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Abstract

Machine learning approach to radio frequency

interference(RFI) classification in radio astronomy

CJ. Wolfaardt

Department of Electronic Engineering,

University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MEng (Elec)

November 2015

Radio frequency interference (RFI) presents a large problem for radio tele-

scopes. Interference prevents observations from being made, or extends the

duration required for observations. This thesis investigates different methods

to automatically classify RFI signals. Data from different sources was cap-

tured at the SKA site. Both Gaussian Mixture Model (GMM) and K-nearest

neighbors (KNN) classifiers were used to analyse the data. Both performed

adequately, with the KNN slightly outperforming the GMM. Different feature

extraction methods were also investigated.
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Uittreksel

Masjienleer klassifikasie van steurseine in radio

astronomie

(“Machine learning approach to radio frequency interference(RFI) classification in

radio astronomy”)

CJ. Wolfaardt

Departement Elektroniese Ingenieurswese,

Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (Elek)

November 2015

Radio frekwensie steurseine verteenwoordig ‘n groot probleem vir radio tele-

skope. Steurseine verhoed teleskope om waarnemings te maak. Hierdie tesis

ondersoek verskeie metodes om steurseine automaties te identifiseer en klasi-

fiseer. Data van bekende steurseine op die SKA terrein is versamel. Verkeie

voorverwerkingtegnieke word ondersoek en dan geannaliseer met bekende sta-

tistiese modelle soos ‘n GMM en KNN. Beide lewer aanvaarbare resultate.

Verskeie metodes om kenmerke te onttrek word ook ondersoek.
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Chapter 1

Background to Radio

Astronomy

Radio astronomy involves the study of radio waves emitted by celestial objects.

The field of radio astronomy emerged in the 1930s when Karl Jansky noticed

a periodic interference signal in his radio communications measurements. The

signal had a period of 23 hours and 56 minutes, one sidereal day. The peak of

the signal coincided with when the Milky Way was overhead. This led Jansky

to conclude that the interfering signal was originating from space. [2]

The first radio telescope was built by Grote Reber, who was inspired by

Jansky’s work. Reber experimented with several frequencies, finally settling on

160MHz [3]. Reber also completed the first sky survey, which was published in

1941. A sky survey is a map of the sky or part of the sky showing the intensity

for a specific frequency.

Reber’s work caused a large increase in interest in radio astronomy. In

order to increase the resolution of the observations, the size of radio telescope

dishes kept increasing. The increased size of the dishes also meant that the

complexity of the supporting structure increased.

In the 1940s the technique of radio interferometry was developed. This

technique uses observations from multiple antennas to improve the resolution

with which observations can be made. This led to the development of radio

interferometer arrays such as the Very Large Array and the Atacama Large

Millimetre Array. The Square Kilometre Array is also an interferometric array.

There are many types of observations that are well suited to radio as-

tronomy. There are many different sources that emit in the radio frequency

1
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CHAPTER 1. BACKGROUND TO RADIO ASTRONOMY 2

spectrum, which can be received with little interference. These signals are

however subject to redshift.

1.1 Redshift

Due to the expansion of the universe all of the astronomical signal sources are

moving away from the earth. The Doppler effect causes any signal transmitted

between objects moving at different speeds to undergo a change in frequency.

This effect lowers the frequency of signals received from astronomical sources.

It is named after the similar effect which occurs in optical observations, where

it moves signals towards the red (lower frequency) part of the spectrum.

Redshift is expressed as the fractional change of the wavelength and is

represented as the dimensionless quantity z. λe is the wavelength of the emitted

signal, and λo is the observed wavelength.

z =
λo − λe
λe

(1.1)

A redshift of 0 represents no change in the wavelength. A redshift with z>0

implies an increase in wavelength, while a redshift with z<0 implies a decrease

in wavelength (blueshift). Astronomical objects with a high redshift (z>0)

are more distant than lower redshift objects. This is due to the accelerating

expansion of the universe. Older objects are further away, and are accelerating

away from us. Redshift is an important factor to take into account, because it

can drastically affect the frequency of a received signal.

By measuring the magnitude of the redshift, the speed of the source can

be determined. This measurement can be used to determine the distance to

the source [4].

1.2 Atmospheric Absorption

Radio waves between 100MHz and 10GHz are not absorbed appreciably by our

atmosphere, so we can easily study them from the ground. The atmosphere

does however influence the signals, which must be corrected for. This is in

contrast to optical methods, where signals are severely distorted and absorbed

by the atmosphere, caused by variations in temperature and pressure.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. BACKGROUND TO RADIO ASTRONOMY 3

Radio frequency signals are absorbed by water vapour in the atmosphere.

The signals are also affected by refraction in the atmosphere, due to differing

temperature layers.

1.3 Origin of signals

There are many different sources of electromagnetic radiation in the universe.

The type of signal and the source has an influence on the technique used to

study them.

1.4 Basic Black-body Radiation

All objects with a temperature above 0◦K emit electromagnetic radiation.

The intensity of the emitted waves is determined by the temperature of the

object. The intensity at a specific frequency and a specific temperature can be

calculated using Planck’s radiation law. This law determines the brightness

B of a black-body radiator, given its temperature T, and the frequency of

interest, ν.

Bν(ν, T ) =
2hν3

c2

1

e
hν

(kT ) − 1
(1.2)

Where

B Brightness in W · sr−1 ·m−2 ·Hz−1
h Planck’s Constant (6.63× 10−34joule per second)
ν Frequency in Hertz
c Speed of light 3× 108m

s

k Boltzmann’s Constant
T Temperature in Kelvin

This equation can be used to plot frequency vs brightness at a certain

temperature, to show which frequencies an object at that temperature radiates

most. The frequency of the radiated waves are heavily dependent on the

temperature of the object.

Figure 1.1 shows the radiation intensity at different wavelengths for three

different temperatures. The peak of the intensity lies mostly in or close to

the visible area. Radio waves have a much longer wavelength, lying between

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. BACKGROUND TO RADIO ASTRONOMY 4
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Figure 1.1: Black Body radiation graph, showing spectral radiance of vari-
ous temperatures for different temperatures. Image by Darth Kule, in public
domain

1cm and 3m. Therefore radio astronomy only analyses the upper end of the

radiation wavelengths shown in the figure.

1.4.1 Cosmic background radiation

Cosmic background radiation is a remainder of the Big Bang. It is the result

of thermal radiation during the early stages of the universe. The signal is

characterised as a black-body emission at 2.73K, with a very high red-shift.

1.4.2 Hydrogen Line

Hydrogen is the most common element in the universe. It is prevalent in stars

and planets, but is also found in large gas clouds and in the interstellar medium

(ISM).
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CHAPTER 1. BACKGROUND TO RADIO ASTRONOMY 5

A hydrogen atom consists of a single proton and a single electron. Both

the proton and the electron have a spin property with direction. When their

spins are in the same direction it is know as a parallel configuration, while spin

in opposite directions is know as anti-parallel. In a parallel configuration the

atom has a higher energy level than in the anti-parallel configuration. The spin

configuration can change from parallel to anti-parallel, but this transformation

has a very low probability of occurring, 2.9x10-15/second. However, hydrogen

is very abundant in the universe. When the electron changes its spin direction

it emits a wave with a frequency of 1420MHz, (λ = 21.106cm). These signals

can be detected on earth when using long integration periods. The redshift

of this signal indicates how fast the source is moving away from us. This

phenomenon is know as the hydrogen line, or the 21-cm line [5, 6].

The signals useful for hydrogen line observations are very susceptible to

interference, because they share a radio band with ground-based transmitters.

1.4.3 Pulsars

Pulsars were first discovered in 1967 by Dame Jocelyn Bell Burnell and Antony

Hewish. They are formed when a star becomes a supernova, and subsequently

collapses in onto itself. A pulsar is a rotating neutron star, which emits elec-

tromagnetic radiation at very precise intervals [7]. Pulsars emit a wideband

signal, which we can detect on every rotation. The rotation speeds vary be-

tween pulsars, with the slowest known being 8.5 seconds [8].

1.5 Conclusion

This chapter has provided a short introduction to the field of radio astronomy.

This thesis will focus on the automatic detection of man-made EM signals

that can interfere with the signals captured by a radio telescope. These radio

telescopes survey signals with frequency ranges from the low MHz up to a

few GHz, which includes cosmic background radiation, the hydrogen line and

pulsars. Some radio telescopes observe at much higher frequencies, but these

are generally less disturbed by interference.

Stellenbosch University  https://scholar.sun.ac.za



Chapter 2

Receiving electromagnetic

signals

Suppose a plane with area A is receiving electromagnetic signals from the space

around it. We will represent the emitting space by a sphere, which is radiating

inwards towards the plane. The total power received by the plane depends on

the power of the transmitted signals, the frequency of the signals, and the area

of the plane. For an infinitesimal point on this plane the power received can

be expressed as [9]:

dW = B cos(θ)dΩdνdA (2.1)

where

dW Power in watts
θ The angle to the transmitting section of the sphere, measured

from the vertical reference.
B Brightness function of the transmitting space, in watts per

Hertz per Solid Angle
dΩ Solid angle of the transmitting area, which can be expressed

in terms of θ and σ
dν Bandwidth of the received signal, in Hertz
dA Surface area of the plane, in m2

B is the brightness function of the sky, and is a function of θ,σ and ν. For

radio astronomy this is the signal we are interested in. The power received

by the entire plane from one solid angle of sky can be obtained by integrating

over the bandwidth and the area of the receiver.

6
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CHAPTER 2. RECEIVING ELECTROMAGNETIC SIGNALS 7

W = A

∫ ν+∆ν

ν

∫
Ω

B cos(θ) dΩ dν (2.2)

B is the only term dependant on the bandwidth ν, so by integrating over

the bandwidth, B
′
can be obtained. However, we are usually more interested in

the power per unit bandwidth expressed as w, and measured in Watts/Hertz.

B
′
=

∫ ν+δν

ν

Bdν (2.3)

Antennas have a radiation pattern, which is the gain of the antenna in

a certain direction. The radiation pattern is usually expressed in spherical

coordinates, and replaces the spatial component in the equation. The area

component A is also replaced by the effective area, Ae:

w =
1

2
Ae

∫
σ

∫
θ

B
′
(σ, θ)Pn(σ, θ)dθdσ (2.4)

Antennas are polarized and radio astronomy signals are usually unpolar-

ized, resulting in only half of the signal being received. This leads to the 1
2

factor in the equation.

This equation shows us that there are two methods of increasing our sen-

sitivity to signals. A larger antenna area can be used (thus increasing Ae), or

the radiation pattern can be improved.

2.1 Single Antenna Reception

A radio antenna usually consists of two distinct parts: The feed is the basic

EM transmitter or receiver. This can be a small transmitter or a waveguide

which provides a signal from a distant transmitter. The signal radiated from

the feed (for the transmitting case) usually strikes a reflector. The reflector

amplifies the signal by concentrating it into a certain direction. The direction

in which radio signals are transmitted, and the power with which they are

transmitted are determined by the antenna radiation pattern.

An important concept when dealing with antennas is that of an isotropic

radiator. An isotropic radiator is an ideal antenna radiating energy uniformly

in all directions. When the antenna radiation pattern is expressed, it is ex-

pressed on a log scale relative to an ideal isotropic radiator (dBi).
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CHAPTER 2. RECEIVING ELECTROMAGNETIC SIGNALS 8

Another important concept for antennas is the reciprocity principle: All

properties of an antenna for the transmitting case will also be valid when

receiving signals [9].

2.1.1 Antenna Radiation Pattern

The antenna radiation pattern is a radial graph showing the gain an antenna

gives to a signal coming from a certain direction. The radiation pattern for

an isotropic radiator is a sphere, since the antenna gives equal gain to signals

from all directions. A parabolic reflector has a large gain in the main direction,

and several side lobes in other directions. Signals coming in via the side lobes

are attenuated, but are still present. In radio astronomy these signals have a

significant influence, because they can have a large amplitude even after the

attenuation [10]. Signals coming in from the side lobes are also often RFI,

which is why they can have relatively high amplitude.

2.1.2 Types of Antennas

Antennas are usually designed to be either omnidirectional or directional. Om-

nidirectional antennas attempt to radiate or receive in all directions, similar

to an isotropic radiator. This is useful when a large area must be covered,

as is the case with cellphone or wifi antennas. Directional antennas are used

when a point to point connection is required. Directional antennas offer a large

gain in a certain direction, allowing the signal to be transmitted and received

over large distances. An omnidirectional antenna can however not have high

gain as well. In order to be omnidirectional, the antenna generally needs to be

small. If the antenna is small it directly means that its gain is low. Only highly

directional antennas can have high gain, and consequently are physically large

with respect to wavelength.

There are different types of antennas used for radio telescopes. The most

common type is a parabolic reflector. This type of antenna employs a large,

parabolic shaped dish to reflect the incoming signal to a central receiving

feed. The parabolic dish is very desirable. It can be manufactured with a

high tolerance and very low sidelobe levels. Unfortunately the feed has to be

directly in the field of view of the antenna, and supported very rigidly to ensure

low sidelobes. The major disadvantage with the parabolic dish is the required
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CHAPTER 2. RECEIVING ELECTROMAGNETIC SIGNALS 9

support structure that sit in the field of view of the antenna. This structure

can interfere with the radiation pattern, causing additional sidelobes.

To overcome this problem some antennas only use a part of the parabolic

shape, called an offset feed. These antennas offer less gain but a cleaner an-

tenna pattern, because the supporting structure of the feed does not interfere.

The feed does not need to be in front of the antenna, as is the case with

Gregorian and Cassegrain antennas. These antennas use an additional reflec-

tor, which is located at the focus point of the main reflector, to reflect the

signal towards the feed. The additional reflector lowers the signal intensity,

but allows the complex receiving hardware to be housed inside the main body

of the antenna, rather than being exposed at the feed in front of the dish.

The antennas used by the KAT7 are prime focus antennas, which have the

feed at the focus point of the main reflector [11]. The MeerKAT antennas are

Gregorian-offset antennas, which use a secondary reflector. The antennas also

only employ part of a parabolic shape [12].

2.1.3 Resolution

A single antenna can provide only a certain resolution. The resolution of the

antenna determines the minimum separation two sources can have and remain

distinguishable. The resolution is determined by the wavelength and the size

of the dish. For a parabolic receiver:

θ ≈ λ

D
(2.5)

Here D is the effective diameter of the dish, θ is the angular resolution and

λ is the wavelength under observation. The only method to increase accuracy

is to increase the dish size. This quickly becomes a structural problem, as

moving a large dish accurately requires high power, high-precision control.

Instead an array of receivers can be used. For an array of parabolic antennas,

the angular resolution is determined by

θ ≈ λ

B
(2.6)

where B is the longest baseline in the array. The baseline is the distance

between an antenna pair, and is explained in Section 2.2. It is easy to increase

the baseline by building the antennas further apart from each other. However,
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this only results in a single observation, but multiple observations are results

are required to fill out the same section of sky as a single antenna.

2.2 Multiple Antenna Reception

Most radio telescopes use an array of antennas to improve the resolution of

observations that can be made. This section explains how and why this is

done [1, 13, 14].

2.2.1 Multiple Antennas

Two similar antennas P1 and P2 are observing the same part of the sky,

shown in Figure 2.1. Two different coordinate systems are used. The (l,m)

coordinate system is a direction cosine coordinate system used to reference

positions in the sky. For this the sky is represented as a sphere surrounding

the observation position. A direction vector (S0) gives the general direction

of the coordinate system. The direction vector is determined by the central

direction of the antennas. The direction cosines are calculated as the cosine of

the angle between S0 and the point in the sky under observation, in the main

lobe of the antennas.

The (u, v) coordinate system is a right-handed Cartesian system based on

a plane located at the observation position. The u, v plane is always normal

to the observation direction S0, and therefore does not in general rotate with

the earth. The unit vectors, u and v are defined so that v points towards

the celestial north pole, and u is normal to v and lies in the plane. The

coordinate system has another dimension, w. The w unit vector is aligned

with the observation direction S0.

Both antennas in Figure 2.1 are pointed at the same section of the sky.

They receive the same signal from the sources, albeit with a small delay due

to their geometric displacement. The main beams of the individual antennas

are not narrow enough to identify individual components in the sky. Instead,

they receive a sum representing all the signal sources in their main beam, as

well as any signals originating from sources in the side lobes. The Van Cittert-

Zernike theorem allows us to further process the signal to form an image of

the observed section of the sky inside the main beam.
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The Van Cittert-Zernike theorem originated in the field of optics, but is also

relevant to interferometry. The theorem states that, given certain conditions,

the mutual coherence of an incoherent source is equal to the complex visibility.

The source in question must be far away, so that the wavefront received from

it appears coherent.

We are interested in the complex visibility, as it is the intensity of radiation

from the sky. It cannot be sampled directly as the resolution of the antennas

is not fine enough. Instead the mutual coherence function is measured.

P1

P2

Figure 2.1: Coordinate system for an interferometry setup. Reproduced from
[1].

If the mutual coherence is given by Γ, and the complex visibility by I(l,m),

the Van Cittert-Zernike theorem can be expressed as:

Γ12(u, v, 0) =

∫∫
I(l,m)e−2πi(ul+vm) dl dm (2.7)
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The signals that the telescopes receive are expressed as E1 and E2. This

allows us to express the mutual coherence is defined as the cross-correlation

between the signals:

Γ12(u, v, w) = lim
t→∞

1

2T

∫ T

−T
E1(t)E∗2(t+ τ)dτ (2.8)

The complex- visibility is an image of the sky, and is the goal of the obser-

vation. To obtain the image, the (u, v) plane must be filled with observations.

Subsequently the complex visibility can be calculated from the (u, v) plane

using the Van Cittert-Zernike theorem.

To fill the (u, v) plane the signals from many pairs of two antennas are

considered. The signals are filtered to have a very narrow bandwidth, because

the Van Cittert-Zernike theorm requires the signal to have a small bandwidth.

The filtering can be done using a Fourier transform or a filter bank. The

filtered signals are correlated with each other. The value returned by the cross-

correlation function can be interpreted as a sample of the mutual coherence

function Γ in the (u, v) plane.

Gridding The value returned from the cross-correlation represents a sample

from the continuous mutual coherence function. In order to use the FFT to

compute the Van Cittert Zernike equation these values should fill in a grid in

the (u, v) plane. This process is called gridding.

However, the u and v coordinates are determined by the baseline of the

antenna pair and do therefore not necessarily fit on a grid. One option is

to place a sample at the closest position in the grid. To express the error

made by placing the sample at the wrong position the true value V (u, v) and

the sampled value V (u′, v′) is defined. The sampled value is expressed as

convolution of the true value with a gridding kernel G, which is then sampled

by a Dirac delta function.

V (u′, v′) = [V (u, v) ∗G(u, v)]δ(u′,v′) (2.9)

In the (l,m) domain the equivalent of convolution with the gridding kernal

is multiplying the sky with the Fourier transform of the gridding kernel. If

the gridding kernel chosen is a rectangular function, the Fourier transform will

be a sinc function. This sinc function will be visible in the complex visibility

image. Other gridding functions such as a Kaiser window can also be used.
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After placing all the samples from observations the (u, v) plane is resampled

in order to achieve a uniform filling of the plane.

Baseline The position in the (u, v) plane where the sample is placed is de-

termined by the baseline between the two antennas. The baseline is a vector

from the reference antenna to the other antenna. The reference antenna is

used as the centre for the (u, v) plane. To determine the position in the (u, v)

plane the baseline is expressed as a function of wavelength.

Due to the rotation of the earth, additional baselines are available. When

the (u, v) plane is flat on the earth, the baselines are at their longest. As

the earth rotates, the length of the baselines change, as well as the relative

position of the antennas. This is known as earth rotation synthesis. Figure

2.2 shows a basic example of a two-antenna setup at three different rotational

positions. The image shows the positions of the telescopes on the earth, as

well as their respective baselines in the UV plane. The antennas are pointed

out of the page. Each antenna pair contributes two baseline positions, because

each antenna can be used as the reference antenna.

All the possible positions over a certain duration of time can be plotted on

a (u, v) plot, giving us the sampling function, S(u, v).

u

v

•
•

•
• u

v

•
•

•

•
◦

◦ u

v

•
•

•

•

◦

◦
◦

◦

Figure 2.2: Baseline generated by two antennas.

By taking the Fourier transform of the sampling function S(u, v) we obtain

the dirty beam Bd(l,m). The dirty beam is also called a point spread function

(PSF).

Figure 2.3 shows examples of the different images. The map image is the

goal of the observation, while the sampled visibility is the observations. The

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. RECEIVING ELECTROMAGNETIC SIGNALS 14

Figure 2.3: Image showing relationship between coordinate systems. Image
source https://web.njit.edu/∼gary/728/Lecture6.html

sampled visibility is first Fourier transformed to the (l,m) domain to obtain

the Dirty Map, and then de-convoluted with the Beam image.

2.2.2 Additional effects

There are additional effects that complicate computing the coverage of the

average of the (u, v) plane. Most of these effects are due to geometric assump-

tions. The earth does not form a perfect sphere, so the UV coordinates of

baselines need to be adjusted, taking this into account.

Furthermore, the rotation of the earth causes a Doppler effect, which in turn

causes a fringing pattern in the data. However this effect is small compared

to other fringing effects. Two antennas receiving the same signal will cause a

fringing pattern in the data.

2.3 Conclusion

This section discussed the theory behind electromagnetic signal detection.

Some of the basic equations behind EM reception were introduced. After

that, the influence of antennas on the signal was discussed. After that the

reasons for multiple antennas in radio astronomy was presented, as well as

some of the challenges that go with it.
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Chapter 3

Literature Review

There are various sources of RFI that pose a problem to radio telescopes [15].

The sources can be broadly divided into accidental radiators, such as con-

struction equipment, and deliberate transmitters, such as radios. Deliberate

transmitters generally have a narrow bandwidth, while accidental radiators

may have a wide bandwidth. However, the power present in deliberate trans-

mitters can saturate the front-end of the radio telescope receiver. This renders

the digitized signal useless, even if the RFI is only present in a single band.

An additional category of RFI which is not considered here is that of self-

interference. This occurs when a signal internal to the receiver (such as a

clock signal or a data signal) leaks out and is transmitted.

The most prominent method of fighting RFI is to simply keep the area

surrounding a radio telescope free from possible transmitters. This is possible

when constructing new telescopes such as MeerKat. With existing telescopes

such as LOFAR this is nearly impossible. In this case, active methods are

often required. In other cases, a simple filter would suffice.

When RFI is detected though some method, the data is flagged as con-

taining RFI. The resolution of the data that is marked as RFI depends on the

type of observation. When data is flagged as containing RFI, it is removed

from the observation.

3.1 RFI mitigation using additional antennas

Various solutions for removing RFI by using secondary antennas have been

considered. The secondary antennas are low-gain antennas, and are only sen-

15
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sitive to the interference signal. Correlated components between the secondary

signal and the primary signal can be removed from the primary. However, be-

cause the primary antenna can usually rotate, it is susceptible to differing

amounts of RFI. Hence the secondary antenna may detect RFI when not de-

tected by the primary, or vice versa.

The secondary antenna illuminates a much larger part of the sky and sur-

rounding horizons, in order to intercept the interference signal. Consequently

it observes much more noise than the primary antenna. It is mostly undesir-

able to add any portion of the secondary antenna to the primary antenna as

it will increase the noise level.

In [16] a method of RFI mitigation is investigated using a digital adaptive

filter. An algorithm continually adjusts the filter in such a way that the output

interference power is minimised.

In [17] a phased array is used to detect and record interfering signals. A

phased array is used to better control the antenna pattern of the receiving

antenna. The antenna used in these experiments is a six element hexagonal

array

Another RFI mitigation method using multiple antennas is discussed in

[18]. Here the received signal is divided into different frequency bins by a

filter. The cross correlation between frequency bins from different antennas is

computed. This results in a correlation matrix. By estimating the rank of the

matrix using the eigenvalues, the number of RFI signals can be determined [19].

3.2 Thresholding based methods

A common method of flagging RFI is to use a threshold. Thresholding will

flag RFI when the power exceeds a certain level. There are various different

methods to calculating the threshold level and for determining which samples

should be flagged. The threshold can also be set globally or varied according

to signal properties. After samples in the signal are identified as RFI they are

usually removed from the signal.

In the cumulative sum (CUSUM) method, small frames of samples are

summed together, and an average calculated. If this average exceeds the

threshold all the samples fully within the considered frames are flagged. This
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method is not as effective for determining precisely which samples contain RFI,

but can react quickly to new RFI events.

Combinatory thresholding extends the CUSUM method [20]. Using this

method, the frame lengths and the threshold for each frame are varied. The

average for small frames needs to exceed a large threshold, while the average

for a larger frame has a lower threshold. To find the threshold for each window

the VarThreshold or SumThreshold methods can be are proposed.

VarThreshold The threshold is calculated using the formula

χi =
χ1

ρlog2i
(3.1)

Where i is the number of samples in the frame, and χ1 the threshold for a

single sample. A value of ρ = 1.5 is suggested based on empirical optimization.

SumThreshold The SumThreshold method is a extension of the VarThresh-

old method. A large sample will be flagged in a short frame, but might also

be detected in a longer frame. If it is detected in a longer frame other sam-

ples around it will also be flagged as RFI, even though they contributed little.

To avoid this, the SumThreshold starts with the smallest frame length, and

replaces any flagged samples with the threshold value for that window [20].

3.3 Statistical methods

3.3.1 Surface Fitting and smoothing

A function V (υ, t) can be fitted to the correlated visibilities. The assumption is

made that the combination of the astronomical signal to the image is smooth,

while the RFI introduces more rapid changes. This method is not suitable

for the detection of pulsars or other narrowband sources. Such sources are

not smooth and will be filtered out by this method. After a function has been

fitted over the data the remainder should contain RFI and other spurious noise

signals.

Several fitting functions have been suggested. In [20] a two-dimensional,

low-order, dimension-independent polynomial is suggested. The time-frequency
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data is divided into tiles, and a least squares fit is performed on each tile. Val-

ues from previous iterations can be excluded by including a weight function.

The act of dividing the data into tiles causes the fringes of the tiles to have an

influence. To prevent this overlapping tiles can be used. However, the overlap

does not present the astronomical signal very well.

3.3.2 Singular Value decomposition

Data from an antenna is Fourier transformed, and placed through a Singular

Value Decomposition. It is assumed the highest singular values correspond

to the RFI, and they are set to 0. The values representing RFI are strong

outliers, while the Gaussian nature of the source forms a smooth curve. This

method does not work when the frequency content of the RFI is not stationary.

This method can be applied to the baseline data between each combination

of telescopes, or it can be applied to each antenna individually to flag the

autocorrelations [20].

3.4 Post-Flagging Techniques

Once data has been flagged in the the frequency domain further processing

can be performed to improve the accuracy. Analysis on properties of the RFI

signals can also be performed.

In [21] the statistics of RFI events are investigated. Data from the Parkes

Multi beam Pulsar Survey is used with thresholding, to flag RFI events. The

frequency band, angle of arrival as well as the time of day is used to analyse

the statistical distribution of RFI.

3.4.1 Morphological Algorithm

An algorithm based on the mathematical principle known as dilation was pro-

posed in [22]. The antenna data is first processed by some of the other mit-

igation techniques, such as thresholding. This will produce an array of flags

for the data, which is then processed by the morphological algorithm. The

morphological algorithm then flags additional samples around already flagged

data, based on various criteria. The algorithm will produce an array of addi-

tional flags for the data .
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The morphological algorithm assumes that the samples surrounding flagged

samples are likely to also contain RFI, but with lower power. These samples

are not detected by previous algorithms, but can still interfere with process-

ing. The algorithm flags additional samples around flagged samples, based on

how many samples were originally flagged. The algorithm only processes one

dimension at a time, but can be applied to any number of dimensions. The

order in which the dimensions are processed is important.

3.5 Signal classification techniques

In this section we will describe signal and pattern processing techniques that

we will later consider for the detection of RFI.

3.5.1 Principle Component Analysis

Principle component Analysis (PCA) is a data reduction method. When given

multidimensional data, PCA computes the dimensions along which the data

has the most variance. By selecting the dimensions accounting for the greatest

variance, the data can be projected down to a lower-dimensional space. This

makes it useful for data visualization, since multidimensional data can be

projected to two dimensions. However the process is generally lossy and thus

non-reversible. PCA can also be used as a general dimension reduction step

for higher dimension data which makes the training of models quicker.

PCA requires a data set from which to calculate the new coordinate system.

This data set should be representative of the final data, since features that

are not present will not be able to contribute to the calculated variances.

Consider a data set D consisting of n vectors each of dimension d. PCA

first computes the covariance matrix for the data D, a (d x d) matrix. The

eigenvectors wi and corresponding eigenvalues λi of the covariance matrix are

then calculated. The eigenvectors are sorted in order of descending eigenvalue.

The eigenvectors corresponding to the largest k eigenvalues are then selected

as the new coordinate system, where k is the final (and smaller) number of

dimensions required. These are combined into W, a transform matrix.

W = [w1,w2, · · ·wk] (3.2)
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Here the column vectors wi are the sorted eigenvectors. The matrix W

can then be used to transform the data D from n to k dimensions.

G = WTD (3.3)

Here G is the transformed data matrix with dimensions (k x n) and D is

the original data (n x d).

3.5.2 K-nearest neighbour classifier

The K-nearest neighbour (KNN) technique is a non-parametric classification

algorithm. KNN uses the training data directly to classify a new data point

and does not attempt to represent the data using a model. When a test point

to be labelled is introduced, the k closest points to it are determined. The

label that occurs most often among these k points is used as the label for the

new data point. For non-numeric features the distance to the closest point

must be calculated using other functions.

Increasing k increases the computational complexity of the algorithm. By

setting k = 1 the point closest is chosen as the classification result.

The KNN classifier is conceptually simple, and fairly straightforward to

implement. However, because the entire training set is required at run-time,

it suffers from a high memory requirement. Finding the k closest vectors

can also be computationally demanding, although this can be mitigated by

using appropriate data structures and/or search techniques such as dividing

the search space into a KD tree [23].

3.5.3 Gaussian Mixture models

A Gaussian mixture model (GMM) is a generative classifier, which fits Gaus-

sian distributions to labelled data. For each of the K classes, N Gaussian

distributions are fitted to the data. Each Gaussian mixture is represented by

a mean vector µi, a covariance matrix Σi, and a mixture weight wi. Due to

the high number of products in a full covariance matrix, it is sometimes ap-

proximated by a diagonal matrix. The mixture weight wi represents the prior

probability of the mixture within the GMM. The probability that a vector xi

belongs to a class λ is the sum of the probabilities for each of the N Gaussian

distributions.
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P (x|λ) =
N∑
i=1

wig(x|µi,Σi) (3.4)

The probability density g(x|µi,Σi) is defined as

g(X|µi,Σi) =
1

(2π)D/2|Σi|1/2
exp

{
−1

2
(x− µi)TΣ−1

i (x− µi)
}

(3.5)

Training The parameters of a Gaussian mixture model must be estimated

iteratively using an expectation maximization algorithm. The expectation

maximization algorithm works by beginning with an initial estimate of the

parameters, and then iteratively improving this estimate. After each iteration

the improved estimate replaces the original estimate. This process continues

until the successive improvements fall below a predetermined threshold. Initial

parameter values can be chosen at random, or estimated be using k-means

clustering. The expectation maximization algorithm is vulnerable to local

maxima, so it should be run a few times from different initializations and the

best model selected.

Optimization To optimise the Gaussian mixture model parameters a tuning

data set can be used (See section 3.6.2). The number of Gaussian distributions

to fit per class as well as the type of covariance matrix to use can be optimised.

In a cross-validation framework, this will generally lead to different optima for

each fold. In this case, the median solution can be chosen for the fold of the

model.

Classification To classify using this model, a new data point is presented to

the system. For every class, the likelihood that the data point was generated by

one of the distributions in the class is calculated. The class with the maximum

associated probability indicates the classification result. The model can also

be used to generate synthetic sample data for a specific class.
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3.6 Classifier training and evaluation

3.6.1 Confusion Matrix

A confusion matrix is a simple visualization of the performance of a classifica-

tion system. It takes the form of a grid, with one axis representing the correct

labels, and the other indicating the labels predicted by the classifier. Each

element of this grid is an integer value that indicates how many times each

true class was classified as each predicted class. This grid can be displayed as

an image, giving a quick visual impression of a classifier’s accuracy. A perfect

classifier will only have values on the diagonal, implying that all points were

correctly classified.

3.6.2 Cross-validation

Cross-validation is a method by which small disjoint datasets can be optimally

exploited for classifier development. First the entire dataset is divided into N

subsets, approximately equal in size. The subsets are also called folds. These

N subsets are divided into a training set, a tuning set and a testing set. Often

the training set is larger than the tuning and testing sets. The training set

along with the labels are used to train the classifier. The tuning set is then

classified. This is repeated for all of the N folds, and an average accuracy is

determined. The best parameter combination is then selected based on the

classification accuracy of the tuning data. The testing data is then classified

by the model for that fold, and the results are averaged for a final result. In

this way all the data can be used for both training and testing.

3.6.3 F1 score

An F1 score is a measure of classification accuracy in a binary classification

problem. The F1 score is calculated as the geometric mean between the pre-

cision and the recall. Precision measures how many of the total predictions

were accurate and recall measures how many of the positive data points were

correctly identified.

Precision =
True Positives

Total Classifications
(3.6)
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Accuracy =
True Positives

Total Positives
(3.7)

F1 = 2× P ×R
P +R

(3.8)

The F1 score is always a result between 0 and 1, with 1 corresponding to

the perfect classification.

3.6.4 Receiver operator characteristic curve

A receiver operator characteristic (ROC) curve can also be used to describe the

accuracy of a binary classification system. The curve plots the true positive

rate versus the false positive rate for a varying classifier parameter. This

provides a visualization of the influence of the parameter on the classifier. An

excellent classifier should have a true positive rate that quickly approaches 1,

and then stays there as the parameter is varied.

3.6.5 Detection error tradeoff curve

A Detection error tradeoff(DET) curve is similar to the ROC curve, but rather

plots the false negative against the false positive rate. A DET curve is usually

plotted with both axis on a logarithmic scale. The DET curve visualises both

types of errors, whereas the ROC curve only visualizes the false positive rate.

A DET curve for an average classifier would usually be visualized as a line

diagonally down. A line that lies closer to the bottom-left corner represents a

better classifier [24].

3.7 Conclusion

There are various existing methods used to detect RFI events. This chapter

discussed some of these methods. Many of the methods use additional antennas

to detect RFI local to the antenna. Other methods such as the SumThreshold

method use a threshold to detect and flag RFI events.

Methods to analyse the RFI data are also investigated. A K-nearest neigh-

bour and Gaussian Mixture model classifiers are investigated and explained.

Other tools used to determine and visualizing the result and accuracy of the

classifiers are also discussed.
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Data Capture and Corpus

Compilation

This section discusses the processes and equipment employed to capture data

for analysis. Different sources were captured on-site, using a wideband antenna

and time-domain capture device. The data capturing setup is described, and

some of the sources are discussed.

4.1 Data capturing and processing

To apply machine learning to a problem, data is required. For RFI identifica-

tion the data will be in the form of a time-domain signal, containing the signal

from the offending source. Many different captures are required, in order to

build a statistical model of the signal.

Ideally the data should be captured in an RFI silent environment, to en-

sure that no other signals are present and to minimize the environment noise

present. This type of RFI isolation can be provided by an anechoic chamber.

An anechoic chamber is a room lined with radio frequency absorbent material.

Capturing signals in this sort of environment presents two problems. First,

there is uncertainty if the signal captured has any similarity to the real world

signal. Secondly, some some sources of RFI are to big or immobile to transport

to an anechoic chamber.

A visit to the SKA site was performed in September 2014, with the goal

of capturing data for machine learning analysis. To perform the data capture

an RTA was used with an LPDA antenna. These were provided by the SKA

24
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office in Cape Town. When data capturing was performed at the KAT7 site

the LPDA antenna on the RFI trailer was used. We captured data from both

the time and frequency domain, in various different frequency bands.

KAT7 site

Meerkat Dish

Meysdam

Losberg

Processing Site
1712m0

Figure 4.1: Karoo site map. Image obtained from Google Earth, 29 September
2015.

Figure 4.1 shows a map of the Karoo site. The site is about 80km from

Carnavon in the Northern Cape. It lies in a farming area, and is a radio quiet

area.

The KAT7 site hosts all 7 of the KAT7 telescopes. The first Meerkat dish

being constructed is M63, which is the closest dish to the KAT7 site. Losberg

is a hill sheltering the processing site from the core of the SKA (off the map

to the north). The processing site hosts all the processor buildings as well as

the assembly shed and accommodation for visitors. The diesel pumps are also

located here. Meysdam is an old farm house located to the North-East of the

site. The site is now being used to house the workers and equipment used for

the construction.

4.2 Equipment

4.2.1 RTA

The Real Time Analyser (RTA) is high-speed data capturing device, which

can perform data capturing in both the time and frequency domain [25]. The

RTA is based on the ROACH (Reconfigurable Open Architecture Computing
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Hardware) platform, and was previously also known as the Ratty2. It can

perform 10 bit sampling of an input voltage at 1.8 GSa/s. The RTA has

support for 4 different frequency bands.

The RTA can perform a data capture in two different modes: time domain,

and frequency domain. In the time domain mode, samples are recorded to the

RTA’s RAM, and then transferred to a computer via an Ethernet connection.

In this mode the length of the capture is limited to 8 microseconds. This is a

very short duration capture, but is the best that the available hardware can

provide.

In frequency domain capture mode, the RTA accumulates the spectrum of

the signal over a configurable duration, usually between 1 and 10 seconds. In

this mode the frequency band is divided into 32678 channels by an internal

polyphase filter bank. The filter bank effectively generates a frequency domain

representation of the signal. The resulting spectrum of the signal is summed

over the specified time. This means that the frequency capture mode is not

very suitable for capturing transients, but can instead be used to detect any

low-powered stationary RFI signals [25].

The RTA can capture in four different bands. These are shown in Table

4.1. For the data processing the four bands are treated as separate cases. The

band must be configured before a capture is started.

Table 4.1: Table of RTA frequency bands

Band Frequency

1 50 - 850 MHz
2 800 - 1050 MHz
3 1050 - 1670 MHz
4 1950 - 2550 MHz

The RTA has configurable gain and attenuator sections in the signal chain.

These are adjusted on a source by source basis, and for every band used.

When starting a capture of a new RFI source, the highest attenuation is used.

This is done to protect the front end of the RFI. If no signal is detected,

the attenuation is lowered until the signal fills the range. The attenuation

can subsequently decreased until the signal is at an acceptable level. The

attenuation has a maximum setting of +90db, and a minimum of 0db.
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The RTA can trigger on data in two different modes when capturing in the

time domain. When the RTA triggers it starts storing data in the buffer until

the buffer is full, and then transmits data to the computer. It can trigger as

soon as the signal exceeds a certain threshold. It can also operate on a free-

running trigger. In this mode it will start sampling a new capture as soon as

the previous capture has been transmitted to the computer. As far as possible

this mode was avoided, since it provides no assurance that any signal will be

present in the data.

4.2.2 LPDA antenna

The antennas used for data capturing are Log Periodic Dipole Arrays (LPDA).

An LPDA antenna consists of dipoles of increasing size arranged in a straight

line. Each second dipole is connected in reversed phase. An LPDA antenna

operates over a wide frequency band and is directional, making it ideal for

capturing RFI sources.
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Figure 4.2: LPDA gain over frequency

Figure 4.2 shows the gain the antenna has over a frequency range. It has

a very consistent gain over the MHz range, and only breaks up in the lower

GHz.
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4.2.3 RFI trailer

The RFI trailer is a small unit used on-site to find RFI signals. It contains

some detection and processing equipment. We only used the trailer’s LPDA

antenna, a HL033 LPDA [26]. This antenna has a frequency range from 80

MHz to 2 GHz. The antenna is attached to a mast, so it can be raised, lowered

and rotated from ground level. The antenna was used for all captures at the

KAT7 site. Figure 4.3 shows the trailer with the mast raised and the antenna

attached.

Figure 4.3: The RFI trailer used in some of the captures. Photo credit: Paul
Manners (SA-SKA/HartRAO).

4.3 Sources of RFI

Various different sources of RFI available on site were captured. The sources

were selected based on availability on site. For each of the sources a baseline

capture was also done. This capture is done without the source transmitting,

in order to determine the background signal levels in the area where the signal

was captured from. Figure 4.4 shows the setup used for capturing. Table 4.2

shows the sources available on site.

Most of the samples were obtained from band 1, which lies between 50MHz

and 850MHz. For all of the sources we attempted to capture data in the higher
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bands, but for most of them we did not capture any useful or identifiable

signals. Most of the further analysis will be on data from band 1 of the RTA.

For most of the sources the antenna was located close to the source, within

3 to 6 meters. The only exceptions to this were the Meysdam refridgeration

unit, which was captured from 3m, 15m and 25m, and the Meerkat compressor,

which was captured from about 100m away. The antenna was kept in a vertical

polarization.

Filter LNA ADC

RTALPDA Laptop

Figure 4.4: The setup used for data capturing

Some of the sources were easier to capture than others. Sources under our

direct control such as the welder and the diesel filter pumps could be turned

on and off. Other sources such as the Meysdam Refrigeration unit and the

Meerkat compressor were not under our control, so we had to wait for them

to turn on automatically.

The same source was captured multiple times in order to establish a database

of the signal.The gain setting on the RTA was varied per source. The gain

setting was recorded, but not taken into account when processing the data. A

normalization step replaces the gain setting.

Table 4.2: Table of signal sources

Source

Meysdam Refrigeration unit
Diesel Filter pump
Meerkat Compressor
Crane and Cherry picker
Welder
Vehicle electronics
Radios
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Meysdam Refrigeration Unit There is a temporary housing facility at

Meysdam for the on-site workers. One of the facilities located there is a re-

frigerated shipping container, used to store food. The compressor can cause

unwanted RF emissions when it turns on and off during the day. The container

is referred to as a reefer on site.

Diesel filter pump Diesel is stored on-site and is used both for electricity

generators and for on-site vehicles. A filter pump used for the diesel switches

on intermittently and can cause unwanted interference. RFI measurements of

the pump were taken from up close. The diesel pump was turned on manually.

Meerkat Compressor The compressor used to cool the Meerkat digitizer

switches on and off at a regular interval, producing interference. Measurements

of the Meerkat compressor were taken from the KAT7 position using the RFI

trailer. No closer measurements were possible, because no power was available

at the Meerkat site.

The other compressor was a small standalone compressor used with the

RFI trailer to raise the mast up.

Crane and Cherry picker There are two cranes that are used on site: one

large crane used for construction, and one cherry picker used for lifting people

up to the receiver dish for construction. The first can be operated using a

remote, which produces an RF signal. This interference was measured at the

Meysdam site. RFI generated by the cherry picker was measured inside the

assembly shed at the processing site.

Welder A welder was measured inside the assembly shed at the processing

site. Two distinct signals were identified, one when the welder was sparking,

and another during welding.

Vehicles There are various vehicles used on site. There are a few bakkies,

as well as a VW combi used to transport workers. All the vehicles are diesel

vehicles. We measured the RFI produced by the alternators of the vehicles, by

the lights and by the two-way radios. It proved difficult to capture signals from

the vehicle because of the long duration of an alternator cycle the compared

to the capture time.
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Lightning While capturing data from the KAT7 site, an approaching light-

ning storm was noticed. It is possible that the lightning interfered with the

signals we captured. These samples were marked as lightning and not used

in classification, as there is uncertainty if the captured signals contain signals

from the lightning.

4.4 Initial Data Labelling

Once the data was captured, it was labelled according to notes taken during the

capturing. Any data containing spurious signals are discarded. A assessment

of the number of available data points is then made.

Naming conventions In this section, the following names are used to refer

to files and captures.

Sample One instantaneous sample (a scalar value).
Frame A collection of consecutive samples, usually 1024.
Capture 32768 consecutive time samples, the maximum number of samples

the RTA can capture.
File A file contains multiple captures, all of which are of the same

source and use the same attenuation.

A meta-data file is kept for every data file. This file notes the source being

captured and the attenuation used. For every capture in the data file, a label

is stored in the meta-data file as well. This labelling is used for the first section

of Chapter 5.

4.4.1 Visualizing the data

To visualize a single capture, a spectrogram is computed. This is done by

dividing a single time capture into overlapping frames. These frames are 1024

samples in length, and overlap by 512 samples. This frame represents a 0.569ns

section of the original signal, sampled at 1.8GHz. At this point an FFT can be

taken of the data to produce a spectrogram. However, in order to reduce the

number of data points, an average spectrogram is calculated instead. The 1024

frame is further divided into 128 point segments. An FFT with a Hamming

window is applied to these segments, and the results are averaged. Since this
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is a real signal, one half of the FFT result is discarded, along with the DC

component. These averaged segments represent the frequency content of the

frame, and are later used as feature vectors. Figure 4.5 shows the general

process used to extract the feature vectors. Figure 4.6 shows several examples

of the feature vectors from different sources.

Capture, 32768 sam-
ples

0,1,2... ...,32768

Divide the capture
into frames, 1024
samples per frame
with a 512 sample
overlap

Fourier Transform

Divide each frame
into segments with
length 128.

Calculate the Fourier
transform of each seg-
ment, and average
them.

Σ

Feature vector

This gives the final
feature vector for the
frame

Figure 4.5: Visualization of data division.

Spectrograms of different captures of the same RFI source are then com-

pared to notes made during data capturing. The captures are labelled accord-

ing to the data source.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. DATA CAPTURE AND CORPUS COMPILATION 33

w
el

d
er

w
el

d
er

w
el

d
er

b
a
k
k
ie

st
a
rt

b
a
k
k
ie

st
a
rt

b
a
k
k
ie

st
a
rt

b
a
k
k
ie

li
g
h
ts

d
is

ca
rd

d
is

ca
rd

b
a
k
k
ie

li
g
h
ts

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

F
re

q
u

en
cy

[M
h

z]

Figure 4.6: Example spectrogram of several different sources.

4.4.2 Removing outliers

Any corrupt captures are removed. These include empty captures containing

no data, or captures containing any other interference signals such as radio

signals. Interference signals are identified by comparing all the captures for

a specific source. Any capture presenting uncharacteristic spectrograms is re-

moved and labelled as (additional) interference. Figure 4.7 shows an example

of such a spectrogram. The source is a two-way radio, which emits a single

frequency signal. However, additional wideband bursts are visible in the spec-

tra, where the radio signal has not been captured. These captures are labelled

with discard.

4.4.3 Available Data

The number of available samples are summed and compared. Table 4.3 shows

the raw number of samples available, before any processing was applied. Table

4.4 shows the final numbers as well as all the labels used.

4.5 Individual Frame Labelling

The previous section described the labelling of the data on a per-capture basis.

This section describes the more detailed labelling of the resultant data set on
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Figure 4.7: Additional Interference in a spectrogram

a per-frame basis. Frames are assigned RFI labels only when their energy

exceeds a certain threshold.

The motivation for this step is that inspection of the data revealed that,

due to the impulsive and non-stationary nature of many of the interference

sources, most captures included a substantial amount of silence, during which

no interference was present. The threshold is calculated as a percentage of the

total energy in the capture. The threshold was manually adjusted on a file

by file basis, but was always kept between 5% and 15%. Any frames that did

not exceed this threshold are labelled as silence for that specific class. These

silence frames were also considered during classification, to determine whether

the models can differentiate between RFI and silence. The per-frame labelling

process improves the quality of the labelled data with which classifiers can be

developed. It has the negative consequence that some frames containing the

signal at a low energy level are labelled as silence. Since it may be expected

that the various silence classes are difficult to distinguish between, they were

also merged into a single silence class.

Table 4.4 show the number of frames available after labelling the data in

this way. Note that for every class an additional class was created to indicate

the silence regions taken from captures for this class.
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Table 4.3: Number of frames obtained for each RFI source.

Source Name Band 1 Band 2 Band 3 Band 4

bakkie radio discard 25 0 0 0
bakkie baseline 29 76 64 50
bakkie lights 30 0 0 0
bakkie radio 7 0 0 0
bakkie radio discard 30 0 0 0
bakkie start 31 7 0 0
big crane 15 0 44 31
big crane baseline 31 31 29 31
big radio 26 0 0 0
cellphone 7 59 0 0
cherry picker 10 0 0 0
cherry picker baseline 24 0 0 0
compressor 9 0 0 0
compressor baseline 75 0 0 0
diesel filter 114 16 14 13
diesel filter baseline 61 46 53 40
discard 548 73 206 52
kat7 meysdam 41 0 0 0
lightning discard 28 0 0 0
meerkat compressor 122 0 0 0
meerkat compressor kat7 87 0 0 0
meysdam gap 252 0 0 0
possible lightning 9 0 0 0
radio 22 0 0 0
reefer 13 5 0 0
vw baseline 11 0 0 0
vw discard 8 0 0 0
vw ignition 24 0 0 0
vw indicators 28 0 0 0
welder 17 0 0 0
welder baseline 29 0 0 0
welder spark 12 0 0 0
total 1775 313 410 217
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Table 4.4: Data frames available after per-frame labelling.

Source Amount

bakkie lights 180
bakkie lights silence 660
bakkie radio 196
bakkie start 154
bakkie start silence 714
big crane 420
big radio 607
big radio silence 121
cherry picker 50
cherry picker silence 230
compressor 45
compressor silence 207
diesel filter 78
diesel filter silence 3142
kat7 meesdam 1148
meerkat compressor 203
meerkat compressor kat7 2293
meerkat compressor kat7 silence 143
meerkat compressor silence 3213
meysdam gap 7056
radio silence 616
reefer 76
reefer silence 288
vw ignition 109
vw ignition silence 563
vw indicators 43
vw indicators silence 741
welder 110
welder silence 366
welder spark 64
welder spark silence 272
total silence 11 276
total RFI 12 832
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4.6 Conclusion

This chapter explained the method used to record and label data. Data from

various RFI sources was captured on-site, using an LPDA antenna and the

RTA. Data was captured from multiple frequency bands. The data was la-

belled, both on a per-capture and per-frame basis, and any outliers were re-

moved. Basic feature extraction in the form of a spectrogram was performed.
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Chapter 5

Experimental Results

This chapter describes the application of the classification methods described

in Chapter 3 to the data described in Chapter 4, and presents the classification

accuracies achieved.

5.1 Classification using capture-based labels

For initial experimentation, a very simple approach to feature extraction was

taken. The extracted features are then classified using a selection of classifi-

cation algorithms.

Feature Extraction First we use only the data described in Table 4.3. The

baselines captures representing the background noise levels are not used in this

section.

The spectogram for individual frames is calculated, as explained in Section

4.4.1 and shown in Figure 4.5. This results in a feature vector of length 63

for each frame. However, not all frames in a capture represents RFI. The

assumption is made that the frame containing the most energy represents the

RFI for that capture. The total energy per frame is calculated, and the frame

with the most energy is used as feature vector for the corresponding capture.

This feature extraction method is easy to implement, but has some draw-

backs. Firstly, it assumes that the part of the signal with the highest energy is

representative of the whole signal. This might discard other frames with less

energy which can also contribute to the classification. Secondly, this approach

38
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discards any temporal properties of the signal. Thirdly, it greatly reduces the

size of the dataset available for classifier training and testing.

Indeed, there are some classes with very few samples and these were there-

fore removed from the data. The number of frames remaining in the dataset

are given in Table 5.1.

Table 5.1: Per-capture dataset available after discarding under-represented
classes.

Source Number of Frames

bakkie lights 30
bakkie start 31
big crane 15
big radio 26
cherry picker 10
diesel filter 114
kat7 meysdam 41
meerkat compressor 122
meerkat compressor kat7 87
meysdam gap 252
reefer 13
vw ignition 24
vw indicators 28
welder 17
welder spark 12
Total 822

For experimentation, 10-Fold cross validation was used. Six of the folds

were used for training, two for tuning and the remaining two for testing.

5.1.1 KNN classification

The KNN classifier was described in Section 3.5.2. Before the KNN classifier

can be applied, the value chosen for k has to be decided. This is done by

varying k over a range of values, and optimizing the resultant classification

accuracy over the tuning set. The average classification results for the various

values of k are shown in Figure 5.1. As the value chosen for k decreases, the

accuracy of the classifier decreases. The standard deviation is also generally

large, indicating that while certain classes may achieve a very accurate result,

others might score very poorly.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL RESULTS 40

1 2 3 4 5 6 7 8 9 10 11

k nearest neighbours

40

45

50

55

60

65

70

75

80

A
cc

u
ra

cy
(P

er
ce

n
ta

g
e)

Figure 5.1: Classification accuracy of various KNN models using per-capture
labels.

A value of k = 1 is selected for the classifier, and the tuning data for each

data fold is classified. The results of each fold are averaged. The results are

represented in a confusion matrix in Table 5.2. The average accuracy of the

classification is 70.80%, with a standard deviation of 30.72.
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The generally higher values along the diagonal show that many of the sam-

ples are correctly classified. However, there is much misclassification in some

of the classes, scoring low accuracies. One such misclassification is between

the vw indicators and vw ignition classes. Example data points from the two

classes are plotted in Figure 5.2. Note that each block has been individually

normalized. The spectra of the two classes are visibly similar, with both only

vw
ig
ni

ti
on

vw
ig
ni

ti
on

vw
ig
ni

ti
on

vw
ig
ni

ti
on

vw
ig
ni

ti
on

vw
ig
ni

ti
on

vw
ig
ni

ti
on

vw
in

di
ca

to
rs

vw
in

di
ca

to
rs

vw
in

di
ca

to
rs

vw
in

di
ca

to
rs

vw
in

di
ca

to
rs

vw
in

di
ca

to
rs

1.76

101.56

201.37

301.17

400.98

500.78

600.59

700.39

800.2

900.0

F
re

q
u

en
cy

[M
h

z]

Figure 5.2: Comparison of classes with high confusability in the per-capture
KNN experiment.

emitting a short wideband burst. The frequency ranges that they occupy are

also similar.

5.1.2 GMM classification

The GMM classifier was described in Section 3.5.3. The most obvious param-

eter of the GMM under the experimenter’s control is the number of Gaussian

distributions, n, that are fitted to each of the m classes. Since each distribution

will model one of the m classes of RFI, the appropriate number of Gaussians

is determined by the shape of the data, and how spread out a class is.

However, the form of the covariance matrix can also be varied by the ex-

perimenter. The simplest representation assumes that the data distribution is

spherical, so the covariance is represented by a single value. The covariance

matrix can also be represented by a diagonal matrix, which assumes statistical
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independence between features, or by a full covariance matrix. The number of

free parameters in the covariance matrix is 1, d and d(d+1)
2

for each approach

respectively, where d is the size of the feature vector

GMMs, one for each class of RFI, are trained for each fold of the data.

The covariance type is chosen to be either spherical, diagonal or full. The

testing data are classified, and the average accuracy over all the folds is used

to determine the optimal number of mixtures. The accuracy of a class is

determined by the number of correct predictions divided by the total number

of data points in that class. The total accuracy is determining by averaging

the accuracies of the individual classes. This methods lends equal weight to

the accuracies of under and overrepresented classes. The number of mixtures

is varied between 1 and 5 to determine the optimal number.
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Figure 5.3: GMM classification accuracies for different number of mixtures
and different forms of the covariance matrix, using capture-based labels.

Figure 5.3 shows the average cross-validation classification accuracy of the

classification of the testing data using different number of Gaussians, and

various covariance matrix types. The figure shows that the full covariance

matrix scores the best, followed by the diagonal and spherical covariance ma-

trices. The best combination of parameters are a full covariance matrix using

3 Gaussians. Using more Gaussians yields diminishing returns.

Figure 5.3 shows the confusion matrix for a GMM classification using 3

Gaussians per class, and a full covariance matrix. The overall classification
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accuracy is acceptable at 65.56%, with a standard deviation of 31.01. Many

samples are still labelled incorrectly. Some classes such as the bakkie start

and diesel filter are almost unused by the classifier, and have very poor ac-

curacies. Many samples were mislabelled as kat7 meysdam, vw ignition and

welder. Sample data from these classes were inspected visually to assess why

the misclassification is so common.
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Figure 5.4: Sample data showing classes with high confusability in the per-capture GMM classifier.
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Figure 5.4 shows example data from these two RFI classes. Especially the

signal in the kat7 meysdam samples has very low energies, and the background

noise is very clearly present. This class possibly requires better feature extrac-

tion to be compared to other classes. The vw ignition and welder have more

power present. Both present a very common spectra which includes a short,

wideband pulse.

For the experiments using capture-based labels, the KNN classifier far out-

performs the GMM classifier. The performance of the GMM classifier is sur-

prisingly poor. We suspected that this may in part be due to the approach of

using a single high-energy frame from each capture to represent the RFI class.

Hence the next section presents results using the data with frame-based labels.

5.2 Classification using frame-based labels

This section describes experiments using the data labelled on a per-frame basis,

as described in Section 4.5. This method makes much more data available for

classifier training. It also introduces a new silence class to the data.

5.2.1 KNN classification

The KNN experiments described in Section 5.1.1 were repeated using the per-

frame labelled data. The optimal value for k has to be determined again. The

first experiment described in the previous section is repeated. Figure 5.5 shows

the accuracy for various values of K. There is almost no difference between any

of the values, as all of them have an accuracy in the high 90s. The standard

deviation is also very good, having very small values.

For the KNN classifier 1 nearest neighbour is again found to be optimal.

The results of the classifier are shown as a confusion matrix in Table 5.4.

Combinations where no classifications occur are left empty.

Although it must be kept in mind that the training and testing datasets

have changed, the KNN classifier now achieves a much better result than when

using per-capture labels. Most remaining misclassifications occur with the

vw ignition and vw indicators classes. The classifier also succeeds in classifying

the silence class.
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Figure 5.5: Comparison of KNN classifier accuracies for various values of k
using frame-based labels.
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5.2.2 GMM classification

This section repeats the GMM experiments of Section 5.1.2 using the per-frame

labels. As before, the number of mixtures and the type of covariance matrix

is varied and optimised on the tuning set. Figure 5.6 shows the classification

accuracies using the various configurations. The diagonal covariance matrix

scores the best, outperforming the spherical covariance matrix. The accuracy

for the full covariance matrix decreases as the number of Gaussians is increased.

This might be due to a lack of data, causing the GMM to be over fitted.
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Figure 5.6: GMM classification accuracy for different number of Gaussians
and covariance matrices, when using per-frame labelling.

The data is classified using a GMM with 3 Gaussians per mixture and a di-

agonal covariance matrix. The individual class results are shown in Table 5.5.

The classification has an average accuracy of 87.34 and standard deviation of

10.76. The high values on the diagonal clearly show that most of the samples

are correctly classified. Many small values are also seen in the silence class,

suggesting that some data points are misclassified as silence. The main con-

tributor to these errors is the labelling method used. During labelling the total

energy in the signal is compared to a threshold. This means that some frames

will be marked as silence even though they contain traces of the interference

signal.

The welder and bakkie start classes also have many misclassifications.
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5.3 Higher Frequency Bands

During the data collection process some captures were also made in some of

the higher frequency bands. There were however very few usable samples,

because few of the sources investigated emit signals in the higher frequency

bands.

The features for these experiments were extracted using the same method

as previously described, except using data from band 2. No data from band 1

was used.

The data from frequency band 2 (800Mhz-1050Mhz) was classified using

both a KNN and a GMM classifier. Various hyper-parameters for the KNN

and GMM classifiers are considered. The results are shown in Figure 5.7 and

Figure 5.8.
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Figure 5.7: GMM classification accuracy for different number of Gaussians
and covariance matrices, when using per-frame labelling.

There is no clear optimal value for the KNN classifier. The result for

1, 10 and 11 nearest neighbours are similar. The GMM results show that the

diagonal covariance matrix scores the best, followed by the spherical covariance

matrix. The full covariance matrix does not achieve an acceptable accuracy.

The KNN classifier uses 1 nearest neighbour; the GMM classifier uses 2

Gaussian mixtures with a diagonal covariance matrix. Tables 5.6 and 5.7 show

the covariance matrix results for these experiments. The large values on the
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Figure 5.8: GMM classification accuracy for different number of Gaussians
and covariance matrices, when using per-frame labelling.

diagonal clearly indicate that most of the classifications are correct. The KNN

classifier has an average accuracy of 89.54%, while the GMM classifier achieves

an accuracy of 91.38%. Here the GMM outperforms the KNN classifier by a

small margin. However the difference between results is less than one standard

deviation.

Actual Value

Predicted Value

b
a
k
k
ie

st
a
rt

d
ie

se
l

fi
lt

er

re
ef

er

si
le

n
ce

bakkie start 91.4 8.6
diesel filter 88.5 11.5
reefer 80.0 20.0
silence 0.6 0.6 0.5 98.3

Table 5.6: Confusion matrix for KNN classification when trained and evalu-
ated on data from higher frequency bands, with k=1. The per-frame labelled
dataset was used. The average accuracy is 89.54%, with a standard deviation
of 6.58.
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Actual Value

Predicted Value

b
a
k
k
ie

st
a
rt

d
ie

se
l

fi
lt

er

re
ef

er

si
le

n
ce

bakkie start 84.4 15.6
diesel filter 89.3 10.7
reefer 96.3 3.7
silence 1.1 2.6 0.7 95.5

Table 5.7: GMM classification confusion matrix using higher frequency bands
(2 mixtures, diagonal covariance matrix). The average accuracy is 91.38%,
with a standard deviation of 4.84.

5.4 Conclusion

This section presented and discussed the various classification methods inves-

tigated. Using capture-based labels proved to be inaccurate, with both the

KNN and GMM classifier providing unacceptable results. Table 5.8 shows a

comparision between the accuracies of the various classifiers, for data captured

from band 1.

Table 5.8: Classification accuracies for GMM and KNN classifiers

Feature Type KNN Classifier GMM Classifier
Accuracy Std. Dev. Accuracy Std. Dev.

Capture based labels 70.80% 30.72 65.56% 31.01
Frame based labels 93.20% 6.46 87.34% 10.76

In both conditions the KNN classifier outperforms the GMM classifier.

Classifying the higher frequency data also yields good results, with the

GMM achiving an accuracy of 91.38%, outperforming the KNN. However as

there are fewer sources emitting in these bands this approach will possibly not

be a priority.
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Chapter 6

Further feature extraction

experiments

In this chapter different feature extraction methods will be investigated. The

performance of these methods will be investigated using the same GMM and

KNN classifiers as described in previous sections, where applicable. At the

end of this section a comparison between all the feature extraction methods is

made.

6.1 Classification using reduced feature

vectors

This experiment investigates the impact of a smaller feature vector on the

classification accuracy. The method modifies the spectrogram calculation in

Section 4.4. Rather than dividing each frame into segments of size 128, they

are divided into segments containing 32 samples. The average spectrogram

of these segments are then calculated. This results in feature vectors with a

length of 15, due to it being a real signal and removing the DC component.

The frame length is maintained as 1024 samples, in order to preserve the

labelling. Using the smaller feature vectors is expected to make classification

much quicker, but is also expected to reduce the accuracy of classification.

Experiments similar to those in Section 5 are performed. Both the KNN

and GMM classifiers are used. All other configurations, such as data folds, are

kept constant.

55
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6.1.1 KNN classifier

The optimal value for k is determined by varying k over a range, classifying

the tuning data and selecting the optimal value. Figure 6.1 shows the result of

this optimization. All tested values of k show a similar result, and a value of 1

is selected for k. This is different from the previous feature extraction method

used in Section 5.2.1, where there was a more gradual difference between values,

and a clearer optimal value.
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Figure 6.1: Comparison of KNN classifier accuracies for various values of k,
using frame based labels and feature vectors reduced to 16 features.

Table 6.1 shows the confusion matrix of a KNN classifier when classifying

the testing dataset with k = 1. The results are comparable to the result from

previous classifiers. The KNN classifier achieves an average accuracy of 81.70%

with a standard deviation of 16.36. A comparison between the results is made

in Section 6.3.
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6.1.2 GMM classifier

The GMM classifier is also used to classify using the reduced feature vectors.

GMM models are trained for different covariance matrix types and mixture

numbers. The tuning data is classified using these models and compared. The

classification results are shown in Figure 6.2.
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Figure 6.2: Comparison of GMM classifier accuracies for various configura-
tions, using frame based labels and feature vectors reduced to 16 features.

The results are similar to previous experiments with the GMM classifier

in Section 5.2.2, with the full covariance matrix performing good at first, and

decreasing in accuracy as the number of Gaussians is improved. The diagonal

covariance matrix scores the best, followed by the spherical covariance matrix.

For classification a diagonal covariance matrix using 3 Gaussians per class is

selected.

Table 6.2 shows the result of the classifier. The GMM classifier achieves an

average accuracy of 78.35% and a standard accuracy of 16.69. A comparison

between the results is made in Section 6.3.

6.1.3 Further possibilities

This feature extraction method can be further refined by optimising the size

of the feature vector. This will mean a trade-off between classification speed

and accuracy.
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6.2 Classification using delta frames

A feature extraction method using delta frames is investigated. The 63-point

feature vector used in Section 5.2 is extended by appending the delta to the

next frame to it. This results in a feature vector with 126 dimensions. This

method of feature extraction can also be extended by appending the acceler-

ation coefficients to the next frames.

6.2.1 KNN classifier

Optimization of the KNN classifier is performed. Figure 6.3 shows the accuracy

for different values of k. There is not much variation between different values,

with all values obtaining close to 85% accuracy. A value of 1 is chosen for k.
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Figure 6.3: Comparison of KNN classifier accuracies for various values of k,
using delta frames

Table 6.3 shows the confusion matrix for the KNN classifier. The classifier

achieved an average accuracy of 86.05% with a standard deviation of 13.23.
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6.2.2 GMM classifier

The GMM classifier is used to classify the data with delta frames. GMM mod-

els are trained for different covariance matrix types and mixture numbers. The

tuning data is classified using these models and compared. The classification

results are shown in Figure 6.4. The behaviour of the diagonal and spherical

1 2 3 4 5

Number of Gaussians

20

30

40

50

60

70

80

90

A
ve

ra
g
e

A
cc

u
ra

cy
(p

er
ce

n
ta

ge
)

Spherical

Diagonal

Full

Figure 6.4: Comparison of GMM classifier accuracies for different configura-
tions, using frame based labels with delta frames.

covariance matrices are similar to previous experiments, starting at a lower

accuracy and quickly improving as the number of Gaussians is increased. The

Full covariance also follows a similar pattern as previous experiments, but has

a much lower accuracy overall.

The testing data is classified using a classifier with a diagonal covariance

matrix with 3 Gaussians. The results are shown in Table 6.4. The classifier

achieved an average accuracy of 78.34%, and a standard deviation of 18.28.
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6.3 Comparison between methods

The results from all the used classifiers are combined and compared. Table

6.5 shows the average accuracy when classifying the testing data on all the

different classifiers.

Table 6.5: Classification accuracies for all classifiers

Feature Type KNN Classifier GMM Classifier
Accuracy Std. Dev. Accuracy Std. Dev.

Capture based labels 70.80% 30.72 65.56% 31.01
Frame based labels 93.20% 6.46 87.34% 10.76
Reduced feature vector 81.70% 16.36 78.35% 16.69
Delta frames 86.05% 13.23 78.34% 18.28

The least accurate feature extraction method was the capture based labels.

This method only considered the frame with the highest power, so much less

data was available for training purposes.

The most accurate classifier was the KNN classifier using frame based la-

bels, which was discussed in Section 5.2.1. The method also has the smallest

standard deviation, indicating that most of the classes had high accuracies.

For each of the feature extraction methods the GMM scores worse than the

KNN. The biggest difference in accuracy is between the feature vectors with

delta frames.

Changing from reduced feature vectors to delta frames yields an improve-

ment for the KNN classifier, but yields almost no change for the GMM classi-

fier.

6.4 Conclusion

This section investigated two different feature extraction methods. The first

method reduced the feature vector down 16 samples. Using this method the

accuracy of the KNN and GMM classifiers were lower than the previous ex-

periment.

The second method appended a delta to the next frame to each feature vec-

tor. This method also had a lower accuracy than previous methods, although

not as substantial as the reduced vector.
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Overall the KNN classifier discussed in Section 5.2.1 is still the most accu-

rate.
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Chapter 7

Post-processing

In this section some post-processing methods are considered. The two methods

presented here attempt to improve the labelling produced by the classifier, and

to assess the robustness of a classifier against unknown data.

The classifiers used in the previous section can classify a data point as

belonging to a certain class, or as silence. This classification can be reduced

to a binary classification by only considering if a data point is RFI or silence.

This allows us to use tools such as the F1 score (see Section 3.6.3) to assess

the accuracy of the classification.

7.1 Classification of the capture as a time

series

One way in which classification may be improved is to consider the temporal

relation between the labels assigned to frames. To do this all the frames in

a single capture are first classified independently using one of the previous

classifiers. The predicted labels are then considered as a temporal sequence.

A median filter is applied to the sequence of predicted labels in an attempt

to improve the accuracy. The filter will have a smoothing effect on the data,

removing isolated frames whose assigned label differs from the surrounding

frames.

The filter considers a window of consecutive classifier labels. This window

is generally centred on the frame of current interest. The filter selects the

most common value from within the window, and assigns this value to the

66
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frame at the centre of the window. Subsequently the window advances by one

frame, and the process is repeated. The number of frames in the window must

be determined empirically. If the value is too small, the filter is sensitive to

high-frequency changes. If the value is too high the filtering effect will be too

strong.

The GMM classifier describer in Section 5.2.2 is used. A capture (con-

sisting of multiple frames) is classified using the classifier. The classifications

are converted to a binary classification by only considering if a data point is

classified as RFI or not. The F1 score is calculated. The classifications are

then processed by median filters whose windows extend 1,2,3 and 4 frames

either side of the frame of interest, and the new F1 score is calculated. The

two scores are compared to asses any improvements as a result of the filter.

This process is repeated for all captures, and every data fold.
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Figure 7.1: Improvements for various lengths of median filter, divided by class.

Figure 7.1 shows the difference in F1 scores for each label. The four columns

per label are the different lengths for the filter. The figure shows that the
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overall classification accuracy is decreased by applying the filter, and worsens

as the length is increased.

7.2 Classification performance for unseen

types of RFI

A classifier running in the field will encounter data that does not necessarily

belong to any of the RFI classes encountered during training. A good classifier

should be able to detect the new data and to flag it accordingly. To evaluate

how our classifier would handle this situation, we omit one class of data train-

ing. This class is then used during testing. This process is repeated for all the

classes and for all folds of the data. This will give an accurate representation

of the capabilities of the classifier.

The GMM classifier was modified slightly and used for this experiment. For

each input frame the classifier returns the probability that the frame belongs

to a class. If the probability for any class is above a threshold the frame is

labelled as the relevant class. However, if the probability is below the threshold

the frame is labelled as a missing class. This allows the classifier to detect

when new data is presented to it. The GMM is used for this, as it returns a

probability. A KNN does not return a probability, only a label. The GMM

used 3 Gaussians and a diagonal covariance matrix.

To determine the optimum threshold of the classifier the result of the clas-

sification is first converted to a binary result. The positive result is defined as

unknown RFI data, and the negative as known RFI data. A good classifier

should be able to detect the unknown classes (returning many true positives)

but should also detect known RFI (returning many true negatives). These

values in conjunction with the false positive and false negative rates can be

used to asses the ability of the classifier to identify new sources.

The threshold can now be varied to determine the optimum point. The

results of different threshold is plotted on an DET curve.

Figure 7.2 shows the DET curve for the GMM.

In order to select the optimal value for the threshold, the frequency of RFI

events at the telescope site has to be considered. As this data is not available

to us, no attempt is made to estimate an optimal value.
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Figure 7.2: DET curve of classification with a unknown source

7.3 Conclusion

Some post-processing techniques were investigated in this chapter. A filter

was applied to the post-classification labels. This filter attempted to sacrifice

accuracy in order to improve the false-negative rate, but was largely unsuc-

cessful.

Another technique that was investigated was classification using a missing

class. A class was omitted when training the classifier models, and the ability

of the classifier to detect the missing class was investigated. The threshold for

the classifier has to be set depending on the site characteristics.



Chapter 8

Summary, conclusion and

further work

The work described in this thesis involved automatic identification and classifi-

cation of RFI in a radio telescope environment. RFI presents a large challenge

to telescope observations, as even low-powered interference can overpower the

astronomical signals. It is generally not possible to remove such interference

from the astronomical signals. However, by detecting the presence and type

of interference, it can be identified and removed from site. The detection of

RFI will also allow potentially corrupt observations to be omitted from astro-

nomical experiments.

This thesis has investigated the use of machine learning algorithms to iden-

tify RFI signals.

Data from different sources was captured from the SKA site. The data was

captured in the time domain, using the real time analyser (RTA). The signals

were captured close to the source, using an LPDA antenna. The RTA can

only capture time signals of up to 8µs in length. The data was labelled, and

different feature extraction and classification methods were implemented and

tested.

The initial feature extraction technique considered only a single feature

vector per capture. KNN and GMM classifiers were applied to the data, and

were able to distinguish between the 15 classes with accuracies of 70.80% and

65.56%, respectively.

Performance was improved using a thresholding method to select multiple

feature vectors per capture. This made more data available to the classifiers

70

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 8. SUMMARY, CONCLUSION AND FURTHER WORK 71

for training and evaluation. It also allowed them to distinguish between silence

(absence of RFI) and RFI. Using the improved feature extraction technique

both KNN and GMM classifiers exhibited improved accuracies of 93.2% and

87.34%, respectively.

Variations of the feature extraction methods were also considered. One

method investigated the effect of reducing the dimensionality of the feature

vector from 63 to only 15 features. Another method extended the feature

vector by adding delta features. Both of these methods performed adequately,

but did not outperform the methods previously used.

An attempt was also made to reduce the false negative rate of the classifier

by applying a post-classification filter. Finally the versatility of the GMM

classifier was tested by omitting classes, hereby emulating the occurrence of

previous unseen RFI classes. It was found that the GMM classifier can detect

unknown sources, but must be carefully tuned to the characteristics of the site.

Overall the work showed that it is possible to classify RFI using machine

learning techniques. Both of the classifiers that were investigated were able to

classify the data with high accuracies.

8.1 Recommendations and Future Work

In future work other classifiers might be considered. Using hidden Markov

models will allow the temporal properties in the data to be captured, possibly

allowing more accurate classification. This will however require more and

specifically longer captured data than is currently available.

In line with this, the data sampling capabilities should be improved. The

current sampling hardware is able to capture only a very short segments of

the signal, albeit a very high sampling rate. A longer capture may reveal

temporal relations that are not visible using the current method, and that can

be exploited for classification. The longer capture can even be done at the

cost of sampling rate. Most of the RFI signals contained energy in the range

from 50 to 400MHz. This means the 1.8GHz sampling rate is excessive and

possibly simpler recording equipment could be used.

The data used for classification was captured close to the source. In most

cases the signal was clearly visible in the spectrogram. Capturing data from

further away, or using a less directional antenna will allow more rigorous testing
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of classifiers. However, capturing and correctly labelling the data will be more

difficult.
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