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Abstract

An order picking system in a distribution center (DC) owned by Pep Stores Ltd. (PEP) is
investigated. Twelve unidirectional picking lines situated in the center of the DC are used to
process all piece picking. Each picking line consists of a number of locations situated in a
cyclical formation around a central conveyor belt. Pickers walk in a clockwise direction around
a conveyor belt picking stock for stores.

The picking lines are managed in waves due to PEPs policy to push stock to stores. For each
wave of picking a subset of released stock keeping units (SKUs) is selected and assigned to an
available picking line. The physical stock is then brought to the assigned picking line before
multiple pickers pick all the store requirements (or orders) defined by the SKUs within that
wave. Once all of the orders have been picked a new mutually exclusive set of SKUs, defining
a new wave, is brought to the picking line for picking. In this way picking lines function in
parallel to and independently of each other.

The order picking system is deconstructed into three decision tiers. Firstly at the start of each
day SKUs are assigned to available picking lines which defines the Picking Line Assignment
Problem (PLAP). Once a set of SKUs has been assigned to a picking line each SKU is assigned
a specific location within the picking line which defines the SKU Location Problem (SLP).
Finally once pickers are brought to the picking line the individual orders are sequenced for each
picker. This defines the Order Sequencing Problem (OSP). The focus of this dissertation is on
the first two subproblems namely, the SLP and PLAP as the OSP has already been solved in a
previous study.

This picking line setup considered here has many similarities to carousel systems. Several
heuristic approaches for arranging SKUs within carousel systems are adapted for use in this
picking line environment. These heuristics are compared to two novel lower bound formulations
as well as trivial lower bound to evaluate their performance. Both historical as well as generated
problem instances are used to compare the relative performances of each heuristic. An average
saving of 2% for large and 6.5% for medium sized problem instances is achieved if the best
solution form the four heuristics is selected. Three goals are used when assigning SKUs to
picking lines in the PLAP. Firstly walking distance should be reduced, secondly the number of
small cartons produced should be minimal and finally the number of pallet movements required
to populate any one picking line for a wave of picking should be manageable.

The concept of a maximal cut is used as an estimate for total walking distance and it is shown
that by minimising the maximal cut within each picking line the total walking distance is
reduced. A greedy phased insertion heuristic is introduced which minimised the maximal cut
and therefore walking distance. Although the total walking distance was reduced by on average
22% compared to historical assignments the number of small cartons produced and the number
of pallet movements required to populate some picking lines is undesirable.
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Four measures using SKU correlations are introduced and used within a phased greedy insertion
framework. These measures reduce the number of small cartons produced with a marginal in-
crease in total walking distance compared to approaches which minimized the maximal cut only.
The total walking distance is reduced by on average 20% compared to historical assignments
with the number of small cartons produced within an acceptable range. However, the number
of pallet movements required to populate some of the picking lines remains at an undesirable
level.

A final picking line segmentation approach is introduced using a sequence of integer program-
ming formulations. These formulations include capacity constraints which limit the total volume
of stock (and therefore the number of pallet movements) assigned to any one picking line. This
approach delivers individual picking lines that have a manageable number of pallet movements
to populate all picking lines with stock. A final hybrid approach is also introduced which
switches between this segmentation approach and a correlations approached when appropriate.
This results in a 15% reduction in walking distance compared to historical assignments while
maintaining a good number of small cartons produced and improving on the historical assign-
ments in terms of the number of pallet movements required to populate any one picking line
with stock.

The managers within the DC are responsible for doing both the SKU to picking line assignments
as well as the SKU arrangements within each picking line. A new warehouse management
system (WMS) is in the process of design and implementation. A proof of concept interface
which illustrated how the approaches to both the SLP and PLAP can be implemented in the
new WMS while still allowing for managerial flexibility is therefore proposed.
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Opsomming

’n Bestellinguitsoekstelsel in ’n distribusiesentrum wat deur Pep Stores Bpk. (PEP) besit word,
word ondersoek. PEP gebruik twaalf eenrigting uitsoeklyne wat in die distribusie sentrum is om
al die items vir bestellings uit te soek. Elke uitsoeklyn bestaan uit ’n aantal vakkies wat rondom
voerband geleë is. Werkers loop in ’n kloksgewyse rigting om hierdie voerband om items vir
winkels te versamel.

Die uitsoeklyne opereer in golwe omdat PEP ’n beleid het om voorraad na die winkels te stuur
(eerder as dat winkels voorraad bestel). ’n Subversameling van beskikbare voorraadeenhede
(VE’s) word geselekteer en toegewys aan ’n beskikbare uitsoeklyn. Die voorraad word dan na
die toegewysde uitsoeklyn gebring voordat ’n aantal werkers al die bestellings (wat deur die
VE’s in daardie golf gedefinieer word) vir die winkels gaan versamel. Indien al die bestelling in
daardie golf voltooi is, word ’n nuwe onderling uitsluitende versameling VE’s na die uitsoeklyn
gebring, wat dan weer ’n nuwe golf vorm. Op hierdie manier kan die uitsoeklyne parallel aan,
en onafhanklik van mekaar funksioneer.

Hierdie uitsoekstelsel kan ontbind word in drie vlakke van besluitneming. In die eerste vlak word
VE’s aan beskikbare lyne toegwys, wat gedefinieer word as die uitsoeklyntoewysingsprobleem
(PLAP). Nadat die VE’s aan die lyn toegewys is, moet elke VE aan ’n spesifieke vakkie binne
daardie lyn toegewys word en word gedefinieer as die VE-plasingsprobleem (SLP). In die derde
vlak moet die bestellings se volgorde bepaal word vir die opmaak van die bestellings. Dit word
as die bestellingvolgordeprobleem (OSP) gedefinieer. Die fokus van hierdie proefskrif is op die
eerste twee vlakke van besluitneming, naamlik die PLAP en SLP. Die OSP is reeds in vorige
studies opgelos.

Die uitsoekstel wat hier beskou word het baie ooreenkomste met ’n rondomtaliestelsel. ’n Aantal
heuristiese benaderings tot die rangskikking van van VE’s in vakkies vir rondomtaliestelsels
word aangepas en ondersoek vir hierdie uitsoekstelsel. Hierdie heuristieke word vergelyk met
twee nuwe ondergrensformulerings sowel as ’n triviale ondergrens. Historise data en genereerde
data word gebruik om die prestasie van elke heuristiek te vergelyk. ’n Gemiddelde besparing
van 2% vir groot en 9.5% vir medium opmaaklyne word verkry indien die beste oplossing van
die vier heuristieke gekies word. Drie doelwitte word beskou indien VE’s aan opmaaklyne
toegewys word (tydens PLAP). Eerstens moet die stapafstand van werkers geminimeer word,
tweedens moet die aantal klein kartonne geminimeer word en laastens moet die hoeveelheid werk
(vurkhyserbewegings) om die voorraad na ’n enkele lyn te bring binne perke gehou word.

Die beginsel van ’n maksimum snit word gebruik om die stapafstand te benader en resultate
toon duidelik dat deur die maksimum snit te minimeer word die stapafstand ook verminder. ’n
Gulsige gefaseerde invoegingsheuristiek (GP) word voorgestel wat die maksimum snit te min-
imeer. Alhoewel die totale stapafstand met 22% verminder teeenoor historiese data vermeerder
die aantal klein kartonne en die aantal vurkhyserbewegins na sekere lyne word onaanvaarbaar
hoog.
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Vier maatstawwe om die korrelasies/verwantskappe tussen VE’s te bereken word vervolgens
gebruik in die GP heuristiek om VE’s in lyne toe te wys. Hierdie maatstawwe verbeter die
aantal klein kartonne met ’n marginale toename in stapafstand teenoor die metodes wat slegs
die maksimum snit minimeer. Die totale stapafstand word nou slegs verminder met 20%, maar
die aantal klein kartonne val binne ’n aanvaarbare perk. Die aantal vurkhyserbewegings na
sommige lyne is egter steeds te hoog.

’n Segmenteringsbenadering word voorgestel waarin ’n aantal heeltalige programmeringsformu-
lerings gebruik word. Hierdie formulerings sluit kapasiteitsbeperkings in wat die totale volume
voorraad na ’n uitsoeklyn beperk. Hierdie formulerings lewer uitsoeklyne wat ’n aanvaarbare
hoeveelheid vurkhyserbewegings benodig. ’n Finale hibriedbenadering word ook voorgestel wat
’n kombinasie van die segmentering- en korrelasiebenadering gebruik. Hierdie metode verskaf
’n 15% verbetering in stapafstand relatief tot historiese oplossings terwyl ’n goeie aantal klien
kartonne gehandhaaf en daar verbeter word op die aantal vurhyserbewegings.

Die uitsoeklynbestuurders is verantwoordelik vir die oplossing van die PLAP en die SLP. ’n
Nuwe pakhuisbestuurstelsel (WMS) is in die proses van implementering by PEP. ’n Voorstel
van hoe hierdie oplossingmetodes in die WMS ingesluit en hoe die gebruikerskoppelvlak moet
lyk sodat daar steeds ’n groot mate van vryheid aan die gebruiker oorgelaat word, word ook
verskaf.
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CHAPTER 1

Introduction

Before a product reaches the shelf of a retailer and finally the hands of a consumer it must pass
through many value adding processes. Raw materials are sourced, products are manufactured,
consumers are informed of products through marketing channels and the goods are delivered. In
today’s economy these processes are typically performed by different organisations and business
entities. Managing these different processes and the relationships between the different entities
is essential to maintain competitiveness and forms the basis for the strategic function known as
supply chain management.

The concept of supply chain management first appeared in industry vocabulary in the 1990s [10].
Beamon [8] describes the supply chain as a set of business entities such as suppliers, manufac-
turers, distributors and retailers working together in an effort to acquire new raw materials,
convert them into final products and deliver these final products to retailers. Supply chain ac-
tivities include product development, material sourcing, production and logistics as well as the
information systems needed to conduct these activities [22]. Supply chain management typically
consists of the management of these different entities with a system wide approach to costing
and information.

Coyle et al. [10] describes supply chain management as the effective and efficient flow of prod-
ucts, materials, services information and financials from suppliers through various intermediate
entities and organisations to the final customer. Figure 1.1 illustrates the interaction between
these entities and organisations. The flow of products, services, finance and information runs
through the entire chain and requires a system wide management approach.

Vendors Wholesalers Manufacturers Wholesalers Retailers/Customers

Product/Services

Information

Finances

Figure 1.1: A schematic representation of the flow of products, materials, services information and
financials in a supply chain [10].

One of the challenges of supply chain management is the physical movement of goods between
entities. This is done with logistics channels which are integrated within the supply chain
framework. Figure 1.2 illustrates a logistic channel where several raw material suppliers send
stock to multiple manufacturers. The manufactured goods are sent to warehouses or distribution
centers (DCs) where stock is consolidated and shipped to retailers. The focus of this dissertation
is on the warehouse or DC connecting hub of a logistics network within a supply chain and is

1
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2 Chapter 1. Introduction

further discussed in more detail.

Raw materials
supply point

Raw materials
supply point

Raw materials
supply point

Raw materials
supply point

Manufacturer

Manufacturer

Warehouse

Warehouse

Retailer

Retailer

Retailer

Retailer

Retailer

Retailer

Figure 1.2: A schematic representation of a complex logistics channel with multiple raw material suppli-
ers, manufacturers, warehouses and retailers [10]. The arrows indicate the direction of stock movement.

1.1 Warehousing and DCs

DCs play an important role in the logistics network by adding buffer areas to better match
supply with demand. The effects of seasonality on sales can be better managed as stock levels
are built up during low sales periods in preparation for high sales periods. In addition buffer
areas aid to manage the stochastic lead times associated with the delivery of stock between
suppliers and retailers. A further value added by DCs is the consolidation of product. Product
received in bulk from multiple suppliers is consolidated into single shipments for individual retail
outlets [6].

1.1.1 Types of DCs

Bartholdi & Hackman [6] identified several types of DCs by the types of customers which they
serve. A retail distribution center links suppliers to retail outlets. The customers here are
retail outlets which typically receive shipments on a regular basis. Orders in this environment
would usually consist of hundreds of items covering the entire store catalogue. These DCs have
the means to plan ahead because of the regular shipments and early availability of information
about orders.

A less predictable environment is a service parts DC which is one of the most difficult types
to manage. These DCs hold spare parts for capital intensive equipment such as construction
vehicles or medical instruments. Two types of stock are managed in these DCs – stock for
standard replacements by dealers and emergency stock usually for emergency repairs. These
DCs hold a large variety of items with unpredictable demands because the majority of all parts
need to be in stock in case of emergencies.

Some DCs ship items directly to end consumers and are known as catalogue fulfilment or e-
commerce DCs. An example of this type of DC is the logistics network of one of the largest
online retailers, namely Amazon [3]. Here a large number of customers place orders with only a
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1.1. Warehousing and DCs 3

few items and expect immediate shipment. A fast turn around for each order is a major concern
for these DCs to ensure customer satisfaction.

DCs which handle perishable items such as food or flowers have several unique challenges. A
chain of refrigeration including regulated storage and transportation vehicles is required which
comes at a high cost. Managing space efficiently is therefore vital. This becomes more compli-
cated with government regulations imposed on the handling of fresh food produce. For example,
chicken should not be stored on top of other items. This reduces the chances of potential contam-
ination from dripping juices. Inventory management is also a crucial aspect of this environment
as the life spans of products are short.

Organisations may also choose to outsource their warehousing needs. A 3PL DC provides
services to multiple organisations taking advantage of economies of scale and complimentary
seasonality.

Frazelle [16] differentiates warehouses and DCs based on the value added to the logistics chain
and to the product handled. At the start of the logistics network raw material warehouses and
component warehouses hold raw materials (for example, raw metals for the manufacturing of
vehicle chassis) near the point of manufacturing. As part of the manufacturing process partially
completed parts or assemblies need to be stored before undergoing further manufacturing or
assembly. These parts are held by work-in-progress warehouses before the finished product is
stored in finished goods warehouses.

DCs may be viewed as warehouses which consolidate completed products for distribution to
customers or stores [16]. In this context customers would receive regular shipments of stock.
In some warehouses and DCs further value may be added to product. Possible value added
services include in-house assemblies and packaging changes for marketing and repricing. Al-
though warehouses and DCs may have different functions, customers and locations in logistics
networks, they all require similar internal operations to carry out their function.

1.1.2 DC functions

Frazelle [16] identifies some major functions and activities within DCs including the receiving of
goods, put away, pre-packaging, cross docking, order picking, sorting, material handling, pack-
aging and shipping. Bartholdi & Hackman [6] groups DC activities into five main categories
namely, receiving and put-away – forming the inbound activities – and order picking, checking,
packing and shipping – forming the outbound activities. The interactions between these func-
tional areas and activities are illustrated in Figure 1.3. All of the activities are connected by
the material handling functionality.

The receiving function revolves around the collection and off loading of stock arriving at the
DC. Stock will typically arrive at the DC in larger units compared to stock leaving the DC
and will require less labour per unit of handling. Once the stock is offloaded it must undergo
a quality and quantity control before it can be moved to other functional areas. During the
put-away operation stock is moved to storage. Storage and transportation methods depend on
the type of stock – its size, weight and handling characteristic. The location of the stock in the
DC plays a critical role on DC efficiency in terms of product handling time.

Once the inbound stock has been received and stored it must be processed before leaving for
customers. During the order pick operation correct quantities of different stock keeping units
(SKUs) are picked for customers. Depending on the type of stock order picking can be done
at the pallet, carton or individual item level. In many instances large quantities of stock are
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Pallet storage
Case

picking
Broken case

picking

Putaway
Material
handling

Sortation and accumulation

Receiving Cross docking Shipping

Figure 1.3: A schematic representation of some of the functional areas in a DC and the movement
of stock between them [16]. Arrows indicate the movement of stock governed by the material handling
functionality.

required to satisfy pending orders. In these cases stock can bypass storage and be directly
moved from the receiving to the shipping area. This direct movement of stock from receiving
to shipping is known as cross docking.

Once an order has been picked for a customer additional value added activities may be applied.
Prices may be changed which typically occurs if customers are in other countries and require
different currencies. In addition the basket of picked SKUs can be packed into a single package
which reduces later material handling and transportation costs. These picked and packaged
orders will typically be held in a holding area before being loaded onto delivery vehicles.

The focus of this dissertation is on the order picking operation and its effects on other DC
functional areas for a specific DC in industry. A more detailed exposition of order picking
systems is therefore provided in the next section.

1.2 Order picking

Order picking is the process of retrieving products from storage or buffer areas in response to
customer requests and typically accounts for 55% of total DC costs. It involves the process of
clustering and scheduling of orders, assigning stock to the orders, releasing the order to the floor
for picking, physical picking and post picking clean-up [12]. Order picking may be seen as the
most basic of services provided by a DC to the supply chain with all other value added services
functioning around it [16].

According to Bartholdi & Hackman [6] 55% of the total time spent picking orders is associated
with physical travel around the DC, 15% is spent searching for goods, 10% on extracting items
and 20% for other administration type activities. Not only is physical travel the most time
consuming activity, but it is also the most unproductive as no value is added to the order
during travel. This activity often forms the main focus within the design and management of
order picking systems.

DCs differ in terms of products received and customers served and thus order picking systems
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differ between DCs. The product characteristics – size, shape and weight; quantities in which
products are ordered – pallets, cartons or individual items; number of SKUs in an order and the
number of customers can all have an effect on the design and management of an order picking
system.

Order picking systems may differ in a number of ways. Due to the advancement in technology
the main area in which order picking operations differ is automation. Manual order picking
requires human pickers to physically pick stock items. Automated order picking occurs when
machines (and not humans) pick SKUs. This is often achieved with a system of robot arms
and conveyor belts. Automatic order picking is often used when SKUs are small and uniform
in shape such as in the pharmaceutical industry.

In most DCs manual order picking is used [12]. Among these systems two major types occur,
namely picker-to-parts and parts-to-pickers systems. In a picker-to-parts system pickers will
travel to locations holding required SKUs to pick the required items and in many cases vehicles
are used. Vehicles allow pickers to reach multiple levels of storage in a high-level order picking
system and increases picker movement speed. In an effort to reduce the travel times of pickers
much attention in literature has been given to developing good routing procedures for different
warehouse designs [13, 30, 35, 52, 54, 55].

One of the ways in which travel distance is decreased in a picker-to-parts system is to use a
forward or fast pick area. A separate area of the DC is assigned as the forward pick area and
functions as a mini DC within a DC. The most popular SKUs are stored in smaller quantities
in this area. SKUs are therefore stored more densely giving pickers access to a wider variety
of SKUs within a smaller walking distance. Pickers therefore move shorter distances to pick
orders.

To maintain a dense concentration of different items and avoid stock-outs during picking the
forward pick area needs to be restocked by the main DC. This creates a trade off between
picking costs and restocking costs. Bartholdi & Hackman [5] addressed the problem of restocking
forward pick areas by adjusting the volume assigned to a SKU within the forward pick area while
minimising the total number of restocks. Accorsi et al. [2] considered both restocking as well
as picker travel times when managing SKUs in a forward pick area. It was shown that overall
improvements can be achieved by considering both objectives and in some cases the optimal
allocation of stock by Bartholdi & Hackman [5] does not yield the best combined picking and
restocking times.

Picker-to-parts systems may have many forms. The two basic variants occur with the presence
of order batching and/or zone picking. In an order batching system a picker will pick multiple
orders at the same time. Orders with a similar set of SKUs will be batched together. This
reduces travel times as pickers walk the same path picking the same SKUs for multiple orders
in the batch. Although travel distance is reduced the stock for a batch of orders needs to be
picked in bulk and sorted between the orders. This sorting can either be done by the picker in
a pick-and-sort operation or the stock for the entire batch can be picked and sorted in a later
operation – known as pick-then-sort. Many studies have been conducted to improve picking
efficiency by correctly batching orders for a variety of different DC configurations [14, 17, 26,
27, 35, 47, 48, 59, 64].

In zone picking the picking area (forward pick area or storage racks) is divided into zones. Each
zone is then serviced by a single picker. This reduces the travel time of pickers as they only
pick SKUs from a single zone and do not need to walk picking outlying SKUs in other zones.
In addition pick efficiency of individual pickers increases as pickers become accustomed to the
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SKUs in, and layout of their zone.

A drawback to zone picking is the re-consolidation of individual orders which span different
zones. Orders are either passed sequentially between zones in a progressive zone picking system
or orders are partially picked at each zone in parallel and consolidated at the end of all picking
in a synchronised zone picking system. In a progressive zone picking system the issue of work
balance between zones arises. Pickers stationed at the last zone of the system must wait for work
to be passed down from preceding zones. The stochastic nature of picking often results in pickers
either waiting for new orders from preceding zones or pickers being swamped with too much
work. A similar issue also arises with synchronised zone picking, however, in this case imbalances
occur between the picking and consolidation. The consolidation area is either swamped with
work, or it becomes full of half completed orders waiting for SKUs from backlogged zones.

Grouping SKUs into zones to improve picking efficiency and manage work imbalances has re-
ceived attention in litreature [18, 32, 34, 48, 64]. Bartholdi & Eisenstein [4] introduced a self
organising system referred to as bucket brigade to address the issue of work balance in a pro-
gressive zone order picking system. Here pickers are allowed to take over orders from slower
pickers upstream. In this way faster pickers pull work from slower pickers dynamically adjusting
the size of the zones in which pickers operate.

Within the framework of parts-to-picker systems equipment is needed to bring stock to pickers.
Two widely used systems are automatic storage and retrieval systems (AS/RS) and carousel
systems. In an AR/RS system stock is brought down from storage racks and presented to
pickers using specialised high-lifts. Examples of such high-lifts may be seen in Figure 1.4(a). A
carousel system is a rotatable circuit of shelving which can rotate completely in both directions
(bi-directional) or in a single direction (unidirectional). Figure 1.4(b) illustrates an example of
a horizontal multidimensional carousel system. Pickers remain stationary as stock is presented
in front of them on racks or shelves. Pickers may pick from multiple carousels, and carousels
may have multiple levels of storage. There has been much attention given to the optimisation
of carousel systems focusing on sequencing SKUs for a single order, sequencing a set of orders
as well as arranging SKUs in a carousel [1, 7, 9, 19, 21, 23, 24, 25, 28, 29, 31, 33, 36, 37, 38, 39,
40, 49, 50, 56, 58, 60, 61, 62, 63].

(a) A photograph of an automatic storage and retrieval
system. Source: [11].

(b) A photgraph of a horizontal multi-
dimensional carousel. Source: [53].

Figure 1.4: Photographs of parts-to-picker systems.

Recent developments in the use of robots to move entire shelves through a network of pathways
to pickers at picking stations has revolutionised small item parts-to-pickers systems. These
robots, referred to as squat machines, are shown in Figure 1.5(a) and use advance routing and
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scheduling techniques. Pickers remain in a single location while squat machines queue at picking
stations with required stock [20]. An example of this queue system is shown in Figure 1.5(b).

(a) A photograph of a KIVA robotic
device. Source: [15].

(b) A photgraph a workstation serviced by KIVA
robotic devices. Source: [15].

Figure 1.5: Photographs of the KIVA systems robotic parts-to-picker devices and work stations.

With the rise in technology, the way in which pickers receive pick instructions for orders has
changed for both picker-to-parts and parts-to-pickers order picking systems. The first approach
to manual picking was to give pickers physical printed pick slips like a type of shopping list.
In this case pickers will need to manually keep track of what items have been picked for each
order and search for the correct items using the location IDs on the picking slip. The first semi-
automated system introduced was a pick by light system. Here pickers are directed by lights
above required SKUs. With advances in voice recognition software pickers began to interact
with tracking and routing software directly. Pickers wear headsets and are directed to locations
holding SKUs and are provided with the pick quantities audibly.

A unique picker-to-parts order picking system using voice recognition software in a DC owned
by PEP Stores Ld (PEP) is considered in this dissertation. A brief background and description
of PEP’s order picking system is therefore given in the next section. It is followed by a detailed
problem description.

1.3 PEP’s operations

PEP is the largest single brand retailer in South Africa and has been trading since 1965. PEP
predominantly sells apparel and footwear, but is growing in the home décor, fast moving con-
sumer goods and cellular device markets [51]. PEP’s target market consists primarily of the
low income population of Southern Africa. To reach its target market PEP uses a footprint of
over 1600 stores located all around Southern Africa including Namibia, Botswana, Swaziland
and Lesotho.

PEP strives to in keep prices low by managing an efficient supply chain. With three DCs located
in Durban (East coast), Cape Town (West coast) and Johannesburg (Central) together with
13 transportation hubs PEP’s distribution network spans more than 250 000 m3. Figure 1.6
illustrates the framework of PEP’s logistical network. Figure 1.7 illustrates the spread of the
logistical footprint of PEP across Southern Africa. PEP’s largest DC is in Durban which holds
the largest port in South Africa. This DC receives the most stock as most of PEP’s suppliers
are in the far East (China and India).

A key to PEP’s success is the management of its supply chain. One of the elements to PEP’s
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Figure 1.6: A schematic representation of the supply chain of PEP. There are three DCs distributing
to 13 transportation hubs. Each transportation hub serves a mutually exclusive set of stores. The DC
in Durban sends stock to the Johannesburg DC for picking. Arrows indicate stock movement and the
thickness of the lines gives an indication of the relative volume of stock moved.
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Figure 1.7: A schematic representation the logistical footprint of PEP across Namibia, Botswana, South
Africa, Lesotho and Swaziland.
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management is the distinction between replenishment and seasonal products. Replenishment
products are those with a high rate of sale for the entire year and limited seasonality. Examples
of these types of products include underwear and nappies. These products are monitored and
replenished to stores regularly. Replenishment cycles range from weekly to monthly replenish-
ments. The inventory at the DCs are also replenished regularly by suppliers. Seasonal products,
for example winter jackets, are only managed for a single season. Future demand for the next
season must be forecast and orders placed well in advance allowing for production and shipping.
No additional stock for these products will be ordered once the season has started. For seasonal
products the DC acts primarily as a stock consolidation facility receiving once off shipments of
a SKU and distributing it to stores. In contrast, the DC plays a greater stock buffering role for
replenishment products as fluctuations in store sales are absorbed in the DC’s inventory.

Once an order has been placed at manufacturers the lead time until the stock arrives at a DC
is typically 10 months. This includes six months production time and four months shipping
time. A few weeks before a product is scheduled to be sent to stores the demand at each store is
re-evaluated to account for changes during the lead time. Stock is redistributed between stores
in an allocation process using more recent sales data. This allocation process is done centrally
and creates a push system. Once stock has been allocated and physical stock has arrived at
the DC the planning department schedules SKUs to be sent to stores. At this stage the DC
can begin to pick SKUs. Each SKU has an associated out-of-DC date and must leave the DC
before this date. The picked stock leaves the DC and is transported and consolidated at the
transportation hubs before being delivered to stores. The delivery process typically takes 14
days.

The focus of this study is on PEP’s order picking system. All of PEP’s DCs use the same
fundamental order picking framework, however, each has a different layout. The Durban DC
will be used as a case study as it is the largest and receives the greatest amount of stock.
The DC in Durban spans approximately 62 200 m2 and is illustrated in Figure 1.8. There are
several main functional areas in the DC namely receiving, decanting, rack and floor storage,
order picking, dispatch and shipping. Each area will be discussed in brief with more focus placed
on the order picking area.
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Figure 1.8: A schematic representation the layout of PEP’s DC in Durban.
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1.3.1 Receiving, storage and decanting

Stock arrives at the goods received area and is off loaded from one of the 15 loading bays. The
stock, which typically arrives in cartons, is packed onto pallets and held in the goods received
area until a quality control check has been completed. From here pallets are moved to either
floor storage, rack storage, the order picking area or the decanting area.

The decanting area fulfils a similar role to cross docking, however, in this case stock is offloaded
from containers and reloaded onto delivery vehicles destined for the Johannesburg DC. This
stock will then be picked at the Johannesburg DC before being shipped to stores. Containers
are not transported directly to Johannesburg to avoid container storage costs in Johannesburg
and the cost of bringing empty containers back to the harbour1. Further transportation costs
are saved as containers are often not fully loaded and delivery vehicles can hold more volume
by consolidating stock when reloaded.

Figure 1.9 illustrates both the floor and the rack storage areas. The floor storage areas are
typically used for stock which will be picked in a carton picking operation. Stock stored in
storage racks is usually destined for piece picking. There are 23 aisles of rack storage serviced
by five specialised high-lifts illustrated in Figure 1.10. Forklifts and pump trolleys, shown in
Figure 1.11, are used to move pallets in and around the floor areas. Pallets destined for storage
are queued at one end of the aisle and retrieved pallets are dropped off at the other end creating
one direction of stock flow. The high lifts process jobs in batches. A high lift will either process
a batch of put-away jobs or a batch of retrieval jobs.

(a) A photograph of the floor storage in PEP’s DC in
Durban.

(b) A photograph of the rack storage in PEP’s DC in
Durban.

Figure 1.9: Photographs of the storage areas in PEP’s DC in Durban.

1.3.2 Order picking

A major influence on PEP’s order picking system is the central inventory planning. SKUs are
distributed to all stores in a single operation during the allocation process. This is achieved by
collectivity assigning available stock for a SKU to all stores2. This allocation process is done for
sets of SKUs or a distribution (DBN) consisting of SKUs of the same product type but different
sizes. For example a DBN could consist of three SKUs – white T-shirts size small, medium

1Johannesburg is approximately 500km from Durban inland.
2Some stores may require no stock for a particular SKU.
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(a) A photograph of an empty high lift. (b) A photograph of a loaded high-lift lifting a pallet
in the storage racks.

Figure 1.10: Photographs of the high-lifts used to store and retrieve pallets from the storage racks in
PEP’s DC in Durban.

(a) A photograph of an empty fork lift. (b) A photograph of a loaded pump trolley.

Figure 1.11: Photographs of pallet moving equipment used to move pallets on the floor space in PEP’s
DC in Durban.
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and large. Once stock has been allocated the resulting list of store requirements for the DBN
are released to the DC. All store requirements for a DBN will be picked in the DC in a single
operation. In this way SKUs and not orders are batched together in a single picking operation.

PEP uses 12 unidirectional picking lines to achieve SKU batching. Figure 1.12 illustrates this
picking line area. Multiple pickers walk in a clockwise direction picking stock directly into
cartons. Each picking line has 56 locations which can hold up to five pallet loads of the same
SKU as shown in Figure 1.13. In addition managers often store additional stock on the floor
space behind the location in-between picking lines and on the floor space at the ends of the
picking lines if needed. Staff can quickly gain access to this stock and keep each location
stocked during picking. This eliminates the complication of modelling the restocking of picking
lines

SKUs can only be scheduled for picking on a picking line once the store requirements are issued
by the planning department and the physical stock has been received by the DC. A batch
of approximately 56 SKUs is assigned to an empty picking line and each SKU is assigned to a
location. Once SKUs have been assigned to locations the physical stock is brought to the picking
line before picking starts. Multiple pickers pick all the store requirements for the specific batch
of SKUs before excess stock (if any) is removed and a new mutually exclusive set of SKUs is
assigned to the picking line. One cycle of populating, picking and clearing of a picking line is
referred to as a wave.

Figure 1.12: A schematic representation of the picking line area with 12 picking lines each with 56
locations. The arrows and dashed lines indicate the walking direction of the pickers. Each picking line
has a central conveyor belt conveying cartons to the main conveyor belt.

Pickers are directed around the picking line with voice recognition software (VRS). Figure 1.14(a)
illustrates the headset worn by pickers as they issue and receive instructions from the VRS. Be-
fore starting an order a picker will prepare an empty carton by placing a unique bar-code
identification sticker on the carton and registering it with the VRS. Orders may be split over
multiple cartons if required. For the purposes of this study, the term order will from here on
refer to the set of store requirements for a single store for all the SKUs in a wave. The VRS
assigns an order to a carton and directs the picker to the next location holding a required SKU
for the assigned order in a clockwise direction. The VRS keeps track of the last location from
which a picker picked stock. All SKUs for an order will therefore be picked in the shortest
distance in a clockwise direction from where the order was issued. This implies that a picker
will need to walk no longer than one cycle around the picking line to complete an order.
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Figure 1.13: A photograph of SKU locations in a picking line which is in the process of being populated
with stock.

(a) A photograph of a picker with a VRS headset
placing a identification sticker on a new empty car-
ton.

(b) A photograph of multiple pickers walking
around an active picking line.

Figure 1.14: Photographs of pickers in active picking lines.
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Orders are assigned to pickers regardless of the status and number of other pickers in the picking
line. Each order must be completed by a single picker and pickers will only pick a single order at
a time. In addition pickers may be added and removed from a picking line at any point before
the picker starts a new order. In this way pickers can be dynamically shifted between active
picking lines in the order picking area.

Pickers are able to pass each other freely while picking because there is enough space between
the stock and the conveyor belt. Pickers stack empty cartons onto picking trolleys as shown
in Figure 1.14(a). Pickers reuse the empty cartons from suppliers as well as new cartons and
have access to empty cartons all around the picking line. The availability of empty cartons
therefore does not influence the efficiency of pickers in a picking line. Figure 1.14(b) illustrates
a functioning picking line with multiple pickers picking orders. Packed cartons are placed on
conveyor belts which convey them to the dispatch area.

1.3.3 Dispatch and shipping

Cartons arriving at the dispatch area must often be resized as the size of cartons and the volume
of stock for each order differs. In addition pickers do not know the required volume required for
an order when selecting and preparing a new empty carton. Figure 1.15 illustrates the resizing
and stapling of cartons at a dispatch station. A quality control check is also performed at this
area on a sample of cartons to measure and manage picker accuracy.

Figure 1.15: A photograph of a dispatch station in PEP’s DC in Durban.

Closed cartons are conveyed to the shipping area where they are held in buffer areas. Each buffer
area is designated for a specific transportation hub. Once a buffer area has a sufficient volume
of stock a delivery vehicle is scheduled and the stock is loaded and delivered. Regular deliveries
of stock arrive at transportation hubs and stores. A typical store would receive between one
and three deliveries a week. These regular deliveries aid in the management and efficiency of
batching SKUs in wave picking.

The order picking system at PEP may be seen as a picker-to-parts system as pickers walk to
required SKUs. Pickers use voice recognition software and orders are not batched. Although
there are multiple picking lines which resembles a synchronised zone picking system, cartons
are not consolidated and multiple pickers can pick in the same zone which removes many of
complexities associated with zone picking in literature. The picking line area may further be
described as a type of forward pick area as stock is brought from storage racks to the picking
lines. The presence of wave picking allows for all the required stock for a wave for all stores to
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1.4. Problem description 15

be placed in a picking line before picking starts. Restocking during picking is therefore not a
problem as in the forward picking areas described in literature.

A picking line shows many similarities to carousel systems as pickers move in a cyclical di-
rection around the picking line. Although carousel systems are parts-to-picker systems, the
relative cyclical pattern in which SKUs pass pickers has a similar mathematical structure. Two
characteristics, however, differentiate these two systems. Firstly the presence of wave picking
creates a deterministic planning environment for picking lines which is not the case for carousel
systems in literature. Secondly the presence of multiple pickers operating in the same picking
line creates a dynamic environment which differs from typical carousel systems with a single
operator for each carousel.

Managing the DC’s order picking in terms of waves and the unconventional picking line setup
creates a novel decision making environment not documented in academic literature. Within
the order picking environment there are three decision tiers which are made on a daily basis.
Optimising these decision tiers forms the basis for this study. The framework and details of
these decisions is further discussed in the next section.

1.4 Problem description

Within the wave picking environment at PEP there are three sequential decision tiers which are
made on a daily basis. Firstly DBNs need to be assigned to available picking lines. Once DBNs
have been assigned to a picking line they need to be assigned a specific location by arranging
them on the picking line. Finally, before picking starts the sequence in which the VRS assigns
orders to pickers must be established. These three decision tiers are summarised as

1. Assign available SKUs to available picking lines.

2. Arrange SKUs on a picking line for each wave of picking.

3. Sequence orders to be passed to pickers by the VRS for each wave of picking.

These decision tiers are made in sequence and set of possible alternatives at each decision level
is defined by the previous tier. For example the set of SKUs which need to be arranged on a
picking line are defined by the initial assignment of DBNs to the picking line.

Although these decisions are made in sequence from decision tier 1 to 3, optimisation and
decision support models must be developed in reverse order. For example, before approaches to
arranging SKUs on a picking line can be developed an approach for sequencing the resulting set
of orders must be known so that the SKU arrangement can be evaluated correctly. Similarly
before alternative techniques for assigning DBNs to picking lines can be developed the effects
of arranging SKUs with a different set of characteristics on the same picking line must be
investigated. These decision tiers and the influences they have on each other are discussed for
the remainder of this section.

1.4.1 DBN assignment and SKU arrangement

At the start of each day the managers evaluate the progress of all active picking lines and
determine which picking lines will become available during that day. DBNs for which store
requirements have been issued by the planning department and for which stock has arrived at
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the DC are assigned to these picking lines. SKUs within the same DBN are assigned to the
same picking line to ensure that the entire range of sizes for a product arrives at the stores at
the same time.

When a DBN is released to the DC an out-of-DC date is assigned to it. DBNs are ranked
according to these dates and the top ranked DBNs are selected to be scheduled on the available
picking lines. Once these DBNs have been scheduled to be picked they must be distributed into
waves for the different available picking lines and stock brought to each picking line. The total
store requirements for each SKU in a DBN is known in advance when the DBN is assigned.
Sufficient stock is therefore brought to the picking line such that restocking is not required
during the picking phase. In some cases multiple adjacent locations are assigned to a SKU, but
these locations are treated as a single location in the VRS.

DBNs are currently distributed into waves with the objective of balancing the workload between
each wave. Management measures workload using in house estimations based on the total
volume of stock assigned to the wave and the total number of picks – i.e. the maximum number
of times picker needs to reach into a carton to pick items. The actual walking distance of pickers
is not considered at this stage as it is currently not yet calculable. Management classifies SKUs
as either A or B pick SKUs. Bulky or heavy items requiring two hands to pick are regarded
as B picks and are considered more difficult to pick. The number of picks in a wave are then
weighted when evaluating work on a picking line with B picks given a larger weighting3.

When distributing DBNs management further avoids creating waves of picking which require
an excessive number of pallets of stock to populate the picking line. These waves would require
a large batch of retrieval jobs to be performed by the high-lifts. High-lifts will be tied down to
this single batch of jobs for a long time – in some cases more than an entire shift (8 hours). This
reduces operational flexibility in the DC. Moreover, while a picking line is being populated with
SKUs it is not adding value to orders as all the stock must be retrieved before picking starts.

After performing time analysis PEP segmented the time spent by pickers in a picking line into
four tasks, namely walking time, picking time, time spent interacting with the VRS and time
spent preparing new cartons. Only the walking time can be improved on by assigning DBNs to
picking lines as the other times are fixed. Pickers typically spend 26% of their time walking, 30%
picking items from location, 32% packing stock into cartons and 12% handling empty cartons.

After consulting PEP management [57] three goals were identified which should be aspired to
when assigning DBNs to picking lines and are listed below:

1. Minimise the total walking distance of pickers.

2. Limit the number of waves which require excessive numbers of pallets of stock to build
the picking line.

3. Manage the number of orders requiring a low volume of stock. These orders create small
cartons which increases handling costs at dispatch and total transported volume.

There are two phases to the picking line assignment decision tier. Firstly DBNs must be sched-
uled for picking by assigning it to a particular day. Secondly the scheduled DBNs must be
distributed to available picking lines. For the purposes of this study it will be assumed that
DBNs are scheduled using the current out-of-DC date ranking system. The picking line al-
location problem (PLAP) is therefore defined as assigning a set of scheduled DBNs to a set

3Weighted picks are only used to measure picker performance and manage bonuses.
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of available picking lines while minimising walking distance, managing waves requiring a large
volume of stock to populate a picking line and managing the number of small cartons produced.

Once DBNs have been assigned to a picking line and before stock can be brought to the picking
line each SKU from each DBN must be assigned to a specific location. Although SKUs from
the same DBN must be assigned to the same picking line these SKUs need not be adjacent to
each other. Any SKU may therefore be assigned to any location. This may result in SKUs from
the same DBN being placed in different cartons. However, all cartons picked from the same
picking line should arrive at the stores at the same time. Managers currently arrange SKUs by
spreading the number of weighted picks evenly around the picking line. Managers perceive this
to reduce total picking time as potential picker congestion at popular SKUs is reduced. Two
goals for arranging picking lines have thus been established after consulting PEP’s management
and are listed below:

1. Minimise the total walking distance of pickers.

2. Manage the congestion of pickers at popular SKUs.

The SKU location problem (SLP) is defined as the arrangement of a set of SKUs already assigned
to a picking line while minimising walking distance and managing picker congestion.

Figure 1.16 illustrates the interactions between the PLAP and SLP. Both problems have a shared
goal of minimising walking distance. An approach for determining picker walking distances
before pickers start picking is therefore required before these two problems can be solved.

SKUs

Picking lines

Figure 1.16: A schematic representation of the first two decision tiers in the wave order picking oper-
ation. The picking line assignment decision tier is shown on the left and the SKU arrangement decision
tier is shown on the right. Each shaded shape represents a SKU. SKUs with the same shape are part of
the same DBN.

1.4.2 Order sequencing

The total walking distance of pickers may be calculated once orders have been picked by adding
the distances from the start to the end locations for each picked order. However, minimising the
walking distance for a fixed SKU arrangement, before picking starts, has several complexities.
Firstly the end position of the last order picked by a picker dictates the starting position of the
next order. This starting position defines how far a picker needs to walk to pick all the required
SKUs for that order. All preceding orders passed to a picker therefore influences the walking
distance of the next order.
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Further complexities are introduced with the stochastic nature of picking, the presence of mul-
tiple pickers and the dynamic way in which pickers can be added and removed from picking
lines. The VRS must therefore be able to dynamically pass orders to pickers as needed while
still ensuring that the total walking distance is minimised. Creating individual sequences of
orders for each picker is not possible for several reasons. When pickers are added orders must
be removed from other pickers’ lists and assigned to the new picker. Furthermore, the order lists
for a picker which is removed from a picking line must be assigned to other pickers. In addition
the physical picking time is stochastic and although the walking distance may be calculated the
actual time required to complete a set of orders can only be estimated. Having single order lists
for pickers would create work imbalances similar to that of typical zone picking systems.

Matthews [41] investigated this final decision tier of order sequencing for multiple pickers. It
was shown that this decision tier can be optimised by assigning a next/following order to a
picker depending on the location where the picker finished the current order. When a picker
requests a new order the VRS will select the best order based on a priority measure. This
measure changes depending on the location where the picker completed the preceding order.
Using this framework the final order sequencing decision tier may be described as determining a
prioritised list of orders for each location while minimising the total walking distance of pickers
in a dynamic picking environment.

Matthews & Visagie [42] used the concept of a span to solve the order sequencing problem
(OSP) for a single picker. A span for an order is defined as the minimum length path walked by
a picker which passes all required SKUs for that order from a given starting location. A span
may start at any location and will end at a location holding a required SKU for that order.
Figure 1.17 illustrates several spans for the same order. The concept of a cut for a location
was introduced as the number of spans which pass that location. Matthews & Visagie [42]
assigned spans to orders while minimising the maximal cut over all locations. This maximal
cut forms a lower bound for the walking distance in terms of cycles traversed as a picker needs
to completely circumvent the picking line each time it passes a location. Figure 1.18 illustrates
the assigning of spans to orders. Note that the starting and ending positions of assigned spans
do not necessarily link up.

AA A

Figure 1.17: A schematic representation of some different possible spans for the same order. Each line
segment represents a possible span for the order. The letters in the locations indicate which locations
hold SKUs required by the order. Each span passes all locations required by the order and finishes at a
location holding a required SKU.

It was further shown that the spans for each order could be linked up be shifting starting
positions in a anticlockwise direction increasing the length of individual spans. These longer
spans form a single cyclical tour which results in a feasible order sequencing solution for a single
picker. Moreover the maximal cut for this new solution with longer spans will increase the
original maximal cut by at most one cycle. A feasible solution to the OSP for a single picker is
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Figure 1.18: A schematic representation of an assignment of spans to a set of orders. Each line
segment is associated with a different order indicated by a letter. The letters in the locations indicate
which locations hold SKUs required by each order. A span passes all the locations holding a required
SKU for its order.

therefore found which is within at most one cycle of a lower bound.

Matthews [41] applied this maximal cut solution to the multiple picker environment. A preferred
starting location is assigned to each order which defines its desired span. These preferred starting
locations are then used to prioritise the orders for each location. Orders are ranked for each
location according to the distance to the preferred starting location of an order. Matthews [41]
used a simulation model to show that the increase in walking distance when applying the
maximal cut formulation solution for the OSP to a multiple picker environment is minimal.
The increase in walking distance was approximately one cycle per picker in the picking line.

To compare different candidate SKU assignments and SKU arrangements in terms of walking
distance the maximal cut approach to order sequencing for a single picker by Matthews &
Visagie [42] will be used. The focus of this dissertation therefore falls to the first and second
decision tiers, namely the PLAP and SLP.

1.5 Objectives

The aim of this dissertation consists of three parts: the development of solution methodologies
for the SLP and PLAP; the gathering of representative test data for problem instances and
the development of a test framework to test solution approaches to the SLP and PLAP while
making provision for future studies; finally, addressing actual implementation practicalities of
the proposed solution approaches. This is achieved by means of the following seven objectives:

Objective I

a Describe the internal layout and operations of the DC to better understand the problem
in the DC context;

b Describe in detail the order picking operation in the DC so that the characteristics of the
problem may be understood;

c Describe the different decision tiers and their interactions within the order pick operation;
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Objective II

a Describe the SKU location problem (SLP) and identify the scope and assumptions;

b Identify the goals of the SLP decision tier;

c Describe the picking line allocation problem (PLAP) and identify the scope and assump-
tions;

d Identify the goals of the PLAP decision tier;

Objective III

a Obtain representative problem instances to test both the SLP and PLAP;

b Develop a test framework to test solution approaches to the SLP and PLAP while making
provision for future research;

Objective IV

a Develop and test solution approaches to the SLP;

b Address the transitive nature of solving the SLP when evaluating solutions to the PLAP;

Objective V

a Develop and test solution approaches to the PLAP;

b Evaluate the trade-offs between the goals of the PLAP and discuss the performance of all
solution approaches with regards to these trade-offs;

Objective VI

a Discuss and resolve the practical implementation issues of solution approaches to the
PLAP;

b Propose a framework to integrate the PLAP solution approaches within the warehouse
management system at PEP;

Objective VII

a Propose areas and directions for future research;
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1.6 Dissertation layout and organisation

In Chapter 2 the problem instances which are used throughout the dissertation are introduced.
The extraction and validation of historical data is discussed and the data manipulation and
problem instance generation process illustrated. A test framework is presented to test solution
approaches to the SLP and the PLAP while making provision for use in future studies.

The main content of the dissertation is presented in the form of four papers, two submitted
and two accepted. Mathematical formulations for determining a lower bound to the SLP are
introduced in Chapter 3 which is the article by Matthews & Visagie [43] that is submitted
and under review. Four heuristic approaches are further tested and compared to the historical
assignments and a set of random solutions. The marginal gain of solving the SLP is also
discussed.

In Chapters 4 to 6 several novel approaches to solving the PLAP are introduced. All approaches
are compared to the historical assignments using three goals, namely walking distance, the
number of small cartons produced and wave size. Chapter 4 is the article by Matthews &
Visagie [44], Chapter 5 is the article by Matthews & Visagie [46] and Chapter 6 is an article by
Matthews & Visagie [45] that is submitted and under review.

Practical implementation issues of solution approaches to the PLAP are addressed in Chapter 7.
The integration of managerial flexibility, data visibility and computational accuracy as well as
automation is discussed. A proof of concept interface is proposed and illustrated for a decision
support system that can be used in the DC.

Finally, Chapter 8 contains the dissertation conclusion including a discussion of possible direc-
tions for future work and the contributions made.

In the following chapter the different data requirements for the SLP and PLAP are discussed.
The make-up of the problem instances and a test framework for testing is introduced. Due to the
paper structure of this dissertation the mathematical symbols are in a few cases inconsistent
across all chapters because of different requirements by different journals, but are consistent
within each chapter/paper. However, the few exceptions will not hinder the overall readability
of this dissertation.
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CHAPTER 2

Data and test framework

Test problem instances are required to evaluate different decision making approaches for both
the SLP and PLAP. Furthermore a test framework is needed to model the effects on real life
decision making. Different types of problem instances are required for the two types of problems
(SLP, PLAP) as the time span over which decisions are made for each problem are different.
An instance of the SLP needs to be solved for each individual wave on a picking line where an
instance for PLAP is solved each day in the DC using multiple waves across multiple picking
lines. The data requirements and test frameworks will therefore be discussed for each problem
type separately.

2.1 SLP data

An SLP is solved for each individual wave of picking in the DC. The SLP has two goals, namely
minimising total walking distance of pickers and managing the congestion of pickers at popular
SKUs. Both of these goals can be evaluated using the store requirements, in terms of weighted
number of picks, for each SKU in a wave. A problem instance is therefore defined as a set of
store requirements for the SKUs already assigned to a wave and therefore a picking line.

Matthews & Visagie [2] used 22 historical OSP problem instances to evaluate the maximal cut
approach to order sequencing. Each of these problem instances consisted of a set of SKUs and
all store requirements. These problem instances are usable in the SLP context and Hagspihl &
Visagie [1] used them to evaluate different approaches to the SLP in terms of picker congestion.
The walking distance, however, was not considered in the study by Hagspihl & Visagie [1].
Included in these problem instances are the historical SKU arrangements. This allows for SLP
approaches to be compared to the historical assignments. The sequential effects of optimising
the OSP and SLP can also be compared to identify which decision tier has the largest impact
on picking line efficiency.

The make-up of the 22 historical problem instances are illustrated in Table 2.1 and the data
is available online [4]. Problem instances are split into different sizes based on the size of the
maximal SKU (SKU with the most stores requiring it). The size of the maximal SKUs are
larger than 500 for large problem instances, between 50 and 500 for medium problem instances
and less than 50 for small problem instances.

In addition to problem instances derived from historical data further generated problem in-
stances were also used to evaluate SLP approaches. Generated problem instances aid in evalu-
ating SLP approaches for more generic problems and remove some of the bias of the historical

27
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Data Number Number of Size of the
set of SKUs orders maximal SKU

L01 49 1262 1232
L02 54 1264 1226
L03 51 1265 1161
L04 56 1263 1011
L05 51 1264 1069
L06 53 1258 959
L07 56 1260 855
L08 54 1244 817
L09 56 1264 729
L10 55 1258 835
M01 63 943 95
M02 56 846 141
M03 51 728 109
M04 63 396 74
M05 55 733 66
M06 64 242 33
M07 48 574 67
S01 48 90 7
S02 55 158 13
S03 51 82 8
S04 56 80 5
S05 42 89 9

Table 2.1: A summary of the 22 historical problem instances used to evaluate solution approaches to
the SLP [3].

data. Four sets of problem instances were generated by assigning SKUs to orders randomly
using different distributions. These generated problem instances are defined as:

UND: Instances generated by assigning SKUs to orders where a SKU is assigned to an order
with a probability of 0.75.

UNS: Instances generated by assigning SKUs to orders where a SKU is assigned to an order
with a probability of 0.25.

EXD: Instances generated by assigning orders to SKUs where an order is assigned to a SKU
with varying probability. Each order has a fixed probability of being assigned to a SKU,
irrespective of the SKU, and are distributed evenly across the ranges 0.75− 0.1.

OXD: Instances generated by assigning SKUs to orders where a SKU is assigned to an order
with varying probability. Each SKU has a fixed probability of being assigned to an order,
irrespective of the order, and are distributed evenly across the ranges 0.9− 0.15.

A graphical representation of the generated problem instances is give in Figure 2.1. Most of
the large and medium sized historical problem instances resemble the EXD pattern with an
extended tail while the small historical problem instances resemble the pattern of the UNS
generated problem instances.

All generated problem instances consisted of only 20 SKUs and 100 orders which is less than
half the actual size of a picking line. This was done in an effort to solve the SLP with exact
formulations. Heuristic solutions could then be compared to the lower bounds obtained from
exact solution approaches. The properties of these generated problem instances are given in
Table 2.2.
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Figure 2.1: A graphical representation of the relative size of each generated problem instance in terms
of number of different SKUs required by each order and vice versa.

Data Number Number of Size of the
set of SKUs orders maximal SKU

UND1 20 100 82
UND2 20 100 85
UND3 20 100 83
UND4 20 100 83
UND5 20 100 80
UNS1 20 100 37
UNS2 20 100 38
UNS3 20 100 39
UNS4 20 100 39
UNS5 20 100 41
EXD1 20 100 71
EXD2 20 100 79
EXD3 20 100 73
EXD4 20 100 64
EXD5 20 100 68
OXD1 20 100 54
OXD2 20 100 50
OXD3 20 100 53
OXD4 20 100 56
OXD5 20 100 48

Table 2.2: A description of the 20 generated problem instances used to evaluate solution approaches to
the SLP [3].
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2.2 PLAP data

Data consisting of DBN information for a set of DBNs which are assigned to a set of two or
more waves each of which being assigned to a different picking line is required to test solution
approaches to the PLAP. The purpose of the test data is threefold. The test data should
primarily allow for different solution approaches to the PLAP to be compared to each other in
terms of the three goals discussed in Section 1.4.1. This implies that sufficient information to
evaluate these goals must be available for each DBN in a problem instance. A secondary aim
is to directly compare different solution approaches with the historical assignment methods.
This can be achieved by acquiring historical data where wave and picking line assignments
are known. The historical assignments must consists of typical DBN to wave and wave to
picking line assignments i.e. no special cases due to unrecorded internal practices. A final less
imperative goal is to ensure that the data may be used for future studies. An example of such
a study would be to evaluate different dynamic DBN scheduling approaches. To test different
DBN scheduling approaches a set of data is required over a non-disjointed time line. This will
allow DBNs to be scheduled on different days while still meeting their out-of-DC dates.

Data was extracted from PEP’s warehouse management system (WMS), analysed and refined
to generate test problem instances which help reach these three aims. The detailed data re-
quirements for each objective is further discussed.

2.2.1 Data requirements

Only a set of DBNs and DBN information is required to test solution approaches to the PLAP.
This DBN data forms the basic framework for a problem instance. The number of picking lines
to which the DBNs are assigned can be selected arbitrarily and the size of each picking line can
be set to 56 – the number of physical locations – or any other representative value.

Solutions by different PLAP approaches to the same problem instance must be evaluated ac-
cording to the following three goals. The total walking distance across all picking lines should
be minimised, the number of pallet movements required to populate a single picking line for
a wave should be manageable and the number of orders requiring small volumes of stock (or
number of small cartons produced) should be minimal. The DBN information for each DBN in
a problem instance should therefore allow for each goal to be quantified. To evaluate solution
approaches using these criteria the following information regarding each DBN is required:

1. The store requirements for each SKU in a DBN in terms of items or picks required. This
will define the orders and therefore the walking distance within each picking line.

2. The total number of pallet movements required to move all the required stock for a DBN
to a picking line. Waves requiring too many pallet movements to populate the picking line
will be considered undesirable.

3. The volume of a single item for each SKU in a DBN. The exact volume picked for each
store for each wave can be calculated from this data to evaluate the number of small
cartons produced.

A set of historical wave and picking line assignments is required to achieve the second aim of
comparing solution approaches to PEP’s historical assignments. For each historical problem
instance the DBNs should be scheduled for picking on the same day as the PLAP is solved daily
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in the DC. This models a manager’s ability to assign any one of these DBNs to any one of the
picking lines.

In many cases managers make decisions based on internal information which is not recorded in
the online data systems. The bias of this unknown information must be reduced when selecting
historical problem instances and special case waves using special picking lines removed. The
following data regarding historical wave and picking line assignments is therefore required:

4. A set of DBNs assigned to waves and picking lines on the same day including the wave
and picking line identification numbers to which each DBN was assigned.

5. A set of waves and picking lines which accurately depict typical internal assignment prac-
tices. i.e. no special case waves and picking lines.

Two areas of concern arise with regards to manager bias and special case waves and picking
lines. Firstly the number of SKUs assigned to a wave should be realistic. For example, a wave
with less than 15 SKUs would indicate a temporary picking line built on empty floor space or a
special setup on a fixed picking line. Although these picking lines may not be built in the picking
line area the orders are still processed through the order picking system as a wave of picking
and is present in the online data sources. Secondly the number of adjacent locations assigned
to a SKU should be known or at least practical. Should management historically assigned n
adjacent locations to a SKU in a picking line any solution by a PLAP approach should also
assign n adjacent locations to that SKU regardless of which picking line it is assigned to.

Finally consideration is made for future work such as DBN scheduling. Historical assignments
should be extracted from a single connected time window. This allows for DBNs to be assigned
to a waves and picking lines on other days while still maintaining the integrity of each of the
DBN’s out-of-DC dates. Furthermore the date on which DBNs became available for picking
is required to simulate the daily release of DBN pick instructions to the DC by the planning
department. The following data is required to achieve this aim:

6. Release dates for each DBN indicating from when a DBN can be scheduled on a picking
line.

7. A connected time period from which DBNs and wave and picking line assignments are
extracted.

2.2.2 Data extract

After consultation with the IT department at PEP a data extract was performed from several
data sources in PEP’s supply chain network [6]. The first data sources called the SKU and store
master database contains both quantitative and qualitative data for all SKUs and stores. The
data available for each SKU in the SKU master file are

• SKU number,

• SKU description,

• SKU volume per item in cubic meters

• pick type (A or B),

• weight and
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• price.

This data is used to assign a volume to each SKU in each problem instance fulfilling the volume
data requirement 3.

For each store there are a number of classifications in the store hierarchy. The disclosed data
available from the store master file are

• store number,

• store name,

• store type,

• store open date and

• store close date.

Three types of stores exists, namely standard stores selling mainly apparel, home stores selling
mainly home décor and cellular stores selling only cellular products. Little to no picking is done
for the cellular stores in the DC because of the small size, high value and small quantities of
stock in these stores. Only standard and home stores will therefore be considered.

Waves which hold stock only for new stores are processed on special case picking lines. Old
stock which has already been sent to the operating stores is picked for new stores a few months
before they open. These picking lines are built on empty floor space or on the bottom level of
storage racks as only a handful of orders needs to be picked. New stores are identified using the
store master data and these special case picking lines are excluded.

Once the allocation process has been applied to a new DBN all the store requirements for the
DBN are recorded on a live database in the planning department. This data is held for three
months after which it is archived. Two data tables are available the first of which consists of
aggregated data for each SKU in each DBN. Included in this data table are

• DBN number,

• SKU number,

• DBN release date,

• DBN schedule date,

• number of stores,

• number of units,

• number of picks and

• a full carton indicator.

The “number of units” field represents the physical number of items which will end up on the
shelves of stores. The number of picks indicates the maximum number of times a picker will
put his/her hand in a carton to pick items. In many cases units are pre-packed and a single
pick will contain multiple units.

The aggregated DBN data is also captured in a detailed format in the detailed DBN data table.
Here the exact store requirements are included for each SKU. The available fields for this data
table are
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• DBN number,

• SKU number,

• store number,

• number of picks and

• a full carton indicator.

These DBN data tables are used to address most of the data requirements. From the detailed
DBN data table the store requirements are established fulling data requirement 1. This data
also fulfils the release date data requirement 6 and by selecting DBNs which were all scheduled
within a connected time period the time period data requirement 7 is addressed.

During the allocation process stores may be assigned more than one carton load of a SKU. In
these cases the full carton portion of the store requirements will be picked separately in the full
carton area. Both full carton and piece picking instructions are therefore released to the DC
for the same DBN number. The WMS processes the full carton DBNs on a virtual picking line
holding stock for one DBN. Included in the DBN data is a field indicating whether DBN pick
instructions are for full carton or piece picking.

When a wave of picking is planned in the DC that wave is given a unique wave and picking line
identification number and is a combination of wave and picking line information. All the data
for the DBNs assigned to a wave and a picking line is recorded on a local picking line data table
and held for three months before being archived. For each wave of picking the following data
are available

• wave and picking line ID,

• wave schedule date,

• wave completion date,

• DBN number,

• SKU number,

• number of items,

• location ID and

• a full carton indicator.

This picking line data table is used to fulfil the historical data requirement 4. Using this
data table further analysis can be performed to evaluate the bias of management’s picking line
assignments and address the unbiased data requirement 5.

Of all the data requirements only the pallet movement requirement 2 is not addressed. Due to
the current WMS no historical pallet movement data is stored. Moreover the actual number
of pallets required to move all required stock for a DBN to a picking line is not known. As an
alternative the total volume of stock required for a wave will be used as a measure of the size
of the wave instead of total pallet movements. Using this measure, waves will be considered
undesirable if too much stock is required to populate the picking line.

All of the above data tables were extracted from PEP’s IT system on 25 April 2013. The
merging, analysis and exclusion of data will further be discussed in the next section.
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2.2.3 Data merging

The extracted data from different data tables is merged by using unique identification keys.
Problem instances are generated from this merged data. Figure 2.2 illustrates the merging of
data between different data tables. The SKU data table is mapped to the detailed DBN data
table using the SKU number field. All SKU numbers in the detailed DBN data table had a
corresponding match in the SKU master data table. Similarly store data is merged with the
DBN detailed data using the store number field. For all stores in the DBN data a store was
found in the store master data table. The DC picking line data is matched with the DBN data
by using a composite mapping key (DBN number, SKU number, Full carton indicator).

SKU Master

# Records 487031

Store Master

# Records 2278

Picking line data

# Records 35054

DBN Detailed

# Records 8039758

(SKU number)
( Store number)

(DBN, SKU, Full Carton )

Figure 2.2: A schematic representation of the merging procedure of the different data tables. The lines
indicate a mapping using the relevant key. The total number of raw records in each data set is also given
to illustrate the size of the data merge.

In many cases records in the DBN data did not have any matches in the DC picking line data.
This is expected as the DBN data contains all released DBNs including those not yet scheduled
for picking. In some cases there were DBNs within the DC picking line data table with no
match in the DBN data. This is due to the archiving time line of the DBN data. DBNs which
were released more than three months before the extraction date, although scheduled after this
date, were not present in the data.

Analysis was performed once the data had been merged into a single data table. Using this data
a number of exclusions are made on both DBNs and picking lines. This reduced the data to a
subset of picking lines and addressed the historical management assignment biases discussed in
data requirement 5.

2.2.4 Exclusions

The exclusions imposed on the data consists of two types namely DBN exclusions and wave/picking
line exclusions. DBNs are excluded from the data if the DBN contains SKUs for which there
is no volume. This exclusion is rare and was applied to less than 0.5% of the total DBNs.
Furthermore all DBNs marked as full carton DBNs are excluded as they are not picked in the
picking lines. Finally any DBN with a total volume in excess of 300m3 was excluded as these
DBNs are handled as a special case in the DC and are infrequent. This exclusion was applied
to one DBN.

Wave/picking line exclusions were based on several criteria. Firstly any wave with more than
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five excluded SKUs were excluded as too much historical information was lost. It was observed
that this exclusion would apply to most of the waves scheduled before 31 January 2013. Only
waves scheduled after 31 January 2013 were therefore included as this created a connected time
period. After this exclusion there were only eight waves with at most four SKUs with missing
data. Each of these waves were included in the problem instances as the effects of these missing
SKUs would be minimal.

A further exclusion was made for waves which only have stock for new stores. This was achieved
by comparing the schedule dates of waves with the open dates of the stores. Waves which only
have orders for stores with open dates after the schedule date are excluded.

Further analysis was made into the number of SKUs assigned to each picking line as well as
the number of locations assigned to each SKU. The actual number of locations assigned to a
SKU in a picking line is not recorded and the only information provided is the location number.
In many cases all of the 56 locations in a picking line are not used for each picking line. This
leaves space for additional stock, empty cartons or empty unused locations. Table 2.3 illustrates
the size of all the waves in the merged data set after all the DBN, full carton and new stores
exclusions are applied. In some cases picking lines are built on empty floor space similarly to
those for new stores. The waves for these picking lines would have very few SKUs and are
excluded. Waves which were assigned significantly less than 56 SKUs suggests a special case.
There is not sufficient data to identify the cause or purpose of these small picking lines and
they are excluded. After consulting management waves with less than 30 SKUs allocated to it
were excluded as they were deemed to be special cases which could not be understood with the
limited data provided. In some rare cases more than 56 locations are used. This is achieved by
adding additional location labels to the floor space around the picking line and storing stock on
the floor. This is a manageable procedure and these picking lines are included.
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Figure 2.3: A plot of the number of SKUs assigned to each wave in the data extract after the DBN,
full carton and new stores exclusions are applied.

Although the historical location of each SKU in a picking line is known, the exact number
of locations assigned to the SKU for additional stock is not known. The number of adjacent
empty locations can, however, be deduced, but it is still not known on which side of the assigned
location additional stock is stored, if any. The effect of this lack of information is illustrated in

Stellenbosch University  https://scholar.sun.ac.za



36 Chapter 2. Data and test framework

Figure 2.4. In an attempt to estimate the number of assigned locations the number of empty
adjacent locations for a SKU either to the left or the right of its assigned location is compared
to the total volume of stock required for that wave of picking. This comparison is illustrated in
Tables 2.3 and 2.4. In many cases large volumes of stock are stored in just a single location. In
these cases additional pallets are either stored on the floor behind the storage location between
picking lines or in a staging area next to the picking line for fast and easy access by pump
trolleys. There are many SKUs for which there is a relatively small volume of stock with many
empty locations adjacent to it. Additional data is therefore required to determine the number
of locations assigned to SKUs as volume cannot be used as an accurate estimate.

In an attempt to compare solution approaches to the PLAP it will be assumed that each SKU
can be assigned to a single location in a picking line regardless of the volume required by the
SKU and the available space adjacent to it in the historical assignments. To reduce the effects
of this assumption on model bias each historical wave will be assumed to have been processed
on a unique picking line with a capacity equal to the number of SKUs assigned to the wave. In
this way should empty locations be present for any reason when processing a wave on a picking
line they would remain present in the problem instances.

X

Figure 2.4: A schematic representation of the lack of information regarding the number of locations
assigned to a SKU in a picking line. All SKU locations assigned to a SKU are indicated with a dot or
an X. Arrows indicate possible storage capacity for the SKU marked with an X.

Number of locations including Total volume rounded up to the nearest 10 m3

empty locations on the right 10 20 30 40 50 60 70 80 90 100 110

1 14951 538 63 18 2 2 1 - - - -
2 617 289 149 39 23 12 7 - 1 - -
3 92 44 60 37 15 7 5 3 1 - 1
4 25 2 2 3 2 2 1 - - - -
5 21 - 1 - - - - - 1 - -
6 23 - - - - - - - - - -
7 17 - - - - - - - - - -

8+ 49 - - - - - - - - 1 -

Table 2.3: A comparison between the number of locations available for a SKU including empty locations
on the right of the assigned location and the total volume for the SKU. Volume is rounded up to the
nearest unit of 10 cubic meters. Each cell entry contains the number of SKUs in the historical data for
the respective number of locations and volume category.

A potential drawback on the assumption that each SKU is only assigned a single location is
the generation of extremely large waves. This may be caused by assigning 56 SKUs with large
volumes of stock to the same picking line. In practice less SKUs would have been assigned
as some SKUs would occupy multiple locations. To evaluate the impact of this assumption
the total volume assigned to historical picking lines is analysed. Table 2.5 illustrates the total
volume assigned to historical picking lines and is compared to the number of SKUs assigned
to the picking line. There are many picking lines which process waves with a large volume of
stock, in excess of 450 m3. This suggests that waves with large volumes of stock are practically
manageable and the potential affects of the assumption are manageable.

Stellenbosch University  https://scholar.sun.ac.za



2.2. PLAP data 37

Number of locations including Total volume rounded up to the nearest 10 m3

empty locations on the left 10 20 30 40 50 60 70 80 90 100 110

1 14290 708 213 66 33 10 11 3 3 1 1
2 955 83 29 13 3 6 - - - - -
3 217 23 7 4 1 1 1 - - - -
4 28 3 1 - - - - - - - -
5 17 1 - - - - - - - - -
6 20 - - - - - - - - - -
7 8 - - - - - - - - - -

8+ 29 - - - - - - - - - -

Table 2.4: A comparison between the number of locations available for a SKU including empty locations
on the left of the assigned location and the total volume for the SKU. Volume is rounded up to the
nearest unit of 10 cubic meters. Each cell entry contains the number of SKUs in the historical data for
the respective number of locations and volume category.

Total Volume in Number of SKUs
cubic meters 30-34 35-39 40-44 45-49 50-54 55-59 60-64 Total

[0, 50) 19 21 15 5 5 14 1 80
[50, 100) - - 1 4 27 35 - 67

[100, 150) - 2 - 7 25 23 - 57
[150, 200) 1 - 4 8 23 14 - 50
[200, 250) - - 4 9 14 5 - 32
[250, 300) 1 1 5 9 9 - - 25
[300, 350) - 2 1 9 4 - - 16
[350, 400) - - 5 6 1 - - 12
[400, 450) - - 3 2 - - - 5
[450, 500) - 2 2 1 1 - - 6
[500, 550) 1 - 1 1 - - - 3
[550, 600) - 2 1 - - - - 3
[600, 650) - - - - - - - 0
[650, 700) - - 1 - - - - 1

Total 22 30 43 61 109 91 1 357

Table 2.5: A summary of the total volume of stock in a wave compared to number of SKUs in the
wave. The volume is given in ranges of 50 cubic meters and the number of SKUs is given in ranges of
five SKUs. The total number of waves for each volume and number of SKUs segment is also given.
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Following these exclusions a number of historical problem instances are identified for use and are
summarised in Table 2.6. For each problem instance a single wave will be assigned to a single
unique picking line. From here on a wave/picking line combination will be represented by a
unique picking line ID. Picking line IDs will therefore be different within each problem instance.
To better compare results between different PLAP solution approaches several scenarios each
having problem instances with the same number of available picking lines are generated from this
historical data. The connected extraction window is only required for future studies. A set of
disjointed problem instances is therefore used to generate these scenarios. Within each scenario
the number of available picking lines for each problem instance is the same. These scenarios
are generated by selecting a random subset of picking lines from each problem instance for
each scenario (where possible). For example a historical problem instance with five picking
lines is used to generate problem instances for four scenarios one with two, three, four and five
picking lines respectively. A summary of these scenarios is given in Table 2.7. Although there
are historical problem instances with more than eight picking lines (as shown in Table 2.6)
there are two few to draw significant statistical comparisons between solution approaches. Only
scenarios having problem instances with between two and eight picking lines is therefore used.

Number of picking lines Number of Number of
per problem instance problem instances DBNs

2 9 385
3 5 329
4 9 742
5 7 745
6 11 1510
7 8 1248
8 7 1048
9 3 526
10 2 324
11 1 237
13 1 260

Table 2.6: A summary of the makeup of the historical problem instances for the PLAP.

Number of picking lines Number of Number of
per problem instance problem instances DBNs

2 61 2592
3 53 3437
4 49 4146
5 38 4109
6 32 4161
7 22 3177
8 14 2148

Table 2.7: The composition of the scenarios generated from historical problem instances for the PLAP.

Approaches to the PLAP can be tested using these scenarios. Although it is assumed that for the
problem instances one location is assigned to a SKU, PLAP solution approaches must be able
to handle problem instances where multiple locations are assigned to a SKU for practical im-
plementation. A test framework in which to test different approaches taking these assumptions
into account is further discussed in the next section.
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2.3 PLAP test framework

A test framework is required to simulate different decision making strategies for the PLAP. Any
test framework should address two goals. Firstly new decision making strategies should only
have access to information which is currently accessible or can be made accessible should the
strategy be implemented. Secondly the effects of new decision strategies should be measurable
and reflect realistic implications in the DC. Following the release date and time window data
requirements 6 and 7 provision should be made for DBN scheduling in the test framework. A
test framework is therefore designed which allows for the testing of approaches to the PLAP as
well as the dynamic DBN scheduling problem.

All coding was done using the AIMMS optimisation suit [5]. The optimisation suite serves as an
interface between data sources and mathematical solvers and offers interface design capabilities.
The general framework for the test environment is described using a flow diagram shown in
Figure 2.5. There are three main modules within the framework, namely the data input, decision
test and data output modules.

A single iteration within the decision simulation module reflects one day in the DC. At the
start of each iteration DBN and picking line data is obtained from an external database. This
simulates the ongoing release of DBN pick instructions by the planning department and avail-
ability of new picking lines. Once data has been obtained the decision simulation module will
assign DBNs to picking lines with the user defined approach. The performance of each pick-
ing line is evaluated after DBNs have been assigned to all the available picking lines. At the
end of each iteration output data is recorded in the external database. Each of these three
modules are further discussed with reference to the static PLAP and dynamic DBN scheduling
functionalities.

Decision
simulation

External
data

External
dataData input

procedure
Data output

procedure

Figure 2.5: A schematic representation of the main modules within the test framework for the PLAP.

2.3.1 Data input

Two elements form part of the data input module. Firstly an SQL database stores the required
data for the tests. Included in this database is the set of DBNs with the required information
as well as the picking line information (historical or custom set). A separate database is used
for each of the seven scenarios illustrated in Table 2.7. For each database three data tables are
present, namely a DBN detailed table holding all the required data for each individual order; a
DBN aggregated data holding aggregated data for each DBN as well as the release and schedule
dates; and a picking line data holding information regarding historical picking lines.

The DBN detailed data table contains the

• DBN number,

• SKU number,

• store number,

• number of items,
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• volume and

• historical picking line ID.

The DBN aggregated table contains the

• DBN number,

• SKU number,

• volume,

• number of required locations,

• release date,

• schedule date,

• out-of-DC date and

• historical picking line ID.

This data is mapped to the DBN detailed data table using a composite key consisting of the
DBN and SKU numbers. The number of required locations field is included in the data to make
provision for future problem instances where multiple locations are assigned to a SKU. This is
a redundant field for the problem instances introduced in Section 2.2 as it is assumed that each
SKU is assigned one location only.

The picking line data table consists of the

• picking line scenario ID,

• picking line ID,

• schedule date and

• number of SKUs.

Although the data is stored such that the entire set of DBNs may be seen as a single problem
instance, each historical problem instance can be identified by the schedule date. Therefore each
of the individual PLAP problem instances can still be solved and evaluated on its own using
the schedule date as an identification key.

At the start of each test data is obtained from the external database. Two different data input
procedures are developed for the different decision environments. The procedure for the static
PLAP environment obtains all the picking line data for the picking lines which are scheduled
for the specified test date. All the DBN data which maps to one of the now active picking lines
is then obtained. In this way only DBNs which were historically scheduled on the specified test
date are considered for a decision simulation iteration. In this way each problem instance for
the PLAP is evaluated independently.

For the dynamic allocation environment DBNs can be scheduled on different dates. The data
input procedure here requires a temporary data table containing a list of all the DBNs already
scheduled for picking during one of the previous iterations or days. This table is created at the
start of the test and is populated as DBNs are scheduled. The procedure will obtain all DBNs
which have not yet been scheduled (i.e. not present in the temporary DBN data table) and
have a release date before the next test date.
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Once the list of pending DBNs has been updated the DBNs must be assigned to a set of pending
picking lines. Both historical and custom generated scenarios can be used. Custom scenarios
can be generated by changing the number and size of available picking lines for each day. These
scenarios are stored in the picking line data table in the input database.

2.3.2 User input

Each test requires a number of user inputs dictating which data to be used, the type of decision
environment as well as the algorithm to be tested. The following parameters are set for each
test:

• Test ID

• Type of test (static PLAP or dynamic DBN scheduling)

• Problem type scenario (historical picking lines for the PLAP and custom scenarios for
dynamic DBN scheduling)

• Algorithm identification.

During a test the model parameters must be set and assignment algorithms run by calling
several procedures. One iteration of the decision simulation module is described using a flow
diagram shown in Figure 2.6. Generic parameters and variables include picking line sizes, DBN
assignment variables, SKU location variables and OSP variables among others. A number of
unique parameters and variables may be required depending on the solution approach being
tested. For each candidate solution approach only two procedures must be coded. Firstly
a procedure for calculating new parameters and secondly a procedure for assigning DBNs to
picking lines. A case statement is used within the decision simulation module to select the
appropriate procedure for the tested solution approach. In this way new solution approaches to
the PLAP can be easily implemented and tested once the test framework is developed by using
algorithm identification keys.

2.3.3 Data output

During each test data is written to external output data tables. At the start of each test the
meta-data regarding that test is recorded in a past tests table. This table is used to record
information concerning each tested decision approach and contains the

• test ID (user defined),

• test description (user defined),

• type of test (PLAP or DBN scheduling),

• picking line data,

• algorithm identification and

• a completion flag.

The completion field is used for automation. The test environment can be set to run through
all test which have not been completed. The appropriate user input is read from the past tests
table. In this way many tests can be read into the test framework and evaluated in a single
program run.
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Obtain data
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Calculate picking
line perfor-
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Export out-
put data

Increment
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Figure 2.6: A flow diagram of the decision simulation module within the PLAP test framework. Bold
states indicate procedures which are algorithm specific.

At the end of each problem instance regarding the algorithm performances and DBN assignments
are recorded. Firstly picking line data is stored for each assignment in a picking line data table
with the

• test ID,

• picking line ID,

• schedule date,

• volume,

• number of items,

• number of location visits,

• maximal SKU value,

• number of locations,

• number of SKUs,

• number of cycles walked and

• computational time.

A field for both the number of available locations as well as the number of SKUs is included to
make provision for future data where SKUs are assigned multiple locations. From this output
data table the total walking distance for each DBN assignment is obtained as well as the size
of each picking line in terms of volume. Furthermore the required computational time to assign
DBNs to each picking line is recorded for algorithm comparison.

The data recorded in the DBN data for each scheduled SKU are

• test ID,
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• picking line ID,

• DBN number,

• SKU number,

• location ID,

• DBN release date,

• DBN schedule date and

• DBN out-of-DC date.

From this output data table analysis can be performed on the time spent in the DC for all
DBNs for the dynamic DBN scheduling environment.

Finally, information for each order is stored in the store data table with the

• test ID,

• picking line ID,

• store number,

• volume and

• number of items.

The actual volume for each order is obtained from this output data table and is used to determine
the number of small cartons produced.

By ensuring that each output record has a test ID tests can be deleted and rerun during their
development phases. A test can easily be deleted from each data table for a test rerun. A
subset of tests can be extracted for analysis after the model development and testing phases.
Approaches to the PLAP can be tested using the historical problem instances as well as the
proposed test framework. For the rest of this dissertation solution approaches to the SLP
and PLAP are introduced and discussed as well as implementation issues when changing these
decision making environments in the DC.
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CHAPTER 3

SKU arrangement on a unidirectional picking
line

3.1 Introduction

Distribution centres (DCs) play a key role in many supply chains. DCs typically match supply
with demand by consolidating product, resulting in buffers of stock and a reduction in trans-
portation costs [1]. The order pick operation plays a significant role within most DCs and
typically accounts for 60% of all DC costs [18]. De Koster [3] describes order picking as the
process of retrieving products from storage or buffer areas in a response to customer requests.
The order picking operations for the DCs owned by PEP, a major retailer in South Africa, is
considered in this paper. PEP has three distribution centres in Southern Africa, as well as 14
distribution hubs. Together the DCs occupy more than 230 000 m2 and distribute over 600
million items per year across Southern Africa [14].

PEP preponderantly sells apparel, but has also been growing in the home décor and cellular
device market. They serve a target market consisting mainly of the low income population in
South Africa. In an effort to keep costs and prices low, PEP is known for its very efficient supply
chain. PEP requires a large footprint of approximately 1500 retail outlets (stores) to reach its
market. PEP adopted a central inventory planning and management approach to keep costs low
with such a large number of stores. All inventory levels for the stores are managed centrally by
the planning department at the head office. Stock is thus pushed to stores by a central planner
rather than pulled by a store manager placing orders.

The order pick operation in PEP’s DCs is greatly influenced by this central planning approach.
All store requirements for the subset of stock keeping units (SKUs) scheduled to be picked
during a specific operations window (typically weekly) will be released by a central planner to
a DC for all stores. This allows the DC to process all store requirements for a single SKU in
a single operation. PEP therefore batches SKUs for collective picking, rather than batching
orders as is often the case in literature [4, 7, 12].

PEP uses 12 independent picking lines which operate in parallel to batch SKUs. Figure 3.1
schematically illustrates the layout of a single picking line with m (typically 56) locations.
Multiple pickers (typically eight) are assigned to a picking line and walk in a clockwise direction
picking stock. Collectively pickers walk approximately 720 km per day during picking which
equates to 160 man hours of walking per day.

Before any picking can take place on a picking line a set of SKUs must be assigned to the

45
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Figure 3.1: A schematic representation of a picking line with m locations.

picking line and arranged by allocating each SKU to a location. The physical stock is then
brought to the picking line before pickers commence with picking. All store requirements for
the SKUs on the picking line will be picked before the left over stock (if any) is removed and
a new mutually exclusive set of SKUs is assigned to the picking line. One cycle of populating,
picking and removing leftover stock is referred to as a wave of picking. The term order will
refer to the set of picks required by a store for the set of SKUs within a wave of picking on a
picking line. Because the store requirements for each SKU in a wave are known when a wave
commences the orders are deterministic for each wave of picking.

This process of managing waves generates three sequential and dependant tiers of decisions.
In the first decision tier SKUs are assigned to the available picking lines in a planning horizon
(typically daily). SKUs can only be processed after central office has released all the store
requirements for that SKU. The required quantities for all the SKUs that must be picked in
a picking line are thus known when SKUs are assigned to a picking line. SKUs are ranked
according to priority and a subset of the top ranked SKUs are selected to fill the available
picking lines. Once this subset is selected these SKUs are assigned to individual picking lines.
Managers assign these SKUs to each picking line based on experience and in-house rules.

The second decision tier occurs once a batch of SKUs has been assigned to a specific picking
line and the SKUs are arranged in that picking line. Currently the arrangement of the SKUs is
determined by picking line managers each of which using his/her own approach, but the main
philosophy is to evenly distribute SKUs with a high number of branch orders around the picking
line. Each of the m locations in the picking line can store up to five pallet loads of stock which
is sufficient to satisfy all store requirements for each SKU in a wave. Restocking the picking
line is thus not a problem as is normally the case in literature [3]. Figure 3.2 illustrates the first
and second decision tiers.

The third and final decision tier occurs just before picking starts. Here the sequence in which
orders are assigned to pickers is determined as each order does not require all the SKUs and
may be assigned to any picker. PEP uses voice recognition software (VRS) to manage the order-
picking and assign orders. Each picker is equipped with a headset which sends instructions to
and receives feedback from the picker. The VRS assigns an order to a picker while the picker
prepares a new empty carton. Empty cartons are available at any location in the picking line and
have no affect on the optimisation of any decision tier. The picker places a unique identification
sticker onto the empty carton and registers the identification number with the VRS. The VRS
then pairs the identification number with the assigned order before directing the picker, in a
clockwise direction, to the next required SKU for the assigned order.

The VRS keeps track of the positions of the pickers. Pickers are therefore directed to the closest
SKU required by the currently assigned order. The closest SKU is the next required SKU for
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SKUs

Picking lines

Figure 3.2: A schematic representation of the first two decision tiers in the wave order picking operation.
Decision tier 1 is shown on the left and decision tier 2 is shown on the right. Each shaded shape represents
a SKU. Shapes are grouped in decision tier 1 for display purposes only.

the current order in a clockwise direction from where the previous SKU was picked. Once a
picker has completed all the picks for the order (which can take at most one pick cycle), the
VRS assigns a new order to the picker. Each picker will therefore pick all the required SKUs
for a single order before being assigned a new order to ensure pick accuracy. Pickers can work
in parallel, but each order is only picked by a single picker as pickers sequentially pick his/her
list of orders.

The focus of this paper is on the middle decision tier, namely the arrangement of SKUs within
a picking line. Several heuristic approaches are tested and lower bounds introduced. The
remainder of this paper is structured as follows: A brief problem description and discussion on
work concerning the sequencing of orders in this picking line set-up is provided in §3.2. A brief
discussion on related work in literature is provided in §3.3 and the details and adaptation of
several heuristic methods from literature for use in this picking line environment are discussed
in §3.4. A tight lower bound or an optimal solution is necessary to measure the performance
of different heuristics. In §3.5 two mathematical formulations as well as a trivial approach for
determining lower bounds, on the distance travelled by pickers are introduced. Computational
results of all the heuristics for both historical and generated problem instances are presented in
§3.6. After a discussion of the results the paper is finally concluded in §3.7.

3.2 Problem description

The SKU location problem (SLP) considers the arrangement of a set of SKUs in a single picking
line while minimising the total distance walked by pickers. An optimal sequence of orders must
be calculated for the arrangement to evaluate the total walking distance for a candidate SKU
arrangement. Therefore both an approach to arranging SKUs within a picking line as well as
their sequencing of orders for pickers is required to solve the SLP.

The problem of sequencing a set of orders for a picker in this unidirectional picking line set-
up was considered by Matthews & Visagie [10]. They considered the following assumptions
regarding the order sequencing process to align the mathematical model with the actual process
in the DC:

1. Pickers are required to complete an entire order before starting another one. Order batch-
ing is not possible as pickers place items directly into cartons which are closed and shipped
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as is.

2. The physical pick time of a SKU is constant over all orders.

3. A picker walks at a constant speed.

4. Pickers may be assigned an order, signifying the start of that order, at any location
regardless of whether the order requires the SKU at that location or not. The order will
be completed at the last location which holds a required SKU.

5. The change-over time when changing between two orders is constant over all pickers and
orders.

6. Once a picker completes an order the picker may not physically pick stock for the next
order from that location. The VRS system will therefore register the starting location of
the next order as the following location in the picking line. In this way, should the next
order require the last SKU of the previous order, the VRS will route the picker around the
entire picking line. This assumption is made due to the requirements by PEP to improve
picking accuracy.

Matthews & Visagie [10] showed that an exact approach to this order sequencing problem (OSP)
was not solvable due to the size of real life instances. However, by translating the distance walked
into the number of cycles walked by pickers they proposed an approach for determining a good
number of cycles needed to pick all orders on a picking line with a fixed SKU arrangement.
A sequence of orders obtained with this method was shown to be within one pick cycle (the
distance walked by a picker passing all locations in a picking line) of the minimum number of
pick cycles required to pick all the orders for the given SKU arrangement. This method to
solve the OSP will thus be used to evaluate any candidate SKU arrangement to the SLP and is
summarised below.

Given a SKU arrangement, spans (paths which cover all required SKUs for an order) are assigned
to orders. The cut of each location, defined as the number of assigned spans which pass that
location, is determined and the maximum number of spans passing any one location or maximal
cut is minimised. Two different assignments of spans to orders are illustrated in Figure 3.3. For
a span to be feasible for an order two conditions must hold: the span must pass all the locations
which hold a SKU required by that order, and the span must start and end at a location holding
a required SKU. It is important to note that the starting and ending locations for different spans
do not necessarily link up, while determining the maximal cut.

Matthews & Visagie [10] showed that once spans have been assigned to orders while minimising
the maximal cut these spans can be linked into a single tour connecting all spans within 1 cycle
of the maximal cut. The maximal cut therefore forms a lower bound in terms of the number of
cycles traversed to pick all the orders for the given SKU arrangement. The following variables
are needed to model the assignment of spans to orders given a fixed SKU arrangement. Let

ŝol =

{
1 if the span for order o starts at location l
0 otherwise,

and

C be the maximal cut.
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Figure 3.3: A schematic representation of two different assignments of spans for the same set of orders.
Each line segment is associated with a different order indicated by a letter. The letters in the locations
indicate which locations hold SKUs required by each order. A span should always pass all the locations
holding a required SKU for its order.

The following parameters are set in the model. Let

O be the set of all orders,

S be the set of SKUs,

L be the set of locations,

L̂o be the set of locations which holds a SKU required by order o, and

d̂olk =

{
1 if the span for order o starting at location l passes location k
0 otherwise.

In terms of these symbols the objective is to

minimise C (3.1)

subject to∑
l∈L̂o

ŝol = 1 o ∈ O, (3.2)

∑
o∈O

∑
l∈L̂o

d̂olkŝ
o
l ≤ C k ∈ L, (3.3)

ŝol ∈ {0, 1} o ∈ O and l ∈ L.

The objective function (3.1) minimises the maximal cut. Constraint set (3.2) ensures that each
order is allocated a starting location which holds a required SKU. Constraint set (3.3) calculates
the size of the maximal cut over all locations. The parameter d̂olk is pre-calculated and the details
of this calculation may be found in Matthews & Visagie [10].

Due to the size of the OSP alone it is clear that an exact solution approach to the more complex
SLP is not solvable by means of an integer programming formulation as it depends on the OSP
to evaluate candidate SKU arrangements. Heuristic approaches should thus be investigated.
Related literature is therefore discussed in the next section and heuristics are identified for
adaptation for the picking line system considered here.

3.3 Related literature

A carousel has a number of shelves which are linked together in a closed loop. This loop of
shelves rotates automatically presenting stock to a picker (human or robotic) located in a fixed
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position [9]. The picking line considered here forms a type of carousel system in which the
picking line forms a fixed carousel and multiple pickers “rotate” in a clockwise direction around
it. Hassini [6] provides a review of various carousel problems and applications. According to
the classification by Hassini [6] the picking line approach under consideration is a single layer,
single bin, unidirectional carousel because the SKUs are not stored above each other, pickers
process single orders sequentially and pickers walk in a clockwise direction around SKUs. The
major difference between the picking line approach considered here and carousels in literature
is the deterministic and finite nature of the set of orders being picked during a wave. Moreover
bidirectional carousels are more common in practice, as they are most efficient, and thus receives
the majority of the attention in the literature on carousels.

When sequencing orders on a bidirectional carousel Bartholdi & Platzman [2] showed that a
solution within one rotation of a lower bound could be achieved by picking all orders on their
shortest spanning intervals (SSIs). A SSI is the shortest path, in both directions, which needs to
be passed in a bidirectional carousel to pick all the required SKUs for that order. Both a shortest
matching technique as well as a nearest neighbour approach for sequencing the SSIs were tested.
Van den Berg ([17]) later developed a polynomial algorithm for linking SSIs within 1.5 rotations
of a lower bound. However, Matthews & Visagie [10] showed that for a unidirectional carousel
picking orders on SSIs rarely yields solutions close to the optimum.

Once order sequencing can be performed in carousels, the location of SKUs on the carousels
becomes the next focus. Vickson & Fujimoto [19] proved that using an organ pipe arrangement
(OPA) minimizes the long-run average travel time for a sequence of single independent and
identically distributed orders for a bidirectional carousel. Vickson & Lu [20] further showed that
assigning SKUs to locations in a greedy sequential manner (GS) is optimal for the unidirectional
case. Both of these SKU arrangements are applied to carousels with an infinite set of stochastic
orders and have not been proven to be optimal for a finite deterministic set of orders considered
here. Litvak & Maia [9] briefly mentions a SKU allocation approach by Stern [16] based on a
maximal adjacency principle which places SKUs next to each other if the probability of them
appearing in the same order is high.

Hagspihl & Visagie [5] used a simulation approach to test the effects of SKU arrangements
on congestion in a picking line. Hagspihl & Visagie [5] proposed a Classroom Discipline (CD)
heuristic which – using an ordered set based on pick frequency – sequentially inserts SKUs
into the gaps between already assigned SKUs to reduce picker congestion. It was shown that
congestion, in comparison to the GS and OPA heuristics as well as the historical configuration
was reduced when using this heuristic, however, the effect of this heuristic on the number of
cycles traversed was not tested.

The OPA, GS and CD heuristics as well as the SKU allocation approach by Stern [16] are
suitable for adaptation (where necessary) and use in the picking line system considered here.
These heuristics are therefore discussed in more detail in the next section.

3.4 Heuristics

Following the studies by Vickson & Fujimoto [19] and Vickson & Lu [20] the OPA and GS
approaches are adapted for the picking line setup and presented in Algorithm 1 and Algorithm 2
respectively. Figure 3.4 illustrates the SKU arrangement for both the OPA and GS approaches
with the aid of a small example.
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OPA Greedy

Figure 3.4: A schematic representation of the layouts for both the OPA and GS heuristics. The height
of each bar represents the probability that an order will require a SKU for carousel systems or the actual
number of orders requiring that SKU in the case of the picking line under consideration.

Algorithm 1: Organ Pipe Heuristic

Data: A set of SKUs S ordered by pick frequency with si the ith element of S
Result: An assignment of SKUs to locations

1 Let T be an ordered sets of SKUs
2 Set T = ∅
3 for i = 1 to |S| do
4 if i mod 2 = 1 then
5 Set T = T ∪ si ; /* where T ∪ si implies that si is added to the front of T */

6 end
7 else
8 Set T = si ∪ T ; /* where si ∪ T implies that si is added to the back of T */

9 end

10 end
11 Assign SKUs to the locations in the same order as they appear in T

Algorithm 2: Greedy Sequential Heuristic
Data: A set of SKUs S ordered by pick frequency
Result: An assignment of SKUs to locations

1 Assign SKUs to the locations in the same order as they appear in S

Stern [16] used an adjacency measure to assign SKUs to locations in a carousel. In the carousel
environment the probability of two SKUs being required by the same order is used as an adja-
cency measure. A Greedy Adjacency (GA) heuristic is therefore introduced in this deterministic
picking line environment by considering the actual number of orders requiring two SKUs as the
number of adjacencies between those two SKUs. The GA heuristic initially allocates the SKU
with the highest pick frequency to the first location and then sequentially allocates the SKU
with the highest number of adjacencies with the previously allocated SKU to the next available
location. The GA heuristic is described in Algorithm 3 and the SKU arrangement for a small
example is illustrated in Figure 3.5.
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Adjacencies
A B C D E

A 20 10 11 4 5
B 10 15 5 6 1
C 11 5 12 8 2
D 4 6 8 10 1
E 5 1 2 1 6 A C D B E

Figure 3.5: An illustration of how the GA assigns SKUs to locations based on adjacencies. The
adjacency matrix on the left indicates the number of adjacencies between each SKU. The diagonal
indicates the total number of orders requiring that SKU. The figure on the right illustrates the final
allocation of the five SKUs. The height of each bar represents the number of orders requiring that SKU.

Algorithm 3: Greedy Adjacencies Heuristic
Data: A set of SKUs S

A adjacency matrix (A) where element (aij) represents the number of orders requiring both SKUs
si ∈ S and sj ∈ S

Let L be a set of locations with element li representing the ith element of L
Result: An assignment of SKUs to locations

1 Assign the SKU with the largest number of orders requiring it to location l1
2 for p = 2 to |L| do
3 Assign to location lp the unassigned SKU with the highest number of adjacencies to the SKU assigned

to location lp−1

4 end

Hagspihl & Visagie [5] tested the CD heuristic on the same picking line system considered in this
paper. Although it was shown that this approach reduces the effects of picker congestion the
effect of this heuristic on the number of cycles traversed was not tested. This heuristic is therefore
included in this paper and is described in Algorithm 4. A small example of its implementation
is illustrated in Figure 3.6. The algorithm sequentially assigns SKUs in a greedy sequence to
locations by placing them in-between already assigned SKUs.

Algorithm 4: Classroom Discipline Heuristic
Data: A set of SKUs S ordered by pick frequency
Result: An assignment of SKUs to locations

1 Let T and U be ordered sets of SKUs, with uj the jth element of U
2 Set T = ∅
3 for i = 1 to dlog2 (|S|+ 1)e do
4 Set U equal to the top 2i− 1 SKUs in S \ T ; /* The set of unasigned SKUs */

5 for j = 1 to |U| do
6 if i = 1 mod 2 then
7 Insert uj into position 2j − 1 of T
8 end
9 else

10 Insert uj into position |T | − 2j + 3 of T
11 end

12 end
13 Assign SKUs to the locations in the same order as they appear in T
14 end

To evaluate the performance of the heuristics presented here a tight lower bound or optimal so-
lution is necessary. Several approaches to determine a tight lower bound are therefore presented
in the next section.
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Figure 3.6: A schematic representation of the Classroom Discipline (CD) heuristic for a picking line
with 12 SKUs (A-L). The arrows indicate the transition between groups of SKU insertions. The grey
bars indicate those SKUs that are inserted during the current round of insertion and the height of the
bars indicate the number of orders requiring that SKU. Depending on the number of SKUs in the line
the last iteration of insertion does not necessarily fill all possible gaps between previously inserted SKUs.

3.5 Lower bounds

Utilising the maximal cut approach for the OSP when solving the SLP would require each SKU
to be assigned to a location after which spans, defined by starting locations, need to be assigned
to spans. Each different SKU arrangement redefines the set of possible starting positions for
(and thus lengths of) candidate spans for each order as all orders do not necessarily require all
SKUs. It is only once these spans have been allocated that the maximal cut can be determined.

A trivial approach to determining a lower bound for any (minimisation) mathematical program-
ming problem is to reduce the problem size by relaxing some constraints. A lower bound for the
SLP can therefore be obtained by only considering a subset of the SKUs and the subsequent set
of orders. Moreover if only one SKU is selected from the full set of SKUs no SKU arrangement
is necessary. Following Assumption 6 the presence of only one SKU implies that the number of
cycles required to pick all the store requirements for the picking line is precisely the number of
stores requiring that SKU. A trivial lower bound (TRLB) to the SLP may therefore be seen as
the number of stores requiring the SKU with the highest pick frequency (its number of order
visits).

If a larger subset of SKUs was considered for use in a lower bound an exhaustive search of all
non-isomorphic SKU arrangements must be performed, or a mathematical approach devised
which can narrow the search for the best arrangement. Two approaches for determining the
optimal arrangement of a set of SKUs are further described in this section each one using a
different approach to evaluating the number of cycles traversed.

3.5.1 A travelling salesman approach

When considering the physical layout of the picking line the assignment of SKUs to locations
resembles a travelling salesman problem (TSP). A formulation, which will be referred to as the
TSP lower bound (TSPLB), is presented which uses a TSP approach to determine which SKUs
are adjacent to each other on the picking line or neighbours in the TSP cycle. Using this TSP
solution representation for the SKU arrangement further variables and constraints are added
to evaluate the walking distance of pickers. This is achieved by adding variables which assign
spans to all the orders and constraints which ensure that each span follows the route imposed
by the TSP subtour breaking constraints. Once the spans for each order have been assigned
the maximal cut can then be calculated. Figure 3.7 illustrates the methodology with two SKU
configurations. The solid lines indicate the adjacency assignments by the TSP variables and
constraints while the dashed lines indicate the span associated with an order. The span for any
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Figure 3.7: A graphical representation of two examples of the TSPLB formulation configurations for six
SKUs and a single order. The solid lines indicate that the SKUs are placed adjacent to each other. Grey
nodes indicate that the order requires that SKU. Dashed lines indicate the span of the order (starting at
SKU f) for the specific SKU arrangement.

order can only follow the direction of the solid (TSP cycle) lines.

To model the SLP using this TSP approach let

x̂st =

{
1 if SKU s is adjacent to SKU t in a clockwise direction
0 otherwise,

post =

{
1 if the span of order o includes the arc from SKU s to SKU t
0 otherwise,

l̂s be the location number of SKU s

and

C be the maximal cut.

The following parameters are set in the model. Let

O be the set of all orders,

S be the set of SKUs,

Ŝo be the set of SKUs required by order o, and

Ôs be the set of orders requiring SKU s.
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In terms of these symbols the objective is to

minimise C (3.4)

subject to∑
s∈S

x̂st = 1 t ∈ S, (3.5)∑
t∈S

x̂st = 1 s ∈ S, (3.6)

(|S| − 1) · x̂st + l̂s − l̂t ≤ |S| − 2 s, t ∈ S, s 6= 1 and t 6= 1, (3.7)

l̂s ≥ 1 s ∈ S and s 6= 1, (3.8)

l̂s ≤ |S| − 1 s ∈ S and s 6= 1, (3.9)∑
s∈S

∑
t∈Ŝo

post = |Ŝo| − 1 o ∈ O, (3.10)

∑
s∈Ŝo

∑
t∈S

post = |Ŝo| − 1 o ∈ O, (3.11)

∑
s6∈Ŝo

∑
t∈S

post =
∑
s∈S

∑
t6∈Ŝo

post o ∈ O, (3.12)

∑
o∈O

post ≤ |O| · x̂st s, t ∈ S, (3.13)

C ≥
∑
o6∈Ôs

∑
t∈S

post + |Ôs| s ∈ S, (3.14)

x̂st ∈ {0, 1} s, t ∈ S,
post ∈ {0, 1} s, t ∈ S and o ∈ O,
l̂s ∈ Z s ∈ S.

The objective function (3.4) minimises the maximal cut as defined by Matthews & Visagie [10].
Constraint sets (3.5) and (3.6) ensure that each SKU is assigned an adjacent SKU both to the
left and to the right of itself. The subtours are broken by constraint sets (3.7)–(3.9) which are
based on the MTZ subtour breaking constraints [15]. These subtour breaking constraints ensure
that the assignment of adjacent SKUs forms a single cycle. Constraint sets (3.5)–(3.9) for the
TSP constraints and determine which SKUs are adjacent to each other on the picking line. The
spans for each order are now considered.

Constraint sets (3.10) and (3.11) ensure that a span for each order starts and ends at a required
SKU. This is achieved by limiting the total number of in-degrees and out-degrees for all required
SKUs for the span of an order to one less than the total number of required SKUs by the order.
Figure 3.7 illustrates the effect of these constraints as the dotted arcs do not necessarily form a
cycle. Constraint set (3.12) ensures that if a span passes a SKU which it is not required by the
corresponding order the span will proceed to the next SKU. All orders must be assigned spans
which follow the cycle defined by constraint sets (3.5)–(3.8). This is achieved by constraint
set (3.13) which only allows spans to pass from one SKU to another if the SKUs are adjacent
in the TSP. Finally the maximal cut is determined by constraint set (3.14). The cut for each
SKU (or location which holds the SKU) is determined by adding the number of orders which
require the SKU to the number of orders which do not require the SKU, but have spans which
pass the SKU.
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3.5.2 An assignment approach

An assignment model (ASLB) approach was investigated which uses assignment variables and
constraints to assign SKUs to locations. Similarly to the TSPLB approach additional variables
and constraints are added to evaluate the walking distance. For the ASLB approach, however,
there are no SKU adjacency variables or subtour breaking constraints and therefore a different
structure of span assignment variables and constraints are needed to assign spans to orders.
The following formulation is presented to link the assignment of SKUs with the assignment of
spans to orders. Three sets of decision variables are defined. Let

xsl =

{
1 if SKU s is assigned to location l
0 otherwise,

ŝol =

{
1 if the span for order o starts at location l
0 otherwise,

dol =

{
1 if the span for order o passes location l
0 otherwise

and

C be the maximal cut.

The following parameters are set in the model. Let

O be the set of all orders,

S be the set of SKUs,

L be the set of locations,

Ŝo be the set of SKUs required by order o, and

Ôs be the set of orders requiring SKU s.
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In terms of these symbols the objective is to

minimise C (3.15)

subject to∑
s∈S

xsl = 1 l ∈ L, (3.16)∑
l∈L

xsl = 1 s ∈ S, (3.17)∑
l∈L

ŝol = 1 o ∈ O, (3.18)∑
s∈Ŝo

xsl ≤ dol o ∈ O and l ∈ L, (3.19)

dol ≥ dol+1mod |L| − ŝ
o
l+1mod |L| o ∈ O and l ∈ L, (3.20)∑

o∈O
dol ≤ C l ∈ L, (3.21)

xsl ∈ {0, 1} s ∈ S and l ∈ L,
ŝol ∈ {0, 1} o ∈ O and l ∈ L,
dol ∈ {0, 1} o ∈ O and l ∈ L.

Similar to the previous formulation, the objective function (3.15) minimises the maximal cut.
Constraint sets (3.16) and (3.17) ensure that each location is assigned to a single SKU and each
SKU is assigned to a single location as there will be the same number of SKUs and locations in a
picking line. Constraint set (3.18) assigns a starting location to each span. Constraint set (3.19)
ensures that spans for orders will pass all locations which have been assigned a SKU required
by that order. Constraint set (3.20) determines the set of locations which must be passed to
pick all the required SKUs of an order given the starting position assigned to its span. If a
span is required to pass location l and the span does not start at location l then the preceding
location (l−1) must also be passed. If a span starts at a location l the preceding location (l−1)
would only be passed if it held a SKU required by the corresponding order and if an order starts
at the first location the last location would only be passed if it held a required SKU. Finally,
constraint set (3.21) calculates the maximal cut.

Constraint set (3.20) is further illustrated with the aid of a small example consisting of eight
locations and a single order (o) shown in Figure 3.8. All locations holding a SKU must be passed
by the span for order o including location 3 which implies do3 = 1. For a picker to arrive at
location 3 walking in a clockwise direction location 2 must also be passed. Constraint set (3.20)
therefore forces do2 = 1 as shown by the solid arrow in Figure 3.8 (a). Location 2 does not hold
a required SKU but must now be passed. This implies that location 1 must also be passed for a
picker to reach location 2 shown by the solid arrow in Figure 3.8 (b). Location 8 must be passed
as it holds a required SKU. However, because it is the starting position of the order the picker
does not need to pass location 7 to arrive at location 8. Constraint set (3.20) will therefore set
do7 = 0 indicated by the dashed arrow in Figure 3.8 (c).

Both the TSPLB and ASLB represent formulations which cover the entire solution space of
candidate SKU arrangements. For each SKU arrangement a span is assigned to each order
while minimising the maximal cut. Therefore each candidate SKU arrangement is evaluated
using the maximal cut lower bound which is within one cycle the minimum number of cycles
required for the specific SKU arrangement. Both of these formulations therefore form a lower
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Figure 3.8: A schematic representation of cuts described by equation set (3.20) for a single order. An
asterisk indicates a location that holds a SKU required by order o and S indicates the assigned starting
location. The span for this order thus runs from location 8 to location 4 in a clockwise direction.

bound to the SLP which is within one pick cycle of an optimal SKU arrangement.

3.6 Results

In this section the problem instances used to test both the heuristic approaches as well as the
lower bound approaches are introduced. A comparison is made between the different lower
bound approaches and the results presented. Finally the performances of the heuristic ap-
proaches are compared and evaluated based on historical results and random arrangements.

3.6.1 Problem instances

A set of 22 historical problem instances based on historical data obtained from PEP was used
[11]. All three of PEP’s DCs function with the same methodology, but for the purpose of this
paper the data for the largest one of the three, located in Durban (South Africa), is considered.
A further 20 generated problem instances are also used to compare the approaches. These
problem instances are included in an effort to avoid the bias (if any) of the historical data when
comparing approaches. All tests were performed on an Intel i7 2GHz processor with eight GB
ram running the Windows 7 operating system. All mathematical formulations were solved with
CPLEX 12.3 and coded in AIMMS 3.12 [8, 13].

Each generated problem instance only comprised of 20 SKUs and 100 orders which is signifi-
cantly smaller than the historical problem instances due to the complexity of the mathematical
formulations used to generate lower bounds. This was done to draw comparisons between the
TSPLB and ASLB approaches. Furthermore, the generated problem instances where divided
into for sets:

UND: Instances generated by assigning SKUs to orders where a SKU is assigned to an order
with a probability of 0.75.

UNS: Instances generated by assigning SKUs to orders where a SKU is assigned to an order
with a probability of 0.25.
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Figure 3.9: A graphical representation of the relative size of each generated problem instance in terms
of number of different SKUs required by each order and vice versa.

EXD: Instances generated by assigning orders to SKUs where an order is assigned to a SKU
with varying probability. Each order has a fixed probability of being assigned to a SKU,
irrespective of the SKU, and are distributed evenly across the ranges 0.75− 0.1.

OXD: Instances generated by assigning SKUs to orders where a SKU is assigned to an order
with varying probability. Each SKU has a fixed probability of being assigned to an order,
irrespective of the order, and are distributed evenly across the ranges 0.9− 0.15.

A graphical representation of the configuration of the different generated problem instances is
given in Figure 3.9. Most of the larger historical problem instances resemble the SKU frequency
pattern of the EXD set of problem instances, but most historical problem instances have ex-
tended tails. Many of the smaller historical problem instances, however, resemble the SKU
frequency distribution of the UNS set of problem instances.

3.6.2 Lower bounds

Initial results showed that the lower bound formulations could not be solved for the entire set of
SKUs for each problem instance due to their computational complexity. A subset of SKUs was
therefore used and the size of the subset increased (in an attempt to improve the lower bound)
until computational times reached a threshold of two hours. SKUs were selected for inclusion in
the subset on the basis of highest pick frequency. The solutions obtained when solving subsets
of SKUs for the generated problem instance with the TSPLB and ASLB formulations are shown
in Table 3.1. For the UND, UNS and OXD sets of problem instances the trivial lower bound was
strengthened by using the proposed formulations. Moreover the lower bounds are strengthened
as the sizes of the subset of SKUs increases. Note that for four instances of the EXD set of
problem instances an optimal solution was found because the best known solution equals the
lower bound.

The computational times required to solve for subsets of SKUs for the generated problem in-
stances are shown in Table 3.2. The ASLB outperforms the TSPLB as in most cases the TSPLB
could not solve instances with more than eight SKUs within the two hour time limit. The UNS
set of problem instances require the longest computational times for both the TSPLB and ASLB
approaches. The convergence to an optimal solution in the mathematical formulations is thus
computationally more expensive with a sparse allocation of SKUs to orders.
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TSPLB ASLB

Problem Size Best kown Number of SKUs in sample

instance (|S|, |O|) TRLB solution 5 8 10 12 5 8 10 12

UND1 (20,100) 82 90 82 83 84 - 82 83 84 85
UND2 (20,100) 85 91 85 85 - - 85 85 86 87
UND3 (20,100) 83 91 84 85 - - 84 85 86 87
UND4 (20,100) 83 90 83 85 86 - 83 84 85 86
UND5 (20,100) 80 90 83 84 85 - 82 84 85 86
UNS1 (20,100) 37 63 39 45 - - 39 45 49 -
UNS2 (20,100) 38 64 40 46 - - 40 47 50 -
UNS3 (20,100) 39 66 41 48 - - 41 48 51 -
UNS4 (20,100) 39 65 41 47 - - 41 47 51 -
UNS5 (20,100) 41 65 43 48 - - 43 48 51 -
EXD1 (20,100) 71 71∗ 71 71 71 71 71 71 71 71
EXD2 (20,100) 79 79∗ 79 79 79 79 79 79 79 79
EXD3 (20,100) 73 73∗ 73 73 73 73 73 73 73 73
EXD4 (20,100) 64 69 64 65 - - 64 65 66 66
EXD5 (20,100) 68 68∗ 68 68 68 68 68 68 68 68
OXD1 (20,100) 54 62 54 54 - - 54 54 55 56
OXD2 (20,100) 50 63 51 55 - - 51 55 56 57
OXD3 (20,100) 53 65 53 56 - - 53 56 57 -
OXD4 (20,100) 56 62 56 56 - - 56 56 57 57
OXD5 (20,100) 48 62 51 53 - - 51 53 55 -

Table 3.1: A comparison of the value of the maximal cut when solving generated problem instances for
different SKU sample set sizes for both the TSPLB and ASLB approaches. Entries with a dash indicate
that no solution was obtained within two hours. Known optimal solutions are indicated with an asterisk.

TSPLB ASLB

Problem Size Number of SKUs in sample

instance (|S|, |O|) 5 8 10 12 5 8 10 12

UND1 (20,100) 6 478 1503 - 1 40 240 2912
UND2 (20,100) 3 32 - - 1 11 25 73
UND3 (20,100) 4 516 - - 1 30 119 5976
UND4 (20,100) 5 506 3864 - 1 12 207 2730
UND5 (20,100) 11 674 2122 - 1 27 193 3865
UNS1 (20,100) 1 515 - - 1 39 434 -
UNS2 (20,100) 1 681 - - 2 37 396 -
UNS3 (20,100) 3 743 - - 1 75 310 -
UNS4 (20,100) 2 848 - - 1 41 420 -
UNS5 (20,100) 1 522 - - 1 44 403 -
EXD1 (20,100) 3 29 114 139 1 1 4 3
EXD2 (20,100) 2 46 68 168 1 2 5 9
EXD3 (20,100) 4 33 130 213 1 1 2 10
EXD4 (20,100) 3 1404 - - 1 28 46 112
EXD5 (20,100) 3 42 78 122 1 3 2 2
OXD1 (20,100) 4 32 - - 1 13 192 2945
OXD2 (20,100) 2 479 - - 1 65 302 4585
OXD3 (20,100) 2 892 - - 1 60 313 -
OXD4 (20,100) 2 38 - - 1 10 302 3199
OXD5 (20,100) 2 544 - - 1 42 525 -

Table 3.2: A comparison of the computation times (rounded to the nearest second) when solving gen-
erated problem instances for different SKU sample set sizes for both the TSPLB and ASLB approaches.
Entries with a dash indicate that no solution was obtained within two hours.
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TSPLB ASLB

Problem Size Best kown Number of SKUs in sample

instance (|S|, |O|) TRLB solution 5 8 10 12 5 8 10 12

L1 (49, 1262) 1232 1232∗ 1232 1232 1232 1232 1232 1232 1232 1232
L2 (54, 1264) 1226 1226∗ 1226 1226 1226 1226 1226 1226 1226 1226
L3 (51, 1265) 1161 1161∗ 1161 1161 1161 1161 1161 1161 1161 1161
L4 (56, 1263) 1011 1011∗ 1011 - 1011 1011 1011 1011 1011 1011
L5 (51, 1264) 1069 1069∗ 1069 1069 1069 1069 1069 1069 1069 1069
L6 (53, 1258) 959 1002 959 959 959 - 959 959 959 959
L7 (56, 1260) 855 955 855 855 855 855 855 855 855 855
L8 (54, 1244) 817 974 817 817 817 - 817 817 817 817
L9 (56, 1264) 729 947 729 729 - - 729 729 729 -
L10 (55, 1258) 835 872 835 835 835 - 835 835 835 835
M1 (63, 943) 95 248 99 - - - 99 105 110 -
M2 (56, 846) 141 221 141 - - - 141 142 148 -
M3 (51, 728) 109 149 109 109 109 - 109 109 109 -
M4 (63, 396) 74 74∗ 74 74 74 74 74 74 74 74
M5 (55, 733) 66 114 66 66 66 66 66 66 66 66
M6 (64, 242) 33 41 33 33 33 33 33 33 33 33
M7 (48, 574) 67 74 67 67 67 67 67 67 67 67
S1 (48, 90) 7 7∗ 7 7 7 7 7 7 7 7
S2 (55, 158) 13 14 13 13 13 13 13 13 13 13
S3 (51, 82) 8 8∗ 8 8 8 8 8 8 8 8
S4 (56, 80) 5 6 5 5 5 5 5 5 5 5
S5 (42, 89) 9 9∗ 9 9 9 9 9 9 9 9

Table 3.3: A comparison of the value of the maximal cut when solving historical problem instances for
different SKU sample set sizes for both the TSPLB and ASLB approaches. Entries with a dash indicate
that no solution was obtained within two hours. Known optimal solutions are indicated with an asterisk.

The TSPLB and ASLB approaches were further used to solve for subsets of SKUs for the
historical problem instances and the solutions obtained are shown in Table 3.3. For most of the
instances of the historical problem instances a subset of up to 12 SKUs does not yield a stronger
lower bound than the trivial lower bound. Note that for the largest and smallest instances
of the historical problem instances a feasible solution is known which reaches the trivial lower
bound. Although stronger lower bounds are found for the generated problem instances when
using either the TSPLB or ASLB formulations for a subset of SKUs this is rarely the case for
the historical problem instances. Either a stronger lower bound does not exists (as for problem
instances L1–L5, S1, S3, S5) or a larger subset of SKUs is required rendering the tighter lower
bound to computationally expensive.

The number of orders in the model does not significantly influence the relative computational
times when comparing the computational times between the historical (Table 3.4) and the
smaller generated problem instances (Table 3.2). Moreover the set of SKUs shared between
orders plays a significant role in the strength of the trivial lower bound as well as the required
computational times to solve the TSPLB and ASLB formulations.

For all lower bound solutions only a subset of the total set of SKUs was selected for the math-
ematical models. These SKUs were selected based on their pick frequency and may not be the
best set of SKUs with which to determine a lower bound. Therefore, for all the problem in-
stances (both generated and historical) for which an optimal solution was not known the effect
of selecting a different subset of SKUs not based on pick frequency was further investigated.
Subsets of SKUs were generated by selecting SKUs randomly while ensuring that for each sub-
set the SKU with the highest pick frequency was included to ensure that at least the trivial
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TSPLB ASLB

Problem Size Number of SKUs in sample

instance (|S|, |O|) 5 8 10 12 5 8 10 12

L1 (49, 1262) 559 90 122 170 1 25 4 52
L2 (54, 1264) 322 106 147 292 1 22 37 40
L3 (51, 1265) 253 108 160 261 4 37 76 88
L4 (56, 1263) 454 - 293 1747 32 40 139 380
L5 (51, 1264) 205 93 180 286 28 69 111 567
L6 (53, 1258) 325 99 167 - 30 74 412 199
L7 (56, 1260) 255 4084 163 281 32 57 207 718
L8 (54, 1244) 417 4733 399 - 1 238 - -
L9 (56, 1264) 153 5006 - - 47 227 - -
L10 (55, 1258) 344 4982 474 - 18 97 2250 -
M1 (63, 943) 25 - - - 28 718 2732 -
M2 (56, 846) 10 - - - 8 424 2747 -
M3 (51, 728) 2 6 878 - 2 21 59 -
M4 (63, 396) 1 20 198 603 1 2 7 -
M5 (55, 733) 2 16 146 484 1 14 26 -
M6 (64, 242) 1 4 20 475 1 2 4 -
M7 (48, 574) 2 13 209 768 3 15 59 -
S1 (48, 90) 1 1 1 1 1 1 1 2
S2 (55, 158) 1 1 2 3 1 1 3 4
S3 (51, 82) 1 1 1 1 1 1 1 2
S4 (56, 80) 1 1 1 15 1 1 1 4
S5 (42, 89) 1 1 1 1 1 1 2 2

Table 3.4: A comparison of the computational times (rounded to the nearest second) when solving
historical problem instances for different SKU sample set sizes for both the TSPLB and ASLB approaches.
Entries with a dash indicate that no solution was obtained within two hours.
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Problem Size Ordered Random subset Problem Size Ordered Random subset

instance (|S|, |O|) subset Min Max µ σ instance (|S|, |O|) subset Min Max µ σ

UND1 (20,100) 83 82 82 82.00 0.00 L6 (53, 1258) 959 959 959 959 0
UND2 (20,100) 85 85 85 85.00 0.00 L7 (56, 1260) 855 855 855 855 0
UND3 (20,100) 85 83 84 83.50 0.58 L8 (54, 1244) 817 817 817 817 0
UND4 (20,100) 84 83 84 83.50 0.58 L9 (56, 1264) 729 729 729 729 0
UND5 (20,100) 84 81 83 82.50 1.00 L10 (55, 1258) 835 835 835 835 0
UNS1 (20,100) 45 40 43 41.75 1.26 M1 (63, 943) 105 95 95 95 0
UNS2 (20,100) 47 39 45 42.50 2.65 M2 (56, 846) 142 141 141 141 0
UNS3 (20,100) 48 44 45 44.50 0.58 M3 (51, 728) 109 109 109 109 0
UNS4 (20,100) 47 41 46 43.25 2.06 M5 (55, 733) 66 66 66 66 0
UNS5 (20,100) 48 43 45 44.00 0.82 M6 (64, 242) 33 33 33 33 0
EXD4 (20,100) 65 64 64 64.00 0.00 M7 (48, 574) 67 67 67 67 0
OXD1 (20,100) 55 54 54 54.00 0.00 S2 (55, 158) 13 13 13 13 0
OXD2 (20,100) 56 51 55 52.30 1.17 S4 (56, 80) 5 5 5 5 0
OXD3 (20,100) 57 53 56 53.60 0.82
OXD4 (20,100) 57 56 56 56.00 0.00
OXD5 (20,100) 55 49 54 50.70 1.41

Table 3.5: A summary of the range of solution qualities for 20 subsets of nine randomly selected SKUs
and the SKU with the highest pick frequency for all problem instances with no proven optimal solution.
Each instance was solved with the when solved using the ASLB approach. The symbol µ indicates the
average and σ the standard deviation.

lower bound would be obtained by each set. Table 3.5 illustrates the range of solutions for the
different subsets of SKUs when solved with the ASLB approach. It is clear that selecting a
subset based on pick frequency does no worse than considering a different subset of SKUs.

3.6.3 Heuristics

Following the approaches for determining a lower bound to the SLP both the GS and OPA as
well as the GA and CD heuristics were used to solve all the problem instances. These heuristics
are compared to a set of 50 random SKU arrangements for each problem instance as well as
the best lower bound. The solutions obtained when solving the generated problem instances
with the heuristics are shown in Table 3.6 and the results for the historical problem instances in
Table 3.7. Included in Table 3.7 are the historical number of cycles traversed (PEPHIS) as well
as the number of cycles which would have been traversed had the maximal cut formulation been
used to sequence orders for the historical SKU arrangements (PEPOSP). These historical results
are included to illustrate the compounded effect of addressing each different decision tier. Both
the GS and OPA heuristics do not necessarily yield an optimal solution and in two cases the best
known solution was found by randomly arranging SKUs. This is in contrast to the results for
bi-directional and unidirectional carousel systems with an infinite set of stochastic orders where
the OPA and GS approaches yield optimal solutions respectively. In addition there are multiple
instances where the GS and OPA heuristics yield solutions of different quality. Although in a
few cases the GA yields the best solution there is no significant difference between the GA, CD,
OPA and GS heuristics when tested using the Friedman test and in most cases the best solution
was obtained by one of these heuristics. The heuristics were compared using this non-parametric
statistical test based on ranked values for each size classification (small, medium, and large) at
a 95% confidence level. However, in 17 of the 22 problem instances at least one of the heuristics
found the best known solution.

All four of the proposed heuristics have fast computation times (less than one second). This
enables all of the heuristics to be included in any implementation and the best solution selected
for use. If the best solution between the four heuristics is selected it results in an average saving
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in walking distance of approximately 2% for the large and 6.5% for the medium sized problem
instances when compared to PEP’s arrangements after the OSP was solved correctly. Note that
no saving was possible for the small picking lines as PEP’s method already found a best known
solution. Also note that the best saving achieved by a heuristic for a problem instance was 15%.
This would result in an average saving of roughly 60 km per month. It is therefore suggested
that PEP run all four of the heuristics and select the best solution.

Problem Size Random
instance (|S|, |O|) ASLB OPA GS GA CD (min,max) (µ, σ)

UND1 (20,100) 85 91 91 91 91 ( 90∗,92) (91,0.4)
UND2 (20,100) 87 91 91 91 91 ( 90∗,92) (91,0.2)
UND3 (20,100) 87 91∗ 91∗ 92 92 ( 91∗,92) (91,0.3)
UND4 (20,100) 86 91 91 91 91 ( 90∗,92) (91,0.5)
UND5 (20,100) 86 90∗ 91 91 91 ( 90∗,92) (91,0.5)
UNS1 (20,100) 49 67 66 65 65 ( 63∗,67) (66,1)
UNS2 (20,100) 50 67 68 66 66 ( 64∗,69) (67,1)
UNS3 (20,100) 51 69 68 68 68 ( 66∗,71) (68,1)
UNS4 (20,100) 51 67 68 67 67 ( 65∗,69) (67,0.8)
UNS5 (20,100) 51 68 65∗ 70 70 ( 67 ,70) (68,0.8)
EXD1 (20,100) 71 71∗ 71∗ 71∗ 71∗ ( 71∗,73) (71,0.5)
EXD2 (20,100) 79 79∗ 79∗ 79∗ 79∗ ( 79∗,79) (79,0)
EXD3 (20,100) 73 73∗ 73∗ 73∗ 73∗ ( 73∗,73) (73,0)
EXD4 (20,100) 66 70 69∗ 69∗ 69∗ ( 69∗,73) (71,0.8)
EXD5 (20,100) 68 68∗ 70 70 70 ( 68∗,72) (70,1)
OXD1 (20,100) 56 64 64 63 63 ( 62∗,73) (70,1)
OXD2 (20,100) 57 65 66 66 66 ( 63∗,74) (70,1)
OXD3 (20,100) 57 65∗ 66 65∗ 65∗ ( 65∗,75) (70,1)
OXD4 (20,100) 57 65 64 65 65 ( 62∗,76) (70,1)
OXD5 (20,100) 55 64 64 64 64 ( 62∗,77) (70,1)

Table 3.6: A comparison of the value of the maximal cut when solving the generated problem instance
with the OPA, GS, GA and CD heuristics to a set of randomly generated solutions as well as the best
known lower bound. The symbol µ indicates the average and σ the standard deviation.

3.7 Conclusion

An order picking problem that is a variation of a unidirectional carousel system was identified.
The problem of arranging SKUs within this unidirectional carousel/picking line to minimise
the rotations of the carousel/walking distance of pickers (SLP) was considered. Two heuristics
which are known to be optimal for many carousel problems were tested and it was found that
these heuristics often did not yield the best solutions. Two additional heuristics were also tested
and it was shown that all four heuristic approaches yields similar results.

An optimal solution or tight lower bound was needed to measure the performance of the heuris-
tics because all the heuristics displayed similar performances. Following a maximal cut approach
to the order sequencing problem (OSP) two mathematical formulations for determining a lower
bound to the SLP were introduced. These lower bounds were tested against a trivial lower
bound and were shown to only solve small problem instances within a reasonable time. The
formulations were used to determine lower bounds by only considering a subset of SKUs for
larger problem instances. In most cases the sample of SKUs needed to determine a lower bound
was too large to strengthen the trivial lower bound within a reasonable time frame.

A tight lower bound for large problem instances was not found due to the complexity of the

Stellenbosch University  https://scholar.sun.ac.za



3.7. Conclusion 65

Problem Size Random
instance (|S|, |O|) ASLB PEPHIS PEPOSP OPA GS GA CD (min,max) (µ, σ)

L01 (49,1262) 1232 1262 1232∗ 1232∗ 1232∗ 1232∗ 1235 (1232∗,1242) (1237,2.7)
L02 (54,1264) 1226 1255 1226∗ 1226∗ 1226∗ 1226∗ 1226∗ (1226∗,1226) (1226,0)
L03 (51,1265) 1161 1254 1161∗ 1161∗ 1161∗ 1161∗ 1161∗ (1161∗,1183) (1171,8.8)
L04 (56,1263) 1011 1224 1072 1060 1011∗ 1063 1063 (1011∗,1019) (1014,2.4)
L05 (51,1264) 1069 1234 1069∗ 1069∗ 1069∗ 1069∗ 1069∗ (1069∗,1069) (1069,0)
L06 (53,1258) 959 1222 1005 1021 1002∗ 1007 1007 (1021,1069) (1042,10.2)
L07 (56,1260) 855 1227 955∗ 971 968 971 971 (962,982) (973,4.3)
L08 (54,1244) 817 1242 992 989 980 990 990 (974∗,994) (988,4.3)
L09 (56,1264) 729 1202 947∗ 967 957 960 960 (952,969) (962,3.5)
L10 (55,1258) 835 1177 1025 941 872∗ 897 897 (876,910) (893,6.7)
M01 (63,943) 99 640 259 280 285 248∗ 248∗ (268,286) (279,4.5)
M02 (56,846) 145 615 232 221∗ 225 230 230 (227,250) (237,4.5)
M03 (51,728) 109 457 152 150 149∗ 162 162 (154,168) (161,3.5)
M04 (63,396) 74 224 90 124 81 100 100 (74∗,86) (79,3.1)
M05 (55,733) 66 461 125 114∗ 121 126 126 (118,134) (127,2.9)
M06 (64,242) 33 142 45 69 56 41∗ 41∗ (65,81) (73,4)
M07 (48,574) 67 324 80 74∗ 80 88 88 (81,95) (88,3.6)
S01 (48,90) 7 40 7∗ 7∗ 7∗ 7∗ 7∗ (7∗,8) (8,0.5)
S02 (55,158) 13 82 14∗ 16 18 15 15 (14∗,18) (16,0.9)
S03 (51,82) 8 36 8∗ 8∗ 8∗ 8∗ 8∗ (8∗,9) (8,0.4)
S04 (56,80) 5 38 6∗ 7 6∗ 7 7 (6∗,7) (7,0.1)
S05 (42,89) 9 40 9∗ 10 10 10 10 (9∗,10) (10,0.5)

Table 3.7: A comparison of the value of the maximal cut when solving the historical problem instances
with the OPA, GS, GA and CD heuristics to a set of randomly generated solutions, PEP’s historical
solution as well as the best known lower bound. in the last column µ indicates the average and σ the
standard deviation.

lower bound formulations. The heuristic approaches were therefore further compared to a set
of random arrangements as well as the historical number of cycles traversed and the results
obtained after solving the OSP for the historical SKU arrangements. All four heuristics had
fast computation times and could all therefore be run and the best solution selected for use. By
selecting the best solution an average saving of 2% for the large and 6.5% for the medium sized
problem instances was achieved.

From a managerial perspective a SKU arrangement module within the warehouse management
system (WMS) of PEP is in the process of being implemented. It is suggested that all four of
these heuristics be run in the back end of this module in the WMS. The best solution would then
be presented to the managers who would be able to make changes to this proposed arrangement
if they so wish. No change management is thus required to implement these heuristics.

The whole order picking process involves three tiers of decision making where SKUs are initially
assigned to available picking lines, the SKUs are then arranged into locations and finally the
orders are sequenced for pickers. Following on this research a natural progression would be
to investigate the assignment of pending SKUs to available picking lines (SKU assignment
problem). Candidate SKU to picking line assignments can be evaluated in terms of walking
distance by using any one of the proposed heuristics for the SLP. The walking distance of
pickers, a number of other secondary issues in the DC as well as factors downstream in the
supply chain should all be taken into account when solving the SKU assignment problem. These
additional considerations may include storage locations in the DC, product promotions as well
as the grouping of SKUs from the same department to be picked into the same carton.
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CHAPTER 4

SKU assignment to parallel unidirectional
picking lines

4.1 Introduction

Order picking is the process of retrieving products from storage (or buffer areas) in response to
a specific customer request [22]. It is estimated that the cost of order picking can be in excess of
55% of all warehousing costs and has the potential to become the bottleneck of a supply chain
due to its labour intensive nature [4]. Optimising the order pick operation therefore has the
potential to improve overall supply chain efficiency as well as reducing costs.

The order picking system used in a distribution centre (DC) operated by PEP Stores Ltd. (PEP)
is investigated in this paper. PEP is the largest single brand retailer in Southern Africa [20].
PEP sells predominately apparel that is distributed by means of three DCs located on the West
Coast (Cape Town), East Coast (Durban) and mainland (Johannesburg) servicing over 1500
retail outlets across Southern Africa. All three DCs have structural differences, but perform
order picking by means of the same fundamental picking system. The DC on the East Coast
has the highest throughput as most of the suppliers are situated in Asia and therefore forms
the focus of this paper. However, the models presented in this paper could easily be applied to
the other two DCs as well.

Due to the nature of the market as well as the physical characteristics of apparel (size and
shape) a large proportion of PEP’s picking is piece picking in that individual units of stock are
handled by pickers. The DC is designed to handle both carton and piece picking, but the piece
picking operation forms the largest proportion in the DC and is the focus of the study. In the
remainder of this paper the term order picking will refer to the piece picking operation.

The DC uses a unique variation of a forward pick area, as described by Bartholdi & Hackman [2],
consisting of unidirectional picking lines. This system has evolved to manage the large number
of different stock keeping units (SKUs) sold annually by PEP (in excess of 40000). Each picking
line has 56 locations with the capacity to hold five pallets of the same SKU. These picking lines
are managed in waves of picking – which are sets of SKUs placed in a picking line and picked
together in a single operation, independently from all other SKUs not on that picking line. In
addition there are enough pickers available such that picking lines can be operated in parallel.
Once all the store requirements for all the SKUs in a wave have been picked the excess stock
(if any) is removed and all the locations in the picking line become available for a new wave of
picking.

69
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Orders, which are typically defined as all stock requirements for a store across the entire DC, are
here defined for each specific wave of picking. An order is thus defined by the store requirements
for SKUs in a specific wave. In this way each store may have multiple orders associated with
it at any given time, each one associated with a different wave. This segmentation of orders is
possible as there are frequent shipments of stock to each store (at least weekly).

Figure 4.1 shows the general layout of the picking line area. There are six picking lines on either
side of a main conveyor. The main conveyor is elevated and the smaller picking line conveyors
rise to create a bridge allowing for pickers to completely circumvent the picking line by walking
under the bridge. Figure 4.2 illustrates a functioning picking line with pickers walking around the
conveyor belt picking orders. While picking, pickers interact via a headset to a voice recognition
system (VRS) which directs them in a clockwise direction around the picking line. The VRS
tracks the location of the last pick made by a picker and therefore always directs the picker to
the nearest required SKU for the active order. Once an order is completed a new order will be
assigned to the picker independent of the position or number of other pickers in the picking line.
The VRS can therefore assign or remove pickers at any time between the completion of an old,
and assignment of a new order.

Figure 4.1: A schematic representation of the layout of the 12 picking lines in the DC, six on either
side of the main conveyor. The dashed lines indicate the movement of the pickers around the conveyor
belts. The jagged lines indicate the direction of movement of the conveyor belts. The conveyor belts in
each smaller picking line link with the main conveyor belt with bridges.

Figure 4.3 shows a typical location populated with stock. In some cases SKUs may require more
space to accommodate all the stock. Management then either uses the floor space behind the
location or additional adjacent locations to store this excess stock. Due to the level of safety
stock at each location stock outs rarely occur during a wave of picking as all the stock required
for all the orders associated with that wave are known and may be stored on the line before
picking starts.

Pickers do not use totes but instead pack items directly into cartons, as shown in Figure 4.2.
This reduces material handling, as waves are picked independently allowing for the cartons to be
shipped as is. The DC also reuses the cartons which held the bulk stock received from suppliers
which becomes available as picking takes place, thereby reducing packaging costs. Pickers place
unique bar code stickers on each carton and may be required to use multiple cartons for a single
order, depending on the number and size of the SKUs in that order. Once an order is completed
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Figure 4.2: A photograph of a functioning picking line.

Figure 4.3: A photograph of a SKU location in a picking line holding five pallet loads of a SKU next
to an empty SKU location.
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or a carton is full, it is placed on the conveyor belt which conveys the carton to the dispatch
area via the main conveyor. Each carton holds stock from a single picking line only and thus
may have excess capacity as neither the cartons used by the pickers nor the volume of stock
required by a store from a line are uniform. Cartons are therefore resized, if necessary, before
being stapled at the dispatch area as shown in Figure 4.4.

Figure 4.4: A photograph of the dispatch area where cartons are resized to reduce the volume for
transportation.

Before a SKU can be assigned to a wave its picking instructions must be released by the central
planning department at central office. The planning department calculates the store require-
ments and assigns an out-of-DC date to it. To achieve this, SKUs of the same product type, but
of different sizes, are grouped together as a distribution (DBN) and are planned collectively. At
the start of each day the DC schedules available DBNs for processing for that day based on the
out-of-DC date, number of available picking lines and location of the physical stock in the DC.
Once the DBNs have been scheduled all SKUs in the same DBN are placed in the same wave,
and therefore on the same picking line. PEP forces DBNs to be placed on the same picking line
to ensure that all the SKUs for a DBN will arrive at a store on the same day. This enables the
store to pack out all the sizes of a product type on the shelves in one batch.

The picking line area considered here may be described as a synchronised zone picking system,
as described by de Koster et al. [4], as each picking line runs independently of, and in parallel
to the other. The pickers which were assigned to a picking line may join any other picking line
when a wave of picking is completed, because the picking lines run independently. In this way
the challenge of empty capacity in a single picking line (zone) due to work imbalance between
picking lines (zones) is not a major problem as is typically the case in zone picking systems
[2]. However, some balancing is required as too many pickers on a single line cause congestion
and there are a limited number of forklifts available to build picking lines [7]. This balancing
revolves around the rate at which picking lines are picked and the rate at which new picking
lines are built and therefore falls out of the scope of this study.

The focus of this paper is on the assignment of already scheduled DBNs into specific waves for
a given day while minimising the total walking distance of pickers in the picking lines. The
remainder of this paper is structured as follows: A brief discussion on related work in literature
is given in §4.2 followed by a more detailed exposition of the problem and solution approaches
in §4.3. The results are discussed in §4.4 and the paper is concluded in §4.5.

Stellenbosch University  https://scholar.sun.ac.za



4.2. Literature review 73

4.2 Literature review

Due to the cyclical paths which pickers walk in a picking line it has many similarities to carousel
systems. A carousel is an automated storage and retrial system and typically consists of a num-
ber of shelves which rotate to present required stock to a stationary picker [12]. Hassini [8]
composed an extensive literature review on carousel systems, both applications and generaliza-
tions thereof. Multiple carousel configurations are discussed with reference to both the order
sequencing as well as storage location problems. He mentioned that for almost all cases SKUs
have been assumed to have independent demand and that storage policies for demand correlated
SKUs have received little attention. It was further suggested that demand correlations between
SKUs may play a role in both location of SKUs in carousels as well as the carousel to which the
SKU is assigned in the multi-carousel case.

Litvak & Maia [12] expands on carousel systems with multiple carousels and discusses several
configurations. In most cases the problem statement consisted of multiple carousels and a single
picker. Emerson & Schmatz [5] considered a carousel configuration consisting of 22 carousels
where each pair of carousels has its own picker (11 pickers in total). They used simulations to
test three storage schemes, namely a random storage scheme, a sequential alternating storage
scheme and a scheme which stores SKUs in the carousel with the largest number of openings.
Moreover, the effects of a floating operator which moved between pairs of carousels were included
in the simulation. Litvak & Maia [12] noted that Emerson & Schmatz [5] did not address the
problem of optimally assigning items to carousel bins nor did they discuss any analytical results.

In all cases carousels are modelled with the assumption that demand is stochastic with the
probability of an order requiring a SKU used as a measure of demand. The deterministic nature
of the orders in picking lines considered in this paper therefore limits the direct use of the
carousel approaches found in literature.

Having multiple picking lines PEP’s order picking system also resembles a zone based system.
SKU assignment in zone based order picking has received some attention, but zone based order
picking designs often differ significantly. Jane & Laih [10] considered the assignment of SKUs to
locations in a warehouse using a synchronised pick-by-light zone picking system. Here an order
is simultaneously picked in each zone and only once the order is completed in all zones can a new
order begin. Therefore the time required to complete an order is equal to the maximum time
required to pick all the SKUs from one of the zones. Due to this zone structure the objective
of the SKU assignment was to balance the workload between zones by reducing the maximum
pick time in each zone. To achieve this, Jane & Laih [10] used a similarity measure between
SKUs (that is calculated as the number of orders which require both SKUs) in conjunction with
a natural clustering approach to minimise the similarity of SKUs within zones. By minimising
the similarity within zones the amount for work required for orders is spread more evenly over
all zones.

Garfinkel [6] focused on minimising the number of zones visited (both sequential and synchro-
nised zones) when picking all orders by assigning SKUs to storage locations. Normally walking
distance is minimised, but it was suggested that minimising the number of zones visited is ben-
eficial under circumstances when orders require few SKUs, batching is not desirable and sorting
is expensive.

Chiang et al. [3] used data mining techniques to create similarity measures between SKUs for
use in a storage assignment model. The model was applied to a DC with an S-shape picking
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strategy within parallel aisles. Both complementary and substitutable relationships1 between
SKUs were calculated. Using these relationships, an association index was developed between
every available storage location and the new SKUs. A generalised assignment model was then
used to assign the SKUs which was shown to reduce the number of aisles over which orders were
required to pick and therefore the total picking time.

Pan & Wu [18] considered the storage assignment problem for a single aisle pick-and-pass pick-
ing line. Markov chains were used to estimate the walking distances of pickers based on the
probability that SKUs are requested by the same order. Storage assignments to both single,
multiple equally sized and multiple different sized zones were considered. Three optimal storage
assignment policies were proposed taking into account total distance travelled as well as the
balance of work between zones. Both the dependence of pickers on each other as well as the
physical layout of the linear zones limit the use of these approaches on picking lines.

Although picking lines may be seen as different zones an order is defined for a single wave
of picking only. Pickers can also freely switch between picking lines which run in parallel.
Approaches which seek to manage the spread of orders across zones, either by balancing or
minimising, are not suited for the picking line system investigated in this paper.

There has also been some attention to the assignment of SKUs to non-zoned order picking sys-
tems. Accorsi et al. [1] simultaneously considered both the storage allocation (inventory levels
for each SKU) as well as the storage assignment (location of the SKU in the DC) problems.
Using a case study with forward and reserve areas they extensively compared combinations of
different forward storage allocation strategies, storage assignment rules, SKU clustering algo-
rithms, percentile threshold cut-offs for SKU similarity and picker routing policies. Relevant
combinations were tested and compared based on travel distances of picking and restocking as
well as the total cost of restocking. The results demonstrated that the issues related to alloca-
tion and assignment are correlated and both should be taken into account when designing and
managing an order pick system.

Although Accorsi et al. [1] suggests considering both SKU allocation and SKU assignment
simultaneously, SKU allocation falls outside of the scope of the problem considered in this
paper. The volume of stock for a SKU for a wave of picking is predetermined by the planning
department. In addition the number of required locations for a SKU is predetermined by the
DC as all the stock required for a wave of picking will be stored at the picking line before picking
starts.

Manzini [13] compared allocation algorithms for correlated products in a less than unit load
picker to parts order picking system. A correlation measure between SKUs is calculated as the
number of orders requiring both SKUs. Three algorithms which use this correlation measure are
proposed. A case study is presented which compares these algorithms to a Cube-per-Order Index
(COI), a frequency based and a random approach. The case study comprised of parallel and
orthogonal aisles where a picking vehicle of finite capacity used a composite routing strategy. All
approaches significantly reduced overall picking costs when compared to the random approach
while the approaches using correlation measures showed a marginally better performance when
compared to the COI approach. Due to the cyclical nature of the picking lines and the ability
of pickers to pick directly into cartons these approaches cannot be directly applied to the order
picking system considered in this paper.

The multiple picking line system considered at PEP shows many similarities to a study by Kim

1Complementary SKUs have a high probability to be required together and substitutionary SKUs have a low
probability to be required together
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& Smith [11] who focused on a dynamic warehouse slotting problem where SKUs are re-slotted
on a daily basis in a zone-based carton picking DC. After the completion of a day’s scheduled
orders (or pick wave) the orders required for the next pick wave are known which creates a
deterministic planning environment for re-slotting. During each night shift SKU re-slotting
takes place based on the SKU correlations created by the orders scheduled for the next pick
wave. The objective of the re-slotting is to reduce the overall picking time of each pick wave.

The order picking configuration considered by Kim & Smith [11] consisted of multiple zones
comprising of a single shelf with uniform slots. Each zone is serviced by a single picker who
walks between the shelf and a parallel conveyor belt. Pickers collect pending orders from one
end of the zone (the start) and pick all required SKUs for the order before placing the carton
onto the conveyor belt and returning to the start of the zone to begin a different order. In
this way the distance which is travelled by a picker to complete an order, for a zone, is twice
the distance from the start of the zone to the furthest SKU. The conveyor belt conveys cartons
either to the dispatch area for completed orders, or to another zone for further picking which
allows cartons to hold stock from multiple zones. A schematic representation of this layout is
given in Figure 4.5.

Kim & Smith [11] used a Mixed Integer Programming (MIP) formulation to assign SKUs to
slots while minimising the overall distance travelled. Due to the nature of the order picking
configuration the distance travelled could be determined with a linear system of constraints.
The MIP was not solvable due the size of the problem. They therefore investigated four further
heuristic approaches: A steepest descent neighbourhood slotting (SD) heuristic which, given
an initial solution based on a heuristic using the COI, sequentially compares all pairwise inter-
changes, selects the best interchange in terms of total pick distance and implements it until no
improvements are possible; A correlated slotting (CS) heuristic which uses a similar pairwise
comparison approach, except that correlations (number of orders requiring both SKUs) are con-
sidered; Two simulated annealing approaches based either on the SD or CS heuristics were used
to aid in the movement away from local optima. They showed that the simulated annealing
approaches yielded the best results and the worst performing heuristic was the SD heuristic.
Although the order picking system considered by them is similar to PEP’s system the cyclical
paths walked by pickers creates a more complex environment to calculate walking distance.

4.3 Model

The focus of this study is on the assignment of scheduled DBNs to available picking lines (as
waves) for a single day while minimising the walking distance of pickers. Because the scheduling
of DBNs takes into account the number and capacity of available picking lines all the DBNs
that are scheduled for a day will be assigned to a picking line. This problem, which will be
referred to as the Picking Line Assignment Problem (PLAP), may therefore be described as a
Generalized Assignment Problem (GAP) with a set of available picking lines, or knapsacks, to
which a set of DBNs or items, must be assigned. Each DBN requires a number of locations,
or weight, in a picking line and each DBN must be assigned to a picking line with a limited
number of available locations.

Two further problems must be solved to calculate the walking distance of pickers once DBNs
have been assigned to a picking line. Firstly SKUs must be assigned to specific locations in their
respective picking lines using an assignment model. Thereafter the orders defined by the DBNs
within each picking line must be sequenced for pickers using a clustered travelling salesman
model. All three problems must therefore be solved to solve the PLAP.
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Figure 4.5: A schematic representation of the layout of the zones in the DC investigated by Kim &
Smith [11]. The dashed lines indicate the movement of the pickers and the dot indicates the point at
which an order is started in a zone. The jagged lines indicate the direction of movement of the conveyor
belts.

Matthews & Visagie [15] focused on the sequencing of orders in a unidirectional picking line
with fixed SKU locations while minimising total walking distance. Their approach is based on a
maximal cut formulation which calculates a solution within one walking cycle of a lower-bound.
A cycle is the distance walked by a picker to circumvent the picking line once. In other words a
cycle is the distance that a picker walks to pass all the locations once. The solution determines
the preferred order to assign to a picker given his/her current location and is suitable for the
current VRS system.

Matthews & Visagie [17] showed that the scope for optimisation by arranging the SKUs as-
signed to a picking line is limited. Several heuristics were tested against a lower bound and
a set of random arrangements. It was shown that there is no significant difference in perfor-
mance between any approaches including random arrangements. These algorithms included the
Greedy and Organ pipe heuristics which are known from literature to be optimal for carousel
systems with a stochastic set of orders [8]. Furthermore it was shown that integer programming
approaches to SKU arrangement in a single picking line while minimising walking distance was
too computationally complex to solve. Therefore the conclusion was to use greedy approaches
to allocate SKUs to locations within a picking line.

The mathematical structure of the PLAP consists of simultaneously solving a GAP problem as
DBNs are allocated to picking lines, an assignment problem as SKUs are assigned to specific
locations in their picking line, and a clustered travelling salesman problem to sequence the orders
defined within each picking line. All three problems are untractable on their own, resulting in
the PLAP being unctractable as well. A less complex objective function or estimator for total
walking distance is therefore presented here to solve the GAP and only after DBNs have been
assigned to picking lines is the actual walking distance calculated by arranging the SKUs and
sequencing the orders.
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Matthews & Visagie [17] proposed a lower bound for the number of cycles traversed in a picking
line by considering the SKU which has the most number of stores requiring it, referred to
as a maximal SKU. Pickers would need to walk at least once around the picking line per store
requiring a maximal SKU, which would constitute a lower bound. The number of stores requiring
a maximal SKU (or size of a maximal SKU) for each picking line could therefore be considered
as an estimate of the total walking distance in terms of the number of cycles traversed. An
integer programming formulation (IP) with an objective function which seeks to minimise the
sum of the sizes of the maximal SKUs is proposed. Once the DBNs have been assigned to
picking lines using this formulation the exact number of cycles traversed is calculated. This is
achieved by arranging SKUs in the picking line using a greedy approach proposed by Matthews
& Visagie [17] after which the orders are sequenced using the maximal cut formulation by
Matthews & Visagie [15]. To model the assignment of DBNs to picking lines the following
parameters are set

L be the set of all picking lines with elements l,

|l| be the number of SKU locations available for picking line l,

D be the set of all DBNs with elements d,

|d| be the number of locations required by DBN d,

dde be the size of a maximal SKU accociated with DBN d.

To initially assign DBNs using this objective define

xdl =

{
1 if DBN d is assigned to picking line l
0 otherwise

and

yl as the size of a maximal SKU for picking line l.

In terms of these symbols the objective is to

minimise
∑
l∈L

yl, (4.1)

subject to ∑
l∈L

xdl = 1 d ∈ D, (4.2)∑
d∈D

(xdl · |d|) = |l| l ∈ L, (4.3)

yl ≥ xdl · dde d ∈ D and l ∈ L, (4.4)

xdl ∈ {0, 1} d ∈ D and l ∈ L, (4.5)

yl ≥ 0 l ∈ L. (4.6)

The objective function (4.1) minimises the sum of the sizes of all maximal SKUs for each picking
line. Constraint set (4.2) assigns each DBN to a single picking line while constraint set (4.3)
ensures that the number of locations needed by the DBNs assigned to a picking line should be
equal to the number of locations available in that picking line. The size of the maximal SKU
for each picking line is determined by constraint set (4.4).
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Experiments showed that Formulation (4.1)–(4.4) was not solvable in a reasonable time (within
10 minutes) for instances with five or more picking lines. A further relaxation of the formulation
is therefore introduced. The computational complexity is reduced by adjusting the value for
the size of all maximal SKUs by rounding to the nearest multiple of a parameter α. These
adjusted sizes, which are minimised, lead to a reduction in the number of possible objective
function values during the optimisation procedure and a potential faster convergence to an
optimal solution. To model this relaxed formulation (IPα) constraint set (4.4) is replaced with

yl ≥ xdl · ddeα ∀ d ∈ D and l ∈ L, (4.7)

where ddeα is the adjusted size of the maximal SKU for DBN d.

Although the use of adjusted sizes as an objective function significantly reduced the compu-
tational times the formulations were still not solvable within a reasonable time for instances
with seven or more lines. A further heuristic was developed based on an insertion heuristic
for GAPs developed by Martello & Toth [14]. The approach by Martello & Toth [14] ranks
all unassigned items in decreasing order based on the difference between each item’s best and
second best possible assignment into a knapsack and assigns the top item to its best knapsack.
This process is repeated until all items have been assigned or there is insufficient space for an
item to be assigned to a knapsack which results in an infeasible solution. Using this framework
as a starting point a greedy insertion algorithm (GI) for the PLAP is introduced in Algorithm 5.

Algorithm 5: Greedy insertion of DBNs while minimising the maximal SKU.

Data: A set of picking lines L in descending order according to |l|
A set of DBNs D

Result: An assignment of DBNs to picking lines
1 for Each line l ∈ L do
2 while an unassigned DBN exists which fits into the remaining locations of picking line

l do
3 Select an unassigned DBN with the largest maximal SKU which fits into picking

line l
4 Assign this DBN to picking line l

5 end

6 end

After experimenting with real life data it was found that for rare instances Algorithm 5 does not
yield feasible results as some DBNs remain unassigned. In an attempt to always find feasible
solutions Algorithm 5 was adjusted to have two phases, resulting in a phased greedy insertion
heuristic (GP). The first phase would assign all DBNs which require more than one location or is
required by more than β stores to a picking line using Procedure 1. After this initial assignment
the remaining DBNs (each requiring a single location) are then assigned in the same fashion.
A feasible solution can always be found by removing enough DBNs requiring only one location
from the initial insertion. Additionally by choosing a good value for β the effects on the size
of a maximal SKU may be reduced. In an effort to keep β as small as possible and thereby
reducing the effects on a maximal SKU, β is incrementally increased (line 6, Algorithm 6) until
a feasible solution is found. This phased approach is described by Algorithm 6.

Stellenbosch University  https://scholar.sun.ac.za



4.4. Data and results 79

Procedure 1: A partial greedy insertion of DBNs while minimising the maximum SKU.

Data: A set of picking lines L in descending order according to |l|
A set of DBNs D
A set of pre-assigned DBNs Dl associated with each picking line

Result: A final set of assigned DBNs Dl associated with each picking line
1 for Each picking line l ∈ L do
2 while an unassigned DBN exists which fits into the remainging locations of picking

line l do
3 Select the DBN with the largest maximal SKU, dde, which fits into set Dl
4 Assign this DBN to set Dl
5 end

6 end

Algorithm 6: A sequential phased insertion of DBNs while minimising the maximum SKU.

Data: A set of picking lines L
A set of DBNs D

Result: An assignment of DBNs to picking lines
1 β = 0
2 while an unassigned DBN exists do
3 Clear all assignments of DBNs
4 Insert all DBNs where |d| > 1 or dde > β using Procedure 1
5 Insert all remaining DBNs using Procedure 1
6 β = maxd/|d|>β |d|
7 end

4.4 Data and results

To test the approaches introduced in the previous section historical data from PEP was captured
over a three month period and is available on-line [16]. The data consisted of 353 picking lines
over 61 work days with the number of parallel picking lines operating per day ranging from
2 to 11. The dataset contained 7354 unique DBNs and 7510 unique SKUs2. Due to the wide
range of number of lines scheduled for a day the master data was reorganised into seven scenarios.
This allowed for a more comprehensive comparison between algorithms. Each scenario consisted
of a more uniform set of instances (days) where each instance in a scenario had the same number
of picking lines. These scenarios were constructed by taking each historical instance with n
picking lines and removing picking lines to create additional instances with n − 1, n − 2 . . . 2
picking lines. Each of these new instances still comprises of a set of historical picking lines
which were scheduled for the same day and thus allow solution approaches to be compared to
the historical case. The composition of these adjusted scenarios is given in Table 4.1.

All tests were performed on an Intel i7 2GHz processor with eight GB ram running the Windows
7 operating system. All mathematical formulations were solved with CPLEX 12.3 and coded in
AIMMS 3.12 [9, 19]. Each instance was run for a maximum of two hours after which the best
solution obtained would be reported on.

A summary of the total walking distance by pickers for each scenario is shown in Table 4.2. It is

2Some SKUs are present in multiple DBNs due to replenishment cycles.
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Number of lines per instance Number of days Number of DBNs

2 61 2592
3 53 3437
4 49 4146
5 38 4109
6 32 4161
7 22 3177
8 14 2148

Table 4.1: The composition of the scenarios from historical data.

clear that all the solution approaches significantly improve on the current assignment approach
by PEP. As expected the reduction in the accuracy to which the size of maximal SKUs are
calculated reduces the solution quality. However, this is not a significant reduction relative to
the improvement on the historical case. It is noted that the GI and GP approaches appear
to outperform the IP approaches. This small improvement is attributed to the sequence in
which picking lines are populated which is more suited for the greedy approach to the SKU
arrangement and final order sequencing.

Scenario His GI GP IP IP25 IP50 IP100

2 7168 6019 6019 6053 6124 6150 6192
3 9289 7514 7515 7556 7601 7660 7788
4 11532 9014 9015 9072 9139 9233 9372
5 11259 8614 8618 - - 8765 8877
6 10706 8121 8129 - - 8284 8396
7 8412 6350 6366 - - 6497 6558
8 6011 4703 4715 - - 4782 4845

Table 4.2: A comparison of greedy insertion (GI), the phased greedy insertion (GP), the integer pro-
gramming formulations (IPα) as well as the historical assignment (His) in terms of total number of
kilometres walked in a scenario. A dash indicates that the particular solution approach was not run
for a scenario due to excessive computation times. An underlined entry indicates that for a few solitary
instances the solution obtained was not feasible. These results are still included for comparison purposes.

To illustrate the loss of accuracy when using the size of the maximal SKU as an estimate of
total walking distance the sum of the maximal SKUs for each picking line was converted to
distance and summarised in Table 4.3. This conversion was achieved by taking the maximal
SKU as the final number of physical cycles walked and converting this to kilometres in the same
fashion as Table 4.2. The actual walking distance is on average 5% greater than the distance
estimator calculated by means of the size of the maximal SKUs for the historical case. The
difference between the actual walking distance and the distance estimator calculated by means
of the maximal SKU are significantly larger for the proposed solution approaches and range from
25% to 60%, depending on the size of the scenario. This suggests that the sum of the maximal
SKUs is only an accurate measure of the total walking distance for poor SKU to picking line
assignments. This occurs when the size of the maximal SKUs within each picking line, which
is a lower bound, tends towards the total number of orders in the picking line, which is an
upper bound. Although this measure does not accurately estimate the final walking distance
it is effective at reducing the total walking distance when used as an estimate in the objective
function.

The GP shows similar results to the IP approach with respect to the sum of the sizes of the
maximal SKUs for scenarios with four or fewer picking lines. Moreover, in many cases after de-
termining the actual walking distances by arranging the SKUs in the picking line and sequencing
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Scenario His GI GP IP IP25 IP50 IP100

2 6776 4845 4852 4845 4865 4888 4938
3 8852 5642 5656 5642 5669 5727 5826
4 11106 6443 6470 6443 6488 6568 6746
5 10724 5801 5828 - - 5927 6105
6 10242 5340 5395 - - 5484 5640
7 8054 4069 4130 - - 4199 4319
8 5711 2937 2984 - - 3014 3096

Table 4.3: A comparison of greedy insertion (GI), the phased greedy insertion (GP), the integer pro-
gramming formulations (IPα) as well as the historical assignment (His) in terms of the sum of the sizes of
the maximal SKUs converted to kilometres. A dash indicates that the particular solution approach was
not run for a scenario due to excessive computation times. An underlined entry indicates that for a few
solitary instances the solution obtained was not feasible. These results are still included for comparison
purposes.
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Figure 4.6: A graphical box-plot representation of the distribution of the number of cycles traversed for
each line after scheduling scenarios with three and four lines per instance using the greedy insertion (GI),
the phased greedy insertion (GP), the integer programming formulations (IPα) as well as the historical
assignment (His).

the orders the GP outperforms the IP approach. This suggests that improving solution methods
for solving the exact MIP approach in (4.1)–(4.6) would have an insignificant effect on the final
walking distance for scenarios with more picking lines.

A box plot representation of the number of cycles traversed for each picking line in scenarios
with three and four lines per instance respectively is given in Figure 4.6. This representation
illustrates the median (50th percentile), Q1 (25th percentile) and Q3 (75th percentile) as the
horizontal lines in the closed box. The individually plotted coordinates are associated with the
outliers in terms of cycles traversed. These outliers are all picking lines either 1.5 times the
inter quartile range (IQR) smaller than Q1 or larger than Q3. The whisker lines indicate the
minimum and maximum number of cycles for non-outlier picking lines. From the results in
Figure 4.6 it is clear that the overall distribution of cycles traversed when minimising the sum
of the sizes of the maximal SKUs is more spread towards a smaller numbers of cycles. It is
clear that the current assignment methodology at PEP creates a distribution which is skewed
towards larger lines. This pattern was also observed for all other scenarios as well.

A summary of the computational times for all the approaches are summarised in Table 4.4.
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These computational times do not include the time required to arrange SKUs and solve the
order sequencing problems which ranged from 0 to 40 seconds. It is clear that the computation
times for the exact approaches decrease significantly as the accuracy of the adjusted sizes of the
maximal SKUs decreases. It is also clear that even if the size of the maximal SKUs are rounded
to the nearest multiple of 100 the computational times are excessive for scenarios consisting of
seven or more picking lines. The Greedy insertion heuristics consistently require less than a
second to solve which suggests that the insertion approach is preferred overall.

Algorithm Lines per instance µ σ Max Q1 Median Q3 Min

2 0.01 0.01 0.02 0.01 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.02 0.02 0.06 0.02 0.02 0.00 0.00
5 0.02 0.02 0.06 0.04 0.02 0.01 0.00
6 0.03 0.02 0.10 0.05 0.03 0.02 0.00
7 0.03 0.02 0.08 0.05 0.03 0.02 0.00

G
I

8 0.05 0.02 0.07 0.05 0.05 0.04 0.02

2 0.01 0.00 0.02 0.01 0.01 0.01 0.00
3 0.01 0.01 0.03 0.02 0.01 0.01 0.00
4 0.02 0.01 0.04 0.03 0.02 0.02 0.01
5 0.07 0.23 1.43 0.04 0.03 0.02 0.02
6 0.09 0.30 1.75 0.05 0.03 0.03 0.02
7 0.21 0.52 1.93 0.05 0.05 0.03 0.02

G
P

8 0.39 0.87 2.53 0.06 0.04 0.03 0.02

2 0.02 0.01 0.05 0.03 0.02 0.02 0.00
3 0.42 0.42 1.51 0.78 0.20 0.16 0.05IP

4 55.06 131.79 635.16 27.02 8.58 4.84 0.23

2 0.03 0.01 0.08 0.03 0.02 0.02 0.02
3 0.15 0.05 0.28 0.19 0.14 0.11 0.05

IP
2
5

4 0.44 0.36 1.50 0.37 0.34 0.27 0.13

2 0.02 0.01 0.03 0.02 0.02 0.02 0.00
3 0.10 0.04 0.22 0.13 0.09 0.06 0.03
4 0.29 0.22 1.31 0.30 0.25 0.22 0.11
5 3.27 2.51 13.62 3.56 2.40 1.95 0.45
6 60.24 121.13 489.86 37.81 16.65 6.24 1.11
7 1095.90 2380.75 7205.92 688.84 56.45 21.34 1.69

IP
5
0

8 3206.77 3590.89 7200.10 7200.05 426.88 154.78 21.14

2 0.01 0.01 0.03 0.02 0.02 0.02 0.00
3 0.07 0.02 0.16 0.08 0.06 0.06 0.03
4 0.20 0.14 1.01 0.22 0.17 0.14 0.09
5 1.97 1.64 6.71 3.01 1.83 0.50 0.34
6 12.68 12.52 56.93 14.84 6.95 5.37 1.28
7 712.85 1892.60 7200.04 92.35 24.96 15.57 1.65

IP
1
0
0

8 1733.33 2813.67 7200.09 2847.60 89.05 33.31 9.56

Table 4.4: A comparison of computational times in seconds between the greedy insertion (GI), the
phased greedy insertion (GP) and the integer programming formulations (IPα) for each scenario. Both
the average (µ) and the standard deviation (σ) are presented. Standard measures of spread are also
presented with the maximum time (Max) the 25th percentile (Q1), the 50th percentile (Median), the 75th

percentile (Q3) and the minimum time (Min) given.

It is clear from the results presented in Table 4.2 that all the proposed solution approaches
significantly improve on the total walking distance required by pickers to pick all the SKUs.
Further analysis was also performed to evaluate the effects on other areas in the DC. One of
these areas is carton utilisation. Should a carton be under utilised this will require additional
material handling to resize it. To evaluate poor carton utilisation PEP supplied a threshold
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carton size of 0.006m3 (the size of a typical shoe box) [21]. Orders with less volume were
considered undesirable. Should an order require less than this threshold of stock in a picking
line it would be identified as a small order. Table 4.5 summarises the effect of small orders which
are generated by each solution approach. It is clear that the number of small orders is increased
when using any one of the proposed solution approaches. The total volume of stock which are
packaged in small orders is very small suggesting no significant impact on transportation costs,
however, the increase in the number of cartons increases carton handling in the DC. Although
this increase is undesirable the operations management at PEP has agreed that it is manageable.

Scenario His GI GP IP IP25 IP50 IP100

2 0.05% 0.14% 0.14% 0.14% 0.13% 0.13% 0.12%
3 0.04% 0.13% 0.13% 0.12% 0.13% 0.13% 0.12%
4 0.03% 0.12% 0.12% 0.12% 0.11% 0.11% 0.11%
5 0.03% 0.13% 0.13% - - 0.13% 0.13%
6 0.04% 0.12% 0.12% - - 0.12% 0.12%
7 0.03% 0.12% 0.13% - - 0.12% 0.11%
8 0.03% 0.12% 0.13% - - 0.12% 0.12%

Table 4.5: A comparison of the percentage of total volume generated by orders with less than 0.006m3

of stock between the greedy insertion (GI), the phased greedy insertion (GP), the integer programming
formulations (IPα) and the historical assignment (His).

A further area of concern is the distribution of total volume over picking lines. Picking lines
with large volumes require long building and picking times which may become an operational
risk. Figure 4.7 illustrates distribution of volume (in m3) to picking lines for the scenarios with
three and four lines per instance, respectively. It is clear that when assigning DBNs to minimise
the sum of the maximal SKUs the size and number of the large picking lines, in terms of volume,
increases. This pattern was also observed for the other scenarios. These large picking lines are
undesirable, both in the historical data as well as the proposed assignments, but they are all
manageable at these low occurrences.

All solution approaches show significant improvements compared to the historical case in terms
of walking distance. The two heuristic insertion approaches consistently obtained better so-
lutions in less than one second of computational time. Moreover the GP approach achieved
feasible solutions for all instances. It is therefore recommended that the GP approach should
be used by PEP when assigning DBNs.

4.5 Conclusion

An order picking operation in a DC owned by PEP was investigated. The system functions
with unidirectional cyclical picking lines to process waves of SKUs. These SKUs are grouped
together into DBNs (if they differ only by size) and are planned and scheduled as a group.
The objective is to minimising the total walking distance of pickers by assigning the DBNs to
available picking lines for picking.

Several approaches for SKU assignment in literature were studied, but the cyclical nature of the
routes of the pickers around the picking lines created a unique system which renders existing
approaches not usable. An IP formulation was therefore suggested and tested using historical
data from PEP. It was shown that this approach reduced the walking distance of pickers on
average by 22%, but it was not solvable in a reasonable time for scenarios where there are five
or more picking lines in a day. A further relaxation of this IP approach was introduced which
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Figure 4.7: A graphical box-plot representation of the distribution of the total volume for each line after
scheduling scenarios with three and four lines per instance using the greedy insertion (GI), phased greedy
insertion (GP), the integer programming formulations (IPα) as well as the historical assignment (His).
The median, Q1 and Q3 are represented as the horizontal lines in the closed box. The individually plotted
coordinates are associated with the outliers. The whisker lines indicate the minimum and maximum
number of cycles for non-outlier picking lines.

adjusted the size of the maximal SKUs by rounding. This relaxed formulation showed similar
results in terms of cycles with a computation time 50 times faster. However, scenarios with
seven or more picking lines could still not be solved in a reasonable time.

To solve larger instances a heuristic approach was introduced based on an algorithm for GAPs
by Martello & Toth [14] which greedily inserted DBNs. This approach yielded good results, but
in some cases not all the DBNs were assigned to a picking line. A further phased greedy insertion
approach was developed which held back smaller DBNs for later insertion to achieve feasibility.
The approach showed good results and achieved a feasible solution for all test instances.

Following the improvement in terms of picker walking distance the effects of the DBN assign-
ments on other factors was investigated. Carton utilisation was measured by determining the
number of orders which consisted of a small volume of stock. These small orders would require
additional material handling to resize their cartons. The number of these small orders increased
when minimising walking distance. This increase was considered manageable by PEP although
undesirable.

The second factor was the distribution of volume over different picking lines. Picking lines with
too large volumes are considered as an operational risk. The proposed algorithms increased the
number and volume of these large picking lines when compared to the historical case. Once
again these large picking lines, both from the historical case and proposed assignments, are
manageable, but undesirable.

It is proposed that PEP use an assignment approach which minimises the sum of the maximal
SKUs. The GP approach is recommended because its solution quality is good and its compu-
tational times short. Future studies should consider the trade-offs seen here between walking
distance, small orders and large volumes of stock on picking lines. Future work may also include
developing assignment strategies which reduce the number of small orders generated and control
the occurrences of large lines with respect to volume while still reducing the most important
factor, namely the walking distance of the pickers.
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CHAPTER 5

SKU assignment using correlations to
unidirectional picking lines

5.1 Introduction

Warehouses form a central part of supply chains. The role of warehouses is typically to match
supply with demand and to consolidate product from multiple suppliers [2]. To play this role,
stock must be stored, moved and picked in the warehouse using one or more of a variety of
different layouts, mechanisms, picking systems and storage equipment depending on product
and market characteristics. One of the essential parts of warehouse management is the placing
of stock into locations that improve stock movement and picking efficiency.

The warehouse slotting problem is described by Kim & Smith [8] as determining an assignment of
stock keeping units (SKUs) to picking slots1 to support carton picking. Ideally SKUs which are
usually placed in the same carton should be placed as near to each other as possible. Warehouses
typically do not re-slot in the short term because in most cases long term SKU correlations are
used as a desirability measure to slot SKUs close to each other. Furthermore the time and cost
involved to re-slot is often too high.

Following on a study by Matthews & Visagie [14] a distribution centre (DC) owned by Pep Stores
Ltd2 (PEP) is considered [16]. A major influence on the order pick system in use at their DCs is
the centralised stock management of PEP. Stock levels for each store are managed collectively
and stock outflows are planned centrally at SKU level creating a push system. During an outflow
for a SKU all stores requiring that SKU are stocked with the SKU in a single pick operation.
Distributions (DBNs) which consist of a set of SKUs that are of the same product but differ
in size are used to achieve this. The make-up of a DBN is determined by the central planning
department which sets how much of each SKU in the DBN should go to each store. These DBN
pick instructions are issued (or released) to the DC. All the SKUs in the DBN are picked in the
same batch once the DBN pick instructions are released.

A type of forward pick area – as described by Bartholdi & Hackman [2] – consisting of 12 picking
lines is used to pick these DBNs. A picking line has 56 slots (or locations) each holding up to
five pallet loads of the same SKU and is used for all piece picking in the DC. These picking lines
are serviced by multiple pickers and are able to operate in parallel to each other. Figure 5.1
illustrates the layout of the picking lines in this forward pick area.

1A picking slot is a storage location which is directly accessible by pickers.
2Pep is the largest single brand retailer in South Africa.
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Picking lines operate in waves, defined as a set of SKUs and their corresponding store require-
ments which are to be picked in a batch. Each wave of SKUs is placed on its own picking line
and all the store requirements for those SKUs are picked in a single operation. Once all the
picking is completed any remaining stock is removed and a new wave of SKUs is brought to the
picking line. All the SKUs associated with the same DBN are placed on the same picking line
ensuring that all the SKUs in the same DBN arrive at the store at the same time. This process
of populating, picking and clearing stock on a picking line may take anything from four hours
to two days depending on the number and size of orders associated with, and the characteristics
of, the SKUs assigned to that wave on the picking line.

Due to the varying rates at which picking lines are completed and the parallelisation of the
picking line area the number of picking lines which become available for new waves during each
day varies. DBNs are scheduled onto available picking lines using a first-in, first-out (FIFO)
system in an attempt to ensure that all DBNs are processed within the desired threshold of
seven days from receiving both the pick instructions from the planning department and the
physical stock from the suppliers.

During the picking phase pickers walk in a clockwise direction around a picking line sequentially
picking orders. Order consolidation is not performed to ensure that picking lines are managed
independently from each other. Instead pickers pick directly into cartons placing the completed
cartons onto a conveyor belt. Completed cartons are then stored in buffer areas located in the
outbound section of the DC which are emptied on a regular basis based on delivery schedules.

New cartons as well as re-cycled cartons from suppliers are used and are available around the
picking line. Cartons only hold stock from a single picking line and are closed and shipped as
they come from the picking line. When pickers select a carton to hold the stock for an order
they do not know what volume of stock is required for that order and are unable to select an
appropriate sized carton. Moreover, in some cases stores only require a small volume of stock
within a picking line and are unable to fill even the smallest available carton in the DC. Many
cartons which are selected for orders with small volumes of stock have excess capacity. These
cartons are manually resized into smaller dimensions to reduce volume and are undesirable as
they increase the per-volume handling cost throughout the supply chain.

Figure 5.1: A schematic representation of the layout of the 12 picking lines in the DC, six on either
side of the main conveyor. The dashed lines indicate the movement of the pickers around the conveyor
belts [14]
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Matthews & Visagie [14] suggested approaches to assign DBNs to picking lines while minimising
the total walking distance of pickers by using the concept of a maximal SKU3. Significant
improvements were made on the historical method by using both integer programming (IP)
and heuristic approaches. They pointed out that focusing on walking distance alone increased
the number of small cartons produced, as many stores required a small volume of stock from
certain picking lines. In addition, operational risk was increased as more picking lines required
excessively large volumes of stock which increased the overall time which a picking line is
occupied by a single wave of picking and might result in a need to replenish stock during a
wave of picking. The focus of this paper is to address these two additional issues by using SKU
correlations while still achieving satisfactory walking distances.

The remainder of this paper is structured as follows. A discussion of related work in existing
literature is given in §5.2. The four solution approaches using correlations are introduced in
§5.3 with the results presented in §5.4. The paper is concluded in §5.5.

5.2 Literature review

Accorsi et al. [1] addressed both the storage allocation and storage assignment problems simulta-
neously. The storage allocation problem focuses on the amount of stock stored in each location,
typically addressing the issues around replenishment costs, while the storage assignment prob-
lem focuses on the physical location of stock in an effort to minimise order picking costs. Three
main problems were identified when optimising order picking systems with a forward pick area,
namely:

1. Which SKUs should be in the forward pick area?

2. How much of each SKU should be in the forward pick area?

3. Where should each SKU be stored?

Bartholdi & Hackman [2] addressed the first problem and introduced three approaches for the
second problem namely the equal space, equal time and optimal allocation strategies. Accorsi
et al. [1] addressed the final storage assignment problem and identified three main approaches,
namely the class-based, ranked-index-based and correlation storage assignment policies. The
clustering storage assignment policy was further expanded as three sequential steps, namely
correlation analysis, clustering and priority list determination with cluster assignment.

Accorsi et al. [1] also proposed a top down hierarchical procedure for overall order picking
optimisation which was applied to a case study. Numerous combinations of different approaches
to each problem were considered including different allocation rules, correlation measures and
clustering algorithms. It was shown that considering both SKU allocation and SKU assignment
simultaneously yields better overall order picking costs compared to sequentially solving each
problem.

Although Accorsi et al. [1] proposes a generalised framework for order picking optimisation the
detail of the SKU assignment approaches have often been governed by DC layouts and manage-
ment practices. Chiang et al. [4] used data mining techniques to assign newly arriving SKUs
to available slots in a rectangular DC with a S-shaped picking strategy. An association index
was developed between SKUs and available locations based on association rule mining, SKU

3A maximal SKU is a SKU within a set of SKUs with the highest number of stores requiring it.
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turnover rates and the distance from a location to the exit. The association rule mining used
SKU correlations between already assigned and unassigned SKUs. A generalised assignment
problem was formulated to assign SKUs to available locations which maximised the sum of
these association indices.

Bindi et al. [3] also investigated storage allocation rules for a rectangular DC with parallel
shelves. Two processes were identified, namely family grouping and storage allocation. A
proposed similarity measure, based on SKU correlations and a stock turn coefficient (total
stock movement over average stock level) was developed and compared to a Jaccard statistic.
Several storage assignment rules were also tested as part of the storage allocation process.
Extensive testing by means of what-if analysis for a case study showed that correlation measures
significantly improve overall throughput of the DC.

Manzini [9] minimised total picking time in a rectangular warehouse by using SKU correlations
to arrange SKUs. In this case, however, the warehouse had two orthogonal sets of shelves.
The DC employed a picker-to-parts system and picking vehicles with a finite capacity using
a composite picking strategy. Three solution approaches based on correlations were proposed,
namely a clustering approach, a parallel algorithm and a sequential algorithm. It was noted
that the sequential approach, which used the last assigned SKU to determine the next SKU to
assign to a cluster, had a risk of generating correlated couplets of SKUs instead of maximising
overall correlations.

A SKU assignment problem in a synchronised zone order picking system was investigated by
Jane & Laih [7] using correlation and clustering techniques. All zones processed the same order
at the same time and only once an order has been picked in all zones can a new order begin
for any zone. The completion time of an order was thus seen as the longest completion over all
zones and an objective was therefore defined by using correlations which balanced the workloads
of each order over all zones

The structure and layout of the DC play a role in determining appropriate SKU assignment
techniques as seen by the previous studies. Kim & Smith [8] investigated a carton order picking
system which has many similarities to the order picking system discussed in this paper. The
DC considered by Kim & Smith [8] also had re-slotting which was performed on a daily basis.
Different sets of SKUs were picked on different days of the week which created vastly different
SKU correlations for each wave of picking. The time and cost required to re-slot was reasonable
and re-slotting was therefore performed during the night followed by a wave of picking during
the next day.

The picking area considered by Kim & Smith [8] consisted of a number of single aisle zones,
each with a single picker. Cartons requiring SKUs from multiple zones are conveyed between
zones which removes the need for later consolidation. Pickers receive new orders4 for their zone
from a designated starting point at one end of the aisle and proceed to pick all required SKUs
before placing the carton on a conveyor belt and walking back to the start to begin a new order.
In this way the distance walked by a picker to complete an order in a zone is equal to twice the
distance from the start to the furthest required SKU.

Kim & Smith [8] considered the SKU slotting problem while minimising the total completion
time to pick a wave. Orders typically require stock from other zones and thus the total com-
pletion time of a wave was determined by the zone with the longest completion time to pick
all orders. An IP formulation was developed which minimised walking distance, but it was
too complex to solve. Three further heuristic approaches were therefore introduced, namely a

4New orders for a zone includes orders picked in other zones.
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steepest descent neighbourhood slotting heuristic, a correlated slotting heuristic and a simu-
lated annealing slotting heuristic. These approaches used correlations to determine good pairs
of SKUs to switch by reasoning that SKUs with high correlations should be near each other.
Once a switch is made the total walking distance is then re-calculated. It was shown that the
simulated annealing approach performed best.

Although the order picking system addressed in this paper has a similar structure and re-
slotting methodology to the study by Kim & Smith [8] the structure of each zone/picking line
is fundamentally different. Instead of the linear zone the cyclical structure of a picking line
shows many similarities to a carousel system. A carousel system is an automated storage and
retrieval system with a set of shelves which rotate to present stock to pickers. Hassini [5]
presents an extensive literature study on carousel systems. Hassini [5] noted that correlations
between SKUs have received little attention in the carousel context. It is further suggested that
SKU correlations should be used when assigning SKUs to carousels as well as locations within
a carousel.

There has also been some attention paid in literature to the exact order picking setup discussed in
this paper with some of the different decision tiers of this order picking system being addressed.
These decisions include the sequence in which orders are passed to pickers, the arrangement of
SKUs in a picking line and the assignment of DBNs to picking lines. Matthews & Visagie [11]
considered the problem of sequencing orders for pickers in a unidirectional picking line, with
fixed SKU slotting, while minimising the total distance travelled. The concept of a maximal
cut was introduced and an IP formulation was developed which generated a solution within one
pick cycle of a lower bound.

Matthews & Visagie [13] considered the SKU arrangement on a single picking line. SKUs
which have already been assigned to the picking line are arranged while minimising the total
walking distance using the maximal cut approach as suggested by Matthews & Visagie [11].
An IP formulation was presented which was shown not to be solvable in a realistic time frame
for problem instances with more than 15 SKUs. Matthews & Visagie [13] also tested several
heuristic methods including an organ pipe and a greedy approach, both of which are optimal
for some carousel systems which have many similarities to unidirectional picking lines. These
heuristics were tested against historical arrangements as well as a set of random solutions. It
was found that the scope for optimisation when arranging SKUs on a single picking line was
minimal. A lower bound for the number of cycles traversed was also identified by considering
the SKU with the maximum number of stores requiring it, called a maximal SKU. At least one
cycle would need to be traversed for each store requiring the maximal SKU (i.e. the size of the
maximal SKU) which generated this lower bound.

Matthews & Visagie [14] generalised their study considering the assignment of DBNs over mul-
tiple picking lines. It was reasoned that the maximal SKU measure of a lower bound should
be correlated with the actual number of cycles traversed. Matthews & Visagie [14] therefore
minimised the sum of the sizes of the maximal SKUs for each picking line to reduce total walking
distance. An IP formulation with this new objective was developed which was not solvable for
problem instances with more than four picking lines. A further relaxation of this formulation
was therefore developed which rounded the size of the maximal SKUs in an effort to reduce the
computational effort of proving an optimal solution. This relaxation showed faster computa-
tional times but was still not solvable in a realistic time frame (within 10 minutes) for problem
instances with more than six picking lines.

A greedy insertion approach based on the algorithm by Martello & Toth [10] for multiple
knapsacks was therefore developed. It assigns DBNs to picking lines in a greedy fashion based
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on the size of the maximal SKUs and the available space in the picking line. Although this
approach yielded good results in a short computational time, in some cases a feasible solution
could not be found because all the DBNs were not assigned to a picking line. A phased insertion
approach was thus developed which held certain small DBNs back for a second round of insertion
to ensure feasibility. The results were similar in terms of walking distance and in all cases a
feasible solution could be found.

For all the studies mentioned above, the performance of solution approaches are only compared
based on a single measure, namely picking speed and efficiency. It is clear from the studies
discussed in this section that for many DC configurations using SKU correlations to assign
SKUs to slots improves the speed of the order pick operation. In most cases only correlations
between adjacent SKUs and not a broader neighbourhood are included in the objective function.
No correlation approaches have yet been adapted for or applied to the order picking system
presented in this paper.

5.3 Solution approaches

When applying the top down hierarchical procedure by Accorsi et al. [1] to the order picking
system at PEP only the storage assignment phase needs to be applied as all piece picking must
be processed on a picking line. Replenishment while picking is in progress is not present at PEP
because all required stock for a pick wave is stored in the picking line before a wave of picking
begins.

The storage assignment phase may further be simplified by only considering a clustering based
approach. An index based approach for the storage assignment problem, which typically ad-
dresses restock travel distances, is not appropriate for the order picking system at PEP as all
picking lines may be viewed as equidistant from the reserve area and restocks are rare. Only
the correlation and clustering steps are required when assigning SKUs to picking lines as the
number of SKUs assigned to each cluster should match the number of available locations for
an available picking line. This removes the need for the priority list determination and cluster
assignment.

Using the simplified top down hierarchical procedure by Accorsi et al. [1] as well as the study
by Matthews & Visagie [14] the assignment of SKUs may be seen as two phased. Firstly each
DBN (d) in the set of DBNs (D) needs to be assigned to a picking line. Once a set of DBNs
has been assigned to a picking line the SKUs associated with those DBNs should be arranged
by assigning them to individual locations in a SKU arrangement phase. The walking distance
of the pickers can be calculated only once each SKU has been assigned to a location. The first
phase is illustrated on the left and the second phase on the right hand side of Figure 5.2.

Matthews & Visagie [13] investigated approaches for the SKU arrangement phase for a single
picking line and made use of the maximal cut approach described in Matthews & Visagie [11]
to evaluate the resulting walking distances of the different arrangements. They showed that
savings were minimal during this phase and that the problem was too complex to be solved
exactly suggesting that the two assignment phases need to be handled independently. The SKU
arrangement phase will therefore be solved separately using the greedy approach by Matthews
& Visagie [13] as it is fast, easy to implement and is known to achieve good results. The focus
therefore moves specifically to the assignment of DBNs to a set of picking lines (L).

In the picking line assignment phase each DBN requires a number of locations (|d|) in a picking
lines. Each picking line (l) in the set of available picking lines (L) has a number of available loca-
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SKUs

Picking lines

Figure 5.2: A schematic representation of the slotting phases in the DC. Each shape represents a SKU
and clusters of the same shape with the same shading represent DBNs.

tions (|l|). The current approach used to assign DBNs is to spread work, measured by volume of
stock, evenly between available picking lines which does not take into account walking distances
of pickers. An underlying principle of each approach by Kim & Smith [8] was to interchange
SKUs between slots followed by an objective function re-evaluation. Several characteristics of
the problem considered here points against the use of SKU interchanges when considering uni-
directional picking lines. DBNs which vary in size (number of required locations) would need to
be interchanged in their entirety between picking lines. This creates more complexity as either
only DBNs of the same size can be interchanged or sets of DBNs with the same number of SKUs
collectively need to be interchanged. A phased greedy insertion approach was therefore intro-
duced by Matthews & Visagie [14] to insert DBNs into available picking lines. Here DBNs are
ranked according to some desirability measure and inserted sequentially into available picking
lines. If a feasible solution is not found the DBNs are segmented into two subsets according to
their size (number of SKUs and number of stores). These different subsets are then inserted
into the available picking lines in two phases. These subsets iteratively change in size until a
feasible solution is found.

Matthews & Visagie [14] used a maximal SKU measure with the phased greedy insertion algo-
rithm (GP) which minimised the sum of the sizes of the maximal SKUs. For each DBN the
SKU which has the highest number of stores requiring it (referred to as a maximal SKU) is
considered and DBNs are ranked according to the size of this maximal SKU denoted as dde.
It is, however, proposed that correlations between DBNs should be considered to reduce the
number of small cartons produced while still maintaining good walking distances. A correlation
measure is therefore introduced as Ba ∩ Bb, where Ba represents the set of stores requiring at
least one SKU from DBN set Da ⊆ D. By assigning DBNs with strong correlations in terms
of this measure to the same picking line it would be expected that both the walking distance
would be shorter and the size of each order in a picking line would be larger because more SKUs
that have to be picked for the same stores will be grouped together in the same wave of picking.

Four possible desirability scores which use correlation measures were used to rank DBNs during
the phased greedy insertion procedure. The first desirability score denoted as ADT considers the
number of stores required by the candidate DBN and which requires at least one DBN already
assigned to the picking line. This is achieved by merging all assigned DBNs in a picking line and
considering them as a single DBN. The intersection of the set of stores requiring the candidate
DBN and this new merged DBN (or correlation between the two DBNs) is then calculated. This
desirability score is defined as
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S(Dl, d) = |Bl ∩ Bd|. (5.1)

The second desirability score (ADS), defined as

S(Dl, d) =
∑
a∈Dl

|Ba ∩ Bd|, (5.2)

considers the correlations of a candidate DBN with all preassigned DBNs individually. This is
achieved by calculating the sum of all the correlations between assigned DBNs and the candidate
DBN. By assigning DBNs using these desirability scores picking lines should have fewer stores
which only require one or two SKUs resulting in fewer small cartons being produced. In addition
by increasing the number of shared stores the physical pick density (picks per store) of each
store should increase which should create efficient pick cycles as pickers will be picking from
more locations per cycle.

Bindi et al. [3] proposed a similarity measure which used both an adjusted Jaccard statistic and
a stock turn coefficient, defined as the ratio between the total stock movement and average stock
quantity. The nature of the order picking system considered in this paper does not, however,
lend itself to the use of stock turn in a similarity measure due to the wave principle and the
frequency at which picking lines are built. A third desirability score, defined as

S(Dl, d) =
Bl ∩ Bd
Bl ∪ Bd

, (5.3)

is based on the Jaccard statistic (JCT) and is included in the tests. Finally a desirability score
(JCS)

S(Dl, d) =
∑
a∈Dl

Ba ∩ Bd
Ba ∪ Bd

(5.4)

is introduced. The JCS measure is similar to the ADS measure, but scaled relative to the number
of DBNs in the two subsets. Here the sum of the Jaccard statistics between all DBNs and the
candidate DBN is calculated. The GP algorithm used to insert DBNs based on a desirability
measure is illustrated in Algorithm 7.

Procedure 6: A partial greedy insertion of DBNs using a desirability measure.
Data: A set of picking lines L in descending order according to |l|

A set of DBNs D
A set of pre-assigned DBNs Dl associated with each picking line

Result: A final set of assigned DBNs Dl associated with each picking line
1 for Each picking line l ∈ L do
2 while an unassigned DBN exists which fits into the remainging locations of picking line l do
3 Select the DBN with the largest desirability score, S(Dl, d), which fits into set Dl
4 Assign this DBN to set Dl
5 end

6 end
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Algorithm 7: A sequential phased insertion of DBNs using a desirability measure.
Data: A set of picking lines L

A set of DBNs D
Result: An assignment of DBNs to picking lines

1 β = 0
2 while an unassigned DBN exists do
3 Clear all assignments of DBNs
4 Insert all DBNs where |d| > 1 or dde > β using Procedure 6
5 Insert all remaining DBNs using Procedure 6
6 β = maxd/|d|>β |d|
7 end

5.4 Results

The four proposed desirability scores were tested using a phased greedy insertion approach on
seven scenarios from real life historical data. Each problem instance comprised of a number of
picking lines which were scheduled for the same historical day and the historical DBNs assigned
to them. Each test scenario consisted of a set of these problem instances each with the same
number of picking lines per day which allows for easier comparison. All the scenarios are
available on-line [12]. A summary of the properties of these scenarios is given in Table 5.1. All
testing was performed on an Intel i7 2 GHz processor with eight GB ram running the Windows
7 operating system. All mathematical formulations were solved with CPLEX 12.3 and coded in
AIMMS 3.12 [6, 15].

Number of lines per day Number of problem instances Number of DBNs

2 61 2592
3 53 3437
4 49 4146
5 38 4109
6 32 4161
7 22 3177
8 14 2148

Table 5.1: The composition of the scenarios from historical data.

The results of all the approaches were compared to the maximal SKU phased greedy insertion
approach (GP) by Matthews & Visagie [14]. The performance of the approaches are compared
using three measures, namely walking distance, the number of small cartons produced and
volume distribution. Table 5.2 illustrates the total distance walked for each scenario for each
approach. It is clear that the GP approach performs the best in terms of walking distance, while
the ADT approach shows the best results for approaches using correlations. All approaches using
correlations have marginally longer walking distances (within 5%) compared to the GP. All the
presented approaches still improve on the historical results by approximately 20%. In both cases
the summed correlation measures (ADS, JCS) perform worse than their parent scores (ADT,
JCT).

A summary of the number of small cartons produced by each approach is given in Table 5.3.
Small orders (that cause cartons to have excess volume capacity) have less than 0.006 m3 volume
of stock from a picking line assigned to them [17]. In terms of number of small orders the worst
performing approach is the GP approach. All the proposed correlation measures show lower
numbers of small cartons produced compared to the GP approach as the number of small orders
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Scenario His GP ADT ADS JCT JCS

2 7168 6019 6193 6212 6191 6224
3 9289 7515 7710 7749 7712 7791
4 11532 9015 9282 9311 9289 9363
5 11259 8618 8922 8932 8923 8988
6 10706 8129 8363 8384 8371 8442
7 8412 6366 6540 6559 6551 6608
8 6011 4715 4847 4856 4852 4870

Table 5.2: The total number of kilometres walked in each scenario for all the solution approaches (ADT,
ADS, JCT, JCS) as well as the historical assignment (His) and GP approach by [14].

is roughly halved. These approaches still perform worse compared to the historical assignments,
but this is offset by the improvement in walking distance.

Scenario His GP ADT ADS JCT JCS

2 0.05% 0.14% 0.09% 0.09% 0.09% 0.08%
3 0.04% 0.13% 0.08% 0.08% 0.08% 0.08%
4 0.03% 0.12% 0.07% 0.07% 0.07% 0.07%
5 0.03% 0.13% 0.06% 0.07% 0.07% 0.08%
6 0.04% 0.12% 0.06% 0.07% 0.06% 0.07%
7 0.03% 0.13% 0.06% 0.07% 0.06% 0.07%
8 0.03% 0.13% 0.06% 0.06% 0.06% 0.06%

Table 5.3: The proportion of total volume of stock attributed to small orders (i.e. orders with less
than 0.006 m3 of stock). For the historical assignment (His) the GP approach by [14] and the correlation
approaches (ADT, ADS, JCT, JCS).

A scatter plot between these two measures is given in Figure 5.3 to better visualise the trade off
between walking distance and the number of small cartons produced. Each marker indicates the
total walking distance, in kilometres, as well as the proportion of total picked volume attributed
to small orders. The historical assignments forms a cluster of solutions with long walking
distance and good number of small cartons produced while the GP approach shows many more
solutions with poor number of small cartons produced and shorter walking distances. The
solutions obtained using the ADT approach are clustered with shorter walking distances and
good number of small cartons produced relative to the historical solutions.

A summary of the computational times required for each approach is given in Table 5.4. The
use of correlations in a desirability score increases the computation times compared to the GP
approach, which only considers maximal SKUs. This is attributed to the need to dynamically
change the desirability score after each insertion of a DBN. The two measures which consider
the sum of correlations (ADS, JCS) have shorter computational times than their parents (ADT,
JCT). This is due to the ability to calculate Ba ∩ Bd and Ba ∪ Bd for each pair of DBNs only
once and use this pre-calculated value for each iteration of the ADS and JCS approaches. It is
also noted that the maximum computation time for problem instances with eight picking lines
is high. This is due to the number of additional insertion phases required to find a feasible
solution.

A comparison of the size of the picking lines in terms of volume was also performed. Figure 5.4
illustrates the distribution of volume over all the lines for scenarios with four and five lines per
problem instance respectively. Similar results were obtained for the other problem instances. It
is clear that the approaches using correlations have reduced the size of largest picking lines with
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Algorithm Lines per problem instance µ σ Max Q1 Median Q3 Min

2 1.86 0.59 3.07 2.35 1.92 1.41 0.65
3 3.88 1.34 7.11 4.86 3.82 2.72 1.46
4 6.49 2.23 13.11 7.61 5.96 5.31 1.98
5 14.35 39.72 252.40 9.74 7.14 6.25 3.93
6 19.31 50.63 296.30 13.02 9.97 8.29 5.99
7 40.13 94.95 357.99 12.01 11.14 9.44 6.22

A
D

T

8 87.58 206.04 734.06 14.36 12.81 11.45 7.08

2 0.99 0.42 1.96 1.26 0.98 0.72 0.06
3 1.96 0.90 4.82 2.45 1.84 1.36 0.16
4 3.06 1.63 8.32 3.78 2.88 1.90 0.26
5 2.71 1.28 6.29 3.78 2.64 1.57 0.50
6 3.25 1.85 7.81 4.63 2.81 1.74 0.76
7 2.52 0.97 4.16 3.41 2.50 1.63 0.98

A
D

S

8 3.13 4.35 16.02 2.60 1.52 0.89 0.61

2 0.01 0.00 0.02 0.01 0.01 0.01 0.00
3 0.03 0.09 0.69 0.02 0.01 0.01 0.00
4 0.07 0.30 2.13 0.03 0.02 0.02 0.01
5 0.07 0.23 1.43 0.04 0.03 0.02 0.02
6 0.09 0.30 1.75 0.05 0.03 0.03 0.02
7 0.32 0.71 2.53 0.05 0.05 0.03 0.02

G
P

8 0.39 0.87 2.53 0.06 0.04 0.03 0.02

2 1.83 0.56 2.74 2.35 1.86 1.45 0.69
3 4.58 1.52 8.09 5.58 4.68 3.59 1.86
4 6.83 2.19 13.76 8.03 6.27 5.48 2.31
5 9.87 2.90 17.53 11.82 8.94 7.63 4.77
6 13.22 3.88 22.41 15.42 12.73 10.60 6.87
7 14.00 4.74 25.08 15.15 13.21 12.17 7.53

J
C

T

8 60.14 42.64 204.77 56.21 49.38 45.03 28.89

2 0.88 0.38 1.73 1.14 0.87 0.64 0.06
3 1.92 0.87 4.59 2.40 1.80 1.34 0.15
4 7.47 6.99 28.96 12.00 3.87 2.53 0.24
5 2.84 1.26 5.01 4.07 2.83 1.68 0.51
6 3.26 1.68 6.52 4.58 2.81 1.90 0.83
7 2.37 0.97 4.15 3.12 2.40 1.52 0.90

J
C

S

8 98.75 101.89 296.06 171.08 72.19 9.39 0.61

Table 5.4: A comparison of computational times in seconds between the different solution approaches
for each scenario. Both the average times (µ) and the standard deviation (σ) thereof are presented.
Standard measures of spread are also presented with the maximum time (Max) the 25th percentile (Q1),
the 50th percentile (Median), the 75th percentile (Q3) and the minimum time (Min) given.
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Figure 5.3: A scatter plot between the number of cycles traversed and the percentage of the total picked
volume attributed to small orders. Each marker represents a single problem instance with four picking
lines.

respect to volume. For the scenario with five picking lines per problem instance the spread of
volume over lines is aligned to that of the historical case. Similar patterns were observed for the
other scenarios. Correlation measures provide the best trade offs when used to assign DBNs if
all three measures are taken into account. Following all the results it is proposed that the ADT
approach should be used to assign DBNs.

5.5 Conclusion

A real life order picking system where re-slotting is performed on a daily basis as implemented
by PEP was investigated. This investigation follows on a study by Matthews & Visagie [14].
The order picking system consisted of unidirectional picking lines in a forward pick area where
all the piece picking is processed. SKUs, which are grouped together into DBNs by PEP, are
batched into waves and processed in a single operation on a picking line. The number of picking
lines which became available for the assignment of DBNs each day vary as the time required
to stock, pick and clear picking lines varies. The assignment of DBNs to available picking lines
forms the focus of this study. Assignments are evaluated in terms of the distance walked to pick
all orders, the number of small cartons produced as well as the spread of volume over picking
lines.

Matthews & Visagie [14] used a phased greedy insertion technique to minimise the sum of the
maximal SKUs in an effort to minimise the walking distance of pickers. It was shown that this
objective had negative effects on other operational areas such as the number of small cartons
produced and volume distribution. Many approaches in literature use correlations to assign
SKUs to locations although the main objective was still to reduce total picking time. It is
therefore proposed to use correlations between DBNs as a measure to assign DBNs to picking
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Figure 5.4: A graphical box-plot representation of the distribution of the total volume for each line
after scheduling scenarios with four and five lines per problem instance. The median (50th percentile),
Q1 (25th percentile) and Q3 (75th percentile) are represented as the horizontal lines in the closed box.
The individually plotted coordinates are associated with the outliers which are either 1.5 times the inter
quartile range (IQR) smaller than Q1 or larger than Q3. The whisker lines indicate the minimum and
maximum number of cycles for non-outliers.

lines to reduce the number of small cartons produced while still maintaining acceptable walking
distances.

Four desirability scores were tested and compared to the historical case as well as the maximal
SKU approach (GP) by Matthews & Visagie [14]. The first two scores (ADT and ADS) consid-
ered the total number of stores sharing SKUs in DBNs. The second two approaches (JCT and
JCS) use the Jaccard statistic as a measure of correlation.

It was shown that the total walking distance marginally increased in comparison to the GP
approach while still significantly improving on the historical case. In addition the number of
small orders generated was roughly half that of the GP approach. It was also shown that using
correlations resulted in a slightly better distribution of volume over picking lines, although, the
large picking lines are still undesirable. It is recommended that the ADT desirability scores be
used to assign DBNs to picking lines.

Using correlation measures have reduced the number of small cartons produced and improved
volume distribution slightly with only a marginal increase in walking distance. Future work
may include approaches to reduce these large picking lines using capacity constraints or goal
programming techniques.
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CHAPTER 6

A multi-objective approach for SKU
assignment to unidirectional picking lines

6.1 Introduction and background

Distribution centre (DC) management typically revolves around two major process groups,
namely inbound and outbound processes. Inbound processes include the receiving and put-
away of stock, while outbound processes include order-picking, quality control, packing and
shipping operations [2]. The order picking operation is typically the most time and cost intensive
operation and may account for approximately 60% of all DC costs [3]. Order picking may be
described as the process of consolidating product to satisfy customer orders and is often labour
intensive. Following on a study by Matthews & Visagie [15] an order picking system in a
DC owned by PEP Stores Ltd (PEP), the largest single retail brand in Southern Africa, is
investigated [19].

PEP has approximately 1600 stores in Southern Africa selling mostly apparel. All stock plan-
ning, procurement and distribution is coordinated at central office to achieve low costs and
availability in stores. Store management has little to no control over the stock sent to their
stores as all decisions are made by central management. At the start of each SKU’s planning
cycle store requirements for the entire company are determined. Due to the central control of
decisions stock flows are planned at a SKU level and not on a store level as is more common
in literature [18]. SKUs have different planning cycles ranging from weekly replenishments, for
products such as underwear, to a single outflow per season for products such as winter jackets.
The central planning department groups these SKUs of the same product, but of different sizes,
together in a distribution (DBN) to determine the store requirements of SKUs. All the SKUs
in the same DBN are then planned together. Pick instructions for DBNs are generated for the
entire company by taking store specific demand and size profiles into account. These instruc-
tions are then released to the DC which schedules each DBN to be picked. DBNs consisting of
SKUs (and not orders) are then batched together in waves and all the store requirements for all
SKUs in the same wave are picked together.

The DC uses a unique type of forward pick area consisting of unidirectional picking lines to
process SKUs in waves. All piece picking is processed in this forward pick area and constitutes
approximately 70% of all stock volume and 90% of all units picked. Figure 6.1 illustrates the
layout of the DC with five main areas, namely the goods receiving, decanting, storage rack,
picking line and full carton picking areas. The picking line area consists of 12 picking lines,
six on either side of a main conveyor. A graphical representation of a picking line is shown in
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Figure 6.2. Each picking line has 56 SKU locations which can hold up to five pallet loads of a
single SKU. Pickers walk in a clockwise direction around the conveyor belt and may pass each
other. Pickers complete orders sequentially and are assigned new orders independent of the
presence of other pickers in the picking line. This independence allows pickers to be removed
and added to picking lines as needed by the DC.

Pickers place items directly into cartons while picking. Full cartons are placed on a conveyor
belt which conveys the cartons to a dispatch area. Here the cartons are cut to size if needed,
closed with a staple gun and sent to a holding area for delivery to hubs or stores which removes
the need for order consolidation. In this way each carton only holds stock picked from a single
picking line for a single store.

An implication of this wave picking on parallel picking lines and no order consolidation is that
SKUs assigned to different picking waves may arrive at a store on different days. It is desirable
for PEP to have all of the SKUs in the same DBN arriving at a store at the same time and it is
therefore required that SKUs in the same DBN be placed in the same pick wave and therefore
on the same picking line.

A wave of picking has four phases, namely planning, building, picking and clearing. During the
planning phase the DC assigns pending DBNs to available picking lines. The SKUs within each
picking line are then arranged around the picking line and the sequence in which orders are
passed to pickers is determined. The building phase requires a team of forklifts, pump trolleys
and specialised high-lift cranes to place the required stock in the picking line. The picking
phase commence once all the required stock is placed in the picking line. Multiple pickers then
pick all the required orders. During the final clearing phase leftover stock (if any) is taken to
the storage racks and the picking line is tidied for a new wave of picking consisting of a new
mutually exclusive set of DBNs. The time required to build, pick and clear a picking line can
range from a few hours to a few days depending on the characteristics of the SKUs and their
physical location in the DC.

The order picking system considered in this paper may be seen as a parallel zone order picking
system. Zone order picking typically requires work balance over zones which are underutilised
or form bottlenecks [2]. When considering work balance within waves of picking two resources
need to be taken into account, namely pickers and stock moving equipment.

Pickers are only required by the picking line area and may move between picking lines as needed.
This independence of pickers and freedom to move between picking lines (zones) minimises the
effects of work balance as long as there are still picking lines in their picking phase. Therefore
the typical picker work balance issues found in literature are negligible in this parallel picking
lines setup.

The movement of stock around the DC, however, occurs between all the functional areas shown
in Figure 6.1. Each aisle in the storage rack may only be serviced by a single specialised high-lift
crane which receives pallets from, and places retrieved pallets for pump trolleys at the base of
the aisle. In addition the flow of stock in an aisle is one-way as stock for put-away is received
at the storage rack on the opposite side of the picking lines and retrieved stock placed on the
picking line side of the storage racks. Similarly to picking lines batches of stock movements are
typically processed together and are grouped by function – such as populating a picking line
with SKUs, clearing a picking line or put-away. Flexibility is essential when managing the stock
movements and it is therefore undesirable for a single picking line to require a large number of
stock pallet movements during the building phase.

The focus of this paper is on the assignment of DBNs to available picking lines in a single
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Figure 6.1: A schematic representation of the layout of the functional areas in the DC owned by PEP.

shift during the planning phase. Following the operational requirements for picking lines three
goals are identified which should be considered when assigning DBNs to picking lines, namely
minimising the walking distance of pickers, reducing the number of small cartons produced and
controlling the number of stock movements required to build any one picking line.

The remainder of this paper is structured as follows, a discussion of related work in literature
is given in §6.2 and a discussion of the proposed models is supplied in §6.3. The results are
presented in §6.4 and the paper is concluded in §6.5.

Figure 6.2: A schematic representation of a picking line. The arrows indicate the direction in which
pickers walk around the central conveyor belt picking orders.

6.2 Literature review

The structure and layout of the DC often defines the type of SKU assignment approaches which
can be used. Several configurations which show resemblance of the picking line system described
in this paper are discussed in this section. These include carousel systems, synchronized zone
order picking as well as previous studies on unidirectional picking lines. Some less similar, but
still relevant configurations are also discussed.

A carton order picking operation with a similar re-slotting framework to the order picking system
presented in this paper was investigated by Kim & Smith [9]. Different SKUs were picked on
different days with re-slotting occurring during the night. Each zone comprised of a single aisle
with uniform slots and is operated by a single picker. Pickers collect pending orders from a
starting position at one end of the aisle and walk down the aisle picking required SKUs directly
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into cartons. Completed cartons are placed on an adjacent conveyor and are conveyed either to
the dispatch area or another zone if SKUs from that zone are required to fulfil the order. Once
the carton is placed on the conveyor the picker walked back to the start to collect a new order.
The total walking distance for an order in a zone is thus twice the distance from the starting
position to the furthest SKU. Kim & Smith [9] introduced a mixed integer programming (MIP)
formulation to minimise the walking distance and did not consider work balance. The MIP
formulation was not solvable and three further heuristic approaches were introduced, namely a
sequential steepest descent neighbourhood slotting heuristic, a correlated slotting heuristic and
a simulated annealing slotting heuristic. The simulated annealing slotting heuristic showed the
best results The approaches by Kim & Smith [9] cannot be used in this study due to the cyclical
structure of the picking lines and thus the focus is shifted to carousel systems.

A carousel is an automated storage and retrieval system typically consisting of a number of
shelves which are linked together and rotate, usually in both directions, presenting stock to
pickers. Carousel systems show many similarities to picking lines due to their cyclical nature.
Hassini [6] provides an extensive literature review on carousel systems and expands on many
carousel related systems and solution methodologies for order sequencing and SKU arrangement
on carousels. In all cases, however, a stochastic set of orders is modelled for each planning
horizon in contrast to the sets of deterministic orders found in wave picking.

Litvak & Maia [10] further provides an overview of research on the performance evaluation and
design of carousel systems. Litvak & Maia [10] discusses problems with multiple carousels but
with a single picker only. Emerson & Schmatz [4] mentions a carousel configuration consisting of
22 carousels where each pair of carousels has its own picker (thus 11 in total), but the problem
of assigning SKUs to carousel bins which is relevant here was not addressed. Thus the focus
shifts to unidirectional picking lines.

Matthews & Visagie [12] considered the sequence in which orders are passed to pickers for a
fixed arrangement of SKUs while minimising walking distance. An integer programming (IP)
formulation was developed using the concept of a maximal cut which generates a solution within
one pick cycle of a lower bound. The arrangement of SKUs around the picking lines to minimise
total walking distance was considered [14]. Two IP formulations were proposed for determining
a lower bound on walking distance, both of which were not solvable for typical real life problem
instances. A maximal SKU (a SKU with the most stores requiring it) was identified as a lower
bound. Several heuristic approaches were tested, including the organ pipe and greedy heuristics.
These heuristics are known to be optimal for some carousel systems [20, 21]. The results were
compared to a set of historical arrangements and a set of random arrangements. A conclusion
was that there is a minimal marginal benefit to better arranging SKUs in a picking line if the
deterministic set of orders are sequenced correctly.

Matthews & Visagie [15] focussed on assigning DBNs to available picking lines for a single day
while minimising the total walking distance. Due to the computational complexity of sequencing
orders and the minimal impact of arranging SKUs on a picking line the maximal SKU was used
as an estimate of total walking distance. The objective was therefore to minimise the sum of
all the sizes of the maximal SKUs over all picking lines while assigning all scheduled DBNs
to available picking lines. Only after all the DBNs have been assigned to picking lines using
this approximation would the actual number of cycles traversed be calculated by arranging the
SKUs with a greedy approach and solving the order sequencing problem. An IP formulation was
introduced to assign DBNs to picking lines which was not solvable within a reasonable time for
real life problem instances. A greedy phased insertion approach (GP) was therefore developed
and compared to historical results. Significant improvements were made in terms of walking
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distance compared to historical cases. However, the number of small cartons produced increased
and picking waves were created which needed an undesirable number of pallet movements to
populate the picking line with SKUs.

Matthews & Visagie [16] considered correlations between DBNs to assign them to available
picking lines using a phased greedy insertion approach. It was shown that using correlations
significantly reduced the number of small cartons produced with a small increase in walking
distance compared to minimising the sum of the sizes of maximal SKUs. However, large picking
lines were still generated which required an undesirable number of pallet movements to populate
them.

The parallel nature of the picking lines shows many similarities to synchronised zone picking.
Some studies have been published concerning work balance between synchronised zones. Jane
& Laih [8] considered SKU assignment in a manual, synchronized zone, pick by light order
picking system. Stock requirements for each zone would be picked independently within each
zone followed by order consolidation. The zone which required the most time to pick its stock
requirements for the set of scheduled orders would therefore determine the overall time required
to pick the entire set of orders across all the zones. The time required to pick a set of orders
is therefore determined by the zone which requires the longest time or has the most work for
pickers. The objective was thus to balance work between zones to manage the most dense zone.
Jane & Laih [8] used a similarity measure between SKUs – measured as the number of orders
requiring both SKUs – and developed a formulation which minimised the similarities between
SKUs within the same zone. Work is balanced between zones by minimising similarities within
zones resulting in orders that require a more evenly distributed number of SKUs from each zone.
A mathematical formulation was presented which was solved by means of a heuristic approach.

Garfinkel [5] considered both synchronized and sequential zoned order picking systems and
minimised the number of zones visited to pick orders. Normally walking distance would be
minimised but Garfinkel [5] minimised the number of zones visited to pick orders. Garfinkel [5]
suggests that minimising the number of zones visited would be beneficial in cases where only
a few SKUs are required per order, batching is not desirable and sorting is expensive. This
approach is not conducive to the order picking system in this paper due to the presence of wave
picking and the large number of SKUs required by stores.

Although Jane & Laih (2005) as well as Garfinkel [5] considered balancing work between zones
this is not suitable for the order picking system considered in this paper. Merely balancing work
between picking lines would be undesirable as in most cases this would yield worst case scenarios
in terms of walking distance as each picking line is assigned a SKU with a large maximal SKU.
Moreover, it has been shown by Matthews & Visagie [16] that increasing similarities within
picking lines improves the goal of reducing the number of small cartons generated.

SKU slotting in literature focuses on minimising overall picking time. Manzini [11] used SKU
correlations to assign SKUs to storage locations in a DC with two sets of storage racks orthogonal
to each other. A composite routing strategy was used by a set of picking vehicles with finite
capacity. Several heuristic approaches to solve the assignment problem were proposed. Due to
the layout of the DC work balance was not an issue and only total picking time was considered
as a performance measure and is thus not usable in the context considered here.

Accorsi et al. [1] considered both SKU allocation (size of space allocated to a SKU) and SKU
assignment (location of a SKU) in a forward pick area. The objective was to reduced the overall
travel distances for both picking and restocking. Several assignment and allocation approaches
were compared using simulation and what-if analysis. They concluded that considering both
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problems simultaneously decreases the overall restocking distance and cost. Although both the
picking and restocking operations are considered the restocking did not follow a wave principle
and only overall movement was considered. These findings are thus not suitable for the order
picking system considered in this paper.

6.3 Models and algorithms

The problem considered in this paper may be seen as a generalised assignment problem with
three desirability criteria. A set of DBNs of various sizes must be assigned to a set of picking
lines while minimising walking distance, reducing the number of small cartons produced and
avoiding a large number of stock movements to build any one picking line for a wave of picking.
Matthews & Visagie [15] showed that the maximal SKU can be used as an estimator for the total
walking distance. However, the actual number of cycles traversed by pickers must be calculated
after each assignment is finalised. After consultation with PEP and following a previous study
by Matthews & Visagie [15] the number of small cartons will be estimated by calculating the
number of orders which require less than 0.006 m3 (approximately the size of a typical shoe
box) of stock. The warehouse management system (WMS) at PEP currently does not record
and store the individual pallet movements and thus the physical volume of stock required to
fulfil all the orders in a wave is used as a proxy. This data is available in the WMS and will
therefore be used as a measure of the number of stock movements required to build a picking
line1.

Using volume as a measure of the number of stock movements for a wave capacity (C) is
introduced. It is desirable that there should always be less than C cubic meters of stock
assigned to a single picking line for a wave of picking. A formulation by Matthews & Visagie [15]
is adapted to assign DBNs to picking lines while ensuring that no picking line has more than
C m3 of stock. This formulation assigns DBNs while minimising the sum of the sizes of the
maximal SKUs. An additional capacity constraint is now added to limit the volume of stock
assigned to a picking line. The following parameters have to be set in the model. Let

L be the set of all picking lines with elements l,

|l| be the number of SKU locations available for picking line l,

D be the set of all DBNs with elements d,

|d| be the number of locations required by DBN d,

dde be the size of the maximal SKU associated with DBN d,

d̃ be the total volume of stock associated with DBN d and

C be the maximum allowable volume on a picking line.

Moreover, two sets of variables are needed to formulate the assignment of DBNs to picking lines.
Let

xdl =

{
1 if DBN d is assigned to picking line l
0 otherwise

and

yl as the size of the maximal SKU for picking line l.

1All models may be easily adjusted should the number of stock movements required for a wave become
available.
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In terms of these symbols the objective is to

minimise
∑
l∈L

yl (6.1)

subject to ∑
l∈L

xdl = 1 d ∈ D, (6.2)∑
d∈D

(xdl · |d|) = |l| l ∈ L, (6.3)

yl ≥ xdl · dde d ∈ D and l ∈ L, (6.4)∑
d∈D

(xdl · d̃) ≤ C l ∈ L (6.5)

xdl ∈ {0, 1} d ∈ D and l ∈ L, (6.6)

yl ≥ 0 l ∈ L. (6.7)

The objective function (6.1) minimises the sum of the sizes of all maximal SKUs for each picking
line. Constraint set (6.2) assigns each DBN to a single picking line while constraint set (6.3)
ensures that the capacity of each picking line is not exceeded. The size of the maximal SKU for
each line is determined by constraint set (6.4). The maximum volume for each picking lines is
set with volume capacity constraint set (6.5).

Computational results by Matthews & Visagie [15] showed that Formulation (6.1)–(6.5) is not
solvable in a reasonable time (within 10 minutes) for problem instances with more than three
picking lines. Matthews & Visagie [15] reduced computational times by proposing a phased
greedy heuristic (GP). Experimental results showed that using a phased greedy approach with
two binding capacity constraints, the number of locations and volume, rarely yielded feasible
solutions. A segmentation methodology (SEGC) is therefore introduced. Picking lines are seg-
mented into clusters and DBNs are first assigned to a cluster of picking lines. DBNs are later
assigned to a specific picking line within the cluster using independent instances of Formula-
tion (6.1)–(6.5). This process is illustrated in Figure 6.3. The following parameters are defined
to model the assignment of DBNs into picking line clusters. Let

I be the set of all of clusters with elements i,

Li be the set of picking lines in cluster i,

‖Li‖ be the total number of SKU locations available for cluster i,

|Li| be the number of picking lines in cluster i.

The following variables are defined to model the assignment of DBNs to clusters. Let

x̂di =

{
1 if DBN d is assigned to cluster i
0 otherwise

and

ŷi as the size of the maximal SKU for cluster i.
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SKUs

Picking lines

Figure 6.3: A schematic representation of the segmentation of picking lines into cluster and the as-
signment of DBNs. Each shape represents a SKU and clusters of the same shape with the same shading
represent DBNs.

In terms of these symbols the objective is to

minimise
∑
i∈I

ŷi, (6.8)

subject to ∑
i∈Li

x̂di = 1 d ∈ D, (6.9)

∑
d∈D

(xdi · |d|) = ‖Li‖ i ∈ I, (6.10)

ŷi ≥ x̂di · dde d ∈ D and i ∈ I, (6.11)∑
d∈D

(x̂di · d̃) ≤ C · |Li| i ∈ I, (6.12)

x̂di ∈ {0, 1} d ∈ D and i ∈ I, (6.13)

ŷi ≥ 0 i ∈ I. (6.14)

The objective function (6.8) minimises the sum of the sizes of all maximal SKUs for each cluster.
Constraint set (6.9) assigns each DBN to a single cluster while location capacity constraint
set (6.10) ensures that the capacity of each cluster is not exceeded in terms of locations. The
size of the maximal SKU for each cluster is determined by constraint set (6.11) and the volume
per cluster is constrained with average volume capacity constraint (6.12).

Based on the computational times for Formulation (6.8)–(6.12) it is proposed that three clusters
are used. Therefore a set of picking lines should be segmented into at most three clusters. Should
a cluster contain more than three picking lines it would then undergo a further segmentation
using Formulation (6.8)–(6.12) again until all clusters consist of no more than three picking lines.
Note that using this segmentation approach does not guarantee a solution which will satisfy
location capacity constraint set (6.3) for all of the clusters. Should this occur additional side
constraints may be introduced which spread the small DBNs (|d| = 1) between the picking line
clusters. However, for all problem instances a solution was found which satisfied constraint (6.3).
In addition, the assignment of DBNs to clusters using Formulation (6.8)–(6.12) may force volume
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capacity constraint set (6.5) to be infeasible for a cluster. Should this occur the value of C is
temporarily increased incrementally by a predefined value until a feasible solution is found.
This approach was used as constraint set (6.12) is desirable but not binding from a practical
implementation perspective and may thus be viewed as a soft constraint.

The primary goal of segmenting picking lines into clusters is to reduce the maximum volume
assigned to picking lines. In some problem instances greedy insertion approaches naturally
generate solutions which satisfy volume constraint set (6.5) which becomes non-binding due to
the characteristics of the DBNs in those problem instances. It is therefore proposed to inte-
grate a greedy insertion approach together with the segmentation methodology. Matthews &
Visagie [16] introduced the Adjacency approach (ADT) which used correlations when inserting
DBNs. A correlation measure is calculated for each pending DBN as the number of stores re-
quiring the pending DBN and at least one already inserted DBN. The pending DBN with the
highest measure or score is then inserted into the picking line. The use of correlations yielded
similar results to the GP approach but with a significantly lower number of small cartons pro-
duced. Therefore the ADT insertion approach is integrated with the segmentation formulation.
Figure 6.4 illustrates this hybrid assignment algorithm (HASC) where the correlations approach
(ADT) introduced by Matthews & Visagie [16] is used. Initially a single iteration of the ADT
heuristic is run and if the solution satisfies the volume capacity constraints that solution is used.
Should the volume capacity constraints be violated the segmentation formulation is used and
the set of picking lines are segmented into clusters of two or three picking lines. The DBNs
in each of these clusters are then assigned independently by using the ADT approach. If the
solution violates the volume capacity constraints an IP formulation is used to assign DBNs. In
some cases after solving the IP formulation the capacity constraints may still be infeasible in
which case the capacity threshold is increased in a similar fashion to the segmentation phase.

6.4 Results

To test the segmentation approaches the real life historical problem instances introduced by
Matthews & Visagie [15] were used and are available online [13]. The data consists of seven
scenarios described in Table 6.1 each of which has a different number of picking lines per problem
instance which aids in the comparison of solution approaches. All testing was performed on an
Intel i7 2GHz processor with eight GB ram running the Windows 7 operating system. All
mathematical formulations were solved with CPLEX 12.3 and coded in AIMMS 3.12 [7, 17].

Number of lines per day Number of problem instances Number of DBNs

2 61 2592
3 53 3437
4 49 4146
5 38 4109
6 32 4161
7 22 3177
8 14 2148

Table 6.1: The composition of the historical data scenarios [13].

A comparison in terms of cycles traversed between the HAS300 approach the historical case,
the ADT approach and the GP approach is summarised in Table 6.2. For comparison purposes
a pure segmentation approach (SEG∞) using both IP formulations without volume capacity
constraint sets (6.5) and (6.12) is also tested and the results presented.
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Figure 6.4: A flow chart representation of the hybrid assignment approach.

Scenario His GP SEG∞ SEG300 ADT HAS300

2 7168 6019 6046 6273 6193 6387
3 9289 7515 7551 7917 7710 8080
4 11532 9015 9090 9693 9282 9847
5 11259 8618 8653 9094 8922 9248
6 10706 8129 8154 8620 8363 8758
7 8412 6366 6386 6656 6540 6749
8 6011 4715 4729 4885 4847 4975

Table 6.2: A summary of the total walking distance (in kilometres) between the historical assignments
(His), a segmentation approach with no volume capacity (SEG∞), a segmentation and hybrid approach
with a capacity of 300 m3 (SEG300, HAS300), and the greedy phased (GP) and adjacency (ADT) ap-
proaches.
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The SEG∞ approach is marginally outperformed by the GP approach in terms of total walking
distance which is the best known approach to minimise the number of cycles traversed. Although
the HAS300 approach has additional constraints it still outperforms the historical case. The ADT
approach outperforms the HAS300. The difference in solution quality only occurs for problem
instances where the ADT generates a solution which violates the volume capacity constraints. In
these cases the HAS300 approach solves a more constrained problem and therefore the objective
function value can at best be the same.

For further clarity on the effect of the volume capacity constraints on the number of cycles
traversed, all problem instances where the ADT generates an initial solution which violates
the volume capacity constraints were considered separately. The summary of these results are
given in Table 6.3. The greatest impact of capacity constraints occurs for scenarios with four
or less picking lines where the walking distance is increased by 15% compared to the SEG∞
approach. However, the total walking distance using the HAS300 approach is still 14% less than
the historical assignments.

(Scenario, Number of problem instances) His GP SEG∞ SEG300 ADT HAS300

(2, 61) 1955 1542 1551 1772 1574 1768
(3, 53) 2968 2184 2199 2551 2216 2586
(4, 49) 5351 3970 4013 4590 4041 4606
(5, 38) 5470 3920 3939 4376 4041 4367
(6, 32) 6298 4497 4510 4967 4578 4973
(7, 22) 5057 3565 3576 3845 3626 3834
(8, 14) 2958 2124 2129 2286 2151 2278

Table 6.3: A summary of the total walking distance (in kilometres) between the historical assignments
(His), a segmentation approach with no volume capacity (SEG∞), a segmentation and hybrid approach
with a capacity of 300 m3 (SEG300, HAS300), and the greedy phased (GP) and adjacency (ADT) ap-
proaches for problem instances where the ADT does not find a solution which satisfies all volume capacity
constraints.

The computation times for all of the algorithms are summarised in Table 6.4. The best per-
forming algorithm is the GP. The segmentation approaches show consistent computation times
and are all solvable within one minute.

A summary of the effects on the number of small cartons produced is given in Table 6.5.
The HAS300 approach has a smaller number of small cartons produced than the GP approach
although the ADT approach still has the best performance for most scenarios. Note that for the
scenario with two picking lines per day the inclusion of volume capacity constraints improves
the number of small cartons produced. This is attributed to a smaller number of lines to which
excess volume must be distributed and therefore a smaller number of picking lines with small
volumes of stock assigned to it.

A graphical representation of the spread of volume over all the picking lines for scenarios with
four and five picking lines respectively is given in Figure 6.5. The median (50th percentile) Q1
(25th percentile) and Q3 (75th percentile) are shown as the horizontal lines in the box plot.
Individually plotted points are outliers that lie outside 1.5 times the inter quartile range (Q3-
Q1) from either Q1 or Q3. The exposed horizontal lines indicate the minimum and maximum
volumes for non-outlier picking lines. The inclusion of volume capacity constraints thus reduced
the number and size of outlying waves in terms of volume. When using the HAS300 approach
there are waves which have in excess of 300 m3 of stock. This may be attributed to problem
instances where a segmented set of DBNs cannot be assigned to individual picking lines without
violating the volume capacity constraints with a desired threshold of 300 m3. The threshold
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Algorithm Picking lines per problem instance µ σ Max Q1 Median Q3 Min

2 0.01 0.00 0.02 0.01 0.01 0.01 0.00
3 0.01 0.01 0.03 0.02 0.01 0.01 0.00
4 0.02 0.01 0.04 0.03 0.02 0.02 0.01
5 0.07 0.23 1.43 0.04 0.03 0.02 0.02
6 0.09 0.30 1.75 0.05 0.03 0.03 0.02
7 0.21 0.52 1.93 0.05 0.05 0.03 0.02

G
P

8 0.39 0.87 2.53 0.06 0.04 0.03 0.02

2 1.86 0.60 3.07 2.35 1.91 1.41 0.65
3 3.91 1.34 7.11 4.86 3.89 2.96 1.46
4 3.48 1.31 6.32 4.27 3.28 2.56 1.29
5 8.43 2.46 15.04 10.13 7.72 6.70 4.09
6 19.31 50.63 296.30 13.02 9.97 8.29 5.99
7 40.13 94.95 357.99 12.01 11.14 9.44 6.22

A
D

T

8 87.58 206.04 734.06 14.36 12.81 11.45 7.08

2 0.03 0.04 0.28 0.03 0.02 0.02 0.00
3 0.42 0.41 1.72 0.75 0.19 0.14 0.09
4 0.10 0.03 0.22 0.11 0.09 0.08 0.05
5 1.01 0.65 2.78 1.42 1.07 0.34 0.16
6 1.72 1.28 6.68 2.11 1.53 0.97 0.31
7 3.68 3.16 13.67 4.24 3.38 1.37 0.41

S
E

G
∞

8 6.07 6.91 27.19 6.46 4.03 1.54 0.48

2 0.03 0.01 0.05 0.03 0.03 0.02 0.00
3 0.47 0.44 1.98 0.78 0.23 0.16 0.09
4 0.11 0.03 0.22 0.12 0.11 0.09 0.08
5 0.97 0.62 2.70 1.42 0.97 0.30 0.11
6 2.05 2.53 14.17 2.20 1.60 0.68 0.25
7 6.06 8.92 32.81 4.24 3.27 1.64 0.30

S
E

G
3
0
0

8 60.54 208.60 785.22 6.99 4.98 2.48 0.52

2 0.77 0.37 1.65 1.05 0.72 0.52 0.22
3 2.71 1.85 8.50 3.09 2.28 1.42 0.56
4 4.07 1.96 10.19 4.93 3.72 2.65 1.15
5 6.71 3.52 15.15 9.29 5.58 3.96 2.63
6 10.36 6.30 37.66 11.84 8.62 7.19 2.98
7 13.19 5.72 29.46 15.78 11.54 9.58 5.73

H
A

S
3
0
0

8 19.96 19.13 76.13 19.07 12.94 10.44 6.15

Table 6.4: A comparison of computational times in seconds between a segmentation approach with
no volume capacity (SEG∞), a segmentation and hybrid approach with a capacity of 300 m3 (SEG300,
HAS300), and the greedy phased (GP) and adjacency (ADT) approaches. Standard measures of spread
are presented including the 25th percentile (Q1) and the 75th percentile (Q3).

Scenario His GP SEG∞ SEG300 ADT HAS300

2 0.05% 0.14% 0.14% 0.11% 0.09% 0.07%
3 0.04% 0.13% 0.12% 0.11% 0.08% 0.08%
4 0.03% 0.12% 0.12% 0.1% 0.07% 0.06%
5 0.03% 0.13% 0.13% 0.11% 0.06% 0.07%
6 0.04% 0.12% 0.12% 0.1% 0.06% 0.06%
7 0.03% 0.13% 0.12% 0.1% 0.06% 0.07%
8 0.03% 0.13% 0.12% 0.11% 0.06% 0.07%

Table 6.5: A comparison of the number of small cartons produced between a segmentation approach
with no volume capacity (SEG∞), a segmentation and hybrid approach with a capacity of 300 m3 (SEG∞,
SEG300), the historical assignments (His) and the GP and ADT approaches. The results are presented
in terms of the percentage of total volume of stock attributed to orders with less than 0.006 m3 of stock.

Stellenbosch University  https://scholar.sun.ac.za



6.5. Conclusion 113

His GP SEG∞SEG300 ADT HAS300

0

200

400

600

800

1,000

Scenarios with four picking lines
per problem instance

V
ol

u
m

e
in

m
3

His GP SEG∞SEG300 ADT HAS300

0

200

400

600

800

Scenarios with five picking lines
per problem instance

V
ol

u
m

e
in

m
3

Figure 6.5: A graphical box-plot representation of the distribution of the total volume for each picking
line after scheduling for scenarios with four and five picking lines per problem instance. The median
(50th percentile), Q1 (25th percentile) and Q3 (75th percentile) are represented as the horizontal lines in
the closed box. The individually plotted coordinates are associated with the outliers which are either 1.5
times the inter quartile range (IQR) smaller than Q1 or larger than Q3. The whisker lines indicate the
minimum and maximum number of cycles for non-outliers.

is therefore marginally increased until a feasible solution is found. The distribution of volume
shows similar patterns for the other scenarios which are not presented here.

Problem instances were classified or grouped according to their average volume per picking
line to illustrate the spread of volume between different problem instances (days) within each
scenario. Figure 6.6 illustrates the number of problem instances within each of these volume
groups. The results suggest that there is scope to reduce the number of days which have a
high volume of scheduled DBNs. By changing the strategy in which DBNs are scheduled across
different days in a planning horizon the effects of the capacity constraints could be alleviated.

6.5 Conclusion

A DC with an order picking system which uses a unique forward picking area comprising of
unidirectional picking lines was investigated. The DC has 12 picking lines on which all piece
picking is performed. During the planning phase SKUs are grouped together into DBNs if they
are of the same product but have different sizes. All the store requirements for a DBN are then
established for a specific planning period. DBNs are assigned to picking lines where all the
store requirements are picked in a single operation or wave. Three goals were considered when
assigning DBNs to waves. In literature the third issue of a large number of pallet movements
required to build picking lines was not addressed. Managing the number of pallet movements
required to build picking lines while minimising walking distance and reducing number of small
cartons produced is therefore addressed in this paper.

Due to lack of captured data the total volume of stock sent to a picking line, instead of the actual
number of pallet movements, was used as a measure of the number of pallet movements. An MIP
formulation was introduced which assigned DBNs to picking lines while minimising an estimator
for the number of cycles traversed (maximal SKU) and constraining the total volume assigned
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Figure 6.6: The number of problem instances in each scenario for each average volume category.

to the picking line. This MIP was not solvable in a reasonable time and thus a segmentation
approach was introduced which sequentially segmented picking lines and DBNs into clusters.
A hybrid assignment approach was developed which incorporated both an insertion approach
using correlations and the MIP formulations for segmentation to reduce the number of small
cartons produced.

The HAS300 achieved walking distance on average 15% better than historical assignments over
the historical problem instance set and achieved a level of small cartons produced similar to the
ADT approach. The use of volume capacity constraints improved the distribution of volume
over picking lines such that the volume assigned to picking lines were all within a given feasi-
ble threshold. Following the results presented here it is proposed that PEP uses the HAS300

approach to assign DBNs to picking lines.

Although volume was used as a measure for the number of pallet movements required to build
a picking line both IP formulations – segmentation and normal – can easily be adapted to
incorporate pallet movements or the total pallet movement cost/time. It is therefore suggested
that this data be captured and included in the WMS.

The distribution of volume between problem instances in each scenario is not uniform. This
result suggests that further improvements may be made when scheduling DBNs into different
days or shifts. A natural progression of these models is to consider the scheduling of DBNs
across days taking into account building costs, picking costs and the out-of-DC dates of DBNs.
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CHAPTER 7

Implementation

In Chapter 3 several approaches to the SLP were investigated. Solution approaches were com-
pared using total walking distance only. Two mathematical formulations were introduced to find
a lower bound to the SLP in terms of walking distance. These formulations built on the maxi-
mal cut framework introduced by Matthews & Visagie [2] for the OSP. It was shown that the
problem is too computationally intensive to be solved exactly and several heuristic approaches
were therefore investigated.

Included in the set of heuristic approaches were two approaches known to be optimal for some
carousel systems, namely the greedy approach (GS) and organ pipe approach (OPA). Further-
more an adjacencies approach (GA) was tested as well as the classroom discipline heuristic (CD)
introduced by Hagspihl & Visagie [1]. All of the heuristic approaches performed approximately
equally well and collectively outperformed the historical arrangements by on average 2% and
up to 15% in terms of walking distance.

When comparing the initial improvements made by only solving the OSP (on average 20%)
to the solutions obtained by solving the SLP as well (an additional 2%) the marginal impact
of solving the SLP is small. Moreover, a set of random solutions was also generated for each
test instance. It was shown that the range of objective function values for this set of random
solutions was also small. Any approach to the SLP which has a manageable congestion level can
therefore be used in a decision support system (DSS). It is suggested that al of the heuristics be
run within the DSS and the best solution presented to the manager as the computational time
for each heuristic is negligible. Managers could then change the arrangement if they so wish.

Following the study of the SLP the PLAP was investigated. An exact solution approach is
not solvable due to the compounding complexity of sequentially solving the PLAP, SLP and
OSP. The maximal cut formulation can only be used to evaluate the walking distance of a final
solution to the PLAP. The formulation is too computationally intensive to evaluate all candidate
solutions for a PLAP solution methodology. The walking distances of candidate solutions to the
PLAP were therefore compared using the maximal SKU for each picking line as an estimator
of the walking distance. The exact walking distance was only calculated for the final solutions
obtained by any PLAP solution approach.

An initial approach to the PLAP which minimised the size of the maximal SKU within each
picking line is introduced in Chapter 4. A mathematical formulation with this objective is
introduced which is not solvable for real life data instances. A phased greedy insertion approach
(GP) was therefore introduced which generated feasible solutions for all test instances. It was
shown that minimising the maximal SKU reduced the total walking distances of pickers by
on average 22%. Trade-offs, however, exist between the three goals discussed in Section 1.4,
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namely walking distance, picking line size and carton utilisation. Minimising the maximal SKU
generated a large number of large undesirable picking lines and increased the number of small
cartons.

Correlation measures between DBNs were used to assign DBNs to picking lines to reduce the
number of small cartons. Using the phased greedy insertion methodology four different correla-
tion measures were introduced in Chapter 5. It was shown that the correlation approaches are
marginally (on average 2%) out performed by the GP approach in terms of walking distances.
However, the number of small orders indicating small cartons was halved and the size of the
large picking lines was marginally reduced.

Although the number of small cartons is at a satisfactory level using correlation measures the
number and size of large picking lines was still undesirable. A mathematical formulation using a
segmentation framework was therefore introduced in Chapter 6 in an effort to introduce volume
capacity constraints. Using this segmentation approach all data instances were solved and
feasible solutions obtained no more than 5% of the picking lines exceeded the volume threshold
of 300 m3 for any one scenario. The walking distance of pickers was on average 15% less than the
historical assignments. Carton utilisation, however, was similar to the GP approached. A hybrid
approach (HAS300) incorporating correlation measures as well as a segmentation approach was
therefore introduced. This approach showed the most favourable trade-off between all of the
PLAP objectives and is selected for use in the DC.

All solution approaches to the PLAP were compared using test instances discussed in Chapter 2.
Although these test instances are adequate to compare different solution approaches there are
a number of implementation practicalities not represented in the test data which should be
considered before implementing the HAS300 approach in a DSS. These implementation prac-
ticalities are further discussed in Section 7.1. A proof of concept interface is introduced and
is discussed in Section 7.2. The interface addresses these implementation considerations and
provides a framework for future WMS developments.

7.1 Implementation considerations

It was assumed that all SKUs were assigned a single location in each picking line when generating
test instances for the PLAP. Although this assumption was shown to have only a small impact
on the test results, future implementations of the HAS300 approach should handle cases where
multiple locations are assigned to SKUs for additional stock. DBNs typically consist of multiple
SKUs and thus typically require multiple locations in a picking line. The HAS300 (and all
other PLAP approaches) therefore assign DBNs of various sizes (|d|) to picking lines and can
accommodate SKUs requiring multiple locations by increasing the DBN size.

Following the analysis comparing available locations with SKU volume in Section 2.2, it was
shown that an automatic procedure for assigning multiple locations to SKUs based on volume
is not possible with the current data. The actual number of locations assigned to a SKU must
therefore be assigned manually by a manager. Provision must therefore be made in a DSS for
manual adjustments of this parameter (by line managers) before the HAS300 assigns DBNs to
picking lines.

The HAS300 uses volume capacity constraints to reduce the number of picking lines requiring
large numbers of pallet movements. Future developments in the current WMS may allow for
the tracking of pallets in the DC. Provision should therefore be made to use this more accurate
data in the future. The mathematical structure of the volume capacity constraints in the
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HAS300 approach can be changed to include total pallet movements by adjusting the input
parameters. The actual distance from different storage locations (floor and rack storage) to the
physical picking lines can also be used to estimate the required build time for each picking line.
Estimated building time can therefore be used as a measure of the picking line size. Applying a
capacity constraint on the total build time may also improve general stock movement efficiency
by reducing total pallet movement distances.

A further adjustment may be made to the HAS300 formulation by adding additional capacity
constraints. For example, the total number of picks in a picking line may be more evenly
distributed by applying a capacity on each picking line. This may improve picker moral as work
is more evenly balanced between picking lines. Additional analysis and testing should, however,
be completed on the performance of such formulations before implementation.

Before arriving at a final set of test instances for the PLAP a number of exclusions were made
on the extracted data. Picking lines which were set up on empty floor space were excluded to
reduce the effects of management bias. These picking lines consisted of very few SKUs which
often required special attention – such as SKUs for new stores. Provision must therefore be
made in a DSS for managers to manually set up picking lines on empty floor space.

Managers currently schedule and assign DBNs to picking lines using a manual paper based
system although a more automated WMS is in the process of design and implementation. DBN
pick instructions are printed and managers organise these instructions into piles for each wave.
There is little to no data visibility for the mangers using this system and the effects of different
assignment decisions cannot be quickly calculated and evaluated. Moving from a manual to
a computerised DSS requires change management. The interfacing between managers and the
DSS should aid in the integration of management knowledge and expertise, data visibility and
algorithmic speed and accuracy. An easy to use interface offering flexibility and accuracy is thus
required.

A proof of concept DSS interface is proposed in this section to address the implementation
issues discussed. This interface is coded in JAVA, an object orientated programming language
often used for user interface and web design [3]. The design, use and future improvements to
this interface are discussed in more detail in the following section.

7.2 User interface

A proof of concept interface for an order picking DSS was designed to illustrate and provide
a framework for the implementation of the HAS300 approach. The main page of the interface
is illustrated in Figure 7.1 and consists of a picking line data panel on the left, a DBN data
panel in the middle and a controls panel on the right. This page is the first point of interaction
between the user and the DSS.

In the “controls” panel there are four buttons shown in Figure 7.2. The “Get SKUs” button
retrieves new DBN pick instructions from the planning department. The “Add picking line”
button adds a picking lines to the pending list of picking lines shown in the picking line data
panel. The “Auto Assign” button implements the HAS300 approach. Finally the “Update”
button calculates the number of cycles required to pick the pending picking lines and adjusts
the metadata for each pending picking line.

Once the DBN pick instructions have been obtained from planning DBN and SKU level data
is visibly provided to the user to aid in decision making. The urgency of DBNs is visualised
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Figure 7.1: A screen shot of the main page for the proof of concept interface for the order picking DSS.

Figure 7.2: A screen shot of the controls panel in the main page of the proof of concept interface for
the order picking DSS.
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using different colours depending on how soon a DBN needs to be processed. DBNs that are
due within the next two days are highlighted red and DBNs highlighted yellow are due within
the next four days. Additional data fields are also provided and include the

• DBN number,

• SKU number,

• pick type,

• DBN max SKU – The size of the maximal SKU associated with this DBN,

• # stores – The number of stores requiring this SKU,

• # locations SKU – The number of locations required by this SKU,.

• # locations DBN – The number of locations collectively required by the SKUs in the
DBN,

• deadline and

• description.

The SKUs may be sorted according to anyone of these data fields. This gives the user additional
data visibility and improves the user experience. The number of locations per SKU field can be
adjusted by the user and is illustrated in Figure 7.3. This functionality addresses the need for
managers to manually adjust the number of assigned locations to SKUs with large volumes of
stock.

Figure 7.3: A screen shot of the proof of concept interface for the order picking DSS illustrating how
the user can change the number of locations assigned to a SKU.

Picking lines are added to the pending list using the “add picking” line button when the user
plans waves of picking. Empty picking lines are added with a default capacity of 56 locations.
This capacity can be changed by the user as needed. DBNs can be added to these pending
picking lines using the auto-assign button or by manually assigning DBNs. The auto-assign
button will automatically scheduled the top n DBNs according to out-of-DC dates which fit
into the pending picking lines. These DBNs are then assigned to individual picking lines using
the HAS300 approach to the PLAP.

DBNs are manually assigned to picking lines by selecting their entries and right clicking on
the selection. A popup menu will appear providing an option to move the DBNs to a pending
picking line. This process is shown in Figure 7.4. When a SKU is moved to a picking line all
the SKUs within the same DBN will also be moved to that same picking line. This ensures that
DBNs are picked in their entirety in a single wave. This functionality also allows for managers
to manually build special case picking lines on the floor of the DC.

Once DBNs have been assigned to picking lines the walking distance and an estimate for the
total picking time for a team of eight pickers1 can be calculated using the “update” button in

1The DSS may easily be modified to allow for a user to assign a custom number of pickers to each picking line.
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Figure 7.4: A screen shot the of the popup menu in the proof of concept interface for the order picking
DSS illustrating how to manually assign DBNs to picking lines

the control panel. Picking lines can also be updated individually by right clicking on the picking
line row. This drop down menu is shown in Figure 7.5. A pending picking line can be removed,
exported for processing, updated, filled automatically or viewed.

Figure 7.5: A screen shot of the popup menu in the main page in the proof of concept interface for the
order picking DSS illustrating the order picking DSS picking line options.

The “view picking line” button will open up a picking line specific window shown in Figure 7.6.
This window consists of a picking line data panel in the top left corner, a SKU data panel on
the right and an actions panel in the bottom left corner. The picking line can be updated or
exported for building using the respective button in the actions panel.

The actual locations for the different SKUs can be set in the picking line window by moving
SKUs up and down the list. DBNs can also be removed from the picking or sent to another
picking line. This is achieved by selecting a set of SKU entries and right clicking on them and
selecting the appropriate option from the popup menu shown in Figure 7.7.

Using this proposed DSS interface the HAS300 can be integrated into the current WMS. Man-
agers can easily adjust parameters and maintain manual control of DC decisions with improved
data visualisation and performance evaluations. Further functionality can be integrated into
the DSS as more data are recorded and becomes available.

Bibliography

[1] Hagspihl R & Visagie S, 2014, The number of pickers and stock-keeping unit arrangement
on a uni-directional picking line, The South African Journal of Industrial Engineering, 25(3),
pp. 169–183.

Stellenbosch University  https://scholar.sun.ac.za



BIBLIOGRAPHY 123

Figure 7.6: A screen shot of the picking line window in the proof of concept interface for the order
picking DSS.

Figure 7.7: A screen shot of the picking line window in the proof of concept interface for the order
picking DSS illustrating the SKU options.
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CHAPTER 8

Conclusion

A brief summary of this dissertation is provided in this chapter highlighting the major contribu-
tions of the work. In addition final conclusions and remarks are given including recommendations
for PEP. Finally areas of future work which follow on this study are discussed.

8.1 Dissertation summary

A general overview of supply chains and warehousing was provided in Chapter 1. An order
picking system used in a DC owned by PEP Stores Ltd (PEP) was identified. The DC layout
and operations were further discussed in detail, with additional focus given to the order picking
system and management processes associated with it. The order picking system investigated
here makes use of a unique configuration of unidirectional picking lines operating under wave
picking which creates a tiered decision level environment. Three decision tiers were identified
within this system which defined three sub problems, namely the Order Sequencing Problem
(OSP), SKU Location Problem (SLP)and Picking Line Allocation Problem (PLAP). The OSP
focused on sequencing orders for multiple pickers while minimising the total walking distance of
pickers. This subproblem was solved in previous studies and the focus of the dissertation turned
to the SLP and PLAP. The SLP addressed the problem of arranging SKUs on a picking line or
assigning individual SKUs to different locations while minimising the total walking distance of
pickers. The PLAP has a broader scope and addressed the problem of assigning DBNs (or groups
of similar SKUs) to different picking lines to achieve good trade-offs between three objectives
namely, total walking distance, the number of small cartons produced and operational risk due
to the number of waves requiring large volumes of stock to populate picking lines.

In Chapter 2 test problem instances were derived from historical data sources. Both the OSP
and SLP problem definitions are localised to a single wave on a single picking line and historical
problem instances which were used for OSP studies were therefore also used in conjunction with
generated problem instances to test SLP solution approaches. A further set of real life data
was extracted from many data sources at PEP. This data consisted of a representative set of
completed waves of picking covering a connected time period in the DC. Test scenarios were
generated from the data historical extract to test the PLAP. A test framework was developed
to test the SLP and PLAP. In this framework provision was made for features in future studies
such as DBN scheduling problems.

Solution approaches to the SLP were introduced and tested in Chapter 3. Two mathematical
formulations using the results from the OSP studies were introduced in an attempt to produce a
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lower bound. These approaches were, however, not solvable for real life problem instances. Four
heuristic approaches were tested against the historical assignments as well as a set of random
solutions. It was shown that if the OSP is solved there is a marginal gain of on average 2%
when solving the SLP. Furthermore, it was shown that any heuristic could be used to evaluate
the walking distance of a solution to the PLAP. It was proposed that all of the heuristics be run
in the DSS and the best solution presented to the managers. The managers could then change
the arrangement if they so wished which gave them ultimate control of this decision tier.

An initial mathematical formulation was proposed to solve the PLAP in Chapter 4. The size
of the maximal SKU in each picking line is used as an estimator for the total walking distance.
DBNs were assigned to picking lines while minimising the sum of the sizes of the maximal SKUs
in each picking line. Once DBNs had been assigned to picking lines the SLP was solved for each
picking line using a greedy approach before the total walking distance was determined by solving
the resulting OSPs. This mathematical formulation was not solvable for large problem instances
and a phased greedy insertion approach (GP) was introduced. The total walking distance of
pickers reduced by 22% compared to the historical assignments after solving the SLP and OSP.
However, the number of small cartons increased and the number of large picking lines (in terms
of total volume) increased to an undesirable level creating operational risk.

In Chapter 5 phased greedy approaches using correlation measures were introduced to reduce
the number of small cartons produced. Four correlation measures were tested using a greedy
insertion technique and it was shown that the number of small cartons produced can be reduced
with a small increase in walking distance compared to the GP approach. The number of picking
lines requiring a large volume of stock still remained at an undesirable level.

A segmentation approach using mathematical formulations was introduced in Chapter 6 to in-
clude capacity constraints. Picking lines were segmented into clusters of no more than three
picking lines per cluster and DBNs would initially be assigned to a cluster before being assigned
to a specific picking line using a smaller subproblem formulation. Using these capacity con-
straints all of the volume of stock sent to any one picking line was of a satisfactory size with
the number of picking lines requiring a large volume of stock less than the historical assign-
ments. The walking distance was also on average 20% less than the historical assignments. A
further hybrid approach (HASC) was introduced to incorporate correlations with the capacity
constraints. It was shown that this approach yielded the best trade-off between the three goals
of walking distance, the number of small cartons produced and the number of picking lines
requiring a large volume of stock.

Practical implementation issues of the PLAP in the DC were discussed in Chapter 7. The effects
of the assumptions made in Chapter 2 to standardise test problem instances were addressed. A
proof of concept for a user interface was proposed which integrates manger experience, PLAP
solution approaches and the WMS. The proposed approaches to the PLAP are used to calculate
an initial solution which managers could then change if needed. This decision making framework
was proposed for use in the DC. Parts of it are already implemented and functional in PEP’s
WMS.

8.2 Recommendations

In Chapter 3 it was shown that there is a small marginal benefit when solving the SLP if the
OSP is solved correctly. Anyone of the tested heuristics can therefore be used to evaluate the
total walking distance within a picking line.
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Managers currently spread work around picking lines in an attempt to reduce congestion which
resembles the CD heuristic. They also consider other factors such as the position of staging
areas and additional storage space behind locations when arranging SKUs. After consulting
with PEP’s management it is recommended that managers should retain a high level of control
of this decision tier. This would encourage manager ownership of the picking line and reduce the
need for change management. It is therefore proposed that all of the heuristic approaches be run
in the DSS and the best solution proposed to the managers who could change the arrangement
if they so wish.

In Chapters 4 to 6 several approaches to the PLAP were proposed and compared using three
goals. It was shown that a trade-off exists between walking distance, the number of small cartons
produced and the volume of stock assigned to any one picking line. A greedy phased approach
(GP) which seeks to minimise the sum of the sizes of the maximal SKUs for each picking line
was introduced in Chapter 4. This approach minimised the walking distance which generated
picking lines requiring large volumes of stock and was not desirable for implementation. Sev-
eral approaches using correlation measures were introduced in Chapter 5. These approaches
had a small increase in walking distance and reduced the number of small cartons produced,
however, the number of picking lines requiring a large volume of stock was still undesirable for
implementation.

A segmentation approach (SEGC) was introduced in Chapter 6 included volume capacity con-
straints. These constraints helped assign desirable volumes of stock to each picking line. A
hybrid approach (HASC) was further introduced to improve on the number of small cartons
produced by the SEGC approach. This approach used aspects of the ADT correlation approach
as well as the SEGC approach and showed the best trade-off between the three goals. Both the
SEGC and the HASC approaches offer desirable results with respect to all three goals and are
implementable. It is, however, recommended that the HASC should be used to solve the PLAP
in the WMS as it has a more desirable trade-off between the number of small cartons produced
and walking distance for problem instances where capacity constraints are not binding.

A proof of concept interface was designed in Chapter 7 to integrate the HASC approach with
manager decision making and the WMS. It is proposed that this framework be implemented
in the decision making environment in the DC as it allows sufficient manager flexibility and
provides useful data visualisations. The effects of different decisions can quickly be evaluated
and visualised by means of this interface. Moreover, an automatic analytical method would be
used to generate an initial solution which could be changed by management. This allows for
the benefits of automation and human insight.

8.3 Future work

The scope of this dissertation was to describe and address the SLP and PLAP. A natural con-
tinuation of these problems is to consider the scheduling of DBNs during a planing horizon,
typically weekly. Using the out-of-DC dates as a constraint DBNs can be scheduled to match
complimentary DBNs on the same picking line. Focus may also be applied to balancing work-
loads across shifts during the week. Similar to the picking line volume capacity goals for the
PLAP total work (picking by pickers and stock movements by high lifts) should be balanced
across shifts to maintain a constant level of staff and reduce overtime.

The effects of assigning DBNs to different days of the week may be evaluated by formulating
a PLAP problem which includes waves from multiple days in a connected time period. This
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creates a static instance of the DBN scheduling problem where all DBNs to be scheduled in a
time period are known at the start of the time period. A similar clustering framework presented
in Chapter 6 may be used to assign DBNs. Waves from different days should be assigned into the
same cluster. Additional constraints can then be added to ensure that DBNs are not assigned
to a cluster which is scheduled after its out-of-DC date.

Although solving a static scheduling problem provides insights into problem characteristics and
potential effects of new schedules, DBNs are released at the start of each day and not the start of
each week/time period creating a dynamic environment. A proposed approach to this dynamic
problem would be to adjust the current ranking of DBNs, which is done according to out-of-DC
date, and rather assign each DBN into a priority group. For example, group A would consist of
all DBNs which are past their deadline, group B all DBNs due in the next two days, group C all
DBNs due in the next five days and group D all other DBNs. At the start of each day available
picking lines would first be filled with DBNs from group A and only if additional capacity exists
will DBNs from group B be selected. This selection would continue until all capacity is full
or all DBNs have been scheduled. In this way DBNs within the same group may be picked in
a different sequence to their out-of-DC dates. This approach as well as any other approaches
should be tested with a long term simulation which incorporates the dynamic releasing of DBNs
to the DC.

For both the static and dynamic scheduling problems the historical data presented in Chapter 2
can be used to evaluate the effects of different DBN schedules. Moreover, the test framework
presented in Chapter 2 can be used and easily adapted for both scheduling problems.

All three of the different DCs used by PEP run on the same fundamental order picking system
although each DC has a different structural layout. Natural questions surrounding structural
layouts which arise after developing decision making frameworks include:

1. How many locations should picking lines for each layout have?

2. What is the optimal picking line size mix?

3. What should the ratio of picking line space to overall DC space be?

These questions will require extensive research and scenario testing as structural changes are
strategic and cannot be reversed in the short term. Question 1 may be approached by testing
different custom picking line configurations using the historical DBN data presented in Chap-
ter 2. A long term simulation model could be used to evaluate the long term effects of a picking
line mix in Question 2. A DC simulation would be required to evaluate the space allocations in
the DC proposed by Question 3 and would require additional pallet movement analysis. Both
the picking line as well as the storage rack areas would need to be simulated.

One of the special case picking lines mentioned in Chapter 2 are those for new stores. These
picking lines are not suited for the current picking line setup as they consist of a few stores and
many SKUs. Further study may be conducted on how to integrate these picking lines into the
standard waves. Two issues must be considered, firstly stock for these new stores must be held
in the DC until the store is able to receive stock near its opening date. This may require an
increase in the size of the dispatch area. Furthermore, forecasting the sales for the store and
assigning stock is complex. This decision is typically made as late as possible to reduce the
effects of uncertainty and store development changes. Analysis of new stores can be made to
see the accuracy of sales forecasts and the stability of the initial product mix assigned to the
store. Poor stability would suggest that the forecast may be made earlier allowing the DC to
prepare for these new stores during normal operations.
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8.4 Achievement of objectives

In §1.5 the following seven objectives were identified:

Objective I

a Describe the internal layout and operations of the DC to better understand the problem
in the DC context;

b Describe in detail the order picking operation in the DC so that the characteristics of the
problem may be understood;

c Describe the different decision tiers and their interactions within the order pick operation;

Objective II

a Describe the SKU location problem (SLP) and identify the scope and assumptions;

b Identify the goals of the SLP decision tier;

c Describe the picking line allocation problem (PLAP) and identify the scope and assump-
tions;

d Identify the goals of the PLAP decision tier;

Objective III

a Obtain representative problem instances to test both the SLP and PLAP;

b Develop a test framework to test solution approaches to the SLP and PLAP while making
provision for future research;

Objective IV

a Develop and test solution approaches to the SLP;

b Address the transitive nature of solving the SLP when evaluating solutions to the PLAP;

Objective V

a Develop and test solution approaches to the PLAP;

b Evaluate the trade-offs between the goals of the PLAP and discuss the performance of all
solution approaches with regards to these trade-offs;
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Objective VI

a Discuss and resolve the practical implementation issues of solution approaches to the
PLAP;

b Propose a framework to integrate the PLAP solution approaches within the warehouse
management system at PEP ;

Objective VII

a Propose areas and directions for future research;

Objective I was achieved in Chapter 1 where a detailed discussion of PEP’s DCs was given.
Moreover, a detailed discussion of the order picking system at PEP’s DC in Durban was pro-
vided. Three decision tiers, resulting in three optimisation problems, namely the OSP, SLP
and PLAP were identified and discussed. In §1.4 the SLP and PLAP were discussed in detail
addressing the scope, assumptions and goals of each. This was done in fulfilment of Objective II.

In Chapter 2 test problem instances were introduced for both the SLP and PLAP. These prob-
lem instances were derived from historical data and made provision for future studies. A test
framework was also introduced to test different solution approaches to the SLP, PLAP as well
as envisaged future approaches to DBN scheduling. Objective III was therefore achieved.

Objective IV was achieved in Chapter 3. Different solution approaches to the SLP were com-
pared with respect to walking distance. It was shown that there is less marginal benefit when
solving this decision tier than solving the OSP correctly. It was therefore proposed that all of
the four fast heuristic must be used to solve the SLP for different solutions to the PLAP.

In Chapter 4 a phased greedy approach was introduced to assign DBNs to picking lines. Here the
sum of the sizes of the maximal SKUs within each picking line was minimised. Phased greedy
insertion approaches using DBN correlation measures were further introduced in Chapter 5
to reduce the number of small cartons produced. In Chapter 6 a segmented mathematical
formulation approach was introduced to include volume capacity constraints. These capacity
constraints limited the volume of stock assigned to each picking line. A further hybrid approach
was introduced to incorporate the advantages of using correlations and the capacity constraints.
All of the introduced approaches were compared using the goals listed in §1.4, namely total
walking distance, the number of small cartons produced and the volume of stock required to
populate a picking line for a wave. Objective V was therefore fulfilled.

Objective VI was achieved in Chapter 7. Practical implementation issues were discussed and
addressed. Moreover a proof of concept user interface was proposed to integrate the PLAP
solution procedures with management decision making and the WMS. Finally directions for
future work was discussed in §8.3 in fulfilment of Objective VII.

8.5 Contribution

A unique order picking system consisting of three decision tiers was investigated in this dis-
sertation. The focus of this dissertation was to develop novel solution approaches for the two
unsolved decision tiers, namely the SLP and PLAP. The structure of a picking line shows many
similarities to carousel systems in literature, but differs with the presence of wave picking and
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multiple pickers. Using the maximal cut formulation for the OSP two new mathematical for-
mulations for generating a lower bound to the SLP were introduced. The first formulation used
assignment type variables and constraints to assign SKUs to locations. These were combined
with additional variables and constraints to determine spans for orders and calculate the size of
the maximal SKU. A second model used a TSP type model to sequence the SKUs into a cycle
as on a picking line. A different set of additional variables and constraints were then used to
assign spans to orders and calculate the size of the maximal SKU. In both cases it was shown
that a solution was obtained within one cycle of a lower bound.

Four heuristic approaches were further tested and compared to a set of random solutions. Both
the GS and OPA heuristics known to be optimal for some carousel systems were tested as well as
the CD heuristic proposed by Hagspihl & Visagie [1] to minimise congestion on a unidirectional
picking line. Furthermore a new approach using adjacencies (GA) was introduced and tested.
These heuristics were tested and compared in terms of total walking distance. This was the
first time that these heuristics had been compared using walking distance on a unidirectional
picking line. It was shown that there is minimal benefit from solving the SLP if the OSP is solved
correctly. Moreover all the solutions obtained fell into a small range and variance in terms of
total walking distance. It was concluded that the effects of this decision tier on walking distance
is minimal compared to the order sequencing decision tier. Candidate solutions to the PLAP
may therefore be evaluated by using all of the computationally inexpensive heuristic approaches
to solve the SLP. This result reduces the complexity of the PLAP as the SLP subproblem is
shown to have a smaller effect than the other tiers. Further research into solution approaches
to the PLAP can therefore be explored.

In Chapter 4 a novel mathematical formulation was introduced to assign DBNs to picking lines.
The size of the maximal SKU was used as an estimator for total walking distance in a picking
line and the sum of the sizes of the maximal SKUs within each picking line was minimised. This
formulation is not solvable for problem instances with more than four picking lines. A greedy
insertion approach proposed by Martello & Toth [2] for generalised assignment problems was
adapted for the PLAP and tested. It was shown that in many cases a feasible solution to the
problem was not found as all the DBNs were not assigned to a picking line. A new phased greedy
insertion approach (GP) was therefore introduced in an effort to achieve feasible solutions for
all problem instances.

The overall walking distance decreased by on average 22% compared to the historical assign-
ments using the GP approach. It was further shown that a trade off exists between the walking
distance of pickers, the number of small cartons produced and the size of the picking lines. Using
the GP approach yields a poor number of small cartons produced and an undesirable number of
picking lines requiring large volumes of stock. These results illustrated the scope for improved
efficiency in the DC. Moreover, this was the first time that the concept of a maximal SKU was
tested as a proxy estimator for distance in the PLAP. It was shown that if the maximal SKU
is used as a proxy for distance the actual distance would be reduced by minimising the sum
of the sizes of the maximal SKUs within each picking line. It was proposed that the size of
the maximal SKU be used as an estimator of the actual walking distance of the pickers in a
picking line. Analysis of the correlation between the size of the maximal SKU and the total
walking distance of pickers revealed that minimising the size of the maximal SKU reduces the
total walking distance for unidirectional picking lines and can be used.

Phased greedy insertion approaches using correlation measures were introduced in Chapter 5 to
improve the number of small cartons produced. Two novel measures which aggregated corre-
lations between assigned DBNs were included in these correlation measures. These approaches
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were shown to reduce the number of small cartons produced with a slight increase in walking
distance. It was also shown that it was better to calculate correlations between a candidate DBN
and all the assigned DBNs collectively rather than using the sum of the correlations between
the individual assigned DBNs.

A novel segmentation approach (SEGC) for DBN assignments making use of mathematical
formulations is introduced in Chapter 6. Picking lines are first assigned to clusters. DBNs
are then assigned to the clusters before being assigned to individual picking lines using smaller
subproblems. This segmentation approach reduced the problem size and showed comparable
results to the GP approach in terms of walking distance. This suggests that the constraints
imposed on the problem due to segmentation does not significantly reduce solution quality.
Additional volume capacity constraints to control the size of each picking line was further
introduced. This approach also introduces the possibility of adding additional constraints which
is usually not possible for greedy insertion approaches. Additional constraints may be added
should additional capacities be applied to a picking line such as a limit to the number of bulky
items discussed in Chapter 1. This approach was solvable for all problem instances and both
the walking distance and picking line sizes were reduced compared to the historical assignments.

A novel hybrid approach (HASC) was introduced which merged the ADT and SEGC approaches.
This approach yielded the best trade-off between the thee goals as it took advantage of correla-
tion measures in instances where capacity constraints were not binding. The hybrid approach
had significantly smaller walking distances compared to the historical assignments and had a
satisfactory number of small cartons produced. Moreover, picking lines requiring large volumes
of stock were generated when compared to the historical assignments.

As a result of testing and analysing solution approaches to the SLP and PLAP several further
contributions were made. A representative set of historical DBN to picking line assignments
were developed for use in future studies. Moreover, a test framework is presented for future
studies which uses this data. Finally, a methodology to integrate these techniques into the
current WMS at PEP is proposed. This methodology takes into account human interaction and
allows flexibility during the decision making process.
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Minimising the maximal SKU additional
results
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Figure A.1: A graphical box-plot representation of the distribution of the number of cycles traversed
for each line after scheduling scenarios with two and three picking lines per problem instance using the
greedy insertion (GI), the phased greedy insertion (GP), the integer programming formulations (IPα) as
well as the historical assignment (His).
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Figure A.2: A graphical box-plot representation of the distribution of the number of cycles traversed
for each line after scheduling scenarios with four and five picking lines per problem instance using the
greedy insertion (GI), the phased greedy insertion (GP), the integer programming formulations (IPα) as
well as the historical assignment (His).
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Figure A.3: A graphical box-plot representation of the distribution of the number of cycles traversed
for each line after scheduling scenarios with six and seven picking lines per problem instance using the
greedy insertion (GI), the phased greedy insertion (GP), the integer programming formulations (IPα) as
well as the historical assignment (His).
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Figure A.4: A graphical box-plot representation of the distribution of the number of cycles traversed
for each line after scheduling scenarios with eight picking lines per problem instance using the greedy
insertion (GI), the phased greedy insertion (GP), the integer programming formulations (IPα) as well as
the historical assignment (His).
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Figure A.5: A graphical box-plot representation of the distribution of the total volume for each line after
scheduling scenarios with two and three picking lines per problem instance using the greedy insertion
(GI), the phased greedy insertion (GP), the integer programming formulations (IPα) as well as the
historical assignment (His).
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Figure A.6: A graphical box-plot representation of the distribution of the total volume for each line after
scheduling scenarios with four and five picking lines per problem instance using the greedy insertion (GI),
the phased greedy insertion (GP), the integer programming formulations (IPα) as well as the historical
assignment (His).
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Figure A.7: A graphical box-plot representation of the distribution of the total volume for each line after
scheduling scenarios with six and seven picking lines per problem instance using the greedy insertion (GI),
the phased greedy insertion (GP), the integer programming formulations (IPα) as well as the historical
assignment (His).
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Figure A.8: A graphical box-plot representation of the distribution of the total volume for each line
after scheduling scenarios with eight picking lines per problem instance using the greedy insertion (GI),
the phased greedy insertion (GP), the integer programming formulations (IPα) as well as the historical
assignment (His).
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Correlation assignments additional results
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Figure B.1: A graphical box-plot representation of the distribution of the number of cycles traversed for
each line after scheduling scenarios with two and three picking lines per problem instance using the ADT,
ADS, JCT and JCS correlation based heuristics as well as the phased greedy insertion (GP) heuristic
and historical results (His).
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Figure B.2: A graphical box-plot representation of the distribution of the number of cycles traversed for
each line after scheduling scenarios with four and five picking lines per problem instance using the ADT,
ADS, JCT and JCS correlation based heuristics as well as the phased greedy insertion (GP) heuristic
and historical results (His).
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Figure B.3: A graphical box-plot representation of the distribution of the number of cycles traversed for
each line after scheduling scenarios with six and seven picking lines per problem instance using the ADT,
ADS, JCT and JCS correlation based heuristics as well as the phased greedy insertion (GP) heuristic
and historical results (His).
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Figure B.4: A graphical box-plot representation of the distribution of the number of cycles traversed
for each line after scheduling scenarios with eight picking lines per problem instance using the ADT,
ADS, JCT and JCS correlation based heuristics as well as the phased greedy insertion (GP) heuristic
and historical results (His).
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Figure B.5: A graphical box-plot representation of the distribution of the total volume for each line
after scheduling scenarios with two and three picking lines per problem instance using the ADT, ADS,
JCT and JCS correlation based heuristics as well as the phased greedy insertion (GP) heuristic and
historical results (His).
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Figure B.6: A graphical box-plot representation of the distribution of the total volume for each line
after scheduling scenarios with four and five picking lines per problem instance using the ADT, ADS,
JCT and JCS correlation based heuristics as well as the phased greedy insertion (GP) heuristic and
historical results (His).
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Figure B.7: A graphical box-plot representation of the distribution of the total volume for each line
after scheduling scenarios with six and seven picking lines per problem instance using the ADT, ADS,
JCT and JCS correlation based heuristics as well as the phased greedy insertion (GP) heuristic and
historical results (His).
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Figure B.8: A graphical box-plot representation of the distribution of the total volume for each line
after scheduling scenarios with eight picking lines per problem instance using the ADT, ADS, JCT and
JCS correlation based heuristics as well as the phased greedy insertion (GP) heuristic and historical
results (His).
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Capacity constraint assignment additional
results
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Figure C.1: A graphical box-plot representation of the distribution of the number of cycles traversed
for each line after scheduling scenarios with two and three picking lines per problem instance using the
SEG∞, SEG300 and HAS300 segmentation and hybrid heuristics as well as the phased greedy insertion
(GP) heuristic, the adjacencies (ADT) heuristic and historical results (His).
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Figure C.2: A graphical box-plot representation of the distribution of the number of cycles traversed
for each line after scheduling scenarios with four and five picking lines per problem instance using the
SEG∞, SEG300 and HAS300 segmentation and hybrid heuristics as well as the phased greedy insertion
(GP) heuristic, the adjacencies (ADT) heuristic and historical results (His).
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Figure C.3: A graphical box-plot representation of the distribution of the number of cycles traversed
for each line after scheduling scenarios with six and seven picking lines per problem instance using the
SEG∞, SEG300 and HAS300 segmentation and hybrid heuristics as well as the phased greedy insertion
(GP) heuristic, the adjacencies (ADT) heuristic and historical results (His).
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Figure C.4: A graphical box-plot representation of the distribution of the number of cycles traversed
for each line after scheduling scenarios with eight picking lines per problem instance using the SEG∞,
SEG300 and HAS300 segmentation and hybrid heuristics as well as the phased greedy insertion (GP)
heuristic, the adjacencies (ADT) heuristic and historical results (His).
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Figure C.5: A graphical box-plot representation of the distribution of the total volume for each line
after scheduling scenarios with two and three picking lines per problem instance using the SEG∞, SEG300

and HAS300 segmentation and hybrid heuristics as well as the phased greedy insertion (GP) heuristic,
the adjacencies (ADT) heuristic and historical results (His).

Stellenbosch University  https://scholar.sun.ac.za



148 Chapter C. Capacity constraint assignment additional results

His GP SEG∞SEG300 ADT HAS300

0

200

400

600

800

1,000

Scenarios with four picking lines
per problem instance

V
o
lu

m
e

in
m

3

His GP SEG∞SEG300 ADT HAS300

0

200

400

600

800

Scenarios with five picking lines
per problem instance

V
o
lu

m
e

in
m

3

Figure C.6: A graphical box-plot representation of the distribution of the total volume for each line
after scheduling scenarios with four and five picking lines per problem instance using the SEG∞, SEG300

and HAS300 segmentation and hybrid heuristics as well as the phased greedy insertion (GP) heuristic,
the adjacencies (ADT) heuristic and historical results (His).
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Figure C.7: A graphical box-plot representation of the distribution of the total volume for each line
after scheduling scenarios with six and seven picking lines per problem instance using the SEG∞, SEG300

and HAS300 segmentation and hybrid heuristics as well as the phased greedy insertion (GP) heuristic,
the adjacencies (ADT) heuristic and historical results (His).
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Figure C.8: A graphical box-plot representation of the distribution of the total volume for each line
after scheduling scenarios with eight picking lines per problem instance using the SEG∞, SEG300 and
HAS300 segmentation and hybrid heuristics as well as the phased greedy insertion (GP) heuristic, the
adjacencies (ADT) heuristic and historical results (His).
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Figure D.1: A scatter plot comparing the GP, ADT and HAS300 approaches to the historical assign-
ments in terms of the number of cycles traversed and the percentage of the total picked volume attributed
to small orders. Each marker represents a single problem instance with two picking lines.
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Figure D.2: A scatter plot comparing the GP, ADT and HAS300 approaches to the historical assign-
ments in terms of the number of cycles traversed and the percentage of the total picked volume attributed
to small orders. Each marker represents a single problem instance with three picking lines.
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Figure D.3: A scatter plot comparing the GP, ADT and HAS300 approaches to the historical assign-
ments in terms of the number of cycles traversed and the percentage of the total picked volume attributed
to small orders. Each marker represents a single problem instance with four picking lines.
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Figure D.4: A scatter plot comparing the GP, ADT and HAS300 approaches to the historical assign-
ments in terms of the number of cycles traversed and the percentage of the total picked volume attributed
to small orders. Each marker represents a single problem instance with five picking lines.
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Figure D.5: A scatter plot comparing the GP, ADT and HAS300 approaches to the historical assign-
ments in terms of the number of cycles traversed and the percentage of the total picked volume attributed
to small orders. Each marker represents a single problem instance with six picking lines.
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Figure D.6: A scatter plot comparing the GP, ADT and HAS300 approaches to the historical assign-
ments in terms of the number of cycles traversed and the percentage of the total picked volume attributed
to small orders. Each marker represents a single problem instance with seven picking lines.
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Figure D.7: A scatter plot comparing the GP, ADT and HAS300 approaches to the historical assign-
ments in terms of the number of cycles traversed and the percentage of the total picked volume attributed
to small orders. Each marker represents a single problem instance with eight picking lines.

Stellenbosch University  https://scholar.sun.ac.za




