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Abstract

In stochastic simulation optimisation, several system designs are consid-

ered. These designs are ranked in order and the best is selected based on

one or more performance measures. Any ranking and selection (R&S) pro-

cedure must ensure that the correct system design is chosen, and this is a

challenging task in the stochastic environment.

This dissertation discusses the design and development of a new multi-

objective ranking and selection (MORS) procedure, called Procedure MMY,

and two variants of it, called Procedures MMY1 and MMY2.

Single-objective ranking and selection procedures endeavour to find the best

system, i.e., the system with the minimum or maximum output, out of a

limited number of feasible solutions. There are two important approaches in

the single-objective R&S area: the indifference-zone (IZ) approach and the

optimal computing budget allocation (OCBA) framework. While the OCBA

procedure has been extended to the multi-objective domain, an MORS pro-

cedure with the IZ approach has not yet appeared in the literature. The

MMY family procedures have been developed in an attempt to fill this gap,

therefore they take the IZ approach.

Indifference-zone procedures should guarantee that the probability of cor-

rect selection is at least a prespecified value P ∗, denoted by P (CS) ≥ P ∗,

where ‘correct selection’ denotes the event that the system with the mini-

mum output is selected for a single-objective minimisation problem. In the

multi-objective context, Pareto optimality is employed to define ‘correct

selection’.

The concept of relaxed Pareto optimality is proposed in this research to ac-

commodate the indifference-zone concept properly in the multi-objective do-

main. Thus, Procedure MMY guarantees P (CS) ≥ P ∗ considering the event
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Stellenbosch University  https://scholar.sun.ac.za



of identifying a relaxed Pareto set as a correct selection. Procedure MMY1

tries to find the normal Pareto optimal set while Procedure MMY2 focuses

on identifying Pareto optimal solutions with the IZ concept.

The statistical validity of the MMY family procedures is proved through

rigorous mathematical analyses in this dissertation. A Bayesian probability

model was used in the P (CS) formulation in the proofs. Using a Bayesian

model in the P (CS) formulation in IZ R&S procedures is a novel approach

even in the single-objective context. The researcher therefore proposed a

new single-objective R&S procedure, called Procedure MY, in addition to

the multi-objective MMY family procedures. The MY procedure is dis-

cussed prior to the discussion of the MMY family procedures, verifying the

effectiveness of the Bayesian model, thereby laying the theoretical founda-

tion for employing it for the MMY family procedures.

The performance of the proposed MMY family procedures was demon-

strated using four simulation case studies. These simulation case studies

provided various types of test beds to understand the behaviour of the

proposed procedures. In all four cases the estimated probability of cor-

rect selection was observed to be greater than P ∗ for all three procedures,

proving the statistical validity of them empirically, too. In addition, the per-

formance of the proposed MMY family procedures was compared to that

of the MOCBA procedure, which is the only existing MORS procedure.

The result showed the superiority of the MMY procedure over the MOCBA

procedure in many cases.

v

Stellenbosch University  https://scholar.sun.ac.za



Opsomming

In stogastiese simulasie-optimering word verskeie stelselontwerpe oorweeg.

Hierdie ontwerpe word in rangorde rangskik en die beste gekies, gebaseer op

een of meer prestasiemaatstawwe. Enige rangskik-en-kies prosedure moet

verseker dat die korrekte stelselontwerp gekies word, en hierdie is ’n uitda-

gende taak in die stogastiese omgewing.

Hierdie proefskrif bespreek die ontwerp en ontwikkeling van ’n nuwe multi-

doelwit rangskik-en-kies (MDRK) prosedure in stogastiese optimering. Die

prosedure word MMY genoem, met twee variante genaamd MMY1 en MMY2.

Enkeldoelwit rangskik-en-kies prosedures (R&K) poog om die beste stelsel,

dit wil sê, die stelsel met die minimum of maksimum afvoer, uit ’n beperkte

aantal gangbare oplossings te vind. Daar is twee belangrike benaderings

in die enkeldoelwit R&K area: die geen-verskilsone (GS) benadering en die

optimum-rekenbegroting toedeling (ORBT) raamwerk. Hoewel die ORBT

prosedure uitgebrei is na die multi-doelwitdomein, bestaan daar tans nie

’n MDRK prosedure in die GS domein nie. Die MMY familie van prose-

dures is geskep om hierdie gaping te vul, dus gebruik die prosedures die GS

benadering tot R&K.

GS prosedures behoort te waarborg dat die waarskynlikheid van korrekte

keuse ’n voorafgestelde waarde P ∗ bevredig, aangedui met P (CS) ≥ P ∗.

Die term ‘korrekte keuse’ dui op die gebeurtenis dat die stelsels met die

minimum uitsetwaarde gekies word in ’n enkeldoelwitoptimeringprobleem,

terwyl Pareto-optimaliteit in die multi-doelwitkonteks gebruik word om ‘ko-

rrekte keuse’ te definieer.

Die konsep van verslapte Pareto-optimaliteit word in hierdie navorsing voor-

gestel om die geen-verskilkonsep voldoende in die multidoelwitdomein te

akkommodeer. Prosedure MMY waarborg P (CS) ≥ P ∗ as ’n verslapte
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Pareto-versameling as korrekte keuse aanvaar word. Prosedure MMY1 poog

om die streng-korrekte Paretostel te vind, terwyl Prosedure MMY2 fokus

op die vind van Pareto-optimale oplossings met die GS konsep.

Die statistiese geldigheid van die MMY familie van prosedures word in hi-

erdie proefskrif bewys deur streng wiskundige analise. ’n Bayes-waarskynlik-

heidsmodel is gebruik in die formulering van P (CS) in die bewyse. Die

gebruik van ’n Bayes-model in die formulering van P (CS) in GS R&K

prosedures is uniek, selfs in die enkeldoelwit geval. Die navorser het dus

’n nuwe enkeldoelwit R&K prosedure, naamlik MY, tesame met die multi-

doelwit MMY familie van prosedures voorgestel. Die MY prosedure word

eerste aangebied en bespreek, en daardeur word die effektiwiteit van die

Bayes-model bevestig. Sodoende is die teoretiese basis vir gebruik van die

Bayes-model in die MMY familie van prosedures gelê.

Die prestasie van die MMY familie van prosedures word aan die hand van

vier simulasiegevallestudies demonstreer. Hierdie gevallestudies verskaf ver-

skillende tipes toetsplatforms wat bydra om die gedrag van die voorgestelde

prosedures te verstaan. In al vier gevalle is die beraamde waarskynlikheid

van korrekte keuse groter as P ∗ vir al drie prosedures, wat die statistiese

geldigheid daarvan empiries ondersteun. Verder is die prestasie van die

voorgestelde familie van MMY prosedures met die van die ORBT prose-

dure vergelyk, wat die enigste multidoelwit R&K prosedure tot op hede is.

Die resultate toon dat die MMY prosedures in verskeie gevalle die ORBT

prosedure oorheers.
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Chapter 1

Introduction

This dissertation presents a research on the topic of simulation optimisation. As an

introduction this chapter offers some background of the research domain and the moti-

vation for the study. The research aim and objectives are then presented, followed by

the methodology employed in the research, and finally the structure of the dissertation

is explained.

1.1 Background of the research domain

We often face moments where we have to make decisions the impacts of which are far

too important to make them arbitrarily. One would like to consider all possible options,

analyse the results from each option and compare them before making such decisions.

Sometimes the options are so many that it is almost impossible to select the best after

considering all of them; yet at other times there seems to be no option at all due to the

constraints of the problem.

Optimisation is a research field that emerged to provide a scientific way to deal with

such decision-making problems. It defines the ‘options’ as decision variables, and the

‘result’ of an option is formulated as a function of the decision variables, called objective

function or objective for short. The ‘constraints’ are also, when they exist, designed as

functions of decision variables. Optimisation then can be defined as a process of finding

the best combination of decision variable values for the given objective and constraints.

For example, in a classic single-commodity inventory problem of ‘At what inventory

level should a new order be made and how many?’, the reorder level and the reorder

1
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1.1 Background of the research domain

quantity serve as two decision variables of this problem. A typical objective of the

problem would be to minimise the average total cost while the size of the warehouse

could play the role of the constraint.

Formulating the objective (and constraints as well) as a closed-form function of

decision variables is not an easy task. The correct design of the objective function would

entail a thorough investigation of the system for reasonably predictable factors such

as, in the aforementioned inventory problem, holding cost, operation/administration

cost, etc. as well as assumptions of uncertain factors, for example, the frequency and

the size of customer demands, again in the inventory problem. It is obvious that the

effectiveness of a solution of an optimisation problem depends mostly on the modelling

of the problem, i.e., the comprehensive analysis of the system, followed by the proper

definition of decision variables and the precise formulation of the objective function and

constraints. In this regard, it can be said without exaggeration that the formulation of

the problem is the most decisive step in solving optimisation problems.

Although existing optimisation algorithms have managed well to solve complex

problems and have most certainly contributed to better decision-making in a vast num-

ber of applications of almost all types of real-life problems, it should be recognised that

the exact formulation of the objective function is often impossible when the system is

too complex or little is known about the system, and more importantly when there

exists uncertainty in the system under consideration. Simulation optimisation (SO)

steps in for this situation.

Simulation makes it possible to evaluate complex real-world systems where an an-

alytic solution is out of the question due to the complexity and/or dynamic, stochastic

nature of the system. In SO, the objective function values are not obtained analyti-

cally but they are estimated through computer simulation. This often offers a better

evaluation of the system than an analytic solution, where the complex system should

be simplified and a set of possibly unrealistic assumptions should be made in order

to establish the closed-form analytical solution. In the above inventory problem, for

example, while it is not straightforward to formulate the average total cost as a mathe-

matical function of the two decision variables (the reorder level and reorder quantity),

simulation software can easily produce the average total cost over any length of time

after imitating, or simulating, the operation of the real system. In addition, the simu-

lation model can take the stochastic nature of the system into account by using data
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collected from observing the real system. The interarrival time between two customers,

for example, can be modelled as an independently and identically distributed (i.i.d)

exponential random variable with a mean of 2 minutes based on the observation of the

real system over a fixed period of time. This way the uncertainty of the system is also

modelled in simulation, thereby rendering it a more reliable model of the real system.

See Law & Kelton (2000) for further discussion of simulation study and modelling.

There is a wide variety of terms used in referring to the inputs and outputs of a

simulation optimisation problem (Fu, 2002). Inputs are normally referred to as ‘deci-

sion variables’ in optimisation, and ‘scenarios’, ‘parameter settings’, ‘configurations’,

‘solutions’, ‘designs’ or ‘systems’ are used in the simulation literature. Outputs are

called ‘objective functions’ or ‘objectives’ in the optimisation context, and ‘responses’,

‘performances’ or ‘performance measures’ in simulation.

Note that due to the stochastic nature of the system, the output of a simulation run

is merely a particular realisation of a random variable that may have a large variance

(Law & Kelton, 2000). This means that different runs of the same simulation model

produce different outputs for the same set of decision variable values, or for the same

scenarios in a simulation-oriented term, due to the randomness inherent in the system.

Therefore, in simulation studies typically a multiple number of simulation replications

are performed for each scenario, and the performance of the system (the objective) is

estimated (mostly) via sample means of the outputs. This contrasts with the deter-

ministic optimisation case where the objective function value is uniquely determined

by a set of decision variable values. The main concern of deterministic optimisation

algorithms lies in identifying the best set of decision variable values from (typically)

a vast number of feasible solutions within a realistic time limit. The algorithms focus

on how to explore the large decision space in search for the optimal or near-optimal

solutions. On the other hand, SO involves methods for obtaining accurate estimates of

the objective function in addition to the identification of the best solution. This adds

a fundamental complication to the simulation optimisation efforts.

When an optimisation problem involves more than one objective function, the task

of finding one or more optimum solutions is known as multi-objective optimisation

(MOO) (Deb, 2001). Finding the ‘best’ solution(s) in MOO is not trivial because

the multiple objectives are often conflicting and non-commensurable. A good solution

with respect to one objective could easily be a bad one in terms of other objectives.
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For this reason MOO problems usually have a set of best solutions rather than a

single best one. These solutions form the Pareto optimal set. A formal definition of

Pareto optimality will follow in Section 4.1.3, but intuitively it is defined as follows:

A solution to a minimisation MOO problem is Pareto optimal if there exists no other

feasible solution which would decrease some objective function values without causing

a simultaneous increase in at least one other objective (Coello Coello, 2006). Pareto

optimal solutions are also called ‘non-dominated’ solutions as they are not dominated

by any other solutions in the feasible set. The ultimate goal of any MOO problem

involves determining the Pareto optimal set.

In this section, two important subfields of optimisation have been introduced: sim-

ulation optimisation (SO) and multi-objective optimisation (MOO). When SO is men-

tioned, normally a single objective is considered unless explicitly stated otherwise.

Similarly, a deterministic environment is typically assumed when MOO is discussed.

Combining these two forms the main subject of this research: multi-objective simulation

optimisation (MOSO). In the next section, the motivation for the research is presented.

1.2 Motivation for the research

Both SO and MOO problems have been intensively studied for several decades (Fu,

2015; Miettinen, 2008). A preliminary literature study showed, however, that relatively

little work has been done in the MOSO area (Xu et al., 2015) compared to the two

origins of the field, i.e., SO and MOO. This has drawn the attention of the researcher.

The literature study further identified a promising research topic in a subfield of MOSO

that is called multi-objective ranking and selection (MORS).

When a simulation optimisation problem has a relatively small number of feasible

solutions, the problem is classified as a ranking and selection (R&S) problem. Small-

sized problems in deterministic optimisation can easily be solved by carrying out an

exhaustive search, that is, by evaluating every possible solution and returning the

optimal one (Burke & Kendall, 2005). However, in simulation optimisation, where the

objective function value for each solution represents a random variable with variance,

selecting the best even from a small number of possible solutions is not simple. For one

thing, one can never be 100% sure that the selected solution is truly the best one even if

the decision is made based on the results of a multiple number of simulation replications.
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There is always a risk of making the wrong decision due to the stochastic nature of

the system. One can reduce the risk by performing a large number of simulation

replications, but simulation is often costly, therefore a trade-off exists between the

quality of the output and the computational cost of simulation optimisation problems

(Yoon & Bekker, 2017b). Ranking and selection procedures determine the way in which

this trade-off is dealt with for small-sized SO problems.

The term ‘ranking and selection’ (R&S) comes from the statistics community, where

researchers have been dedicated to identify the ‘best’ population, i.e., with the largest

(or smallest) mean, among k populations. The initial attempt of such is seen in Bech-

hofer (1954). His work was motivated by ‘some deficiencies’ of analysis of variance

(ANOVA), one of the most popular statistical techniques in those days (and perhaps in

these days as well). ANOVA tests if there is a significant difference among the means of

k populations, often to identify the effects of k different treatments. In many instances,

however, the interest of the experimenters would be to rank the treatments so that they

can select the best treatment (Yoon & Bekker, 2017d). Bechhofer (1954) presented a

procedure for ranking means of k normal populations with known variances as a solu-

tion to this kind of problem, which became the pioneering work of the vast amount of

research in a new research field called ranking and selection in the statistics community.

Interestingly, R&S has the same goal as simulation optimisation when the problem size

is small. R&S and simulation optimisation have begun from different starting points

(one from statistics and the other from optimisation), but they eventually met at the

point where both are applied to identify the best solution among k alternatives when

uncertainty exists.

There are two main approaches to ranking and selection: the indifference-zone (IZ)

method and the optimal computing budget allocation (OCBA) framework (Lee et al.,

2010a). The formulations differ by whether the requirement is imposed on the evidence

of correct selection, or on the simulation budget (Von Saint Ange, 2015). The former

focuses on identifying the minimum number of simulation replications for each solution

to meet the probability of correct selection requirement (predesignated by the decision-

maker), while the latter is interested in efficiently allocating the limited simulation

budget (often the total number of simulation replications available) in order to yield

the maximum probability of correct selection given the budget.
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R&S procedures that consider multiple objectives are called multi-objective ranking

and selection (MORS) procedures. The OCBA approach has been extended to the

multi-objective domain, resulting in the well-known multi-objective optimal computing

budget allocation (MOCBA) algorithm by Lee et al. (2004, 2010b). However, there

has not yet been an MORS procedure using the IZ method. This means that when

an existing MORS procedure presents a Pareto optimal solution set, there is no way

to assure the decision-maker of the ‘quality’ of the final solutions. Obviously one

can be sure that the MOCBA algorithm presents the ‘best’ quality of solutions given

the simulation budget, that is, the Pareto optimal solution set given by the MOCBA

algorithm is as close to the true Pareto optimal solution set as possible under the limited

simulation budget. However, one has no idea of what this ‘best quality’ means—it could

mean a 90% probability of correct selection or 50%. On the other hand, an MORS

procedure with the IZ approach, if it exists, would guarantee the quality of its final

solution. That is, the probability of correct selection of this procedure would always be

greater than or equal to the predesignated value because an IZ-based R&S procedure

would not stop until it reaches the required quality no matter how many simulation

replications are needed.

Whether to impose the requirement on the evidence of correct selection (the IZ

approach) or on the simulation budget (the OCBA approach) should be the decision-

makers’ call. Under the current situation, however, they have no other option but to

choose the latter because there is no MORS procedure with the IZ approach. This

motivated the research, of which the aim and objectives can subsequently be stated.

1.3 Research aim and objectives

According to Muller (2008), a research aim means the macro purpose of the study, and

research objectives are specific research tasks that need to be performed to achieve the

aim. With this in mind, this section states the aim and objectives of this research.

The aim of this research is to develop a multi-objective ranking and
selection procedure for stochastic systems with the indifference-zone
approach.

The procedure must provide evidence that the final solution has the required quality.

The research objectives are as follows:
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1. Review the literature.

2. Design a multi-objective ranking and selection procedure.

3. Prove mathematically that the procedure guarantees the required quality of its

final solution.

4. Verify the statistical validity of the procedure through numerical experiments.

The first objective is an essential prerequisite of any research. The second objective

states the main task of this research, and the third and fourth objectives respectively

support the second objective theoretically and empirically.

1.4 Methodology

In this section, the methodology used in this research is introduced as follows:

0. The researcher has decided to use manuscripts as the foundation of the disserta-

tion.

1. A thorough literature study on the topic of simulation optimisation, both single-

and multi-objective areas, was followed. Two manuscripts were written and sub-

mitted as a result of the literature study. The first manuscript (Yoon & Bekker,

2017c) provides an overview of existing multi-objective simulation optimisation

(MOSO) algorithms, classifying them based on the size of the feasible solution

space and the method of dealing with the multiple objectives. The discussion in-

cludes multi-objective ranking and selection (MORS) procedures as well as large-

scale MOSO algorithms. The second one (Yoon & Bekker, 2017d) focuses on

SO algorithms with small-sized solution spaces, i.e., ranking and selection (R&S)

procedures. It discusses single- and multi-objective ranking and selection proce-

dures from a historical point of view. This forms the first part of the dissertation

(Chapter 2).

2. At an early stage in the research process, the researcher found that (single-

objective) IZ procedures are often conservative, meaning the probability of correct

selection, denoted by P (CS), tends to be higher than the required value P ∗. This
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is mostly due to the fact that IZ procedures assume the least favourable config-

uration (LFC), which will be discussed in detail in Section 3.1, and therefore do

not consider sample mean information in the decision-making process. In addi-

tion, the researcher learnt during the literature study that there have been many

efforts to eliminate the LFC assumption in existing IZ procedures, however none

of them succeeded in developing such a procedure with a rigorous mathematical

analysis that assures the P (CS) guarantee. This encouraged the researcher to

delve for methods to design such a procedure with the P (CS) guarantee, which

led to the development of Procedure MY in the single-objective R&S domain.

Procedure MY takes advantage of sample mean information, thereby less conser-

vative. Also, the statistical validity of the procedure is proved mathematically by

using a Bayesian inference model. Some numerical experiments were performed

to validate the procedure and to compare the performance with other existing

R&S procedures. This forms the second part of this study (Chapter 3 of the dis-

sertation), and the result was submitted for publication (Yoon & Bekker, 2017b).

3. In the next stage of the research, a new multi-objective ranking and selection

(MORS) procedure, called Procedure MMY, was developed based on the single-

objective MY procedure. In addition, two variants of Procedure MMY, called

MMY1 and MMY2, were also established. These procedures are novel MORS

procedures that use the indifference-zone approach. The statistical validity of

these procedures is provided again based on the Bayesian inference model through

rigorous mathematical proofs. In addition, four simulation case studies were

carried out to verify the effectiveness of the proposed procedures. This forms the

third part of the study and corresponds to Chapters 4 and 5 of the dissertation.

The manuscript of this last part of the research is still under development (Yoon

& Bekker, 2017a).

1.5 Structure of the dissertation

This chapter introduced the concept of optimisation, simulation optimisation (SO),

multi-objective optimisation (MOO), and ranking and selection (R&S) to lead the

reader into the main research field of this study: multi-objective ranking and selection
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(MORS). The research motivation is then described, followed by the research aim,

objectives and the methodology.

The remainder of the dissertation is structured as follows: In Chapter 2, a litera-

ture study on the single- and multi-objective ranking and selection area is presented.

Chapter 3 provides a theoretical basis of the main work of this research by introducing

a new single-objective ranking and selection procedure that uses a Bayesian inference

model. The development of the multi-objective ranking and selection procedures is then

described in Chapter 4 along with the mathematical proof of their statistical validity.

The proposed procedures are assessed using a simple example in Chapter 4 and further

through a few dynamic, stochastic simulation case studies in Chapter 5. Finally, Chap-

ter 6 concludes the dissertation with a short summary, the contribution of the work to

the body of knowledge, and recommendations for future work.
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Chapter 2

Ranking and selection

procedures: Literature study

This chapter presents an overview of scholarly literature of ranking and selection (R&S)

procedures, first in the single-objective domain (Section 2.1), followed by the multi-

objective domain (Section 2.2). The main focus of this research lies in multi-objective

ranking and selection (MORS), therefore the scope in this chapter is restricted to

R&S, which is a subfield of simulation optimisation (SO) where the number of feasible

solutions is relatively small. In small-sized SO problems, one can simulate all solutions

and select the best based on the complete enumeration of all solutions. The problem

then boils down to how to guarantee that the selected best system is truly the best one

in the presence of the stochastic nature of the problem (Yoon & Bekker, 2017c), which

is the main concern of R&S procedures.

Large-scale simulation optimisation algorithms have a fundamentally different ap-

proach to solving the problems. Because the solution space is too large to simulate all

solutions, the algorithm needs a strategic search mechanism to explore the vast solution

space in addition to the problem of accurately estimating the system. See Pasupathy &

Ghosh (2013), Amaran et al. (2014), Fu (2015) and Xu et al. (2015) for a comprehensive

literature survey on the more general topic of SO, including small- and large-scale SO

problems.

This chapter is largely based on Yoon & Bekker (2017d) and Yoon & Bekker (2017c).

The former discusses single- and multi-objective ranking and selection from a historical

point of view, and the latter gives an overview of multi-objective simulation optimi-
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sation (MOSO) literature including multi-objective ranking and selection (MORS) as

well as large-scale MOSO problems.

The researcher does not present a list of symbols in the following discussions because

they are self-explanatory in this chapter.

2.1 Single-objective ranking and selection procedures

R&S procedures are statistical methods specifically developed to select the best system

from a set of k competing alternatives (Goldsman & Nelson, 1994). There are two basic

approaches in single-objective R&S: the indifference-zone (IZ) method and the optimal

computing budget allocation (OCBA) approach. These are subsequently discussed.

2.1.1 Indifference-zone procedures

Indifference-zone procedures determine the number of simulation replications to be

allocated to each system with the aim of guaranteeing the quality of the final solution

to a certain level P ∗. This level is decided by the decision-maker before the procedure

begins. The decision-maker also determines the indifference-zone (IZ) value δ∗, which

is defined as the smallest value that is ‘worth detecting’ (Bechhofer, 1954).

Suppose we have three different designs of a system, and the performance measure

of each system design follows the three distributions labelled I, II and III, respectively,

as shown in Figure 2.1. Suppose further that the decision-maker would like to find

the system with the smallest performance measure, i.e., design I is the best solution.

However, this information is unknown, and the R&S procedures estimate the true

means by using sample means. It can be concluded easily that design III is not the

best solution, while design II can often be mistakenly selected as the best solution

due to its close performance to design I. A smart procedure would take more samples

from designs I and II to avoid this mistake; and more observations are needed as the

difference between the two performances (marked as δ1 in Figure 2.1) becomes smaller.

An IZ procedure would take as many observations as needed to guarantee that the

probability of selecting design I is greater than or equal to the required level of P ∗.

However, if δ1 < δ∗, designs I and II are equally good to the decision-maker, and the
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I
II

III

δ1 δ2

Figure 2.1: Different performance measure distributions of three system designs (Yoon

& Bekker, 2017d)

decision-maker would be indifferent to either of them (hence the term indifference-

zone). In this case, the IZ procedure stops trying to distinguish designs I and II, but

presents either of them as the final solution.

In a more general form, suppose that there are k designs, of which the performance

measure is associated with a distribution of mean µi (i = 1, . . . , k). Suppose further,

without loss of generality, µb ≤ µi (i = 1, . . . , k; i 6= b) so that design b is the best system

in a minimisation problem. Under these assumptions, an IZ procedure guarantees that

the probability of correct selection, denoted by P (CS), is at least P ∗, that is,

P (CS) = P [select design b | µi − µb ≥ δ∗,∀i (i 6= b)] ≥ P ∗. (2.1)

As mentioned in Chapter 1, the work of Bechhofer (1954) is the origin of R&S

procedures. Having established not only the concept of indifference-zone δ∗ but also

that of the probability of correct selection P (CS), Bechhofer is considered as the ‘father’

of the field (Fu, 1994).

Bechhofer (1954) presented the procedure in a very general way, that is, the purpose

of the procedure is to find (among k normal populations) the ks best populations (or

systems), the ks−1 second best populations, the ks−2 third best populations, etc., and

finally the k1 worst populations, where k1, k2, . . . , ks are positive integers such that∑s
i=1 ki = k. This general goal is given in (6) in Bechhofer (1954, p. 19). In the

following discussions, however, the researcher restricted the case to identifying the best

system among k systems, hence s = 2 and k2 = 1 were used.
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Let Xij (i = 1, . . . , k; j = 1, 2, . . . ,) be normally and independently distributed

variables with mean µi and variance σ2
i . Also suppose system k has the largest true

mean. Then for a maximisation problem, the probability of correct selection P (CS)

can be written as

P (CS) = P [max{X1, X2, . . . , Xk−1} < Xk] (2.2)

= P [Y1 > 0, Y2 > 0, . . . , Yk−1 > 0], (2.3)

where Yi = Xk −Xi (i = 1, . . . , k− 1). The random variables Yi have a (k− 1)-variate

normal distribution, and the discussion in Bechhofer (1954) continues to express the

P (CS) as a volume under the multivariate normal surface.

Bechhofer (1954) also expresses P (CS) as iterated integrals, which he states ‘for

certain purposes [...] is more convenient’ (Bechhofer, 1954, p. 21). This was confirmed

by subsequent studies that use the same principle of establishing P (CS) as iterated

integrals, among which Dudewicz & Dalal (1975) and Rinott (1978) are important.

In this approach, Bechhofer (1954) assumed the least favourable configuration (LFC),

which is

µ1 = µ2 = . . . = µk−1 = µk − δ∗. (2.4)

For a maximisation problem where one would like to select the system with the largest

mean µk, while ignoring the differences smaller than δ∗, the above configuration (2.4)

is certainly the most difficult case to determine system k, thus is called the ‘least

favourable configuration’. Bechhofer (1954) also assumed known, equal variances σ2
i =

σ2 and Ni = N . Then, the probability of correct selection can be written as follows1:

P (CS) = P [X1 < Xk, X2 < Xk, . . . , Xk−1 < Xk]

=

∫ ∞
−∞

P [X1 < Xk, . . . , Xk−1 < Xk]f(Xk)dXk (2.5)

=

∫ ∞
−∞

P (X1 < Xk)× . . .× P (Xk−1 < Xk)f(Xk)dXk (2.6)

=

∫ ∞
−∞

Φ

(
Xk − µ1

σ√
N

)
× . . .× Φ

(
Xk − µk−1

σ√
N

)
f(Xk)dXk (2.7)

=

∫ ∞
−∞

[
Φ

(
Xk − µ1

σ√
N

)]k−1

f(Xk)dXk (2.8)

1The equations here were reformulated by the researcher for the case of s = 2 and ks = 1 based on

the general discussion in Bechhofer (1954, p. 21–22).
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=

∫ ∞
−∞

[
Φ

(
y +

√
Nδ∗

σ

)]k−1

φ(y)dy, (2.9)

where f denotes the probability density function (p.d.f) of the normal distribution

N(µk,
σ2

N ), Φ and φ are the cumulative distribution function (c.d.f) of the standard

normal distribution and its p.d.f, respectively, and y is a transformation of the variable

Xk:

y =
Xk − µk
σ/
√
N

. (2.10)

The equality in (2.5) holds because Xk ∼ N(µk,
σ2
√
N

) due to the central limit theorem,

and (2.6) is based on the independence of the observations Xij (i = 1, . . . , k; j =

1, 2, . . . ,). (2.7) follows because

P (Xi < Xk) = P

(
Xi − µi

σ√
N

<
Xk − µi

σ√
N

)
(2.11)

and
Xi − µi

σ√
N

∼ N(0, 1). (2.12)

The equality in (2.8) is from the LFC, where µ1 = µ2 = . . . = µk−1, and (2.9) follows

from the transformation of (2.10).

The probability of correct selection P (CS) is now expressed as a function of k,N, δ∗

and σ (see (2.9)). For fixed k, δ∗ and σ, the smallest N which will guarantee a specified

probability of P ∗ can be obtained by solving the integral equation

P (CS) =

∫ ∞
−∞

[
Φ

(
y +

√
Nδ∗

σ

)]k−1

φ(y)dy = P ∗. (2.13)

Bechhofer’s procedure is applicable to limited cases—i.e., R&S problems with pop-

ulations of known and equal variances. It is also a ‘single-sample’ procedure, which

means the sampling occurs only one time in the procedure. The assumption of known

variances made this possible. Dudewicz (1971) showed that a single-stage procedure

cannot satisfy the requirement of (2.1) when the variances are unknown. A procedure

needs at least two stages of sampling to deal with unknown variances, first to estimate

the unknown variances and then to secure the P (CS) guarantee.

The two-stage procedure of Dudewicz & Dalal (1975), called Procedure PE , was

the first to appear in the literature that assumed unknown, unequal variances (Yoon &
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Bekker, 2017d). The procedure takes an initial sample of size n0 from each population

(this is the first stage of sampling), calculates the sample variances S2
i for each design i,

and identifies the required sample size Ni based on the value of S2
i , δ∗ and a critical

value h, which plays a crucial role in the proof of the required P (CS) ≥ P ∗. In the

second stage of sampling, the procedure takes the remaining Ni − n0 observations and

identifies the best system based on the total Ni observations.

The drawback of Procedure PE is that it uses weighted sample means X̃i (defined

in (4.5) in Dudewicz & Dalal (1975, p. 37)), which is not as intuitive as ordinary

sample means. It seems that they would have liked to develop a procedure that uses

ordinary sample means, which is intuitively appealing, but that they failed to prove

that such a procedure guaranteed the desired confidence P ∗. Instead, they proposed

another procedure, called Procedure PR, which is similar to Procedure PE , except that

ordinary sample means Xi are used (instead of the weighted sample means X̃i) in the

final step when the best system is selected. Procedure PR uses the same critical value h

as in Procedure PE , which is calculated to guarantee P (CS|PE) ≥ P ∗ when Procedure

PE is followed, thus there is no guarantee that P (CS|PR) ≥ P ∗. However, Dudewicz &

Dalal (1975, p. 40) proved that, in Theorem 4.2, P (CS|PR) ≥ P (CS|PE) when k = 2.

In the case of k > 2, they also doubt that one could lose much, if anything, in P (CS)

by using ordinary sample means Xi instead of the weighted sample means X̃i. In

summary, it is not proved that P (CS|PR) ≥ (CS|PE) when k > 2, but it is conjectured

so. Chen (2011) discusses this issue.

Rinott (1978) developed a procedure that guarantees P (CS) ≥ P ∗ using ordinary

sample means. It is named Procedure PR(h∗). The procedure has almost the same

structure as Procedure PE , except for the definition of the critical value h∗ and the

use of ordinary sample means Xi. Procedure PR(h∗) is considered to be one of the

most important contributions in early R&S research, and became the cornerstone of

the IZ procedures that followed. Many IZ procedures that were developed after this

have been based on this procedure, with the goal of improving it. The focus was mainly

on reducing the sample size Ni to achieve the same probability of correct selection P ∗

(Yoon & Bekker, 2017d). See for example Chen & Kelton (2000), Nelson et al. (2001),

Chick & Inoue (2001), Chen & Kelton (2005) and Yoon & Bekker (2017b).

Nelson et al. (2001) proposed an IZ procedure that combines a subset selection

procedure (to screen out non-competitive systems) with an IZ selection (to select the
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best from among the survivors of the screening). A full algorithm of this combined

procedure is illustrated in Nelson et al. (2001, p. 953–954). They proposed a subset

selection procedure (Nelson et al., 2001, Section 3) for problems with unknown, unequal

variances for the initial screening, and used Rinott’s procedure (Rinott, 1978) for the

IZ selection.

Paulson (1964) proposed another IZ procedure that differs from the other procedures

discussed above, in two ways: Firstly, it is a fully sequential procedure. This means

that the procedure goes through as many sampling stages as needed, taking only one

observation at each stage. After each sampling stage, the procedure searches for the

evidence of the inferiority of each solution, and eliminates inferior solutions from further

consideration. The procedure continues until only one solution is left, which becomes

the best solution. Secondly, and more importantly, the P (CS) bound in this procedure

is controlled by an idea borrowed from Brownian motion processes (Kim & Nelson,

2006b). More specifically, the procedure approximates the partial sum of differences

between two systems as a Brownian motion process and uses a triangular continuation

region to determine the stopping time of the selection process (Hong & Nelson, 2005).

The procedure solves R&S problems with known or unknown, but equal variances.

Inspired by Paulson (1964) and Fabian (1974), Kim & Nelson (2001) developed a

fully sequential R&S procedure, called the KN procedure, for problems with unknown

and unequal variances. Procedure KN follows the same principle of using a Brownian

motion process for its P (CS) bound, of which the details are not discussed in this

document. Interested readers are referred to Fabian (1974) and Kim & Nelson (2001,

p. 254–257). The approach used in proving P (CS) ≥ P ∗, however, is worth mentioning

here: The P (CS) bound is given when only two systems (out of the total k feasible

systems) are considered in isolation, and the overall P (CS) bound is established by

combining all these isolated cases using the Bonferroni inequality. More specifically,

let ICSi be the event that an incorrect selection is made when the true best system b

and system i (i 6= b) are considered. The KN procedure bounds the probability of

an incorrect selection for this case, P (ICSi) ≤ β, where β = (1−P ∗)
k−1 . The overall

probability of incorrect selection P (ICS) is then guaranteed as

P (ICS) = P (

k−1⋃
i=1

ICSi) ≤
k−1∑
i=1

P (ICSi) ≤ (k − 1)β = 1− P ∗, (2.14)
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2.1 Single-objective ranking and selection procedures

where the first inequality follows from the Bonferroni inequality. The procedure thereby

guarantees P (CS) = 1− P (ICS) ≥ P ∗.
Kim & Nelson (2006a) also developed procedures for steady-state simulation (Proce-

dures KN+ and KN++). These KN family procedures are considered state-of-the-art

among the IZ procedures (Branke et al., 2007), and are widely used in practice, hav-

ing been incorporated into many commercial simulation software programs (Yoon &

Bekker, 2017d).

2.1.2 Optimal computing budget allocation procedures

Optimal computing budget allocation (OCBA) procedures have a completely different

approach in solving R&S problems. They do not guarantee P (CS) ≥ P ∗ nor use the IZ

concept δ∗, but attempt to allocate a finite computing budget across systems so as to

maximise the probability of correct selection. More precisely, OCBA procedures wish

to choose the best numbers of simulation observations for each system such that P (CS)

is maximised (Chen et al., 2000). The problem is formulated as

max
N1,...,Nk

P (CS) (2.15)

subject to N1 +N2 + . . .+Nk = Ntotal,

Ni ≥ 0,

where Ni denotes the number of simulation replications for system i, and Ntotal repre-

sents the limited total computing budget. To solve the problem in (2.15), the P (CS)

should be expressed as a function of Ni (i = 1, . . . , k). Chen (1996) proposed an ap-

proximation of P (CS) based on a Bayesian model, and Chen et al. (2000) formulated

the approximated P (CS) as a function of Ni (i = 1, . . . , k) as follows:

Approximated P (CS) = 1−
k∑

i=1, i6=b

∫ ∞
−
δb,i
σb,i

1√
2π
e−

t2

2 dt, (2.16)

where b denotes the observed best system, δb,i = Xb − Xi and σ2
b,i =

σ2
b
Nb

+
σ2
i
Ni

. Fur-

thermore, by solving the nonlinear programming optimisation problem in (2.15) using

the Karush-Kuhn-Tucker (KKT) condition (Kuhn & Tucker, 1951), Chen et al. (2000)

showed that the approximated P (CS) in (2.16) is asymptotically maximised when the
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2.2 Multi-objective ranking and selection procedures

relationship between Ni and Nj is

Ni

Nj
=

(
σi/δb,i
σj/δb,j

)2

, i, j ∈ {1, 2, . . . , k} and i 6= j 6= b, (2.17)

and the number of simulation replications for the best system is given as

Nb = σb

√√√√ k∑
i=1,i6=b

N2
i

σ2
i

. (2.18)

An analysis of (2.17) brings some insights: Systems with larger variances and systems

with closer performance to the best system are allocated more samples. This corre-

sponds with one’s intuition as more observations would not only reduce the uncertainty

caused by the large variance but also help distinguishing the best system from those

with close performance. Chen & Lee (2010) explain
δb,i
σi

as a signal to noise ratio for

system i as compared with the best system b. A large value of this ratio means either

the performance of system i is much worse than the best system or the estimation noise

is small. In either case, it means that one can be confident in differentiating system i

from the best system b, hence no more sampling is required for system i.

There has been active research since the OCBA approach was first proposed by

Chen et al. (2000, 1997), and many variants of OCBA have been developed. Having the

same OCBA framework, these variants focus on different issues: correlated sampling

(Fu et al., 2007); non-normal distributions (Fu et al., 2004; Glynn & Juneja, 2004);

different objective functions (Chick & Wu, 2005; He et al., 2007; Trailović & Pao,

2004); subset selection (Chen et al., 2008; Xiao & Lee, 2014); complete ranking (Xiao

et al., 2014); constraints (Lee et al., 2012; Pujowidianto et al., 2009); and multiple

objectives (Lee et al., 2004, 2010b). Lee et al. (2010a) provide an excellent review of

these OCBA procedures.

2.2 Multi-objective ranking and selection procedures

This section reviews multi-objective ranking and selection (MORS) procedures that

appear in the literature. Although there has not been a great deal of research in

the MORS area, the MORS research can be classified into three sections: the famous

multi-objective optimal computing budget allocation (MOCBA) procedure, and MORS

procedures before and after the MOCBA procedure. They are discussed in the following

three sections in chronological order.
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2.2.1 Multivariate indifference-zone approach

There have been early attempts to extend the IZ procedures to the multi-objective do-

main using a multivariate concept (Dudewicz & Taneja, 1978, 1981; Hyakutake, 1988).

The purpose of these procedures is, as single-objective IZ procedures, to select the best

population out of k populations (π1, . . . , πk) with the probability of correct selection

of at least P ∗. To accommodate the concept of ‘multi-objective’, each population πi is

assumed to follow a multivariate normal distribution with p ≥ 1 component variates,

mean vector µi and covariance matrix Σi. This is usually abbreviated by saying πi is

Np(µi,Σi) (Dudewicz & Taneja, 1978).

It is remarkable that these procedures did not employ the concept of Pareto optimal-

ity. Instead, Dudewicz & Taneja (1978) proposed an experimenter-specified function

g(µ1, . . . ,µk) with possible values of 1, 2, . . . , k such that

g(µ1, . . . ,µk) = j (2.19)

if and only if, given a choice among µ1, . . . ,µk, the experimenter would prefer µj .

In order to establish a probability of correct selection requirement similar to (2.1),

Dudewicz & Taneja (1978) introduced some new concepts such as

� the set of true mean vectors µ = {µ1, . . . ,µk},

� disjoint preference sets P1, . . . , Pk, where Pj (j = 1, . . . , k) is defined as

Pj = {µ | g(µ) = j}, and (2.20)

� the distance from µ to the boundary of Pg(µ)

dB(µ) = inf{d(µ, b) | b /∈ Pg(µ)}, (2.21)

where d(µ, b) denotes the usual Euclidean distance.

The probability of correct selection requirement is then stated as

P (CS) = P (select design g(µ) | dB(µ) ≥ δ∗) ≥ P ∗. (2.22)

Based on these concepts introduced in Dudewicz & Taneja (1978), Dudewicz &

Taneja (1981) developed a multivariate procedure that achieves the requirement (2.22).
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2.2 Multi-objective ranking and selection procedures

This procedure is in essence the multivariate version of Procedure PE by Dudewicz &

Dalal (1975). Hyakutake (1988) later worked on this procedure to make it more efficient

and easier to use in practice.

This line of research, however, is not found further in the literature, probably due

to the fact that the procedures do not employ the Pareto optimality concept. The

MORS problems were left untouched for more than a decade until the advent of the fa-

mous multi-objective optimal computing budget (MOCBA) procedure (Yoon & Bekker,

2017d).

2.2.2 Multi-objective optimal computing budget allocation procedure

As the name shows, the multi-objective optimal computing budget (MOCBA) proce-

dure (Lee et al., 2004, 2010b) is the multi-objective version of the OCBA procedure.

Therefore it has a problem formation similar to (2.15). Instead of maximising the

probability of correct selection, however, the MOCBA procedure attempts to minimise

Type I and Type II errors, which involve the concept of Pareto optimality. They are

defined as follows:

� A Type I error occurs when at least one truly dominated system is observed as

non-dominated, and

� a Type II error occurs when at least one truly non-dominated system is observed

as dominated.

The purpose of the MOCBA procedure is to find the best numbers of simulation samples

for each system such that the probabilities of these two errors (denoted by e1 and e2)

are minimised. In order to formulate the objective function as a function of Ni (the

number of samples for each system), Lee et al. (2010b) proposed to approximate the

probability of these two errors, resulting in ae1 and ae2, and further provided upper

bounds for them (ub1 and ub2). They showed e1 ≤ ae1 ≤ ub1 and e2 ≤ ae2 ≤ ub2 in

Lemma 3 (Lee et al., 2010b, p. 660). The problem formulation is then

min
N1,...,Nn

ub1 (2.23)

s.t.
n∑
i=1

Ni ≤ Ntotal,

Ni ≥ 0, i = 1, 2, . . . , n,
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or

min
N1,...,Nn

ub2 (2.24)

s.t.

n∑
i=1

Ni ≤ Ntotal,

Ni ≥ 0, i = 1, 2, . . . , n.

Following the same approach as with OCBA procedures, Lee et al. (2010b) formulated

the objective function ub1 and ub2 as functions of Ni (i = 1, . . . , n) based on a Bayesian

model, and provided the allocation rule by solving the nonlinear programming optimi-

sation problems (2.23) and (2.24) using the KKT condition. The solution to (2.23)

is presented here as an example. Before that, some definitions for the problem are

required first: Suppose there are n systems with p objectives. The performance of the

ith system for the kth objective is defined as a normal random variable with mean

µik and variance σ2
ik. Let S = {1, . . . , n} be the set of all feasible solutions, Sp the

true Pareto set and S̄p the true non-Pareto set. Also, let ji denote the system that

dominates system i with the highest probability, and let kiji denote the objective of

ji that dominates the corresponding objective of system i with the lowest probability.

Define δijk = µjk − µik and σ2
ijk = (σ2

ik/Ni) + (σ2
jk/Nj), and αi is the fraction of Ntotal

to be allocated to system i.

Lee et al. (2010b, p. 661) presented in Lemma 4 the solution to (2.23) as follows: As

Ntotal →∞, with known true Pareto set Sp and true non-Pareto set S̄p, the upper bound

of the Type I error (ub1) can be asymptotically minimised when αi = βi/
∑

s∈S βs for

any system i ∈ S, where

βl ≡

(
σ2
lkljl

+ σ2
jlk

l
jl

/ρl

)
/δ2
ljlk

l
jl(

σ2
mkmjm

+ σ2
jmkmjm

/ρm

)
/δ2
mjmkmjm

, (2.25)

for any system l ∈ S̄p and given that m is any fixed system in S̄p and ρi ≡ αji/αi; and

βd ≡

√√√√∑
i∈Ωd

σ2
dkid

σ2
ikid

β2
i , (2.26)

for any system d ∈ Sp and given that Ωd ≡ {system i | i ∈ S̄p, ji = d}.
This solution is very complex and requires hard work to understand. The solution

to (2.24), which is presented in Lemma 5 in Lee et al. (2010b, p. 661), is even more
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complicated and harder to comprehend. Nevertheless, the MOCBA procedure has def-

initely been the most dominant method in the MORS area for more than a decade with

a wide range of applications, because it has virtually been the only method applicable

in MORS.

OCBA procedures (including the MOCBA procedure) do not consider the indifference-

zone concept. This could lead to a huge waste of simulation budget when there exist

two (or more) systems whose performances are similar to each other. If the difference

in the performance of two systems becomes smaller than δ∗, IZ procedures would stop

the effort to distinguish them while OCBA procedures would still take more samples

from them trying to identify the better one even though the difference is so small that

the decision-maker is indifferent to them. Recognising this problem, Teng et al. (2010)

integrated the IZ concept to the MOCBA framework. They redefined the dominance

relationship of two systems incorporating the IZ concept, and eventually reconstructed

Pareto optimality based on the redefined dominance relationships. The concept of

Pareto optimality with IZ becomes one of the cornerstones in this research, and will

therefore be discussed further in Section 4.1.4.

2.2.3 New attempts in multi-objective ranking and selection

The MOCBA procedure has practically been the only procedure available for MORS

problems for more than a decade. Very recently, however, some new attempts were

made to develop other MORS procedures. One such attempt is seen in Hunter & Feld-

man (2015) and Feldman et al. (2015), where the same line of research is presented in

the bi- and multi-objective context, respectively. Their research is based on Pasupathy

et al. (2014), which introduced the SCORE (Sampling Criteria for Optimisation using

Rate Estimators) framework to develop an asymptotically optimal sample allocation

rule in the single-objective domain with stochastic constraints. The final goal of Hunter

& Feldman (2015) and Feldman et al. (2015) is to derive the SCORE allocation rule

in the multi-objective context. Similar to the MOCBA procedure, they construct the

probability of misclassification and try to find the best ratio αi (i = 1, . . . , n), the pro-

portion of the total sampling budget given to system i, that maximises the decay of the

probability of misclassification. The study is still in progress: Having formulated the

probability of misclassification as a function of αi (i = 1, . . . , n) and having established
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the problem as a concave maximisation problem Q, they are investigating techniques

to solve Problem Q under the heavy computational burden.

Another new line of research in MORS is found in Branke & Zhang (2015). Inspired

by the idea of the small-sample EVI (the Expected Value of Information) procedure

(Chick et al., 2010), they proposed a very simple yet efficient MORS method called

the myopic multi-objective budget allocation algorithm (M-MOBA). This algorithm

considers the following question: If τ more samples were allocated to system i, how

would it change the current Pareto set in the myopic sense of looking only one step

ahead? Suppose ni samples have been allocated to system i (i = 1, . . . , n), resulting in

sample means of x̄ik (i = 1, . . . , n, k = 1, . . . , p) for system i in objective k. If τ more

samples were to be added to system i, the overall sample mean of system i in objective

k, denoted by zik, is calculated as

zik =
nix̄ik + τ ȳik
ni + τ

, (2.27)

where ȳik is the mean of the new τ samples of system i in objective k. Instead of

actually running the additional τ simulation replications to obtain the value of zik, the

algorithm predicts the result, observing that Zik is a random variable that follows a

Student’s t-distribution (Branke & Zhang, 2015), that is,

Zik ∼ St
(
x̄ik,

ni(ni + τ)

τσ2
ik

, ni − 1

)
, (2.28)

where St(µ, κ, ν) denotes Student’s t-distribution with mean µ, precision κ and ν de-

grees of freedom. Based on this predicted result, the algorithm calculates Pi, the

probability that the current Pareto set will change if τ samples are allocated to sys-

tem i (i = 1, . . . , n), then allocates the τ samples to the system with the largest Pi. The

underlying idea of the M-MOBA algorithm is that if the additional τ sampling does

not lead to a change to the current Pareto set, then it is considered of less use to the

purpose of identifying the Pareto optimal set. On the other hand, it is deemed useful if

the additional sampling does cause a change to the current Pareto set. The M-MOBA

algorithm is presently in an early stage, having derived Pi only when two objectives are

considered. The probability model for the case of more than two objectives is currently

under development.

None of these new procedures is based on the IZ approach. In fact, there has been

only a single attempt to develop an MORS procedure under the IZ framework with
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the concept of Pareto optimality: Chen & Lee (2009) proposed a two-phase Pareto set

selection procedure (TSP). In the first phase, the procedure considers the p objectives

separately, and treats the MORS problem as if it were p individual single-objective R&S

problems, taking only one objective into account in each single-objective problem. It

solves these p × single-objective R&S problems, using one of the single-objective IZ

procedures by Chen (2007), which results in p (or less than p, say mp ≤ p systems, in

case of duplication) systems that are the best for each objective. These systems are

undoubtedly non-dominated, because they are the best systems for at least one of the p

objectives. However, they form an incomplete Pareto set as there may be systems that

are not best for any objective, yet non-dominated. In the second phase, the procedure

searches for these additional non-dominated systems to make the incomplete Pareto

set complete. This work, however, remains an empirical study, not guaranteeing the

probability of correct selection requirement P (CS) ≥ P ∗ for the final Pareto optimal

set.

2.3 Conclusion: Chapter 2

In this chapter, the researcher reviewed ranking and selection (R&S) procedures in

literature both in the single- and multi-objective domain. In Section 2.1, the two

important approaches in single-objective R&S, the indifference-zone (IZ) method and

the optimal computing budget allocation (OCBA) framework, were introduced, and

important procedures in each approach were discussed. It was also explained that the

focus of IZ procedures is to guarantee the probability of correct selection requirement

P (CS) ≥ P ∗, while the purpose of OCBA procedures is to maximise P (CS) given the

limited simulation budget.

In Section 2.2, multi-objective ranking and selection (MORS) procedures were re-

viewed, although there are not many of such procedures. The multivariate approach

was introduced as an attempt that first appeared in the late 1970s to extend the IZ

procedure to the multi-objective domain. These procedures, however, did not consider

Pareto optimality. The multi-objective optimal computing budget allocation (MOCBA)

procedure was discussed in detail as the most important procedure in this area, followed

by some new procedures that begin to appear in the literature recently.
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It was pointed out that while the OCBA approach was extended to the multi-

objective domain, resulting in the MOCBA procedure, there does not yet exist an

MORS procedure that follows the IZ approach with the concept of Pareto optimality.

This gap is illustrated in Figure 2.2. The TSP procedure by Chen & Lee (2009) can

be categorised as one, but P (CS) ≥ P ∗ is not guaranteed in their work, leaving the

procedure merely an empirical one. This motivated the present study, of which the aim

is to develop an MORS IZ procedure that presents a Pareto optimal set as the final

solution and guarantees the quality of it, i.e., P (CS) ≥ P ∗. The result of this research,

therefore, if it succeeds, would fill the gap shown in Figure 2.2.

IZ

OCBA MOCBA

Single-objective R&S Multi-objective R&S

Figure 2.2: A diagram that shows the non-existence of an MORS IZ procedure
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Chapter 3

A new single-objective ranking

and selection procedure

This chapter provides a theoretical background of this research, by presenting a new

single-objective ranking and selection procedure, called the MY procedure. As men-

tioned in Section 1.4, the MY procedure was developed in an attempt to improve ex-

isting single-objective R&S procedures, and the statistical validity of it is proved using

a Bayesian inference model. Although the ultimate goal of this research is to develop a

multi-objective ranking and selection procedure with the indifference-zone concept, the

MY procedure is first discussed in this chapter to verify the Bayesian inference model,

which forms a theoretical basis of the present study.

This chapter discusses the MY procedure along with its theoretical background and

the statistical proof of its validity. Especially, Rinott’s procedure (Rinott, 1978) is

examined in detail, followed by the Bayesian inference model. Also, the results of some

numerical experiments are presented to show the effectiveness of the procedure. This

chapter is mainly based on Yoon & Bekker (2017b).

3.1 Motivation of the development of Procedure MY

As briefly mentioned in Section 1.4, IZ procedures are well known to be conservative.

Most empirical studies of IZ procedures show that the estimated P (CS) is far greater

than the required value P ∗, which means more simulation budget was spent than ac-

tually needed to secure P (CS) ≥ P ∗. Wang & Kim (2013) examined this matter and
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identified a few sources of the conservativeness of the KN family procedures. They

also recognised through a quantitative analysis the assumption of the slippage config-

uration (SC), also known as the least favourable configuration (LFC), was the most

critical source of the conservativeness.

As explained in Section 2.1.1, the least favourable configuration occurs when the

true mean of the best system is exactly δ∗ apart from all other systems; see (2.4) for

example. Almost all existing IZ procedures with a proven guarantee of P (CS) ≥ P ∗

assume the LFC, including Bechhofer (1954), Paulson (1964), Dudewicz & Dalal (1975),

Rinott (1978) and Kim & Nelson (2001). They show (2.1) under the LFC assumption,

that is

P (CS) ≥ PLFC(CS) ≥ P ∗, (3.1)

which renders these procedures less efficient.

Recognising this problem, some researchers tried to develop IZ procedures without

the LFC assumption. Chen & Kelton (2000) proposed an enhanced two-stage proce-

dure (ETSS), which is essentially the non-LFC version of Rinott’s two-stage procedure

(Rinott, 1978). They greatly increased the efficiency of Rinott’s procedure by elim-

inating the LFC assumption and instead using the sample mean information. This

was further improved to a sequential R&S procedure (called SRS) by Chen & Kelton

(2005). Interestingly, Chen & Kelton (2005) remark that the ratio of the sample sizes

of two systems Ni
Nj

in the SRS procedure (and ETSS) is observed to be the same as

in the OCBA procedure, which confirms the validity of this approach. However, they

failed to prove the statistical validity of these procedures using a mathematical analysis

as in Rinott’s procedure.

Wang & Kim (2013) also proposed two non-LFC procedures, called WK and WK++,

based on the KN and KN++ procedures, respectively. In these procedures the statis-

tical validity is shown in an asymptotical sense as δ∗ → 0. Although the asymptotic

analysis provides insight into the effectiveness of the procedure in practice (Kim &

Nelson, 2006a, p.478), it is limited in theory because Ni →∞ as δ∗ → 0.

In summary, an R&S procedure that does not assume the LFC and yet proves

its statistical validity with a rigorous mathematical analysis has not yet been seen in

literature. This motivated the first part of the study, which resulted in the development

of the MY procedure. The following section provides the theoretical background of the

procedure.
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3.2 Theoretical background of Procedure MY

This section provides notation and assumptions, followed by two important concepts

of the MY procedure: Rinott’s procedure and the Bayesian approach.

3.2.1 Notation and assumptions for Procedure MY

Throughout this chapter, i.e., in the single-objective context, for both Rinott’s proce-

dure and Procedure MY, the following notation is used.

Table 3.1: Notation for single-objective ranking and selection problems

k the number of systems in the problem;

I the set of systems that are still in competition;

Xij the jth observation from system i;

Ni the total number of simulation replications assigned to system i;

µi the unknown true mean of system i;

σ2
i the unknown variance of system i;

Xi(Ni) the sample mean of system i based on Ni observations;

S2
i (Ni)

the sample variance of system i based on Ni observations, i.e.,

S2
i (Ni) = 1

Ni−1

∑Ni
j=1(Xij −Xi(Ni))

2;

n0 the number of simulation replications at the first stage;

δ∗ the indifference-zone value;

P ∗ the minimum required value for P (CS).

Also, it is assumed that there are k systems, and Xij (i = 1, . . . , k; j = 1, 2, . . . , Ni)

are independently and identically distributed (i.i.d) random variables following a normal

distribution with unknown means µi and unknown variances σ2
i , that is,

Xij ∼ N
(
µi, σ

2
i

)
. (3.2)

In addition, the researcher considers a minimisation problem, i.e., the goal is to select

the system with the smallest true mean. The notation and assumptions are applied to

both Rinott’s procedure (Section 3.2.2) and the MY procedure (Section 3.3). In fact,

they are applicable throughout this dissertation whenever the problem is discussed in

the single-objective context.
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3.2.2 Rinott’s procedure

Rinott’s procedure (Rinott, 1978) forms the basis of Procedure MY, hence the researcher

recalls it in this section for the purpose of completeness. Besides the assumptions

mentioned in the previous section, the procedure assumes the following LFC:

µ1 + δ∗ = µ2 = . . . = µk, (3.3)

so that system 1 is the (unknown) best system for this problem. The procedure is then

as follows:

Algorithm 1 Rinott’s two-stage procedure (Rinott, 1978)

1: Select the probability requirement P ∗, the indifference-zone value δ∗, and the first-stage

sample size n0 ≥ 2.

2: Run n0 simulations for each system i (i = 1, . . . , k).

3: Calculate sample variances S2
i (n0) (i = 1, . . . , k).

4: Let Ni = max
{
n0, d(h∗Si(n0)/δ∗)

2e
}

, where dxe denotes the smallest integer greater than

or equal to x, and h∗ is the solution to (3.4).

5: Run additional Ni − n0 simulation replications for system i (i = 1, . . . , k).

6: Compute the overall sample means Xi(Ni) (i = 1, . . . , k) and present system b as the best

system, where b = arg min
i

Xi(Ni).

The constant h∗ in Step 4 is the solution to the following double integral equation:

∫ ∞
0

[∫ ∞
0

h∗√
(n0 − 1)( 1

x + 1
y )
f(x) dx

]k−1

f(y) dy = P ∗, (3.4)

where f denotes the probability density function (p.d.f) of the χ2 distribution with

n0 − 1 degrees of freedom.

In what follows the researcher examines how P (CS) ≥ P ∗ is achieved in Rinott’s

procedure. Because µ1 (the true mean of system 1) is the smallest from the assumption

in (3.3), it is clear that ifX1 is observed as the smallest, that is, b = arg min
i

Xi(Ni) = 1,

then the procedure has selected the correct system. Therefore the probability of correct

selection is expressed as

P (CS) = P [X1(N1) < Xi(Ni), i = 2, . . . , k]. (3.5)

Note that, due to the assumption Xij ∼ N(µi, σ
2
i ) and the central limit theorem,

Xi(Ni) ∼ N
(
µi,

σ2
i

Ni

)
. (3.6)
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Therefore

P (CS) = P
[
X1(N1) < Xi(Ni), i = 2, . . . , k

]
= P

X1(N1)−Xi(Ni)− (µ1 − µi)√
σ2
1

N1
+

σ2
i
Ni

<
µi − µ1√
σ2
1

N1
+

σ2
i
Ni

, i = 2, . . . , k

 .
Denote Zi = X1(N1)−Xi(Ni)−(µ1−µi)√

σ21
N1

+
σ2
i
Ni

, then Zi (i = 2, . . . , k) are k−1 independent random

variables following the standard normal distribution. Also, under the LFC assumption

(3.3), µi − µ1 = δ∗ for all i 6= 1. Thus,

P (CS) = P

Zi < µi − µ1√
σ2
1

N1
+

σ2
i
Ni

, i = 2, . . . , k

 (3.7)

= P

Zi < δ∗√
σ2
1

N1
+

σ2
i
Ni

, i = 2, . . . , k

 (3.8)

>

k∏
i=2

P

Zi < δ∗√
σ2
1

N1
+

σ2
i
Ni

 (3.9)

=
k∏
i=2

Φ

 δ∗√
σ2
1

N1
+

σ2
i
Ni

 (3.10)

≥
k∏
i=2

Φ

 δ∗√
σ2
1

(h∗S1(n0)/δ∗)2
+

σ2
i

(h∗Si(n0)/δ∗)2

 (3.11)

=
k∏
i=2

Φ

 h∗√
σ2
1

S2
1(n0)

+
σ2
i

S2
i (n0)

 , (3.12)

where Φ denotes the cumulative distribution function (c.d.f) of the standard normal

distribution. The inequality in (3.9) is due to Slepian’s inequality (Slepian, 1962)

and because Zi (i = 2, . . . , k) are positively correlated. The equality in (3.10) holds

because Zi (i = 2, . . . , k) follow N(0, 1). The inequality in (3.11) comes from Ni ≥
(h∗Si(n0)/δ∗)2 due to Step 4 in Rinott’s procedure. Now, the variables Yi (i = 1, . . . , k),

defined by Yi = (n0 − 1)
S2
i (n0)

σ2
i

, are k independent χ2 variables with n0 − 1 degrees of
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freedom (DeGroot, 1970), and from (3.12),

P (CS) ≥
k∏
i=2

Φ

 h∗√
σ2
1

S2
1(n0)

+
σ2
i

S2
i (n0)


=

k∏
i=2

Φ

 h∗√
(n0 − 1) 1

Y1
+ (n0 − 1) 1

Yi


= E

 k∏
i=2

Φ

 h∗√
(n0 − 1)( 1

Y1
+ 1

Yi
)

∣∣∣∣Y1


=

∫ ∞
0

 k∏
i=2

Φ

 h∗√
(n0 − 1)( 1

x + 1
Yi

)

 f(x)dx

=

∫ ∞
0

∫ ∞
0

Φ

 h∗√
(n0 − 1)( 1

x + 1
y )

 f(y)dy

k−1

f(x)dx

= P ∗, (3.13)

where f is the p.d.f of the χ2 distribution with n0− 1 degrees of freedom. The equality

in (3.13) is due to the definition of h∗ in (3.4). Note that h∗ is determined by n0, k

and P ∗. Note also that in Rinott’s procedure, the sample size Ni is determined by

Ni = max

{
n0,

⌈(
h∗Si(n0)

δ∗

)2
⌉}

, (3.14)

where only sample variances S2
i (n0) (i = 1, . . . , k) are used from the first-stage simula-

tion result, wasting the information of sample means Xi(n0) (i = 1, . . . , k).

This concludes the discussion of Rinott’s procedure. In the next section, the Bayesian

inference model is introduced.

3.2.3 Bayesian approach

The LFC (3.3) is used in the proof of Rinott’s procedure in (3.8) where the term µi−µ1

is replaced by δ∗. This makes it possible to formulate the probability of correct selection

free from the unknown true mean parameters (Wang & Kim, 2013). The unknown true

mean parameters appear in the formulation of the probability of correct selection (3.7)

because Rinott’s procedure assumes (3.6). In order to identify the minimum Ni to
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guarantee P (CS) ≥ P ∗, the procedure needs to take care of the unknown true means

as well as the unknown variances from the right-hand side of (3.7). Rinott’s procedure

assumes the LFC to get rid of the term µi−µ1 while the unknown variances are cleverly

replaced by Yi (i = 1, . . . , k).

Rinott’s procedure as well as other IZ procedures follow a theory of probability

called frequentist, which references the probability of observed data, e.g., (3.6). It was

shown in the above discussion that this eventually forces the procedure to use the LFC

assumption, which, in turn, prevents the procedure from taking advantage of the sample

mean information. Optimal computing budget allocation (OCBA) procedures, on the

other hand, follow another probability theory called the Bayesian approach, which

enables the use of the sample mean information, and thus making these procedures the

most efficient (Branke et al., 2007).

A Bayesian probability model references the probability of parameters that are of

true interest to researchers (Hacking, 2001), e.g., the unknown true means. Unlike the

frequentist probability model, where parameters are assumed to have fixed population

values (such as θ = 0), and the data, denoted by y, is assumed to carry uncertainty,

Bayesian probability refers directly to the parameter θ itself (Zyphur & Oswald, 2015)

by using the concept of the posterior distribution. A posterior distribution p(θ|y) refers

to one’s belief that θ is true, having observed dataset y, and is defined via Bayes’ rule

as follows (Hoff, 2009):

p(θ|y) =
p(θ)p(y|θ)∫

Θ p(θ̃)p(y|θ̃)dθ̃
∝ p(θ)p(y|θ), (3.15)

where p(θ) denotes the belief in θ before any sample is taken, known as the prior

distribution, and p(y|θ) refers to one’s belief in the sample y if one knew θ to be true,

also called the sample distribution, and Θ represents the parameter space. Bayes’ rule

implies that the belief in θ before observation (p(θ)) can be updated after observing data

y, in proportion to the information contributed by the observation (p(y|θ)), resulting

in hopefully the more probable posterior distribution (p(θ|y)) (Yoon & Bekker, 2017b).

Regarding the normal conjugate model, Hoff (2009, p.70–71) shows that, if θ ∼
N(µ0, τ

2
0 ) and yi (i = 1, . . . , n) are n independent and identical observations from

N(θ, σ2) (σ2 is assumed to be known), then the posterior distribution p(θ|y1, . . . , yn) is
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also a normal distribution with mean µn and variance τ2
n, where

µn =

1
τ20
µ0 + n

σ2 ȳ

1
τ20

+ n
σ2

and
1

τ2
n

=
1

τ2
0

+
n

σ2
. (3.16)

In particular, if no prior knowledge is available before the observation, that is, if the

prior distribution is non-informative, then the posterior distribution is approximately

as if τ0 =∞ (Gelman et al., 2013, p. 52):

θ|y1, . . . , yn ∼ N(ȳ,
σ2

n
). (3.17)

In the context of the R&S problem under the discussion, with the assumption of Xij ∼
N(µi, σ

2
i ), this means that the posterior distribution of the unknown true mean µi

(i = 1, . . . , k) after Ni observations is

µi ∼ N
(
Xi(Ni),

σ2
i

Ni

)
, (3.18)

as explained in Chen & Lee (2010, p. 30–31).

Having directly established the probability model of the unknown true means as in

(3.18), the probability of correct selection can now be formulated as

P (CS) = P [ the observed best system b is actually the best system ]

= P [ µb < µi, i = 1, . . . , k, i 6= b ] (3.19)

= P

µb − µi − (Xb −Xi)√
σ2
i
Ni

+
σ2
b
Nb

<
Xi −Xb√
σ2
i
Ni

+
σ2
b
Nb

i = 1, . . . , k, i 6= b


= P

Zi < Xi −Xb√
σ2
i
Ni

+
σ2
b
Nb

i = 1, . . . , k, i 6= b

 , (3.20)

which is exactly the same P (CS) formulation as in OCBA procedures (Chen et al.,

2000). The MY procedure follows the Bayesian approach, thus takes (3.19) for its

probability of correct selection formulation. Note that the unknown true means µi

(i = 1, . . . , k) do not appear in the right-hand side of (3.20), and the sample mean

information is used instead. Note also that the unknown true variances σ2
i (i = 1, . . . , k)

are still used in (3.20), which will be dealt with by the MY procedure at a later stage.
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3.3 The MY procedure

This section describes the MY procedure and shows its validity on the probability of

correct selection. First, the procedure is presented in Algorithm 2.

Algorithm 2 The MY procedure

1: Select the probability requirement P ∗ = 1−α, the indifference-zone value δ∗, and the first-

stage sample size n0 ≥ 2. Let I = {1, 2, . . . , k} be the set of systems in competition, and

let β = α
k−1 .

2: Simulate n0 replications for all k systems, and calculate sample means Xi(n0) and sample

variances S2
i (n0). Let Ni = n0 (i = 1, . . . , k), and let b = arg min

i
Xi(Ni).

3: Delete system i (i 6= b) from I if

Ni ≥

⌈(
hSi(Ni)

δi

)2
⌉

and Nb ≥

⌈(
hSb(Nb)

δi

)2
⌉
, (3.21)

and delete system b from I if

Nb ≥

⌈(
hSb(Nb)

δi

)2
⌉

for all i 6= b, (3.22)

where δi = max{δ∗, Xi(Ni) −Xb(Nb)}, and dxe denotes the smallest integer greater than

or equal to x, and h is the solution of the following equation:∫ ∞
0

[∫ ∞
0

h√
(Ni − 1) 1

x + (Nb − 1) 1
y

f1(x) dx

]
f2(y) dy = 1− β, (3.23)

where f1 and f2 denote the p.d.f of the χ2 distribution with Ni − 1 and Nb − 1 degrees of

freedom, respectively.

4: If |I| = 0, then stop and present system b as the best system. Otherwise, go to Step 5.

5: Take one additional observation Xi,Ni+1 from each system i ∈ I, and set Ni ← Ni + 1

(∀i ∈ I). Set I = {1, 2, . . . , k} and update Xi(Ni), S
2
i (Ni) and b = arg min

i
Xi(Ni), go to

Step 3.
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The proof on the probability of correct selection of Procedure MY

The proof follows the same scheme used in the KN procedure (see Section 2.1.1, espe-

cially (2.14)). Let CSi (ICSi) be the event of correct (incorrect) selection when only

system b and system i are considered. If it is shown that

P (CSi) ≥ 1− β, (3.24)

which is equivalent to P (ICSi) = 1 − P (CSi) ≤ β, for all i = 1, . . . , k (i 6= b), the

probability of correct selection, from (3.19), is then shown to be greater than or equal

to P ∗:

P (CS) = P [µb < µi, i = 1, . . . , k, i 6= b ]

= P (

k⋂
i=1, i6=b

CSi)

≥ 1−
k∑

i=1, i6=b
P (ICSi) ≥ 1− (k − 1)β = 1− α = P ∗. (3.25)

The first inequality in (3.25) follows from the Bonferroni inequality while the second

one comes from the fact that P (ICSi) ≤ β.

Now the researcher shows P (CSi) ≥ 1−β. Recall that at the end of the MY proce-

dure system i (i = 1, . . . , k) has been allocated Ni simulation replications and system

b = arg min
i
Xi(Ni) is presented as the best system. Also recall µi ∼ N

(
Xi(Ni),

σ2
i
Ni

)
under the Bayesian inference model with a non-informative prior distribution, after Ni

observations. Then P (CSi) ≥ 1− β can be proved as follows:

P (CSi) = P (µb < µi)

= P

µb − µi − (Xb(Nb)−Xi(Ni))√
σ2
i
Ni

+
σ2
b
Nb

<
Xi(Ni)−Xb(Nb)√

σ2
i
Ni

+
σ2
b
Nb


= P

Zi < Xi(Ni)−Xb(Nb)√
σ2
i
Ni

+
σ2
b
Nb


= Φ

Xi(Ni)−Xb(Nb)√
σ2
i
Ni

+
σ2
b
Nb

 (3.26)
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≥ Φ

 Xi(Ni)−Xb(Nb)√
σ2
i(

hSi(Ni)

δi

)2 +
σ2
b(

hSb(Nb)

δi

)2

 (3.27)

= Φ

 h√
σ2
i

Si(Ni)2
+

σ2
b

Sb(Nb)2

 , (3.28)

where Zi = µb−µi−(Xb(Nb)−Xi(Ni))√
σ2
i
Ni

+
σ2
b
Nb

and Φ denotes the c.d.f of the standard normal

distribution. The equality (3.26) holds because Zi follows N(0, 1). The inequality in

(3.27) comes from the condition in (3.21) and Xi(Ni) −Xb(Nb) ≥ 0. The equality in

(3.28) holds if it is assumed that δi = max{δ∗, Xi(Ni) −Xb(Nb)} = Xi(Ni) −Xb(Nb)

(discussions for the case of δi = δ∗ are to follow). Now, let Yi = (Ni − 1)
S2
i (Ni)

σ2
i

and

Yb = (Nb − 1)
S2
b (Nb)

σ2
b

, then Yi and Yb are two independent random variables following

the χ2 distribution with Ni − 1 and Nb − 1 degrees of freedom, respectively. Replacing
σ2
i

Si(Ni)2
= (Ni − 1) 1

Yi
and

σ2
b

Sb(Nb)2
= (Nb − 1) 1

Yb
from (3.28) leads to

P (CSi) ≥ Φ

 h√
σ2
i

Si(Ni)2
+

σ2
b

Sb(Nb)2


= Φ

 h√
(Ni − 1) 1

Yi
+ (Nb − 1) 1

Yb


= E

Φ

 h√
(Ni − 1) 1

Yi
+ (Nb − 1) 1

Yb

∣∣∣∣Yb


=

∫ ∞
0

Φ

 h√
(Ni − 1) 1

Yi
+ (Nb − 1) 1

y

 f2(y)dy

=

∫ ∞
0

∫ ∞
0

Φ

 h√
(Ni − 1) 1

x + (Nb − 1) 1
y

 f1(x)dx

 f2(y)dy

= 1− β, (3.29)

where f1 and f2 denote the p.d.f of the χ2 distribution with Ni− 1 and Nb− 1 degrees

of freedom, respectively. The equality in (3.29) comes from the definition of h in (3.23).
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Discussion on the MY procedure

Procedure MY is a fully sequential procedure, where only one observation is added

at each iteration and the procedure does not stop until it is assured of the quality of

the final solution. At each iteration, the procedure repeats investigating (Step 3) and

sampling (Step 5). In the investigation stage, it examines whether system i is believed

to be inferior to system b with a confidence level of 1 − β, that is, if P (CSi) ≥ 1 − β.

This is done by checking whether the conditions in (3.21) are satisfied or not, for

this leads to satisfying (3.24) as proved in the previous paragraph. These systems,

once concluded with sufficient evidence as not being the best system, are excluded

from further sampling. The rest of the systems are assigned one more simulation

replication in the sampling stage. By assigning only one more simulation replication to

the remaining systems, the procedure is taking a very cautious step to avoid allocating

an unnecessarily large number of simulation replications to any system (Yoon & Bekker,

2017b). After the sampling and updating of relevant information, the procedure goes

back to Step 3 for the next iteration.

However, the systems found to be inferior at an iteration are not excluded from

further sampling in the following iterations. The set of systems that are still in com-

petition I is restored in Step 5 to be the whole solution set I = {1, 2, . . . , k}, and all k

systems go through the investigating process once again with the updated information

in the next iteration. This is fundamentally different from the KN procedure, where a

system cannot come back to competition once deleted from I.

Restoring I in every iteration is possible because the constant h is dynamically

determined by solving the double integral equation in (3.23), where different numbers

of simulation replications (Ni 6= Nb) are allowed. It is distinguished from Rinott’s

constant h∗ or the constant h2 of the KN procedure, which are a function of n0, k

and P ∗. Therefore they remain a constant throughout the whole process. In the MY

procedure, on the other hand, h is calculated every iteration using the most recent

information available, i.e., information based on Ni observations, not n0. The value

of Rinott’s constant h∗ is available in Wilcox (1984) for several parameter settings of

n0, k and P ∗. Nowadays, however, with advanced computing power, one can solve

the complex double integral equations such as (3.4) or (3.23) dynamically using, for
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example, Matlab, albeit somewhat costly in terms of computation time (Yoon & Bekker,

2017b).

The following condition was assumed in proving (3.24):

δi = max{δ∗, Xi(Ni)−Xb(Nb)} = Xi(Ni)−Xb(Nb). (3.30)

This is equivalent to the IZ prerequisite of frequentist’s IZ procedures

µi − µb ≥ δ∗. (3.31)

Frequentist’s IZ procedures guarantee P (CS) ≥ P ∗ under the assumption that (3.31) is

satisfied for all i (i = 1, . . . , k; i 6= b) (See (2.1)). If there exists a system b′(6= b) whose

true mean is within δ∗ apart from µb (µb′ − µb < δ∗), then the procedures consider

system b′ indifferent to system b, thus select system b or b′ with the probability of at

least P ∗. Because Procedure MY follows a Bayesian inference model, it does not impose

the IZ prerequisite on the unknown true means as in (3.31), but applies it to sample

means as in (3.30). That is, the probability of correct selection is guaranteed to be

greater than or equal to P ∗ in Procedure MY if (3.30) is satisfied for all i (i = 1, . . . , k;

i 6= b). In case of δb′ = max{δ∗, Xb′ − Xb} = δ∗, that is when Xi − Xb < δ∗ for

i = b′(6= b), the procedure assigns Nb′ by

Nb′ =

⌈(
hSb′

δb′

)2
⌉

=

⌈(
hSb′

δ∗

)2
⌉
≤

⌈(
hSb′

Xb′ −Xb

)2
⌉
. (3.32)

The procedure does not assign the larger sample size Nb′ =

⌈(
hSb′

Xb′−Xb

)2
⌉

to system

b′, which means there is a danger of the difference between system b′ and system b not

being distinguished. But this is exactly what one wants from IZ procedures—one does

not want to distinguish the difference if it is smaller than δ∗.

3.4 Experiments with Procedure MY

This section describes some numerical experiments conducted to verify the statistical

validity of the MY procedure. Other procedures were also implemented and used for

the same experiments to compare the results. They are Rinott’s procedure (Rinott,

1978), the ETSS procedure (Chen & Kelton, 2000), the SRS procedure (Chen & Kelton,

2005), the KN procedure (Kim & Nelson, 2001), and the WK and WK++ procedures

(Wang & Kim, 2013).
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3.4.1 Experimental setup for Procedure MY

The experimental setup was borrowed from Chen & Kelton (2005), of which the details

are briefly explained here: 10 systems are assumed (k = 10), and Xij ∼ N(µi, σ
2
i ).

For Experiments 1 to 3, the true means are assumed as µi = i (i = 1, . . . , k); and

for Experiment 4, µ1 + δ∗ = µ2 = . . . = µ10, thus Experiment 4 represents the LFC

case. Equal variances are used for Experiments 1 and 4 (σ2
i = 62); increasing and

decreasing variances are assumed for Experiments 2 (σ2
i = (6 + (i − 1)/2)2) and 3

(σ2
i = (6 − (i − 1)/2)2), respectively. In Experiments 1 to 3, δ∗ = 0.9 is used while

δ∗ = 1 is assumed for Experiment 4. See Table 3.2 for a summarised experimental

setup. For all experiments, the interest is to select the system with the smallest true

mean, that is, system 1.

Table 3.2: Experimental settings for Procedure MY

mean variance IZ value

Exp. 1 µi = i σ2
i = 62 δ∗ = 0.9

Exp. 2 µi = i σ2
i = (6 + (i− 1)/2)2 δ∗ = 0.9

Exp. 3 µi = i σ2
i = (6− (i− 1)/2)2 δ∗ = 0.9

Exp. 4 µ1 + δ∗ = µ2 = . . . = µ10 σ2
i = 62 δ∗ = 1

3.4.2 Experimental results of Procedure MY

The results of the four experiments are discussed in this section. Each experiment was

done repeatedly and independently 1 000 times for each procedure, and the estimated

probability of correct selection P̂ (CS) was calculated by the number of experiments

with the correct answer (i.e., system 1 is the best system), divided by 1 000. The

average of the total number of simulation replications N total = 1
1 000

∑1 000
R=1

∑k
i=1Ni,R,

where Ni,R denotes the number of simulation replications assigned to system i in the

Rth run of the experiment, was also presented to see the efficiency of each procedure.

P ∗ = 0.9 was assumed for all experiments, and three different values were used for the

initial number of simulation replications, namely, n0 = 10, n0 = 20, and n0 = 30.
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Experiments 1 to 3

Tables 3.3 to 3.5 show the results of Experiments 1 to 3. The ‘Procedure’ column lists

the procedures in the order that they were developed, first the procedures that are

based on Rinott’s procedure, then the KN family procedures that follow the principle

of Paulson’s procedure (Paulson, 1964).

Table 3.3: Estimated P (CS) and total number of simulations for Experiment 1

n0 = 10 n0 = 20 n0 = 30

Procedure P̂ (CS) N total P̂ (CS) N total P̂ (CS) N total

Rinott 0.986 5 273 0.994 5 247 0.995 5 266

ETSS 0.889 1 139 0.951 1 217 0.974 1 280

SRS 0.984 1 242 0.993 1 231 0.990 1 287

MY 0.980 817 0.989 868 0.993 923

KN 0.991 1 330 0.994 1 084 0.995 1 023

WK 0.970 789 0.986 706 0.987 731

WK++ 0.961 505 0.978 587 0.980 658

Table 3.4: Estimated P (CS) and total number of simulations for Experiment 2

n0 = 10 n0 = 20 n0 = 30

Procedure P̂ (CS) N total P̂ (CS) N total P̂ (CS) N total

Rinott 0.988 10 245 0.994 10 306 0.997 10 199

ETSS 0.853 1 490 0.935 1 512 0.967 1 596

SRS 0.980 1 644 0.989 1 553 0.994 1 548

MY 0.993 969 0.992 987 0.995 1 052

KN 0.993 1 756 0.997 1 431 0.993 1 345

WK 0.966 890 0.980 774 0.988 802

WK++ 0.968 602 0.981 674 0.984 720

In all procedures the estimated P (CS) appears to be greater than the required value

P ∗ = 0.9, with the exception of the ETSS procedure with n0 = 10 in Experiments 1

and 2. This is because the ETSS procedure depends only on the first-stage sample

means and variances, and the initial sample size n0 = 10 is not large enough to carry

accurate information. For all three experiments, the efficiency of the procedures is

improved from Rinott’s to ETSS/SRS to Procedure MY, spending a smaller number

of simulation replications and at the same time achieving P (CS) ≥ P ∗ (except for
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Table 3.5: Estimated P (CS) and total number of simulations for Experiment 3

n0 = 10 n0 = 20 n0 = 30

Procedure P̂ (CS) N total P̂ (CS) N total P̂ (CS) N total

Rinott 0.985 2 345 0.998 2 372 0.993 2 356

ETSS 0.906 908 0.946 1 006 0.961 1 102

SRS 0.985 994 0.995 1 034 0.995 1 094

MY 0.992 749 0.985 808 0.988 863

KN 0.995 1 023 0.994 860 0.991 828

WK 0.982 680 0.978 632 0.984 676

WK++ 0.964 463 0.977 538 0.986 613

the aforementioned cases of ETSS with n0 = 10). While the improvements between

Rinott’s and ETSS/SRS are due to the elimination of the LFC assumption, those

between ETSS/SRS and the MY procedure are on account of the fact that Procedure

MY is a fully sequential one as well as that in the MY procedure the value of h is

calculated at each iteration to keep Ni as small as possible. The ETSS procedure and

the SRS procedure show similar efficiency. However, the SRS procedure achieves a

greater P̂ (CS) with a similar or a slightly larger value of N total. Therefore, the SRS

procedure is still considered as an improvement of the ETSS procedure.

In all three experiments the efficiency of the KN family procedures are much better

than others with regard to the number of total simulation replications, among which the

WK++ procedure improves on KN and WK. As briefly mentioned in Section 3.1, the

WK procedure eliminates the LFC assumption from KN, which leads to a significant

saving on the simulation effort. The WK++ procedure further decreases the total

number of simulation replications by using the updated sample variance information

(Wang & Kim, 2013).

It is not clear how the initial number of simulation replications n0 affects the per-

formance of the procedures. In principle, for procedures that depend mainly on the

first-stage information (Rinott, ETSS and KN), a large value of n0 means more reliable

information at the early stage of the procedure, which could thus attribute to decreas-

ing the total number of simulation replications (Procedure KN) or improving P (CS)

(ETSS).

However, for fully sequential procedures that do not depend much on the first-stage

information, a large value of n0 could sometimes be a waste, especially when the sample
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Table 3.6: The average number of simulation replications assigned to each system by

Procedure MY for Experiment 1

system 1 2 3 4 5 6 7 8 9 10

n0 = 10 266.124 270.551 116.347 55.682 32.089 21.954 17.039 13.906 12.119 11.073

n0 = 20 271.889 276.284 116.816 58.593 35.137 26.467 22.335 20.700 20.158 20.033

n0 = 30 272.729 276.767 120.244 59.178 40.285 32.692 30.598 30.100 30.002 30.000

mean difference (Xi(n0) −Xb(n0)) is large and the procedure is able to conclude the

inferiority of a system with a small value of n0 (Yoon & Bekker, 2017b). See Table 3.6,

for example, which shows the number of simulation replications assigned to each system

by Procedure MY for Experiment 1. When n0 = 10, the average number of simulation

replications for systems 8 to 10 is not much greater than the initial value of n0 = 10.

This means that the procedure was able to decide shortly after the initial sampling of

n0 = 10 that these systems were not the best. In other words, N10 = 11 was enough,

for example, to exclude system 10 from the candidates of the best system. If one uses

n0 = 20 or 30 in this case, 9 or 19 simulation replications are being wasted; and this

could lead to a rise in the total number of simulation replications. This phenomenon

is remarkable in Procedure MY and the WK++ procedure.

Experiment 4

The result of Experiment 4 is quite different from the other experiments, because

Experiment 4 assumes the LFC. Table 3.7 shows that many procedures do not satisfy

the P (CS) ≥ P ∗ requirement, particularly the ETSS procedure. This is because, as

discussed in the previous section, the ETSS procedure depends only on the first-stage

information, which is highly unreliable in the LFC. This is supported by the observation

that the P̂ (CS) increases as n0 grows. Rinott’s procedure and the KN procedure also

depend on the first-stage information, however they are designed to achieve P (CS) ≥ P ∗

when the LFC is assumed, therefore they show acceptable P (CS) in most cases.

It is remarkable that the WK and WK++ procedures do not meet the P (CS)

requirement, while Procedure MY does. The validity of WK family procedures is proven

only in an asymptotical sense, that is, as δ∗ → 0 (Wang & Kim, 2013). Therefore in this

LFC case with δ∗ = 1, these procedures failed to achieve P (CS) ≥ P ∗. On the other
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hand, the statistical validity of Procedure MY is proven based on a solid mathematical

analysis, as shown in Section 3.3, regardless of the value of δ∗.

Table 3.7: Estimated P (CS) and total number of simulations for Experiment 4

n0 = 10 n0 = 20 n0 = 30

Procedure P̂ (CS) N total P̂ (CS) N total P̂ (CS) N total

Rinott 0.898 4 274 0.929 4 250 0.937 4 276

ETSS 0.538 1 414 0.674 1 849 0.771 2 111

SRS 0.903 3 174 0.934 3 271 0.935 3 235

MY 0.941 2 894 0.929 2 951 0.932 2 940

KN 0.917 2 592 0.933 2 174 0.935 2 022

WK 0.843 2 190 0.892 1 758 0.890 1 708

WK++ 0.811 1 318 0.878 1 426 0.883 1 511

3.4.3 Additional experiments

Two more experiments were added besides the four experiments discussed in the previ-

ous two sections, to further compare the performance of the WK++ procedure and the

MY procedure. The setup of true means and variances in Experiment 5 is the same as in

Experiment 4, but the indifference-zone parameter was set to a smaller value δ∗ = 0.5.

Therefore, Experiment 5 does not assume the LFC any more; and the problem is easier

in Experiment 5 than in Experiment 4. In Experiment 6, a more challenging condition

is assumed, i.e., the LFC prevails with δ∗ = 0.5. Table 3.8 summarises the settings of

Experiments 5 and 6. The settings of Experiment 4 are also presented in the table for

the purpose of comparison.

The results of Experiments 4 to 6 are presented in Table 3.9. Again the results of

Experiment 4 for Procedure WK++ and Procedure MY are presented for a convenient

comparison. The estimated P (CS) increases in Experiment 5, in all three cases with

n0 = 10, 20 and 30; and for both procedures. This is because Experiment 5 assumes

Table 3.8: Experimental settings for additional experiments

mean variance IZ value LFC

Exp. 4 µ1 + 1 = µ2 = . . . = µ10 σ2
i = 62 δ∗ = 1 Yes

Exp. 5 µ1 + 1 = µ2 = . . . = µ10 σ2
i = 62 δ∗ = 0.5 No

Exp. 6 µ1 + 0.5 = µ2 = . . . = µ10 σ2
i = 62 δ∗ = 0.5 Yes
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Table 3.9: Estimated P (CS) and total number of simulations for additional experiments

n0 = 10 n0 = 20 n0 = 30

Procedure P̂ (CS) N total P̂ (CS) N total P̂ (CS) N total

Experiment 4

MY 0.941 2 894 0.929 2 951 0.932 2 940

WK++ 0.811 1 318 0.878 1 426 0.883 1 511

Experiment 5

MY 0.998 5 033 0.998 4 846 0.996 5 104

WK++ 0.847 2 541 0.911 2 615 0.925 2 724

Experiment 6

MY 0.933 11 718 0.920 11 713 0.926 11 782

WK++ 0.726 4 476 0.765 4 775 0.797 4 897

an easier problem to solve than Experiment 4. It also corresponds to the claim that

the asymptotic validity of Procedure WK++ is proven as δ∗ → 0. However, both

procedures spend more simulation replications in Experiment 5, now that they should

distinguish the difference to the precision of δ∗ = 0.5. Nevertheless, Procedure WK++

still shows an undesirable estimated P (CS) of 0.847 when n0 = 10.

The performance of the WK++ procedure becomes even worse in Experiment 6,

where the estimated P (CS) could not exceed 0.8 for all three cases of n0 = 10, 20 and

30; dropping to the value of 0.726 when n0 = 10. In contrast, Procedure MY shows

P (CS) ≥ P ∗ all the time, demonstrating its validity empirically, too.

One might think that the WK++ procedure spends a considerably smaller amount

of simulation budget compared to Procedure MY, hence maybe a better choice. How-

ever, it should be remembered that the purpose of IZ procedures is to guarantee the

probability of correct selection requirement given in (2.1) no matter how many simu-

lation replications are required, therefore the most important measure of performance

for IZ procedures is the probability of correct selection, as argued in Kim & Nelson

(2006a).

3.5 Conclusion: Chapter 3

In this chapter, a new single-objective R&S procedure, called Procedure MY, was pre-

sented with a rigorous mathematical proof of its statistical validity. The motivation
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was explained that indifference-zone procedures are well known to be conservative due

to the LFC assumption, and there have been many efforts to remove the LFC assump-

tion from existing IZ procedures; however, these efforts remained only to develop IZ

procedures without a solid mathematical proof of P (CS) ≥ P ∗. Procedure MY not

only successfully eliminates the LFC assumption, hence improving the efficiency of ex-

isting IZ procedures, but also provides the proof based on a Bayesian inference model.

The validity of the Bayesian approach was supported by numerical experiments, which

showed the superiority of Procedure MY over existing IZ procedures in terms of the

probability of correct selection.

The next chapter advances to discuss multi-objective R&S procedures, which are

the main work of this research.
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Chapter 4

The developed multi-objective

ranking and selection procedures

This chapter leads to the main work of this research: the development of a new multi-

objective ranking and selection (MORS) procedure and its variants. First a few impor-

tant concepts in multi-objective optimisation (MOO) are discussed in Section 4.1 to

provide a theoretical background. The new MORS procedure, named Procedure MMY,

is then proposed in Section 4.2, followed by the proposal of two variants of this new

MORS procedure named MMY1 and MMY2.

4.1 Theoretical background for the MMY family proce-

dures

The MMY family procedures share the same principle of following a Bayesian inference

model as Procedure MY. Being multi-objective ranking and selection procedures, how-

ever, they require more theoretical background. This section discusses multi-objective

optimisation (MOO) and the concept of Pareto optimality as a theoretical foundation

for the work presented in this dissertation.

4.1.1 Multi-objective optimisation

Traditionally decision-making problems with multiple, conflicting objectives have been

considered in a research area called multiple criteria decision making (MCDM). As

discussed in Section 1.1, there is no unique solution to MOO problems but a set of
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non-dominated solutions is identified. These solutions are called the Pareto optimal

solutions. Despite the existence of multiple Pareto optimal solutions, in practice, usu-

ally only one of these solutions is to be chosen (Branke et al., 2008). Typically, in

the MCDM literature, this decision-making task for choosing a single most preferred

solution has been treated as importantly as mathematical programming techniques

for identifying the Pareto optimal solutions. The former normally requires preference

information from a decision-maker.

In Miettinen (1999), MOO algorithms are classified into four categories, i.e., no-

preference, a priori, a posteriori and interactive methods, according to the role of

the decision-maker in the solution process. In a priori methods, for example, the

decision-maker articulates preference information related to the multiple objectives

before the solution process begins, and the MOO problem is then formulated based

on the preference information given by the decision-maker. All these four categories,

however, can be considered as ‘interactive approach’ in the sense that mathematical

programming techniques and the decision-making task have been used in an intertwined

manner, and the ultimate aim of solving an MOO problem has been characterised as

supporting the decision-maker in finding the solution that best fits the decision-maker’s

preferences (Branke et al., 2008). For details on MCDM algorithms and methods, see

Chankong & Haimes (1983), Miettinen (1999) and especially the first two chapters of

Branke et al. (2008).

Meanwhile, another approach to MOO problems based on evolutionary algorithms

emerged independently in the beginning of the 1990s. This soon formed a very pop-

ular research field called evolutionary multi-objective optimisation (EMO). Unlike the

interactive approach in MCDM, EMO algorithms focus on identifying Pareto optimal

solutions efficiently. These algorithms solve the MOO problem independently from the

preference information of the decision-maker, who is then to choose a final solution

from the already obtained Pareto solutions. This is similar to a posteriori methods

of MCDM, in the sense that the Pareto optimal solutions are first found and then the

decision-maker’s preference information is considered to pick up a single solution. How-

ever, a posteriori methods of MCDM and EMO algorithms are fundamentally different

for the former usually requires repetitive application of a single-objective algorithm

with different values of parameters to identify a Pareto optimal solution set while the

latter finds a Pareto set with a single application of an EMO algorithm. For more
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information on the topic of EMO, the reader is referred to Deb (2001, 2005, 2008) and

Coello Coello et al. (2002).

The interest in this research is closer to that of EMO, i.e., identifying a Pareto

optimal solution set as accurately and efficiently as possible is the ultimate goal of the

MORS procedures proposed in this research. Therefore, the decision-making task of

selecting a single preferred solution out of a number of Pareto optimal solutions is not

considered in this study. Unlike the EMO algorithms, however, of which the main task

is to often identify Pareto optimal solutions out of a huge number of feasible solutions

in a deterministic environment, the MORS problem domain assumes a relatively small

number of feasible solutions in a stochastic environment. The values of the stochastic

solutions are usually estimated with computer simulation.

A ‘relatively small’ size of solution space means that the number of feasible solutions

is small enough for a complete enumeration of all solutions (see Yoon & Bekker (2017c)

for more discussion on the solution space size of simulation optimisation problems).

Even though the evaluation of all solutions is possible, selecting the best system is still

challenging due to the stochastic nature of the simulation optimisation (SO) problems,

thus the research field of ranking and selection (R&S) was established as previously

mentioned in Section 1.2.

In summary, the purpose of the proposed MORS procedures in this research is to

identify a Pareto optimal solution set and to guarantee the quality of the Pareto set

with a probability of correct selection greater than or equal to a prespecified value of

P ∗. Before advancing the discussion further, the following section presents the notation

and assumptions used in the proposed MORS procedures.

4.1.2 Notation and assumptions for the MMY family procedures

Table 4.1 provides the notation used in MMY family procedures. These are for MORS

problems, hence different from those presented in Section 3.2.1. The notation and

assumptions given in this section are used throughout this dissertation so far as the

MORS procedures are concerned.
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Table 4.1: Notation for multi-objective ranking and selection problems

M the number of systems in the problem;

S the feasible solution set, i.e., S = {1, . . . ,M};
I the set of systems that are still in competition;

H the number of objectives;

K the objective set, i.e., K = {1, . . . ,H};
µik the unknown true mean of system i for objective k;

σ2
ik the unknown variance of system i for objective k;

Ni the total number of simulation replications assigned to system i;

Xikl the lth observation from system i for objective k;

Xik(Ni) the sample mean of system i for objective k based on Ni observations;

S2
ik(Ni)

the sample variance of system i for objective k based on Ni

observations, i.e., S2
ik(Ni) =

1

Ni − 1

∑Ni
l=1(Xikl −Xik(Ni))

2;

Q the true Pareto set based on µik (i ∈ S and k ∈ K);

Qc the true non-Pareto set based on µik (i ∈ S and k ∈ K);

QIZ the true Pareto set with IZ;

QcIZ the true non-Pareto set with IZ;

QR the true relaxed Pareto set;

QT the set of all possible true relaxed Pareto sets, defined in (4.9);

Sp the observed Pareto set based on Xik (i ∈ S and k ∈ K);

Scp the observed non-Pareto set based on Xik (i ∈ S and k ∈ K);

SIZ the observed Pareto set with IZ;

ScIZ the observed non-Pareto set with IZ;

n0 the number of simulation replications at the first stage;

δ∗k the indifference-zone value for objective k;

P ∗ the minimum required value for P (CS).

The observations Xikl (l = 1, . . . , Ni) are assumed to be i.i.d random variables

following a normal distribution with unknown mean µik and unknown variance σ2
ik:

Xikl ∼ N(µik, σ
2
ik). (4.1)

It is also assumed that the observations across the M systems are independent, as well

as observations across the objectives in a system. In other words, the observations Xikl

are independent of all other responses for each i ∈ S, k ∈ K, and for l = 1, . . . , Ni. This
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is the same condition given in the MOCBA algorithm (Lee et al., 2010b). From (4.1)

and the Bayesian inference model discussed in Section 3.2.3, the posterior distribution

of the unknown true mean µik after Ni observations is obtained as

µik ∼ N
(
Xik(Ni),

σ2
ik

Ni

)
. (4.2)

This becomes the foundation for the construction of the probability of correct selection

in Sections 4.2, 4.3 and 4.4.

In the following two sections, a formal definition of Pareto optimality is presented,

first without the IZ concept and then with it.

4.1.3 Introduction to Pareto optimality

Coello Coello (2009) gives a formal definition of Pareto optimality for a minimisation

problem as follows:

Definition 1: Given two vectors u,v ∈ Rn, we say u ≤ v if ui ≤ vi for i = 1, 2, . . . , n,

and that u < v if u ≤ v and u 6= v.

Definition 2: Given two vectors u,v ∈ Rn, we say u dominates v (denoted by u ≺ v)

iff u < v.

Definition 3: A vector of decision variables x∗ ∈ S is Pareto optimum if there does

not exist another x ∈ S such that f(x) ≺ f(x∗).

Definition 4: The Pareto optimal set Sp is defined by Sp = {x ∈ S | x = x∗}. The

vectors in Sp are also called non-dominated.

These definitions are based on an optimisation point of view in a deterministic

environment. In the following two subsections the concept of Pareto optimality is

discussed in a simulation context, where the stochastic environment is usually assumed.

4.1.3.1 The dominance relationship of true means

Suppose there are M systems with H objectives, and let µik be the true mean of the

performance measure associated with the kth objective of system i (i ∈ S = {1, . . . ,M};
and k ∈ K = {1, . . . ,H}). Then the above definitions can be converted into the

following, in a simulation context:
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Figure 4.1: An example of Pareto optimal solutions for two minimised objectives

� System j dominates system i, denoted by j ≺ i, if µjk ≤ µik for ∀k ∈ K, and

µjk < µik for ∃k ∈ K.

� System i ∈ S is Pareto optimum if there does not exist another system j ∈ S

such that j ≺ i.

� The Pareto optimal set Q is defined by

Q = {i ∈ S | @j ∈ S such that j ≺ i}. (4.3)

Figure 4.1 shows an example of Pareto optimal solutions (represented by red dots) with

two objectives both to be minimised. It is clear, for example, that the performance of

system 2 is better than system 1 for both objectives, thus system 2 dominates system 1.

However, systems 2, 6, 8 and 10 are not dominated by any other system in the solution

set S = {1, . . . , 10}, thus Q = {2, 6, 8, 10} in this case.

4.1.3.2 The dominance relationship of sample means

In the previous section the dominance relationship of true means was discussed. How-

ever, in stochastic simulation problems, true means are unknown and therefore esti-

mated using sample means Xik (i ∈ S, k ∈ K). The Pareto optimal solution set

constructed from these sample means are called ‘observed Pareto set’ in this disserta-

tion. An observed Pareto set can only approximate the ‘true’ Pareto optimal solution
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set Q. To highlight this discrepancy, the ‘observed Pareto set’ is denoted using a differ-

ent symbol in this dissertation, i.e., Sp. The dominance relationship of sample means

is then as follows:

� System j dominates system i in observation, denoted by j≺̂i, if Xjk ≤ Xik for

∀k ∈ K, and Xjk < Xik for ∃k ∈ K.

� System i ∈ S is Pareto optimum in observation if there does not exist another

system j ∈ S such that j≺̂i.

� The observed Pareto set Sp is defined by

Sp = {i ∈ S | @j ∈ S such that j≺̂i}.

The hat (ˆ) symbol indicates that the dominance relationship is based on observation

(sample means).

In this section (Section 4.1.3), a formal definition of Pareto optimality was consid-

ered in a simulation context, where the stochastic environment is assumed. The true

Pareto solution set Q and the observed Pareto solution set Sp were defined based on

true means and sample means, respectively. The indifference-zone concept was not

considered in constructing either Q nor Sp. Considering the IZ concept, however, is

important in a stochastic environment; otherwise the procedures would spend a huge

amount of simulation budget trying to distinguish insignificantly small differences in

performance. This becomes the subject of the following section.

4.1.4 Pareto optimality with the indifference-zone concept

In this section, Pareto optimality is redefined based on the IZ concept. The dominance

relationship of true means is contemplated first, followed by that of sample means.

These new definitions of Pareto optimality with the IZ concept are based on Teng et al.

(2010).

4.1.4.1 The dominance relationship of true means with the IZ concept

When the IZ concept is involved, three relationships exist between two systems for a

given objective k, as follows:
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−δ∗k δ∗k

j 'k i i ≺k jj ≺k i

j -k i

µjk − µik

Figure 4.2: Three relationships between systems i and j for objective k with IZ

� System j is better than system i in objective k, denoted by j ≺k i,
if µjk − µik < −δ∗k.

� System j is indifferent to system i in objective k, denoted by j 'k i,
if |µjk − µik| ≤ δ∗k.

� System j is worse than system i in objective k, denoted by i ≺k j,
if µjk − µik > δ∗k.

Sometimes, the first and second relationships are combined as follows:

� System j is better than or is indifferent to system i in objective k, denoted by

j -k i, if µjk − µik ≤ δ∗k.

Figure 4.2 shows these relationships graphically. Based on these three relationships

between two systems for a given objective k, now the relationship between two sys-

tems in general, i.e., considering all H objectives, can be defined as follows when the

indifference-zone concept is considered:

� System j dominates or is indifferent to system i, denoted by j -IZ i, if

µjk − µik ≤ δ∗k, ∀k ∈ K;

and the probability that system j dominates or is indifferent to system i is

P (j -IZ i) =

H⋂
k=1

P (µjk − µik ≤ δ∗k).

� System j is indifferent to system i, denoted by j 'IZ i, if

|µjk − µik| ≤ δ∗k, ∀k ∈ K; (4.4)
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and the probability that system j is indifferent to system i is

P (j 'IZ i) =
H⋂
k=1

P (|µjk − µik| ≤ δ∗k).

� System j dominates system i, denoted by j ≺IZ i, if

µjk − µik ≤ δ∗k, ∀k ∈ K, and µjk − µik < −δ∗k, ∃k ∈ K; (4.5)

and the probability that system j dominates system i is defined as

P (j ≺IZ i) = P (j -IZ i)− P (j 'IZ i)

=

H⋂
k=1

P (µjk − µik ≤ δ∗k)−
H⋂
k=1

P (|µjk − µik| ≤ δ∗k). (4.6)

� System i ∈ S is Pareto optimum (with the IZ concept) if there does not exist

another system j ∈ S such that j ≺IZ i.

� The Pareto optimal set with the IZ concept QIZ is defined by

QIZ = {i ∈ S | @j ∈ S such that j ≺IZ i}. (4.7)

Introducing the IZ concept changes the dominance relationship between two sys-

tems, therefore could lead to a different Pareto set. Refer to Figure 4.3 for example,

to see the difference in Q and QIZ for the same set of µik (i ∈ S; k ∈ K). These true

means have the same value as in Figure 4.1, except for µ9, which was changed to (7.7,

1.7) to highlight the difference in the two Pareto sets: one without the IZ concept and

one with it. The non-dominated systems are marked in red. In this example, system 9 is

non-dominated if the IZ concept is not considered as shown in Figure 4.3(a). However,

the IZ values δ∗1 = δ∗2 = 0.5 are considered, according to (4.5), system 9 is dominated

not only by system 8 but also by system 10. Figure 4.3(b) shows this concept.

Figure 4.4 provides another example, where the value of µ9 was changed again to

(8.3, 1.3). In this example, system 9 is dominated by system 10 when the IZ concept

is not considered (Figure 4.4(a)). However, if the IZ concept is applied, system 9 is

indifferent to system 10 by (4.4), thereby non-dominated (Figure 4.4(b)).
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(b) Pareto set with IZ: QIZ

Figure 4.3: Pareto set examples: Example 1
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(b) Pareto set with IZ: QIZ

Figure 4.4: Pareto set examples: Example 2
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4.1.4.2 The dominance relationship of sample means with the IZ concept

In the previous section the dominance relationship of true means was discussed when

the IZ concept was considered. This section presents the dominance relationship of

sample means, which is similar to what was discussed in the previous section. System j

dominates system i by observation with IZ, denoted by j≺̂IZi, if

Xjk −Xik ≤ δ∗k, ∀k ∈ K, and Xjk −Xik < −δ∗k, ∃k ∈ K. (4.8)

Note that the hat symbol ( ˆ ) is used to indicate that the dominance relationship is

based on observation (sample means). The Pareto optimality concept is then defined

as follows:

� System i ∈ S is Pareto optimum (with the IZ concept and by observation) if there

does not exist another system j ∈ S such that j≺̂IZi.

� The observed Pareto optimal set with the IZ concept SIZ is defined by

SIZ = {i ∈ S | @j ∈ S such that j≺̂IZi}.

4.1.5 Relaxed Pareto set

The discussion given in Sections 4.1.3.1 and 4.1.4.1 regarding the dominance relation-

ship with and without the IZ concept raises a series of tricky questions: Which kind of

Pareto optimal set would a decision-maker prefer? Suppose the (unknown) true means

are dispersed as given in Figure 4.3. Would the decision-maker like a Pareto set with-

out the IZ concept (Figure 4.3(a)) or with IZ (Figure 4.3(b))? One might prefer the

set without IZ, as it provides a more extensive set of Pareto solutions than the other.

However, in Example 2 given in Figure 4.4, the Pareto set with IZ (Figure 4.4(b)) is

more comprehensive. Furthermore, what if the procedure presents either one of the

two indifferent systems (systems 9 and 10) as a Pareto solution in Example 2, that is,

Sp = {2, 6, 8, 9} or Sp = {2, 6, 8, 10}? Would these cases be counted as a correct selec-

tion or an incorrect selection? Teng et al. (2010) proposed to use the Pareto set with IZ

(QIZ) to accommodate the IZ concept in the multi-objective domain. However, simply

using QIZ instead of Q does not seem proper when these questions are considered.

In this study, the researcher defined a ‘relaxed’ Pareto set in order to reply to these

tricky questions more properly, as follows:
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� Consider a true Pareto solution set Q based on true means without the IZ concept

defined in (4.3); and a true Pareto solution set QIZ based on true means with

the IZ concept defined in (4.7).

� Construct the union of these two Pareto sets: QU = Q ∪QIZ .

� Consider a subset of QIZ , called QS , which contains all systems that have indif-

ferent systems.

QS = {i ∈ QIZ | ∃j ∈ QIZ such that i 'IZ j}

� Divide QS into m sets, each consisting of systems indifferent to each other:

QS,k = {i, j ∈ QS , | i 'IZ j} (k = 1, . . . ,m).

Note that QS,k (k = 1, . . . ,m) are m subsets of QS whose union is QS .

� A set of Pareto optimal solutions is called a ‘relaxed Pareto set’, denoted by QR,

if it is a subset of QU , containing all solutions in QIZ − QS and at least one

solution from each QS,k (k = 1, . . . ,m).

Note that there can be a multiple number of relaxed Pareto sets that qualify the above-

mentioned conditions. Let QT be the set of all possible relaxed Pareto sets, then QT is

defined as

QT = {QR ⊂ QU | QIZ −QS ⊂ QR, |QR ∩QS,k| ≥ 1, ∀k (k = 1, . . . ,m)}. (4.9)

Example 3 given in Figure 4.5 helps to understand the concept of QR. Suppose

M = 10, H = 2 and δ∗1 = δ∗2 = 0.5. The Pareto optimal set without IZ is then

constructed as Q = {2, 6, 7, 8, 10} by the definition given in (4.3). This is displayed in

red in Figure 4.5(a). Also, according to (4.7), the Pareto optimal set with IZ is defined

as QIZ = {2, 5, 6, 8, 9, 10} as illustrated in Figure 4.5(b). To obtain the relaxed Pareto

set QR, consider the following sets besides Q and QIZ :

� QU = {2, 5, 6, 7, 8, 9, 10}.

� QS = {5, 6, 9, 10}.

� QS,1 = {5, 6} and QS,2 = {9, 10}.
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(c) Relaxed Pareto set: QR

Figure 4.5: Pareto set examples: Example 3

� QIZ −QS = {2, 8}.

Then a relaxed Pareto set QR should be a subset of QU that contains QIZ−QS = {2, 8}
and at least one solution from QS,1 = {5, 6} and QS,2 = {9, 10}. It may or may not

include system 7, which is a member of QU−QIZ . In summary, a relaxed Pareto set QR

contains all non-dominated solutions that do not have indifferent systems (QIZ−QS =

{2, 8}), at least one system from a group of indifferent systems (QS,1 and QS,2); and

regarding members of QU −QIZ , which are classified as non-dominated without the IZ

concept, but considered dominated under the IZ regime, QR may or may not contain.

This concept is illustrated in Figure 4.5(c). Systems that must be contained in QR are

marked in red, those that may or may not be contained are displayed in blue. Systems

marked in green in a circle represent that at least one of the systems in the circle must

be included in QR. According to these rules, the relaxed Pareto set QR for Example 3

can be any one of the following 18 subsets of QU :

QR,1 = {2, 5, 8, 9}, QR,2 = {2, 5, 8, 10}, QR,3 = {2, 5, 8, 9, 10},
QR,4 = {2, 6, 8, 9}, QR,5 = {2, 6, 8, 10}, QR,6 = {2, 6, 8, 9, 10},
QR,7 = {2, 5, 6, 8, 9}, QR,8 = {2, 5, 6, 8, 10}, QR,9 = {2, 5, 6, 8, 9, 10},
QR,10 = {2, 5, 7, 8, 9}, QR,11 = {2, 5, 7, 8, 10}, QR,12 = {2, 5, 7, 8, 9, 10},
QR,13 = {2, 6, 7, 8, 9}, QR,14 = {2, 6, 7, 8, 10}, QR,15 = {2, 6, 7, 8, 9, 10},
QR,16 = {2, 5, 6, 7, 8, 9}, QR,17 = {2, 5, 6, 7, 8, 10}, QR,18 = {2, 5, 6, 7, 8, 9, 10}.
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The set of all possible relaxed Pareto sets QT is then QT = {QR,1, . . . , QR,18} in

Example 3. Note that Q = QR,14 and QIZ = QR,9 are also included in QT. The set QT
can be understood as a multi-objective counterpart of ‘the set’ mentioned by Hong &

Nelson (2009, p. 77) in the single-objective context as follows:

‘If there is a set of solutions whose objective values are within δ∗ to the ob-

jective value of the best solution, then all solutions in the set are acceptable

[as a best solution]. Then R&S procedures [...] typically select one of the

solutions from the set with a probability at least P ∗.’

The researcher believes that QT provides comprehensively and not mistakenly all op-

tions of Pareto solution sets that a decision-maker would want, and that the decision-

maker would be indifferent to which member of QT is selected as a final solution set.

Procedure MMY is therefore designed to regard any one of the relaxed Pareto sets from

QT as a correct selection, and guarantees the probability of correct selection of at least

P ∗ in this sense. For the decision-maker who wants for some reason an exact Pareto

optimal solution set with and without the IZ concept (QIZ and Q), two additional

procedures were developed as well. Procedure MMY1 (MMY2) guarantees the final

solution to be exactly the same as Q (QIZ) with a probability of at least P ∗.

4.2 The MMY procedure

In this section the MMY procedure is presented along with the proof of its statistical

validity.

4.2.1 The MMY procedure steps

The steps of the MMY procedure are given in Algorithm 3. Following are some defini-

tions used in the procedure. Let

δijk = max{δ∗k, Xjk(Nj)−Xik(Ni)} (4.10)

and dxe denotes the smallest integer greater than x. Consider a pair of systems (i, j)

where system i is observed as non-dominated and system j can be any other system in

S. This pair (i, j) (i ∈ Sp and j ∈ S, j 6= i) is relevant to Steps 4 and 5 in Algorithm 3.
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Algorithm 3 The MMY procedure

1: Select the probability of correction requirement P ∗ = 1− α, the indifference-zone value δ∗k
for each objective k ∈ K, and the first-stage sample size n0 ≥ 2. Set I = {1, 2, . . . ,M} and

β =
α

M
.

2: Simulate n0 replications for all M systems, and calculate sample means Xik(n0) and sample

variances S2
ik(n0) (i ∈ S and k ∈ K). Let Ni = n0.

3: Observe the Pareto set Sp and the non-Pareto set Scp based on the sample means Xik(Ni)

(i ∈ S and k ∈ K) without the indifference-zone concept.

4: For each system i ∈ Sp and j ∈ S (j 6= i) with K1 = K, check if the following two conditions

are met:

Ni >

⌈
max
k

(
h1 Sik(Ni)

δijk

)2
⌉

and Nj >

⌈
max
k

(
h1 Sjk(Nj)

δijk

)2
⌉
, (4.11)

where h1 is the solution to (4.16), and K1 is defined in (4.14).

5: For each system i ∈ Sp and j ∈ S (j 6= i) with K1 6= K, check if the following two conditions

are met:

Ni >

⌈(
h2 Sik′(Ni)

δijk′

)2
⌉

and Nj >

⌈(
h2 Sjk′(Nj)

δijk′

)2
⌉
, (4.12)

where k′ is defined in (4.15) and h2 is the solution to (4.17).

6: Delete system i from I if conditions (4.11) or (4.12) are satisfied for all j ∈ S (j 6= i).

7: For each system j ∈ Scp, find system i ∈ Sp as defined in (4.21). Check if the following two

conditions are met:

Ni >

⌈
max
k

(
h3 Sik(Ni)

δijk

)2
⌉

and Nj >

⌈
max
k

(
h3 Sjk(Nj)

δijk

)2
⌉
, (4.13)

where h3 is the solution to (4.22).

8: Delete system j from I if conditions in (4.13) are satisfied.

9: If |I| = 0, then stop and present the current Pareto set Sp as the final solution set. Oth-

erwise, for each system i ∈ Sp ∩ I, that is, systems in Sp that were not deleted from I in

Step 6, add system j ∈ S (j 6= i) to I if it does not satisfy conditions (4.11) or (4.12).

Similarly, for each system j ∈ Scp ∩ I, that is, systems in Scp that were not deleted from I

in Step 8, add the corresponding system i ∈ Sp to I if it does not satisfy (4.13). Go to

Step 10.

10: Take one additional observation Xi,k,Ni+1 from each system i ∈ I, and set Ni ← Ni + 1

(∀i ∈ I). Set I = {1, 2, . . . ,M} and update Xik(Ni) and S2
ik(Ni) for all i ∈ S and k ∈ K.

and go to Step 3.
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For each pair (i, j) (i ∈ Sp and j ∈ S, j 6= i), let

K1 = {k | |Xjk −Xik| ≤ δ∗k, k ∈ K} (4.14)

and

k′ = arg max
k∈K

Φ

 Xjk(Nj)−Xik(Ni)√
S2
ik(Ni)

Ni
+
S2
jk(Nj)

Nj

 , (4.15)

where Φ denotes the c.d.f of the standard normal distribution. Note that K1 and

k′ should be defined for every pair of (i, j) (i ∈ Sp and j ∈ S, j 6= i). Step 4 in

Algorithm 3 deals with (i, j) pairs when K1 = K, that is, systems i and j are observed

to be indifferent to each other, while Step 5 considers the case when K1 6= K.

The constants h1 (in Step 4) and h2 (in Step 5) are the solution to the following

equations respectively:

[∫ ∞
0

[∫ ∞
0

Φ

 h1√
(Ni − 1)

1

x
+ (Nj − 1)

1

y

 f1(x) dx

]
f2(y) dy

]H
= 1− γ (4.16)

and

∫ ∞
0

[∫ ∞
0

Φ

 h2√
(Ni − 1)

1

x
+ (Nj − 1)

1

y

 f1(x) dx

]
f2(y) dy = 1− γ, (4.17)

where γ = β
M−1 , and f1 and f2 denote the p.d.f of the χ2 distribution with Ni − 1 and

Nj − 1 degrees of freedom, respectively.

Now the researcher considers systems observed as dominated, i.e., j ∈ Scp (Step 7

in Algorithm 3). Observe that for each system j ∈ Scp, there exists at least one system

i ∈ Sp, such that i≺̂j, otherwise system j would not have been observed as dominated.

Find such system i ∈ Sp for system j ∈ Scp. If there exists more than one system in

Sp that dominates j, choose i = arg max
i′∈Sp

P (i′ ≺ j). That is, system i is defined as

the system in the observed Pareto set Sp that dominates system j in truth with the

maximum probability. From (4.2), one knows that µi′k ∼ N

(
Xi′k(Ni′),

σ2
i′k

Ni′

)
and
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µjk ∼ N

(
Xjk(Nj),

σ2
jk

Nj

)
, hence the probability P (i′ ≺ j) is defined as

P (i′ ≺ j) = P (µi′k ≤ µjk, ∀k ∈ K) (4.18)

= P

µi′k − µjk − (Xi′k(Ni′)−Xjk(Nj))√
σ2
i′k

Ni′
+
σ2
jk

Nj

≤
Xjk(Nj)−Xi′k(Ni′)√

σ2
i′k

Ni′
+
σ2
jk

Nj

, ∀k ∈ K



= P

Zi′jk ≤ Xjk(Nj)−Xi′k(Ni′)√
σ2
i′k

Ni′
+
σ2
jk

Nj

, ∀k ∈ K



=
H∏
k=1

Φ

Xjk(Nj)−Xi′k(Ni′)√
σ2
i′k

Ni′
+
σ2
jk

Nj

 , (4.19)

where Zijk =
µik−µjk−(Xik(Ni)−Xjk(Nj))√

σ2
ik
Ni

+
σ2
jk
Nj

and Φ denotes the c.d.f of the standard normal

distribution. Strictly speaking, the probability that system i dominates system j in

general is defined as

P (i ≺ j) = P (µik ≤ µjk, ∀k ∈ K)− P (µik = µjk, ∀k ∈ K) (4.20)

according to the definition given in Section 4.1.3.1. However, since the probability that

an unknown parameter is any single value is always equal to zero (Zyphur & Oswald,

2015, p. 392), the second term in the right-hand side of (4.20) can be ignored, i.e.,

the probability can be defined as in (4.18). The same rule was applied throughout the

dissertation.

The equality in (4.19) holds because Zi′jk are i.i.d random variables following

N(0, 1). However, one cannot calculate the exact value of (4.19) since the true vari-

ances σ2
ik (i ∈ S, k ∈ K) are not known. Instead, it can be estimated by using sample

variances S2
ik(Ni) (i ∈ S, k ∈ K). This is supported by the statement ‘when n is large,

replacing the true standard deviation σ by the sample standard deviation S has little

effect on the distribution of Z =
X − µ
σ/
√
n

’ (Montgomery & Runger, 2010, p. 265). Even
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if this is not true, it would not undermine the proof for the reason that will be discussed

later in Section 4.2.2.2. Then the system that dominates system j with the maximum

probability can be found as follows:

i = arg max
i′∈Sp

P (i′ ≺ j)

≈ arg max
i′∈Sp

H∏
k=1

Φ

 Xjk(Nj)−Xi′k(Ni′)√
S2
i′k(Ni)

Ni′
+
S2
jk(Nj)

Nj

 . (4.21)

Note that such i should be defined for every j ∈ Scp. This pair of systems (i, j) (i ∈
Sp, j ∈ Scp, i≺̂j) is considered in Step 7 in Algorithm 3. The constant h3 in the same

step of the algorithm is the solution to the following equation:

[∫ ∞
0

[∫ ∞
0

Φ

 h3√
(Ni − 1)

1

x
+ (Nj − 1)

1

y

 f1(x) dx

]
f2(y) dy

]H
= 1− β, (4.22)

where β = α
M , and f1 and f2 denote the p.d.f of the χ2 distribution with Ni − 1 and

Nj − 1 degrees of freedom, respectively.

4.2.2 Proof of P (CS) for Procedure MMY

In this section, it is shown how Procedure MMY guarantees the probability of correct

selection requirement P (CS) ≥ P ∗ = 1 − α. Let CSi be the event that system i is

observed correctly, and ICSi be the event that system i is observed incorrectly. Then,

if it is shown that either

P (CSi) ≥ 1− β (4.23)

or

P (ICSi) ≤ β, (4.24)

where β =
α

M
, then the overall probability of correct selection is guaranteed to be

greater than or equal to P ∗, as follows:

P (CS) =

M⋂
i=1

P (CSi) ≥ 1−
M∑
i=1

P (ICSi) ≥ 1−
M∑
i=1

β = 1− α = P ∗. (4.25)
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The first inequality in (4.25) holds due to the Bonferroni inequality, and the second

follows from (4.24). Now the researcher focuses on how to show (4.23) or (4.24) in the

following two sections.

4.2.2.1 Proof for observed non-dominated systems in Procedure MMY

In this section, (4.23) is proved for all systems that are observed as non-dominated.

The discussion in this section is therefore relevant to Steps 4 and 5 in Algorithm 3.

Consider a system i ∈ Sp. For this system, P (CSi) is by definition the probabil-

ity that the observed non-dominated system i is truly non-dominated, i.e., P (CSi) =

P (i is not dominated by any other solution in S in truth). Let P (CSij) be the proba-

bility that the observed non-dominated system i is, in truth, not dominated by system j

and P (ICSij) the probability that the observed non-dominated system i is, in truth,

dominated by system j. Let γ =
β

M − 1
, and if either

P (CSij) = P (j ⊀ i) ≥ 1− γ (4.26)

or

P (ICSij) = P (j ≺ i) ≤ γ (4.27)

is shown for all j ∈ S (j 6= i), then, by the Bonferroni inequality and (4.27),

P (CSi) =
M⋂

j=1, j 6=i
P (CSij) ≥ 1−

M∑
j=1, j 6=i

P (ICSij) ≥ 1− (M − 1)γ = 1− β, (4.28)

thereby (4.23) holds.

Now, it will be shown that (4.27) holds for a pair (i, j) (i ∈ Sp and j ∈ S, j 6= i)

when K1 6= K. This case corresponds to Step 5 in Algorithm 3. The probability of

incorrect selection in this case can be formulated as

P (ICSij) = P (j ≺ i) =
H∏
k=1

P (µjk ≤ µik)

≤ min
k
P (µjk ≤ µik) (4.29)

= min
k

[1− P (µik ≤ µjk)]

= 1−max
k

P (µik ≤ µjk).
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Therefore if it is shown that

max
k

P (µik ≤ µjk) ≥ 1− γ,

then (4.27) holds, thereby P (CSi) ≥ 1− β is proved.

From (4.2), it is known that µik ∼ N
(
Xik(Ni),

σ2
ik

Ni

)
and µjk ∼ N

(
Xjk(Nj),

σ2
jk

Nj

)
,

therefore

max
k

P (µik ≤ µjk) = max
k

P

µik − µjk − (Xik(Ni)−Xjk(Nj))√
σ2
ik

Ni
+
σ2
jk

Nj

≤
Xjk(Nj)−Xik(Ni)√

σ2
ik

Ni
+
σ2
jk

Nj



= max
k

P

Zijk ≤ Xjk(Nj)−Xik(Ni)√
σ2
ik

Ni
+
σ2
jk

Nj



= max
k

Φ

Xjk(Nj)−Xik(Ni)√
σ2
ik

Ni
+
σ2
jk

Nj

 , (4.30)

where Zijk =
µik−µjk−(Xik(Ni)−Xjk(Nj))√

σ2
ik
Ni

+
σ2
jk
Nj

and Φ denotes the c.d.f of the standard normal

distribution. From similar reasons given in the discussion related to (4.19) in Sec-

tion 4.2.1, the objective k that maximises P (µik ≤ µjk) can be estimated by using

sample variances S2
ik(Ni) and S2

jk(Nj) instead of the unknown true variances σ2
ik and

σ2
jk in (4.30). Even if this brings about an approximated result, the proof is still valid as

any objective k satisfies the inequality given in (4.29). The researcher prefers, however,

the objective k that minimises P (µjk ≤ µik), or maximises P (µik ≤ µjk), in order to

minimise the difference between the right- and left-hand sides of (4.29). For this reason
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the objective k′ defined in (4.15) is chosen in this proof, which leads to

max
k

P (µik ≤ µjk) = max
k

Φ

Xjk(Nj)−Xik(Ni)√
σ2
ik

Ni
+
σ2
jk

Nj



≈ Φ

Xjk′(Nj)−Xik′(Ni)√
σ2
ik′

Ni
+
σ2
jk′

Nj



≥ Φ


Xjk′(Nj)−Xik′(Ni)√√√√√√√

σ2
ik′(

h2 Sik′(Ni)

Xjk′(Nj)−Xik′(Ni)

)2 +
σ2
jk′(

h2 Sjk′(Nj)

Xjk′(Nj)−Xik′(Ni)

)2


(4.31)

= Φ

 h2√
σ2
ik′

Sik′(Ni)2
+

σ2
jk′

Sjk′(Nj)2

 . (4.32)

In (4.31), Ni and Nj were replaced by the right-hand side of corresponding conditions

given in (4.12) assuming δijk′ = max{δ∗k′ , Xjk′(Nj)−Xik′(Ni)} = Xjk′(Nj)−Xik′(Ni).

Because system i is observed as non-dominated, there exists at least one objective

k ∈ K such that Xjk − Xik > 0, otherwise system i would not have been observed

as non-dominated. And certainly for objective k′ defined in (4.15), Xjk′ −Xik′ > 0 is

true, which makes the input value of Φ in (4.31) positive. Therefore the inequality in

(4.31) holds. Let

Yik = (Ni − 1)
S2
ik(Ni)

σ2
ik

, (4.33)

then Yik′ and Yjk′ are two χ2 variables with Ni − 1 and Nj − 1 degrees of freedom,
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respectively. The proof follows from (4.32) as

max
k

P (µik ≤ µjk) ≥ Φ

 h2√
σ2
ik′

Sik′(Ni)2
+

σ2
jk′

Sjk′(Nj)2



= Φ

 h2√
(Ni − 1)

1

Yik′
+ (Nj − 1)

1

Yjk′

 (4.34)

= E

Φ

 h2√
(Ni − 1)

1

Yik′
+ (Nj − 1)

1

Yjk′


∣∣∣∣Yjk′



=

∫ ∞
0

Φ

 h2√
(Ni − 1)

1

Yik′
+ (Nj − 1)

1

y


 f2(y)dy

=

∫ ∞
0

∫ ∞
0

Φ

 h2√
(Ni − 1)

1

x
+ (Nj − 1)

1

y

 f1(x)dx

 f2(y)dy

= 1− γ, (4.35)

where γ = β
M−1 , and f1 and f2 denote the p.d.f of the χ2 distribution with Ni − 1 and

Nj − 1 degrees of freedom, respectively. The equality in (4.34) holds due to (4.33), and

the equality in (4.35) comes from the definition of h2 in (4.17). Thus, it has been shown

that (4.30) is true, thereby proving (4.26) for a pair (i, j) (i ∈ Sp and j ∈ S, j 6= i)

when K1 6= K.

The proof, however, proceeded with the assumption of δijk′ = max{δ∗k′ , Xjk′(Nj)−
Xik′(Ni)} = Xjk′(Nj) − Xik′(Ni). This means P (CSij) ≥ 1 − γ is not proved if

Xjk(Nj)−Xik(Ni) < δ∗k for some k. Intuitively speaking, the procedure needs at least

Ni >


(
h2 Sik′(Ni)

Xjk′ −Xik′

)2
 and Nj >


(
h2 Sjk′(Nj)

Xjk′ −Xik′

)2
 (4.36)

simulation replications in order to prove P (CSij) = P (j ⊀ i) ≥ 1− γ. In other words,

for the procedure to show that system i is truly not dominated by system j with
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the probability of at least 1 − γ, the sample sizes given in (4.36) are needed as seen

in the proof above. Obviously the sample sizes Ni and Nj approach infinity as the

difference in the performance between the two systems in objective k′ comes closer to

zero (Xjk′ −Xik′ → 0). In order to avoid spending an unnecessarily large amount of

simulation budget to distinguish an insignificant difference |Xjk′−Xik′ | < δ∗k′ , the term

Xjk′−Xik′ in (4.36) is replaced with δ∗k′ in the procedure ifXjk′−Xik′ < δ∗k′ , which leads

to the conditions given in (4.12). The procedure thus spends less simulation budget

with conditions (4.12) than with (4.36), at the cost of not being able to distinguish the

difference between system i and system j.

Therefore P (CSij) ≥ 1 − γ is not proved in this case, i.e., system i is not shown

to be not dominated by system j in truth. However, limiting the maximum number

of simulation replications by conditions (4.12) is still important, because by replacing

Xjk′−Xik′ with δ∗k′ , the procedure confirms that system i and system j are close to each

other. In other words, even though following the conditions (4.12) does not guarantee

P (CSij) = P (j ⊀ i) ≥ 1−γ when δijk′ = max{δ∗k′ , Xjk′(Nj)−Xik′(Ni)} = δ∗k′ , it assures

P (i 'k′ j) ≥ 1 − γ, which is sufficient for the procedure to guarantee P (CS) ≥ P ∗ as

the aim of Procedure MMY is to find one of the relaxed Pareto sets (discussed in

Section 4.1.5), not the exact Pareto optimal set Q.

Now the discussion considers a pair (i, j) (i ∈ Sp and j ∈ S, j 6= i) when K1 = K

(Step 4 in Algorithm 3). This is the case when systems i and j are observed to be

indifferent to each other. The probability of correct selection is thus defined as

P (CSij) = P (system i and system j are indifferent to each other in truth)

= P (i 'IZ j). (4.37)

Let

K2 = {k | Xjk −Xik < 0, k ∈ K}

and

K3 = {k | Xik −Xjk < 0, k ∈ K}.

The researcher does not consider the case Xik = Xjk as it is extremely unlikely for

any two sample means to be observed exactly the same as each other. Therefore K2

and K3 are two disjoint subsets of K, and an objective k ∈ K belongs to either K2 or
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K3. Then, the probability of correct selection for any pair of (i, j) (i, j ∈ S, i 6= j) in

general can be formulated as follows:

P (CSij) = P (µjk − µik < 0, ∀k ∈ K2 and µik − µjk < 0, ∀k ∈ K3). (4.38)

For a given pair of (i, j) (i, j ∈ S, i 6= j), the probability given in (4.38) represents the

following two events:

� system j is truly better than system i in objective k (µjk−µik < 0) when observed

so, i.e., when k ∈ K2.

� system i is truly better than system j in objective k (µik−µjk < 0) when observed

so, i.e., when k ∈ K3.

Now, P (CSij) ≥ 1− γ is shown for a pair (i, j) (i ∈ Sp and j ∈ S, j 6= i) with K1 = K

(Step 4) using the probability of correct selection defined in (4.38), i.e.,

P (CSij) = P (µjk − µik < 0, ∀k ∈ K2 and µik − µjk < 0, ∀k ∈ K3) ≥ 1− γ (4.39)

will be shown in the following discussion.

P (CSij) = P (µjk − µik < 0, ∀k ∈ K2 and µik − µjk < 0, ∀k ∈ K3)

=
∏
k∈K2

P (µjk − µik < 0)×
∏
k∈K3

P (µik − µjk < 0)

=
∏
k∈K2

P

µjk − µik − (Xjk(Nj)−Xik(Ni))√
σ2
ik

Ni
+
σ2
jk

Nj

<
Xik(Ni)−Xjk(Nj)√

σ2
ik

Ni
+
σ2
jk

Nj


(4.40)

×
∏
k∈K3

P

µik − µjk − (Xik(Ni)−Xjk(Nj))√
σ2
ik

Ni
+
σ2
jk

Nj

<
Xjk(Nj)−Xik(Ni)√

σ2
ik

Ni
+
σ2
jk

Nj


(4.41)

=

H∏
k=1

P

Zijk < |Xjk(Nj)−Xik(Ni)|√
σ2
ik

Ni
+
σ2
jk

Nj

 (4.42)
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=
H∏
k=1

Φ

 |Xjk(Nj)−Xik(Ni)|√
σ2
ik

Ni
+
σ2
jk

Nj

 . (4.43)

Note that the product symbol in (4.42) has all k ∈ K, combining the two terms

(4.40) and (4.41) using the absolute value |Xjk(Nj)−Xik(Ni)|. The equality in (4.43)

holds because Zijk are i.i.d random variables following N(0, 1). Now suppose

δijk = max{δ∗k, Xjk(Nj)−Xik(Ni)} = Xjk(Nj)−Xik(Ni), (4.44)

which is not true in this case as |Xjk − Xik| < δ∗k for all k ∈ K. However, (4.44) is

assumed to be true for now, and the case of δijk = δ∗k will be discussed later. The proof

follows from (4.43):

P (CSij) =

H∏
k=1

Φ

 |Xjk(Nj)−Xik(Ni)|√
σ2
ik

Ni
+
σ2
jk

Nj



≥
H∏
k=1

Φ


|Xjk(Nj)−Xik(Ni)|√√√√√√ σ2

ik(
h1 Sik(Ni)

Xjk(Nj)−Xik(Ni)

)2 +
σ2
jk(

h1 Sjk(Nj)

Xjk(Nj)−Xik(Ni)

)2


(4.45)

=

H∏
k=1

Φ

 h1√
σ2
ik

Sik(Ni)2
+

σ2
jk

Sjk(Nj)2

 (4.46)

=
H∏
k=1

Φ

 h1√
(Ni − 1)

1

Yik
+ (Nj − 1)

1

Yjk

 (4.47)

70

Stellenbosch University  https://scholar.sun.ac.za



4.2 The MMY procedure

=
H∏
k=1

E

Φ

 h1√
(Ni − 1)

1

Yik
+ (Nj − 1)

1

Yjk


∣∣∣∣Yjk



=

H∏
k=1

∫ ∞
0

Φ

 h1√
(Ni − 1)

1

x
+ (Nj − 1)

1

y


 f2(y) dy

=

H∏
k=1

[∫ ∞
0

[∫ ∞
0

Φ

 h1√
(Ni − 1)

1

x
+ (Nj − 1)

1

y

 f1(x) dx

]
f2(y) dy

]

=

[∫ ∞
0

[∫ ∞
0

Φ

 h1√
(Ni − 1)

1

x
+ (Nj − 1)

1

y

 f1(x) dx

]
f2(y) dy

]H

= 1− γ. (4.48)

The inequality in (4.45) holds from the conditions in (4.11) and because of (4.44). The

equality in (4.47) follows due to (4.33), i.e., Yik (k ∈ K) are H independent χ2 variables

with Ni − 1 degrees of freedom; and Yjk (k ∈ K) are also H independent χ2 variables

with Nj − 1 degrees of freedom. The equality in (4.48) holds from the definition of h1

given in (4.16). Therefore (4.39) is proved.

The proof was carried out with the assumption in (4.44). This means for any

pair of systems (i, j) (i, j ∈ S, i 6= j), when one applies the conditions given (4.11),

P (CSij) ≥ 1 − γ is guaranteed if (4.44) is true. However, in Step 4 in Algorithm 3,

these conditions (4.11) are applied for pairs of systems (i, j) (i ∈ Sp and j ∈ S, j 6= i)

when K1 = K, which means the assumption in (4.44) is not true in this case, as

|Xjk(Nj) −Xik(Ni)| < δ∗k for all k ∈ K. Therefore P (CSij) ≥ 1 − γ is not proved in

this case because the inequality in (4.45) does not hold. According to the proof above,

the procedure needs in this case at least

Ni >

⌈
max
k

(
h1 Sik(Ni)

|Xjk −Xik|

)2
⌉

and Nj >

⌈
max
k

(
h1 Sjk(Nj)

|Xjk −Xik|

)2
⌉

(4.49)

simulation replications in order to prove (4.39). However, this involves a risk of having

Ni → ∞ and Ni → ∞ if the performances of the two systems are close to each other,
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i.e., |µjk − µik| → 0 for some k. By replacing the term |Xjk −Xik| in (4.49) with δ∗k if

|Xjk −Xik| < δ∗k, the procedure essentially limits the effort to the point where it can

assure |µjk − µik| ≤ δ∗k, not exerting to the extent where it can actually identify the

exact relations of µik and µjk as specified in (4.39). Therefore the procedure does not

prove (4.39); however, by spending the simulation budget as much as given in condition

(4.11), it still guarantees that P (i 'IZ j) ≥ 1 − γ, which is exactly what is required

according to (4.37).

4.2.2.2 Proof for observed dominated systems in Procedure MMY

In the previous section, the researcher proved (4.23) for all observed non-dominated

systems i ∈ Sp, by proving (4.26) for all pairs of (i, j) (i ∈ Sp, j ∈ S, i 6= j). The proof

was relevant to Steps 4 and 5 in Algorithm 3. In this section, (4.23) is proved for all

systems that are observed as dominated. The discussion in this section is therefore

relevant to Step 7 in Algorithm 3.

Consider a system j ∈ Scp. For this system, P (CSj) is by definition the probabil-

ity that the observed dominated system j is truly dominated, i.e., P (CSj) = P (j is

dominated by at least one solution in Sp in truth). If it is shown that there exists at

least a system i, such that i ≺ j with the probability at least 1 − β, then system j is

dominated (by system i) and P (CSj) ≥ 1− β, thus (4.23) holds. In Step 7, the proce-

dure has chosen such system i as defined in (4.21), i.e., system i was selected so that

the probability of system j being dominated by system i in truth is to be maximised.

It does not threaten the validity of the proof, however, even if the procedure chose a

wrong system, because any system i ∈ Sp that is observed to dominate system j will

do to show P (CSj) ≥ 1 − β, although obtaining system i as defined in (4.21) would

render the procedure efficient. The probability of correct selection for system j ∈ Scp is

then constructed as

P (CSj) = P (j is in truth dominated by at least one solution in Sp)

≥ max
i′∈Sp

P (i′ ≺ j) ≈ P (i ≺ j)

= P (µik ≤ µjk, ∀k ∈ K), (4.50)

where i is defined in (4.21). From (4.2), it is known that µik ∼ N
(
Xik(Ni),

σ2
ik

Ni

)
and

72

Stellenbosch University  https://scholar.sun.ac.za



4.2 The MMY procedure

µjk ∼ N

(
Xjk(Nj),

σ2
jk

Nj

)
, therefore from (4.50)

P (CSj) ≥ P (µik ≤ µjk, ∀k ∈ K)

= P

µik − µjk − (Xik(Ni)−Xjk(Nj))√
σ2
ik

Ni
+
σ2
jk

Nj

≤
Xjk(Nj)−Xik(Ni)√

σ2
ik

Ni
+
σ2
jk

Nj

, ∀k ∈ K



= P

Zijk ≤ Xjk(Nj)−Xik(Ni)√
σ2
ik

Ni
+
σ2
jk

Nj

, ∀k ∈ K



=
H∏
k=1

Φ

Xjk(Nj)−Xik(Ni)√
σ2
ik

Ni
+
σ2
jk

Nj

 (4.51)

≥
H∏
k=1

Φ


Xjk(Nj)−Xik(Ni)√√√√√√ σ2

ik(
h3 Sik(Ni)

Xjk(Nj)−Xik(Ni)

)2 +
σ2
jk(

h3 Sjk(Nj)

Xjk(Nj)−Xik(Ni)

)2


(4.52)

=

H∏
k=1

Φ

 h3√
σ2
ik

Sik(Ni)2
+

σ2
jk

Sjk(Nj)2

 . (4.53)

The equality in (4.51) holds because Zijk are i.i.d random variables following N(0, 1).

The inequality in (4.52) holds from the fact that the two conditions in (4.13) are met

and if it is assumed, again, (4.44). Xjk(Nj) −Xik(Ni) is observed as a positive value

for all k ∈ K by definition (because i is chosen as i≺̂j). The proof continues from
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(4.53) as follows:

P (CSj) ≥
H∏
k=1

Φ

 h3√
σ2
ik

Sik(Ni)2
+

σ2
jk

Sjk(Nj)2



=
H∏
k=1

Φ

 h3√
(Ni − 1)

1

Yik
+ (Nj − 1)

1

Yjk

 (4.54)

=

H∏
k=1

E

Φ

 h3√
(Ni − 1)

1

Yik
+ (Nj − 1)

1

Yjk


∣∣∣∣Yjk



=
H∏
k=1

∫ ∞
0

Φ

 h3√
((Ni − 1)

1

x
+ (Nj − 1)

1

y
)


 f2(y) dy

=

H∏
k=1

[∫ ∞
0

[∫ ∞
0

Φ

 h3√
((Ni − 1)

1

x
+ (Nj − 1)

1

y
)

 f1(x) dx

]
f2(y) dy

]

=

[∫ ∞
0

[∫ ∞
0

Φ

 h3√
((Ni − 1)

1

x
+ (Nj − 1)

1

y
)

 f1(x) dx

]
f2(y) dy

]H

= 1− β. (4.55)

The definition given in (4.33) was applied in (4.54), and the equality in (4.55) comes

from the definition of h3 in (4.22). Thus, (4.23) is proved for observed dominated

systems j ∈ Scp when (4.44) is true.

However, P (CS) ≥ 1 − β is not guaranteed if Xjk(Nj) − Xik(Ni) < δ∗k for some

k, because the inequality in (4.52) holds only if (4.44) is true. In this regard, the

discussion in the last paragraph of Section 4.2.2.1 is applicable in this context, too. For

a given j ∈ Scp and i ∈ Sp obtained by (4.21), Procedure MMY tries to guarantee that

system j is in truth dominated by system i with the probability of at least 1− β, i.e.,

P (CSj) = P (i ≺ j) ≥ 1 − β. However, by using δijk instead of Xjk(Nj) −Xik(Ni) in
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(4.13), it guarantees P (i ≺IZ j) ≥ 1− β instead of P (i ≺ j) ≥ 1− β. By doing so, the

procedure avoids wasting simulation effort on differentiating two systems with similar

performance and at the same time it delivers equally good Pareto optimal solutions

(QR instead of Q).

This concludes the proof on the probability of correct selection for Procedure MMY.

The researcher proved P (CS) ≥ P ∗ by proving (4.23) for all observed non-dominated

systems i ∈ Sp in Section 4.2.2.1, and for all observed dominated systems j ∈ Scp in

Section 4.2.2.2. The next section discusses Procedure MMY1.

4.3 The MMY1 procedure

As mentioned previously, Procedure MMY was designed to find a relaxed Pareto set,

of which the concept was discussed in Section 4.1.5. In this and the following section,

two other procedures are presented, called Procedure MMY1 and Procedure MMY2.

Procedure MMY1 and Procedure MMY2 provide an exact Pareto optimal set, Q and

QIZ , respectively, and guarantee that the probability of correct selection is greater than

or equal to a prespecified value P ∗.

Procedure MMY1 is the same as Procedure MMY except that it uses Xjk(Nj) −
Xik(Ni) wherever δijk was used in Procedure MMY. The following was explained in the

last paragraph of Section 4.2.2.1 and in the second-last paragraph of Section 4.2.2.2:

1. For the procedure to be able to distinguish two systems, it requires the sample size

to be inversely proportional to the square of the difference Xjk(Nj) − Xik(Ni);

see (4.36) for example.

2. Procedure MMY, however, uses δijk instead of Xjk(Nj)−Xik(Ni).

3. The principle behind it is that the procedure distinguishes the two systems to

the extent where the difference of the two systems for objective k becomes equal

to the indifference-zone value δ∗k; and this results in Procedure MMY delivering

a relaxed Pareto set QR instead of the exact Pareto optimal set Q.

Therefore the exact Pareto optimal set Q can be obtained by using Xjk(Nj)−Xik(Ni)

instead of δijk. Procedure MMY1 is given in Algorithm 4 for the sake of completeness.

The proof is similar to that used in Procedure MMY, hence it is omitted.
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Algorithm 4 The MMY1 procedure

1: Select the probability requirement P ∗ = 1 − α, the indifference-zone value δ∗k for each

objective k ∈ K, and the first-stage sample size n0 ≥ 2. Set I = {1, 2, . . . ,M} and β =
α

M
.

2: Simulate n0 replications for all M systems, and calculate sample means Xik(n0) and sample

variances S2
ik(n0) (i ∈ S and k ∈ K). Let Ni = n0.

3: Observe the Pareto set Sp and the non-Pareto set Scp based on the sample means Xik(Ni)

(i ∈ S and k ∈ K) without the indifference-zone concept.

4: For each system i ∈ Sp and j ∈ S (j 6= i) with K1 = K, check if the following two conditions

are met:

Ni >

⌈
max
k

(
h1 Sik(Ni)

Xjk(Nj)−Xik(Ni)

)2
⌉

and Nj >

⌈
max
k

(
h1 Sjk(Nj)

Xjk(Nj)−Xik(Ni)

)2
⌉
,

(4.56)

where h1 is the solution to (4.16), and K1 is defined in (4.14).

5: For each system i ∈ Sp and j ∈ S (j 6= i) with K1 6= K, check if the following two conditions

are met:

Ni >

⌈(
h2 Sik′(Ni)

Xjk′(Nj)−Xik′(Ni)

)2
⌉

and Nj >

⌈(
h2 Sjk′(Nj)

Xjk′(Nj)−Xik′(Ni)

)2
⌉
, (4.57)

where k′ is defined in (4.15) and h2 is the solution to (4.17).

6: Delete system i from I if conditions (4.56) or (4.57) are satisfied for all j ∈ S (j 6= i).

7: For each system j ∈ Scp, find system i ∈ Sp as defined in (4.21). Check if the following two

conditions are met:

Ni >

⌈
max
k

(
h3 Sik(Ni)

Xjk(Nj)−Xik(Ni)

)2
⌉

and Nj >

⌈
max
k

(
h3 Sjk(Nj)

Xjk(Nj)−Xik(Ni)

)2
⌉
,

(4.58)

where h3 is the solution to (4.22).

8: Delete system j from I if conditions in (4.58) are satisfied.

9: If |I| = 0, then stop and present the current Pareto set Sp as the final solution set. Oth-

erwise, for each system i ∈ Sp ∩ I, that is, systems in Sp that were not deleted from I in

Step 6, add system j ∈ S (j 6= i) to I if it does not satisfy conditions (4.56) or (4.57).

Similarly, for each system j ∈ Scp ∩ I, that is, systems in Scp that were not deleted from I

in Step 8, add the corresponding system i ∈ Sp to I if it does not satisfy (4.58). Go to

Step 10.

10: Take one additional observation Xi,k,Ni+1 from each system i ∈ I, and set Ni ← Ni + 1

(∀i ∈ I). Set I = {1, 2, . . . ,M} and update Xik(Ni) and S2
ik(Ni) for all i ∈ S and k ∈ K.

and go to Step 3.
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4.4 The MMY2 procedure

In this section, Procedure MMY2 is presented along with the proof of its statistical

validity. Procedure MMY2 aims to identify the exact Pareto set with the indifference-

zone concept (QIZ) with the probability of correct selection greater than or equal to a

prespecified value P ∗.

4.4.1 The MMY2 procedure steps

Algorithm 5 presents the steps of Procedure MMY2. Because Procedure MMY2 delivers

QIZ , it uses the observed Pareto set with IZ (SIZ) instead of Sp in Step 3. As in

Procedure MMY, observed non-dominated systems (i ∈ SIZ) are considered first and

then observed dominated systems (j ∈ ScIZ).

Consider a pair of systems (i, j) (i ∈ SIZ and j ∈ S, j 6= i). Let

K4 = {k | Xjk(Nj)−Xik(Ni) > δ∗k, k ∈ K} (4.59)

and

k′ = arg max
k∈K4

Φ

−δ
∗
k +Xjk(Nj)−Xik(Ni)√
S2
ik(Ni)

Ni
+
S2
jk(Nj)

Nj

 , (4.60)

where Φ denotes the c.d.f of the standard normal distribution. Note that K4 and

k′ should be defined for every pair of (i, j) (i ∈ SIZ and j ∈ S, j 6= i) as in Proce-

dure MMY. Because system i is observed to be non-dominated with IZ, it is observed

j⊀̂IZi for any j ∈ S (j 6= i). Reversing the statement in (4.8), it is known that at least

one of the following two conditions is true if j⊀̂IZi:

Xjk −Xik > δ∗k, ∃k ∈ K, (4.61)

Xjk −Xik ≥ −δ∗k, ∀k ∈ K. (4.62)

The set K4 contains all objectives that satisfy the first condition (4.61), hence if K4 =

∅, this means that the second condition (4.62) should be met for this pair of (i, j).

Therefore there are two cases: the first one with K4 = ∅, and the second case with

K4 6= ∅. These cases are dealt with in Steps 4 and 5 in Algorithm 5, respectively.
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Algorithm 5 The MMY2 procedure

1: Select the probability requirement P ∗ = 1 − α, the indifference-zone value δ∗k for each

objective k ∈ K, and the first-stage sample size n0 ≥ 2. Set I = {1, 2, . . . ,M} and β =
α

M
.

2: Simulate n0 replications for all M systems, and calculate sample means Xik(n0) and sample

variances S2
ik(n0) (i ∈ S and k ∈ K). Let Ni = n0.

3: Observe the Pareto set SIZ and the non-Pareto set ScIZ based on the sample means Xik(Ni)

(i ∈ S and k ∈ K) with the indifference-zone concept.

4: For each system i ∈ SIZ and j ∈ S (j 6= i) with K4 = ∅, check if the following two

conditions are met:

Ni >

⌈
max
k

(
h1 Sik(Ni)

δ∗k +Xjk(Nj)−Xik(Ni)

)2
⌉

and Nj >

⌈
max
k

(
h1 Sjk(Nj)

δ∗k +Xjk(Nj)−Xik(Ni)

)2
⌉
,

(4.63)

where h1 is the solution to (4.16), and K4 is defined in (4.59).

5: For each system i ∈ SIZ and j ∈ S (j 6= i) with K4 6= ∅, check if the following two

conditions are met:

Ni >

⌈(
h2 Sik′(Ni)

−δ∗k +Xjk′(Nj)−Xik′(Ni)

)2
⌉

and Nj >

⌈(
h2 Sjk′(Nj)

−δ∗k +Xjk′(Nj)−Xik′(Ni)

)2
⌉
,

(4.64)

where k′ is defined in (4.60) and h2 is the solution to (4.17).

6: Delete system i from I if conditions (4.63) or (4.64) are satisfied for all j ∈ S (j 6= i).

7: For each system j ∈ ScIZ , find system i ∈ SIZ as defined in (4.21). Check if the following

two conditions are met:

Ni > max
k

Nik and Nj > max
k

Njk, (4.65)

where Nik is defined in (4.66) and (4.67); and Njk is defined in (4.68) and (4.69).

8: Delete system j from I if conditions in (4.65) are satisfied.

9: If |I| = 0, then stop and present the current Pareto set SIZ as the final solution set.

Otherwise, for each system i ∈ SIZ ∩ I, that is, systems in SIZ that were not deleted from

I in Step 6, add system j ∈ S (j 6= i) to I if it does not satisfy conditions (4.63) or (4.64).

Similarly, for each system j ∈ ScIZ ∩ I, that is, systems in ScIZ that were not deleted from

I in Step 8, add the corresponding system i ∈ SIZ to I if it does not satisfy (4.65). Go to

Step 10.

10: Take one additional observation Xi,k,Ni+1 from each system i ∈ I, and set Ni ← Ni + 1

(∀i ∈ I). Set I = {1, 2, . . . ,M} and update Xik(Ni) and S2
ik(Ni) for all i ∈ S and k ∈ K.

and go to Step 3.
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Now consider a system j that is observed as dominated with IZ, i.e., j ∈ ScIZ . For

this system, there exists at least one system i ∈ SIZ such that i≺̂IZj, otherwise it would

not have been observed as dominated. Find such system i ∈ SIZ for system j ∈ ScIZ .

If there exists more than one system in SIZ that dominates j by observation, choose

i = arg max
i′∈SIZ

P (i′ ≺IZ j). Such system i can be obtained in a similar manner described

in (4.21). Now, because system i is observed to dominate system j, from (4.8), both

(4.61) and (4.62) are true for this pair (i, j). For system i, let

Nik =


(

h3 Sik(Ni)

δ∗k + (Xjk(Nj)−Xik(Ni))

)2
 for k ∈ K, k 6= k′ (4.66)

Nik =


(

h3 Sik′(Ni)

−δ∗k′ + (Xjk′(Nj)−Xik′(Ni))

)2
 for k′, (4.67)

where dxe denotes the smallest integer greater than x; k′ is defined in (4.60); and h3 is

the solution to (4.22). Also, similarly for system j, let

Njk =


(

h3 Sjk(Nj)

δ∗k + (Xjk(Nj)−Xik(Ni))

)2
 for k ∈ K, k 6= k′ (4.68)

Njk =


(

h3 Sjk′(Nj)

−δ∗k′ + (Xjk′(Nj)−Xik′(Ni))

)2
 for k′. (4.69)

4.4.2 Proof of P (CS) for Procedure MMY2

This section provides a mathematical proof that Procedure MMY2 guarantees the prob-

ability of correct selection requirement P (CS) ≥ P ∗ = 1− α. Note that ‘correct selec-

tion’ for Procedure MMY2 denotes the case when the final solution set is exactly the

same as QIZ defined in (4.7). Let CSi be the event that system i is observed correctly,

and ICSi be the event that system i is observed incorrectly. The proof follows the same

strategy in Procedure MMY, i.e., (4.23) will be shown for all i ∈ S, then by (4.25)

P (CS) ≥ P ∗ = 1− α is guaranteed.

4.4.2.1 Proof for observed non-dominated systems in Procedure MMY2

First the researcher considers observed non-dominated systems when the indifference-

zone concept is accounted for, i.e., (4.23) will be shown for all i ∈ SIZ in this sec-
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tion. For these systems, P (CSi) is by definition the probability that the observed non-

dominated system i is truly non-dominated when the IZ concept is considered both in

observation and in truth, i.e., P (CSi) = P (i is not dominated by any other solution

in S in truth with the IZ concept). Let P (CSij) be the probability that the observed

non-dominated system i (with IZ) is, in truth, not dominated by system j (with IZ);

and P (ICSij) the probability that the observed non-dominated system i (with IZ) is,

in truth, dominated by system j (with IZ). As in Procedure MMY, for every pair (i, j)

(i ∈ SIZ and j ∈ S, j 6= i),

P (CSij) = P (j ⊀IZ i) ≥ 1− γ

or

P (ICSij) = P (j ≺IZ i) ≤ γ, (4.70)

will be shown where γ =
β

M − 1
, then again by (4.28), (4.23) is proved.

In Step 5 in Algorithm 5, the pair (i, j) (i ∈ SIZ and j ∈ S, j 6= i) is considered

when K4 6= ∅, that is, the condition in (4.61) is satisfied. From (4.70) and (4.6),

P (ICSij) = P (j ≺IZ i) = P (j -IZ i)− P (j 'IZ i)

=
H⋂
k=1

P (µjk − µik ≤ δ∗k)−
H⋂
k=1

P (|µjk − µik| ≤ δ∗k)

≤
H⋂
k=1

P (µjk − µik ≤ δ∗k)

=
H∏
k=1

P (µjk − µik ≤ δ∗k)

≤ min
k
P (µjk − µik ≤ δ∗k)

= min
k

[1− P (µjk − µik ≥ δ∗k)]

= min
k

[1− P (µik − µjk ≤ −δ∗k)]

= 1−max
k

P (µik − µjk ≤ −δ∗k).

Therefore, if

max
k

P (µik − µjk ≤ −δ∗k) ≥ 1− γ

is shown, then (4.70) holds.
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From (4.2), it is known that µik ∼ N
(
Xik(Ni),

σ2
ik

Ni

)
and µjk ∼ N

(
Xjk(Nj),

σ2
jk

Nj

)
,

therefore

max
k

P (µik − µjk ≤ −δ∗k)

= max
k

P

µik − µjk − (Xik(Ni)−Xjk(Nj))√
σ2
ik

Ni
+
σ2
jk

Nj

≤
−δ∗k +Xjk(Nj)−Xik(Ni)√

σ2
ik

Ni
+
σ2
jk

Nj



= max
k

P

Zijk ≤ −δ
∗
k +Xjk(Nj)−Xik(Ni)√

σ2
ik

Ni
+
σ2
jk

Nj



= max
k

Φ

−δ
∗
k +Xjk(Nj)−Xik(Ni)√

σ2
ik

Ni
+
σ2
jk

Nj

 . (4.71)

Based on a similar logic to the discussion related to (4.19), the objective k′ defined in

(4.60) is used in the proof from (4.71).

max
k

P (µik − µjk ≤ −δ∗k)

= Φ

−δ
∗
k′ +Xjk′(Nj)−Xik′(Ni)√

σ2
ik′

Ni
+
σ2
jk′

Nj



≥Φ


−δ∗k′ +Xjk′(Nj)−Xik′(Ni)√√√√√√√

σ2
ik′(

h2 Sik′(Ni)

−δ∗k′ +Xjk′(Nj)−Xik′(Ni)

)2 +
σ2
jk′(

h2 Sjk′(Nj)

−δ∗k′ +Xjk′(Nj)−Xik′(Ni)

)2


(4.72)
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= Φ

 h2√
σ2
ik′

Sik′(Ni)2
+

σ2
jk′

Sjk′(Nj)2

 . (4.73)

The inequality in (4.72) follows from the fact that the conditions in (4.64) are met and

−δ∗k +Xjk′(Nj)−Xik′(Ni) > 0 by the definition of k′ given in (4.60). The right-hand

side of (4.73) is exactly the same as (4.32), hence the proof repeats the steps from

(4.32), assuring finally max
k

P (µik −µjk ≤ −δ∗k) ≥ 1− γ. Thus, it has been shown that

for a pair (i, j) (i ∈ SIZ and j ∈ S, j 6= i) when K4 6= ∅, P (CSij) ≥ 1 − γ is satisfied

when following the MMY2 procedure in Step 5.

Now the researcher considers a pair (i, j) (i ∈ SIZ and j ∈ S, j 6= i) when K4 = ∅
(Step 4 in Algorithm 5). As discussed in Section 4.4.1, for any system i ∈ SIZ and

j ∈ S (j 6= i), at least one of the two conditions given in (4.61) and (4.62) is true;

and K4 = ∅ suggests (4.61) is not satisfied therefore (4.62) is true. The probability of

correct selection in this case is then constructed as follows:

P (CSij) = P (j ⊀IZ i)

= P (µjk − µik > δ∗k, ∃k ∈ K) ∪ P (µjk − µik ≥ −δ∗k, ∀k ∈ K)

≥ P (µjk − µik ≥ −δ∗k, ∀k ∈ K)

= P (µik − µjk ≤ δ∗k, ∀k ∈ K).

Again, from (4.2),

P (CSij) ≥ (µik − µjk ≤ δ∗k, ∀k ∈ K)

= P

µik − µjk − (Xik(Ni)−Xjk(Nj))√
σ2
ik

Ni
+
σ2
jk

Nj

≤
δ∗k +Xjk(Nj)−Xik(Ni)√

σ2
ik

Ni
+
σ2
jk

Nj

, ∀k ∈ K



= P

Zijk ≤ δ∗k +Xjk(Nj)−Xik(Ni)√
σ2
ik

Ni
+
σ2
jk

Nj

, ∀k ∈ K


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=
H∏
k=1

Φ

δ
∗
k +Xjk(Nj)−Xik(Ni)√

σ2
ik

Ni
+
σ2
jk

Nj



≥
H∏
k=1

Φ


δ∗k +Xjk(Nj)−Xik(Ni)√√√√√√√

σ2
ik(

h1 Sik(Ni)

δ∗k +Xjk(Nj)−Xik(Ni)

)2 +
σ2
jk(

h1 Sjk(Nj)

δ∗k +Xjk(Nj)−Xik(Ni)

)2


(4.74)

=

H∏
k=1

Φ

 h1√
σ2
ik

S2
ik(Ni)

+
σ2
jk

S2
jk(Nj)

 . (4.75)

The inequality in (4.74) holds because the conditions in (4.63) are satisfied, and δ∗k +

Xjk(Nj)−Xik(Ni) > 0 for all k ∈ K due to (4.62). Again (4.75) is the same as (4.46),

therefore the following steps of the proof are the same as for Procedure MMY.

4.4.2.2 Proof for observed dominated systems in Procedure MMY2

In this section, the researcher shows (4.23) for all systems that are observed as dom-

inated with IZ, i.e., for all j ∈ ScIZ . For these systems, the probability of correct

selection is defined as P (CSj) = P (j is, in truth, dominated with IZ by at least one

system in SIZ). If it is shown that there exists at least a system i ∈ SIZ , such that

i ≺IZ j with the probability of at least 1−β, then system j is dominated (by system i)

and P (CSj) ≥ 1−β, thus (4.23) holds. Finding such system i ∈ SIZ for system j ∈ ScIZ
follows in a similar manner as described in (4.21). The probability of correct selection

for system j ∈ ScIZ is then constructed as

P (CSj) = P (j is, in truth, dominated with IZ by at least one solution in SIZ)

≥ max
i′∈SIZ

P (i′ ≺IZ j)

≈ P (i ≺IZ j)
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=
H⋂
k=1

P (µik − µjk ≤ δ∗k)−
H⋂
k=1

P (|µik − µjk| ≤ δ∗k) (4.76)

≥

[
H⋂

k=1, k 6=k′
P (µik − µjk ≤ δ∗k)

]
P (µik′ − µjk′ ≤ −δ∗k′), (4.77)

where k′ is defined in (4.60). The equality in (4.76) is straightforward from (4.6). The

inequality in (4.77) holds because

H⋂
k=1

P (µik − µjk ≤ δ∗k)−
H⋂
k=1

P (|µik − µjk| ≤ δ∗k)

−

[
H⋂

k=1, k 6=k′
P (µik − µjk ≤ δ∗k)

]
P (µik′ − µjk′ ≤ −δ∗k′)

=

[
H⋂

k=1, k 6=k′
P (µik − µjk ≤ δ∗k)

][
P (µik′ − µjk′ ≤ δ∗k′)− P (µik′ − µjk′ ≤ −δ∗k′)

]

−
H⋂
k=1

P (|µik − µjk| ≤ δ∗k)

=

[
H⋂

k=1, k 6=k′
P (µik − µjk ≤ δ∗k)

]
P (|µik′ − µjk′ | ≤ δ∗k′)−

H⋂
k=1

P (|µik − µjk| ≤ δ∗k)

=P (|µik′ − µjk′ | ≤ δ∗k′)

×

[
H⋂

k=1, k 6=k′
P (µik − µjk ≤ δ∗k)−

H⋂
k=1, k 6=k′

P (|µik − µjk| ≤ δ∗k)

]
> 0.

(4.78)

For each k ∈ K, k 6= k′, P (µik−µjk ≤ δ∗k) is greater than P (|µik−µjk| ≤ δ∗k), therefore

the term inside the big bracket in (4.78) remains positive.

From (4.77), the probability of correct selection P (CSj) is formulated as follows:

P (CSj) ≥

[
H⋂

k=1, k 6=k′
P (µik − µjk ≤ δ∗k)

]
P (µik′ − µjk′ ≤ −δ∗k′) (4.79)

=


H⋂

k=1, k 6=k′
P

Zijk ≤ δ∗k + (Xjk(Nj)−Xik(Ni))√
σ2
ik

Ni
+
σ2
jk

Nj



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× P

Zijk′ ≤ −δ
∗
k′ + (Xjk′(Nj)−Xik′(Ni))√

σ2
ik′

Ni
+
σ2
jk′

Nj

 (4.80)

=


H∏

k=1, k 6=k′
Φ

δ
∗
k + (Xjk(Nj)−Xik(Ni))√

σ2
ik

Ni
+
σ2
jk

Nj


Φ

−δ
∗
k′ + (Xjk′(Nj)−Xik′(Ni))√

σ2
ik′

Ni
+
σ2
jk′

Nj



≥


H∏

k=1, k 6=k′
Φ


δ∗k + (Xjk(Nj)−Xik(Ni))√√√√√√√
σ2
ik(

h3 Sik(Ni)

δ∗k + (Xjk −Xik)

)2 +
σ2
jk(

h3 Sjk(Nj)

δ∗k + (Xjk −Xik)

)2





× Φ


−δ∗k′ + (Xjk′(Nj)−Xik′(Ni))√√√√√√√
σ2
ik′(

h3 Sik′(Ni)

−δ∗k′ + (Xjk′ −Xik′)

)2 +
σ2
jk′(

h3 Sjk′(Nj)

−δ∗k′ + (Xjk′ −Xik′)

)2


(4.81)

=

H∏
k=1

Φ

 h3√
σ2
ik

Sik(Ni)2
+

σ2
jk

Sjk(Nj)2

 . (4.82)

The inequality in (4.79) was proved in (4.78), and the equality in (4.80) holds again

due to (4.2). The inequality in (4.81) follows from the fact that the two conditions in

(4.65) are met and δ∗k + (Xjk(Nj) −Xik(Ni)) is observed to be positive for all k ∈ K
(k 6= k′) by (4.62); also, −δ∗k′ + (Xjk′(Nj)−Xik′(Ni)) is positive by the definition of k′

given in (4.59) and (4.60). The right-hand side of (4.82) is the same as (4.53), therefore

the proof follows in the same manner given in Section 4.2.2.2, resulting eventually in

P (CSj) ≥ 1− β.
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This section (Section 4.4) presented Procedure MMY2 and proved its statistical

validity. The following section demonstrates the effectiveness of the MMY family pro-

cedures empirically using some numerical experiments.

4.5 Experiments with the MMY family procedures

In this section, some experiments are presented to verify the statistical validity of the

MMY family procedures.

4.5.1 Experimental setup for the MMY family procedures

An MORS problem with known true means—Example 3 given in Figure 4.5—was used

in this experiment. The purpose of the experiment is to demonstrate that the final

solution set presented by Procedure MMY is a relaxed Pareto set, i.e., a member of

QT = {QR,1, . . . , QR,18} in Example 3, with the probability of at least P ∗ = 0.9. Also,

it will be shown that Procedure MMY1 and Procedure MMY2 present Q = QR,14 and

QIZ = QR,9, respectively, with the probability of at least P ∗ = 0.9.

In order to compare the MMY family procedures with the multi-objective computing

budget allocation (MOCBA) family procedures, the same MORS problem was solved

also by the MOCBA procedure due to Lee et al. (2010b) and by the MOCBA IZ pro-

cedure due to Teng et al. (2010). As discussed in Section 2.2.2, these procedures have a

different approach to solving MORS problems, i.e., they begin the procedure with a sim-

ulation budget—the number of simulation replications available for the problem—and

allocate them across the systems so that the probability of correct selection is max-

imised. This makes it difficult to compare these procedures directly with the MMY

family procedures. Therefore, the researcher compared them in the following way: The

MMY family procedures are performed first with the probability of correct selection

requirement P ∗ = 0.9. From the result, one obtains the average total number of simu-

lation replications to secure P (CS) ≥ P ∗ for each procedure MMY, MMY1 and MMY2.

The MOCBA family procedures are then performed using this value as the simulation

budget B. Hence, they are performed with three different simulation budgets, i.e., the

average total number of simulation replications acquired from Procedure MMY, MMY1

and MMY2. Other parameters in the MOCBA family procedures were set as follows:

∆ = 10, τ = 5. See Section 6 in Lee et al. (2010b) for detail information on these
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parameters. Also, while implementing the MOCBA family procedures, the researcher

encountered a number of cases where the set SAp is observed to be empty, i.e., SAp = ∅,

which leads to βi = 0 for all i ∈ S, and eventually makes the algorithm run indefinitely

without solving the problem. As no explicit direction is provided in Lee et al. (2010b)

for this case, the researcher assigned one additional simulation replication to all sys-

tems to avoid the endless loop. The parameter settings and the approach to the case of

SAp = ∅ described in this paragraph, were consistently applied in all implementations

of the MOCBA family procedures in this research.

Table 4.2 shows the values of true means and variances in Example 3. δ∗1 = δ∗2 = 0.5

were used for IZ values, and n0 = 10 was used in all cases.

Table 4.2: Experimental settings for Example 3

System 1 2 3 4 5 6 7 8 9 10

True

mean
(5, 9) (2, 8) (4, 7) (5, 4.3) (3.3, 4.3) (3, 4) (4, 3.7) (6, 2) (8.3, 1.3) (8, 1)

True

variance
(1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

4.5.2 Experimental results of the MMY family procedures

Table 4.3 presents the result of this experiment. The MMY family procedures were inde-

pendently performed 1 000 times each, and the total number of simulation replications

was averaged over these 1 000 repetitions, i.e., N total =
1

1 000

∑1 000
R=1

∑M
i=1Ni,R, where

Ni,R denotes the number of simulation replications assigned to system i in the Rth run

of the procedure. The MOCBA family procedures were performed with three different

simulation budgets, i.e., B = 594 (from the result of Procedure MMY), B = 1 651

(from the result of Procedure MMY1) and B = 4 186 (from the result of Procedure

MMY2), also 1 000 times independently for each case.

The estimated probability of correct selection P̂ (CS) was obtained by the number

of correct selections out of the 1 000 repetitions. Recall that the MMY procedure

acknowledges any of the 18 members of the set QT as a correct selection. On the other

hand, Procedure MMY1 and the MOCBA procedure consider only Q = QR,14 correct,

while Procedure MMY2 and the MOCBA IZ procedure count only Q = QR,9 as a

correct selection. Accordingly, three different types of estimated probability of correct
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Table 4.3: Experimental results for Example 3

P̂ (CS)

Procedure N total QR QR,14 QR,9

MMY 593.93 100.0% 87.6% 0.0%

MOCBA (B=594) 599.41 99.8% 90.9% 0.0%

MOCBA IZ (B=594) 601.61 99.8% 0.1% 43.8%

MMY1 1650.50 100.0% 100.0% 0.0%

MOCBA (B = 1 651) 1655.80 100.0% 98.3% 0.0%

MOCBA IZ (B = 1 651) 1657.50 99.8% 0.0% 58.8%

MMY2 4 185.80 100.0% 0.0% 99.9%

MOCBA (B = 4 186) 4 191.50 100.0% 99.7% 0.0%

MOCBA IZ (B = 4 186) 4 195.80 100.0% 0.0% 99.8%

selection P̂ (CS) were given in Table 4.3: The third column (titled QR) presents P̂ (CS)

when any relaxed Pareto set was counted as correct selection, while the fourth and fifth

columns show P̂ (CS) respectively when only the exact Pareto optimal set without IZ

(Q = QR,14) and with IZ (QIZ = QR,9) was considered as correct selection. Therefore,

only one of the three columns of P̂ (CS) is relevant for each procedure. Those are

highlighted with a grey background. Others were presented only for reference.

The result in Table 4.3 shows that the statistical validity of the MMY family pro-

cedures is verified as P̂ (CS) is observed to be greater than the requirement P ∗ = 90%

for all important cases (highlighted with a grey background). The MOCBA procedure

also shows good performance counting Q = QR,14 as a correct selection. Note that

the P̂ (CS) from the MOCBA procedure increases as the simulation budget increases.

The MOCBA IZ procedure, however, shows poor performance in the first two cases.

It exhibits only 43.8% and 58.8% of P̂ (CS), considering only QIZ = QR,9 as a correct

selection, when the simulation budget is given as B = 594 and B = 1 651, respectively.

It achieves P̂ (CS) ≥ 90% only with a larger simulation budget of B = 4 186. This does

not necessarily mean that the MOCBA IZ procedure is inferior to the MMY family

procedures or the MOCBA procedure. (In fact, the performances of all procedures are

similar to each other if relaxed Pareto sets are considered, i.e., P̂ (CS) given in the

third column shows similar performances among procedures given similar simulation

budgets.) However, it does show a critical property of the MOCBA family procedures:
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The decision-maker has no idea of the reliability of the final solution set of the MOCBA

family procedures.

4.6 Discussion of the MMY family procedures

In this section, the researcher discusses some features of the MMY family procedures.

The greater part of the discussions in what follows is given in the context of Procedure

MMY. The discussions are valid, however, for the MMY1 and MMY2 procedures, too.

First of all, the MMY family procedures guarantee the probability of correct selec-

tion requirement P (CS) ≥ P ∗ based on a solid mathematical analysis using a Bayesian

inference model. Therefore they take advantage of using the sample mean informa-

tion instead of assuming the least favourable configuration. This is reflected in the

denominators of the conditions, for example, in (4.11), (4.12) and (4.13).

In spite of this, however, the result in Table 4.3 indicates that the MMY family pro-

cedures are conservative, showing a much higher value of P̂ (CS) than the prespecified

P ∗ = 0.9. This is due to the use of the Bonferroni inequality in (4.25) and again in

(4.28). The principle is to divide the significance level (the level of overall risk of con-

cluding incorrect selection) α = 1−P ∗ into M smaller significance levels of β = α
M , and

show (4.23) for each system i ∈ S. For observed non-dominated systems, i.e., systems

in Sp, this is further decomposed into M − 1 smaller significance levels of γ = β
M−1 to

show that system i is not dominated by system j ∈ S (j 6= i), with the probability of

at least 1− γ. This multiple-level application of the Bonferroni inequality renders the

procedure very conservative.

The number of simulation replications assigned to a system by the MMY family

procedures given in (4.11), (4.12) and (4.13), is proportional to the sample variance

S2
ik(Ni) and inversely proportional to the square of the difference in sample means of

two systems if δijk = max{δ∗k, Xjk(Nj)−Xik(Ni)} = Xjk(Nj)−Xik(Ni). Interestingly

but not surprisingly, the same structure is seen in the MOCBA procedure (see Remark

2 in Lee et al. (2010b, p. 662)). Procedure MMY allows the size of the difference to

decrease to the point of δ∗k, from where all the smaller differences are ignored and the

indifference-zone value is used instead. By doing this, the procedure avoids wasting an

unnecessarily large amount of simulation budget to distinguish an insignificantly small

difference, as discussed in Section 4.2.2. The MOCBA procedure, however, does not
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use the concept of the indifference-zone value. This causes a huge amount of simulation

budget spent on differentiating systems with close performances, which eventually led

to the development of the MOCBA IZ procedure by Teng et al. (2010).

Likewise, Procedure MMY1 does not replace Xjk(Nj) − Xik(Ni) with δ∗k even if

the difference becomes smaller than the IZ value. This means that the procedure could

assign an extremely large number of simulation replications if the true means of two sys-

tems for a given objective k is the same. See the conditions given in (4.56) for example.

If µik = µjk for a certain pair of (i, j) (i 6= j) and an objective k, Xjk(Nj) −Xik(Ni)

would be observed as a very small value from the beginning of the procedure, and the

procedure would assign more samples to systems i and j in an attempt to distinguish

them. However, more samples would estimate the true means more accurately, leading

to an even smaller value of Xjk(Nj) − Xik(Ni), which eventually makes Ni and Nj

infinite.

The same situation occurs in Procedure MMY2 when the difference of true means

of two systems for an objective k is exactly the same as the IZ value for that objective,

i.e., when |µik − µjk| = δ∗k. In this case, |Xjk(Nj)−Xik(Ni)| is observed to be close to

δ∗k, and the conditions given in (4.64) and (4.65) would ultimately require Ni and Nj

to be infinite.

The MOCBA IZ procedure suffered a similar problem (see the discussions in the

last paragraph in Teng et al. (2010, p. 442)). This is why Teng et al. (2010) proposed

to approximate the value δ∗ijk = δ∗k − (µjk − µik) as follows:

δ∗ijk = δ∗k − (µjk − µik) =

{
δ∗k if |µjk − µik| ≤ δ∗k
−(µjk − µik) otherwise

. (4.83)

This is ironic because the MOCBA IZ procedure was designed in the first place to

prevent the MOCBA procedure from spending too much simulation budget on differ-

entiating two systems when µik = µjk. Now the same kind of problem occurs in a

different configuration, i.e., when |µjk − µik| = δ∗k, and the approximation (4.83) pre-

vents δ∗ijk becoming too small, thus the procedure avoids spending too much simulation

budget. However, this inevitably impairs the performance of the procedure as seen in

the results given in Table 4.3.
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Applying the same principle of approximation given in (4.83) to Procedure MMY2,

i.e., applying

δ∗k + (Xjk −Xik) =

{
δ∗k if |Xjk −Xik| ≤ δ∗k
Xjk −Xik otherwise

(4.84)

or

−δ∗k + (Xjk −Xik) =

{
−δ∗k if |Xjk −Xik| ≤ δ∗k
Xjk −Xik otherwise

(4.85)

to conditions in (4.63), (4.64) and (4.65) would help Procedure MMY2 avoid assigning

an infinity to Ni and Nj . However, this would let Procedure MMY2 be exactly the

same as Procedure MMY, except that SIZ is used in Procedure MMY2 instead of Sp.

Therefore, Procedure MMY2 with the approximation given in (4.84) and (4.85) would

not be able to find QIZ with the probability of at least P ∗.

In this section, some features of the MMY family procedures were discussed. Espe-

cially, it was shown that it is not possible for Procedures MMY1 and MMY2 to identify

the exact Pareto solution set Q and QIZ , respectively, when some extreme cases occur,

i.e., |µik − µjk| → 0 for Procedure MMY1 and |µik − µjk| → δ∗k for Procedure MMY2.

The MOCBA and MOCBA IZ procedures also perform poorly in their corresponding

extreme cases. In contrast, the MMY procedure can deal with these extreme cases by

aiming at identifying a relaxed Pareto set QR, instead of Q or QIZ , which is equally

good considering the indifference of the decision-maker.

The following section concludes this chapter.

4.7 Conclusion: Chapter 4

This chapter presented the core work of the research, i.e., the design and development

of a multi-objective ranking and selection procedure, called Procedure MMY. This

procedure employs the indifference-zone method, determining the minimum number

of simulation replications for each system in order to meet the probability of correct

selection requirement P (CS) ≥ P ∗. The necessity of the work is clear as there has not

been an MORS procedure with the IZ approach before Procedure MMY. Therefore,

the work in this research fills the gap shown in Figure 2.2. The statistical validity of the

procedure was shown through a rigorous mathematical analysis based on the Bayesian

inference model.
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Also, the researcher proposed in this chapter the concept of ‘relaxed’ Pareto set

(QR). In the single-objective context, if the true mean of a system i is within δ∗ from

the true mean of the best system b, i.e., |µi − µb| ≤ δ∗, the IZ procedures accept both

systems as a correct selection. This idea was expanded to the multi-objective domain,

resulting in the concept of the relaxed Pareto set. Therefore, Procedure MMY was

designed to find a relaxed Pareto set QR, not the exact Pareto set Q (as the MOCBA

procedure) or the exact Pareto set with IZ, QIZ (as the MOCBA IZ procedure).

In addition, two variants of the procedure, called Procedure MMY1 and Procedure

MMY2, were proposed. Procedure MMY1 selects Q as a final solution set, therefore

it can be considered as the IZ counterpart of the MOCBA procedure. Likewise, at-

tempting to find QIZ , Procedure MMY2 can be acknowledged as the counterpart of

the MOCBA IZ procedure. The statistical validity of these two procedures was also

proved using the same mechanism as in Procedure MMY.

The experiments given in Section 4.5 demonstrated the effectiveness of these three

MORS procedures empirically by showing the estimated probability of correct selection

is greater than P ∗ in all cases. It was also discussed that Procedures MMY1 and MMY2

are not applicable when some extreme cases occur. The MOCBA family procedures

perform poorly in such cases. Procedure MMY, however, is robust in those extreme

cases too because it tries to find a relaxed Pareto set QR, not Q or QIZ . The superiority

of Procedure MMY is shown even more clearly in the following chapter, where a few

simulation case studies are used to validate the MMY family procedures.

92

Stellenbosch University  https://scholar.sun.ac.za



Chapter 5

Simulation case studies

In this chapter, the multi-objective ranking and selection (MORS) procedures proposed

in the previous chapter (Chapter 4) are validated through a variety of simulation case

studies. First, a simple buffer allocation problem (BAP) is presented as a dynamic,

stochastic MORS problem. The BAP problem was chosen because it is a classical

simulation problem especially well used in production lines, of which the efficiency is

one of the main concerns of Industrial Engineers. Next, the classical (s, S) inventory

problem is considered. The inventory problem is also a well-established, typical op-

timisation problem often used in academics as well as in practice. See Cruz et al.

(2008); Glasserman & Yao (1996); Vouros & Papadopoulos (1998) for buffer allocation

problem applications and Bollapragada et al. (2004); Janssen et al. (1998); Moors &

Strijbosch (2002); Rossi et al. (2010) for inventory problem applications. A gold mine

problem extracted from Kelton et al. (2010) is then examined as an example of a typ-

ical simulation problem with sequential resources and continuous material handling.

Finally a hospital management problem, designed and taught by the promoter of this

research, is considered, which provides an example of simulation problems with cat-

egorical/Boolean variables. These four simulation case studies are discussed in four

sections in this chapter (Sections 5.1 to 5.4).

In each simulation case study, a subsection is first assigned to describe the simu-

lation model in detail, followed by two subsections that are dedicated to experimental

setup and results, respectively. In the experimental setup section, as a preliminary step

to validate Procedures MMY, MMY1 and MMY2, the simulation model is run indepen-

dently 10 000 times. The purpose of this simulation run is to estimate the unknown true
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means of the objectives as accurately as possible. The sample means over these 10 000

simulation replications are considered to be very close to the unknown true means due

to the strong law of large numbers (Law & Kelton, 2000, p. 292). Therefore they can be

considered ‘correct’, and used in this study to identify ‘true’ Pareto optimal solutions.

In particular, the researcher used these sample means based on the 10 000 simulation

replications to identify the exact Pareto optimal solutions without and with IZ (Q and

QIZ) as well as the true relaxed Pareto solutions, i.e., QR.

Once these true Pareto optimal sets are defined for each simulation case study, the

MMY family procedures are applied 1 000 times independently to each simulation prob-

lem. The experimental results section presents the results of these 1 000 applications of

MMY family procedures, especially the proportion of the number of correct selections

(based on Q, QIZ and QR) out of the 1 000 experiments. The statistical validity of

the procedures will then be verified by showing that the proportion of the number of

correct selections is greater than or equal to the prespecified value P ∗. The MOCBA

family procedures were also applied to solve the same problems, and the results are

compared in the experimental results section.

5.1 Case study 1: Buffer allocation problem

The first simulation case study is a buffer allocation problem (BAP). The BAP is a typi-

cal decision-making problem in the design of production lines (Vouros & Papadopoulos,

1998), as well as telecommunication networks (Jouini et al., 2009). Often the problem

is to allocate finite queues (or buffer spaces) among m network centres (or machines)

so as to maximise the throughput, e.g., the number of calls attended to in a call-centre

problem. The BAP is a classical NP-hard problem with a potentially very large set

of feasible solutions, thus difficult to find the optimal solution even if the objective

function is completely known (Alon et al., 2005). The number of feasible solutions, for

example, for a BAP in a serial production line with n buffer spaces and m machines,

amounts to
(
n+m−2
m−2

)
.

5.1.1 Simulation model: Buffer allocation problem

The BAP model considered in this study is similar to what was described in Rubinstein

& Kroese (2004, p. 207–208), which is repeated as follows: Consider a single production

94

Stellenbosch University  https://scholar.sun.ac.za



5.1 Case study 1: Buffer allocation problem

line consisting of m machines. The machines are placed sequentially, and a product

must be processed in each and every machine in sequence. Buffer space is needed

between machines due to asynchronous processing times of the machines. The buffer

spaces in front of the first machine and beyond the last machine are assumed to be

infinite. Therefore, there exist m − 1 buffer spaces to consider in this problem. See

Figure 5.1 for an example design of this problem.

M1 M2 . . . Mm

B0 =∞ B1 . . . Bm−1 Bm =∞

Figure 5.1: A single product line with m machines and m− 1 buffers (Bekker, 2012)

The processing time of Machine Mi (i = 1, . . . ,m) follows an exponential distri-

bution with rate µi (hence the mean processing time is 1/µi). The machines are also

subject to failures. In this study, operation-based failures (OBF) were considered rather

than time-based failures as the former type of failures is more realistic than the latter

(Yang et al., 2000). Each machine therefore breaks down after a number of operations

have been completed. This operation count is determined by a Poisson distribution

with rate βi = 100. The repair time for Machine Mi is exponentially distributed with

rate ri = 2.

When a part is finished at MachineMi, it immediately proceeds to the next machine,

Mi+1, if Machine Mi+1 is not occupied and in working condition. Otherwise the part is

stocked in the buffer between machine Mi and Mi+1. If the buffer is full then the part

remains in Machine Mi until a space in the buffer becomes available. Therefore, an

upstream machine becomes blocked when its successor has failed, while a downstream

machine can eventually become starved if its predecessor has failed (Bekker, 2012). The

first machine is fed as soon as it finishes processing the current part.

Let n be the total available buffer slots for the problem, and let Bi be the buffer

size between Machine Mi and Mi+1 (i = 1, . . . ,m − 1) so that
∑m−1

i=1 Bi = n. The

MORS problem is then to allocate the n available buffer slots into the m − 1 buffer

spaces so that the multiple objectives are optimised. Two objectives are taken into

account in this case study: the throughput and the average work-in-process (WIP).

The throughput rate (TR) is defined as the average number of products completed per

95

Stellenbosch University  https://scholar.sun.ac.za



5.1 Case study 1: Buffer allocation problem

day, therefore calculated by

TR =
Total number of products completed during the simulation days

Number of simulation days
.

Work-in-process represents partly finished products in the system. The existence of

WIP is not recommended in production management for various reasons. For example,

WIP not only incurs inventory cost but also carries the inherent risk of being damaged

or causing hazard in the work place. Therefore minimising the average WIP, denoted

by WP , serves as the second objective in this case study.

The simulation model was built with m = 5 machines and n = 6 total available

buffer slots. Other parameters used in the model are given in Table 5.1. The simulation

runtime was set to 100 days.

Table 5.1: Parameters used in the BAP simulation model

Machine 1 2 3 4 5

Mean process time 1/µi (min.) 60 55 50 46 43

Failure rate βi 100 100 100 100 100

Mean repair time 1/ri (min.) 120 120 120 120 120

5.1.2 Experimental setup: Buffer allocation problem

In this experiment, 10 different buffer allocations were used. These values are shown

in Table 5.2. Table 5.3 shows the sample means of the two performance measures (the

throughput rate and the average WIP) over 10 000 simulation runs, rounded to two

decimal places. These values are considered as ‘accurately estimated true means’ due

to the large sample size, hence treated in the discussion as true means and used to

identify true Pareto optimal solution sets. One can see that, for example, when the

buffer slots are allocated as (B1, B2, B3, B4) = (1, 1, 1, 3) (system 1), an average of 16.42

units is completed each day in the production line, while having an average of 1.65 units

of WIP all the time. Figures 5.2 to 5.4 show the same information graphically. For the

IZ values, δ∗1 = 0.2 (units) and δ∗2 = 0.12 (units) were used.

Figure 5.2 shows that all solutions except for systems 5 and 8 are members of the

exact Pareto optimal set without IZ, that is, Q = {1, 2, 3, 4, 6, 7, 9, 10}. However, when

the IZ value δ∗ = [0.2, 0.12] is taken into account, the dominance relationship among
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5.1 Case study 1: Buffer allocation problem

Table 5.2: Feasible solutions of the BAP

System 1 2 3 4 5

(B1, B2, B3, B4) (1,1,1,3) (1,1,2,2) (1,2,1,2) (1,2,2,1) (2,1,1,2)

System 6 7 8 9 10

(B1, B2, B3, B4) (2,1,2,1) (2,2,1,1) (3,1,1,1) (1,3,1,1) (1,1,3,1)

Table 5.3: Estimated true means in the BAP

System 1 2 3 4 5

(TR,WP ) (16.42, 1.65) (16.66, 1.76) (16.97, 2.02) (17.14, 2.13) (17.04, 2.42)

System 6 7 8 9 10

(TR,WP ) (17.28, 2.55) (17.48, 2.83) (17.23, 3.19) (17.18, 2.37) (16.73, 1.86)
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Figure 5.2: The true Pareto solution set Q: BAP
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Figure 5.3: The true Pareto solution set with IZ QIZ : BAP
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Figure 5.4: The true relaxed Pareto solution set QR: BAP

the solutions is changed: system 1 is dominated by system 2; system 4 dominates both

systems 6 and 9. Therefore systems 1, 6 and 9 are excluded from QIZ , resulting in

QIZ = {2, 3, 4, 7, 10}.
Figure 5.4 shows members of possible relaxed Pareto sets using the legends de-

scribed in Section 4.1.5, i.e., red for the solutions that must be included in QR,

blue for the solutions that may or may not be included in QR; and green in a cir-

cle for each group of indifferent solutions of which at least one solution should be

included in QR. The same legend will be used in all following figures in this disser-

tation as necessary. Note that there are two groups of systems that are indifferent

to each other in this problem: systems 2 and 10, and systems 3 and 4. The relaxed

Pareto set QR should contain system 7, and at least one solution from QS,1 = {2, 10}
and from QS,2 = {3, 4}. It may or may not contain systems 1, 6 and 9. Therefore

there exist 72 possible relaxed Pareto solution sets (three options to choose from QS,1

(system 2 or 10 or both) × three options to choose from QS,2 (system 3 or 4 or both) ×
two options for system 1 (whether to include system 1 or not) × two options for system 6

(whether to include system 6 or not) × two options for system 9 (whether to include system

9 or not) = 72). They are listed in Table 5.4 as an example for this first case study.

Note that Q = QR,72 and QIZ = QR,9 are included in these possible relaxed Pareto

sets.

Procedures MMY, MMY1 and MMY2 were then applied to solve this buffer allo-

cation problem. They took the observations from the result of 10 000 simulation runs
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Table 5.4: Possible relaxed Pareto solution sets: BAP

QR,1 = {2, 3, 7} QR,2 = {2, 4, 7} QR,3 = {3, 7, 10}
QR,4 = {4, 7, 10} QR,5 = {2, 3, 7, 10} QR,6 = {2, 4, 7, 10}
QR,7 = {2, 3, 4, 7} QR,8 = {3, 4, 7, 10} QR,9 = {2, 3, 4, 7, 10}
QR,10 = {1, 2, 3, 7} QR,11 = {1, 2, 4, 7} QR,12 = {1, 3, 7, 10}
QR,13 = {1, 4, 7, 10} QR,14 = {1, 2, 3, 7, 10} QR,15 = {1, 2, 4, 7, 10}
QR,16 = {1, 2, 3, 4, 7} QR,17 = {1, 3, 4, 7, 10} QR,18 = {1, 2, 3, 4, 7, 10}
QR,19 = {2, 3, 6, 7} QR,20 = {2, 4, 6, 7} QR,21 = {3, 6, 7, 10}
QR,22 = {4, 6, 7, 10} QR,23 = {2, 3, 6, 7, 10} QR,24 = {2, 4, 6, 7, 10}
QR,25 = {2, 3, 4, 6, 7} QR,26 = {3, 4, 6, 7, 10} QR,27 = {2, 3, 4, 6, 7, 10}
QR,28 = {2, 3, 7, 9} QR,29 = {2, 4, 7, 9} QR,30 = {3, 7, 9, 10}
QR,31 = {4, 7, 9, 10} QR,32 = {2, 3, 7, 9, 10} QR,33 = {2, 4, 7, 9, 10}
QR,34 = {2, 3, 4, 7, 9} QR,35 = {3, 4, 7, 9, 10} QR,36 = {2, 3, 4, 7, 9, 10}
QR,37 = {1, 2, 3, 6, 7} QR,38 = {1, 2, 4, 6, 7} QR,39 = {1, 3, 6, 7, 10}
QR,40 = {1, 4, 6, 7, 10} QR,41 = {1, 2, 3, 6, 7, 10} QR,42 = {1, 2, 4, 6, 7, 10}
QR,43 = {1, 2, 3, 4, 6, 7} QR,44 = {1, 3, 4, 6, 7, 10} QR,45 = {1, 2, 3, 4, 6, 7, 10}
QR,46 = {1, 2, 3, 7, 9} QR,47 = {1, 2, 4, 7, 9} QR,48 = {1, 3, 7, 9, 10}
QR,49 = {1, 4, 7, 9, 10} QR,50 = {1, 2, 3, 7, 9, 10} QR,51 = {1, 2, 4, 7, 9, 10}
QR,52 = {1, 2, 3, 4, 7, 9} QR,53 = {1, 3, 4, 7, 9, 10} QR,54 = {1, 2, 3, 4, 7, 9, 10}
QR,55 = {2, 3, 6, 7, 9} QR,56 = {2, 4, 6, 7, 9} QR,57 = {3, 6, 7, 9, 10}
QR,58 = {4, 6, 7, 9, 10} QR,59 = {2, 3, 6, 7, 9, 10} QR,60 = {2, 4, 6, 7, 9, 10}
QR,61 = {2, 3, 4, 6, 7, 9} QR,62 = {3, 4, 6, 7, 9, 10} QR,63 = {2, 3, 4, 6, 7, 9, 10}
QR,64 = {1, 2, 3, 6, 7, 9} QR,65 = {1, 2, 4, 6, 7, 9} QR,66 = {1, 3, 6, 7, 9, 10}
QR,67 = {1, 4, 6, 7, 9, 10} QR,68 = {1, 2, 3, 6, 7, 9, 10} QR,69 = {1, 2, 4, 6, 7, 9, 10}
QR,70 = {1, 2, 3, 4, 6, 7, 9} QR,71 = {1, 3, 4, 6, 7, 9, 10} QR,72 = {1, 2, 3, 4, 6, 7, 9, 10}

in a random order, whenever they needed to take observations (in Steps 2 and 10 in

Algorithms 3 to 5). As mentioned earlier, the procedures were applied repeatedly and

independently 1 000 times to obtain the proportion of correct selections, denoted by

P̂ (CS). Then

P̂ (CS) ≥ P ∗ (5.1)

will be shown for Procedure MMY counting any of the 72 relaxed Pareto solution sets

as correct selections. Similarly (5.1) will be shown for Procedures MMY1 and MMY2,

taking only Q and QIZ , respectively, as correct selections. The probability of correct

selection requirement was always set to P ∗ = 0.9, and the initial number of simulation

replications was set to n0 = 2 in all cases unless otherwise stated.
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The MOCBA and the MOCBA IZ procedures were also applied in the case study.

As done in Section 4.5, the simulation budget for the MOCBA family procedures were

set to the average total number of simulation replications, denoted by N total, obtained

by the 1 000 applications of the MMY family procedures. The average total number of

simulation replications is defined as

N total =
1

1 000

1 000∑
R=1

M∑
i=1

Ni,R, (5.2)

where Ni,R denotes the number of simulation replications assigned to system i in the

Rth run of the procedure.

As discussed in Section 4.6, Procedures MMY1 and MMY2 could require an in-

finite number of simulation replications (Ni → ∞ and Nj → ∞) if |µik − µjk| → 0

(Procedure MMY1) or |µik − µjk| → δ∗k (Procedure MMY2). In this experiment, it

is considered that such a case occurs when a procedure requires Ni > 10 000 for any

system i. The procedure will then be terminated even though the termination criterion

(|I| = 0) is not satisfied, and the result will be classified as ‘not applicable’ (NA).

The experimental settings described in this section apply in all simulation case

studies in this dissertation unless otherwise stated. Thus they are not repeated in

following sections.

5.1.3 Experimental results: Buffer allocation problem

This section discusses the results of the 1 000 applications of the MMY family proce-

dures as well as the MOCBA family procedures to the buffer allocation problem.

Table 5.5 summarises the results, showing P̂ (CS) and N total for each procedure.

The first three rows present the results of Procedure MMY and the MOCBA family

procedures using B = 373 (rounded, and obtained from the experiment of the MMY

procedure) as the simulation budget. Note that the actual average number of total

simulation replications N total for the MOCBA family procedures differ slightly from the

budget B due to other parameter settings. These first three rows of the result table will

be called ‘the first section’ throughout the dissertation. The following three rows will

be referred to as ‘the second section’, and they show the results from Procedure MMY1

and the MOCBA family procedures with the simulation budget changed accordingly.

Similarly the last three rows will be called ‘the third’ or ‘the last section’, which displays
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5.1 Case study 1: Buffer allocation problem

Table 5.5: Experimental results: BAP

P̂ (CS)

Procedure N total QR Q = QR,72 QIZ = QR,9

MMY 372.50 100.0% 98.5% 0.0%

MOCBA (B = 373) 378.99 99.7% 98.8% 0.0%

MOCBA IZ (B = 373) 379.24 65.2% 0.0% 58.3%

MMY1 2429.60 100% 100% 0.0%

MOCBA (B = 2 430) 2435.40 100.0% 100.0% 0.0%

MOCBA IZ (B = 2 430) 2437.00 84.2% 0.0% 84.2%

MMY2 NA NA NA NA

MOCBA NA NA NA NA

MOCBA IZ NA NA NA NA

the results from Procedure MMY2 and the MOCBA family procedures with relevant

simulation budget. Note also that because Procedures MMY, MMY1 and MMY2 take

different notions of correct selection, only one of Columns 3 to 5 is relevant to each

procedure. Relevant columns are marked with grey background colour.

The first section in Table 5.5 shows that Procedure MMY succeeded in finding a

relaxed Pareto set 100% with an average of total simulation replicationsN total = 372.50.

Also, the procedure presented the exact Pareto optimal solution Q 98.5% of the 1 000

experiments. The MOCBA procedure also achieved 98.8% of P̂ (CS) when applied with

the simulation budget B = 373. The second section also shows that Procedure MMY1

and the MOCBA procedure work well to identify the exact Pareto optimal solution

set Q though they spent more simulation replications. The MOCBA IZ procedure,

however, did not show good performance in both sections in Table 5.5: The estimated

probability of correct selection became only P̂ (CS) = 58.3% when QIZ was counted

as correct selection in the first section. It improved when more simulation budget

(B = 2 430) was assigned in the second section. The proportion of correct selection,

however, was still low in this case (P̂ (CS) = 84.2%).

An in-depth analysis revealed that most of the time when the MOCBA IZ procedure

presented a wrong result, the final solution set did not include system 7, which should

be included in all three types of correct selections, i.e., Q, QIZ or QR. This is due to

the fact that the true mean of system 7 in the first objective is exactly δ∗1 = 0.2 apart
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from that of system 6, that is, |µ7,1 − µ6,1| = |17.48 − 17.28| = 0.2 = δ∗1 . Suppose it

was observed slightly smaller than the true mean, e.g., X7,1 = 17.46. Suppose also,

though very unlikely, that all other systems were observed exactly, i.e., Xi,k = µi,k

(i ∈ S, i 6= 7, k ∈ K, k 6= 1), to make the problem tractable. The procedure would

then classify system 7 as dominated (by system 6) with IZ (6 ≺̂IZ 7), for these values

(X6 = [17.28, 2.55] and X7 = [17.46, 2.83]) satisfy conditions given in (4.8)1. This

would eventually lead the procedure to exclude system 7 from the final solution set

as the MOCBA IZ procedure constructs the Pareto set based on the IZ concept (Teng

et al., 2010), i.e., it uses SIZ instead of Sp. The same supposition on the observed value,

however, does not make a difference in the other two procedures (Procedure MMY and

the MOCBA procedure), which use Sp, not SIZ . System 7 remains non-dominated in

these procedures even if the observation was X6 = [17.28, 2.55] and X7 = [17.46, 2.83].

This explains also why Procedure MMY2 is not applicable in this problem, as seen

in the last section of Table 5.5. If the sample mean of system 7 for the first objective

is observed slightly smaller than the true mean and all other systems were observed

exactly, as supposed in the previous paragraph, system 7 is observed as dominated with

IZ by system 6, therefore, for the procedure to stop, conditions (4.65) in Algorithm 5

must be satisfied. This requires (4.66) to be met for objective 1 in this case, and the de-

nominator of the right-hand side of (4.66) has a value very close to zero when systems 6

and 7 are considered for systems i and j, respectively. On the other hand, if the sample

mean of system 7 for the first objective is observed slightly larger than the true mean,

e.g., X7,1 = 17.50, and again if all other systems were observed exactly, then system 7

is observed as non-dominated, thus conditions (4.64) in Algorithm 5 must be met. In

this case, system 7 plays the role of system i in (4.64), and if system 6 is chosen for sys-

tem j, objective 1 becomes k′ in (4.64), and again the denominators in (4.64) approach

zero. Therefore, in both cases the procedure requires N6 and N7 to be extremely large

to guarantee what it observed regarding system 7 to be true, and eventually to identify

QIZ with the probability of at least P ∗. Therefore Procedure MMY2 is not practically

applicable for this particular problem, because the true means of systems 6 and 7 in

1Note that the conditions in (4.8) assume a minimisation problem for all objectives, while the buffer

allocation problem in this experiment requires the first objective to be maximised. Therefore the first

element of the vectors X6 and X7 should be multiplied by −1 before the conditions (4.8) are applied.

The same rule applied to all objectives that are to be maximised in the discussions in this chapter.
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the first objective are exactly δ∗1 apart from each other, or rather the indifference-zone

value was set such that |µ7,1 − µ6,1| = δ∗1 unintentionally.

5.1.4 Conclusion: Buffer allocation problem

This section summarises the discussions in Section 5.1, where the buffer allocation

problem was presented as a dynamic, stochastic simulation optimisation problem to

verify the MMY family procedures. The details of the simulation model were discussed

first in Section 5.1.1, followed by Section 5.1.2, where the result of 10 000 simulation

replications of the BAP model was presented. This result was used to define the

true Pareto solution sets Q, QIZ and QR, which then were used to verify the perfor-

mance of the proposed MMY family procedures. The result in Section 5.1.3 showed

that Procedures MMY and MMY1 successfully identified QR and Q, respectively, with

P̂ (CS) = 100%. Procedure MMY2, however, could not find the exact Pareto solution

set with IZ (QIZ), due to the fact that the indifference-zone value for objective 1 was

accidentally determined to be exactly the same as the difference of true means of two

systems for that objective. Therefore Procedure MMY2 was not applicable for this

particular setting of the problem. It is applicable, of course, if the IZ value is changed,

as will be seen in the following simulation case studies. However, deciding the IZ value

to avoid such a situation is not an easy task because one does not know the true means

beforehand.

This concludes the discussion of the buffer allocation problem. The following section

introduces the second simulation case study.

5.2 Case study 2: Inventory problem

In this section, a single-commodity inventory problem is discussed. A typical inventory

problem investigates alternative ordering policies, i.e., reorder point (s) and reorder

quantity (S), for an inventory system when customer demands and the lead time of an

order are determined randomly. For a detailed description of the problem, see Bashyam

& Fu (1998).
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5.2.1 Simulation model: Inventory problem

In this section the specific inventory model considered in this study is described. A

single, discrete commodity is sold to customers who arrive according to a Poisson

process so that the interarrival times are exponentially distributed with a mean of 20

minutes. The customer demand X is a random, discrete variable, decided by a Weibull

distribution with parameters α = 1 and β = 8 and rounded up.

Every time the customer demands X = x units of goods, the inventory level de-

creases by x if the current inventory level exceeds the customer demand; otherwise the

customer is assumed to leave without purchasing any. The service level, one of the two

objectives in this problem, is thus defined as the percentage of demand met:

SL =
Number of customers serviced

Number of customers arrived
.

Once the inventory level drops below the reorder point, denoted by s, the management

orders S units of the commodity. The delivery will take a random period of time from

a triangular distribution with lower limit, mode and upper limit of 12, 14 and 20 hours,

respectively. Figure 5.5 illustrates an example of the inventory level over time.

The other objective is the total cost (CT ) over n days, which consists of two factors:

the inventory cost (CI) and the delivery cost (CD). The inventory cost involves the

expenses incurred holding the stock, and is calculated as

CI =

n∑
i=1

1.1× the average number of units stocked in day i.

Each delivery is assumed to cost ZAR100, therefore the delivery cost is

CD = 100× d,

where d denotes the number of deliveries observed during the n days. The total cost is

defined as the sum of these two costs:

CT = CI + CD.

The simulation runtime was set to n = 50 days, and the initial inventory in the system

at the beginning of the runtime was set to 200 units.
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Figure 5.5: Some characteristics of the (s, S) inventory process (Bekker, 2012)

5.2.2 Experimental setup: Inventory problem

The experiment was performed considering the 18 ordering policies given in Table 5.6,

and the aim was to find a Pareto optimal set to minimise the total cost over the 50

days and at the same time to maximise the service level.

Table 5.7 shows the estimated true means of the two objectives (the total cost CT

and the service level SL) obtained by the results of 10 000 simulation runs. Figures 5.6

and 5.7 show the true Pareto optimal set without and with the indifference-zone con-

Table 5.6: Feasible solutions of the inventory problem

System 1 2 3 4 5 6

(s, S) (200, 500) (200, 600) (200, 700) (200, 800) (200, 900) (200, 1 000)

System 7 8 9 10 11 12

(s, S) (300, 500) (300, 600) (300, 700) (300, 800) (300, 900) (300, 1 000)

System 13 14 15 16 17 18

(s, S) (400, 500) (400, 600) (400, 700) (400, 800) (400, 900) (400, 1 000)
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Table 5.7: Estimated true means in the inventory problem

System 1 2 3 4

(CT , SL) (14587.38, 77.48) (16638.25, 80.33) (18845.66, 82.53) (21159.39, 84.28)

System 5 6 7 8

(CT , SL) (23560.63, 85.71) (26026.11, 86.90) (17163.51, 87.65) (19162.59, 89.38)

System 9 10 11 12

(CT , SL) (21353.47, 90.68) (23664.90, 91.68) (26070.36, 92.49) (28536.21, 93.14)

System 13 14 15 16

(CT , SL) (21077.67, 95.63) (22964.72, 96.25) (25085.95, 96.70) (27367.21, 97.04)

System 17 18

(CT , SL) (29738.86, 97.31) (32186.81, 97.52)
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Figure 5.6: The true Pareto solution set Q: Inventory problem

cept, Q and QIZ respectively, with the Pareto optimal solutions marked in red. The

indifference-zone value δ∗1 = 500 (ZAR) was used for the first objective (total cost), and

δ∗2 = 5 (%) for the second objective (service level).

When the IZ concept was not considered, systems 1, 2, 7, 8, 13, 14, 15, 16, 17

and 18 are classified as non-dominated, i.e., Q = {1, 2, 7, 8, 13, 14, 15, 16, 17, 18}. This

is illustrated in Figure 5.6. One can also see from Figure 5.6 that increasing reorder

quantity S while keeping the same reorder point s does not improve service level much,

especially when s = 400 (systems 13 to 18). However, increasing reorder quantity by

S = 100 would increase the cost more than ZAR2 000 in almost all cases. Therefore,

if one would like to keep the reorder point at s = 400, ordering a small quantity of
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Figure 5.7: The true Pareto solution set with IZ QIZ : Inventory problem

goods more frequently is a smarter choice than ordering a large quantity and keeping

the stock. On the other hand, keeping the reorder quantity at the same level, for

example at S = 500, and increasing the reorder point by s = 100 raises the service level

by almost 10% (systems 1, 7 and 13), though the total cost also increases. Therefore

trade-offs exist in this case, which is the decision-maker’s task to decide.

The same concept is manifested in Figure 5.7 when the IZ value δ∗ = [500, 5] is

considered. In this case, system 2 is classified to be dominated by system 1 with IZ, i.e.,

1 ≺IZ 2, because the service level of these two systems does not show much difference

(|µ1,2−µ2,2| = |77.48− 80.33| < δ∗2 = 5) while the total cost of system 1 is significantly

smaller than the total cost of system 2. Similarly, system 8 is dominated by system 7

and systems 14 to 18 are all dominated by system 13. Therefore, the Pareto optimal

set with IZ (QIZ) has only three members: systems 1, 7 and 13.

Figure 5.8 represents the relaxed Pareto solutions according to the same legend

mentioned before. In this case, there are no two solutions that are indifferent to each

other; systems 1, 7 and 13 must be included in QR; and any one of the seven systems

marked in blue, i.e., systems 2, 8, 14, 15, 16, 17 and 18, may or may not be included.

Therefore, there exist 27 = 128 relaxed Pareto sets in this case.

In the following section, the MMY family procedures were applied to the inventory

problem to see if they could find correct Pareto sets with P̂ (CS) ≥ P ∗.
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Figure 5.8: The true relaxed Pareto solution set QR: Inventory problem

5.2.3 Experimental results: Inventory problem

This section discusses the results of the experiments for the inventory problem. Ta-

ble 5.8 presents the summary of the results.

The first section of Table 5.8 shows that Procedure MMY found relaxed Pareto solu-

tions with P̂ (CS) = 100% using an average of N total = 143.77 simulation replications,

although the proportion of finding the exact Pareto optimal set Q was only 39.2%.

This is not a problem with Procedure MMY as it is designed to find relaxed Pareto

solutions. The MOCBA procedure, however, when applied with the same simulation

budget B = 144 as Procedure MMY, was not able to identify Q with an acceptable

probability of correct selection. It showed even less performance (P̂ (CS) = 27.2%)

than the MMY procedure, which was designed to identify QR, not Q. Furthermore,

the probability of correct selection did not improve much when more simulation replica-

tions were used, as shown in the second and third section of Table 5.8. This is in sharp

contrast to the results of the buffer allocation problem discussed in Section 5.1.3, where

both Procedure MMY and the MOCBA procedure could identify Q with P̂ (CS) ≥ 90%.

A further investigation showed that this was due to the fact that systems 13 to

18 have very close performance in the second objective, i.e., the service level, while

the dominance relationship in the first objective (total cost) is apparent. The true

mean estimation in Table 5.7 shows that they are all non-dominated, however, it is

very likely that any one of them (or more) is observed to be dominated due to the very

similar performance in the second objective. Consider for example, systems 16 and 17.
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Table 5.8: Experimental results: Inventory problem

P̂ (CS)

Procedure N total QR Q QIZ

MMY 143.77 100.0% 39.2% 0.0%

MOCBA (B = 144) 149.74 97.8% 27.2% 0.0%

MOCBA IZ (B = 144) 152.18 99.5% 0.0% 99.3%

MMY1 1 333.10 100.0% 100.0% 0.0%

MOCBA (B = 1 333) 1 337.40 99.7% 51.6% 0.0%

MOCBA IZ (B = 1 333) 1 337.50 99.8% 0.0% 99.7%

MMY2 211.56 100.0% 0.0% 100.0%

MOCBA (B = 212) 218.02 98.6% 35.1% 0.0%

MOCBA IZ (B = 212) 220.05 99.8% 0.0% 99.8%

Suppose the sample mean of system 17 in objective 2 was observed slightly smaller than

the true mean and all others were observed exactly, i.e., X16 = [27367.21, 97.04] and

X17 = [29738.86, 97.00]. Then system 17 is observed to be dominated by system 16,

while in truth it is non-dominated. When this happens, Procedure MMY tries to show

that the observed dominated system (system 17) is truly dominated by showing the

conditions (4.13) in Algorithm 3 are true. The conditions (4.13), however, have the term

(4.10), which means the procedure endeavours to investigate the relationship of the two

systems only to the extent that the difference in sample means in objective k becomes

δ∗k. Since in this case the difference in objective 2 (service level) is already within δ∗k,

the procedure uses δ16,17,2 = δ∗2 = 5 in conditions (4.13) instead of X17,2 − X16,2 =

−97.00− (−97.04) = 0.04, which leads the procedure to conclude with relatively small

values of N16 and N17 that system 17 is indeed dominated by system 16. This explains

the low P̂ (CS) = 39.2% of Procedure MMY in the first section of Table 5.8. Note that

this is still a correct selection in terms of relaxed Pareto sets (QR), but it is not correct

with regard to the exact Pareto set Q.

This case became even worse with the MOCBA procedure. As can be seen in the

allocation rule given in (2.25) and (2.26), the MOCBA procedure inherently assigns

more simulation replications to systems that are observed as non-dominated. When

there exist two non-dominated systems whose performance is close to each other at least

in one objective, the demands of these two systems overwhelm those of all other systems.
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Figure 5.9: An example of simulation budget allocation: Inventory problem

This is what happened with the MOCBA procedure in the same situation given in the

previous paragraph. When system 17 was wrongly observed to be dominated and

all the other systems were observed correctly, instead of tending to system 17, the

MOCBA procedure paid more attention to other systems, for example, systems 1 and

2; or systems 7 and 8; or systems 13 to 15. They are all observed non-dominated

systems whose performances are close to each other in the second objective. Figure 5.9

illustrates this concept, which shows the simulation budget allocation among the 18

systems by Procedure MMY and the MOCBA procedure. To highlight the impact of the

different behaviours of these two procedures, the information illustrated in Figure 5.9

was collected from an additional 20 experiments where the particular situation discussed

in the previous paragraph occurred, i.e., system 17 was observed to be dominated

by system 16. Figure 5.9 clearly shows that the MOCBA procedure focused on the

aforementioned non-dominated systems while neglecting system 17 after an average of

N17 = 3.2 simulation replications. Procedure MMY, on the other hand, assigned more

simulation replications to system 17 than the MOCBA procedure, until it is assured of

the genuineness of what it observed regarding system 17. In this case, N17 = 6.45 was

enough to conclude 16≺̂IZ17.
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Figure 5.10: The average number of simulation replications assigned to each system by

Procedures MMY and MMY1, and the MOCBA procedure with simulation budget 144

and 1 333: Inventory problem

The second section of Table 5.8 shows that Procedure MMY1 spent much more

total simulation replications than Procedure MMY, i.e., N total = 1 333.10, and as a

result, it succeeded in identifying the exact Pareto set Q with 100% of the 1 000 ex-

periments. However, the MOCBA procedure still showed only P̂ (CS) = 51.6%, due

to the behaviour discussed in the previous paragraph. Figure 5.10 shows how Proce-

dures MMY and MMY1 and the MOCBA procedure (with two different simulation

budgets B = 144 and B = 1 333) allocated simulation replications in the experiment of

which the results are shown in the first and second sections in Table 5.8. As expected,

Procedure MMY1 spent most of the additional simulation replications in identifying

the relationship between systems 13 to 18, which contributed for the procedure to cor-

rectly identify the exact Pareto solution set Q. On the other hand, one can see that the

MOCBA procedure still focused on the aforementioned non-dominated systems when

a larger simulation budget was given, therefore the probability of correct selection did

not increase much even with the budget of B = 1 333. This is a serious defect of the

MOCBA procedure, which led to the development of the MOCBA IZ procedure by
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Teng et al. (2010).

The last section of Table 5.8 shows that Procedure MMY2 could relatively easily find

the exact Pareto solution set with IZ (QIZ). It achieved 100% of estimated probability

of correct selection with a relatively small number of total simulation replications. As

observed in the buffer allocation case, Procedure MMY2 could suffer if the difference

between the true means of two systems in an objective is close to the indifference-zone

value for that objective, i.e., |µik−µjk| → δ∗k. There was not such a complicated case in

the inventory problem, however, therefore Procedure MMY2 as well as the MOCBA IZ

procedure showed good performance.

5.2.4 Conclusion: Inventory problem

In this section, a classical (s, S) inventory problem was used to validate the MMY

family procedures. Section 5.2.1 presented the details of the simulation model while

Section 5.2.2 showed the result of 10 000 simulation replications of the model and iden-

tified Q, QIZ and QR. The results in Section 5.2.3 showed that the MMY family

procedures worked well to find Q, QIZ and QR with 100% estimated probability of cor-

rect selection. However, the proportion of correct selection of Procedure MMY, when Q

was considered as correct selection, was remarkably low, and it became worse with the

MOCBA procedure. This is not wrong in the case of the MMY procedure as it pursues

to find QR, not Q. Yet curiosity made the researcher examine the problem further,

which revealed that this was due to the close performances among systems 13 to 18 in

the second objective. These close performances often led the procedure to construct an

observed Pareto solution set Sp that is wrong in terms of Q, but still a correct selection

with regard to QR. This eventually produced the result in the first row of Table 5.8.

It was also discussed that the MOCBA procedure responded incorrectly in this situ-

ation by focusing too much on observed non-dominated systems whose performances

are close to each other. It was mentioned that this is an example where the weakness

of the MOCBA procedure manifests itself, which eventually led to the development of

the MOCBA IZ procedure.

The third simulation case study is presented in the following section.
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5.3 Case study 3: Gold mine problem

In this case study, a gold mine problem from Kelton et al. (2010) is modified for

an MORS problem. The management of a gold mine would like to increase the daily

production of the mine and wants to investigate if changes on the transportation system

would help it. Currently, the transportation system in the mine consists of a truck and

a hoist. The truck delivers gold ore from the mining face to the bottom of the vertical

shaft through the underground tunnel, the hoist then moves the ore up to the surface.

Figure 5.11 shows a schematic picture of the mine. Operating more trucks would

likely increase the production, however hiring more trucks would drive the cost up.

The management has also a choice of increasing the speed of the hoist as a means to

increase the daily production, though this also means additional operating cost. The

management would particularly like to know the best combination of the number of

trucks and the speed of the hoist to maximise the throughput and at the same time to

minimise the operation cost.

Figure 5.11: A schematic drawing of a mine system
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5.3.1 Simulation model: Gold mine problem

In this section, the simulation model of the gold mine problem is described. As seen in

Figure 5.11, the mining face is located 150 m below the surface and the underground

tunnel is currently 75 m long. The underground space cannot accommodate more than

four trucks. There are enough passing points in the tunnel where the trucks can pass

each other, so interferences between trucks do not need to be taken into account (Kelton

et al., 2010). The time of drilling ore to fill a load of truck varies depending on the

geographical conditions; it is a random variable determined by a triangular distribution

with lower limit, mode and upper limit of 2, 7 and 12 (minutes), respectively. The ore

is loaded as soon as an empty truck arrives at the mining face, and the loading time

is exponentially distributed with a mean loading time of 6 minutes. Once loaded, the

truck delivers the ore to the bottom of the mine shaft. The truck speed is initially set

to 1.5 m/s, then decreases by 0.003 m/s after each delivery. This is to implement the

fact that as more ore is mined, the travel distance for the trucks increases.

Once the truck arrives at the bottom of the vertical shaft, the ore is transferred

from the truck to the hoist. However, the transfer does not occur if the hoist is not

at the bottom of the vertical shaft. The transfer time from the truck to the hoist is

exponentially distributed with a mean of 4 minutes. The hoist can accommodate one

truckload each time. The truck moves back to the mining face as soon as it empties

the load. Likewise, the hoist moves down to the bottom of the vertical shaft as soon

as it unloads the ore on the surface. The hoist can be configured with three different

speeds: 0.5, 1 and 1.5 m/s, though the management is currently keeping the speed at

0.5 m/s to minimise the operating cost.

The accounting department informed management that hiring a truck incurs a

fixed cost of ZAR500/day and an operation cost of ZAR200/hour when the truck is in

operation. The operation cost is ignorable when the truck is not in use, i.e., when it

is not moving or waiting for a load or the hoist. Also, a cost analysis indicated that

the operation cost of a hoist is ZAR600/hour, ZAR800/hour or ZAR1 000/hour when

the hoist speed is set to 0.5, 1 and 1.5 m/s, respectively. The cost is also applicable

only when the hoist is in operation. Therefore, the total daily cost CT is calculated as
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follows:

CT = 500×NT + 200×NT × average truck utilisation (5.3)

+ cH × average hoist utilisation ,

where NT denotes the number of trucks in operation, cH denotes the coefficient repre-

senting the operation cost of a hoist per unit time (cH = 600, 800 or 1000 according to

the speed of the hoist). The simulation runtime was set to n = 1 day (24 hours). The

objective was to find the best configurations of the number of trucks (NT ) and hoist

speeds (SH) to maximise the daily throughput as well as to minimise the total daily

cost.

5.3.2 Experimental setup: Gold mine problem

Twelve different combinations of truck numbers and hoist speeds were considered in

this experiment, which are listed in Table 5.9. Table 5.10 shows the estimated true

means of the two objectives (the daily throughput TR and the total cost CT ) obtained

by 10 000 simulation runs. Figure 5.12 shows the true Pareto optimal solutions, which

is Q = {9, 10, 11, 12}. This means that keeping the hoist speed at 1.5 m/s is always the

best choice. In addition, it is observed that the higher hoist speed causes the lower total

cost when the number of trucks is fixed. This is counter-intuitive as the operation cost

of the hoist (cH) increases as the speed rises. It turns out that with the higher speed

the hoist is idle for longer time periods, which causes the decrease in average hoist

utilisation. This is more than enough to compensate for the effect of the increased

operation cost, which eventually leads to the decrease in the total cost. Increasing the

number of trucks, however, brings out a trade-off situation: it contributes to produce

more gold ore; however it incurs a higher cost.

Table 5.9: Feasible solutions of the gold mine problem

System 1 2 3 4 5 6

(NT , SH) (1, 0.5) (2, 0.5) (3, 0.5) (4, 0.5) (1, 1) (2, 1)

System 7 8 9 10 11 12

(NT , SH) (3, 1) (4, 1) (1, 1.5) (2, 1.5) (3, 1.5) (4, 1.5)
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Table 5.10: Estimated true means in the gold mine problem

System 1 2 3 4

(CT , TR) (8098.85, 72.33) (9616.90, 81.93) (10323.52, 83.86) (10872.41,84.27)

System 5 6 7 8

(CT , TR) (6459.02, 82.63) (8540.69, 104.30) (9618.88, 112.15) (10373.92,115.56)

System 9 10 11 12

(CT , TR) (5674.03, 84.65) (7841.11, 111.51) (9039.13, 122.66) (9896.73, 128.30)
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Figure 5.12: The true Pareto solution set Q: Gold mine problem

Figure 5.13 shows how the Pareto optimal solutions change if the IZ values δ∗1 =

1 000 (rands) and δ∗2 = 5 (loads) are considered. Systems 5 and 9 are indifferent to

each other, while system 11 is dominated by system 12. Based on the information

given in Figures 5.12 and 5.13, Figure 5.14 illustrates relaxed Pareto solutions. The

relaxed Pareto solution set must include systems 10 and 12; at least one of systems 5

and 9; and it may or may not include system 11. Therefore there exist six different

relaxed Pareto solution sets, two of which are the exact Pareto sets without and with IZ:

Q = {9, 10, 11, 12} and QIZ = {5, 9, 10, 12}. These relaxed Pareto solution sets become

a touchstone for judging ‘correct selection’ in the following section, where numerical

experiments were performed to verify the MMY family procedures.

5.3.3 Experimental results: Gold mine problem

In this section the researcher discusses the results of the experiments for the gold mine

problem. Table 5.11 shows the summary of the results. The first two sections of the
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Figure 5.13: The true Pareto solution set with IZ QIZ : Gold mine problem
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Figure 5.14: The true relaxed Pareto solution set QR: Gold mine problem

table indicate that Procedures MMY and MMY1 competently solved the problem with

P̂ (CS) = 100%, using the average total simulation replications of N total = 212.69 and

N total = 530.22, respectively. The MOCBA procedure also showed good performance:

It identified the exact Pareto optimal set Q P̂ (CS) = 99.4% and 99.8% of the time

with the simulation budget B = 213 and B = 531, respectively. The MOCBA IZ

procedure, however, struggled to identify QIZ with P̂ (CS) ≥ 90% when the simulation

budget was set to B = 213. It classified system 11 as non-dominated 12.6% of the

time, which is wrong in terms of QIZ . This comes from a similar situation that was

seen in the buffer allocation problem. The difference of true means of systems 11 and

12 in the second objective is close to the indifference-zone value for that objective,

i.e., |µ11,2 − µ12,2| = |122.66 − 128.30| = 5.64, which is close to δ∗2 = 5. However,
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Table 5.11: Experimental results: Gold mine problem

P̂ (CS)

Procedure N total QR Q QIZ

MMY 212.69 100.0% 100.0% 0.0%

MOCBA (B = 213) 218.55 99.8% 99.4% 0.0%

MOCBA IZ (B = 213) 215.96 100.0% 0.0% 87.4%

MMY1 530.22 100.0% 100% 0.0%

MOCBA (B = 530) 536.59 100.0% 99.8% 0.0%

MOCBA IZ (B = 530) 535.34 99.9% 0.0% 97.2%

MMY2 6 151.80 100.0% 0.0% 100.0%

MOCBA (B = 6 152) 6 157.60 100.0% 99.8% 0.0%

MOCBA IZ (B = 6 152) 6 156.00 100.0% 0.0% 100.0%

the problem in this case study was not as serious as in the buffer allocation problem,

where the difference was exactly the same as the indifference-zone value. Therefore

Procedure MMY2 could find QIZ with P̂ (CS) = 100% as shown in the last section

of Table 5.11, although it required a large number of total simulation replications

N total = 6 151.80. The MOCBA IZ procedure, too, succeeded in finding QIZ with

P̂ (CS) = 100% when a similar amount of simulation budget B = 6 152 was given.

5.3.4 Conclusion: Gold mine problem

In this section, a gold mine problem was considered as a simulation case study to apply

the proposed MMY family procedures. The simulation model was described in detail

in Section 5.3.1 while in Section 5.3.2 the results of 10 000 runs of the simulation model

were presented to estimate true means of the two performance measures. Section 5.3.3

presented and discussed the results of the application of the MMY family procedures

to the gold mine problem. Procedures MMY, MMY1 and the MOCBA procedure

solved the problem with comparative ease, showing good performance while spending

a relatively small amount of simulation budget. Identifying QIZ was more difficult

because one of the IZ values was unknowingly set close to the difference in true means

of two systems. However, the problem was not critical and both Procedure MMY2

and the MOCBA IZ procedure could solve the problem by spending more simulation

budget.
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This concludes the discussions of the gold mine problem. The next section advances

to the last simulation case study: a trauma unit problem.

5.4 Case study 4: Trauma unit problem

In this section, a hospital management problem, designed and taught by the promoter of

this research, is considered as the final simulation case study. The director of the Cure-

You-Now hospital group, Dr I Fixu, is concerned about the workload in the trauma

unit of the Bapalong branch. On Saturdays, starting at approximately 14:00, many

casualties arrive, and the trend decreases about 24 hours later. To deal with this par-

ticularly high demand on the trauma personnel and equipment, the director considers

increasing the staffing level as well as expanding facilities.

5.4.1 Simulation model: Trauma unit problem

In this section, the trauma unit problem is described in detail. Patients arrive randomly

with an exponential distribution with a mean time of 5 minutes between arrivals, and

they are screened at the reception according to severity of ailment. Although crude,

the experienced staff at the reception does the screening quite effectively. Screening

time is also exponentially distributed with a mean of 2 minutes.

The patients are classified into three categories: Category 1, 2 and 3. Patients with

the most severe ailment are assigned to Category 1 while the least severe patients are

classified to Category 3. Past records show that the proportion of patients assigned to

each category is distributed according to Column 2 in Table 5.12. The table also shows

the required number of doctors and nurses for each category, and the processing times.

It is assumed that the doctors are homogeneous, i.e., all doctors are the same in terms

of performance. The nurses are also assumed to be identical.

Table 5.12: Parameters used in the trauma unit problem

Category Percentage Treating time (min) Doctors Nurses

1 25 Lognormal, µ = 28, σ = 12 2 2

2 45 Lognormal, µ = 15, σ = 3 1 2

3 30 Exponential, β = 1/3 1 1
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There are three consulting rooms (CR1, CR2 and CR3), one for each category.

Also, there is a rest room where doctors and nurses can rest when idle, and also scrub

and prepare for the next patient. All personnel return to the sanitising section for a

scrub in the rest room after a patient has been treated. Scrubbing takes a minute, with

hardly any variation. When there is a need, the doctors and nurses who stayed in the

rest room the longest are called on duty. The rest room is 6 m away from CR1, 14 m

from CR2 and 24 m from CR3, and the doctors and nurses walk at an average speed

of 1.67 m/s. Patients may be discharged after consultation, or assigned to a bed in the

hospital. It is assumed that there are sufficient beds in the hospital, and that the scope

of the problem is from patient arrival to end of treatment by the trauma personnel.

Currently 3 doctors and 4 nurses are working simultaneously within an 8-hour shift.

The director would like to know the effect of the increase in the staffing level to the

throughput, i.e., the number of patients treated in the 24-hr period. In addition, she

considers opening a fourth CR (CR4), which would share the workload of the slowest

CR. This proposed new CR will also be 6 m from the rest room, on the opposite side of

CR1. She wonders by how much the throughput would increase if an additional CR is

built. Also, she would like to know to which category this new CR should be assigned,

i.e., Category 1 or Category 2. It is assumed that the consulting rooms cannot be used

interchangeably for different categories due to the differing requirements of medical

equipment. Category 1 patients have the longest average processing time but they are

outnumbered by Category 2 patients.

Another important issue for the director to consider is the average waiting time of

the patients classified as Category 1. While patients in other categories are assumed

to be able to wait for consultation without causing fatal consequences, patients in

Category 1 often need immediate treatment. Therefore, minimising the waiting time

of Category 1 patients is considered as another objective in this problem.

5.4.2 Experimental setup: Trauma unit problem

Table 5.13 shows the 18 configurations used in the simulation case study. The vari-

ables ND and NN denote the number of doctors and nursing staff, respectively; CR4

represents whether the new CR should be built (True or False), and the variable CR

indicates the category that the new CR should serve. Note that when the decision
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Table 5.13: Feasible solutions of the trauma unit problem

System 1 2 3

(ND, NN , CR4, CR) (3, 4, F, NA) (3, 4, T, 1) (3, 4, T, 2)

System 4 5 6

(ND, NN , CR4, CR) (3, 5, F, NA) (3, 5, T, 1) (3, 5, T, 2)

System 7 8 9

(ND, NN , CR4, CR) (4, 5, F, NA) (4, 5, T, 1) (4, 5, T, 2)

System 10 11 12

(ND, NN , CR4, CR) (4, 6, F, NA) (4, 6, T, 1) (4, 6, T, 2)

System 13 14 15

(ND, NN , CR4, CR) (5, 6, F, NA) (5, 6, T, 1) (5, 6, T, 2)

System 16 17 18

(ND, NN , CR4, CR) (5, 7, F, NA) (5, 7, T, 1) (5, 7, T, 2)

variable CR4 is set to False, CR is set to ‘Not available’ accordingly. This problem

differs from the first three simulation case studies because of this categorical variables.

Table 5.14 shows the estimated true means of the two performance measures, the

average time spent in the queue of Category 1 patients (W1) and the total number of

patients treated by the trauma personnel for the 24-hr period (TR), based on 10 000

simulation replications. Figures 5.15 and 5.16 show the Pareto optimal solutions based

on the results given in Table 5.14. The IZ values of δ∗1 = 20 (minutes) and δ∗2 = 5

(patients) were used in Figure 5.16.

The result of this simulation case study reveals an interesting feature of this problem.

Many pairs of configurations have very close performances in both objectives: systems

14 and 17; systems 8 and 11; systems 12, 15 and 18; systems 2 and 5; systems 1 and

4; systems 7, 10, 13 and 16. They are marked with green circles in Figure 5.15. This

provides key information for the management of the hospital. For example, systems 8

and 11 have the same decision variable values except for the number of nurses, i.e., 4

doctors, 5 or 6 nurses, and the new CR is built for Category 1 patients. The fact that

the performance of these two systems is very close to each other means that assigning

an additional nurse would not help in this case. Also, one can see that increasing the
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Table 5.14: Estimated true means in the trauma unit problem

System 1 2 3 4

(W1, TR) (227.87, 204.48) (160.51, 202.06) (332.19, 204.86) (228.74, 204.01)

System 5 6 7 8

(W1, TR) (161.18, 201.27) (347.04, 217.76) (194.83, 217.45) (20.86, 197.73)

System 9 10 11 12

(W1, TR) (289.05, 220.46) (194.83, 217.45) (20.86, 197.70) (204.69, 230.14)

System 13 14 15 16

(W1, TR) (194.82, 217.45) (4.50, 223.13) (205.00, 230.12) (194.82, 217.45)

System 17 18

(W1, TR) (4.51, 222.97) (191.74, 231.22)

number of doctors from 4 to 5, with six nurses, would not make a difference if the

new CR is not built or when it is built but assigned to Category 2 patients (compare

systems 10 and 13; and systems 12 and 15). It improves the system, however, in terms

of both objectives, if the new CR opens for Category 1 patients (see systems 11 and

14).

Figure 5.15 shows that the exact Pareto optimal solution set without IZ (Q) has

two members, i.e., Q = {14, 18}. Although the performances of systems 14 and 17

are extremely close to each other, system 14 still dominates system 17 when the IZ

concept is not considered. However, when the IZ values δ∗1 = 20 (minutes) and δ∗2 = 5

(patients) are taken into account, the Pareto optimal solution set becomes QIZ =

{12, 14, 15, 17, 18}, with two subsets containing indifferent systems, i.e., QS,1 = {14, 17}
and QS,2 = {12, 15, 18}. Therefore the relaxed Pareto solution set can be any subset of

QU = {12, 14, 15, 17, 18} that contains at least one solution from QS,1 and QS,2 each.

There are 21 such subsets, among which Q and QIZ are included. Figure 5.17 shows

members of QR according to the legend described in Section 4.1.5.

These relaxed Pareto solution sets will be used as criteria for assessing the validity of

the MMY family procedures in the following section, where the procedures are employed

to solve the trauma unit problem.
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Figure 5.15: The true Pareto solution set Q: Trauma unit problem
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Figure 5.16: The true Pareto solution set with IZ QIZ : Trauma unit problem
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Figure 5.17: The true relaxed Pareto solution set QR: Trauma unit problem
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5.4.3 Experimental results: Trauma unit problem

In this section, the results of 1 000 applications of the MMY family procedures to the

trauma unit problem are discussed. The main results are shown in Table 5.15.

The first section of Table 5.15 shows that Procedure MMY needed an average of

N total = 1 013.80 total simulation replications to solve the trauma unit problem. This

is a very large number, compared to the corresponding results from the previous three

simulation case studies. This is due to the extremely close performances between non-

dominated systems, i.e., systems 14 and 17, and systems 12, 15 and 17. As mentioned

in the previous section, there are other pairs of systems that have close performances,

for example, systems 8 and 11; or systems 2 and 5. However, they did not affect the

behaviour of the procedures, as they are obviously dominated systems. Systems 14 and

17; and systems 12, 15 and 18 are non-dominated systems that have at least one other

system also in the non-dominated set that has very close performances to themselves.

Figure 5.18 shows the importance of these systems in this case study. Procedure MMY

spent 74.6% of the total simulation replications on these five systems. This proportion

rose sharply to 96.4% in the MOCBA procedure. Especially the MOCBA procedure

hardly spent more than an average of 3.9 simulation replications on other systems,

except for these five systems.

Figure 5.18 also shows that while Procedure MMY focused more on systems 12, 15

and 18 than systems 14 and 17, the MOCBA procedures used more simulation replica-

tions on systems 14 and 17. The MMY procedure determines Ni for these five systems

according to conditions (4.11) and since in this case the performances of systems 14 and

17; and systems 12, 15 and 18 are extremely close to each other, the procedure used

δijk = δ∗k in conditions (4.11) for all five systems. Therefore, the number of simulation

replications assigned to each system Ni is determined in this case by sample standard

deviations Sik(Ni). Because the estimated true standard deviations (obtained from the

10 000 simulation replications) of systems 12, 15 and 18 were much larger than those of

systems 14 and 17, Procedure MMY reasonably assigned more simulation replications

to systems 12, 15 and 18. The estimated true standard deviations of these systems, for

both objectives, are presented in Table 5.16. The effect of h1 was ignorable compared

to that of standard deviations in this case.
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Table 5.15: Experimental results: Trauma unit problem

P̂ (CS)

Procedure N total QR Q QIZ

MMY 1 013.80 100.0% 64.1% 0.0%

MOCBA (B = 1 014) 1 018.90 99.8% 35.1% 1.1%

MOCBA IZ (B = 1 014) 1 025.20 100.0% 0.0 % 99.8%

MMY1 NA NA NA NA

MOCBA NA NA NA NA

MOCBA IZ NA NA NA NA

MMY2 6 284.00 100.0% 0.0% 100.0%

MOCBA (B = 6 284) 6 289.40 99.7% 57.5% 0.3%

MOCBA IZ (B = 6 284) 6 298.10 100.0% 0.0% 100.0%
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Figure 5.18: The average number of simulation replications assigned to each system by

Procedure MMY and the MOCBA procedure (B = 1 014)
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Table 5.16: Estimated true standard deviations of certain systems in the trauma model

System 12 14 15 17 18

Estimated true standard deviation for W1 54.99 3.03 55.03 3.05 53.91

Estimated true standard deviation for TR 11.89 8.37 11.88 8.34 12.09

The MOCBA procedure, on the other hand, does not employ the IZ concept, hence

uses the difference of sample means of two systems directly to calculate Ni, which led

the procedure to determine N14 → ∞ and N17 → ∞ in this case. However, assigning

an extremely large number of simulation replications to systems 14 and 17 did not help

much for the MOCBA procedure to identify Q: It showed only 35.1% of estimated

correct selection when the simulation budget was set to B = 1 014, and 57.5% when

B = 6 284. In fact, identifying the exact Pareto set Q is impossible in this problem,

where the true means of systems 14 and 17 are extremely close to each other. This

is why Procedure MMY1 was not applicable in this problem, as shown in the second

section in Table 5.15.

It is also noticeable that the performance of the MOCBA procedure in the first

section of Table 5.15 is much lower than the MMY procedure even though these two

procedures spent almost the same amount of simulation budget. A further investigation

showed that while the incorrect selection from Procedure MMY was Sp = {14, 17, 18},
i.e., system 17 was included when it should not have been, the incorrect selection from

the MOCBA procedure involved Sp = {12, 14, 18} and Sp = {14, 15, 18} in addition

to Sp = {14, 17, 18}. This means in many cases the MOCBA procedure failed to

distinguish systems 12 and 15 from system 18, because it paid more attention to the

impossible task of distinguishing systems 14 and 17, as illustrated in Figure 5.18. This

is another example where the MOCBA procedure does not work well.

5.4.4 Conclusion: Trauma unit problem

In this section, the trauma unit problem was used as the last simulation case study

to validate the proposed MMY family procedures. This simulation model provided a

unique result where there exist several pairs of systems with very close performances

to each other. The result was very valuable not only from the hospital management

point of view, but also in understanding the behaviour of the MORS procedures. In
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particular, the problem revealed that when the performances of two non-dominated

systems are very close to each other it is almost impossible to identify the exact Pareto

solution set Q; however, it does not affect the behaviour of the procedures if those

systems are observed to be dominated. Also, the categorical nature of some decision

variables makes the problem difficult for the MOCBA procedure. It performed poorly

in this extreme example. On the other hand, the MMY and MMY2 procedures could

find QR and QIZ , respectively, with P̂ (CS) = 100%.

5.5 Conclusion: Chapter 5

In this chapter, the researcher employed four simulation case studies as subjects of

experiments to verify the statistical validity of the MMY family procedures numerically.

Those were a buffer allocation problem, a classical (s, S) inventory problem, a gold mine

problem and a hospital management problem. These four simulation studies indeed

provided various testing environments, which helped the researcher to understand at

a deeper level the behaviours of the MMY family procedures. In summary, the MMY

family procedures could identify relevant Pareto sets, i.e., Q, QIZ and QR, in all four

simulation case studies with the estimated probability of correct selection 100%, except

when extreme situations happened, i.e., |µik − µjk| → 0 or |µik − µjk| → δ∗k for some

i, j ∈ S and k ∈ K. In these cases, Procedures MMY1 or MMY2 required Ni → ∞,

therefore were not applicable for the problem. This was predictable and discussed

in Chapter 4 with the theoretical reasons of the phenomenon. On the other hand,

the simulation case studies in this chapter demonstrated that Procedure MMY was

always able to find relaxed Pareto sets with a reasonable total number of simulation

replications, as the theory in Chapter 4 proved.

The next chapter concludes the dissertation.
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Chapter 6

Conclusion

This chapter concludes the dissertation by presenting the summary of the work done in

this research, the main contributions to the body of knowledge, and recommendations

for future work.

6.1 Summary of the research

The aim of the research was to develop a multi-objective ranking and selection (MORS)

procedure for stochastic systems with the indifference-zone (IZ) approach.

Multi-objective ranking and selection, as the name suggests, is the extension of a

research field called ranking and selection (R&S) to the multi-objective optimisation

domain. Ranking and selection procedures deal with simulation optimisation (SO)

problems, where the performance of a system is obtained through simulation (not by

a mathematical function) due to the complex, stochastic nature of the problem. Simu-

lation usually involves what-if questions, which leads to analyses of different, multiple

systems. The simulation analyst (or the decision-maker) often pursues finding the ‘best’

system among, say, k different systems. This forms the purpose of R&S procedures.

The ‘best’ system in this context means the system that yields the minimum or

maximum output according to the objective of the problem. Because of the inherent

stochastic nature of the problem, the output of a simulation run is only a realisation of a

random variable, therefore not to be reliable unless it is the expected value (usually the

sample mean) over a multiple number of simulation replications. The larger the number

of simulation replications, the more reliable the simulation result becomes, therefore
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there is a greater chance of selecting the best system correctly. This is often referred

to as ‘probability of correct selection’, and denoted by P (CS), in the R&S literature.

R&S procedures determine the number of simulation replications so that the balance

between the number of simulation replications spent and the probability of correct se-

lection obtained is controlled as the decision-maker wishes. In this regard, the decision-

makers can choose from two strategies: they could require the procedure to determine

the minimum number of simulation replications for each system to guarantee that the

probability of correct selection is at least a prespecified value P ∗, or the decision-maker

could want to know how to allocate a limited simulation budget (the total number of

simulation replications) among k systems so that the probability of correct selection is

maximised. There are two types of R&S procedures: The indifference-zone (IZ) type

of R&S procedures deal with the former requirement, i.e., they identify the minimum

number of simulation replications for each system to guarantee P (CS) ≥ P ∗, while the

optimal computing budget allocation (OCBA) methods respond to the latter, i.e., they

allocate a limited simulation budget among k systems so that P (CS) is maximised.

It is worth mentioning that R&S procedures require the number of systems k to

be relatively small, so that they can estimate all k systems with at least n0 simulation

replications each. If the solution space is too large for the procedure to estimate all

feasible solutions, then a search mechanism must be employed to explore the vast

solution space efficiently, which is beyond the scope of R&S procedures.

To fulfil the first research objective given in Section 1.3, an extensive literature

study was conducted on the general topic of simulation optimisation (SO), both for

the small- and large-sized SO problems; and both in the single- and multi-objective

domains. Part of the results of the literature study, focusing on the multi-objective

simulation optimisation domain, was developed into a manuscript and submitted for

publication (Yoon & Bekker, 2017c). The literature was further studied intensively

focusing on the small-sized SO problems, of which the result was published (Yoon &

Bekker, 2017d).

The literature study revealed two important research opportunities. Firstly, it

showed that most single-objective IZ procedures assumed the least favourable con-

figuration (LFC), for example (3.3), in their proof of P (CS) ≥ P ∗. This rendered the

procedures conservative, which means they tend to spend more simulation replications

than actually needed to guarantee P (CS) ≥ P ∗. There have been many attempts
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to develop more efficient IZ procedures by removing the LFC assumption, but none

of them succeeded in developing such a procedure with a rigorous mathematical proof

that guarantees the probability of correct selection requirement. This led the researcher

to delve into the problem, which resulted in the development of Procedure MY. Pro-

cedure MY is a single-objective R&S procedure based on Rinott’s procedure (Rinott,

1978). It does not assume the LFC, therefore it is less conservative than any other R&S

procedures that are based on Rinott’s procedures. Moreover, the procedure proves the

probability of correct selection guarantee using a solid mathematical proof based on

a Bayesian inference model. Chapter 3 presented the procedure and its proof, along

with the results of some numerical experiments. The researcher has also written a

manuscript based on Chapter 3, which was submitted for publication (Yoon & Bekker,

2017b). In summary, Procedure MY is a single-objective R&S procedure with the IZ

approach, and serves as an important basis for the main work done in this research in

the MORS domain.

Secondly and more importantly, the literature study revealed that there does not

yet exist an MORS procedure using the indifference-zone approach. In the single-

objective R&S domain, both the IZ and the OCBA methods are well developed. The

decision-maker could therefore choose freely from the two strategies mentioned earlier.

In the MORS domain, however, the decision-maker does not have any other option

but to choose the OCBA approach, because there is no MORS procedure with the

IZ approach. This was a definite gap between the single- and multi-objective ranking

and selection areas as shown in Figure 2.2. The researcher therefore set the research

direction towards developing an MORS procedure with the IZ approach, which became

the main work of this research.

Chapter 4 of the dissertation deals with the main work of the research. The work in

this chapter fulfils the second, third and fourth research objectives given in Section 1.3.

Chapter 4 first introduces the concept of Pareto optimality (Coello Coello, 2009) in

Section 4.1.3, which is essential in any type of multi-objective optimisation research,

followed by the concept of Pareto optimality when the indifference-zone value is taken

into account (Teng et al., 2010) in Section 4.1.4, which is necessary to accommodate

the IZ concept in the multi-objective domain. These two concepts of Pareto optimality

produce the exact Pareto optimal set without and with IZ, named Q and QIZ , respec-

tively. The researcher soon realised, however, that these two types of Pareto optimal
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sets are not enough to correctly integrate the IZ concept into the multi-objective do-

main. The main point of employing the IZ concept to Pareto optimality is to reflect the

decision-maker’s indifference to a small difference in the performances of two systems,

that is, the IZ concept is employed to avoid Ni →∞ and Ni →∞ when |µik−µjk| → 0

in identifying the exact Pareto optimal set Q. One does avoid such cases when try-

ing to identify QIZ instead of Q. However, there are other extreme cases, i.e., when

|µik − µjk| → δ∗k. The researcher therefore proposed the concept of relaxed Pareto

optimality and relaxed Pareto sets (QR) in Section 4.1.5, which she believes correctly

reflects the indifference-zone concept in the multi-objective domain.

Chapter 4 then proposes three multi-objective ranking and selection procedures,

called Procedures MMY, MMY1 and MMY2, each endeavours to find QR, Q and QIZ ,

respectively. Procedure MMY, which finds the relaxed Pareto set QR, is the main

procedure that serves the purpose of an IZ MORS procedure the best. In addition, for

the decision-makers who would want to identify the exact Pareto optimal set Q and

QIZ , Procedures MMY1 and MMY2 were also proposed. However, these two procedures

sometimes do not work, because they require an infinite size of simulation replications if

some extreme cases occur, i.e., |µik−µjk| → 0 for Procedure MMY1 and |µik−µjk| →
δ∗k for Procedure MMY2. In pursuit of the third research objective, the statistical

validity of all these three procedures was proved though rigorous mathematical analyses

given in Sections 4.2 to 4.4. Chapter 4 also described some numerical experiments

conducted to verify the proposed MORS procedures, of which the results demonstrated

the effectiveness of them. This fulfils the fourth research objective.

The numerical experiments were extended to more realistic simulation case studies

in Chapter 5, which also fulfilled the fourth research objective. The simulation case

studies considered were the buffer allocation problem, the (s, S) inventory problem,

the gold mine problem and the hospital management problem. These four simulation

case studies provided various environments in terms of the unknown true mean distri-

butions, including the extreme cases discussed in the previous paragraph. In all four

simulation case studies, the proposed MORS procedures successfully found the relevant

Pareto optimal sets Q, QIZ or QR, with the estimated probability of correct selection

P̂ (CS) = 100%, except for when the aforementioned extreme cases occurred, thereby

demonstrating the effectiveness of the three procedures. These simulation case stud-

ies also revealed that the MMY family procedures generally outperform the MOCBA
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family procedures in terms of the estimated probability of correct selection, especially

when the extreme cases occurred.

The summary of the research in this section shows that the research aim and objec-

tives presented in Section 1.3 were all achieved successfully. The next section presents

the contribution of this research to the body of knowledge.

6.2 Contribution to the body of knowledge

The contribution of the work done in this research to the body of knowledge can be

explained by the following three aspects:

1. The researcher developed a multi-objective ranking and selection proce-

dure and two of its variants with the indifference-zone approach, filling

the gap given in Figure 2.2. By doing this, she opened up an opportunity for

the decision-makers to approach the MORS problem differently, i.e., with the IZ

method. Furthermore, she presented rigorous mathematical proofs that verify

that the proposed MORS procedures guarantee P (CS) ≥ P ∗, as expected of any

R&S procedure with the IZ approach.

2. In the development process, the researcher also defined the concept of relaxed

Pareto optimality, which relieved Procedure MMY from the danger of hav-

ing to assign an infinite size of simulation replications in certain extreme cases.

The concept of Pareto optimality with IZ (discussed in Section 4.1.4) and the

MOCBA IZ procedure were also proposed with the same purpose by Teng et al.

(2010). However, the MOCBA IZ procedure resulted in unexpectedly introducing

another extreme case where the difference between two systems in an objective

approaches the indifference-zone value of that objective, thus could not serve the

purpose properly. In contrast to this, Procedure MMY avoids both kinds of ex-

treme cases by using the proposed relaxed Pareto optimality, and yet produces

equally good Pareto solutions based on the decision-maker’s indifference-zone

value.

3. In addition, the researcher developed a single-objective ranking and selec-

tion procedure that does not employ the least favourable configuration
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assumption, yet proves its statistical validity through a solid math-

ematical analysis. This procedure not only showed better performance than

existing IZ R&S procedures, but also became the theoretical foundation of the

proposed MORS procedures that followed.

The following section provides suggestions for future research.

6.3 Recommended future work

Possible future research related to the work presented in this dissertation includes the

following:

1. The proposed MORS procedures can be improved to be less conservative. The

numerical experiments presented in this dissertation showed in almost all cases

that the estimated probability of correct selection reached 100% while the re-

quired value was set to P ∗ = 90%. This would entail identifying sources of such

conservativeness as well as devising methods to eliminate them. A good start-

ing point is to look at the Bonferroni inequalities used in the proposed MORS

procedures.

2. The MMY family procedures were developed with the assumption that the in-

dividual observations Xikl (i ∈ S, k ∈ K, and l = 1, . . . , Ni) are independent

of all other responses for each i ∈ S, k ∈ K and l = 1, . . . , Ni, as mentioned

in Section 4.1.2. In many real-life problems, however, this is often not true. For

example, the waiting time in a queue for a customer is definitely positively related

to that of the previous customer, i.e., the lth and the (l + 1)th observations can

be related to each other. In this sense, research focused on developing an MORS

procedure free from these assumptions would be a reasonable following step.

3. It was mentioned in Section 4.6 that the number of simulation replications identi-

fied by the MMY family procedures has the same structure as the one presented

by the MOCBA procedure, i.e., it is proportional to the sample variance S2
ik(Ni)

and inversely proportional to the square of the difference in sample means of

two systems. However, the MOCBA procedure applies this structure only to

the observed dominated systems, and the number of simulation replications for
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observed non-dominated systems are determined differently. It would be an inter-

esting research topic to investigate how these different allocation strategies affect

the performance of the two procedures.

4. Integrating Procedure MMY with a commercial software package such as Tecnomatix®

can be a necessary future work in a practical sense.

The next section concludes the research with some personal thoughts.

6.4 Conclusion: Chapter 6

This chapter concluded the research by presenting a summary of the work done in this

research, contribution to the body of knowledge and recommendations for future work.

Following are some thoughts of the researcher in closing this research.

� Like many real-life problems one faces in one’s daily life, the level of difficulties

of the MORS problems in the simulation case studies depended on the unknown

true mean distributions, which means one does not know beforehand how much

effort the problem will require. The best way to deal with this is to simply set

to work, and keep doing it until it solves the problem. And in many cases, even

when the true mean distributions are not favourable, the problem is solved in

the end though it might take long. However, staring at the problem taken by a

sudden worry or unproven frustration, like the researcher did at some point of

the research process, would not solve the problem at all.

� Extreme cases do happen in reality like in the buffer allocation problem or in

the trauma unit problem where the procedures could not find the solution that

satisfies the requirement of Q or QIZ . However, in these cases too, the procedure

could find the solution when the requirement was slightly relaxed to QR. There is

always a solution out there if one lowers one’s expectation a little bit and decides

to be satisfied with a seemingly lower-quality answer, which often turns out to be

equally good as the other, if one thinks carefully.

� Trade-offs exist in almost all decision-making problems. Although MORS pro-

cedures help us finding optimal solutions, and Procedure MMY even guarantees

the quality of them, this is the limit of what most algorithms can do. In the
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end, one has to choose a single best solution from a number of optimal solutions,

and must live with that. There are some algorithms designed to help with this

decision (Jahanshahloo et al., 2006), but the ultimate choice is always in our

hands. Therefore, stopping what we are doing and humbly reevaluating our pri-

ority before making the final decision is well worth the effort if we know that our

preference/priority can lead our life to a completely different path.
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Optimization: Interactive and Evolutionary Approaches, vol. 5252 of Lecture Notes

in Computer Science, Springer Science & Business Media. 4

Montgomery, D.C. & Runger, G.C. (2010). Applied statistics and probability for

engineers. John Wiley & Sons. 62

Moors, J. & Strijbosch, L. (2002). Exact fill rates for (R, s, S) inventory control

with gamma distributed demand. Journal of the Operational Research Society , 53,

1268–1274. 93

Muller, A. (2008). Developing the idea of the thesis and the protocol. In L.O. Lategan,

ed., An introduction to postgraduate supervision, 41–66, African Sun Media. 6

142

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES

Nelson, B.L., Swann, J., Goldsman, D. & Song, W. (2001). Simple procedures

for selecting the best simulated system when the number of alternatives is large.

Operations Research, 49, 950–963. 15, 16

Pasupathy, R. & Ghosh, S. (2013). Simulation optimization: A concise overview and

implementation guide. In H. Topaloglu, J.C. Smith & H.J. Greenberg, eds., Theory

Driven by Influential Applications, Tutorials in Operations Research, INFORMS. 10

Pasupathy, R., Hunter, S.R., Pujowidianto, N.A., Lee, L.H. & Chen, C.H.

(2014). Stochastically constrained ranking and selection via SCORE. ACM Transac-

tions on Modeling and Computer Simulation (TOMACS), 25, 1. 22

Paulson, E. (1964). A sequential procedure for selecting the population with the

largest mean from k normal populations. The Annals of Mathematical Statistics, 35,

174–180. 16, 27, 40

Pujowidianto, N.A., Lee, L.H., Chen, C.H. & Yap, C.M. (2009). Optimal com-

puting budget allocation for constrained optimization. In Proceedings of the 2009

Winter Simulation Conference, 584–589, IEEE. 18

Rinott, Y. (1978). On two-stage selection procedures and related probability-

inequalities. Communications in Statistics–Theory and Methods, 7, 799–811. 13,

15, 16, 26, 27, 29, 38, 130

Rossi, R., Tarim, S.A., Hnich, B. & Prestwich, S. (2010). Computing the non-

stationary replenishment cycle inventory policy under stochastic supplier lead-times.

International Journal of Production Economics, 127, 180–189. 93

Rubinstein, R.Y. & Kroese, D.P. (2004). The Cross-Entropy Method: A Uni-

fied Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine

Learning . Springer. 94

Slepian, D. (1962). The one-sided barrier problem for Gaussian noise. The Bell System

Technical Journal , 41, 463–501. 30

Teng, S., Lee, L.H. & Chew, E.P. (2010). Integration of indifference-zone with

multi-objective computing budget allocation. European Journal of Operational Re-

search, 203, 419–429. 22, 52, 56, 86, 90, 102, 112, 130, 132

143

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES
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