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Abstract
Since its inception, Fredholm theory has become an important aspect of
spectral theory. Among the spectra arising within Fredholm theory is the
Weyl spectrum which has been intensively studied by several authors, both
in the operator case and in the general situation of Banach algebras.

The Weyl spectrum of a bounded linear operator T on a Banach space
X is the set

⋂
K∈K(X) σ(T + K), where σ(T) denotes the spectrum of T and

K(X) the closed ideal of all compact operators on X. A recent result by E.
A. Alekhno shows that, if “Banach space" is replaced by an arbitrary com-
plex Banach lattice E, then the Weyl spectrum of T on E can be made more
precise, and takes on the form

⋂
0≤K∈K(E) σ(T + K).

By an ordered Banach algebra (OBA) we mean a complex unital Banach alge-
bra A containing an algebra cone; that is, a subset C which contains the unit
of A and is closed under addition, multiplication and positive scalar multi-
plication. As is well-known, the algebra of all bounded linear operators on
a complex Banach lattice is an important example of an OBA.

If A denotes an arbitrary OBA with algebra cone C, B a Banach algebra and
T : A → B a homomorphism with N(T) = {a ∈ A : Ta = 0} indicating the
null space of T, then the Weyl spectrum

⋂
c∈N(T) σ(a + c) of a ∈ A is in gen-

eral strictly contained in the set
⋂

c∈C∩N(T) σ(a + c) — see Example 4.1.13.
As a result of this, we investigate the latter set, which we shall refer to as
the upper Weyl spectrum of a ∈ A. In this work the concept of the upper Brow-
der spectrum of a will also be introduced and results related to these spectra
and the underlying sets of elements on which these spectra are defined will
be given.

This thesis aims to present initial steps taken in the effort of unifying the
theory of positivity in OBAs with the general Fredholm theory in Banach
algebras.
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Opsomming
Sedert die bekendstelling daarvan, het die Fredholmteorie ‘n belangrike as-
pek van spektraalteorie geword. Onder die spektra wat ontstaan in Fred-
holmteorie is die Weyl spektrum, wat alreeds in diepte bestudeer is deur
verskeie outeurs, beide in die operatorkonteks en in willekeurige Banach
algebras.

Die Weyl spektrum van ‘n begrensde lineêre operator T op ’n Banach
ruimte X is die versameling

⋂
K∈K(X) σ(T + K), waar σ(T) die spektrum

van T voorstel en K(X) die geslote ideaal van kompakte operatore op X. ‘n
Resultaat wat onlangs deur E. A. Alekhno bewys is, toon dat, as “Banach
ruimte" vervang word met ‘n willekeurige Banach rooster E, dan kan die
voorstelling van die Weyl spektrum van T op E meer presies gemaak word,
en dit word gegee deur

⋂
0≤K∈K(E) σ(T + K).

Met ‘n geordende Banach algebra (GBA) bedoel ons ’n komplekse unitale Ba-
nach algebra A wat ‘n algebra-keël bevat; dit is, ‘n deelversameling C wat
die eenheid van A as element het en wat geslote is onder optelling, ver-
menigvuldiging en positiewe skalaarvermenigvuldiging. Die versameling
van begrensde lineêre operatore op ’n komplekse Banach rooster is ’n be-
langrike voorbeeld van ’n GBA.

As A ‘n willekeurige GBA met algebra-keël C voorstel, B ‘n Banach algebra
en T : A→ B ‘n homomorfisme met N(T) = {a ∈ A : Ta = 0} die nulruimte
van T, dan is die Weyl spektrum

⋂
c∈N(T) σ(a+ c) van a ∈ A in die algemeen

eg bevat in die versameling
⋂

c∈C∩N(T) σ(a + c) — kyk na Voorbeeld 4.1.13.
As gevolg hiervan, ondersoek ons die laasgenoemde versameling, wat ons
die bo-Weyl spektrum van a ∈ A sal noem. In hierdie werk word die konsep
van die bo-Browder spektrum van a ook bekend gestel en resultate wat ver-
band hou met hierdie spektra en met die onderliggende versamelings van
elemente waarop hierdie spektra gedefineer is sal gegee word.

Die doel van hierdie tesis is die bekendstelling van die beginstappe wat
geneem is in die poging om die teorie van positiwiteit in GBAs met die al-
gemene Fredholmteorie in Banach algebras te verenig.
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List of notations
Throughout the dissertation, we shall adhere to the following notations.

Operations

||a|| norm of normed space element a

||T||r r-norm of a regular operator T

a ◦ b quasi-product of a and b or composition of functions a and b

xα ↓ x decreasing net (xα) satisfying inf{xα} = x

xα ↑ x increasing net (xα) satisfying sup{xα} = x

f|X restriction of a function f to a set X

dim B dimension of a vector space B⊕n
i=1 Bi direct sum of the sets Bi

ηK connected hull of a compact set K

∂K topological boundary of a compact set K

Sets

R(C) set of real (complex) numbers

Rn(Cn) set of n-tuples (n ≥ 2) with real (complex) entries

(Rn)+ set of n-tuples (n ≥ 1) with non-negative real entries

D closed unit disc in C
H(Ω) algebra of complex-valued functions holomorphic on Ω ⊆ C
BA closure of a set B in a metric space A

span B linear span of a set B in a set A

V+ positive cone in a vector lattice V

V∼n order continuous dual of a vector lattice V

Bd disjoint complement of a subset B of a vector lattice

Comm(a) commutant of an algebra element a
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List of notations x

Comm2(a) double commutant of an algebra element a

A1 unitization of a Banach algebra A

An set of all order continuous elements of an OBA A

OI(A) set of order idempotents of an OBA A

A−1 set of invertible elements of a unital algebra A

AD set of generalized Drazin invertible elements of an algebra A

q-A−1 set of quasi-invertible elements of an algebra A

QN(A) set of quasinilpotent elements of a Banach algebra A

N(T) null space of a linear operator T

FT set of Fredholm elements relative to T

BT set of Browder elements relative to T

B+T set of upper Browder elements relative to T

WT set of Weyl elements relative to T

W+
T set of upper Weyl elements relative to T

Ideals

Rad(A) radical of an algebra A

F (X) ideal of finite-rank operators on a Banach space X

K(X) ideal of compact operators on a Banach space X

Kr(E) ideal of r-compact operators on a Banach lattice E

Spaces

ER real Banach lattice

C(K) algebra of continuous complex-valued functions on a compact set
K

A (D) disc algebra

Mn(A) algebra of n× n matrices with entries in an algebra A

Mu
n(A) algebra of upper triangular matrices in Mn(A)

Ml
n(A) algebra of n× n lower triangular matrices in Mn(A)

L(X) algebra of bounded linear operators on a Banach space X

Lr(E) algebra of regular operators on a Banach lattice E

Z(E) algebra of central operators on a Banach lattice E
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xi

l∞(A) algebra of norm bounded sequences of elements of an algebra A

l2(A) algebra of square-summable sequences with entries in an algebra
A

Spectra

σ(a) spectrum of a Banach algebra element a

σ′(a) non-zero spectrum of a Banach algebra element a

iso σ(a) set of isolated points of σ(a)

acc σ(a) set of accumulation points of σ(a)

ρ(a) resolvent set of a Banach algebra element a

r(a) spectral radius of a Banach algebra a

D(a, I) the set of all λ in σ(a) which are not Riesz points of σ(a) w.r.t. I

σo(T) o-spectrum of T ∈ Lr(E)

σe(T) essential spectrum of T ∈ L(E)

σoe(T) order essential spectrum of T ∈ Lr(E)

σel(T) Lozanovsky essential spectrum of a positive operator T

βT(a) Browder spectrum of a Banach algebra element a w.r.t. T

β+
T (a) upper Browder spectrum of a Banach algebra element a w.r.t. T

ωT(a) Weyl spectrum of a Banach algebra element a w.r.t. T

ω+
T (a) upper Weyl spectrum of a Banach algebra element a w.r.t. T

ω−T (a) lower Weyl spectrum of a Banach algebra element a w.r.t. T

ωL
T(a) Lozanovsky spectrum of a Banach algebra element a w.r.t. T

Elements

1A unit of an algebra A

ap the element pap

pd the element 1− p

PB order projection on the projection band B

TC the operator T + i0

a−1 inverse of an algebra element a

aD generalized Drazin inverse of a Banach algebra element a

x+ positive part of a vector lattice element x
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List of notations xii

x− negative part of a vector lattice element x

|x| modulus of a vector lattice or OBA element x

sup{x, y} supremum of vector lattice or OBA elements x and y

inf{x, y} infimum of vector lattice or OBA elements x and y

p(a, λ) spectral idempotent of a corresponding to λ ∈ iso σ(a)
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Introduction
This thesis has as its main motivation that of unifying the theory of positiv-
ity in ordered Banach algebras with the general Fredholm theory in Banach
algebras.

An important class of operators which occur within the classical Fredholm
theory is the class of Weyl operators. There are a number of equivalent ways
in which one can define a Weyl operator on a Banach space. According to
one characterization, an operator S on a Banach space X is called Weyl if S
can be written as a sum of an invertible operator and a compact operator
on X. In his 2007 paper [3], by primarily focussing on the spectrum which
arises from the class of Weyl operators, E. A. Alekhno essentially asks —
in the case where X is ordered by some relation (in particular when X is
a Banach lattice) — to what extent the element of “positivity" has an effect
on certain results within the classical Fredholm theory. Remarkably, it turns
out that an operator S on a (complex) Banach lattice E is Weyl if and only
if S can be decomposed as a sum of an invertible operator and a positive
compact operator on E ([4], Theorem 3). Alekhno’s discovery demonstrates
a strong relation between the theory of positive operators on Banach lattices
and the classical Fredholm theory.

The primary structure for us will be a Banach algebra. All Banach algebras
considered are assumed to be complex and unital.

In 1982 R. E. Harte showed, in light of a theorem of F. V. Atkinson ([12],
p.4), that homomorphisms between Banach algebras gave rise to an abstract
version of Fredholm theory. We recall the following definition.

Definition 0.0.1. ([20], p.431) Let A and B be Banach algebras and T : A → B
be a homomorphism. An element a ∈ A is called
(i) Fredholm if Ta ∈ B−1,
(ii) Weyl if there exist elements b ∈ A−1 and c ∈ N(T) such that a = b + c,
(iii) Browder if there exist commuting elements b ∈ A−1 and c ∈ N(T) such that
a = b + c,

xiii

Stellenbosch University  https://scholar.sun.ac.za



Introduction xiv

where A−1 denotes the set of invertible elements of A and the null space of T is
indicated by N(T) := {a ∈ A : Ta = 0}.

We point out that the classical Fredholm theory for operators on a Banach
space X corresponds to the Fredholm theory of the Banach algebra L(X) of
bounded linear operators on X relative to the canonical homomorphism π :
L(X) → L(X)/K(X), where K(X) denotes the ideal of compact operators
on X. Recalling Alekhno’s discovery mentioned at the end of the second
paragraph, the identity

L(E)−1 + N(π) = L(E)−1 + (K ∩N(π)), (0.0.2)

where K indicates the cone of positive operators on E, holds.

By an ordered Banach algebra (we abbreviate it as OBA) – which we shall
denote by (A, C) – we mean a Banach algebra A containing an algebra cone;
that is, a subset C which contains the unit of A and is closed under addition,
multiplication and positive scalar multiplication. As is well-known, the al-
gebra of all bounded linear operators on a Banach lattice is an important
example of an OBA.

Since OBAs were introduced by H. Raubenheimer and S. Rode in [34],
several problems which originated in L(E) have been investigated in an
OBA context. On the other hand, new insights established in this more
general setting could be applied back to L(E) and various other examples
of OBAs.

In view of (0.0.2) one is tempted to ask the following question:

Question 0.0.3. If (A, C) denotes an arbitrary OBA and T a homomorphism from
A to a general Banach algebra B, is it true that

A−1 + N(T) = A−1 + (C ∩N(T))? (0.0.4)

According to Example 3.1.8 the answer to the above-stated question is
negative for a general OBA. Consequently, we make the following defini-
tion:

Definition 0.0.5. Let (A, C) be an OBA and T be a homomorphism from A to a
general Banach algebra B. An element a ∈ A is called
(i) upper Weyl if there exist elements b ∈ A−1 and c ∈ C ∩ N(T) such that
a = b + c,
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xv

(ii) upper Browder if there exist commuting elements b ∈ A−1 and c ∈ C ∩N(T)
such that a = b + c.

Evidently, the above definition provides a means by which positivity
theory in OBAs is connected with the abstract Fredholm theory. Clearly:

upper Weyl
⇒ ⇒

invertible ⇒ upper Browder Weyl ⇒ Fredholm
⇒ ⇒

Browder

This thesis consists of six chapters. We give a short introduction to what is
studied in each chapter:

In Chapter 1 we review some basic concepts and establish the terminology
and notation needed throughout the rest of this thesis. This chapter is fairly
lengthy since the treatment is self-contained. In particular, we point out
that Section 1.9 is quite long (this is done for the reader’s convenience) as
the theory developed in this section is relatively new in the context of OBAs.

Chapter 2 can be viewed as a repository chapter in which we display a num-
ber of observations that will be employed in the rest of the document. In
Section 2.1, in particular, we gather new insights regarding ideals, homo-
morphisms and poles that stem from the preliminary theory. As will be
seen, Section 2.2 contains several results (whose proofs rely mainly on the
holomorphic functional calculus) giving useful properties of the coefficients
of the main part of the Laurent series of the resolvent.

Throughout the discussion that follows, let (A, C) denote an OBA and T be a
homomorphism from A to a general Banach algebra B.

In Chapter 3 we develop the theory of upper Weyl and upper Browder el-
ements in OBAs. We shall begin this chapter with the definitions of upper
Weyl and upper Browder elements as introduced in Definition 0.0.5 and
provide a selection of examples illustrating that the converse implications
in the implication-scheme above generally do not hold. As a follow up (in
view of (0.0.2)), we identify in Section 3.2 classes of homomorphisms T rel-
ative to which every Weyl element can be decomposed as a sum of an in-
vertible element and a positive element in N(T). Our main result in this
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Introduction xvi

section is Theorem 3.2.6(a), which states that the sets of Weyl and upper
Weyl elements coincide relative to T having the Riesz property and satisfy-
ing N(T) = span(C ∩N(T)). This result can be viewed as a generalization
of (0.0.2) in the case where the Banach lattice is either an AL- or an AM-
space.

How different the classes of upper Weyl and upper Browder elements
are to the sets of Weyl and Browder elements, respectively, becomes more
evident when studying some of their fundamental arithmetic properties in
Section 3.3. Nevertheless, under the additional assumption that the homo-
morphism has the Riesz property, we find that certain algebraic properties
known to hold for Weyl and Browder elements are inherited by upper Weyl
and upper Browder elements, respectively (see, for instance, Lemma 3.3.4
and Theorem 3.3.8). In Section 3.4 we study the behaviour of upper Weyl
and upper Browder elements under perturbation by elements from a num-
ber of sets. Among other things, we establish that the upper Weyl elements
remain stable under perturbation by both positive and negative elements in
the null space of a homomorphism which has the Riesz property (Proposi-
tion 3.4.1). In conclusion, we study in Section 3.5 regularities in connection
with upper Weyl and upper Browder elements.

In Chapter 4 special attention is given to the corresponding spectra derived
from the sets of upper Weyl and upper Browder elements. In particular,
we focus on some aspects closely related to spectral theory: spectral map-
ping theorems and the relationship between the connected hulls of different
spectra.

Suppose that σ(Ta), ωT(a), βT(a) and σ(a) denote, respectively, the Fred-
holm, Weyl, Browder and (usual) spectra of a Banach algebra element a. The
sets of upper Weyl and upper Browder elements give (in a natural way) rise
to two new spectra, defined for elements of a general OBA: the upper Brow-
der spectrum of a ∈ A is given by

β+
T (a) = {λ ∈ C : λ1− a is not upper Browder} =

⋂
c∈C∩N(T)

ac=ca

σ(a + c)

and the upper Weyl spectrum of a ∈ A is given by

ω+
T (a) = {λ ∈ C : λ1− a is not upper Weyl} =

⋂
c∈C∩N(T)

σ(a + c).
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These spectra are non-empty and compact subsets of the complex plane
(Corollary 4.1.12). However, as suggested by Example 4.1.2, one should be
careful to replace the element λ1− a in the definitions of β+

T (a) and ω+
T (a)

by a− λ1. We point out that the replacement becomes possible whenever T
satisfies the Riesz property (Proposition 4.1.3).

Evidently, in view of the implication-scheme displayed before, we have
(for a ∈ A) that

ω+
T (a)

⊆ ⊆
σ(Ta) ⊆ ωT(a) β+

T (a) ⊆ σ(a).
⊆ ⊆

βT(a)

An important insight is revealed by Example 4.2.2, namely that, under
the conditions developed by Harte (Theorem 4.2.1) which guarantee one-
way spectral mapping theorems for both the Weyl and Browder spectra, the
upper Weyl and upper Browder spectra do not satisfy the given one-way
spectral inclusions. Up to now, we have only managed to set up a spectral
inclusion result for the upper Weyl and upper Browder spectra dealing with
a special holomorphic function, to be specific, the inverse function λ 7→ 1

λ

(see Proposition 4.2.5).
A result due to H. Mouton, S. Mouton and H. Raubenheimer states that

the connected hulls of the Fredholm, Weyl and Browder spectra coincide
relative to Banach algebra homomorphisms with closed range having the
Riesz property (Theorem 1.5.8). Under the latter assumptions on the ho-
momorphism, we show in Theorem 4.3.2 that the connected hulls of the
Fredholm, Weyl, Browder and upper Weyl spectra of all elements a, with
the property that

p(a, λ) ∈ span(C ∩N(T)) for all λ ∈ (iso σ(a))\σ(Ta),

where p(a, λ) denotes the spectral idempotent of a corresponding to an iso-
lated point λ of σ(a), coincide. A simple example illustrates that the con-
nected hull of the upper Browder spectrum cannot in general be added to
the list of identities in Theorem 4.3.2 (see Example 4.3.3).

In order to introduce Chapter 5, we make the following assumptions.

The following assumptions are valid throughout the discussion that follows:
E is a complex Banach lattice, S is a positive operator on E and π : L(E) →
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Introduction xviii

L(E)/K(E) is the canonical homomorphism on L(E).

It is known that the spectral radius of a positive operator on a Banach lattice
belongs to the spectrum of the operator. Prior to his discovery that the Weyl
and upper Weyl spectra of a bounded linear operator coincide, Alekhno
investigated the following question in [3].

Problem 1: If r(S) /∈ σe(S), where σe(S) = σ(πS) denotes the essential
spectrum of S, do we have that r(S) /∈ ω+

π (S)?

The above problem in the context of OBAs becomes:

Problem 2: If a ∈ C is such that r(a) /∈ σ(Ta), do we have that r(a) /∈ ω+
T (a)?

Accordingly, in view of Theorem 4.3.2 and Example 4.3.3, a more general
question is: If a ∈ C is such that r(a) /∈ σ(Ta), does it follow that r(a) /∈
β+

T (a)? An element satisfying this condition is said to have the upper Browder
spectrum property (relative to T).

It is not yet known whether all positive operators on arbitrary Banach lattices
have the upper Browder spectrum property (relative to π).

The central problem of Chapter 5 is to present different types of sufficient
conditions for a positive element to have the upper Browder spectrum prop-
erty. In view of Theorem 4.3.2, we shall be concerned with homomorphisms
with closed range satisfying the Riesz property.

First we consider the finite-dimensional case (Section 5.2). Indeed, an ap-
plication of the Wedderburn-Artin Theorem ([10], Theorem 2.1.2), enables
us to show that any finite-dimensional semisimple OBA is algebraically iso-
morphic to an OBA in which all positive elements have the upper Browder
spectrum property (see Corollary 5.2.11).

In the rest of our discussion on Chapter 5 we consider an element a ∈ C satis-
fying r(a) /∈ σ(Ta).

In Section 5.3 we study infinite-dimensional OBAs. Using the spectral
mapping theorem, it is straightforward to show that r(a) /∈ σ(a + p(a, r(a))
(Corollary 2.2.6), and therefore r(a) /∈ β+

T (a) whenever p(a, r(a)) ∈ C (The-
orem 5.3.3). This fact generalizes ([3], Theorem 4(a)), where the author used
totally different methods for positive operators on Banach lattices. Also,
this observation (under natural conditions on the algebra cone) has the fol-
lowing three applications:

(1) All positive elements of commutative semisimple OBAs have the upper
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Browder spectrum property.

(2) All positive elements of semisimple OBAs with inverse-closed algebra
cones have the upper Browder spectrum property.

(3) All positive operators in the center of a Banach lattice have the upper
Browder spectrum property.

We proceed to show in Section 5.4 that all results obtained in Section 5.3
can be extended to homomorphisms having the strong Riesz property.

Over the last twenty years the knowledge on the spectral theory of posi-
tive OBA elements has increased considerably. Recent work done by Alekh-
no in [6] shows that, under natural conditions, the spectrum of a positive
element is determined by the spectra of irreducible elements. The notion of
an irreducible OBA element is also introduced in [6], where it is established
that these elements have useful spectral properties. The ideas drawn from
Alekhno’s work open doors to the study of whether positive elements of
arbitrary Dedekind complete semisimple OBAs with disjunctive products
have the upper Browder spectrum property. Our main result here is The-
orem 5.5.4, where we show that, under certain circumstances, the spectral
radius of a is not in the upper Browder spectra of the elements qiaqi, where
the terms qi are certain idempotents satisfying 0 ≤ qi ≤ 1. Unfortunately,
at this stage, it is not possible to say more; that is, we are unable to replace,
in general, the union of the upper Browder spectra of qiaqi in Theorem 5.5.4
by β+

T (a). This section is closed by applying Theorem 5.5.4 to the positive
regular operators on a Dedekind complete Banach lattice (Corollary 5.5.8,
see also Corollary 5.5.9).

We conclude this thesis with Chapter 6 where some results involving the
lower Weyl and Lozanovsky spectra for an arbitrary positive OBA element
are presented. These spectra are natural generalizations of the lower Weyl
and Lozanovsky essential spectra for a positive bounded linear operator on
a Banach lattice. The two questions, which originated in L(E), that are ad-
dressed in this chapter are the following:
(i) Given that the spectral radius of a positive element is outside its Fred-
holm spectrum, what conditions suffice for it to be outside the lower Weyl
spectrum of the element?
(ii) When does the Lozanovsky spectrum contain the Weyl spectrum?

In [3] and [4] Alekhno identified conditions on a positive bounded linear
operator S (and the Banach lattice on which S acts) which ensure that (i) and
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(ii) hold; these proofs in the operator-context relied heavily on operator and
lattice theoretic arguments. Our aim in this chapter is to present solutions in
the OBA-context whose proofs use basic techniques available in the abstract
setting of an OBA. The examination of (i) takes place in Section 6.1, while
we investigate (ii) in Section 6.2.
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Chapter 1

Preliminaries

This chapter is a collection of basic definitions, notations and results that
will be useful in the remaining chapters. The results for which proofs are
provided are either new ideas or facts that were given in an article without
proof.

1.1 Banach algebra theory

This section contains a brief look into the theory of Banach algebras.

Definition 1.1.1 (Algebra). ([24], p.394) An algebra is a vector space A over a
field K such that for each ordered pair of elements x, y ∈ A, a unique product
xy ∈ A is defined satisfying the properties

• x(yz) = (xy)z

• (x + y)z = xz + yz

• x(y + z) = xy + xz

• λ(xy) = (λx)y = x(λy)

for all x, y, z ∈ A and λ ∈ K.

If K = R in Definition 1.1.1, then A is called a real algebra, whereas if
K = C, then A is said to be a complex algebra. Hereafter we use the word
“algebra” to mean “complex algebra”.

We say that algebra elements a and b commute whenever ab = ba. An
algebra A is then said to be commutative if any two of its elements com-
mute. For an element a in an algebra, the commutant of a, being the set of all

1
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Chapter 1. Preliminaries 2

elements which commute with a, is denoted by Comm(a). The double com-
mutant of a, denoted by Comm2(a), is the set of all elements that commute
with every element in Comm(a).

An algebra A is said to be unital if it has a unit, which we will denote
by 1A. If the algebra under discussion is clear from the context we will only
write 1. If A is a unital algebra, then a ∈ A is said to be invertible if there
exists an element b ∈ A satisfying ab = 1 = ba. If such b exists, then it is
unique. We will refer to b as the inverse of a and denote it by a−1. We write
A−1 for the set of all invertible elements of A.

Definition 1.1.2 (Banach algebra). ([10], Definition p.30) An algebra A is said
to be a Banach algebra if A is a Banach space for a norm || · || and satisfies ||ab|| ≤
||a||||b|| for all a, b ∈ A.

It is known that, for a Banach algebra A, the set A−1 is open. We may
always assume that the unit of a unital Banach algebra has norm 1 ([10], p.
30). We remark that, since almost all results in this thesis apply to unital
Banach algebras (or unital algebras), from this point on we will only write
“Banach algebra” (“algebra”) to mean “unital Banach algebra" (“unital al-
gebra"). In cases where the results for Banach algebras (or just algebras)
without units are stated, this will be explicitly mentioned.

A simple example of a Banach algebra is the complex plane C, where the
norm is given by the modulus function. The space C(K) of all continuous
complex-valued functions defined on a compact set K equipped with point-
wise addition and multiplication and the sup-norm || f || = sup{| f (z)| : z ∈
K} is an example of a commutative Banach algebra. Another important ex-
ample of a commutative Banach algebra is the algebra A (D) of all continu-
ous complex-valued functions on the closed unit disc D := {z ∈ C : |z| ≤ 1}
which are analytic on the interior of D. Here we define addition and multi-
plication pointwise and the norm by

|| f || = sup{| f (z)| : z on the boundary of D}.

A (D) is called the disc algebra.
The algebra Mn(C) of all n× n matrices with complex entries is a non-

commutative Banach algebra with the usual linear structure and the norm
defined by

||X|| = sup

{
n

∑
j=1
|xij| : i ∈ {1, . . . , n}

}
,
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3 1.1. Banach algebra theory

where xij presents the ij-th entry in the matrix X.
If X denotes a complex Banach space, then the vector space L(X) of all

bounded linear operators on X is a Banach algebra when the multiplication
is defined as the composition of operators and the norm is chosen to be the
usual operator norm.

The closure of a subset B of an algebra A will be denoted by BA. If the
algebra under discussion is clear from the context we will only write B.

By an ideal I of an algebra A we mean a proper two-sided ideal of A; i.e.
I ( A is a vector space which is closed under multiplication from the left
and right. It is familiar that the sets F (X) and K(X) of finite-rank and
compact operators on a Banach space X, respectively, are ideals in L(X).

The radical of an algebra A, denoted by Rad(A), is defined as

Rad(A) = {a ∈ A : 1− ba ∈ A−1 for all b ∈ A}.

It is known that Rad(A) is a closed ideal of A. If Rad(A) = {0}, then A
is said to be semisimple. Examples of semisimple Banach algebras include
Mn(C), L(X) and C(K), where X and K denote, respectively, a complex
Banach space and a compact Hausdorff space. Also, if A is a semisimple
Banach algebra, then the Banach algebra

l∞(A) = {(a1, a2, . . .) : an ∈ A for all n ∈ N and sup{||an|| : n ∈ N} < ∞}

equipped with norm ||(an)n∈N|| = sup{||an|| : n ∈ N} and componentwise
addition, scalar multiplication and multiplication is again semisimple.

There are a number of ways to represent the radical of an algebra. The
following representation of the radical will be useful throughout this thesis.

Theorem 1.1.3. ([25], Theorem 2.5) Let A be an algebra. Then Rad(A) = {a ∈
A : a + A−1 ⊆ A−1}.

Let A and B be algebras. A linear operator T : A → B is said to be
an (algebra) homomorphism if T(ab) = TaTb for a, b ∈ A and T1A = 1B. By
a “Banach algebra homomorphism" we mean a homomorphism between two
Banach algebras. An isomorphism is defined as a homomorphism that is
one-to-one and onto. Two algebras are said to be isomorphic if there exists an
isomorphism between them.

We denote by N(T) the null space of a linear operator T. It is easy to
verify that if T is a non-zero linear operator which preserves multiplication,
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then N(T) is an ideal of A.

From here onwards, the reader should keep in mind the following meanings
of the homomorphism π.

Remark 1.1.4. Throughout this thesis, by π we shall mean the following:

• If T : A → B is a Banach algebra homomorphism, then π will denote the
canonical homomorphism π : A→ A/N(T) from A onto A/N(T).

• If I denotes an ideal of a Banach algebra A, then π is understood to be the
canonical homomorphism π : A→ A/I from A onto A/I.

• In the operator case (with X denoting a complex Banach space) π will indicate
the canonical homomorphism π : L(X) → L(X)/K(X) from L(X) onto
L(X)/K(X).

For use in Section 5.2 we recall the following well-known facts.

Theorem 1.1.5. ([24], Theorem 2.6.9(b)) A linear operator with finite-dimensional
domain has finite-dimensional range.

Theorem 1.1.6. ([24], Theorem 2.4.3) Every finite-dimensional subspace of a normed
space is closed.

Let dim A denote the dimension of a vector space A. The following result
follows from the preceding two theorems, bearing in mind that the range of
a linear operator is a vector space ([24], Theorem 2.6.9(a)).

Corollary 1.1.7. If T : A→ B is a Banach algebra homomorphism and dim A <

∞, then T has closed range.

1.2 Spectral theory in Banach algebras

In this section we gather basic information on the spectral theory in Banach
algebras.

Definition 1.2.1 (Spectrum). ([10], Definition, p.36) Let A be a Banach algebra.
The spectrum of an element a ∈ A, denoted by σ(a, A), is defined as follows:

σ(a, A) := {λ ∈ C : λ1− a /∈ A−1} = {λ ∈ C : a− λ1 /∈ A−1}
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5 1.2. Spectral theory in Banach algebras

Whenever there is no ambiguity we shall drop the A in σ(a, A). By σ′(a)
we denote the set of all non-zero elements of σ(a).

For X ∈ Mn(C), we have that σ(X) = {λ ∈ C : λ is an eigenvalue of X}.
Also, if f ∈ C(K), where K is a compact Hausdorff space, then σ( f ) = f (K).

If a is an arbitrary Banach algebra element, then the set of all isolated
spectral points of a will be denoted by iso σ(a), while the set of all accumu-
lation points of the spectrum of a will be denoted by acc σ(a). The notation
ρ(a) will be used to denote the complement of σ(a) and is referred to as the
resolvent set of a.

If T : A → B is a Banach algebra homomorphism, then σ(Ta) ⊆ σ(a)
for all a ∈ A as T(A−1) ⊆ B−1. If the converse inclusion σ(Ta) ⊇ σ(a)
also holds for all a ∈ A, then T is said to be spectrum preserving. For a
Banach algebra A it is known that the canonical homomorphism T : A →
A/Rad(A) is spectrum preserving.

For a compact set K ⊆ C, we denote by ηK and ∂K, respectively, the
connected hull of K, which is the union of K with the bounded components of
C\K, and the topological boundary of K. The spectrum of a Banach algebra
element is a compact set (see Theorem 1.2.8(ii)).

Theorem 1.2.2. ([17], Theorem 5.4, p.211) Suppose that B is a closed subalgebra
of a Banach algebra A such that 1A ∈ B ⊆ A. If b ∈ B, then
(i) σ(b, A) ⊆ σ(b, B),
(ii) ησ(b, A) = ησ(b, B).

If A is an algebra (with or without unit), then the quasi-product of ele-
ments a and b of A, denoted by a ◦ b, is defined by a ◦ b := a + b− ab. An
element a ∈ A is said to be quasi-invertible if there exists b ∈ A such that
a ◦ b = 0 = b ◦ a. Denote by q-A−1 the set of quasi-invertible elements of A.

In the case where A is a Banach algebra without unit, the spectrum of
a ∈ A, which we shall denote by σ1(a, A), is given by

σ1(a, A) := {0} ∪
{

λ ∈ C\{0} :
1
λ

a /∈ q-A−1
}

([14], p.20). By ([14], Lemma 2, p.20), σ1(a, A) = σ((a, 0), A1) for all a ∈ A,
where A1 := A⊕C indicates the unitization of a Banach algebra A.

The following result introduces an interesting relationship between the
spectrum relative to a Banach algebra and the spectrum relative to the uni-
tization of the Banach algebra.
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Proposition 1.2.3. ([14], Proposition 5, p.16) If A is an algebra and a ∈ A, then
a is quasi-invertible if and only if 1− a is invertible.

Hence, if A is a Banach algebra, then

σ′(a, A) =

{
λ ∈ C\{0} :

1
λ

a /∈ q-A−1
}

= σ′((a, 0), A1).

From Proposition 1.2.3 we have that σ′(a, A) = σ′1(a, A) for all elements
a of a Banach algebra A.

Proposition 1.2.4. Suppose that B is a closed subalgebra of a Banach algebra A. If
b ∈ B, then
(i) σ((b, 0), A1) ⊆ σ((b, 0), B1),
(ii) ησ((b, 0), A1) = ησ((b, 0), B1).

The above result follows from Theorem 1.2.2 applied to A1 and B1 where
the condition 1A1 = (0, 1) = 1B1 ∈ B1 always holds.

In the following theorem, if we add the assumption 1A ∈ B, then the
result will be clear from Theorem 1.2.2(ii). Here we show that the non-zero
spectrum of an element with finite spectrum relative to a Banach algebra
(not necessarily unital) and the non-zero spectrum of this element relative to
a “larger" Banach algebra in general coincide. This fact will come in handy
when proving one of the main results in Section 5.2.

Theorem 1.2.5. Suppose that B is a closed subalgebra of a Banach algebra A. If
b ∈ B is such that σ1(b, B) is finite, then σ′1(b, B) = σ′(b, A).

Proof. Suppose that b ∈ B. Using Propositions 1.2.3 and 1.2.4(ii) and the
finiteness of σ1(b, B), we have that σ′1(b, B) = σ′((b, 0), B1) = σ′((b, 0), A1) =

σ′(b, A).

Definition 1.2.6 (Spectral radius). ([10], Definition, p.36) Let A be a Banach
algebra and a ∈ A. The spectral radius r(a, A) is defined as follows:

r(a, A) := sup{|λ| : λ ∈ σ(a, A)}

It suffices to write r(a) if the Banach algebra being discussed is clear from
the context.

If T : A → B is a Banach algebra homomorphism, then r(Ta) ≤ r(a)
for all a ∈ A since the inclusion σ(Ta) ⊆ σ(a) holds for all a ∈ A. If we
also have that r(Ta) ≥ r(a) for all a ∈ A, then T is said to be spectral radius
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7 1.2. Spectral theory in Banach algebras

preserving. Obviously, if T is spectrum preserving, then T is spectral radius
preserving. We point out the following fact for spectral radius preserving
Banach algebra homomorphisms.

Lemma 1.2.7. If T : A→ B is a Banach algebra homomorphism which is spectral
radius preserving, then N(T) ⊆ Rad(A).

Proof. Let a ∈ N(T). Then T(ab) = 0 for all b ∈ A. By assumption we have
that r(ab) = r(T(ab)) = 0 for all b ∈ A, and hence a ∈ Rad(A).

Theorem 1.2.8 (I.M. Gelfand). ([10], Theorem 3.2.8) Let A be a Banach algebra
and a ∈ A. Then
(i) λ 7→ (λ1− a)−1 is analytic on ρ(a),
(ii) σ(a) is compact and non-empty,
(iii) r(a) = limn→∞ ||an|| 1n .

The function in (i) is called the resolvent of a. It is known that

(µ1− a)−1 − (λ1− a)−1 = (λ− µ)(λ1− a)−1(µ1− a)−1,

where λ, µ ∈ ρ(a). The equation above is referred to as the resolvent equation
or resolvent identity ([17], pp.202-203).

From statement (ii) in Theorem 1.2.8 we have that the spectrum is a
closed and bounded subset of C, while a consequence of statement (iii) is
that r(a) ≤ ||a|| for all Banach algebra elements a. The latter fact will be
useful in Proposition 6.1.8.

Proposition 1.2.9. ([10], Corollary 3.2.10) Let A be a Banach algebra and a, b ∈
A. If ab = ba, then σ(a + b) ⊆ σ(a) + σ(b) and σ(ab) ⊆ σ(a)σ(b). Hence
r(a + b) ≤ r(a) + r(b) and r(ab) ≤ r(a)r(b).

An element of a Banach algebra is said to be quasinilpotent if its spec-
trum consists only of the zero-element. By QN(A) we denote the set of all
quasinilpotent elements of a Banach algebra A. We point out that QN(A) =

Rad(A) whenever A is commutative ([10], Remark 1, p.71).

Definition 1.2.10 (Generalized Drazin inverse). ([22], Definition 2.3) Let A be
a Banach algebra. An element a ∈ A is said to be generalized Drazin invertible if
there exists an element b ∈ A such that

ab = ba, bab = b and a− aba ∈ QN(A).
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Such b, if it exists, is unique; it is called the generalized Drazin inverse
of a and will be denoted by aD. If AD denotes the set of all generalized
Drazin invertible elements of A, then it is known that a ∈ AD if and only if
0 /∈ acc σ(a). We remark that, in the literature, generalized Drazin invertible
elements are often called almost invertible elements.

1.3 Functional Calculus

The algebra of all complex-valued functions defined and holomorphic on
an open set Ω ⊆ C will be denoted by H(Ω).

Proposition 1.3.1. ([10], p.43) Let A be a Banach algebra and a ∈ A. If Ω is an
open set containing σ(a) and Γ is a smooth contour included in Ω and surrounds
σ(a), then the function f 7→ f (a) = 1

2πi

∫
Γ f (λ)(λ1− a)−1dλ from H(Ω) into

A is well-defined.

Theorem 1.3.2 (Holomorphic Functional Calculus). ([10], Theorem 3.3.3) Let
A be a Banach algebra and a ∈ A. Suppose that Ω is an open set containing σ(a)
and that Γ is a smooth contour included in Ω and surrounding σ(a). Then the
function defined in Proposition 1.3.1 has the following properties:

(1) ( f1 + f2)(a) = f1(a) + f2(a);
(2) f1(a) f2(a) = ( f1 f2)(a) = f2(a) f1(a);
(3) 1(a) = 1 and I(a) = a, where 1 and I are the unit and identity functions on
C, respectively;
(4) σ( f (a)) = f (σ(a))
for all f1, f2, f ∈ H(Ω).

Number (4) above is called the spectral mapping theorem for holomorphic
functions ([17], p.208), which we will only refer to as the spectral mapping
theorem.

Theorem 1.3.3. ([10], Theorem 3.3.4) Let A be a Banach algebra. Suppose that
a ∈ A has a disconnected spectrum and that U0 and U1 are disjoint open sets
satisfying

σ(a) ⊆ U0 ∪U1, σ(a) ∩U0 6= ∅ and σ(a) ∩U1 6= ∅.
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9 1.4. Ideals in Banach algebras

Let f ∈ H(U0 ∪U1) be defined by

f (λ) =

{
0 if λ ∈ U0

1 if λ ∈ U1.

Then p := f (a) is a non-trivial idempotent commuting with a satisfying σ(pa) =
(σ(a) ∩U1) ∪ {0} and σ((1− p)a) = (σ(a) ∩U0) ∪ {0}.

The idempotent p in Theorem 1.3.3 is called the spectral idempotent of a
corresponding to the set σ(a)∩U1. In the case where σ(a)∩U1 = {λ0}, that is
λ0 ∈ iso σ(a), then p is said to be the spectral idempotent of a corresponding to
λ0 and is given by

p(a, λ0) :=
1

2πi

∫
Γ
(λ1− a)−1dλ,

where Γ is a circle centred at λ0, separating λ0 from the remaining spectrum
of a. Then, p(a, λ0) = 0 if and only if λ0 /∈ σ(a).

The following fact will be required in Lemma 2.2.7 and Theorem 4.3.2.

Lemma 1.3.4. Let A be a Banach algebra and a ∈ A. Then p(λ1− a, 0) = p(a, λ)

for all λ ∈ iso σ(a).

Proof. Let λ ∈ iso σ(a). Then 0 ∈ iso σ(λ1− a), and we choose Γ to be a
circle centred at 0, separating 0 from the rest of σ(λ1− a). Consequently,

p(λ1− a, 0) =
1

2πi

∫
Γ
(µ− (λ1− a))−1 dµ =

1
2πi

∫
Γ
(a− (λ− µ)1)−1dµ.

Let z = λ − µ. Then dz = −dµ and Γ∗ = λ + Γ is a circle centred at λ,
separating λ from the rest of σ(a). Consequently, the identities

p(λ1− a, 0) =
1

2πi

∫
Γ∗
(a− z1)−1(−dz) =

1
2πi

∫
Γ∗
(z1− a)−1dz = p(a, λ)

hold.

1.4 Ideals in Banach algebras

In this section we state a few useful results pertaining to ideals in Banach
algebras. To begin with, we recall the fact that, if I is an ideal of a Banach
algebra A, then I and I have the same set of idempotents ([10], p.107).
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Definition 1.4.1 (Riesz element). ([12], p.53) Let I be a closed ideal of a Banach
algebra A. An element a ∈ A is said to be Riesz w.r.t. I if σ(a + I) = {0}.

Definition 1.4.2 (Riesz point of spectrum). (Aupetit (1986), see [30], p.150) Let
I be an ideal of a Banach algebra A and a ∈ A. Then λ ∈ iso σ(a) is called a Riesz
point of σ(a) relative to I if p(a, λ) ∈ I.

Definition 1.4.3 (Inessential ideal). ([10], p.106) An ideal I of a Banach algebra
A is said to be inessential if the spectrum of each element in I is either finite or a
sequence converging to zero.

It is known that F (X) and K(X) are examples of inessential ideals in
L(X). The fact that I is an inessential ideal of a Banach algebra A whenever
I is an inessential ideal of A ([10], Corollary 5.7.6) will often be used without
any mention.

Definition 1.4.4 (Riesz property of a homomorphism). ([20], p.432) A Banach
algebra homomorphism T : A→ B is said to have the Riesz property if N(T) is an
inessential ideal.

If a denotes a Banach algebra element, then a point z ∈ σ(a) is called a
pole of order k of (λ1− a)−1, where λ /∈ σ(a), if z ∈ iso σ(a) and k is the
smallest natural number such that (z1− a)k p(a, z) = 0.

The following result tells us when a Riesz point of the spectrum will also
be a pole and will be useful in the sequel.

Lemma 1.4.5. ([30], Lemma 2.1) Let A be a semisimple Banach algebra, I be an
inesssential ideal of A and a ∈ A. Then α is a Riesz point of σ(a) relative to I if
and only if α is a pole of (λ1− a)−1 and p(a, α) ∈ I.

For an inessential ideal I of a Banach algebra A and a ∈ A, we denote
the set σ(a)\{λ ∈ σ(a) : λ is a Riesz point of σ(a) relative to I} by D(a, I).
We remark that Corollary 2.1.4 (a result that will often be referred to in the
sequel of this thesis) relies on the following theorem.

Theorem 1.4.6 (Perturbation by inessential elements). ([10], Theorem 5.7.4)
Let A be a Banach algebra and I be an inessential ideal of A. Then σ(a + I) ⊆
D(a, I) and ηD(a, I) = ησ(a + I) for all a ∈ A.
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11 1.5. Fredholm theory in Banach algebras

1.5 Fredholm theory in Banach algebras

The basic concepts and results from Fredholm theory in Banach algebras
needed for our study will be reviewed briefly in this section.

Definition 1.5.1 (Fredholm, Weyl and Browder elements). ([20], pp.431-432)
Let T : A→ B be a Banach algebra homomorphism. An element a ∈ A is called

• Fredholm if Ta ∈ B−1,

• Weyl if there exist elements b ∈ A−1 and c ∈ N(T) such that a = b + c,

• Browder if there exist commuting elements b ∈ A−1 and c ∈ N(T) such
that a = b + c,

• almost invertible Fredholm if it is Fredholm and generalized Drazin invert-
ible.

Denote byFT,WT, BT and AD ∩FT the sets of Fredholm, Weyl, Browder
and almost invertible Fredholm elements of A (relative to T), respectively.

In the following example we point out additional representations for the
Weyl operators on a Banach space for ease of reference in the sequel.

Example 1.5.2. ([20], p.431; [13], Corollary 2.8) Let X be a Banach space and
π : L(X)→ L(X)/K(X) be the canonical homomorphism. Then:
(a) T ∈ Fπ if and only if dim N(T) < ∞, T(X) is closed and dim(X/T(X)) < ∞.
(b) T ∈ Bπ if and only if T ∈ Fπ with finite ascent and descent.
(c) T ∈ Wπ if and only if T ∈ Fπ with index zero if and only if T ∈ (L(X))−1 +

K(X) if and only if T ∈ (L(X))−1 +F (X).

Example 1.5.3. ([20], p.432) Let K1 and K2 be compact Hausdorff spaces and
A := C(K1) and B := C(K2) be the Banach algebras of continuous complex-
valued functions on K1 and K2, respectively. Consider the homomorphism T :
A→ B defined by T f = f ◦ θ, where θ : K2 → K1 is a continuous map. Then
(a) f ∈ FT if and only if θ(K2) ∩N( f ) = ∅,
(b) f ∈ WT if and only if its restriction to θ(K2) has an invertible extension to K1.

In the previous example, since A is a commutative Banach algebra, the
sets of Browder and Weyl elements coincide.
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Proposition 1.5.4. ([20], (1.4) and Theorem 1; [29], Corollary 2.5) Let T : A→ B
be a Banach algebra homomorphism. Then

A−1 ⊆ AD ∩ FT ⊆ BT ⊆ WT ⊆ FT.

Moreover, AD ∩ FT = BT if and only if T has the Riesz property.

By using the theory of generalized Drazin invertible elements we pro-
vide an alternative (simpler) proof of a result that follows from ([18], Propo-
sition 2.1). This result, assuming boundedness of the homomorphism, was
mentioned by R. Harte in [20], and in [29] H. Mouton and H. Raubenheimer
observed that it was true for unbounded homomorphisms as well, upon
which they used it to extend a theorem of Harte in [20].

We recall the identity p(a, 0) = 1− aDa for a generalized Drazin invert-
ible Banach algebra element a ([22], Theorem 5.4(iv)).

Proposition 1.5.5. Let T : A → B be a Banach algebra homomorphism. If a ∈
AD ∩ FT, then p ∈ N(T), where p is the spectral idempotent of a corresponding
to 0.

Proof. The inclusion T(AD) ⊆ BD follows easily from the fact that T is a
homomorphism. In particular one has that (Ta)D = TaD for all a ∈ AD.

Consequently, if a ∈ AD ∩ FT, then

Tp = T(1− aDa) = 1− TaDTa = 1− (Ta)DTa = 1− (Ta)−1Ta = 0,

that is p ∈ N(T).

Let T : A → B be a Banach algebra homomorphism. Using the sets FT,
WT and BT we recall the following spectra introduced by Harte in ([20],
p.433-434). Let a ∈ A.

• The Fredholm spectrum of a is given by

σ(Ta) = {λ ∈ C : λ1− a /∈ FT}.

• The Weyl spectrum of a is given by

ωT(a) = {λ ∈ C : λ1− a /∈ WT} =
⋂

c∈N(T)

σ(a + c).
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13 1.6. Banach lattice theory

• The Browder spectrum of a is given by

βT(a) = {λ ∈ C : λ1− a /∈ BT} =
⋂

c∈N(T)
ac=ca

σ(a + c).

• The almost invertible Fredholm spectrum of a is given by

{λ ∈ C : λ1− a /∈ AD ∩ FT} = σ(Ta) ∪ acc σ(a).

From Proposition 1.5.4 we have that

σ(Ta) ⊆ ωT(a) ⊆ βT(a) ⊆ σ(Ta) ∪ acc σ(a) ⊆ σ(a) (1.5.6)

and that βT(a) = σ(Ta) ∪ acc σ(a) if and only if T has the Riesz property. It
is known that these spectra are non-empty and compact.

Theorem 1.5.7. ([28], Corollary 5.6) Let T : A → B be a Banach algebra homo-
morphism which satisfies the Riesz property. Then βT(a) = βπ(a) and ωT(a) =
ωπ(a) for all a ∈ A.

In the subsequent chapters, quite often, the following result will be used.

Theorem 1.5.8. ([28], Corollary 7.6, 7.8) Let T : A → B be a Banach algebra
homomorphism with closed range satisfying the Riesz property. Then ησ(Ta) =

ηωT(a) = ηβT(a) for all a ∈ A.

1.6 Banach lattice theory

In this section, we review a few results from the theory of Banach lattices
and discuss some properties of operators between them. We give here a
presentation of the structural properties of Banach lattices and point out
that concepts (related to convergence) can be found in [7].

Definition 1.6.1 (Vector lattice). ([7], p.2) A vector lattice (Riesz space) is a real
vector space V with a partial order in which, for every x, y ∈ V, the following
conditions hold:

• the supremum and infimum of x and y both exist in V,

• if x ≤ y, then x + z ≤ y + z for all z ∈ V,

• if x ≤ y and c ∈ R+, then cx ≤ cy.
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Chapter 1. Preliminaries 14

For an element x in a vector lattice V, its positive part, its negative part and
its modulus are defined by

x+ = sup{x, 0}, x− = sup{−x, 0} and |x| = sup{x,−x},

respectively. Consequently, the identities x = x+ − x− and |x| = x+ + x−

hold. By xα ↓ x (xα ↑ x) we mean that (xα) is a decreasing (an increasing)
net satisfying inf{xα} = x (sup{xα} = x). We use the notations V+ := {x ∈
V : x = |x|} to denote the positive cone in V and V∼n to denote the order
continuous dual of V. An operator T on V is said to be positive if TV+ ⊆ V+.

By a Dedekind complete vector lattice V we mean a vector lattice in which
every non-empty subset of V that is (order) bounded from above has a
supremum.

If V1 and V2 denote vector lattices, then T : V1 → V2 is said to be an order
continuous operator if (Txα) is order convergent (see [7]) to 0 in V2 whenever
(xα) is order convergent to 0 in V1. It is useful to note that a positive operator
T is order continuous if and only if xα ↓ 0 implies Txα ↓ 0.

Definition 1.6.2 (Normed vector lattice). ([7], p.174) A normed vector lattice is
a normed space V which is also a vector lattice in which |x| ≤ |y| ⇒ ||x|| ≤ ||y||
for all x, y ∈ V.

A normed vector lattice which is also a Banach space is said to be a Ba-
nach lattice.

Definition 1.6.3 (Order continuous norm). ([7], Definition 12.7) A norm in a
normed vector lattice is said to be order continuous if xα ↓ 0 implies ||xα|| ↓ 0.

If V denotes a vector lattice, then a vector subspace B of V is called an
order ideal if |x| ≤ |y|, x ∈ V and y ∈ B imply x ∈ B.

Definition 1.6.4 (Band). ([35], Definition 2.8, p.61) A band in a vector lattice V
is an order ideal B with the property that, if D ⊆ B and x is the supremum of D,
then x ∈ B.

A band B in a vector lattice V is said to be a projection band if V = B⊕ Bd,
where Bd := {x ∈ V : inf{|x|, |y|} = 0 for all y ∈ B} denotes the disjoint
complement of B in V.

Let X be a Banach space and T ∈ L(X). Recall that a vector subspace V
of X is said to be T-invariant if TV ⊆ V.
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15 1.6. Banach lattice theory

Definition 1.6.5 (Band irreducible). ([2], Definition 9.2) Let E be a Banach lat-
tice and T ∈ L(E). Then T is said to be band irreducible on E if E contains no
non-trivial T-invariant bands.

Definition 1.6.6. ([2], Definition 3.1 and Exercise 7, p.101; [7], Definition 14.10)
We say that a Banach lattice E is:
(i) an AM-space if || sup{x, y}|| = sup{||x||, ||y||} for every x, y ∈ E+,
(ii) an AL-space if ||x + y|| = ||x||+ ||y|| for every x, y ∈ E+,
(iii) a KB-space if every increasing norm bounded sequence of elements in E+ con-
verges in norm in E.

A Banach lattice E is said to be an AM-space with unit if E is an AM-space
and there exists an element e, called the unit, such that for each x ∈ E we
can find some λ > 0 satisfying |x| ≤ λe.

We have the following implication-scheme that will frequently be re-
ferred to (see ([11], Theorem 2.83) and ([7], Theorem 12.9 and p.225)):

E is an AL-space⇒ E is a KB-space ⇒ E has order continuous norm

⇒ E is Dedekind complete (1.6.7)

We fix the following notation that will be needed in the sequel. An operator
on a Banach lattice E is called regular if it can be written as a linear combi-
nation (over R) of positive operators. The space of all regular operators on
E will be denoted by Lr(E) and, for T ∈ Lr(E), the regular norm (which we
will abbreviate as r-norm) is defined by

||T||r := inf{||S|| : S ∈ L(E), |Tx| ≤ S|x| for all x ∈ E}.

In addition, T ∈ Lr(E) is called r-compact if it can be approximated in the
r-norm by finite-rank operators. The space of all r-compact operators will
be denoted by Kr(E).

The following result will be useful in Example 3.2.8.

Theorem 1.6.8. ([1], Theorem 5.2, Corollary, p.25) Let X and Y be Banach lattices,
where X is not a KB-space. Then Y is an AM-space if and only if each compact
operator T : X → Y is regular.

By a complex Banach lattice E we mean the complexification ER + iER of
a real Banach lattice ER. Additionally, a complex AM-space (respectively,
AM-space with unit, AL-space and KB-space) is the complexification of
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a (real) AM-space (respectively, AM-space with unit, AL-space and KB-
space).

If T ∈ L(E) := L(ER) + iL(ER), then there exist T1, T2 ∈ L(ER) such
that T = T1 + iT2. The operator T + i0, where T ∈ L(ER), will be denoted
by TC and we say that T ∈ L(E) is positive if T = SC for some positive
operator S ∈ L(ER).

In this thesis we shall mainly be concerned with complex Banach lattices
and use the term “Banach lattice" to mean “complex Banach lattice". How-
ever, in the sequel, whenever needed, we shall denote a real Banach lattice
by ER.

If E is a Banach lattice, then Lr(E) := Lr(ER) + iLr(ER) is a Banach
algebra when equipped with the r-norm ([2], Corollary 3.27). In addition, if
E is Dedekind complete, then Lr(E) is a Dedekind complete Banach lattice
([2], Theorem 1.32).

In view of Remark 1.1.4 we point out here that πr means the canonical
homomorphism πr : Lr(E)→ Lr(E)/Kr(E).

It is well-known that F (E)L(E) 6= K(E) in general. It turns out that if E
is either AL or AM, then the two sets coincide. The following observation
will be used when proving Corollary 5.5.9.

Lemma 1.6.9. If a Banach lattice E is either AL or AM, then Kr(E) = K(E).

Proof. For an AM-space E the identity was established in ([5], Lemma 7.6(b)).
Suppose that E is an AL-space. Using the fact that every AL-space is a

KB-space, the identity L(E) = Lr(E) holds by ([2], Theorem 3.9), and hence

Kr(E) = F (E)Lr(E) = F (E)L(E).

In view of ([35], Theorem 2.4, p.239) and ([2], Theorem 4.12) the result then
follows.

1.7 Ordered Banach algebras

In this section we give the general background on ordered Banach algebras
needed for our study.

Definition 1.7.1 (Algebra cone). ([34], p.492) A non-empty subset C of a Banach
algebra A is said to be an algebra cone of A if C satisfies the following properties:
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17 1.7. Ordered Banach algebras

• C + C ⊆ C,

• λC ⊆ C for all λ ∈ R+,

• C · C ⊆ C,

• 1 ∈ C.

Let C be an algebra cone of a Banach algebra A. Then C is said to be gen-
erating if A = span C, that is, the elements of A are linear combinations of
elements of C, and proper whenever C ∩−C = {0}. If there exists a constant
β > 0 such that 0 ≤ a ≤ b implies that ||a|| < β||b||, then C is said to be
normal. It is known that every normal algebra cone is proper.

C induces an ordering “≤" on A in the following way: If a, b ∈ A, then

a ≤ b if and only if b− a ∈ C.

A Banach algebra A containing an algebra cone, say, C is called an ordered
Banach algebra (OBA), which we shall denote by (A, C).

Considering the ordering that C induces we find that C = {a ∈ A : a ≥
0} and therefore the elements of C are called positive. When writing a > 0,
we mean a ≥ 0 and a 6= 0. If a ∈ −C, that is, a ≤ 0, then a is said to be
negative.

We now supply examples of some of the more well-known OBAs.

• (C,R+) is an OBA.

• If K is a compact Hausdorff space, then (C(K), C) is an OBA, where
C = { f ∈ C(K) : f (x) ∈ R+ for all x ∈ K}.

• If C = { f ∈ A (D) : f (z) ∈ R+ for all z ∈ D}, then the disc algebra
(A (D), C) is an OBA.

• Let C := Mn(R+) and C′ be the subset of Mn(C) consisting of all
diagonal matrices with non-negative real entries. Then (Mn(C), C)
and (Mn(C), C′) are OBAs. If Mu

n(C) and Ml
n(C) denote, respectively,

the algebras of upper triangular matrices and lower triangular ma-
trices in Mn(C), then (Mu

n(C), C ∩Mu
n(C)) and (Mu

n(C), C′ ∩Mu
n(C))

are OBAs. Also, (Ml
n(C), C ∩ Ml

n(C)) and (Ml
n(C), C′ ∩ Ml

n(C)) are
OBAs.
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In the sequel we indicate C ∩ Mu
n(C) and C ∩ Ml

n(C) by Mu
n(R+)

and Ml
n(R+), respectively.

• If E denotes a Banach lattice, then (L(E), K) and (Lr(E), K) are OBAs,
where K := {T ∈ L(E) : TE+ ⊆ E+} denotes the cone of positive
operators on E.

We mention that the algebra cones given in the examples above are closed
and normal. The following examples illustrate how new OBAs can be con-
structed from existing OBAs.

If (A, C) is an OBA and l∞(C) := {(c1, c2, . . .) ∈ l∞(A) : cn ∈ C for all n ∈
N}, then a direct verification shows that (l∞(A), l∞(C)) is an OBA. Further-
more, if C is closed (normal), then l∞(C) is closed (normal).

Let n ∈ N and suppose that (Ai, Ci) is an OBA for each i ∈ {1, 2, . . . , n}.
If we define the direct sum of a finite number of algebras in the usual way,
then A :=

⊕n
i=1 Ai is another example of an OBA with algebra cone C :=⊕n

i=1 Ci. We mention that, if Ci is closed (normal) for all i ∈ {1, 2, . . . , n},
then C is closed (normal).

Definition 1.7.2. Let (A, C) be an OBA. Then C is said to be inverse-closed if for
every invertible element a ∈ C we have that a−1 ∈ C.

A simple example of an inverse-closed algebra cone is R+ in C. Also, if
C is an inverse-closed algebra cone of a Banach algebra A, then l∞(C) is an
inverse-closed algebra cone of l∞(A). More examples of inverse-closed al-
gebra cones include C in C(K) and C′ in Mn(C). (See examples on previous
page).

If n ∈ N and (Ai, Ci) is an OBA for each i ∈ {1, 2, . . . , n}, then it is an
easy exercise to show that C :=

⊕n
i=1 Ci is an inverse-closed algebra cone

in A :=
⊕n

i=1 Ai whenever Ci is an inverse-closed algebra cone in Ai for all
i ∈ {1, 2, . . . , n}. In addition, if at least one Ci is not inverse-closed, then C
will not be inverse-closed in A.

1.8 Spectral theory in OBAs

In this section we highlight a number of important results on the spectral
theory of positive elements in OBAs. The reader is reminded of Remark
1.1.4.
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19 1.8. Spectral theory in OBAs

Theorem 1.8.1. ([32], Theorem 3.2) Let (A, C) be an OBA with closed algebra
cone C and suppose that a ∈ C. If r(a) is a pole of order k of (λ1− a)−1, so that
(λ1− a)−1 = ∑∞

j=−k(λ− r(a))jaj, then there exists 0 6= u := a−k ∈ C such that
au = ua = r(a)u.

Let (A, C) be an OBA and a, b ∈ A. If 0 ≤ a ≤ b (relative to C) im-
plies that r(a) ≤ r(b), then we say that the spectral radius function in (A, C)
is monotone. If I is an ideal of A, then we say that the spectral radius in
(A/I, πC) is weakly monotone, if 0 ≤ a ≤ b (relative to C) implies that
r(πa) ≤ r(πb).

It is well-known that, if C is normal, then the spectral radius function in
(A, C) is monotone (see [34], Theorem 4.1(1)).

The following theorem, due to H. Raubenheimer and S. Rode [34], will
be of fundamental importance when proving several results for positive el-
ements in OBAs.

Theorem 1.8.2. ([34], Theorem 5.2) Let (A, C) be an OBA with closed algebra
cone C such that the spectral radius function in (A, C) is monotone. If a ∈ C, then
r(a) ∈ σ(a).

The following result will be useful in proving Theorem 5.5.4.

Theorem 1.8.3. ([34], Theorem 5.3) Let (A, C) be an OBA with closed algebra
cone C and let I be a closed ideal of A such that the spectral radius function in
(A/I, πC) is weakly monotone. If a ∈ C, then r(πa) ∈ σ(πa).

For use in Lemma 6.2.2 we state the following result.

Theorem 1.8.4. ([34], Theorem 6.2) Let (A, C) be an OBA and let I be a closed
ideal in A such that the spectral radius function in (A/I, πC) is weakly monotone.
If a, b ∈ A satisfy 0 ≤ a ≤ b and b is Riesz w.r.t. I, then a is Riesz w.r.t. I.

The following result will be used to prove Proposition 1.9.22.

Theorem 1.8.5. ([32], Theorem 4.3) Let (A, C) be an OBA with closed algebra
cone C such that the spectral radius function in (A, C) is monotone and let I be a
closed inessential ideal such that spectral radius function in (A/I, πC) is weakly
monotone. Also suppose that a, b ∈ A satisfy 0 ≤ a ≤ b and r(a) = r(b). If r(b)
is a Riesz point of σ(b) relative to I, then r(a) is a Riesz point of σ(a) relative to I.

The following result will be required in Lemma 6.2.2 .
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Proposition 1.8.6. ([31], Proposition 4.6) Let (A, C) be an OBA with closed alge-
bra cone C and a ∈ C. If λ > r(a), then (λ1− a)−1 ∈ C.

Proposition 1.8.7. ([15], Proposition 4.2) Let (A, C) be an OBA with closed and
inverse-closed algebra cone C. If a ∈ C, then 0 ≤ a ≤ r(a)1.

The following corollary is an immediate consequence of Proposition 1.8.7
and will be used to prove Lemma 2.2.9.

Corollary 1.8.8. Let (A, C) be an OBA with proper, closed and inverse-closed
algebra cone C. If a ∈ C ∩QN(A), then a = 0.

Proof. Let a ∈ C ∩ QN(A). From Proposition 1.8.7 we have that 0 ≤ a ≤
r(a)1 = 0, and hence a ∈ C ∩ −C. The result follows from the fact that C is
proper.

1.9 Irreducibility in OBAs

The theory of irreducibility in an OBA was developed by Alekhno in [6]. In
this section we record some concepts and important results from [6] which
will serve as the background needed to study spectral properties of ele-
ments in OBAs which have disjunctive products.

We start our discussion by defining a few concepts (known from the
theory of vector lattices) in the context of OBAs.

Definition 1.9.1 (Infimum (Supremum)). Let (A, C) be an OBA and B ⊆ A.
An element x ∈ A is said to be the infimum (supremum) of B if x ≤ b (b ≤ x)
for all b ∈ B, and, if y ∈ A is such that y ≤ b (b ≤ y) for all b ∈ B, then y ≤ x
(x ≤ y).

We write x = inf B (x = sup B).

Definition 1.9.2. Let (A, C) be an OBA and (aα) a net in A. We write aα ↑ a
(aα ↓ a) if

• (aα) is increasing (decreasing),

• sup{aα} (inf{aα}) exists with sup{aα} = a (inf{aα} = a).

A subset B of an OBA (A, C) is said to be order-bounded above whenever
there exists a ∈ A satisfying b ≤ a for all b ∈ B.
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21 1.9. Irreducibility in OBAs

Definition 1.9.3 (Dedekind complete). An OBA (A, C) is said to be Dedekind
complete if every non-empty order-bounded above set in A has a supremum.

Some examples of Dedekind complete OBAs include (C,R+) (or more
generally (Cn, (Rn)+), (l∞(C), l∞(R+)) and (Mn(C), Mn(R+)). We mention
that the main tool here is the fact that R satisfies the completeness axiom. As
an illustration we present a proof which shows that M2(C) is a Dedekind
complete OBA.

Example 1.9.4. The OBA (M2(C), M2(R+)) is Dedekind complete.

Suppose that B ⊆ M2(C) is order-bounded above; that is, there ex-
ist elements x1, x2, x3, x4 ∈ C such that

(
a b
c d

)
≤
( x1 x2

x3 x4

)
for all

(
a b
c d

)
∈ B

(a, b, c, d ∈ C). Hence(
Re x1 − Re a + i(Im x1 − Im a) Re x2 − Re b + i(Im x2 − Im b)
Re x3 − Re c + i(Im x3 − Im c) Re x4 − Re d + i(Im x4 − Im d)

)
∈ M2(R+),

for all a, b, c, d ∈ C such that
(

a b
c d

)
∈ B.

Let a1 := sup{Re a :
(

a b
c d

)
∈ B for some b, c, d ∈ C}, b1 := sup{Re b :(

a b
c d

)
∈ B for some a, c, d ∈ C}, c1 := sup{Re c :

(
a b
c d

)
∈ B for some a, b, d ∈

C} and d1 := sup{Re d :
(

a b
c d

)
∈ B for some a, b, c ∈ C} by using the com-

pleteness axiom in R. One can easily verify that

sup B =

(
a1 + iIm x1 b1 + iIm x2

c1 + iIm x3 d1 + iIm x4

)
.

�

Also, if E is a Dedekind complete Banach lattice, then Lr(E) is an example
of a Dedekind complete OBA. If, in addition, E is either AL or AM with
unit, then L(E) = Lr(E) is a Dedekind complete OBA in view of (1.6.7) and
([2], Theorem 3.9).

The following result indicates that there are plenty of examples of Dedekind
complete OBAs. The proof of this result is straightforward, and therefore we
shall omit it.

Lemma 1.9.5. If (A1, C1) and (A2, C2) are Dedekind complete OBAs, then (A, C)
is Dedekind complete, where A := A1 ⊕ A2 and C := C1 ⊕ C2.
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We remark that, if either (A1, C1) or (A2, C2) in Lemma 1.9.5 is not a
Dedekind complete OBA, then (A, C) will not be a Dedekind complete OBA.
It is known that C[0, 1] (as a Banach lattice, and consequently as an OBA) is
not Dedekind complete ([11], Example 2.52). From the implication-scheme
on page 15 of this thesis, we deduce now that C[0, 1] is not a KB-space. This
observation will be useful in Example 3.2.8. The space C(K) is Dedekind
complete if and only if K is a compact Hausdorff space in which the closure
of every open subset of K is open in K ([35], Corollary, p.108). This result
provides another reason why C[0, 1] is not Dedekind complete.

From this point onward we recall concepts and results from [6] that will be
useful in the sequel.

Definition 1.9.6 (Order idempotents). ([6], p.144) Let (A, C) be an OBA. An
idempotent p ∈ A is called an order idempotent if 0 ≤ p ≤ 1.

The set of all order idempotents of A will be denoted by OI(A). Clearly,
p ∈ OI(A) if and only if 1− p ∈ OI(A).

If V denotes a vector lattice and B a projection band in V, then PB : V →
V defined by PBx = x1, where x = x1 + x2 ∈ B + Bd, is called an order
projection. For a Banach lattice E we have that T ∈ OI(L(E)) if and only if T
is an order projection on E ([7], Theorem 3.10). It is not difficult to see that
OI(L(E)) = OI(Lr(E)).

We also have that OI(C) = {0, 1}, OI(C2) = {(0, 0), (1, 0), (0, 1), (1, 1)},
OI(M2(C)) = {

(
0 0
0 0
)
,
(

1 0
0 0
)
,
(

0 0
0 1
)
,
(

1 0
0 1

)
} = OI(Mu

2 (C)), OI(C[0, 1]) = {0, 1}
and OI(l∞(C)) consists of (0, 0, 0, . . .), (1, 1, . . .), together with all sequences
consisting of zeros and ones.

The following two results will be needed in proving Theorem 5.5.3.

Lemma 1.9.7. ([6], Lemma 2.1) Let (A, C) be an OBA with proper algebra cone
C. If p1, p2 ∈ OI(A), then p1p2 = p2p1 = inf{p1, p2} ∈ OI(A).

Corollary 1.9.8. ([6], Corollary 2.2) If (A, C) is a Dedekind complete OBA with
proper algebra cone C, then OI(A) is Dedekind complete.

It is familiar that L(E) is not a Dedekind complete OBA in general (even
if E is a Dedekind complete Banach lattice). Nevertheless, since Lr(E) is a
Dedekind complete OBA whenever E is a Dedekind complete Banach lat-
tice, we have that OI(L(E)) (= OI(Lr(E))) is Dedekind complete in view
of Corollary 1.9.8.
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Definition 1.9.9 (a-invariant). ([6], p.144) Let (A, C) be an OBA and a ∈ A.
An element p ∈ OI(A) is said to be a-invariant if (1− p)ap = 0.

Definition 1.9.10 (a-invariant chain). ([6], p.147) Let (A, C) be an OBA and
a ∈ A. A simply ordered set of order idempotents {pn, . . . , p1} is called an a-
invariant chain if pn ≥ · · · ≥ p1 and pi is a-invariant for each i ∈ {1, . . . , n}.

Analogously, if T is a bounded linear operator on a Banach lattice, then
a simply ordered set of T-invariant projection bands {Bn, . . . , B1} is called a
T-invariant chain if Bn ⊇ · · · ⊇ B1.

Definition 1.9.11 (Irreducible elements). ([6], p.144) Let (A, C) be an OBA. An
element a ∈ C is said to be irreducible if p = 0 and p = 1 are the only a-invariant
order idempotents.

If E is a Dedekind complete Banach lattice, then 0 ≤ T ∈ L(E) is a band
irreducible operator on E if and only if T is an irreducible element in L(E);
that is, E contains no non-trivial T-invariant (projection) bands if and only
if T has no non-trivial T-invariant order projections ([6], p.144).

We mention that every non-zero positive element in an OBA (A, C) is
irreducible if and only if OI(A) = {0, 1} ([6], p.158).

Definition 1.9.12 (Irreducible w.r.t. an order idempotent). ([6], p.144) Let
(A, C) be an OBA and 0 < p ∈ OI(A). An element a ∈ C is said to be irreducible
w.r.t. p if there exists no p∗ ∈ OI(A) such that 0 < p∗ < p and (p− p∗)ap∗ = 0.

It is easy to check that a positive OBA element a is irreducible if and only
if a is irreducible w.r.t. the unit in the OBA.

Definition 1.9.13 (Order continuous element). ([6], p.150) Let (A, C) be an
OBA. An element a ∈ C is said to be order continuous if pαa ↓ 0 and apα ↓ 0
whenever pα ↓ 0, where (pα) is a net in OI(A).

Let An denote the set of all order continuous elements of an OBA (A, C).
It then follows that, if 0 ≤ a ≤ b relative to (a proper algebra cone) C, then
b ∈ An implies that a ∈ An.

It is easy to verify that Cn = R+, (C2)n = R2+, (l∞(C))n = l∞(R+) and
(Mu

2 (C))n = Mu
2 (R+). In general, if OI(A) = {0, 1} for some OBA (A, C),

then An = C. Note that OI(A) = {0, 1} is not a necessary condition for
An = C as can be seen in the cases of C2, l∞(C) and Mu

2 (C) (recalling the
examples preceding Lemma 1.9.7).
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An immediate consequence of the fact that OI(L(E)) = OI(Lr(E))) is
the identity (L(E))n = (Lr(E))n. We remark that an order continuous oper-
ator on a Banach lattice E is not necessarily an order continuous element in
L(E) ([6], p.150). However, if E is a Dedekind complete Banach lattice, then
the set of all order continuous elements of L(E) coincides with the set of all
positive order continuous operators on E ([6], Example 2.9(a)). Moreover,
if E is a Banach lattice with order continuous norm, then by ([6], p.150) we
have that (L(E))n = {T ∈ L(E) : TE+ ⊆ E+}.

From this point on we use the notation ap to mean pap and pd to mean 1− p,
where p is an order idempotent and a an element in an ordered Banach al-
gebra.

Definition 1.9.14 (Block). ([6], p.150) Let (A, C) be an OBA and a ∈ C. An
element b ∈ A is called a block of a if there exists an a-invariant chain {p2, p1},
with p2 > p1, such that b = ap2 pd

1
.

Clearly, if b is a block of a, then 0 ≤ b ≤ a. From ([6], Lemma 2.6) it then
follows, under the additional assumption that the algebra cone C is proper,
that r(b) ≤ r(a).

Definition 1.9.15 (Spectral block). ([6], p.150) Let (A, C) be an OBA with
proper algebra cone C and a ∈ C. An element b ∈ A is called a spectral block
of a whenever b is a block of a and r(a) = r(b).

Obviously, a ∈ C is a spectral block of itself.

Definition 1.9.16 (Spectrally order continuous element). ([6], p.150) Let (A, C)
be an OBA with proper algebra cone C. An order continuous element a ∈ C is said
to be spectrally order continuous if, for every spectral block b of a, the condition
that r(b) is a pole of order m of (λ1− b)−1 implies that b−m ∈ An.

A positive operator T on a Banach lattice E is called a spectrally order
continuous operator if T is an order continuous operator on E and if, for ev-
ery spectral block S of T, the condition that r(S) is a pole of order m of
(λI−S)−1 implies that S−m is an order continuous operator on E ([6], p.150).
Again, the notion of a spectrally order continuous operator on E differs from
the notion of a spectrally order continuous element in L(E). However, if E
is Dedekind complete and 0 ≤ T ∈ L(E), then T is a spectrally order contin-
uous operator on E if and only if T is a spectrally order continuous element
in L(E) ([6], p.151).
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We state the following remark for use in Corollary 5.5.8.

Remark 1.9.17. Let E be a Banach lattice and 0 ≤ T ∈ L(E). If T is spectrally
order continuous in L(E), then T is spectrally order continuous in Lr(E).

To establish the above implication, we observe that the equality OI(L(E))
= OI(Lr(E))) implies that the set of blocks of T in L(E) and the set of
blocks of T in Lr(E) coincide. By also using ([36], p.79), which asserts that
r(T,Lr(E)) = r(T,L(E)) for all 0 ≤ T ∈ L(E), it follows that the set of
spectral blocks of T in L(E) and the set of spectral blocks of T in Lr(E) coin-
cide. By the uniqueness of the Laurent series the condition “r(T) is a pole of
order, say, m of (λI − T)−1 in Lr(E)" implies that “r(T) is a pole of order m
of (λI − T)−1 in L(E)". It remains to recall the identity (L(E))n = (Lr(E))n

which was discussed before.

The following result will be required in Corollary 5.5.9.

Proposition 1.9.18. Let (A, C) be an OBA with closed and proper algebra cone C
such that An = C. Then a ∈ An if and only if a is spectrally order continuous.

Hence, every positive element is spectrally order continuous.

Proof. For the non-trivial implication suppose that a ∈ An. Let b be a spec-
tral block of a such that r(b) is a pole of order m of (λ1− b)−1. From the
definition of a spectral block it follows that b ∈ C, and hence b−m ∈ C = An

in view of Theorem 1.8.1 and assumption.

We note that, for the examples given below Definition 1.9.13, every pos-
itive element is spectrally order continuous.

The following fact will be useful in the sequel. It was mentioned in ([5],
Lemma 6.1 and the remark thereafter) – see also ([6], p.152).

Lemma 1.9.19. Let E be an AM-space with unit. If T is a positive order continu-
ous operator on E, then T is a spectrally order continuous operator on E.

Definition 1.9.20 (Disjunctive product). ([6], p.158) An OBA (A, C) is said to
have a disjunctive product if for any a, b ∈ An with ab = 0 there exists p ∈ OI(A)

satisfying ap = 0 = (1− p)b.

Since OI(L(E)) = OI(Lr(E)) (and therefore (L(E))n = (Lr(E))n), it
follows that L(E) has a disjunctive product if and only if Lr(E) has a dis-
junctive product. If E is a Dedekind complete Banach lattice, then from ([6],
Example 3.3 (a)) we have that L(E) has a disjunctive product.
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More examples of OBAs having disjunctive products include (C,R+) (or
more generally (C2,R2+)), (l∞(C), l∞(R+)) and (Mu

n(C), Mu
n(R+)).

Definition 1.9.21 ( f -pole). ([6], p.152) Let (A, C) be an OBA and b ∈ C. Then
r(b) is called an f -pole of (λ1− b)−1 if 0 ≤ a ≤ b implies that r(a) ≤ r(b), and
if r(a) = r(b) implies that r(a) is a pole of (λ1− a)−1.

Our next result states conditions under which, given that the spectral
radius r(a) of a positive OBA element a is a Riesz point of the spectrum of
a, then r(a) is an f -pole of the resolvent of a.

Proposition 1.9.22. Let (A, C) be a semisimple OBA with closed algebra cone C
such that the spectral radius function in (A, C) is monotone and let I be a closed
inessential ideal such that the spectral radius function in (A/I, πC) is weakly
monotone. If b ∈ C is such that r(b) is a Riesz point of σ(b) relative to I, then r(b)
is an f -pole of (λ1− b)−1.

Proof. The statement 0 ≤ a ≤ b implies r(a) ≤ r(b) follows from the fact
that the spectral radius function in (A, C) is monotone. Consider the case
where r(a) = r(b). By Theorem 1.8.5 we have that r(a) is a Riesz point of
σ(a) relative to I, and hence r(a) is a pole of (λ1− a)−1 by Lemma 1.4.5.
Thus r(b) is an f -pole of (λ1− b)−1 by definition.

For an OBA (A, C) the inequalites 0 ≤ ap ≤ a clearly hold for all p ∈
OI(A) and a ∈ C. By ([6], Lemma 2.4), if {1 = pn, pn−1, . . . , p1, p0 = 0}
is an a-invariant chain, then σ(a) ⊆ ∪n

i=1σ(api pd
i−1

). Therefore, there exists

i ∈ {1, . . . , n} such that r(a) ≤ r(api pd
i−1

). Hence we note that, under the

additional assumption that the algebra cone C is proper, the identity r(a) =
r(api0 pd

i0−1
) always holds for some i0 ∈ {1, . . . , n} in view of ([6], Lemma 2.6).

Definition 1.9.23 (Frobenius normal form). ([6], p.154) Let (A, C) be an OBA
and a ∈ C. Then a is said to have the Frobenius normal form if there exists an
a-invariant chain C = {1 = pn, pn−1, . . . , p1, p0 = 0} such that, if r(api pd

i−1
) =

r(a) for some i ∈ {1, . . . , n}, then api pd
i−1

is irreducible w.r.t. pi pd
i−1.

We say that C determines the Frobenius normal form of a.
Let {E = Bn, Bn−1, . . . , B1, B0 = {0}} be a T-invariant chain of projection

bands, where T is a positive bounded linear operator on a Dedekind com-
plete Banach lattice E, and Qi := Bi ∩ Bd

i−1. From ([7], Theorem 3.11[(1) and
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(2)]) the identities

PQi TPQi=PBi∩Bd
i−1

TPBi∩Bd
i−1

=PBi(I − PBi−1)TPBi(I − PBi−1) (1.9.24)

hold. Moreover, in view of the remark following Definition 1.9.11 and ([7],
Theorem 3.12), Definition 1.9.23 can be made more precise in the case where
A = L(E). A straightforward argument shows that PQi TPQi is irreducible
w.r.t. PQi if and only if the restriction of PQi TPQi to Qi is band irreducible.
These observations are summarized in the following remark.

Remark 1.9.25. Let E be a Dedekind complete Banach lattice. An operator 0 ≤
T ∈ L(E) has the Frobenius normal form if there exists a T-invariant chain {E =

Bn, Bn−1, . . . , B1, B0 = {0}} of projection bands such that, if r(PQi TPQi) = r(T)
for some i ∈ {1, . . . , n}, then the restriction of PQi TPQi to Qi is band irreducible,
where Qi := Bi ∩ Bd

i−1.

Results such as ([4], Theorem 13) and ([6], Corollaries 2.12 and 2.13 and
Theorem 2.14) give sufficient conditions for the existence of the Frobenius
normal form of a bounded linear operator on a Banach lattice.

For a Banach lattice E it is easy to verify that, for a positive operator T
on E, we have that T has the Frobenius normal form in Lr(E) if and only if
T has the Frobenius normal form in L(E).

Theorem 1.9.26. ([6], Theorem 2.11) Let (A, C) be a Dedekind complete OBA
with closed and proper algebra cone C. If a ∈ C is a spectrally order continuous
element such that r(a) > 0 and r(a) is an f -pole of (λ1− a)−1, then a has the
Frobenius normal form.

Theorem 1.9.26 illustrates that, under certain natural conditions, the spec-
trum of a positive (spectrally order continuous) element in an OBA is deter-
mined by the spectra of certain associated irreducible elements.

Finally, the following result will be needed in Section 5.5.

Lemma 1.9.27. ([6], Lemma 5.2) Let (A, C) be an OBA which has a disjunctive
product with closed and proper algebra cone C such that OI(A) is Dedekind com-
plete, 0 < p ∈ OI(A) and a ∈ A. Suppose that the following conditions hold:
(a) 0 < ap ∈ An is irreducible w.r.t. p,
(b) r(ap) is a pole of order m of (λ1− ap)−1 and
(c) (ap)−m ∈ An.
Then r(ap) > 0 and r(ap) is a simple pole of (λ1− ap)−1.
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Chapter 2

Poles and the Laurent expansion of
the resolvent

In this chapter, suppose that R(λ, a) = ∑∞
n=−∞(λ− λ0)

nan is the Laurent ex-
pansion of (λ1− a)−1 in a deleted neighbourhood of λ0 ∈ iso σ(a), where
a is an element of a Banach algebra A. Throughout this work we will fre-
quently refer to the coefficients ak (k ∈ Z) of (λ− λ0)

k in the above Laurent
series expansion. It is known that the spectral idempotent of a correspond-
ing to λ0 is the coefficient a−1.

The aim of Section 2.1 is to summarize several results (stemming from
previous facts) that deal with ideals and poles that will be useful in the se-
quel. Subsequently, we present, in Section 2.2, some properties of ak that are
known to hold in the case A = L(X), with X a Banach space. We point out
here that the proofs given in this section depend mainly on the holomorphic
functional calculus and we include them for the sake of completeness.

It is worth mentioning that the results included in this chapter will be
employed in Chapter 5.

2.1 Ideals, homomorphisms and poles

We begin this section with the following theorem which describes the rela-
tionship between the Fredholm spectrum of an element a ∈ A relative to a
Banach algebra homomorphism T : A→ B with closed range and the Fred-
holm spectrum of a relative to the canonical homomorphism π : A → A/I,
where I is an arbitrary ideal of A. In order to prove this result, we use an
approach similar to that of H. Mouton, S. Mouton and H. Raubenheimer in

28

Stellenbosch University  https://scholar.sun.ac.za



29 2.1. Ideals, homomorphisms and poles

([28], Theorem 6.4(1)). This result is of independent interest.

Theorem 2.1.1. Let T : A → B be a Banach algebra homomorphism with closed
range and let I be an ideal of A. Then σ(a + I) ⊆ ησ(Ta) for all a ∈ A.

In particular, if T is onto, then σ(a + I) ⊆ σ(Ta).

Proof. Since T has closed range, T(A) ⊆ B is a Banach algebra which con-
tains the unit of B. Consider the homomorphism φ : T(A) → A/I defined
by φ(Ta) = a + I for all a ∈ A. Then, by using Theorem 1.2.2(ii), we have
that

σ(a + I) = σ(φ(Ta)) ⊆ σ(Ta, T(A)) ⊆ ησ(Ta, T(A)) = ησ(Ta, B) (2.1.2)

for all a ∈ A.
Now suppose that T is onto. Then T(A) = B, and the result is clear from

the first inclusion in (2.1.2).

From this point on we present useful consequences of preceding results.

Using Theorem 2.1.1 we can state the following result for bounded Banach
algebra homomorphisms with closed range. We remind the reader of Re-
mark 1.1.4.

Corollary 2.1.3. Let T : A → B be a bounded Banach algebra homomorphism
with closed range. If a ∈ A, then ησ(Ta) = ησ(πa).

Proof. Since T = T∗ ◦ π, where the homomorphism T∗ : A/N(T) → B
is defined by T∗(a + N(T)) = Ta and π : A → A/N(T) is the canonical
homomorphism, the inclusion σ(Ta) ⊆ σ(a + N(T)) = σ(πa) is clear. From
Theorem 2.1.1 we have that σ(πa) ⊆ ησ(Ta) for all a ∈ A, and hence the
result follows.

If we replace the statement “T is bounded" in Corollary 2.1.3 by the state-
ment “T has the Riesz property", then we obtain the following similar result.
We mention here that, without the assumption that N(T) is an inessential
ideal, the set ηD(a, N(T)) (in view of Theorem 1.4.6) cannot in general be
added to the list in Corollary 2.1.3.

Corollary 2.1.4. Let T : A → B be a Banach algebra homomorphism with closed
range satisfying the Riesz property. If a ∈ A, then ησ(Ta) = ηD(a, N(T)) =

ησ(πa).
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Proof. Using Theorem 1.4.6, Theorems 1.5.7 and 1.5.8 and ([29], Corollary
5.4) we have that ησ(Ta) = ηβT(a) = ηβπ(a) = ηD(a, N(T)) = ησ(πa) for
all a ∈ A.

The following result will frequently be referred to. This result summa-
rizes equivalent conditions for r(a) to be a Riesz point of σ(a) relative to
N(T).

Corollary 2.1.5. Let T : A → B be a Banach algebra homomorphism with closed
range satisfying the Riesz property and a ∈ A. Then the following statements are
equivalent:
(i) r(a) ∈ σ(a)\σ(Ta).
(ii) r(a) ∈ σ(a)\σ(a + N(T)).
(iii) r(a) is a Riesz point of σ(a) relative to N(T).

Moreover, if A is a semisimple Banach algebra, then r(a) ∈ σ(a)\σ(Ta) if and
only if r(a) > 0 is a pole of (λ1− a)−1 and p(a, r(a)) ∈ N(T).

Proof. The equivalences (i) through (iii) follow from Corollary 2.1.4, while
the last part, under the additional assumption that A is semisimple, is clear
from Lemma 1.4.5.

In view of Corollary 2.1.3 the equivalence of (i) and (ii) in Corollary 2.1.5
still holds whenever the condition “T has the Riesz property" is replaced by
the statement “T is bounded".

Finally, we state and prove the following observation regarding the Frobe-
nius normal form that will be useful in Section 5.5.

Corollary 2.1.6. Let (A, C) be a Dedekind complete semisimple OBA with closed
and proper algebra cone C such that the spectral radius function in (A, C) is mono-
tone. Also, suppose that T : A → B is a Banach algebra homomorphism with
closed range satisfying the Riesz property such that the spectral radius function
in (A/N(T), πC) is weakly monotone. If a ∈ C is a spectrally order continuous
element such that r(a) /∈ σ(Ta), then a has the Frobenius normal form.

Proof. In order to apply Theorem 1.9.26, we show that r(a) is an f -pole of
(λ1− a)−1. We do so by verifying that all conditions in Proposition 1.9.22
are satisfied.

First we point out that N(T) is a closed inessential ideal of A. This state-
ment follows from the fact that T satisfies the Riesz property.
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Using Theorem 1.8.2 we have that r(a) ∈ σ(a), and hence r(a) is a Riesz
point of σ(a) relative to N(T) in view of Corollary 2.1.5. By Proposition
1.9.22 we have that r(a) > 0 is an f -pole of (λ1− a)−1, and hence the Frobe-
nius normal form of a exists by Theorem 1.9.26.

2.2 Coefficients of Laurent series

In this section we present some properties of the coefficients of the main
part of the Laurent series of the resolvent that will be useful in the sequel.

The following result which we establish here in the setting of Banach alge-
bras were stated in [3] for bounded linear operators on Banach lattices.

Lemma 2.2.1. Let A be a Banach algebra, a ∈ A and λ0 ∈ iso σ(a). Then, if
the coefficients in the Laurent expansion of R(λ, a) in a neighbourhood of λ0 are
indicated by an, we have the following identities:
(a) a−ja−i = a−ia−j = a−i−j+1 for all i, j ≥ 1.
(b) a−jai = aia−j = 0 for all i ≥ 0 and j ≥ 1.

Proof. (a) Let U1 and U0 be disjoint open sets such that U1 contains {λ0}
and U0 contains σ(a)\{λ0}. Choose Γ1 to be a small circle in U1 surrounding
{λ0} and let Γ2 be a smooth contour in U0 surrounding σ(a)\{λ0}. Define,
for j ≥ 1, the function f j : U0 ∪U1 → C by

f j(λ) =

{
0 if λ ∈ U0

(λ− λ0)
j−1 if λ ∈ U1.

(2.2.2)

Then f j ∈ H(U0 ∪U1) and by Proposition 1.3.1

f j(a) =
1

2πi

∫
Γ1∪Γ2

f j(λ)(λ1− a)−1dλ

=
1

2πi

∫
Γ1

(λ− λ0)
j−1(λ1− a)−1dλ.

The coefficients an are given by

an =
1

2πi

∫
Γ1

(λ1− a)−1

(λ− λ0)n+1 dλ. (2.2.3)

Therefore

a−j =
1

2πi

∫
Γ1

(λ− λ0)
j−1(λ1− a)−1dλ = f j(a) (2.2.4)
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for all j ≥ 1 and, by also using Proposition 1.3.1 and Theorem 1.3.2(2),

a−i−j+1 =
1

2πi

∫
Γ1

(λ− λ0)
i+j−1−1(λ1− a)−1dλ

=
1

2πi

∫
Γ1∪Γ2

( fi f j)(λ)(λ1− a)−1dλ

= ( fi f j)(a)

= fi(a) f j(a) (= f j(a) fi(a))

= a−ia−j (= a−ja−i)

for all i ≥ 1.
(b) Following (a), let Λ1 be another circle with centre λ0 such that Λ1 lies

inside the interior of Γ1. Also, let i ≥ 0 and j ≥ 1. Then, using the resolvent
equation and Cauchy’s integral and generalized integral formulas, we have
that

aia−j=

(
1

2πi

∫
Λ1

(µ1− a)−1

(µ− λ0)i+1 dµ

)(
1

2πi

∫
Γ1

(λ1− a)−1

(λ− λ0)−j+1 dλ

)
=

(
1

2πi

)2∫
Λ1

[∫
Γ1

(λ− λ0)
j−1(µ− λ0)

−i−1(λ1− a)−1(µ1− a)−1dλ

]
dµ

=

(
1

2πi

)2∫
Λ1

[∫
Γ1

(λ− λ0)
j−1(µ− λ0)

−i−1
(
(λ1− a)−1 − (µ1− a)−1

µ− λ

)
dλ

]
dµ

=
1

2πi

∫
Γ1

(λ− λ0)
j−1
[

1
2πi

∫
Λ1

(µ− λ0)
−i−1

µ− λ
dµ

]
(λ1− a)−1dλ

− 1
2πi

∫
Λ1

(µ− λ0)
−i−1

[
1

2πi

∫
Γ1

(λ− λ0)
j−1

µ− λ
dλ

]
(µ1− a)−1dµ

=
1

2πi

∫
Γ1

(λ− λ0)
j−1 f (i)(λ0)

i!
(λ1− a)−1dλ

+
1

2πi

∫
Λ1

(µ− λ0)
−i−1g(µ)(µ1− a)−1dµ,

where the functions f and g are chosen to be f (µ) = 1
µ−λ and g(λ) = (λ−

λ0)
j−1. Using (2.2.3) and the fact that f (i)(λ0) = (−1)ii!(λ0 − λ)−(i+1), we

get that

aia−j = − 1
2πi

∫
Γ1

(λ− λ0)
j−i−1−1(λ1− a)−1dλ

+
1

2πi

∫
Λ1

(µ− λ0)
j−i−1−1(µ1− a)−1dµ

= −ai−j+1 + ai−j+1 = 0.
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The following result will be useful in our work.

Corollary 2.2.5. Let A be a Banach algebra, a ∈ A and λ0 ∈ iso σ(a). If k > 1,
then a−k ∈ QN(A) ∩Comm2(a).

Proof. Let k > 1. By (2.2.4) we have that a−k = fk(a), where fk is defined as
in (2.2.2). Hence a−k ∈ Comm2(a). Using the spectral mapping theorem we
have that

σ(a−k) = σ( fk(a)) = fk(σ(a)) = { fk(λ) : λ ∈ σ(a)} = {0},

that is, a−k ∈ QN(A).

We point out the following well-known fact for ease of reference.

Corollary 2.2.6. Let A be a Banach algebra, a ∈ A and λ0 ∈ iso σ(a). Then
σ(a± a−1) = (σ(a)\{λ0}) ∪ {λ0 ± 1}.

Proof. Choosing U0 and U1 as in the proof of Lemma 2.2.1 and f1 as de-
scribed in (2.2.2), we define g : U0 ∪U1 → C by g(λ) = λ + f1(λ) for all
λ ∈ U0 ∪U1.

Then g ∈ H(U0 ∪U1) and by using Proposition 1.3.1, the spectral map-
ping theorem and equation (2.2.4) we have that

σ(a + a−1) = σ(g(a)) = g(σ(a)) = (σ(a)\{λ0}) ∪ {λ0 + 1}.

The proof of the identity σ(a− a−1) = (σ(a)\{λ0}) ∪ {λ0 − 1} is done in a
similar manner.

We note the following result which is frequently used throughout this
thesis.

Lemma 2.2.7. Let T : A → B be a Banach algebra homomorphism, a ∈ A and
λ0 ∈ (iso σ(a))\σ(Ta). Then a−i ∈ N(T) for all i ≥ 1.

Proof. It can be easily verified that the condition λ0 ∈ (iso σ(a))\σ(Ta) im-
plies that λ01− a ∈ AD ∩FT. By Proposition 1.5.5 and Lemma 1.3.4 we have
that a−1 = p(a, λ0) = p(λ01− a, 0) ∈ N(T).

If i > 1, then by taking Lemma 2.2.1(a) into account it follows that a−i =

a−i−1+1 = a−ia−1 ∈ N(T). The proof is done.
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We conclude this section with two useful results wherein we identify
certain types of OBAs in which (if the spectral radius of a (positive) element
a is a pole of the resolvent of a), the spectral radius of a will always be a
simple pole of the resolvent of a.

Lemma 2.2.8. Let A be a commutative semisimple Banach algebra and a ∈ A. If
r(a) is a pole of (λ1− a)−1, then it is a simple pole.

Proof. Assume by way of contradiction that r(a) is a pole of order k > 1
of (λ1 − a)−1. Then a−k 6= 0, and a−k ∈ QN(A) follows from Corollary
2.2.5. Since A is a commutative and semisimple Banach algebra, we have
that {0} = Rad(A) = QN(A), and hence a−k = 0. Consequently r(a) is a
simple pole of (λ1− a)−1.

Lemma 2.2.9. Let (A, C) be an OBA with proper, closed and inverse-closed algebra
cone C and a ∈ C. If r(a) is a pole of (λ1− a)−1, then it is a simple pole.

Proof. Suppose this is not true and let r(a) be a pole of order k > 1 of
(λ1 − a)−1. From Theorem 1.8.1 and Corollary 2.2.5 we have that a−k ∈
C ∩QN(A). Using Corollary 1.8.8 it follows that a−k = 0. But this is a con-
tradiction to the definition of a pole of order k. Hence r(a) is a simple pole
of (λ1− a)−1.
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Chapter 3

Upper Browder and upper Weyl
elements

Although the general Fredholm theory in Banach algebras has been widely
studied by several authors, its interplay with the theory of positivity in
OBAs has not been given much attention yet.

For a Banach lattice E, Alekhno ([4], Theorem 3) discovered that

L(E)−1 +K(E) =Wπ = L(E)−1 + (K ∩K(E)),

where K denotes the cone of positive operators on E. Motivated by this
discovery, we introduce and investigate the set A−1 + (C ∩ N(T)), for a
general OBA (A, C) and w.r.t. an arbitrary Banach algebra homomorphism
T : A→ B, and we shall see that the set A−1 + (C ∩N(T)) does, in general,
not necessarily equalWT.

We shall begin this chapter with the definitions of upper Weyl and up-
per Browder elements relative to a fixed Banach algebra homomorphism.
In Section 3.2 we point out a class of Banach algebra homomorphisms rel-
ative to which every Weyl element can in fact be decomposed as a sum of
an invertible element and a positive element in the null space of the homo-
morphism. Subsequently, we present a general discussion on the basic (al-
gebraic) properties of upper Weyl and upper Browder elements in an OBA.
Results pertaining to the perturbation of upper Weyl (and upper Browder)
elements by elements from a number of classes will be discussed in Section
3.4. In our final section, we examine regularities in connection with upper
Weyl and upper Browder elements.

Throughout, the reader should keep in mind the homomorphisms π :
L(E)→ L(E)/K(E) and πr : Lr(E)→ Lr(E)/Kr(E), in which case N(π) =

35
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K(E) and N(πr) = Kr(E).

3.1 Definitions and examples

In this section we introduce and discuss upper Weyl and upper Browder el-
ements relative to a fixed Banach algebra homomorphism. These are special
kinds of Weyl and Browder elements, respectively.

Definition 3.1.1 (Upper Weyl and upper Browder elements). Let (A, C) be
an OBA and T : A → B be a Banach algebra homomorphism. An element a ∈ A
is called

• upper Weyl if there exist elements b ∈ A−1 and c ∈ C ∩N(T) such that
a = b + c,

• upper Browder if there exist commuting elements b ∈ A−1 and c ∈ C ∩
N(T) such that a = b + c.

Evidently, Definition 3.1.1 brings into play the positivity theory in the
abstract Fredholm theory.

Denote by W+
T and B+T the sets of all upper Weyl and upper Browder

elements of A relative to T, respectively. As a starter, we describe the up-
per Weyl (upper Browder) elements in particular OBAs relative to certain
Banach algebra homomorphisms.

The following fact is due to Alekhno.

Example 3.1.2. ([4], Theorem 3; this thesis Example 1.5.2(c)) Let E be a Banach
lattice. Then T ∈ W+

π if and only if T is Fredholm with index zero.

Example 3.1.3. Let E be a Banach lattice. ThenWπr = W+
πr ; that is, T ∈ W+

πr if
and only if T can be decomposed as a sum of an invertible operator in Lr(E) and a
finite rank operator on E.

First we show that Kr(E) ⊆ span (K ∩ Kr(E)), where K := {T ∈ L(E) :
TE+ ⊆ E+}. Let S ∈ Kr(E). Then there exist UC, VC ∈ Kr(E) such that
S = UC + iVC. By ([8], Theorem 1.3) the positive and negative parts of UC
and VC are again r-compact, and hence

S = U+
C −U−C + iV+

C − iV−C ∈ span (K ∩Kr(E)).
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Now, if T ∈ Wπr , then T = R + S for some R ∈ (Lr(E))−1 and S ∈
Kr(E). Using the identity Kr(E) = span (K ∩Kr(E)) and a slight modifica-
tion of ([4], Lemma 1) (or, more generally, Lemma 3.2.2 which we establish
in the next section), it follows that T ∈ (Lr(E))−1 + (K ∩ Kr(E)) = W+

πr ,
and thusWπr =W+

πr .
The last part of the example follows from ([9], Theorem 4.3) which gives

Wπr = (Lr(E))−1 +F (E). (We mention that this fact is also clear from ([18],
Lemma 5.3). �

Presumably the identities Bπ = B+π and Bπr = B+πr do not hold, but we are
unable to provide counterexamples at present. That is, (as yet) we do not
have an example of an operator T such that T ∈ Bπ (T ∈ Bπr), but T /∈ B+π
(T /∈ B+πr).

Modifying Example 1.5.3(b), we get the following. We remark that this
example will play a significant role as a source of counterexamples in this
thesis.

Example 3.1.4. Let K1 and K2 be compact Hausdorff spaces and A := C(K1)

and B := C(K2) be the ordered Banach algebras of continuous complex-valued
functions on K1 and K2, respectively. Consider the homomorphism T : A → B
defined by T f = f ◦ θ, where θ : K2 → K1 is a continuous map. Then f ∈
W+

T if and only if its restriction to θ(K2) has an invertible extension to K1, say g,
satisfying f ≥ g.

Let C := { f ∈ A : f (x) ∈ R+ for all x ∈ K1}. Suppose that f ∈ W+
T .

Then there exist g ∈ A−1 and h ∈ C ∩N(T) such that f = g + h. Since
h ∈ N(T), we have that h(θ(K2)) = {0}, and hence

f|θ(K2) = g|θ(K2) + h|θ(K2) = g|θ(K2).

Also, since h ∈ C, it follows that f ≥ g. Consequently, if f ∈ W+
T , then

f|θ(K2) has an invertible extension to K1, namely g, satisfying f ≥ g.
Conversely, suppose that f|θ(K2) has an invertible extension to K1, say

g, satisfying f ≥ g. Observe that T( f − g) = ( f − g) ◦ θ = 0. Therefore,
f = g + ( f − g), where g ∈ A−1 and f − g ∈ C ∩N(T), so that f ∈ W+

T .
�

We call T in Example 3.1.4 the homomorphism induced by composition with θ.
Let (A1, C1) and (A2, C2) be OBAs and T1 : A1 → B1 and T2 : A2 → B2

be Banach algebra homomorphisms. Consider the OBA (A, C) and Banach
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algebra B, where A := A1 ⊕ A2, C := C1 ⊕ C2 and B := B1 ⊕ B2. One can
easily verify that T : A → B defined by T(a1, a2) = (T1a1, T2a2) is a Banach
algebra homomorphism. Moreover, it follows that (a1, a2) ∈ W+

T if and only
if a1 ∈ W+

T1
and a2 ∈ W+

T2
and that (a1, a2) ∈ B+T if and only if a1 ∈ B+T1

and
a2 ∈ B+T2

.

Proposition 3.1.5. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism. Then the following set of inclusions holds in general:

W+
T

⊆ ⊆
A−1 ⊆ B+T WT ⊆ FT.

⊆ ⊆
BT

Equalities are obtained whenever T is spectrum preserving.

Proof. By definition the inclusions B+T ⊆ BT and B+T ⊆ W
+
T ⊆ WT hold. It

remains to recall Proposition 1.5.4 to finish the proof.
Suppose now that T is spectrum preserving. Then σ(Ta) = σ(a) for all

a ∈ A, and hence A−1 = FT. The result follows from the first part of the
proposition.

The following examples illustrate that the above inclusions can be strict.

Example 3.1.6. Consider the OBA (C2,R2) and the homomorphism T : C2 → C
defined by T(z, w) = z. Then (C2)−1 ( B+T .

It is easy to see that N(T) = {(0, λ) : λ ∈ C}. Consider the element
(1, 0) ∈ C2. Then (1, 0) = (1,−1) + (0, 1), where (1,−1) ∈ (C2)−1 and
(0, 1) ∈ R2 ∩N(T). Hence, (1, 0) ∈ B+T , but (1, 0) /∈ (C2)−1. �

Example 3.1.7. Consider the Banach lattice l2 := l2(C) of all sequences (xn)n∈N
of complex numbers such that ∑∞

n=1 |xn|2 < ∞ and the canonical homomorphism
φ : L(l2 ⊕ l2)→ L(l2 ⊕ l2)/K(l2 ⊕ l2). Then B+φ (W+

φ .

Define U, V : l2 → l2 by U(x1, x2, . . .) = (0, x1, x2, . . .) and V(x1, x2, . . .) =
(x2, x3, x4 . . .). Let A =

(
U 0
0 V
)
, B1 =

( U UV−I
0 V

)
, B2 =

( V 0
UV−I U

)
and C =( 0 I−UV

0 0

)
. By using some information on U and V as discussed in ([21],

pp.172-173), we have that A = B1 + C, where B1B2 = I = B2B1 and C is
a finite rank operator. Since C ∈ N(φ) is a positive operator, we have that
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A is upper Weyl. From ([21], Example 4.3) A is not Browder, and hence not
upper Browder by Proposition 3.1.5. �

Example 3.1.8. Consider the OBA (C(K), C), where K = [0, 1] and C := {h ∈
C(K) : h(x) ∈ R+ for all x ∈ K}, and let T : C(K) → C(K) be the homomor-
phism induced by composition with the unit function 1 on K. ThenW+

T (WT.

We consider the function f ∈ C(K) defined by f (z) = z for all z ∈ K.
Because 1(K) = {1}, we can extend f|1(K) to the constant function 1 on K
which is invertible. By Example 1.5.3(b), we have that f ∈ WT.

Suppose that f is also upper Weyl. By Example 3.1.4, f restricted to
1(K) = {1} has an invertible extension to K, say g, satisfying g ≤ f . Note
that g(K) ⊆ R. By the continuity of g and the facts that g(1) = 1 and g(0) ≤
f (0) = 0, we have from the intermediate value theorem that there exists
x ∈ K such that g(x) = 0. This yields a contradiction to the invertibility of
g; hence f /∈ W+

T . �

Using the fact that C(K) is a commutative OBA, Example 3.1.8 remains true
ifW+

T andWT are replaced by B+T and BT, respectively.

Example 3.1.9. An example of a Fredholm element which is not Weyl can be found
in ([4], Example 19), while ([21], Example 4.3) gives an example of a Weyl element
which is not Browder.

The homomorphism T (or a variation thereof) defined in Example 3.1.8
will be encountered in a number of examples in the remainder of this thesis.

3.2 Examining the equationWT =W+
T

A natural task, in view of ([4], Theorem 3), is to find, in general, classes of
Banach algebra homomorphisms T that satisfyWT = W+

T . Recall Example
3.1.8 which indicates that the identity does not hold in general.

Before we present our findings in the more general setting, we first re-
view the operator case. All through this section, let E denote a Banach lattice
and K = {T ∈ L(E) : TE+ ⊆ E+}. Theorem 3 in [4], a result due to Alekhno,
tells us that the identityWπ = L(E)−1 + (K ∩N(π)) =W+

π holds.
Some remarks: It should be noted that the first tool to Alekhno’s advan-

tage was the fact that an element of Wπ can be decomposed as a sum of
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an invertible operator and a finite rank operator (see Example 1.5.2(c)), im-
plying Wπ = Wφ, where φ : L(E) → L(E)/F (E) (and as understood
π : L(E) → L(E)/K(E)). This is a crucial starting point as it is the special
properties of finite rank operators, not necessarily valid for compact oper-
ators, on which Alekhno’s proof relies. Secondly, the fact that every (real)
finite rank operator’s positive and negative parts exist ([7], Theorem 16.8)
(this particular fact is for instance not in general true for compact operators
(U. Krengel, see [7], Example 16.6)) was yet another important ingredient.
(It is interesting to note that this statement is true despite the fact that L(E)
is not a Riesz space in general.) Consequently, with the help of ([4], Lemma
2), he establishes the inclusion F (E) ⊆ span (K ∩ F (E)): ([4], Lemma 2)
states that the positive and negative parts of a finite rank operator are ele-
ments of K ∩ F (E). Finally, it remains to recall ([4], Lemma 1) to finish his
proof. Consequently,

W+
π =Wπ =Wφ =W+

φ . (3.2.1)

In our development leading up to an OBA-version of Alekhno’s result ([4],
Theorem 3), we first establish the following generalization of ([4], Lemma
1) for arbitrary Banach algebra elements. The same proof applies, but we
include the (more detailed) proof in the interest of completeness.

Lemma 3.2.2. Let A be a Banach algebra and I be an inessential ideal of A. If
a ∈ A−1, b ∈ I and λ ∈ C, then there exist a1 ∈ A−1 and µ ≥ 0 such that
a + λb = a1 + µb.

Proof. Let a ∈ A−1, b ∈ I and λ ∈ C. If λ ≥ 0, then the result holds with
a1 = a and µ = λ. Hence, suppose that λ ∈ C\{λ ∈ C : λ ≥ 0}. Seeing that
I is an ideal, we have that a−1b ∈ I. Since I is inessential, σ(a−1b) must have
at most 0 as an accumulation point.

Suppose that 1
µ−λ ∈ σ(a−1b) for all µ ≥ 0. Then 1

1
n−λ
∈ σ(a−1b) for all

n ∈ N, and hence − 1
λ = limn→∞

1
1
n−λ
∈ σ(a−1b) by the closedness of the

spectrum, so that − 1
λ ∈ acc σ(a−1b). But this contradicts the fact that I is

inessential; hence there exists µ ≥ 0 such that 1
µ−λ /∈ σ(a−1b).

For such µ, we have that (µ− λ)
[

1
µ−λ 1− a−1b

]
∈ A−1; that is, 1− (µ−

λ)a−1b ∈ A−1. Consequently,

a + λb = a− (µ− λ)b + µb = a[1− (µ− λ)a−1b] + µb.
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Let a1 = a[1− (µ− λ)a−1b]. The proof is completed as a1 ∈ A−1.

As a consequence of Lemma 3.2.2, we have the following result which
will be used a number of times in the sequel.

Corollary 3.2.3. Let A be a Banach algebra and I be an inessential ideal of A. If
a = b + λ1c1 + λ2c2 + · · ·+ λncn for some scalars λ1, . . . , λn ∈ C, b ∈ A−1 and
c1, . . . , cn ∈ I, then a has the form

a = bn + µ1c1 + µ2c2 + · · ·+ µncn,

where µ1, . . . , µn ≥ 0 and bn ∈ A−1.

Proof. Since b ∈ A−1, c1 ∈ I and λ1 ∈ C, we have from Lemma 3.2.2 the
existence of a b1 ∈ A−1 and µ1 ≥ 0 such that

a = (b + λ1c1) + λ2c2 + λ3c3 + · · ·+ λncn

= b1 + µ1c1 + λ2c2 + λ3c3 + · · ·+ λncn

= µ1c1 + (b1 + λ2c2) + λ3c3 + · · ·+ λncn.

Now, since b1 ∈ A−1, c2 ∈ I and λ2 ∈ C, we again apply Lemma 3.2.2 to
find an element b2 ∈ A−1 and a positive scalar µ2 ≥ 0 such that

a = µ1c1 + (b1 + λ2c2) + λ3c3 + · · ·+ λncn

= µ1c1 + (b2 + µ2c2) + λ3c3 + · · ·+ λncn

= µ1c1 + µ2c2 + (b2 + λ3c3) + · · ·+ λncn.

If we continue with this procedure and the use of Lemma 3.2.2, we obtain
after n steps bn ∈ A−1 and µn ≥ 0 such that

a = µ1c1 + µ2c2 + · · ·+ µncn + bn.

This completes our proof.

Considering the canonical homomorphism π : A → A/I, where I is an
inessential ideal of an OBA (A, C), we remark that if I ⊆ span(C ∩ I), then
Wπ = W+

π . This remark can be seen from ([18], Lemma 5.3), which gives
Wπ = A−1 + I, and by applying Corollary 3.2.3. This fact indicates a gener-
alization of the second part of (3.2.1).

In the rest of the section we consider more general Banach algebra homo-
morphisms.
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Observe that the inclusion F (E) ⊆ span (K ∩ F (E)) (in this particular
form) does not enable us to get a more precise assumption on the Banach
algebra homomorphism φ, seeing that F (E) has no expression in terms of
φ. Evidently, only by taking closures are we able to get a grip on φ as can be
seen in the following remark.

Remark 3.2.4. Let E be a Banach lattice and consider the canonical homomorphism
φ : L(E)→ L(E)/F (E). Then

N(φ) = N(φ) = F (E) = span(K ∩ F (E)) = span (K ∩N(φ)). (3.2.5)

Let (A, C) be an arbitrary OBA. Motivated by equations (3.2.1) and (3.2.5),
we are led to study general Banach algebra homomorphisms T : A→ B sat-
isfying the Riesz property and the condition N(T) = span (C ∩N(T)).

Under the assumption that T satisfies the Riesz property we observe that
there is inclusion A−1 + span(C ∩N(T)) ⊆ W+

T :
If a ∈ A−1 + span(C ∩N(T)), then there exist elements b ∈ A−1 and c ∈

span(C ∩N(T)) satisfying a = b + c. Consequently, we can find a sequence
(cn) in span(C ∩N(T)) such that

a = b + lim
n→∞

cn = lim
n→∞

(b + λ1nc1n + · · ·+ λmncmn)

for some scalars λ1n, . . . λmn ∈ C and c1n, . . . , cmn ∈ C ∩N(T). In view of
Corollary 3.2.3, the statement a ∈ W+

T holds.
If, in addition, T satisfies the condition N(T) = span (C ∩N(T)), it then

follows that

WT = A−1 + N(T) ⊆ A−1 + N(T)

= A−1 + span(C ∩N(T))

⊆ W+
T =W+

T ,

that is,WT =W+
T , in consideration of Proposition 3.1.5.

Therefore, we have proven that if T : A→ B has the Riesz property and
satisfies the condition N(T) = span (C ∩N(T)), thenWT =W+

T . However,
this is not a new fact. As a matter of fact, the equality WT = W+

T is true
even if we had only assumed that T has the Riesz property: ([29], Corollary
3.8) givesWT = A−1, and henceWT =W+

T in light of Proposition 3.1.5.
Strengthening the assumption N(T) = span (C ∩N(T)) to the condi-

tion N(T) = span (C ∩N(T)) leads to the following fact (Theorem 3.2.6(a))
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which is the main result in this section. It describes in general relative to
which Banach algebra homomorphisms every Weyl element is a sum of an
invertible element and a positive null space element. We point out that a
glance at the discussion above reveals that, under the stronger assumption
N(T) = span(C ∩N(T)) (in which case no limits are used), the equality
WT =W+

T is obtained. For the sake of completeness we provide the proof.

Theorem 3.2.6. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism. Each of the following assumptions ensures thatWT =W+

T :
(a) T has the Riesz property and satisfies N(T) = span(C ∩N(T)),
(b) T is spectral radius preserving.

Proof. For the non-trivial inclusion assume that a ∈ WT. Then there exist
b ∈ A−1 and c ∈ N(T) such that a = b + c.

(a) Since c ∈ N(T), we have from assumption the existence of scalars
λ1, λ2, . . . , λn ∈ C and c1, c2, . . . , cn ∈ C ∩N(T) satisfying c = λ1c1 + · · ·+
λncn, and hence a = b+ λ1c1 + · · ·+ λncn. Using Corollary 3.2.3 we can find
bn ∈ A−1 and µ1, µ2, . . . , µn ≥ 0 such that

a = bn + µ1c1 + µ2c2 + · · ·+ µncn.

Let c′ := µ1c1 + µ2c2 + · · ·+ µncn. Then a = bn + c′, where bn ∈ A−1 and
c′ ∈ C ∩N(T). Hence a ∈ W+

T .
(b) From Lemma 1.2.7 we have that c ∈ Rad(A), and hence a = b + c ∈

A−1 by Theorem 1.1.3. Using Proposition 3.1.5 it follows that A−1 =WT, so
thatWT =W+

T .

It is worth mentioning that Theorem 3.2.6(a) is a generalization of Ex-
ample 3.1.3, where the homomorphism πr has the Riesz property and the
identity N(πr) = span (K ∩N(πr)) holds. It does not generalize Example
3.1.2 as the identity N(π) = span (K ∩N(π)) does not hold in general (see
Example 3.2.8). We point out that the latter identity, together with the equal-
ity N(φ) = span (K∩N(φ), hold whenever the Banach lattice E is either AL
or AM (recall Lemma 1.6.9).

Remark 3.2.7. Observe from the proof of Theorem 3.2.6(b) that

A−1 = B+T = BT =W+
T =WT

whenever the Banach algebra homomorphism T is spectral radius preserving.
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Let us mention that without the assumption about the Riesz property
Theorem 3.2.6(a) is not in general true (see Example 3.1.8). Furthermore,
as suspected (or even expected), in view of (3.2.5), the span-condition in
Theorem 3.2.6(a) is not necessary for the validity of the identityW+

T =WT.

Example 3.2.8. Consider the (real) Banach lattice ER := C[0, 1]⊕ l2(R) and the
canonical homomorphism π : L(E) → L(E)/K(E), where E = ER ⊕ iER is the
complexification of ER. ThenWπ = W+

π , but span(K ∩N(π)) ( N(π), where
K = {T ∈ L(E) : TE+ ⊆ E+}.

It is well-known that π satisfies the Riesz property and thatWπ = W+
π

by Example 3.1.2. We now show that N(π) 6= span(K ∩N(π)).
Since C[0, 1] is not a KB-space (as remarked earlier in this thesis, just be-

low Lemma 1.9.5), we have that ER is not a KB-space. We also have from
([35], Examples, p.129) and ([7], Theorem 19.6) that ER is not an AM-space.
It then follows from Theorem 1.6.8 that there exists a compact operator
T : ER → ER which is not regular. Hence TC ∈ L(E) is compact; that is
TC ∈ N(π), and not regular. This gives TC /∈ span(K ∩N(π)), and hence
the result follows. �

Even though Example 3.2.8 illustrates that the span-condition in Theorem
3.2.6(a) is not necessary in general, (in the approach we used) to establish
the identityW+

T = WT we were not able to survive without this condition.
Note that the homomorphism T in Example 3.1.8 (which givesW+

T ( WT)
satisfies the span-condition, but does not have the Riesz property. There-
fore, the importance of the span-condition (next to the assumption about
the Riesz property) in Theorem 3.2.6(a) remains a mystery until we can ans-
wer the following question: Is there an example of a homomorphism T which
satisfies the Riesz property such that W+

T ( WT? At present we do not have
such an example.

Corollary 3.2.9. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism. Under each of the following assumptions we have that BT = B+T :

(a) A is commutative, T has the Riesz property and satisfies the identity N(T) =
span(C ∩N(T)),

(b) T is spectral radius preserving.

Proof. The result is clear from Theorem 3.2.6 and Remark 3.2.7.
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We conclude this section with some examples of Banach algebra homo-
morphisms T for which the equality WT = W+

T (or BT = B+T in the cases
where the domain of T is commutative) holds. We point out that, since N(T)
is a vector space, the inclusion span(C∩N(T)) ⊆ N(T) is always true. Also,
in the case of finite-dimensional OBAs, N(T) is an inessential ideal (as the
spectrum of each OBA element is finite), and therefore T becomes a homo-
morphism which satisfies the Riesz property.

Example 3.2.10. Let n ∈ N and consider the homomorphism T : Cn → C defined
by T(x1, x2, . . . , xn) = x1. ThenWT =W+

T , and hence

W+
T

= =

(Cn)−1 ( B+T WT = FT.
= =

BT

Let C := (Rn)+. Obviously, the element (1, 0, . . . , 0) is not invertible in
Cn. Nonetheless,

(1, 0, . . . , 0) = (1,−1, . . . ,−1) + (0, 1, . . . , 1) ∈ (Cn)−1 + (C ∩N(T)) = B+T .

Hence (Cn)−1 ( B+T .
Denote by en the n-tuple whose nth term is 1 and all other terms are zero.

If x ∈ N(T), then there exist xk := ak + bki, where ak, bk ∈ R for 2 ≤ k ≤ n,
such that

x = (0, x2, . . . , xn) = (0, a2, . . . , an) + i(0, b2, . . . , bn).

For t, s ∈ N, let {ak2 , . . . , akt} = {a2, . . . , an} ∩ R+ and take {bl2 , . . . , bls}
= {b2, . . . , bn} ∩R+. Then the elements akt+1 , . . . , akn , bls+1 , . . . bln are the neg-
ative real numbers in {a2, . . . an, b2, . . . , bn} and

x =
t

∑
j=2

akj ekj + (−1)
n

∑
j=t+1

(−akj)ekj + i
s

∑
j=2

blj elj + (−i)
n

∑
j=s+1

(−blj)elj .

We have shown that x can be represented as a linear combination of n-tuples
in C∩N(T); that is x ∈ span(C∩N(T)). Therefore N(T) = span(C∩N(T))
and by Theorem 3.2.6(a) we have thatWT =W+

T .
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We mention that the set of Weyl elements (or upper Weyl elements) rel-
ative to T is given by

WT = {(x1, x2, . . . , xn) ∈ Cn : x1 6= 0 and x2, . . . , xn ∈ C} =W+
T .

A simple verification shows that this is precisely the set of Fredholm ele-
ments of Cn relative to T. Hence, by using the fact that Cn is commutative,
the desired inclusion scheme follows. �

Example 3.2.11. Consider the homomorphism T : l∞(C) → l∞(C) defined by
T(x1, x2, . . .) = (x2, x3, . . .). ThenWT =W+

T , and hence

W+
T

= =

(l∞(C))−1 ( B+T WT = FT.
= =

BT

It is easy to see that N(T) = {(x1, 0, 0, . . .) : x1 ∈ C}. Since the spectrum
of each element in N(T) is finite, we have that N(T) is inessential, and hence
T satisfies the Riesz property.

Take a ∈ N(T). Then there exists z := x + yi, where x, y ∈ R, such that
a = (z, 0, 0, . . .) = (x, 0, 0, . . . ) + i(y, 0, 0, . . .). Depending on the signs of x
and y, a straightforward argument shows that a can be represented as a lin-
ear combination of elements in l∞(R+) ∩N(T). Hence a ∈ span(l∞(R+) ∩
N(T)), so that the identity N(T) = span(l∞(R+) ∩N(T)) holds. From The-
orem 3.2.6(a) it follows thatWT =W+

T .

We mention that the set of Weyl elements (or upper Weyl elements) rel-
ative to T is given by

{(x1, x2, x3, . . .) ∈ l∞(C) : x1 ∈ C and |xi| ≥ K for all i ≥ 2 and some K > 0}.

This is precisely the set of Fredholm elements of l∞(C) relative to T. Hence,
by using the fact that l∞(C) is commutative, the result follows. �

The following example will be useful in the sequel.
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Example 3.2.12. Let n ∈ N and consider the homomorphism T : Mu
n(C) → C

defined by

T


x11 x12 x13 · · · x1n

0 x22 x23 · · · x2n

0 0 x33 · · · x3n
...

...
... . . . ...

0 0 0 · · · xnn

 = x11.

ThenWT =W+
T . Moreover,

W+
T

( =

(Mu
n(C))−1 ( B+T WT = FT.

( =

BT

Observe that N(T) consists of all upper triangular matrices with entry
in the first row and first column zero.

Let C := Mu
n(R+). For the non-trivial inclusion suppose that A ∈ N(T).

Since every element of N(T) is a matrix with at most (n+2)(n−1)
2 non-zero

entries, we can force A, depending on the signs of the real and imaginary
parts of the entries in A, to be written as a linear combination of at most (n+

2)(n− 1) elements (where each element is a matrix consisting of only one
non-zero entry) in C ∩N(T). Hence A ∈ span(C ∩N(T)), so that N(T) =

span(C ∩N(T)). By Theorem 3.2.6(a), we have thatWT =W+
T .

Here, the Weyl elements (or upper Weyl elements) relative to T are given
by the set of all upper triangular matrices with entry in the first row and first
column non-zero. An easy argument shows that this is precisely the set of
Fredholm elements of Mu

n(C) relative to T. Hence, by also using the fact that
every square matrix is generalized Drazin invertible and Proposition 1.5.4,
we have that BT =WT =W+

T = FT.
Obviously, the element

n− 1 rows




1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0

 ∈ Mu
n(C)
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is not invertible. It is however upper Browder since it can be decomposed
as the sum of

1 0 0 · · · 0
0 −1 0 · · · 0
0 0 −1 · · · 0
...

...
... . . . ...

0 0 0 · · · −1

 ∈ Mu
n(C)−1 and


0 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

 ∈ C ∩N(T)

which commute. This gives Mu
n(C)−1 ( B+T .

Consider the element

n− 1 rows




1 1 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0

 := A

which is Browder. If A = A1 + A2, where

A1 :=


1 1− x12 −x13 · · · −x1n

0 −x22 −x23 · · · −x2n

0 0 −x33 · · · −x3n
...

...
... . . . ...

0 0 0 · · · −xnn


denotes an invertible element and

A2 :=


0 x12 x13 · · · x1n

0 x22 x23 · · · x2n

0 0 x33 · · · x3n
...

...
... . . . ...

0 0 0 · · · xnn


an arbitrary positive null space element, then xii 6= 0 for all i ∈ {2, . . . , n}
and the entries in A2 are non-negative real numbers. Now, A1A2 = A2A1

implies that x12 + x22 = 0, which is impossible as x12 ≥ 0 and x22 > 0.
Hence A is not upper Browder, so that B+T ( BT. �

Remark 3.2.13. Example 3.2.12 illustrates that the commutativity assumption on
the domain of T in Corollary 3.2.9(a) cannot in general be dropped.
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3.3 Basic properties of upper Browder and upper
Weyl elements

This section summarizes some basic algebraic properties of upper Weyl and
upper Browder elements. Throughout, we shall supply numerous examples
indicating the necessity of the assumptions in our results.

We start our discussion with a number of corollaries derived from Lemma
3.2.2.

Corollary 3.3.1. Let T : A → B be a Banach algebra homomorphism which sat-
isfies the Riesz property. If a ∈ A−1, b ∈ N(T) and λ ∈ C, then there exist
a1 ∈ A−1 and µ ≥ 0 such that a + λb = a1 + µb.

Proof. The result follows from the fact that N(T) is an inessential ideal of A
and Lemma 3.2.2.

Corollary 3.3.1 then allows us to make the following two conclusions.

Corollary 3.3.2. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism which satisfies the Riesz property. If a ∈ A−1, b ∈ C ∩N(T) and
λ ∈ C, then a + λb ∈ W+

T .

Proof. Let a ∈ A−1, b ∈ C ∩N(T) and λ ∈ C. By Corollary 3.3.1 there exist
a1 ∈ A−1 and µ ≥ 0 such that a + λb = a1 + µb. Since a1 ∈ A−1 and
µb ∈ C ∩N(T), it follows that a + λb ∈ W+

T .

Corollary 3.3.3. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism which satisfies the Riesz property. If a ∈ A−1 and b ∈ C ∩N(T)
commute and λ ∈ C, then a + λb ∈ B+T .

Proof. Let a ∈ A−1 and b ∈ C ∩N(T) ∩Comm (a) and λ ∈ C. By Corollary
3.3.1 there exist a1 ∈ A−1 and µ ≥ 0 such that a + λb = a1 + µb. Using the
fact that a and b commute, it follows that a1 and b also commute. Now, since
a1 ∈ A−1 and µb ∈ C ∩N(T) commute, we have that a + λb ∈ B+T .

It is a familiar fact that the sets of Weyl and Browder elements rela-
tive to an arbitrary Banach algebra homomorphism are closed under non-
zero scalar multiplication. If T denotes a Banach algebra homomorphism,
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we note that, though this is clearly the case for all non-negative real num-
bers, it does not seem obvious whetherW+

T and B+T are closed under non-
zero scalar multiplication. Using Corollaries 3.3.2 and 3.3.3, our next re-
sult shows thatW+

T and B+T are closed under non-zero scalar multiplication
whenever T has the Riesz property. We point out here that this is an impor-
tant observation and will be useful in proving Proposition 4.2.5.

Lemma 3.3.4. Let (A, C) be an OBA and T : A → B be a Banach algebra homo-
morphism which satisfies the Riesz property. If 0 6= λ ∈ C, then λW+

T ⊆ W
+
T

and λB+T ⊆ B
+
T .

Proof. Let 0 6= λ ∈ C and suppose that a ∈ W+
T . Then a = b + c, where

b ∈ A−1 and c ∈ C ∩N(T). Since λb ∈ A−1 and c ∈ C ∩N(T), we have
from Corollary 3.3.2 that λa = λb + λc ∈ W+

T . In a similar way, using
Corollary 3.3.3, it can be shown that a ∈ B+T implies λa ∈ B+T whenever
0 6= λ ∈ C.

The next example shows that the assumption “T has the Riesz property"
in Lemma 3.3.4 cannot in general be omitted.

Example 3.3.5. Consider the OBA (C(K), C), where K = [0, 1] and C := { f ∈
C(K) : f (x) ∈ R+ for all x ∈ K}, and let T : C(K) → C(K) be the homomor-
phism induced by composition with the unit function 1 on K. If h ∈ C(K) is defined
by h(z) = −z for all z ∈ K, then h ∈ W+

T , but −h /∈ W+
T .

Since 1(K) = {1}, we can extend h|1(K) to the constant function −1 on K
which is invertible and satisfies h ≥ −1. From Example 3.1.4 we have that
h ∈ W+

T (= B+T ), but −h is not upper Weyl (upper Browder) by Example
3.1.8. We note that, since N(T) = {w ∈ C(K) : w(1) = 0}, T does not satisfy
the Riesz property. �

Although our next result is of independent interest, we state it here for use
in Theorem 3.3.8(c). It generalizes Lemma 3.3.4 to arbitrary invertible OBA
elements which are linear combinations of positive elements.

Lemma 3.3.6. Let (A, C) be an OBA and T : A → B be a Banach algebra homo-
morphism which satisfies the Riesz property. If a ∈ A−1 ∩ span C and b ∈ W+

T ,
then ab, ba ∈ W+

T .
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Proof. Since a ∈ span C, there exist λ1, λ2, . . . , λn ∈ C and a1, a2, . . . , an ∈ C
such that a = λ1a1 + · · ·+ λnan. Now

ba = (b1 + b2)a = b1a + b2(λ1a1 + · · ·+ λnan)

for some b1 ∈ A−1 and b2 ∈ C ∩N(T). Using Corollary 3.2.3 we can find
(b1a)n ∈ A−1 and µ1, µ2, . . . , µn ≥ 0 such that

ba = (b1a)n + µ1b2a1 + · · ·+ µnb2an ∈ A−1 + (C ∩N(T)) =W+
T .

In a similar way it can be shown that ab ∈ W+
T .

We remark that, if a ∈ A−1 ∩ C in Lemma 3.3.6, then ab, ba ∈ W+
T for an

arbitrary T.
Unlike the set of Weyl elements relative to an arbitrary Banach algebra

homomorphism T, W+
T is not in general closed under multiplication. We

verify this in the next example.

Example 3.3.7. Consider the OBA (C(K), C), where K = [0, 1] and C := { f ∈
C(K) : f (x) ∈ R+ for all x ∈ K}, and let T : C(K) → C(K) be the homomor-
phism induced by composition with the unit function 1 on K. If h ∈ C(K) is defined
by h(z) = −z for all z ∈ K, then h ∈ W+

T , but h2 /∈ W+
T .

From Example 3.3.5 we have that h ∈ W+
T . A similar approach to that

in Example 3.1.8 shows that h2
|1(K) has no invertible extension, say, g to K

satisfying z2 = h2(z) ≥ g(z) for all z ∈ K. Hence h2 /∈ W+
T . �

Theorem 3.3.8 describes conditions under which the product of upper Weyl
elements is again upper Weyl. In particular, from (c) we have that the prod-
uct of positive upper Weyl elements are again upper Weyl whenever the
Banach algebra homomorphism satisfies the Riesz property.

Theorem 3.3.8. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism. If a, b ∈ W+

T , then, under each of the following assumptions,
ab ∈ W+

T :
(a) T is spectral radius preserving,
(b) T satisfies the Riesz property and N(T) = span(C ∩N(T)),
(c) a, b ∈ C and T satisfies the Riesz property.

Proof. The proofs of (a) and (b) are clear from Theorem 3.2.6, which gives
WT =W+

T , and the fact thatWT is closed under multiplication.
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(c) By assumption, let a = a1 + a2 and b = b1 + b2 for some a1, b1 ∈ A−1

and a2, b2 ∈ C ∩N(T). Hence a1, b1 ∈ A−1 ∩ span C, so that

ab = (a1 + a2)b = a1b + a2b ∈ W+
T + (C ∩N(T)) =W+

T

by Lemma 3.3.6.

We remark (referring to (a) and (b)) that neither of the assumptions “T
is spectral radius preserving" and “T has the Riesz property" can in general
be dropped. This can be seen from Example 3.3.7, where the given homo-
morphism is neither spectral radius preserving (Example 3.1.8 and Theorem
3.2.6 (b)), nor satisfies the Riesz property (Example 3.3.5).

It is known that every almost invertible Fredholm element is Browder (see
Proposition 1.5.4). In the last part of this section we investigate the relation-
ship between the subsets AD ∩ FT and B+T of BT, where T : A→ B denotes
a Banach algebra homomorphism. From Propositions 1.5.4 and 3.1.5 it is
clear that B+T ⊆ AD ∩ FT whenever T satisfies the Riesz property. (By Ex-
ample 3.2.12 this inclusion is strict in general.) However, Example 3.3.5 (h is
upper Browder but not almost invertible Fredholm) indicates that the inclu-
sion is no longer valid if the relevant Banach algebra homomorphism does
not satisfy the Riesz property. A natural question would be when an almost
invertible Fredholm element is upper Browder. We provide an answer to
this question in the following theorem.

Theorem 3.3.9. Let (A, C) be an OBA, T : A → B be a Banach algebra homo-
morphism and a ∈ AD ∩ FT. If p(a, 0) ∈ C, then a is upper Browder.

Proof. Suppose that a ∈ AD ∩ FT. If 0 /∈ σ(a), then the result obviously
holds since a ∈ A−1 ⊆ B+T . Therefore, suppose that 0 ∈ iso σ(a) and con-
sider the representation a = a − p + p, where p := p(a, 0). By Corollary
2.2.6 we have that a− p ∈ A−1, and from Proposition 1.5.5 and assumption
it follows that p ∈ C ∩N(T). Hence a ∈ B+T as a− p and p commute.

Our next example shows that, if the spectral idempotent of an almost
invertible Fredholm element a corresponding to 0 is not a positive element,
then a may not be upper Browder.
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Example 3.3.10. Consider the homomorphism T : Mu
3 (C)→ C defined by

T

 x11 x12 x13

0 x22 x23

0 0 x33

 = x11

and M :=
( 1 1 0

0 0 1
0 0 0

)
∈ Mu

3 (C) = A. Then M ∈ AD ∩ FT, P(M, 0) /∈ Mu
3 (R+)

and M /∈ B+T .

Since 0 /∈ {1} = σ(TM), we have that M ∈ FT, and hence M ∈ AD ∩FT.
One can easily verify that MD =

( 1 1 1
0 0 0
0 0 0

)
, and hence

P(M, 0) = I −MD M =
( 0 −1 −1

0 1 0
0 0 1

)
/∈ Mu

3 (R+).

Suppose that
( 1 1 0

0 0 1
0 0 0

)
=
( 1 1−x12 −x13

0 −x22 1−x23
0 0 −x33

)
+
( 0 x12 x13

0 x22 x23
0 0 x33

)
∈ A−1 + N(T), where

x12, x13, x23 ≥ 0, x22, x33 > 0 and the matrices on the right hand side of
the identity commute. As in Example 3.2.12, the commutativity of the two
matrices forces the equality x12 + x22 = 0. But x12 ≥ 0 and x22 > 0, and
therefore M cannot be decomposed as a sum of an invertible element and
a positive element in N(T) which commute. Consequently, M is not upper
Browder. �

Our next result, which is an immediate consequence of Theorem 3.3.9 and
which does not require the domain of the Banach algebra homomorphism
to be commutative (as in Corollary 3.2.9(a)), gives conditions under which
a Browder element is upper Browder.

Corollary 3.3.11. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism which satisfies the Riesz property. Then every Browder element a
with the property that p(a, 0) ∈ C is upper Browder.

Proof. The result is clear from Proposition 1.5.4 and Theorem 3.3.9.

The following result shows that the sets of upper Weyl and upper Brow-
der elements can also be used to characterize the radical of a Banach algebra.
Since the proof of ([26], Proposition 4.1) can be adapted to prove Proposition
3.3.12, we shall omit its proof.

Proposition 3.3.12. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism. Then

Rad(A) = {a ∈ A : B+T a ⊆ QN(A)} = {a ∈ A :W+
T a ⊆ QN(A)}.
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3.4 Perturbation results

In this section we study the behaviour of elements belonging to W+
T and

B+T under perturbation by elements from a number of sets. It is known
that the set of Weyl elements (relative to an arbitrary Banach algebra homo-
morphism) remains stable under perturbation by null space elements. With
Corollary 3.2.3 in mind, we can establish the following perturbation result
for the upper Weyl elements.

Proposition 3.4.1. Let (A, C) be an OBA and T : A→ B be a Banach algebra ho-
momorphism satisfying the Riesz property. ThenW+

T =W+
T + span(C∩N(T)).

Proof. For the non-trivial inclusion, suppose that a ∈ W+
T + span(C∩N(T)).

Then there exist b ∈ W+
T and c ∈ span(C ∩N(T)) such that

a = b + c = b1 + b2 + λ1c1 + λ2c2 + · · ·+ λncn,

where b1 ∈ A−1, b2 ∈ C ∩N(T), λ1, . . . , λn ∈ C and c1, . . . , cn ∈ C ∩N(T).
Utilizing Corollary 3.2.3, we have that a = bn + b2 +µ1c1 +µ2c2 + · · ·+µncn

for some bn ∈ A−1 and µ1, . . . , µn ≥ 0, and hence a ∈ W+
T .

Next, we present an analogue of a result by Mouton and Raubenheimer
[see [29], Theorem 2.2 (2 and 3)] for upper Browder and upper Weyl ele-
ments. We point out that a key role is played by Theorem 1.1.3.

Proposition 3.4.2. Let (A, C) be an OBA, T : A → B be a Banach algebra
homomorphism and a ∈ A.
(a) If x = b + c, where b ∈ Rad(A) and c ∈ C ∩N(T), then a ∈ W+

T ⇒ a + x ∈
W+

T . In particular, if x ∈ Rad(A), then a ∈ W+
T if and only if a + x ∈ W+

T .
(b) If x = b + c, where b, c ∈ Comm2(a), b ∈ Rad(A) and c ∈ C ∩N(T), then
a ∈ B+T ⇒ a + x ∈ B+T .

Proof. (a) Suppose that a ∈ W+
T . Then a = a1 + a2 for some a1 ∈ A−1 and

a2 ∈ C ∩N(T). Now a + x = a1 + a2 + b + c = (a1 + b) + (a2 + c), where
a2 + c ∈ C ∩N(T) and a1 + b ∈ A−1 by Theorem 1.1.3. Hence a + x ∈ W+

T .
Assume now that x ∈ Rad(A). Obviously we only need to prove the

converse implication. Suppose that a + x ∈ W+
T . Then there exist b1 ∈ A−1

and b2 ∈ C ∩N(T) such that a + x = b1 + b2, and hence a = −x + b1 + b2 ∈
A−1 + (C ∩N(T)) =W+

T , by Theorem 1.1.3.

(b) Suppose that a ∈ B+T . Then a = a1 + a2, where a1 ∈ A−1, a2 ∈ C ∩N(T)
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and a1a2 = a2a1. Since a1, a2 ∈ Comm(a), we have that b and c commute
with both a1 and a2. Also, bc = cb as the identity ab = ba holds. Now
a + x = a1 + a2 + b + c = (a1 + b) + (a2 + c), where the elements a2 +

c ∈ C ∩N(T) and a1 + b ∈ A−1 (by Theorem 1.1.3) commute. Therefore
a + x ∈ B+T .

Observe from Proposition 3.4.2(a) thatW+
T =W+

T + Rad(A).

Remark 3.4.3. We point out that, by applying Proposition 1.2.9, the set Rad(A)

in Proposition 3.4.2(b) can be replaced by QN(A).

In ([29], Theorem 2.2 (2)) Mouton and Raubenheimer showed that the
converse implication in Proposition 3.4.2(a) holds for Weyl elements. The
following example illustrates that this is not the case for upper Weyl ele-
ments.

Example 3.4.4. Consider the OBA (C(K), C), where K := [0, 1] and C = {h ∈
C(K) : h(x) ∈ R+ for all x ∈ K}, and let T : C(K) → C(K) be the homomor-
phism induced by composition with the unit function 1. If f , g ∈ C(K) are defined
by f (z) = z and g(z) = 1− z for all z ∈ K, then g ∈ Rad(C(K)) + (C ∩N(T))
and f + g ∈ W+

T , but f /∈ W+
T .

Since C(X) is a semisimple OBA, we have that Rad(C(K)) = {0}. Us-
ing the fact that N(T) = {w ∈ C(K) : w(1) = 0}, it follows that g ∈
Rad(C(K)) + (C ∩N(T)). Also, f + g = 1 ∈ C(K)−1 ⊆ W+

T , but f /∈ W+
T

by Example 3.1.8. �

Next, we show that the converse implication in Proposition 3.4.2(a) holds
whenever T has the Riesz property. We point out that the proof of this re-
sult relies on Proposition 3.4.1.

Theorem 3.4.5. Let (A, C) be an OBA, T : A→ B be a Banach algebra homomor-
phism satisfying the Riesz property and a ∈ A. If x = b + c, where b ∈ Rad(A)

and c ∈ span(C ∩N(T)), then a ∈ W+
T if and only if a + x ∈ W+

T .
In particular, if x ∈ Rad(A) + (C ∩N(T)), then a ∈ W+

T is equivalent to
a + x ∈ W+

T .

Proof. If a ∈ W+
T , then a + x = a1 + a2 + b + c for some a1 ∈ A−1 and

a2 ∈ C ∩N(T). In view of Theorem 1.1.3 we have that a1 + b ∈ A−1, and
hence a1 + b + a2 ∈ W+

T . Consequently, by recalling Proposition 3.4.1, it
follows that a + x = (a1 + b + a2) + c ∈ W+

T .
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Conversely, suppose that a ∈ A is such that a + x ∈ W+
T . Then

a = a + x− x = d1 + d2 − (b + c) = d1 + d2 − b + λ1c1 + λ2c2 + · · ·+ λncn

for some d1 ∈ A−1 and d2 ∈ C ∩ N(T) and where λ1, . . . , λn ∈ C and
c1, . . . , cn ∈ C ∩N(T). Consequently, by Corollary 3.2.3, we can find d1n ∈
A−1 and µ1, . . . , µn ≥ 0 satisfying

a = (d1n − b) + (d2 + µ1c1 + µ2c2 + · · ·+ µncn),

so that a ∈ A−1 + (C ∩N(T)) =W+
T in view of Theorem 1.1.3.

The second statement follows directly from the first part of the theorem.

3.5 Regularities

Among other things, the theory of regularities can be used to establish spec-
tral mapping theorems for several kinds of spectra. Here, we present exam-
ples demonstrating that the sets of upper Weyl and upper Browder elements
are not regularities in general.

We start this section by recalling the definition of a regularity given by
Kordula and Müller in [23].

Definition 3.5.1 (Regularity). ([23], Definition 1.2) A non-empty subset R of a
Banach algebra A is called a regularity if the following properties are satisfied:
(a) if a ∈ A and n ∈ N, then a ∈ R if and only if an ∈ R,
(b) if a, b, c, d ∈ A are mutually commuting elements such that ac + bd = 1, then
a, b ∈ R if and only if ab ∈ R.

Examples of some of the more well-known regularities include the sets
of left and right invertible elements and the set of invertible elements of a
Banach algebra. It is familiar that the sets of Browder and Weyl elements
relative to an arbitrary Banach algebra homomorphism are not regularities
in general.

In [33] Müller divided the axioms of the definition of a regularity into
two parts. This process gave rise to two new notions: the concepts of lower
and upper semi-regularities.

Definition 3.5.2 (Lower semi-regularity). ([33], Definition 1) A non-empty
subset R of a Banach algebra A is called a lower semi-regularity if the following
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properties are satisfied:
(a) if a ∈ A, n ∈ N and an ∈ R implies a ∈ R,
(b) if a, b, c, d ∈ A are mutually commuting elements such that ac + bd = 1, then
ab ∈ R implies a, b ∈ R.

Definition 3.5.3 (Upper semi-regularity). ([33], Definition 10) A non-empty
subset R of a Banach algebra A is called an upper semi-regularity if the following
properties are satisfied:
(a) if a ∈ A, then a ∈ R implies that an ∈ R for all n ∈ N,
(b) if a, b, c, d ∈ A are mutually commuting elements such that ac + bd = 1, then
a, b ∈ R implies ab ∈ R,
(c) R contains a neighbourhood of the unit 1.

Consequently, a subset of a Banach algebra is a regularity if and only if
it is both an upper and a lower semi-regularity.

We remark that condition (c) in Definition 3.5.3 is automatically satisfied
by lower semi-regularities as a lower semi-regularity always contains the
open set of invertible elements ([33], Lemma 2(ii)).

Proposition 3.5.4. Let T : A→ B be a Banach algebra homomorphism. ThenWT

is an upper semi-regularity.
Moreover, if T has the Riesz property, then BT is an open regularity.

The first statement above is clear from ([28], Corollary 8.2). For BT the
result follows from the fact that BT = Bπ ([28], Corollary 5.6), ([26], Theo-
rem 7.5) and the identity Bπ = AD ∩ Fπ, where π : A → A/N(T) denotes
the canonical homomorphism.

In ([28], pp.354-355) H. Mouton, S. Mouton and H. Raubenheimer re-
marked (referring to ([21], Example 4.4)) thatWT is not a lower semi-regularity
in general (even if T has the Riesz property).

In Examples 3.5.5 and 3.5.6 we demonstrate that the sets of upper Brow-
der and upper Weyl elements of a Banach algebra are in general neither
lower nor upper semi-regularities.

Example 3.5.5. Consider the OBA (C(K), C), where K := [0, 1] and C = {h ∈
C(K) : h(x) ∈ R+ for all x ∈ K}, and let T : C(K) → C(K) be the homomor-
phism induced by composition with the unit function 1. ThenW+

T (= B+T ) is not a
lower semi-regularity.
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Consider h ∈ C(K) defined by h(z) = z for all z ∈ K. Then h,−1, 0,−1 ∈
C(K) are mutually commuting functions satisfying h0 + (−1)(−1) = 1. Us-
ing Example 3.3.5 we have that −h = h(−1) ∈ W+

T , but h /∈ W+
T by Exam-

ple 3.1.8. �

Example 3.5.6. Consider the OBA (C(K), C), where K := [0, 1] and C = {h ∈
C(K) : h(x) ∈ R+ for all x ∈ K}, and let T : C(K) → C(K) be the homomor-
phism induced by composition with the unit function 1. ThenW+

T (= B+T ) is not
an upper semi-regularity.

Consider h ∈ C(K) defined by h(z) = −z for all z ∈ K. The result is clear
from Example 3.3.7. �

In view of ([4], Theorem 3) and the remark in the second paragraph follow-
ing Proposition 3.5.4 we have (even for a homomorphism T which satisfies
the Riesz property) thatW+

T is not a lower semi-regularity in general.
A consequence of Theorem 3.2.6(a), Corollary 3.2.9(a) and Proposition

3.5.4 is the following.

Corollary 3.5.7. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism satisfying the Riesz property and N(T) = span(C∩N(T)). Then
W+

T is an upper semi-regularity.
Furthermore, if A is also commutative, thenW+

T (= B+T ) is an open regularity.
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Chapter 4

The upper Browder and upper
Weyl spectra

Throughout this chapter, let (A, C) denote an arbitrary OBA and T : A →
B a Banach algebra homomorphism. Just as the sets WT and BT define,
respectively, the Weyl and Browder spectra w.r.t. T, we use here the sets
W+

T and B+T to define two new spectra: the upper Weyl and upper Browder
spectra (relative to T). The aim of this chapter is to study the basic properties
of the upper Weyl and upper Browder spectra of an element in an OBA.

4.1 Elementary properties and examples

Definition 4.1.1. Let (A, C) be an OBA, T : A → B be a Banach algebra homo-
morphism and a ∈ A.

• The upper Browder spectrum of a, denoted by β+
T (a), is given by

β+
T (a) = {λ ∈ C : λ1− a /∈ B+T }.

• The upper Weyl spectrum of a, denoted by ω+
T (a), is given by

ω+
T (a) = {λ ∈ C : λ1− a /∈ W+

T }.

SinceWT (BT) is closed under non-zero scalar multiplication, it follows
that λ1− a is Weyl (Browder) if and only if a− λ1 is Weyl (Browder). A con-
sequence of the fact thatW+

T and B+T are not closed under non-zero scalar
multiplication (recall Example 3.3.5) is that the sets

{λ ∈ C : λ1− a /∈ X} and {λ ∈ C : a− λ1 /∈ X},

59
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where X ∈ {B+T ,W+
T }, do not coincide in general. We verify this in the next

example.

Example 4.1.2. Consider the OBA (C(K), C), where K := [0, 1] and C = {h ∈
C(K) : h(x) ∈ R+ for all x ∈ K}, and let T : C(K) → C(K) be the homomor-
phism induced by composition with the unit function 1. If f ∈ C(K) is defined by
f (z) = z for all z ∈ K, then ω+

T ( f ) = {1} and {λ ∈ C : f − λ1 /∈ W+
T } =

[0, 1]. Therefore

β+
T ( f ) = ω+

T ( f ) 6= {λ ∈ C : f − λ1 /∈ W+
T } = {λ ∈ C : f − λ1 /∈ B+T }.

Recall from Example 3.1.4 that λ1− f is upper Weyl w.r.t. T if and only
if (λ1− f )|1(K) has an invertible extension to K, say g, satisfying λ1− f ≥ g.

If λ = 1, then (λ1− f )|1(K)(1) = 0, so that (λ1− f )|1(K) is not invertible,
and hence does not have an invertible extension to K. This gives 1 ∈ ω+

T ( f ).
If λ 6= 1, then (λ1− f )|1(K)(1) = λ− 1, and hence 0 /∈ (λ1− f )|1(K)({1}),

so that (λ1− f )|1(K) is invertible. Consider the constant function g : K → C
defined by g(z) = λ − 1 for all z ∈ K. Then g is an invertible extension
of (λ1− f )|1(K) to K satisfying λ1− f ≥ g. Hence λ /∈ ω+

T ( f ). This gives
ω+

T ( f ) = {1}.
Again, f − λ1 is upper Weyl w.r.t. T if and only if ( f − λ1)|1(K) has an

invertible extension to K, say g, satisfying f − λ1 ≥ g.
A similar approach (using the intermediate value theorem) to that in the

proof of Example 3.1.8 shows that, for λ ∈ [0, 1], the function ( f − λ1)|1(K)
has no invertible extension g to K satisfying f − λ1 ≥ g. Hence f − λ1 is not
upper Weyl. By also using the fact that A−1 ⊆ W+

T , it follows that

[0, 1] ⊆ {λ ∈ C : f − λ1 /∈ W+
T } ⊆ σ( f ) = [0, 1],

and hence ω+
T ( f ) = {1} 6= [0, 1] = {λ ∈ C : f − λ1 /∈ W+

T }. The result
follows from the fact that C(K) is commutative. �

In view of Lemma 3.3.4 we have the following:

Proposition 4.1.3. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism which satisfies the Riesz property. If a ∈ A, then

ω+
T (a) = {λ ∈ C : λ1− a /∈ W+

T } = {λ ∈ C : a− λ1 /∈ W+
T } = −ω+

T (−a)

and

β+
T (a) = {λ ∈ C : λ1− a /∈ B+T } = {λ ∈ C : a− λ1 /∈ B+T } = −β+

T (−a).
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The following result shows that the upper Weyl and upper Browder
spectra give rise to “essential spectra". The proof is fairly straightforward,
but we include it for the sake of completeness.

Proposition 4.1.4. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism. For a ∈ A, we have the following equalities:

β+
T (a) =

⋂
c∈C∩N(T)

ac=ca

σ(a + c) (4.1.5)

ω+
T (a) =

⋂
c∈C∩N(T)

σ(a + c) (4.1.6)

{λ ∈ C : a− λ1 /∈ B+T } =
⋂

c∈C∩N(T)
ac=ca

σ(a− c) =
⋂

c∈−C∩N(T)
ac=ca

σ(a + c) (4.1.7)

{λ ∈ C : a− λ1 /∈ W+
T } =

⋂
c∈C∩N(T)

σ(a− c) =
⋂

c∈−C∩N(T)

σ(a + c) (4.1.8)

Proof. We first prove (4.1.5). Suppose that λ /∈ ⋂
c∈C∩N(T)

ac=ca
σ(a + c). Then

there exists d ∈ C ∩N(T) commuting with a such that λ /∈ σ(a + d). Let
b := λ1− (a + d). Then λ1− a = b + d, where b ∈ A−1 and d ∈ C ∩N(T)
satisfy bd = db. Hence λ1− a ∈ B+T , so that λ /∈ β+

T (a). Consequently,

β+
T (a) ⊆

⋂
c∈C∩N(T)

ac=ca

σ(a + c).

Conversely, suppose that λ /∈ β+
T (a). Then λ1− a ∈ B+T , and hence there

exist commuting elements b ∈ A−1 and d ∈ C ∩N(T) such that λ1− a =

b + d. Note that d also commutes with a and that λ1− (a + d) = b ∈ A−1.
Hence λ /∈ σ(a + d), so that λ /∈ ⋂c∈C∩N(T)

ac=ca
σ(a + c). Therefore

β+
T (a) ⊇

⋂
c∈C∩N(T)

ac=ca

σ(a + c)

and the equality is proved.
By following a similar argument as in the proof of (4.1.5), the equality in

(4.1.6) can be obtained.
Also, a similar approach as in the proof of (4.1.5) can be used to prove

(4.1.7) and (4.1.8).
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We observe that the difference between the upper Browder and upper
Weyl spectra and the sets in (4.1.7) and (4.1.8), respectively, is that the set
C ∩N(T) in (4.1.5) and (4.1.6) is replaced by the set −C ∩N(T).

Remark 4.1.9. If E denotes a Banach lattice, then the upper Weyl spectrum of
T ∈ L(E) (relative to π : L(E) → L(E)/K(E)) was introduced by Alekhno in
[3], as in (4.1.6), without utilizing the concept of an upper Weyl element.

Corollary 4.1.10. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism which satisfies the Riesz property. Then

β+
T (a) =

⋂
c∈C∩N(T)

ac=ca

σ(a− c)

and ⋂
c∈C∩N(T)

σ(a− c) = ω+
T (a) =

⋂
c∈span(C∩N(T))

σ(a + c)

for all a ∈ A.

Proof. The identity for the upper Browder spectrum and the first identity for
the upper Weyl spectrum follow from Proposition 4.1.3 and equations (4.1.7)
and (4.1.8). To establish the second identity for the upper Weyl spectrum, we
need only show that ω+

T (a) ⊆ ⋂c∈span(C∩N(T)) σ(a + c). Hence suppose that
λ /∈ ⋂

c∈span(C∩N(T)) σ(a + c). Then there exists d ∈ span(C ∩N(T)) such
that λ /∈ σ(a + d); that is, λ1− a− d ∈ A−1 ⊆ W+

T in view of Proposition
3.1.5, so that λ1− a ∈ W+

T by Proposition 3.4.1. Thus, λ /∈ ω+
T (a).

Proposition 4.1.11. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism. If a ∈ A, then

ω+
T (a)

⊆ ⊆
σ(Ta) ⊆ ωT(a) β+

T (a) ⊆ σ(a).
⊆ ⊆

βT(a)

Proof. This follows directly from Proposition 3.1.5.

Corollary 4.1.12. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism. If a ∈ A, then the sets β+

T (a) and ω+
T (a) are non-empty and

compact.
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Proof. The non-empty property follows from the fact that σ(Ta) is non-empty
and Proposition 4.1.11, while the compact property follows from the fact
that the spectrum is a non-empty compact (Theorem 1.2.8 (ii)) subset of a
Hausdorff space, and Proposition 4.1.4.

Examples 3.1.6 to 3.1.8 indicate that the inclusions in Proposition 4.1.11
are strict in general. The examples presented next illustrate this fact again,
but here, for each of our examples, we describe what each set in Proposition
4.1.11 looks like. This information will be useful in the sequel.

Example 4.1.13. Consider the OBA (C(K), C), where K := [0, 1] and C = {h ∈
C(K) : h(x) ∈ R+ for all x ∈ K}, and let T : C(K) → C(K) be the homomor-
phism induced by composition with the unit function 1. If f ∈ C(K) is defined by
f (z) = z for all z ∈ K, then

ω+
T (− f )

( =

σ(T(− f )) = ωT(− f ) β+
T (− f ) = σ(− f ),

= (
βT(− f )

where βT(− f ) = {−1} and σ(− f ) = [−1, 0].

Directly from Example 3.1.8 we have that 0 ∈ ω+
T (− f )\ωT(− f ). More-

over, a similar argument as in Example 4.1.2 yields ωT(− f ) = {−1}, and
hence

{−1} = ωT(− f ) ⊆ ω+
T (− f ) ⊆ σ(− f ) = [−1, 0]

in view of Proposition 4.1.11. It remains to use a similar argument as in
Example 3.1.8 to obtain ω+

T (− f ) = [−1, 0]. The result then follows from the
fact that C(K) is commutative and the fact that σ(T(− f )) 6= ∅. �

Our next example illustrates that both the Browder and upper Weyl spectra
are in general strictly contained in the upper Browder spectrum.

Example 4.1.14. Consider the homomorphism T : Mu
3 (C)→ C defined by

T

 x11 x12 x13

0 x22 x23

0 0 x33

 = x11

and M :=
( 1 1 0

0 0 1
0 0 0

)
∈ Mu

3 (C) = A. Then
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ω+
T (M)

= (
σ(TM) = ωT(M) β+

T (M) = σ(M),
= (

βT(M)

where βT(M) = {1} and σ(M) = {0, 1}.

We have that λ /∈ ω+
T (M) if and only if(

λ−1 −1 0
0 λ −1
0 0 λ

)
= λ

( 1 0 0
0 1 0
0 0 1

)
−
( 1 1 0

0 0 1
0 0 0

)
∈ W+

T ;

which happens if and only if λ 6= 1 (as established in Example 3.2.12).
Hence

{1} = ω+
T (M) ⊆ β+

T (M) ⊆ σ(M) = {0, 1} (4.1.15)

in view of Proposition 4.1.11. Since M /∈ B+T by Example 3.3.10, we have
from Proposition 4.1.3 and (4.1.15) that β+

T (M) = {0, 1}. The result then fol-
lows from Example 3.2.12 and equation (4.1.15). �

We point out here that another example illustrating that the upper Weyl
spectrum of an OBA element is strictly contained in the upper Browder
spectrum of that element is provided by Example 3.1.7.

Example 4.1.16. Consider the homomorphism T : C2 → C defined by T(z, w) =

z and a := (1, 0) ∈ C2. Then

ω+
T (a)

= =

σ(Ta) = ωT(a) β+
T (a) ( σ(a),

= =

βT(a)

where β+
T (a) = {1} and σ(a) = {0, 1}.

From Example 3.2.10 we have that λ(1, 1)− (1, 0) = (λ− 1, λ) ∈ B+T (=
W+

T ) if and only if λ 6= 1, and hence β+
T (a) = {1} ( {0, 1} = σ(a). The

result follows from the fact that all the other spectra in the diagram are non-
empty. �

We conclude this section by presenting a few perturbation results for the up-
per Weyl spectrum. These corollaries are immediate consequences of results
established in Section 3.4.
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Corollary 4.1.17. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism. If a ∈ A, then ω+

T (a) = ω+
T (a + b) for all b ∈ Rad(A).

Proof. Let a ∈ A and b ∈ Rad(A). Then λ /∈ ω+
T (a) if and only if λ1− a ∈

W+
T , which is equivalent to λ1− a + (−b) ∈ W+

T by Proposition 3.4.2(a);
that is λ /∈ ω+

T (a + b). The proof is complete.

It is interesting to note that another proof of the above fact can be ob-
tained using ([10], Theorem 5.3.1).

The following example demonstrates that Corollary 4.1.17 is not true for
the upper Browder spectrum.

Example 4.1.18. Let A := Mu
2 (C) and consider the homomorphism T : A → C

defined by T
[ x11 x12

0 x22

]
= x11. If a :=

(
1 1
0 0
)
∈ A, then β+

T (a) 6= β+
T (a + b) for

b =
( 0 −2

0 0

)
∈ Rad(A).

It is clear that σ(Ta) = {1} and σ(a) = {0, 1}. We show that a /∈ B+T . Sup-

pose that this is not the case. Then there exist a1 :=
(

1 1−x12
0 −x22

)
∈ A−1, (that

is, x22 6= 0) and a2 :=
(

0 x12
0 x22

)
∈ Mu

2 (R+) ∩N(T) such that a1a2 = a2a1. The
commutativity property, however, implies that x12 + x22 = 0, which is im-
possible as x22 > 0. Therefore a /∈ B+T , and hence 0 ∈ β+

T (a) by Proposition
4.1.3. Consequently, β+

T (a) = {0, 1} using Proposition 4.1.11.
Now, a + b :=

( 1 −1
0 0

)
, and hence

{1} = σ(T(a + b)) ⊆ β+
T (a + b) ⊆ σ(a + b) = {0, 1}

by using Proposition 4.1.11 again. Since( 1 −1
0 0

)
=
( 1 −2

0 −1

)
+
(

0 1
0 1

)
∈ A−1 + (Mu

2 (R+) ∩N(T)),

where the two matrices on the right hand side commute, we have that
a + b ∈ B+T . Hence 0 /∈ β+

T (a + b) by Proposition 4.1.3, so that β+
T (a + b) =

{1} 6= {0, 1} = β+
T (a). �

The following result indicates that the upper Weyl spectrum (relative to Ba-
nach algebra homomorphisms satisfying the Riesz property) is invariant
under perturbation of positive and negative null space elements.

Corollary 4.1.19. Let (A, C) be an OBA and T : A → B be a Banach alge-
bra homomorphism which satisfies the Riesz property. If a ∈ A, then ω+

T (a) =

ω+
T (a + b) for all b ∈ span(C ∩N(T)).
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Proof. Let a ∈ A and b ∈ span(C ∩N(T)). In view of the representation of
the upper Weyl spectrum according to Corollary 4.1.10, it follows that

ω+
T (a + b) =

⋂
c∈span(C∩N(T))

σ(a + b + c) =
⋂

d∈span(C∩N(T))

σ(a + d) = ω+
T (a),

which concludes the proof.

4.2 Spectral mapping theorems

In this section we investigate whether the spectra introduced in Definition
4.1.1 obey any spectral mapping theorems. We recall the following spectral
inclusion theorem by Harte for the Weyl and Browder spectra.

Theorem 4.2.1. ([20], Theorem 2) Let T : A → B be a Banach algebra homo-
morphism, a ∈ A and f : U → C be a holomorphic function on U, an open set
containing σ(a). If f is non-constant on every component of U, then

ωT( f (a)) ⊆ f (ωT(a))

and
βT( f (a)) ⊆ f (βT(a)).

Moreover, if T satisfies the Riesz property, then βT( f (a)) = f (βT(a)).

It is worth noting that, since BT is a regularity whenever T has the Riesz
property and WT is an upper semiregularity (recall Proposition 3.5.4), the
above theorem was recently proved in a more general context (see [[33],
Theorem 20] and [[23], Theorem 1.4]).

We begin by observing that, under the assumptions of Theorem 4.2.1,
the upper Weyl and upper Browder spectra do not satisfy the given one-
way spectral inclusions.

Example 4.2.2. Consider the OBA (C(K), C), where K = [0, 1] and C := {h ∈
C(K) : h(x) ∈ R+ for all x ∈ K}, and let T : C(K) → C(K) be the homomor-
phism induced by composition with the unit function 1 on K. Consider the element
f ∈ C(K) defined by f (z) = z for all z ∈ K and let U be an open set containing
σ( f ) := [0, 1]. Then

β+
T (g( f )) = ω+

T (g( f )) = [−1, 0] * {−1} = g(ω+
T ( f )) = g(β+

T ( f )),

where g : U → C defined by g(λ) = −λ is holomorphic on U and non-constant
on every component of U.
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From Example 4.1.13 we have that ω+
T (g( f )) = ω+

T (− f ) = [−1, 0], while
Example 4.1.2 gives g(ω+

T ( f )) = g({1}) = {−1}. The result follows from
the fact that C(K) is commutative. �

Using Theorem 3.2.6(a), Corollary 3.2.9(a) and Theorem 4.2.1, we have the
following spectral inclusion results.

Proposition 4.2.3. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism with the Riesz property satisfying N(T) = span(C ∩N(T)). If
a ∈ A and U is an open set containing σ(a), then

ω+
T ( f (a)) ⊆ f (ω+

T (a))

for every function f : U → C holomorphic on U which is non-constant on each
component of U.

Moreover, if A is also commutative, then

β+
T ( f (a)) = f (β+

T (a)).

In establishing Theorem 4.2.1 an important role was played by the fact
that WT is closed under multiplication. As this is not the case for W+

T in
general (recall Example 3.3.7), it is not easy to set up a one-way spectral
inclusion result (designed for the situationW+

T ( WT) for the upper Weyl
spectrum. In particular, we emphasize that the approach (relying on ([16],
Theorem 3.7 and Corollary 3.9, pp.78-79)) followed by Harte to proof Theo-
rem 4.2.1 is of no use here.

Unfortunately, at this stage, we have not yet managed (for cases where
W+

T (WT and B+T ( BT) to come up with spectral inclusion results for the
upper Weyl and upper Browder spectra dealing with more general holo-
morphic functions and arbitrary (positive) elements. However, we provide
an answer (see Proposition 4.2.5) in the case where the function f (λ) = λ−1

is considered.
It is known that (ωT(a))−1 = ωT(a−1) and (βT(a))−1 = βT(a−1) for all

a ∈ A−1. Our next example illustrates that even these identities do not in
general hold for the upper Weyl and upper Browder spectra.

Example 4.2.4. Consider the OBA (C(K), C), where K := [1
2 , 1] and C = {h ∈

C(K) : h(x) ∈ R+ for all x ∈ K}, and let T : C(K) → C(K) be the homomor-
phism induced by composition with the unit function 1. Consider the invertible
element f ∈ C(K) defined by f (z) = z for all z ∈ K. Then

(β+
T ( f ))−1 = (ω+

T ( f ))−1 = {1} 6= [1, 2] = ω+
T ( f−1) = β+

T ( f−1).
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As in the proof of Example 4.1.2 we get that ω+
T ( f ) = {1}, and hence

(ω+
T ( f ))−1 = {1}. Recalling Proposition 4.1.11 it follows that ωT( f−1) =

(ωT( f ))−1 = {1} as ωT( f ) 6= ∅. Again, by Proposition 4.1.11

{1} ⊆ ω+
T ( f−1) ⊆ σ( f−1) = [1, 2].

Let λ ∈ (1, 2] and suppose that λ1− f−1 ∈ W+
T . Then there exists an

invertible extension, say, g of (λ1− f−1)|1(K) to K satisfying λ1− f−1 ≥ g.
Moreover, g(K) ⊆ R, g(1

2) ≤ (λ1− f−1)(1
2) = λ− 2 ≤ 0 and g(1) = (λ1−

f−1)(1) = λ− 1 > 0. The intermediate value theorem yields a contradiction
to the invertibility of g, so that λ1− f−1 /∈ W+

T . Hence (1, 2] ⊆ ω+
T ( f−1),

and the result then follows. �

We have the following result.

Proposition 4.2.5. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism which satisfies the Riesz property. If a ∈ A−1 ∩ C, then
(i) (ω+

T (a))−1 ⊆ ω+
T (a−1),

(ii) (β+
T (a))−1 ⊆ β+

T (a−1).
Moreover, if C is inverse-closed, then we have equalities in (i) and (ii).

Proof. Assume that a ∈ A−1 ∩ C. Then 0 /∈ ω+
T (a) and 0 /∈ ω+

T (a−1) follow
from the fact that 0 /∈ σ(a) ∪ σ(a−1) and Proposition 4.1.11. Also, 0 /∈ β+

T (a)
and 0 /∈ β+

T (a−1).
(i) If 0 6= λ /∈ ω+

T (a−1), then λ(a − 1
λ1)a−1 = λ1− a−1 ∈ W+

T , so that
( 1

λ 1 − a)a−1 ∈ W+
T by Lemma 3.3.4. Since a ∈ A−1 ∩ C, it follows that

1
λ 1− a ∈ W+

T , and therefore λ /∈ (ω+
T (a))−1.

(ii) This follows by using the same argument as that in the proof of (i).
For the converse inclusions, suppose now that C is inverse-closed. Again,

we give the proof for the upper Weyl spectrum; the proof for the upper
Browder spectrum is done in a similar manner. Let 0 6= λ /∈ (ω+

T (a))−1.
Then 1

λ 1− a ∈ W+
T , and hence a − 1

λ1 ∈ W+
T by Lemma 3.3.4. Using the

fact that a−1 ∈ A−1∩C, it follows that (a− 1
λ1)a−1 ∈ W+

T , and consequently
λ1− a−1 = λ(a− 1

λ 1)a−1 ∈ W+
T by recalling Lemma 3.3.4 again. This gives

λ /∈ ω+
T (a−1).

Although Example 4.2.4 illustrates that the assumption about the Riesz
property is not in general necessary to obtain (i) and (ii) in the above result,
it does show that the condition “T has the Riesz property" in Proposition
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4.2.5 is essential to achieve identities. In general, it appears that, in devel-
oping a spectral inclusion theorem for the upper Weyl and upper Browder
spectra (dealing with more general holomorphic functions), the assumption
that T has the Riesz property may be essential. Even the assumption about
the inverse-closedness of the algebra cone may be of importance.

4.3 Connected hulls

Throughout this section we let E denote a Banach lattice and K the alge-
bra cone {T ∈ L(E) : TE+ ⊆ E+} of positive operators on E. We start
by recalling the following general terminology and notation. The spec-
trum of a regular operator T in Lr(E) is called the o-spectrum of T and
will be indicated by σo(T). The o-spectrum was first investigated by Schae-
fer [36]. Obviously, the inclusion σ(T) ⊆ σo(T) holds. We let σe(T) :=
σ(T + K(E),L(E)/K(E)) denote the essential spectrum of T ∈ L(E) and
σoe(T) := σ(T + Kr(E),Lr(E)/Kr(E)) the order essential spectrum of T ∈
Lr(E). By ([9], Theorem 4.2(a)) we have that σe(T) ⊆ σoe(T).

Bearing in mind Remark 1.1.4 (and the remark in the second paragraph on
p.16), recall that the Weyl and upper Weyl spectra relative to π (respectively,
πr) coincide [([4], Theorem 16) and this thesis Example 3.1.3]. These are
very important examples of homomorphisms with closed range satisfying
the Riesz property. We wish to point out the following observation.

Lemma 4.3.1. Let E be a Banach lattice.

(i) If T ∈ L(E), then p(T, λ) ∈ span(K ∩N(π)) for all λ ∈ (iso σ(T))\σe(T).

(ii) If T ∈ Lr(E), then p(T, λ) ∈ span(K ∩N(πr)) for all λ ∈ (iso σo(T))\σoe(T).

Proof. (i) Let λ ∈ (iso σ(T))\σe(T). From ([2], Theorem 7.44(1)) we have that
p(T, λ) is a finite rank operator on E. The result then follows from the in-
clusions F (E) ⊆ K(E) = N(π) and F (E) ⊆ span (K ∩ F (E)) (see our
discussion in Section 3.2).

(ii) Suppose now that λ ∈ (iso σo(T))\σoe(T). In view of ([9], Corollary
3.6) we have that λ ∈ (iso σ(T))\σe(T), and hence p(T, λ) ∈ F (E) by
recalling ([2], Theorem 7.44(1)) again. From our discussion in Example
3.1.3 it follows that F (E) ⊆ Kr(E)) = span (K ∩ Kr(E)), and therefore
p(T, λ) ∈ span(K ∩N(πr)).
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Theorem 1.5.8, a result due to Mouton, Mouton and Raubenheimer, states
that the connected hulls of the Fredholm, Browder and Weyl spectra (rela-
tive to an arbitrary Banach algebra homomorphism with closed range sat-
isfying the Riesz property) coincide. Focussing on elements a of a gen-
eral OBA (A, C) with the property that p(a, λ) ∈ span(C ∩N(T)) for all
λ ∈ (iso σ(a))\σ(Ta), where T : A → B denotes an arbitrary Banach al-
gebra homomorphism with closed range satisfying the Riesz property, we
show next that even the connected hull of the upper Weyl spectrum of a can
be added to the list in Theorem 1.5.8.

Theorem 4.3.2. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism with closed range satisfying the Riesz property. If a ∈ A is such
that

p(a, λ) ∈ span(C ∩N(T)) for all λ ∈ (iso σ(a))\σ(Ta),

then ησ(Ta) = ηωT(a) = ηβT(a) = ηω+
T (a).

Proof. In view of Theorem 1.5.8 we are only left to establish the last iden-
tity. Suppose that a ∈ A is such that p(a, λ) ∈ span(C ∩ N(T)) for all
λ ∈ (iso σ(a))\σ(Ta). Since the inclusion⊆ is obvious, it is enough to prove
the opposite inclusion. We do so by showing that σ(a)\ηβT(a) ⊆ C\ω+

T (a).
Let λ ∈ σ(a)\ηβT(a). Then λ1− a ∈ BT = AD ∩ FT in light of Propo-

sition 1.5.4, and hence λ ∈ (iso σ(a))\σ(Ta) by the definition of the almost
invertible Fredholm spectrum. Consequently, p(a, λ) ∈ span(C ∩N(T)) by
assumption, which gives p := p(λ1− a, 0) ∈ span(C ∩N(T)) in view of
Lemma 1.3.4. Now

λ1− a = λ1− a− p + p = λ1− a− p + (λ1c1 + λ2c2 + · · ·+ λncn)

for some scalars λ1, . . . , λn ∈ C, c1, . . . , cn ∈ C ∩N(T) and where λ1− a−
p ∈ A−1 follows from Corollary 2.2.6. By Corollary 3.2.3 we have that

λ1− a = (λ1− a− p)n + µ1c1 + µ2c2 + · · ·+ µncn,

where µ1, . . . , µn ≥ 0 and (λ1 − a − p)n ∈ A−1, and therefore λ1 − a ∈
A−1 + (C ∩N(T)) = W+

T ; that is λ /∈ ω+
T (a). We have thus shown that the

inclusion σ(a)\ηβT(a) ⊆ C\ω+
T (a) holds, and hence ω+

T (a) ⊆ ηβT(a), so
that ηω+

T (a) ⊆ ηηβT(a) = ηβT(a).

Some remarks: Recall that p(a, λ) ∈ N(T) for all λ ∈ (iso σ(a))\σ(Ta)
(Lemma 2.2.7). Under the stronger assumption “p(a, λ) ∈ span (C ∩N(T))
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for all λ ∈ (iso σ(a))\σ(Ta)", we have from Theorem 4.3.2 that the iden-
tity ηωT(a) = ηω+

T (a) holds. If this assumption is further strengthened to
N(T) = span (C ∩N(T)), then by Theorem 3.2.6(a) the even stronger con-
clusion ωT(a) = ω+

T (a) is obtained.
We point out that, at this stage, we do not know (besides in the operator

case) whether the statement “p(a, λ) ∈ span(C ∩N(T))" in Theorem 4.3.2 is
true for all elements a such that λ ∈ (iso σ(a))\σ(Ta).

In the following example we demonstrate that the upper Browder spec-
trum cannot generally be added to the list of identities in Theorem 4.3.2.

Example 4.3.3. Consider the Banach algebra homomorphism T : Mu
3 (C) → C

defined by

T

 x11 x12 x13

0 x22 x23

0 0 x33

 = x11

and M :=
( 1 1 0

0 0 1
0 0 0

)
∈ Mu

3 (C). Then ηω+
T (M) 6= ηβ+

T (M).

The homomorphism T has closed range (in fact it is onto) and satisfies
the Riesz property. Also, the identity N(T) = span (Mu

3 (R+) ∩N(T)) was
established in Example 3.2.12. By recalling Example 4.1.14 we have that
ηω+

T (M) = {1} 6= {0, 1} = ηβ+
T (M). �
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Chapter 5

The upper Browder spectrum
property

In this chapter we continue our discussion on the upper Browder spectrum
introduced in Chapter 4. Our main purpose here is to investigate, in an
arbitrary OBA, certain questions that originated in the context of bounded
linear operators on Banach lattices and appeared in the papers [3] and [4]
by Alekhno. It is assumed throughout that E denotes a Banach lattice and
π : L(E)→ L(E)/K(E) the canonical homomorphism on L(E).

5.1 Introduction

If T ∈ L(E), then the set of inclusions

σe(T) ⊆ ωπ(T) ⊆ ω+
π (T) ⊆ σ(T) (5.1.1)

were established by Alekhno in ([3], p.376). It is known that, if the spectral
radius r(T) of T is an element of σ(T) (this is always the case for positive
operators by ([35], Proposition 4.1, p.323)) but not of σe(T), then r(T) is also
not in ωπ(T). This can be seen in the following two ways:

(i) Due to the nature of the element r(T), the assumption r(T) /∈ σe(T) is
equivalent to r(T) /∈ ησe(T). Using the identity

ησe(T) = ηωπ(T) = ηβπ(T) (5.1.2)

(see Theorem 1.5.8), it follows that the implication r(T) /∈ σe(T) ⇒ r(T) /∈
ωπ(T) holds.

72
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73 5.1. Introduction

(ii) If r(T) /∈ σe(T), then r(T) is a pole of (λI − T)−1 by Corollary 2.1.5.
From Corollary 2.2.6 we have that r(T) /∈ σ(T+T−1), where T−1 = P(T, r(T))
is the spectral idempotent of T corresponding to r(T). Using the fact that
T−1 ∈ F (E) ⊆ K(E) we have that r(T) /∈ ⋂K∈K(E) σ(T + K) = ωπ(T).

A natural question which arises from (5.1.1) is the following: given it is
known that the spectral radius of T is an element of σ(T) but not of σe(T),
can we conclude that

r(T) /∈ ω+
π (T)? (5.1.3)

In his 2007-paper [3] Alekhno investigated the aforementioned question.
However, in his subsequent article, he found that there is always the impli-
cation

r(T) /∈ σe(T)⇒ r(T) /∈ ω+
π (T) (5.1.4)

as the equality ωπ(T) = ω+
π (T) holds (see [4], Theorem 16).

Recall that, in Chapter 4, we introduced the upper Weyl spectrum of an
element of an arbitrary OBA and established the inclusions

σ(Ta) ⊆ ωT(a) ⊆ ω+
T (a) ⊆ σ(a)

in Proposition 4.1.11, where T denotes a homomorphism from an OBA (A, C)
to an arbitrary Banach algebra and a ∈ A. In view of Theorem 4.3.2 we can
state the following result.

Proposition 5.1.5. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism with closed range satisfying the Riesz property. If a ∈ A is such
that p(a, λ) ∈ span(C∩N(T)) for all λ ∈ (iso σ(a))\σ(Ta), then r(a) /∈ σ(Ta)
implies that r(a) /∈ ω+

T (a).

A quick glance at the proof of Theorem 4.3.2 (or, instead, Corollary 2.2.6
together with the representation of the upper Weyl spectrum provided in
Corollary 4.1.10) reveals that Proposition 5.1.5 remains valid if the state-
ment “p(a, λ) ∈ span(C ∩N(T)) for all λ ∈ (iso σ(a))\σ(Ta)" is true only
for λ = r(a).

In this thesis (see Definition 4.1.1) the concept of the upper Browder spec-
trum of an element in an OBA was also introduced and has not been studied
in the context of bounded linear operators on Banach lattices. From Propo-
sition 4.1.11 we have that σ(Ta) ⊆ ω+

T (a) ⊆ β+
T (a) ⊆ σ(a), where T denotes
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a homomorphism from an OBA (A, C) to an arbitrary Banach algebra and
a ∈ A.

In view of Proposition 5.1.5 (together with the observation thereafter)
and Example 4.3.3, we are interested in investigating the following more
general question: if the spectral radius of an OBA element is outside its
Fredholm spectrum, what conditions suffice for it to be outside the upper
Browder spectrum of the element? Of course we are only interested in OBA
elements a with the property that r(a) ∈ σ(a). Consequently, as a result of
Theorem 1.8.2, our study will focus on positive elements.

Definition 5.1.6 (Upper Browder spectrum property). Let (A, C) be an OBA
and T : A → B be a Banach algebra homomorphism. Then a ∈ C is said to
have the upper Browder spectrum property (relative to T) if there is the implication
r(a) /∈ σ(Ta)⇒ r(a) /∈ β+

T (a).

As a starting point, we recall the following result by Alekhno.

Theorem 5.1.7. ([4], Theorem 18(a)) Let E be a Dedekind complete Banach lattice
such that the order continuous dual E∼n separates the points of E. If T ≥ 0 is an
order continuous operator on E such that r(T) /∈ σe(T), then r(T) /∈ σ(T +

α|T−1|) for all 0 6= α ∈ C.

Some remarks: Since T−1 ∈ F (E), we have from ([7], Theorem 16.8) that
|T−1| exists and |T−1| ∈ K(E), and hence α|T−1| is a positive compact op-
erator for all α ∈ R+. However, since aa−1 = a−1a, where a is an arbitrary
OBA element satisfying r(a) ∈ iso σ(a) and a−1 := p(a, r(a)), does not in
general imply that a|a−1| = |a−1|a, we cannot deduce from Theorem 5.1.7
that r(T) /∈ β+

π (T).
At this moment, it is still unclear whether all positive operators on an

arbitrary Banach lattice have the upper Browder spectrum property. We
doubt this is the case, although at present we do not have a counterexample.

In 2012 Alekhno presented the following analogue of Theorem 5.1.7 in the
OBA setting.

Theorem 5.1.8. ([6], Theorem 5.5) Let (A, C) be a Dedekind complete OBA which
has a disjunctive product with closed and proper algebra cone C. If a ∈ C is a
spectrally order continuous element such that r(a) is an f -pole of (λ1− a)−1 and
|a−1| exists, then r(a) /∈ σ(a + α|a−1|) for all 0 6= α ∈ C.
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It is worth noting that, unlike in the operator case, the element |a−1| does
not necessarily exist.

We will continue our discussion on Dedekind complete OBAs with dis-
junctive products in Section 5.5.

The main purpose of this chapter is to display different types of sufficient
conditions for positive OBA elements to have the upper Browder spectrum
property. We point out that, in view of Proposition 5.1.5, we shall be con-
cerned with homomorphisms with closed range having the Riesz property.

5.2 Finite-dimensional semisimple OBAs

First we consider a special class of Banach algebra homomorphisms with
closed range satisfying the Riesz property: homomorphisms defined on a
finite-dimensional (semisimple) OBA. Since the study of finite-dimensional
semisimple (ordered Banach) algebras lead naturally to the Wedderburn-
Artin Theorem, we shall examine homomorphisms from a direct sum of
matrix algebras over C to an arbitrary Banach algebra. Our main result in
this section is Corollary 5.2.11. This result tells us that all positive elements
of a finite-dimensional semisimple OBA have the upper Browder spectrum
property.

We start our discussion with several observations.

Lemma 5.2.1. Suppose that T : A → B is a Banach algebra homomorphism with
dim A < ∞. Then σ(Ta) = ωT(a) = βT(a) for all a ∈ A.

Proof. Since dim A < ∞, we have that σ(a) is finite for all a ∈ A, and hence
T has the Riesz property. It also follows from Corollary 1.1.7 that T has
closed range. The result then follows from Theorem 1.5.8 and the fact that
the relevant spectra are finite.

By a simple algebra we mean an algebra which has no ideals besides the
zero ideal.

Lemma 5.2.2. Let A be a simple Banach algebra and T : A → B be a Banach
algebra homomorphism with closed range. Then ησ(Ta) = ησ(a) for all a ∈ A.

Morover, if A is also finite-dimensional, then σ(a) = σ(Ta) for all a ∈ A. (For
this case T automatically has closed range.)
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Proof. Since N(T) is an ideal of a simple Banach algebra A, it follows that
N(T) = {0}, and hence T satisfies the Riesz property. We also have that the
identity BT = A−1 holds. Therefore, by using Theorem 1.5.8, the equalities
ησ(a) = ηβT(a) = ησ(Ta) for all a ∈ A are clear.

The last statement follows from the fact that the spectra of elements in a
finite-dimensional Banach algebra are finite.

In the results which follow, let 0A denote the zero element of A. The
following fact will be needed in Propositions 5.2.4 and 5.2.7.

Lemma 5.2.3. For t ∈ N, let A1, . . . , At be finite-dimensional simple Banach al-
gebras and T : A1 ⊕ · · · ⊕ At → B be a Banach algebra homomorphism. For each
j ∈ {1, . . . , t}, let A′j := {0A1}⊕ · · · ⊕ Aj⊕ · · · ⊕ {0At} and define Tj : A′j → B
by Tj(0A1 , . . . , aj, . . . , 0At) = T(0A1 , . . . , aj, . . . , 0At) where aj ∈ Aj. Then either
Tj = 0 or Tj(A′j) is a Banach algebra and Tj : A′j → Tj(A′j) is an isomorphism.

Proof. Let j ∈ {1, . . . , n}. Since A′j is isomorphic to Aj, we have that A′j is a
finite-dimensional simple Banach algebra. Using the fact that T is a Banach
algebra homomorphism, we have that Tj is a linear operator (not necessarily
non-zero) which preserves multiplication. For the rest of the proof, consider
a non-zero Tj. (This is possible as T 6= 0.) Then N(Tj) is an ideal of A′j, and
hence N(Tj) = {0A1}⊕ · · ·⊕ {0At}. From Theorems 1.1.5 and 1.1.6 it follows
that Tj(A′j) is a closed subalgebra of B (and therefore a Banach algebra) with
unit T(0A1 , . . . , 1Aj , . . . , 0At). Hence Tj : A′j → Tj(A′j) is a Banach algebra
homomorphism which is one-to-one and onto.

To avoid tedious repetition of notation, it is understood that all notations
introduced in Lemma 5.2.3 are still valid in the results that follow.

Proposition 5.2.4. For t ∈ N, let A1, . . . , At be finite-dimensional simple Banach
algebras and T : A1 ⊕ · · · ⊕ At → B be a Banach algebra homomorphism such
that all Tj’s are non-zero. Then σ(Ta) = σ(a) for all a ∈ A1 ⊕ · · · ⊕ At.

Proof. Since the result for t = 1 is clear from Lemma 5.2.2, we will as-
sume here that t ≥ 2. By assumption and Lemma 5.2.3 we have that all
Tj : A′j → Tj(A′j) are isomorphisms. Since, for each j ∈ {1, . . . , t}, the Ba-
nach algebra Aj is simple, its only ideal is {0Aj}. It is not difficult to verify
that A := A1 ⊕ · · · ⊕ At has 2t − 1 ideals, each of the form I1 ⊕ · · · ⊕ It,
where Ij ∈

{
{0Aj}, Aj

}
for all j ∈ {1, . . . , t}. (By the definition of an ideal A

is excluded.)
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Since N(T) is an ideal of A, it will take on the form of one of the 2t − 1
ideals of A. Via a process of elimination, we determine N(T).

If t = 2, then we note that N(T) cannot coincide with some A′j as this
would imply that Tj = 0; a contradiction. For this case we have that N(T) =
{0A1} ⊕ {0A2}.

Suppose now that t ≥ 3. As before, N(T) cannot coincide with some A′j
as this would indicate that Tj = 0; a contradiction. If N(T) is an ideal which
has at least two non-zero components and at least one zero component, then
we can find j ∈ {1, . . . , t} such that A′j ⊆ N(T). Again, this implies that
Tj = 0, which is not possible. Therefore N(T) = {0A1} ⊕ · · · ⊕ {0At}.

By Corollary 1.1.7 we have that T(A) is a Banach algebra which contains
the unit of B. Using Theorem 1.2.2(ii) and the fact that T : A → T(A) is an
isomorphism, we get that σ(a) = σ(Ta, T(A)) = σ(Ta, B) for all a ∈ A.

Proposition 5.2.4 (in a sense) extends Lemma 5.2.2 to direct sums of
finite-dimensional simple Banach algebras.

From ([10], Theorem 2.1.1) we have that Mn(C) (n ≥ 1) is an exam-
ple of a finite-dimensional simple Banach algebra. The following example
indicates that the assumption in Proposition 5.2.4 that all the Tj’s must be
non-zero is essential.

Example 5.2.5. Consider the homomorphism T : M2(C) ⊕ C → C defined by
T(X, λ) = λ for X ∈ M2(C) and λ ∈ C. Also consider the element A :=((

0 0
0 2
)

, 1
)

. Then σ(TA) = {1} 6= {0, 1, 2} = σ(A).

Observe from Example 5.2.5 that T1 : M2(C) ⊕ {0} → C defined by
T1(X, 0) = T(X, 0) for X ∈ M2(C) is the zero map.

The following result is an immediate consequence of Proposition 5.2.4.

Corollary 5.2.6. Let n1, n2, . . . , nt ∈ N for some t ∈ N and Aj = Mnj(C) for all
j ∈ {1, . . . , t}. If T : A1⊕ · · ·⊕ At → B denotes a Banach algebra homomorphism
with all the Tj’s non-zero, then σ(TX) = σ(X) for all X ∈ A1 ⊕ · · · ⊕ At.

In our next result we investigate the case where some of the Tj’s might
be zero and are concerned with Banach algebra homomorphisms on direct
sums of matrix algebras over C.

Proposition 5.2.7. Let n1, n2, . . . , nt ∈ N for some t ∈ N and Aj = Mnj(C)
for all j ∈ {1, . . . , t}. Suppose that T : A1 ⊕ · · · ⊕ At → B is a Banach algebra
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homomorphism with at least one Tj zero. Then σ(TX) = ω+
T (X) for all X ∈

A1 ⊕ · · · ⊕ At.
Furthermore, if X ∈ A1 ⊕ · · · ⊕ At satisfies r(X) ∈ σ(X)\σ(TX), then

r(X) /∈ β+
T (X).

Proof. Let A := A1⊕· · ·⊕At and assume that Tj = 0 for all j ∈ {s1, . . . , sk} ⊆
{1, . . . , t}. From Lemma 5.2.3 we have that Tj : A′j → Tj(A′j) is an isomor-
phism for all j ∈ {1, . . . , t}\{s1, . . . , sk} := D.

Again, since Aj is simple for all j ∈ {1, . . . , t}, we have that A has 2t − 1

ideals, each of the form I1 ⊕ · · · ⊕ It, where Ij ∈
{
{0Aj}, Aj

}
for all j ∈

{1, . . . , t}.
It is easy to verify that I1 ⊕ · · · ⊕ It, where Ij = Aj for j ∈ {s1, . . . , sk}

and Ij = {0Aj} for j ∈ D, is contained in N(T). Using a similar reasoning
as in the proof of Proposition 5.2.4 we conclude that this subalgebra is pre-
cisely the null space of T. Therefore, since each Xj ∈ Aj can be decomposed
as Xj = Xj1 − Xj2 + iXj3 − iXj4 with Xj1, Xj2, Xj3, Xj4 ∈ Mnj(R+), it fol-
lows that N(T) = span(C ∩N(T)), where C = Mn1(R+)⊕ · · · ⊕Mnt(R+).
Applying Theorem 3.2.6(a) and Lemma 5.2.1 we have that

σ(TX) = βT(X) = ωT(X) = ω+
T (X)

for all X ∈ A, which proves the first part of the proposition.
Now suppose that X ∈ A is such that r(X) ∈ σ(X)\σ(TX). Since X =

(X1, . . . , Xt) with Xj ∈ Aj, we let X0
j := (0A1 , . . . , Xj, . . . , 0At), where Xj is in

the j-th position of the nt-tuple. Consequently,

X = (X1, . . . , 0At) + · · ·+ (0A1 , . . . , Xt) = X0
1 + · · ·+ X0

t

with X0
i X0

j = 0 = X0
j X0

i for all i 6= j. By using ([10], Exercise 9, p.66) and
the fact that σ(Y, A) (and therefore σ(TY, B)) is finite for all Y ∈ A, it then
follows that

σ′(TX, B) = σ′
(

T(X0
1 + · · ·+ X0

t ), B
)

= σ′(TX0
1 + · · ·+ TX0

t , B)

=
(

σ(TX0
1, B) ∪ · · · ∪ σ(TX0

t , B)
)
\{0}

= σ′(TX0
1, B) ∪ · · · ∪ σ′(TX0

t , B)

= σ′(T1X0
1, B) ∪ · · · ∪ σ′(TtX0

t , B)

=
⋃
j∈D

σ′(TjX0
j , B). (5.2.8)
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Since, for j ∈ D, the range Tj(A′j) of Tj is a closed subalgebra of the Banach
algebra B, we have from Theorem 1.2.5 and the remark following Proposi-
tion 1.2.3 that σ′(TjX0

j , Tj(A′j)) = σ′(TjX0
j , B). Hence, using (5.2.8) and the

facts that Tj : A′j → Tj(A′j) is an isomorphism and A′j is isomorphic to Aj, it
follows that

σ′(TX, B) =
⋃
j∈D

σ′(TjX0
j , B)

=
⋃
j∈D

σ′(TjX0
j , Tj(A′j))

=

⋃
j∈D

σ(TjX0
j , Tj(A′j))

 \{0}
=

⋃
j∈D

σ(X0
j , A′j)

 \{0}
=

⋃
j∈D

σ(Xj, Aj)

 \{0}.
Let λ be a positive real scalar satisfying λ > r(X)(≥ r(Xj)) and consider

the decomposition

X− r(X)1A = (X1 − r(X)1A1 , . . . , Xt − r(X)1At) = (U1, . . . , Ut) + (V1, . . . , Vt),

where the Uj and Vj are chosen as follows: If j ∈ D, then r(X) /∈ σ(Xj),
so choose Uj = Xj − r(X)1Aj ∈ A−1

j and Vj = 0Aj . If j /∈ D, then choose

Uj = Xj − λ1Aj ∈ A−1
j and Vj = (λ− r(X))1Aj .

In both cases the Uj’s are invertible in Aj, and hence (U1, . . . , Ut) ∈ A−1.
We are only left to verify whether our selected (V1, . . . , Vt) is an element of
C ∩N(T). Recall that N(T) = I1 ⊕ · · · ⊕ It, where Ij = Aj for j /∈ D and
Ij = {0Aj} for j ∈ D. Since

Vj =

 (λ− r(X))1Aj ∈ Cj ∩ Aj if j /∈ D

0Aj ∈ Cj ∩ {0Aj} if j ∈ D,

it follows that (V1, . . . , Vt) ∈ C ∩N(T), and hence X − r(X)1A ∈ B+T . By
Proposition 4.1.3 r(X) /∈ β+

T (X).

Remark 5.2.9. We mention that, more generally, the first part of Proposition 5.2.7
is true whenever each Aj is a finite-dimensional simple OBA with generating cone,
while the last part holds for each Aj an arbitrary finite-dimensional simple OBA.
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The observations in Corollary 5.2.6 and Proposition 5.2.7 lead directly to
the following result.

Theorem 5.2.10. Any finite-dimensional semisimple OBA is algebraically isomor-
phic to an OBA (A, C) with the property that, if T : A → B is a Banach algebra
homomorphism and a ∈ A is such that r(a) ∈ σ(a) and r(a) /∈ σ(Ta), then
r(a) /∈ β+

T (a).

Proof. By the Wedderburn-Artin Theorem ([10], Theorem 2.1.2) we can take
A = Mn1(C)⊕Mn2(C)⊕ · · · ⊕Mnk(C), with n1, n2, . . . , nk ∈ N. We choose
C = Mn1(R+)⊕Mn2(R+)⊕ · · · ⊕Mnk(R+). Note that our assumption here
indicates that the use of Corollary 5.2.6 is ruled out. Nonetheless, the de-
sired result follows from the second part of Proposition 5.2.7.

Corollary 5.2.11. Any finite-dimensional semisimple OBA is algebraically iso-
morphic to an OBA (A, C) with the property that all positive elements in A have
the upper Browder spectrum property relative to arbitrary Banach algebra homo-
morphisms T : A→ B.

Proof. Choose A and C as in the proof of Theorem 5.2.10. Since each Mni(R+)

is a closed and normal algebra cone in Mni(C), it follows from the remark
preceding Definition 1.7.2 that C is a closed and normal algebra cone in A.
Hence, in view of Theorem 1.8.2, we have that r(a) ∈ σ(a) whenever a ∈ C.
The result then follows from Theorem 5.2.10.

5.3 Homomorphisms with closed range having
the Riesz property

We provide here sufficient conditions for positive OBA elements to have the
upper Browder spectrum property relative to arbitrary Banach algebra ho-
momorphisms with closed range satisfying the Riesz property. Our main
results in this section include Theorem 5.3.3 and Proposition 5.3.5.

We shall begin with a simple observation which forms the basis of our con-
tributions in this section.

Theorem 5.3.1. Let (A, C) be an OBA and I be an ideal of A. Suppose that a ∈ A
is such that r(a) is a Riesz point of σ(a) relative to I. If p(a, r(a)) ∈ C, then there
exists c ∈ C ∩ I ∩Comm(a) satisfying r(a) /∈ σ(a + c).
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Proof. Let a ∈ A be such that r(a) is a Riesz point of σ(a) relative to I. By
definition, r(a) ∈ iso σ(a) and p(a, r(a)) ∈ I, so that a−1 ∈ C∩ I ∩Comm(a)
follows from assumption. The result then follows from Corollary 2.2.6, with
c = a−1.

Theorem 5.3.1 was proved by Alekhno [see [3], Theorem 4(a)] in the
operator algebra L(E) with F (E) the ideal of finite-rank operators on E.
We point out that, the proof given here uses the spectral mapping theorem,
while Alekhno’s proof is based on operator theory techniques.

The following result is a consequence of Theorem 5.3.1.

Corollary 5.3.2. Let (A, C) be an OBA with closed algebra cone C and let I be an
inessential ideal of A. If a ∈ C is such that r(a) is a Riesz point of σ(a) relative to I,
then, under each of the following assumptions, there exists c ∈ C ∩ I ∩Comm(a)
such that r(a) /∈ σ(a + c) :
(i) r(a) is a simple pole of (λ1− a)−1,
(ii) A is commutative and semisimple,
(iii) A is semisimple and C is proper and inverse-closed.

Proof. Let a ∈ C be such that r(a) is a Riesz point of σ(a) relative to I.

(i) This is clear from Theorems 1.8.1 and 5.3.1.

(ii) Suppose that A is commutative and semisimple. From Lemma 1.4.5
we have that r(a) is a pole of (λ1− a)−1, and hence a simple pole by Lemma
2.2.8. The result follows from (i).

(iii) Suppose that A is semisimple with proper and inverse-closed alge-
bra cone C. The proof is similar to the proof of (ii): just replace Lemma 2.2.8
with Lemma 2.2.9.

We are now ready to state our first result in this section for Banach al-
gebra homomorphisms with closed range satisfying the Riesz property. We
mention that (in view of Theorem 1.8.2 and Corollary 2.1.5), in the following
result, r(a) is a Riesz point of σ(a) relative to N(T), and therefore p(a, r(a))
exists.

Theorem 5.3.3. Let (A, C) be an OBA with closed algebra cone C such that the
spectral radius function in (A, C) is monotone. Suppose that T : A → B is a
Banach algebra homomorphism with closed range satisfying the Riesz property and
a ∈ C is such that r(a) /∈ σ(Ta). If p(a, r(a)) ∈ C, then r(a) /∈ β+

T (a).
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Hence, each of the following conditions ensures that r(a) /∈ β+
T (a) :

(i) r(a) is a simple pole of (λ1− a)−1,
(ii) A is commutative and semisimple,
(iii) A is semisimple and C is proper and inverse-closed.

Proof. Suppose that p(a, r(a)) ∈ C. By Theorem 5.3.1 we can find an el-
ement c ∈ C ∩ N(T) ∩ Comm(a) such that r(a) /∈ σ(a + c), and hence
r(a) /∈ ⋂c∈C∩N(T)

ac=ca
σ(a + c) = β+

T (a) using (4.1.5).

For the second part of the theorem, we observe from the proof of Corol-
lary 5.3.2 that, if any of the statements (i) – (iii) hold, then p(a, r(a)) ∈ C.
Hence the result follows from the first part of the theorem.

Since the canonical homomorphism T : A→ A/I, where (A, C) denotes
an OBA and I an inessential ideal of A, has closed range and satisfies the
Riesz property, the preceding theorem can be applied to T.

For the purpose of our next example we establish the following notation.
By Z(E) we denote the center of a Banach lattice E, given by

Z(E) := {T ∈ L(E) : there exists c > 0 such that |Tx| ≤ c|x| for all x ∈ E},

which is a Banach algebra according to ([2], Theorem 3.31). As an applica-
tion of Theorem 5.3.3 we have the following:

Example 5.3.4. If T ∈ Z(E) is a positive operator such that r(T) /∈ σe(T), then
r(T) /∈ β+

π (T).

By ([9], Theorem 8.2(a)) we have that P(T, r(T)) ∈ OI(L(E)). Since
P(T, r(T)) is a positive operator, Theorem 5.3.3 is applicable. �

Also, in view of ([2], Theorems 3.6 and 3.31(1)), Z(E) = C(K) for some com-
pact Hausdorff space K. Hence Z(E) is an example of a commutative and
semisimple OBA, so that by Theorem 5.3.3 all positive operators in Z(E)
have the upper Browder spectrum property relative to arbitrary Banach al-
gebra homomorphisms (acting on Z(E)) with closed range satisfying the
Riesz property.

In light of Proposition 5.1.5 and the remark thereafter, we can state the fol-
lowing result for commutative OBAs. Again, in view of Theorem 1.8.2 and
Corollary 2.1.5, r(a) in Proposition 5.3.5 is a Riesz point of σ(a) relative to
N(T), and therefore p(a, r(a)) exists.
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Proposition 5.3.5. Let (A, C) be a commutative OBA with closed algebra cone
C such that the spectral radius function in (A, C) is monotone. Suppose that T :
A → B is a Banach algebra homomorphism with closed range satisfying the Riesz
property and a ∈ C is such that r(a) /∈ σ(Ta). If p(a, r(a)) ∈ span(C ∩N(T)),
then r(a) /∈ β+

T (a).

The main reason for assuming that the OBA in Proposition 5.3.5 is com-
mutative, is because of the identity ω+

T (a) = β+
T (a). It is not clear whether

the assertion r(a) /∈ β+
T (a) is true if we do away with the commutativity

assumption; that is, we do not know whether Theorem 5.3.3 is valid under
the weaker assumption of p(a, r(a)) ∈ span(C ∩N(T)).

We conclude this section with a discussion on semisimple OBAs. Let us
recall that all positive elements of a finite-dimensional semisimple OBA
(A, C) have the upper Browder spectrum property relative to arbitrary Ba-
nach algebra homomorphisms acting on A (see Corollary 5.2.11). Also,
according to Theorem 5.3.3(iii), under certain natural conditions all posi-
tive elements of semisimple OBAs have the upper Browder spectrum prop-
erty. It is important to note that, due to the assumption about the inverse-
closedness of the algebra cone, this result does not suggest that all positive
operators in L(E) have the upper Browder spectrum property.

It is natural to question the essentiality of the commutativity assumption
next to the semisimple condition in Theorem 5.3.3(ii). (Of course our sus-
picion would dissapear if a positive operator on some Banach lattice which
does not have the upper Browder spectrum property could be found.) Un-
der this reduction, we note that a weaker conclusion is generally achieved:
we are only able to get r(a) /∈ β+

T (au) for some positive element u which is
not necessarily the identity element.

Theorem 5.3.6. Let (A, C) be a semisimple OBA with closed algebra cone C such
that the spectral radius function in (A, C) is monotone. Suppose that T : A → B
is a Banach algebra homomorphism with closed range satisfying the Riesz property
and a ∈ C. If r(a) /∈ σ(Ta), then there exists u ∈ C satisfying au = ua 6= 0 such
that r(a) /∈ β+

T (au).

Proof. Suppose that r(a) /∈ σ(Ta). In view of Theorem 1.8.2 and Corollary
2.1.5, let r(a) be a pole of order, say, k of (λ1− a)−1. From Theorem 1.8.1 and
Lemma 2.2.7 we have that aa−k ∈ C ∩N(T), so that aa−k − r(a)1 ∈ B+T and
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hence r(a) /∈ β+
T (aa−k), by Proposition 4.1.3. It remains to recall Theorem

1.8.1 again to finish this proof.

Whether β+
T (au) in Theorem 5.3.6 can generally be replaced by β+

T (a)
remains an open problem.

5.4 Homomorphisms having the strong Riesz
property

The purpose for writing this section is to show that our results proven for
homomorphisms with closed range satisfying the Riesz property have a
stronger version. The main result here is Theorem 5.4.5.

We start our discussion by recalling the following definition introduced
by Harte.

Definition 5.4.1 (Strong Riesz property of a homomorphism). ([20], (3.3)) A
Banach algebra homomorphism T : A→ B is said to have the strong Riesz property
if ∂σ(a) ⊆ σ(Ta) ∪ iso σ(a) for all a ∈ A.

Consequently, every Banach algebra homomorphism having the strong
Riesz property satisfies the Riesz property. The following result is due to
Mouton, Mouton and Raubenheimer.

Theorem 5.4.2. ([28], Corollary 7.9) If T : A→ B is a Banach algebra homomor-
phism with closed range satisfying the Riesz property, then T has the strong Riesz
property.

In order to show that the assumption “T has closed range and satisfies
the Riesz property" in the results given in Section 5.3 can be relaxed to “T
has the strong Riesz property", we restate Corollary 2.1.5 in terms of homo-
morphisms with the latter property.

Lemma 5.4.3. Let T : A → B be a Banach algebra homomorphism satisfying the
strong Riesz property and a ∈ A. Then the following statements are equivalent:
(i) r(a) ∈ σ(a)\σ(Ta).
(ii) r(a) ∈ σ(a)\σ(a + N(T)).
(iii) r(a) is a Riesz point of σ(a) relative to N(T).

Moreover, if A is a semisimple Banach algebra, then r(a) ∈ σ(a)\σ(Ta) if and
only if r(a) > 0 is a pole of (λ1− a)−1 and p(a, r(a)) ∈ N(T).

Stellenbosch University  https://scholar.sun.ac.za



85 5.4. Homomorphisms having the strong Riesz property

Proof. Since T has the strong Riesz property, it has the Riesz property (i.e.
N(T) is an inessential ideal of A), and therefore π : A → A/N(T) satisfies
the Riesz property. Also, π has closed range, and hence the identities

ηD(a, N(T)) = ησ(πa) = ηβπ(a) = ηβT(a) = ησ(Ta) (5.4.4)

hold by Theorems 1.4.6, 1.5.7 and 1.5.8 and in view of ([37], Corollary 8.1).
Consequently, the equivalences of (i) through (iii) follow from (5.4.4). In

addition, if A is a semisimple Banach algebra, then the last assertion is clear
from Lemma 1.4.5.

One of the most important consequences of Lemma 5.4.3 is that all re-
sults from this point onwards, stated for Banach algebra homomorphisms
with closed range satisfying the Riesz property, remain true for Banach al-
gebra homomorphisms having the strong Riesz property.

Next we state a stronger version of Theorems 5.3.3 and 5.3.6 and Propo-
sition 5.3.5. Note that, in view of Theorem 1.8.2 and Lemma 5.4.3, we have,
in the next result, that r(a) is a Riesz point of σ(a) relative to N(T), and
therefore p(a, r(a)) exists.

Theorem 5.4.5. Let (A, C) be an OBA with closed algebra cone C such that the
spectral radius function in (A, C) is monotone. Suppose that T : A → B is a
Banach algebra homomorphism satisfying the strong Riesz property and a ∈ C is
such that r(a) /∈ σ(Ta). Each of the following conditions gives r(a) /∈ β+

T (a) :
(i) p(a, r(a)) ∈ C; hence any of the assertions (i) – (iii) in Theorem 5.3.3.
(ii) A is commutative and p(a, r(a)) ∈ span(C ∩N(T)).
Furthermore, if A is semisimple, then there exists u ∈ C satisfying au = ua 6= 0
such that r(a) /∈ β+

T (au).

Proof. (i) If any of the mentioned statements holds, then from Theorem 5.3.1
together with Corollary 5.3.2 we have the existence of c ∈ C ∩ N(T) ∩
Comm(a) such that r(a) /∈ σ(a + c). Hence r(a) /∈ β+

T (a) in view of (4.1.5).
(ii) Suppose that A is commutative and that p(a, r(a)) ∈ span(C∩N(T)).

Since the identity ησ(Ta) = ηβT(a) holds in view of (5.4.4), we have that
r(a) ∈ σ(a)\βT(a) by assumption. Following the second paragraph in the
proof of Theorem 4.3.2, with λ = r(a), gives r(a) /∈ ω+

T (a) = β+
T (a).

The proof of the last statement uses the same argument as in the proof
of Theorem 5.3.6; just replace Corollary 2.1.5 with Lemma 5.4.3.
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Some remarks: One of the reasons why we did not consider Banach alge-
bra homomorphisms having the strong Riesz property from the beginning
is because the notion of “strong Riesz" is less often used in the literature
than the notion of “Riesz". We therefore continue to state our results (re-
lated to the upper Browder spectrum property) in terms of Banach algebra
homomorphisms (with closed range) satisfying the Riesz property, though
these results (as we will point out in the sequel) are valid for Banach algebra
homomorphisms having the strong Riesz property.

5.5 OBAs with disjunctive products

Recall that E denotes a Banach lattice and π : L(E) → L(E)/K(E) the
canonical homomorphism on L(E). Since ωπ(T) = ω+

π (T) for all T ∈ L(E),
we have that r(T) /∈ σe(T) if and only if r(T) /∈ ω+

π (T). In ([4], Theo-
rem 18) Alekhno gave concrete examples illustrating the implication r(T) /∈
σe(T)⇒ r(T) /∈ ω+

π (T). In particular, we recall the following result.

Theorem 5.5.1. ([3], Theorem 4(c); [4], Theorem 18) Let E be either an AL- or
a Dedekind complete AM-space with unit and T be a positive operator on E. If
r(T) /∈ σe(T) and r(T) is a pole of order two of (λI − T)−1, then r(T) /∈ σ(T +

(αT−1 + nT−2)
+) for all α ∈ R+\{0} and sufficiently large n (depending on α).

For 0 ≤ S := (αT−1 + nT−2)
+ ∈ K(E), since the identity TS = ST may

generally not hold, we cannot conclude from Theorem 5.5.1 that r(T) /∈
β+

π (T). It is still natural to ask whether the positive operators on Banach lat-
tices as specified in Theorem 5.5.1 have the upper Browder spectrum prop-
erty relative to π.

First note that, under the assumptions on the Banach lattice E as stip-
ulated in Theorem 5.5.1, L(E) (= Lr(E)) becomes a Dedekind complete
semisimple OBA with a disjunctive product. The aim of this section is to
give sufficient conditions for positive elements of arbitrary Dedekind com-
plete semisimple OBAs with disjunctive products to have the upper Brow-
der spectrum property (relative to some prescribed Banach algebra homo-
morphism). As we shall see, an application of Theorem 5.5.4 (the principal
result in this section) to the theory of regular operators provides a partial
answer to the above-mentioned question (see Corollary 5.5.9).
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Combining Proposition 1.9.22 and Theorem 5.1.8, we can already state
the following result for arbitrary Dedekind complete semisimple OBAs with
disjunctive products.

Proposition 5.5.2. Let (A, C) be a Dedekind complete semisimple OBA which has
a disjunctive product with closed and proper algebra cone C such that the spectral
radius function in (A, C) is monotone. Also, suppose that T : A → B is a Banach
algebra homomorphism satisfying the strong Riesz property and is such that the
spectral radius function in (A/N(T), πC) is weakly monotone. If a ∈ C is a
spectrally order continuous element such that r(a) /∈ σ(Ta) and |a−1| exists, then
r(a) /∈ σ(a + α|a−1|) for all 0 6= α ∈ C.

Proof. Suppose that a ∈ C is a spectrally order continuous element such that
r(a) /∈ σ(Ta) and |a−1| exists. From Theorem 1.8.2 we have that r(a) ∈ σ(a),
and hence r(a) is a Riesz point of σ(a) relative to N(T) in view of Lemma
5.4.3. The result then follows from Proposition 1.9.22 and Theorem 5.1.8.

Again, we point out that, in the case of operators on Banach lattices,
|T−1| automatically exists and is an element of N(π) (see the remark below
Theorem 5.1.7). This is, however, not true in the general case. Indeed, one
of the disadvantages of the above result is that it requires the element |a−1|
to exist; which is generally not the case. Moreover, even if |a−1| exists, note
that a−1 = p(a, r(a)) ∈ N(T) (see Lemma 2.2.7) does not imply that |a−1| ∈
N(T), so that Proposition 5.5.2 does not propose that r(a) /∈ ω+

T (a) (and,
therefore, neither that r(a) /∈ β+

T (a)). Thus, it would be interesting to obtain
additional results where the existence of a modulus is not required. In the
rest of the section we demonstrate how Alekhno’s work (summarized in
Section 1.9) enables us to make contributions in this direction.

Let us start by proving the following fact that was noted from the proof
of Theorem 5.1.8 together with Lemma 1.9.27. We mention that, under the
given assumptions, the Frobenius normal form in the next result exists by
Theorem 1.9.26.

Theorem 5.5.3. Let (A, C) be a Dedekind complete OBA which has a disjunctive
product with closed and proper algebra cone. Suppose that a ∈ C is a spectrally
order continuous element such that r(a) > 0 and r(a) is an f -pole of (λ1− a)−1.
If C := {1 = pn, pn−1, . . . , p1, p0 = 0} determines the Frobenius normal form of
a and i ∈ {1, . . . , n} is such that r(a) = r(aqi), where qi := pi pd

i−1, then r(a) is a
simple pole of (λ1− aqi)

−1.
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Proof. Let i ∈ {1, . . . , n} be such that r(aqi) = r(a). We may assume that
pi 6= pj for all i 6= j. Then 0 < qi ∈ OI(A) using Lemma 1.9.7. Since
0 < aqi ≤ a and a ∈ An, it follows from the remark following Definition
1.9.13 that aqi ∈ An. Also, since r(a) is an f -pole of (λ1 − a)−1, we have
that r(aqi) is a pole, say of order m, of (λ1− aqi)

−1. Obviously aqi is a block
(and hence a spectral block) of a. Using the facts that a is a spectrally order
continuous element and r(a) is a pole of order m of (λ1− aqi)

−1, we have
that (aqi)−m ∈ An. Seeing that r(aqi) = r(a) and C determines the Frobenius
normal form of a, the element aqi is irreducible w.r.t. qi. It is only left to note
that OI(A) is Dedekind complete by Corollary 1.9.8; hence r(a) is a simple
pole of (λ1− aqi)

−1 by Lemma 1.9.27.

We mention again that in the next result (and in Corollary 5.5.5) the
Frobenius normal form of a exists according to Corollary 2.1.6. Suppose
that, in these results, the Frobenius normal form of a is determined by C :=
{1 = pn, pn−1, . . . , p1, p0 = 0} and let qi := pi pd

i−1.
It is worth noting that the following theorem presents a partial answer to

the question of whether positive elements of Dedekind complete semisim-
ple OBAs with disjunctive products have the upper Browder spectrum prop-
erty.

Theorem 5.5.4. Let (A, C) be a Dedekind complete semisimple OBA which has
a disjunctive product with closed and proper algebra cone C such that the spectral
radius function in (A, C) is monotone. Also, suppose that T : A → B is a Banach
algebra homomorphism with closed range satisfying the Riesz property and is such
that the spectral radius function in (A/N(T), πC) is weakly monotone. If a ∈ C
is a spectrally order continuous element such that r(a) /∈ σ(Ta), then r(a) /∈
∪n

i=1β+
T (aqi).

Proof. Suppose that a ∈ C is a spectrally order continuous element such that
r(a) /∈ σ(Ta). Then r(a) > 0 and r(a) is a Riesz point of σ(a) relative to N(T)
by Theorem 1.8.2 and Corollary 2.1.5. By Proposition 1.9.22 r(a) is an f -pole
of (λ1− a)−1.

Since 0 ≤ aqi ≤ a and the spectral radius function in (A, C) is monotone,
we have that r(aqi) ≤ r(a). If r(aqi) < r(a), then r(a) /∈ σ(aqi), and hence
r(a) /∈ β+

T (aqi) by Proposition 4.1.11.
If r(aqi) = r(a), then from Theorem 5.5.3 it follows that r(aqi) is a sim-

ple pole of (λ1− aqi)
−1. By using the fact that the spectral radius function in
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(A/N(T), πC) is weakly monotone, together with Theorem 1.8.3 and Corol-
lary 2.1.4, it follows from 0 ≤ aqi ≤ a that

r(Taqi) = r(πaqi) ≤ r(πa) < r(a) = r(aqi).

Hence r(aqi) /∈ σ(Taqi). From Theorem 5.3.3(i) it follows that r(a) = r(aqi) /∈
β+

T (aqi).
We have thus shown that r(a) /∈ β+

T (aqi) for all i ∈ {1, . . . , n}. This com-
pletes our proof.

Some remarks: Note that the element aqi equals pd
i−1api, and therefore

r(a) /∈ ∪n
i=1β+

T (pd
i−1api) by Theorem 5.5.4. Hence, in the case where, for

instance, i = 1, we have that r(a) /∈ β+
T (ap1), and for the case i = n, it

follows that r(a) /∈ β+
T (pd

n−1a).
Our next result is a special case of Theorem 5.5.4.

Corollary 5.5.5. Let (A, C) be a Dedekind complete semisimple OBA which has
a disjunctive product with closed and proper algebra cone C such that the spectral
radius function in (A, C) is monotone. Also, suppose that T : A → B is a Banach
algebra homomorphism with closed range satisfying the Riesz property and is such
that the spectral radius function in (A/N(T), πC) is weakly monotone. Let a ∈ C
be a spectrally order continuous element such that r(a) /∈ σ(Ta). If a ∈ qi Aqi for
some i ∈ {1, . . . , n}, then r(a) /∈ β+

T (a).

Proof. Let i ∈ {1, . . . , n} be such that a ∈ qi Aqi. Then a = aqi , and hence
from Theorem 5.5.4 it follows that r(a) /∈ β+

T (a).

We mention that, under the assumptions as specified in Corollary 5.5.5,
the equality β+

T (a) = ∪n
i=1β+

T (aqi) holds. Also, since a = aqi is true for
some i (and therefore r(a) = r(aqi)), we have from Theorem 5.5.3 (see also
Proposition 1.9.22) that r(a) is a simple pole of (λ1− a)−1; in which case the
condition r(a) /∈ β+

T (a) follows, alternatively, from Theorem 5.3.3(i).

Remark 5.5.6. We mention that in the special case where C := {1 = p1, 0 = p0}
determines the Frobenius normal form of a, we have that a ∈ A = q1Aq1, so that
the implication r(a) /∈ σ(Ta)⇒ r(a) /∈ β+

T (a) holds by Corollary 5.5.5.

As yet we do not know if alternative (more general) conditions exist un-
der which ∪n

i=1β+
T (aqi) in Theorem 5.5.4 can be replaced by β+

T (a).
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Remark 5.5.7. By replacing Corollaries 2.1.4 and 2.1.5 and Theorem 5.3.3(i) in the
proof of Theorem 5.5.4 by (5.4.4), Lemma 5.4.3 and Theorem 5.4.5(i), respectively,
Theorem 5.5.4 (and, therefore, Corollary 5.5.5) can be extended to Banach algebra
homomorphisms having the strong Riesz property.

If E is a Dedekind complete Banach lattice, then Lr(E) is a well-known
example of a Dedekind complete semisimple OBA with a disjunctive prod-
uct. We end this section by giving several applications of Theorem 5.5.4 to
the theory of regular operators.

In view of the remark preceding Theorem 5.5.4, together with Remark
1.9.17 and the statement preceding it, the Frobenius normal form of T ∈
Lr(E) in Corollary 5.5.8 exists. By recalling Remark 1.9.25 and the observa-
tion thereafter, let {E = Bn, Bn−1, . . . , B0 = {0}} be the T-invariant chain of
projection bands in the Frobenius normal form of the positive operator T in
Corollaries 5.5.8 and 5.5.9 and let Qi = Bi ∩ Bd

i−1.
Keep in mind the notation πr : Lr(E) → Lr(E)/Kr(E) and the identity

r(T,Lr(E)) = r(T,L(E)) for all positive operators T on E.

Corollary 5.5.8. Let E be a Dedekind complete Banach lattice and T be a posi-
tive spectrally order continuous operator on E. If r(T) /∈ σoe(T), then r(T) /∈
∪n

i=1β+
πr(PQi TPQi ,Lr(E)).

Proof. Since E is a Dedekind complete Banach lattice, we have that Lr(E)
is a Dedekind complete OBA under the r-norm, by the remark following
Example 1.9.4, and has a disjunctive product, by the paragraph following
Definition 1.9.20. It is also known that, for E Dedekind complete, the spec-
tral radius function in (Lr(E)/Kr(E), πrK), where K is the cone of posi-
tive operators on E, is weakly monotone ([27], Theorem 2.8). If T is a posi-
tive spectrally order continuous operator on E, then T is a spectrally order
continuous element in Lr(E) in view of Remark 1.9.17 and the fact preced-
ing this remark. The desired result then follows from Theorem 5.5.4 and
(1.9.24).

Making use of Corollary 5.5.8, we have the following:

Corollary 5.5.9. Let E be a Dedekind complete Banach lattice and T be a positive
operator on E such that r(T) /∈ σe(T). Under each of the following assumptions
we have that r(T) /∈ ∪n

i=1β+
π (PQi TPQi ,L(E)):
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(i) E is an AL-space.
(ii) E is an AM-space with unit and T is an order continuous operator on E.

Proof. If any of the statements (i) – (ii) on the Banach lattice E hold, then
L(E) = Lr(E) (recall the remark following Example 1.9.4) and K(E) =

Kr(E) (in view of Lemma 1.6.9), so that π = πr.
(i) Suppose that E is an AL-space. Since E has order continuous norm

(see (1.6.7)), we have that (L(E))n = K, where K is the algebra cone of
all positive operators on E. From Proposition 1.9.18 it follows that T is a
spectrally order continuous element in L(E), and hence a spectrally order
continuous operator on E, from the paragraph just below Definition 1.9.16.
The result then follows from Corollary 5.5.8.

(ii) Suppose now that E is an AM-space with unit and that T is an order
continuous operator on E. Then T is a spectrally order continuous operator
on E by Lemma 1.9.19, and hence the result follows from Corollary 5.5.8.

Remark 5.5.10. From Corollary 5.5.9 we have, for i = 1 and i = n, that r(T) /∈
β+

π (TPB1 ,L(E)) and r(T) /∈ β+
π (PBn−1 T,L(E)), respectively.

Comparing Corollary 5.5.9 with Theorem 5.5.1, it is worth pointing out
that this corollary presents a partial result to the question of whether the
operators considered have the upper Browder spectrum property.
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Chapter 6

The lower Weyl and Lozanovsky
spectra

The lower Weyl and Lozanovsky spectra were investigated in, for instance,
[3], [4] and [5]. Originally, these spectra have been studied for positive
bounded linear operators acting on Banach lattices.

The main purpose of this chapter is to introduce and investigate these
spectra for arbitrary positive elements of general OBAs. In particular, in
Section 6.1, we will address in an OBA-context the problem of developing
conditions under which the spectral radius of a positive element will be out-
side of the lower Weyl spectrum of the element if it is known to be outside
of the Fredholm spectrum of that element. In Section 6.2 we present some
results on the Lozanovsky spectrum of a positive OBA element. We point
out that the results presented in this chapter are the OBA versions of the
results established by Alekhno in the operator context.

In the sequel of this chapter it is always assumed that E is a Banach lattice
and that π : L(E)→ L(E)/K(E) is the canonical homomorphism on L(E).

6.1 Introducing the lower Weyl spectrum

Recall that, for 0 ≤ T ∈ L(E), the set

ω−π (T) :=
⋂
{σ(T − K) : 0 ≤ K ≤ T and K ∈ K(E)}

is called the lower Weyl spectrum of T ([3], p.376).
The set of inclusions σe(T) ⊆ ω−π (T) ⊆ σ(T) were established in ([3],

p.376) and an example illustrating that these inclusions are generally strict

92
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93 6.1. Introducing the lower Weyl spectrum

were also given (see [4], Example 19). Consequently, a central problem be-
ing investigated by Alekhno is the following: given that the spectral radius
of T is outside its essential spectrum, what conditions suffice for it to be
outside the lower Weyl spectrum of T? Some contributions to the solution
of this problem can be found in ([3], Theorem 5) and ([4], Theorem 20 and
Corollary 21).

Definition 6.1.1 (Lower Weyl). Let (A, C) be an OBA and T : A → B be a
Banach algebra homomorphism. The lower Weyl spectrum of a ∈ C, denoted by
ω−T (a), is defined as follows:

ω−T (a) :=
⋂

0≤c≤a
c∈N(T)

σ(a− c)

The lower Weyl spectrum contains the Weyl spectrum, as can be seen in
the following result.

Proposition 6.1.2. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism. If a ∈ C, then

σ(Ta) ⊆ ωT(a) ⊆ ω−T (a) ⊆ σ(a),

and hence

σ(Ta) ⊆ ωT(a) ⊆ ω+
T (a) ∩ω−T (a) ⊆ ω+

T (a) ∪ω−T (a) ⊆ σ(a). (6.1.3)

Moreover, if T has the Riesz property, then

σ(Ta) ⊆ ωT(a) ⊆ ω+
T (a) ⊆ ω−T (a) ⊆ σ(a). (6.1.4)

Proof. Let a ∈ C and suppose that λ /∈ ω−T (a). Then there exists c ∈ N(T)
satisfying 0 ≤ c ≤ a such that λ /∈ σ(a − c). Since −c ∈ N(T), we have
from the representation of ωT(a) below Proposition 1.5.5 that λ /∈ ωT(a).
Hence ωT(a) ⊆ ω−T (a). The first inclusion is clear from (1.5.6), while the
third inclusion follows from the definition of ω−T (a) when choosing c = 0.

The second set of inclusions follows from Proposition 4.1.11 and the first
part of the result.

Now, if T has the Riesz property, then ω+
T (a) ⊆ ω−T (a) in view of Corol-

lary 4.1.10. It remains to recall (6.1.3) to finish this proof.
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We remark that (6.1.3) was found by Alekhno in the setting of positive
operators on Banach lattices (see [3], p.376). Although it appears from [3]
that Alekhno was not aware of the inclusion ω+

π (T) ⊆ ω−π (T), he estab-
lished (6.1.4) in [4] via Theorem 16.

The following properties of the lower Weyl spectrum follow easily.

Theorem 6.1.5. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism. If a ∈ C, then ω−T (a) is non-empty and compact.

Proof. Using Proposition 6.1.2, this proof follows the arguments of the proof
of Corollary 4.1.12.

The following examples illustrate that the inclusions in Proposition 6.1.2
(or, more specifically, (6.1.4)) can be strict. Note that from ([4], Example
19) we have a positive operator T satisfying ωπ(T) 6= ω−π (T). Our next
example shows that this statement is generally true even for elements of a
finite-dimensional OBA.

Example 6.1.6. Consider the homomorphism T : Mu
2 (C)→ C defined by

T

[
x11 x12

0 x22

]
= x11

and X :=
(

2 0
0 0
)
∈ Mu

2 (C). Then ωT(X) = ω+
T (X) ( ω−T (X).

The equality σ(TX) = {2} is clear, and hence ωT(X) = ω+
T (X) = {2}

follows from Example 3.2.12. Furthermore, since
(

0 0
0 0
)

is the only element
in Mu

2 (R+) ∩N(T) dominated by X, we have that ω−T (X) = σ(X) = {0, 2},
and hence the result follows. �

Example 6.1.7. Let l∞ := l∞(C) and consider the homomorphism T : l∞ → l∞

defined by T(x1, x2, . . .) = (x2, x3, . . .). For a := (1, 0, 0, . . .) ∈ l∞, we have that
ω−T (a) ( σ(a).

The set of identities

ω−T (a) =
⋂

0≤c≤a
c∈N(T)

σ(a− c) =
⋂

0≤x≤1

σ((1− x, 0, 0, . . .)) =
⋂

0≤x≤1

{1− x, 0} = {0}

follows easily, and hence σ(Ta) = ωT(a) = ω−T (a) = {0} ( {0, 1} = σ(a)
by also recalling Proposition 6.1.2. �
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An interesting aspect of research in OBAs is that of investigating in an OBA-
context certain problems that originated in L(E). Motivated by ([3], Section
3), an arbitrary positive element a of a general OBA (A, C) is said to have the
lower Weyl spectrum property (relative to a Banach algebra homomorphism
T from A to an arbitrary Banach algebra B) if r(a) /∈ σ(Ta) implies that
r(a) /∈ ω−T (a). In view of ([5], Example 4.6), not all positive OBA elements
have the lower Weyl spectrum property.

Throughout we shall recall some examples (provided by Alekhno) of
positive operators which have the lower Weyl spectrum property, with the
aim of presenting generalizations and analogues of Alekhno’s results. It is
worth pointing out that the results given here are established with simpler
proofs, although they are weaker.

For the purpose of our discussion that follows, suppose that T is a posi-
tive operator on E such that r(T) /∈ σe(T) and there exists a sequence (Kn)

of positive compact operators such that Knx ↑ Tx for all x ∈ E+.
In ([3], Theorem 5(b)) Alekhno showed that the assertion r(T) /∈ ω−π (T)

is true whenever E has order continuous norm. Now, for a Banach lattice
E with order continuous norm, it is an easy exercise to show that the state-
ment Knx ↑ Tx for all x ∈ E+ is equivalent to (T − Kn)x ↓ 0 for all x ∈ E+

(in fact only the Dedekind completeness of E is used). It then follows from
a theorem of Nakano (see [7], Theorem 12.9) that the latter property implies
that ||(T − Kn)x|| ↓ 0 for all x ∈ E+, and hence limn→∞ ||(T − Kn)x|| = 0
for all x ∈ E+. We point out here, for the sake of interest, that even un-
der the weaker assumption of “(Kn) is an increasing sequence satisfying
limn→∞ ||(T − Kn)x|| = 0 for all x ∈ E+" Alekhno showed in ([4], Corollary
21) that the statement r(T) /∈ ω−π (T) is true.

The next result can be viewed as an OBA version of ([3], Theorem 5(b)).

Proposition 6.1.8. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism. Suppose that a ∈ C is such that there exists a sequence (cn)

in C ∩ N(T) satisfying cn ≤ a for all n ∈ N and limn→∞ ||cn − a|| = 0. If
r(a) /∈ σ(Ta), then r(a) /∈ ω−T (a).

Proof. Suppose that r(a) /∈ σ(Ta). If T is bounded, then 0 6= a ∈ N(T), and
hence

ω−T (a) =
⋂

0≤c≤a
c∈N(T)

σ(a− c) ⊆ σ(a− a) = {0} = σ(Ta),
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in which case the result obviously holds.
The proof for the general case is by contradiction. Suppose that r(a) ∈

ω−T (a). Then r(a) ∈ σ(a− cn) for all n ∈ N, and hence r(a) ≤ r(a− cn) ≤
||a − cn|| for all n ∈ N, so that 0 < r(a) ≤ limn→∞ ||a − cn|| = 0. This is
impossible; therefore r(a) /∈ ω−T (a).

We point out that in the above proof we could have assumed, in fact,
that cn ≤ a only for sufficiently large n.

In some cases (as can be seen in the proof of Proposition 6.1.8 for T
bounded) the condition limn→∞ cn = a implies that a ∈ N(T), in which
case ω−T (a) = {0}.

It is interesting to note that Proposition 6.1.8 provides yet additional suf-
ficient conditions for a positive element in a commutative OBA to have the
upper Browder spectrum property. We have the following:

Corollary 6.1.9. Let (A, C) be a commutative OBA and T : A → B be a Banach
algebra homomorphism which satisfies the Riesz property. Suppose that a ∈ C is
such that there exists a sequence (cn) in C ∩N(T) satisfying cn ≤ a for all n ∈ N
and limn→∞ ||cn − a|| = 0. If r(a) /∈ σ(Ta), then r(a) /∈ β+

T (a).

Proof. The result follows from Proposition 6.1.8, equation (6.1.4) and the fact
that ω+

T (a) = β+
T (a).

We point out that, if r(T) is a simple pole of (λI − T)−1, then from ([3],
Theorem 5(a)) we have that r(T) /∈ ω−π (T). Unfortunately, at this stage, we
have not managed to come up with an OBA version of ([3], Theorem 5(a)).

We conclude this section with an OBA version of ([4], Theorem 20(b)).
But first we discuss the aforementioned statement in more detail: one of
the assumptions in ([4], Theorem 20(b)) is that the order continuous dual
E∼n separates the points of the Banach lattice E. This condition, however,
does not give us information on the OBA L(E) itself. In view of (1.6.7),
([7], Theorem 12.14) and ([35], Proposition 8.3(ii), p.113), we observe that
the condition “E∼n separates the points of E" holds whenever E is an AL-
space. As is well-known, the latter statement implies that L(E) = Lr(E)
is a Dedekind complete semisimple OBA with a disjunctive product (recall
the remarks following Example 1.9.4 and Remark 5.5.7). Consequently, our
next result can be viewed as a generalization of ([4], Theorem 20(b)) in the
case where E is an AL-space. We point out that this result is a consequence
of ([6], Corollary 5.4).
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Theorem 6.1.10. Let (A, C) be a Dedekind complete semisimple OBA which has
a disjunctive product with closed and normal algebra cone C. Also, suppose that
T : A → B is a Banach algebra homomorphism with closed range satisfying the
Riesz property and is such that the spectral radius function in (A/N(T), πC) is
weakly monotone. If a ∈ C is a spectrally order continuous element such that there
exists a net (cα) in C ∩N(T) satisfying cα ↑ a, then r(a) /∈ σ(Ta) implies that
r(a) /∈ ω−T (a).

Proof. Under the specified conditions, we have that r(a) > 0 and r(a) is a
Riesz point of σ(a) relative to N(T) by Theorem 1.8.2 and Corollary 2.1.5. In
view of Proposition 1.9.22 and ([6], Corollary 5.4), we can find α0 such that
r(a− cα0) < r(a) for all α ≥ α0. Hence r(a) /∈ σ(a− cα0) for all α ≥ α0, so
that r(a) /∈ ω−T (a).

By replacing Corollary 2.1.5 in the proof of Theorem 6.1.10 with Lemma
5.4.3, this result remains true even under the weaker assumption of “T has
the strong Riesz property". We also remark that the condition “C is normal"
in Theorem 6.1.10 can be replaced by the weaker condition “C is proper and
the spectral radius function in (A, C) is monotone".

Next, we apply Theorem 6.1.10 to Lr(E). The reader is reminded about
the notation πr : Lr(E) → Lr(E)/Kr(E) and the identity r(T,Lr(E)) =

r(T,L(E)) for all 0 ≤ T ∈ L(E).

Corollary 6.1.11. Let E be a Dedekind complete Banach lattice and T ≥ 0 be
a spectrally order continuous operator on E such that there exists a net (Kα) of
positive r-compact operators satisfying Kαx ↑ Tx for all x ∈ E+. If r(T) /∈ σoe(T),
then r(T) /∈ ω−πr(T).

Proof. A glance at the proof of Corollary 5.5.8 reveals that all conditions in
Theorem 6.1.10 are satisfied. Also, for a Dedekind complete Banach lattice,
it is an easy exercise to show that the statement “Kαx ↑ Tx for all x ∈ E+" is
equivalent to the condition “Kα ↑ T in Lr(E)". It remains to recall Theorem
6.1.10 to finish this proof.

Corollary 6.1.11 applied to L(E), for a Dedekind complete AM-space E
with unit, yields the following:

Corollary 6.1.12. Let E be a Dedekind complete AM-space with unit and T be a
positive order continuous operator on E such that there exists a net (Kα) of positive
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compact operators satisfying Kαx ↑ Tx for all x ∈ E+. If r(T) /∈ σe(T), then
r(T) /∈ ω−π (T).

Proof. The result follows from Corollary 6.1.11 and a glance at the proof of
Corollary 5.5.9(ii).

Example 4.6 in [5] shows that in general Corolary 6.1.12 cannot be ex-
tended to arbitrary positive operators on E.

Some remarks: Of course, in view of (1.6.7) and ([3], Theorem 5(b)), the
previous result is true if we consider an AL-space E and an arbitrary posi-
tive operator T on E. However, it is not clear whether Corollary 6.1.12 fol-
lows via duality, as we do not know if the lower Weyl spectrum of T and its
adjoint T∗ (under the assumptions in Corollary 6.1.12) coincide (the reader
might want to look at ([5], Theorem 2.1)). We point out that, in general, the
lower Weyl spectrum of T∗ is contained in the lower Weyl spectrum of T
([5], p.305).

6.2 A note on the Lozanovsky spectrum

Motivated by a theorem of Lozanovsky ([2], p.199), Alekhno ([3], p.384)
introduced the Lozanovsky essential spectrum of a positive operator T on a
Banach lattice E as the set

σel(T) :=
⋂

0≤Q≤T
Q≤K for some K∈K(E)

σ(T −Q).

Definition 6.2.1 (Lozanovsky spectrum). Let (A, C) be an OBA and T : A →
B be a Banach algebra homomorphism. The Lozanovsky spectrum of a ∈ C, denoted
by ωL

T(a), is defined as follows:

ωL
T(a) :=

⋂
0≤c≤a

c≤b for some b∈N(T)

σ(a− c)

By definition, the Lozanovsky spectrum is a compact subset of the com-
plex plane. However, it is not evident whether the Lozanovsky spectrum is
a non-empty set in general. Interestingly enough, even in the case of posi-
tive operators on Banach lattices, this is still an open problem (see [4], p.18).
In Remark 6.2.9 we point out conditions under which the Lozanovsky spec-
trum is a non-empty set.
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99 6.2. A note on the Lozanovsky spectrum

Obviously, the Lozanovsky spectrum is contained in the lower Weyl
spectrum, but the relationship between the Weyl and Lozanovsky spectra
is not immediately clear. We proceed to investigate this relationship in an
OBA-context. Firstly, let us examine the implication

r(a) ∈ ωT(a) (or r(a) ∈ σ(Ta))⇒ r(a) ∈ ωL
T(a)

as was done in the operator setting. We start by pointing out the following
auxiliary result.

Lemma 6.2.2. Let (A, C) be an OBA with closed algebra cone C such that the
spectral radius function in (A, C) is monotone. Also, suppose that T : A →
B is a Banach algebra homomorphism such that the spectral radius function in
(A/N(T), πC) is weakly monotone. If a ∈ C is such that r(a) /∈ ωL

T(a), then
r(a)1− a + N(T) ∈ (A/N(T))−1.

Proof. Let a ∈ C be such that r(a) /∈ ωL
T(a). Then there exists c ∈ C such that

c ≤ b for some b ∈ N(T), c ≤ a and r(a) /∈ σ(a− c), that is, d := r(a)1−
(a− c) ∈ A−1. Since 0 ≤ a− c ≤ a and the spectral radius function in (A, C)
is monotone, the inequality r(a− c) ≤ r(a) holds. For a− c ∈ C, we have
from Theorem 1.8.2 that r(a− c) ∈ σ(a− c), and hence r(a− c) < r(a) as
r(a) /∈ σ(a− c). From Proposition 1.8.6 it follows that d−1 = [r(a)1− (a−
c)]−1 ∈ C, and hence 0 ≤ d−1c ≤ d−1b. Since d−1b ∈ N(T), the element
d−1b is Riesz w.r.t. N(T), so that d−1c is Riesz w.r.t. N(T) by Theorem 1.8.4.
By also using the spectral mapping theorem, we obtain that

σ(1− d−1c + N(T)) = 1 + σ(−d−1c + N(T)) = {1},

and hence 1− d−1c + N(T) ∈ (A/N(T))−1. Finally,

r(a)1− a + N(T) = d− c + N(T)

= d(1− d−1c) + N(T)

= (d + N(T))(1− d−1c + N(T)) ∈ (A/N(T))−1.

This completes the proof.

Since π : L(E) → L(E)/K(E) is both bounded and a homomorphism
with closed range satisfying the Riesz property, the following two results
(Theorems 6.2.3 and 6.2.4) present OBA versions of ([3], Theorem 7). We
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remark that, due to the assumption about the weak monotonicity, these re-
sults are not generalizations in the strict sense.

Although Theorem 7 in [3] is formulated in terms of the Fredholm spec-
trum, this result remains true whenever the Fredholm spectrum is replaced
by the (upper) Weyl spectrum. In view of Theorem 1.5.8, we formulate the
following result (for Banach algebra homomorphisms with closed range sat-
isfying the Riesz property) in terms of the Weyl spectrum.

Theorem 6.2.3. Let (A, C) be an OBA with closed algebra cone C such that the
spectral radius function in (A, C) is monotone. Also, suppose that T : A → B
is a Banach algebra homomorphism with closed range satisfying the Riesz property
such that the spectral radius function in (A/N(T), πC) is weakly monotone. If
a ∈ C is such that r(a) ∈ ωT(a), then r(a) ∈ ωL

T(a).

Proof. Let a ∈ C and suppose that r(a) /∈ ωL
T(a). From Lemma 6.2.2 it fol-

lows that r(a)1− a + N(T) ∈ (A/N(T))−1, that is r(a) /∈ σ(a + N(T)), so
that r(a) /∈ σ(Ta) by Corollary 2.1.5. By recalling Theorem 1.5.8 the proof is
complete.

By replacing Corollary 2.1.5 and Theorem 1.5.8, respectively, by Lemma
5.4.3 and the last identity of (5.4.4) (recall also (1.5.6)), Theorem 6.2.3 remains
valid for Banach algebra homomorphisms having the strong Riesz property.

For a bounded homomorphism we have the following:

Theorem 6.2.4. Let (A, C) be an OBA with closed algebra cone C such that the
spectral radius function in (A, C) is monotone. Also, suppose that T : A → B
is a bounded Banach algebra homomorphism such that the spectral radius function
in (A/N(T), πC) is weakly monotone. If a ∈ C is such that r(a) ∈ σ(Ta), then
r(a) ∈ ωL

T(a).

Proof. Let a ∈ C and suppose that r(a) /∈ ωL
T(a). By Lemma 6.2.2 we have

that r(a)1− a+N(T) ∈ (A/N(T))−1, and hence r(a)1− Ta = φ(r(a)1− a+
N(T)) ∈ B−1, where φ : A/N(T)→ T(A) ⊆ B is defined by φ(a +N(T)) =
Ta. Consequently, r(a) /∈ σ(Ta).

It is not immediately clear whether σ(Ta) in the previous result can be
replaced by ωT(a). However, under the additional assumption that T has ei-
ther closed range or satisfies the Riesz property, the replacement is possible.
Under the first assumption the statement is true by ([19], Theorem 3). If we
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assume the second condition, then, since r(a)1− a + N(T) ∈ (A/N(T))−1

whenever r(a) /∈ ωL
T(a) by Lemma 6.2.2, we have that r(a) /∈ σ(πa) and

hence r(a) /∈ ωπ(a) in view of Theorem 1.5.8, where π : A → A/N(T). It
then follows that r(a)1− a ∈ Wπ = A−1 + N(π) = A−1 + N(T) = WT, so
that r(a) /∈ ωT(a).

Theorem 6.2.3 or 6.2.4 applied to Lr(E) yields the following:

Corollary 6.2.5. If T is a positive operator on E satisfying r(T) ∈ ωπr(T,Lr(E)),
then r(T) ∈ ωL

πr(T,Lr(E)).

We mention that the set ωπr(T,Lr(E)) is referred to as the order Weyl
spectrum of T ([9], Definition 4.1).

We now focus our attention on the following problem: if a is a positive el-
ement, under which conditions do we have that ωT(a) ⊆ ωL

T(a)? In his
papers ([3], remark at the end of p.384) and ([4], (a) and (b), p.17 and The-
orem 23), Alekhno identified certain positive operators (and certain types
of Banach lattices) for which the inclusion holds. In particular, following
the discussion in Section 5 of [4] (with focus on Theorem 23), we have that
every positive operator T on either an AL- or an AM-space (with unit)
satisfies ωπ(T) ⊆ ωL

π(T). If, in addition, E is Dedekind complete, then
(as pointed out several times) L(E) = Lr(E) and K(E) = Kr(E) – recall
the remark following Example 1.9.4 and Lemma 1.6.9. Most importantly,
in view of ([27], Theorem 2.8), we have that the spectral radius function
in (Lr(E)/Kr(E), πrK), where K is the cone of positive operators on E, is
weakly monotone. Though not a generalization of the above-mentioned
fact by Alekhno, we have the following result for Banach algebra homomor-
phisms T such that the spectral radius function in (A/N(T), πC) is weakly
monotone.

Proposition 6.2.6. Let (A, C) be an OBA and B be a commutative semisim-
ple Banach algebra. If T : A → B is a Banach algebra homomorphism with
closed range satisfying the Riesz property such that the spectral radius function
in (A/N(T), πC) is weakly monotone, then ωT(a) ⊆ ωL

T(a) for all a ∈ C.

Proof. Let a ∈ C and suppose that λ /∈ ωL
T(a). Then there exists c ∈ C

such that c ≤ b for some b ∈ N(T), c ≤ a and λ /∈ σ(a − c). Since the
spectral radius function in (A/N(T), πC) is weakly monotone, we have that
r(Tc) = r(πc) ≤ r(πb) = 0 in view of Corollary 2.1.4, and hence Tc ∈
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QN(B) = Rad(B) = {0} by assumption. Consequently, c ∈ N(T), and thus
λ /∈ ωT(a) (in fact, λ /∈ ω+

T (a) in light of Corollary 4.1.10). We have shown
that ωT(a) ⊆ ωL

T(a).

Some remarks: It is interesting to note that the condition “T has closed
range and satisfies the Riesz property" in Proposition 6.2.6 can be replaced
by “T has the strong Riesz property" (substitute Corollary 2.1.4 with (5.4.4)),
“T is bounded and has closed range" (replace Corollary 2.1.4 by Corollary
2.1.3) and “T is bounded and satisfies the Riesz property". Under the lat-
ter assumption, there is inequality r(Tc) ≤ r(πc) as ησ(Tc) ⊆ ηωT(c) =

ηωπ(c) = ησ(πc) by (1.5.6) and Theorems 1.5.7 and 1.5.8.

In ([3], p.384) Alekhno remarked that, if E and its order dual E′ both have
order continuous norms, then ω−π (T) = ωL

π(T) for all 0 ≤ T ∈ L(E). As
mentioned in ([34], p.499) (see also ([7], Theorem 16.20)), under these as-
sumptions on E, the algebra cone πK, where K := {T ∈ L(E) : TE+ ⊆ E+},
is proper in L(E)/K(E). Next, we investigate arbitrary Banach algebra ho-
momorphisms T : A → B, where (A, C) is an OBA, with the property that
TC is a proper algebra cone in B.

We start our discussion with the following more general version of The-
orem 6.1 in [34]. We point out that, to establish this result, a similar idea as
in the proof of ([34], Theorem 6.1) is used.

Lemma 6.2.7. Let (A, C) be an OBA and T : A → B be a Banach algebra homo-
morphism. The following two conditions are equivalent:
(i) if 0 ≤ a ≤ b relative to C and b ∈ N(T), then a ∈ N(T);
(ii) the algebra cone TC is proper in B.

Proof. (i) ⇒ (ii). Suppose that the conditions 0 ≤ a ≤ b relative to C and
b ∈ N(T) imply that a ∈ N(T). Let c ∈ TC∩−TC. Then there exist c1, c2 ∈ C
such that c = Tc1 = −Tc2, and hence c1 + c2 ∈ N(T). Since 0 ≤ c1 ≤ c1 + c2,
we have that c = Tc1 = 0 by assumption. Hence TC is a proper algebra
cone.

(ii)⇒ (i). Suppose that TC is a proper algebra cone in B and that a ∈ A
and b ∈ N(T) are such that 0 ≤ a ≤ b relative to C. It then follows that
−Ta = T(b− a) ∈ TC, so that Ta ∈ TC ∩ −TC = {0} by assumption, and
hence a ∈ N(T).
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We are now in a position to present a generalization of the remark by
Alekhno preceding Lemma 6.2.7.

Proposition 6.2.8. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism such that TC is a proper algebra cone in B. If a ∈ C, then ω−T (a) =
ωL

T(a).

Proof. It suffices to show that ω−T (a) ⊆ ωL
T(a). Suppose that λ /∈ ωL

T(a).
Then there exists c ∈ C such that c ≤ b for some b ∈ N(T), c ≤ a and λ /∈
σ(a− c). From Lemma 6.2.7 we have that c ∈ N(T), and hence λ /∈ ω−T (a)
by definition. This completes the proof.

We mention that in Examples 3.2.10 to 3.2.12 the condition “TC is a
proper algebra cone" occurs.

Remark 6.2.9. It is worth pointing out that, under the conditions as stipulated in
either Proposition 6.2.6 or Proposition 6.2.8, ωL

T(a) 6= ∅.

Corollary 6.2.10. Let (A, C) be an OBA and T : A → B be a Banach algebra
homomorphism such that TC is a proper algebra cone in B. If a ∈ C, then ωT(a) ⊆
ωL

T(a), and hence σ(Ta) ⊆ ωT(a) ⊆ ωL
T(a) = ω−T (a) ⊆ σ(a).

If, in addition, T satisfies the Riesz property, then

σ(Ta) ⊆ ωT(a) ⊆ ω+
T (a) ⊆ ωL

T(a) = ω−T (a) ⊆ σ(a).

Proof. For a ∈ C, the inclusion ωT(a) ⊆ ωL
T(a) follows from Propositions

6.1.2 and 6.2.8. By recalling Proposition 6.1.2 and (6.1.4) (in the case where
T has the Riesz property), the rest of the result follows.

Note that, even under the assumption “TC is a proper algebra cone in
B", the inclusion ωT(a) ⊆ ωL

T(a) is strict in general (see Example 6.1.6).
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Conclusion
In this dissertation we illustrated how a recent discovery in the context of
bounded linear operators on Banach lattices has led us to link the positivity
and Fredholm theory in Banach algebras equipped with a partial ordering.

The first aim of this thesis was to develop the theory of upper Weyl and
upper Browder elements in arbitrary OBAs (Chapter 3). Among other re-
sults we showed that, although the classes of Weyl and upper Weyl elements
generally do not coincide (Example 3.1.8), relative to some Banach algebra
homomorphisms they do (Theorem 3.2.6). This result generalized Example
3.1.3 and can be viewed as a generalization of Alekhno’s result (Example
3.1.2) in the case where the Banach lattice is either AL or AM.

Our second focus was the study of two new spectra for an element of an
OBA (Chapter 4) — these spectra have, as underlying sets, the sets of upper
Weyl and upper Browder elements, respectively. In particular, we identi-
fied in Theorem 4.3.2 elements whose connected hulls of their Fredholm,
Browder, Weyl and upper Weyl spectra coincide and offered an example
that illustrated that the connected hull of the upper Browder spectrum can-
not in general be added to this list (Example 4.3.3). Consequently, a central
problem in this thesis was the following:

Problem: Given that the spectral radius of a positive element is outside its Fred-
holm spectrum, what conditions suffice for it to be outside the upper Browder spec-
trum of the element?

As far as we know, this question has not been investigated in the operator-
context. Throughout Chapter 5 we provided several results pertaining to
the above-stated problem — Corollary 5.2.11, Theorem 5.3.3, Proposition
5.3.5 and Corollary 5.5.5 (see also Corollary 6.1.9). In some cases we were
only able to obtain results of a weaker form — Theorem 5.3.6, Theorem 5.5.4
and Corollary 5.5.9. Furthermore, in Section 5.4, we showed that the results
of Section 5.3 (and of the chapters that follow) can be strengthened by weak-
ening the assumption that the Banach algebra homomorphism T has both
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closed range and the Riesz property to the condition that T has the strong
Riesz property.

Finally, we studied in Chapter 6 natural generalizations of the lower
Weyl and Lozanovsky essential spectra for a positive bounded linear op-
erator on a Banach lattice in an OBA-context. Specifically, in Section 6.1,
a similar problem to that of the aforementioned problem was studied; re-
placing “upper Browder spectrum" by “lower Weyl spectrum". The main
results connected to this problem are contained in Proposition 6.1.8, Theo-
rem 6.1.10 and Corollary 6.1.12. Subsequently, in Section 6.2 we provided
some answers (all of which took place in an OBA setting) to the question
of when the Weyl spectrum is contained in the Lozanovsky spectrum (cf.
Proposition 6.2.6, Corollary 6.2.10).

Some open ends: Although none of our results in either Section 5.3 or Sec-
tion 5.5 suggests that all positive operators on arbitrary Banach lattices have
the upper Browder spectrum property, neither do we have a counterexam-
ple. However, we point out that the construction (if possible) of a positive
operator on some Banach lattice which does not have the upper Browder
spectrum property would answer a number of unsolved problems raised
within this dissertation. We mention a few: First the example would con-
firm that the identity Bπ = B+π does not hold in general. Secondly, it would
imply that the commutativity assumption in Proposition 5.3.5 could not in
general be dropped and, lastly, that β+

T (au) in Theorem 5.3.6 could not be
replaced by β+

T (a) in general.
The question of whether the sets of Weyl and upper Weyl elements coin-

cide whenever a Banach algebra homomorphism T has the Riesz property
is still unanswered. An example of such T relative to which the sets of Weyl
and upper Weyl elements do not coincide would indicate that our assump-
tion about the span-condition in Theorem 3.2.6(a) is generally essential.

To conclude, we mention that a number of results in this work involve
weak monotonicity assumptions on the spectral radius (see, for instance,
Proposition 1.9.22, Theorem 5.5.4 and Lemma 6.2.2). It is a natural question
as to whether we can drop this assumption in general. If this were possible,
then these results would potentially be applicable to operators which are
not regular.
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modulus, 14

negative element, 17
negative part, 14

operator
r-compact, 15
band irreducible, 15
order continuous, 14
positive, 14
regular, 15
spectrally order continuous, 24

order continuous element, 23
order continuous norm, 14
order idempotent, 22
order projection, 22
order-bounded above, 20
ordered Banach algebra (OBA), 17

Dedekind complete, 21

pole, 10
positive cone, 14
positive element, 17
positive part, 14

quasi-invertible, 5
quasi-product, 5
quasinilpotent, 7

radical, 3
regular norm (r-norm), 15
regularity, 56
resolvent, 7
resolvent equation, 7
resolvent identity, 7
resolvent set, 5
Riesz element, 10
Riesz point of spectrum, 10
Riesz property, 10

spectral block, 24
spectral idempotent, 9
spectral mapping theorem, 8
spectral radius, 6
spectral radius monotone, 19
spectral radius preserving, 6
spectral radius weakly monotone,

19
spectrally order continuous element,

24
spectrum, 4

o-, 69
almost invertible Fredholm, 13
Browder, 13
essential, 69
Fredholm, 12
lower Weyl, 93
Lozanovsky, 98
Lozanovsky essential, 98
order essential, 69
order Weyl, 101
upper Browder, 59
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upper Weyl, 59
Weyl, 12

spectrum preserving, 5
strong Riesz property, 84
supremum of an OBA element, 20

unitization, 5
upper Browder element, 36
upper Browder spectrum property,

74
upper semi-regularity, 57
upper Weyl element, 36

Weyl element, 11
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