of producing high-quality solutions to even relatively
large instances of the CVRP rather quickly.
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A number of different solution techniques that have been applied successfully to the CVRP
were reviewed in §3.2–§3.8, varying from classical exact techniques to modern metaheuristics.
In Chapter 5, the need was highlighted for an approximate solution approach in the case of
large instances of this problem. An evolutionary (population-based) metaheuristic and a swarm
intelligence metaheuristic for solving the CVRP are presented in this chapter. The evolution-
ary approach is based on the GA developed by Deb et al. [116] in conjunction with selected
crossover and mutation operators adapted from the work of Puljić and Manger [353] among
others. The swarm intelligence metaheuristic is based on the ant colony algorithm developed
by Lee et al. [280] and Tan et al. [415] for generating approximate solutions to several CVRP
benchmark instances. Each of the algorithms is elaborated upon, elucidating integral algorithmic
components by means of pseudo-code descriptions. The chapter closes with a brief summary.

6.1 A genetic algorithm

GAs use random choices to guide a highly exploitative search through the solution space of
an optimisation problem and are not limited by restrictive assumptions on the nature of the
objective function of the problem (such as unimodality or the existence of derivatives). Goldberg
[194] highlighted four reasons why GAs are successful in solving hard optimisation problems:

1. GAs work with a coding of the decision variable set, not the variables themselves.

2. GAs search from a population of points, not from a single point.

3. GAs use objective function information directly, not derivatives of or auxiliary knowledge
about this function.

4. GAs use probabilistic transition rules (as opposed to deterministic rules).

83
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These reasons, accompanied by several others, have led to GAs being adopted widely as a
solution approach in the context of VRPs. There are several key components in the implemen-
tation of any GA, including the method of initial population generation, the selection method,
a crossover operator and a mutation operator. Each of these components is described briefly in
the remainder of this section, indicating exactly how they were implemented in the GA design
of this dissertation for solving the CVRP.

6.1.1 Chromosome representation

Solution representation or chromosome representation is a key decision in the design of any
optimisation algorithm. Chromosome representations can vary from continuous to binary, with
the typical approach in VRP instances involving a vector of integers encapsulating the routes to
which the various vehicles have been assigned. The vector sequence represents the order in which
the vehicles visit customers. Most solution representations associate the value 0 with the depot.
The depot, in the solution representation adopted in this dissertation, is not, however, assigned
the value 0, due to limitations in the data structures of Rstudio (the software environment in
which the GA was implemented). Rstudio does not use zeros in its data or loop structures,
which made it easier to assign the depot a value of 1, with customer i being represented by the
value i+ 1. A solution for an instance with two vehicles and eleven customers may, for example,
be represented by

1 12 8 6 9 11 7 1 2 4 3 5 10 1 ,

with 1 denoting the depot. In this solution, one vehicle departs from the depot and visits
customers 11, 7, 5, 8, 10 and 6 (in this order) before returning to the depot. A second vehicle
similarly departs from the depot and visits customers 1, 3, 2, 4 and 9 (in this order) before also
returning to the depot.

6.1.2 Initial population

Population sizing has been one of the most important research topics in evolutionary compu-
tation [5]. The first step in the execution of a GA is to generate an initial population, with
each member of the population representing a candidate solution to the optimisation problem
at hand. The initial population is a key component in obtaining a good final solution. There
are several factors to consider when selecting an initial population, including the number of
individuals in the population, the diversity of the population, the fitness function according to
which the quality of solutions are to be measured, the nature of the search space, the problem
complexity and selection pressure [128]. Burke et al. [67] claim that a small population size
may guide the algorithm towards poor solutions, while a large population size will expend more
computational effort. Several authors [221, 342, 464] believe that the population size should
be in direct relation to the difficulty of the problem (i.e. that larger problem instances require
larger population sizes).

The general expectation is that an initial population of reasonably structured solutions will
evolve to high-quality solutions within a relatively small number of iterations. This may, how-
ever, possibly come at the cost of a lack of diversity, which is required to obtain near-optimal
solutions [23]. Two approaches toward initial population construction typically encountered in
the literature are implemented in the GA design adopted in this dissertation and are compared
in order to determine the desirability of structured initial populations versus random initial
populations with respect to the eventual solution quality achieved by the GA.
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The first approach is based on the algorithm proposed by Clarke and Wright [87], described in
§3.7.2.1. The first step in this algorithm is to calculate savings values for each customer, which
would be experienced by additionally including a customer in an existing route as opposed to
having a vehicle depart from the depot, visit the relevant customer and then return directly
to the depot. In an attempt at validating the implementation of the aforementioned method,
the author compared the population thus generated with that reported in [359] for a small
VRP instance. It was, however, found that the results published in the article were incorrect
(the capacity reported in [359] is infeasible and there is a total capacity difference between the
reported solution and problem declaration).

The second approach involves generating initial solutions randomly. A customer is selected at
random to be visited first by the first vehicle. Another customer is randomly selected to be
visited next by this vehicle from a list of remaining, feasible customers (respecting the vehicle
capacity). This process is repeated until no feasible customers remain. If all customers have
been assigned for vehicle visitation, the process terminates. Otherwise the process is repeated
for a second vehicle in respect of the customers who have not yet been assigned for visitation.
This overarching process is repeated, using as many vehicles as are required, until all customers
have been assigned for visitation.

A combination of the aforementioned methods of population generation was implemented in
the GA put forward in this dissertation for solving CVRP instances. More specifically, the
algorithm is able to implement the respective methods in equal proportions when generating an
initial population. The relative algorithmic performance resulting from the population size is
determined by means of a parameter sensitivity analysis in the following chapter.

6.1.3 Selection method

The selection phase of each iteration of the GA consists of probabilistically selecting two par-
ent chromosomes from the population for reproduction purposes. Two selection methods are
implemented in the GA of this dissertation, and these methods are described in this section.

A popular method of selection is roulette wheel selection [195]. This approach is based on the
notion of a hypothetical roulette wheel which has a sector associated with each chromosome
within the population. The chromosomes that are more attractive (in terms of the fitness
function associated with the optimisation problem at hand) are allocated a larger sector arc on
the wheel, thus increasing their chance of being selected. This approach does not guarantee that
fitter chromosomes are selected, only that, on average, a chromosome will be chosen with the
probability proportional to its fitness. The first stage is to calculate the fitness

F =

P∑
i=1

Xi (6.1)

of the population, where Xi denotes the fitness of chromosome i and P is the population size.
The second stage is to calculate the selection probability pi for each chromosome Xi as

pi =
F −Xi

F (P − 1)
, (6.2)

which normalises the fitness of each chromosome relative to the population. The third stage is
to determine the cumulative probability

qi =

i∑
j=1

pj , i = 1, . . . , P, (6.3)
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and to generate a random number R in the range [0,1]. The final stage is to select chromosome
i if qi−1 < R ≤ qi.

Another popular selection method is tournament selection [195]. The tournament selection
strategy is a fitness-based selection scheme which begins by randomly selecting k chromosomes
from the population. A random number r is generated and if this random number is below
a certain predefined threshold, the fittest individual from the set of k candidates is chosen.
Otherwise, an individual is selected randomly from the set of k candidates.

The GA implemented in this dissertation incorporates both the aforementioned selection meth-
ods by allocating each method equal opportunity when selecting chromosomes for the entire
duration of the algorithmic execution.

6.1.4 Crossover Operators

Two popular VRP crossover operators are described and illustrated by means of examples in
this section. The two operators are employed in equal proportions in the GA adopted in this
dissertation. The proportion of the population to which the crossover operators are applied is
determined by the so-called crossover rate, which is a real number within the range [0, 1].

Each of the crossover operators implemented in the GA remove the depot (and decrement the
index of each customer by one) from the chromosome under consideration before applying any of
the mechanisms to create offspring. This methodology is employed to avoid generating infeasible
routes, although implementations that allow for infeasible route considerations sometimes leave
the depot vertex in the chromosome. The GA implemented in this dissertation performs all
the necessary crossover operations on the altered chromosome and afterwards reintroduces the
depot back into the chromosome so as to maintain feasibility with respect to the vehicle capacity
constraint.

The first crossover operator is adapted from the work of Puljić and Manger [353], in which
eight evolutionary crossover operators were compared in the context of the VRP. The crossover
considered here is based on the results reported in [353], in which the heuristic greedy crossover
(HGreX) operator [345] was found to outperform the other crossover operators.

The HGreX operator exhibits similar characteristics to the well-known AEX operator [277].
The child chromosome is formed by selecting from each vertex the cheaper of the two respective
parent arcs. In case of infeasibility, a feasible customer is randomly selected. Consider, for
instance, the parent chromosomes

p′1 = (1 6 2 8 9 1 5 10 7 3 4 1),

p′2 = (1 4 7 3 6 2 1 10 9 5 8 1),

from which the depot may be removed, transforming the respective chromosomes to

p1 = (5 1 7 8 4 9 6 2 3),

p2 = (3 6 2 5 1 9 8 4 7),

with respective traversal costs of

p1 : c51 = 2, c17 = 2, c78 = 6, c84 = 8, c49 = 3, c96 = 6, c62 = 4, c23 = 4, c35 = 3,

p2 : c36 = 6, c62 = 4, c25 = 2, c51 = 2, c19 = 6, c84 = 8, c47 = 3, c73 = 5, c98 = 8.

The crossover scheme initialises the child chromosome by randomly selecting a vertex, for in-
stance 5. Both arcs exiting vertex 5 in parents p1 and p2 are evaluated. In this particular case
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both these arcs enter vertex 1, resulting in the child chromosome

c = (5 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗).

During the next iteration, both arcs exiting vertex 1 are considered, and arc c17 achieves the
lower cost. The resulting child chromosome at this point is therefore

c = (5 1 7 ∗ ∗ ∗ ∗ ∗ ∗).

This process is repeated until the child chromosome appears as

c = (5 1 7 3 6 2 ∗ ∗ ∗).

Now both arcs exiting from vertex 2 would result in subtour formation. Thus all the remain-
ing unvisited vertices are compared, and the arc that joins vertex 2 and the unvisited vertex
associated with the lowest cost is selected. Continuing in this fashion eventually leads to the
child

c = (5 1 7 3 6 2 8 4 9).

The depot is inserted back to the chromosome after all the crossover operations are completed.
The positions of the reinserted depots are chosen to ensure that all constraints are satisfied while
aiming to minimise the total travel distance. Reinsertion of the depot into the chromosome c
above yields the child

c′ = (1 6 2 8 4 7 1 3 9 5 10).

The second crossover procedure was adapted from the work of Pierre and Zakaria [348], in which
the partially optimised cyclic shift crossover (POCSX) operator was proposed. The operator is,
in fact, an adaptation of the HGreX operator described above. The main difference between
the POCSX and HGreX operators is that the POCSX operator does not limit its candidate
vertex selection to two, but rather employs a pooling component to increase the set of potential
candidates. The parent chromosomes are again slightly altered in that all depot delimiters are
removed so that just the set of customer vertices remain (in the same manner as the previous
example). The POCSX operator requires the values of two parameters to be specified before
implementation, these being a pool size parameter and an offset parameter. Suppose both the
pool size and the offset are 2, and consider the same edge costs as above. The process is
illustrated iteratively in Table 6.1, with the shaded cells in the table representing the pool of
vertices from which the algorithm may select. The child is initialised by selecting from the pool
the vertex that is the shortest distance away from the depot. In this instance, the arc between
the depot and vertex 2 is more attractive (assuming it has the shortest associated distance from
the depot), resulting in it being placed in the child chromosome and being removed from the
two parent chromosomes, as illustrated in Table 6.1(a).

During Iteration 1, the arc corresponding to the shortest distance exiting vertex 2 within the
pool is the arc joining vertices 2 and 5. Thus vertex 5 is placed in the child chromosome and
vertex 2 is removed from both parent chromosomes, as shown in Table 6.1(b).

This procedure is repeated four times, with the resulting chromosome illustrated in Table 6.1(c).
The offset has reached the end of parent p2 and thus has to be reset (starting from the beginning
of the chromosome).

The crossover scheme continues in this fashion until the child has been assigned all unvisited
vertices, resulting in the chromosome depicted in Table 6.1(d). The above-mentioned crossover
mechanisms are implemented in the GA in equal proportions in this dissertation. The effec-
tiveness of the implementation of the crossover strategy with respect to the crossover rate is
determined through an extensive parameter sensitivity analysis in the following chapter.
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Table 6.1: Iterative overview of the POCSX operator applied to a hypothetical CVRP instance.

p1 5 1 7 8 4 9 6 2 3
p2 3 6 2 5 1 9 8 4 7

child * * * * * * * * *

pool 5 2

(a) Iteration 0

p1 5 1 7 8 4 9 6 3 *
p2 3 6 5 1 9 8 4 7 *

child 2 5 * * * * * * *

pool 5 1

(b) Iteration 1

p1 4 6 3 * * * * * *
p2 3 6 4 * * * * * *

child 2 5 1 7 9 8 * * *

pool 3 4

(c) Iteration 5

p1 * * * * * * * * *
p2 * * * * * * * * *

child 2 5 1 7 9 8 4 3 6

pool * *

(d) Iteration 8

6.1.5 Mutation operators

Mutation plays a key role in any GA, since it prevents the algorithm from becoming trapped at a
local minimum or maximum. The proportion of the population that is subjected to mutation is
determined by a pre-defined parameter referred to as the mutation rate, which is a real number
within the range [0, 1]. Two mutation operators are implemented in this dissertation.

The first mutation operator is referred to as swap mutation in the literature. This operator
employs a uniform mutation [308] principle, meaning that every element in the chromosome
has an equal probability of undergoing mutation. The mutation scheme begins by randomly
generating two random natural numbers r1 and r2 within the set {1, 2, . . . , Ln}, where Ln denotes
the length of the chromosome and the values of r1 and r2 denote the positions of the elements
within the chromosome that will be altered. These two numbers are then used to perform a
swap of the relevant elements within the chromosome. Suppose, for instance, that r1 = 2 and
r2 = 7. Then the chromosome (after removal of depot entries)

p1 = (4 8 6 7 3 5 1 2)

is transformed into
p1 = (4 5 6 7 3 8 1 2)

according to the swap mutation operator. The resulting chromosome, although very similar
to the original, may differ substantially in its fitness value due to the discrete nature of route
distances.

The second mutation operator is referred to as inversion mutation [183], and involves selection
of a substring within the parent chromosome and reversing the selected substring in order to
create a mutated chromosome. The resulting chromosome lacks the specific vertex visitation
characteristics of the original chromosome, and is therefore used to increase diversity rather than
to enhance population solution quality during the optimisation search process [230]. Suppose,
for instance, r1 = 4 and r2 = 7. Then the chromosome (after removal of depot entries)

p1 = (4 8 6 7 3 5 1 2)

is transformed into
p1 = (4 8 6 5 3 7 1 2).

The above-mentioned mutation operators are both employed in the GA implemented in this
dissertation. The mutation operators are implemented in a manner as to allow the algorithm
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to utilise both the operators in equal proportions. The relative algorithmic performances as
a result of the mutation rate adopted will be determined by means of a parameter sensitivity
analysis in the following chapter.

6.1.6 Working of the algorithm

The working of the GA is described in pseudo-code form in Algorithm 6.1. The algorithm
initialises with an initial population being generated by one of the techniques described in
§6.1.2. The population is then ordered in terms of the fitness of each individual chromosome. In
the case of the CVRP, the fitness is determined by the total travel cost of all routes undertaken
by the fleet of vehicles in a solution. The while-loop spanning lines 1–34 is then performed
until no improvement is experienced over Ω iterations, during which standard GA operations
are performed. Here Ω is a user-specified parameter. The first such operation is repeatedly
selecting pairs of parent chromosomes on which to perform one of the crossover techniques
described in §6.1.4. The selection procedure follows one of the methods described in §6.1.3.
Following the application of crossover operations on all pairs of chromosomes earmarked for
crossover according to the crossover rate, a new population is formed of which a certain portion
(as dictated by the mutation rate) is subjected to mutation according to one of the methods
described in §6.1.5 in an attempt to improve solution diversity. Finally, a 2-opt method [106]
mutation is applied over the population if the population solution quality does not improve over
ω while-loop iterations. The value of ω is pre-specified so that ω � Ω.

The 2-opt mutation referred to above was derived from the seminal work of Croes [106], in which
a greedy heuristic was developed for solving the TSP. The 2-opt method has a time complexity
of O(n2), where n denotes the length of the subset of customers under consideration which,
when performed several thousand times on large CVRP instances, becomes computationally
rather expensive. Thus a decision was taken to limit the application of the 2-opt method to
single vehicle routes as opposed to applying it to all of the routes in an attempt to reduce
computational complexity. Thus all the routes are locally improved through the application of
the 2-opt method.

6.2 An ant colony system algorithm

ACSs are one of the most successful strands of swarm intelligence algorithms [51, 50], achieving
especially good results when applied to the TSP and variations on the VRP [11]. This is
the reason why the ACS was selected for implementation in this dissertation as an alternative
approximate approach toward solving the CVRP.

In any ACO algorithm, the two main phases are the ants’ route construction and pheromone
update procedures, as described briefly in Chapter 3. Lee et al. [280] implemented a Simulated
Annealing (SA) algorithm to initialise the pheromone matrix. The value τ0 = ML∗ is used to
generate the initial pheromone matrix, where M denotes the number of ants and L∗ is the total
travel distance of the incumbent solution yielded by the SA algorithm. The ACO algorithm im-
plemented in this dissertation, however, implements the Clarke and Wright algorithm, described
in §6.1.2, to generate the value L∗ in an attempt at reducing the computational complexity.

Stellenbosch University  https://scholar.sun.ac.za



90 Chapter 6. CVRP Solution Methodology

Algorithm 6.1: Genetic algorithm

Input : Initial population, Ω, crossover rate, mutation rate, ω
Output: Final population

while tracker ≤ Ω do1

tracker = tracker + 1;2

traveldist = traveldistance(population, locations);3

cross = order(population,traveldist,hightolow);4

average = mean(traveldist);5

min = min(traveldist);6

if min ≤ incumbent then7

incumbent = min;8

tracker = 0;9

for j ← 1 to numbest do10

newpop[j] = population[cross[j]];11

c = 0;12

for k ← 1 to numcross do13

c = c+ 1;14

fitness = fitness(traveldist);15

if k mod 2 = 0 then16

selection = roulette(fitness);17

else18

selection = tournament(fitness);19

offspring = crossover(population, selection, c);20

for `← (j + 1) to length(population) do21

newpop[`] = offspring[`− j];22

for m← 1 to nummutation do23

gene = newpop[select];24

if m mod 2 = 0 then25

gene = inversemutation(gene);26

else27

gene = swapmutation(gene);28

newpop[select] = gene;29

if tracker mod ω = 0 then30

for imp← 1 to 5 do31

gene =twoopt(gene);32

newpop[select] = gene;33

population = newpop;34

Return population35
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6.2.1 Route construction

The route construction mechanism consists of M ants concurrently building routes from start-
ing vertices randomly chosen in the network of N customer vertices. At each construction step,
each ant applies a probabilistic proportional rule, as suggested by Wang et al. [444], to deter-
mine which vertex to visit next. The node selection mechanism involves the following three
parameters:

1. A heuristic value ηij denotes the attractiveness of a move along the arc joining vertex i to
vertex j.

2. A parameter τij denotes the pheromone level along the arc joining vertex i to vertex j,
which is an indication of the past usefulness of the arc in previous route constructions.

3. A parameter sij denotes the savings value associated with including vertices i and j in a
single vehicle route, as described in §6.1.2.

The route construction process also involves three parameters α, β, and γ during vertex selection.
During route construction, ant k, located at vertex i, moves to an adjacent vertex according
to the following pseudo-random proportional rule: A real number λ is randomly generated
within the interval [0, 1] according to a uniform distribution, and if this variable value is below
a pre-determined threshold λo, the index of the vertex visited next is

n = argmaxj∈N k
i
{(τij)α(ηij)

β(sij)
γ}, (6.4)

where N k
i denotes the set of feasible neighbours of vertex i for ant k (where feasibility refers to

respecting the vehicle capacity). Otherwise, the probability of visiting vertex j ∈ N k
j next is

given by

Pij =
(τij)

α(ηij)
β(sij)

γ∑
`∈N k

i
(τi`)α(ηi`)β(si`)γ

. (6.5)

This probability is used in conjunction with a roulette selection approach (see §6.1.3) to deter-
mine which vertex ant k should visit next, allowing for a biased exploration of the arcs.

6.2.2 Pheromone updating

The ACS allows for two phases of pheromone updates, a global updating method and a local
updating method. The local pheromone update is adapted from Tan et al. [415], and is performed
every time an arc is traversed. The local pheromone level along the arc (i, j) is updated as

τij ←
(
ρ+

δ

Lk

)
τij , (6.6)

where ρ and δ are both user-defined parameters. The parameter ρ is referred as the trail
persistence in the literature and typically is a real value within the range [0, 1], while δ is an
elitist-related parameter which typically takes an integer value within the range [0, L∗], where
L∗ is the length of the incumbent solution. The variable Lk refers to the total travel distance of
the route traversed by ant k.

The global update is, however, only applied to those arcs that appear in the best solutions
uncovered by the entire colony of ants, by applying the substitution

τij ← τij

σ∑
r=1

∆τ rij + ∆τ∗ij (6.7)
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to the relevant arcs, where

∆τ rij =

{
(σ−r)
Lk

, if the rth best ant traverses arc (i, j)

0, otherwise

and

∆τ∗ij =

{
σ
L∗ , if arc (i, j) is contained within the incumbent solution

0, otherwise.

Accordingly, only the σ most elitist ants will deposit a pheromone trail in which the solution
quality returned by the ant determines the quantity of pheromone deposited by the ant. This
approach was suggested by Bullnheimeret al. [64] in an attempt to provide strong additional
reinforcement of the edges belonging to the best solutions found so far. The incorporation of
the ranking mechanism is aimed at avoiding the danger of over-emphasized pheromone trails
caused by many ants following suboptimal routes.

6.2.3 Tour refinement

The algorithm incorporates the use of the 2-opt method, as described in §3.7.3.1. The same
implementation approach, as described in §6.1.6, is adopted in an attempt to reduce the com-
putational burden of the ACS algorithm.

6.2.4 Chromosome representation

The same chromosome representation described in §6.1.1 is also implemented in the ACS. During
the pheromone-update stages of the algorithmic execution, the chromosome is again altered
slightly so as not to include the depot in the tour representation. In such cases, the depot is
added back into the representation at a later stage of algorithmic execution, as mentioned in
§6.1.4.

6.2.5 Working of the algorithm

A high-level pseudocode description of the ACS employed in this dissertation is presented in
Algorithm 6.2. The algorithm is initialised by calculating the heuristic and initial pheromone
values, as discussed in §6.2.1. The ants then concurrently perform the same route construction
approach during every iteration, thereby each iteratively building a full set of vehicle routes by
selecting the next customer based on a probabilistic variable value, as described in §6.2.1. During
each iteration, several local pheromone updates are performed, with an evaporation component
incorporated to encourage exploration, and one global pheromone update is implemented in
respect of the incumbent solution.

Finally, Algorithm 6.3 contains a pseudo-code description of the decision making involved in
selecting the next vertex traversed by an ant, as discussed in §6.2.1. This selection process
includes a probabilistic component allowing, in some cases, for a poorer candidate to be selected
with a view to potentially improve solution diversity.
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Algorithm 6.2: Ant colony system algorithm

Input : The number of customers (N), number of ants (M), number of iterations with no
improvement, coordinates of the customers, demand of the customers, parameter
values for α, β, γ, λo, δ, ρ

Output: Incumbent CVRP tour

ηij ← attractiveness(coordinates);1

τij ← pheromoneinitial(coordinates);2

sij ← clarkewright(distances);3

choiceij ← τij × ηβij × s
γ
ij ;4

while tracker ≤ number of iterations of no improvement do5

tracker = tracker + 1;6

starting ← startingnodes(M,N);7

for k ← 1 to M do8

i← starting[k];9

tour[k, 1]← starting[k];10

load[k, 1]← demand[starting[k]];11

tabu[k, 1]← starting[k];12

for istep← 1 to mstep do13

for k ← 1 to M do14

i← tour[k, istep];15

check ← tabu[k, ];16

n← selectnext(tabu, tour, λo, choice);17

tour[k, istep+ 1]← n;18

if n← depot then19

load[k, istep+ 1] = 0;20

else21

load[k, istep+ 1]← load[k, istep] + demand[n];22

tabu[k,length(tabu)] ← n;23

τij ← localpheromone(τij ,arcij ,τo);24

tour[ ]← twoopt(tour[ ]);25

tourdists← tourscalc(tour[ ]);26

min← tour[which.min(tourdists)];27

if min ≤ incumbent then28

incumbent = min;29

tracker = 0;30

τij [ ]← globalpheromone(τij [ ], incumbent, coordinates);31

Return incumbent32
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Algorithm 6.3: Vertex selection

Input : Customers already visited (tabu), the current capacity of goods collected (load),
pheromone levels, attractiveness values of each arc, maximum capacity of vehicles

Output: Vertex to be added to partial route

allowed← empty.vector;1

if current.vertex = N then2

for i← 1 to N do3

if !(i in tabu[k, ]) then4

allowed← allowed+ i;5

move← sample(allowed);6

else7

λ← runif(1,0,1);8

feasible← feasiblelist(load, tabu, demand,N, capacity);9

if length(feasible) == 0 then10

move← depot;11

else if λ ≥ λo then12

move← probability(feasible, pheromone, attractiveness);13

else14

move← bestselect(feasible, choice, current.vertex);15

Return move16

6.3 Chapter summary

The aim in this chapter was to provide the reader with a clear explanation of the mechanisms
employed in this dissertation to reach solutions to instances of the CVRP. The working of the
GA adopted for solving the CVRP was briefly described in §6.1, considering its key aspects,
namely the chromosome representation (§6.1.1), the method of initial population generation
(§6.1.2), the method of chromosome selection (§6.1.3), the working of the crossover operators
(§6.1.4), and finally the working of the mutation operators (§6.1.5). A pseudo-code description
of the GA was finally presented in §6.1.6.

The second algorithm designed for solving instances of the CVRP in this dissertation is an ACS.
The implementation of this algorithm was briefly described in §6.2, again considering its key
aspects, namely the method of route construction (§6.2.1), the pheromone updating mechanism
(§6.2.2), the method of tour refinement (§6.2.3), and finally chromosome representation (§6.2.4).
A pseudo-code description of the working of the ACS followed in §6.2.5.
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As the application of the two CVRP approximate solution approaches of Chapter 6 require
problem instance-dependent parameter settings, an extensive parameter sensitivity analysis is
performed with respect to three well-known CVRP benchmark instances of Christofides and
Eilon [82] in this chapter. The benchmark instances are described in detail in §7.1, after which
the experimental design adopted is described in §7.2. The parameters employed in both the ACS
and GA are elaborated upon in §7.3 and §7.4, respectively, elucidating the best combination of
values assigned to these respective parameters. The most suitable parameter values uncovered
during this parameter sensitivity analysis are then employed and the results returned by the
algorithms are presented in §7.5 within the context of the aforementioned three benchmark
instances of §7.1 in order to compare the relative performances of the algorithms. The relative
performances of the algorithms are discussed in §7.6. The chapter closes in §7.7 with a brief
summary of its contents.

7.1 Benchmark test instances

The solution techniques described in Chapter 6 are applied in this chapter to three well-known
CVRP test instances from the Christofides and Eilon data set [82]. These test instances were
chosen to represent respectively small, medium and large benchmark instances in order to de-
termine the scaling effect of instance size on desirable values for the algorithmic parameters.

95
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7.1.1 The E-n22-k4 instance

The E-n22-k4 test instance was considered in §5.4 in order to validate the mathematical model
adopted for the CVRP in this dissertation. There are twenty two customers in this instance
and the minimum number of vehicles is four, with the maximum capacity of each vehicle set
to 6 000. The location and demand of each customer are shown in Table A.1, and the optimal
objective function value for this test instance is 375. The depot is located at Customer 1 in this
instance.

7.1.2 The E-n51-k5 instance

Th E-n51-k5 test instance has 51 customers and requires a minimum of five vehicles to satisfy
the demand fully. The maximum capacity of each vehicle is 160, and the optimal objective
function value is 521. The location and demand of each customer are shown in Table A.2, with
the depot again located at Customer 1.

7.1.3 The E-n76-k8 instances

The E-n76-k8 test instance has 76 customers and requires a minimum of eight vehicles to fully
satisfy the demand, with the maximum capacity of each vehicle set to 180. The location of
the depot is at Customer 1, and the location and demand of each customer are shown in Table
A.3. The optimal objective function value associated with this instance is 735. The locations
of the customers in this instance have been utilised in several of the benchmark test instances
published in [82], with different maximum capacities of the vehicles over the different benchmark
test instances.

7.2 Experimental design

The CVRP model of Chapter 5 is solved thirty times in this chapter for each of the test instances
in §7.1, for each of a number of parameter value configurations, and by both of the algorithms
described in Chapter 6. Each algorithm is allowed to run until no improvement is experienced
with respect to solution quality over 500 iterations. In addition, an exact solution approach is
implemented in CPLEX 12.5 and is allotted a computation time budget of ten hours in each
case, after which the best recorded solution is noted.

The algorithmic parameter sensitivity analysis is performed according to the experimental design
described above in a similar manner for both algorithms of Chapter 6. The ACS employs several
parameters that require a sensitivity analysis for successful implementation. These parameters
are the parameters δ, λ, ρ, γ, α and β, as well as the number of ants implemented. The
parameters are each set to base configuration values and are then altered individually according
to a pre-defined range from these base values (keeping the remainder of the parameter values
fixed at the base configuration values). The results are recorded in an attempt to determine the
sensitivity of the parameters incorporated in the ACS of Chapter 6 for solving the CVRP. The
base parameter values for the sensitivity analysis pertaining to the ACS are shown in Table 7.1,
as recommended in [50] and [140].
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Table 7.1: Base configuration values for the parameter sensitivity analysis of the ACS.

Parameters

δ λo ρ γ α β no. of ants
80 0.9 0.8 9 2 5 21

The GA of Chapter 6 also employs several key parameters, the most notable parameters being
the crossover rate and the mutation rate. These parameters, along with the population size
parameter, are analysed in this chapter in an attempt to obtain the best GA parameter config-
uration. The base configuration value for the crossover rate is 0.7 and that of the mutation rate
is 0.1, while the population size is fixed at thirty chromosomes, as suggested in [419].

All the numerical work reported in this chapter was performed on an i7-4770 processor running at
3.40 GHz with 8GB of memory within the Windows 7 operating system after having implemented
the algorithms of Chapter 6 in R.

Due to considerable computation time requirements, the parameter sensitivity tests described
above were, however, conducted on several computers with the processing capabilities mentioned
above and using multiple R sessions running concurrently on each computer. This led to the
decision not to record computation time during the parameter sensitivity analysis as there are
several external factors that could have affected the computation time of an algorithm. General
computation time tendencies were noticeable, but were not accurate enough to draw definitive
conclusions.

7.3 Parameter sensitivity of the ant colony system

The parameters α, β and γ determine the respective weightings of the heuristic function and
pheromone function in the selection of potential vertices for visitation by ants. This can be seen
in the expressions in (6.4) and (6.5), which control the probabilistic selection fitness value of
each vertex. The performance of the algorithm with respect to changes in α, β and γ is shown
for the three CVRP instances of §7.1 in Figures 7.1(a)–7.1(c), together with the deviations in
objective function values from that of the optimal solution shown in Table 7.2.

The ACS is typically very robust in respect of parameter values for the E-n22-k4 instance as
the algorithm was able to find the optimal solution regardless of the values assigned to the
parameters. The quality of solutions returned by the ACS with respect to α, however, typically
improved for smaller values of the parameter in the larger instances. The general trend of
decreasing solution quality with respect to the objective function value returned as a function of
increasing values of α is clearly illustrated in Figures 7.1(a)–7.1(c). The aforementioned trend
is further corroborated in Table 7.2 with the value of 2 for the parameter α returning the best
solution in two of the three instances. The value of 2 was, accordingly, chosen as the value for
the parameter α in the remainder of this chapter.

The effect of the parameter β proved to be slightly less consistent with respect to the solution
quality returned by the ACS. The small instance again provided little insight in respect of the
effect of this parameter, although the larger instances exhibited slightly conflicting trends. The
solution quality for the instance E-n51-k5 typically performed better for smaller values of β,
while larger values of this parameter returned solutions of a higher quality with respect to the
E-n76-k8 instance, as highlighted in Figures 7.1(a)–7.1(c). A value of 5 for the parameter β was,
however, decided upon as it returned the best result for the medium sized instance while still
performing relatively well in respect of the larger instance, as highlighted in Table 7.2.
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Figure 7.1: Sensitivity analysis of the parameters α, β, γ and the number of ants in the ACS.
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Table 7.2: Deviation in the objective function value from that of the known optimal solution (i.e. the
optimality gap) as a result of varying the parameters α, β and γ (measured as percentages).

n22 n51 n76

α β γ α β γ α β γ

1 0.001 0.003 0.001 0.372 0.155 0.578 3.186 6.144 6.248
2 0.001 0.001 0.001 0.117 0.574 1.053 2.606 6.356 6.654
5 0.001 0.001 0.001 1.570 0.117 0.180 5.599 4.301 4.780
10 0.003 0.001 0.003 3.780 0.215 0.558 5.434 3.630 3.283
15 0.001 0.001 0.001 2.946 0.579 0.117 6.929 6.974 3.650

Similarly, the parameter γ did not exhibit any affinity towards smaller or larger values. The
general inconsistent effect of the parameter γ on solution quality is illustrated in Figures 7.1(a)–
7.1(c), although Table 7.2 shows that a value of 15 for the parameter performs the best over the
three test instances. Accordingly, it was decided to adopt a value of 15 for the parameter γ in
the remainder of this chapter.

The number of ants employed determine how many agents traverse the graph during each it-
eration, building routes concurrently. In the ACS employed in this dissertation, the ants act
independently during their route construction vertex selection, but they all share the same
pheromone and heuristic function information. The general consensus in the literature is that
more ants typically result in better solutions, although more ants dilute the effects of the global
pheromone update component and also increase the computation effort [159]. The effects of the
number of ants on the solution quality are illustrated in Figures 7.1(d)–7.1(f).

The deviation of the objective function values of solutions returned by the ant colony algorithm
from those of the known optimal solutions are shown in Table 7.3 for different numbers of ants,
where the rows correspond to the number of ants employed relative to the number of customers,
N . The decision to select the factor 0.8 as the parameter setting was reached because the average
solution quality improves as an increasing function of the number of ants employed and the ratio
of 0.8 also yielded the best solution for all three of the test instances.

Table 7.3: Deviation in the objective function value from that of the known optimal solution (i.e. the
optimality gap) as a result of varying the parameter number of ants (measured as percentages).

n22 n51 n76

0.2N 0.001 0.693 6.652
0.4N 0.001 1.339 4.289
0.6N 0.001 1.330 2.704
0.8N 0.001 0.693 2.335

N 0.001 0.696 3.022

The pheromone update mechanism is arguably the most important aspect of any ACS, as it
guides the algorithmic search through the solution space. The variable δ determines the weight-
ing of the local pheromone update component, elucidated in the expression (6.6), with a larger
value indicative of larger deposits of pheromone along the respective arcs. This affects the
exploration aspect of the algorithm.

Figures 7.2(a)–7.2(c) contain a summary of the effects on the objective function value obtained
when altering the values of parameter δ. A clear trend is visible, with larger values of the
parameter δ returning solutions of a lower quality with respect to all three instances. This trend
is further corroborated in Table 7.4 in which the deviation of the best reported solution for each
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Figure 7.2: Sensitivity analysis of the parameters λ, ρ and δ in the ACS.
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parameter configuration from the known optimal is reported. A value of 50 was selected for the
parameter δ in the remainder of the chapter, as it returned the best solution for two out of the
three test instances and the second best solution in the third test instance.

Table 7.4: Deviation in the objective function value from that of the known optimal solution (i.e. the
optimality gap) as a result of varying the parameter δ (measured as percentages).

δ n22 n51 n76

10 0.001 0.829 2.886
50 0.001 0.180 4.355
80 2.089 0.706 6.009
150 2.296 0.542 6.892
200 9.457 9.690 6.707

The functioning of the pheromone update mechanism is highly dependent on the values assigned
to the parameters λ and ρ. The parameter λ determines the approach an ant will take in
determining the next vertex to visit, according to the probabilistic selection rule described
in §6.2.1 and the method of selecting the best feasible vertex (the two candidate strategies).
Figures 7.2(d)–7.2(f) contain graphical presentations of the objective function values obtained
when employing the different parameter configurations in respect of the three instances. The
figures show a slight trend in that the larger values assigned to the parameter λ consistently
return solutions of a higher quality with respect to the three test instances. The parameter ρ also
affects the pheromone update mechanism, as shown in the expression (6.6), with the parameter
determining the rate of evaporation of the pheromone trails deposited by the ants along the
arcs. Figures 7.2(d)–7.2(f) exhibit a clear trend in the objective function value returned by the
ACS when altering the values assigned to the parameter ρ with respect to the three instances,
in that lower values yielded solutions of a higher quality.

A summary of the deviations in objective function values relative to the objective function values
of optimal solutions obtained when varying the parameters λ and ρ may be found in Table 7.5.
The table corroborates the trends visible in Figures 7.2(d)–7.2(f) for the parameter λ in that the
largest value, 0.9, assigned to the parameter λ returned the best solution in all three of the test
instances. Thus a decision was taken to assign the parameter λ a value of 0.9 in the remainder of
this chapter. The results presented in Table 7.5 for the parameter ρ also further corroborate the
finding that smaller values of the parameter ρ yielded solutions of a higher quality. Accordingly,
a value of 0.7 was decided upon for the parameter ρ as it performed consistently over the three
test instances and returned the best solution for all three of the instances.

Table 7.5: Deviation in the objective function value from that of the known optimal solution (i.e. the
optimality gap) as a result of varying the parameters λ and ρ (measured as percentages).

n22 n51 n76

λ ρ λ ρ λ ρ

0.5 0.001 0.002 0.180 0.759 6.774 3.039
0.6 0.001 0.001 0.117 0.847 6.650 3.417
0.7 0.001 0.001 0.215 0.155 5.841 2.833
0.8 0.001 0.001 0.155 1.605 3.866 2.949
0.9 0.001 0.031 0.120 4.804 3.468 3.860
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Figure 7.3: Sensitivity analysis of the crossover and mutation rates in the GA.
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7.4 Parameter sensitivity of the genetic algorithm

The parameter sensitivity analysis performed on the test instance E-n22-k4 yet again offered little
insight as the GA proved to be robust with respect to parameter values assigned to its operators.
The algorithm was able to discover the optimal solution in over 90% of the tests performed and
thus little deviation was experienced with respect to solution quality. Accordingly, the decision
on the values assigned to parameters was heavily biased towards results returned for the larger
test instances which offered more definitive conclusions.

The crossover rate determines the proportion of the population selected to undergo the repro-
duction phase. A high-quality parameter value for the crossover rate is essential in any effective
implementation of a GA. This value should achieve a balance between the exploitation and
exploration aspects of the metaheuristic. Modern GAs rely heavily on effective crossover op-
erators, although interestingly the original GA proposed by Holland [195] did not incorporate
a crossover operator at all, instead relying solely on a mutation operator and a probabilistic
selection operator. The effect of the crossover rate on the quality of the solution returned by
the GA of Chapter 6 is illustrated in Figures 7.3(a)–7.3(c) for the CVRP test instances of §7.1.

The effect of the crossover rate on solution quality was surprising, as the smallest value assigned
to the crossover rate yielded solutions of the highest quality in respect of the three test instances.
A sensitivity analysis with respect to altering the values of the crossover rate is shown in Table
7.6. A crossover rate value of 0.5 was decided upon for the remainder of this chapter as it returned
the optimal solution for the small test instance and performed the best in the remaining two
test instances. The general trend for the value assigned to the crossover rate is that a larger
value typically resulted in results of a poorer quality returned by the algorithm, which is perhaps
counter-intuitive as this limits the solution diversity and places a larger focus on exploitation
within the algorithm.

Table 7.6: Deviation in the objective function value from that of the known optimal solution (i.e. the
optimality gap) as a result of varying the crossover rate (measured as percentages).

Crossover Rate n21 n51 n76

0.5 0.001 1.333 4.070
0.6 0.001 3.352 4.892
0.7 0.001 1.788 4.496
0.8 0.001 3.553 4.550
0.9 0.001 3.553 4.887

The mutation rate is also a key parameter in most GA implementations. The mutation rate
determines to a large extent the level of diversity within the population. A population exhibiting
high diversity levels during early generations is more likely to obtain higher-quality solutions
during later generations. The effects of varying the value of the mutation rate in respect of the
objective function values obtained by the GA is depicted graphically in Figures 7.3(d)–7.3(f).

The mutation rate values also affected the solution quality in perhaps a surprising manner, with
the largest parameter setting returning the best solution quality with respect to the three test
instances. The results of varying the mutation rate value in terms of the subsequent optimality
gap are shown in Table 7.7. A value of 0.4 was decided upon for the mutation rate in the remain-
der of this chapter. The superior performance of the GA with respect to high-valued mutation
rates may be attributed to the algorithm relying heavily on diversity-management through the
application of mutation operators as opposed to crossover operators. This bias may be attributed
to the crossover operator’s inherent weakness in retaining characteristics and information of the
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Figure 7.4: Sensitivity analysis in respect of the GA population size.
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previous population in generating a new population, because crossover operators are typically
rather disruptive as opposed to the more minor changes experienced in characteristics of the
population when a mutation operator is applied. Additionally, incorporation of a swap mutation
operator is highly beneficial. The application of the 2-opt mechanism may have contributed to
the bias towards applying large amounts of mutation within a population.

Table 7.7: Deviation in the objective function value from that of the known optimal solution (i.e. the
optimality gap) as a result of varying the mutation rate (measured as percentages).

Mutation Rate n22 n51 n76

0.05 0.001 3.526 4.909
0.1 0.001 2.505 3.635
0.2 0.001 2.872 4.178
0.3 0.001 2.935 4.873
0.4 0.001 2.122 3.740

The diversity within a population is related to the population size. A larger population tends to
achieve greater diversity, although a population size that is too large can negatively affect the
convergence of the algorithm towards good solutions. The effect of the population size on the
solution quality is shown in Figure 7.4.

The objective function values obtained by the GA when varying the population size were ex-
pected — larger values of this parameter typically returned higher quality solutions in two out of
the three test instances. The optimality gaps achieved with respect to the best-known objective
function values are summarised in Table 7.8 as a function of population size. Thus a decision was
taken to fix the population size at forty in the remainder of this chapter as this value resulted
in consistently good solutions for the three test instances.

Table 7.8: Deviation in the objective function value from that of the known optimal solution (i.e. the
optimality gap) as a result of varying the population size (measured as percentages).

Population size n21 n51 n76

10 0.001 3.071 4.613
20 0.001 3.526 4.022
30 0.001 1.699 4.162
40 0.001 2.693 2.917
50 0.001 3.178 3.943

7.5 Incumbent numerical results

The algorithmic parameter values of the two CVRP solution approaches proposed in Chapter 6,
as finalised in the previous two sections, were subsequently implemented. Each algorithm was
allowed a budget of 1 000 iterations of no improvement as termination criterion. The optimal
vehicle routes for the three CVRP test instances were obtained from the Capacitated Vehicle
Routing Library [113]. In addition, each algorithm was applied thirty times in respect of each
of the test instances of §7.1, adopting the parameter values described in §7.3 and §7.4. The
results are summarised in Figure 7.5. The results of the aforementioned implementations were
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Figure 7.5: Deviation in the objective function values returned by the algorithms from those of the
known optimal solutions to the medium and large CVRP benchmark instances of §7.1 (measured as
percentages).

compared by means of an ANOVA test1, which produces an F-statistic that may be employed to
calculate the respective p-value2, in order to determine statistically whether there are significant
differences in the results yielded by the competing algorithms with respect to the E-n51-k5 and
E-n76-k8 test instances at a 95% level of confidence. The E-n22-k4 instance was removed form
consideration as both the GA and the ACS were able to reach optimality in all thirty test runs.
An ANOVA test applied to the results returned by the ACS and GA with respect to the E-
n51-k5 instance yielded a p-value of 0.29, statistically confirming that the respective means are
indistinguishable, as elucidated in Figure 7.5. An ANOVA test similarly applied to the E-n76-
k8 instance proved that there was not a statistically significant difference between the results
produced by the two algorithms, returning a p-value of 0.454, as highlighted in Figure 7.5.

The routes were drawn out to illustrate the contrast in solution quality obtained by the com-
peting algorithms. The CPLEX implementation (with a computational budget of 10 hours) and
both approximate approaches were able to return the optimal solution to the E-n22-k4 instance,
as shown in Figure 7.6(a). The CPLEX implementation was still executing the branch and
bound algorithm when the time-out occurred. The returned solution was, in fact, optimal, but
the branch and bound algorithm was still reducing the gap between the best lower bound and
the upper bound represented by the solution obtained in order to prove its optimality when the
computational budget expired.

1Fischer [166] developed the ANOVA test which incorporates both the sum of squares between sets of data
and the sum of squares within sets of data to calculate whether there are significant differences in the data set
means. If the group means are drawn from populations with the same mean values, the variance between the
group means should be lower than the variance of the samples, following the central limit theorem. A higher ratio
therefore implies that the samples were drawn from populations with different mean values.

2The p-value is the level of marginal significance within a statistical hypothesis test representing the probability
wrongly rejecting the null hypothesis when, in fact, it is true. A smaller p-value means that there is stronger
evidence in favour of the alternative hypothesis. If the p-value is smaller than v, there is a statistical difference
between at least one of the means at a (1− v)-level of confidence.
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Table 7.9: Deviation from the objective function value of the known optimal solution (i.e. the optimality
gap) as a result of varying the solution approach (measured as percentages).

n21 n51 n76

ACS 0.001 0.001 1.101
GA 0.001 0.573 1.358

CPLEX 0.001 28.678 34.715

The CVRP routes for the E-n51-k5 test instance are shown in Figures 7.6(b)–7.6(c). The ACS
was able to reach optimality, with the corresponding vehicle routes shown in Figure 7.6(b). The
vehicle routes returned by the GA and those returned by CPLEX (with a computational budget
of 10 hours) are similarly shown in Figures 7.6(c) and 7.6(d), respectively. The ACS performed
the best as it was able to reach optimality. The GA, however, only managed to obtain a solution
within 0.573% of the optimal solution, while the CPLEX implementation was only able to reach
a solution within 28.6% of the optimal solution when the 10 hour cut-off time was reached.

The vehicle routes for the E-n76-k8 instance are shown in Figure 7.7. The optimal solution is
shown in Figure 7.7(a), while the incumbent solution obtained by the ACS is shown in Fig-
ure 7.7(b). The vehicle routes returned by the GA are shown in Figure 7.7(c), while those
returned by CPLEX (with a computational budget of 10 hours) are shown in Figure 7.7(d).
The GA outperformed the other solution approaches, yielding a solution within 1.101% of the
optimal solution, while the ACS and CPLEX implementations were able to obtain solutions
within 1.358% and 34.715% of the optimal solution, respectively. The results returned by the
algorithms, with respect to the three CVRP instances of §7.1 are summarised in Table 7.9.

7.6 Discussion

The ACS and the GA performed similarly in the context of the CVRP test instances of §7.1
as illustrated in Figure 7.5, although the associated computation times were not recorded. The
ACS nevertheless required notably less time to reach solutions of a high quality, but tended
to become stuck at local optima for long periods of time. The GA typically required more
computation time as the solution quality improved incrementally, but was less susceptible to
becoming trapped at local optima. The results obtained by the GA are very comparable with
the results in the published literature [42, 323, 443], although the associated computational time
required is considerably longer than those reported in the literature. This discrepancy may be
attributed to implementing the algorithm in the high-level RStudio environment — possible
improvement may be sought by programming in a better suited, low-level environment. The
inherent lack of information retention from previous iterations due to the disruptive nature of
crossover operators may also be the reason for the slow convergence rate and large computation
times of the GA.

The solutions quality yielded by ACS are, in fact, of a higher quality than those returned by the
algorithm proposed by Reed et al. [363]. In their paper, Reed et al. tested their proposed ACO in
respect of several test instances, with the E-n51-k5 included in their set of benchmark instances
employed. They reported a deviation of 4.1% in respect of the objective function value from
the best-known solution. Interestingly, they did not report computation times with respect to
the E-n51-k5 instance either and considering that they did not impose a limit on the number of
iterations of the 2-opt algorithm, one may assume that the computation times were rather long,
rendering the ACS employed in this dissertation even more competitive.

The performance of both algorithms of Chapter 6 may possibly be improved by incorporating
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(a) Optimal solution for E-n22-k4 (b) Optimal solution for E-n51-k5

(c) Genetic algorithm incumbent solu-
tion for E-n51-k5

(d) CPLEX incumbent solution for E-
n51-k5

Figure 7.6: Optimal CVRP routes for the E-n22-k4 instance as well as an optimal solution to the
E-n51-k5 test instance and incumbent CVRP routes for this test instance returned by the three solution
methodologies employed in this dissertation.
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(a) Optimal solution for E-n76-k8 (b) Ant colony system incumbent solu-
tion for E-n76-k8

(c) Genetic algorithm incumbent solu-
tion for E-n76-k8

(d) CPLEX incumbent solution for E-
n76-k8

Figure 7.7: An optimal solution to the E-n76-k8 test instance from the literature as well as incum-
bent CVRP routes for this test instance returned by the three solution methodologies employed in this
dissertation.
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constraint handling and penalty functions so as to allow the algorithms to accept infeasible
solutions (as the bounds on the capacity constraint are extremely tight in all three CVRP
instances considered in this chapter, with a minimum capacity to demand ratio of 0.95).

7.7 Chapter summary

In this chapter, the sensitivity of the parameters employed in the approximate solution ap-
proaches of Chapter 6 was analysed in the context of three CVRP benchmark test instances.
These test instances were described in §7.1, all three being from the well-known Christofides
and Eilon data set [82].

An experimental design undertaken in this chapter was elaborated upon in §7.2, highlighting
the methodology adopted to determine a suitable configuration of algorithmic parameter values.

The ACS of §6.2 employs several parameters in its implementation. Accordingly, a parame-
ter sensitivity analysis was performed in §7.3 and a similar approach was adopted in §7.4 to
determine a good combination of parameter values for the GA of §6.1.

The results returned by these two algorithms, with the parameter values fixed according to
the findings in §7.3 and §7.4, were presented in §7.5 in respect of the three aforementioned
CVRP test instances. The results and relative performances of the respective algorithms were
discussed in §7.6, and certain potential algorithmic implementation pitfalls, as well as possible
improvements, were highlighted in the case of the GA.
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CVRP Solution by Clustering
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Clustering has long been implemented as a phase in VRP solution approaches, from the humble
beginnings of the route-first cluster-second classical heuristic approaches of the 1960s [39] to
more recent metaheuristics utilising clustering components [134]. This chapter contains a brief
review of the different distance measures used within clustering algorithms to determine the
dissimilarity matrix in §8.1. The different clustering methods employed in the context of the
CVRP are discussed in §8.2 and the different indices and criteria used to determine the number
of clusters are presented in §8.3. The partitioning of the clusters is determined empirically
by implementing several combinations of indices that return suggestions as to the number of
clusters coupled with various distance measures that generate a large pool of suggestions in
respect of the number of clusters. Several clustering algorithms are implemented and the best
resulting cluster is selected according to the numerous internal and stability measures presented
in §8.4. The clusters generated are then incorporated as the initial phase of a CVRP problem to
partition the customers into subproblems, with the results presented in §8.5. The desirability of
incorporating a clustering phase in the CVRP solution procedure is compared with respect to
solution quality and computation time in §8.6 The chapter closes in §8.7 with a brief summary
of the work contained within.

8.1 The distance measures employed in this dissertation

There are several distance measures in the literature for calculating the dissimilarity matrices
of the clustering algorithms described in Chapter 4. The Euclidean distance, the maximum
distance, the Manhattan distance, the Canberra distance and the Minkowski distance measures

111
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are incorporated in the clustering algorithms employed in this dissertation. These distance
measures are reviewed briefly in this section in terms of two vectors x = [x1, . . . , xd] and y =
[y1, . . . , yd].

The Euclidean distance is the straight-line distance between two points in Euclidean space and
is given by

dE(x,y) =

 d∑
j=1

(xj − yj)2

 1
2

. (8.1)

This distance measure is the most commonly adopted in the literature. The next distance
measure is referred to as the maximum distance measure and is the supremum norm between
the components of x and y. This distance measure is given by

dm(x,y) = sup
1≤j≤d

|xj − yj |, (8.2)

which, in layman terms, is the maximum distance between two components of x and y. The
Manhattan distance is the distance between two points in a strictly grid-based plane, and is the
sum of the horizontal and vertical distance components along a shortest path in the grid, as
shown in Figure 8.1, with the red, blue and yellow lines representing different paths of the same
Manhattan distance. The green line is representative of the Euclidean distance.

Figure 8.1: Illustration of the Manhattan distance calculation.

The Manhattan distance may be expressed as

dM (x,y) =
d∑
j=1

|xj − yj |. (8.3)

The Canberra distance measure was introduced by Lance and William [270], and was later
improved upon by the same authors in [271]. The Canberra distance measure

dC(x,y) =
d∑
j=1

|xj − yj |
|xj |+ |yj |

(8.4)

is a weighted version of the Manhattan distance measure. The final distance measure considered
in this dissertation is the Minkowski distance measure, introduced by Kruskal [264]. It is popular
due to it generalising many other distance measures, such as the Euclidean and Manhattan
distance measures. The Minkowski distance of order p between two points x and y is given by

d(x,y) =

 d∑
j=1

|xj − yj |p
 1

p

, (8.5)
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for p ≥ 1, since p < 1 violates the triangle inequality. If p = 1, the Manhattan distance measure
is obtained as a special case of the Minkowski distance measure. Similarly, if p = 2, then the
Euclidean distance measure is obtained as a special case of the Minkowski distance measure.

8.2 The clustering methods employed in this dissertation

The number of possible ways of assigning C distinct customers to nc clusters in such a manner
that each cluster has at least one customer, is given by

1

nc!

nc∑
i=1

(−1)

(
nc
i

)
(nc − i)C , (8.6)

which results in 18 490 198 597 75 082 317 124 304 (over 18 octillion) ways to partition a mere
40 customers into 6 clusters [63]. The super-exponential growth of the quantity in (8.6) as a
function of increasing values of C severely limits the size of VRP problems that can be handled
by exact clustering algorithms. Several authors have therefore proposed clustering methods
aimed at clustering the customer sets of larger instances heuristically so as to obtain smaller,
independent subproblems.

The first clustering method employed in this dissertation within the context of the CVRP is
referred to as the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) in the
literature and is perhaps the most frequently used clustering algorithm [254]. The method
was introduced by Sokal [407] and is an agglomerative, hierarchical clustering algorithm that
produces a dendogram which can be cut at a desired height in order to produce the required
number of clusters.

Divisive clustering methods are considered exotic as agglomerative approaches seem to be the
most popular due to their favourable computational complexity. The Divisive Analysis Clus-
tering Algorithm (DIANA) has, however, gained some popularity among researchers [254]. The
algorithm is based on the work of Macnaughton-Smith et al. [305] and was developed by Kauf-
man and Rousseeuw [254]. All data points are placed in a single cluster and the algorithm
iteratively partitions clusters based on inner dissimilarity. This procedure is repeated until all
the data points are placed in singleton clusters.

Partitioning Around Medoids (PAM) is another greedy clustering algorithm [253] developed by
Kaufman and Rousseeuw [254]. The algorithm initially selects nc points to act as the cluster
medoids, and then each remaining point is associated with its nearest medoid. While the cost
of the configuration decreases, the points that are acting as medoids are swapped out with
non-medoid points and the cost configuration is recalculated. This process is repeated until
convergence occurs.

Clustering Large Applications (CLARA) is a sampling-based algorithm which implements PAM
on a number of subsets [254]. This approach leads to improved performance on large datasets.
Compared to PAM, CLARA can deal with much larger data sets. It also attempts to find
nc representative points that are centrally located in the various clusters. This is achieved by
considering only a sample of data points and then performing the PAM algorithm to determine
the medoids. Thereafter, each point not considered in the sample is assigned to the nearest
medoid.

The algorithm Fuzzy Analysis (FANNY) was also developed by Kaufman and Rousseeuw [254],
and implements fuzzy clustering. Fuzzy clustering is a generalisation of partitioning, which
normally assigns a data point to one cluster only, while fuzzy clustering offers some ambiguity
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with respect to cluster membership. The algorithm only works for nc <
o
2 clusters, where o is the

number of data points. The algorithm aims to minimise an objective function by determining
the number of clusters. The objective function is a weighted function of the dissimilarity matrix
and membership coefficients.

Self-Organising Maps (SOM) is an unsupervised machine learning technique that is popular
among computational biologists and machine learning researchers. It was introduced by Kohonen
et al. [268], is based on neural networks and is highly regarded for its ability to map and visualise
high-dimensional data in two dimensions [59]. The goal of learning in the SOM algorithm is to
cause the different parts of the network to respond similarly to certain input parameters.

Fraley and Raftery [170] developed a statistical model for performing cluster evaluation. The
model consists of fitting a finite mixture of Guassian distributions to the data. The mixture
components represent clusters, and cluster membership is estimated by means of a maximum
likelihood approach.

The Self Organising Tree Algorithm (SOTA) was first proposed by Dopazo and Carazo [136] for
phylogenic reconstruction, but was later applied to cluster microarray gene expression data by
Herrero et al. [228]. The algorithm is an unsupervised neural network that grows, adopting the
topology of a binary tree. The algorithm follows a divisive clustering approach that has a stop-
ping criterion based on the approximate distribution of probability obtained by randomisation
of the original data.

The final method employed in this dissertation in respect of CVRP customer clustering is perhaps
the most popular, and is referred to as the k-means method in the literature. The term was
coined by MacQueen [298] in 1967, but the original idea dates back to the work of Steinhaus
[408] in 1956. The general notion of the k-means clustering algorithm is to select nc points to act
as initial cluster centres. Each data point is then associated with the nearest centre in order to
create temporary clusters. A new gravity centre is calculated and each observation is reassigned
to the nearest centre. This process is repeated until convergence is achieved. The difference
between PAM and k-means clustering is that PAM calculates the medoids by minimising the
absolute distance between the points and the selected centroid, as opposed to the k-means
method which minimises the squared distance. As a result, the PAM algorithm is more robust
to noise and outliers [254].

8.3 Indices for the number of clusters

Determining the number of clusters nc for a given data set is a problem in its own right and is
distinct from the process of actually solving the clustering problem. The determination of nc is
often ambiguous, with interpretations of a suitable number of clusters depending on the shape
and scale of the distribution of points in the data set and the desired clustering resolution of the
analyst. Increasing the value of nc without an associated penalty will always reduce the error in
the resulting clustering, to the extreme case where every data point is in its own cluster. If the
number of clusters is not specified a priori, it must therefore be determined in some manner.
This section contains brief descriptions of all the indices employed in the clustering algorithms
of this dissertation to determine a desirable number of clusters.

The first such method was developed by Krzanowski and Lai [265] who proposed an argument
for deriving a criterion for use in conjunction with the within-group sum-of-squares objective
function to determine the optimal number of clusters. The method was validated using Monte
Carlo simulations and provided promising results, as it was able to identify the correct number
of clusters 85% of the time for grouped data.
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Caliński and Harabasz [69] suggested a variance ratio criterion for determining the optimal
number of clusters, which gives some insight into the structure of points. Hartigan [223] similarly
proposed a statistic that incorporates a weighted ratio of within-cluster sum of squares and
suggested that if the ratio remains above 10, another cluster should be added.

Sarle [386] proposed a cubic clustering criterion based on minimising the within-cluster sum of
squares and evaluated its performance using Monte Carlo methods. The criterion performed
poorly in respect of clusters that were highly elongated or irregularly shaped.

Scott and Symons [393] derived a maximum likelihood estimate for determining the number of
clusters required, but the estimate requires the assumption that the underlying distributions
are multivariate Gaussian. The estimate is then used to minimise the total within-group sum
of squares and to maximise the between-group sum of squares.

Marriott [301] was able to resolve the interpretation and computation of minimising the deter-
minant of the within-group dispersion matrix to determine the natural number of clusters for a
data set.

Milligan and Cooper [312] analysed thirty stopping criteria by means of Monte Carlo simulation
to determine external criteria that performed best. They used these criteria to develop an index
that measures the trace of the within-clusters-pooled-covariance matrix.

Friedman and Rubin [172] introduced a function defined for all partitions of the data points into
nc clusters, and selected a partition for which the measure is maximal. This function is based
on a pooled within-groups scatter matrix and a between-group scatter matrix.

Davies and Bouldin [109] formulated a general cluster separation measure which allows for the
determination of the average similarity of each cluster with its most similar cluster. Incorporating
this measure into a stopping criterion, the number of clusters may be determined by means of
a criterion based on the sum ratio of within-cluster scatter to between-cluster separation.

Rousseeuw [379] developed the silhouette index which is based on a comparison of the tightness
and separation of a clustering with the average silhouette width utilised in a stopping criterion
to determine the optimal number of clusters.

Duda and Hart [149] proposed a ratio of the squared error for a two-cluster solution over that for
a one-cluster solution. The process of cluster division stops if the ratio is too large. Otherwise
the partition process continues. Two cluster numbers are returned by this method, the one
being the largest value of nc that remains below a critical value and the other being the smallest
value of nc that remains above a critical value.

Beale [37] proposed the use of an F-test ratio to test the hypothesis of the improved performance
of C2 versus C1 clusters, where C2 > C1. In this case the F-test compares the increase in the
mean square deviation from cluster centroids as one transitions from C1 clusters to C2 clusters.
Clustering continues until the hypothesis that C2 clusters is of a higher quality than C1 clusters,
is rejected.

Ratkowsky and Lance [362] proposed a criterion for determining the optimal number of clusters
based on a ratio of the sum of squares distance between and within groups, divided by the number
of clusters. The optimal number of clusters is the value that returns the maximum ratio.

Ball and Hall [30] argued that the average distance between the points and their respective
cluster centres could serve as an informative measure for determining the number of clusters,
with the largest difference between levels taken as the optimal solution.

Kraemer [262] developed the Ptbiserial index, which is simply a point-biserial correlation be-
tween the input dissimilarity matrix and a corresponding matrix consisting of 0 or 1 entries.
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Tibshirani et al. [423] proposed using a gap statistic to determine the value of nc based on the
change in within-cluster dispersion with respect to the expected value under an appropriate
reference null distribution.

Frey and Van Groenewald [171] introduced a ratio to be used as a general clustering stopping
criterion. The ratio compares the difference between the average between-cluster distance from
each of two hierarchy levels with the difference between the mean within-cluster distances from
the two levels. The hierarchy level returning a value closest to 1 is selected.

Mclain and Rao [304] developed the program CLUSTISZ which employs a criterion consisting
of a ratio of two terms. The first term measures the average within-cluster distance divided by
the number of items within the cluster. The second term is the average between-cluster distance
divided by the number of points within the cluster, with the minimum value returning the best
value for nc.

Baker and Hubert [24] introduced the so-called gamma index for determining a suitable number
of clusters. This ratio is a normalised ratio of the number of consistent comparisons involving
between-cluster and within-cluster distances and the number of inconsistent outcomes. The
maximum value is taken to be indicative of the correct hierarchy level.

Rohlf [377] introduced the G(+) index which compares the number of inconsistent outcomes
(the same number as in the gamma index), but it also considers the number of within-cluster
distances. The minimum value of the index indicates the best number of clusters.

Dunn [153] defined a ratio between the minimal inter-cluster distance and maximal intra-cluster
distance, with the largest value being indicative of a good number of clusters.

Halkidi et al. [216] introduced the SD index which is based on the concepts of average scattering
for clusters and total separation between clusters. The average scattering is related to variance
within each cluster and the total separation between clusters depends on the maximum Euclidean
distance between the cluster centres, with the smallest value of the index being indicative of a
good nc-value.

Lebart et al. [279] introduced the D-index which is based on clustering gain in respect of intra-
cluster inertia. The intra-cluster inertia measures the degree of homogeneity between the data
associated with a cluster. It calculates their distances to a reference point typifying the profile
of the cluster (generally the cluster centroid), with the aim of minimising the clustering gain.

Finally, Halkidi and Vazirgiannis [215] introduced the SDbw index which is based on the criteria
of compactness and separation between clusters. The index consists of two terms, namely a
scatter term and a density term. The scatter term aims to measure the variance prevalent
in clusters while the density term aims to evaluate the inter-cluster density, by quantifying the
average density in the region among clusters in relation to the density of the clusters themselves,
with the aim of minimising the index.

8.4 Cluster validity measures employed in this dissertation

One of the most integral aspects in cluster analysis is the post hoc evaluation of clustering results
so as to determine which partition best fits the underlying data [214]. In general terms, there are
three approaches toward investigating cluster validity [420]. The first approach involves the use
of external criteria, where the performance of the clustering is based on a pre-specified structure
as a result of intuition of the data. The second involves the use of internal criteria, where the
clustering performance is based on quantities that are functions of the vectors in the data set.
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Finally, the third approach is based on relative criteria, where the clustering performance is
compared with other clusterings formed by competing algorithms.

Three internal validation measures are employed in this chapter within the context of CVRP
customer clustering. These measures are aimed at measuring the connectedness, compactness
and separation of the cluster partitions. Connectedness relates to the extent to which data
points are placed in the same cluster as their nearest neighbour, and is measured by means of a
connectivity index of Handl et al. [218]. Let O represent the set of data points, and let nnij be
the j-th nearest neighbour of data point i ∈ O. Furthermore, define the parameter

mi,nnij =

{
0, if data points i,j ∈ O are grouped in the same cluster,
1
j , otherwise.

The connectivity for a cluster partitioning of O into nc disjoint clusters may be formulated as

Connectivity =

|O|∑
i=1

L∑
j=1

mi,nnij , (8.7)

where L represents a parameter determining the number of nearest neighbours to use. The
connectivity has a non-negative real value and should be minimised.

Another internal validation measure is referred to as the silhouette width in the literature. This
width is defined as the average of each data point’s silhouette value. This silhouette value
measures the degree of confidence associated with assigning a data point to a cluster, with a
value of 1 indicating a high level of confidence and a value of −1 representing a low level of
confidence. The silhouette value for data point i ∈ O may be determined as

S(i) =
bi − ai

max{bi, ai}
, (8.8)

where ai is the average distance between data point i ∈ O and all other data points in the same
cluster, and bi is the average distance between data point i ∈ O and all the data points in the
nearest neighbour cluster. The silhouette value is in the range [−1, 1] and should be maximised.

The final internal validity measure is the Dunn index, which is the ratio of the smallest distance
between data points not in the same cluster to the largest intra-cluster distance. The ratio has
a non-negative real value and should be maximised.

The next class of validity measures is referred to as stability measures, which compare clusterings
in respect of the full data with clusterings based on removing each data feature column, one at
a time. These measures work especially well if the data are highly correlated [59]. Four stability
measures are employed in this chapter within the context of CVRP customer clustering. The
first such measure is the average proportion of non-overlap (APN). The APN measures the
average proportion of data points not placed in the same cluster by clustering based on the full
data and clustering based on the data with a single column removed. Let Ci denote the cluster
containing data point i in the original clustering, and let Ci,` denote the cluster containing data
point i ∈ O where the clustering is based on the data set with feature column ` removed. The
APN may be calculated as

APN(nc) =
1

M |O|

|O|∑
i=1

M∑
`=1

(
1− |C

i,` ∩ Ci|
|Ci|

)
, (8.9)

where nc denotes the total number of clusters and M is the number of features or columns
present in the data. The APN is a real number in the interval [0, 1], with values close to zero
corresponding to highly consistent clustering results.
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Another stability measure is referred to as the average distance between means (ADM), which
computes the average distance between cluster centres for data points placed in the same cluster
by clustering based on the full set of data versus clusters based on data with a single column
removed. The ADM is given by

ADM(nc) =
1

M |O|

|O|∑
i=1

M∑
`=1

dist(x̄Ci,` , x̄Ci), (8.10)

where x̄Ci is the centroid of data points in the cluster which contains observation i ∈ O and
x̄i,`C denotes the centroid of the cluster that contains data point i with column ` removed. The
ADM is a non-negative real value and smaller values are preferable.

The average distance (AD) is the third stability measure employed in this chapter, which is the
average distance between data points placed in the same cluster resulting from clustering based
on the full data versus clustering based on the data with a single column removed. The AD is
given by

AD(nc) =
1

M |O|

|O|∑
i=1

M∑
`=1

1

|Ci| |Ci,`|

 ∑
i∈Ci, j∈Ci,`

dist(i, j)

 , (8.11)

where dist(i, j) denotes a distance measure between data points i and j. The ADM is a non-
negative real value with a smaller value indicative of a more stable clustering.

The final stability validity measure employed in this chapter is the figure of merit (FOM),
proposed by Datta and Datta [108], which measures the intra-cluster variance of the data points
in the deleted column, where the clustering is based on the remaining samples (non-deleted
columns). This measure estimates the mean error using predictions based on the cluster averages,
and is determined by

FOM(`,nc) =

 1

|O|

nc∑
j=1

∑
i∈Cj(`)

dist(xi,`, x̄Cj(`)
)

 1
2

. (8.12)

The FOM is multiplied by an adjustment factor
√

|O|
|O|−nc

in order to reduce its tendency to

decrease as the number of clusters increases, with the final value averaged over all the columns
removed. The FOM is a non-negative real value, with smaller values indicative of better clus-
tering performance.

8.5 Incorporating a clustering phase when solving the CVRP

The algorithms employed in this chapter to determine the number of clusters for CVRP customer
sets were taken from the library developed by Charrad et al. [77] and the cluster validation
process was implemented using the library developed by Brock et al. [59].

Twenty three indices for the number of clusters were described in §8.3. These indices depend
on the distance measure adopted to populate the dissimilarity matrix. Five distance measures
were described in §8.1. Combining these five distance measures with the twenty three cluster
number indices yields a set of 115 suggestions as to the number of clusters to implement. The
three cluster numbers returned with the highest frequency among these 115 suggestions were
selected for analysis.

Stellenbosch University  https://scholar.sun.ac.za



8.5. Incorporating a clustering phase when solving the CVRP 119

The results for the E-n22-k4 CVRP benchmark instance are shown in Table 8.1, with nc = 2
being the most frequent number of clusters returned by the indices, followed by nc = 4 and
thirdly nc = 3. The unmistakable best number of clusters to implement is nc = 2, with nearly
50% of the indices returning this suggested number of clusters. The frequency results in terms

Table 8.1: Frequency table of best number of clusters to implement for customer clustering of the
E-n22-k4 CVRP benchmark instance.

No. of clusters 1 2 3 4

Frequency 16 57 19 23

of the suggested number of clusters to implement for the E-n51-k5 benchmark are similarly
shown in Table 8.2. The most frequently suggested number of clusters was nc = 5, followed
closely by nc = 2 and nc = 3, respectively. There is no obvious decision as to the number of
clusters to implement as the results are rather evenly spread among the potential candidates,
with a mere 3.5% percent separating the top three suggestions.

Table 8.2: Frequency table of best number of clusters to implement for customer clustering of the
E-n51-k5 CVRP benchmark instance.

No. of clusters 1 2 3 4 5

Frequency 16 27 25 18 29

The frequency results in terms of the number of clusters suggested for the E-n76-k8 instance are
finally shown in Table 8.3, with the most frequently suggested numbers of clusters being nc = 4
and nc = 8, and with nc = 2 being the third most frequently suggested number of clusters. Once
again there is no clear decision as to the best number of clusters to implement as the results are
relatively evenly spread over the top four suggestions, including the value nc = 1.

Table 8.3: Frequency table of best number of clusters to implement for customer clustering of the
E-n76-k8 CVRP benchmark instance.

No. of clusters 1 2 3 4 5 6 7 8

Frequency 19 21 11 25 7 4 3 25

The next stage of the analysis involved determining the best clustering algorithm by which to
compute clusters. The indicators described in §8.4 were used to determine the best clustering
algorithm out of the nine described in §8.2. The results of the internal validity measures high-
lighted in §8.4 for the E-n22-k4 instance are shown in Table 8.4. The nine clustering algorithms
considered in this section all returned the same clustering for the case of nc = 2 clusters, which
would logically lead to the conclusion that it is a good cluster configuration for nc = 2.

The stability validity measures for the E-n22-k4 instance are shown in Table 8.5, which indicate
that the algorithms’ performances differ according to the stability measure employed. The
decision to use the k-means algorithm was reached for nc = 2 and nc = 4, and use of the
UPGMA algorithm was decided upon for nc = 3. The decision was heavily biased towards the
internal validity measures, as for CVRPs dense clusters should typically lead to better results,
and because the coordinates do not offer enough information for stability testing as only two
dimensions are considered. The best number of clusters according to these measures was nc = 2,
which reinforces the conclusions reached based on the number of cluster indices which predicted
that nc = 2 would produce the best clustering.
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Table 8.4: Internal cluster validity measures for the customer set of the E-n22-k4 CVRP benchmark
instance.

Number of clusters
Clustering Method Validation Measure 2 4 3

UPGMA Connectivity 4.939 20.752 12.224
Dunn 0.394 0.403 0.395
Silhouette 0.500 0.350 0.414

Kmeans Connectivity 4.939 21.391 12.863
Dunn 0.394 0.403 0.380
Silhouette 0.500 0.352 0.406

DIANA Connectivity 4.939 21.391 12.863
Dunn 0.394 0.403 0.380
Silhouette 0.500 0.352 0.406

FANNY Connectivity 4.939 23.006 21.200
Dunn 0.394 0.260 0.135
Silhouette 0.500 0.330 0.285

SOM Connectivity 4.939 25.439 13.467
Dunn 0.394 0.189 0.332
Silhouette 0.500 0.290 0.363

Model Connectivity 4.939 22.677 14.000
Dunn 0.394 0.372 0.173
Silhouette 0.500 0.290 0.363

SOTA Connectivity 4.939 28.905 16.563
Dunn 0.394 0.140 0.198
Silhouette 0.500 0.204 0.314

PAM Connectivity 4.939 21.391 13.467
Dunn 0.394 0.403 0.332
Silhouette 0.500 0.352 0.363

CLARA Connectivity 4.939 21.391 15.208
Dunn 0.394 0.403 0.335
Silhouette 0.500 0.352 0.359

The internal validity measures for the E-n51-k5 benchmark instance are shown in Table 8.6,
with the k-means algorithm performing the most consistently over the different clusterings and
performance measures. The SOM clustering algorithm also performed consistently well over
the different clusterings, especially for the case of nc = 3 clusters, where it produced the best
result for two out of the three measures. These measures were the connectivity measure and the
silhouette measure which would indicate a dense clustering of data points and a relatively high
certainty associated with the clustering. The FANNY algorithm also performed relatively well
for the case of nc = 3 clusters, but for the other numbers of clusters, it performed poorly.

The stability cluster validity measures for the E-n51-k5 benchmark instance are shown in Ta-
ble 8.7, with the k-means algorithm showing the most promising results once again. The PAM
algorithm also consistently performed well over the clusterings. The DIANA algorithm per-
formed the best for the smaller nc-values, but achieved poor results for nc = 5 clusters. The
model-based clustering approach appeared to be the most stable for nc = 2 clusters, as it pro-
duced the best result for three out of the nine stability measures, while the DIANA algorithm
was the most stable for nc = 3 clusters, producing the best results over all stability measures.
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Table 8.5: Stability cluster validity measures for the customer set of the E-n22-k4 CVRP benchmark
instance.

Number of clusters
Clustering Method Validation Measure 2 4 3

UPGMA APN 0.174 0.402 0.366
AD 27.855 24.466 26.391
ADM 12.116 14.692 16.736
FOM 19.646 20.245 19.803

Kmeans APN 0.145 0.362 0.512
AD 11.901 12.632 18.335
ADM 11.889 15.623 18.321
FOM 19.699 20.487 20.137

DIANA APN 0.231 0.415 0.386
AD 27.936 24.963 26.923
ADM 12.362 15.860 17.971
FOM 19.675 20.210 20.174

FANNY APN 0.240 0.427 0.438
AD 27.675 24.920 27.544
ADM 12.014 15.610 16.4213
FOM 19.481 20.370 20.137

SOM APN 0.231 0.404 0.430
AD 27.936 24.918 27.432
ADM 12.362 14.183 16.446
FOM 19.675 20.245 20.137

Model APN 0.149 0.340 0.449
AD 27.936 24.539 28.443
ADM 11.845 12.573 18.229
FOM 19.699 20.487 20.137

SOTA APN 0.174 0.402 0.366
AD 28.023 24.985 26.976
ADM 12.360 15.029 14.456
FOM 19.675 20.210 20.174

PAM APN 0.231 0.423 0.321
AD 27.936 24.934 26.169
ADM 12.362 15.697 12.621
FOM 19.675 20.370 20.137

CLARA APN 0.198 0.405 0.361
AD 27.936 24.560 26.745
ADM 12.276 15.033 14.349
FOM 19.676 20.235 20.137
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Table 8.6: Internal cluster validity measures for the customer set of the E-n51-k5 CVRP benchmark
instance.

Number of clusters
Clustering Method Validation Measure 5 2 3

UPGMA Connectivity 38.944 16.368 25.826
Dunn 0.155 0.118 0.123
Silhouette 0.308 0.325 0.294

Kmeans Connectivity 37.568 15.466 22.266
Dunn 0.155 0.104 0.118
Silhouette 0.318 0.326 0.362

DIANA Connectivity 41.407 18.978 27.794
Dunn 0.142 0.099 0.102
Silhouette 0.282 0.324 0.306

FANNY Connectivity 36.326 20.911 22.752
Dunn 0.147 0.099 0.118
Silhouette 0.247 0.321 0.356

SOM Connectivity 41.911 17.056 21.394
Dunn 0.188 0.099 0.118
Silhouette 0.325 0.328 0.362

Model Connectivity 39.012 17.043 23.690
Dunn 0.163 0.093 0.116
Silhouette 0.380 0.312 0.346

SOTA Connectivity 47.185 20.911 28.789
Dunn 0.053 0.099 0.102
Silhouette 0.271 0.321 0.299

PAM Connectivity 40.921 15.466 25.950
Dunn 0.121 0.104 0.041
Silhouette 0.313 0.326 0.350

CLARA Connectivity 39.764 16.854 24.611
Dunn 0.154 0.104 0.041
Silhouette 0.331 0.320 0.353

In terms of connectivity, it seems that nc = 2 clusters produce a significantly better clustering,
but according to the other measures there is no discernible difference in performance of the
clusterings, as corroborated by the number of cluster indices. It was decided to use the model-
based clustering method for nc = 2 clusters as it produced relatively good results over all three
measures, and for nc = 5 it was decided to use the k-means algorithm as it produced significantly
better results in terms of connectivity. Finally, it was decided to use SOM for nc = 3 clusters,
as it performed relatively well.

The internal cluster validity measures for the E-n76-k8 benchmark instance are shown in Ta-
ble 8.8. The UPGMA produced the best results in terms of connectivity for all three clusterings,
achieving a close grouping of data points, which is advantageous in the context of the CVRP.
The UPMGA also performed relatively well in respect of the Dunn index which indicates a good
separation level between clusters. The k-means algorithm performed consistently well over all
measures, indicating high-quality clusterings. The SOTA performed particularly well for nc = 4
clusters, but produced poor-quality clusters for the other instances. The FANNY algorithm did
not produce results for nc = 8 clusters as it was not able to converge after a 1 000 iterations.
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Table 8.7: Stability cluster validity measures for the customer set of the E-n51-k5 CVRP benchmark
instance.

Number of clusters
Clustering Method Validation Measure 5 2 3

UPGMA APN 0.458 0.278 0.411
AD 24.748 29.411 27.431
ADM 16.500 12.427 18.782
FOM 18.519 18.475 18.595

Kmeans APN 0.526 0.250 0.480
AD 24.024 29.093 27.355
ADM 17.125 10.949 17.033
FOM 17.982 18.398 18.557

DIANA APN 0.517 0.260 0.339
AD 25.190 29.093 27.355
ADM 17.359 11.484 14.448
FOM 18.772 18.479 18.545

FANNY APN 0.553 0.334 0.461
AD 24.847 29.779 27.346
ADM 17.020 13.916 16.546
FOM 18.479 18.481 18.562

SOM APN 0.536 0.261 0.480
AD 24.442 29.099 27.636
ADM 16.527 11.375 17.397
FOM 18.568 18.469 18.581

Model APN 0.569 0.247 0.472
AD 24.952 29.021 27.492
ADM 17.118 10.952 17.033
FOM 18.459 18.484 18.557

SOTA APN 0.458 0.278 0.411
AD 24.587 29.012 27.474
ADM 17.864 11.037 17.033
FOM 18.772 18.570 18.545

PAM APN 0.542 0.259 0.461
AD 24.525 29.080 27.474
ADM 16.873 11.418 16.359
FOM 18.595 18.468 18.568

CLARA APN 0.551 0.350 0.458
AD 24.682 29.955 27.465
ADM 16.592 14.644 16.598
FOM 18.619 18.468 18.574
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Table 8.8: Internal cluster validity measures for the customer set of the E-n76-k8 CVRP benchmark
instance.

Cluster Size
Clustering Method Validation Measure 4 8 2

UPGMA Connectivity 29.805 53.521 14.523
Dunn 0.109 0.154 0.093
Silhouette 0.343 0.313 0.330

Kmeans Connectivity 30.184 58.121 22.901
Dunn 0.110 0.163 0.062
Silhouette 0.377 0.335 0.336

DIANA Connectivity 40.362 71.451 22.901
Dunn 0.097 0.126 0.062
Silhouette 0.361 0.277 0.336

FANNY Connectivity 34.008 N/A 25.801
Dunn 0.111 N/A 0.030
Silhouette 0.373 N/A 0.322

SOM Connectivity 32.700 65.101 22.262
Dunn 0.110 0.166 0.045
Silhouette 0.377 0.314 0.335

Model Connectivity 40.623 59.748 22.037
Dunn 0.101 0.149 0.045
Silhouette 0.367 0.235 0.335

SOTA Connectivity 31.451 65.926 15.946
Dunn 0.111 0.140 0.070
Silhouette 0.396 0.293 0.321

PAM Connectivity 35.906 60.511 22.525
Dunn 0.088 0.140 0.067
Silhouette 0.367 0.326 0.335

CLARA Connectivity 37.499 60.023 19.503
Dunn 0.059 0.140 0.075
Silhouette 0.362 0.327 0.335

The stability cluster validity measures for the customer set of the E-n76-k8 CVRP benchmark
instance are finally shown in Table 8.9. The k-means algorithm exhibited the most stability
for three out of the four stability measures, but it achieved poor results in respect of the ADM
measure, which shows that there is considerable cluster centre shifting between removals of
column entries, but that the data points are still generally placed in the same clusters. The
CLARA clustering program produced excellent results for nc = 8 clusters, obtaining the best
results for three out of the four measures. The UPGMA algorithm exhibited good stability for
nc = 4 clusters as it produced the best results for two out of the four measures.

The best cluster size in terms of connectivity is nc = 2, but in terms of the other measures,
there is no discernible difference between the different values for nc, which is in accordance with
the predictions by the number of clusters indices. The SOTA was chosen for nc = 4 clusters,
while the k-means algorithm was selected for nc = 8 clusters. Finally, the UPGMA algorithm
was selected for nc = 2 clusters.

According to the internal measures, the clusters produced for the E-n22-k4 benchmark were of
a higher-quality than the clusterings produced for the E-n51-k5 and E-n76-k8 instances. It is
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Table 8.9: Stability cluster validity measures for the customer set of the E-n76-k8 CVRP benchmark
instance.

Cluster Size
Clustering Method Validation Measure 4 8 2

UPGMA APN 0.460 0.591 0.278
AD 25.620 23.435 29.411
ADM 17.074 16.324 12.247
FOM 18.391 18.842 18.475

Kmeans APN 0.469 0.586 0.249
AD 24.987 23.288 29.021
ADM 18.411 18.698 18.484
FOM 18.557 18.708 18.468

DIANA APN 0.479 0.593 0.260
AD 25.601 23.355 29.093
ADM 17.498 16.671 11.484
FOM 18.643 18.928 18.479

FANNY APN 0.526 N/A 0.334
AD 25.757 N/A 29.779
ADM 17.523 N/A 13.916
FOM 18.614 N/A 18.481

SOM APN 0.514 0.641 0.274
AD 25.613 23.119 29.205
ADM 17.420 16.212 11.798
FOM 18.617 18.884 18.481

Model APN 0.540 0.647 0.274
AD 25.914 23.349 29.021
ADM 17.922 16.192 10.952
FOM 18.628 18.782 18.484

SOTA APN 0.479 0.593 0.260
AD 25.601 23.355 29.093
ADM 17.498 16.671 11.484
FOM 18.643 18.928 18.479

PAM APN 0.500 0.627 0.259
AD 25.752 23.095 29.082
ADM 16.966 16.092 11.418
FOM 18.624 18.877 18.468

CLARA APN 0.527 0.604 0.350
AD 25.859 22.915 29.554
ADM 16.870 15.712 14.644
FOM 18.557 18.708 18.468
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difficult to ascertain whether this is because it is easier for the algorithms to resolve clusters for
smaller instances or whether the customers in E-n22-k4 are distributed in such a manner as to
accommodate better clustering.

8.6 CVRP solutions upon clustering

The different clusterings that were produced as a result of the study performed in §8.5 are shown
in Figures 8.2 and 8.3. These clusterings were treated as inducing individual CVRP instances
and the ACS described in §6.2 was used to produce an approximate solution to each individual
instance as it is computationally cheaper in respect to CVRP instances. The sub-problems
created as a result of the clustering were able to be parallelised and accordingly the ACS could
be executed in respect of all the subproblems concurrently. From a purely visual standpoint, the
clusterings seem to achieve the aim of segregating the customer sets of the CVRP benchmark
instances into more manageable subproblems.

The subproblems for the E-n22-k4 CVRP benchmark instance with respect to the clustering of
the customers are shown in Figures 8.2(a)–8.2(c). Similarly, the subproblems for the E-n51-k5
CVRP benchmark instance are shown in Figures 8.2(d)–8.2(f). Finally, the subproblems for the
E-n76-k8 CVRP benchmark instance with respect to the clustering of the customers are shown
in Figures 8.3(a)–8.3(c).

The different CVRP instances and their respective subproblems were solved using the same
hardware and software platforms as mentioned before. An iteration limit of 1 000 was set and
the processor time and the objective function deviation from that of the known optimal solution
were recorded in each case. The results are shown in Table 8.10.

Table 8.10: Comparison of the solution quality (measured as percentage) returned (in respect of the
deviation of the objective function returned with and without incorporating a clustering phase) by the
ACS and the required computation time (measured in seconds).

Benchmark Solution method Optimality gap (%) Processing time (s)

E-n22-k4 ACS 0 348
ACS with nc = 2 5.48 225.61
ACS with nc = 3 21.72 202.90
ACS with nc = 4 9.87 41.74

E-n51-k5 ACS 0.57 585.612
ACS with nc = 2 6.11 555.19
ACS with nc = 3 5.98 444.32
ACS with nc = 5 15.58 253.80

E-n76-k8 ACS 1.68 712.82
ACS with nc = 2 5.21 530.84
ACS with nc = 4 6.64 476.36
ACS with nc = 8 19.46 201.90

These results exhibit a noticeable decrease in computation time requirements when clustering
is applied, but it also shows that the solution quality is negatively affected, as expected. This is
due to several factors, including a lack of flexibility of the ACS, and the fact that a solution can
be only as good as the clustering allows. Despite the ACS reaching an optimal solution for each
subproblem, the solution quality is holistically still relatively poor when customer clustering is
applied.
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(a) Clustering of 22 customers into 2 clusters
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(b) Clustering of 22 customers into 3 clusters
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(c) Clustering of 22 customers into 4 clusters
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(d) Clustering of 51 customers into 2 clusters
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(e) Clustering of 51 customers into 3 clusters
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(f) Clustering of 51 customers into 5 clusters

Figure 8.2: Clustering for the customer sets of the E-n22-k4 and E-n51-k5 CVRP benchmark instances.
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(a) Clustering of 76 customers into 2 clusters
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(b) Clustering of 76 customers into 4 clusters
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(c) Clustering of 76 customers into 8 clusters

Figure 8.3: Clustering for the customer set of the E-n76-k8 CVRP benchmark instance.
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(a) Optimal solution for E-n22-k4 without clustering (b) ACS solution for E-n22-k4 with nc = 2

(c) ACS solution for E-n22-k4 with nc = 3 (d) ACS solution for E-n22-k4 with nc = 4

Figure 8.4: Proposed vehicle routes for the E-n22-k4 CVRP benchmark instance.
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(a) Optimal solution for E-n51-k5 without clustering (b) ACS solution for E-n51-k2 with nc = 2

(c) ACS solution for E-n51-k3 with nc = 3 (d) ACS solution for E-n51-k5 with nc = 5

Figure 8.5: Proposed vehicle routes for the E-n51-k5 CVRP benchmark instance.
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(a) Optimal solution for E-n76-k8 without clustering (b) ACS solution for E-n76-k8 with nc = 2

(c) ACS solution for E-n76-k8 with nc = 4 (d) ACS solution for E-n76-k8 with nc = 8

Figure 8.6: Proposed vehicle routes for the E-n76-k8 CVRP benchmark instance.
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The cluster-first, route-second approach becomes more competitive as the instance size increases
and as the cluster sizes themselves increase, thereby allowing for more flexibility within the ACS
to reach better solutions. There are, however, methods in the literature, such as the 1-insert
method proposed by Salhi and Nagy [383] and the method of micro-clustering proposed by
Iochim et al. [237], for counteracting the lack of flexibility when applying clustering first.

The vehicle routings for the E-n22-k4 benchmark instance and its respective clustered subprob-
lems, as generated by the ACS, are shown in Figure 8.4. Similarly, the vehicle routings for the
E-n51-k5 benchmark instance and its resulting clustered subproblems are shown in Figure 8.5.
Finally, the vehicle routings for the E-n76-k8 benchmark instance and its clustered subproblems
are shown in Figure 8.6.

The clustering approach presented in this chapter, was designed to be incorporated as an initial
phase within the approximate solution approach when considering a pathology service provider’s
transportation network. The decline in solution quality as a result of a lack of flexibility of the
algorithm should not be of too much concern, as real-life instances are expected to contain thou-
sands of customers. Thus, the expected loss in quality of a solution will be heavily outweighed
by the potential reduction in the required computation time to reach such a solution.

8.7 Chapter summary

There are several factors to consider when employing a clustering algorithm to partition data
sets. The first such consideration is the distance measure used to populate the dissimilarity
matrix. Five commonly used distance measures were reviewed in §8.1. The next area of concern
is deciding which clustering algorithm to implement; nine such algorithms were discussed in
§8.2. The final prevalent concern before implementing a clustering algorithm, is determining
the number of clusters to pursue, with twenty-three measures recommended in the literature for
this purpose summarised in §8.3.

The aforementioned measures and algorithms were all implemented in respect of three well-
known CVRP benchmark test instances. The internal validity and stability measures described
in §8.4, were employed in §8.5 to ascertain the best combination of algorithms and number
of clusters upon which to base the CVRP solution process, taking cognisance of both solution
quality and computation time.

The results of the experiments were presented in §8.6, exhibiting a decline in solution quality
when incorporating a clustering phase in the CVRP solution process. A rather drastic improve-
ment in computation time required by the ACS algorithm to return approximate solutions to
the three CVRP benchmark instances was, however, noted in each case.
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Tiered Vehicle Routing Problem
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CHAPTER 9

TVRPGC Model Formulation
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A description of the mathematical model proposed in this dissertation for the TVRPGC, as
described briefly in §1.2, is presented in this chapter. A number of necessary assumptions
required to formulate the model are presented along with the relevant model objectives and
constraints. The model is verified by implementing it in a commercially available MIP solver
and solving the model in the context of a small, hypothetical problem instance. The results and
complexity of the model are discussed and the chapter closes with a brief summary.

9.1 Introduction

The class of VRPs has enjoyed a long and colourful history since its inception in 1959 by Dantzig
and Ramser [107], resulting in numerous variations on the celebrated CVRP prototype within
this class. These variations have typically arisen due to the need to be able to accommodate
a variety of practical considerations such as taking into account operating hours of facilities,
adhering to limitations in infrastructure and incorporating diversity into the vehicle fleet. This
has led to the introduction into the literature of widely accepted classes of model formulations
accommodating these features, such as VRPs with time windows [122, 252, 260], VRPs accom-
modating local cross-docking [384, 447], VRPs with multi-echelon facilities [135, 343] and VRPs
with trailer considerations [75, 414], to name but a few. Many of these problem variations were
reviewed briefly in Chapter 2.

In most VRP applications, a characterisation of customers or facilities in terms of different
commodity processing capabilities is not applicable. In this chapter, a variation on the VRP
with time windows is, however, considered where commodities of different types have to be
collected from a set of customers and processed in potentially different ways at a set of facilities
within a transportation network. The variation in commodity type may be due to the nature
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136 Chapter 9. TVRPGC Model Formulation

of the commodities themselves, such as their purpose and processing requirements, as well
as maintaining standards associated with a commodity, or may even be due to the intended
destinations of the commodities, such as local, regional, provincial, national, or international
destinations. The available commodity processing facilities are segregated according to their
respective processing and storage capabilities into a set of tiers. This tier allocation is nested
in the sense that a facility of tier i can process any type of commodity that can be processed
at a facility of tier j if j < i, but there exist certain commodity types which can be processed
at a facility of tier i that cannot be processed at any facility of a lower tier. Facilities of the
lowest tier represent customers at which the commodities originate and have to be collected
— these facilities have no commodity processing or storage capabilities — their only role is
that they introduce new commodities into the system. Facilities of higher tiers may or may not
introduce new commodities into the system, but their distinguishing feature is that they all offer
commodity processing capabilities. Furthermore, all facilities, excluding facilities of the lowest
tier, are assumed to offer the same storage capabilities.

Crucially, handover of commodities at facilities is allowed in the sense that a commodity requiring
processing at a facility of a specific tier may be transported by one vehicle to a facility of a lower
tier than the required one, and then be collected later by some other vehicle(s) which transports it
to a facility of the required tier. This type of commodity handover, which may occur at a facility
of any tier (save the lowest and the highest1), is referred to as global cross-docking2. Another
novel feature of the VRP variation considered here is that demand for commodity collection
is allowed to spill over into a subsequent planning period. Essentially, the assumption is made
that the time continuum may be partitioned into planning periods of fixed length. One planning
period is considered at a time, and if demand for commodity collection occurs at a facility
after the last vehicle has departed from that facility, then this commodity is simply collected
from the facility during the following planning period (all demand for commodity collection is
assumed to be known at the beginning of the planning period). Individual commodities are not
tracked as they travel through the system, but they nevertheless all require collection at their
originating customers and transportation to facilities with adequate processing capabilities. This
requirement is met by constructing a model which produces a flow route (perhaps consisting of
several individual vehicle sub-routes) for commodities from any facility (except facilities of the
highest tier) to a facility of a strictly higher tier, thereby facilitating delivery of the commodities
to facilities of the tiers required, perhaps after repeated global cross-docking operations.

There may be many real-world applications of the type of VRP described above. Two such
applications are mentioned in this introductory section — one in the healthcare sector and one
in the postal services sector as described in §1.2. The facilities where commodities originate
are referred to as facilities of tier zero as they do not offer any processing capabilities. In rural
settings, the distribution of the commodity processing facilities is such that for commodities to
reach a processing facility of the required tier, global cross-docking is a necessity, since it may be
impossible for a single vehicle to deliver commodities originating in very rural settings over the
long distances required to reach a suitable tier of processing facility in view of legal maximum
driving times.

The commodity collection and processing system with global cross-docking and demand spill-
over to subsequent planning periods described above is modelled in this chapter as a tri-objective

1Global cross-docking of commodities at facilities of the highest tier is not necessary as all commodities
considered in the transportation network can be processed at facilities of the highest tier. Global cross-docking
of commodities may also not occur at facilities of the lowest tier as they do not offer any processing or storage
capabilities.

2As opposed to the traditional notion of cross-docking in the supply chain literature where goods are consoli-
dated at a dedicated cross-docking facility [234, 288], referred to here as local cross-docking.
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VRP which may form the basis of a decision support system capable of assisting tiered-facility
services in respect of cost-effective planning, routing and scheduling of a fleet of homogeneous
vehicles dedicated to commodity collection and delivery. The mathematical model for the
TVRPGC derived in this chapter builds on a combination of various well-known variants of the
celebrated CVRP in the literature, but exhibits various novel features, as outlined above. An
acceptable trade-off between the three objectives is pursued in the model, namely minimisation
of the cost associated with transporting commodities, minimisation of the difference between the
longest and shortest travel times associated with vehicles (i.e. balancing of driver workload) and,
finally, minimisation of the number of vehicles required to implement the commodity collection
routing schedule.

9.2 Model assumptions

In the mathematical model for the TVRPGC proposed in this chapter, certain assumptions are
required in order to render possible a mathematical description of tiered-facility routing opera-
tions, as described in §9.1. These assumptions, introduced in order to simplify the mathematical
model, are, however, still able to offer a fair representation of real-life operations of tiered-facility
networks in which global cross-docking occurs, as confirmed by an industry expert [33], and are
as follows:

1. The nature of the facilities. The transportation network consists of customers, consolida-
tion points, and facilities of varying commodity processing and storage capabilities, which
are collectively referred to as facilities. Commodities introduced into the network of facil-
ities exhibit varying processing requirements, which are in certain cases only satisfiable by
some subset of facilities. Therefore, the facilities are segregated into a collection of tiers
according to the commodity processing capabilities that they offer, with a higher tier sug-
gestive of superior processing capabilities. The tiers are ordered in such a manner that the
lowest-tier facilities only require commodity collection, the highest-tier facilities only offer
processing capabilities, and all the other facilities both require commodity collection and
offer processing capabilities as these facilities are all able to process certain commodities,
but may require commodities to be transported to more capable facilities for processing.
As mentioned in §9.1, the various tier levels of facilities are assumed to exhibit nested
commodity processing capabilities. Facilities of the lowest and highest tiers furthermore
do not offer any storage or consolidation capabilities. All other tiers of facilities, however,
offer the same storage or consolidation capabilities.

2. The nature of the vehicles. It is assumed that a fleet of homogeneous vehicles is available
for commodity collection. The capacities of the vehicles are assumed to be sufficiently large
to handle any demand requirements. Unlike in most VRPs, the intended cargo is therefore
assumed to be of negligible volume and weight. A capacity constraint may nevertheless
easily be included in the model formulation, if required. This is, however, normally not
necessary in both the healthcare and postal service applications mentioned in §9.1. Each
vehicle may perform at most one route.

3. Home depot allocation. It is assumed that each vehicle has a fixed home depot which may
be located at any of the facilities within the network. All vehicles must begin and end
their routes at their respective home depots.

4. Multiple visits and global cross-docking. A facility may be visited by more than one vehicle
during the planning period, although any specific vehicle may visit any facility at most
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once during the planning period. In particular, a commodity may be delivered to a facility
by a vehicle, and then later be collected by a different vehicle for further transportation
in the network.

5. Service times. The service time of a facility by a vehicle is limited to the loading and/or
unloading of commodities at the facility and does not include the processing times of
the commodities. The facilities in the transportation network are not assumed to be
operational for twenty four hours a day. Therefore, there is a need for collection and
delivery of commodities by vehicles within certain time windows that reflect the operational
hours of each facility.

6. Rolling demand horizon. It is assumed that demand for commodity collection occurs
on a continual basis at all but the highest-tiered facilities, regardless of the time within
the planning period. Unmet demand from the previous planning period may therefore
be brought forward to the current planning period. This allows for a vehicle to deliver
commodities to and collect commodities from the same facility without having to wait at
the facility for all demand to have realised there. Demand for specimen collection that
occurs at a facility after the last vehicle has departed from the facility may be satisfied
during the following planning period.

7. Facility visitation sequence. For feasibility of a route, it is required that every facility
(except the highest-tiered facilities) should be visited by at least one vehicle that also
visits a higher-tier facility at a later stage within the planning period or should participate
with another vehicle in cross-docking at a consolidation facility such that the specimens
of the facility reach a strictly higher-tiered facility.

8. Commodity destinations. In a bid to reduce model complexity, individual commodity
collection and transportation is not tracked explicitly in the model formulation as numerous
types of commodities may be collected and an even larger number of possible types of
commodity processing may be required by these commodities. The only constraint is that
a commodity should eventually be delivered to a facility capable of processing it (perhaps
over the course of several succesive planning periods).

9. Commodity expiration. The possible deterioration of the quality of a commodity over
time is limited to the time it takes for the commodity to be collected from a facility of the
lowest tier and transported to a facility that has the appropriate processing or consolidation
capabilities (i.e. commodity deterioration occurs only as a result of being in transit). It is
therefore assumed that once a commodity has been delivered to a facility (of tier greater
than the lowest tier) for the first time, the commodity is either processed there or stored
in such a manner that its expiration window remains unaffected during storage (i.e. in
a vacuum or at a low temperature) or future transportation (i.e. repackaged in such a
manner so as to retain the commodity’s integrity).

9.3 Mathematical model formulation

This section contains a detailed description of the sets of constraints and planning objectives
required to translate the TVRPGC, described briefly in §9.1 and elaborated upon in §9.2, into
a formal MILP model. After defining the model parameters and variables in §9.3.1 and §9.3.2,
respectively, the model objectives are formulated mathematically in §9.3.3. The focus then shifts
in §9.3.4 to the formulation of the model constraints.
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9.3.1 Model parameters

Suppose there are f + 1 different tiers of facilities in the system, and that each facility tier (save
the lowest) is associated with specific commodity processing capabilities. Suppose, furthermore,
that indices are assigned to these facility tiers in such a manner that a facility of tier d > 1
possesses a superset of the processing capabilities of a facility of tier e for any e ∈ {1, . . . , d−1},
but that all laboratories of the same tier have identical processing capabilities. As mentioned in
§9.2, the customers at which commodities originate for collection and the processing facilities,
which may also exhibit demand for commodity collection, are together referred to as facilities.
An indexing convention is, however, followed where all customers exhibiting no processing capa-
bilities are referred to as facilities of tier zero, while all processing facilities of tier d ∈ {1, . . . , f}
are referred to as facilities of tier d. Let Fd denote the set of all facilities of tier d ∈ {0, 1, . . . , f},
and define F = ∪fd=0F

d as the set of all the facilities. Any facility in F0 therefore has no com-
modity processing capability, but only exhibits demand for commodities to be collected there.
Any facility in Ff , on the other hand, only processes commodities, and exhibits no demand
for the collection of such commodities. Finally, any facility in F \ (F0 ∪ Ff ) may or may not
exhibit demand for commodity collection as a result of cross-docking operations there and also
offers certain processing capabilities. Facility i ∈ F furthermore has an associated vehicle arrival
capacity γi (i.e. a limit on the number of vehicle arrivals the facility can accommodate during
the planning period), a required service time of si time units and a service time window [ai, gi]
during which vehicles have access to the facility.

Let V represent the set of homogeneous vehicles that constitute the commodity collection fleet.
As mentioned in §9.2, it is assumed that this set of vehicles is sufficiently large to facilitate
feasible commodity collection routing and scheduling at a 100% service level. The homogeneity
of the fleet implies that all vehicles have the same autonomy level µ (the maximum allowable
route duration of a vehicle, measured in units of expected travel time) and that any two vehicles
are expected to traverse a given road link within the transportation network in the same amount
of time. Denote the subset of facilities acting as home depots for vehicles by D and denote the
home depot of vehicle k ∈ V within this set by bk. As is customary in the VRP literature, each
home depot bk is associated with a virtual, identical copy of the depot, denoted by b+k , in order
to be able to distinguish between the departure time of a vehicle from its home depot and the
later arrival time of the vehicle when returning to its home depot. In particular, bk represents
the home depot of vehicle k ∈ V when it departs from the depot, while b+k represents the same
home depot when the vehicle returns to the depot upon completion of its route. The departure
time T ′bkk of vehicle k ∈ V from the depot bk is known a priori.

The set of all commodities that have to be collected is partitioned into f distinct types, indexed
by the set S = {1, . . . , f}, according to the convention that a commodity of type c ∈ S can

be processed at any facility in ∪fd=cF
d. Each commodity of type c ∈ S is assumed to have an

associated expiration time τc which is an upper bound on the time the commodity may be in
transit before it is delivered to a facility in ∪fd=cF

d.

Let G = (F , E) be a complete, directed, weighted graph with vertex set F and arc set E rep-
resenting all possible road network connections between facilities in F , where the weight of an
arc (i, j) ∈ E is the expected travel time tij of a vehicle traversing the arc from facility i ∈ F
to facility j ∈ F . It is assumed that the triangle inequality is upheld by these expected travel
times.

The planning period is limited to a schedule of fixed length, implemented (possibly in slightly
altered form) along a rolling horizon. Some subset of facilities in F \ Ff may perhaps not
exhibit demand for commodity collection within the planning period under consideration, due
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to demographic variability and fluctuating demand. Let the binary parameter αic therefore
assume the value 1 if commodities of type c ∈ S have to be collected from facility i ∈ F \ Ff ,
or the value 0 otherwise.

Finally, let N denote a set of global event numbers associated with the vehicle routing schedule
over the planning period. The elements of this set induce a global ordering of vehicle arrivals over
time at the various facilities in the spirit of Dondo et al. [135] (who applied this model construct
in the special case of local cross-docking in supply chain management). In their application,
the arrival of each vehicle at a pre-specified local cross-docking facility was associated with a
unique integer in such a manner that a later arrival of any vehicle at the facility was associated
with a larger integer. In the application adopted in this dissertation, the practice of assigning
the arrival of each vehicle a unique integer value is also implemented. The application of the
aforementioned model construct adopted in this dissertation, however, differs from that of Dondo
et al. [135] in the consideration of the arrival times of all vehicles at all of the facilities in the
network, as opposed to at a specific cross-docking facility only. This model construct is applied
to monitor the global cross-docking and tier-visitation of vehicles.

9.3.2 Model variables

In the model formulation, decision and auxiliary variables are required to keep track of the move-
ment of vehicles and their service allocation to facilities. In order to facilitate the orchestration
of global cross-docking operations, a global ordering is assigned to the arrivals of all vehicles in
the routing schedule, as described above. The auxiliary variables

ynik =


1, if the arrival of vehicle k ∈ V at facility i ∈ F is global

event n ∈ N during the current planning period,

0, otherwise

achieve this purpose in conjunction with the auxiliary variables

zijkn =



1, if the arrival of vehicle k ∈ V at facility i ∈ F \ (F0 ∪ Ff )

is global event n ∈ N , following which vehicle k also visits

facility j ∈ F ` at some later stage, where facilities i and j

are of the same tier `,

0, otherwise,

whereN denotes a set of non-negative integers, with |N | = |F|+(|V|−1)+(|V|−1)|F\(F0∪Ff )|.
The assignment decision variables

rikn =


1, if global event n ∈ N involves the assignment of vehicle k ∈ V to

visit facility i ∈ F \ (F0 ∪ Ff ) and this vehicle later visits a

facility of a higher tier than that of facility i,

0, otherwise

are used in a disjunctive fashion to enforce appropriate facility visitation sequences. Finally, the
flow decision variables

xijk =

{
1, 1 if vehicle k ∈ V travels directly from facility i ∈ F to j ∈ F ,

0, otherwise

monitor the movement of vehicle k ∈ V, while the non-negative, real auxiliary variables Tik
denote the time at which vehicle k ∈ V arrives at facility i ∈ F , with Tik assuming the value
zero for all i ∈ F if vehicle k is not used.
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9.3.3 Model objectives

Following the discussion in §9.1, the aim of the model proposed in this chapter is to pursue an
acceptable trade-off between the realisation of three objectives. The first of these objectives is to
minimise the expected global travel time3 associated with the transportation of all commodities
from the various original commodity collection facilities to appropriate facilities where they are
to be processed or stored. This objective may be formulated mathematically as

minimise
∑
i∈F

∑
j∈F

∑
k∈V

tijxijk. (9.1)

The second objective is to balance the workload of the delivery vehicles in terms of their total
service travel times, that is to

minimise max
k∈V

(
Tb+k k

− T ′bkk
)
. (9.2)

The final objective is to

minimise
∑
k∈V

∑
j∈F

xbkjk, (9.3)

which is equivalent to minimising the number of vehicles required for commodity collection at a
service level of 100% by reducing the number of vehicles departing from their home depots.

9.3.4 Model constraints

The model includes numerous constraints reflecting the various requirements of the TVRPGC in
respect of the transportation of commodities. The first such constraint states that every vehicle
must initially depart from and eventually return to its home depot at the end of its route, as
required by Assumption 3 of §9.2. This constraint is enforced by requiring that∑

j∈F
xbkjk ≤ 1, k ∈ V

and that ∑
j∈F

xjb+k k
=
∑
j∈F

xbkjk, k ∈ V.

The constraint set ∑
i∈F

xijk ≤
∑
`∈F

xbk`k, j ∈ F , k ∈ V

ensures that any vehicle k ∈ V visits a facility j ∈ F at most once during the planning period
according to Assumption 4. The flow conservation constraint set∑

i∈F
xijk −

∑
`∈F

xj`k = 0, j ∈ F \ {bk, b+k }, k ∈ V

states that if any vehicle k ∈ V arrives at facility j, then the same vehicle must traverse an arc
departing from facility j, for all j ∈ F \ {bk, bk+}. Since not all facilities i ∈ F \ Ff necessarily
exhibit demand for commodity collection during the planning period, the constraint set∑

j∈F

∑
k∈V

xijk ≥ αi, i ∈ F \ Ff

3The decision not to minimise the distance travelled by vehicles stems from possibly very rural locations of
some of the facilities. The potentially poor quality of roads leading to these remote facilities in a developing
context often brings about considerable deviations in the expected travel time per unit distance.
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ensures that at least one vehicle k ∈ V should visit facility i ∈ F \Ff if there is actually demand
for commodity collection at facility i, where

αi =

{
1, if

∑
c∈S αic ≥ 1

0, otherwise.

The constraint set

Tik + si + tij − Tjk ≤ (1− xijk)M, i ∈ F , j ∈ F , k ∈ V

is included to monitor the arrival time of vehicle k ∈ V at each vertex along its route. This
constraint set ensures, if vehicle k ∈ V travels from facility i ∈ F to facility j ∈ F , that the
time instant at which it starts to service facility j is bounded from below by the time instant at
which it started servicing facility i together with the combined service time duration at facility
i and the time required to travel from facility i to facility j. Here M is a large positive number.
The services provided by tiered-facility organisations and the respective processing facilities are
furthermore not typically twenty four hour operations, but should be rendered within acceptable
time windows associated with each facility according to Assumption 5. Since there is a possibility
that not all vehicles k ∈ V may be used, the constraint set

T ′bkk + tbkj −M(1− xbkjk) ≤ Tjk, j ∈ F , k ∈ V

defines the arrival time of vehicle k ∈ V at the first facility j ∈ F visited by vehicle k, where M
is again a large positive number. If vehicle k is not used, the values of Tik should be equal to
zero for all i ∈ F . The constraint set

ai
∑
j∈F

xjik ≤ Tik ≤ gi
∑
j∈F

xjik, i ∈ F , k ∈ V

states that vehicle k may not arrive at a facility i ∈ F outside of its associated time window and
enforces the requirement mentioned above that if vehicle k ∈ V does not visit facility i ∈ F , the
value of Tik is equal to zero. The constraint set

Tb+k k
− T ′bkk ≤ µ, k ∈ V

ensures that vehicle k ∈ V does not undertake a route which is expected to take longer to
complete than the allowable time autonomy level assigned to the vehicle. Apart from the
multiple problem objectives, an aspect of the novelty of the VRP model formulated here is
elucidated in the next constraint set. Each commodity of type c ∈ S has a certain time window
associated with it during which the commodity remains viable. As discussed in Assumption 8,
the specific requirements of each individual commodity and its intended purpose are not traced
explicitly. Instead, a more abstract approach is taken by imposing the constraint set

Tjk − Tik ≤ min
c∈S:αic=1

{τc}+M

(
2−

∑
`∈F

x`ik −
∑
`∈F

x`jk

)
, i ∈ F0, k ∈ V, j ∈ F \ F0,

which requires that a commodity is delivered to a facility able to process or store it in such a
manner that its integrity is not affected (see Assumption 9). Here M is again a large positive
number. The tiered nature of the facilities refers to the processing capabilities of the facilities:
Every facility tier has an associated processing capability in respect of commodities, as described
in Assumption 2. As the model does not, however, track individual commodity processing
requirements, the more practical approach, described in Assumption 8, is adopted, whereby the
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number of vehicles arriving at a facility is limited in order to prevent processing bottlenecks.
The constraint set ∑

k∈V

∑
i∈F

xijk ≤ γj , j ∈ F \ F0

requires that the number of vehicles arriving at facility j ∈ F \F0 should not exceed the arrival
capacity of the facility over the scheduling window. The novelty of the VRP model derived here
is further showcased by the remaining constraint sets, which all contribute to controlling the
sequencing of vehicle arrivals at facilities so as to facilitate global cross-docking. The constraint
set ∑

i∈F

∑
k∈V

ynik ≤ 1, n ∈ N

ensures that the arrival of each vehicle at every facility i ∈ F is assigned at most one global
event index n ∈ N , with every facility actually exhibiting commodity collection demand being
assigned a unique global event index by prescribing the constraint set∑

n∈N

∑
k∈V

ynik ≥ αi, i ∈ F \ Ff .

It is required that the global event indices assigned to vehicle arrivals should reflect the order of
their arrival sequence in global time. The constraint set

Tj` − Tik ≥M(ynik + ymj` − 2), i, j ∈ F , k, ` ∈ V, m, n ∈ N : m > n

achieves this requirement by ensuring that Tj` ≥ Tik if ynik = 1 and ymj` = 1. Here M is again
a sufficiently large positive number. For every facility i ∈ F \ Ff there must be some vehicle
k ∈ V visiting a higher-tiered facility at some time after having visited facility i, as explained in
Assumptions 7 and 8. The disjunctive constraint set

∑
k∈V

∑
n∈N

rikn +
∑
j∈F`

zijkn

 ≥ 1, i ∈ F `, ` ∈ {0, . . . , f − 1}

enforces this requirement. This constraint set ensures that for each facility i of tier ` < f there
exists a vehicle k ∈ V visiting the facility with a corresponding event number n ∈ N such that
rikn = 1 (indicating that vehicle k later visits some facility of a tier higher than `) or zijkn = 1 for
some facility j of tier `, with j 6= i (indicating that vehicle k later visits facility j), in accordance
with Assumption 7. The linking constraint set

pynik +
∑
m∈N
m>n

∑
j∈∪f`=c+1F`

ymjk ≥ (p+ 1)rikn, i ∈ Fc, c ∈ {0, . . . , f − 1},
k ∈ V, n ∈ N

furthermore ensures that the variable rikn may only assume a value of 1 if vehicle k ∈ V actually
visits facility i ∈ Fc and at some later stage also visits facility j of tier higher than c, where p
denotes the number of vertices in the transportation graph G. The constraint set∑

j∈F
xjik =

∑
n∈N

ynik, i ∈ F , k ∈ V

ensures that an event n ∈ N cannot be assigned to the arrival of a vehicle k ∈ V at a facility
i ∈ F , unless vehicle k actually visits facility i. The powerful disjunctive constraint sets above
are highly dependent on the auxiliary variables rikn. The linking constraint set∑

n∈N
rikn ≤

∑
n∈N

ynik, i ∈ F , k ∈ V
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enforces the correct assignment of values to these binary variables. The global cross-docking
component of the model allows for facilities of the same tier to have their commodities consoli-
dated at any facility of that tier within the transportation network. The constraint set

ynik +
∑
m∈N
m>n

ymjk ≥ 2zijkn, i, j ∈ F `, ` ∈ {1, . . . , f − 1}, n ∈ N , k ∈ V

finally ensures that the auxiliary variable zijkn only assumes the value 1 if a vehicle visits
facility i ∈ F ` (with ` 6= 0, f) and then at a later time also visits facility j ∈ F `, allowing for
consolidation of commodities of both facilities at facility j, to be collected by a possibly different
vehicle k ∈ V for transportation to a higher-tiered facility.

9.4 A worked example

The logic of the TVRPGC model of §9.3 is verified in this section by implementing it in a
commercially available MILP solver within the context of a small, hypothetical problem instance.
The aim of the worked example is not to evaluate experimentally the computational performance
of the proposed MILP model (which may perhaps be improved substantially by reducing its
“symmetry” characteristics, and by applying effective preprocessing procedures to decrease the
number of variables and constraints), but rather to demonstrate its capability to deal with the
global cross-docking properties and the peculiar constraints of the TVPRGC.

The hypothetical test instance considered in this section is presented in the context of the collec-
tion of pathological specimens by a healthcare service provider and their delivery to appropriate
specimen testing laboratories, as described in §1.1. There are seven facilities of three different
tiers in the test instance, and so f = 2 in this case. The first of these facilities, listed in Table
9.1, is the depot for all vehicles. Facilities 2, 5 and 6 are hospitals or clinics where pathological
samples originate. These collection stations have no blood analysis capabilities, and so they are
classified as facilities of tier zero. Facilities 3 and 4 are hospitals where blood sample analysis
laboratories of tier one are located, while Facility 7 is a tier-two laboratory.

Table 9.1: Seven facilities in a small, hypothetical test problem instance of a tiered-facility network.

Facility Number Facility Type X-coordinate Y -coordinate

1 Depot 190 190
2 0 230 210
3 1 220 260
4 1 110 230
5 0 150 270
6 0 50 180
7 2 10 0

The hypothetical test instance considered here was constructed in a manner to highlight the
concept of global cross-docking. Hence some of the model parameters of §9.3.1 which do not
affect cross-docking constraints, such as the imposition of time windows and the adherence to
arrival capacities of facilities, were set to generally unconstraining values, so as to reduce the
complexity of finding an initial feasible solution. Thus, the values ai = 0, gi = 5 000 (expressed
in minutes) were specified for every facility i ∈ F . A maximum driver autonomy value of
740 minutes was also imposed in an attempt to prohibit a single vehicle from servicing all the
customers. Finally, the arrival capacities of facilities were specified as γi = 1 for all facilities
i ∈ F0, γj = 2 for both facilities j ∈ F1 and γ` = 3 for the facility ` ∈ F2.
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The expected travel times between these facilities are shown in Table 9.2, and were calculated
as the corresponding Euclidean distances between the facilities.

Table 9.2: Travel times (in minutes) between the respective facilities.

Facility 1 2 3 4 5 6 7

1 — 44.72 76.16 89.44 89.44 140.36 261.73
2 44.72 — 50.99 121.66 100.00 182.48 304.14
3 76.16 50.99 — 114.02 70.71 187.88 334.22
4 89.44 121.66 114.02 — 56.57 78.10 250.80
5 89.44 100.00 70.71 56.57 — 134.54 304.14
6 140.36 182.48 187.88 78.10 134.54 — 184.39
7 261.73 304.14 334.22 250.80 304.14 184.39 —

A complete enumeration of all feasible routes was performed, implemented in Wolfram’s Math-
ematica [456], in order to generate the true Pareto front for the hypothetical problem instance
in the cases where either two or three delivery vehicles are employed. This enumeration process
consisted of seven phases:

Phase 1. A nonempty subset of the set of facilities was selected for visitation by a delivery
vehicle. Since the depot (Facility 1) necessarily has to be included in the visitation set,
this resulted in

∑6
i=1

(
6
i

)
= 26 − 1 = 63 possible facility visitation subsets for any single

vehicle.

Phase 2. The facility visitation subsets identified during Phase 1 were combined in order to
form an assignment of customers to be visited by each vehicle in the fleet. This led to 3 969
(in the case of two vehicles) and 250 047 (in the case of three vehicles) facility-to-vehicle
assignment alternatives, respectively.

Phase 3. From the set of facility-to-vehicle assignment alternatives constructed during Phase
2, all those alternatives in which not all facilities are visited, were removed. This reduced
the set of facility-to-vehicle assignment alternatives to a total of 727 (in the case of two
vehicles) and 115 464 (in the case of three vehicles) alternatives, respectively.

Phase 4. All alternatives in which the vehicle arrival capacities at facilities are exceeded, were
removed next. Accordingly, all alternatives in which a facility of tier 0 appears more than
once and all alternatives in which a facility of tier 1 appears more than twice were removed
from consideration. This led to 214 (in the case of two vehicles) and 6 159 (in the case of
three vehicles) remaining facility-to-vehicle assignment alternatives, respectively.

Phase 5. The orders in which facilities are visited by each vehicle were taken into account
by permuting (in all possible ways) the non-depot facilities in each of the facility-to-
vehicle visitation sets within the alternatives that remained after the filtering process of
Phase 4, ensuring that the depot (Facility 1) remains in the first and last position of each
permutation. This resulted in 54 288 (in the case of two vehicles) and 370 800 (in the case
of three vehicles) potential vehicle routing combinations, respectively.

Phase 6. Infeasible vehicle routing combinations were next removed from those combinations
identified during Phase 5. The infeasibilities considered occurred due to violations of the
requirement that each facility of tiers 0 and 1 must be visited by a vehicle that visits
a strictly higher-tiered facility or participates in cross-docking such that all pathological
specimens are eventually able to reach a strictly higher-tiered facility. This resulted in
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13 104 (in the case of two vehicles) and 72 662 (in the case of three vehicles) feasible
vehicle routing combinations, respectively.

Phase 7. For each of the vehicle routing combinations that remained after the filtering process
of Phase 6, (1) the total travel time and (2) the maximum driver autonomy were recorded.
All vehicle routing combinations that were dominated in terms of both these objectives
were then filtered out, and combinations that violated the individual vehicle autonomy
specification (740 minutes per vehicle) were also removed, yielding only three (in the case
of two vehicles) and two (in the case of three vehicles) Pareto-optimal vehicle routing
combinations, as depicted in the objective function space in Figure 9.1.

Although it violates the driver autonomy bound of 740 mins, the objective function values of
the optimal solution single-vehicle TSP are also included for reference purposes in Figure 1.
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Figure 9.1: True Pareto fronts for the hypothetical test problem instance in the cases of using one, two
and three vehicles, respectively.

The six numbered solutions of Figure 9.1 are depicted in the solution space in Figure 9.2. Among
these solutions, the concept of global cross-docking is best illustrated in Solutions 2 and 5.

The mathematical model of §4 was also implemented in CPLEX 12.5 (on an i7-4 770 processor
running at 3.40 GHz within a Windows 7 operating system) in respect of the problem instance
described above in an attempt to validate the logic of the mathematical formulation. In order to
accommodate the pursuit of trade-offs between minimising the total travel time and balancing
the driver workload in a solution, the number of vehicles utilised was fixed first as two and then
as three. Since CPLEX 12.5 can only handle single-objective MILPs, the decision was made
to focus the CPLEX search on replicating Solutions 2 and 6. This allows for single-objective
consideration, as the number of vehicles may be fixed, as described above, after which the
non-relevant model objective may simply be disregarded.
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(a) Solution 1 (b) Solution 2

(c) Solution 3 (d) Solution 4

(e) Solution 5 (f) Solution 6

Figure 9.2: The numbered solutions reported in objective function space in Figure 9.1 are depicted
here in solution space.
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Table 9.3: Non-zero decision variables returned by CPLEX 12.5 when the number of vehicles is set to
two and model objective (2) is removed from consideration.

Decision variable Value

xijk x121 = 1 x231 = 1 x381 = 1 x132 = 1 x352 = 1
x542 = 1 x462 = 1 x672 = 1 x782 = 1

ynik y132 = 1 y252 = 1 y342 = 1 y421 = 1 y531 = 1
y562 = 1 y672 = 1

Tik T21 = 228 T31 = 279 T32 = 77 T42 = 214 T52 = 157
T62 = 293 T72 = 478 T81 = 740 T82 = 740

rikn r214 = 1 r321 = 1 r423 = 1 r522 = 1 r625 = 1

zijkn

Accordingly, the number of vehicles were fixed to two and objective (2) above was removed from
consideration in order to replicate Solution 2. The values of the non-zero decision and auxiliary
variables returned by CPLEX in this case are shown in Table 9.3. The facility index 8 in the
tables refers to a copy of the depot (Facility 1).

The total travel time of the two vehicles in solution 2 is 899.53 minutes, while the time spent
on the road by each of these vehicles was 171.87 and 727.66 minutes, giving a maximum driver
autonomy values of 727.66 minutes.

Similarly, the number of vehicles was fixed to three and objective (1) above was removed from
consideration in order to replicate Solution 6. The non-zero decision and auxiliary variables
returned by CPLEX 12.5 in this case are shown in Table 9.4. The total travel time of the three
vehicles in solution 6 is 1 222.79 minutes, while the time spent on the road by each of these
vehicles was 152.32, 468.5 and 601.97 minutes, giving a maximum driver autonomy of 601.97
minutes.

Table 9.4: Non-zero decision variables returned by CPLEX 12.5 when the number of vehicles is set to
three and model objective (1) is removed from consideration.

Decision variable Value

xijk x131 = 1 x381 = 1 x142 = 1 x472 = 1 x782 = 1
x123 = 1 x233 = 1 x353 = 1 x563 = 1 x643 = 1
x483 = 1

ynik y142 = 1 y223 = 1 y333 = 1 y453 = 1 y572 = 1
y663 = 1 y743 = 1 y831 = 1

Tik T42 = 90 T23 = 90 T33 = 228 T53 = 299 T72 = 341
T63 = 434 T43 = 513 T31 = 526 T81 = 603 T82 = 603
T83 = 603

rikn r232 = 1 r636 = 1 r421 = 1
zijkn z5634 = 1 z3433 = 1

The solutions represented in Tables C.1 and 9.4 are exactly those depicted in Figures 9.2(b) and
9.2(f), respectively. The computation times required by CPLEX to reach these solutions are
finally listed in Table 9.5.
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Table 9.5: Computation times (expressed in seconds) required by CPLEX 12.5 to generate the solutions
in Figures 9.2(b) and 9.2(f) on an i7-4770 processor running at 3.40 GHz with a working memory limit
of 6GB within the Windows 7 operating system.

Solution 2 6

Time to find initial feasible solution 412 s 936 s
Time to find an optimal solution 429 s 4 973 s

Time to prove optimality 78 698 s 76 777 s

9.5 Chapter summary

A new type of VRP was introduced in §9.1, called the TVRPGC. It is an extension of the
celebrated CVRP in which specimens have to be collected from a number of customers and which
facilitates global cross-docking (i.e. cross-docking at virtually any vertex of the transportation
network graph). The assumptions underlying the formalisation of the TVRPGC were discussed
in §9.2. The model, which was presented in §9.3, also provides for the partitioning of intermediate
facilities into a variety of tiers, arranged according to unique specimen processing capabilities
and allows for the possibility of spill over of unmet demand for specimen collection into a next
planning period. The model was verified by implementing it in a commercially available MILP
solver and solving the model in the context of a small hypothetical problem instance in §9.4.

The worked example of §9.4 highlighted the combinatorial complexity associated with the
TVRPGC. This type of complexity calls for the design of approximate solution methodolo-
gies in order to facilitate application of the model of §9.3 to real-world problem instances (which
are expected to be considerably larger than the test instance considered in §9.4). One such
approximate solution approach is presented in the following chapter.
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TVRPGC Solution Methodology
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This chapter contains descriptions of the rationale and working of the newly designed MACO
algorithm employed in this dissertation to solve instances of the TVRPGC approximately. A
number of basic notions central to multi-objective optimisation (MOO) are discussed in §10.1.
Typical performance measures of algorithms employed to solve MOO problems are next pre-
sented in §10.2. The MACO algorithm employed in this dissertation is finally presented in
§10.4, and its key components are elaborated upon in pseudocode form, after having provided
a motivation for selecting ACO as approximate solution approach in §10.3. The chapter finally
closes in §10.5 with a brief summary of its content.

10.1 Basic notions in multi-objective optimisation

MOO is a subdiscipline of multiple criteria decision making, which is concerned with solving
optimisation problems involving the pursuit of more than one objective concurrently. In MOO,
the aim is to simultaneously maximise or minimise d objective functions, f1(x), f2(x), . . . , fd(x),
which are functions of a vector of decision variables x = [x1, x2, . . . , xa]. Suppose, without loss
of generality, that all the objective functions are all to be minimised. Then an MOO problem
may be formulated as

minimise f(x) = [f1(x), f2(x), . . . , fd(x)] (10.1)

subject to the constraints

gi(x) ≤ Gi, i = 1, . . . , u, (10.2)

hj(x) = Hj , j = 1, . . . , v, (10.3)

x ∈ Ra, (10.4)

151
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where g1(x), . . . , gu(x) are the so-called inequality constraint functions and h1(x), . . . , hv(v) are
the equality constraint functions. Furthermore, G1, . . . , Gu and H1, . . . ,Hv are assumed to be
limiting values for the constraint functions. The set of all feasible decision vectors x form the
so-called decision space of the problem, denoted by X .

MOO techniques are employed in cases where the objective functions are conflicting, in which
case a set of trade-off solutions is sought. This naturally leads to the notion of Pareto optimality
as a result of the fact that there is typically no single solution x∗ that minimises all the conflicting
objective functions in (10.1) simultaneously. A feasible decision vector x ∈ X dominates another
decision vector y ∈ X , denoted by x ≺ y, if fi(x) ≤ fi(y) for all i ∈ {1, . . . , d} and there exists
at least one i∗ ∈ {1, . . . , d} such that fi∗(x) < fi(y) [405].

A solution is said to be globally non-dominated or Pareto optimal, if no other feasible solution
dominates it. The solutions in the Pareto optimal set Ps produce a set of objective function
vectors, known as the Pareto front Pf , that is Pf = {f(x) | x ∈ Ps}.

10.2 Performance measures for MOO algorithms

It is naturally difficult to measure and compare the quality of different Pareto front approxi-
mations as the Pareto optimal set is often not known. Measuring the performance of an MOO
algorithm is difficult under these conditions [327]. Typical performance criteria for MOO algo-
rithms are [300]:

• Accuracy, which measures how close the non-dominated solutions generated are to the
best-known prediction of the Pareto optimal set,

• coverage, which measures how many different non-dominated solutions are generated and
how well they are distributed along the non-dominated front, and

• the variance of each objective, which measures the range of the non-dominated front along
each axis in objective space.

Comparisons of the non-dominated solutions returned by two different MOO algorithms are not
straightforward, as their representations in objective space may be incomparable [314]. Recent
studies like those of Zitzler et al. [471], Paquete [336] and Fonseca et al. [168] are examples of the
considerable effort expended to develop the necessary tools for better evaluation and comparison
of MOO algorithms. Fonseca et al. [168] suggested three approaches toward evaluating Pareto
front approximations. The first such method is to rank the Pareto front approximations accord-
ing to the number of times the resulting Pareto front approximations dominate each other. The
second approach is based on empirical attainment functions [314]. Attainment functions pro-
duce, with respect to the objective function space, the relative frequency by which each region
is dominated by the approximation set produced by the algorithm. Finally, the third approach
is to employ quality indicators. These quality indicators are typically either the hypervolume
indicator [470], the R2 indicator [220] or the epsilon indicator [471]. The MACO algorithm
designed in this chapter for solving the TVRPGC model of Chapter 9 will be evaluated using
the hypervolume and unary-epsilon indicators because, according to Fonseca et al. [168], both
these indicators are Pareto-compliant and represent the state of the art as far as indicators are
concerned.

The hypervolume indicator [448, 469], also known in the literature as the hyperarea metric, the S-
metric, or the Lebesgue measure, is denoted here by H. It measures the hypervolume in objective
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Figure 10.1: The hypervolume H of a non-dominated front consisting of five points, indicated by the
surface area of the shaded region. Both the objective functions f1 and f2 are to be minimised.

space that is dominated by solutions in the non-dominated front with respect to a pre-selected,
fixed vector in objective space, known as the reference point. This point has to be selected so
that it is dominated by all solutions in the non-dominated front under consideration [469]. The
hypervolume measure should be maximised by any MOO algorithm. Hypervolume is a popular
measure of the quality of an approximately Pareto optimal set as well as, to a certain extent,
of the spread of solutions within a non-dominated set across the objective space [448]. In bi-
objective function space, the hypervolume is merely the area enclosed between the approximate
Pareto front and the reference point, as illustrated in Figure 10.1. The hypervolume measure,
however, has some disadvantages associated with its use, three of the main disadvantages being
that it is sensitive to the relative scaling of the objective functions, that it is sensitive to the
presence or absence of extremal points in the non-dominated front and that it is sensitive to
the choice of the reference point [448]. Another disadvantage is that the results obtained by the
hypervolume are biased towards the knee regions1 of the Pareto front [17].

In order to highlight the challenge of selecting a good reference point so as not to bias the
hypervolume indicator, consider the bi-objective optimisation problem example associated with
Figure 10.1, and assume that the entries in objective space have been normalised. The reference
point shown in Figure 10.1(b) is a poor choice, as it is visually apparent that the hypervolume
is significantly more sensitive to changes in the values of the first objective function (f1) than
those of the second objective function (f2). The reference point in Figure 10.1(a) would be a
better, less biased choice.

The hypervolume is so far the only known indicator for MOO algorithm comparison which
fulfils the property of strict monotonicity2 [60]. The time required to compute the hypervolume
indicator, however, grows exponentially with respect to an increase in the number of objectives
d in (10.1).

The epsilon performance metric, proposed by Kollat and Reed [261], assigns a measure of per-

1Knee regions are potential parts of the Pareto front presenting maximal trade-offs between objectives [40].
2An indicator value I(A) of a set A that dominates a set B, has to be larger than the indicator value I(B) for

the set B, assuming the indicator is to be maximised, in order for the indicator I to be classified as monotonic.
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Figure 10.2: Calculation of the epsilon indicator.

formance by accounting for the proportion of solutions that fall within a user-specified distance
ε from a reference set. Reference set solutions with matching approximation solutions3 receive
a score of 1, while those with no matching solutions receive a score of zero. This notion is
illustrated in the context of a bi-objective MOO problem in Figure 10.2. The epsilon indicator
value for the example described in Figure 10.2 is ε = 4

6 = 0.667.

The epsilon indicator requires the definition of the parameters ε1 and ε2 by the analyst. The
unary-ε indicator proposed by Zitzler [471], however, represents the factor by which an approx-
imation set is worse than another with respect to all objectives (i.e. the smallest distance over
which an approximation set must be translated in order to completely dominate the reference
set), and does not require the selection of parameter values. For this reason, the unary-ε indi-
cator was selected as the second performance measure employed in this dissertation. Smaller
values of the unary-ε indicator correspond to better Pareto-approximation sets.

The unary-ε may be defined for a Pareto-approximation set A and a reference set B as

unary-ε(A,B) = max
z2∈B

min
z1∈A

max
1≤i≤d

z1
i

z2
i

, (10.5)

where z1 = [z1
1 , . . . , z

1
d] and z2 = [z1

2 , . . . , z
2
d] are objective function value vectors in A and B,

respectively.

10.3 Motivation for solution methodology chosen

ACO techniques in the literature have achieved good results, especially in the context of VRPs
[140]. There have been numerous implementations of MACO algorithms for solving MOO prob-
lems in the literature [132, 133, 204], with a general taxonomy of these algorithms suggested
by Garćıa-Mart́ınez et al. [176]. The taxonomy suggested in [176] partitions these algorithms
according to the number of pheromone trails and heuristic matrices employed, respectively. An
empirical analysis was performed on all the different categories of MACO algorithms classified
by Garćıa-Mart́ınez et al. [176] in respect of several well-known TSP benchmark instances. This
analysis showed that these MACO algorithms outperformed multi-objective genetic algorithms.

3Different approximations of the Pareto optimal set typically discover different points and different numbers of
points. A matching approximation solution refers to the point within an approximation front that is the closest
to the reference front point under consideration.
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Thirteen algorithms were compared in the study, revealing that each algorithm performed well in
certain aspects and poorer in others. The use of a single heuristic matrix and a single pheromone
trail were reported to produce very good compromise solutions, but these algorithms mostly ig-
nore the extremal points along the Pareto front, while the use of two heuristic matrices and two
pheromone trails produce results that typically contain extremal points of higher quality, but
achieve poor coverage along the rest of the non-dominated front.

Based on these findings, it was decided to implement a hybrid MACO algorithm in this disser-
tation for solving the TVRPGC model of Chapter 9. The algorithm employs three independent
ant colonies, with two of the three ant colonies each focusing on a specific objective (as the
minimisation of the number of vehicles is not modelled explicitly in the algorithm), while the
third colony employs a weighted heuristic matrix and pheromone trail. The two independent ant
colonies that focus solely on two of the three objectives of the TVRPGC, respectively, effectively
function as a regular ACO, but they all communicate globally to form the non-dominated front.

The constructive nature of ACO algorithms was also a defining feature in the selection of this
methodology as a solution approach in this study, as initially it was expected to assist in the
construction of feasible solutions in terms of the sequence of facility tiers visited. During im-
plementation of the algorithm it was, however, discovered that this method generally yields
poor-quality solutions in its standard form since the solution space of the TVRPGC is tightly
constrained, as was demonstrated in Chapter 9. Effective exploration of the solution space
therefore requires inclusion of infeasible solutions by incorporation of a penalty function into the
model.

It was subsequently decided to implement the multiplicative penalty function developed by
Schlünz et al. [389] so as to improve the algorithm’s exploration capabilities. Each constraint
violation incurs a penalty value related to the magnitude of that violation. The total scaled
constraint violation associated with the inequality constraint functions g1(x), . . . , gu(x) in (10.2)
is formed by aggregating these penalty values. The aggregation is given by

G(x) =

u∑
i=1

max

{
0,
gi(x)−Gi

Gi

}
. (10.6)

Similarly,

H(x) =
v∑
j=1

∣∣∣∣hj(x)−Hj

Hj

∣∣∣∣ (10.7)

represents the total scaled constraint violation associated with the equality constraint functions
h1(x), . . . , hv(x) in (10.3). The penalty function included in the model employs a severity factor
γ as a free parameter whose value is typically determined empirically. The overall penalty
function is defined as

φ(x) = expγ(G(x)+H(x)) (10.8)

and is incorporated into the objective functions by

minimising f(x) = φ(x)[f1(x), . . . , fd(x)] (10.9)

instead of (10.1). This multiplicative penalty function incorporates only one parameter whose
value must be selected judiciously, namely the severity factor γ. In other constraint handling
techniques documented in the literature, each class of constraints typically has its own severity
factor — a situation which therefore requires considerably more parameter fine-tuning.

Raquel and Naval [360] suggested incorporation of diversity preservation within the population
of solutions through the use of the crowding-distance, a notion borrowed from the well-known
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-1

-1

Figure 10.3: Calculation of crowding-distance for Pareto front point i.

NSGA-II algorithm [116]. This crowding-distance computation requires sorting of the popula-
tion according to each objective function value in ascending order of magnitude. Thereafter, the
extremal solutions are assigned an infinite distance value, while all other intermediate solutions
along the non-dominated front are assigned a distance value equal to the absolute normalised dif-
ference in the objective function values of two adjacent solutions [116]. This process is illustrated
in Figure 10.3 within the context of a bi-objective minimisation problem.

The notion of crowding-distance is incorporated into the MACO algorithm employed in this
dissertation in the form of a weighted pheromone global update mechanism, with arcs that result
in solutions with a larger crowding-distance receiving a stronger pheromone trail than arcs that
produce solutions with a smaller crowding-distance. The extremal points of the archive are
removed from consideration when implementing this mechanism.

10.4 The multi-objective ant colony optimisation algorithm

The underlying algorithmic approach was to initially incorporate a single-objective ACS, as
described in §6.2, to construct initial routes based on the colony heuristic and pheromone ma-
trices. The local pheromone update mechanisms are subsequently performed for each colony’s
pheromone. The sequence infeasibilities with respect to higher tier visitation of the constructed
routes are then identified and corrected using several tailored approaches specific to the TVRPGC
adopting a top-down paradigm. The routes are collectively examined and the respective penalty
weighting applied with respect to the remaining constraints of §9.3.4, after which a global ranking
is determined based on the NSGA-II ranking component complemented by a crowding distance
function. Finally, a global pheromone update mechanism is applied to the respective pheromone
matrices. The aforementioned mechanisms will be elaborated upon in the remainder of this
section.

The initial construction phase of the MACO adopts the ACS described in §6.2 to generate initial
routes. There are, however, more than one depot under consideration. The route construction
begins through probabilistically selecting a depot based on the distance between the depot and
the respective nearest customer. The probabilistic selection rule is derived from the roulette
wheel mechanism (see §6.1.3).

The major component in any ACO algorithm is the pheromone update mechanism, elaborated
upon in §6.2, and the selection of the next vertex to add during route construction. The method
employed in the single-objective ACS of §6.2 produced solutions of a high quality and a similar
approach was thus adopted for the route construction and local pheromone update mechanism
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phase in the context of the TVRPGC, as described in 6.2.1 and §6.2.2, respectively. The vertices
visited are selected in a similar manner as described in 6.2.1, although, there are no capacity
restrictions for the TVRPGC. The maximum driver autonomy µ is rather utilised as a stopping
criterion, as opposed to the capacity constraint, during route construction. In an attempt
to allow for more flexibility during the correction phase of the algorithm, a random number
ra is generated in the range [`b, 1]. The new maximum driver autonomy µ′ is determined as
µ′ = µra, where `b ∈ (0, 1) is a predefined parameter. The adjusted driver autonomy value µ′ is
uniquely determined for each vehicle utilised and incorporated as the stopping criterion during
the initial route construction phase of the MACO. The local pheromone update mechanism of
§6.2.2 is adopted, although the update mechanism is only applied to the pheromone matrix
under consideration.

A global pheromone update is applied to each of the colonies in a slightly different manner. The
update for the colony focusing on minimising the total travel time is performed only in respect of
the best solutions in terms of the shortest total travel time and employs the same global update
mechanism of §6.2.2, adopting an elitist approach. The global pheromone update for the colony
focusing on minimising maximum driver autonomy occurs in a similar manner, although only
the best solutions with respect to minimisation of driver autonomy are considered.

The global pheromone update for the colony aiming to discover compromise solutions is designed
to improve solution diversity with a view to encourage exploration and discovery of multiple com-
promise solutions. The first mechanism employed is a dynamic archive of best solutions found.
The dynamism of the archive refers not only to the storing of the non-dominated solutions, but
also to the storing of solutions that are dominated by e other solutions, with the value of e
tending towards zero as the algorithm execution progresses. The calculation of the crowding
distance ci, as described in §10.3, is required for each solution i in the archive, excluding the
extremal solutions. The crowding factor for solution i is determined by

Fi =
ci − c̄
c̄i

, (10.10)

where c̄ is the average crowding distance of all the solutions in the archive (excluding the extremal
solutions). Each solution s in the archive is ranked twice according to the overall travel time and
the maximum driver autonomy, with the crowding factor incorporated into the ranking. The
two mixture pheromone matrices, the overall travel time pheromone matrix τa and the driver
autonomy pheromone matrix τb, are updated by the global pheromone update mechanism of
§6.2.2 based on their respective weightings. The overall pheromone matrix for colonies aiming
to discover compromise solutions is calculated by applying the substitution

τ = αrτa + (1− αr)τb, (10.11)

where αr is a randomly generated number in the range [0.25, 0.75] in an attempt to bias the
compromise solution search into unexplored areas within the solution space.

The heuristic matrix, η = [ηij ]i,j∈V for the colony focusing on minimising the total travel time
is simply calculated as the inverse of the travel time for the respective arc under consideration.

The determination of the heuristic matrix for the colony that aims to minimise the maximum
travel time of all vehicles is slightly more complicated. The constructive nature of ACS algo-
rithms does not allow for the fitness evaluation of the maximum driver autonomy as it is not
able to predict the outcome of adding a vertex to a route in respect of the vehicles’ route travel
times. This problem is remedied by generating an initial population of routes that are feasible
in terms of driver autonomy, but not in terms of the increasing tier visitation requirement of the
TVRPGC. This initial population is then used to determine the heuristic value for the individual
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arcs, as described in Algorithm 10.1. Each of the routes generated in the initial population is
ranked according to its travel time and the arcs constituting the routes are assigned weighted
values according to the ranking of the route. The distances between the respective facilities are
sorted and the corresponding arcs in the heuristic matrix are assigned distance values based on
their weighted values previously assigned. The heuristic value is then taken as the inverse of the
distance value assigned to it so that the heuristic matrices employed by the different colonies
are of the same order of magnitude.

Algorithm 10.1: Heuristic determination for driver autonomy

Input : Initial population generated randomly, locations of the customers, distance matrix
of arcs between customers

Output: Heuristic matrix for route length
for i← 1 to length(population) do1

for j ← 1 to num.routes(population[i]) do2

route.distance[length(route.distance) + 1] = distance(population[i, j]);3

route.distances = sort(route.distances, ascending);4

for i← 1 to length(route.distances) do5

route = which(distance(population) == route.distance[i]);6

for j ← 1 to length(route)− 1 do7

heursitic.arc[route[j], route[j + 1]] = length(route.distance)− i;8

unique.entries = unique(heuristic.arc);9

perc = percentiles(unique(distance.matrix), unique.entries);10

for i← 1 to length(unique.entries) do11

heuristic.arc[heuristic.arc == unique.entries[i]] = 1/perc[i];12

Return heuristic.arc13

The heuristic matrix for the colony searching for compromise solutions is simply taken as a
mixture of the two previously described heuristics, by weighting each matrix equally to create a
single matrix. The route construction process employs the same probabilistic rule with respect
to node selection as that described in §6.2.1.

The algorithmic implementation incorporates a function aimed at fixing the sequence in which
vehicles visit the customers (i.e. ensuring that a customer is visited by a vehicle that later visits
a facility of a strictly higher tier or another facility visited by a vehicle that later visits a facility
of a strictly higher tier). As previously mentioned, the sequence fix function adopts a top-down
approach to rectifying the visitation sequence of customers. The first stage is to determine that
at least one route ends at a facility of the highest tier. If the routes generated do not contain
such a sequence, a facility of the highest tier is inserted into one of the routes based on the
roulette wheel mechanism, described in §6.1.3, with the probabilities calculated based on the
insertion costs with respect to travel time.

The middle-tier sequence fix algorithm then considers all infeasible facilities i ∈ F \ (F0 ∪
Ff ) with respect to customer sequence visitation. The middle-tier sequence infeasibilities are
rectified according to four paradigms incorporated within a probabilistic sequence fix function.
A pseudocode description of this function is given in Algorithm 10.2.

The first paradigm, insert.before, removes those customers that are not visited by a vehicle
that later visits a facility of a higher tier and places them in a different route in which this
requirement is indeed satisfied. The route and position is determined from a pool of candidates
through a weighted probability function. The second paradigm, add.higher.after, adds a facility
of a higher tier to the route at a later stage, with the position of this facility insertion determined
probabilistically, based on insertion cost with respect to travel time. The third paradigm,
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Algorithm 10.2: Middle-tier sequence fix

Input : Candidate routes, locations of the customers together with their respective tiers
Output: Candidate routes with the tier visitation sequence fixed
infeasibilities = determine.sequence.infeasibilities(routes, locations, tier);1

for i← 1 to length(infeasibilities) do2

new.route[1] = insert.before(routes, infeasibilities[i]);3

new.route[2] = add.higher.after(routes, infeasibilities[i]);4

new.route[3] = cross.docking(routes, infeasibilities[i]);5

new.route[4] = higher.tier.end(routes, infeasibilities[i]);6

total.travels = travels(new.route, locations);7

random = runif(1,0,1);8

if random ≤ best.select then9

routes = new.route[which.min(total.travels);10

else11

insert = roulette(total.travel);12

routes = new.route[insert];13

Return routes14

cross.docking, encourages the facilitation of global cross-docking. According to this paradigm,
all customers are determined who are visited by a vehicle that later visits a facility of the
appropriate tiers. Customers are selected from this set based on a weighted probability function
biased towards lower insertion costs, and they are inserted at a later stage in the infeasible
route. The final paradigm, higher.tier.end, simply assesses each infeasible route and adds an
appropriately tiered facility at the end of the route. The algorithm functions based on a randomly
generated number. If the random number is smaller than a pre-defined threshold, the repair
paradigm associated with the lowest travel time is selected. Otherwise, a paradigm is selected
by means of the roulette wheel mechanism.

The final phase of the sequence fix function is to rectify all sequence infeasibilities of facilities
of the lowest tier. The lowest-tier fix function similarly incorporates two paradigms, namely to
move an infeasible facility to a different route resulting in feasibility (based on insertion cost) or
to add a higher tier at a later stage within the route. The algorithm is biased towards adding a
higher tier at a later stage if there are numerous infeasible facilities within the route; otherwise,
a paradigm is selected according to the roulette wheel mechanism.

The aforementioned sequence fix function is rather disruptive to the qualities of vehicle routes,
resulting in sub-optimal facility sequence visitation within the routes. Accordingly, a probabilis-
tic heuristic is applied to the routes once all the sequence infeasibilities have been rectified. There
are three simple paradigms that are employed in an attempt to improve the solution quality.
The first paradigm determines whether there is cross-docking present within the route. If cross-
docking indeed occurs, then the facility at which consolidation occurs is swapped with a facility
of the same tier within the route. The selected facility serves as the new consolidation point and
a 2-opt mechanism is performed on the route, keeping the selected facility as the consolidation
point. This also involves switching the original consolidation facility with the new facility in all
routes that contain the original consolidation facility. A 2-opt mechanism that adheres to the
sequence visitation feasibility is applied and if there is an improvement in solution quality, the
proposed swap is adopted. It may, however, happen that only one objective function value is
improved while the other objective function value decreases with respect to solution quality. In
this instance, both solutions are stored in the archive. The second paradigm, involves simply
applying a 2-opt mechanism to the route under consideration while still respecting the sequence
visitation constraint. Finally, the third paradigm involves determining which depot is best to
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Algorithm 10.3: MACO algorithm

Input : Locations of customers, number of ants employed, mean and standard deviation
for normal distribution, maximum autonomy level for all routes

Output: Non-dominated front of solutions
population = initialpopulation(locations, autonomy);1

heuristic.distance = initial.heuristic.dist(locations, population);2

heuristic.arcs = initial.heuristic.arcs(locations, population);3

pheromone.dist = pher.distance(locations);4

pheromone.arcs = pher.arcs(locations, population);5

pheromone.mixture = 0.5× pheromon.arcs+ 0.5× pheromone.dist;6

for i← 1 to iterations do7

for cycle← 1 to 3 do8

if cycle = 1 then9

pheromone = pheromone.dist;10

heuristic = heuristic.dist;11

else if cycle = 2 then12

pheromone = pheromone.arcs ;13

heuristic = heuristic.arc;14

else15

pheromone = pheromone.mixture ;16

heuristic = heuristic.mixture;17

for m← 1 to no of ants do18

route = antcolony(locations, autonomy, timewindows);19

route = sequence.fix(route);20

route = post.optimisation(route) population = population+ route;21

for d← 1 to length(population) do22

a = autonomy.penalty(population[d]) × sequence.penalty(population[d]);23

x[d] = total.distance(population[d]) ×a;24

y[d] = arc.distance(population[d]) ×a;25

ranking = NSGA2.ranking((x, y));26

range = (max(x)−min(x),max(y)−min(y));27

front = population[ranking <= pop.keep];28

crowding = crowdingdistance(front, cycle);29

pheromone = globalpheromone(front, cycle, pheromone, crowding);30

population = front;31

Return remove.infeasibilities(population)32
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act as the home depot for the vehicle under consideration. The three paradigms are selected
probabilistically by generating a random number and employing the roulette wheel mechanism
based on equal proportions of each paradigm being selected.

A pseudocode description of the entire MACO algorithm is provided in Algorithm 10.3, which
illustrates all the relevant components of the algorithm. The time-window penalty factor for
solution i in the archive is calculated, if a vehicle arrives at a time outside the relevant time
window, as

s(i) = max

{∣∣∣∣ai − Tikai

∣∣∣∣ , ∣∣∣∣gi − Tikgi

∣∣∣∣}+ 1, (10.12)

where Tik is the arrival time of the vehicle, ai the earliest possible arrival time of a vehicle
at facility i and gi the latest possible arrival time of a vehicle at that facility. The autonomy
penalty factor for solution j within the archive is

a(j) = max

{
1,
Lmat − µ

µ

}
, (10.13)

where Lmat is the maximum travel time of all the routes contained within the solution and µ is
the maximum allowable driver autonomy level.

10.5 Chapter summary

Various basic notions related to MOO problems were described in §10.1, including a general
formulation of an MOO problem. Performance measures that are typically employed in the
literature to analyse Pareto front approximations were discussed briefly in §10.2. The discussion
focused mainly on the two performance measures that will be used in the following chapter to
compare different non-dominated fronts within the context of the TVRPGC, namely the hyper-
volume indicator and the R2 indicator. The MACO algorithm designed to solve the TVRPGC
approximately is based on several influences from the literature. Section 10.3 contained a discus-
sion on and motivations for the design of the MACO algorithm, together with an elaboration of
its algorithmic components not previously discussed in this dissertation. The chapter closed with
a more thorough discussion in §10.4 of the MACO algorithm employed later in this dissertation,
with key aspects of the algorithm being highlighted by means of pseudocode descriptions.
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The MACO algorithm proposed in Chapter 10 incorporates several free parameters, most of
which arise due to the novelty of the TVRPGC and limited guidelines offered with respect to
effective algorithmic design in the literature. The parameters employed in the MACO algorithm
require a sensitivity analysis in order to determine the best configuration of parameter values.
The experimental design of this sensitivity analysis is described in §11.1. The MACO algorithm
is applied to a real-life regional instance of the TVRPGC, and the parameter sensitivity analysis
results for this instance are presented in §11.2. A clustering phase is also applied as part of the
solution procedure in order to compare the performance of the MACO algorithm in respect of
solution quality and computational expense when applied to unclustered data and to clustered
data. The numerical results thus obtained are presented in §11.4. The numerical results are
discussed briefly in §11.5 and the chapter closes in §11.6 with a brief summary of its content.

11.1 Experimental design

The design process of the MACO algorithm for the TVRPGC was an uncertain endeavour as
there was very little guidance available in this respect within the literature. This uncertainty
was mitigated by the inclusion of several algorithmic parameters. Various combinations of values
for these parameters are evaluated and compared (in terms of solution quality returned) in this
chapter according to the hypervolume indicator and the unary-ε indicator, as described in §10.2.

The parameters employed in the MACO algorithm of Chapter 10 are evaluated in this chapter
in respect of the algorithm’s resulting performance within the context of a realistic regional
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Stellenbosch University  https://scholar.sun.ac.za



164 Chapter 11. Parameter Evaluation for the MACO Algorithm

TVRPGC instance. The instance is related to the operations of a national pathology healthcare
service provider within the George region (located in the South African Southern Cape). There
are sixty-seven facilities and one depot in this instance. The facilities are segregated according to
their pathology processing capabilities in the following manner: one facility of tier 3, one facility
of tier 2, four facilities of tier 1 and sixty one facilities of tier zero. The geographic distribution
of the facilities is depicted in Figure 11.1 and the coordinates of the facilities are presented in
Table 11.1. The expected travel times between the respective facilities was generated by means
of OSRM [333] in order to reflect realistic travel times that consider the type of road and typical
traffic congestion. The travel time matrix is available online [403].

Figure 11.1: The locations of facilities in the George TVRPGC instance.

The TVRPG model of §9.3 was solved thirty times in respect of the George instance for a
number of parameter value configurations of the MACO algorithm. The best, average and
worst objective function values thus obtained were recorded for each parameter configuration.
The MACO algorithm was allowed to run for a 1 000 iterations in each case.

All the numerical work reported in this chapter was carried out on an i7-4770 processor with a
memory limit of 8GB running at 3.40 GHz within the Windows 7 operating system after having
implemented the algorithm of Chapter 10 in R. Due to considerable computation time require-
ments of the experiments, the parameter sensitivity analysis described above was conducted in
parallel on several computers with the processing capabilities mentioned above, with multiple
R sessions running concurrently on each computer. This led to the decision not to record the
computation time as several external factors could have affected the execution rate of the al-
gorithm on the various machines. When incorporating a clustering component, however, the
performance of the MACO algorithm was investigated on the same computer within a single
session of R and the time was recorded in this case as most of the external factors that could
have affected the variation in computation time were thus removed.

Stellenbosch University  https://scholar.sun.ac.za



11.1. Experimental design 165

Table 11.1: Coordinates and respective processing capabilities of facilities in the George TVRPGC
instance.

Name Longitude Latitude Tier Name Longitude Latitude Tier

Facility 1 23.3222 −34.0505 0 Facility 2 23.0479 −34.0385 0
Facility 3 23.0536 −34.0351 0 Facility 4 23.1078 −34.0345 0
Facility 5 23.0981 −34.0477 0 Facility 6 23.3650 −34.0531 0
Facility 7 23.4885 −33.9503 0 Facility 8 23.3667 −34.0500 0
Facility 9 23.3426 −34.0524 0 Facility 10 23.3667 −34.0500 0
Facility 11 22.9346 −33.9460 0 Facility 12 22.8084 −34.0197 0
Facility 13 22.6213 −33.9533 0 Facility 14 22.4892 −34.0050 0
Facility 15 22.4941 −34.0068 0 Facility 16 22.4969 −34.0078 0
Facility 17 22.4790 −33.9750 0 Facility 18 22.4518 −33.9590 0
Facility 19 22.4125 −33.9432 0 Facility 20 22.4511 −33.9509 0
Facility 21 22.4603 −34.0167 0 Facility 22 22.4923 −34.0031 0
Facility 23 22.4842 −33.9931 0 Facility 24 22.4736 −33.9912 0
Facility 25 20.9565 −34.0907 0 Facility 26 20.9579 −34.0915 0
Facility 27 21.2550 −34.0937 0 Facility 28 21.2548 −34.0947 0
Facility 29 21.5859 −34.2041 0 Facility 30 21.4079 −34.3759 0
Facility 31 22.2205 −34.0483 0 Facility 32 22.1440 −33.9547 0
Facility 33 23.1251 −33.6574 0 Facility 34 23.1250 −33.6595 0
Facility 35 23.1295 −33.6565 0 Facility 36 23.1253 −33.6606 0
Facility 37 23.1667 −33.7167 0 Facility 38 22.4203 −33.8947 0
Facility 39 21.5030 −31.9178 0 Facility 40 23.7623 −31.9642 0
Facility 41 22.1291 −34.1865 0 Facility 42 22.1395 −34.1808 0
Facility 43 22.1106 −34.1234 0 Facility 44 22.0921 −34.1808 0
Facility 45 22.1161 −34.1766 0 Facility 46 22.1132 −34.1713 0
Facility 47 22.1051 −34.1496 0 Facility 48 22.0442 −33.2463 0
Facility 49 22.0333 −33.2167 0 Facility 50 22.5204 −33.4980 0
Facility 51 22.4421 −33.5773 0 Facility 52 22.2385 −33.6065 0
Facility 53 22.2416 −33.5953 0 Facility 54 22.2204 −33.6018 0
Facility 55 22.1849 −33.5868 0 Facility 56 22.1912 −33.5835 0
Facility 57 22.2038 −33.5798 0 Facility 58 21.2689 −33.4869 0
Facility 59 21.4461 −33.4948 0 Facility 60 21.4667 −33.4833 0
Facility 61 21.6780 −33.5276 0 Facility 62 23.0406 −34.0361 1
Facility 63 22.1363 −34.1896 1 Facility 64 22.5936 −32.3531 1
Facility 65 22.1898 −33.5914 1 Facility 66 22.4511 −33.9515 2
Facility 67 18.4158 −33.9067 3 Depot 22.4511 −33.9515 −1
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Each of the algorithmic parameters were set to a base configuration value for all of the parameter
sensitivity analysis runs, except for the value of the parameter under investigation which was
altered within a pre-defined set. The base configuration values for all parameters are shown in
Table 11.2.

Table 11.2: Base configuration values for the parameters employed in the MACO algorithm for solving
instances of the TVRPGC.

Parameter α ants best-select β δ diversity γ `b ρ

Value 1 20 0.8 1 100 0.8 1 0.8 0.8

The hypervolume indicator requires the determination of a reference point in order to evaluate
the quality of the non-dominated fronts obtained. This point was selected by combining all the
non-dominated fronts under consideration and sorting the collective attainment front so as to
yield a single non-dominated front representative of the entire sensitivity analysis. The extremal
points of this attainment front were then employed to normalise all the points within the various
non-dominated fronts under consideration in a multiplicative fashion to coordinates within the
unit square in a rescaled objective function space with one of its corner-points at the origin.
The hypervolume reference point was then taken as (1.05, 1.05) for all experiments performed
in this chapter. The unary-ε indicator also requires a reference front. This reference front was
selected in a similar fashion.

11.2 Parameter sensitivity analysis for the MACO

The parameter α of the MACO algorithm determines the respective weighting of the pheromone
trail value during the probabilistic selection of vertices during route construction, as in most
single- or multi-objective implementations of the ACO algorithm. The results of the hypervolume
indicator sensitivity analysis for this parameter are shown in Table 11.3. The table shows that
values larger than 2 for the parameter α tend to typically produce poor-quality results. The value
of 2 for the parameter α produced the second most consistent results in terms of hypervolume
for the George TVRPGC instance. The consistent behaviour of the parameter value α = 2 was
corroborated by the results of the unary-ε parameter sensitivity analysis, the results of which
are shown in Table 11.4.

Table 11.3: Hypervolume sensitivity anal-
ysis for the parameter α in respect of the
George TVRPGC instance.

α=1 α=2 α=5 α=10

Best 0.966 0.961 0.951 0.983
Mean 0.912 0.905 0.896 0.890
Worst 0.870 0.860 0.842 0.825

Table 11.4: Unary-ε sensitivity analysis
for the parameter α in respect of the George
TVRPGC instance.

α=1 α=2 α=5 α=10

Best 0.061 0.076 0.081 0.047
Mean 0.109 0.103 0.107 0.107
Worst 0.146 0.143 0.136 0.147

The number of ants employed in the MACO algorithm determines how many different potential
routes are built during each iteration. As previously mentioned in §7.3, the number of ants, also
affect the global pheromone influence of the algorithm and determines its rate of convergence.
Typically, a larger number of ants employed in any ACO algorithm results in better quality
solutions, due to an increase in solution diversity, but employing a large number of ants is com-
putationally expensive. The results of the hypervolume parameter sensitivity analysis (shown
in Table 11.5) and the unary-ε parameter sensitivity test (shown in Table 11.6) confirm that a
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larger number of ants is beneficial in respect of solution quality, although it requires considerably
more computation time.

Table 11.5: Hypervolume sensitivity analysis
for the ants parameter in respect of the George
TVRPGC instance.

10 20 50 60

Best 0.966 0.961 0.951 0.983
Mean 0.912 0.905 0.896 0.890
Worst 0.870 0.860 0.842 0.825

Table 11.6: Unary-ε sensitivity analysis for
the ants parameter in respect of the George
TVRPGC instance.

10 20 50 60

Best 0.222 0.137 0.180 0.127
Mean 0.247 0.181 0.199 0.194
Worst 0.259 0.239 0.241 0.238

The MACO algorithm designed in Chapter 10 employs a number of probabilistic rules through-
out its execution. The first instance of probabilistic determination occurs during the route
construction by any of the ants, where a probabilistic rule is utilised to determine the vertices
to append to the route. If the random number generated according to a uniform distribution is
below the best-select parameter value, then the vertex with the largest probability is selected;
otherwise, the roulette wheel mechanism is employed. The best-select parameter also affects
the sequence-fix function, as it determines which of the four routes proposed by the function
sequencefix is implemented. The practice of including a best-select parameter is popular in the
literature. It is, in fact, a key component in maintaining solution diversity. The results of the
hypervolume parameter sensitivity analysis for the best-select parameter may be seen in Table
11.7 and the corresponding results for the unary-ε parameter sensitivity analysis are shown in
Table 11.8. These results indicate that the best proposed candidate should always be selected
for implementation, which is testament to the computational complexity of the TVRPGC as
the algorithm performs significantly better when convergence is heavily favoured over employing
diverse solution attainment strategies.

Table 11.7: Hypervolume sensitivity analysis
for the best-select parameter in respect of the
George TVRPGC instance.

0.5 0.7 0.9 1

Best 0.911 0.937 0.942 0.957
Mean 0.869 0.892 0.907 0.919
Worst 0.842 0.861 0.859 0.863

Table 11.8: Unary-ε sensitivity analysis for the
best-select parameter in respect of the George
TVRPGC instance.

0.5 0.7 0.9 1

Best 0.084 0.079 0.069 0.058
Mean 0.113 0.097 0.106 0.098
Worst 0.154 0.118 0.165 0.145

The parameter β has a very similar influence as the parameter α during execution of the algo-
rithm. This parameter determines the influence of the heuristic component in the establishment
of the probabilistic value used during route construction when selecting vertices to append to
a route. A large value of β indicates that the function of the pheromone update mechanism is
poorly modelled as it would undermine the exploration history of all the ants during the algo-
rithm’s execution. The results of the unary-ε sensitivity analysis for the parameter β (shown in
Table 11.10) were inconsistent across the different test instances, but the results of the corre-
sponding hypervolume parameter sensitivity analysis (shown in Table 11.10) were unanimously
in favour of the value β = 5.

The parameter δ has the function described in §6.2.2 — it serves as an elitist-related parameter
such that solutions of a higher quality have a larger pheromone deposit among the relevant arcs
during the local pheromone update mechanism. Higher values indicate a preference towards con-
vergence as opposed to diversity management throughout the search. As previously mentioned,
the MACO typically favours parameter values that contribute towards convergence, possibly
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Table 11.9: Hypervolume sensitivity analysis
for the parameter β in respect of the George
TVRPGC instance.

β=1 β=2 β=5 β=10

Best 0.948 0.948 0.972 0.950
Mean 0.893 0.898 0.910 0.884
Worst 0.853 0.851 0.857 0.831

Table 11.10: Unary-ε sensitivity analy-
sis for the parameter β in respect of the
George TVRPGC instance.

β=1 β=2 β=5 β=10

Best 0.071 0.069 0.049 0.061
Mean 0.116 0.119 0.119 0.132
Worst 0.189 0.159 0.177 0.177

due to the combinatorial complexity of the TVRPGC. This trend is further corroborated in
Tables 11.11 and 11.12 in which the best value for the parameter δ is 300 according to both the
hypervolume and unary-ε indicators, respectively.

Table 11.11: Hypervolume sensitivity analy-
sis for the parameter δ in respect of the George
TVRPGC instance.

δ=50 δ=100 δ=200 δ=300

Best 0.974 0.967 0.991 0.997
Mean 0.914 0.911 0.923 0.932
Worst 0.862 0.863 0.869 0.865

Table 11.12: Unary-ε sensitivity analysis
for the parameter δ in respect of the George
TVRPGC instance.

δ=50 δ=100 δ=200 δ=300

Best 0.069 0.070 0.059 0.059
Mean 0.113 0.118 0.109 0.110
Worst 0.189 0.159 0.177 0.177

The diversity parameter is used solely in the execution of the ant colony searching for compromise
solutions. This diversity parameter determines the percentage of the archive for that specific
colony that consists of solutions with a large crowding distance (i.e. diverse solutions) in an
attempt to increase overall solution quality. The results of the hypervolume parameter sensitivity
analysis for the diversity parameter are shown in Table 11.13, and the corresponding unary-ε
indicator parameter sensitivity analysis results are shown in Table 11.14. The results of these
analyses are surprising. The two best parameter settings represent two conflicting paradigms.
The first paradigm favours convergence of the algorithm to the best solutions found, while the
second paradigm favours the incorporation of diversity of the population over the deemed fitness
of the population. The decision to select a value of 0.7 for the diversity parameter was based on
the relative consistency of the parameter value over the thirty test runs. The decision to employ
a relatively small value for the diversity parameter does not contradict the decision to always
select the best candidate (as was determined by the best-select parameter), as the algorithm
still converges faster for the two colonies that do not employ the diversity parameter.

Table 11.13: Hypervolume sensitivity analy-
sis for the diversity parameter in respect of the
George TVRPGC instance.

0.6 0.7 0.8 0.9

Best 0.942 0.959 0.941 0.956
Mean 0.907 0.906 0.902 0.905
Worst 0.876 0.853 0.848 0.853

Table 11.14: Unary-ε sensitivity analysis for
the diversity parameter in respect of the George
TVRPGC instance.

0.6 0.7 0.8 0.9

Best 0.070 0.056 0.071 0.073
Mean 0.102 0.105 0.107 0.101
Worst 0.166 0.136 0.202 0.146

The severity-factor parameter determines the magnitude of the penalty function implemented in
the MACO algorithm. The results of the hypervolume and unary-ε indicator sensitivity analyses
for this parameter are shown in Tables 11.15 and 11.16, respectively. These results suggest that
a larger penalty function value aids the algorithm during its search through the solution space.
The value of 1.5 for the severity-factor parameter is implemented in the remainder of this
dissertation due to the solution space being tightly constrained. This large value would still
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allow for reasonable exploration of the algorithm through infeasible regions of the solution space
while simultaneously encouraging the discovery of feasible solutions.

Table 11.15: Hypervolume sensitivity analysis
for the severity factor parameter in respect of
the George TVRPGC instance.

γ=0.75 γ=1 γ=1.25 γ=1.5

Best 0.974 0.958 0.939 0.994
Mean 0.910 0.909 0.906 0.951
Worst 0.868 0.889 0.904 0.909

Table 11.16: Hypervolume sensitivity analysis
for the severity factor parameter in respect of
the George TVRPGC instance.

γ=0.75 γ=1 γ=1.25 γ=1.5

Best 0.151 0.176 0.143 0.084
Mean 0.165 0.169 0.180 0.146
Worst 0.175 0.201 0.206 0.209

The parameter `b is employed to allow the MACO algorithm the necessary flexibility after
the initial routes have been constructed in order to adhere to the tier-visitation constraint with
respect to the driver autonomy. The results of the hypervolume and unary-ε indicator sensitivity
analyses for this parameter may be seen in Tables 11.17 and 11.18, respectively. In order to
satisfy the tier-visitation constraint, the initial routes require considerable correction and thus
the MACO algorithm favours values for the parameter `b that allow for a greater degree of
flexibility with respect to driver autonomy. This trend is corroborated by the results of both
the hypervolume and unary-ε indicator sensitivity analyses as a value of 0.6 returned solutions
of the highest quality.

Table 11.17: Hypervolume sensitivity analysis
for the parameter `b in respect of the George
TVRPGC instance.

`b=0.6 `b=0.7 `b=0.8 `b=0.9

Best 0.986 0.957 0.949 0.949
Mean 0.955 0.928 0.897 0.875
Worst 0.927 0.894 0.860 0.811

Table 11.18: Unary-ε analysis for the
parameter `b in respect of the George
TVRPGC instance.

`b=0.6 `b=0.7 `b=0.8 `b=0.9

Best 0.054 0.075 0.107 0.099
Mean 0.087 0.101 0.137 0.171
Worst 0.114 0.139 0.179 0.218

Finally, the parameter ρ is used in some manner in most ACO algorithms — it directly affects
the pheromone update mechanism of the MACO algorithm. The parameter ρ was implemented
in both the local and global pheromone update mechanisms, in which it affects the rate of decay
within the local pheromone update mechanism and the rate of convergence within the global
pheromone update mechanism. The results of the hypervolume parameter sensitivity analysis
(shown in Table 11.19) and the unary-ε parameter sensitivity analysis (shown in Table 11.20) for
this parameter suggest that a value of ρ = 0.8 returns better quality results. This is a relatively
large value, but considering that numerous ants are implemented in each colony, it is logical
that the pheromone trails should be altered in small increments.

Table 11.19: Hypervolume sensitivity analy-
sis for the parameter ρ in respect of the George
TVRPGC instance.

ρ=0.6 ρ=0.7 ρ=0.8 ρ=0.9

Best 0.915 0.941 0.950 0.930
Mean 0.869 0.879 0.890 0.893
Worst 0.840 0.842 0.787 0.858

Table 11.20: Unary-ε sensitivity analysis
for the parameter ρ in respect of George
TVRPGC instance.

ρ=0.6 ρ=0.7 ρ=0.8 ρ=0.9

Best 0.070 0.090 0.056 0.067
Mean 0.119 0.123 0.113 0.115
Worst 0.148 0.152 0.179 0.165

The best values of the parameters employed in the MACO algorithm (according to the sensitivity
analysis results discussed in this section) are finally summarised in Table 11.21.
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Table 11.21: The parameter values employed in the MACO algorithm for solving realistic instances of
the TVRPGC, based on the sensitivity analysis performed in this section.

Parameter α ants β best-select δ diversity γ `b ρ

Value 2 20 5 1 300 0.7 1.5 0.6 0.8

11.3 Numerical results for the George TVRPGC instance

Adopting the parameter values described in Table 11.21, the MACO algorithm was implemented
on the same computer mentioned in §11.1 and was allowed 1 000 iterations in order to produce a
non-dominated front for the George TVRPGC instance. The maximum driver autonomy was set
to 1 100 time units which matched the maximum driver autonomy within the George TVRPGC
instance. The bounds on the time window constraint were fixed in a manner so as not to affect
the solutions generated by the MACO algorithm for the TVRPGC, because the data received
from the industry partner did not contain any information pertaining to time windows of the
facilities. The non-dominated front yielded by the MACO may be seen in objective function
space in Figure 11.2. This front only contains feasible solutions (all infeasible solutions returned
by the MACO were removed from consideration) and provides a reasonable trade-off between
the total travel time and the driver autonomy. The vehicle routes corresponding to the eleven
non-dominated solutions of Figure 11.2 are provided in Tables B.1–B.11 in Appendix B.
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Figure 11.2: Non-dominated front yielded by the MACO in respect of the George TVRPGC instance.

The vehicle routes corresponding to Solution 11 in Figure 11.2 are shown in Figure 11.3 in
order to elucidate the phenomenon of global cross-docking. The George TVRPGC instance
requires that vehicles traverse large distances and contains numerous facilities within a rather
confined area. Accordingly, the routes are not drawn out to scale in Figure 11.3 and several
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Figure 11.3: The routes proposed by the MACO algorithm in Solution 11 in Figure 11.2 for the George
TVRPGC instance (not drawn to scale).

facilities that are not important in respect of the tier-visitation constraint do not appear on the
figure so that the flow of vehicles through the transportation network may be seen more clearly.
The first route collects pathological specimens from the central and northern regions, and then
consolidates specimens at Facility 67 before returning to its home depot. Similarly, the second
vehicle collects pathological specimens from the central and eastern regions, also consolidating
specimens at Facility 67 before returning to the depot. Finally, the third vehicle leaves the
depot and collects the consolidated pathological specimens from Facility 67, then proceeds to
visit several facilities before delivering the pathological specimens to Facility 66 and returning
to the depot.

The pathological healthcare service provider supplied the current routes actually employed
within the George region, allowing for a direct comparison of the routes followed in practice
and the routes suggested by the MACO algorithm. The three objective function values of §9.3.3
are compared in Table 11.22. The total travel time experienced the greatest improvement,
which may be largely attributed to the incorporation of the global cross-docking mechanism
(currently not practised efficiently by the pathological healthcare service provider), while also
simultaneously reducing the number of vehicles and the driver autonomy.

Table 11.22: Comparison between routes currently employed by the pathology healthcare service
provider and a route yielded by the MACO algorithm (measured in percentages) for the George TVRPGC
instance.

Objective Original MACO
Percentage

improvement

Total travel time (min) 4 153.7 2 558.6 38.4
Driver autonomy (min) 1 040 965.1 7.2
Number of vehicles 4 3 25
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11.4 Including a clustering phase in the solution of the TVRPGC

As in the method adopted in §8.6, the trade-off of incorporating a clustering phase in the solution
of the TVRPGC is investigated in this section within the context of the George TVRPGC
instance. This trade-off occurs in respect of solution quality achieved and computation times
required by the respective algorithmic implementations when generating non-dominated fronts.

The algorithmic parameter configuration suggested in Table 11.21 was again adopted and an
iteration limit of 1 000 was imposed. The maximum driver autonomy was set to 1 100 and the
quality of the non-dominated fronts returned by the two algorithmic implementations (with and
without a clustering phase) are compared in Table 11.23 in terms of solution quality, according
to both the hypervolume and unary-ε indicators.

Table 11.23: Comparison of Pareto front approximation qualities as a function of the number of cus-
tomer clusters for the George TVRPGC instance.

Instance No clusters Two clusters Three clusters Four clusters

Hypervolume 0.981 0.453 0.682 0.629
Unary-ε 0.001 0.491 0.284 0.354

The results in the table clearly illustrate that performing clustering before applying the MACO
algorithm to the TVRPGC is detrimental in terms of solution quality, as expected. The com-
putation time required by the MACO algorithm for a clustered version of the TVRPGC is,
however, a fraction of the time required by the MACO algorithm when applied to the full test
instance in its entirety. The computation times may be seen in Table 11.24, where the clustered
instances of the respective TVRPGC are parallelisable and so the computation time required by
the algorithm to reach a final non-dominated front is simply the longest time for all the clusters
to be resolved in terms of TVRPGC constraints. The MACO algorithm produced approximately
twenty solutions for each of the clusters in each of their non-dominated fronts, which still had
to be combined into one single attainment front. The initial procedure employed was simply
to combine each of the solutions in all possible ways (approximately 160 000 solutions may be
generated in this manner) and to apply the sorting algorithm of the NSGA-II [116]. This,
however, took well over four hours to produce a single non-dominated front. A more efficient
sorting algorithm was therefore employed whereby the candidate solutions were partitioned into
pools of a 1 000 solutions each and these were then sorted individually. The solutions not in
the separate non-dominated fronts were removed from further consideration. This process was
repeated until only one non-dominated front remained. According to this divide-and-conquer
process, the sorting time required was reduced to under 30 minutes, achieving the exact same
non-dominated front as when the entire pool of candidate solutions was sorted.

Table 11.24: Computation times (in seconds) required by the respective algorithms when solving the
George TVRPGC instance.

Computing Time Cluster 1 Cluster 2 Cluster 3 Cluster 4

No clusters 4 490 — — —
Two clusters 1 182 583 — —
Three clusters 370 536 796 —
Four clusters 238 467 581 280

The non-dominated front generated by the MACO algorithm for the instance partitioned into
four clusters is shown in Figure 11.4. When compared to the non-dominated front of the same
instance without clusters, shown in the same figure, it exhibits a significant decline of solution
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quality. The number of vehicles utilised in the clustered approach is, in most instances, more
than double the number of vehicles used in the non-clustered implementation.

Figure 11.4: The non-dominated fronts generated by the MACO algorithm with respect to
the George TVRPGC instance and the same test instance clustered into four customer clusters.

11.5 Discussion of results

The MACO algorithm was able to determine a relatively consistent range of compromise solu-
tions with respect to total travel time and maximum driver autonomy for the George TVRPGC
instance, but failed to utilise a wide range for the number of vehicles, with most of the non-
dominated solutions being heavily biased towards utilising a limited combination of vehicles.
This is a consequence of deciding not to model the number of vehicles employed explicitly.
Future solution implementations may perhaps aim to incorporate this aspect explicitly. The
combinatorial complexity of adding more objectives to an already difficult problem, however,
causes an inherent decline in solution quality with respect to total travel time and driver auton-
omy compromise solutions.

The MACO algorithm designed in Chapter 10 for the TVRPGC is novel and thus further
improvement is certainly achievable. The major areas to exploit are the sequence-fixing functions
which would benefit from being able to incorporate a forward looking intuition during the
alteration of routes, as the best sequence fixing solution during the current iteration may be a
poor solution when resolving other sequence infeasibilities (the moves are not independent of
one another).

Similar to the conclusion drawn in §8.6, the clustering component is anticipated to be an integral
component when attempting to solve real-life TVRPGC instances (6 000 customers will not be
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unrealistic in the case of the pathology healthcare provider described in Chapter 1). The size
of such a problem instance is well beyond the reach of a direct solution attempt by the MACO
algorithm of Chapter 10 when clustering is not applied. The algorithm will also not suffer as
severely from the lack of flexibility as experienced in the George TVRPGC instance, because in
real-life instances, customers are expected not to be situated as densely around a single point
as in the George instance. Furthermore, there are prevalent differences in customer locations
due to the legislation adhered to by the pathology healthcare service provider and its provincial
departments functioning relatively independently from the national organisation.

11.6 Chapter summary

The uncertainty involved in the design of an effective MACO algorithm for the TVRPGC led to
the incorporation of nine algorithmic parameters. A sensitivity analysis was performed in this
chapter with respect to these parameters in order to ascertain the best combination of param-
eter values for producing approximate Pareto fronts of high-quality for a realistic instance of
the TVRPGC. The data pertaining to this test instance were presented in §11.1. This presen-
tation was accompanied by a description of the experimental design adopted in the algorithmic
parameter sensitivity analysis.

The values of two non-dominated front quality indicators, namely the hypervolume and unary-ε
indicators, were presented in §11.2 for non-dominated fronts returned by various combinations
of values of the algorithmic parameters. The Pareto front approximations returned by the
MACO algorithm when adopting the best combination of parameters for the aforementioned
TVRPGC instance were presented in §11.3. The corresponding vehicle routes of a solution on
the non-dominated front was also illustrated in §11.3.

The TVRPGC instance was additionally partitioned into two to four customer clusters by means
of the clustering methodology described in §8.2. The results obtained with and without incor-
porating a clustering phase in the TVRPGC solution procedure were compared in respect of
solution quality and computation time in §11.4. Finally, the results obtained in §11.3 and §11.4
were discussed briefly in §11.5, with a focus on possible future algorithmic improvements of the
MACO algorithm in respect of larger instances of the TVRPGC.
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Description of the Case Study
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The real-life case study of the specimen transportation vehicle routing of a pathology healthcare
service provider within the Western Cape region is presented in this chapter. A brief introduction
of the current pathology healthcare service providers within South Africa and a motivation for
the development of an approximate solution approach capable of handling large instances of the
TVRPGC are presented in §12.1. The relevant data preparation and cleaning are described in
§12.2, and this is followed by a presentation of the locations of the facilities of the pathology
healthcare service provider in question in §12.3. The methodology adopted and all necessary
assumptions required for the documentation of the current specimen collection vehicle routes
implemented by the pathology healthcare service provider are presented in §12.4. Finally, the
chapter closes with a brief summary of the work contained in the chapter in §12.5.

12.1 Background

There are numerous pathology healthcare service providers in South Africa, such as the National
Health Laboratory Service [326], Ampath [9], Pathcare [338] and Lancet Laboratories [272].
These organisations, either public or private, are responsible for delivering affordable healthcare
services to a public afflicted with the highest HIV/AIDS rate in the world and plagued by
numerous other preventable diseases [451]. Resource management is critically important to the
success of pathology healthcare service providers, and so these organisations seek methods by
which to reduce operational costs so that they may continue to provide pathology healthcare
services.

One such possible avenue of operational streamlining is the reduction of logistics costs associated
with the collection and delivery of pathological specimens between the respective healthcare
facilities within the jurisdiction of these organisations. With respect to logistics management,
this may be achieved through the reduction of the number of vehicles required to service facilities,
minimisation of the total distance travelled by the vehicles and offering fixed collection and
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delivery schedules for vehicles as to allow for strategy planning. These organisations typically
service large networks of facilities dispersed over the entirety of the country, usually resulting in
the logistics operations requiring several outsourced organisations to fulfil their collection and
delivery demand. Collaboration between these outsourced organisations is generally very limited,
resulting in large potential cost-saving benefits through the development of an ubiquitous system
capable of handling all the vehicle routing needs of an organisation.

Specimen collection and destination facility data provided by a major South African pathology
healthcare service provider are employed in the case study of this dissertation. Certain features
of the data, are not, however, divulged for confidentiality reasons such as the identity of the or-
ganisation and actual names of the clinics. This anonymisation has nevertheless been performed
in such a manner as to ensure that other researchers may apply their algorithms to the same
case study data in the future.

12.2 Data preparation

Inevitably, some cleaning and preparation of the data obtained from the participating pathology
healthcare service provider were necessary. The data received did not include the addresses of
the facilities visited by vehicles, instead merely referring to them by informal names and the
municipalities within which the facilities were located. The municipality names referred to in
the data were cross-referenced with a second data set provided by the participating organisation
in order to obtain the street addresses of these facilities. The street addresses of the facilities
were then passed through a Google Maps API [202] so as to geocode the facilities’ addresses. All
duplicate entries were removed, resulting in 388 unique facility locations for the Western Cape
province of South Africa.

The final stage of preparing the data involved generating the expected travel time matrix between
the respective facilities. The initial approach was to utilise, once again, a Google Maps API
[202], but Google limits non-commercial users to 6 000 requests a day. Thus, if attempting to
modularise the requests it would have taken approximately 24 days to finalise. This long waiting
time was, however, averted with the assistance of Mr Bennetto [329] and the OPSI servers, as
a travel time matrix with numerous entries could thus be generated within a short time period
using the OSRM development tool [333].

12.3 Facility locations

As mentioned, there are 388 healthcare facilities in this case study. Of these, there are three
facilities of tier three, four facilities of tier two, eleven facilities of tier one and 359 facilities
of tier zero, as well as eleven vehicle depots. The locations of these facilities are illustrated in
Figure 12.1 and their (longitude, latitude) coordinates are provided in Table 12.1. The expected
travel times matrix for the facilities shown in Figure 12.1 is furthermore available online [403].

Table 12.1: Locations of healthcare facilities of the pathology healthcare service provider within the
Western Cape province of South Africa.

Name Longitude Latitude Tier Name Longitude Latitude Tier

Facility 1 18.4588 −34.0123 0 Facility 2 18.4535 −34.0042 0
Facility 3 18.4746 −33.9493 0 Facility 4 18.4804 −34.0593 0
Facility 5 18.6212 −34.0466 0 Facility 6 18.6324 −34.0149 0
Facility 7 18.5732 −33.9892 0 Facility 8 18.5457 −33.9501 0
Facility 9 18.5268 −33.9945 0 Facility 10 18.3794 −34.1294 0
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Name Longitude Latitude Tier Name Longitude Latitude Tier

Facility 11 18.4161 −34.1318 0 Facility 12 20.1229 −33.7977 0
Facility 13 20.1290 −33.7826 0 Facility 14 20.0582 −33.8284 0
Facility 15 20.0854 −33.8375 0 Facility 16 19.8908 −33.8018 0
Facility 17 19.8933 −33.8177 0 Facility 18 19.8886 −33.7926 0
Facility 19 19.8287 −33.9473 0 Facility 20 19.8935 −33.7999 0
Facility 21 20.7266 −33.9049 0 Facility 22 20.6510 −34.0078 0
Facility 23 20.5384 −34.0353 0 Facility 24 20.4440 −34.0341 0
Facility 25 20.4381 −34.0257 0 Facility 26 20.4505 −34.0241 0
Facility 27 20.4499 −34.0243 0 Facility 28 20.0781 −33.9354 0
Facility 29 19.3013 −33.3634 0 Facility 30 19.4338 −34.2415 0
Facility 31 19.2822 −33.9899 0 Facility 32 19.2931 −33.9914 0
Facility 33 19.2862 −33.9935 0 Facility 34 19.2017 −33.4131 0
Facility 35 19.1879 −33.4167 0 Facility 36 19.1465 −33.2847 0
Facility 37 19.1385 −33.2862 0 Facility 38 19.3073 −33.3711 0
Facility 39 19.3113 −33.3692 0 Facility 40 19.3013 −33.3635 0
Facility 41 19.3458 −33.3501 0 Facility 42 19.3103 −33.3697 0
Facility 43 19.3200 −33.3329 0 Facility 44 19.3272 −33.2899 0
Facility 45 20.8513 −33.1943 0 Facility 46 20.0289 −33.3407 0
Facility 47 19.6674 −33.4832 0 Facility 48 19.5522 −33.5178 0
Facility 49 19.4434 −33.6443 0 Facility 50 19.4940 −33.6412 0
Facility 51 19.4563 −33.6220 0 Facility 52 19.3175 −33.6909 0
Facility 53 19.4161 −33.7249 0 Facility 54 19.4382 −33.6485 0
Facility 55 19.4087 −33.5903 0 Facility 56 18.7000 −33.9533 0
Facility 57 19.4593 −33.6507 0 Facility 58 19.4334 −33.6461 0
Facility 59 18.4953 −33.5647 0 Facility 60 18.4940 −33.5651 0
Facility 61 18.4736 −33.5124 0 Facility 62 18.3867 −33.3704 0
Facility 63 18.7032 −33.4657 0 Facility 64 18.7232 −33.4546 0
Facility 65 18.7237 −33.4547 0 Facility 66 18.7283 −33.4754 0
Facility 67 18.9956 −33.6646 0 Facility 68 18.9919 −33.6746 0
Facility 69 18.9908 −33.6836 0 Facility 70 18.9916 −33.7022 0
Facility 71 18.9703 −33.7278 0 Facility 72 19.0119 −33.8453 0
Facility 73 19.1026 −33.8960 0 Facility 74 18.5505 −33.9106 0
Facility 75 18.8607 −33.8157 0 Facility 76 18.9985 −33.7273 0
Facility 77 18.9877 −33.7224 0 Facility 78 18.9863 −33.7237 0
Facility 79 18.9841 −33.7132 0 Facility 80 18.9868 −33.7116 0
Facility 81 18.9662 −33.7315 0 Facility 82 18.4947 −33.5743 0
Facility 83 18.4885 −33.5503 0 Facility 84 18.9814 −33.7281 0
Facility 85 19.0450 −33.2929 0 Facility 86 19.0067 −33.1868 0
Facility 87 18.9980 −33.0783 0 Facility 88 18.9934 −33.0096 0
Facility 89 18.9942 −33.0182 0 Facility 90 18.7578 −32.9006 0
Facility 91 18.7627 −32.9069 0 Facility 92 18.6770 −33.0107 0
Facility 93 18.6644 −33.1503 0 Facility 94 18.8742 −33.3518 0
Facility 95 18.8855 −33.3709 0 Facility 96 18.9199 −33.3840 0
Facility 97 18.9853 −33.6040 0 Facility 98 18.9802 −33.6473 0
Facility 99 18.7935 −33.6468 0 Facility 100 18.9611 −33.6879 0
Facility 101 18.0015 −32.9121 0 Facility 102 17.8842 −32.8123 0
Facility 103 18.0596 −32.7888 0 Facility 104 18.1655 −32.7737 0
Facility 105 18.3411 −33.0610 0 Facility 106 18.0333 −33.0911 0
Facility 107 17.9449 −33.0089 0 Facility 108 17.9214 −33.0073 0
Facility 109 18.0093 −32.9149 0 Facility 110 18.0049 −32.7422 0
Facility 111 23.3222 −34.0505 0 Facility 112 23.0479 −34.0385 0
Facility 113 23.0536 −34.0351 0 Facility 114 23.1078 −34.0345 0
Facility 115 23.0981 −34.0477 0 Facility 116 23.3650 −34.0531 0
Facility 117 23.4885 −33.9503 0 Facility 118 23.3667 −34.0500 0
Facility 119 23.3426 −34.0524 0 Facility 120 23.3667 −34.0500 0
Facility 121 22.9346 −33.9460 0 Facility 122 22.8084 −34.0197 0
Facility 123 22.6213 −33.9533 0 Facility 124 22.4892 −34.0050 0
Facility 125 22.4941 −34.0068 0 Facility 126 22.4969 −34.0078 0
Facility 127 22.4790 −33.9750 0 Facility 128 22.4518 −33.9590 0
Facility 129 22.4125 −33.9432 0 Facility 130 22.4511 −33.9509 0
Facility 131 22.4603 −34.0167 0 Facility 132 22.4923 −34.0031 0
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Name Longitude Latitude Tier Name Longitude Latitude Tier

Facility 133 22.4842 −33.9931 0 Facility 134 22.4736 −33.9912 0
Facility 135 20.9565 −34.0907 0 Facility 136 20.9579 −34.0915 0
Facility 137 21.2550 −34.0937 0 Facility 138 21.2548 −34.0947 0
Facility 139 21.5859 −34.2041 0 Facility 140 21.4079 −34.3759 0
Facility 141 22.2205 −34.0483 0 Facility 142 22.1440 −33.9547 0
Facility 143 23.1251 −33.6574 0 Facility 144 23.1250 −33.6595 0
Facility 145 23.1295 −33.6565 0 Facility 146 23.1253 −33.6606 0
Facility 147 23.1667 −33.7167 0 Facility 148 22.4203 −33.8947 0
Facility 149 21.5030 −31.9178 0 Facility 150 23.7623 −31.9642 0
Facility 151 22.1291 −34.1865 0 Facility 152 22.1395 −34.1808 0
Facility 153 22.1106 −34.1234 0 Facility 154 22.0921 −34.1808 0
Facility 155 22.1161 −34.1766 0 Facility 156 22.1132 −34.1713 0
Facility 157 22.1051 −34.1496 0 Facility 158 22.0442 −33.2463 0
Facility 159 22.0333 −33.2167 0 Facility 160 22.5204 −33.4980 0
Facility 161 22.4421 −33.5773 0 Facility 162 22.2385 −33.6065 0
Facility 163 22.2416 −33.5953 0 Facility 164 22.2204 −33.6018 0
Facility 165 22.1849 −33.5868 0 Facility 166 22.1912 −33.5835 0
Facility 167 22.2038 −33.5798 0 Facility 168 21.2689 −33.4869 0
Facility 169 21.4461 −33.4948 0 Facility 170 21.4667 −33.4833 0
Facility 171 21.6780 −33.5276 0 Facility 172 18.8709 −33.9306 0
Facility 173 18.8560 −33.9232 0 Facility 174 18.8579 −34.0758 0
Facility 175 18.7746 −34.0622 0 Facility 176 18.8664 −34.1135 0
Facility 177 18.8526 −34.1337 0 Facility 178 18.8482 −34.0858 0
Facility 179 18.9131 −34.1223 0 Facility 180 18.8833 −34.1507 0
Facility 181 18.8611 −33.9346 0 Facility 182 18.8554 −33.9105 0
Facility 183 18.8801 −33.9255 0 Facility 184 18.8485 −33.9802 0
Facility 185 18.8496 −33.9176 0 Facility 186 18.9541 −33.9206 0
Facility 187 18.6650 −34.0274 0 Facility 188 18.6079 −33.8916 0
Facility 189 18.5582 −33.9847 0 Facility 190 18.5548 −34.0731 0
Facility 191 18.6373 −34.0620 0 Facility 192 18.6261 −34.0538 0
Facility 193 18.5998 −34.0505 0 Facility 194 18.6127 −34.0440 0
Facility 195 18.5836 −34.0171 0 Facility 196 18.6120 −34.0155 0
Facility 197 18.6102 −34.0110 0 Facility 198 18.6036 −33.9922 0
Facility 199 18.5851 −33.9918 0 Facility 200 18.5794 −33.9877 0
Facility 201 18.5661 −33.9873 0 Facility 202 18.5705 −33.9731 0
Facility 203 18.5548 −33.9886 0 Facility 204 18.5268 −33.9945 0
Facility 205 18.5054 −33.9940 0 Facility 206 18.5289 −33.9440 0
Facility 207 18.4485 −33.9320 0 Facility 208 18.4207 −33.9307 0
Facility 209 18.5269 −33.9944 0 Facility 210 18.6157 −34.0246 0
Facility 211 18.6246 −34.0238 0 Facility 212 18.4778 −33.9370 0
Facility 213 18.4169 −33.9047 0 Facility 214 18.6639 −34.0278 0
Facility 215 18.7190 −33.9974 0 Facility 216 18.5079 −34.0266 0
Facility 217 18.5033 −34.0356 0 Facility 218 18.4921 −34.0314 0
Facility 219 18.4879 −34.0671 0 Facility 220 18.4899 −34.0748 0
Facility 221 18.4839 −34.0863 0 Facility 222 18.4614 −34.0626 0
Facility 223 18.4399 −34.0786 0 Facility 224 18.4702 −34.1075 0
Facility 225 18.4274 −34.1374 0 Facility 226 18.3499 −34.1484 0
Facility 227 18.3515 −34.1487 0 Facility 228 18.4319 −34.0684 0
Facility 229 18.3585 −34.0389 0 Facility 230 18.3422 −34.0543 0
Facility 231 18.4462 −34.0194 0 Facility 232 18.4701 −34.0047 0
Facility 233 18.4653 −34.0216 0 Facility 234 18.4662 −34.0340 0
Facility 235 18.4804 −34.0593 0 Facility 236 18.4809 −34.0588 0
Facility 237 18.4920 −34.0443 0 Facility 238 18.5079 −34.0266 0
Facility 239 18.6678 −34.0519 0 Facility 240 18.7228 −34.0055 0
Facility 241 18.7176 −33.9872 0 Facility 242 18.6861 −33.9794 0
Facility 243 18.6806 −34.0063 0 Facility 244 18.6859 −34.0065 0
Facility 245 18.7038 −33.4652 0 Facility 246 18.6441 −33.9151 0
Facility 247 18.5702 −33.9532 0 Facility 248 18.5607 −33.9488 0
Facility 249 18.5436 −33.9478 0 Facility 250 18.5118 −33.8321 0
Facility 251 18.5298 −33.8268 0 Facility 252 18.4845 −33.9107 0
Facility 253 18.4817 −33.9075 0 Facility 254 18.4862 −33.9000 0
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Name Longitude Latitude Tier Name Longitude Latitude Tier

Facility 255 18.5098 −33.9957 0 Facility 256 18.5975 −33.9978 0
Facility 257 18.5046 −33.9616 0 Facility 258 18.6504 −34.0135 0
Facility 259 18.6468 −34.0136 0 Facility 260 18.6705 −34.0479 0
Facility 261 18.4241 −33.9249 0 Facility 262 18.6208 −34.0507 0
Facility 263 18.5925 −33.9999 0 Facility 264 18.5347 −33.9662 0
Facility 265 18.5175 −33.9588 0 Facility 266 18.5533 −33.9645 0
Facility 267 18.5483 −33.9677 0 Facility 268 18.6426 −33.9713 0
Facility 269 18.6579 −34.0423 0 Facility 270 18.6832 −34.0401 0
Facility 271 18.7057 −34.0440 0 Facility 272 18.7093 −34.0504 0
Facility 273 18.7022 −34.0522 0 Facility 274 18.6778 −34.0403 0
Facility 275 18.6708 −34.0513 0 Facility 276 18.6736 −34.0481 0
Facility 277 18.6074 −34.0499 0 Facility 278 18.5852 −33.9919 0
Facility 279 18.5871 −33.9968 0 Facility 280 18.5805 −34.0098 0
Facility 281 18.5653 −33.9964 0 Facility 282 18.5213 −33.9237 0
Facility 283 18.4895 −33.9220 0 Facility 284 18.4893 −33.9218 0
Facility 285 18.5037 −33.9115 0 Facility 286 18.5125 −33.9113 0
Facility 287 18.5580 −33.9186 0 Facility 288 18.5472 −33.8887 0
Facility 289 18.5407 −33.8586 0 Facility 290 18.4691 −33.9892 0
Facility 291 18.6633 −33.9806 0 Facility 292 18.4649 −33.9291 0
Facility 293 18.7182 −33.8640 0 Facility 294 18.7505 −33.8436 0
Facility 295 18.5565 −33.9809 0 Facility 296 18.4373 −33.9291 0
Facility 297 18.6776 −33.9270 0 Facility 298 18.6789 −33.9266 0
Facility 299 18.6859 −33.8724 0 Facility 300 18.7106 −33.8710 0
Facility 301 18.7233 −33.8674 0 Facility 302 18.7182 −33.8640 0
Facility 303 18.4655 −33.9417 0 Facility 304 18.3528 −34.0287 0
Facility 305 18.7052 −33.8416 0 Facility 306 18.7188 −33.7821 0
Facility 307 18.6544 −33.8302 0 Facility 308 18.6523 −33.8421 0
Facility 309 18.6578 −33.9024 0 Facility 310 18.6370 −33.9041 0
Facility 311 18.5970 −33.9234 0 Facility 312 18.5973 −33.9207 0
Facility 313 18.5994 −33.9361 0 Facility 314 18.6484 −33.9450 0
Facility 315 18.5843 −33.9374 0 Facility 316 18.5845 −33.9065 0
Facility 317 18.5935 −33.9047 0 Facility 318 18.7144 −33.8585 0
Facility 319 18.5816 −33.9489 0 Facility 320 18.5781 −33.9317 0
Facility 321 18.6079 −33.8916 0 Facility 322 18.7216 −33.8530 0
Facility 323 18.5640 −33.8901 0 Facility 324 18.5779 −33.9315 0
Facility 325 18.6027 −34.0404 0 Facility 326 18.5457 −33.9501 0
Facility 327 19.2194 −34.4258 0 Facility 328 19.2372 −34.4167 0
Facility 329 19.1332 −34.3859 0 Facility 330 19.0291 −34.3329 0
Facility 331 19.1983 −34.2296 0 Facility 332 19.4283 −34.2300 0
Facility 333 19.3503 −34.5907 0 Facility 334 19.4586 −34.4411 0
Facility 335 19.8932 −34.4704 0 Facility 336 20.0334 −34.5367 0
Facility 337 20.0543 −34.5417 0 Facility 338 19.0036 −34.1547 0
Facility 339 18.6258 −31.7685 0 Facility 340 18.5042 −31.6651 0
Facility 341 18.3447 −31.5572 0 Facility 342 18.2360 −31.8164 0
Facility 343 18.2615 −31.6292 0 Facility 344 18.5278 −31.6441 0
Facility 345 18.2572 −31.0512 0 Facility 346 19.4344 −30.9486 0
Facility 347 19.4418 −30.9620 0 Facility 348 19.1079 −31.3794 0
Facility 349 19.7675 −31.4626 0 Facility 350 19.7728 −31.4750 0
Facility 351 18.7378 −31.6070 0 Facility 352 18.8925 −32.1875 0
Facility 353 18.9014 −32.1976 0 Facility 354 18.6057 −32.1596 0
Facility 355 18.3052 −32.0944 0 Facility 356 18.3403 −32.3135 0
Facility 357 19.0113 −32.5861 0 Facility 358 19.0081 −32.5819 0
Facility 359 20.6646 −32.3989 0 Facility 360 18.6079 −33.8916 1
Facility 361 17.9914 −32.9132 1 Facility 362 23.0406 −34.0361 1
Facility 363 22.1363 −34.1896 1 Facility 364 22.5936 −32.3531 1
Facility 365 22.1898 −33.5914 1 Facility 366 18.6218 −34.0466 1
Facility 367 18.6673 −34.0357 1 Facility 368 19.2282 −34.4230 1
Facility 369 18.8570 −34.0765 1 Facility 370 18.5043 −31.6690 1
Facility 371 18.4158 −33.9067 2 Facility 372 19.4582 −33.6445 2
Facility 373 18.9716 −33.7265 2 Facility 374 22.4511 −33.9515 2
Facility 375 18.4617 −33.9408 3 Facility 376 18.4893 −33.9540 3
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Name Longitude Latitude Tier Name Longitude Latitude Tier

Facility 377 18.6129 −33.9109 3 Facility 378 18.6079 −33.8916 −1
Facility 379 17.9914 −32.9132 −1 Facility 380 23.0406 −34.0361 −1
Facility 381 22.1363 −34.1896 −1 Facility 382 22.5936 −32.3531 −1
Facility 383 22.1898 −33.5914 −1 Facility 384 18.6218 −34.0466 −1
Facility 385 18.6673 −34.0357 −1 Facility 386 19.2282 −34.4230 −1
Facility 387 18.8570 −34.0765 −1 Facility 388 18.5043 −31.6690 −1

Figure 12.1: Distribution of healthcare facilities of a pathological healthcare provider within the South
African Western Cape.
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12.4 Currently implemented vehicle routes

The data received from the participating pathology healthcare service provider also contains the
vehicle routes currently employed by the organisation. These routes span nine regions, namely
Vredendal, Sutherland, Groote Schuur, Worcester, Paarl, Vredenburg, George, Green Point and
Helderberg. The data received typically consisted of fixed vehicle routes that are repeated daily.
Additional routes that are only travelled on specific days of the week if certain demand levels
are reached (as well as emergency routes) were, however, also included. The data received
furthermore contained routes within the city of Cape Town exclusively pertaining to vehicles
travelling between the eight major hospitals in the municipality, resulting in several facilities
being visited numerous times within the planning period. This was accommodated in the model
of Chapter 9 by making virtual copies of the facilities and enforcing time window constraints on
the various copies of the facilities so as to encourage a similar visitation schedule to the routes
currently employed. The pathology healthcare service provider also currently employs a mobile
clinic in the Caledon municipality — this particularity was accommodated in the model by
setting the destinations of the mobile clinic as fixed destinations to be serviced by some vehicle,
as heterogeneous vehicles are not considered in the formulation of the model of Chapter 9.

The number of routes employed in each region and the total travel time associated with each
region are shown in Table 12.2. Additionally, a single vehicle is employed on a twenty-four hour
basis that simply visits each of the eight major hospitals in the city of Cape Town five times
during a planning period. The intra-hospital visitation schedule results in a total travel time of
686 minutes.

Table 12.2: The number of routes and total expected travel time required to service each region.

Number of Total travel
Region routes time (min)

Vredendal 4 1 862.7
Sutherland 2 478.0
Groote Schuur 7 872.2
Worcester 8 1 866.7
Paarl 5 1 021.7
Vredenburg 2 538.1
George 12 4 153.7
Green Point 20 3 494.6
Helderberg 2 413.5
Caledon (Mobile) 2 473.9

Total 64 15 860.6

The above-mentioned routes employed by the pathology healthcare service provider to service
the Western Cape pathological specimen collection and delivery demands result in a total travel
time of 15 860.6 minutes and a maximum driver autonomy of 1 092 minutes. The aforementioned
routes are followed by a total of 64 vehicles, although the motivation behind the choice of this
number of vehicles remains unclear as it would seem from the data that two or more routes may
often be serviced by a single vehicle. Perhaps, the vehicles were also used for other purposes. The
ideal number of vehicles required was estimated according to the following logic: The maximum
driver autonomy of a vehicle was set to 1 092 minutes and routes that end at a facility at which
another route begins were allocated to a single vehicle if the driver autonomy constraint was
not violated. This process resulted in an estimate of 36 vehicles required to service the routes
suggested by the pathological healthcare organisation.
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12.5 Chapter summary

In this chapter, a real-life instance of specimen collection and delivery of a pathology healthcare
service provider within the Western Cape region was described in some detail. The current
pathology healthcare service providers within South Africa were mentioned in §12.1 and a mo-
tivation was given for developing an approximate solution approach aimed at solving real-life
TVRPGC instances.

The data received from an industry partner required a certain level of preparation in order
to be able to apply the MACO of §10.4 to these data. The various steps of this preparation
process were described in §12.2. Information pertaining to the location of the facilities within
the real-life TVRPGC instance was presented in §12.3.

The vehicle routes currently implemented by the industry partner for specimen collection and
delivery, which will be utilised in the following chapter to validate the results returned by the
MACO of §10.4, were described in §12.4.
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This chapter is devoted to a presentation and discussion of the results returned by the MACO
algorithm with respect to the Western Cape TVRPGC instance described in Chapter 12. The
experimental setup adopted in this chapter is described in §13.1. The results returned by
the MACO algorithm and the potential financial benefits of adopting the vehicle routes thus
proposed are elaborated upon in §13.2. A clustering phase is yet again incorporated into the
solution approach and the subsequent trade-off between solution quality and computation time
is elucidated in §13.3. The results obtained in this chapter are briefly discussed in §13.4, and
this is followed by a brief summary in §13.5 of the work presented in this chapter.

13.1 Experimental setup

The MACO algorithm of §10.4 is applied in this chapter to the Western Cape TVRPGC instance
described in Chapter 12. The MACO algorithm employs several parameters in its implemen-
tation and the values for these parameters uncovered in Chapter 11 are adopted. The MACO
algorithm is allowed a limit of 1 000 search iterations after which the incumbent solutions are
recorded.

Time window information was not available for the Western Cape TVRPGC instance described
in Chapter 12. Accordingly, all the time window model information was specified in such a
manner as to not be a limiting constraint or result in any penalisation of the objective function
values during the implementation of the MACO algorithm within this case study. The maximum
driver autonomy was taken as 1 100 minutes and the facility visitation capacity was set to the
value γ = 5.

All the numerical work reported in this chapter was again performed on an i7-4770 processor
running at 3.40 GHz with 8GB of memory within the Windows 7 operating system after having
implemented the MACO algorithm of Chapter 10 in R.

185
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13.2 Numerical results

The Pareto approximation yielded by the MACO algorithm for the Western Cape TVRPGC in-
stance may be seen in Figure 13.1. The approximation contains nine feasible solutions. During
execution of the MACO algorithm, approximately thirty solutions were, however, uncovered,
with the majority of them being removed from final consideration due to certain constraint
violations. This highlights the nature of the TVRPGC — its solution space is typically tightly
constrained, allowing for even heavily penalised infeasible solutions to be competitive with fea-
sible solutions.
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Figure 13.1: Pareto approximation returned by the MACO algorithm for the Western Cape TVRPGC
instance.

The algorithmic implementation took eight hours and sixteen minutes to execute a thousand
iterations. This computation burden is compatible with current industry practice as the routes
employed by the industry partner are typically fixed and repeated on a daily schedule. Addi-
tionally, the planning period adopted by the pathology healthcare service provider is typically a
monthly schedule, with minimal alterations to the routes being experienced throughout a plan-
ning period. The non-dominated front of Figure 13.1 exhibits a considerable trade-off in solution
choices with respect to the total travel time and the number of vehicles utilised. The variation
in driver autonomy is relatively small as the trade-off with respect to driver autonomy is limited
to approximately 150 minutes. The routes proposed by the MACO algorithm associated with
the points in Figure 13.1 are presented in Tables C.1–C.9 of Appendix C.
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The improvement potentially to be experienced by the industry partner if Solution 9 of Fig-
ure 13.1 were to be adopted on a daily basis are summarised in Table 13.1 with respect to
the three objectives pursued in this dissertation. These improvements are considerable — such
improvements are typically not achievable when comparing optimisation results against indus-
try standards. The industry partner considered in this dissertation does, however, have its
operations independently coordinated based on municipality jurisdiction.

Table 13.1: Comparison between routes currently employed by the pathology healthcare service provider
and Solution 9 of Figure 13.1.

Objective Original MACO
Percentage

improvement

Total travel time (min) 15 175.7 9 690.8 36.1
Driver autonomy (min) 1 080.9 992.1 8.1
Number of vehicles 36 13 63.8

The largest potential improvement was experienced in the reduction of the number of vehicles
required to perform the necessary collection and delivery of pathological specimens between the
respective facilities. A reduction of over sixty-three percent was achievable by considering all
facilities collectively, irrespective of municipality jurisdiction, and exploiting the cross-docking
capability of the MACO algorithm, which is absent in the current implementation of the pathol-
ogy healthcare service provider.

The improvements summarised in Table 13.1 may be translated into financial terms under the
assumption of an average travel speed of 60km/h and adoption of the cost per kilometer vehicle
maintenance rates suggested by the South African Revenue Service (SARS) [387]. The financial
savings are elucidated in Table 13.2, with the first row referring to the fixed cost per year of
owning a vehicle. The fixed cost refers to costs such as repayment costs, insurance, capital
depreciation, and asset depreciation. The fixed cost of owning a single vehicle equates to a value
of R28 492 annually. Therefore, the reduction in the number of vehicles employed within the
fleet of the pathology healthcare service provider would induce an operating expense reduction
of R626 824 per year. The second row of the table refers to the potential cost reduction with
respect to fuel costs due to the proposed vehicle routes requiring less fuel to service the collection
and delivery of pathological specimens. The potential fuel cost reduction amounts to R2 622 653
annually. The third row of the table refers to reduction in maintenance costs (a vehicle typically
requires more maintenance the more kilometers it travels). The maintenance cost reduction
results in a potential annual saving of R640 648 per year. The overall potential cost reduction of
adopting Solution 9 of Figure 13.1 on a daily basis is therefore R3 890 125 per year. This value
serves as a lower bound on the potential financial savings since certain costs are difficult to
quantify and were therefore excluded from consideration. Such costs include the salaries of the
drivers, the reduction in operating costs that may be experienced through the incorporation of
a fixed routing schedule (i.e. fixed collection and delivery times of pathological specimens) and
the cost reduction resulting from implementing routing solutions provided in-house as opposed
to tenders placed to the public.

13.3 Including a clustering phase in the solution approach

As previously considered in §8.6, the trade-off of incorporating a clustering phase in the solution
of the TVRPGC is investigated in this section within the context of the Western Cape TVRPGC
instance. This trade-off occurs in respect of solution quality achieved and computation times
required by the respective algorithmic implementations when generating non-dominated fronts.
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Table 13.2: Potential annual cost reduction in adopting a solution returned by the MACO algorithm
for the Western Cape TVRPGC relative to the routing currently adopted by the pathology healthcare
service provider (according to rates obtained from SARS [387]).

Cost to run a
vehicle annually

Rate Reduction
Total

Savings
(R/p.a.)

Fixed cost
(R/vehicle/p.a.)

28 492 23 vehicles 626 824

Fuel cost
(R/km)

1.31 2 002 025 km/p.a. 2 622 653

Maintenance
cost (R/km)

0.32 2 002 025 km/p.a. 640 648

Total 3 890 125

The algorithmic parameter configuration suggested in Table 11.21 was again adopted and an it-
eration limit of 1 000 was imposed. The maximum driver autonomy was set to 1 100 minutes and
the quality of the non-dominated fronts returned by the two algorithmic implementations (with
and without a clustering phase) are compared in Table 13.3 according to both the hypervolume
and unary-ε indicators.

Table 13.3: Comparison of Pareto front approximation qualities as a function of the number of customer
clusters for the Western Cape TVRPGC instance.

Instance No clustering Ten clusters

Hypervolume 0.936 0.819
Unary-ε 0.008 0.017

The above results show that there is a decline in solution quality when clustering is performed
prior to applying the MACO algorithm. The decline in solution quality is, however, considerably
less than that documented in §11.4 for the much smaller George TVRPGC instance, possibly
due to the clusters each containing more facilities, which afffords the MACO algorithm more
flexibility. The computation time required by the MACO algorithm to approximate the non-
dominated front for the clustered instance is, however, a fraction of the time required by the
MACO algorithm when considering the Western Cape TVRPGC instance in its entirety. The
respective computation times may be seen in Table 13.4. As described in §11.4, the solution
procedure is parallelisable and thus the computation time required by the MACO algorithm to
reach a full solution for the clustered problem instance is simply the longest time required to
resolve a cluster (17.36 minutes). The MACO algorithm was able to discover numerous solutions
for each of the clusters in each of their non-dominated fronts, which still had to be combined
into a single attainment front. A divide-and-conquer approach was applied for this purpose (as
previously described in §11.4), because 90 389 452 608 possible route combinations resulted from
combining the clustered non-dominated fronts.

Table 13.4: Computation times (in minutes) required by the respective MACO algorithms when solving
the Western Cape TVRPGC instance.

Cluster
Computing time 1 2 3 4 5 6 7 8 9 10

No clustering 498
Ten clusters 17.36 14.55 4.13 4.72 4.94 5.73 5.08 3.29 3.24 7.03
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The non-dominated front generated by the MACO algorithm for the Western Cape TVRPGC
instance partitioned into ten clusters is illustrated in Figure 13.2. When compared to the non-
dominated front of the same instance without clustering, illustrated in the same figure, it exhibits
a decline in solution quality with respect to both total travel time and driver autonomy. The
number of vehicles k, however, typically improved with the incorporation of a clustering phase
in the solution approach of the MACO algorithm.

Figure 13.2: The non-dominated fronts generated by the MACO algorithm with respect to the Western
Cape TVRPGC instance and the same test instance clustered into ten customer clusters.

13.4 Discussion of results

The true complexity of the TVRPGC was once again highlighted during the implementation
of the MACO algorithm in the context of the Western Cape TVRPGC instance. The MACO
algorithm required over eight hours to perform a 1 000 search iterations, with the global cross-
docking model feature being responsible for a large portion of the computational burden due to
the nested nature of the tier visitation constraint. A facility may have its specimens collected by
a vehicle which consolidates the specimen at a different facility. This different facility may also
be visited by a vehicle that collects and consolidates the pathological specimens at a different
facility. This procedure may be repeated several times for each facility until the pathological
specimens eventually reach a facility of an appropriate tier.

The MACO algorithm was typically able to achieve a relatively consistent range of compromise
solutions with respect to both total travel time and the number of vehicles, but failed to offer
a wide range of possible driver autonomy values, with the non-dominated front containing a
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limited spread in this regard. This is possibly a consequence of including the parameter `b in
the route construction phase of the search process. The value assigned to the parameter `b is
independent of previous route constructions and therefore a solution consisting of routes that
exhibit small driver autonomy values may contain a route that has a relatively large driver
autonomy value, resulting in a poor overall driver autonomy objective function value.

The MACO algorithm of Chapter 10 does not explicitly model the minimisation of the number
of vehicles. The algorithm was nevertheless able to uncover a diverse set of solutions with
respect to the number of vehicles. The combinatorial complexity of adding more objectives to
an already difficult problem, will inevitably result in an inherent decline in solution quality and
so it is promising to note that it is not explicitly required to implement the minimisation of the
number of vehicles.

The numerous constraints of the TVRPGC proved too troublesome to accommodate in restric-
tive form during the solution search process, as a considerable number of solutions would have
to be discarded due to constraint violations. The MACO algorithm designed in Chapter 10 for
the TVRPGC is still in its infancy, however, and therefore requires considerable effort in terms
of expansion and improvement. Accordingly, future solution implementations should aim to in-
corporate more involved constraint handling techniques and penalty functions in an attempt to
better guide the MACO algorithm through its exploration of the solution space. Future solution
implementations may also focus on the improvement of the sequence-fix function described in
§11.5 — it may need to incorporate a forward looking intuition during the alterations of routes,
as the best sequence fixing solution during the current iteration may be a poor solution when
resolving other sequence infeasibilities (the moves are not independent of one another). The
algorithm should also be tested against a more tier-diverse TVRPGC instance as the George
and Western Cape instances consist primarily of facilities of tier type zero, resulting in a limited
number of facilities that may act as consolidation points. More tier-diverse instances may be
able to benefit more significantly from the cross-docking capabilities of the MACO algorithm.

The MACO algorithm incorporating a clustering phase with respect to the Western Cape
TVRPGC instance was able to yield considerably more competitive solutions than those yielded
by the same MACO algorithm when applied to the George TVRPGC instance. As previously
mentioned, this may be attributed to the clusters each containing more facilities. The combina-
torial complexity and corresponding combinatorial explosion of the TVRPGC may, however, also
be responsible for the relative competitiveness in solution quality with respect to incorporating
a clustering phase as opposed to considering the instance in its entirety. The industry partner
associated with this case study does, in fact, provide pathology healthcare services throughout
South Africa, and its national network contains more than 6 000 facilities. It is anticipated
that the clustering component would be an integral component of the solution procedure if the
full national instance were to be considered. Furthermore, there are prevalent differences in
the customer locations due to the provincial organisation of the industry partner. Its provin-
cial departments function relatively independently from the national overarching organisation,
possibly allowing for high-quality clusters to be generated by the clustering algorithm.

13.5 Chapter summary

The MACO algorithm of §10.4 was applied in this chapter to the Western Cape TVRPGC
instance of Chapter 12. The experimental setup of this application was described in §11.1.

The MACO algorithm was able to achieve a considerable improvement in solution quality with
respect to the three objective function values of §9.3.3 over those of the current industry partner’s
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vehicle routing implementation. The results were elaborated upon and translated into potential
financial savings in §13.2, with the largest potential financial improvement being experienced in
the form of a reduction of total travel time due to the incorporation of the global cross-docking
component.

Similarly, the TVRPGC instance was additionally partitioned into ten clusters by means of the
clustering methodology described in §8.5. The results obtained with and without incorporating
a clustering phase in the TVRPGC solution approach were compared in respect of solution
quality and computation time in §13.3. Finally, the results obtained in §13.2 and §13.3 were
discussed briefly in §13.4, with a focus on possible future algorithmic improvements of the MACO
algorithm in respect of its application to larger instances of the TVRPGC.
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This chapter consists of two sections. A summary of the research documented in this dissertation
is provided in §14.1. This is followed in §14.2 by an appraisal of the contributions made in this
dissertation.

14.1 Dissertation summary

In the introductory chapter to this dissertation, a brief description of the benefits of healthcare to
civilisation was presented, drawing attention to the large discrepancies of resources available in
this respect between developed and developing nations. An informal problem description of the
novel vehicle routing problem considered in this dissertation, called the TVRPGC, was presented
in the second section of the chapter. This was followed by an elucidation of the objectives that
were to be pursued during the course of work towards the dissertation, as well as a delimitation
of the scope of the research undertaken in this dissertation. The chapter concluded with a brief
description of the organisation of the material in the dissertation.

The main body of this dissertation comprised twelve further chapters (up to the chapter pre-
ceding the current chapter). The twelve chapters were partitioned into three parts. The first
such part was a literature review and consisted of three chapters. A general introduction to and
brief history of the VRP was presented in the first chapter of Part I, Chapter 2. The classical
VRP was discussed in some detail and the numerous variations on the VRP that prevail in the
literature today were also reviewed. These variations were further elaborated upon with respect
to the underlying network structure, the type of transportation requests accommodated, the
intra-route constraints enforced, the vehicle fleet composition available, numerous inter-route
constraints and finally the optimisation objectives pursued.

The second chapter of Part I, Chapter 3, was devoted to a literature study of specifically the
CVRP — the archetypal VRP — as this problem forms the foundation on which a model for
the TVRPGC was established later in the dissertation, in fulfilment of Dissertation Objective I
of §1.3. Numerous solution approaches that have been proposed in the literature for solving
the CVRP were described in some detail. The chapter opened with a presentation of the most
popular model formulations of the CVRP available in the literature. This was followed by
a review of various classical and modern exact solution approaches that have been proposed
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for solving these mathematical models. The discussion then progressed towards approximate
solution approaches that have been applied to the CVRP, beginning with a number of classical
heuristics and ending with more powerful metaheuristics and hybrids of these. The closing
section of the chapter was devoted to a discussion on appropriate measures of the quality of
solutions returned by these approximate solution approaches.

The literature on the problem of data clustering was reviewed in the final chapter of Part I,
Chapter 4. This review was included because one of the objectives in this dissertation was
to determine the desirability of partitioning large instances of the CVRP (and the subsequent
TVRPGC) into smaller, more manageable instances by following a clustering approach with
respect to the customers. The various clustering approaches available in the literature were
elaborated upon. The important features of any clustering method were described, including
the determination of the number of clusters to implement, validation of the resulting clustering
and a methodology for the comparison of the quality of results returned by various clustering
algorithms. The chapter closed with a review of admissibility criteria that have been suggested
in the literature for assessing the sensitivity and stability of clustering algorithm results.

Part II of this dissertation contained four chapters which were devoted to the formulation of
the CVRP, its relevant solution methodologies and finally the use of clustering algorithms to
partition the customer sets of large, real-life CVRP instances into smaller, more manageable
sub-problems. This part stands in fulfilment of Dissertation Objective II of §1.3. The first of
these four chapters, Chapter 5, was devoted to the establishment of a suitable mathematical
model for the CVRP which could be used as the foundation upon which to build a model for
the TVRPGC. The chapter contained a brief model assumptions section, a derivation of the
particular mathematical model for the CVRP adopted in the dissertation and a validation of
the model in respect of a well-known benchmark test instance. The results obtained by and the
viability of an exact model solution approach were further discussed within the context of three
CVRP instances of varying complexity, highlighting the need for an approximate model solution
approach.

Two metaheuristics were subsequently employed in this dissertation for solving the CVRP ap-
proximately. Descriptions of these two methods, namely an ACO algorithm and a GA, were
included in the second chapter of Part II, Chapter 6. Implementation details pertaining to the
ACO algorithm were presented, and this was accompanied by descriptions of its key compo-
nents (its pheromone updating mechanisms, its heurisitc matrix initialisation and its tour re-
finement methods). The ACO implementation included slight variations on pheromone update
and heuristic matrix initialisation methods from the literature. A selection of these components
were elaborated upon by means of pseudo-code descriptions, highlighting the particular algo-
rithmic implementation process that was followed to solve instances of the CVRP. The GA,
as well as its constituent components (the method of chromosome representation adopted, the
method of population initialisation and chromosome selection employed, and the nature of the
various crossover and mutation operators included), was described in a similar style.

The third chapter of Part II, Chapter 7, contained a report on an extensive set of algorithmic
parameter evaluation experiments performed in respect of both the GA and the ACO algorithm
of Chapter 6. These experiments took the form of a parameter sensitivity analysis and were
performed in the context of the same three benchmark instances as those considered in Chapter 5.
The results returned by the two algorithms upon implementation of the best-suited parameter
values emanating from the parameter evaluation experiments were subsequently compared, and
this comparison was followed by a brief discussion of the relative algorithmic performances.

A clustering approach toward solving large CVRP instances was proposed and tested in the
final chapter of part II, Chapter 8. Key features of the clustering algorithm employed (such
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as the determination of the number of clusters and the validation of the clustering technique)
were presented. The inclusion of this clustering phase within the CVRP solution procedure was
validated in the context of the same benchmark CVRP instances as before and the results were
briefly discussed.

Part III was the heart of the dissertation and was devoted to the mathematical modelling of
and solution approaches designed for the TVRPGC. The first chapter of Part III, Chapter 9,
saw the establishment of a formal mathematical model for the TVRPGC in the form of a tri-
objective combinatorial optimisation problem, in fulfilment of Dissertation Objective III of §1.3.
The mathematical model formulation was derived in general and then validated in respect of
a small, hypothetical test instance. Thorough descriptions were included of the various model
parameters, model variables, model objectives and constraints employed. The model’s versatility
and potential in terms of global cross-docking capability were highlighted. The need for an
approximate model solution approach was finally established in view of the model complexity
in the closing sections of the chapter, in fulfilment of Dissertation Objective V of §1.3.

A newly designed tri-objective ant colony optimisation algorithm was proposed in the second
chapter of Part II, Chapter 10, for solving instances of the TVRPGC approximately, in fulfilment
of Dissertation Objective VI of §1.3. The focus in the chapter was on descriptions of the key
aspects of the algorithm (such as its pheromone update mechanisms, its route construction
methods, and its method of archiving solutions).

A parameter sensitivity analysis was carried out in respect of a real-life regional instance of
the TVRPGC in the final chapter of Part III, Chapter 11. The test instance was based on
the vehicle routing of the pathology healthcare service provider within the George region of
the South African Southern Cape, called the George TVRPGC instance, in partial fulfilment
of Dissertation Objectives IV and VII §1.3. The results of this analysis were presented and
discussed, after which a suitable set of parameter values was established for inclusion in the
solution methodology of Chapter 10. As was done in Chapter 8 for the CVRP, the suitability
of including a clustering phase in the TVRPGC solution methodology was also evaluated in
respect of the George TVRPGC instance, in partial fulfilment of Dissertation Objective VIII of
§1.3. The chapter closed with a discussion on the quality of the results returned by the MACO
algorithm in respect of the TVRPGC.

Part IV of this dissertation consisted of a further two chapters focused on the application of
the MACO algorithm of Chapter 10 to a real-life instance of the TVRPGC. The first chapter
of this part, Chapter 12, contained a detailed description of the vehicle routes implemented for
pathological specimen collection and delivery by a real pathology healthcare service provider
in the South African Western Cape, in fulfilment of Dissertation Objective IV §1.3. All the
relevant information pertaining to this particular instance of the TVRPGC, called the Western
Cape TVRPGC instance, was presented in such a manner so as to allow future researchers to
replicate the study while still maintaining client confidentiality.

The second chapter of the part, Chapter 13, was dedicated to the application of the MACO
algorithm to the Western Cape TVRPGC instance, in further fulfilment of Dissertation Ob-
jective VIII of §1.3. The results of this case study were elaborated upon and translated into
potential financial benefits. The trade-off between solution quality and the computational ex-
pense of incorporating a clustering phase in the solution procedure was also investigated within
the context of the Western Cape TVRPGC instance in final fulfilment of Dissertation Objective
VIII. The chapter closed with a discussion of the quality of the results obtained by the MACO
algorithm in respect of the Western Cape TVRPGC instance as well as possible improvements
that may be made to the MACO algorithm so as to be able to solve larger instances of the
TVRPGC.
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14.2 Appraisal of dissertation contributions

The main contributions of this dissertation are eight-fold. This section contains a documentation
and appraisal of these contributions.

Contribution 1 A thorough overview of the numerous solution approaches adopted in the lit-
erature with respect to generating solutions to instances of the CVRP.

The overarching aim of this dissertation was to provide a suitable solution methodology for a new
variant of the classical VRP aimed at the resolution of the pathological specimen transportation
requirements of a tiered pathology service provider. The requirements of this transportation
problem do not coincide with any of the numerous VRP formulations in the literature. In
this dissertation, both an exact solution approach and an approximate solution approach were
developed for the TVRPGC, with both solution methodologies heavily drawing inspiration from
similar techniques reported in the literature for the archetypal CVRP. This required a thorough
literature review of the available CVRP model formulations and model solution approaches.

Contribution 2 An evaluation of several GA operators that have reportedly yielded high-quality
results in the literature within the context of the CVRP.

Numerous suggestions as to crossover and mutation operators may be found in the literature
for GAs designed to solve CVRP instances. A thorough parameter and operator sensitivity
analysis was performed in this dissertation with respect to the more popular of these operators
available in the literature. The result was a recommendation as to the best combination of these
operators as well as which of the operators are considered more competitive with respect to
solution quality when applied in isolation to three well-known CVRP benchmark instances.

Contribution 3 An investigation into the desirability of incorporating a clustering phase in the
standard approximate solution methodology for the CVRP.

Despite the relatively poor results obtained when incorporating a clustering of customers phase
in the solution approaches implemented in this dissertation when solving instances of the CVRP,
such an endeavour leads to significantly reduced model solution times. The clustering method-
ology employed in this dissertation obtained high-quality clusters and is flexible enough to be
transferred to several other fields of research.

Contribution 4 A formalisation of the specimen transportation requirements of a pathology
healthcare service provider and its corresponding tiered-facility pathological facility network.

Several meetings with personnel from the pathology healthcare service provider associated with
the case study of Chapter 12 were held in an attempt to capture all the subtle requirements and
objectives that should be incorporated in a pathological specimen transportation network serv-
ing the organisation. This was a difficult process since the transportation network employed by
the organisation is operated by several independent logistics companies. Prior to the aforemen-
tioned meetings there was no common agreement between the management at the organisation’s
department for the Western Cape region of the required specimen transportation operations in
its network. After these meetings, however, detailed requirements for the operation of this
transportation problem, called the TVRPGC, could be formalised.

Contribution 5 The establishment of a formal mathematical model and an accompanying exact
solution methodology for the TVRPGC.

The introduction of a new VRP variant requires a formal mathematical model that describes all
the requirements of the network in an unambiguous manner so as to avoid misinterpretation of
the problem specifics by future researchers. The most important contribution of this disserta-
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tion was the establishment of a validated mathematical model for the TVRPGC containing all
the constraints and objectives required for specimen collection and delivery in a tiered patho-
logical facility network. This model was submitted for publication to the European Journal of
Operational Research [404].

Contribution 6 The establishment of an approximate solution methodology for the TVRPGC
problem, capable of finding high-quality solutions to realistic problem instances.

The swarm-intelligence based method of MACO was implemented as an approximate TVRPGC
solution approach in this dissertation. The method of MACO is flexible and may be employed
to solve TVRPGC instances of varying complexity. The MACO algorithm of Chapter 10 incor-
porated several novel features in its development, most of which arose from the combinatorial
complexity of the TVRPGC. After performing an extensive parameter sensitivity analysis to
determine the best configuration of algorithmic parameter values, the MACO algorithm was
applied to a real-life TVRPGC instance within the Western Cape region.

Contribution 7 A cost-benefit analysis of adopting the vehicle routing suggested by the MACO
algorithm as opposed to the current practice implemented by a real pathology healthcare service
provider.

The MACO algorithm of Chapter 10 was implemented with respect to the Western Cape
TVRPGC instance for which data were provided by a major South African pathology healthcare
service provider. The MACO algorithm was able to generate a non-dominated front consisting
of nine high-quality solutions, from which the management of the pathology healthcare service
provider in question would be able to choose an alternative, based on its subjective preference
in respect of trade-offs realised between the three objectives pursued in this dissertation. The
benefits, translated into financial savings, were presented with respect to one of the solutions
generated within this non-dominated front. The potential financial savings resulting from the
particular vehicle routing recommendation were considerable.

Contribution 8 An investigation into the desirability of incorporating a clustering phase in the
approximate solution methodology established for the TVRPGC.

The combinatorial complexity of the TVRPGC, and more specifically, the global cross-docking
component of the problem lends itself to incorporating a clustering phase within the approximate
solution approach of Contribution 6. The MACO algorithm incorporating a clustering phase
was able to generate solutions of a relatively high quality in a fraction of the computation time
required by the MACO algorithm when solving the Western Cape TVRPGC instance in its
entirety. This clustering approach is predicted to be of real practical value for future routing
endeavours related to the national TVRPGC instance of the participating pathology service
provider, whose entire transportation network contains more than 6 000 facilities.

A research paper based on Contributions 6–8 is currently in preparation and will be submitted
for possible publication in Computers and Industrial Engineering.
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In the words of Leanardo da Vinci “L’arte non mai finita, solo abbandonata1” [54]. A number of
aspects were identified during the process of completing the research reported in this dissertation
as areas of possible improvement and enhancement of the modelling approach adopted. This
chapter contains a summary of these aspects in the form of suggestions with respect to possible
future research which may be pursued as follow-up work to the contributions of this dissertation,
in fulfilment of Dissertation Objective IX of §1.3.

15.1 Consider a larger TVRPGC instance

In this study, a novel variant of the well-known CVRP was proposed in the form of the TVRPGC.
A mathematical model for the TVRPGC was validated against a small, hypothetical test-
instance by which it was possible to demonstrate the model’s flexibility as well as potential
in respect of global cross-docking and tiered facility considerations.

The approximate solution approach of Chapter 10 was, however, tested in the context of the
Western Cape TVRPGC instance for which data were provided by a national pathology health-
care service provider. A more desirable validation approach would be to apply the MACO
algorithm to the national tiered facility transportation network of this pathology healthcare

1Art is never finished, only abandoned.
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service provider so that the performance of the algorithm may be compared against the current
national industry status quo as there does not currently exist an academic standard for the
TVRPGC. The aforementioned national TVRPGC instance would offer more complexity with
respect to the number of customers and the road network.

15.2 Introduce benchmark instances for the TVRPGC

Related to the suggestion of the previous section, a suite of TVRPGC benchmark instances is, in
fact, required in order to enable future researchers to compare and standardise their TVRPGC-
related research. The typical approach would be to modify industry data so as to obtain such test
instances. Due to the sensitive nature of pathology healthcare service provider data pertaining
to patient specimens, more hypothetical test instances may, however, have to be settled upon.

The design of TVRPGC test instances should accommodate a potential benefit in respect of
global cross-docking as this is the defining feature of the TVRPGC. This would require intelligent
spacing of customers in terms of their relative positioning with respect to higher tiered facilities
and the distribution of the tiers would have to be chosen judiciously so as to encourage global
cross-docking which, for larger instances, may only be realisable through extensive testing of the
proposed instances. The diversity of tiers should also be encouraged as to fully utilise the global
cross-docking component, because it is anticipated that real-life TVRPGC instances may lack
the required diversity with respect to the number of facilities that may serve as consolidation
points.

TVRPGC test instances should also offer a diverse range of complexity with respect to the
number of customers, the locations of the customers and the required amount of global cross-
docking in order to be considered suitable as benchmarks. The TVRPGC instance should
finally also include complete information specification such as the time windows and vehicle
arrival capacities of facilities.

15.3 Design and implement a decision support system

The mathematical model of Chapter 9 was implemented in both CPLEX (for implementation
of the exact solution approach) and in R (for implementation of the approximate solution ap-
proach). These implementations are, however, not very generic and a number of changes would
need to be made manually to the physical code of the implementations in order to accommodate
different test instances.

It is therefore suggested that a generic, user-friendly decision support system (DSS), capable
of providing vehicle routing recommendations aimed at pursuing trade-offs between minimising
total travel time, minimising driver autonomy levels and minimising the number of vehicles
utilised, should be developed. This DSS should draw on the techniques researched in Chapters 10
and 11, and its working should be based on the model formulation of Chapter 9.

The user of such a DSS should be able to import the data and system specifications of a
particular TVRPGC instance via Microsoft Excel spreadsheets, which may then be accessed by
the DSS in order to generate vehicle routes. The output of the DSS should be several vehicle
routes from which the decision maker may select one according to his or her personal preferences
in respect of the realisation of an acceptable trade-off between the aforementioned objectives.
Such a DSS may potentially be very profitable for personnel at the pathology healthcare service
provider (or any other organisation that implements tiered facilities within its transportation
network or would benefit from the incorporation of a global cross-docking component within its
transportation network).

Stellenbosch University  https://scholar.sun.ac.za



15.4. Improve constraint handling techniques 203

15.4 Improve constraint handling techniques

As mentioned in §7.6, the approximate solution methods of Chapter 6 may potentially also ben-
efit from the consideration of infeasible solutions during their execution. There are numerous
ways in which such a feature may be incorporated into a metaheuristic search process, with
the most common approach being to implement a penalty function. The capabilities of travers-
ing infeasible regions of the solution space is expected to aid a search algorithm in a tightly
constrained CVRP instance with respect to providing high-quality solutions. Accordingly, the
approximate solution approaches of Chapter 6 may benefit considerably with the inclusion of a
penalty function with respect to capacity constraint violations.

Since the mathematical model proposed in Chapter 9 was the first of its kind, much effort was
expended to formalise the constraints in the form of linear inequalities. There may, however, exist
more powerful and elegant mathematical model formulations for the TVRPGC. The constraint
handling techniques with respect to the exact solution approach may also be improved upon so as
to reduce the initial number of constraints during the BaB process and adding the constraints
not yet considered in an intelligent manner only when they are required so as to reduce the
computational burden.

Alternatively, a completely different exact modelling approach may be undertaken, such as
implementing a constraint programming exact solution approach, for example, as opposed to
the linear integer programming methodology adopted in this dissertation.

15.5 Explicitly model individual specimen constraints

As mentioned in §1.4, certain scope limitations were adopted during the course of the research
presented in this dissertation. One such scope limitation was the exclusion of specimen-specific
modelling considerations. As a result, certain features of pathological specimens were not mod-
elled explicitly within the TVRPGC model proposed in this dissertation, such as the deterio-
ration over time of individual specimens or processing and storage requirements of individual
specimens. This simplifying scope delimitation was adopted based on the magnitude of possi-
ble model variations — to model such variations in an already complex combinatorial problem
was deemed unwise. Building on the mathematical model foundation laid in this dissertation,
future model variations may, however, allow for such intricate detail to be included explicitly as
constraints.

15.6 Incorporate goal-programming techniques

The exact solution approach adopted in this dissertation involved fixing certain objectives
throughout the solution search. The three objectives pursued in this dissertation may, however,
be considered simultaneously if a goal-programming methodology were to be adopted during the
search process. Due to the combinatorial complexity and the relatively large computational bur-
den associated with considering only a single objective, goal-programming was not considered
in this dissertation.
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15.7 Model the stochastic nature of specimen demand

Due to scope limitations, the final modelling consideration excluded was the stochastic nature
of demand present within the transportation network of the model. It was assumed that the
demand exhibited by customers and their respective locations are known a priori. In some in-
stances, facilities may, however, not experience a demand for specimen collection or conversely
an otherwise unconsidered facility may unexpectedly experience demand for specimen collection.
Future work with respect to this model feature may involve including a noise calibration thresh-
old function in the approximate solution approach (i.e. being able to determine when enough
change has been introduced into the system input values so as to warrant altering the solution
being implemented) or to consider demand fluctuations within the transportation network in a
stochastic manner.

15.8 Model the number of vehicles within the MACO

The MACO algorithm of Chapter 10 does not explicitly consider the number of vehicles utilised
as an objective when constructing solutions, although, the archiving component of the algorithm
does accommodate the number of vehicles utilised as being essentially variable. Future approx-
imate solution techniques for the TVRPGC may explicitly incorporate minimising the number
of vehicles used. This was an objective of the pathology healthcare service provider (and was
also included as an explicit objective in the mathematical model of Chapter 9). More variety
in the solutions presented (with respect to the number of vehicles implemented) may indeed be
beneficial to the decision makers of the organisation.

15.9 Improve modelling of the sequence-fix function

As mentioned in §11.5, the MACO algorithm proposed in Chapter 10 is still in its infancy and
requires a considerable amount of effort to be expended in pursuit of the improvement of its
operators. One such avenue of interest is the modelling of the sequence-fix function, which forms
a core component within the MACO algorithm. Future endeavours may aim to incorporate a
forward-looking intuition into the sequence-fix function, as certain operations may be beneficial
during the current iteration but may, however, lead to solutions of a poor quality during later
iterations.

15.10 Improve modelling of the lower-bound parameter

The MACO algorithm of Chapter 10 was unable to generate a wide range of solutions with
respect to the driver autonomy objective, as previously mentioned in §11.5. The parameter `b
may be responsible for this shortcoming as it does not consider previous route constructions
in the assignment of its values. Future research may benefit from incorporating a backward-
looking intuition into the parameter value assignment with respect to the driver autonomy
objective pursued in this dissertation.
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15.11 Develop an additional approximate solution approach

As mentioned, the results generated by the MACO algorithm of Chapter 10 are difficult to
validate as there are no established benchmarks for the TVRPGC (due to the novelty of the
problem). Hence there are considerable uncertainties related to the quality of the results gener-
ated by the MACO algorithm.

The results returned by the MACO algorithm would benefit from being compared with results
returned by an alternative approximate solution approach for the TVRPGC. The results pre-
sented in Chapter 7 suggest that GAs are well suited to solving VRPs. It is therefore suggested
that a multi-objective GA be tailor-designed for the TVRPGC. This would provide an additional
validation mechanism for the results generated by both algorithms.
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[41] Bektaş T & Laporte G, 2011, The pollution-routing problem, Transportation Research
Part B: Methodological, 45(8), pp. 1232–1250.

[42] Berger J & Barkaoui M, 2003, A new hybrid genetic algorithm for the capacitated
vehicle routing problem, Journal of the Operational Research Society, 54(12), pp. 1254–
1262.

[43] Berkhin P, 2006, A survey of clustering data mining techniques, pp. 25–71 in Kogan J,
Nicholas C & Teboulle M (Eds), Grouping multidimensional data, Springer, Berlin.

[44] Berry MJ & Linoff G, 1997, Data mining techniques: For marketing, sales, and cus-
tomer support , John Wiley & Sons, New York (NY).

[45] BestLogisticsGuide, 2007, Logistics history shows the benefit and importance of logis-
tics, [Online], [accessed 11th October 2016], Available at: http://www.bestlogisticsgu
ide.com/logistics-history.html.

[46] Bhattacherjee V, Mukhopadhyay P, Singh S, Johnson C, Philipose JT, Warn-
er CP, Greene RM & Pisano MM, 2007, Neural crest and mesoderm lineage depen-
dent gene expression in orofacial development , Differentiation, 75(5), pp. 463–477.

[47] Blum C, 2005, Ant colony optimization: Introduction and recent trends, Physics of Life
Reviews, 2(4), pp. 353–373.
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[58] Bräysy O & Gendreau M, 2005, Vehicle routing problem with time windows, part I:
Route construction and local search algorithms, Transportation Science, 39(1), pp. 104–
118.

[59] Brock G, Pihur V, Datta S & Datta S, 2011, clValid, an R package for cluster
validation, Journal of Statistical Software, 25, pp. 1–22.

[60] Brockhoff D, Wagner T & Trautmann H, 2012, On the properties of the R2 in-
dicator , Proceedings of the 14th Annual Conference on Genetic and Evolutionary Com-
putation, Philadelphia (PA), pp. 465–472.

[61] Brown DE, 1998, The regional crime analysis program (RECAP): A framework for
mining data to catch criminals, Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics 1998, pp. 2848–2853.

[62] Brown DE & Huntley CL, 1992, A practical application of simulated annealing to
clustering , Pattern Recognition, 25(4), pp. 401–412.

[63] Brusco MJ & Stahl S, 2006, Branch-and-bound applications in combinatorial data
analysis, Springer, Berlin.

[64] Bullnheimer B, Hartl RF & Strauss C, 1997, A new rank based version of the
Ant System: A computational study, Working Paper No. 1 , SFB Adaptive Information
Systems and Modelling in Economics and Management Science.

[65] Bullnheimer B, Hartl RF & Strauss C, 1999, An improved ant system algorithm
for the vehicle routing problem, Annals of Operations Research, 89, pp. 319–328.

[66] Bullnheimer B, Hartl RF & Strauss C, 1999, Applying the ant system to the vehicle
routing problem, pp. 285–296 in Voss S, Martello S, Osman I & Roucairol C
(Eds), Meta-heuristics: Advances and trends in local search paradigms for optimization,
Springer, Boston (MA).

[67] Burke EK, Gustafson S & Kendall G, 2004, Diversity in genetic programming: An
analysis of measures and correlation with fitness, IEEE Transactions on Evolutionary
Computation, 8(1), pp. 47–62.

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 211

[68] BusinessTech, 2015, How much money your life is actually worth in SA, [Online], [ac-
cessed 11th October 2016], Available at: http://businesstech.co.za/news/general/
102381/how-much-money-your-life-is-actually-worth/.
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[337] Paquete L & Stützle T, 2003, A two-phase local search for the biobjective travel-
ing salesman problem, Proceedings of the Conference on Evolutionary Multi-Criterion
Optimization, Faro, pp. 479–493.

[338] Pathcare, 2017, PathCare is a people-focused, technology-driven laboratory testing ser-
vices pathology practice, [Online], [accessed 10th September 2017], Available at: https:
//www.pathcare.co.za/.

[339] Patil H, 1986, On the structure of k-trees, Journal of Combinatorics, Information and
System Sciences, 11(2-4), pp. 57–64.

[340] Pecin D, Pessoa A, Poggi M & Uchoa E, 2014, Improved branch-cut-and-price for
capacitated vehicle routing , pp. 393–403 in Lee J & Vygen J (Eds), Integer program-
ming and combinatorial optimization, Springer, Berlin.

[341] Pecin D, Poggi M & Martinelli R, 2013, Efficient elementary and restricted non-
elementary route pricing , (Unpublished) Technical Report 11, Pontfical Catholic Univer-
sity of Rio de Janeioro, Rio de Janeiro.
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[376] Rochat Y & Taillard ÉD, 1995, Probabilistic diversification and intensification in
local search for vehicle routing , Journal of Heuristics, 1(1), pp. 147–167.

[377] Rohlf FJ, 1974, Methods of comparing classifications, Annual Review of Ecology and
Systematics, 5, pp. 101–113.

Stellenbosch University  https://scholar.sun.ac.za



228 REFERENCES

[378] Røpke S, 2012, Branching decisions in branch-and-cut-and-price algorithms for vehi-
cle routing problems, Presentation at Column Generation 2012, Bromont, Available at:
https://www.gerad.ca/colloques/ColumnGeneration2012/presentations/session

7/Ropke.pdf.

[379] Rousseeuw PJ, 1987, Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis, Journal of Computational and Applied Mathematics, 20, pp. 53–65.

[380] Ryan DM, Hjorring C & Glover F, 1993, Extensions of the petal method for vehicle
routing , Journal of the Operational Research Society, 44(3), pp. 289–296.

[381] Sakamoto Y, Ishiguro M & Kitagawa G, 1986, Akaike information criterion statis-
tics, Springer, New York (NY).

[382] Salazar-Aguilar MA, Langevin A & Laporte G, 2012, Synchronized arc routing
for snow plowing operations, Computers and Operations Research, 39(7), pp. 1432–1440.

[383] Salhi S & Nagy G, 1999, A cluster insertion heuristic for single and multiple depot
vehicle routing problems with backhauling , Journal of the Operational Research Society,
50(10), pp. 1034–1042.

[384] Santos FA, Mateus GR & Da Cunha AS, 2011, A novel column generation algorithm
for the vehicle routing problem with cross-docking , pp. 412–425 in Pahl J, Reiners T
& Voss S (Eds), Network Optimization, Springer, Berlin.

[385] Santos HG, Ochi LS, Marinho EH & Drummond LMA, 2006, Combining an evo-
lutionary algorithm with data mining to solve a single-vehicle routing problem, Neuro-
computing, 70(1), pp. 70–77.

[386] Sarle WS, 1983, Cubic clustering criterion, SAS Institute, Toronto.

[387] SARS, 2017, Rates per kilometer , [Online], [accessed 22nd October 2017], Available at:
http://www.sars.gov.za/Tax-Rates/Employers/Pages/Rates-per-kilometer.

aspx.

[388] Schaffer JD, 1985, Multiple objective optimization with vector evaluated genetic algo-
rithms, Proceedings of the 1st International Conference on Genetic Algorithms, Pitts-
burgh (PA), pp. 93–100.

[389] Schlünz EB, Bokov PM & Van Vuuren JH, 2014, Research reactor in-core fuel
management optimisation using the multiobjective cross-entropy method , Proceedings of
the 3rd Annual International Conference on Reactor Physics, Kyoto.

[390] Schmitt I & John L, 1994, An empirical computational study of genetic algorithms to
solve order based problems: An emphasis on TSP and VRPTC , PhD Thesis, Memphis
State University, Memphis (TN).

[391] Schneider M, Stenger A & Goeke D, 2014, The electric vehicle-routing problem
with time windows and recharging stations, Transportation Science, 48(4), pp. 500–520.

[392] Schwarz G, 1978, Estimating the dimension of a model , Annals of Statistics, 6(2),
pp. 461–464.

[393] Scott AJ & Symons MJ, 1971, Clustering methods based on likelihood ratio criteria,
Biometrics, 27(2), pp. 387–397.

[394] Scott G, Clark D & Pham T, 2001, A genetic clustering algorithm guided by a descent
algorithm, Proceedings of the 2001 Congress on Evolutionary Computation, pp. 734–740.

[395] Selim SZ & Alsultan K, 1991, A simulated annealing algorithm for the clustering
problem, Pattern Recognition, 24(10), pp. 1003–1008.

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 229

[396] Services NHL, 2008, Consultation on technical and operational recommendation for
clinical laboratory testing harmonization and standardization, [Online], [accessed 11th
May 2015], Available from: http://www.who.int/healthsystems/round11_9.pdf.

[397] Sessomboon W, Watanabe K, Irohara T & Yoshimoto K, 1998, A study on
multi-objective vehicle routing problem considering customer satisfaction with due-time
(the creation of pareto optimal solutions by hybrid genetic algorithm), Transactions of the
Japan Society of Mechanical Engineers, 64, pp. 1108–1115.

[398] Shamir O & Tishby N, 2007, Cluster stability for finite samples, Proceedings of the
21st Annual Conference on Neural Information Processing Systems, Vancouver, pp. 150–
158.

[399] Shannon CE, 2001, A mathematical theory of communication, Mobile Computing and
Communications Review, 5(1), pp. 3–55.

[400] Shaw P, 1997, A new local search algorithm providing high quality solutions to vehicle
routing problems, (Unpublished) Technical Report, APES Group, Department of Com-
puter Science, University of Strathclyde, Glasgow.

[401] El-Sherbeny N, 2001, Resolution of a vehicle routing problem with multi-objective sim-
ulated annealing method , PhD Thesis, Université de Mons-Hainaut, Mons.
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APPENDIX A

Christofides and Eilon Benchmark Test
Instances

This appendix contains specifications for three well-known CVRP benchmark instances of Christ-
ofides and Eilon [82] considered in this dissertation when performing sensitivity analyses and
producing the results reported in Chapter 7.

A.1 The E-n22-k4 CVRP test instance

Data pertaining to the E-n22-k4 CVRP instance of Christofides and Eilon [82] are provided in
Table A.1. These data include the coordinates of the 22 customers in the Euclidean plane, as
well as the demand of each customer.

Table A.1: Location and demand for each customer in benchmark instance E-n22-k4 [82].

Customer X-coordinate Y-coordinate Demand

1 145 215 0
2 151 264 1 100
3 159 261 700
4 130 254 800
5 128 252 1 400
6 163 247 2 100
7 146 246 400
8 161 242 800
9 142 239 100
10 163 236 500
11 148 232 600
12 128 231 1 200
13 156 217 1 300
14 129 214 1 300
15 146 208 300
16 164 208 900
17 141 206 2 100
18 147 193 1 000
19 164 193 900
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Customer X-coordinate Y-coordinate Demand

20 129 189 2 500
21 155 185 1 800
22 139 182 700

A.2 The E-n51-k5 CVRP test instance

Data pertaining to the E-n51-k5 CVRP instance of Christofides and Eilon [82] are provided in
Table A.2. These data include the coordinates of the 51 customers in the Euclidean plane, as
well as the demand of each customer.

Table A.2: Location and demand for each customer in benchmark instance E-n51-k8 [82].

Customer X-coordinate Y-coordinate Demand

1 30 40 0
2 37 52 7
3 49 49 30
4 52 64 16
5 20 26 9
6 40 30 21
7 21 47 15
8 17 63 19
9 31 62 23
10 52 33 11
11 51 21 5
12 42 41 19
13 31 32 29
14 5 25 23
15 12 42 21
16 36 16 10
17 52 41 15
18 27 23 3
19 17 33 41
20 13 13 9
21 57 58 28
22 62 42 8
23 42 57 8
24 16 57 16
25 8 52 10
26 7 38 28
27 27 68 7
28 30 48 15
29 43 67 14
30 58 48 6
31 58 27 19
32 37 69 11
33 38 46 12
34 46 10 23
35 61 33 26
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Customer X-coordinate Y-coordinate Demand

36 62 63 17
37 63 69 6
38 32 22 9
39 45 35 15
40 59 15 14
41 5 6 7
42 10 17 27
43 21 10 13
44 5 64 11
45 30 15 16
46 39 10 10
47 32 39 5
48 25 32 25
49 25 55 17
50 48 28 18
51 56 37 10

A.3 The E-n76-k8 CVRP test instance

Data pertaining to the E-n76-k8 CVRP instance of Christofides and Eilon [82] are provided in
Table A.3. These data include the coordinates of the 76 customers in the Euclidean plane, as
well as the demand of each customer.

Table A.3: Location and demand for each customer in benchmark instance E-n76-k8 [82].

Customer X-coordinate Y-coordinate Demand

1 40 40 0
2 22 22 18
3 36 26 26
4 21 45 11
5 45 35 30
6 55 20 21
7 33 34 19
8 50 50 15
9 55 45 16
10 26 59 29
11 40 66 26
12 55 65 37
13 35 51 16
14 62 35 12
15 62 57 31
16 62 24 8
17 21 36 19
18 33 44 20
19 9 56 13
20 62 48 15
21 66 14 22
22 44 13 28
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Customer X-coordinate Y-coordinate Demand

23 26 13 12
24 11 28 6
25 7 43 27
26 17 64 14
27 41 46 18
28 55 34 17
29 35 16 29
30 52 26 13
31 43 26 22
32 31 76 25
33 22 53 28
34 26 29 27
35 50 40 19
36 55 50 10
37 54 10 12
38 60 15 14
39 47 66 24
40 30 60 16
41 30 50 33
42 12 17 15
43 15 14 11
44 16 19 18
45 21 48 17
46 50 30 21
47 51 42 27
48 50 15 19
49 48 21 20
50 12 38 5
51 15 56 22
52 29 39 12
53 54 38 19
54 55 57 22
55 67 41 16
56 10 70 7
57 6 25 26
58 65 27 14
59 40 60 21
60 70 64 24
61 64 4 13
62 36 6 15
63 30 20 18
64 20 30 11
65 15 5 28
66 50 70 9
67 57 72 37
68 45 42 30
69 38 33 10
70 50 4 8
71 66 8 11
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Customer X-coordinate Y-coordinate Demand

72 59 5 3
73 35 60 1
74 27 24 6
75 40 20 10
76 40 37 20
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APPENDIX B

Vehicle Routes for the George
TVRPGC Instance

This appendix contains the vehicle routes returned by the MACO algorithm of §10.4 in tabular
form for the George TVRPGC instance. The vehicle routes correspond to the solutions depicted
in objective function space in Figure 11.2. The three values highlighted in boldface in each table
correspond the respective objective function values for each solution.

Table B.1: The five vehicle routes proposed by the MACO algorithm in Solution 1 of Figure 11.2 for
the George TVRPGC instance.

Route Customers Autonomy

1 68, 17, 23, 24, 43, 16, 15, 14, 12, 2, 3, 5, 1, 8, 6, 10, 7, 9, 4, 62, 11, 18,
19, 38, 54, 52, 53, 51, 65, 58, 61, 55, 56, 57, 20, 67, 68

681.91

2 68, 21, 31, 47, 42, 41, 45, 46, 44, 29, 30, 28, 27, 25, 26, 59, 60, 37, 36,
34, 35, 33, 67, 68

612.45

3 68, 22, 32, 40, 64, 50, 67, 68 699.46

4 68, 48, 49, 39, 13, 67, 68 705.75
5 68, 67, 63, 66, 68 622.41

Total 3 321.98

Table B.2: The five vehicle routes proposed by the MACO algorithm in Solution 2 of Figure 11.2 for
the George TVRPGC instance.

Route Customers Autonomy

1 68, 8, 6, 10, 9, 1, 4, 21, 31, 43, 47, 46, 45, 42, 63, 41, 44, 30, 27, 28, 25,
26, 58, 59, 60, 61, 65, 55, 56, 57, 67, 68

640.37

2 68, 20, 23, 15, 16, 22, 19, 38, 37, 36, 34, 33, 35, 40, 64, 50, 51, 53, 52,
54, 67, 68

707.11

3 68, 17, 24, 14, 29, 32, 2, 5, 7, 3, 62, 11, 12, 13, 18, 67, 68 436.99

4 68, 49, 39, 48, 67, 68 655.75

5 68, 67, 66, 68 611.94

Total 3 052.16
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Table B.3: The five vehicle routes proposed by the MACO algorithm in Solution 3 of Figure 11.2 for
the George TVRPGC instance.

Route Customers Autonomy

1 68, 56, 55, 65, 54, 52, 53, 64, 40, 35, 33, 34, 36, 37, 45, 67, 68 740.46

2 68, 20, 17, 23, 24, 15, 16, 22, 14, 11, 2, 5, 4, 9, 7, 10, 6, 8, 1, 3, 62, 12,
13, 32, 31, 46, 42, 63, 41, 44, 47, 43, 21, 18, 19, 38, 57, 50, 51, 67, 68

596.11

3 68, 61, 60, 59, 58, 26, 25, 27, 28, 30, 29, 67, 68 447.52

4 68, 49, 39, 48, 67, 68 655.75

5 68, 67, 66, 68 611.94

Total 3 051.77

Table B.4: The four vehicle routes proposed by the MACO algorithm in Solution 4 of Figure 11.2 for
the George TVRPGC instance.

Route Customers Autonomy

1 68, 20, 19, 38, 61, 60, 59, 58, 26, 25, 28, 27, 30, 29, 44, 46, 45, 41, 63,
42, 47, 43, 31, 21, 13, 12, 2, 5, 1, 10, 6, 8, 7, 9, 4, 3, 62, 11, 14, 22, 16,
15, 24, 23, 17, 18, 67, 68

775.85

2 68, 37, 36, 34, 33, 35, 40, 64, 50, 51, 53, 52, 54, 65, 55, 56, 57, 67, 68 690.35

3 68, 49, 39, 48, 32, 67, 68 744.95

4 68, 67, 66, 68 611.94

Total 2 823.09

Table B.5: The four vehicle routes proposed by the MACO algorithm in Solution 5 of Figure 11.2 for
the George TVRPGC instance.

Route Customers Autonomy

1 68, 38, 37, 36, 34, 33, 35, 40, 64, 50, 51, 53, 52, 54, 57, 56, 55, 65, 19,
20, 67, 68

692.62

2 68, 17, 23, 24, 15, 16, 22, 14, 26, 25, 28, 27, 30, 29, 44, 41, 63, 42, 46,
45, 47, 43, 32, 31, 21, 11, 2, 4, 9, 7, 10, 6, 8, 1, 5, 3, 62, 12, 13, 18, 67,
68

656.68

3 68, 61, 60, 59, 58, 39, 49, 48, 67, 68 801.38

4 68, 67, 66, 68 611.94

Total 2 762.63

Table B.6: The four vehicle routes proposed by the MACO algorithm in Solution 6 of Figure 11.2 for
the George TVRPGC instance.

Route Customers Autonomy

1 68, 54, 52, 53, 51, 50, 64, 39, 49, 48, 57, 56, 55, 65, 19, 20, 67, 68 717.85

2 68, 18, 17, 14, 21, 13, 12, 11, 62, 2, 3, 5, 4, 1, 9, 8, 6, 10, 7, 37, 36, 34,
33, 35, 40, 67, 68

867.90

3 68, 24, 23, 22, 16, 15, 32, 31, 43, 47, 45, 46, 42, 63, 41, 44, 29, 30, 27,
28, 25, 26, 58, 59, 60, 61, 38, 67, 68

555.76

4 68, 67, 66, 68 611.94

Total 2 748.46
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Table B.7: The four vehicle routes proposed by the MACO algorithm in Solution 7 of Figure 11.2 for
the George TVRPGC instance.

Route Customers Autonomy

1 68, 20, 18, 17, 23, 24, 22, 16, 15, 14, 21, 31, 43, 47, 42, 63, 41, 45, 46,
44, 29, 30, 28, 27, 26, 25, 58, 59, 60, 61, 48, 49, 50, 51, 53, 52, 54, 57,
56, 55, 65, 38, 19, 67, 68

726.47

2 68, 32, 13, 12, 11, 62, 2, 3, 5, 4, 1, 9, 10, 6, 8, 7, 37, 36, 34, 35, 33, 67,
68

459.27

3 68, 64, 40, 39, 67, 68 908.78

4 68, 67, 66, 68 611.94

Total 2 706.46

Table B.8: The four vehicle routes proposed by the MACO algorithm in Solution 8 of Figure 11.2 for
the George TVRPGC instance.

Route Customers Autonomy

1 68, 20, 38, 19, 31, 32, 43, 47, 46, 45, 42, 63, 41, 44, 27, 28, 25, 26, 30,
29, 21, 13, 15, 16, 22, 14, 24, 23, 17, 18, 67, 68

463.13

2 68, 57, 56, 55, 58, 59, 60, 61, 65, 54, 52, 53, 51, 50, 35, 33, 34, 36, 37, 7,
8, 6, 10, 9, 1, 4, 5, 3, 2, 62, 11, 12, 67, 68

668.63

3 68, 48, 49, 39, 40, 64, 67, 68 911.08

4 68, 67, 66, 68 611.94

Total 2 654.77

Table B.9: The four vehicle routes proposed by the MACO algorithm in Solution 9 of Figure 11.2 for
the George TVRPGC instance.

Route Customers Autonomy

1 68, 64, 40, 39, 49, 48, 57, 19, 20, 67, 68 913.79

2 68, 38, 65, 56, 55, 54, 52, 53, 51, 50, 35, 33, 34, 36, 37, 7, 10, 6, 8, 9, 1,
4, 5, 3, 2, 62, 11, 12, 13, 21, 44, 41, 63, 42, 46, 45, 47, 43, 32, 14, 22, 16,
15, 24, 23, 17, 18, 67, 68

659.93

3 68, 61, 60, 59, 58, 26, 25, 27, 28, 30, 29, 31, 67, 68 451.42

4 68, 67, 66, 68 611.94

Total 2 637.08

Table B.10: The four vehicle routes proposed by the MACO algorithm in Solution 10 of Figure 11.2
for the George TVRPGC instance.

Route Customers Autonomy

1 68, 20, 19, 57, 56, 55, 61, 60, 59, 58, 26, 25, 28, 27, 30, 29, 44, 41, 63,
42, 45, 46, 47, 43, 32, 31, 21, 12, 11, 13, 14, 15, 16, 22, 24, 23, 17, 18,
67, 68

696.04

2 68, 54, 52, 53, 51, 50, 40, 64, 39, 49, 48, 65, 38, 67, 68 952.74

3 68, 33, 35, 34, 36, 37, 7, 10, 6, 8, 9, 1, 4, 5, 3, 2, 62, 67, 68 313.10

4 68, 67, 66, 68 611.94

Total 2 573.82
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Table B.11: The three vehicle routes proposed by the MACO algorithm in Solution 11 of Figure 11.2
for the George TVRPGC instance.

Route Customers Autonomy

1 68, 20, 19, 65, 55, 56, 57, 48, 49, 39, 40, 64, 53, 52, 54, 38, 18, 21, 67, 68 965.14

2 68, 13, 12, 11, 62, 2, 3, 5, 4, 1, 9, 10, 6, 8, 7, 37, 36, 34, 33, 35, 50, 51,
61, 60, 59, 58, 26, 25, 28, 27, 30, 29, 44, 14, 22, 16, 15, 24, 23, 17, 67, 68

846.99

3 68, 41, 63, 42, 46, 45, 47, 43, 32, 31, 67, 66, 68 746.52

Total 2 558.65
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APPENDIX C

Vehicle Routes for the Western Cape
TVRPGC Instance

This appendix contains the vehicle routes returned by the MACO algorithm of §10.4 in tabular
form for the Western Cape TVRPGC instance. The vehicle routes correspond to the solutions
depicted in objective function space in Figure 13.1. The three values highlighted in boldface in
each table correspond the respective objective function values for each solution.
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Table C.1: The twenty five vehicle routes proposed by the MACO algorithm in Solution 1 of Figure 13.1
for the Western Cape TVRPGC instance.

Route Customers Autonomy

1 386, 174, 369, 184, 185, 294, 300, 299, 305, 308, 297, 309, 310, 377, 360,
288, 74, 287, 282, 286, 283, 252, 292, 212, 303, 207, 371, 213, 304, 290,
3, 376, 257, 206, 279, 280, 256, 198, 197, 196, 210, 194, 5, 262, 366, 277,
193, 190, 192, 191, 260, 239, 276, 272, 273, 274, 367, 269, 258, 243, 244,
242, 291, 268, 56, 240, 176, 377, 386

499.00

2 385, 202, 201, 281, 203, 189, 295, 9, 209, 204, 238, 235, 236, 4, 222, 223,
230, 10, 226, 227, 11, 225, 224, 221, 220, 219, 237, 217, 216, 255, 205,
265, 208, 296, 284, 285, 253, 254, 356, 361, 250, 251, 289, 264, 267, 377,
385

575.25

3 384, 75, 52, 53, 54, 49, 372, 57, 50, 18, 48, 45, 41, 39, 42, 40, 38, 29, 34,
37, 36, 70, 80, 76, 71, 373, 72, 377, 384

585.26

4 384, 307, 306, 322, 293, 318, 81, 78, 77, 84, 79, 69, 68, 67, 97, 100, 99,
66, 63, 65, 96, 85, 86, 89, 88, 91, 92, 105, 109, 62, 83, 60, 59, 82, 367,
384

546.53

5 384, 211, 6, 259, 127, 119, 362, 374, 128, 200, 7, 199, 278, 263, 195, 325,
377, 384

783.63

6 384, 245, 64, 95, 94, 93, 355, 104, 103, 110, 102, 101, 108, 106, 367, 384 610.93

7 382, 163, 162, 164, 167, 148, 130, 131, 141, 123, 122, 117, 147, 146, 144,
143, 365, 382

718.25

8 382, 152, 156, 155, 154, 140, 374, 382 600.16

9 384, 313, 188, 317, 316, 323, 339, 370, 342, 354, 352, 321, 312, 311, 320,
315, 319, 377, 384

603.14

10 378, 270, 271, 175, 178, 179, 331, 330, 333, 334, 336, 337, 23, 24, 335,
30, 332, 32, 33, 338, 180, 177, 182, 173, 181, 172, 183, 186, 73, 377, 378

599.47

11 384, 215, 241, 314, 246, 298, 90, 345, 351, 353, 358, 357, 249, 326, 8,
248, 247, 266,
367, 384 566.85

12 385, 25, 27, 26, 22, 136, 137, 139, 151, 363, 125, 124, 129, 365, 165, 377,
385

749.02

13 383, 232, 2, 231, 233, 376, 383 707.48

14 387, 350, 347, 346, 348, 376, 387 768.47

15 380, 111, 120, 116, 118, 114, 115, 113, 112, 121, 187, 214, 367, 380 764.46

16 383, 166, 149, 364, 383 594.07

17 388, 344, 349, 343, 341, 340, 360, 388 754.00

18 385, 329, 368, 327, 31, 17, 20, 16, 19, 28, 15, 14, 12, 21, 13, 46, 377, 385 641.04

19 386, 87, 35, 43, 359, 47, 51, 55, 58, 328, 369, 386 827.25

20 385, 275, 150, 364, 385 795.41

21 387, 171, 170, 169, 168, 261, 229, 1, 228, 234, 218, 376, 387 678.54

22 380, 145, 159, 158, 160, 161, 157, 153, 142, 126, 132, 134, 133, 374, 380 617.21

23 388, 98, 138, 135, 302, 301, 360, 388 806.15

24 381, 324, 44, 372, 381 636.70

25 384, 107, 61, 364, 375, 384 790.58

Total 16 818.83
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Table C.2: The twenty vehicle routes proposed by the MACO algorithm in Solution 2 of Figure 13.1
for the Western Cape TVRPGC instance.

Route Customers Autonomy

1 384, 194, 325, 211, 210, 196, 197, 195, 280, 281, 203, 189, 295, 266, 267,
206, 249, 8, 326, 248, 247, 319, 315, 320, 324, 287, 74, 282, 3, 303, 375,
212, 292, 207, 296, 208, 261, 371, 213, 304, 230, 229, 231, 1, 2, 290, 232,
233, 234, 222, 227, 226, 10, 11, 225, 224, 221, 220, 219, 4, 236, 235, 237,
238, 217, 216, 218, 257, 265, 205, 255, 204, 209, 9, 264, 202, 7, 200, 199,
263, 256, 198, 6, 259, 258, 291, 268, 314, 246, 309, 310, 12, 298, 242,
241, 215, 240, 175, 272, 271, 273, 270, 274, 367, 187, 214, 269, 260, 275,
276, 239, 191, 190, 277, 192, 262, 5, 375, 384

621.94

2 386, 30, 33, 32, 73, 186, 183, 172, 181, 184, 62, 109, 101, 102, 361, 108,
107, 106, 178, 174, 369, 176, 177, 180, 375, 386

608.66

3 388, 340, 341, 343, 342, 355, 356, 104, 103, 110, 105, 93, 92, 88, 87, 89,
373, 388

753.74

4 378, 13, 15, 25, 26, 27, 136, 135, 21, 22, 23, 24, 337, 377, 378 491.28

5 381, 151, 154, 139, 140, 138, 137, 14, 168, 169, 170, 171, 165, 365, 381 577.36

6 385, 366, 193, 279, 278, 201, 313, 311, 312, 360, 317, 316, 188, 377, 321,
323, 288, 253, 254, 252, 284, 283, 285, 286, 289, 251, 250, 61, 83, 60, 59,
82, 63, 245, 66, 99, 98, 100, 81, 71, 373, 52, 53, 54, 57, 372, 49, 58, 72,
182, 173, 185, 306, 307, 308, 305, 322, 294, 318, 293, 302, 301, 300, 299,
297, 56, 243, 244, 376, 385

508.80

7 378, 17, 155, 152, 16, 20, 18, 372, 378 558.30

8 378, 84, 76, 77, 78, 79, 80, 70, 69, 68, 67, 97, 34, 38, 42, 39, 41, 46, 45,
359, 47, 48, 51, 55, 373, 378

572.20

9 385, 223, 228, 75, 65, 64, 95, 94, 96, 85, 86, 37, 36, 35, 40, 43, 44, 29,
50, 19, 28, 332, 31, 329, 328, 368, 327, 330, 331, 338, 179, 375, 385

772.58

10 382, 114, 111, 119, 120, 116, 118, 117, 147, 146, 365, 382 638.26

11 387, 129, 148, 167, 130, 365, 374, 128, 127, 133, 363, 375, 387 823.57

12 385, 131, 123, 142, 141, 153, 157, 369, 385 679.84

13 380, 121, 122, 134, 124, 132, 126, 125, 156, 164, 162, 163, 161, 160, 158,
145, 143, 144, 115, 113, 112, 374, 380

696.34

14 387, 345, 344, 370, 339, 358, 357, 375, 387 568.93

15 385, 346, 347, 376, 385 643.16

16 382, 150, 149, 159, 166, 365, 382 826.15

17 386, 333, 334, 336, 335, 90, 91, 352, 353, 369, 386 593.83

18 385, 351, 350, 348, 376, 385 634.76

19 381, 362, 364, 375, 381 857.57

20 88, 354, 349, 360, 388 772.94

Total 13 200.20
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Table C.3: The eighteen vehicle routes proposed by the MACO algorithm in Solution 3 of Figure 13.1
for the Western Cape TVRPGC instance.

Route Customers Autonomy

1 385, 274, 276, 239, 275, 260, 269, 191, 192, 262, 366, 5, 194, 193, 277,
325, 195, 7, 201, 281, 203, 189, 295, 266, 202, 247, 248, 8, 326, 249, 206,
267, 264, 265, 257, 376, 3, 212, 303, 207, 292, 282, 287, 324, 320, 315,
311, 312, 313, 377, 360, 323, 321, 310, 246, 309, 299, 300, 301, 302, 293,
318, 322, 294, 100, 98, 67, 68, 69, 70, 80, 79, 373, 71, 81, 84, 78, 77, 76,
55, 51, 48, 17, 15, 13, 12, 14, 16, 20, 18, 50, 372, 57, 49, 54, 58, 52, 72,
73, 186, 183, 172, 181, 185, 173, 182, 175, 272, 271, 273, 270, 244, 243,
242, 241, 215, 240, 56, 298, 297, 314, 268, 291, 196, 210, 211, 6, 259,
258, 214, 187, 376, 385

685.00

2 382, 167, 166, 165, 365, 171, 170, 169, 168, 137, 138, 140, 376, 382 912.54

3 378, 288, 289, 82, 59, 60, 83, 61, 62, 356, 355, 104, 103, 110, 102, 109,
101, 361, 108, 107, 106, 250, 251, 376, 378

595.20

4 382, 145, 143, 144, 146, 147, 148, 129, 130, 162, 163, 161, 160, 365, 382 557.62

5 387, 174, 178, 290, 232, 2, 1, 233, 176, 335, 24, 23, 22, 135, 136, 26, 27,
25, 337, 336, 334, 333, 328, 368, 327, 329, 330, 180, 177, 376, 387

623.38

6 383, 285, 286, 372, 383 684.16

7 380, 121, 122, 21, 131, 128, 127, 133, 134, 124, 123, 112, 119, 117, 118,
116, 120, 111, 114, 115, 113, 374, 380

715.58

8 381, 9, 222, 4, 236, 235, 32, 372, 381 635.76

9 378, 66, 245, 63, 65, 64, 105, 93, 92, 90, 91, 88, 89, 87, 86, 85, 37, 36,
35, 34, 38, 42, 39, 41, 46, 359, 47, 372, 378

720.07

10 378, 252, 253, 254, 283, 284, 371, 213, 261, 208, 296, 231, 304, 229, 230,
10, 227, 226, 11, 225, 224, 223, 228, 221, 220, 219, 237, 234, 218, 238,
217, 216, 255, 205, 209, 204, 190, 367, 338, 31, 33, 19, 28, 30, 332, 179,
369, 184, 376, 378

590.57

11 385, 305, 75, 97, 29, 43, 44, 40, 96, 95, 352, 354, 357, 358, 99, 306, 307,
308, 188, 317, 316, 74, 319, 200, 199, 278, 279, 263, 280, 256, 198, 197,
366, 385

637.67

12 378, 149, 364, 376, 378 805.96

13 381, 152, 157, 153, 142, 141, 132, 126, 125, 158, 159, 164, 139, 154, 156,
155, 151, 374, 381

564.59

14 388, 340, 341, 345, 348, 346, 347, 349, 350, 351, 344, 360, 388 931.08

15 387, 353, 339, 370, 343, 342, 376, 387 562.63

16 385, 53, 150, 45, 372, 385 825.88

17 386, 331, 94, 362, 374, 375, 386 939.12

18 386, 363, 376, 386 592.09

Total 12 578.89
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Table C.4: The seventeen vehicle routes proposed by the MACO algorithm in Solution 4 of Figure 13.1
for the Western Cape TVRPGC instance.

Route Customers Autonomy

1 385, 176, 177, 180, 330, 329, 327, 368, 331, 338, 179, 178, 369, 184, 181,
185, 173, 182, 294, 322, 318, 293, 302, 301, 300, 299, 309, 246, 310, 321,
317, 316, 74, 287, 324, 320, 315, 247, 319, 314, 268, 291, 297, 298, 56,
242, 243, 244, 258, 259, 6, 210, 196, 197, 198, 280, 263, 279, 278, 199,
200, 7, 281, 201, 202, 295, 189, 203, 266, 267, 206, 282, 286, 284, 283,
252, 3, 212, 303, 207, 296, 208, 261, 371, 213, 230, 229, 304, 231, 234,
233, 1, 2, 232, 290, 205, 255, 257, 265, 264, 204, 209, 9, 216, 217, 238,
218, 235, 236, 4, 219, 220, 221, 222, 228, 223, 10, 226, 227, 11, 225, 224,
190, 193, 5, 366, 262, 375, 385

623.22

2 379, 101, 109, 102, 110, 103, 104, 105, 93, 241, 215, 240, 175, 272, 271,
273, 270, 274, 367, 269, 260, 275, 239, 191, 192, 313, 311, 312, 377, 360,
323, 288, 289, 251, 250, 106, 107, 108, 371, 379

627.95

3 386, 174, 172, 183, 306, 305, 307, 308, 188, 75, 186, 73, 72, 81, 71, 373,
41, 46, 47, 48, 51, 55, 58, 54, 49, 372, 375, 386

586.59

4 380, 121, 122, 123, 131, 152, 151, 155, 156, 157, 153, 141, 142, 144, 146,
147, 117, 118, 119, 111, 114, 115, 113, 112, 374, 380

595.70

5 385, 276, 194, 325, 277, 195, 211, 124, 134, 133, 127, 374, 130, 128, 214,
187, 375, 385

659.31

6 384, 256, 248, 249, 326, 8, 292, 253, 254, 82, 59, 60, 83, 61, 62, 63, 245,
65, 64, 66, 99, 100, 98, 67, 68, 69, 70, 80, 79, 84, 78, 77, 76, 19, 28, 15,
13, 12, 53, 52, 367, 384

561.15

7 388, 340, 341, 343, 342, 355, 356, 354, 352, 353, 358, 357, 339, 345, 351,
344, 360, 388

923.05

8 382, 160, 161, 163, 162, 164, 167, 166, 165, 365, 143, 145, 371, 382 939.25

9 384, 125, 126, 362, 363, 371, 384 716.57

10 387, 332, 237, 285, 361, 92, 90, 91, 88, 89, 87, 86, 85, 40, 43, 44, 29, 42,
39, 38, 34, 35, 37, 36, 96, 94, 95, 97, 371, 387

712.43

11 378, 32, 33, 31, 30, 328, 333, 334, 335, 336, 337, 24, 27, 26, 17, 16, 20,
18, 50, 57, 372, 378

473.24

12 388, 348, 346, 347, 349, 350, 360, 388 764.92

13 380, 154, 139, 140, 138, 137, 168, 169, 170, 171, 158, 148, 129, 374, 380 655.42

14 386, 359, 45, 14, 25, 23, 136, 135, 21, 22, 369, 386 847.78

15 382, 150, 120, 116, 132, 374, 382 749.49

16 383, 149, 159, 374, 383 658.44

17 378, 370, 364, 376, 378 914.88

Total 12 009.38
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Table C.5: The fifteen vehicle routes proposed by the MACO algorithm in Solution 5 of Figure 13.1 for
the Western Cape TVRPGC instance.

Route Customers Autonomy

1 384, 5, 262, 192, 191, 190, 277, 193, 325, 195, 263, 197, 196, 198, 256,
319, 247, 248, 8, 326, 249, 206, 3, 290, 232, 2, 1, 233, 231, 223, 228, 222,
235, 236, 4, 219, 220, 221, 224, 225, 11, 10, 226, 227, 230, 229, 304, 371,
213, 261, 208, 296, 207, 375, 303, 212, 252, 283, 284, 286, 285, 282, 74,
287, 324, 320, 315, 311, 313, 372, 377, 321, 323, 360, 310, 182, 173, 185,
184, 181, 172, 183, 186, 73, 33, 31, 32, 30, 332, 330, 331, 338, 179, 180,
177, 369, 174, 178, 175, 272, 271, 273, 270, 274, 276, 239, 260, 269, 367,
187, 214, 258, 259, 6, 210, 211, 194, 371, 384

754.29

2 381, 151, 7, 124, 125, 126, 132, 134, 133, 127, 128, 130, 122, 113, 111,
119, 117, 120, 116, 118, 115, 112, 123, 131, 142, 141, 153, 157, 155, 156,
152, 374, 381

969.43

3 378, 58, 54, 49, 57, 50, 18, 20, 16, 17, 161, 160, 158, 159, 45, 46, 47, 48,
51, 55, 373, 378

762.52

4 384, 291, 242, 243, 240, 215, 241, 56, 297, 298, 309, 299, 300, 301, 302,
293, 318, 294, 322, 305, 308, 307, 306, 75, 81, 71, 373, 84, 76, 77, 78, 79,
80, 70, 69, 68, 67, 97, 98, 100, 99, 82, 59, 60, 83, 61, 62, 361, 108, 107,
106, 250, 251, 289, 288, 188, 317, 316, 312, 246, 314, 268, 279, 278, 199,
200, 202, 266, 267, 264, 265, 257, 292, 254, 253, 234, 237, 218, 217, 238,
255, 205, 9, 209, 204, 203, 189, 295, 201, 281, 280, 375, 384

615.45

5 384, 353, 352, 354, 351, 348, 345, 341, 340, 343, 370, 344, 339, 371, 384 839.59

6 379, 101, 109, 14, 15, 12, 13, 21, 22, 24, 26, 27, 25, 28, 19, 53, 52, 360,
379

650.46

7 383, 171, 170, 169, 168, 137, 138, 140, 139, 154, 121, 148, 164, 162, 163,
167, 166, 165, 374, 383

644.97

8 383, 150, 145, 143, 144, 146, 147, 129, 374, 383 652.61

9 378, 38, 41, 39, 42, 40, 43, 44, 29, 34, 35, 36, 37, 85, 86, 87, 89, 88, 91,
90, 92, 93, 105, 104, 103, 110, 102, 361, 378

566.95

10 387, 244, 275, 366, 216, 63, 245, 65, 64, 94, 95, 96, 72, 23, 136, 135, 336,
176, 371, 387

629.54

11 379, 329, 66, 357, 358, 342, 355, 356, 360, 379 847.10

12 386, 335, 337, 334, 333, 328, 327, 363, 362, 374, 376, 386 912.37

13 380, 114, 365, 364, 371, 380 872.29

14 386, 350, 349, 347, 346, 369, 386 872.74
15 387, 368, 359, 149, 371, 387 846.70

Total 11 436.99
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Table C.6: The fourteen vehicle routes proposed by the MACO algorithm in Solution 6 of Figure 13.1
for the Western Cape TVRPGC instance.

Route Customers Autonomy

1 387, 174, 178, 176, 177, 180, 338, 331, 330, 368, 328, 333, 334, 335, 336,
337, 25, 27, 26, 23, 22, 21, 13, 12, 14, 17, 16, 20, 18, 50, 57, 372, 49, 58,
54, 53, 52, 76, 77, 78, 84, 79, 80, 70, 69, 68, 67, 98, 100, 373, 71, 81, 75,
306, 307, 308, 305, 322, 294, 182, 173, 185, 181, 184, 375, 387

725.33

2 380, 112, 113, 115, 114, 111, 119, 120, 116, 118, 117, 147, 146, 144, 143,
145, 160, 161, 163, 162, 164, 365, 171, 170, 169, 168, 137, 372, 380

950.59

3 385, 247, 248, 8, 326, 249, 206, 287, 74, 360, 323, 288, 289, 92, 91, 90,
93, 105, 104, 103, 110, 102, 109, 101, 361, 108, 107, 106, 61, 83, 60, 59,
82, 250, 251, 254, 253, 252, 284, 283, 286, 282, 208, 261, 296, 207, 303,
375, 212, 3, 376, 257, 265, 264, 267, 266, 295, 202, 366, 385

574.54

4 386, 179, 369, 240, 215, 241, 242, 291, 268, 313, 321, 66, 99, 318, 293,
302, 301, 300, 299, 309, 246, 310, 188, 316, 317, 312, 311, 315, 320, 324,
285, 213, 371, 292, 290, 232, 2, 1, 233, 234, 228, 10, 223, 222, 219, 235,
236, 4, 237, 218, 238, 217, 216, 255, 205, 204, 209, 9, 203, 189, 281, 201,
7, 200, 199, 278, 279, 280, 195, 256, 263, 198, 197, 196, 211, 210, 194,
277, 325, 193, 190, 191, 192, 5, 366, 262, 6, 259, 258, 214, 187, 367, 269,
260, 275, 239, 274, 270, 273, 271, 272, 175, 377, 386

587.01

5 381, 151, 138, 24, 28, 15, 19, 48, 46, 47, 11, 136, 135, 140, 139, 154, 374,
381

908.99

6 378, 339, 345, 351, 344, 340, 341, 343, 342, 354, 355, 356, 377, 378 719.94

7 387, 276, 225, 226, 227, 230, 229, 304, 231, 319, 314, 97, 94, 96, 86, 88,
358, 357, 89, 87, 85, 36, 37, 35, 34, 38, 39, 41, 42, 40, 43, 44, 29, 298,
297, 56, 243, 244, 367, 387

665.72

8 383, 166, 165, 374, 127, 133, 134, 132, 126, 125, 124, 123, 131, 141, 142,
152, 363, 155, 156, 157, 153, 128, 130, 129, 148, 167, 158, 159, 375, 383

1 011.22

9 384, 329, 327, 30, 332, 33, 31, 32, 73, 72, 186, 183, 172, 64, 65, 352, 353,
370, 63, 245, 62, 95, 372, 384

867.71

10 385, 224, 221, 220, 55, 51, 45, 149, 359, 372, 385 782.64

11 386, 346, 347, 348, 369, 386 766.29

12 380, 121, 122, 150, 364, 372, 380 992.53

13 382, 350, 349, 372, 382 941.87

14 379, 362, 372, 379 843.70

Total 11 338.12
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Table C.7: The fifteen vehicle routes proposed by the MACO algorithm in Solution 7 of Figure 13.1 for
the Western Cape TVRPGC instance.

Route Customers Autonomy

1 385, 366, 5, 262, 191, 190, 238, 217, 216, 218, 237, 235, 236, 4, 219, 220,
221, 224, 223, 228, 222, 234, 233, 1, 304, 230, 229, 231, 2, 232, 290, 303,
375, 212, 292, 207, 371, 252, 253, 254, 82, 59, 60, 83, 62, 61, 250, 323,
360, 310, 309, 298, 297, 314, 246, 188, 377, 313, 315, 320, 324, 311, 312,
317, 316, 287, 74, 282, 285, 286, 283, 284, 3, 257, 265, 205, 255, 9, 209,
204, 264, 267, 266, 206, 249, 326, 8, 248, 319, 247, 203, 189, 295, 202,
200, 7, 201, 281, 280, 263, 279, 278, 199, 256, 198, 197, 196, 210, 211,
195, 325, 277, 193, 194, 6, 259, 258, 244, 243, 242, 56, 241, 215, 240,
175, 272, 271, 273, 270, 276, 239, 275, 260, 269, 274, 376, 385

555.68

2 378, 106, 108, 107, 361, 101, 109, 102, 110, 103, 104, 105, 93, 92, 91, 75,
81, 71, 373, 54, 53, 52, 72, 375, 378

608.02

3 385, 214, 187, 225, 10, 226, 227, 11, 192, 291, 268, 321, 299, 300, 301,
302, 293, 318, 294, 322, 305, 308, 307, 306, 99, 182, 173, 185, 184, 181,
172, 183, 186, 73, 33, 31, 32, 30, 332, 330, 331, 338, 179, 180, 177, 176,
178, 174, 369, 367, 368, 375, 385

638.66

4 381, 151, 22, 21, 13, 12, 15, 19, 28, 25, 26, 27, 24, 23, 154, 374, 381 578.64

5 378, 51, 49, 372, 57, 50, 17, 14, 16, 20, 18, 48, 47, 46, 41, 39, 42, 38, 29,
34, 35, 36, 37, 85, 86, 363, 374, 375, 378

1 013.06

6 388, 344, 351, 348, 345, 339, 353, 352, 354, 356, 355, 342, 343, 341, 340,
360, 388

947.17

7 385, 296, 208, 261, 213, 288, 289, 251, 245, 63, 66, 64, 65, 94, 95, 96,
40, 44, 43, 55, 58, 76, 77, 78, 84, 79, 80, 70, 69, 68, 67, 97, 98, 100, 328,
368, 385

538.94

8 386, 327, 329, 90, 358, 357, 88, 89, 87, 335, 337, 336, 334, 333, 369, 386 694.74

9 380, 121, 123, 131, 138, 152, 155, 156, 157, 153, 142, 141, 129, 130, 128,
127, 133, 134, 132, 126, 125, 124, 122, 112, 113, 115, 114, 111, 120, 117,
118, 119, 116, 374, 380

649.44

10 383, 171, 168, 169, 170, 165, 166, 167, 148, 147, 146, 144, 143, 145, 160,
161, 163, 162, 164, 374, 383

572.58

11 381, 139, 140, 136, 135, 137, 365, 362, 375, 381 1 019.85

12 387, 370, 346, 347, 349, 350, 375, 387 805.75

13 385, 45, 159, 158, 359, 372, 385 691.55

14 382, 150, 149, 365, 382 821.79

15 378, 364, 375, 378 562.15

Total 10 698.07
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Table C.8: The sixteen vehicle routes proposed by the MACO algorithm in Solution 8 of Figure 13.1
for the Western Cape TVRPGC instance.

Route Customers Autonomy

1 384, 5, 187, 214, 367, 274, 276, 270, 273, 271, 272, 178, 174, 369, 179,
338, 330, 329, 327, 368, 328, 333, 334, 335, 331, 176, 175, 258, 259, 6,
210, 211, 196, 197, 256, 279, 278, 199, 200, 7, 202, 247, 248, 8, 326, 249,
206, 264, 265, 255, 205, 290, 232, 2, 1, 233, 234, 231, 304, 229, 230, 10,
227, 226, 11, 223, 222, 235, 236, 4, 237, 217, 216, 204, 209, 9, 203, 189,
295, 266, 267, 201, 281, 280, 325, 193, 190, 277, 194, 371, 384

578.91

2 382, 160, 163, 162, 164, 167, 158, 159, 45, 359, 47, 372, 382 809.91

3 378, 12, 13, 15, 25, 26, 27, 135, 22, 23, 24, 269, 260, 275, 239, 191, 192,
262, 366, 198, 263, 195, 238, 220, 219, 218, 257, 3, 303, 212, 292, 207,
371, 284, 252, 375, 378

523.41

4 378, 308, 307, 299, 300, 301, 302, 293, 318, 294, 322, 305, 306, 182, 75,
73, 72, 52, 76, 77, 78, 79, 84, 71, 373, 81, 100, 99, 66, 64, 65, 245, 63,
82, 250, 251, 289, 288, 74, 286, 285, 283, 296, 208, 261, 213, 254, 253,
282, 287, 324, 320, 315, 319, 314, 268, 291, 242, 243, 244, 240, 215, 241,
56, 297, 298, 309, 310, 246, 313, 311, 312, 377, 317, 316, 323, 377, 378

487.69

5 388, 19, 17, 14, 16, 54, 58, 372, 388 601.33

6 381, 152, 155, 156, 157, 153, 141, 142, 124, 125, 126, 132, 134, 133, 127,
374, 130, 129, 148, 365, 165, 166, 161, 128, 121, 112, 113, 362, 122, 123,
131, 154, 151, 375, 381

1 022.79

7 387, 184, 93, 91, 90, 357, 358, 353, 352, 339, 344, 340, 370, 92, 94, 95,
96, 97, 98, 67, 68, 69, 70, 80, 360, 371, 387

593.46

8 378, 185, 173, 186, 183, 172, 181, 177, 180, 221, 106, 107, 108, 109, 101,
361, 102, 110, 103, 104, 105, 62, 61, 83, 59, 60, 371, 378

535.61

9 386, 31, 33, 32, 48, 46, 41, 39, 42, 38, 40, 55, 51, 372, 57, 50, 18, 20, 28,
337, 336, 30, 332, 375, 386

645.74

10 380, 115, 114, 111, 119, 120, 116, 118, 117, 147, 146, 144, 145, 143, 168,
21, 140, 374, 380

719.24

11 384, 224, 225, 228, 321, 53, 49, 29, 44, 43, 34, 35, 37, 36, 85, 86, 87, 89,
88, 354, 188, 377, 384

653.34

12 388, 351, 350, 349, 347, 346, 348, 345, 341, 343, 342, 355, 361, 388 968.60

13 387, 364, 363, 139, 138, 137, 136, 371, 387 822.75

14 380, 169, 170, 171, 365, 380 345.60

15 379, 356, 376, 379 362.89
16 382, 149, 150, 365, 382 845.12

Total 10 516.37
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Table C.9: The thirteen vehicle routes proposed by the MACO algorithm in Solution 9 of Figure 13.1
for the Western Cape TVRPGC instance.

Route Customers Autonomy

1 387, 174, 178, 180, 177, 176, 175, 272, 271, 273, 270, 274, 276, 239, 275,
260, 269, 367, 187, 214, 258, 259, 6, 191, 190, 193, 325, 277, 194, 5, 262,
192, 366, 210, 211, 196, 197, 195, 9, 209, 204, 216, 217, 238, 218, 237, 4,
236, 235, 222, 219, 220, 221, 224, 225, 11, 227, 226, 10, 223, 228, 229,
230, 304, 231, 234, 233, 1, 2, 232, 290, 205, 255, 265, 257, 376, 3, 212,
303, 207, 296, 208, 261, 371, 213, 292, 253, 254, 252, 283, 284, 286, 285,
282, 74, 251, 250, 61, 83, 60, 59, 82, 63, 245, 92, 65, 64, 66, 310, 246,
188, 377, 313, 311, 312, 317, 316, 287, 324, 320, 315, 319, 247, 248, 8,
326, 249, 206, 264, 267, 266, 203, 189, 295, 202, 201, 281, 7, 200, 199,
278, 279, 280, 263, 256, 198, 268, 314, 291, 242, 56, 241, 215, 240, 367,
387

670.92

2 384, 372, 57, 18, 20, 16, 17, 19, 28, 15, 14, 12, 13, 21, 22, 23, 26, 27, 25,
24, 337, 336, 335, 334, 333, 328, 368, 327, 329, 330, 331, 338, 179, 376,
384

659.32

3 380, 374, 130, 129, 148, 167, 166, 165, 365, 171, 170, 169, 168, 137, 138,
140, 139, 154, 151, 363, 152, 155, 156, 376, 380

1 060.16

4 388, 342, 339, 345, 351, 350, 349, 347, 346, 348, 344, 340, 360, 388 1 025.14

5 380, 113, 115, 114, 111, 119, 118, 116, 120, 117, 147, 146, 144, 143, 145,
160, 161, 163, 162, 164, 128, 127, 133, 134, 132, 126, 125, 124, 131, 141,
142, 153, 123, 122, 121, 374, 380

687.67

6 388, 99, 100, 98, 67, 68, 72, 73, 186, 183, 172, 181, 369, 184, 185, 173,
182, 75, 294, 322, 305, 308, 307, 306, 376, 388

617.74

7 378, 32, 50, 51, 48, 47, 46, 41, 39, 42, 38, 29, 44, 43, 40, 34, 35, 55, 58,
49, 54, 53, 52, 76, 77, 78, 84, 69, 70, 80, 79, 373, 71, 81, 375, 378

488.65

8 387, 244, 243, 360, 299, 300, 301, 302, 293, 318, 97, 96, 95, 94, 93, 105,
104, 356, 355, 289, 288, 323, 321, 309, 298, 297, 376, 387

629.07

9 379, 102, 110, 103, 91, 90, 353, 358, 357, 88, 89, 87, 86, 85, 62, 106, 108,
107, 109, 101, 360, 379

742.79

10 384, 361, 354, 343, 341, 370, 352, 37, 36, 376, 384 715.14

11 384, 33, 31, 30, 332, 136, 135, 157, 112, 362, 158, 159, 376, 384 848.09

12 383, 45, 359, 149, 364, 383 722.24

13 385, 364, 150, 376, 385 803.14

Total 9 670.06
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