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Summary 

 

Many orthopterans are associated with large scale destruction of crops, rangeland and pastures. 

Plangia graminea (Serville) (Orthoptera: Tettigoniidae) is considered a minor sporadic pest in 

vineyards of the Western Cape Province, South Africa, and was the focus of this study. In the past 

few seasons (since 2012) P. graminea appeared to have caused a substantial amount of damage 

leading to great concern among the wine farmers of the Western Cape Province. Very little was 

known about the biology and ecology of this species, and no monitoring method was available for 

this pest. The overall aim of the present study was, therefore, to investigate the biology and ecology 

of P. graminea in vineyards of the Western Cape to contribute knowledge towards the formulation 

of a sustainable integrated pest management program, as well as to establish an appropriate 

monitoring system. 

No detailed surveys have as yet been undertaken to assess the assemblage structure of katydids in 

vineyards and to verify their taxonomic status. By conducting a survey in vineyards located in the 

greater Stellenbosch region of the Western Cape, the identities of the katydid species present and 

their pest status was determined. A monitoring method was developed by adapting a generic 

sampling system for monitoring key arthropod pests in vineyards. Due to the perfect camouflage 

of adult katydids within the vine canopy, surrogate methods for monitoring this pest were 

investigated. Besides determining the basic biology and ecology of P. graminea within vineyards, 

aspects of its physiological ecology with implications on its mating behaviour were investigated. 

Furthermore, natural enemies that could potentially be used as environmentally-friendly biological 

control agents against this pest were identified. 

Three Phaneropterinae species were identified, namely P. graminea, Eurycorypha lesnei Chopard 

and a Phaneroptera species. Due to the similarity between the Plangia and Eurycorypha species, 

an ID-key was compiled for easy identification by growers. Plangia graminea was found to be the 

primary katydid pest in vineyards monitored. There was only one generation per year, with an 

overwintering egg stage. The monitoring of katydid eggs could potentially be used to monitor P. 

graminea, as eggs were positively and significantly correlated with katydid numbers and could 

allow early prediction estimates of katydid populations in vineyards. Temperature appeared to be 

an important environmental factor enhancing population outbreaks, as it influenced katydid 

development, but could also affect mating success of male katydids. It was found that there was a 

significant metabolic cost associated with the mating calls of P. graminea males. This study 

identified two natural control agents that could potentially be incorporated into an integrated pest 
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management program for the control of P. graminea, namely hymenopteran egg parasitoids and 

an entomopathogenic fungus. 

The outcomes of this study aim towards the development of a practical, sustainable and 

environmentally-friendly integrated pest management program. Future research should focus on 

validating a monitoring method in the field, establishing an economic threshold, testing the 

efficacy of entomopathogenic fungi in the laboratory and in the field, and investigating the 

mechanisms involved in habitat preferences of hymenopteran egg parasitoids. 
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Opsomming 

 

Baie sprinkaanagtiges is geassosieerd met grootskaalse vernietiging van gewasse en weivelde. 

Plangia graminea (Serville) (Orthoptera: Tettigoniidae), plaaslik bekend as “krompokkels,” word 

beskou as ‘n sporadiese plaag in wingerde in die Wes-Kaap Provinsie, Suid-Afrika, en was die 

onderwerp van die huidige studie. In die afgelope paar seisoene (vanaf 2012) het P. graminea 

ansienlike skade aangerig in wingerde, wat tot groot kommer onder die wynboergemeenskap van 

die Wes-Kaap gelei het. Baie min inligting is bekend oor die biologie en ekologie van die plaag. 

Geen moniteringsmetode is vir die plaag beskikbaar nie. Die algehele doel van die studie was 

daarop gemik om die biologie en ekologie van P. graminea in wingerde in die Wes-Kaap te 

ondersoek, om verworwe kennis beskikbaar te maak vir die formulering van ‘n volhoubare 

geïntegreerde plaagbestuurprogram, asook om ‘n geskikte moniteringsisteem te ontwerp. 

Tot dusver was daar nog geen gedetailleerde opname van die groeperingsstruktuur van 

krompokkels in wingerde, en hul taksonomiese status nie. Die studie het beoog om die krompokkel 

spesies in wingerde te identifiseer, en om hul plaagstatus te bepaal deur ‘n opname in wingerde 

geleë in die groter Stellenbosch streek van die Wes-Kaap uit te voer. ‘n Moniteringsmetode, 

gebasseer op ‘n generiese steekproefnemingsisteem vir die monitering van sleutel artropode 

wingerdplae was ontwerp. Aangesien volwasse krompokkels baie goed gekamoefleerd is tussen 

wingerdblare, is surrogaat metodes vir die monitering van die plaag ondersoek. Benewens die 

bepaling van die insek se biologie en ekologie, is ondersoek ook uitgevoer aangaande die 

fisiologiese-ekologie van die insek in verband met implikasies rakende die insek se paringsgedrag. 

‘n Verdere doel van die studie was om die natuurlike vyande, teenwoordig in wingerde, te 

identifiseer wat moontlik gebruik kan word as omgewingsvriendelike biologiese beheermetodes 

teen die plaag.  

Drie Phaneropterinae spesies was geïdentifiseer, naamlik P. graminea, Eurycorypha lesnei 

Chopard, en ‘n Phaneroptera spesies. Weens die groot ooreenkomste tussen Plangia en 

Eurycorypha spesies, is ‘n ID-sleutel saamgestel wat deur die wingerdboere gebruik kan word vir 

maklike identifikasie. Plangia graminea was die primêre krompokkel plaag in die wingerde wat 

gedurende die studie gemoniteer was. Net een generasie was teenwoordig, met ‘n oorwinterende 

eier-stadium. Die monitering van krompokkel eiers kan potensieel gebruik word vir die monitering 

van P. graminea, aangesien daar ‘n positiewe en beduidende korrelasie was tussen die getal eiers 

en die aantal krompokkels. Die eiers kan ook gebruik word vir vroegtydige 

voorspellingsberamings van krompokkel populasies in wingerde. Dit blyk dat temperatuur ‘n 

belangrike omgewingsfaktor is tot bevolkingsuitbrake, aangesien dit ‘n invloed gehad het op die 
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ontwikkeling van krompokkels, asook die paring sukses van mannetjie krompokkels. Daar is 

bevind dat daar ‘n beduidende metaboliese koste geassosieer is met die paringsroepe van P. 

graminea mannetjies. Die studie het twee natuurlike agente geïdentifiseer wat moontlik in ‘n 

geïntegreerde plaagbestuurprogram ingesluit kan word vir die beheer van P. graminea, naamlik, 

eier parasiterende wespies en ‘n entomopatogeniese swam. 

Die doelstellings van die huidige studie mik na die ontwikkeling van ‘n praktiese, volhoubare en 

omgewingsvriendelike geïntegreerde plaagbestuurprogram. Toekomstige navorsing kan fokus op 

(i) die ontwerp en toepassing van ‘n moniteringsmetode in die veld, (ii) die bepaling van ‘n 

ekonomiese drempelwaarde, (iii) om die effektiwiteit van die entomopatogeniese swam in die 

laboratorium en in die veld te toets, en (iv) om die meganismes betrokke by habitatsvoorkeure van 

eier parasiterende wespies te ondersoek. 
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present in vineyards of the Western Cape - with notes on their morphology, eggs 

and assemblage structure 

   

Chapter 3  Research results 

  Monitoring of katydids (Orthoptera: Tettigoniidae: Phaneropterinae) in 

vineyards in the Western Cape, South Africa - with insights gained on their 

biology, ecology, and seasonal dynamics 

   

Chapter 4  Research results 

  Physiological ecology – the metabolic costs of sexual signalling in the chirping 

katydid Plangia graminea (Serville) (Orthoptera: Tettigoniidae) are context 

dependent: cumulative costs add up fast 

   

Chapter 5  Research results 

  Natural enemies of Plangia graminea Serville (Orthoptera: Tettigoniidae) in 

vineyards in the Western Cape, South Africa; and their potential for biological 

control 

   

Chapter 6  General discussion and future research recommendations 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

 

Table of Contents 

 

Chapter 1: General introduction and project aims  .................................................................. 1 

 

Chapter 2: Identification of katydid (Orthoptera: Tettigoniidae: Phaneropterinae) species 

present in vineyards of the Western Cape - with notes on their morphology, eggs, and 

assemblage structure  ............................................................................................................... 42 

ABSTRACT .................................................................................................................................................... 42 

INTRODUCTION .......................................................................................................................................... 42 

MATERIALS AND METHODS .................................................................................................................... 44 

RESULTS AND DISCUSSION ..................................................................................................................... 46 

CONCLUSION ............................................................................................................................................... 56 

REFERENCES ............................................................................................................................................... 57 

 

Chapter 3: Monitoring of katydids (Orthoptera: Tettigoniidae: Phaneropterinae) in vineyards 

in the Western Cape, South Africa - with insights gained on their biology, ecology, and 

seasonal dynamics .................................................................................................................... 61 

ABSTRACT .................................................................................................................................................... 61 

INTRODUCTION .......................................................................................................................................... 62 

MATERIALS AND METHODS .................................................................................................................... 63 

RESULTS AND DISCUSSION ..................................................................................................................... 70 

CONCLUSION ............................................................................................................................................... 82 

REFERENCES ............................................................................................................................................... 83 

 

Chapter 4: Physiological ecology – the metabolic costs of sexual signalling in the chirping 

katydid Plangia graminea (Serville) (Orthoptera: Tettigoniidae) are context dependent: 

cumulative costs add up fast .................................................................................................... 86 

ABSTRACT .................................................................................................................................................... 86 

INTRODUCTION .......................................................................................................................................... 87 

MATERIALS AND METHODS .................................................................................................................... 89 

RESULTS ....................................................................................................................................................... 96 

DISCUSSION ............................................................................................................................................... 105 

CONCLUSION ............................................................................................................................................. 110 

LIST OF ABBREVIATIONS ....................................................................................................................... 110 

REFERENCES ............................................................................................................................................. 111 

 

Stellenbosch University  https://scholar.sun.ac.za



 

 

Chapter 5: Natural enemies of Plangia graminea Serville (Orthoptera: Tettigoniidae) in 

vineyards in the Western Cape, South Africa; and their potential for biological control  ..... 116 

ABSTRACT .................................................................................................................................................. 116 

INTRODUCTION ........................................................................................................................................ 116 

MATERIALS AND METHODS .................................................................................................................. 118 

RESULTS AND DISCUSSION ................................................................................................................... 121 

CONCLUSION ............................................................................................................................................. 127 

REFERENCES ............................................................................................................................................. 128 

 

Chapter 6: General discussion and future research recommendations  ................................ 131 

 

Appendix A  .......................................................................................................................... 143 

 

Appendix B  .......................................................................................................................... 146 

 

Stellenbosch University  https://scholar.sun.ac.za



 

1 
 

CHAPTER 1 

 General introduction and project aims 

 

 

The Orthoptera is a major group of insects widely distributed over all the earth’s surface except 

for the coldest parts. To date, more than 20 000 orthopteran species have been described (Eades 

et al. 2015), most species being from the southern hemisphere, especially from the savannah 

and tropical regions. This order of orthopteroid insects includes those terrestrial insects 

commonly referred to as locusts, short-horned grasshoppers, crickets, katydids and other related 

groups not known by vernacular names (Rentz 1991; Gangwere et al. 1997). Some of the largest 

living insects are included in this order, but most are medium-sized to large (Rentz 1991). In 

many parts of the world they form a major component of the fauna, as they are often abundant 

as singletons or forming swarms. The Orthoptera represent a range of functional feeding types 

and biologies, including being phytophagous and carnivorous, diurnal and nocturnal, 

geophilous (ground living), phytophilous (living on plants), cavernicolous (inhabiting caves), 

myrmecophilous (inhabiting nests of ant colonies) and fossorial (burrowing) (Rentz 1991). 

Detailed accounts of the order are given by, amongst others, Beier (1955), Kevan (1982) and 

Gangwere et al. (1997). 

 

Many orthopterans are also associated with large scale devastation of crops, rangeland and 

pastures. They have plagued mankind since recorded time with locust outbreaks documented 

in early Chinese literature and biblical writings (Rentz 1991).  At present, plagues of 

grasshoppers and locusts are still responsible for the destruction of many types of crops and 

cause food shortages in many parts of the world. Similarly, crickets attack many crops including 

tuberous crops, coffee and tea, and katydids cause damage to orchards, cereals and other 

cultivated crops (Gangwere et al. 1997). Plangia graminea (Serville) is considered a minor 

sporadic pest in the vineyards of the Western Cape Province, South Africa, and is the focus of 

this study. 

 

Stellenbosch University  https://scholar.sun.ac.za



 

2 
 

Classification and systematics 

The most important aspect of studying organisms for scientific purposes is to firstly determine 

their taxonomic status and ensure correct identification. As the taxonomic state of the Plangia 

species complex is somewhat confused (Hemp et al. 2015), some detailed information is 

provided here on the classification and systematics of the Tettigoniidae. The order Orthoptera 

is subdivided into two monophyletic suborders, Ensifera and Caelifera (Song et al. 2015). The 

former represent the long-horned katydids and crickets, and the latter the short-horned 

grasshoppers and locusts. 

 

A key to the suborders of Orthoptera has been provided by Rentz (1991) and is further divided 

into a number of superfamilies, families and subfamilies. A key to these families, as adapted 

from Rentz (1991), is provided in Appendix A. 

 

The superfamily Tettigonioidea with its family Tettigoniidae and subfamily Phaneropterinae 

(see key trail: 1, 4, 5, 7 in Appendix) and Plangia graminea (Serville), a species of the genus 

Plangia Stål within the subfamily Phaneropterinae, will form the main focus and subsequently 

due to its relevance for the present study be discussed in further detail. 

 

Superfamily Tettigonioidea 

The Tettigonioidea is the largest superfamily in the Ensifera. In addition to the characteristics 

provided in the key, the taxon can be characterised by a number of features. The most 

characteristic feature is that of the antennae, usually longer than the body. Auditory tympana 

are located on the fore tibia. The fore wing is rarely absent, and when present, the left fore wing 

usually overlaps the right one. In the fore wing the most anterior branch of the cubitus (Cu, or 

the CuA-branch as such) fuses at least with part of the length of the media (MP-branch); CuP 

is unbranched and runs straight to the margin in the hind wing. The cubital region of the male 

fore wing is usually specialised for stridulation with the vein CuP principally modified. This 

vein is bent towards the posterior margin of the wing to resume its longitudinal course. Its 

reflexed portion is thickened and toothed ventrally. Abdominal segments 8 (female) and 9 

(male) bear a subgenital plate. The male cercus is well sclerotised and inflexible, with styles 

usually present. An ovipositor is present, although it is sometimes small and laterally 

compressed with all three pairs of valves well developed. The prothoracic spiracles and the 
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associated ends of the tracheal system are sometimes modified and enlarged for an auditory 

function. The legs are rarely modified for digging, even if heavily spined (Rentz, 1991).  

 

Family Tettigoniidae 

With more than 1 070 genera and more than 6 000 species described worldwide, the family 

Tettigoniidae is the second largest group of Orthoptera (Gangwere et al. 1997; Eades et al. 

2015). They can be found on all continents, except Antarctica, and occur at all altitudes (Rentz 

2010). Their vernacular names vary with regions. In Australia, New Zealand and North America 

the term katydid is used to identify members of the Tettigoniidae. It was used in the  American 

entomologist C V Riley’s Report in 1874, but the term goes at least as far back as 1751, when 

they were referred to as ‘catedidists’ by John Bartram in his ‘Travels in Pensilvania and 

Cananda’ (Oxford English Dictionary). In the United Kingdom they are known as ‘bush-

crickets’, in France ‘sauterelles’, in Portugal (and some parts of Central and South America) 

‘esperansas’, in Spain ‘grillos’, and in Germany ‘Laubheuschrecke’ (Nickle & Naskrecki 

1997). The reason for the various common names could be because the group is so poorly 

known (Gwynne 2001), or perhaps a reflection of the general morphological diversity within 

the family Tettigoniidae (Rentz 2010). The term ‘katydid’ will be used in the present study .  

 

The external anatomy of katydids is relatively simple with only a few specialised features 

(Rentz 2010). The morphology of a katydid is illustrated in Figure 1. The pronotum seldom 

bears a ridge. They have two pairs of wings (Fig. 2). A sword-shaped ovipositor is typically 

present in the females (Capinera 2004). The spines on the legs (called armature) is of taxonomic 

importance, usually described in detail and often used in keys to distinguish genera and species 

(Ragge 1980; Capinera 2004).  

 

The venational patterns as well as the shape, position and other features of the veins of adult 

wings are often used to identify species. The shape and structure of the fore wing (called the 

tegmen) is also used for identification (Rentz 2010). A comprehensive account of the venation 

of tettigoniid wings is given by Ragge (1955). 
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Fig. 1. The general katydid body plan. Taken from Rentz (2010). 

Fig. 2. Wing venation of a katydid. Taken from Rentz (2010). 
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Katydids have an advanced stridulatory specialisation, described by Ragge (1955). The fore 

wing is folded along the line between CuA and CuP, with the horizontal part being relatively 

small in fully winged species, and the first fold of the hind wing in the MP area (Rentz 1991). 

In the male, the cubito-anal regions of the tegmina are modified for stridulation (Imms 1964). 

An archedictyon is generally present over the whole of the fore wing (except for parts of the 

male stridulatory apparatus) and sometimes on a small area towards the distal part of the hind 

wing. In the hind wing, and occasionally in the fore wing, MA is almost always fused to the 

radial sector (Rs) for a short distance. Most of the anterior branch of CuA (or the vein as a 

whole) is usually fused with MP over the whole of its distal portion (Rentz 1991). 

 

Subfamily Phaneropterinae 

Also known as false katydids (or bush katydids), this group is distinguished from others by the 

absence of spines on the prosternum. Their hind wings are longer than their fore wings, which 

is also a characteristic feature of this group. They are well known for their acoustic ability and 

their songs can be heard late in the day and during the evening (Capinera 2004). They occur in 

most habitats and all known species are herbivorous (Rentz 2010). With more than 2 160 

species described in more than 330 genera, Phaneropterinae is the largest and most diverse 

subfamily of the Tettigoniidae (Nagar et al. 2015). With many species and little taxonomic 

information on South African species, it is also a rather difficult subfamily to deal with. Many 

of the genera are of uncertain status or in a state of confused taxonomy. This is partly due to 

genera and species being described without much reference to their relationships (Rentz 2010). 

Many of the species names date back to the early European scientific expeditions to South 

Africa, resulting in most of the type material being held in European collections. Moreover, the 

descriptions of the early describers were often brief and not very informative, often lacking the 

precise locality of the specimens. With the most critical taxonomic characteristics of a species 

often not covered in many early works, and with the general lack of illustrations, descriptions 

often become meaningless (Rentz 2010). The African Phaneropterinae have been reviewed by 

Ragge (1980) who also provided notes and keys for their identification (see Figs. 3 and 4). 
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Fig. 3. A typical male phaneropterine, showing some of the taxonomically useful 

characters. Taken from Ragge (1980). 

Fig. 4. Taxonomic characters of Phaneropterinae. A. Anterodorsal view of part of the head of 

a typical Phaneropterine, showing the positions of the fastigia in relation to the first antennal 

segment. B-D. Outlines of Phaneropterine eyes, showing (B) 'circular’, (C) ‘oval’ and (D) ‘oval 

and elongate’ shapes. E, F. Lateral view of the left hind femur of (E) Gabonella cothurnata and 

(F) Oxygonatium huxleyi. G-I. Lateral view of part of the left hind tibia of (G) Terpnistria 

zebrata; (H) Atlasacris peculiaris; (I) Ducetia fuscopunctata. Taken from Ragge (1980). 

A 

G 

F 

E 

D C B 

I 

H 
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Rentz (1979) also provides some key characteristics with illustrations of the subfamily 

Phaneropterinae in his illustrated key to the subfamilies of Tettigoniidae: 

 

“Head globose, not usually slanted or frontally flattened. Fore tibia in section approximately 

square in distal portion, dorsal surface flat or slightly concave, not convex (Fig. 5 A). 

Proximal tarsomere cylindrical, not laterally sulcate. Ovipositor (Fig. 5 B and C) usually 

short and upturned flattened laterally, margins usually crenulated. Prosternum unarmed. 

(Distribution: world-wide)………………………………………...……….Phaneropterinae” 

 

 

 

Genus Plangia Stål (Tettigoniidae, Phaneropterinae) 

Plangia is an African genus occurring south of the Sahara, the Seychelles and Madagascar. It 

is a rather non-descript genus and mostly classified by negative features. It can be distinguished 

from its close relatives Monteiroa, Oxygonatium and Eurycorypha by their exceptionally broad 

fastigia, and from Plangiodes by its elongate eyes and frontogenal carinae (Ragge 1980). 

Currently 12 taxa are listed within the genus Plangia (Eades et al. 2015). In the key to the 

Fig. 5. Some distinguishing characteristics of the subfamily Phaneropterinae. A. Fore tibia; 

B-C. Ovipositor. Taken from Rentz (1979). 

A 

B 
C 
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genera of African Phaneropterinae, constructed by Ragge (1980), the Plangia genus is 

identified through the following character steps: 

1. Hind femora without a dorsal point at the tip or with a very small point (not as in Fig. 

4 E or F); 

2. Dorsal spines of the hind tibiae unmodified, of normal shape (Fig. 4 H or I); 

3. Fastigium of the vertex at least as broad as the first antennal segment; 

4. Eyes circular or oval (Fig. 4 B or C), not elongate. Head almost always without 

frontogenal carinae; 

5. Ninth abdominal tergite unmodified. Sc and R of the fore wings contiguous except 

near the apex; 

6. Hind wings clearly extending beyond the fore wings; 

7. Fastigium of the vertex less than twice as broad as the first antennal segment; and 

8. Fastigium of the frons broadly rounded or truncate. Fore and mid tibiae without dorsal 

spurs except at the apex…………………………………………………....Plangia Stål 

 

Plangia are canopy dwellers and often occur syntopically with other fully winged katydids [e.g. 

Eurycorypha Stål or Arantia Stål (Phaneropterinae)]. Very little or nothing is known about the 

biology, ecology, habitat, distribution and the phylogenetic relationships of these taxa (Hemp 

et al. 2015). Although numerous species have been described from these taxa, the taxonomic 

status of the species is at present confused and requires further investigation. 

 

Plangia graminea (Serville, 1838) 

Plangia graminea has a wide distribution range across sub-Saharan Africa. Plangia graminea 

was originally described from the Cape of Good Hope, Cape Province, South Africa by Serville 

(1839). The type specimen appears to be lost (Eades et al. 2015). There are a number of 

specimens held in various collections that show a degree of variability of this species in terms 

of colour pattern, wing length and variations in stoutness and length of the male cerci, and shape 

of the subgenital plate, suggesting that more than one species might be hidden in the P. 

graminea complex (Hemp 2013). Therefore, P. graminea is in need of revision (Hemp 2013). 

 

The P. graminea complex was reviewed by Hemp et al. (2015), and P. compressa (Walker) 

was synonymised with P. graminea. However, the authors did not include another 

morphologically similar Plangia sp., namely P. unimaculata Chopard, in their revision - which 

is also present in the Western Cape (Chopard 1955). Hemp et al. (2015) suggest that only one 
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Plangia species is present in the Cape and, therefore, the focal species of this study is assumed 

to be P. graminea until further taxonomic investigations can be done to prove otherwise. 

 

Original description of P. graminea extracted and translated from Serville (1839): 

 

“(Length about 10 lines). It resembles Phylloptera laurifolia, but it is significantly smaller. 

Body yellowish green. Head of the same colour, without advanced front projection. Prothorax 

smooth, plain, green, sometimes becoming yellowish. Lateral carinae of the disc fairly well 

pronounced, bordered constantly by a more or less distinct pale yellow longitudinal line. Elytra 

green, opaque, somewhat shiny, oval, ending in rounded tip. Their longitudinal vein a little 

oblique, but not overly branched; stridulating organ rippled, yellowish in the centre of the left 

elytron. Hind-wings transparent, pointed at the end, at rest the protruding part is opaque green 

(hind-wing extends past the elytron at rest). Ovipositor short, greenish yellow; subanal plate 

barely exceeding the male abdomen. 

Antennae and legs green; forelegs wider on the inside, covered with a membrane; femur slightly 

spiny on the lower side; upper carina of hind legs lined with fine spines. Male and female. 

The male differs greatly from that of laurifolia by the shape of the subanal plate which is much 

shorter and only forked at the end. In the male of laurifolia, the plate is extended beyond the 

abdomen, and divided into two long branches at the end. 

The Cape of Good Hope. My collection” 

 

General biology and ecology of katydids 

Katydids are diurnal, nocturnal or both (Belwood 1990) leading to a variety of different 

lifestyles within the group to fill a broad spectrum of ecological niches reflected in their diverse 

behavioural patterns (Bailey & Rentz 1990) and habits. This makes these insects attractive to 

most fields of research, which has been hardly explored to date. In South Africa, all but a small 

minority of katydid species are nocturnal.
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Food and feeding 

Katydids have a broad  spectrum of feeding habits, ranging from species that are omnivorous 

to highly specialised phytophagous species with their biology finely tuned to the phenology of 

their host-plant. Some feed on flowers and foliage, others on seeds and fruit whereas some are 

highly specialised to feed on pollen and nectar. Herbivorous species consume a wide variety of 

plants ranging from the foliage of trees and shrubs to grasses. Many, however, are opportunistic 

and will feed on any food source available – including their dead relatives. Some are exclusively 

predatory. Sometimes katydid nymphs differ in feeding habits from those of their adults. A 

number of groups, for example the Phaneropterinae, are primarily foliage feeders. Some 

katydids within these groups prefer the more proteinaceous parts of the plant such as the 

flowers, but can also develop successfully on the leaves alone (Rentz 2010). 

  

Reproduction 

The reproduction of katydids revolves around communication. Most males produce calling 

songs detected by females, who when receptive, proceed to the source of the song. Research 

shows that females can be particularly selective when choosing a mate. Based on the quality of 

the male song, female katydids detect the fittest males to mate with (Rentz 2010). 

 

In the act of mating, the male transfers a spermatophore containing the sperm package. Included 

with the spermatophore is a nuptial gift, the spermatophyllax, which is eaten by the female 

(Lehmann 2012). This is a source of nutrition for the female and formation of her eggs and as 

such is the male’s contribution to the development of their offspring. As the spermatophyllax 

is eaten by the female, sperm enters her receptacle, the spermatheca, an internal structure near 

the tip of her abdomen. The eggs pass the spermatheca as they are being deposited and are 

fertilised on their route (Rentz 2010). An extensive review of the reproductive behaviour and 

evolution of katydids (Tettigoniidae) is given by Gwynne (2001). 

 

The abdomina of the male and female katydid have unique characters with those of the male 

usually more obvious. Insect genitalia can be considered to operate like a ‘lock-and-key’ 

mechanism. The male’s genitalia are specifically designed to fit into those of a female of the 

same species. If the coupling is not possible, successful mating will not happen. In this manner, 
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some tettigoniids have evolved some very unique genital structures (Rentz 2010). In most 

katydid species the cerci appear to be distinctive structures enabling, by comparing the cerci of 

most males, an accurate identification. The tip of the cercus in the Phaneropterinae is also 

distinctive, but it usually requires the use of a high-powered microscope to clearly observe this 

particular structure (Rentz 2010). 

 

Eggs 

Katydids oviposit their eggs in and on a variety of substrates. Although katydid eggs are not as 

diverse as those of, for example, stick insects (Phasmatodea), they do have distinctive subtle 

features which need to be studied under high magnification. As is expected from such a diverse 

group of insects, there is a wide range of egg-types (Fig. 6). The micropyles are contained on 

the depressed dorsal area of the egg. The egg is fertilised when the micropylar area passes by 

the opening of the spermatheca as the egg is laid. For most species, the appearance and position 

of the micropyle on the egg is characteristic and species-specific (Rentz 2010). 

 

 

 

The egg of Chlorobalius leucoviridis has a 

simple lattice-like pattern. 
The egg of Neophisis ecmurra lacks an 

obvious lattice pattern. 

The eggs of Tympanophorinae species have a 

cap at one end 
The cap on the top of the egg of Indiamba 

malkini is apparently for protection or to 

transport air to the egg which is laid in wood. 

Fig. 6. Some katydid egg-types. Taken from Rentz (2010). 
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The ovipositor of most katydid females is sharply pointed and elongated, and specially designed 

for laying eggs in the ground. There are four parts to the ovipositor, each operating alternately; 

with the ovipositor going a little deeper into the ground with each stroke. The shape of the 

ovipositor is often indicative of the egg-laying site. If the ovipositor is elongate and of uniform 

dimensions, the eggs are usually laid in hollow grass stems. If the eggs are laid in plant material, 

either living stems or dead wood, the ovipositor is usually sickle-shaped. Some katydids even 

lay their eggs in the tissue of plant galls (Rentz 2010). Many species have elaborate saw-like, 

toothed ovipositors which are specifically designed to saw into specific leaf or bark substrates 

for oviposition [e.g. Naskrecki & Bazelet 2011: Austrodontura (Phaneropterinae)]. 

 

The eggs are laid during summer, develop over winter and hatch the following spring. This is 

the general life history of most katydids and one generation per year appears to be the norm for 

most species in temperate regions (Gwynne et al. 1988; Rentz 2010). However, eggs of some 

species undergo diapause and several European species require up to three winter seasons 

before the eggs hatch. On the other hand, species in the tropics hatch without going through a 

dormant period, only requiring about 50 days to develop (Rentz 2010), resulting in generations 

to overlap with eggs, nymphs and adults at the same time and in the same place. Hartley (1990) 

provides a detailed account of the egg biology of the Tettigoniidae. One aspect that the current 

study focussed on was monitoring and identification of the eggs of P. graminea, to establish a 

potential monitoring system for growers. 

 

Growth and development 

The eggs usually hatch at dawn. The hatchlings (called nymphs) look like tiny wingless versions 

of the adult; however, the nymphs of many groups look completely unlike the adult. This is 

especially true for phaneropterine species. Some nymphs resemble spiders and others assassin 

bugs or ants, while others resemble floral parts as a strategy to escape predation. This mimicry 

lasts until after the first or second moult, at which point they are less susceptible to predation. 

As the nymphs mature they rely on other camouflage strategies, normally resembling plants or 

parts of plants. Many species utilise a combination of structure, colour and behaviour that make 

them almost invisible in their surroundings (Rentz 2010). 
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For katydids to grow, they have to shed or moult their skins periodically. Depending on climatic 

conditions and the species, the nymphs moult from four to nine times. When a katydid is ready 

to moult, it usually hangs upside down at the tip of a twig or in vegetation. Moulting usually 

happens at night when relative humidity is sufficiently high to moisten and shed the old skin 

(Rentz 2010).  

 

Dimorphism and polymorphism 

Sexual dimorphism and colour polymorphism has been observed in many katydid species. In 

all species, males of leaf-mimicking katydids are smaller than their female counterparts 

(Castner & Nickle 1995). Colour polymorphism is also common in this subfamily with species 

belonging to the genera Pterochroza, Mimetica, and Typophyllum displaying up to seven 

different colour morphs (Castner & Nickle 1995). Similarly, Brits & Thornton (1981) noted 

that males of Ruspolia differens were also smaller than females and often green or brown in 

colour. The North American oblong-winged katydid, Amblycorypha oblongifolia (De Geer), 

displays an array of different colour morphs ranging from green, yellow, orange to pink (Crew 

2013) (Fig. 7). 

 

 

 

Natural enemies of katydids 

Katydids form a source of food for many invertebrates and vertebrates and are attacked by many 

parasites (Rentz 2010). They are preyed upon by spiders, lizards, frogs and birds. Bats are 

known to home in on calling katydids. To evade predators, katydids have evolved various 

Fig. 7. Illustrated examples of the different colour morphs of Amblycorypha oblongifolia. 

Taken from Wikipedia (2015). 

Green Dark tan, orange or yellow Pink 

Stellenbosch University  https://scholar.sun.ac.za



 

14 
 

techniques that help them escape from predation (Belwood 1990). Examples of these include 

the colour and pattern of camouflage and to confuse bats many katydid species having evolved 

various stridulation strategies (Rentz 2010; Belwood 1990).  

 

Flies of the family Tachinidae and digger wasps (family Sphecidae) are examples of insect 

predators. Ormiine tachinids locate male katydids by listening to their calling songs (Rentz 

2010). Parasitism of Orchelimum katydids by Ormia lineifrons (Tachinidae) has been recorded 

by Shapiro (1995). A number of parasitic wasps from various families parasitize the eggs of 

katydids (UC IPM 2015). Other insect predators include bugs (Heteroptera) that manage to 

ambush katydids much larger than they are. Ants are a constant threat and some katydid species 

are specialised to feed on other species of katydids (Rentz 2010). 

 

Katydids fall victim to Gordian worms (Nematomorpha: Gordioidea). These horse-hair-like 

worms are internal parasites that occupy the greater part of the host’s abdomen. Other parasites 

include gregarines and entomopathogenic fungi (Rentz 2010). Beauveria bassiana and 

Metarhizium acridum fungal strains are being used as biological control options against locusts 

and grasshoppers (Lomer et al. 2001) and have been tested against katydid pests, for example 

Uvarovistia zebra, yielding promising results (Mohammadbeigi & Port 2013). 

 

The twisted-wing parasites, Strepsiptera, also infect katydids (Rentz 2010). Sexava nubila Stål, 

Segestidea noveaguineae and Segestes decorates Redtenbacher (Brancsik) (Orthoptera: 

Tettigoniidae) are parasitized by female Stichtrema dallatorreanum Hofender (Strepsipera) 

(Kathirithamby et al. 2001). These katydid species are all pests on oil palm in Papua New 

Guinea. The potential of Strepsiptera parasites as novel biocontrol tools for use in an integrated 

pest management system against the katydid pests of oil palm has been investigated by 

Kathirithamby et al. (1998). They concluded that Stichotrema dallatorreanum (Strepsiptera) 

has an effect on the fecundity and overall fitness of its tettigoniid hosts and therefore may have 

potential as a biocontrol agent. 

 

Some parasites attack katydids but do not seem to harm or kill them. The auditory trachea of a 

number of species are often infested by tiny mites. Blood-red mites attached to the tegmina 
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(wings) or on the intersegmental membranes of a katydid feed off the blood of the host (Rentz 

2010). In southern France a few populations of the genus Platycleis were found to be infested 

with larval mites of the trombidiid genus Eutrombidium (Samways 1977). 

 

Katydid sound production and hearing 

Katydid sound and hearing are probably the most fascinating and best studied aspects of katydid 

biology. The unique features of tettigoniids’ obvious auditory communication have been used 

by physiologists and functional anatomists to investigate processes of sound production and 

reception and many biologists dedicate themselves to ‘learn the language’ of these insects. For 

the purpose of this chapter the workings of katydid sound and hearing will only be discussed 

briefly as follows:  

 

Sound 

Tegminal stridulation, of the ‘file and scraper’ method, is most commonly used by katydids to 

produce sound (see Fig. 8). It entails a file of minute teeth (pars stridens) located on the 

underside of the left tegmen (1) moving over a raised vein, or hardened scraper (plectrum), on 

the upper surface of the right tegmen (2) when the wings are opened and closed. The mirror (3), 

surrounded by a sclerotised U-shape frame, resonates and amplifies the sound caused by the 

tooth strikes across the plectrum (Morris & Pipher 1967; Bailey 1970; Bailey & Broughton 

1970; Ewing 1989; Bailey 1991; Morris & Mason 1995; Greenfield 1997; Desutter-Grandcolas 

2003; Rentz 2010; Grant 2014). In some species there is also a vestigial file on the right tegmen 

that does not seem to play any role in stridulation (Rentz 2010). Since the stridulatory apparatus 

is being used to produce the sound to which females respond, the shape and structure of the 

tegmen is extremely detailed (Rentz 2010) and the calls are very species-specific. Therefore, 

the length, shape and number of teeth in the stridulatory file are unique for each species and 

often used in taxonomy (Rentz 2010, Heller et al. 2015) (Fig. 9). 
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Although acoustic signalling in katydids is predominantly a 

masculine feature and the females usually only play the role 

of a silent receiver (Robinson 1990), the females in some 

families (especially Phaneropterinae) also possess sound 

producing structures (Nickle & Carlysle 1974; Rentz 2010). 

However, the signals produced by females consist only of 

one or a few fleeting ticks in response to the male sound. 

Nickle & Carlysle (1974) provide more information on the 

morphology and function of female sound-producing 

structures. 

 

 

 

 

 

Requena kerla (Listroscelidinae) Zaprochilus australis (Zaprochilinae) 

Austrophlugis debaari (Listroscelidinae) Tympanophora kalbarri (Tympanophorinae) 

Fig. 9. Scanning electron microscope photographs of different types of stridulatory files of 

male katydids. Taken from Rentz (2010). 

Fig. 8. The ‘file and scraper’ 

mechanism of a katydid. Taken 

from Rentz (2010). 
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Hearing 

The structure of the file and scraper produces sound of a rather 

narrow range of frequencies and, therefore, it is often thought 

that katydids only detect the calls of conspecifics. However, 

studies in Western Australia revealed that male katydids are able 

to hear the calls of other species and will move away from 

nearby callers to avoid rivalry (Rentz 2010). Signal reception is 

also critical for detection of predators (Rössler et al. 2006), 

resulting in anti-predator behaviour (Grant 2014). 

 

Katydids hear sounds by way of tympanal organs (thin 

membranes) located on the fore tibiae (Grant 2014) (Fig. 10). 

Hearing by katydids is a very complex subject and has been 

studied widely (Rentz 2010). The intricacies of katydid hearing 

are too detailed to discuss here. For comprehensive discussions 

of hearing by katydids Bailey (1990), Gwynne (2001) and 

Gerhardt & Huber (2002) should be consulted. 

 

Economic importance 

Some katydids produce sporadic outbreaks and become obvious when their population numbers 

greatly increase. This occurs generally in response to favourable weather conditions. Other 

species of katydids become strongly gregarious at times and swarming behaviour, much like 

locusts, can be observed in some species. This can result in serious agricultural damage (Bailey 

& McCrae 1978; Rentz 1991). The Mormon Cricket (Anabrus simplex Haldeman) is probably 

one of the most devastating examples of swarming katydids, forming bands that travel more or 

less in a consistent direction for days or even weeks (Bailey & McCrae 1978). 

 

Katydids can have detrimental effects on horticulture. The controlled conditions of glasshouse 

orchid culture and shade-houses provide ideal conditions for some katydid species that feed on 

new shoots and developing flowers (Rentz 2010). Predatory species have also been noted to 

ravage the stock of insect and butterfly zoos (Rentz 2010). Katydids feed on developing fruits 

Fig. 10. The auditory 

tympanum on the fore tibia of 

a Phaneropterine katydid. 

Taken from Rentz (2010). 
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of citrus, causing the fruits to become disfigured (Fig. 11) and, therefore, reducing the market 

value resulting in economic loss to producers (Rentz 2010; UC IPM 2015). 

 

Katydids are pests on a variety of different crops in many parts of the world. Table 1, based on 

findings in available literature, provides a summary of katydid pest species and the affected 

crops in different parts of the world. 

 

Not all katydids in large numbers, however, have a negative economic impact on their 

cohabiting communities. Ruspolia nitidula (Nsenene grasshoppers), an abundant katydid in 

Uganda, is considered a delicacy and eaten by a large section of the population; and, in addition, 

provides a valuable source of income for many people in central Uganda (Agea et al. 2008). 

 

Fig. 11. A single circular scar on a mature navel 

orange from forktailed bush katydid, Scudderia 

furcata, feeding when the fruit was young. Photo 

by Elizabeth E. Grafton-Cardwell. UC IPM (2015). 
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Table 1. Summary of recorded crops affected by katydids based on findings in available literature sources. 

Common Name Scientific name Region/Locality Crop Source 

Forktailed bush katydid Scudderia furcata Brenner USA, California Pear, citrus and stone 

fruit 

Bentley et al. (2002) 

Varela (2008) 

UC IPM (2015) 

Mediterranean katydid Phaneroptera nana Fieber USA, California Pear orchards Varela (2008) 

Angularwinged katydid Microcentrum retinerve (Burmeister) USA, California Citrus UC IPM (2015) 

Mormon Cricket Anabrus simplex Haldeman Western United States Sagebrush rangelands  Redak et al. (1992) 

Unknown  Idiarthron subquadratum Saussure & 

Pictet 

Idiarthron atrispinum (Stål) 

Central America Coffee Reyes de Romero (1986) 

Anatolian Bright Bush-cricket Poecilimon anatolicus Ramme Turkey Cereals and vegetables Tutkun & Unal (1986) 

Sexava Segestes decorates Redtenbacher 

Segestidia defoliaria defoliaria Uvarov 

Segestidea novaeguineae (Brancsik) 

Segestidea gracilis gracilis (Willemse) 

Sexava nubila (Stål) 

Sexava coriacea (Linnaeus) 

Papua New Guinea Oil palm, bananas, 

coconuts 

Kathirithamby et al. (1998) 

Young (1998) 

Kathirithamby et al. (2001) 

 

Unknown Uvarovistia zebra (Uvarov) Iran Field crops and 

rangeland grass 

Mohammadbeigi & Port (2013) 

Leaf katydids Plangia species Uganda Agroforestry (Alnus 

species) 

Nyeko et al. (2002) 

Senene Ruspolia differens (Serville) East Africa Multiple (including 

maize and tobacco) 

Bailey & McCrae (1978) 

Blair (1990) 

Armoured bush crickets (ABC) Acanthoplus speiseri Brancsik 

*Acanthoplus discoidalis (Walker) 

 

southern Africa (Botswana 

and Namibia) 

Cereals (sorghum, 

pearl millet) 

*Attacks nestling 

Red-billed Quelea 

Wohlleber (1994) 

Green & Holt (2003) 

*Cheke et al. (2003) 

 

Wart-biter Decticus verrucivorus (Linnaeus) Iran Cereals, cotton Gentry (1965) 
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Plangia graminea, a South African pest in vineyards 

In the past few seasons (since 2012) P. graminea appears to have caused a substantial amount 

of damage leading to great concern among the wine farmers of the Western Cape Province, 

South Africa (Allsopp 2012). The species is widespread in South Africa and has also been 

collected as far north as Kampala in Uganda (Allsopp 2012). Very little is known about the 

biology and ecology of this species as it has not been studied yet. The majority of information 

available is from observations made by growers. Furthermore, no detailed surveys have taken 

place to assess the assemblage structure of katydids and verify their taxonomic status. 

 

The immature stages of P. graminea appear early in the season (September/October) and feed 

on young foliage of the vine, especially at night. The feeding can extend to young grape clusters 

later in the season (Annecke & Moran 1982; Ferreira & Venter 1996). Unlike other pests that 

typically feed from the edge of the leaf inwards, these katydids can start eating from anywhere 

on the leaf (Fig. 12 A). The nymphs are dark brown to black with orange legs and resemble 

toxic Leaf beetles (Chrysomelidae) with the characteristic long antennae also readily noticeable 

(Fig. 12 B). As they mature they change in colour and the adults are usually green, resembling 

leaves (Fig 12 C). The wings of the adults have a rounded outside edge that give this katydid a 

hump-backed appearance, hence the local Afrikaans name “krompokkel” (Allsopp 2012) which 

literally translates back to “crooked-fatty”. 

 

 

A B C 

Fig. 12. Examples of (A) feeding damage on leaves; (B) "krompokkel" nymphs; (C) P. 

graminea adult [Photo: Allsopp (2012)], in vineyards of the Western Cape.  
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These katydids are often associated with invasive hosts in disturbed areas (P. Grant, pers. 

comm.) and can sometimes also be abundant in pine plantations. However, their natural host in 

the Western Cape is believed to be Rhus angustifolia, an abundant shrub in this area (H. 

Geertsema, pers. comm.). The eggs are typically oval shaped. Observations in vineyards 

indicate that the eggs are laid under the loose bark of grapevines (Allsopp 2012).  

 

Reasons for the recent outbreaks are unknown, but favourable climate could be an attributing 

factor as well as changes in pesticide usage. Broad spectrum pesticides that may have supressed 

population outbreaks are being used far less as farmers are leaning towards more sustainable, 

environmentally-friendly practices (Allsopp 2012). There are currently no registered chemical 

control measures for this pest. 

 

Integrated Pest Management 

Integrated Pest Management (IPM) can be defined as: 

“a pest management system that in the context of the associated environment and the population 

dynamics of the pest species, utilizes all suitable techniques and methods in as compatible a 

manner as possible and maintains the pest population at levels below those causing economic 

injury” - (Smith & Reynolds 1966). 

 

IPM is increasingly being used to control orthopteran pests. Although it involves the use of 

‘biopesticides’ or biological control, the adroit use of conventional chemical pesticides is often 

inevitable. Knowledge of the ecology of the target pest in context of the phenology of the 

infested crop is crucial with each orthopteran pest having its own independent dynamic and the 

crop being a man-made extension of its natural habitat (Jago 1997). When a suitable set of 

interventions has been determined, the decision to initiate one or more IPM components is 

based on insight into the short-term future and current ecological conditions, seasonal 

advancement of the pest population and the vulnerability of the crop to the physical elements 

such as rainfall and soils of the farm ecosystem (Jago 1997). Monitoring is therefore a crucial 

component of any IPM program and the first step to developing an IPM plan is to determine an 

effective monitoring method specifically suited for the pest and its agricultural system 

(Luckmann & Metcalf 1994). 
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A generic monitoring system has been developed for the key arthropod pests of table grapes by 

De Villiers & Pringle (2008), however, it does not include the grape pest P. graminea. 

Furthermore, an economic threshold has not yet been established for this pest.  

 

The Grapevine 

Grapes have been grown in Mesopotamia from as early as 6 000 BC, making it one of the 

earliest cultivated fruits according to archeologists (Allsopp et al. 2015). Grapes were 

introduced into Syria about 5 000 BC, and from there, viticulture spread into Palestine, 

eventually reaching Egypt and Greece (Baker & Waite 2003; Allsopp et al. 2015). Further, with 

the expansion of the Roman Empire throughout Europe, vine culture eventually reached the 

British Isles and the present world-wide range of Western society – a range that later engulfed 

the southern tip of Africa some 300 years ago (Bagnall 1961; Baker & Waite 2003; Allsopp  et 

al. 2015). 

 

It was Jan van Riebeeck who first introduced the vine to the southern part of Africa after his 

arrival in 1652 when he came to establish a replenishment facility at the Cape. Today, South 

Africa is one of the world’s major wine producing countries, ranking 7th in overall volume 

production and producing 4.2% of the world’s wine (WOSA 2014). Recent statistics from 

“South African Wine Industry Information & Systems” (SAWIS) show that 99 680 hectares of 

vines producing wine grapes are under cultivation in South Africa. According to a Macro-

economic Impact study commissioned by SAWIS, the wine industry contributed R36 145 

million to the annual GDP of South Africa in 2013, of which approximately 53% remained in 

the Western Cape. Furthermore, the study found that the wine industry provided (directly and 

indirectly) employment opportunities to some 300 000 people in South Africa, and was 

responsible for the employment of 167 494 persons in the Western Cape alone (SAWIS 2015).  

 

In South Africa, the main production areas are found in the provinces of the Western Cape and 

the Northern Cape, however, commercial producers of grapes are also present in Limpopo and 

Mpumalanga (James 2013; Allsopp et al. 2015). The “Wine of Origin Scheme” (WO) divides 

the production areas into demarcated regions, districts and wards. James (2013) provides a 
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comprehensive discussion on the WO system, and detailed maps of regions, districts, and wards 

are provided by SAWIS (2015).  

 

Vitis vinifera is a deciduous sun-loving plant, which does best in regions that experience warm, 

dry summers, frost-free springs and wet winters cold enough to induce dormancy, but not too 

harsh as to damage the plant (Baker & Waite 2003; Hurndall 2005). Grapevines have four main 

phenological stages. The first stage of growth is bud-break (September – October). Bud-break 

is followed by the period of bloom (November – December) which is followed by the final 

growth stage, véraison (January – March). After véraison the grapes are ready to be harvested 

(Araujo 2014 and references therein). After the harvest period the grapevine will go into winter 

dormancy and the cycle will continue the next season. These phenological stages are influenced 

by environmental factors, such as climate; therefore, their durations may vary from year to year 

(Conradie et al. 2002). Moreover, different cultivars grow differently and their growth stages 

may vary slightly, leading to an overlap of stages within a group of cultivars. 

 

Agricultural systems are under continuous pest pressure and grape production is no exception. 

In South Africa grapevines are host to 35 insect pests from various families (Allsopp et al. 

2015). The most important pest species are treated in the following table (Table 2) with regard 

to type of damage, management practices, and their natural enemies.
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Table 2. Summary of the main insect pests found on grapevines in South Africa, with emphasis on the type of damage, management practices and natural 

enemies. Adapted from Allsopp et al. (2015). 

Common name Scientific name Feeds on Management Natural enemies Further reading 

BUGS HEMIPTERA     

Leafhoppers Family Cicadellidae     

Grapevine leafhopper Acia lineatifrons (Naudé) 

Mgenia fuscovaria (Stål) 

L 

L, V 

Seldom requires control; 

chemical control options 

available when necessary 

Nymphs preyed on by generalist 

predators (spiders, ladybird beetles), 

parasitic wasps (no specific ID) 

Marais (1989) 

Phylloxerans Family Phylloxeridae     

Grapevine phylloxera Daktulosphaira vitifoliae (Fitch) L, R Effects reduced by good growing 

conditions. No insecticide 

registered. Resistant rootstocks 

No natural enemies have been 

identified locally 

 De Klerk (1981) 

Armoured scale insects Family Diaspididae     

Red Scale 

 

 

 

 

 

 

 

Pernicious scale 

Aonidiella aurantii (Maskell) 

 

 

 

 

 

 

 

Diaspidiotus perniciosus (Comstock) 

Br, Sh 

 

 

 

 

 

 

 

Br, Sh 

Biological control agents: 

Chilocorus nigrita (Fabricius), 

Aphytis spp., C. bifasciata. 

Preventative control (mineral 

oils) and Corrective control 

(methomyl - emergencies only to 

prevent resistance) 

 

Chemical control (dormant 

season treatments) 

Parasitic wasps (aphelinids and 

encyrtids). Predators include ladybird 

beetles, various lacewing species and a 

predatory mite, Cheletogenes ornatus 

 

 

 

 

Parasitic wasps (families Encyrtidae 

and Aphelinidae). Predators include 

various species of ladybird beetles 

Grout et al. (1989)  

Grout & Richards 

(1991) 

Ground pearls Family Margarodidae     

Ground pearl 

Ground pearl 

Ground pearl 

Margarodes capensis Giard 

Margarodes greeni Brian 

Margarodes prieskaensis (Jakubski) 

R 

R 

R 

No chemical registered and no 

resistant rootstocks known 

No information on the natural enemies 

of these ground pearls 

De Klerk (1981) 

De Klerk et al. (2011) 
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Common name Scientific name Feeds on Management Natural enemies Further reading 

Ground pearl 

Ground pearl 

Margarodes termini Giard 

Margarodes vredendalensis De Klerk 

R 

R 

Mealybugs Family Pseudococcidae     

Grapevine mealybug 

 

 

 

 

 

 

 

 

 

Long-tailed mealybug 

Planococcus ficus (Signoret) 

 

 

 

 

 

 

 

 

 

Pseudococcus longispinus (Targioni 

Tozzetti) 

B, Br, Bs, L, Sh, 

T, V 

 

 

 

 

 

 

 

 

B, Br, Bs, L, Sh, 

T, V 

Regular monitoring. If 2% of 

grapevines infested, natural 

enemies can be purchased. Ant 

control (chemicals) when 20% of 

the vines are infested with ants. 

Overwintering mealybug 

controlled by applying suitable 

insecticide to dormant grapevines 

 

Biological and chemical control 

Indigenous and introduced natural 

enemies control grapevine mealybug 

e.g. various parasitic wasps, the 

indigenous encyrtid, and various 

predatory ladybird beetles. Other 

generalist predators such as lacewing 

larvae also contribute to the natural 

control of mealybugs in vineyards 

 

 

Hymenopteran parasitoids, ladybird 

beetles and lacewing larvae 

De Klerk (1981) 

De Villiers & Pringle 

(2008) 

Mgochecki & Addison 

(2009) 

Nel (1983) 

Walton & Pringle (2004) 

 

 

 

Wakgari & Giliomee 

(2004) 

THRIPS THYSANOPTERA     

Thrips Family Thripidae     

Western flower thrips 

Guava thrips 

Frankliniella occidentalis (Pergande) 

Heliothrips sylvanus  Faure 

B, F, L, Sh 

L 

Monitor with blue sticky traps. 

Develop resistance to pesticides 

very rapidly, which limits 

available control options. Do not 

disturb/mow weeds and other 

flowering plants that also attract 

thrips near vineyards while the 

grapes are flowering 

Predatory insects such as lacewings, 

ladybird beetles, hover flies, 

anthocorid bugs and predatory mites 

Allsopp (2010)  

Lewis (1997) 

Schwartz (1989) 

BEETLES COLEOPTERA     

Snout beetles, weevils Family Curculionidae     
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Common name Scientific name Feeds on Management Natural enemies Further reading 

Black snout beetle 

Speckled weevil 

Vine weevil 

Grey weevil 

White fringed weevil 

Banded fruit weevil 

Sciobius weevil 

Bud nibbler 

Eremnus atratus (Sparrman) 

Eremnus cerealis Marshall 

Eremnus chevrolati Oberprieler 

Eremnus setulosus Boheman 

Naupactus leucoloma Boheman 

Phlyctinus callosus (Schönherr) 

Sciobius tottus (Schönherr) 

Tanyrhynchus carinatus Boheman 

L 

B,  BS, Bu, L, Sh 

B,  BS, Bu, L, Sh 

B,  BS, Bu, L, Sh 

B,  BS, Bu, L, Sh 

B,  BS, Bu, L, Sh 

L 

Bu 

Integrated management approach 

using chemical, physical and 

cultural control 

Wide range of natural enemies 

including entomopathogenic fungi and 

nematodes, mites, dipteran and 

hymenopteran parasitoids, protozoans, 

ants, spiders, predatory beetles and 

birds 

Nel (1983) 

FLIES DIPTERA     

Fruit flies Family Tephritidae     

Mediterranean fruit fly 

Natal fruit fly 

Ceratitis capitate (Wiedemann) 

Ceratitis rosa Karsch 

B 

B 

Biological control (not always 

regarded as successful). 

Monitoring populations with 

lure-baited traps, control of host 

plants, sanitation, application of 

fruit fly bait, the use of bait 

stations, augmentative releases of 

parasitoids and the use of the 

sterile insect technique (SIT). 

Fruit flies are best managed by 

an area-wide, integrated 

approach incorporating as many 

of the above-mentioned practices 

as possible 

Entomopathogenic fungi, nematodes, 

and bacteria, microsporidian, ants and 

spiders. Hymenopterous parasitoids 

make the largest contribution to 

biological control 

Barnes (2008)  

De Meyer et al. (2002)  

White & Elson-Harris 

(1992) 

BUTTERFLIES, MOTHS LEPIDOPTERA     

Carpenter moths Family Cossidae     
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Common name Scientific name Feeds on Management Natural enemies Further reading 

Apple trunk borer Coryphodema tristis (Drury) Br, T No chemical control is available. 

Remove and burn infested plant 

material 

No information available De Klerk (1981) 

Myburgh & Basson 

(1960) 

Leaf roller moths Family Tortricidae     

Pear leaf roller 

 

 

 

 

 

 

False codling moth 

Epichoristodes acerbella (Walker) 

 

 

 

 

 

 

Thaumatotibia leucotreta (Meyrick) 

B, Bs, Bu, F, L 

 

 

 

 

 

 

B 

Monitor with pheromone traps. 

Remove infested vine water-

shoots at the beginning of the 

season. Inspect grape bunches for 

leaf roller larvae biweekly until 

harvest. Weed management  

 

Pheromone monitoring system. 

Orchard sanitation (Citrus) and 

biological control (T. 

cryptophlebia). Effectively 

controlled in peach and nectarine 

orchards using insecticides 

Parasitic wasps  

 

 

 

 

 

 

The hymenopteran egg parasitoid, 

Trichogrammatoidea cryptophlebia 

Nagaraja (Trichogrammatidae). Larval 

parasitoids (mostly wasps, but also a 

few flies). Orius bugs (Anthocoridae) 

prey on FCM eggs and assassin bugs 

(Reduviidae) can attack FCM larvae. 

Ants are also very effective predators 

of FCM pupae. Two virus species and 

two species of entomopathogenic fungi 

have also been recovered from FCM 

larvae 

Blomefield & Du Plessis 

(2000) 

De Villiers & Pringle 

(2007) 

De Villiers & Pringle 

(2008) 

 

Blomefield (1989) 

Daiber (1976) 

Moore & Kirkman 

(2008) 

Hawk moths Family Sphingidae     

Silver-striped hawk moth 

Arum hawk moth 

Large striped hawk moth 

Hippotion celerio (Linnaeus) 

Hippotion eson (Cramer) 

Hippotion osiris (Dalman) 

L 

L 

L 

Insecticidal control not warranted 

due to their sporadic occurrence, 

however, stomach and contact 

Eggs parasitized by parasitic wasps 

(family Trichogrammatidae). Larvae 

parasitized by parasitic flies (family 

Pinhey (1962) 
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Common name Scientific name Feeds on Management Natural enemies Further reading 

Grapevine hawk moth Theretra capensis (Linnaeus) L poisons are effective. Destroy 

larvae on site  

Tachinidae) and by pteromalid, 

braconid and ichneumonid wasps 

Forester moths Family Agaristidae     

Trimen’s false tiger Agoma trimenii (Felder) L No insecticides registered, 

however, table grape producers 

attempt control by targeting the 

larvae with insecticides 

registered for the control of other 

lepidopteran pests of grapevines, 

or with products containing 

Bacillus thuringiensis 

No information available Pretorius et al. (2012) 

Owlet moths Family Noctuidae     

African bollworm 

 

 

 

 

 

 

Tomato moth 

Helicoverpa armigera (Hübner) 

 

 

 

 

 

 

Spodoptera littoralis (de Boisduval) 

B, L, Sh 

 

 

 

 

 

 

L, Bs 

Chemical control available 

 

 

 

 

 

 

No insecticides registered for this 

pest. Hand collecting in small 

plots 

Egg and larval parasitoids (tachinid 

flies and parasitic wasps). Predators 

include ground and ladybird beetles, 

ants, earwigs, lacewings, anthocorid 

and mirid bugs, predatory mites and 

spiders. 

 

Parasitic tachinid flies and encyrtid, 

pteromalid, braconid and ichneumonid 

wasps 

De Villiers & Pringle 

(2007)  

De Villiers & Pringle 

(2008)  

Van den Berg et al. 

(1988) 

CRICKETS, KATYDIDS, 

GRASSHOPPERS, 

LOCUSTS 

ORTHOPTERA     

Katydids Family Tettigoniidae     
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Common name Scientific name Feeds on Management Natural enemies Further reading 

Krompokkel Plangia graminea (Serville) Bu, L, Sh No insecticides registered for this 

pest 

No information available  
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Aims and objectives 

The overall aim of the present study was to investigate the biology and ecology of P. graminea in 

vineyards of the Western Cape to contribute knowledge towards the formulation of a sustainable 

integrated pest management program, as well as to establish an appropriate monitoring system. 

 

The objectives of the study were: 

 

i) to identify the katydid species present in vineyards of the Western Cape and 

determine their pest status and assemblage structure (if more than one species) 

 

ii) to investigate the general biology, ecology and seasonal population dynamics of 

katydids in vineyards   

 

iii) to develop and establish an appropriate monitoring system for katydids based on the 

generic pest monitoring system developed by De Villiers & Pringle (2008); and  

 

iv) to identify natural enemies present in vineyards that could potentially be used as 

biological control agents against this pest 

 

 

The chapters that follow are presented as separate publishable papers and, for this reason, some 

repetition in the different chapters is unavoidable. 
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CHAPTER 2 

Identification of katydid (Orthoptera: Tettigoniidae: Phaneropterinae) species present in 

vineyards of the Western Cape - with notes on their morphology, eggs, and assemblage 

structure 

 

 

ABSTRACT 

Many katydid species in the subfamily Phaneropterinae (Tettigoniidae) are considered pests in 

agricultural systems due to their characteristic feeding behaviour – nearly exclusively 

herbivorous. Plangia graminea (Serville) is a sporadic pest in vineyards in the Western Cape. 

However, it is uncertain whether P. graminea is the only phaneropterine species causing 

damage to vineyards. Moreover, the taxonomic uncertainty of the P. graminea species complex 

begs the question whether more than one Plangia species is present, or if P. graminea is the 

only Plangia species present in the Western Cape. A survey of katydid species was performed 

in vineyards in the greater Stellenbosch region of the Western Cape. Katydids collected during 

the survey were identified. Three Phaneropterinae species were identified namely P. graminea, 

Eurycorypha lesnei Chopard and an unidentified Phaneroptera species. Plangia graminea 

appears to be the only Plangia species present; however, I suggest that P. unimaculata Chopard 

should be included in the taxonomic review of the P. graminea species complex. Plangia 

graminea and E. lesnei have the same general appearance upon first inspection and therefore I 

determined key morphological features that can be used to distinguish between the two species. 

Plangia graminea and E. lesnei differ in morphology with regards to their wings, male 

stridulatory files, their nymphs and their eggs.  

 

INTRODUCTION 

The family Tettigoniidae, commonly referred to as katydids, is the second largest group of 

Orthoptera (Gangwere et al. 1997). Their great diversity and wide range of biological habits 

have made them attractive study organisms in many fields of research including ecology, 

behaviour, physiology and functional anatomy (Bailey & Rentz 1990). This is especially true 

for the Phaneropterinae - the largest and most diverse subfamily of Tettigoniidae (Nagar et al. 

2015). Many genera of this subfamily are of uncertain status or in a state of confused taxonomy 
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(Ragge 1980; Rentz 2010), attracting the attention of many taxonomists (e.g. Brunner von 

Wattenwyl 1878; Bey-Bienko 1954; Ragge 1980; Mugleston et al. 2013; Heller et al. 2014; 

Kang et al. 2014; Hemp et al. 2015). 

 

Morphologically, phaneropterines are easily recognised by the length of their hind wings, 

which surpass the forewings (Heller et al. 2015). The shapes of their eggs are also diagnostic, 

with all eggs studied so far being flat [Bey-Bienko 1954; however see Massa (2013) for a 

unique modification], a feature probably adapted to oviposit their eggs into plant tissues (Heller 

et al. 2015). Phaneropterines are also known for their acoustic communication. Like most 

katydids, sound is produced through tegminal stridulation of the ‘file and scraper’ method (see 

Greenfield 1997). Since males produce calling songs to attract conspecific females, the calls 

are species-specific and the shape, length and number of teeth in the stridulatory file are unique 

for each species (Rentz 2010). The stridulatory files are now often figured in descriptions of 

new species or taxonomic revisions and are a useful tool for species determination (Heller et 

al. 2015). 

 

All known phaneropterines are herbivorous (Rentz 2010) and, therefore, many phaneropterine 

species are considered pests (e.g. Tutkun & Unal 1986; Bentley et al. 2002; Nyeko et al. 2002; 

Varela 2008; UC IPM 2015). Plangia graminea (Serville) is a sporadic pest in vineyards in the 

Western Cape, South Africa (Ferreira & Venter 1996; Allsopp 2012). However, the taxonomic 

status of the species is at present confused and it is possible that many species could constitute 

a P. graminea complex (Hemp 2013). A recent review of this complex has synonymized 

Plangia compressa (Walker) with P. graminea (Hemp et al. 2015). It is uncertain, however, 

whether P. graminea is the only katydid species present in vineyards in the Western Cape, or 

if there is perhaps a mélange of phaneropterine species causing damage in this area. By 

conducting a survey in vineyards located in the greater Stellenbosch region of the Western 

Cape, I aim to identify the katydid species present, and determine key morphological 

characteristics that can be used to distinguish between the species. I focused on the morphology 

of the wings, male stridulatory files, eggs and general habitus of nymphs of the katydids. 
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MATERIALS AND METHODS 

Species identification and assemblage structure 

Vineyards on three wine farms were surveyed for katydids from February – June 2013 (Table 

1). Katydids were caught and placed in zip-lock bags and transported back to the laboratory at 

Stellenbosch University. The animals were identified to species level by consulting relevant 

literature and taxonomic experts. The number of each species was counted before placing them 

in locally produced perspex vivaria (42 × 33 × 32 cm) to establish laboratory colonies. Katydids 

were provided with vine leaves and supplemented with lettuce to feed on. Photographs of key 

characteristics of species were taken and an ID-key was compiled that can be used for easy 

identification by growers. Eggs that were laid in the laboratory by the different species were 

reared to determine differences in nymph morphology. 

 

Table 2. Coordinates of wine farms surveyed for katydids from February – June 2013 in the 

greater Stellenbosch region of the Western Cape. 

Farm Coordinates 

1 
S 33° 52’ 13.74” 

E 18° 51’ 43.63” 

2 
S 33° 51’ 08.02” 

E 18° 56’ 17.21” 

3 
S 33° 57’ 14.00” 

E 18° 54’ 38.00” 

 

Wings and male stridulatory files 

Two species that morphologically resembled each other were differentiated based on Ragge 

(1980) and Hemp et al. (2015), and species identification was confirmed by Dr Piotr Naskrecki 

(Museum of Comparative Zoology, Harvard University). To further assist in the morphological 

differentiation between these two species, their wings were inspected in terms of venation and 

male stridulatory files. One pair of wings of each species was bleached to accentuate the wing 

venation. The wings were soaked in 10% potassium hydroxide (KOH) for approximately 2 

hours, and then rinsed with a 10% hydrogen chloride (HCl) solution. After the wings had dried, 

they were mounted between two glass microscope slides. The wings were photographed with 
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a LG G4 cellphone camera and the stridulatory files, along the underside of the left forewing, 

were photographed using a Leica MZ 16A automontage microscope with a Leica DFC 290 

fixed digital camera. The venation of the right wing was traced using Adobe Photoshop CC 

2015 (Adobe System Incorporated) and an INTUOS pro pen tablet (Model: PTH-651, Wacom 

Co. Ltd., Japan) to illustrate the veins more clearly. The lengths of the stridulatory files were 

measured as the linear distance between ends (Hemp et al. 2015), and the numbers of teeth 

were counted.  

  

Eggs  

 Imaging of eggs 

Eggs of the two species were removed from laboratory colonies. Eggs were mounted on 

aluminium stubs using double-sided adhesive conductive carbon tape. The eggs were then 

sputter coated with a thin layer of gold to make the surface electrically conductive. Images 

were taken using a Zeiss MERLIN FEG Scanning Electron Microscope (SEM), with an 

accelerating voltage of 3 kV, at the Central Analytical Facilities (CAF) laboratories, 

Stellenbosch University. The SEM images indicate the surface structure of the eggs. 

 Egg size measurements 

Eggs (N=25, for each species) were collected from laboratory colonies kept at Stellenbosch 

University. The eggs of two species were photographed using a Leica MZ 16A automontage 

microscope with a Leica DFC 290 fixed digital camera and Leica Application Suite (LAS) 

v.2.7. Software. Egg length (mm) and width (mm) were measured using the measuring tool 

provided by the LAS software. Length measurements were taken from the egg apices, and 

width measurements from the widest region of the eggs (Fig. 1). 
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Fig. 1. Eggs of (A) Species 1 and (B) Species 2, indicating position of length and width 

measurements (mm). 

 

RESULTS AND DISCUSSION 

Species identification and assemblage structure 

Three species in three different genera of the subfamily Phaneropterinae were found in 

vineyards in the greater Stellenbosch region of the Western Cape. One species in the genus 

Plangia Stål, Plangia graminea (Serville); another species in the genus Eurycorypha Stål, 

Eurycorypha lesnei Chopard; and a Phaneroptera sp. that could not be identified to species 

level due to the need for major taxonomic review of this genus. Plangia and Eurycorypha are 

closely related genera and have the same general appearance (Ragge 1980). Although many 

species have been described in these two genera, little or nothing is known about their biology 

and ecology (Hemp et al. 2015). Species within these two genera are fully alate and are 

therefore highly mobile. They also have the ability to adapt to a wide range of habitats (Hemp 

et al. 2015). Plangia and Eurycorypha are canopy dwellers and often coexist without 

interference (Hemp et al. 2015).  

 

Although Plangia and Eurycorypha have the same general appearance, Eurycorypha is a 

morphologically uniform genus and can be recognised from its head alone with a very broad 

fastigium verticis, frontogenal carinae and elongate eyes (Ragge 1980). Eurycorypha is the 

largest genus of African Phaneropterinae, and is also in need of taxonomic review (Ragge 1980; 

Hemp et al. 2013). The tenth abdominal tergite of Eurycorypha males is often characteristic 

and can be used for species identification (Ragge 1980). The tenth abdominal tergite of E. 

A B 
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lesnei males can be used for the identification of this species (Fig. 2) (see original description 

by Chopard 1935). E. lesnei has been recorded in the Gauteng and North-West Provinces of 

South Africa (Bazelet & Naskrecki 2014). This is therefore the first official account of this 

species in the Western Cape. 

 

 

Fig. 2. (A) Tenth abdominal tergite of a Eurycorypha lesnei male collected in a vineyard 

located in the greater Stellenbosch region of the Western Cape; (B) illustration of the tenth 

abdominal tergite of a E. lesnei male taken from the original description by Chopard (1935). 

 

For non-taxonomists, however, P. graminea and E. lesnei may look similar and could easily 

be confused without close inspection. Therefore, I have compiled an identification key that 

includes characteristics that can be used by growers to distinguish between the two species 

(Table 2). The Phaneroptera sp. is different in appearance compared to the other two species, 

with its hind wings extending further beyond the forewings in comparison with other 

Phaneropterinae (Ragge 1980). The wings are also more slender and elongate compared to P. 

graminea and E. lesnei (Fig. 3). 

 

B A 
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Fig. 3. Phaneroptera species found in vineyards in the greater Stellenbosch region of the 

Western Cape. Photo credit: Jaco Smit.
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Table 2. Identification key for growers: Most conspicuous characteristics used to distinguish between Plangia graminea and Eurycorypha lesnei 

adults in vineyards of the greater Stellenbosch region of the Western Cape. 

Characteristic Photo P. graminea E. lesnei 

 P. graminea E. lesnei   

Elytra spot (males) 

  

Dark brown spot on the 

stridulatory area of the 

tegmina. 

No spot present 

Female ovipositor 

  

Short, broad, strongly 

curved with orange – 

brown colour towards the 

apex 

Narrower, longer, less 

strongly curved, greenish 

yellow 

Abdomen (male and female) 

  

Bright blue, purple, 

reddish colouration on the 

dorsal side of the abdomen 

Abdomen pale yellowish-

green 

Tympanum (ear) on front leg 

  

Brown – black colouration 

on the inside of the 

tympanum 

Pale yellowish-green 

colour 
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It should also be noted that adult P. graminea display an array of different colour morphs 

ranging from green, brown, and pink (Fig. 4). Colour polymorphism is common in the 

subfamily Phaneropterinae (Castner & Nickle 1995), and similar colour morphs have been 

observed in the North American oblong-winged katydid, Amblycorypha oblongifolia (De Geer) 

(Crew 2013). Leaf-mimicking katydids use crypsis as a primary defense mechanism to avoid 

predation (Belwood 1990). The oval shaped wings of phaneropterines resemble leaves. The 

colour of the katydid should match the colour of the background substrate to increase the 

survival value of crypsis (Belwood 1990). Adaptive morphological colour change has been 

observed in the predatory Saginae (Kaltenbach 1990). These colour changes may even occur in 

adults (Kaltenbach 1990), with the ability to change colour diminishing only in the last weeks 

of adult life (Kaltenbach 1970). The colouration of the vineyard leaves also change from green 

to red, dark tan, orange or yellow in autumn, therefore, the different colour morphs observed in 

P. graminea could increase the value of crypsis as a primary defense mechanism in this species. 

 

 

Fig. 4. Colour polymorphism: (A) green, (B) brown, (C) pink; observed in Plangia graminea 

individuals found in vineyards of the greater Stellenbosch area, Western Cape. 

 

Plangia graminea and E. lesnei nymphs look unlike the adults, and also unlike each other – 

especially the first two instars (Fig. 5). It is therefore easier to distinguish between the two 

species during their immature stages. Nymphs of the Eurycorypha genus are characterised by 

their ant-like appearance and behaviour (Ragge 1980; Hemp et al. 2013). Nymphs of E. lesnei 

are no exception (Fig. 5 B). Records show that Eurycorypha nymphs live together with 

Camponotus and Myrmicaria ant species (Ragge 1980; Hemp et al. 2013). Anoplolepis spp. are 

widely distributed dominant ant species that forage in vineyards in the Western Cape (Addison 

& Samways 2000), therefore ant mimicry in E. lesnei nymphs could be a valuable defense 

mechanism to avoid predation from these ants. 

 

A C B 
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Fig. 5. Photos of a (A) Plangia graminea nymph, and a (B) Eurycorypha lesnei nymph, found 

in vineyards in the greater Stellenbosch region of the Western Cape. 

 

At the commencement of population surveys (February 2013) P. graminea was the most 

dominant species (Fig. 6). E. lesnei was found at lower abundance levels. Later in the season 

(April - May 2013) E. lesnei increased in abundance, and both P. graminea and E. lesnei 

populations decreased when the vineyards reached the period of winter dormancy (June – 

August 2013). The first Phaneroptera sp. was observed in May 2013, and another in June, 

therefore this species was not included in Fig. 6, due to poor representation.  

 

Fig. 6. Abundance of two adult katydid species, Plangia graminea and Eurycorypha lesnei, 

occurring in vineyards of the greater Stellenbosch area from February 2013 – June 2013. 
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Wings and male stridulatory files 

Venational patterns on the tegmen of adult katydids can also be used to identify species (Rentz 

2010). The venation on the forewing of both P. graminea and E. lesnei is typical of that of 

Tettigoniids (Fig.1, Chapter 1, Ragge 1955). This is, however, the first documentation of the 

wing venation for P. graminea and E. lesnei respectively. An archedictyon is present over the 

whole of the fore wing, except for parts of the stridulatory apparatus. The ambient vein lies 

along the margin of the wing. The costa (C) is submarginal, poorly developed and barely 

noticed in both species. The subcosta (Sc) of both species is well developed reaching the 

anterior margin near the tip of the wing. The radius (R) is situated immediately behind the 

subcosta. Sc and R are closely approximated in both species, which is often the case in leaf-

mimics (Ragge 1955). The radius divides into R1, which is unbranched; and Rs, a pectinately 

branched radial sector. R1 of P. graminea fades away near the tip of the wing, whereas R1 of E. 

lesnei curves down towards the anterior margin and reaches the tip of the wing. The media (M) 

is situated behind the radius and divides into two branches, MA and MP, near the base of the 

wing of both species. MA of both species reaches the posterior margin of the wing at 

approximately two thirds of the length of the wing. On the E. lesnei wing, MP fuses with Cu1a 

and reaches the posterior margin at the proximal third of the wing. For P. graminea MP and 

Cu1a is closely approximated, and MP reaches the posterior margin at the proximal third of the 

wing (Fig. 7). The wing venation appears to be a characteristic feature for both these species, 

and can be used for species differentiation in addition to characteristics described in Table 2.  
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Fig. 7. Bleached wings of (A) Plangia graminea ♀ and (B) Eurycorypha lesnei ♀; with 

illustrated venational patterns, collected in vineyards in the greater Stellenbosch region of the 

Western Cape. Vein nomenclature according to Ragge (1955). 

 

The stridulatory file is situated along the underside of the left tegmen, as in all tettigonioids 

(Heller et al. 2015). The number of teeth in phaneropterine stridulatory files varies (Heller et 

al. 2015). Some species of the genus Hemielimaea (Brunner von Wattenwyl) have up to 380 

teeth (Ingrisch & Gorochov 2007) while Elimaea rosea (Brunner von Wattenwyl) has only 12 

(range = 10-14) teeth (Ingrisch 2011). For P. graminea I counted 67 teeth (file length = 2.5 

mm), which matches the description by Hemp et al. (2015). This is the first description of the 

stridulatory file of E. lesnei, for which I counted 118 teeth and measured a file length of 2.6 

mm (Fig. 8). 

 

A 

B 
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Fig. 8. Male stridulatory files of two katydid species; (A) Plangia graminea and (B) 

Eurycorypha lesnei; collected in vineyards located in the greater Stellenbosch region of the 

Western Cape. 

 

Eggs 

The eggs of P. graminea and E. lesnei look very similar. The eggs are black, oval shaped and 

flat. Only when the eggs are studied under high magnification could distinctive subtle features 

be observed (Fig. 9). The appearance and position of the micropyle on the egg are often 

characteristic of most species. Micropyles are usually contained on the depressed dorsal area of 

the egg (Rentz 2010) (Fig. 9 C). The micropyle of E. lesnei eggs could not be located on the 

SEM photographs. The surface structure of E. lesnei eggs has an argyle pattern, while the 

pattern on P. graminea eggs appears hexagonal (Fig. 9 B, D). Moreover, there is a significant 

difference in the size of the eggs, with eggs of P. graminea being slightly longer and wider than 

eggs of E. lesnei (Fig. 10). 

 

A 

B 
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Fig. 9. SEM photographs of (A) Eurycorypha lesnei egg, (B) surface structure of E. lesnei egg, 

(C) Plangia graminea egg with position of micropyle encircled in red, (D) surface structure of 

P. graminea egg, (E) micropyle of P. graminea egg (Mag = 269 X). 

 

E 
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Fig. 10. Length and width measurements (mean ± S.E.) of Plangia graminea and Eurycorypha 

lesnei eggs collected in vineyards of the greater Stellenbosch region, Western Cape. 

 

CONCLUSION 

Plangia graminea was thought to be the only katydid pest in vineyards in the Western Cape; 

however, the present study identified two more phaneropterine species in vineyards in the 

greater Stellenbosch region, namely Eurycorypha lesnei and a Phaneroptera species. Several 

morphological characteristics have been identified in this study to differentiate between P. 

graminea and E. lesnei, due to their close resemblance. Key characteristics include the male 

elytra spot, the female ovipositor, colouration of the abdomen, and the tympana (ears) on the 

front leg. The venation on the fore wings of these two species was documented for the first time 

and can be used for species determination. Moreover, the male stridulatory files differ in size, 

shape, and number of teeth. The number of teeth in the stridulatory file of E. lesnei was recorded 

here for the first time, with 118 teeth. This study provides the first documentation of the size, 

shape, and surface structure of P. graminea and E. lesnei eggs. The eggs of P. graminea have 

a significantly longer length and width compared to E. lesnei eggs. It is unclear whether E. 
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lesnei and Phaneroptera sp. populations may also cause damage to vineyards. Since few 

Phaneroptera sp. were observed during this survey, it seems unlikely that this species occurs 

in high enough numbers to cause any substantial damage. Further monitoring is, however, 

required to determine the pest status of all three katydid species. Furthermore, I believe that P. 

unimaculata could also form part of the P. graminea complex and further taxonomic revision 

that includes this species should be conducted to further untangle the Plangia complex. 
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CHAPTER 3 

Monitoring of katydids (Orthoptera: Tettigoniidae: Phaneropterinae) in vineyards in the 

Western Cape, South Africa - with insights gained on their biology, ecology, and seasonal 

dynamics 

 

 

ABSTRACT 

In a complex of three phaneropterine species present in Western Cape vineyards, South Africa, 

Plangia graminea (Serville) is considered a sporadic pest. However, it is unknown whether 

two other species, Eurycorypha lesnei Chopard and a Phaneroptera species, also contribute 

towards the damage. Very little information is available on the biology and ecology of katydids 

in vineyards. Moreover, no monitoring method is currently available for this pest. A monitoring 

method was adapted from the generic sampling system for monitoring key arthropod pests in 

vineyards. Vineyards were monitored in the greater Stellenbosch wine production region of the 

Western Cape from January 2014 to March 2015. Katydid biology in terms of egg laying sites, 

life-cycle and development rates, and seasonal dynamics within vineyards was investigated 

during this study. Plangia graminea was found to be the primary katydid pest, constituting 

more than 80% of the katydid population present in vineyards monitored. Their eggs were laid 

within the bark of the vine. Nymphs hatched from eggs early in the vine growing season (mid-

September) and nymph-to-adult development lasted approximately 2 ½ months. Three 

nymphal instars were observed during this study. Optimum temperature for katydid 

development was 25°C. A peak in viable egg density was observed in winter (end-July) and 

katydid density reached a peak early-November. Viable eggs were found in vineyards 10 weeks 

prior to observation of katydids in vineyards. Viable eggs correlated well with the number of 

katydids observed after adjusting for this lag time (r = 0.404, P < 0.001). Therefore, egg 

monitoring could potentially be a surrogate monitoring method for this pest that would allow 

early prediction estimates of katydid populations in vineyards. 
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INTRODUCTION 

In the Western Cape of South Africa, Plangia graminea (Serville) is considered a sporadic pest 

in vineyards (Allsopp 2012). The nymphs feed on the young foliage of the vine, and later in 

the season, feeding can extend to fruit clusters (Ferreira & Venter 1996). Feeding by P. 

graminea is seldom of economic importance, but sporadic outbreaks may cause economic 

damage (Ferreira & Venter 1996; Allsopp 2012). In the past few seasons, since 2012, they 

appear to have caused a substantial amount of damage leading to great concern among the 

farmers in Western Cape vineyards (Allsopp 2012). For example, a vineyard block which 

typically yields 7-8 tons of grapes only yielded 3.5 tons after a katydid outbreak (farm manager, 

pers. comm., 2013). Very little is known about the biology and ecology of this species (Allsopp 

2012). It is also unknown whether P. graminea is the only katydid pest, or if other 

phaneropterine species present (Eurycorypha lesnei Chopard, and a Phaneroptera sp., Chapter 

2) also contribute to the damage. 

 

Katydids oviposit their eggs in and on a variety of substrates. The shape of the ovipositor is 

often indicative of the egg laying site. If the eggs are laid in plant material e.g. leaves or wood, 

the ovipositor is usually sickle-shaped. The eggs are laid during summer, develop over winter 

and nymphs hatch the following spring. This is the general life history of most katydids 

[reviewed in Rentz (2010)]. Based on the phenology of the vines in the Western Cape, with a 

winter dormancy period, I expect P. graminea to have the same life history with an 

overwintering egg stage. Depending on climatic conditions and the species, the nymphs moult 

anything from four to nine times (Rentz 2010). Adult katydids are fully alate, and the wings of 

phaneropterines (leaf-mimicking katydids) resemble oval leaves (Belwood 1990). 

Phaneropterines use crypsis as a primary defence mechanism to avoid predation, and the colour 

of their wings usually match the background substrate [Belwood 1990; e.g. Plangia 

multimaculata Hemp (Hemp et al. 2015), and P. graminea (present study, Chapter 2)]. The 

perfect camouflage of P. graminea within the vine canopy makes monitoring this pest a 

challenge. A generic monitoring system has been developed for key arthropod pests in 

vineyards (De Villiers & Pringle 2008); however, this sampling system does not accommodate 

katydid pests. 
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This study aims to determine whether P. graminea is the primary katydid pest in vineyards 

located in the greater Stellenbosch region of the Western Cape. Furthermore, I investigate their 

biology and ecology in terms of egg laying sites, life cycle, optimal temperature for 

development, and seasonal dynamics within vineyards. Since no monitoring method is 

currently available for this pest, recommendations on how to monitor this pest in vineyards are 

also proposed. This information seeks to provide baseline knowledge on the biology and 

ecology of katydids in this region, and further aims to provide valuable information for the 

development of an integrated pest management (IPM) strategy. 

 

MATERIALS AND METHODS 

Study sites 

The study was conducted on four farms situated in the Stellenbosch and Paarl wards found 

within the Stellenbosch district and Coastal region of the “Wine of Origin Scheme” in the 

Western Cape fruit production area of South Africa (Table 1). This region is typified by a 

Mediterranean climate with winter rainfall, and is a regional biodiversity hotspot (Born et al. 

2007). In the monitoring sites, cover crops grown between vine rows included Triticale v. 

Usgen 18 (Gramineae) (every second row) and natural weed cover (Fig. 1). Cover crops were 

planted during the wet winter months and killed off with herbicide during spring to prevent 

competition with vine roots.  Weeds were controlled as needed, depending on growth during 

the season, also with herbicides or mechanically. 
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Table 3. Location, block size, cultivar, and crop/weed cover of vineyards sampled for katydids in the greater Stellenbosch wine growing region 

of the Western Cape, South Africa. 

Farm Coordinates Elevation (m) Block size (ha) Vitis vinifera cultivar Weed cover/cover crops used 

1 
S 33º 52’ 13.74”  

E 18º 51’ 43.63” 
229 8.76 Sauvignon Blanc Triticale 

2 
S 33º 53’ 43.69” 

E 18º 53’ 32.95” 
256 0.39 Shiraz Triticale 

3 
S 33° 51’ 08.02” 

E 18° 56’ 17.21” 
250 5.57 Cabernet Sauvignon Triticale/natural weed cover 

4 
S 33º 52’ 19.68”  

E 18º 53’ 21.32” 
338 3.01 Sauvignon Blanc Mixture of Triticale, barley and grazing vetch. 
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Fig. 2. Some examples of vineyards used for monitoring in the greater Stellenbosch area of 

the Western Cape, with dates at which photos were taken (1) May 2013 (austral autumn), (2) 

October 2014 (austral spring), (3) November 2013 (early summer), (4) December 2014 

(summer). 

 

Seasonal monitoring 

The monitoring system of De Villiers & Pringle (2008) was adapted for katydids as described 

below, and was carried out from January 2014 to March 2015, following preliminary 

assessments (March 2013 – December 2013) to determine the most effective method. Five 

evenly spaced rows were selected in each vineyard block and in each row, four evenly spaced 

plots, consisting of approximately five vines between trellising posts, giving a total of 20 plots 

per block (De Villiers & Pringle 2008). Occasionally all sampling had to be postponed due to 

rain. Monitoring was performed according to the phenology of the vine and also the different 

life stages of the katydids. Katydids (adults and nymphs together), katydid-eggs and leaf 

damage were monitored as described in the following sections. Since katydids, especially the 

adults, are cryptic and nocturnal, I wanted to determine whether the number of eggs or leaf 

damage assessments could be used as surrogates for the number of katydids in a monitoring 

system. 

2 

4 3 

1 
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Eggs 

Eggs were sampled by stripping pieces of the bark off the two main cordon arms for 15 cm on 

either side of the main stem as well as 15 cm down the main stem (only one vine per plot i.e. 

1/5 vines per plot) (Fig. 2). Bark stripping is sometimes recommended as a practice to manage 

vine mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae) populations in 

vineyards and is not detrimental to vines (Daane et al. 2012). The pieces of bark were then 

taken back to the laboratory and searched for eggs. In winter months (June 2014 – August 

2014), during the dormant stages of the vine, sampling was conducted only once per month 

and only eggs were sampled from the cordons and main stem since neither leaves nor katydids 

were present during this stage. The eggs were carefully removed from the bark and were 

separated as being “viable” or “non-viable.” Eggs were classified as viable if they were fully 

intact and contained some substance within the egg which could easily be determined by gently 

pressing the egg with forceps. Non-viable eggs were damaged or empty shells either because 

they were not fertilised, parasitised or they were hatched eggs from the previous season. Eggs 

out of which katydids have hatched could be identified by the presence of a white skin left 

behind at the apex of the egg. 
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Fig. 2. Sampling technique used for monitoring bark for katydid eggs, indicating areas of the 

vines sampled. 

 

Laboratory reared eggs 

Viable eggs collected in vineyards during March 2013 – August 2013 were placed in incubators 

(MRC Ltd., Model LE-509, Holon, Israel) at five different temperatures (15, 20, 25, 30 and 

35°C) on 11 September 2013, to determine the optimal temperature for hatching and instar 

development. A total of 50 eggs were placed in plastic containers (11.5 × 7 cm) on top of 

absorbent paper together with damp pieces of cotton for humidity at each temperature. Eggs 

were inspected every 24 hours to see whether nymphs had hatched and the cotton wool was 

moistened daily. The number of nymphs hatched was noted daily and instars were observed to 

monitor their development. Katydids were provided with vine leaves and lettuce to feed on. 
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Katydid nymphs and adults 

After bud break (September 2014), the shoots and leaves became visible and these were 

inspected in addition to the cordons and main stem for the presence of katydid nymphs. At this 

stage the katydid nymphs were darkly coloured and easy to spot on the leaves (Fig. 12 B, 

Chapter 1). Physical katydid counts were made by visually searching through the leaves within 

the plot (five vines between the two trellis posts). This was performed by two people standing 

on either side of the row to prevent katydids being missed because they sheltered on the other 

side. Immatures were collected and placed in zip-lock bags. They were transported back to the 

laboratory where they were identified to species level and placed in locally produced perspex 

vivaria (60 × 40 × 70 cm) to establish a laboratory colony. Katydids were provided with vine 

leaves and lettuce to feed on. The laboratory colony was observed daily and notes on their 

biology, ecology and behaviour were made for qualitative purposes.  

 

When inflorescences developed into bunches and katydids reached adulthood, it was no longer 

practical to do a visual search for adult katydids between the leaves since leaf density was high 

and adult katydids were much more camouflaged and elusive compared to the younger instars. 

Adults were also largely nocturnal. A different method for counting adult katydids was 

therefore required. Adults were counted by shaking the vines three times (three pulses of 

continuous shaking) and counting the individuals that flew away or dropped to the ground - 

one person shaking and the other counting. This method proved to be more effective compared 

to visual inspections and night counts, as determined during preliminary assessments.  

However, individuals of different species could not be identified using this method. Night 

counts were done by following male calls, but this was found to be impractical as ideally the 

whole population needs to be sampled. Adult katydids were caught when possible and 

transported back to the laboratory to be identified to species level. They were then placed in 

vivaria to supplement the laboratory colony. 

 

Leaf damage 

To characterise katydid leaf damage, katydids caught in the field were placed in vivaria (60 × 

40 × 70 cm) containing potted vines on which they were allowed to feed. No other insects were 

present in the vivaria. The leaf damage was carefully observed and compared to the damage 
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caused by another key insect pest, the Banded Fruit Weevil Phlyctinus callosus (Schoenherr) 

(Allsopp et al. 2015). Weevils were placed in a container with no other insects and intact vine 

leaves. The leaves were inspected for damage after one day and compared to katydid-damaged 

leaves. 

 

In field sites, within each plot, a leaf damage assessment was conducted by randomly selecting 

10 leaves within the plot; 5 leaves in the lower region and 5 leaves in the upper region of the 

leaf canopy. The leaves were inspected and the presence or absence of possible katydid damage 

was noted. Rows and plots were chosen at random with each sampling effort to avoid 

resampling the same vines and plots as much as possible. Leaf assessments were conducted 

from January 2014 to May 2014. From May onwards the quality of the leaves rapidly 

deteriorated until leaf senescence and it became difficult to distinguish katydid damage from 

other damage. Leaf assessments recommenced from October 2014 (when damage was first 

observed in the new season) to March 2015.  

 

Statistical analysis 

A Probit-analysis, run in R version 3.3.1 (R Core Team 2013), was performed to determine the 

LD50 and LD90 values of katydids reared at different temperatures. The temperatures were 

regarded as treatments and the number of days was considered to be the dose (i.e. survivorship 

was the dose response at different temperatures). Probit analyses are often used to assess insect 

mortality related to temperature (Tang et al. 2000). The correlation between the total number 

of eggs and number of katydids; the number of viable eggs and number of katydids; and 

percentage leaf damage and number of katydids was determined by constructing 2-D 

scatterplots using STATISTICA v.13.2. (StatSoft, Tulsa, OK, USA). A Cross-correlation 

Function was constructed to determine the lag time between the number of viable eggs and the 

number of katydids observed using STATISTICA v.13.2. After adjusting for the lag time 

between viable eggs and katydids, the correlation between the number of viable eggs (+ lag 

time) and the number of katydids observed was reconstructed using a 2-D scatterplot. 
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RESULTS AND DISCUSSION 

Plangia graminea was the most abundant species, and accounted for ca. 82% of the katydids 

collected in vineyards. Plangia graminea is therefore the primary katydid pest in the vineyards 

monitored during this study. Eurycorypha lesnei and the Phaneroptera sp. were present in low 

numbers, and accounted for ca. 14% and 4%, respectively. Therefore, the latter two species do 

not appear to be pests at present. 

 

Eggs 

The eggs were typically oval shaped and black (Fig. 3, A). The eggs were predominantly laid 

in rows or clumps within the bark of the vine (Fig. 3, B), but may also be placed between 

epidermal layers of vine leaves or grass blades (Fig. 3, C & D). Females make a cut into the 

edge of the leaf with their serrated, sickle-shaped ovipositors and deposit their eggs into the 

tissue between the upper and lower surface tissue of the leaf. Eggs were also observed in the 

bark of surrounding pine trees, and at the base of pine needles on branches. In the laboratory, 

eggs have been laid in plastic, mesh fabric, duct tape and glue residue (own observations). 

 

 

Fig. 3. (A) Example of a hatched Plangia graminea egg, and P. graminea eggs laid in (B) the 

bark of the vine, (C) the edge of a vine leaf, and (D) a grass blade; found in the greater 

Stellenbosch region, Western Cape. 

A B 

C D 
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Laboratory reared eggs 

Katydids hatched at all temperatures except at 30 and 35ºC (Fig. 4). Nymphs hatched earliest 

(17 September 2013 – 2 October 2013) at 25ºC, and latest at 15ºC (2 October 2013 – 31 October 

2013). Of a total of 50 eggs (per temperature treatment) that were placed in the incubators at 

the start of the trial, only three nymphs hatched at 15 and 25ºC. Four nymphs hatched at 20ºC; 

however, one instar (hatching date, 2 October 2013) perished after 9 days due to a handling 

error and was therefore excluded from Fig. 4. Instar development was suboptimal at 15ºC, with 

only one individual reaching second instar. Although 15ºC was unsuitable for adult 

development, one individual survived to 1st instar and another reached 2nd instar before they 

perished. One of the three hatchlings at 15ºC perished after only 6 days, possibly indicating 

that this temperature is not favourable for katydid development, although a larger sample size 

would be necessary in order to determine this. Although only 3 moults were observed (i.e. 3 

instars) (Fig. 4), it is possible that there are more instars, since the nymphs consumed their 

exuviae after moulting. Therefore, a moulting event could have been overlooked due to the 

exuviae being consumed before inspection. In future, nymphs could be marked with paint on 

the thorax to assist detecting each moult. For Ruspolia differens (Serville) five and six instars 

were recorded for males and females, respectively (Thornton & Brits 1981), and five nymphal 

stages for East African Eurycorypha species (Hemp et al. 2013). At 20ºC, the total duration of 

the life cycle was 134 days (N=1) and the total adult duration was 68 days. At 25ºC the total 

adult life duration was 61 days, bringing the total duration of the life cycle to 140 days (N=1) 

(Fig. 4). Similar development times were observed for R. differens individuals reared under 

laboratory conditions in South Africa; with the total average duration of the life cycle being 

147 days and the adult life duration 72 days (Brits & Thornton 1981). 
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Fig. 4. Hatching dates and developmental rates for Plangia graminea reared at different temperatures (15, 20, 25ºC) in incubators at Stellenbosch 

University, Western Cape. Eggs were collected in vineyards located in the greater Stellenbosch region of the Western Cape from March – August 

2013.
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A probit analysis indicated that 20ºC had the highest LD50 (107.915 ± 10.265 S.E), followed 

by 25ºC (99.975 ± 11.682 S.E.). However, 25ºC had the highest LD90 (152.84 ± 28.991 S.E.), 

followed by 20ºC (LD90 = 148.08 ± 21.686 S.E.) (Table 2, Fig. 5). Development was stunted 

at 15ºC and no katydids emerged at 30 and 35ºC. Therefore, the optimum temperature for 

katydid emergence and development in the laboratory was between 20-25ºC. However, the 

extremely low success of hatching and successive moulting indicate that the physiological 

needs of the katydids were not met under these laboratory conditions, and that these results 

were inconclusive. As probit analysis is most often used to assess insect mortality in high/low 

temperature post-harvest storage assessments (e.g. Tang et al. 2000), this may not be the most 

effective method to assess life table parameters.  Temperature-dependant development models 

(Briere et al. 1999) are more appropriate for this purpose, but could not be used in the current 

study due to lack of a viable laboratory colony with sufficient sample sizes. Suitable insect-

rearing methods for P. graminea are required to acquire such data. 

 

Table 2. LD50 and LD90 values for Plangia graminea reared at different temperatures in 

incubators at Stellenbosch University, Western Cape. 

Temperature (ºC) LD50 ± S.E. LD90 ± S.E. 

15 62.272 ± 10.883 115.03 ± 26.253 

20 107.915 ± 10.265 148.08 ± 21.686 

25 99.975 ± 11.682 152.84 ± 28.991 

30 0 0 

35 0 0 
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Fig. 5. Survivorship curve for Plangia graminea individuals reared at different temperatures 

(15, 20, 25ºC) in incubators at Stellenbosch University. 

 

Katydid nymphs and adults 

The seasonal cycle of P. graminea and E. lesnei is graphically represented for eggs, nymphs 

and adults in Fig. 6. The collective representation of the two species, P. graminea and E. lesnei, 

was necessary since it was difficult to distinguish between the adults of the two species using 

the counting method of shaking the vines. However, P. graminea was identified as the primary 

katydid pest. Moreover, at times when nymphs and adults were present at the same time, both 

stages were counted without distinction and, therefore, katydid density refers to both life stages. 

The reason for not making the distinctions between P. graminea and E. lesnei, and between 

nymphs and adults, was that I wanted to customize a monitoring method that could easily be 

adopted by growers. 
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Mating was first observed in adult katydids in late December (personal observation). Egg 

laying followed soon after, and continued until late austral-summer before vineyards entered 

the period of winter dormancy. In late April 2014 the leaves started to drop, and the remainder 

of the leaves were dry and brittle. Katydids were still present during May 2014, and although 

most were adults, a couple of late instars were also observed during this time. From the end of 

May 2014, katydid numbers dropped to zero and from June 2014 to end of August 2014 there 

were no leaves present. Katydid eggs were largely present throughout the year. The eggs 

overwintered and represented the new generation of nymphs for the next season. Plangia 

graminea seemed to have only one generation per year, which appears to be the case for most 

species in temperate regions (Gwynne et al. 1988; Rentz 2010). 

 

Katydid nymphs hatched in spring, early in the season (mid-September 2014) at the onset of 

bud break. The nymphs developed and predominantly fed on the young foliage of the vine. 

From observations made in the laboratory, only three instars could be distinguished, as was 

also found during egg incubation experiments at different temperatures (Fig. 4). Populations 

reached a peak in early-November 2014, followed by a drastic decrease during December 2014. 

The decline in population numbers may have been due to pesticide treatments in an attempt to 

supress other pest populations e.g. weevils, or extreme heat conditions experienced during this 

time (farm managers, pers. comm.). Adult katydids were first observed middle to late-

November 2014, approximately 2 ½ months after the first instars were observed in vineyards, 

which corresponded to the time passed from first instar to adult observed in laboratory 

observations (Fig. 4). Adult katydids, being cryptic in vineyards, may also have attributed to 

lower counts during December 2014, as observers’ eyes were still untrained and they were 

more difficult to spot. After mid-December 2014 most katydids observed were adults (> 70% 

in Dec; > 80% in Jan 2015). The adults remained in the vineyard for the remainder of the 

season. 
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Fig. 6. Mean density (± SE) of katydids (Plangia and Eurycorypha spp. combined) and viable 

eggs in four vineyards located in the greater Stellenbosch area from January 2014 to March 

2015. Grey zone represents the dormant period (no leaves) while the arrow indicates bud break. 

 

Since katydids are cryptic and difficult to spot, it could be more feasible to monitor katydid 

eggs instead of katydid adults. For this to be a practical surrogate monitoring method, however, 

there should be a significant correlation between the number of katydids observed and the 

number of katydid eggs observed (specifically viable eggs since only viable eggs will 

contribute to the next season’s katydid population). However, simply comparing the number 

of viable eggs against the number of katydids gave a poor correlation (r = -0.063, P = 0.168). 

This is to be expected since there is a lag period from the time eggs are laid to when katydids 

are observed. A cross-correlation to determine the lag period between viable eggs and katydids 

indicated a lag period of 5 sampling intervals, i.e. 5 two-week intervals (10 weeks), between 

the time viable eggs were observed and when katydids were observed in the vineyards (Fig. 7). 

By shifting the number of viable eggs 10 weeks ahead, the peak in viable egg density 

corresponded with the peak in katydid density observed in vineyards (Fig. 8). This increased 

the correlation between the number of viable eggs and the number katydids to a significant 

level (r = 0.404, P < 0.001) (Fig. 9). There was also a significant correlation between the total 
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number of eggs (viable and non-viable combined) and the number of katydids, without having 

to adjust to the lag period (r = 0.233, P < 0.001). Egg monitoring could, therefore, potentially 

be used to predict katydid populations in vineyards because the association was found to be 

significant but should be supplemented with further visual monitoring of nymphs and adults as 

the correlation was found to be poor. 
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Fig. 7. Cross-Correlation Function determining the lag time between viable eggs and the 

number of katydids observed in vineyards located in the greater Stellenbosch area of the 

Western Cape. The red box designates the lag time, measured in the number of biweekly 

sampling intervals. 
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Fig. 8. Mean katydid density (± S.E.) (Plangia and Eurycorypha spp., adults and nymphs) and 

the adjusted viable egg density (+ 5 sampling intervals, based on the Cross-Correlation 

Function) in vineyards located in the greater Stellenbosch area from March 2014 to March 

2015.
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Fig. 9. Scatterplot illustrating the relationship between the mean number of katydids (Plangia 

and Eurycorypha, adults and nymphs) and the number of viable eggs observed (Plangia and 

Eurycorypha), after lag time adjustment (+ 5 sampling intervals), in vineyards located in the 

greater Stellenbosch region of the Western Cape. 

 

Leaf damage 

The immature stages of katydids feed on young leaves of the vine and later, after fruit set, the 

feeding can extend to young fruit clusters (Ferreira & Venter 1996). Adults have also been 

observed feeding on ripe berries (own observations, Fig. 10, D). The resultant leaf damage 

looks like that of Banded Fruit Weevil, P. callosus, damage (Ferreira & Venter 1996; and 

present study), especially leaf damage caused by immature katydids. Both katydids and weevils 

can start feeding on the leaf from anywhere (Fig. 11), and do not necessarily need to feed from 

the edge of the leaf inwards, contrary to the comment made by Allsopp (2012) that “unlike 

snoutbeetles, which typically feed from the edge of the leaf inwards, long-horned grasshoppers 

will start eating the leaf from anywhere.” However, the larger holes in the centre of the leaf 

and the greater extent of feeding from the edge of the leaf could be used to distinguish adult 

katydid damage from weevil damage (Fig. 11). However, damage caused by katydid nymphs 

looks very similar to that of weevil damage, and this may therefore not be a practical 

monitoring measure for the grower. 
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Fig. 10. Feeding damage caused by Plangia graminea in vineyards of the greater Stellenbosch 

area. (A) Adult P.  graminea feeding from the edge of the leaf inwards, (B) typical leaf damage 

in a vineyard, (C) adult P. graminea damage, (D) adult P. graminea feeding on ripe berries 

[Photo: Allsopp (2012)]. 

 

 

Fig. 11. Comparison between (A) adult Plangia graminea leaf damage and (B) Phlyctinus 

callosus damage on grapevine leaves in vineyards of the greater Stellenbosch area, Western 

Cape, South Africa. 
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Leaf damage was positively and significantly correlated with the number of katydids observed 

(r = 0.222, P < 0.001; Spearman r = 0.23, p < 0.01) (Fig. 12). However, the correlation was 

found to be poor. The actual number of katydids present could have been much higher than the 

number of katydids observed, due to the cryptic and elusive nature of katydids. Moreover, leaf 

damage could potentially have been overestimated in the field due to the similarity between 

katydid and weevil damage (observed during this study), and snail damage (Ferreira & Venter 

1996). 
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Fig. 12. Scatterplot illustrating the relationship between the mean number of katydids (Plangia 

and Eurycorypha) and the percentage leaf damage observed on farms located in the greater 

Stellenbosch region of the Western Cape. 
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CONCLUSION 

Plangia graminea was found to be the dominant katydid species present in Western Cape 

vineyards and is, therefore, the primary katydid pest. This study provides the first information 

on the basic biology and ecology of this pest. This is also the first record to determine the 

overwintering strategy of P. graminea in vineyards, determining that katydids overwinter as 

eggs during the winter months. Temperature appears to be an important environmental factor 

influencing the development of katydids. The optimum temperature recorded in the laboratory 

for katydid development was 25°C. Katydid eggs appear to be a good surrogate for katydid 

monitoring. Viable eggs were significantly and positively correlated with the number of 

katydids observed after adjusting for a 10-week lag time. The 10-week lag time could 

potentially allow early prediction estimates of katydid populations within vineyards, allowing 

growers valuable time to plan their management strategies in advance. In comparison with egg 

monitoring, leaf damage assessments appear to be a less reliable monitoring tool and is not 

recommended here due to potential overestimation of damage due to other pests (notable the 

weevil P. callosus). Monitoring of nymphs, separately, could be investigated further as they 

are easily recognisable and different in appearance from other similar katydids. It is strongly 

recommended that future research focus on establishing reliable and effective rearing methods 

for P. graminea, as a laboratory colony allows for more detailed temperature dependent 

development models and life tables to be established. As this katydid is a sporadic pest in South 

African vineyards, research potential without laboratory colonies is limited. 
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CHAPTER 4 

Physiological ecology – the metabolic costs of sexual signalling in the chirping katydid 

Plangia graminea (Serville) (Orthoptera: Tettigoniidae) are context dependent: 

cumulative costs add up fast1 

 

 

ABSTRACT 

Katydids produce acoustic signals via stridulation, which they use to attract conspecific females 

for mating. However, direct estimates of the metabolic costs of calling to date have produced 

diverse cost estimates and are limited to only a handful of insect species. Therefore, in this 

study, I investigated the metabolic cost of calling in an unstudied sub-Saharan katydid, Plangia 

graminea. Using wild-caught animals, I measured katydid metabolic rate using standard flow-

through respirometry while simultaneously recording the number of calls produced. Overall, 

the metabolic rate during calling in P. graminea males was 60% higher than the resting 

metabolic rate (0.443±0.056 versus 0.279±0.028 ml CO2 h
-1 g-1) although this was highly 

variable among individuals. Although individual call costs were relatively inexpensive 

(ranging from 0.02 to 5.4% increase in metabolic rate per call), the individuals with cheaper 

calls called more often and for longer than those with expensive calls, resulting in the former 

group having significantly greater cumulative costs over a standard amount of time (9.5 h). 

However, the metabolic costs of calling are context dependent because the amount of time 

spent calling greatly influenced these costs in my trials. A power law function described this 

relationship between cumulative cost (y) and percentage increase per call (x) (y=130.21x-1.068, 

R2=0.858). The choice of metric employed for estimating energy costs (i.e. how costs are 

expressed) also affects the outcome and any interpretation of costs of sexual signalling. For 

example, the absolute, relative and cumulative metabolic costs of calling yielded strongly 

divergent estimates and any fitness implications depend on the organism’s energy budget and 

the potential trade-offs in allocation of resources that are made as a direct consequence of 

increased calling effort. 

 

                                                
1This chapter was submitted and accepted in Journal of Experimental Biology 
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INTRODUCTION 

Calling is a conspicuous way of attracting a potential mate and is thus thought to be associated 

with elevated energy usage and evolutionary fitness costs (Symes et al. 2015). These signals 

have associated metabolic costs that are influenced by sexual selection and constrained by 

abiotic and biotic factors (Greenfield 1997). Surprisingly little information is available, 

however, on the energetic costs of calling, and there are few firm theoretical expectations 

(White et al. 2008). The wing muscles used by tettigoniids during stridulation are of the very 

fast synchronous type and in some species the wing stroke (WS) frequency during stridulation 

may even exceed that of flight (Stevens & Josephson 1977). Based on the high frequency of 

wing muscle contraction during stridulation, one would expect calling in these insects to incur 

a pronounced metabolic cost (Heath & Josephson 1970). This expectation has been confirmed 

for three trilling katydid species - Neoconocephalus robustus (Scudder 1862), Euconocephalus 

nasutus (Thunberg 1815) (Conocephalinae) (Stevens & Josephson 1977), and Mecopoda sp. 

(Erregger et al. 2017) - through increased oxygen uptake rates (an indirect measure of 

metabolic rate, MR) and a rise in thoracic temperature during stridulation (Heath & Josephson 

1970; Nespolo et al. 2003; Erregger et al. 2017). Empirical evidence from other Orthoptera 

indicate diverse estimates of energy expenditure, typically measured in terms of indirect 

calorimetry (either as CO2 production or O2 consumption rates, or converted to MR) during 

acoustic signalling (e.g. Prestwich & Walker 1981; Kavanagh 1987; Prestwich & O'Sullivan 

2005; White et al. 2008; Erregger et al. 2017). However, the cost of work performed depends 

on the elastic contribution to mechanical efficiency. Because insect muscle efficiency depends 

on its resilin content and the role of elastic tension in the cuticle (Dickinson & Lighton 1995), 

any predictions of direct metabolic costs might be influenced by the relative amount of 

elasticity in a system and this may, in turn, vary in a species-specific manner (e.g. Burrows et 

al. 2008; reviewed in Qin et al. 2012). It is therefore unclear how metabolically expensive 

calling activity is, and particularly what the fitness consequences of elevated MR might be if 

raised a few percent above baseline resting levels. Regardless, this is particularly significant 

for understanding the evolution of calling and sexual selection from theoretical and empirical 

perspectives (e.g. White et al. 2008; Erregger et al. 2017; reviewed in e.g. Gerhardt & Huber 

2002). 
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Signalling to attract conspecifics is predominantly a male feature in the majority of Orthoptera 

species, owing to the increased risk of predation and higher reproductive investment for 

females (Kavanagh 1987; Bailey 1991; Riede 1998; Korsunovskaya 2009). In katydids, sound 

is produced by tegminal stridulation, by specialised forewings (tegmina) that are rapidly 

opened and closed. During the closing stroke, a file of minute teeth (pars stridens) along the 

underside of the left forewing moves over a hardened scraper (plectrum) on the upper surface 

of the right forewing. Each individual tooth strike across the plectrum causes an associated 

membrane (mirror) surrounded by a sclerotised U-shaped frame to resonate and amplify sound 

(Greenfield 1997). Thus, a complete cycle of the wing opening and closing (one WS) can 

generate a single chirp, comprising of multiple pulses of sound, which are the smallest 

amplitude modulations within signals (Bailey et al. 1993).  Wing stroke rates (WSRs) may 

vary from a few to several hundred per second, and are characteristic in each species for a given 

temperature (Prestwich & Walker 1981). If a few WSs (i.e., chirps) are followed by a pause 

and then more WSs, the calling pattern is referred to as chirping. However, if many WSs occur 

continuously, the calling song is termed a trill (Gerhardt & Huber 2002). Katydids have a very 

wide range of calling strategies in terms of the temporal structure of the call (Bailey et al. 

1993). Calls may be nearly continuous, such as in many coneheads (Tettigoniidae: 

Conocephalinae; Josephson 1973; Counter 1977), or extremely brief sounds, as in the chirps 

of some phaneropterines (Tettigoniidae: Phaneropterinae; Heller 1990). 

 

For many invertebrate species, the energy expenditure during calling may approach or even 

surpass the level reached during other activities (Prestwich 1994). Calling can therefore expend 

a large proportion of the insect’s total daily energy budget, especially if maintained over a long 

period (Prestwich & Walker 1981). Moreover, the cost of calling is additional to other 

metabolic or fitness costs that can be involved during mating (Calow 1979). For example, the 

production and exchange of a nuptial gift in the form of a spermatophylax is an important 

reproductive strategy in katydids (Lehmann 2012). As reproductive investment by the male 

entails more than just the donation of its sperm, any metabolic cost of calling could 

energetically constrain its mating behaviour (Arak 1983). Furthermore, because reproductive 

success of singing insects is closely related to their calling success, they are under selective 

pressure to optimise their calling efficiency (Bennet-Clark 1998). If females prefer males that 

invest more energy in their calls, their genetic material will spread through the population and, 

consequently, result in greater fitness (Bailey et al. 1993). If this is indeed the case, it becomes 
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important to determine a robust estimate of the metabolic costs or energetic consequences of 

calling and understand the contexts in which trade-offs might be made (Symes et al. 2015). 

 

Previous studies examining the metabolic costs of calling in Orthoptera have mainly focused 

on a handful of species of crickets and mole crickets, most of which call relatively continuously 

(Prestwich & Walker 1981; Kavanagh 1987; Lee & Loher 1993; Prestwich & O’Sullivan 2005; 

White et al. 2008). To my knowledge, the metabolic cost of calling has only been investigated 

in four katydid species; of which three produce trilling calls (Stevens & Josephson 1977; 

Erregger et al. 2017). In the fourth species, Bailey et al. (1993) focused on the energetic costs 

of calling in the chirping katydid, Requena verticalis (Walker 1869) (Listroscelidinae). The 

present study aims to add to Bailey et al. (1993)’s findings, and the global database across taxa, 

by investigating the metabolic cost of calling in an unstudied sub-Saharan katydid, Plangia 

graminea (Serville 1838) (Phaneropterinae) (Hemp et al. 2015), which also produce chirping 

calls. I predict that, as in the case of the other orthopterans, there is a cost associated with 

calling; but, as found with R. verticalis, the cost is likely to be relatively low compared with 

the costs observed in trilling katydids. However, I also aim to assess diverse metrics of calling 

costs and how these might influence understanding of the costs. I therefore specifically 

compare the estimates of calling costs in absolute, relative and cumulative terms, including 

consideration of the power (dB) of sound produced. To better understand the intrinsic 

variability of my estimates, I aimed to perform a comprehensive repeatability assessment of 

metabolic rates and calling cost estimates across my trials for controlled and more variable 

conditions, using temperature in the latter case. My final study objective was to compare the 

relative amounts of these costs between different activity states by interspecific comparison of 

literature estimates to date (following e.g. White et al. 2008) in both ordinary and 

phylogenetically informed statistical approaches.  

 

MATERIALS AND METHODS 

Animals 

The metabolic cost of sound production was measured in adult male P. graminea katydids 

(N=11). All individuals were collected in vineyards surrounding Stellenbosch in the Western 

Cape of South Africa and were kept in vivaria with ad libitum access to lettuce, grapevines and 
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water. The vivaria were kept at room temperature (25±5ºC) in an air-conditioned laboratory at 

Stellenbosch University. 

 

Experimental design 

Experimental trials were conducted during late austral summer. Experiments were typically 

run within two weeks of collection but at randomised start dates to minimise any laboratory 

acclimation effects (e.g., Terblanche et al. 2004). Combined respirometry and calling trials 

were started just before dusk and continued throughout the night to cover the period when 

katydids usually sing in the field (Stevens & Josephson 1977), except for two individuals on 

which trials were conducted during the day and night. Only one experimental trial consisting 

of a single male katydid was conducted per night, and each male was only tested once. 

Individuals were randomly selected from the vivarium and weighed to the nearest 0.1 mg using 

a digital microbalance (Model MS104S, Mettler Toledo, Greifensee, Switzerland) before and 

after their metabolic rates were measured. After each trial, the male was placed in a designated 

vivarium for used males to prevent it from being selected more than once. 

 

Each experimental respirometry and calling trial consisted of three phases: (1) initial baseline 

period, (2) respirometry and calling period with a katydid and (3) second baseline period. 

During the baseline periods, respirometry measurements were taken without a katydid for ~ 

10-min to measure potential instrument drift and to allow for baseline corrections, which were 

typically negligible. During the respirometry and calling period, a katydid was placed inside 

the 50 ml respirometry cuvette coupled to an open flow-through system. Respirometry 

consisted of simultaneous measurements of CO2 and H2O production using a standard flow-

through, push-system respirometry set-up. Compressed air, generated by an aquarium pump, 

was passed through sodalime and Drierite (W. A. Hammond Drierite Co., Xenia, OH, USA) 

scrubber columns to remove CO2 and H2O. Scrubbed air was fed through a flow control valve 

(Model 840, Side-Trak, Sierra Instruments, Monterey, CA, USA) and regulated at a fixed rate 

of 200 ml min-1 using a mass flow control unit (Sable Systems International, MFC-2, Las 

Vegas, NV, USA). Thereafter, air flowed through the zero channel of an infra-red gas analyser 

(Li-7000, Li-Cor, Lincoln, NE, USA) and through the cuvette containing the katydid. Air 

leaving the cuvette then entered the gas analyser through another channel, resulting in 
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differential recordings of insect CO2 and H2O production logged at 1 Hz. The output of the 

analyser (VCO2 and VH2O) was recorded via Li-7000 software on a standard desktop computer. 

Data were exported as text files into a respirometry software program (Expedata Data 

Acquisition & Analysis Program, Sable Systems International, Las Vegas, NV, USA) for 

further analysis.  

 

Air temperature inside the respirometry cuvette was recorded at 1 Hz using a 36-standard wire 

gauge Type T thermocouple connected to a PicoLog TC-08 digital recording logger, with data 

captured by the standard PicoLog software (PicoLog for Windows 5.20.3, Pico Technology, 

UK). Temperature recordings were temporally synchronised with respirometry and audio 

recordings. Animal activity was monitored using an infrared activity detector (AD-2 Activity 

Detector, Sable Systems International, Las Vegas, NV, USA). The cuvette containing the insect 

was wrapped with aluminium foil to improve activity detector readings, and placed inside an 

insulated cooler box container with a sound recording device. Temperature was allowed to vary 

(i.e. not strictly controlled) during trials, as constant temperature might not have encouraged 

natural calling to be induced. 

 

Calls produced during experimental trials were acoustically monitored and recorded in real-

time using a Song Meter wildlife recorder (Model SM2+, Wildlife Acoustics, Inc., Concord, 

MA, USA) fitted with an omnidirectional weatherproof acoustic microphone for SM2 

[sensitivity: -36±4dB (0dB=1V/pa@1KHz), frequency response: 20Hz–20 000Hz; Model 

SMX-II, Wildlife Acoustics, Inc., Concord, MA, USA] directly onto the left channel of the 

recorder. Sound recordings were made at a sample rate of 96kHz (16-bit resolution). The 

recorder was pre-amplified to 48dB gain and digitally configured to an additional 12dB gain. 

Sound recordings were made continuously in 10-min intervals, with no gaps between 

consecutive recordings. For all experimental trials, the start and end-times of sound recordings 

were synchronised with the start and end-times of MR measurements. The total duration of the 

baseline, respirometry and calling periods were recorded for each experimental trial.  
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Respirometry and temperature data processing and analysis 

In Expedata, CO2 and H2O data were transformed from ppm to ml CO2 h
-1 and ppt to mg H2O 

h-1 respectively. Using the marker tool in Expedata, the data were divided into the two baseline 

periods and the intermediate 10-min time intervals that correspond with the acoustic recording 

intervals per individual. H2O data were discarded as the lag times were too large to analyse 

meaningfully. After correcting for baseline drift, the mean CO2 production values for each 10-

min interval were extracted for each individual. CO2 production rate (VCO2; ml CO2 h
-1) was 

then converted to oxygen consumption rate [VO2; ml O2 h
-1) and to microwatts (µW) assuming 

a respiratory quotient (RQ) of 0.84 (Lighton 2008) and an oxyjoule equivalent of 20.3 J ml-1 

(Lighton et al. 1987). Resting metabolic rates (RMRs) were considered to be the lowest MR 

10-min interval recorded per individual, which was confirmed as intervals without activity by 

visually inspecting the activity detector recordings. Katydids were quiescent for the majority 

of time during the respirometry trials, and when small activity bouts were observed these never 

coincided with calling periods. Calling metabolic rates (CMRs) were considered to be the MR 

recorded during the 10-min interval with the highest calling rate for every individual. 

Temperature data of each individual were exported from the PicoLog software and the mean 

temperature was calculated for all 10-min intervals that correspond to the audio and 

respirometry recordings. 

 

Acoustic data processing and metrics of calling costs 

The Song Meter recorder stored each 10-min audio recording as individual uncompressed 

“.WAV” files logged to a 32 GB memory card by the Song Meter device. All audio files were 

analysed in Raven Pro (v. 1.5; Cornell Lab of Ornithology, Bioacoustics Research Program, 

NY, USA) and extraneous low-frequency sounds were filtered out using the band filtering 

feature [specifically, Raven uses the Window Method for FIR filter design; see Oppenheim et 

al. (1998) and Charif et al. (2010) for a complete description of this method]. The number of 

chirps (or WSs) were counted in every audio file over each 10-min interval for all individuals 

using the Band Limited Energy Detector (BLED). Target signal parameters for the BLED were 

acquired by making multiple selections for each parameter on the spectrogram and then by 

extracting the most appropriate values from the selection table provided by Raven for each 

parameter. Selections were made according to the following measures: Minimum and 

maximum frequencies (kHz) determined the frequency range of the pulses in which the detector 
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searched; minimum and maximum duration (ms) specified the length of signal that could be 

considered a single detection (or one chirp); and minimum separation corresponded to the time 

interval between adjacent chirps (i.e., chirp intervals) [for a complete description of this 

method, see Mills (2000)]. After the BLED was run, a visual scan through the spectrogram was 

performed to ensure all detections were accurate and that no calls were missed. The number of 

chirps counted by the BLED represented the number of calls made during a specific interval 

and were correlated with the corresponding respirometry interval to obtain an estimate of 

metabolic rate relative to a specific calling effort. From 18 respirometry trials, 11 individuals 

called sufficiently throughout the trial to be included in analyses. The other seven individuals 

either did not call or only chirped briefly once or twice, thus limiting us from comparing calling 

and resting periods; therefore, they were excluded. Additionally, the peak power (dB) of the 

calls (detected by the BLED) was extracted from the selection table provided by Raven for a 

subset of 6 individuals (individuals 6-11). I could only do these analyses in a subset of 

individuals as the harddrive storing individuals 1-5 calling data was corrupted. The dB values 

of the calls were averaged over their respective 10-min intervals and represented the call power 

for corresponding time intervals. 

 

The cost of calling was estimated using a set of different metrics for each individual. The 

metrics employed were: (1) MR (ml CO2 h
-1); (2) mass-specific MR (MRms; ml CO2 h

-1 g-1); 

(3) MR per call (ml CO2 h
-1 call-1); mass-specific MRms per call (ml CO2 h

-1 g-1 call-1); (4) Δcost 

of calls (calculated as the difference between CMRms and RMRms and expressed per call), 5) 

percentage cost of calls (metabolic cost of calling expressed as the % change over resting rates 

divided by the number of calls), and finally 6) the cumulative energy cost of calling inferred 

from the total number of calls and each call’s relative cost summed over time. The cumulative 

cost was calculated over the longest single contiguous period (17:30 PM to 03:00 AM, i.e 9.5 

h) for each individual trial. However, individuals 6 and 9 had only 9 h overlap during this 

period, and individual 4 only had 3.5 h overlap. As a result, the cumulative cost calculated for 

individuals 4, 6 and 9 over their respective time periods was extrapolated to a 9.5 h period. 
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Repeatability assessment 

Repeated measurements of mean MR and number of calls recorded over the 10-min intervals 

during respirometry trials of the 11 calling males were used to estimate the repeatability of MR 

and various metrics of calling costs. The intraclass correlation coefficient (ICC) was estimated 

following methods described by Wolak et al. (2012) in the icc package (v. 2.3.0) run in R 

version 3.3.1 (R Core Team 2013). Measurements tested for repeatability were MR (ml CO2 h
-

1); MRms (ml CO2 h
-1 g-1); number of calls; MR per call (ml CO2 h

-1 call-1); MRms per call (ml 

CO2 h
-1 g-1 call-1); Δcost of calls and percentage cost of calls. These repeatability estimates 

were obtained from the full data set (N=11, allowing temperature variation) as well as only 

using a subset of the data, (N=10, 10-min sections representing controlled temperature 

conditions between 22 and 24°C), to test whether repeatability is affected by extrinsic factors 

– temperature in this case. One individual was excluded from the subset of data because the 

mean temperature during its trial was >27ºC. To assess whether temporal autocorrelation might 

be influencing the repeatability results, I examined this per individual in STATISTICA 

(StatSoft, Tulsa, OK, USA) using time-series forecasting tools on the 10-min extracted data 

and found little to no significant autocorrelation. 

 

Interspecific data comparison 

To better understand the range of variation I observed and place it into context of other 

activities and species, RMR and CMR of P. graminea measured in this study were compared 

with MRs of other resting Orthoptera, calling Orthoptera and flying insects. Values for MRs 

and body mass were compiled from the literature (Table S1, Journal of Experimental Biology 

online supplementary information). Mass specific MRs were converted back to MR by 

multiplying with fresh (wet) body mass. Data were available in a variety of units, and these 

were converted to microwatts (µW) assuming an RQ value of 0.84 and an oxyjoule equivalent 

of 20.3 J ml-1. When necessary, MR data were adjusted to 25°C assuming a Q10 of 2.0, with 

MR roughly doubling with a 10°C increase in temperature (Nespolo et al. 2003; Terblanche et 

al. 2007; Irlich et al. 2009; reviewed in Dell et al. 2011), which was also the case in P. graminea 

here. In the case where several studies had measured the same species’ MR, I calculated the 

mean across these studies. All data were normalised by logarithmic (log10) transformation.  
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RMR of 393 insect species from 16 orders and 87 families were obtained from published data 

(Chown et al. 2007). For this study, however, I only focused on a sub-set of those data and 

included the 32 species of resting Orthoptera for the purpose of clarity on the graph and also 

because of the level of variation that exists in RMR amongst insects for various physiological, 

ecological and evolutionary reasons (see discussions in e.g. Nespolo et al. 2003; White 2011; 

White & Kearney 2014). Additionally, I obtained CMR values of 14 orthopteran species from 

previously published data (Table S1), and flying MR (FMR) values for 56 insect species from 

six orders from Niven & Scharlemann (2005). FMR values were included as an upper boundary 

on metabolic rates that might be expected across the Insecta (following e.g. White et al. 2008). 

The effect of phylogenetic signal on the relationship of metabolic rate to body mass was 

investigated by means of a phylogenetic generalised least-squares analysis (PGLS) analysis 

(details in Appendix B). 

 

Statistical analysis 

Statistical tests were performed using STATISTICA v.13 (StatSoft, Tulsa, OK, USA) or R v. 

3.2.4 using the ‘lme4’ library for the linear mixed-effects model. Data were checked for 

normality using the Shapiro-Wilk test. RMR and CMR data were compared using appropriate 

pairwise tests for dependent samples based on the normality of the distribution of the data. 

When comparing mean RMR with mean CMR, the RMR was expected to be the lowest MR 

period for each individual when it was not calling, and CMR was considered to be the MR 

during the period with the highest calling rate for each individual. However, I discovered that 

the period with the lowest MR for each individual was not necessarily a period without calls 

for every individual. This was true for three individuals. Therefore, I decided to include both 

scenarios in the analysis; (1) comparing the RMR at no calls (RMRn) with CMR, and (2) 

comparing the RMR at the lowest MR period (even if an individual did call during this period, 

RMRc) with CMR. I also compared RMRn and RMRc with each other.  Non-parametric sign 

tests were used to compare RMRn, RMRc and CMR with each other because the data were not 

normally distributed.  

 

To test whether temperatures at RMRn, RMRc and CMR were similar, dependent samples t-

tests were performed to compare the three pairs. Temperature data at RMR and CMR were 
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compared using dependent samples t-tests, after verifying that the dependent variable was 

approximately normally distributed and that there were no significant outliers. 

 

For the repeatability assessment, significantly different ICC values between the complete 

dataset and the subset of data were determined through inspection of the 95% confidence 

intervals of the respective parameters. If the 95% confidence intervals of the parameters did 

not overlap between the complete dataset and the subset, the ICC values were considered 

significantly different from each other (P<0.05). 

 

RMR and CMR values for P. graminea measured in this study were compared with RMR and 

CMR measurements of other orthopteran species and FMRs of flying insects based on literature 

on scaling of energy use. To investigate how RMR and CMR of P. graminea compared with 

RMRs, CMRs and FMRs of other species, P-values were determined using prediction levels in 

relation to the respective regression lines, following Cooper & Withers (2006). In all tests, I 

assumed P=0.05 as the critical value for rejecting a null hypothesis.  

 

RESULTS 

The insects were typically quiescent during daylight hours in the laboratory, as they are in the 

field (Stevens & Josephson 1977). At dusk they became active and started calling. However, 

placing them in a dark chamber during the day was sufficient to disrupt quiescence. Two trials 

were initiated during the day and in both cases the insects started calling within an hour of 

placement in the darkened respirometry chamber. The other nine trials were started just before 

dusk and continued until the next morning. Activity detector readings showed that the animals 

were mostly inactive for the entire time, and traces showed very little activity even when 

calling. Calling never coincided with other activities. 

 

Overall, calling activity was significantly positively correlated with VCO2 (R=0.73, P<0.0001), 

where VCO2 increased with an increase in number of calls, although this was variable among 

individuals (Fig. 1A). However, when comparing a generalised linear model (GLM) versus a 
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general linear mixed-effects (GLME) model (accounting for individuals as random effects), I 

found that the GLME model is a significantly better model (ΔAIC: 626.8) and, therefore, 

accounting for individuals is important. There was no relationship between the power of calls 

and VCO2 (P=0.189) (Fig. 1B), and call power was not related to Δcost (P=0.76) or percentage 

cost (P=0.521) as estimates of the metabolic cost of calling (Fig. 1C, D). 
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Fig. 1. Scatterplots showing the relationship between various calling (sound) estimates 

and metabolic rate of call cost estimates in katydids.  (A) VCO2 was significantly positively 

correlated with number of calls (y=0.0004x+0.327; R=0.73, P<0.0001). (B) VCO2 versus peak 

power of calls recorded (overall trend: P=0.189). (C) Metabolic cost of calling expressed as 

the difference between the mass-specific metabolic rate during calling minus mass-specific 

resting metabolic rate when not calling divided by the number of calls plotted against peak 

calling power recorded (overall trend: P=0.76). (D) Metabolic cost of calling expressed as the 

percentage change over resting rates divided by the number of calls versus peak calling power 

(overall trend: P=0.521). Each individual is shown as a unique line colour as well as the overall 

trendline is shown in black [bold indicates statistical significance (only in the case of A)]. Note 

that power graphs were only for a subset of six individuals for which these data could be 

estimated. 
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The mean total number of calls per trial was 347.6±137.8 (range: 9-1350). The mean 

percentage increase in MR from RMR to CMR was 60.1±12.7% in calling males (maximum 

154%). However, the mean (±s.e.m.) percentage increase per call (or per WS) was ca. 1±0.5% 

(Table 1). Expressing the cost of calling in different metrics yielded different results. An 

individual with a relatively high calling rate experienced a small percentage increase in MR 

(Individual 5, call rate=826; absolute increase=13.6%), whereas an individual with a low 

calling rate (Individual 9, with a maximum calling rate of 9) experienced an absolute increase 

in MR of ca. 50% (Table 1). However, the cost of calling for a ‘cheap’ caller with a high calling 

rate accumulated rapidly over time and, therefore, Individual 5 experienced a high cumulative 

cost (3735.2 CO2 ml h-1 g-1) compared with a more expensive caller (Individual 9, 19.8 ml CO2 

h-1 g-1) with a low call rate (Table 1). A power law function described this relationship between 

cumulative cost and percentage increase per call (y=130.21x-1.068, R2=0.858), where y is 

cumulative cost and x is percentage increase per call. 
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Table 1. Summary statistics from Plangia graminea respirometry and acoustic recordings. Percentage increase in metabolic rate (MR, CO2 

ml h-1 g-1) from resting metabolic rate (RMR, CO2 ml h-1 g-1) to calling metabolic rate (CMR, CO2 ml h-1 g-1), and expressed per call (at 

maximum calling effort) for 11 Plangia graminea individuals respectively. Cumulative costs of calling estimated as the mean cost of calling 

multiplied by the number of calls per individual over 9.5 h. Note that estimates are for 10 min interval summaries and are conditional on the 

number of calls being at maximum (full details in Materials and Methods). 

Individual 

Plangia 

Body mass  

(g) 

Mean 

temperature 

(°C) 

RMR (Not 

Calling) 

(ml CO2 h-1 g-1) 

CMR (max. call 

effort) 

(ml CO2 h-1 g-1) 

Number of 

calls 

Increase in MR 

(%) 

Increase per 

call 

(%) 

Cumulative cost 

(ml CO2 h-1 g-1) 

1 0.64 24.6 0.287 0.568 905 98.0 0.1 2468.7 

2 0.83 21.5 0.170 0.226 118 33.0 0.3 191.0 

3 0.77 27.1 0.359 0.915 1350 154.5 0.1 4614.6 

4 0.88 26.0 0.385 0.407 159 5.7 0.04 579.2 

5 0.70 27.4 0.476 0.540 826 13.6 0.02 3735.2 

6 0.79 22.8 0.258 0.456 49 76.8 1.6 122.0 

7 0.58 22.0 0.233 0.433 62 86.2 1.4 139.0 

8 0.65 21.9 0.244 0.357 38 46.5 1.2 89.1 

9 0.60 22.7 0.219 0.326 9 48.6 5.4 19.8 

10 0.75 22.0 0.223 0.319 150 43.1 0.3 318.1 

11 0.68 21.8 0.213 0.330 158 54.9 0.3 320.7 

Mean±s.e.m. 0.71±0.03 23.6±0.7 0.279±0.028 0.443±0.056 347.64±137.80 60.1±12.7 1.0±0.5 1145.2±500.3 
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Sign tests indicated that both RMRn and RMRc were significantly different from CMR, 

(Z=3.015, P=0.003), but they were not significantly different from each other (Z=1.155; 

P=0.248) (Fig. 2A). There was no significant difference in air temperature within the 

respirometry cuvette between RMRn (23.6±3.1°C) and RMRc (22.9±2.2°C) (t=-1.384, 

P=0.196, N=11) as well as RMRn and CMR (23.5±2.0°C) (t=0.229, P=0.824, N=11), but there 

was a small yet significant difference between RMRc and CMR (t=-2.329, P=0.042, N=11) 

(Fig. 2B). From here onwards, I refer to RMRn as RMR and exclude RMRc from further 

analysis, as there was no significant difference in mean RMRn and RMRc, and no significant 

difference in temperature at RMRn and CMR. Across all individuals for the ‘no calling’ periods 

only, the RMRn was positively related to temperature [y=0.0320±0.002x-0.410±0.040 

(mean±s.e.m.); R2=0.39; F1,529=329.18, P<0.0001] and had a typical Q10 effect (Q10=2.09).  
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Fig. 2. Comparison of mean CO2 production rates and temperature in different metabolic 

and activity states. (A) Mean CO2 production (VCO2; ml CO2 h
-1 g-1) in respirometry trials 

from 11 individuals. (B) Air temperature (°C) measured inside the respirometry cuvette during 

each of the 11 experimental trials in A. The data are presented for the mean of the lowest MR 

interval, the period when katydids were not calling and the interval with the highest calling 

rates recorded. Box plot boundaries show the 95% confidence intervals and the solid horizontal 

line is the mean. Error bars above and below the box indicate minimum and maximum 

temperatures. Different letters indicate statistically significant homogeneous groups. 
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Mean CO2 production rates for calling males were 0.443±0.056 ml CO2 h
-1 g-1. This was an 

increase of approximately 1.6 times the mean resting rate of 0.279±0.028 ml CO2 h
-1 g-1 (Table 

1). The energy required for production of the calling song was the total energy used during 

calling minus the resting metabolic rate (Kavanagh 1987). For P. graminea this was 2280.34-

1430.25=850.09 µW. 

 

In the complete dataset (with temperature varying between ca. 20 and 30ºC), repeatability was 

high for MR, MRms and the number of calls produced, but low for the various measurements 

of cost of calling (MR per call, Δcost and %cost). However, when considering only the subset 

of data representing a controlled temperature range (22-24ºC), repeatability increased for all 

parameters, and significantly so for MR per call, MRms per call and Δcost (Table 2).  
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Table 2. Repeatability estimated from the intraclass correlation coefficient (ICC) with 95% confidence intervals, sample size (n), mean number 

of observations per Plangia graminea individual (k), for various metabolic or calling cost measurements using the complete dataset (with 

temperature variation ~20-30 °C) and a subset of the data (measurements only between 22 and 24 ºC). 

 ICC (Lower 95% CI – Upper 95% CI) 

 Complete dataset n k Subset (22-24°C) n k 

MR (ml CO2 h
-1) 0.7757 (0.6231 - 0.9149) 11 41.2 0.8462 (0.7083 - 0.9496) 10 12.3 

MRms (ml CO2 h
-1 g-1) 0.7616 (0.6041 - 0.9086) 11 41.2 0.8154 (0.6600 - 0.9382) 10 12.3 

Number of calls 0.5741 (0.3890 - 0.8086) 11 41.2 0.8631 (0.7362 - 0.9557) 10 12.3 

MR/Call (ml CO2 h
-1 call-1) 0.0892 (0.0334 - 0.2614) 11 41.2 0.5040 (0.2919 - 0.7846) 10 12.3 

MRms/Call (ml CO2 h
-1 g-1 call-1) 0.1005 (0.0396 - 0.2840) 11 41.2 0.5604 (0.3458 - 0.8189) 10 12.3 

ΔCost 0.0938 (0.0359 - 0.2708) 11 41.2 0.4712 (0.2625 - 0.7629) 10 12.3 

ΔCostms 0.1041 (0.0416 - 0.2911) 11 41.2 0.5130 (0.3002 - 0.7903) 10 12.3 

% Cost 0.2008 (0.0978 - 0.4531) 11 41.2 0.5467 (0.3322 - 0.8108) 10 12.3 

Δ𝐶𝑜𝑠𝑡 =  
𝑀𝑅 − 𝑅𝑀𝑅∗

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑙𝑙𝑠
 

 Δ𝐶𝑜𝑠𝑡𝑚𝑠 =  
𝑀𝑅𝑚𝑠 −  𝑅𝑀𝑅𝑚𝑠

∗

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑙𝑙𝑠
 

% 𝐶𝑜𝑠𝑡 = [
𝑀𝑅

𝑅𝑀𝑅
 × 100] ÷ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑙𝑙𝑠 

*RMR = Lowest MR period recorded per individual; MRms = mass-specific MR 

Values in bold text indicate significantly different ICC values between the complete dataset and the subset (22-24ºC) for specific parameters 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



 

104 
 

In the interspecific comparison, resting, calling, and maximum recorded calling MR of P. 

graminea all fall within the 95% prediction level of resting Orthoptera (P=0.822, 0.65 and 

0.203, respectively) as well as the 95% prediction level of calling Orthoptera (P=0.062, 0.132 

and 0.29, respectively), but are all significantly lower than MR from flying insects (P<0.001) 

(Fig. 3). There was significant phylogenetic signal for FMR-mass scaling, but not in the case 

of RMR or calling Orthoptera mass scaling (Table S2, Fig. S4, Appendix B). 

 

 

Fig. 3. Scatterplot showing the linear relationships between metabolic rate (MR, µW) and 

body mass (M, g) for resting, calling and flying insects. Resting and calling MR of Plangia 

graminea is shown in black filled circles (mean±s.d. [standard deviation]). The maximum 

metabolic rate recorded in this study for a calling P. graminea individual is shown as a black 

open circle. Metabolic rates of flying insects [green filled diamonds; ordinary least-squares 

(OLS) regression (y=mx+c): y=1.081x+5.617; phylogenetic generalised least squares (PGLS) 

regression: y=0.906x+5.245], resting Orthoptera (blue filled circles; OLS: y=0.626x+3.33; 

PGLS: y=0.561x+3.351), and other calling Orthoptera (red filled squares; OLS: 

y=1.176x+4.274; PGLS: y=1.27x+4.32). Metabolic rates are normalised to 25°C assuming a 

Q10 of 2.0 (our estimate for P. graminea Q10 was 2.09). PGLS fits are not shown here since 

they were virtually indistinguishable from the OLS lines in each case (Fig. S4). Names of 

species included in this graph with their respective values are provided in Table S1. 
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DISCUSSION 

While it is widely postulated that the energetic costs of sexual signalling are likely to be high 

(e.g. Heller & von Helversen 1993), and the efficiency of calling is often argued to be 

significant in the evolution of sexual signalling (e.g. Gerhardt & Huber 2002) and in trade-offs 

or the evolution of calling (Symes et al. 2015), the direct estimates of costs typically do not 

support these views. Indeed, the metabolic costs of communication are often small (or 

insignificant) relative to other activities based on direct estimates (e.g. Bailey et al. 1993; White 

et al. 2008). Therefore, I provided a detailed comprehensive assessment of diverse cost metrics 

expressed in different ways and across more controlled versus more variable conditions. One 

major novel outcome of the approach I undertook is that it provides strong support for the view 

that an estimate of metabolic cost of calling or communicative sound production depends 

heavily on the context. More specifically, the cumulative costs are pronounced for those 

individuals with low calling metabolic cost per call and are described by a power law function. 

If cumulative energy costs were extrapolated to multiple nights spent calling and/or calls were 

sustained for a long period owing to e.g. extrinsic factors (e.g. windy or noisy environments), 

for example, then such energy-related expenses could well become a significant proportion of 

an insect’s lifetime energy budget and result in significant trade-offs. My results show a small 

but significant metabolic cost associated with calling effort in P. graminea although the 

approach I used likely maximised these costs, an inadvertent consequence of my efforts to 

obtain robust metabolic rate estimates during calling bouts. The CMR of P. graminea males 

was significantly higher than their RMR based on these estimates. The RMR for P. graminea 

(0.332 ml O2 h
-1 g-1 at ∼22-27°C) is similar to that of most other insects (0.30-0.48 ml O2 h

-1 

g-1; Bailey et al. 1993) and to that predicted from the scaling relationship in Chown et al. (2007) 

(predicted MR of a 0.71 g individual=3.138 µW vs. my estimate of MR=3.155 µW; t391=0.653; 

P=0.743). The MR of calling in P. graminea (0.443 ml CO2 h
-1 g-1) is elevated to approximately 

1.6 times over resting levels. This translates to an approximate 60% increase in RMR in the 11 

calling males analysed in this study, and the energy required for the production of the calling 

song (±850 µW).  

 

Although I observed a significant increase in MR owing to calling in this study, this increase 

is perhaps relatively low when compared with other calling Orthoptera (Fig. 3). This can be 

explained by the nature of the calling song. The calls of chirping species consist of short bursts 
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of sound followed by a pause (Lee & Loher 1993; Gerhardt & Huber 2002), with WSRs an 

order of magnitude slower than species that produce trilled calls (Weissman et al. 1980), where 

a number of sound chirps are produced in rapid succession without extended pauses (Prestwich 

& O’Sullivan 2005). The order of magnitude greater WSRs of trilling species mean that more 

mechanical work is performed, assuming constant costs, which in turn, translates to the higher 

rates of metabolism reported in these species (Prestwich & Walker 1981; Kavanagh 1987; Lee 

& Loher 1993; Hack 1998; Prestwich & O’Sullivan 2005). However, it is important to note 

that muscle work may not necessarily correlate with calling effort owing to elasticity which 

can result in muscle contractions being far more efficient than might be expected (e.g. 

Dickinson & Lighton 1995; Qin et al. 2012). Therefore, actual muscle work depends on the 

elastic contribution of resilin and the cuticle which, in turn, could mask the detection of 

metabolic costs of calling and influence estimates of mechanical efficiency. In jumping insects 

[e.g. the froghoppers (Hemiptera, Cercopoidea)], energy needed for jumping is stored by means 

of a composite structure of chitinous cuticle and resilin (Burrows et al. 2008). In the same way, 

energy needed for wing movement in katydids to produce their calling songs can perhaps be 

stored, similar to the sound-producing tymbals of cicadas (e.g. Cyclochila australasiae, 

Bennet-Clark 1997; Tympanistalna gastrica, Fonseca & Bennet-Clark 1998), and therefore, 

work performed may be low while sounds appear costly. Like P. graminea, there are many 

other orthopterans that produce chirping songs. The elevation in MRs reported for three 

chirping crickets Acheta domesticus (1.5x resting; Hack 1998), Teleogryllus comoddus and 

Teleogryllus oceanicus [both ca. 2x resting; Lee & Loher 1993; however, Kavanagh (1987) 

reported a fourfold increase] - is similar to the values reported for two chirping katydids R. 

verticalis (Bailey et al. 1993) and P. graminea (present study), both of which experienced an 

increase of approximately 1.6x their resting rates. By contrast, elevated MRs reported for 

trilling species ranged from 5-13 times that of their respective resting MRs (Stevens & 

Josephson 1977; Prestwich & Walker 1981; Kavanagh 1987; Bailey et al. 1993; Lee & Loher 

1993; Hack 1998; Prestwich & O’Sullivan 2005; White et al. 2008; Erregger et al. 2017). The 

conehead katydids E. nasutus and N. robustus, produce trilling calls and experience a more 

than sixfold increase in MR during stridulation (Stevens & Josephson 1977). This is fourfold 

the increase reported for P. graminea, which is a similarly sized katydid. Interestingly, the 

trilling tree cricket Oecanthus quadripunctatus reaches a calling MR comparable to that of P. 

graminea during stridulation, even though it has a significantly smaller body size (Prestwich 

& Walker 1981). In other words, the relative cost of calling likely varies across taxa and is 

Stellenbosch University  https://scholar.sun.ac.za



 

107 
 

partly dependent on the nature of the call (see also Erregger et al. 2017) and the number of file 

teeth struck per WS (Prestwich & Walker 1981).  

 

Resting and calling metabolic rates are significantly lower compared with the MR-mass scaling 

relationships of flying insects (Fig. 3), a result that is largely in keeping with previous studies 

(e.g. Prestwich & Walker 1981; White et al. 2008). For example, White et al. (2008) reported 

that the CMR of the mole cricket, Gryllotalpa monanka, is only 10% that of the MR predicted 

for a 0.89 g insect based on the scaling relationship that they derived for flying insects using 

data acquired from the available literature (MR=59.7 M0.82 ± 0.09 [95% CI]). Using the same 

trendline to predict the FMR for an insect with the average mass of P. graminea (0.71 g), the 

CMR for P. graminea would be less than 1% that of the predicted value (0.38 ml O2/h). In 

contrast, a flying female of the same mass consumes a similar amount in only 30 s spent 

searching for a male, assuming similar muscle mechanical efficiencies between different 

activities (e.g. flying and calling). It is interesting to note that the same set of muscles used to 

move the wings during flight, are used by katydids and crickets during stridulation (Stevens & 

Josephson 1977; Lee & Loher 1993). However, Stevens & Josephson (1977) reported that the 

katydids E. nasutus and N. robustus had WSRs an order of magnitude higher during stridulation 

than a similar-sized desert locust during flight. Even so, the MR of the wing muscles for the 

two katydids was less than in a flying locust. Why, then, is flight so much more expensive than 

stridulation? Weis-Fogh (1964) concluded that the aerodynamic work during flight is three to 

five times greater than the inertial work, i.e., the work required to accelerate the oscillating 

wings of a flying locust. This suggests that there are other aspects of flight that add to the 

overall metabolic cost of flight and likely contribute to this variation. 

 

It is widely accepted that ambient or body temperature affects many aspects of the functional 

performance of insects, including biochemical and physiological processes (Nespolo et al. 

2003; Terblanche et al. 2007; Irlich et al. 2009; Dell et al. 2011; Halsey et al. 2015). Therefore, 

an increased MR may be a result of increased temperature and is not necessarily due to 

activities such as calling. Moreover, it has been shown that calling in itself may also increase 

the insect’s body temperature (Heath & Josephson 1970; Stevens & Josephson 1977, Erregger 

et al. 2017). This is especially true for species that produce trilling calls, where WSRs are high 

and sound is produced almost continuously (Bailey et al. 1993). The thoracic temperature of 
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the katydid N. robustus, for example, is 5-15°C higher than that of the environment when 

producing its trilling calls (Heath & Josephson 1970). Stevens & Josephson (1977) also 

reported an average increase of 16.6°C in body temperature of calling N. robustus specimens. 

These katydids seemingly depend on this heat production in order to achieve greater acoustic 

power outputs (Heath & Josephson 1970; Stevens & Josephson 1977). Where chirping species 

are concerned, however, heat production as a result of calling is low and thoracic temperatures 

typically remain similar to ambient levels (Bailey et al. 1993). In this study, although there was 

a typical Q10 effect overall, the variation in temperature was relatively small within individuals 

over each trial and therefore the mean levels remained quite similar between MR and calling 

cost estimates within individuals. 

 

Although the overall increase in MR with calling was significant for the 11 individuals 

analysed in this study, there was considerable variation noted among individuals. The total 

number of calls produced per individual ranged from nine to 1350, and the percentage increase 

in RMR ranged from 5 to almost 155% (Table 1). In addition to temperature, body mass is 

another immediate determinant of MR in insects (e.g. Nespolo et al. 2003; Chown et al. 2007; 

Riveros & Enquist 2011) which may have attributed to the variation among individuals in this 

study. However, the differences in mass in P. graminea were not to such a degree that could 

explain the level of variation found in MR recorded here. The more plausible explanation for 

the variation in MR experienced by the males in this study is that some males merely called 

less actively than others.  

 

Male crickets can facultatively adjust their calling strategy to fit local conditions (Hack 1998). 

According to Hack (1998), the relative prevalence of calling and non-calling strategies among 

conspecific male crickets appears to be mediated by population density. For example, the daily 

calling durations of individuals in Gryllus campestris field populations vary widely, and males 

within the same population vary independently of each other (Rost & Honegger 1987). 

Presumably, changes in the social environment or small-scale interactions among individuals, 

rather than larger-scale changes in the ecological or physical environment [e.g. temperature 

(Walker 1983)], which would affect individuals in the same population similarly, give rise to 

this variation (Hack 1998).  
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Previous studies on field crickets have indeed shown that increases in local density cause males 

to abandon calling for a non-calling mate-searching strategy, and to abandon site defence 

(Alexander 1961; French & Cade 1989; Hissmann 1990; Cade & Cade 1992). Although both 

strategies can occur at high densities, the majority of males in high density environments pursue 

a non-calling rather than calling strategy (e.g. Hissmann 1990). Although katydids are distantly 

related to crickets and no studies have established whether katydid mating behaviour is 

similarly affected by population density, it is possible that the density of males kept in vivaria 

in this study may have caused some of the males to switch to a non-calling strategy and 

presumably caused some of the variation in calling frequency recorded during the respirometry 

experiments. This behaviour, however, should be more prevalent in trilling species because a 

trilling male expends energy at roughly the same rate, whether calling or walking, and 

therefore, would be more prone to switch between the two strategies (Hack 1998). In contrast, 

the energy cost differential between calling and walking in chirping species is much greater, 

making it less beneficial for chirpers to abandon a calling strategy (Hack 1998).  

 

The ICC values reported for MR of P.graminea in this study are within range of what is 

expected from measurements of other insects over shorter time-scales (<24 h) (e.g. Marais & 

Chown 2003; Nespolo & Franco 2007; reviewed in Wolak et al. 2012). Under conditions with 

temperature variation, repeatability of MR and number of calls of P. graminea was high but 

for some estimates of the cost of calling, repeatability was low (Table 2). However, under 

conditions where costs were estimated only for a controlled temperature range (22-24ºC), 

repeatability increased significantly. This indicates that repeatability, and costs associated with 

activities such as calling, are context-dependent. Most importantly, estimates of metabolic 

costs depend on the context in which they are measured and how such costs are expressed. 

Partly this is an issue of choice of units of measurement (e.g. percentage increase vs absolute 

increase will naturally yield divergent estimates of cost) but also because a ‘snapshot’ view of 

energy costs may be wholly inadequate. Estimates of the cumulative energy cost of calling 

inferred from the total number of calls and each call’s relative costs in my study yielded an 

entirely different view. From this analysis individuals with a ‘cheap’ call spend far more time 

calling and thus incur a high cumulative cost; individuals with expensive calls spend very little 

time calling and have low cumulative cost. This is a novel and important demonstration of the 

value of an energy budget approach to considering the problem of communication and its 

energetic consequences.  
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CONCLUSION 

The MR of calling P. graminea males was found to be significantly higher compared to periods 

of RMR, therefore, calling is associated with increased metabolic costs. Since male katydids 

produce calls to attract conspecific females for mating, calling is closely related to their 

reproductive success. However, this cost is additional to other metabolic costs involved during 

mating (such as the production of a spermatophylax), and other metabolically expensive daily 

activities such as flying and feeding. The increased metabolic cost associated with calling could 

therefore constrain a male katydid’s mating behaviour. Considering the overall Q10 effect of 

temperature on the metabolic rate of an animal, increased temperature experienced in the field 

may demand trade-offs to be made in terms of the animal’s daily energy budget. Elevated 

temperature experienced in vineyards could, therefore, potentially result in reduced calling 

activity of male katydids and, in turn, decrease their reproductive success. This would result in 

lower population levels in vineyards the following season. 

 

LIST OF SYMBOLS AND ABBREVIATIONS 

BLED   band limited energy detector 

CMR   calling metabolic rate 

FMR   flying metabolic rate 

ICC  intraclass correlation coefficient 

MR    metabolic rate 

MRms   mass-specific metabolic rate 

RMR   resting metabolic rate 

RMRc  resting metabolic rate at the lowest MR period (even if an individual did call 

during this period) 

RMRn   resting metabolic rate at no calls 

RQ   respiratory quotient 

VCO2 carbon dioxide production rate 
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VO2 oxygen consumption rate 

WS   wing stroke 

WSR   wing stroke rate 
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CHAPTER 5 

Natural enemies of Plangia graminea Serville (Orthoptera: Tettigoniidae) in vineyards in 

the Western Cape, South Africa; and their potential for biological control 

 

 

ABSTRACT 

Plangia graminea (Serville) is a sporadic pest in vineyards in the Western Cape which causes 

damage to the foliage and grape berries of the vine. There are currently no registered control 

measures for this pest, resulting in the need for the development of an Integrated Pest 

Management strategy. I investigated the natural prevalence of key biological control agents 

present in vineyards that can potentially be incorporated into an Integrated Pest Management 

strategy for the control of this pest. Two species of hymenopteran parasitoids, from the 

Anastatus and Baryconus genera, targeted the eggs of P. graminea. The level of egg parasitism 

in vineyards was estimated to be 22%. One entomopathogenic fungus, Metarhizium anisopliae, 

was isolated from a P. graminea individual collected in a Stellenbosch vineyard indicating that 

this pest is susceptible to entomopathogenic fungi. The virulence of the commercially available 

mycoinsecticide, Green Muscle® (Metarhizium acridum), was evaluated against P. graminea 

adults. However, due to high control mortality no conclusions could be made thus far regarding 

the efficacy of this product against this pest. Other natural predators of P. graminea present in 

vineyards include preying mantids, spiders, birds, and chameleons. 

 

INTRODUCTION 

Of the three species in a complex of katydids present in Western Cape vineyards, South Africa, 

Plangia graminea (Serville) is sporadic and causes damage to the leaves and berries of 

grapevines. There are currently no control measures registered for this pest (Allsopp 2012), 

while pesticides used against other pests in vineyards do not appear to have much effect on 

suppressing katydids. This and the movement towards more environmentally-friendly control 

methods create the need for the development of a sustainable and environmentally-friendly 

management strategy that can be incorporated into an Integrated Pest Management (IPM) 

program. 
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Microbial control agents (MCAs) are important components of IPM systems, because they are 

selective and safe for non-target organisms and allow other natural enemies to function (Lacey 

& Shapiro-Ilan 2008). Entomopathogenic fungi (EPF) are promising MCAs and play an 

important role in the natural regulation of Orthoptera populations worldwide (Goettel et al. 

1995). Beauveria bassiana (Balsamo) and Metarhizium acridum (Driver & Milner) J.F. Bisch., 

Rehner & Humber (2009) are examples of fungi that are successfully being used as 

biopesticides for control against orthopteran species; with Metarhizium being a key control 

agent in the development of IPM strategies for several locust and grasshopper species in Africa 

(Lomer et al. 1999; Lomer et al. 2001), and Australia (e.g. Green Guard®, Milner 2002). Green 

Muscle® (active ingredient: M. acridum IMI 330180) is an example of a registered 

mycoinsecticide that is effectively being used against locusts and grasshoppers in Africa. 

Although most EPF research in Africa has been done on acridid species, laboratory research 

done by Mohammadbeigi & Port (2013) on the long-horned grasshopper Uvarovistia zebra 

(Uvarov) indicated that suitable B. bassiana and M. anisopliae isolates can be used to control 

tettigoniids as well. Entomologists at the University of California are also currently developing 

Metarhizium fungal candidates as biopesticides to control katydid pests of nectarines in 

California and on oil palm trees in Papua New Guinea (Miller 2011). 

 

Hymenopteran egg parasitoids (parasitic wasps) have also been widely used in the biological 

control of agricultural pests in many parts of the world (Austin & Dowton 2000; Mills 2010). 

The fact that they do not only attack the host egg, but also kill the host within the egg (i.e. 

killing the pest before it can cause any damage) makes them attractive candidates for the use 

of biological control and IPM (Hassan 1993). They have the advantage of being able to actively 

search for host eggs whereas pathogens must wait for chance encounters and suitable 

environmental conditions (Lacey & Shapiro-Ilan 2008). Hymenopteran egg parasitoids, e.g. 

Trichogramma species, have short generation times and can be mass-reared with relative ease 

on hosts that feed on stored food products, enabling their commercial production (Hassan 1993; 

Smith 1996; Parra & Zucchi 2004; Mills 2010). A number of parasitic wasps from various 

families parasitize the eggs of katydids (UC IPM 2015). 

 

Katydids are also a food source for many other animals including bats, birds, spiders, and 

predatory insects e.g. mantids (Belwood 1990). Since there is no information currently 
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available on the natural enemies of P. graminea, this study aims to determine the natural 

prevalence of EPF, hymenopteran egg parasitoids and other natural predators that target 

different life stages of P. graminea in vineyards in the Western Cape. Furthermore, I aim to 

test the virulence of the commercially available EPF, Green Muscle®, against P. graminea 

adults. This study aims to provide valuable information for the development of an IPM strategy. 

 

MATERIALS AND METHODS 

The study was conducted on four farms situated in the Stellenbosch and Paarl wards found 

within the Stellenbosch district and Coastal region of the “Wine of Origin Scheme” in the 

Western Cape fruit production area of South Africa (Table 1). This region is typified by a 

Mediterranean climate with winter rainfall, and is a regional biodiversity hotspot (Born et al. 

2007). In the monitoring sites, cover crops grown between vine rows included Triticale v. 

Usgen 18 (Gramineae) (every second row) and natural weed cover. Cover crops were planted 

during the wet winter months and killed off with herbicide during spring to prevent competition 

with vine roots.  Weeds were controlled as needed, depending on growth during the season, 

also with herbicides or mechanically. 

 

Table 4. Farm localities of vineyards surveyed during this study, with cover crops used 

between vine rows. 

Farm Coordinates Cover crops 

1 S 33º 52’ 13.74”  

E 18º 51’ 43.63” 
Triticale 

2 S 33º 53’ 43.69”  

E 18º 53’ 32.95” 
Triticale 

3 S 33° 51’ 08.02” 

E 18° 56’ 17.21” 
Triticale/natural weed cover 

4 S 33º 52’ 19.68”  

E 18º 53’ 21.32” 
Mixture of Triticale, barley and grazing vetch. 
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The monitoring system of De Villiers & Pringle (2008) was adapted for katydids. One vineyard 

block per farm was monitored. Five evenly spaced rows were selected in each vineyard block 

and in each row, four evenly spaced plots, consisting of approximately five vines between 

trellising posts, giving a total of 20 plots per block (De Villiers & Pringle 2008).  

 

Eggs and egg parasitoids 

One vine per plot (i.e. 1/5 vines per plot) was sampled for katydid eggs. Eggs were sampled by 

stripping pieces of the bark off the two main cordon arms for 15 cm on either side of the main 

stem as well as 15 cm down the main stem. The pieces of bark were then taken back to the 

laboratory and searched for eggs. The eggs were carefully removed from the bark and were 

separated as being “viable” or “non-viable.” Eggs were classified as viable if they were fully 

intact and contained some substance within the egg which could easily be determined by gently 

pressing the egg with forceps. Non-viable eggs were damaged or empty shells either because 

they were not fertilised, parasitized or they were hatched eggs from the previous season. Eggs 

out of which katydids have hatched could be identified by the presence of a white skin left 

behind at the apex of the egg. Viable eggs were counted and reared in plastic containers (11.5 

× 7 cm), from September 2013 to April 2014. The number of hymenopteran parasitoids that 

emerged from the katydid eggs was recorded daily. The level of egg parasitism was calculated 

as the percentage of eggs out of which parasitoids emerged from the total number of viable 

eggs reared during this study. Parasitoids that emerged from the eggs were placed in glass vials, 

which were sent for identification by Dr Simon van Noort at the Iziko South Africa museum, 

Cape Town. 

 

Entomopathogenic fungi (EPF) 

Katydids were monitored within the vine canopy of each plot. I searched for katydid cadavers, 

moribund katydids or katydids that showed signs that they may have been infected with an 

EPF. These signs include poor coordination, loss of orientation, excessive grooming, jerky 

movements and no feeding. Moreover, orthopterans may climb up high on the plant and bask 

in the sun as a behavioural fever response, in which they thermoregulate to a higher temperature 

to restrict fungal growth (Lomer et al. 2001). Cadavers and insects that showed signs of 
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possible infection were transported back to the laboratory where they were incubated until 

external fungal growth could be observed. 

 

Fungal bioassay 

The virulence of the commercially available Green Muscle® was evaluated against P. 

graminea adults. 

 

 Insect collection 

In May 2014, P. graminea adults were collected in a Stellenbosch vineyard (33º 52’ 19.68” S; 

18º 53’ 21.32” E) in the Western Cape, South Africa. Upon collection, individuals were placed 

into plastic zip-lock bags with vine leaves and the bags were then placed into a plastic container 

with ice-packs. The ice-packs kept the container cool which decreased insect activity. In this 

way the katydids could be transported to the laboratory unharmed. 

 

Preparation of inoculum 

Green Muscle® was obtained from a local supplier [Becker Underwood BioAg SA (Pty) Ltd.]. 

A stock formulation was prepared by adding one gram (minimum 5 × 1010 spores/gram) of 

Green Muscle® to 1 litre of sterile distilled water. Due to the hydrophobic nature of the conidia, 

TWEEN® 80 (0.01%) was added to the solution to lower the surface tension. The stock 

formulation was prepared the day before application as suggested by the Green Muscle® User 

Handbook. On the day of application the conidial suspension was prepared by mixing the stock 

solution with a magnetic stirrer for 5-10 min. Thereafter, 10 ml of the suspended conidia in the 

stock formulation was added to 90 ml of sterile distilled water. This solution was mixed with 

a magnetic stirrer for another 5 min. The concentration of this suspension was determined using 

an improved Neauber haemocytometer. It was then adjusted by means of dilution to give the 

desired concentration of 5 × 106 spores/ml. This conidial suspension was used as the primary 

stock formulation to inoculate the insects with the desired spore concentrations (spores/insect). 

 

 Bioassay 

The bioassay involved treatments with two different spore concentrations (2.5 × 104 and 5 × 

104 spores/insect) and two control treatments (dd H2O and dd H2O-TWEEN® 80 solution), 
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with 20 insects per treatment. For the two control treatments insects were inoculated with 10µl 

of sterile distilled water and a distilled water-TWEEN® 80 solution, respectively, on the dorsal 

side of the abdomen underneath the wings just behind the thorax using a micropipette. To attain 

a concentration of 2.5 × 104 spores/insect, a 50% dilution of the 5 × 106 spores/ml stock 

suspension was formulated using distilled water to acquire a conidial suspension with 2.5 × 106 

spores/ml. After mixing the 2.5 × 106 spores/ml solution with a magnetic stirrer for 5 min, 

insects were inoculated with 10µl of this conidial suspension resulting in 2.5 × 104 

spores/insect. For the last treatment, insects were inoculated with 10µl of the 5 × 106 spores/ml 

stock suspension, therefore 5 × 104 spores/insect, using the same technique as described for the 

control and 2 × 104 spores/insect treatments. This concentration was chosen because 5 × 104 

spores/insect caused 95% mortality in adult Desert Locusts at 30°C within 5 days (Green 

Muscle User Handbook 1999). The control treatments were applied first, followed by the other 

two treatments, working from low concentration to high. After inoculation, the insects were 

placed in 5 litre plastic containers (cages) with mesh-fabric lids. Each treatment had 4 cages 

with 5 insects per cage to minimise contact with each other and to prevent cannibalism. The 

cages were kept in a temperature controlled room at 25°C and a 12:12: L:D cycle. The insects 

were provided with fresh, washed lettuce to feed on and cages were cleaned daily. Mortality 

was recorded daily for 17 days and dead insects were removed from the cages. 

 

RESULTS AND DISCUSSION 

Egg parasitoids 

Two species of parasitic wasps (Hymenoptera) emerged from the katydid eggs. The wasps 

emerged from the eggs by chewing a circular hole out of the egg-shell. Eggs that were 

parasitized could therefore easily be distinguished from eggs out of which katydids had hatched 

in the field and laboratory (Fig. 1 A, B). The wasps could only be identified to genus level (Fig 

2 A-C), since both genera are in need of taxonomic revision (S. van Noort, pers. comm.). One 

species belonged to the genus Anastatus (Anastatus) (Eupelminae; Eupelmidae; Chalcidoidea) 

(Fig. 2 A, B). There are two subgenera in this genus with about 25 described species for the 

Afrotropical region and many undescribed species (S. van Noort, pers. comm.). This species 

belongs to the nominate subgenus Anastatus, hence the repeat of the genus name as subgenus 

in brackets. Sexual dimorphism is extreme in the eupelmids, with females (Fig. 2 A) looking 

very different from the males (Fig. 2 B). Anastatus spp. are primary endoparasitoids of a wide 

variety of insect eggs, including Orthoptera. The other species belongs to the genus Baryconus 
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(Scelioninae; Platygastridae; Platygastroidea) (Fig. 2 C). Baryconus spp. have been recorded 

as endoparasitoids of Tettigoniidae eggs. This particular species is close to B. africanus (Dodd), 

but may be one of the other described species recorded from the region, or more likely an 

undescribed species (S. van Noort, pers. comm.). 

 

 

 

 

The parasitoids started hatching early in November and continued to emerge until early-April, 

reaching a peak in January (Fig. 3). The level of egg parasitism in the vineyards monitored 

between September 2013 and February 2014 was estimated to be ca. 22%. Surveys and 

monitoring efforts on parasitism rates of hymenopteran parasitoids of grasshopper and locust 

egg pods recorded parasitism rates ranging from <10% to >30% (Baker et al. 1996; Lockwood 

& Ewen 1997). 

 

A B 

Fig. 1. (A) Katydid eggs from which parasitic wasps emerged; (B) Katydid egg from which 

katydid nymph emerged. 

A C B 

Fig. 2. Parasitic wasps that emerged from katydid eggs. (A) Female and (B) male Anastatus 

(Anastatus) sp. (Eupelminae; Eupelmidae; Chalcidoidea); (C) Baryconus sp. (Scelioninae; 

Platygastridae; Platygastriodea). 
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Fig. 3. Mean (± S.E.) of wasps emerging from katydid eggs that were collected in vineyards in 

the greater Stellenbosch region of the Western Cape, November 2013 – April 2014. 

 

This indicates that these wasps are important natural control agents for katydids and their 

efficacy could be optimized by determining optimal environmental conditions. The prospect of 

using hymenopteran egg parasitoids for the control of orthopteran pests is appealing due to 

their long historical use as successful biological control agents (Lomer et al. 2001). One 

example of a hymenopteran egg parasitoid that was successfully introduced as a biological 

control agent is Scelio pembertoni Timberlake, which was imported to Hawaii for the control 

of the grasshopper Oxya chinensis (Thunberg) (Clausen 1978). 

 

Entomopathogenic fungi (EPF) 

One P. graminea individual collected in a Stellenbosch vineyard was found to be infected with 

an EPF (Fig. 4). It was identified as Metarhizium anisopliae and pure cultures of this isolate 

were sent to the National Collection of Fungi, ARC-PPRI, in Pretoria and accessioned as PPRI 

12353. Infected cadavers or diseased insects are rarely observed in the field, as they are rapidly 

scavenged by ants or taken by other predators (Lomer et al. 2001). The natural prevalence of 

Metarhizium was found to be low in West Africa showing prevalence levels of 2%-6%, 
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although it was the most common grasshopper pathogen in this region (Shah et al. 1994; Lomer 

et al. 2001). Considering that M. acridum, e.g. Green Muscle®, is already being used as an 

effective mycoinsecticide against orthopteran pests in Africa and that P. graminea is 

susceptible to Metarhizium, the prospect of using this EPF as a biological control agent against 

P. graminea is attractive. 

 

 

Fig. 4. Plangia graminea female infected with Metarhizium anisopliae (EPF), collected in a 

vineyard in Stellenbosch, Western Cape. 

 

Green Muscle® Bioassay 

After four days, percentage mortality was higher for the two fungal treatments, 50% and 65% 

for the 2.5 x 104 and 5 x 104 concentrations respectively, compared to 10% and 20% for the 

TWEEN 80® and water control groups respectively (Fig. 5). However, after four days, control 

mortality escalated rapidly, with TWEEN 80® mortality even exceeding that of the 5 x 104 

concentration after day 6. The 2.5 x 104 treatment was the first to reach 100% mortality after 

10 days, followed by the TWEEN 80® control (15 days), with the water and 5 x 104 treatment 

both achieving 100% mortality after 17days. Since the bioassay was conducted relatively late 

in the season, high control mortality could be attributed to the fact that the katydids used were 

aged and may have been more susceptible when subjected to either control or fungal treatments. 
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Fig. 5. Percentage mortality of Plangia graminea adults after being treated with the commercial 

Green Muscle® mycoinsecticide and control treatments. Treatments:  ddH2O = distilled water 

control; TWEEN® 80 = distilled water + TWEEN® 80 control; 2.5 x 10(4) = 2.5 x 104 

spores/insect; 5 x 10(4) = 5 x 104 spores/insect. 

 

Other predators 

Various other predators were also present in vineyards including praying mantids, spiders and 

birds (Fig. 6). Immature preying mantids were observed feeding on P. graminea nymphs (Fig. 

6 B), and the larger adult mantids were observed feeding on P. graminea adults (own 

observations). Chameleons were also occasionally seen (Fig. 7). Plangia graminea individuals 

were also found impaled on vine twigs (Fig. 6 G). This is characteristic hunting behaviour of 

the Fiscal Shrike Lanius collaris Linnaeus (Harris & Arnott 1988). Sand wasps (Sphecidae), 

especially species of the genus Sphex L., are known to hunt katydids which they use to 

provision their nests (Gess & Gess 2014).

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M
o

rt
al

it
y 

(%
)

Time (Days)

ddH2O

Tween 80

2.5 x 10(4)

5 x 10(4)

Stellenbosch University  https://scholar.sun.ac.za



 

126 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H G F E 

D C B A 

Fig. 6. Some predators of katydids found in vineyards in the greater Stellenbosch region of the Western Cape (A-G), and other parts of southern 

Africa (H). (A, B) Praying mantids (Mantodea: Mantidae); (C-F) spiders; (G, H) birds, (G) katydid impaled on vine twig possibly by a Fiscal 

Shrike (Lanius collaris) (photo credit: Janina von Diest), (H) katydid caught by a Little bee-eater (Merops pussilus) – Zimbabwe. 
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Fig. 7. Cape dwarf chameleon Bradypodion pumilum (Gmelin), possible predator of Plangia 

graminea, photographed in a vineyard in Stellenbosch, Western Cape. Photo credit: Henré 

Nortje. 

 

CONCLUSION 

Hymenopteran egg parasitoids and the entomopathogenic fungus M. anisopliae are two 

promising natural enemies of P. graminea that could be incorporated into an IPM strategy for 

the control of this pest in vineyards in the Western Cape. The hymenopteran egg parasitoids 

are important natural control agents for katydids and further research should investigate how 

to optimise the vineyard environment so as to increase parasitism to optimise this natural 

control system. One way of employing these parasitic wasps in the vineyards would be by 

means of ecological engineering. Ecological engineering in an IPM context simply refers to 

the manipulation of agricultural habitats to be more attractive to natural enemies and other 

beneficial insects (Lacey & Shapiro-Ilan 2008, and references therein) and therefore improve 

the natural efficiency within an agro-ecosystem. The EPF-infected P. graminea individual 

indicates that this pest is susceptible to M. anisopliae. Further bioassays need to be performed 

to evaluate the virulence of this M. anisopliae isolate (PPRI 12353) against P. graminea 
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individuals. Due to the high control mortality, no conclusions could be made regarding the 

virulence of Green Muscle® against P. graminea adults. Further bioassays testing the virulence 

of this commercial product together with other fungal strains against different life stages of P. 

graminea should form part of future research projects. However, these preliminary results 

indicate good potential for the treatments. The development of a sustainable IPM strategy for 

this pest will enable other natural predators e.g. preying mantids, spiders, birds and 

chameleons, to persist in vineyards which will further aid the natural control of P. graminea 

and other pests. 
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CHAPTER 6 

 General discussion and future research recommendations 

 

 

Katydids are sporadic pests in Western Cape vineyards, South Africa, however, since 2012 

population outbreaks appear to have caused substantial damage leading to great concern among 

farmers. The primary katydid pest in vineyards in the Western Cape was thought to be Plangia 

graminea (Serville) (Ferreira & Venter 1996; Allsopp 2012). The nymphs feed on the young 

foliage of the vine and later in the season, feeding by adults can extend to grape clusters (Allsopp 

2012). At the commencement of this study, very little information on the biology and ecology of 

this pest was available. Moreover, no chemical treatments for katydids in vineyards are registered, 

and no monitoring system was available for this pest at the start of this study. Factors causing 

population outbreaks were also unknown. This study was therefore initiated to investigate the basic 

biology and ecology of katydid pests in vineyards. The information presented in this study aims to 

aid the development of a practical, environmentally-friendly, and sustainable method of control 

for this pest to be incorporated into an Integrated Pest Management (IPM) program. The following 

sections will summarise the outcomes of this study with emphasis being placed on how this 

information, together with future research recommendations, could aid the development of a 

sustainable IPM program. 

 

Chapter 2: Identification of katydid species present in vineyards in the Western Cape - with 

notes on their morphology, eggs, and assemblage structure 

At the commencement of this study, it was unclear whether P. graminea was the only katydid 

species present in vineyards. Given the great diversity and characteristic feeding behaviour - nearly 

exclusively herbivorous - of the Phaneropterinae subfamily (Orthoptera: Tettigoniidae), more than 

one species could be present and cause damage to vines. This study performed the first preliminary 

taxonomic investigation of katydid species present in vineyards, therefore, providing the first 

information on the katydid species assemblage in Western Cape vineyards. The results of this 

study recorded three phaneropterine katydid species in four vineyards located in the greater 

Stellenbosch wine production region in the Western Cape, namely Plangia graminea (Serville), 
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Eurycorypha lesnei Chopard, and a Phaneroptera species. However, the extent to which these 

species contributed towards the damage observed was not yet known, therefore, this was further 

investigated in Chapter 3. Plangia graminea was previously recorded as a minor sporadic pest in 

vineyards in the Western Cape (Ferreira & Venter 1996; Allsopp 2012). Eurycorypha lesnei has 

previously been recorded in the Gauteng and North-West Provinces of South Africa (Bazelet & 

Naskrecki 2014), therefore, this is the first official account of this species’ presence in the Western 

Cape Province. 

 

The morphological similarity of the Plangia and Eurycorypha species resulted in the need to 

provide an easy identification key that can be used by growers to distinguish between the two 

species. Key characteristics that could aid the differentiation between the two species included the 

male elytra spot of P. graminea, the shape and colouration of the female ovipositor, coloration of 

the abdomen and the tympana (ears). The wing venation on the forewings and the size and shape 

of the male stridulatory files (including numbers of teeth) were also documented for the first time 

for P. graminea and E. lesnei [however, the male stridulatory file of P. graminea has been 

described by Hemp et al. (2015)]. These are two additional characteristics that could be used for 

the identification of these species.  

 

This study is also the first, to my knowledge, to document the brown and pink colour morphs of 

P. graminea. Colour variations have been recorded for Plangia multimaculata Hemp in the 

Kilimanjaro area in East Africa, by Hemp et al. (2015), who suggested that colour is determined 

by the surrounding vegetation and may also depend on which tree species the nymphs grow on. 

The colouration and shape of the wings of these leaf-mimicking katydids increase the survival 

value of crypsis as their primary defence mechanism against predation (Belwood 1990). This also 

makes it difficult for a human observer to spot them within the vine canopy, which in turn makes 

monitoring this pest a challenge. Therefore, in addition to using physical katydid counts in a 

monitoring system, surrogate monitoring methods were investigated in Chapter 3.  
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This was the first study to examine the eggs of P. graminea and E. lesnei under high magnification. 

Although the eggs of these two species look similar upon first inspection, black, oval shaped and 

flat; distinguishing characteristics were noted under high magnification. It was further found in the 

present study that the eggs are significantly different in size, with P. graminea eggs having a 

greater width and length (mm) in comparison with E. lesnei eggs. Therefore, species determination 

is already possible at the egg stage. Although species determination would not be possible through 

inspection of the eggs in the field, as it requires inspection under high magnification, the use of 

eggs as a surrogate parameter in a monitoring method for this pest is attractive and was further 

investigated in Chapter 3. 

 

Chapter 3: Monitoring of katydids in vineyards in the Western Cape - with insights gained 

on their biology, ecology, and seasonal dynamics 

A suitable katydid control method could not be investigated before target katydid species were 

identified and their basic bio-ecology established. Furthermore, the first step in developing an 

Integrated Pest Management program is to establish an effective monitoring method that is 

specifically suited for the pest and its agricultural system (Luckmann & Metcalf 1994). This study 

confirmed that P. graminea is the primary katydid pest in Western Cape vineyards, constituting 

more than 80% of the katydid population in vineyards monitored. A monitoring method for this 

pest was developed by adapting the generic monitoring system for vineyard pests (De Villiers & 

Pringle 2008).  

 

Temporally, two peaks in katydid density – each at different life stages – were observed from 

January 2014 to March 2015. Viable egg density reached a peak in August 2014, and katydid 

density in November 2014. Utilising a cross-correlation to determine the lag phase between eggs 

and katydids visible in the canopy, these two peaks aligned well after adjustment for a 10-week 

lag time, indicating that egg monitoring could be used for early prediction. Furthermore, these two 

peaks indicate two possible target stages for control measures to be applied. Firstly, hymenopteran 

egg parasitoids can be utilised to reduce the peak in viable egg density observed in winter (August), 

therefore, suppressing the pest population before damage can occur at the onset of the new season. 
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Hatching rates of hymenopteran egg parasitoids, reared from katydid eggs in the laboratory, 

reached a peak in January 2014 (Chapter 5). This corresponds to the time at which adult katydids 

were first observed laying eggs during this study. Therefore, increasing the parasitic wasp 

population at this stage would increase egg parasitism rates in the vineyards, and in turn suppress 

the katydid population of the following season. Secondly, entomopathogenic fungi in the form of 

a mycoinsecticide (Chapter 5), could potentially be used to target the second population peak in 

November. Not only is November a critical time to target this pest due to the high population 

density recorded at this time, but environmental conditions for EPF appear to be most favourable 

during this month. Environmental factors such as relative humidity, temperature and UV 

irradiation have an effect on the efficacy of entomopathogenic fungi in the field (Lomer et al. 

2001). The optimum temperature recorded for Metarhizium IMI 330189 (active ingredient in 

Green Muscle®) sporulation is 25°C (Thomas & Jenkins 1997). The average maximum 

temperature recorded during November 2000-2012 was 25°C, and an average maximum relative 

humidity of 83.6% was recorded from 2008-2012 (weather data acquired from one of the farms 

monitored during this study). Therefore, environmental conditions experienced during the month 

of November appears to be favourable for the application of Metarhizium as a mycoinsecticide. 

The peak in katydid density was observed early in November. At this stage nymphs have not 

matured to adults and are still apterous and, therefore, potentially more susceptible to fungal 

infection as the wings of adult katydids could act as a barrier for fungal spores to reach the insect-

body. 

 

There are many benefits associated with the monitoring of katydid eggs. Firstly, eggs are relatively 

easy to collect and species determination is possible by investigating the size and surface structure 

of the eggs (Chapter 2). Secondly, egg monitoring in winter months (June – August) could be used 

as an early prediction of the expected population density for the following season; given the 10-

week lag phase between the time eggs are observed and when katydids are observed in the 

vineyards. Furthermore, the eggs can be used as an indicator of the parasitism level of katydid egg 

parasitoids (Hymenoptera) present in the vineyards (Chapter 5). These parasitoids are important 

natural control agents of katydids in vineyards. Based on this information, growers can make more 

informed management decisions, therefore, employing more cost-effective control measures.  
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In comparison with egg monitoring, monitoring leaf damage was found to be a less effective 

monitoring tool. Although there was a significant correlation between leaf damage and katydid 

density, this correlation was poor (r = 0.222, P < 0.001; Spearman r = 0.23, P < 0.01). The reason 

for this poor correlation could be that katydid density was poorly reflected by the amount of leaf 

damage observed, since katydids are well camouflaged and difficult to spot within the vine canopy. 

Moreover, leaf damage was potentially overestimated due to the similarity between katydid and 

weevil damage (present study), and damage caused by snails (Ferreira & Venter 1996).  

  

This study also provided the first information on the biology and ecology of P. graminea. There 

is only one generation per year, with an overwintering egg stage. The eggs are predominantly laid 

within the bark of the vines. The eggs hatch early in the season (mid-September), and nymph-to-

adult development takes about 2 ½ months. Only three nymphal stages were observed, however, 

it is likely that there are more instars since exuviates were consumed before inspection in the 

laboratory. Determining the exact number of instars could be performed more accurately by 

marking the thorax of nymphs with paint to aid detection of each moult. Temperature appears to 

be an important environmental factor influencing population outbreaks, as it influences katydid 

development, but could also affect mating success of male katydids (Chapter 4). From the 

laboratory study, it was found that low temperatures (15°C) were inadequate for katydid 

development, and no eggs hatched at 30°C and 35°C. Complete katydid development was only 

observed at 20°C and 25°C, and the total duration of the life cycle recorded in the laboratory was 

134 and 140 days, respectively, at these two temperatures.  A more optimal temperature dependant 

development model should be establisedh for P. graminea to provide more detailed information 

on temperature tolerances and life table parameters.  This is only possible with a large enough 

laboratory colony. 
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Chapter 4: Physiological ecology – the metabolic costs of sexual signalling in the chirping 

katydid Plangia graminea  

This chapter was submitted and accepted in Journal of Experimental Biology. Plangia graminea 

males produce chirping calls to attract conspecific females for mating. Their reproductive success 

is, therefore, closely related to their calling success. The results of this study recorded a significant 

increase in metabolic rate during calling activity of P. graminea males. Since calling in P. 

graminea males is additional to other metabolic costs involved during mating, including the 

production of a spermatophylax, and to other daily activities such as flying and feeding, the 

increased metabolic cost of calling could energetically constrain its mating behaviour. 

Furthermore, temperature has an exponential influence on the metabolic rate of an animal, with 

metabolic rate roughly doubling with a 10°C increase in temperature (Nespolo et al. 2003; 

Terblanche et al. 2007; Irlich et al. 2009; reviewed in Dell et al. 2011). Elevated temperatures 

experienced in the field could, therefore, necessitate trade-offs to be made by the animal in terms 

of energy allocation towards different activities based on its daily energy budget. Therefore, 

increased temperatures could result in reduced calling activity and in turn a decrease in 

reproduction success leading to lower population levels the following season. This study, 

therefore, provides baseline knowledge that can be used in the development of a population 

prediction model based on field temperature and the metabolic rate of P. graminea.  Initial 

indications of temperature tolerances investigated in Chapter 3 show that P. graminea did not 

develop optimally at higher temperatures (30°C and 35°C), so potentially this species will not do 

well based on current climate change predictions of increasing temperatures. 

 

Chapter 5: Natural enemies of Plangia graminea in vineyards in the Western Cape, and their 

potential for biological control 

Due to emphasis being placed on more environmentally-friendly management practices, research 

was undertaken to identify natural enemies that could potentially be used as biological control 

agents against this pest. This study identified two natural control agents that could be incorporated 

into an IPM program for the control of P. graminea, namely hymenopteran egg parasitoids, and 

an entomopathogenic fungus.  
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Hymenopteran egg parasitoids appear to be important control agents that are already present within 

Western Cape vineyards. This study recorded parasitism rates of ca. 22% in vineyards monitored 

in the greater Stellenbosch region of the Western Cape. Two wasp species from the Anastatus and 

Baryconus genera were recorded during this study. A peak in wasp emergence was observed in 

January 2014 from field-collected eggs reared in the laboratory during this study. This corresponds 

to the time when adult katydids were most abundant and started laying eggs (Chapter 3). The peak 

of wasp activity in the vineyards from January onwards would, therefore, target the newly laid 

katydid eggs and are therefore well synchronised with the host. These hymenopteran egg 

parasitoids could, therefore, potentially be used to suppress the katydid population of the following 

season. A way of employing these parasitic wasps in vineyards would be by means of ecological 

engineering, in other words, making the vineyards more attractive to these wasps and, therefore, 

increasing the natural populations within vineyards. Targeted field monitoring for katydid egg 

parasitoids in future studies could assess habitat preferences of these wasps. Habitat and plant 

characters have a strong impact on the parasitism efficacy of parasitic wasps in natural systems as 

well as in biological control, and a thorough understanding of their habitat and plant preferences 

is key to the optimization of biological control programs (Romeis et al. 2005). 

 

An entomopathogenic fungus (EPF), Metarhizium anisopliae, was isolated from a P. graminea 

individual collected in a Stellenbosch vineyard. This isolate, accessioned as PPRI 12353 at the 

National Collection of Fungi (ARC-PPRI, Pretoria), indicates that P. graminea is susceptible to 

EPF – specifically Metarhizium. This makes the use of an EPF as a biological control agent against 

this pest attractive, also considering that Metarhizium acridum is already effectively being used as 

a mycoinsecticide against orthopteran pests in Africa (Thomas 2000; Lomer et al. 2001). Due to 

high control mortality during the Green Muscle® bioassay trial (100% after 15 days), possibly due 

to the fact that katydids used were aged, the results of the bioassay performed in this study can be 

regarded as inconclusive. However, mortality recorded on the fourth day after the bioassay was 

initiated was higher for the two fungal treatments, 50% and 65% for the 2.5 x 104 and 5 x 104 

concentrations respectively, compared to 10% and 20% for the TWEEN® 80 and water control 

groups respectively. These preliminary results indicate further research is warranted for the 

treatments. Future bioassays testing the virulence of this commercial product together with the 
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Metarhizium anisopliae strain isolated from P. graminea, should be performed against different 

life stages of the katydids. Since EPF invade the host cuticle directly (Niassy et al. 2011), immature 

katydids would potentially be more susceptible to infection, as adult wings could act as a barrier. 

The ideal time for EPF application appears to be early-November, when katydid population density 

is at a peak and katydids are still apterous (Chapter 3). Moreover, it appears that this period also 

coincides with favourable environmental conditions for EPF application. The combined utilisation 

of hymenopteran egg parasitoids and an EPF could potentially be incorporated into an IPM 

program for the long-term management of this pest. The wasps can be used to suppress the 

population before the new season starts (as they would target eggs laid by the previous generation 

of katydids), while EPF can be used to target population peaks early in the season, which could 

potentially be predicted through the monitoring of katydid eggs (Chapter 3).  

 

Future research recommendations 

One major constraint of this study was the difficulty of rearing sufficient numbers of P. graminea 

to allow establishment of a laboratory colony. This would have allowed more detailed experiments 

to be performed, notably complete life table studies to determine temperature dependent 

development models; as well as bioassay experiments using EPFs. This should be considered as a 

longer-term goal in future research projects, as this group appears to be difficult to rear under 

laboratory conditions. Further complications include having only one generation per year and 

relatively slower development as well as presence of an overwintering phase; and the sporadic 

nature of the pest in agricultural systems. 

 

The confused taxonomic state of the P. graminea complex creates a need to further untangle this 

species complex. Considering the pest status of this species, it becomes important that future 

research focus on a comprehensive taxonomic review of species that may still be hidden within 

this complex. A recent review of the P. graminea complex synonymised P. compressa with P. 

graminea (Hemp et al. 2015). However, another morphologically similar species, P. unimaculata, 

was omitted in this review. I believe that this species could be integral in the review of this species 

complex, since its holotype (held at the Museum of Zoology, Lund, Sweden) is fully intact and 
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well preserved, whereas the holotype of P. graminea is lost and most of the body of the holotype 

of P. compressa is missing or damaged (Hemp et al. 2015). Specimens should be collected at type 

localities of the respective Plangia species, and data should be gathered following methods 

described by Hemp et al. (2015). 

 

Constructing a life table and degree-day model for P. graminea as well as measuring metabolic 

rate in the laboratory under different temperatures and humidity could further enable predictions 

regarding their pest status. The measurement of calling frequency and its temperature dependence 

under controlled laboratory conditions will allow field estimation of body temperature, a critical 

component of predicting development times of populations in vineyards. 

 

The audible sound produced by male katydids creates a unique opportunity for the development 

of an acoustic monitoring method for this pest. Microphone arrays (Model SM2+, Song Meter, 

Wildlife Acoustics, Inc., Concord, MA, USA), could be deployed in vineyards and population 

estimates could be determined through triangulation of the sound source (Mennill et al. 2012). The 

mating calls are species-specific which would allow identification of species present, while also 

providing accurate estimates of population densities. This could be a valuable tool in the 

determination of an economic threshold level for this pest.  

 

Vineyards and adjoining habitats could be surveyed for additional EPF isolates, and the virulence 

of these isolates can be tested against P. graminea together with M. anisopliae PPRI 12353 and 

the commercial Green Muscle® mycoinsecticide. The survey would involve the collection of soil 

samples and isolation of EPF from these soils using the ‘Galleria bait method’ (Zimmermann 

1986, Goble et al. 2010). The most virulent EPF isolates, determined through laboratory bioassays, 

could then be tested in small scale field experiments. Field tests are required to establish the 

efficacy of the EPFs, since a high level of virulence in the laboratory does not necessarily mean 

that the agent will be effective in the field. Several factors, including suitability to environmental 

conditions, may play a role in their ability to control the pest in the field (Lomer et al. 2001). 

Small-scale field trails could be adapted from the methods described in Johnson et al. (1992). 
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Finally the mechanisms involved in habitat preferences of parasitic wasps could further be 

investigated. These mechanisms include plant structure, plant spacing, plant odours, plant colour 

and food sources (flower morphology and nectar) (Romeis et al. 2005). Different coloured sticky 

traps could be placed out in the field (vineyard and natural habitats) to test their response to colour 

[methods in Romeis et al. (1998)].  This will indicate whether a certain colour of flower is more 

attractive for the wasps. 
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Appendix A 

 

A key to the ensiferan superfamilies, families and subfamilies (as adapted from Rentz, 1991): 

 

1. Tarsi 3-segmented………………………………………….…….…….GRYLLOIDEA.(2) 

- Tarsi 4-segmented……………………………………………………...…….………….(4) 

2. Fore legs fossorial, with broad, flat femur and tibia, and with powerful teeth on both tibia 

and tarsus………………………………………………………………...…Gryllotalpidae 

- Fore legs normal, not especially modified…………………………………..…………...(3) 

3. Eyes greatly reduced; hind coxae closely approximated ventrally [Small, depressed ant 

inquilines]………………………………..……………………….….....Myrmecophilidae 

- Eyes not reduced; hind coxae well separated ventrally …………………..……....Gryllidae 

4. Fore wings, when present, usually tough, ♂ tegmen usually with stridulatory apparatus; 

side of abdomen and adjacent inner face of hind femur without stridulatory modifications 

in either sex.….…………...………………………TETTIGONIOIDEA-Tettigoniidae.(5) 

- Fore wings, when present, soft, pliable, without stridulatory apparatus; often side of 

abdomen and adjacent inner face of hind femur with pegs and modified spines as a 

stridulatory apparatus in both sexes and nymphs as well as 

adults…………………………………………….…………...GRYLLACRIDOIDEA.(17) 

5. Head prognathous, body form phasmatoid……..………….…………………………….(6) 

- Head not prognathous, body form not phasmatoid……..………….……………………..(7) 

6. Both sexes apterous, body form extremely slender………………...…….PHASMODINAE 

- Both sexes winged or ♀ apterous, body form less slender….……...…...ZAPROCHILINAE 

7. Head globose, not usually slanted or frontally flattened. Fore tibia in section approximately 

square in distal portion, dorsal surface not convex. Ovipositor usually short, upturned, 

laterally compressed. Prosternum unarmed.……………………….PHANEROPTERINAE 

- Without above combination of characters…...……………………..…………………….(8) 
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8. Pronotum massive, posterior margin strongly acute; lateral margins crenulated or dentate. 

♂♂ lacking modified stridulatory area of dorsum of 

tegmen………………………………………………….…………...PHYLLOPHORINAE 

- Pronotum not as described above. ♂♂ with stridulatory region on dorsum of 

tegmen…………………………………………………………….…………..……...….(9) 

9. Antennal sockets strongly rimmed, especially on internal dorsal margins. Thoracic auditory 

spiracle small, inconspicuous, not hidden by 

pronotum………………….…………………………….………....PSEUDOPHYLLINAE 

- Antennal sockets not strongly rimmed. Thoracic auditory spiracle large, elongate, and, in 

most species, wholly or partially concealed by pronotum………………………………(10) 

10. Tibial auditory structure usually open; if closed on one side or both sides, then the slit is 

directed laterally and the opening is broad and its margins curving. Prosternum armed with 

a pair of spike-like processes…..…………………………………….…..MECOPODINAE 

- Tibial auditory structure either open or closed, the slit distinctly directed dorsally in relation 

to position on tibia; if open, however, the opening is nearly uniform in width. Prosternum 

armed or unarmed……………………………………………………….……………...(11) 

11. Prosternum unarmed; small, delicate, highly agile, arboreal and epiphyllic species, 

greenish or greenish yellow in coloration; tibial auditory structure generally 

open…………………………………………………………………MECONEMATINAE 

- Prosternum armed or unarmed; combination of other characters not as above……….…(12) 

12. Prosternum unarmed; greenish, brachypterous species with the tegmina mostly concealed 

by pronotum; tibial auditory structure slit-like on both sides, appearing closed; size minute, 

5-8 mm….……………………………………………….…….MICROTETTIGONIINAE 

- Lacking above combination of characters………………………...…………………….(13) 

13. Fore tibia bearing a single apical spur on posterior margin of dorsal surface. Fastigium of 

vertex as broad as width of 1st antennal segment to half width of same. Hind basitarsus 

with a plantula which in most species is ½ the length of 

basitarsus……………………………………………………….……....TETTIGONIINAE 

- Lacking at least 2 of the above-listed characters…..……………..……………………..(14) 

14. Hind tibia lacking apical spurs on dorsal surface. Posterior portion of lateral lobe of 

pronotum produced or not produced.…………………………..………………..SAGINAE 
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- Hind tibia with at least an external apical spur on dorsal surface, if not, then posterior 

portion of lateral lobe of pronotum produced….………………………...……………...(15) 

15. Frons vertical; mesosternum not spiniform. Sexually dimorphic, ♂♂ winged, ♀♀ 

apterous……………………………………………….………….TYMPANOPHORINAE 

- Without above combination of characters……...…………………..…………………...(16) 

16. Fore tibia usually bearing 5-7 long, movable, outwardly bowed, opposing spines, the 

longest of which in many species is as long as or longer than the combined lengths of the 

first 2 tarsal segments. Fastigium of vertex narrow, strongly laterally compressed, its 

greatest width less than that of 1st antennal segment in most species and scarcely projected 

above same and usually sulcate…..………………………..……….LISTROSCELIDINAE 

- Fore tibia of most species with spines not unusually lengthened and not as long as the 

combined lengths of the first 2 tarsal segments. Fastigium of vertex variable in width and 

not sulcate……………………………………………………….….CONOCEPHALINAE 

17. Tarsi depressed. [1st tarsal segment with plantulae; auditory tympana 

absent]……………………………………………………………….…..…Gryllacrididae 

- Tarsi compressed………………………………………….…….……………………...(18) 

18. Antenna very short, reduced to 10 bead-like segments. Legs and body highly modified. ♂♂ 

brachypterous, ♀♀ apterous………………………...............................…….....Cooloolidae 

- Antenna much longer, filamentous. Legs and body not abnormally modified. Sexes not 

dimorphic for wings, but may be apterous or alate…………..………………………….(19) 

19. 1st tarsal segment with plantulae; tibial auditory tympana present in all but one Australian 

genus…………………………………..……………………....…………Stenopelmatidae 

- 1st tarsal segment without plantulae; tibial auditory tympana 

absent………………………………………………….………….…...Rhaphidophoridae 

 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



 

146 
 

Appendix B 

 

TESTING FOR PHYLOGENETIC SIGNAL (CHAPTER 4) 

Because I expected more closely related species to behave more similarly (i.e. presence of 

phylogenetic signal in data; Blomberg et al. 2003), I conducted three analyses to analyse the 

presence and extent of phylogenetic signal in the data, and to take this signal into account when 

analysing the relationship of mass to metabolic rate for three insect behaviours: flying, resting and 

calling.  

Three phylogenetic trees were constructed: for flying insects, for resting Orthoptera, and for calling 

Orthoptera (Figure S1, S2, S3). For flying insects, a tree was constructed using the R package rotl 

(Michonneau et al. 2016), which searches the Open Tree of Life for taxa and constructs a tree with 

no branch lengths. Both Orthoptera phylogenies were constructed manually in Newick format 

according to phylogenetic relationships among subfamilies as published in Song et al. (2015) and 

Chintauan-Marquier et al. (2016) and drawn in figtree (http://tree.bio.ed.ac.uk/software/figtree/). 

In order for the trees to be usable in PGLS analyses, node labels were added and polytomies were 

resolved randomly to dichotomies using the ape package in R (Paradis et al. 2004). Owing to the 

absence of available information for most species, branch lengths were uniformly set to 1.00 

manually for all trees. 

In order to test for strength of phylogenetic signal, two metrics were calculated. Blomberg’s K was 

estimated for log metabolic rate of each group of species using the function Kcalc in the picante 

package in R (Kembel et al. 2010). K close to 0 indicates no phylogenetic signal, K approaching 

1 indicates a trait signal as would be expected under Brownian motion, and K > 1 indicates a strong 

phylogenetic signal in the trait (Blomberg et al. 2003; Erregger et al. 2017). Pagel’s λ was 

estimated in the R package caper (http://www.R-project.org/ package = caper). The λ value ranges 

from 0 to 1, with the closer the value to 1, the stronger the phylogenetic signal (Pagel, 1999). 

PGLS analysis was run in the package caper, using the function pgls. The relationship of log 

metabolic rate (response variable) to log mass (explanatory) was modelled for each of the three 

insect behaviours and species groups. The K-value was read in as the calculated value from Kcalc. 

For each of the three behaviours, an OLS which did not take phylogenetic signal into account was 
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compared with PGLS using Akaike’s Information Criterion (AIC). The lower the AIC value, the 

better the performance of the tested model (Burnham & Anderson, 2002). 

 

RESULTS  

The relationship of metabolic rate to body mass had a relatively strong phylogenetic signal for 

flying insects (λ = 0.953) which approached Brownian motion (K = 0.635). For these species, 

PGLS performed better than OLS, indicating it is important to take phylogenetic signal into 

account (Table S2, Fig. S4). 

For resting and calling Orthoptera, there was no phylogenetic signal in the relationship of 

metabolic rate to mass (λ = 0.000; Kresting = 0.301; Kcalling = 0.500). For both groups of insects, 

OLS performed better than PGLS, indicating no need to take phylogenetic signal into account 

(Table S2, Fig. S4).  

 

Table S2. Estimates of phylogenetic signal (λ and K) in log metabolic rate for three insect behaviours: 

flying (all insects), resting (Orthoptera only) and singing (Orthoptera only). Comparison of ordinary 

least squares (OLS) and phylogenetic least squares (PGLS) models for the relationship of log metabolic 

rate to log mass for three insect behaviours. 

Dataset Pagel’s 

λ 

Blomberg’s 

K 

OLS PGLS 

R2 t-

value 

P AIC R2 t-value P AIC 

Flying  0.953 0.635 0.956 34.16 <0.001 -2.615 0.930 26.856 <0.001 -29.465 

Resting  0.000 0.301 0.638 7.69 <0.001 13.538 0.639 7.239 <0.001 6.410 

Singing  0.000 0.500 0.611 4.79 <0.001 20.093 0.647 4.795 <0.001 18.533 
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Fig. S1. Species tree for flying insects used in phylogenetic signal analyses. 

  

2.0

Glaphyropyga_dryas_ott4442997

Drosophila_virilis_ott660821

Manduca_corallina_ott274615

Adeloneivaia_boisduvalii_ott142404

Periplaneta_americana_ott48288

Euglossa_dissimula_ott392820

Eulaema_cingulata_ott835973

Xylophanes_pluto_ott3093364

Exaerete_frontalis_ott174742

Eufriesea_pulchra_ott684995

Schistocerca_gregaria_ott330338

Drosophila_melanogaster_ott505714

Protambulyx_strigilis_ott394830

Euglossa_imperialis_ott548504

Xylocopa_capensis_ott3270004
Xylocopa_californica_ott470805

Syssphinx_molina_ott1056464

Perigonia_lusca_ott3093367

Apis_mellifera_ott461645

Automeris_jucunda_ott4585

Eulaema_nigrita_ott835976

Euglossa_mandibularis_ott932978

Anadevidia_peponis_ott481268

Ochlerotatus_flavescens_ott754969
Aedes_decticus_ott4477874

Drosophila_repleta_ott167983

Vanessa_eos_ott3114312

Bombus_melanopygus_ott189893

Promachus_rufipes_ott4440821

Automeris_zugana_ott1006332

Tachina_rostrata_ott4379150
Lucilia_sericata_ott173570

Enyo_ocypete_ott3093388

Nymphalis_polychloros_ott444094

Hybomitra_affinis_ott4450793

Drosophila_mimica_ott86628

Deilephila_elpenor_ott3093426

Cucullia_lactucae_ott837089

Eacles_imperialis_ott650433

Euglossa_sapphirina_ott351452

Mimas_tiliae_ott706015

Hyles_euphorbiae_ott3093415

Saturnia_pavonia_ott54248

Simulium_venustum_ott20694

Noctua_pronuba_ott1089514

Fidicina_mannifera_ott6298796

Deilephila_porcellus_ott3094716

Aglia_tau_ott324391

Drosophila_nikananu_ott110533

Drosophila_americana_ott534107

Agrotis_exclamationis_ott114385

Odonestis_pruni_ott3097047

Antheraea_pernyi_ott167955

Eulaema_meriana_ott181527

Bombus_lucorum_ott161192

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



 

149 
 

 

Fig. S2. Species tree for resting Orthoptera used in phylogenetic signal analyses. 
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Fig. S3. Species tree for singing Orthoptera used in phylogenetic signal analyses. 
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. 

Fig. S4. Relationship of mass to metabolic rate for three insect behaviors: flying insects; resting 

Orthoptera and singing Orthoptera. Solid line indicates ordinary least square trend and dashed line 

indicates phylogenetic least squares trend or trend corrected for phylogenetic signal. 
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