Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record isavailable at http://dx.doi.org/10.1109/TM TT.2014.2359855

Compact Conical Line Power Combiner Design
Using Circuit Models
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Abstract—A simple equivalent circuit model with empirical
equations describing the peripheral feeding ports of conical
line power combiners is presented. The model allows the entire
structure to be designed using transverse electromagnetic circuit
theory without the need for any full-wave simulations. A sum-
mary of the model extraction process is given and the accuracy of
the proposed model is confirmed by favorable comparisons with
full-wave simulations. The circuit based design method is used
to design a compact conical line combiner showing measured
performance similar to the current state of the art combiners in
this technology, while being significantly smaller.

Index Terms—Circuit models, combiners, conical combiners,
conical transmission lines, N-way splitters, optimization, passive
components, radial combiners.

I. INTRODUCTION

XIALLY symmetric N-way power combiners offer a
number of advantages over conventional corporate and
chain combiners when N is large. These advantages include
higher combining efficiencies due to reduced insertion loss
and improved amplitude and phase balance, as well as re-
duced physical size and weight [1]-[3]. With few exceptions,
these types of combiners have traditionally been difficult to
design: Electromagnetic field analysis is used in [4], empirical
techniques based on measurements is used in [5], and for
some others no detailed design information is provided [6]-
[8]. With the advent and continued improvement of 3D elec-
tromagnetic modeling software, the analyses and simplified
design approaches of many variations based on radial, coaxial
and conical transmission lines have been presented [9]-[15].
The conical transmission line implementation of N-way
power combiners [10] is a relatively new technology offering
some advantages over the more conventional coaxial line [12],
[16] and radial line [9] structures. The conical combiners in
[10] and [11] are designed using a hybrid technique where a
minimal number of full-wave simulations are required: Even
though conical transmission lines support a fundamental trans-
verse electromagnetic (TEM) mode and may thus be designed
by circuit theory, the peripheral ports of conical combiners
that transition into the conical lines contain discontinuities
where higher order modes are excited, and cannot be modeled
by simple TEM transmission lines [17]. Equivalent circuit
models have previously been used to model different parts
— including in some cases the peripheral port transitions —
of various types of combiners. However, most of these circuit
models do not offer a means to relate the circuit element values
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to physical dimensions [12], [18], or they are not accurate
enough to be used exclusively and full-wave optimization or
parameter sweeps are still needed afterwards to obtain the final
dimensions of the structures [9]-[11], [13], [14].

This paper presents a set of general empirical equations
based on full-wave simulations that describe the circuit model,
as presented in [19] and shown in Fig. 1, for shorted coaxial
peripheral feeding ports in conical combiners. The empirical
equations allow the designer to determine the equivalent circuit
element values accurately and directly from the physical
dimensions of conical combiners and vice versa. In many
cases the empirical equations are accurate enough to allow the
circuit model to be used exclusively during the design process,
eliminating the need for full-wave analyses. This allows for
rapid optimization of various dimensions of the combiner at
a significantly reduced computational cost compared to full-
wave optimization together with matching networks that may
be required for wide band operation. This method also enables
the designer to minimize the total transmission length and thus
the physical size of the combiner.

The parameter extraction method and the subsequent model
derivation are discussed, followed by some example designs
using the circuit model. Full-wave simulations of the final
structures are performed to confirm the accuracy of the pro-
posed method, where close correlations between the circuit
models and the full-wave results are obtained. The proposed
circuit based design method is validated by comparing the
simulation results of an example design with its measurements.

II. PHYSICAL DESCRIPTION AND EMPIRICAL EQUATION
EXTRACTION

The basic layout of a conical combiner is shown in Fig. 1,
where the different regions that will be used in the circuit
model description are indicated by dotted boxes. Note that
the figure is rotationally symmetric around the vertical axis
on the left. The equivalent circuit model for the combiner
and the location of external matching networks that may be
added is shown in Fig. 2, where the equivalent circuit for each
region of the combiner is contained within its corresponding
box. The peripheral feeding port transition used here is the
uncompensated version without tuning posts, as defined in
[19], and is different from what is used in [10] and [11].
Note that the circuit model is only valid for the symmetrically
driven case where the fields at the peripheral input ports
have the same amplitude and phase. In Fig. 1, regions A
and F are coaxial lines, regions C and E are conical lines,
and region B is a constant impedance conical to coaxial line
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Fig. 1. Cut plane view of the basic layout of a conical line combiner showing
the different regions used in the circuit model.
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Fig. 2. Circuit model of the full combiner showing the regions corresponding
to the physical model in Fig. 1, including external matching networks that may
be needed.
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Fig. 3. A smooth conical to coaxial transmission line transition, as presented
in [20].

transition, as shown in Fig. 3. These regions are all simple
TEM transmission lines and can thus be modeled by ideal
transmission lines with lengths and impedances derived from
the physical geometry of the structure, whereas region D
includes some reactive elements to compensate for the stored
evanescent mode energy around the peripheral coaxial feeding
port to conical line transition. Note that the transmission
line in region F and the inductor in region D represent a
parallel combination of NV of those components for an N-way
combiner.

A complete and accurate physical description of the com-
bining structure is needed so that the transmission line lengths
and impedances needed for the circuit model extraction and the

circuit model based design procedures can be calculated. The
equations needed for regions A, B, C, E and F will be given,
followed by the extraction process for the empirical equations
needed for region D. Note that no external matching networks
are used during the extraction process.

A. Central Output Coaxial Line (Region A)

Region A contains a constant impedance coaxial line with
inner and outer conductor radii of R; and Ro, respectively.
The coaxial line in region A will have the same length [4 as
used in the ideal transmission line model. The impedance Z 4
can be calculated using

— R2
Z4 = 60In (Rl) : (1)

B. Central Transition (Region B)

The central transition from conical to coaxial line is de-
signed using the smooth transition presented in [20] and shown
in Fig. 3. The radii of the two arcs (7 and r3) used to construct
the transition are obtained using

r = 3.5 X (RQ — Rl) s (2)
- (R1 + Tl) cost 7 3)
1 —cosbip

where 6 is the conical line angle as defined in Fig. 3. The
mean transmission length (the dashed line in region B, Fig. 1)
can be calculated using

r1+r2  bOap+bip

Ip=—5—X 5 “4)

where 55 is the conical line angle as defined in Fig. 3, and
usually A2 = 90°. The impedance of the transition is shown
to be constant in [20] and can be determined by calculating
either the coaxial or conical transmission line impedances:

Zp = Z4 = 60In (R1)7 (5)
o (015/2)
N cot(V1B
Zp = G0In [Cot(ﬁgB /2)] ©

for air-filled coaxial and conical lines, respectively.

C. Conical Transmission Line (Region C)

The mean transmission length for this region is calculated
from the edge separating regions D and C to the edge
separating regions C and B. The length (the dashed line in
region C, Fig. 1) can be calculated using

Tp —
= - n - S 27 7
7 cos(n/d—01p)2) I —ds/ ™
where
1
ln25[31+R2+7‘1 +T2 (1—005013)} (8)

is the average length of conical transmission line removed
from the central part of the conical line where the transition to
the central coaxial line is inserted. In (7) 1, is the peripheral
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Fig. 4. A section of the combining structure showing the parts of the top
conductor being removed where the coaxial lines are placed, as well as the
port numbering used throughout this work.

Fig. 5. The constant impedance 10-way conical combiner used to extract the
model. The shaded part of the model is vacuum and the background material
is perfect electrical conductor (PEC).

input port placement radius as defined in Fig. 4, d, is the
arithmetic mean of d, in Fig. 4 as the line OP is moved from
the position OP; to OP; and can be approximated using (13),
and the same definition as in region B is used for 6;p except
that it is the angle of the conical line in region D. The length
lc is exact when region C is a constant impedance conical line,
where 615 = 01p, and is a reasonable approximation if region
C is an impedance tapered conical line, where 615 # 01p. If
region C is a constant impedance conical line, then Z¢ = Zp,
since 01p = 01p and O35 = Op = 90°. If region C is an
impedance tapered conical line then the conical line angle 61 ¢
required to realize the desired impedance function Z; versus
distance can be approximated as a function of radial distance
from the axis of symmetry of the conical line p, using

tan(92B/2) :| ©)

The impedance function Z¢ can be an impedance taper of the
designer’s choice, such as an exponential or a Hecken [21]
taper.

D. Conical Transmission Line (Region E)

The length (the dashed line in region E, Fig. 1) can be
calculated using

B cos(n/4—61p)2)

—d/2, (10)

where 7, is the back-short length as defined in Fig. 4. The
impedance Zg can be calculated using

cot(HlD/Q)]
cot(62p/2) |’

since 910 = 91E and 92[) = HQE.

7 :601n[ (11)

E. Coaxial Transmission Line (region F)

Region F contains a constant impedance coaxial line with an
inner conductor radius 7, and an outer conductor diameter
of d.. The coaxial line in region F will have the same length [
as used in the ideal transmission line model. The impedance
Zp can be calculated using

dc
Zr = 60In () .
2rinner

F. Empirical Equation Extraction (region D)

(12)

The length [p in the circuit model is calculated directly
from the combiner dimensions, whereas empirical equations
will be used to calculate the impedance Zp and inductance
Lp. The empirical equations are extracted so that they are
applicable to a wide range of conical line combiners.

A sector of an N-way combiner is shown in Fig. 4 where
the dimensions used to derive the expression for the length
Ip are defined. The outer conductors of the peripheral ports
are formed by drilling holes through one of the conical
transmission line conductors and are represented by the circles
between the dashed arcs T and V.

The drilling of the holes results in the removal of some of
the conical line conductor, causing a change in impedance be-
tween arcs T and V. The change in impedance is approximated
using two short transmission lines. It is assumed that 7, is
large relative to the outer conductor diameter of the peripheral
coaxial lines d., so that the arc U will be approximately
straight inside the removed circle area. As a result, the average
of ds and thus the length [p, can be approximated simply by
using p

JE— C’]'('
lp=ds= 1

The value of Zp is calculated by scaling the impedance of
the conical transmission line to model the effect of removing
some of the conductor from the conical line. This modification
is expected to increase the impedance of the conical line
between arcs T and V, resulting in a scaling factor for Zp
that is larger than 1. Furthermore, the value of Zp is expected
to be dependent on the ratio of the amount of conductor along
the circumference of the conical line at radius 7, before the
holes are made to the amount remaining after the holes are
made. The empirical equation for Zp can thus be defined as

(14)

13)

Zp = gl(ml)Zsysv
where
2mry Tp
T =

pr— — = 5 15
2mr, — Nd, Tp—% (15)

Zsys 1s the impedance of the unperturbed conical line be-
tween arcs T and V before the peripheral ports are inserted
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TABLE I
EXTRACTED POLYNOMIALS FOR THE EMPIRICAL EQUATIONS

Function Units
gi(z1,Ar) = —0.054x1 Ar + 0.48z1 + 0.072Ar +0.38  /Q
g2 (w2, Ar) = 62z2Ar + 32022 — 230Ar — 5.7 pH

(Zsys = Zg), and N is the number of peripheral feeding
ports of the combiner.

The inductor in region D models the extended center
conductor pin of the peripheral coaxial lines and its value is
expected to be dependent on the pin length. Thus,

Lp = ga(x2), (16)

where

To = TpCOtelp 17

is the length of the coaxial pin extending into the conical
transmission line.

A simple constant impedance conical combiner as shown
in Fig. 5 is used to extract the empirical equations that
describe Zp and Lp. This is done by fitting the scattering
parameters of the circuit model onto the corresponding ones
produced by full-wave simulations. All full-wave simulations
are performed using the time domain solver in Computer
Simulation Technology (CST) Microwave Studio (MWS) [22].
A mean square error function is defined in order to measure
how well the model matches the full-wave simulations:

US|
=), E|5{1(fk) — St ()l

k=1

(18)

S{l and SY{, are the S-Parameters of the full-wave and circuit
simulations, respectively, and fi is the kth frequency sample
of a total of K samples. Port 1 is the central port and ports
2 to N + 1 are the peripheral ports, as defined in Fig. 4. A
Nelder-Meade based Simplex search [23] is used to minimize
€ over a wide bandwidth (> 100%) around a chosen center
frequency by adjusting the values of Zp and Lp in the circuit
model. The center frequency is determined by the length of
the back-short in the conical line 7, (also defined in Fig. 4),
which is equal to a quarter wavelength at that frequency. A
center frequency of 10 GHz is used to extract the empirical
equations. Straight lines fit the resulting values of Zp and Lp
well, however, the coefficients of the best fitting lines change
for different peripheral port dimensions. A straight line is thus
fitted to each set of data points sharing the same peripheral
port dimensions, resulting in a number of different equations.
These equations are combined by fitting polynomials to the
obtained coefficients for different peripheral port dimensions
versus Ar, with

Ar = dc/2 — Tinner, (19)

where e 1S the inner conductor radius, and d,. is the outer
conductor diameter of the peripheral coaxial feeding ports.
The resulting empirical equations are the simple bivariate
polynomials given in Table I. Note that all dimensions should
be specified in millimeters.
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(a) 10 GHz (X-Band) combiners with 3.5 mm peripheral ports.
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(b) 10 GHz (X-Band) combiners with 85.6 2 peripheral ports with SubMinia-
ture version A (SMA) connector inner conductor dimensions.
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(c) 10 GHz (X-Band) combiners with N-type peripheral ports.
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(d) 6 GHz (C-Band) combiners with N-type peripheral ports.

Fig. 6. Contour plots of the mean square error, as defined in (18), between
full-wave simulations and their equivalent circuit models. The accuracy of the
circuit models used for the designs in section V are indicated by X-markers
on the contour plots: The 30 port X-Band combiner is shown in (a), the 10
port X-Band combiner in (b) and the 15 port C-Band combiner in (d).
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III. PARAMETER STUDY

A parameter study is performed to test the accuracy of the
model. Equivalent circuit models for various combiners are
built using the information presented in Section II (a detailed
design procedure is given in Section IV). Combiners with
center frequencies of 6 GHz (C-Band) and 10 GHz (X-Band)
and peripheral feeding ports with the same inner and outer
conductor radii as the standard 50 2 3.5 mm and N-type
connectors are used to generate the data shown in Fig. 6. A
combiner with 85.6 {2 peripheral feeding ports with the same
inner conductor radius as the standard SubMiniature version
A (SMA) connector is also used, similar to what is used in
[11], with a different outer conductor radius from the standard
50 €2 SMA connector. The quantities Z,s, Zp, N, rp, and 1y
in Fig. 6 are defined in Section II.

The error function defined in (18) is used to show how
well the scattering parameters of the circuits match their
corresponding full-wave simulations for different combiner
dimensions over a larger than 100% bandwidth. These contour
plots may be of interest to the designer when using the model.
The need for full-wave simulations can be eliminated by
limiting the combiner dimensions to regions where ¢ is small,
however this model could still serve well as a coarse model
for space mapping techniques in situations where the combiner
dimensions cannot be limited to the higher accuracy regions,
or when the results are not satisfactory.

Fig. 6 has been generated using data for 10-way combiners.
However, similar data for 15-way and 20-way combiners with
85.6 (2 SMA feeding ports has been generated and compared
to the data for N = 10. A statistical analysis of the data reveals
that the model accuracy is relatively independent of N: The
mean error function variance for the three values of NV is

Var(e) mean = 3.19 x 1077, (20)
and the maximum error function variance is
Var () max = 1.42 x 1075, (21)

A comparison of the results for combiners with N-type ports
operating at X-Band [Fig. 6(c)], where d./r}, ~ 0.9, and at C-
Band [Fig. 6(d)], where d../r, =~ 0.5, shows that the electrical
size of the peripheral ports influences the accuracy of the cir-
cuit model: The region with higher accuracy (¢ < 2.5 x 1073)
is much larger at C-Band than at X-Band. The same effect
can be seen by comparing Figs. 6(a) and 6(c), which are for
combiners with the same center frequency, but with different
peripheral port sizes. As a general rule, the outer conductor
diameter of the peripheral ports should be less than a quarter
of a wavelength at the center frequency, thus d./r, < 1, and
increased accuracy is expected for smaller diameters.

IV. DESIGN PROCEDURE

The physical description, equivalent circuit model, and
empirical equations presented in Section II are used to compile
a step-by-step design procedure so that the designer may use
the presented information in a systematic way. The number
of input ports N, the wavelength at the center frequency of
the operating band )., and the type of connectors to be used

for the peripheral input ports and central output port should
be selected before starting the design procedure. The first
part of the design consists of setting up initial values and/or
constraints for the parameters that can be optimized. The
optimizable parameters are all either physical dimensions or
can be directly related to physical dimensions of the combiner.
The parameter study performed in Section III is used to create
a set of recommendations that will assist the designer in
obtaining more accurate results. The second part of the design
consists of analyzing and optimizing the equivalent circuit
model for one or more design goals. When satisfactory results
are obtained, a 3D model of the combiner may be constructed
and a single analysis performed using full-wave simulation
software, such as CST MWS, in order to verify the design.

A. Recommended initial values or constraints for optimizable
parameters

1) For the back-short length 7, it is recommended that

(22)

Ty & —.

4

2) For the outer conductor diameter d., of the peripheral
input coaxial lines it is recommended that

de < 7. (23)

Consider that the coaxial lines modeled by region F
need to interface with matching networks or — if the
matching networks are omitted — directly with the input
connectors. Calculate the resulting values for Zr using
d. and the radius of the inner conductor r;,,,., that will
be used for the peripheral input ports using (12).

3) It is recommended, in general, that for the impedance of
the unperturbed conical line in region D, as described

in Section II,
ZF

N

4) For the peripheral input port placement radius 7, im-
proved accuracy of the circuit model can be obtained,
in general, when

Dys ~ 24)

Nrb
< =

(25)

while also keeping 7, large enough to accommodate all
of the input connectors for ports 2 to N + 1.

5) For the outer conductor radius Rs of the coaxial line
in region A, the fact that this coaxial line will need to
interface either directly with the chosen output connector
or with an output matching network should be taken into
consideration.

6) The inner conductor radius R; of the coaxial line
in region A also affects the conical to coaxial line
transition in region B, since Z4 = Zp. Furthermore,
if region C is a constant impedance conical line, then
Zy = Zp = Zc = Zgys = Zg. However, using
a constant impedance conical line in region C may
lead to manufacturing difficulties and inaccuracies due
to the small spacing (R; — R;) that is required in
order to realize a low impedance coaxial transmission
line, as pointed out in [11]. It is thus recommended
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to use a tapered conical line in region C that tapers
the impedance from Z,, up to a higher impedance in
regions A and B, resulting in a larger spacing and thus
improved manufacturability. In this case R; is chosen or
optimized and constrained to provide adequate spacing,
and r, will affect the taper length.

B. Calculation of equivalent circuit model element values

The equivalent circuit model of the entire combining struc-
ture, as shown in Fig. 2, can now be constructed in a circuit
simulator. Fig. 2 shows the location of external matching
networks, for example stepped impedance coaxial lines, that
may be added by the designer. The designer will need to find
or derive the equivalent circuit models for any added external
matching networks needed for a specific combiner design. The
circuit element values of the equivalent model can now be
calculated using the parameters described in Section IV-A as
variables, by using the following procedure:

1) Calculate Zg from (5).

2) Calculate 6, using (6) where typically 655 = 90°.

3) lp can be calculated using (4).

4) 14 can be optimized together with an external output
matching network, or if region A is already matched to
the desired output port impedance and dimensions, [4
can be zero.

5) Za=Zp.

6) lc can be calculated using (7).

7) If region C is a constant impedance conical line
then Zo = Zp, otherwise the profile of the de-
sired impedance taper, such as an exponential or a
Hecken [21] taper, with a length of [~ should be
calculated using (9).

8) Calculate Ar using (19).

9) Ip can be calculated using (13).

10) Zp can be calculated by combining (14), (15), and the
function g;(x1, Ar) listed in Table 1.

11) Calculate 6, p using (11) where typically 85p = 90°.

12) Lp can be calculated by combining (16), (17), and the
function go(x1, Ar) listed in Table 1.

13) lg can be calculated using (10).

14) Zg = Zsys, and thus with 6o = 03p, 01 = 01p.

15) [ can be optimized together with an external input
matching network, or if region F is already matched
to the desired input port impedance and dimensions, !
can be zero.

16) Zp can be calculated using (12).

The entire circuit model including external matching networks
and the impedance tapered conical line in region C can now
be optimized for one or more chosen design goals.

V. DESIGN EXAMPLES

The circuit model is further validated by completing some
example designs with external input and output matching net-
works and comparing the S-parameters of the model with the
full-wave simulations. Three different combiners are designed
with stepped impedance central coaxial ports to match them to
50 €, similar to the combiner in [10], using [24] to calculate
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Fig. 7. (a) The full-wave simulation model of the 30-way X-Band combiner
with standard 3.5 mm connector dimension peripheral ports, and (b) the
comparison between the full-wave and equivalent circuit model output port
reflection coefficients (S11).

the step capacitances. In each of the combiners, the impedance
of the conical lines are tapered up to higher values near
the central port, as is done in [11], except that a smooth
Hecken taper [21] is used instead of a Klopfenstein taper [25].
These examples also serve as an indication of how well the
circuit model S-Parameters match the full-wave simulations
for combiners that fall into different accuracy regions as shown
in Fig. 6 and explained in section III.

The first design is for an X-Band 30-way combiner, with a
center frequency of 10 GHz, that has 50 € peripheral ports
with the same inner conductor radius as the standard 3.5 mm
connector. The 3D model used for the full-wave simulation
is shown in Fig. 7(a), and excellent agreement between the
circuit model and full-wave simulation is shown in Fig. 7(b).
This level of accuracy is achieved by limiting the combiner
dimensions to the higher accuracy and thus lower error regions
as indicated by the x-marker in Fig. 6(a).

The second design is for a C-Band 15-way combiner,
shown in Fig. 8(a), with a center frequency of 6 GHz and
50 ) peripheral ports with inner conductor radii corresponding
to the standard N-type connector dimensions. A comparison
between the circuit model and full-wave simulation results is
shown in Fig. 8(b), with slightly deteriorated but still good
agreement considering that this combiner falls into a much
lower accuracy region [see Fig. 6(d)] compared to the previous
design. This example demonstrates that the model is valid for
a different frequency range.

The third design is for an X-Band 10-way combiner, with
a center frequency of 10 GHz, that has stepped impedance
peripheral ports with a constant inner conductor radius equal
to that of the standard SMA connector. The peripheral ports
are stepped into a 65.4 (2 partially filled coaxial transmission
line followed by a 85.6 €2 section that transitions into the
conical transmission line, as shown in Fig. 9(a). This is similar
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Fig. 8. (a) The full-wave simulation model of the 15-way X-Band combiner
with standard N-type connector dimension peripheral ports, and (b) the
comparison between the full-wave and equivalent circuit model output port
reflection coefficients (S11).

to the peripheral ports used in [11]. The stepped impedance
feeding lines add degrees of freedom, namely the lengths of the
65.4 Q (Ipqr) and 85.6 2 (1) lines, that can be optimized. The
impedance step introduces a small shunt capacitance that can
be omitted due to its small effect. The central port reflection
coefficient (S11) is shown in Fig. 9(b) and the circuit model is
in excellent agreement with the full-wave simulation. For this
design r, + 1, = 25.9 mm compared to 7, + 7, = 40 mm
in [11], while exhibiting similar performance. The reduction
in size is mainly due the fact that the impedance taper in
the conical line no longer needs to be designed as in [11],
where the taper length is maximized in order to achieve the
best possible reflection coefficient in the passband. This was
required since the combining structure, and thus the taper,
was not included in the optimization parameter space since
full-wave analysis was used to find the response. The circuit
model approach used here allows the taper to be optimized to-
gether with the impedance levels and transmission line lengths
throughout the entire combiner, and it can consequently have a
shorter length. The final parameters of the optimized combiner
are: Ry = 35 mm, 74, = Zp = 2018 Q,l4 = 0,
Zg = Zsgys = 98, d. = 5.164 mm, 7jpper = 0.62 mm,
rp = 17Tmm,r, = 7.9mm, Zr = 85.6Q, lp = 9.5 mm,
lpar = 4 mm. The stepped coaxial output matching network
has impedance levels of 32.89 €2 and 38.62 (2, and lengths of
4.4 mm and 4.2 mm, in that order, followed by a 50 (2 coaxial
line. The Hecken taper in region C has B = 0 + 5247,
with B defined in [21]. This design is chosen for construction
and measurement.

VI. CONSTRUCTION AND MEASUREMENTS

A computer numerically controled (CNC) lathe is usually
able to machine conical structures, such as conical transmis-
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Fig. 9. (a) The full-wave simulation model of the 10-way X-Band combiner
with standard SMA connector dimension peripheral ports, and (b) the compar-
ison between the circuit model, full-wave, modified full-wave and measured
output port reflection coefficients (S11). The full-wave simulated S11 using
the measured profile of the manufactured combiner (shown in Fig. 10) is also
shown in (b).

sion lines, with ease. There are, however, a few limitations
that need to be considered. The finite radius of the cutting
tool tip limits the size of the smallest concave feature of the
structure. The tool tip radius is taken into account by blending
all concave corners with a radius equal to or larger than the tip
radius. For this design, this modification has very little effect
on the combiner performance, since the tip radius (0.4 mm
in this case) is much smaller than the guided wavelength
at X-Band (A\; ~ 30 mm). Additionally, all the areas in
the combiner requiring this modification have relatively low
local field intensities, further reducing its effect. For full-
wave simulation purposes, the impedance taper in the conical
line is defined by a series of coordinates connected by short
straight lines. For construction, the impedance taper is much
more conveniently defined by a series of tangential circle
sections passing through or near the series of coordinates.
The full-wave simulation results of the modified combiner
in Fig. 9(b) show that while these modifications significantly
reduce the manufacturing effort, the combiner performance is
barely affected at all.

The size, shape, and angle of the cutting tool holder and/or
toolpost that is used imposes limitations on the realizable
shape of the structure. The goal is to use the least number
of different cutting tools, since each interchanging of tools
increases the cost and introduces a degree of uncertainty,
as well as visible and often palpable step discontinuities. If
necessary, it is desirable to change the cutting tool at a large
radius in this type of structure, since any discontinuities or
uncertainties will have less of an effect where the energy
is spatially more dispersed. The shape and angle of the
cutting tool also influences the amount of effort needed during
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Fig. 10. The measured profile of the manufactured device is compared to the
CAD model dimensions in (a) and (b), and a photo of the manufactured top
and bottom halves of the combiner is shown in (c).

fabrication and whether a certain shape is realisable at all. For
example, if the structure has a profile that does not increase
or decrease monotonically in height versus radius, as is the
case with the chosen design example, the cutting tool needs
to be sufficiently narrow and its holder appropriately shaped
so that it has enough clearance of the rest of the structure at
all times.

The profile of the machined part is measured and compared
to the 3D CAD model dimensions in Fig. 10 showing excellent
agreement with the design. The largest errors can be seen in
the coaxial to conical transition and the impedance taper in
the conical line. A photo of the manufactured top and bottom
halves of the combiner is shown in Fig. 10(c).

The measured central port reflection coefficient and periph-
eral port isolation are shown in Figs. 9(b) and 11 and are
in good agreement with their simulated values. A full-wave
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Fig. 11. The full-wave simulated isolation (dashed lines) compared to the
measured isolation (solid lines) of the combiner in its operating band.
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Fig. 12. The measured phase and amplitude balance is shown in (a), where
n is the peripheral port number with n = 2, ..., N 4 1. The total insertion
loss of the combiner is shown in (b).

TABLE I
COMPARISON WITH OTHER RECENT WORK

Ref. Type N Egtszn(l dB) Bandwidth g§l$ency
This Work  Conical 10 18 46% X-Band
[11] Conical 10 18.5 47% X-Band
[10] Conical 10 14.7 74% X-Band
9] Radial 30 14 15% Ku-Band
[15] Radial 10 15 35% Ku-Band
[12] Coaxial 8 12 112% L-Band
[13] Coaxial 10 15 30% Ku-Band

simulation is performed using the measured dimensions of the
manufactured combiner and the resulting central port reflection
coefficient is shown in Fig. 9(b). The remaining difference
between the measured and simulated S7; could be due to a
number of factors, such as the SMA to N-type adapter or the
non-ideal SMA terminations used during the measurements.
The central port return loss and fractional bandwidth is
shown in Table II for comparison with other work. The mea-
sured peripheral port isolation is better than 6 dB compared to
roughly 6 dB in [11] and 5 dB in [10]. The measured amplitude
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and phase balance is shown in Fig. 12(a). The maximum
measured amplitude and phase imbalance is + 0.6 dB and
+ 3°, respectively, versus £ 0.7 dB and £+ 5° in [11], and
+ 1.5 dB and + 10° in [10]. The insertion loss shown in
Fig. 12(b) is calculated by substituting the measured values
for S;1, 5 =2,3,..., N+ 1 into

N+1
Losses = —10logy, Z |Sj1|2

=2

(26)

The maximum insertion loss in the operating band is 0.28 dB,
which is the same as in [11], and an improvement compared
to [10], where a stepped impedance matching network is used.

VII. CONCLUSION

A simple equivalent circuit model has been presented to-
gether with empirical equations that allow for rapid circuit
based design and optimization of conical power combiners
with shorted coaxial feed ports. The results of a parametric
study on the accuracy of the circuit model are presented in a
format that may be helpful to the designer. The effectiveness of
the circuit model has been demonstrated by using it to design
a significantly smaller combiner with performance comparable
to previously published designs. The manufactured design
exhibits excellent agreement with the circuit model and full-
wave simulations.

ACKNOWLEDGMENT

The authors would like to thank Comar International and
Reutech Radar Systems (Pty) Ltd. in Stellenbosch, South
Africa for assistance in manufacturing and financial support
of the project.

REFERENCES

[1] K. J. Russell, “Microwave power combining techniques,” IEEE Trans.
Microw. Theory Techn., vol. 27, no. 5, pp. 472-478, May 1979.

[2] K. Chang and C. Sun, “Millimeter-wave power-combining techniques,”
IEEE Trans. Microw. Theory Techn., vol. 31, no. 2, pp. 91-107, Feb.
1983.

[3] R. A. York, “Some considerations for optimal efficiency and low noise
in large power combiners,” IEEE Trans. Microw. Theory Techn., vol. 49,
no. 8, pp. 1477-1482, Aug. 2001.

[4] M. E. Bialkowski and V. P. Waris, “Electromagnetic model of a planar
radial-waveguide divider/combiner incorporating probes,” IEEE Trans.
Microw. Theory Techn., vol. 41, no. 6, pp. 1126—1134, Jun. 1993.

[5] T.-I. Hsu and M. D. Simonutti, “A wideband 60 GHz 16-way power
divider/combiner network,” in IEEE MTT-S Int. Microw. Symp. Dig.,
May 1984, pp. 175-177.

[6] R. Harp and H. Stover, “Power combining of X-band IMPATT circuit
modules,” in IEEE Int. Solid-State Circuits Dig. Tech. Pap., vol. XVI,
Feb. 1973, pp. 118-119.

[71 R. Mellavarpu and G. MacMaster, “500 MHz, 100 W X-band solid
state amplifier,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1985, pp.
387-390.

[8] J.P. Quine, J. G. McMullen, and D. D. Khandelwal, “Ku-band IMPATT
amplifiers and power combiners,” in IEEE-MTT-S Int. Microw. Symp.
Dig., Jun. 1978, pp. 346-348.

[9] A.E. Fathy, S.-W. Lee, and D. Kalokitis, “A simplified design approach

for radial power combiners,” IEEE Trans. Microw. Theory Techn.,

vol. 54, no. 1, pp. 247-255, Jan. 2006.

D. I. L. de Villiers, P. W. van der Walt, and P. Meyer, “Design of a ten-

way conical transmission line power combiner,” IEEE Trans. Microw.

Theory Techn., vol. 55, no. 2, pp. 302-308, Feb. 2007.

[10]

[11] D. I. L. de Villiers, P. W. van der Walt, and P. Meyer, “Design of
conical transmission line power combiners using tapered line matching
sections,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 6, pp. 1478—
1484, Jun. 2008.

M. Amjadi and E. Jafari, “Design of a broadband eight-way coaxial
waveguide power combiner,” IEEE Trans. Microw. Theory Techn.,
vol. 60, no. 1, pp. 3945, Jan. 2012.

K. Song and Q. Xue, “Planar probe coaxial-waveguide power com-
biner/divider,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 11, pp.
2761-2767, Nov. 2009.

——, “Ultra-wideband ring-cavity multiple-way parallel power divider,”
IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4737-4745, Oct. 2013.
K. Song, F. Zhang, S. Hu, and Y. Fan, “Ku-band 200-W Pulsed power
amplifier based on waveguide spatially power-combining technique for
industrial applications,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp.
4274-4280, Aug. 2014.

Q. Xue, K. Song, and C.-H. Chan, “China: Power combiners/dividers,”
IEEE Microwave Magazine, vol. 12, no. 3, pp. 96-106, May 2011.

D. I. L. de Villiers, “A simplified peripheral feeding network for conical
line power combiners,” in Proc. Asia-Pacific Microw. Conf., Dec. 2012,
pp. 986-988.

G. W. Swift and D. I. Stones, “A comprehensive design technique for
the radial wave power combiner,” in I[EEE MTT-S Int. Microw. Symp.
Dig., May 1988, pp. 279-281.

R. D. Beyers and D. 1. L. de Villiers, “Analysis of shorted coaxial
peripheral feeding networks for conical line power combiners,” in Proc.
Asia-Pacific Microw. Conf., Nov. 2013, pp. 285-287.

P. W. der Walt, “A novel matched conical line to coaxial line transition,”
in Proc. South African Commun. Signal Process. Symp., Sep. 1998, pp.
431-434.

R. P. Hecken, “A near-optimum matching section without discontinu-
ities,” IEEE Trans. Microw. Theory Techn., vol. 20, no. 11, pp. 734-739,
Nov. 1972.

Computer Simulation Technology, CST Studio Suite 2011, Darmstadt,
Germany. [Online]. Available: http://www.cst.com

J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” Comput. J., vol. 7, no. 4, pp. 308-313, 1965.

P. I. Somlo, “The Computation of Coaxial Line Step Capacitances,”
IEEE Trans. Microw. Theory Techn., vol. 15, no. 1, pp. 48-53, Jan.
1967.

R. W. Klopfenstein, “A transmission line taper of improved design,”
Proc. IRE, vol. 44, no. 1, pp. 31-35, Jan. 1956.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

Ryno D. Beyers (S’13) was born in Bellville, South
Africa, on April 22, 1989. He received the B.Eng
degree in electrical and electronic engineering from
the University of Stellenbosch, Stellenbosch, South
Africa, in 2011, and is currently working towards the
Ph.D. degree in electrical and electronic engineering
at the University of Stellenbosch.

His current research interests include passive de-
vices and network synthesis.

Dirk I. L. de Villiers (S’05-M’08) was born in
Langebaan, South Africa, on October 13, 1982. He
received the B.Eng and Ph.D. degrees in electrical
and electronic engineering from the University of
Stellenbosch, Stellenbosch, South Africa in 2004
and 2007 respectively. During 2005 to 2007 he
spent several months as visiting researcher with the
Computational Modeling and Programming group at
the University of Antwerp in Antwerp, Belgium.

From 2008 to 2009 he was a post-doctoral fellow
at the University of Stellenbosch working on antenna
feeds for the South African SKA program. During this time he was also a
part time lecturer at the Cape Peninsula University of Technology. He is
currently a senior lecturer at the University of Stellenbosch, and his main
research interests include reflector antennas as well as the design of wide
band microwave components such as combiners, filters, and antennas.

Copyright (c) 2014 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



