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Abstract

Development of a kHz optical remote sensing system for in situ insect
monitoring

Department of Physics
Stellenbosch University
Private Bag X1, Matieland 7602, South Africa
Dissertation: PhD
March 2016

In this work we have developed a kHz optical remote sensing system for in situ insect
monitoring applications. This is an active and passive remote sensing system based on laser
and sunlight. This system showed potential for monitoring pollinators in agricultural fields. It
enables the implementation of improved vector control mechanisms and pest management. The
passive remote sensing setup called dark field spectroscopy uses sunlight as an illumination
source. Considering the passive remote sensing techniques, it is shown that one can determine
flight direction, retrieve spectral information, and resolve wing-beat frequency (and harmonics)
and iridescence features of fast insect events. With regards to active remotes sensing technique,
a number important range resolved quantitative assessments of insects such as size, speed and
wing-beat frequency can be performed. It is shown that the CW-LIDAR based on the
Scheimpflug principle improves the range resolution beyond the diffraction limit. The reason
for this is because of the fact that the sampling frequency is in the order of kHz and insects
behave like blinking particles similar to super resolution microscopy called stochastic optical
reconstruction microscopy (STORM) where molecules blinks between bright and dark states.
Generally, this dissertation highlights the potential of applied optical remote sensing techniques
to remotely identify insects and understand their impact onan ecosystem.
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Ontwikkeling van 'n kHz optiese afstandswaarneming stelsel vir die in situ
monitering van insekte

Departement Fisika
Universiteit Stellenbosch
Privaatsak X1 , Matieland 7602 , Suid-Afrika
Verhandeling: PhD
Maart 2016

In hierdie werk het ons 'n kHz sisteem ontwikkel waarmee insekte oor 'n afstand in situ
gemonitor kan word. Die sisteem is beide aktief en passief, gebaseer op laser- en sonlig. Die
sisteem het potensiaal getoon om bestuiwers in 'n landbou omgewing te monitor. Dit stel in
staat die implementering van verbeterde vektor beheer meganismes en pes bestuur. Die
passiewe opstelling, genoem donker veld spektroskopie, gebruik sonlig as ligbron. Met die
opstelling kan die bewegings rigting, spektrale inligting, die frekwensie (en hoér harmonieke)
waarteen die vlerke beweeg en glans kenmerke bepaal word van vinnige insek gebeurtenisse.
Deur gebruik te maak van die aktiewe opstelling kan 'n aantal belangrike posisie athanklike
kwantitatiewe bepalings gemaak word soos insek grootte, spoed en vlerkfrekwensie. Dit word
verder getoon dat CW-LIDAR, gebaseer op die Scheimpflug beginsel, die afstand resolusie
verbeter verby die diffraksie limiet. Die rede hiervoor is die feit dat die meet frekwensie in die
orde van 'n kHz is, en insekte hulle soos flikkerende deeltjies gedra, soortgelyk aan wat
waargeneem word in die super resolusie mikroskopie tegniek, genaamd “stochastic optical
reconstruction microscopy” of te wel STORM, waar molekules flikker tussen helder en donker
toestande. In die breé gesien, beklemtoon die proefskrif die potensiaal van toegepaste optiese
afstand meet tegnieke om oor 'n afstand insekte te identifiseer en hulle impak op 'n ekosisteem
te verstaan.
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Chapter |

1. Introduction
1.1 Background

The issue of climate change has been a very hot topic of the last decade due to the vulnerability
of our environment. The main causes could be natural changes or industrialization due to
human activities[1-5]. Although natural phenomena also have an impact, human related
influence is significant.An improved quantitative and in-situ surveillance techniques could
support decision making and proper management of the environment. The study of insect
activities could help in the process of understanding the bigger picture as they are part of the
environment. It is known that insectscomprise 80% of the terrestrial animal population on earth,
which makes them very important classes[6]. They can be used as delicate indicators for the
minute changes in the environment. They can be helpful to determine age of dead body in
forensic entomology [7-10]. Insects such as bees are responsible for pollinating about 80% of
flowering plants[11, 12]. They are excellent biomarkers of flowing water purity, pesticide
abuse, and are climatic change indicators [13]. Generally, insects play a crucial role in
maintaining the natural balance of the earth. On the other hand, insects can have a negative
impact on agricultural productivity [14] and disperse forestry and agricultural pests [15]. They
can also transfer disease to livestock and humans [16]. Various species of mosquitoes can
transfer diseases to human beings [17].

The studies of insects have been done for many years to understand their nature, to use insects
as an indicator of natural phenomena and to control their influence on the environment. Such
studies have been mainly based on manual counting, which off course has made an important
contribution to the field. Some of the examples of those techniques are: water pan trap, light
traps, sweep nets, flight intercept traps, pitfall traps, and beating trays [18-22], Fig.1.

Figure 1: Types of traps commonly used in the field of entomology. Left: Water pan trap, which
uses water to attract insects [23]. Middle: Light traps: this is based on light as source to attract
insects [24]. Right: This is used by experts to catch insects while flying by moving the net from
side to side [25].

In addition to manual counting, the prospect of automatic insect classification has been
presented by Batista et.al [26]. It is understood that the above mentioned techniques have made
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significant contributions towards understanding the nature of insects and to use them as
indicators; however it remains challenging to investigate fast insect-insect interaction
mechanisms or a vast number of insects using conventional techniques in situ. To address those
issues, it is important to implement more efficient and accurate insect monitoring techniques,
which enables one to have a detailed understanding of insect activity. A comprehensive
description of insect activity could shed light on the wellbeing of the environment.

The quantitative assessment of an insect’s interaction strengthand their biodiversity in respect
to topography, weather and type of vegetation is a formidable challenge to entomologists and
environmental ecologists. This is because insect interactions happen on the milliseconds time
scale, which demands a fast detection scheme. A wide range of applied optical remote sensing
techniques have been used since 1970’s. Insect monitoring using a fluorescence LIDAR (Light
Detection And Ranging) technique was demonstrated by Brydegaard et al[27]. This was a
feasibility study used to study the properties of damselfly species Calopteryx splendens and
Calopteryx virgo,and their laboratory studies showed that this species exhibited entangled
reflectance and fluorescence properties, which indicates that gender can be determined
remotely. A similar technique has been implemented in situ by the same group in Lund
University where the abundance of one gender of the damselflies could be associated with
certain vegetation. The group has demonstrated the potential of fluorescence LIDAR in vivo
andestimated the distance to the two species of damselfly (Calopteryx splendens and
Calopteryx virgo) from a vegetation and water [28]. Some of the pioneering work that have
been done in the area of elastic LIDAR by the group in Montana State University are the study
of honeybees for sniffing land mines. They have shown that flying honey bees trained to locate
landmines through odour can be detected using scanning polarization LIDAR and they are also
able to show that the bee density shows good correlation with maps of the chemical plume [29].
The subsequent work by the same group indicates that the use of modulated return signal
scattered from flying honey bee, which can be used to differentiate if the object is actually a
honey bee or vegetation. The backscattered light from a honey bee showed a characteristic
wingbeat frequency (170-270Hz) [30,31].

RADAR (Radio Detection And Ranging) has been used for almost half a century. It is one of
the optical techniques, which is used for the study of insect diversities and bird migration. It
isalso widely used for civilian and military airplane tracking [32-37]. RADAR based
applications in entomology and communication mainly uses frequencies belowl0GHz since
attenuation due to air is insignificant at higher frequencies[38]. The atmosphere is opaque at
around 22GHz and 60 GHz. This is because of strong absorption by water vapour and oxygen
respectively.However, it is transparent to radio waves at around 35GHz and 90GHz. [38].
Generally, radio wave observable from earth operates within the atmospheric window (9cm
and 10m wavelength) [39], see Figure 2. Apart from the visible, there are a few more
atmospheric windows around 1pum and 10pm.
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Figure 2: Atmospheric opacity: The atmosphere is opaque in the range between 0.1nm to around
300nm and 10um to around 9cm, which indicates that it is best to perform atmospheric studies from
space using satellites in these wavelength rages. However, it is possible to use radar from earth
within the transparent window (9cm and 10m).It becomes opaque again at wavelength greater than
10m. Adopted from [39]

Attenuation of ballistic light in LIDAR is the sum of both scattering losses as well as absorption
due to vibrational transitions in atmospheric molecules. The signal also decreases with distance
due to the invers square law of intensity with distance. In this kind of experiments, a train of
pulse is sent by the radar and the receiver detects echo from the interacting object, see Fig.3.

The range is calculated from the round trip time of the radio wave, where the speed of the radar
signal is considered to be equivalent to the speed of light in vacuum (¢ = 2.997 * 108ms™1).
This means that the sampling frequency is constrained by the round trip time of the pulse.
Example: if the pulse duration is 2us, the range resolution will be 300m, which is too big for
the purpose of radar entomology, but it could work for aircraft radar applications, see Eq.1.1
[39].

Ct
Armax = ? (1.1)

Where:A7;,, 4 is the maximum range resolution, T is the full width at half-maximum (FWHM)
of the pulse (t_FWHM); and c is speed of light in vacuum(c = 2.997 * 108ms™1)

The radar entomology systems usually operate in the range between 100ns to 50nspulse length
in order to achieve range resolution from 15m to 7.5m respectively [38]. One of the challenges
to improve the range resolution in this technique is because of the fact that some techniques
such as g-switching are not applicable in RADAR. The record detection range so far in
entomological LIDAR is 2km for insects and 4km for birds [38]. Some of the challenges in the

10
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field of RADAR entomology are: interpretation of the data, contrast between the object of
interest as compared to background, especially when the insect is around vegetation, and the
strength of the amount of radiation reaching the receiver for detection [38]. However, the
vegetation and clouds are a major issue in LIDAR as compared to RADAR. Harmonic RADAR
can detect tagged insects inside vegetation and can penetrate clouds [40-43]. The optical remote
sensing developed in this project is capable of improving the range resolution as well as the
temporal resolution of the radar entomology. The CW-LIDAR used in this project is not limited
by the round trip time of the laser pulse and we have achieved angular resolution beyond the
diffraction limit [44]. The detail of this method is discussed in chapter IlI.

n Transmitted pulse

—>l—
ﬂ n Echoes

Power

L

Time (ns)

Figure 3: Working principle of RADAR entomology: The top signal shows the transmitted laser pulse
train where 7is the interval between pulses. The bottom signal is the back scattered echo of the
transmitted pulse from the object. The round trip time of the transmitted laser pulse returned from a
scatterer is denoted by A¢. This is used to calculate the range information of the scatterer.

1.2 Entomological aspects
1.2.1 Forestry pest

Forests play an important role in attaining the natural balance of our ecosystem and supporting
life on earth in general [45-49]. Forests are natural absorbers (carbon sink) of CO2 emission,
are essential for growing food and medicine, it maintaining water and air quality, and they
regulate moisture and prevent erosion and floods. The importance of forests for the existence
of life is significant and one can say that the role of forests for the human existence is vital.
This resource could be affected by forestry pests such as beetles, which could compromisethe
wellbeing of the environment. Beetles attack the forest by lying eggs on the growl and introduce
a blue strain fungus, which makes the plant defenceless [50-54]. This forces the tree to die

11
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within few weeks of successful attack, see Fig.4. The effect could be minimized or alleviated
if one can monitor the activity of such pests using optical remote sensing techniques [55],
which could give some clue how to address the issue by either introducing natural predators or
using pesticides at an appropriate life stage of the pest. We have performed an experiment to
investigate the activity of bark beetles at Nyteboda, Sweden. Bark beetles mainly attack dead
trunks [56,57].

¥ —aly | \ -‘..-l-\" " ¥ }-_.”1 fa

Healthy 2% Sinfested ‘ "» ftested
i 5 MO 3 . ) N 4l B .
pine treg . : & Pine'tree. § N 5 @etrge
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Figure 4: Comparison of the effect of forestry pest. Left: Healthy pine tree [58]. Middle and right:
infested pine tree by beetles [59].

1.2.2 Pollination

Insects are natural service providers of the ecosystem. The ecosystem service given by
pollinators has huge economic benefits in terms of attaining biodiversity of plant species,
nutrient recycling, waste decomposition etc. According to the millennium ecosystem services
(MA) report 2005[60], ecosystem services are defined as the benefits that human get from the
ecosystem and can be divided into four main branches: Supporting services, provisional
services, regulation services and cultural services [60-62]. These services are usually taken for
granted, which compromises the sustainability of the ecosystem. Considering statistics from
USA, the economic value of these services given by insect reaches at least $57 billion [63]. It
is also estimated that 15% to 30% of the USA diet comes directly or indirectly through animal
mediated pollination, which indicates the amount of money that could be lost if pollinators are
not functioning properly[63]. The diversity of beautiful flowering plant species, which are
observed in the environment are indeed due to pollination by insects such as honey bees and
bumble bees, see Fig 5. One of the main entomological investigations we are interested in is
basically to assess temporal and spatial distribution of pollinators over different agricultural
landscapes. We found that there is a variation in terms of size distribution and activity over km
range in an agricultural filed. This is discussed in chapter I11.

12
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Figure 5: Flowering plants pollinated by insects. Honey bees and bumble bees are some of the main
pollinators of flowering plant species.

1.2.3 Disease vectors

Disease causing vectors are having a significant impact on productivity. It is know that malaria
is one of the main Killer diseases in the tropical regions, especially in Africa and one of the
main reasons affecting the growth of the continent by affecting the youth. It is responsible for
around 300 million infections and 2 million deaths per year [64]. A lot of studies have shown
that the economic impact of malaria is huge in terms of agricultural productivity,
pharmaceutical and medical expenses and over all infrastructures, which is built to prevent and
cure malaria epidemic [65-67].

Eukaryotic microorganism, which belongs to the family of plasmodium, is the cause of malaria.
Specifically, the protozoan parasite called plasmodium falciparum is the one transmitted by the
female anopheles mosquito, which is responsible for the malaria infection [68-70]. The life
cycle of the parasite mainly involve three stages, see Fig.6: Human liver stage:this involves
Ex-oerythrocytic cycle. In this cycle the liver cell with replicates parasite (Schizont) gets
matured and will then raptured and releases Merozoites in to the blood stream[71,72].Human
blood stage:involveserythrocytic cycle. In this cycle the Merozotes replicates in the red blood
cell (RBC) [73, 74]. Mosquito stage: involves sporogonic cycle, in which fertilization occurs
in the mosquito stomach to release the spores (sporoziotes) [75, 76]. A number of advanced
optical techniques have been developed over the years for early malaria diagnostics [77-81].
Another malaria diagnostic technique, which is based on imaging scattering spectroscopy
showed the potential for instant evaluation of unstained thin blood smears [82, 83]. Studies
have indicated that in order to tackle the issue of a malaria epidemic, we need to see it as an
ecological problem [84]. This study indicated that the population of different species of
mosquito varies seasonally depending on wet and dry seasons and mosquitos spend the dry
season in a dormant state. Example: The population of Anophelescoluzzi peaks in September
and October in Mali, West Africa while it drops and stays at low levels in most of the dry
season [84]. The method they used was manual counting of different species ofmosquitos for

13
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5 consecutive years. From this, one can see that the prospect of deploying optical techniques
such as the one discussed in this dissertation could improve the outcome of the evaluation.
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Figure 6: Plasmodium life Cycle: The life cycle of the parasite is extremely complicated. The three
different stages indicates that the human body is used as source of food for the mosquito while the
mosquito itself is used as place of fertilization for the parasite and in the process it releases the spores
(Sporozoites). The first two cycle (Exo-erythrocytic and erythrocytic) happens in human or animal
body. The third cycle (Sporogenic cycle) happened in the body of the mosquito. Public domain image,
obtained from centre of the disease control (CDC).

1.3 Remote sensing and standoff detection

Remote sensing is a way of investigating an object of interest without making physical contact.
Remote sensing mainly encompasses satellite and arial imaging [85, 86]. Active remote sensing
techniques such as LIDAR and SAR (Synthetic Aperture RADAR) cover a very small fraction
of the total field as compared to satellites and arial imaging [87,88]. LIDAR involves the
investigation of topography and tree canopy[89, 90], atmospheric monitoring, aerosol, wind
sensing, and temperature sensing. A molecular ranging technique, which is called DIAL
(differential absorption LIDAR) [91,92] is another example of active remote sensing. Remote
sensing can also be done using a standoff detection system, which typically covers a range of
around 100m. Such techniques involve remote Raman spectroscopy, remote life time
measurement [93] and dark filed spectroscopy [94, 95], which is one of the techniques used in
this project. Those remote sensing techniques are all non-intrusive techniques, which enables
in situ measurement. In principle, all laser based techniques are remotes sensing. One of the
differences between different remote sensing techniques is the area it covers. They could also

14
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be differentiated based on the distance between the object under investigation and the receiver.
This distance could be centimetres for microscopic application while it is in the order of
kilometres for LIDAR experiments. The CW-LIDAR and dark field spectroscopy techniques
implemented in this project are discussed in section (1.3.1) and (1.3.2) respectively.

1.3.1 Active remote sensing

Active remote sensing can be defined as a method of retrieving information by illuminating a
certain light source to an object of interest. In our case, we have used a 3W and 808nm
wavelength multimode laser diode source as an illumination source. The laser source emits
near infrared (NIR) continuous wave (CW) light, which is transmitted by 290mm F/5 refractor
telescope. The laser light is transmitted over several km ranges and terminated at distance of
250m (building termination) and 11km (cliff wall termination of Helderberg ridge), see Fig.7.

T

11km <3Cliff wall termination

PINT B 1Bulding termination

‘ IL -;’I,.l

25y i 5
Stellenbosch Y . ,

S "+ From:130m ASL @ 33'55'55.53 518°51'54.61E
s : ~ To: 770 m ASL @ 34°02.07.32 S18°52'13.06 E

Figure 7:FOV CW-LIDAR experimental setup. Upper panel: image of the FOV from the department to
Helderberg ridge. Lower panel: map showing the range we have monitored. These two positions were
chosen just because of convenience as they were the closest and the farthest location we could
find in the field of view (FOV) from an experimental position (the third floor of the Physics
department (Merensky building) respectively). The location of the transmitting and receiving
telescope is 33°55°55.53” S 18°51°54.61"E, at an altitude of 130 meter above sea level and
cliff wall termination at 11km distance is located at 34°02°07.32” S 18°52’13.06”E, at an
altitude of 770 meter above sea level.

The purpose of the refractor telescope is to expand the laser beam so that insects crossing the
@90mm laser beam would be detected. This enables us to resolve the wing-beat frequency, and
size. In other words, the insect will have enough time to stay in the FOV as compared to when
the beam width is smaller. The separation distance between the refractor and receiving
telescope is 120cm, which is equal to the focal length of the reflecting telescope, see Fig.8. The
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whole system is placed on a horizontal metal mount and the telescopes are parallel to each
other. The vertical and horizontal movement of the whole system is motorized and computer
controlled.

‘Line scan camera

2% 450 tilted adaptor
g Y
g Receiver

Figure 8: Transmitter and receiver alignment geometry: The transmitter @90mmF/5refractor
telescope. The receiver is @254mm, F/4 reflecting telescope with 1024pixel line scan camera.

The line scan camera is aligned at a skewed angle based on the triangulation principle and using
trigonometric relations [96, 97]. Triangulation is a way of measuring the distance between two
points using the angle instead of directly measuring the distance between the points. In our
setup, the line scan camera was attached to a45° tilted metallic adaptors, see Fig.9. The surface
of the pixel array will then be at 45° tilt angles since it is directly attached to the adapter. This
fulfils the Scheimpflug condition and the Hinge rule[98, 99], which is a very effective imaging
technique to achieve infinite depth of field. The details of Scheimpflug condition and Hinge
ruleare discussed in Chapter Il1.
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Figure 9: Closer look of the detector alignment geometry in the receiving telescope. The pixels
are 45° tilted with respect to the horizontal.

1.3.2 Passive remote sensing

Passive remote sensing uses sun light as an illumination source. Unlike active remote sensing
systems, the passive remote sensing instruments collect radiation from the object being
detected without transmitting light. In other words, this kind of instrument senses light reflected
by the object from another source other than the instrument. Examples of passive remote
sensing detectors are: radiometers, which is used to quantify an electromagnetic (EM) radiation
in some wavelength band[100,101] , spectrometers to detect the spectral content of EM
radiation, imaging radiometers to generate two dimensional matrix of pixels and produce
images[102,103] and spectroradiometers to measure the intensity of radiation in multispectral
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bands[104,105]. In this dissertation, we have used sun light as illumination source. The
detectors are silicon (Si) and indium gallium arsenide (InGaAs) photodiodes and spectrometer.
This experiment is based on dark field spectroscopy [94, 95], were dark termination cavity was
used to lower the background signal, see Fig.10. We have used the same Newtonian telescope
as the receiving telescope that was used in the active remotes sensing experiment shown in the
previous section. The main difference in this case is that the sun was used asanillumination
source.Thedetectors are photodiodes and spectrometers instead of the line scan camera.The
experimental setup and details of dark filed spectroscopy is discussed in chapter I1I.

Some of our field campaigns
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Figure 10:Newtonian telescope:to collect backscattered signal from insect crossing the FOV. This
telescope is the same as the receiving telescope showed in section (1.3.1). Pendulum: we use to
calibrate flight direction of insects. Dark termination cavity: we use to lower the back ground.
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Chapter 11

2. Light tissue interaction
2.1 Interaction process

The interaction of light with the body and wing of insect can be considered as light-tissue
interaction. This process involves backscatter, side scatter, forward scatter and ballistic scatter.
Forward scattered and side scattered light refers to the light along the same axis of the incident
light and orthogonal to the incident light respectively [106,107]. While ballistic scatteringrefers
to photons, whichare capable of penetrating straight through a turbid medium or tissue for a
short distance before it gets refracted or absorbed. Our passive and active system is designed
to collect backscattering signal from atmospheric fauna. This arrangement enables us to
achieve improved signal strength as compared to forward scattering. Insects, like other objects
produce a backscattering signal when they interact with light and one can be able to measure
backscatter and extinction using LIDAR. Thebackscattered signal contains qualitative and
quantitative information about the insect, such as: size, wing-beat frequency, flight direction
and colour information as it was mentioned in the previous section. One can exploit this feature
in order to identify insects remotely. The scattering process involves direct and more or less
collimated illumination from the sun and omnidirectional sub-illumination from below
(vegetation), see Fig 11.
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Figure 11: Insect scattering processes. The passive remote sensing involves three light-tissue
interaction processes: Melanin absorption in the visible (VIS), Vegetation sub- illumination in the near-
infrared (NIR), and thin-film iridescence (interfering waves) due to specular reflection.
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These two contributions (collimated direct illumination from the sun and omnidirectional sub-
illumination from vegetation) are basically the illumination source in a passive remote sensing
experiment, see Fig.11. One illumination source is used in the active setup, which is an 808nm
wavelength laser as discussed previously, but the scattering process has some similarity. In the
dark field experiment, the specular reflection would appear at different phase in the wingbeat
cycle. In the LIDAR, it appears when wing-surface normal coincides with the laser beam
direction.

2.2 Absorption

Absorption can be referred to the probability per unit length of a photon being absorbed by a
certain medium. The characteristics of absorption widely vary depending on the wavelength of
light and the type or nature of the object interacting with the light. Considering the photon
energy in the visible regime, absorption makes electronic transitions of valence electrons.
Typical examples of such phenomena are the sharp absorption lines of gases [108,109]. The
photon energy in the ultraviolet (UV) and X-tray regime causes ionization and inner shell
excitation respectively. The most common example from daily life is the use of microwave
oven. In this case, water molecules absorb light in the microwave wavelength region. The
rotational and vibrational energy of the molecule will then be converted to heat energy, which
leads to heating of the food. Photons in the infrared are less energetic as compared to Visible,
UV and x-ray. Infrared photons are responsible for the transitions related to rotation and
vibration process. The linear absorbance of a certain medium can described using Beer-lambert
law. This law describes the exponential decay of intensity of light when passing through
absorbing medium, see figure 12.

Figure 12: Beer-Lambert law describing the decrease in intensity of light when propagating through
absorbing medium. L represents the path length of the light through the medium.
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The absorbance can be described as the logarithmic ratio of the transmitted and impinging
intensities of the light, see Eq.2.1. This expression is commonly used to investigate the
concentration of absorbing medium using absorption spectroscopy techniques.

Where, A is absorbance of the absorbing medium, | and lo the transmitted and incident
intensities respectively. Biological samples like insects reflect more in the near infrared (NIR)
where the absorption is low. Absorption increases towards the visible and the tissue becomes
opaque in the UV [64].

2.3 Scattering

Scattering is process referred to change of photon propagation direction when it interacts with
matter. Using Snell’s law, one can describe the angle of incident and refraction of light passing
through different medium. The fraction of reflected and refracted or transmitted light can then
be described using Fresnel equations. The origin of scattering could be due to elastic or inelastic
process. In terms of the strength of the effect, elastic scattering process is significant. This
includes Rayleigh scattering from dipole such as molecules, Mie scattering due to cylindrical
and spherical refracting particles. An example of inelastic scattering process are Raman
scattering [110-114], which is due to rotational and vibrational transitions of molecules and
Compton scattering [115,116], which is scattering process from a charged particle, usually an
electron. Elastic scattering processes such as Mie scattering [117,118] and Rayleigh scattering
[119-121] have higher scattering probabilities. Mie scattering can happen due interaction of
light with Aerosol particle [122-124]. Rayleigh scattering is caused by small radiating dipoles
(molecules), which are significantly smaller than the scattering wavelength. The intensity of
Rayleigh scattered light is inversely proportional to the fourth power of the wavelength (174),
see Eqg.2.2. This explains why the sky is blue during the day since blue has a higher scattering
probability compared to red. If the earth would have ten times thicker atmosphere the air would
still have Rayleigh scattering, but the sky would be white. In principle, violet has a higher
scattering probability, but the intensity of the sun spectrum falls off in the ultraviolet range
(below 310nm) because of absorbing atmospheric molecules in that wavelength. The remaining
UV light from 310-400nm is removed due to scattering. The strongest attenuator of UV light
is scattering process, which extinguishes the UV light, but it doesn’t absorb it. Rayleigh
scattering also causes the orange colour of the sky during sunrise and sunset since the light
from the sun has to pass through a thicker atmosphere (higher atmospheric volume) as
compared to zenith observation where the atmospheric volume is smaller. These processes
remove the blue light from the direct path to the observer and only red light is observed see Fig
13.

8rtg?
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Where 6 is scattering cross-section, A wavelength of the laser and R is distance. Rayleigh
scattering is the most dominant scattering process in a situation where the scatterer size is
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significantly smaller that the scattering wavelength. Raman scattering is less likely compared
to the elastic processes.

Figure 13: Left: Blue sky due to Rayleigh scattering from atmospheric gases (Example: Nitrogen and
oxygen molecules) since light travels through small atmospheric volume. Right: During sunset, only
unpolarised red light is seen since the light travels through higher atmospheric volume.

2.3.1 Coherent and incoherent scattering

The backscattering signal from the insect comes from two contributions: diffuse reflectance
(incoherent scattering) from the body and wing of the insect and specular reflectance (coherent
scattering) from the wing of the insect, See Fig 14.
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Figure 14: Specular reflectance from the wing, which is responsible for the generation of higher
harmonics.This effect is more pronounced if the observed insect has glittering wings.
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The specular reflectance is more significant when observing an insect with glittering wings,
where the wing behaves like a mirror. The specular wing reflectance in the Short wave infrared
(SWIR) provides information about the thin film interference from the spectral fringes of the
wing membrane, which can be seen as rapid spikes in the temporal signal. Thin film
interference occurs when two light waves reflected from the upper and lower surface of the
film interferes, where the refractive index of the upper medium is smaller than the lower (n; <
n,) [125-127]. The interference could be constructive or destructive depending on the effective
refractive index of the medium, thickness of the film and angle of incidence of the original
wave.

In order to understand the condition of the interfering wave, one has to calculate the optical
path difference (OPD) of a light reflected from both the upper and lower boundaries of the thin
film. The OPD is just a difference between optical path lengths of two waves, which enables
one to determine if the interference between the two waves is constructive or destructive.
Considering a light wave incident at an angle 6 on the thin film surface with thickness L, some
of the incident light can be reflected from the upper surface and a certain portion of the
transmitted wave could also be reflected back from the lower boundary of the film. The
interference between two waves produce a new wave, which can reveal information about the
property of the medium such as effective refractive index of the medium and thickness of the
thin film. We can describe this phenomenon by showing a simplistic ray diagram with two
different refractive indexes (n, and n,), see Fig.15. The OPD of this specific example can be
given by the difference between the path length of the two rays (B and C), see Eq.2.2.

OPD =153(PQ + QR) — M1 (PS) v et (2.3)

Applying trigonometric relations, one can see that PQ = QR= L/cosf, and PS =
2L(sin 6, cos 8,) /sin O, (law of reflection). From Snell’s law, it is known that ratio of the
sine’s of the angleofincidence and refraction are equal to the reciprocal of the ratio of the
refractive indices, see Eq.2.4.

sin 84 n,
sin 6, nq

By combining the above two equations (Eq. 2.3 and Eq. 2.4) and assuming that the light is

incident from the air (n, = 1), we can formulate the OPD of light in a thin film situation, see
Eq.2.5.

OPD = 2N3L COS O .nnenniiiii i e, (2.5)

WhereL-is thickness of the film, n,- is refractive index of the medium and 8,- is the angle of
incidence in the lower boundary of the film.The interference will be constructive if the OPD is
an integer multiple of the wavelength and it will be destructive interference if it is half integer.
When we reformulate Eqg.2.5, we can see that OPD is proportional to the wavelength of the
light for constructive interference, see Eq.2.6.

2N5L COSEO = MA..coi e, (2.6)

Where m is integer and 1-is wavelength of the light.
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Figure 15: Schematic diagram of thin film interference. The incident light (A) reflected from the
upper and lower boundary of the thin film producing two waves (B and C respectively).

The concept of thin film interference has huge commercial applications for antireflection
coating of mirrors and optical filters [128-133]. Soap bubbles, oil films have also tremendous
commercial application. Some other examples, which involves thin film interference
phenomenon such as blue wing-patches of butterflies and different insect species, see Fig 16.
In this context, the insect wing acts like a thin film and one could in principle use Fresnel
equations to quantify the specular reflectance with respect to the polarization, angle and
refractive index. Equations from Fabry-perot cavity can then explain wing membrane thickness
and fringes. Such equations provide quantitative description of the amount of light reflected
and transmitted at the interface. However, it is a bit difficult to apply this remotely to flying
insect unless the self-scanning nature of insect wing is exploited. This needs to be investigated
further in order to implement realistic ways of measuring wing-membrane thickness of insects
in situ.

A

Figure 16: Example of thin film interference phenomena [134]: Left: Soap bubbles. Middle: oil films,
where the refractive index of the oil is bigger than air on top and the water below [135]. Right: different
colour wing-patches of butterfly [136].

2.3.2 Insect scattering in temporal domain
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The back scattering time series from an insect provides information about the duration the
insect stays in the probe volume of the field of view (FOV), body and wing size and wing-beat
frequency, see Fig.17. It should be noted that size determination using dark field spectroscopy
technique is only accurate close to object plane and the termination where the calibration and
controlled release was made. This is because limited range information could be retrieved from
the flank rise and fall times associated with event distance. However, the CW-LIDAR
technique employed in this thesis enables to achieve range resolved measurements. The
highest peak corresponds to a specific orientation of the insect when the optical cross section
(OCS) is the largest. Similarly, the lowest peak corresponds to the lowest OCS. This means
that every peak corresponds to one orientation depending on the different phases of the wing-
beat. The OCS oscillates in time depending on the orientation of the insect in the FOV. For
instance, if the insect is detected from the front, it will appear larger once during the wing-beat
cycle (1w). On the other hand, the insect will appear larger twice when detected from the side
(2w). This shows that the accuracy of OCS not only depends on the range resolved intensity
calibration, but also on the phase of the wing-beat cycle and physiological orientation of the
insect inflight. This oscillating behaviour of the OCS of insects in LIDAR experiments can be
parametrized by a discrete set of harmonics. The equation that describes the oscillating OCS
behaviour involves the non-oscillating body contribution and the oscillating wing-beat
contribution.
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Figure 17: Insectback scattered time series: The oscillating part (red arrow) indicates wing size; the
non-oscillating part (green arrow) indicates body size. The time in which the insect stays in the FOV is
denoted by At. The y-axis is optical cross-section (OCS) in mm? and x-axis is time in ms.
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The detailed discussion of these phenomena is given in Chapter V and one can see that this
aspect could introduce some uncertainties in the analysis of OCS, see Eq.2.8 [137].

0CS(t) = B(t) 2’;;/ 2S(¢,  sinQ2ufyht) + 2 Cyp cosRufyht))........ (2.8)

Where: t is time, B is the time series of the non-oscillating scattering contribution, which is

obtained by using low pass filter to remove the oscillatory contribution (due to wing-beat), fsis
the sampling frequency, C is the optical cross-section coefficient, h is running integer index of

harmonics and f,is fundamental frequency[137]. The reason why h < 1/2 f5 1s because of the

Nyquist criterion that the maximum frequency that can be resolved in the time domain is half
of the sampling frequency.

The diffuse reflection from the body and wing is responsible for the fundamental and lower
harmonics. The higher harmonics are due to specular reflection from the wing. The reason why
the specular reflection is coherent is because of the fact that phase of light is preserved after
scattering. The specular reflection (rapid spikes in the temporal waveform) means high
frequency in spectral domain. To reproduce such rapid spikes, it is required to have high
frequency; otherwise the temporal waveform would have looked smooth. In other words, the
rapid spike will disappear if one reconstructed the temporal waveform using only the lower
harmonics. This indicates that the specular reflection is coherent and the rapid spikes in time
domain is responsible for the higher harmonics in the frequency domain, see Fig.18. This
figure shows an insect event with a 143Hz fundamental frequency and its 2", 3 and
4"harmonics
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Figure 18: Spectrogram showing body size, fundamental frequency, and harmonic overtones of the
same insect event. The direct current (DC) level or zero frequency shows the body size. The fundamental
frequency at 143Hz and the higher order harmonics are shown.
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2.3.3 Insect Scattering in spectral domain

Reflectance from insect varies in different bands; such has VIS, NIR, and SWIR. In the VIS
and NIR the scattering from an insect is highly influenced by the colours of the insect due to
the body and wing melanization of the insect while the SWIR is insensitive to the colour, see
Fig.19. The quantitative analysis of the absolute OCS is therefore more accurate in the SWIR
and the signal is 10-20% higher due to higher reflectance of insects in that range [137].
Estimation of an OCS in the NIR is affected by melanization due to the fact that the insect
melanin may vary from anterior to posterior or from ventral to dorsal [137]. This means it is
unlikely to expect symmetry in the frontal- and transverse plane in the NIR, which shows that
the OCS in SWIR is the same as the true cross-section of all insect regardless of their colours.
This minimizes the uncertainty that could occur due to colour differences of insects. In other
words, if onedetected white and black butterfly at the same range their size should be the same
in the SWIR, but not necessarily in the NIR. The same is true with other insect species, which
is a huge advantage in the accuracy of determining OCS in the SWIR.
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Figure 19: Relative size of insect event in the NIR as compared with SWIR. The size of the insect is
bigger in SWIR, which is in accordance with earlier findings. This OCS difference in this specific
example is higher than 20%.
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Chapter 111

3. Instrumentation
3.1 Light source
3.1.1 Sun light

The Sun is a crucial light source for the existence of lifeon earth. The solar radiation from the
sunreaching the earth ranges from the ultraviolet (UV) to infrared (IR), with intensity of about
1kW/m?. The sun is a black body radiator, where the radiation peaks in the visible range around
550nm. This corresponds to a surface temperature of the sun, which is around 5600K. The
spectrum has several opaque regions caused by atmospheric absorption and pollutant molecules
such as H>0, CO2, O3, and CH4 [138]. Those absorption lines created by the absorbing
molecule are called Fraunhofer lines[139,140]. This kind of techniques, which uses sun light
as an illumination source is called passive remote sensing. In this dissertation, sun light was
mainly exploited in papers (I, Il, 11). Wing-beat frequency, iridescences features, flight
direction and colour information were investigated using sun light. The main challenge of using
solar based radiation as a light source is the fact that the radiation from the sun is not stable and
it keeps changing with the atmospheric conditions. For instance, the amount of light reaching
the ground varies when there is cloud covering the sun as compared to the clear skies situation,
see Fig.20. Additionally, the angle of on incidence impinging in to the field of view varies as
sun moves during the day. This necessitates regular calibration of the instrumentsince the
amount of light impinging in the FOV varies depending on the atmospheric conditions. To
minimize uncertainties, most of the experiments were done in clear sky conditions where the
solar irradiance is very stable and reference data were recorded every 30 minutes throughout
the measurement period. A pendulum was also used to estimate the amount of light impinging
the field of view. Detail of the calibration process discussed in section 4.3.

Figure 20: Sun illumination during cloudy conditions. The illumination intensity varies depending how
dense the cloud is, which demands frequent calibration of the system.

3.1.2 Lasers
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Laser is an acronym for the term light amplification by stimulated emission of radiation. The
physics behind all types of lasersis basically the same. They all require gain medium and one
has to achieveelectronic population inversion to produce laser light [141,142]. The type of
laser varies from the smallest,like vertical cavity surface-emitting lasers(VCSEL)[143,144] to
the largest in size such as the lasers in the ignition facilities of fusion experiments [145,146].
In terms of wavelength, there are wide ranges of commercial lasers are available. This includes
the shortest wavelength of free electron lasers [147] to the longerwavelength of microwave
range lasers called microwave amplification by stimulated emission of radiation (maser)
[148,149]. The type of lasers to use varies depending on the application such as welding and
cutting purposes[150,151], data communication and storage[152,153] or spectroscopic
experimental applicationssuch as non-linear and relativistic optics [154-157] . In this
dissertation, 808nm, 3W infrared laser was used. This is a continuous wave diode laser, which
can be modulated in the order of kilohertz. This laser was employed in the active remote
sensing experiment presented in this dissertation.

3.2 Dark field spectroscopy
3.2.1 Experimental setup

Passive remote sensing system was developed based on dark field spectroscopy. The aim of
this experiment is to be able collect the backscattered signal from an insect crossing the field
of view (FOV). Dark field spectroscopy is a way of lowering the background signal where
signal rises from 0%, rather than decreases from 100%eas in transmission experiments. Ideally,
one can achieve a high signal to background ratio using this technique by employing an
infinitely dark termination cavity. However, practically, this is difficult to achieve since there
will still be scattering from the atmosphere itself and Rayleigh scattering even from pure air.In
this setup, Newtonian telescope (Focal length (F) 1200mm and @254mm aperture), dark
termination box (g100cm, 150cm long) was used. In this dissertation, different kind of setup
was used in Sweden and South Africa. The setup used in South Africa is given in Fig. 21. A
similar but more advanced system was built in Lund, Sweden by Dr. Mikkel Brydegaard. This
set up is a new research development platform for the assessment of insect activities and
migrating birds. This facility is called Lund Mobile Biosphere Observatory (LUMBO), See fig
22. LUMBO is a new mobile observatory setup, which can be placed anywhere for
experiments.
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Figure 21: Experimental setup. D1: detector 1 (silicon (Si) quadrant and spectrometer in D2:
Si/InGaAs sensors. F: fiber patch cable. Spect: spectrometer. DAQ: data acquisition device. BS:beam
splitter; T: telescope; D: dark termination; PC1 and PC2: laptops for data collection, HD1and HD2:
data storing external hard drive. The map shows the location of one measurement campaign in the Jan
marais nature reserve, Stellenbosch, South Africa. The distance between the telescope and dark

termination is200m southwards.

Figure 22: LUMBO: It has two main parts the blue container in the left is a control room. The white
dome is where the five telescopes and detectors are placed. The dome is motorized and can rotate

360° The field of view opens 90°
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LUMBO has two main sections: the white dome, where the telescope and all detectors are
placed and the control room where the data storage and control computers are placed, see
Fig.23.

Front Vie

o)

Control room '

Figure 23: LUMBO: Front view, zoomed telescope image and image of control room. We have used
five different telescopes (two Newtonian reflecting telescopes, F=120cm, two refractor telescope,
F=50cm, and one Maksutov telescope, F=130cm)

During various field campaigns in Sweden a variety of detectors and instruments were used for
the study of insect diversity, forestry pests, interaction strength and overall activity. In June-
July 2013, we had a field campaign in Brunslov, Stensoffa, and in June-July 2014 at Brunslov
and Nytboda, Sweden. The aims of the experiments were to investigate biodiversity of insects
across various agricultural landscapes, investigate the efficiency of traps of forestry pests
(Example: beetles), and assess the influence of fences between fields on the biodiversity of
insects, see Fig 24.

Figure 24:Biodiversity between two fields. In the middle of the two farms there is a about half a meter
wide fence where a lot of plant species has grown on. This fence is believed to increase the biodiversity
of insects, which could have significance environmental impact in terms attracting pollinating insect.
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3.2.2 Detector setup and spectral band

The setup covers three discrete spectral bands: Visible (VIS, 0.32 to 0.68um), near infrared
(NIR, 0.66 to 1um) and short wave infrared (SWIR, 1 to 2.4um). This is a triple band setup,
which is developed to investigate the absolute optical cross-section (OCS), wing-beat
frequencyand iridescencefeatures [158].This setupinvolved two parts:In the first partsilicon
(Si) quadrant photodiode was used to detect the visible signal and a dual detector (Si
photodiode and InGaAs photodiode, integrated into a layered package) to collect infrared
signal. A spectrometer was used to collect thespectrum of insect event, which allows for the
collection of spectral information and wing-beat information from the dual detector

concurrently, see Fig. 25.A beam splitter (cold mirror) was employed to transmit the infrared
and reflect the visible.

Detectorl olmm
Si/Spectrometer

2
=]
ER¢)
i
]
=l

SWIR

From Telescope

Cold mirror

Figure 25: Schematic plot of detector alignment of the setup.The three discrete bands are: Visible
(VIS), near infrared (NIR), short wave infrared (SWIR).
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The bandwidth of the detector is determined by the full width at half maximum (FWHM) of
each spectral band.This crude spectral discrimination offers three bands with bandwidths from

0.3 to 1um FWHM (0.4 um for the VIS, 0.3 um for the NIR, and 1um for the SWIR), see
Fig.26.
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Figure 26:Plot of sensitivity versus wavelength for the three detectors. VIS-Si(D1-Quadrant detector):
VIS scattering, NIR-Si (D2): vegetation sub-illumination, and SWIR InGaAs (D2): thin-film iridescence.
Another detector setup we have implemented in Sweden and South Africa involves VIS (Si)

and SWIR (InGaAs) quadrant photodiodes. A similar beam splitter (cold mirror)was used to
reflect the visible and transmit the infrared, see Fig.27. The NIR quadrant covers 0.19 to 1um
and SWIR quadrant 0.9 to 1.7um.The aim of this experiment was to determine flight direction

of insects from the time sequence of the quadrant signal and estimate interaction Kkinetics of
insects.

O3 mm 0 2 mm
Si Quadrant

InGaAs
Quadrant

Cold mirror

Figure 27: Schematic detector setup of dark field experiment of LUMBO.

3.2.3 Experimental capability
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The passive remote sensing setup is capable of achieving a wide range of benefits in terms of
investigating activities of insectsin-situ.The most obvious advantage is the fact that it uses
sunlight as an illumination source, which isone of the abundant broadband light sources. It is
also cheaper compared to other passive remote sensing techniques that can a do similar job.
This system is capable of providing both qualitative and quantitative information:

A.Determinationof flight direction:

Flight direction can be determined using the Si and InGaAs quadrant photo diodes. The time
sequence of the signal in each section of the quadrant provides the direction in which the insect
event enters and leaves the FOV, see Fig.28. Adetailed calibration procedure of flight direction
trajectories is discussed in chapter V.
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Figure 28:(a): Flight direction of honey bees in to and out of the beehives at agricultural research
council (ARC) in Stellenbosch, South Africa. (b): zoomed on the time between 25-26.5 seconds. The
color changes from blue topink for the bee event at 25.1seconds. This indicates that the beewas flying
from east to the west (in to the beehive). The two bees at 26 and around 26.4second seem to be leaving
their hive, but they left the hive without being detected by the other quadrant.

B.Absolute Optical Cross-Section (OCS)

Absolute OCSis the size of the insect multiplied by the effective reflectance of a given spectral
band and its accuracy depends on proper calibration. The quantitative OCS comes from the
calibration using white diffuse spheres of different sizes. The detailed OCS calibration process
is discussed in chapter IV. The estimation of absolute OCS in the dark field experiment is only
accurate close to the object plane where the calibrations were performed. This is because of the
fact that we couldn’t retrieve range information so fare and it is difficult to introduce the range-
dependent sensitivity or the form factor in this technique[159]. The accuracy of absolute OCS
could be improved by considering the steepness of the signal, flight direction and body
orientation. The absolute OCS has contribution from the body and wing of the insect, see
Fig.29. In this figure, one can see that there are two contributions to the total absolute OCS of
the insect: the oscillating part comes from the wing contribution and the non-oscillating part
from the body contribution.
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Figure 29: Absolute OCS of insect event in the near infrared (NIR). The red arrow indicates the body
contribution and the green arrow indicates the wing contribution to the total absolute OCS. In principle,
the signal is not expected to correspond to the actual size especially when the specular reflection occurs.

C.Iridescence features

Thisis a characteristic property of a certain a surfaces where the reflected colour changes
withangle of illumination or observation. This phenomenon happens due to the interference of
light reflected from the microstructures of a surface. Example: From soap bubbles or films
[160], and the wings of a butterfly [161]. Iridescence feature have been used to study structural
colouration of different biological samples such as the neck feathers of pigeons, which shows
that cyan feathers change colour to magenta at large viewingangles [162-164] and the stable
microstructural patterns in the wings of different insect species [165-169]. In our context, we
have investigated iridescence features of insects using two bands of the twodetectors (Si
Quadrant photodiode and the Si part in the dual detector, which monitors the NIR range). The
Si band is used to collect the VIS signal and the other Siband from the dual detectormonitors
the NIR, see Fig 30. We use these two bands to compare how the shape of the temporal
waveform of the two signals changes. In this case, two concepts were assessed: The first is to
investigate the effect of melanin, which is the most common chromophorefound in all insects,
mainly responsible for dull black and brownish colours[170].The second is to investigate the
contribution of vegetation sub-illumination on the slow part of the wing-beat. Hence, we can
see that the shape of the temporal waveform varies, see Fig.31. This could be due tothe two
reasons we mentioned above.
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Figure 30: Iridescent properties: (a) spectral difference in the VIS and NIR ranges. (b) Ratio of VIS

and NIR signal.

D. Wing-beat frequency and harmonics
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Wing-beat frequency is a measure of the number of times an insect beats its wings per second.
The wing-beat frequency of insects varies depending on species, ambient temperature,
speedand other aerodynamic constraints [171-173]. In this dissertation, wing-beat frequencies
of different insects were resolved, from the slower damselfly, to the fasterhoney bee, which are
about 60Hz and 240Hz respectively. In addition to the fundamental wing-beat frequency,
higher harmonics was also resolved, see Fig31l. The harmonics frequencies are caused by
specular reflectionas it was discussed in chapter I1.
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Figure 31: Spectrogram of an insect event with a 200Hz, fundamental frequency and its harmonics

E. Spectral information
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Insect color difference beyond human vision can be determined using spectrometer. The so
called Spectral information is another important aspect of our experiment, which allows us to
collect colour informationfor remote insect classification. A quantitative measure of temporal
variation of a certain insect species in relation to temperature and wind speed can be done [94].
We have done controlled release of colour marked insects to test the instrument and we have
detected the green powder marked dragon fly, see Fig.32. We have confirmed this event from
the recoded time when the insect was released and wing-beat frequency of the dragonfly
detected by the dual detector at the exact same time.
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Figure 32: Spectral signature of a green powder marked dragonfly measured using a spectrometer.
The spectrum has predominantly green features around 550nm due to the powder

3.3 Continuous wave light detection and ranging (CW-LIDAR)
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3.3.1 Time of flight LIDAR (TOF-LIDAR)

We have developed continuous wave light detection and ranging (CW-LIDAR) for
environmental monitoring applications based onthe Scheimpflug principle [98]. This method
enables us to achieve fast sampling, which is not limited by the round trip time of the laser
light. The importance of implementing a high sample frequency is to be able to resolve wing-
beat frequencies and its harmonics. Arange resolution beyond the diffractionlimit was
presentedusing this techniqueunlike the conventional LIDAR techniques, which is limited by
pulse duration[44].

The main advantages of the Scheimpflug setup as compared with the conventional LIDAR
systemare the following [44]:

e The continuous radiation poses less-eye-safety concern
e |t does not require high damage threshold transmitting optics[174,175].
e tis less costly

e Pulse LIDAR monitoring is limited to spectral range 0.2-1.7um since it uses
cascaded detectors such as PMTs and avalanche-photo-diodes (APDs)

e CW -LIDAR can be accomplished with Si, InGaAs or HgCdTe linear array
within the range 0.2-12pm

e The sampling frequency can reach 20kHz, which enables resolution of wing-
beat frequency and its harmonics

By employing this method, one can investigate temporal and spatial distribution of pollinators
on a landscape scale andestimate thefluxes of disease transmitting insect. In this dissertation,
measurement was performed using three different laser radar systems: Stellenbosch
Scheimpflug LIDAR, which is developedat the laser research institute (LRI), Physics
department, Stellenbosch University, Lund University mobile biosphere observatory
(LUMBO) Scheimpflug LIDAR in Lund, Sweden and Norway electro optics (NEO)
Scheimpflug LIDAR inLgrenskog, Oslo, Norway, both of which were developed by Dr.
Mikkel Brydegaard, See Fig.33. Dr. Brydegaard has advanced the topic of entomological
LIDAR and published numerous methods and applications.

The working principle of the three setups is essentially the same. However, they have a few
differences in terms of the detectors used, alignment geometry of the camera and separation
distance between the transmitting and detecting telescopes, see Fig 33.The purpose and
capability of the setups also differ in certain aspects.
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Figure 33: Scheimpflug LIDAR Setup: Left: Stellenbosch kHz remote sensing setup. This works both
in active and passive mode using laser and sunlight as illumination source respectively. Middle:Norway
electro-optics (NEO) continues wave laser radar setup. This was designedfor the active mode using
808nm IR laser light source. Right: Lund university mobile biosphere observatory (LUMBO) setup,
which is multipurpose mobile system capable of insect monitoring and bird tracking.

Table 1:Instrumentation of Stellenbosch LIDAR, LUMBO LIDAR and NEO LIDAR

LIDAR setups

Receiver

Transmitter

Laser source

Detector

Stellenbosch
LIDAR

@254 mm F/4
Newtonian reflector
telescope

@90 mm with an F/5
refractor

3W, 808nm infrared
GaAlAs diode laser

Si-CCD array with
1024 pixels and a
pixel size of 14x14
um. The detector is
tilted 45°

LUMBO LIDAR

2100mm F/4
Newtonian reflector
telescope

@102 mm with an
F/5 refractor

3W, 808nm infrared
GaAlAs diode laser

Si-CCD array with
1024 pixels (2048
pixel if binned) and
a pixels size of
14x14 pm. The
detector is tilted 40°

NEO LIDAR

2203 mm F/4
Newtonian
reflector telescope

2152 mm with an
F/4 refractor

1W 408nm, 5W,
808nmGaAlAs
diode laser, 3W
1550nm.

Si-CCD array with
3648pixels and a
pixel size of
8x200 um, CMOS
sensor 2048pix,
InGaAs camera.

40



Stellenbosch University https://scholar.sun.ac.za

The detector is

tilted 45°

Receiver- 120cm 60cm 80cm
Transmitter
Separation distance

Long pass filter, Long pass filter, Long pass filter,

) Laser line filter Laser line filter Laser line filter

Filters (interference band (interference band (interference band

pass filter) pass filter) pass filter)

3.3.2 Scheimpflug Principle

The Scheimpflug principle is a way of imaging anobject while achieving infinite focal depth,
without closing the aperture [44, 98]. Before having detailed discussion of Scheimpflug
principle, it is important to know how imaging works in a normal photography where the depth
of field (DOF) varies depending on the size of the aperture. DOF is the front to back zone of
an image, which determines the range in which an image can be in focus.A larger aperture has
smaller focal ratio(f/number) which results in a shallow DOF and the opposite is true for a
smaller aperture. With a bigger aperture, the image can be in focus at a certain position and out
of focus on the other end. On the other hand, one can achieve deeperDOF by using a smaller
aperture, See Fig. 34 and Fig.35. This constraint comes from the fact that the image plane, the
lens plane and the plane of sharp focus are parallel. However, those three planes can cross at a
certain point by implementingthe Scheimpflug principle. This situation is calledthe
Scheimpflug condition. Fulfilling this condition enables to achieve infinite focal depth with an
open aperture.
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Figure 34:Left: deeper depth of field with closed aperture makes the whole image in focus. Right: the
shallow depth of field with open an aperture makes only the one flower at the bottom to be in focus.

Adopted from [176].

‘ =—[Deapth of Field

Figure 35: Image of a butterfly with a larger aperture and smaller focal ratio resulting in a shallow
DOF[177].

In the context of CW-LIDAR, the laser beam is imaged in to line scan camera with 1024 pixel.
To fulfil the Scheimpflugcondition, we impose three conditions [44]: 1) the plane of the CCD,
the receiving lens and the transmitting beam should coincide at the same point. 2) The distance
between the receiving telescope and transmitting telescope should be equal to the focal length
of the receiving telescope if the CCD tilt angle is 45°. 3) The ray impinging on the outermost
pixel, representing infinity, through the centre of the receiving lens is parallel to the transmitted
beam, see Fig.36. Each pixel images a specific range of the beam and the constraint of range
resolution is mainly the diffraction limit of the receiver and beam width. However, the blinking
property of atmospheric faunaenables us to achieve arange resolution beyond the diffraction limit
[44].1t has to be noted that the Newtonian receiving telescope is replaced by refractor for the
sake of simplification.
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Figure 36: CW-LIDAR is based on theScheimpflug principle: the image plane, lens plane and object
plane (beam plane) meets at a point, which fulfils the Scheimpflug condition.This allows us to achieve
infinite focal depth without closing the aperture. It has to be noted that the Newtonian receiving
telescope is replaced by refractor for the sake of simplification.

The challenge of using only Scheimpflug line is the fact that it is difficult to find the actual
focus since this line can move up and down. This means thatone would need two distinct points
in order to precisely determine the position and slope of the Scheimpflug line [99]. This iswhere
the importance of Hinge line comes in to play, see Fig.37. The Scheimpflug line is the
intersection of focal plane (yellow line), lens plan (Purple) and plane of sharp focus (red). The
Hinge line is the intersection of the parallel to focal plane lens plane (green), the frontal plane
(blue) and the plane of sharp focus (red). The front focal plane is that plane parallel to the lens
plane, but exactly one focal length distance away from the lens plane towards the subject.1f we
change the tilt angle, the Scheimpflug and Hinge linewould move up and down whilethe plane
of sharp focus remains the same. On the other hand, the focus makes the Hinge line to move
horizontally and the Scheimpflug line moves up/down while the Hinge line distance (J) remains
the same [99].
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Figure 37: Scheimpflug and Hinge lines. Hinge line is defined to be the intersection of the parallel-to-
focal-plane lens plane (green), the front focal plane (blue) and the plane of sharp focus (red). J is the
Hinge line distance, which is the vertical distance between the nodal point of the lens axis and the nodal
point of the lens. (Adopted from[99])

3.3.3 Experimental capability

The CW-LIDARtechnique has advantages as compared to the dark field experiments when it
comes to retrieving range information and the accuracy of OCS. It iscapable of assessing range
resolved biodiversity of pollinators like honey bees, the impact of diseases transmitting biting
vectors, and overall insect activityin-situ. Using this technique, one can be able to determine
absolute OCS, wing-beat frequency and harmonics and thetemporal and spatial distribution of
atmospheric fauna over a several kilometres range. Assessment ofspatialdistribution of insects
on different agricultural environments and geographic land scales was done in Brunslov,
Sweden using this technique, see Fig.38.The distribution curve shows the variation of insect
population throughout the whole range.From an entomological point of view,this could have
implications considering biodiversity in respect to topography and vegetation. From a Physics
point of view, one can see that a range resolved assessment of insect distribution can be
performed over a several kilometre range. A detailed result of biodiversity assessment is
discussed in paperlV related to the absolute OCS detection limit. In this case, the different in
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air volume monitored and the detection limit at different range has to be compensated for when
comparing between different ranges.
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Figure 38: Spatial distribution of insects over a km landscape scale in Brunslov, Sweden. The number
of insects increases around 128 meters and drops off around 300m and then increases around 655m.
Those regions are where the oat farm, wheat farm, and cow field are situated respectively. This
experiment was done during night (00:30 to 04:30am local time).The variation in the number of insect
over different agricultural landscapes show the preference of insect to a certain plant species or type
of animal, which could be of interest to entomologists.

The range resolution of this technique is constrained by the diffraction limit [179] of the
receiver and the beam width, but we have recently shown that range resolution beyond the
diffraction limit can be achieved because of the sparse nature of atmospheric fauna. In this
case, we consider insects as blinking particles. This technique is related to the concept of
stochastic optical reconstruction microscopy (STORM)[180-182], where sparsely dye
molecule switching between dark and fluorescing states are imaged over time to be able to
narrow the point spread function beyond the limit Abbe’s criterion would allow[183,184]. It is
also similar to some other super resolution microscopy technique called photo activation
localization microscopy (PALM) [185-187]. In our context, we exploited this concept of
STORM, where sparse insects behaving like blinking particles are imaged over time by
implementing a kHz sampling frequency. In paper I, we have shown that the angular resolution
can exceed the diffraction limit in a situation where sparsely distributed blinking particles
appear.

In addition to spatial distribution, one can monitor the temporal distribution of insects during
a period of time. This helps to get a complete picture of the activities of insects in time and
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space. Temporal distribution of the spatial distribution of the insect shown in Fig.38 was also
analysed to evaluate the dynamics in time. From the temporal distribution histogram, one can
see that the lowest total insect count is found around 03:30am local time, see Fig.39. The two
figures (Fig.38 and Fig.39) are examples of the capability of the technique to retrieve temporal
and spatial distribution information of insects over a km range.
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Figure 39: Temporal distribution of insects during night time, in Brunslov, Sweden. This experiment
was done for 4 hours in total (00:30 -04:30, local time). The numbers of insect increases around 1am
local time. This could be when night time insectsstart to appear. The population drops around 3am and
then increases around 4am. This could be because of the night time insect started to disappear and day
time insect started to populate respectively.

Chapter IV

4. Calibration
4.1 Range calibration- CW-LIDAR

Range calibration is one of the most important aspects of the active remote sensing experiment.
Itallows us to determine the exact position of atmospheric fauna in space. From an
entomological point view it is important to know which insect species prefers a certain
agricultural landscapeor which parasite affects livestock orhumans. There are different ways
in whichone can calibrate the CW-LIDAR. In this dissertation, the range calibration was done
by calculating the angular position of each pixel footprint. The thin lens equation was used to
determine the distance between the CCD termination pixel and the lens. This involves object
distance (So), image distance (Si) and Focal length (f), see Eq. 4.1.
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In this context,the object distance is the distance to the termination position (termination range)
and image distance refers to the distance between the termination pixel and lens.The angular
position of each pixel footprint will then be determined from a known distance to a remote
target and this enables to back calculate the range. Generally, we implemented a trigonometric
back calculation from the known distance to the termination, pixel size and the separation of
the transmitter and receiver systems to determine the position of each pixel footprint in space.
The detail of the range calibration is discussed in[44,188]. A simplified expression of the range
calibration is given by the product of separation distance and the tangent of the angle of pixel
footprint, see Eq.4.2.

Range(r) = Dsep X tan(90°% — G_Pixel ).....cocouvivrirnernneincisisssnisesssesinssssssssesssnsnnses (4:2)

Where Ds,,, is separation distance between the transmitter and the receiver telescopes. The

angles of each pixel footprint (6,..;) iscalculated from theCCD tilt (8), focal length of the
receiving telescope, termination range and pixel pitch, see Eq.4.3.

Opixel = A F LAN(Y) covriiiieireireiniirt e sttt se e essessess s s e e e sessneseesnesnesnne (403

Where: y is the relative angular tilt of each pixel and « is the angle between the laser beam and
receiver optical axis.The above equations allow us to image different range on to different
positions of the detector array. It isimportant to achieve an overlap between the pixel footprints
of the line scan camera and the laser beam. Ideally, the pixel footprint has to be in a perfect
overlap with the laser beam. This is to make sure that the pixel footprints in space are aligned
with the laser beam. This means that the detector will be in focus for the whole range of distance
while the resolution varies with range, see Fig.40. The range scale in this case is not linear due
to the nature of the Scheimpflug method [44]. The pixel footprints close to the receiver closer
to each other than those pixels looking farther in the distance.
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Figure 40: Analytical description of focus range versus observed angle. Ideally, the pixel footprints
(blue) perfectly overlap on top of the beam (red). The non-linear range scale is due to the nature of the
Scheimpflug method.
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4.2 OCS calibration
421 OCS Calibration from termination reflectance - CW-LIDAR

Calibration of OCS in the CW-LIDAR experiment can be done in different ways, such as from
the termination reflectance or using white diffuse sphere with 100% reflectance. In our laser
radar experiment, we used the termination reflectance to calibrate the absolute OCS. The
procedure we implemented in this case is as follows: First we calculated the optical OCS of the
termination echo from the known parameters of interest: receiver telescope field FOV at
termination (area of the termination echo) and termination reflectance.Termination OCS is
basically the product of the illuminated area and reflectance, see Eq.4.4. The beam is elliptical
shape at termination.

o W;p: Beam width at termination
e H;p,: Beam height at termination
e Rierm: Scattering from atmospheric fauna.

From the OCS at termination, sensitivity is extrapolated back to words the LIDAR using the
static molecular return with homogenous atmosphere assumption. This enablesoneto determine
OCS of atmospheric fauna from the known termination OCS value. Ideally, the intensity
difference between the termination reflectance with and without an insect event crossing the
FOV could give the OCS of the insect, but the fact that the reflectance from the termination
may not be stableenough; due to the dynamic atmospheric conditionsintroduce uncertainties.
Due to this reason, this analysis is based on termination reflectance and we implement aform
factor to recalibrate the echo intensity into an optical cross-section with a standard unit
(Example: mm2, cm? etc.). The form factor is a range dependent function, which describes the
relation between signal intensity and range in a LIDAR experiment, see Fig.41. This is a
fundamental function in the remote sensing field, which relate the received photon count to a
distance. It can also be considered as an overlap function between the laser beam and telescope
FOV. The determining factor of geometric form factor is the distance at which the initial
overlap between the laser beam and telescope FOV begin, to the point at which the overlap is
considered to be complete. There are different ways to experimentally measure the form factor:
inserting a known OCS object at different positions in the field of view and the detection of
nitrogen Raman signal and by measuring water vapour and aerosols in the earth’s atmosphere
[189]. It can also be described analytically using Eq.4.5[190,191].

10(1+tanh(r_Rr0))

r2

I(r) =

e (4.5)

Where:I,, r, r(, and R are constant signal, distance from the LIDAR location, overlap area and
an intermediate point of the overlap region respectively.
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Figure 41:Numerical estimate of Geometric form factor for Newtonian telescopeover 2km range.

Based on the numerical estimate, we can see that the intensity of each event depends on the
range where the event is detected, which highlights the importance of introducing the form
factor. In this work, the form factor was rescaled through the known OCS, Gierm, for the
termination; see Eq.4.6[55].The OCS calibration can be verifiedby relating the value to the
apparent size and estimating the reflectance of atmospheric fauna at 808nm wavelength [55].
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The LIDAR experiment generates range-time files. Each file covers 5s time window inboth the
LUMBO and Stellenbosch LIDAR experiment setup, see Fig 42. In the experiment shown in
Fig.42, we ran the system for about 4:00 hours (00:30 to 04:30am). Every range-time file
contains various event parameters such as OCS, velocity and wing-beat frequency. The
parametrization algorithm enables us to subtract the background and calibrate the arbitrary
intensity of a back scattered event signal into OCS (mm?, cm?) using the reflectance from the
termination.

200

x 400
=
(«})
(o)

S 600
1o

800

1000

01:00 02:00 03:00 04:00
Local time (HH:MM)

Figure 42: Panoramic false colour composition range-time map. During the four hours measurement
from mid night until about 4:30am in the morning we detected more than 6000 events (red dots in the
range-time map. Every line comprises 10°LIDAR samples. The black lines are background data when
the laser is switched off torecord a 5 second background. This Range-time map is produced from 40
million LIDAR sample during the whole experiment.
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NEO LIDAR experimental setup was also usedin Brunslov, Sweden. Every range-time map in
this experiment coversa 10s time window. A synchronization signal from the camera in this
setup alternates the laser between dark and bright state to subtract the radiation from the sun
and pixel specific dark current dynamically. This is done by subtracting between add and even
exposure. After interpolating and subtracting the background the effective sampling rate in this
case becomes half of the total. This setup canbe used for day time experiment. The panoramic
false colour composition of 24 hours of measurement gives the general picture of the insect
activities on 17 July, 2014, see Fig.43. The effective sampling rate of this setup is 100Hz, which
makes it difficultto resolve wing-beat frequencyof high wing-beat frequency insects
considering the Nyquistcriterion [192,193]. It is slow as compared to the LUMBO and
Stellenbosch LIDAR setups, where the sampling rate is in the order of kHz. However, this
setup has the advantage in terms of sensitivity since the camera has bigger pixels
(8x200pm)compared to the other two setups where the pixel size is smaller (14x14pm).

Range (pix)

00:00 06:00 12:00 18:00
Local time (HH:MM)

Figure 43:Panoramic false colour composition range-time map. This is a 24hours measurement on 17
July, 2014. Around 1600 events/hour m® was detected.The high intensity static line around 3500 pixel
comes from the termination of the laser beam. The red dots are scattering from atmospheric fauna. The
detector is operated at 200Hz, but the effective sampling rate is 100Hz since the camera captures
background every second acquisition. The activity of insect is minimal during the time between 00:00
to 06:00am. The number of insect dramatically increases starting from 06:00am until about around
11:00pm.
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The range-time map generated from the LIDAR data enables us to make three statistical
measurements (minimum intensity (blue curve), median intensity (green curve) and maximum
intensity (red curve)), see Fig 44. The median intensity is the static intensity with the
background subtracted.The background data is generated from the data set where the laser was
turned off. In our first LIDAR experiments, the laser was turned off every 10minutes in order
to get a single 5s background file as discussed earlier. The interpolation between those files
gives the background file for every file. Now, the setup isimproved in such a way thata
synchronization signal from the camera alternates the laser between dark and bright state to
subtract the radiation from the sun and pixel specific dark current dynamically [55]. This
enables us to use the LIDAR system during day and night time and there will be no need to do
post-processing of background subtraction in this case. The difference between the minimum
and the static curve gives the noise level. The reason why the median was chosen to define the
static signal is because it is insensitive to outlier, which in thiscase means insect event.This can
be seen in Fig. 44, where the insect event is manifested in the maximum intensity, but not in
the median and minimum intensity.
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Figure 44: Intensity (count) versus range (pix).Temporal minimum, median and maximum intensity
distribution. The strong peak around 3500pix is the termination echo. The smaller and sharp peaks
around 500pix, between 1000-1500pix, and around 2500 are all insect events. The insect event
manifested itself in the maximum intensity, but not in the median since median is insensitive to
outliers (atmospheric fauna in our case).
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In the process of insect identification, it is important to set a threshold in order to distinguish
event from static intensity. In principle, a certain intensity level can be considered as an event
if it is one noise level greater than the static signal, but this introduces some uncertainty. To
minimize uncertainties, the threshold was set to be twice the noise level, which mean that the
signal-to-noise ratio is two (SNR=2).A histogram of an example event showinghow we set the
threshold is given inFig.45. In a situation where there is no insect event, the histogram will
show a symmetric distribution since noise behaves like a normal distribution. The width of the
symmetric intensity distribution determines the system noise. However, the histogram will be
skewed towards the higher intensities if insect event exist, which confirms that event signals
aren’t evenly distributed like noise[194]. This is exactly what happens in Fig.45.
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Figure 45: Histogram of the intensity distribution for rare events. The pink line indicates the
minimum intensity, the blue line indicates the median intensity and the green line is event threshold,
which is twice the noise limit. The noise is evenly distributed around the median value at that range.
The region above 10%a.u intensity is where we expect rare events. Adopted from [194].
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4.2.2 OCS Calibration using white diffuse sphere —dark field spectroscopy

Calibration of OCS is done using white diffuse spheres in the dark field
spectroscopyexperiment. This was implemented by dropping white diffuse sphere in front of
the dark termination boxclose to the object plane, where the spheres are infocus. The detector
dark current and static atmospheric contribution is subtracted first and then the absolute OCS
was calibrated using diffuse white spheres. The sphere is assumed to have 100% lambertian
reflectance.The backscattered signal strength from the sphere is differentin the three bands
(VIS, NIR and SWIR), see Fig.46. This has to do with the sensitivity of each detector in the
different wavelength ranges and the calibration hasbeen done accordingly.
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Figure 46: Signal from white diffuse sphere in three bands (VIS, NIR and SWIR). The three bands were
calibrated according to the strength of the signal. The NIR and SWIR signal comes from single
integrated sensors, where the Si sensor is on top of the InGaAs sensor, see Fig.24. The visible signals
(VIS Q1, VIS Q2,VIS Qs,and VIS Q4) are from the quadrant detector.

If the sphere was in focus, the signal would have been sharp with a flattop. Assuming a sphere
event in focus, we can calculate its full width at half maximum (FWHM). The ratio of the
integrated sphere event and its FWHM gives us equivalent strength of the sharp sphere event
in volts. The intensity in (volts) of a sharp sphere event (rectangular height) together with the
known projected area of the sphere is used as calibration factor from volt to cm?.We implement
this to describe the size of each sphere (diameters 25mm, 18mm, and 12mm) in different bands,
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which was originally in volts in to square centimetres, see Fig.47. We define OCS as the
product of surface area and reflectance of the sphere, see Eq.4.7.

OCS = TIT2R e oo et (AT

o mr?- surface area of the sphere
e R-reflectance of the sphere

The calibration result was used to estimate the sizes of different insects. Because of the range
dependent sensitivity of the form factor, the absolute OCS calculation using this technique is
only accurate close to the object plane were the calibration and controlled release was made.
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Figure 47:Signal from white diffuse spherein the NIR range (blue). If the sphere was in focus, it
would have been sharp with a flat top (red box).
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4.3 Flight direction — dark field spectroscopy

Insect are symmetrical especially in the SWIR and one can use quadrant detectors to break
symmetry. Flight direction of insects can be determined using a quadrant photodiode. This
Photodiode has four equally divided sections with the same quantum efficiency. A pendulum
with known oscillation direction was used to determine the orientation of the quadrant and also
to quantify the amount of light impinging during the day while we do long term recordings to
estimate the amount of radiation from the sun. This can be used to determine insect flight
direction. This calibration was done by oscillating the pendulum through the FOV from East
to West or vice versa for about 10s every 30minutes throughout the measurement session. The
backscattered signal from the pendulum is a periodicsignal, see Fig 48.
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Figure 48: Scattering from pendulum measurement. The periodic pattern of the signal shows that the
pendulum was sweeping West-East in the FOV for about 12seconds. VIS Q1, VIS Q2 , VIS Qs, and VIS
Qashow the different section of the quadrant detector.
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A closer look to the signal of a half period of the oscillation shows the sequence where the
pendulum enters each section of the quadrant, see Fig. 49. Knowing the initial position of the
pendulum, we can determine the orientation of the quadrant, which leads us to determine the
flight direction of insect events. In this specific example, the pendulum was released from West
to East in the FOV. From the temporal sequence of the quadrant signal, we can see that the
pendulum first enters Q1 (West) and exists at Qs (East). The most likely orientation of the
quadrantis shown in Fig.50. This result is from a specific experiment in Stellenbosch. One
could also choose to release the pendulum West-East as far as the dark termination cavity faces
the sun or the sun is behind the receiving telescope in order to get backscattering signal. This
will improve the signal strength as compare to front scattering when the receiver faces the sun.
In general, the receiving telescope was setto look southwards in Stellenbosch (Southern
hemisphere) and towards the north in Sweden (Northern hemisphere), which enabled us to
collect a backscattered signal.
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Figure 49: Zoomed temporal sequence ofthe pendulum signal for a half oscillation. Signal recorded by
the Si quadrants (Q1, Q2, Q3, and Q4) from pendulum oscillation (east to west). The time sequence of
the signal shows that the pendulum first enters Q1 (East) and exists at Q3 (West). The guadrant
orientation suggestion in this case is: Q1-East, Q2-Down, Q3- West, and Q4-Up relative to each other.
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East
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Figure 50: Quadrant orientation based on the signal in Fig.31.

An Example of an insect event recorded in Brunslov, Swedenwhen the insect happens to fly
from east-west in the same direction as the wind is shown in Fig.51. In this experiment the
pendulum was oscillating from west-east, which is in the same direction as the direction of the
wind.
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Figure 51:Flight direction of the same insect event from the quadrant detector. The insect at 24.7s flies
from East (E) to West (W) similar to the direction of the wind. The speed and direction of the wind
during the day was between 2.4-3.2ms ™ west.
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4.4 Spectral information — dark field spectroscopy

Calibration of the spectral information retrieved by the spectrometer is done in a similar way
asfor the Si and InGaAs sensors (Section 4.2.2). We have used white diffuse sphere to estimate
the amount of sun light impinging into the FOV. The white sphere was released in front of the
dark termination cavity whereit is in focus (close to the object plane). By retrieving the spectra
during the time when the sphere was in the FOV, one can see the reflection from the sphere,
see Fig.52. At this stage the spectra has arbitrary intensity value.
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Figure 52: Reflectance from sphere eventaround 0.5s and arbitrary intensity value.The sphere is
g12mm andassumed 100% reflectance.

The next step will then be to convert the arbitrary intensity into OCS in units of square
millimetre. In this specific example, we usedag24mm sphere to calculate the amount of signal
per square millimetre and the area of sphere is 452mm?. Assuming the sphere has 100%
reflectance and applying Eq. 4.7, the OCS of sphere will be 452mm?. Finally, we can plot the
spectrum of the sun, which is reflected by thewhite diffuse sphere, see Fig.53. Once we have
the spectrum from the sun reflected from the sphere of known area, we can now use this
spectrum to determine the OCS of insect events of arbitrary intensity. The signal from an insect
is much sharper spike compared to the signal from sphere, which shows a slow increase, see
Fig.54.
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Figure 53: Spectrum reflected by a white sphere.We use this spectrum to determine the size of an insect.
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Figure 54: Insect events recorded by a spectrometer. The sampling frequency in this case is 50Hz,
which is too slow to resolve wing-beat information, butcolour information can be obtained as can be
seen in Fig.32 (green powder marked dragonfly)
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Chapter V

5. Result and Computational methods
5.1 Intensity calibration

Intensity calibration was done in this dissertation to determine the size of insects. The general
trend of intensity calibration is to subtract the background signal (dark reference) from the
event intensity and white reference. The ratio of both terms would then give a calibrated
intensity value, see Eq, 5.1. This could be in units of cm? or mm?, which is realistic size for
insects inour context. The procedure of OCS calibration is discussed in chapter IV.

R = Ok e, (5.1)
Iwhite=Idark

where: I,is the intensity recorded from the insect event, I, IS intensity recorded with no light
(it means when the laser is off for LIDAR experiments and during the time where no insect
crosses the FOV in the dark field experiment). Iyt 1S the intensity from white diffuse sphere,
see Fig.55.The use of Eqg. 5.1 in this case assumes detection linearity of a first order polynomial.
In some cases, there is a possibility that the photon could escape from the FOV even though
the commercial white spheres are certified for the visible and infrared wavelength ranges. This
means that the instrument measurement geometry determines the accuracy of reflectance
experiments. In reflectance experiments, the absolute value of R is determined by the spot size,
numerical aperture, and angle of incidence of both illumination and detection [191]. The bright
spot in such cases is due to specular reflection, which is observed at aspecific viewing angle.
This means that the incoming photon remembers its original phase, polarization and
propagation direction. In some applications, the specular reflection is rejected because of the
fact that it creates some kind of disturbance. Rejection of specular reflection is commonin the
study of surface properties or of speciesclassification [195,196]. In this experiment, the
specular reflection is the reason why the higher order harmonics appears and it can also be used
to estimate wing membrane thickness of insects.

Figure 55: Different size Teflon spheres used to collect white reference spectrum. They are certified
white references for the wavelength range between 300nm to 2um.
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5.2 Trajectory in colour space

The trajectory in colour space is mostly known as (Red-Green-Blue) RGB colour space, which
is common in applications such as computer graphics [197-200]. This additive colour space
has intensity on the three axis. Considering a cube of an additive RGB colour space, each corner
on the space refers to specific colours: white, black, blue green, red, yellow, magenta and cyan.
Those 8 different colours which are represented by the colour space are the possible colours
that can be produced by mixing the three main colours (RGB). The three basic colours belongs
to a specific peak wavelength (Ap.4k) in the visible electromagnetic spectrum (Apeqr~560nm
for Red, Ap.qx~ 530nm for green, Ap. 4~ 430nm for blue).Example: The colours in a certain
mixed fruit image can be plotted in 3D RGB colour space, see Fig. 56. The RGB values
correspond to real values of the original image. Human beings have a three band (RGB) visual
system, which is similar to the colour model in computer graphics. Horses have only two bands
[201-204] while birds have 4 bands [205-207].
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Figure 56: Left: real image of mixed fruits of different colours. Right: RGB value corresponding to
real values in the left image.

In the context of this dissertation, trajectory in colour spaceis not the same as the well-known
RGB colour space discussed aboverather it is an extension of the concept. This refers tothe
wave-form of a wing-beat cycle, see Fig 57. This example insect wing-beat waveform has 9
wing-beat cycles and each temporal waveform of an insect event has a different amplitude,
harmonic content and phase [208]. One can exploit this specific feature of the trajectory in 2D-
color plane in order to useit as indicators of insect differences, which is similar to fingerprints
of human beings. The trajectories for different insect species are different because of the
difference in terms of position, phase, modulation size and direction of temporal waveform,
see Fig.58.
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Figure 57: Temporal waveform of insect wing-beat with 9 cycles. This wing-beat cycle has specific
amplitude, harmonics content and phase.

50 T T T T T L T

NIR OCS (mm?)
(4] W
o (3, ]

N
(3

6 8 10 12 14 16 18 20 22
VIS OCS (mm?)

20 [l [l

Figure 58: Wing-beat trajectory of insect event for the last 3 wing-beat cycles (7 to 9) of the event in
Fig.55. This comes from the OCS in two bands (VIS and NIR)
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In the passive remote sensing experiment, we have evaluated the significance of melanization
in the VIS and omnidirectional sub-illumination in the NIR to the shape of the wing-beat
waveform. It is found that these two effects could be used as a tool to see changes between
insect wing and body melanization among different insect species, see Fig.59. The degree of
wing-melanization is correlated to the slope of the trajectory in colour plane, which means that
the bigger the angle the higher the melanization. On the other hand, the degree of body
melanization is determined by the off-set. For instance, insect 2 has a more melanized body as
compared to the other two. In other words, this insect has a black body and white wings.
Melanization is the reason why some people have darker skin as compared others.
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Figure 59: Trajectory in two-dimensional (2-D) VIS-NIR colour plane for three insects with sizes and
wing-beat frequencies. NIR OCS: near-infrared optical cross-section and VIS OCS: visible optical
cross-section. Wing melanization is related to the slope of oscillation and body melanization is related
to the off-set. Melanin is the most common chromophore in all insects, which is responsible for colours.
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5.3 Parametrization

In this context parameterization is the process of quantifying different properties of
backscattering objects in the laser radar experiment. The parametrization algorithm used in this
dissertation selects the oscillating property in the range-time map as an event. An algorithm
was used to determine size, wing-beat frequency and its harmonics, range and velocity of an
insect event.

5.3.1 Range-time map

The input to the parameterization algorithm is the range-time file. Every file in this specific
experimentcomes from8000 LIDAR samples at a 2 kHz sampling frequency. This file is then
stored asl12-bit TIFF image (1024x8000pixels). The vertical and horizontal axis of the file
represents the range and time respectively. A flow chart of the main process steps and input
parameters to the algorithm is shown in[194]. The main process are: File statistics, where the
algorithm does three statistical measures (minimum, median and maximum) as describedin
chapter IV, background and OCS calibration, event identification and fit of the harmonics
functions. Apart from the range-time file, this main process has inputs like geometrical
parameters, threshold of the intensity and time steps of the oscillating signal (the minimum
time step the insect should have to be considered as insect. A threshold of 3 time steps was
used in this dissertation). The parametrization algorithm stores every event, which is above the
threshold while discarding the others and it loops over the rest of range-time files until the last
event. An insect event with certain wing-beat frequency produces oscillating signal on the time
axis, see Fig 60.The wing-beat frequency of this specific example insect is 285Hz, which is
close to what one could expect of Mosquito wing-beat.
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Figure 60: Range-time map of 285Hz insect event.The change in colour of the oscillation shows the
difference in signal strength.
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Looking a bit more in detail at the event described above, we can see that the range in which
the event was detected is around 60.5m from the receiving telescope, see Fig 61. This size of
the insect varies depending on itsorientation as was discussed in the previous sections. In the
upper panel, we can see that the OCS is higher between 40ms and 50ms compared to the OCS
between 30ms and 40ms. It is also shown in the lower subplot that every peak corresponds to
different OCS of the event and A¢ corresponds to the time that the insect spends in the probe
volume.
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Figure 61: The upper and lower subplot indicates the extracted insect event in the range-time map
and back scattering time series of the same event respectively.

5.3.2 Analysis of modulation spectra

The parametrization algorithm discussed in section 5.2.1comprisesfast Fourier transforms
(FFT)to determine the frequency content of an event and its associated harmonics. FFT is an
algorithm which calculates the discrete Fourier transform. It is usually called “fast
computational algorism for discrete Fourier transform” (DFT). This algorithm is one of the
most important tools in the fields like signal processing. It enables to convert data from the
time to frequency domain and vice versa [209]. The reason why we chose FFT over simple
DFT is because the later is computationally expensive. To understand this, one can see a simple
DFT equation:
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—j2mkn

X(k) = XN (M), €7 N i (5.2)

Where the “n” is the sample number and *.” is complex multiplication.

—j2m : :
The term e~ is a constant number and the above equation can be rewritten as:

X(K) = XNl (n) W e, (5.3)

—j2mkn

Where W is equivalentto e~ N

In this case, the complex multiplication is executed every time the sum runs from n=0 to N-1.
This involves (N.N)N2complex multiplications while FFT only involves NlogN complex
multiplications. The method used in FFT algorithm to improve the computational issue
isdividing the x(n)in Eq. (5.3) in to odd and even sequences, see Eq.5.4.

N N
X(k) = X2 x(@m) W™+ ¥2° x(2m+ D)W i (B4)

Even Sequence(Y)”“+ odd sequence(%)”

By executing Eq. (5.4) once, we can simplify the number of complex multiplications toNTZ,
which comes from the sum of the even and odd sequences. By performing division of even and
odd sequence multiple timesone can arrive at NlogN complex multiplication, which is faster
compared to N2.

When converting an array of time-domain datato an array of frequency-domaindata, the
maximum frequency that can represent back in the time domain is half the sampling frequency,
which is called the Nyquist frequency. ForN number of samples running from n=0 to N-1 and
duration of the impute array in the time domain (T;) in seconds (s),the span in the frequency
domain after the FFT will have N samples and bandwidth (B,) in hertz (Hz). In this case, the
inputs are real valued samples while the outputs arecomplex valued samples, which mean that
in the frequency domain there will be magnitude and phase representation of the complex
values. The sampling interval will be the ratio of the duration input array (T;) and sampling
frequency (N) and it can be represented as: At = TWd The inverse of sampling interval gives the
sampling frequency in units of Hz. The first value in the time domain will be zero, the second
value is At, the next value 2At and the last value of the array is(N — 1)At. Similarly, the

sampling frequency in the frequency domain is given byf; = - = T"’—d and the first frequency

value of the array will be zero, which is usually called direct current (DC) to indicate zero
frequency. In other words, DC is the average value of the time-domain waveform on which the
FFT is applied. In this dissertation, this term is used to estimate the body contribution of an
insect to the total OCS. The second frequency value will be 2Af , where Af = % = %(sampling
frequency and bidirectional bandwidth are the same) and the last frequency value will be the
product of the last term and the (N-1) Af, see Fig.62. Here, it should be noted that the
bandwidth in this case is bidirectional, which means that the actual frequency that can be
represented in the time domain will be half of the bidirectional bandwidth. This is called the
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Nyquist frequency. See Eg.5.5. This implies that sampling frequency at least twice the
frequencyof an event is required. The sampling frequency implemented in this dissertation is
on the order of kHz, which is fast enough to resolve fast the wing-beat of an insect and its
harmonics. Generally, the FFT works as it was described above and we use the Matlab built-in
FFT function to generate the power spectrum of the rare events.

_ By _ |
Ty By,
| | | [N-samples| | f—————> FFT ——{ | | [N-samples]| | |
O I S (N-1) =012 | (N-1)
max
t=0 At 28w (N-1) At F20 AF 2AF wooveereeeeeerreeen (N-1) Af

Figure 62: Working principle of FFT to convert array of time-domain data to an array of frequency-
domain data. Where: n: time index. N: total number of samples. fmax: maximum frequency that we can
represent back in the time domain (Nyquist frequency). k: is frequency index or bin number. By: is
bidirectional bandwidth. Tq4: duration of the input array.

5.3.3 Power spectral density (PSD)

Power spectral density (PSD)describes how the contributions to the power are distributed in
the frequency domain. This can also be described as a stationary random process in the
frequency domain [210]. The power spectrum is the discrete time Fourier transform (DTFT) of

DTFT
thecorrelation sequence (S(w) <= r[k]). Mathematically, one can describe this as:
S(w) = X%, rlkle @ o rlk] = [T S(@)e*dw......coccoiiiiiii (5.4)

Considering two points in the frequency domain (w; and w,), the area between the two points
indicates the power this portion contribute to the process, see Fig 63. One can calculate the
average contribution to the total power (variance) due to the components of the random process
between the two points, see Eq. 5.5.

1
Si2 =Ef55(w)dw (5.5)

The PSD was used to evaluate the strength of the variation as a function of frequency. It is
useful if one wants to identify an oscillatory signal in a time series data and want to know its
amplitude. In ourcase, the power spectrum is obtained using the FFT discussed in section 5.2.2
and it contains contributions from the insect body (envelope)[194],the fundamental frequency
and harmonics as shown inthe next section.
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Figure 63: Power spectral density (PSD) of a random process in frequency domain. The area between
w, and w,indicates the average contribution of the components in between the two points to
the total power.

5.3.4 Wing-beat frequency and harmonics

A number of studies have been done to estimate the fundamental frequency (pitch)using
different pitch recognition algorithms ineither frequency or time domain. One application of
this is in speech recognition, which is as unique to an individual like fingerprints or an iris scan
and is related to the length of a speaker vocal tract, missing teeth and behavioural elements
[211,212]. One of the privacy issues in this case is the fact that individuals can be identified
without their consent like other biometrics [212,213].

In this project, the fundamental wing-beat frequency and its harmonics is calculated from the
power spectrum, which is obtained using a FFT from the time dependent back scatter signal of
an insect event. In this process, the noise component of the power spectrum is identified while
the envelope is assumed Gaussian. The power spectrum is represented in the new basis
function, which enablesone to remove the envelope and noise components so that the only
component left in the power spectrum is the wing-beat frequency with known allowed values
(minimum and maximum).The maximum power within the allowed frequency range is taken
as initial guess for the fundamental frequency of the wing-beat (w;n;tiq;)- The final fundamental
frequency will then be calculated by performing a best least square fit to the wing-beat signal
in a frequency interval within 30% of the initial guess frequency (w;nitiqr)- TO reproduce the
original OCS of the wing-beat, a combination of the fundamental frequency is used to first
describe the harmonics. This is done by first subtracting the contribution of the body from the
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total OCS and the value that only describes the contribution from the Wing-beat is then used
to describe the absolute strength and phase of the different Harmonics. Generally speaking, a
linear combination of Harmonic basis functions (H) is used to represent fundamental
frequencies and Harmonics in the OCS [194] . Mathematically, the linear combination of
harmonic basis functions used to represent the fundamental frequency and harmonics in the
OCS can be described as:

H= {sin(annt) | ne N} V] {cos(21m)nt) | NENIU {1} (5.6)

The time dependent OCS shows how to parametrizeinsect as a discrete set of harmonicsusing
Eq.5.7. This is also discussed in chapter II.

0CS(t) = BB = /25(C,  sin(2moht) + 2 Cypy OSMEGAE)) e (5.7)

To visualize howthis is related to insects in reality, it is important to see how the basic insect
model explainsthe harmonic content of a certain insect’s wing-beat, see Fig.64. We can see
that the insect become large twice only from the side, but not in the anterior or dorsal view. It
is shown that insect have three physiological planes and four different phases according this
specific model.
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Figure 64: Basic insect model to visualize harmonic content in respect to insect physiology. From the

side the insect appears large twice (strong 2w). Anterior and dorsal view only produces strong 1.
Adopted from[137].
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Chapter VI

6. Conclusion and Outlook
6.1 Optics and Bio-Photonics

The general aim of this projectwas to develop and implementapplied optical remote sensing
methods to help solve entomological questions like interaction strength on a millisecond time
scale, biomass distribution and overall activities of insects over a several kilometres
agricultural landscape. The passive and active remote sensing techniques that we have
developed during the course of thisPhD project revealedgreat potential in solving basic
environmental questions. It helps to bridge the gap between the two broad disciplines (physics
and biology). It is understood that some ofthe conceptsfrom physics such as fundamental tone
estimation and harmonicovertones could essentiallyanswer very important ecological question.
Considering the species specific nature of those parameters, it is interesting to track activities
of a number of insect species over different ecosystems in time and space.

Considering the passive remote sensing techniques, it is shown that one can determine flight
direction, colour information, wing-beat frequency and its harmonics and iridescence features
of fast insect events [158]. Insects are symmetric in many ways, especially in SWIR since this
wavelength range is insensitive to melanization. One can use quadrant detector to break
symmetry in order to determine the flight direction.lIt is also possible to compare the relative
strength of odd and even harmonics for the determination of instant flight dynamics. When it
comes to size determination, the limit with the passive techniques is the fact that we are so far
not able to retrieve range information. Considering the range dependent sensitivity or form
factor, it is challenging to precisely determine absolute OCS using this technique without
having range information. Because of this reason, the OCS determination is only accurate close
the object plane and the termination where the calibration and controlled release were
performed. However, limited range information could be retrieved by looking at the flank rise
and fall time of an insect event, which could be associated with the event distance from the
object plan.

With regards to active remotes sensing, a number of important range resolved quantitative
assessments of insects can be done. We have shown that the CW-LIDAR based on the
Scheimpflug principle improves the range resolution beyond the diffraction limit. The reason
for this is because of the fact that the sampling frequency is in the order of kHz and insects
behave like blinking particles [44]. Unlike the conventional LIDAR techniques, this method is
not limited by the round trip time of the laser pulse, which enables us to resolve the wing-beat
frequency and its harmonics. This technique hasthe additionaladvantage over the passive
remote sensingwhen it comes to retrieving range information and having stable (fixed)
illumination intensity. One cantherefore perform accurate analysis of OCS, speed and other
important quantitative parameters by day and night. This could enable one to manage a
sustainable and healthy environment. We have recently shown that 24hours assessment and
evaluation of atmospheric fauna can be done using this technique. From this experiment, we
have seen 1700event/m®hour on average, which indicates how impossible it would be to
evaluate such huge numbers using manual techniques.
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From physics point of view, we consider insects to be symmetrical objects especially in the
SWIR wavelength range as discussed above and we use quadrants to break the symmetry. They
generate oscillating OCS depending on their orientation in space. Theirorientations in space
can be divided in to three physiological planes and four different phases as it was discussed in
chapter V. The contribution of the body (DC) and fundamental frequency (1) to the total OCS

happens in two planes while the contribution to the second harmonic (2w) is only in one plane.

Generally, this dissertation highlights the potential of applied optical remote sensing techniques
to remotely identify insects andtheirimpactto ecology. Considering the massive experience of
the LIDAR community in environmental monitoring,it is important to recognize some of the
aspects that one can take as a basis for this application and it will also help to understand
similarities and differences between the different techniques. One can consider insects as a
living aerosol with a certain wing-beat frequency.

6.2 Developing realistic instrumentation

Development of less costly and realistic instrumentation is usefulfor advanced research projects
in developing countries. As it was discussed in section 6.1, part of this project aim was to
develop such an instrument platform for ecological studies. This enables the development of
skills and helps to understand the physics behind such experiments. | had an opportunity to
participate in the African spectral imaging network (AFSIN) 4™ international workshop on
optical system design and computerized acquisition.My responsibilities were to assemble the
instrumentation platform and demonstrate active and passive remote sensing experiments to
the workshop participants at Yamoussoukro, Ivory Coast, 4-14 November 2013.

In the beginning of this project, we had a 825cm and 120cm focal length Newtonian reflecting
telescopewith a dobsonian mount, which was used for passive remote sensing experiments, see
Fig.65. The same telescope together with g105mm and 500 focal length refracting telescope
was also used for the active remotes sensing experiments. Using this setup, we have organized
a workshop at Jan Marias nature reserve in February 2013 and also tested the first CW-LIDAR
setup based on Scheimpflug principle. During the course of the project the instrumentation
platform was modified and the refracting telescope we had in the beginning is now replaced by
a new g90mm and 500mm focal length refractor. All the other mechanical parts of the setup
are built in Stellenbosch University, Physics department workshop. The instruments purchased
are: the 808nm laser source, reflecting and refracting telescopes, filters and detectors. The
current setup is motorized and computer controlled. Both the refractor and reflecting telescope
are placed on a metal mount. The distance between the midpoints of the two telescopes is
120cm, which is equal to the focal length of the receiving telescope to fulfil the Scheimpflug
condition, see Fig.66. With regards to detectors, Si S4349 and InGaAs G6849, Hamamatsu
quadrant detectors, dual detector (Si/InGaAs) sitting on top of each other and a low resolution
spectrometer with sensitivity from 300nm to 1100nm were used. Comparingthe detector costs,
the spectrometer (Ocean Optics: USB4000) is the most expensive equipment.
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Laser radar setup

Figure 65: The first setup we used for laser radar in Stellenbosch and dark field spectroscopy
experiment at Kogelberg and Jan Marias nature reserve.

Line Scan
camera
1024pix

808nm laser

Figure 66: The newly built passive and active remote sensing setup. The white smaller telescope (left)
is the refractor we used to transmit the laser. The black larger telescope (right) is used to collect
backscattered signal.

6.3 Ecology and Biosphere monitoring

The existence of life on earth depends on the proper functioning of the ecosystem. This includes
the interaction of organisms with their environment and their response towards drastic changes.
It means that proper monitoring of the environment is important forhuman existence. That is
whydeveloping a more accurate ecological monitoring technique will have a big impact.
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Considering the fact that about 80% of the animal population on earth are insects and their
contributionfor pollinating more than 80% of flowering plants on earth, it is understood that
they can be used asindicators to assess the wellbeing of our ecosystem. Needless to say, they
have also a negative impact in terms of destroying forest and agriculture and disease
transmission to humans and animals as it was discussed in Chapter I. The system developed
in the course of this PhD project showed potential for monitoring pollinators in agricultural
fields, the analysis of vector spreading disease to humans and animals and agricultural pest
monitoring.

Several techniques have been used to study insect activities over the years and they have made
significant contributions to understand insect behaviour. However, there is still room for
improvement considering the instrument biases with regards to age and gender difference and
life stages caught using the most commonly used manual techniques like traps and sweep nets.
In this dissertation, it is shown that the accuracy of environmental monitoring can be improved
significantly when it comes to the determination of flight direction, investigating distributions
and biodiversity, improving sampling frequency, and identification of colour differences
beyond human vision. Additionally, the techniques presented in this dissertation are non-
intrusive, which enable the study of insect activities without affecting their normal life unlike
the manual techniques like traps.

Some of the important features one could investigate using these optical techniques are
melanization [214-218] and warning colours of different insects [219-223]. As it was discussed
above, melanin is an important chromophore in the wings of insects, which enables them to
increase heat uptake. This feature can be used to identify species by comparing the spectral
content of a certain insect in the NIR and SWIR [137]. The warning colours of insects enable
them to frighten their predator by telling the predatorthat they are poisonous orthey are
unpalatable. However, some insect species show those colours even though they are neither
poisonous nor unpalatable. They use colour to imitate warning or attract mates. The three
warning colours in insects are: red, yellow and orange with black patches, see Fig.67.

With regards assessment of biodiversity, we have recently shown that evaluation of the insect
biomass spectrum can be done using laser CW-LIDAR techniques. We have related insect
observations to relevant ecological landscape features in Brunslove, Sweden. This technique
shows a potential to identify aerial insect fauna and study the effect of insecticide on pollinators
[55].
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Figure 67: Warning colours: Left: Yellow with black patches of a bee. Middle: Orange with black
patches of a butterfly. Right: Red with black patches of a beetle.
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