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Summary 

Grapevine trunk diseases are a cause of decline and loss of productivity in 

grapevines at all stages of growth. These diseases are caused by a complex of wood-

inhabiting fungi that infect mainly through pruning wounds. The management of these 

diseases relies on wound protection to prevent infection since there are no eradicative 

control measures to cure infected vines. There are few or no fungicides registered for 

grapevine pruning wound protection in most countries, while Trichoderma biocontrol agents 

are often available. This study aimed at improving grapevine wound protection by 

Trichoderma (T.) spp. and to gain a better understanding of the factors and mechanisms 

involved in biocontrol. 

The effect of pruning time (early or late) and five timings of application of the 

biocontrol agent after pruning on pruning wound colonisation by T. atroviride and T. 

harzianum were determined. Chenin blanc and Cabernet Sauvignon vineyards were pruned 

in July (early) and August (late) of 2011 and 2012, and pruning wounds were treated with 

suspensions of the Trichoderma spp. at various times (0, 6, 24, 48 and 96 hours) after 

pruning. Wound colonisation was depended on the physiological state of the vine at pruning 

for both cultivars. However, for the 2012 season in Chenin blanc, wound colonisation was 

similarly high for both pruning times, which was attributed to high rainfall and humidity. 

Application of the biocontrol agents 6 hours after pruning consistently resulted in high wound 

colonisation by the Trichoderma spp. in both cultivars and pruning times. In both cultivars, 

pruning wound infection due to natural inoculum was higher in wounds made in late winter 

than those made earlier. 

The effect of conidial formulation in nutritional (glucose, yeast extract and urea) and 

bio-enhancing (chitin and cell free culture filtrates) additives, on pruning wound colonisation 

by T. atroviride was also investigated. Nutritional additives increased the extent of pruning 

wound colonisation by T. atroviride compared to the un-amended conidial suspensions in a 

glass house study. The additives as well as Garrison, a fungicide containing pruning wound 

paint, and Eco77®, a registered T. harzianum biocontrol product, were tested in field trials 

for wound protection from infection by Phaeomoniella (Pa.) chlamydospora. In 2011, the 

pathogen was inoculated a day after pruning and all the Trichoderma spp. treatments 

similarly reduced Pa. chlamydospora infection by 75% to 90% in Thompson Seedless, while 

control was less in Chenin blanc and ranged from 40% to 74%. In 2012, the trial was carried 

out on Chenin blanc only and the pathogen was inoculated at intervals of 1, 3 and 7 days 

after pruning. Wound protection by the Trichoderma treatments was highest when wounds 

were inoculated with Pa. chlamydospora seven days after pruning. Two conidial 

formulations, a culture filtrate made from a chitin based medium and a combination of yeast 
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extract, urea and glucose, consistently enhanced biocontrol efficacy. These formulations 

reduced Pa. chlamydospora infection to levels similar to those of Garrison. 

The integration of chemical and biological wound protection could provide both 

immediate and long term wound protection, but is limited by the sensitivity of the biocontrol 

agent to fungicides. Benzimidazole resistant Trichoderma strains were generated by gamma 

irradiation from the wild type isolates of T. atroviride (UST1 and UST2) and T. harzianum 

(T77). Mutants from UST1 and UST2 were of similar biological fitness as the wild type 

isolates and retained their in vitro antagonistic activity against grapevine trunk pathogens, 

while the mutant from T77 had reduced fitness and was not antagonistic to the pathogens. 

The wild type, UST1, and its mutant were tested alone and in combination with thiophanate 

methyl and carbendazim, respectively, for their ability to prevent pruning wound infection by 

Pa. chlamydospora. The combination of the UST1 mutant and carbendazim was the most 

effective treatment and gave the highest reduction in Pa. chlamydospora infection (70% to 

93% control). 

Grapevine cell cultures were used to compare the response of grapevines to T. 

atroviride and Eutypa (E.) lata as a first step to determining the importance of Trichoderma-

grapevine interactions in pruning wound bio-protection. The expression of genes coding for 

enzymes of the phenylpropanoid pathway and pathogenesis related (PR) proteins was 

profiled over a 48-hour period using quantitative reverse transcriptase PCR. The cell cultures 

responded to fungal elicitors in a hypersensitive-like response that lead to a decrease in cell 

viability. Fungal elicitors from both fungi triggered the same genes and caused up-regulation 

of phenylalanine ammonia-lyase (PAL), 4 coumaroyl Co-A ligase (CCo-A), stilbene synthase 

(STS), chitinase class IV (CHIT IV), PR 3 and PR 4, and a down regulation of chalcone 

synthase (CHS) genes. Higher expression of PAL and CHIT IV in cell cultures treated with 

the T. atroviride elicitor led to a significantly higher (P < 0.05) total phenolic content and 

chitinolytic enzyme activity of the cell cultures compared to cell cultures treated with the E. 

lata elicitor. The response of the cell cultures to the T. atroviride elicitor signifies that the 

induction of grapevine resistance may be involved in wound bio-protection. 

The role of secondary metabolites produced by Trichoderma spp. used in pruning 

wound protection was also investigated. A volatile antimicrobial compound, 6-pentyl α-

pyrone (6PP), was isolated and found to be the major secondary metabolite from the T. 

atroviride (UST1 and UST2) and T. harzianum (T77) isolates. This metabolite was found to 

inhibit mycelial growth, spore and conidia germination of E. lata, Neofussicocum (N.) 

australe, N. parvum and Pa. chlamydospora. The production of 6PP was induced when the 

T. atroviride isolates were grown in a grapevine wood extract medium while for UST1, the 

6PP concentration was further doubled when it was co-cultured with N. parvum. Results 
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therefore, indicate that 6PP is involved in the Trichoderma-pathogen interactions on pruning 

wounds. 

The results of this study have provided new information in regards to the application 

of Trichoderma-based pruning wound products. The best time of application proved to be 6 

hours post pruning. The formulation of conidial suspensions of Trichoderma spp. with 

nutritional additives and in protein extracts of the biocontrol agent showed potential in 

reducing variability of wound bio-protection. However, further research would be necessary 

to develop commercial products. The application of a fungicide together with Trichoderma 

spp. in the field holds promise to improve control, but would require further trials for possible 

commercialisation. This study is the first to report on grapevine host defence genes that are 

activated by the Trichoderma spp. used in pruning wound protection. Together with the 

characterisation of the major secondary metabolite produced by these Trichoderma spp., 

this information aids in understanding the mechanisms involved in the complex interaction 

between the biocontrol agent, the host and the pathogen. 
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Opsomming 

Wingerdstamsiektes veroorsaak terugsterwing en verlies aan produktiwiteit in 

wingerdstokke gedurende alle groeifases. Hierdie siektes word veroorsaak deur „n 

verskeidenheid van hout-koloniserende swamme wat die wingerdstok meestal deur 

snoeiwonde infekteer. Die bestuur van hierdie siektes is afhanklik van wondbeskerming om 

infeksie te verhoed, omdat daar geen uitwissende beheermetodes na infeksie bestaan nie. 

In meeste lande is daar min of geen swamdoders geregistreer vir snoeiwond beskerming, 

terwyl Trichoderma biobeheer agente gereëld beskikbaar is. Hierdie studie poog om wingerd 

wondbeskerming deur Trichoderma (T.) spp. te verbeter en „n meer volledige begrip van die 

faktore en meganismes betrokke by biologiese beheer te ontwikkel.  

Die effek van die tydsberekening van snoei (vroeg of laat) en vyf behandelingstye 

van die biobeheer agent na snoei op die kolonisering van snoeiwonde deur T. atroviride en 

T. harzianum is bepaal. Chenin blanc en Cabernet Sauvignon wingerde is gesnoei 

gedurende Julie (vroeg) en Augustus (laat) in 2011 en 2012, en snoeiwonde is behandel 

met Trichoderma spp. suspensies op verskillende tydspunte (0, 6, 24, 48 en 96 ure) na 

snoei. Wond-kolonisering was afhanklik van die fisiologiese toestand van die wingerdstok 

gedurende snoei vir albei kultivars. Gedurende die 2012 seisoen was wond-kolonisering ewe 

hoog vir albei snoeitye op Chenin blanc. Dit is verklaar deur hoë reënval en humiditeit 

gedurende daardie seisoen. Die aanwending van biobeheer agente 6 ure na snoei het 

konsekwent hoë kolonisering deur Trichoderma spp. tot gevolg gehad op albei kultivars en 

albei snoeitye. In albei kultivars is wondinfeksie as gevolg van natuurlike inokulum hoër 

gewees in wonde gemaak gedurende laat winter as in wonde wat vroeër in die seisoen 

gemaak is. 

Die effek van konidia formulasie in voeding (glukose, gisekstrak en urea) en 

bioverbetering (chitien en sel-vrye kultuurfiltraat) toevoegings op snoeiwond-kolonisering 

deur T. atroviride is ook ondersoek. Voeding toevoegings het die omvangs van snoeiwond-

kolonisering deur T. atroviride vergroot in vergelyking met ongewysigde konidia suspensies 

gedurende „n glashuis studie. Die toevoegings, sowel as Garrison, „n snoeiwond verf wat „n 

swamdoder bevat, en Eco77®, „n geregistreerde T. harzianum biobeheer produk, is getoets 

in veldproewe vir wondbeskerming teen infeksie deur Phaeomoniella (Pa.) chlamydospora. 

In 2011 is die patogeen geïnokuleer „n dag na snoei en al die Trichoderma spp. 

behandelings het infeksie verminder met 75% tot 90% op Thompson Seedless. Beheer was 

minder suksesvol op Chenin blanc, waar slegs 40% tot 74% beheer behaal is. In 2012 is die 

proef uitgevoer slegs op Chenin blanc en die patogeen is geïnokuleer teen intervalle van 1, 

3 en 7 dae na snoei. Wondbeskerming by die Trichoderma behandelinge was die hoogste 
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wanneer wonde sewe dae na snoei geïnokuleer is met Pa. chlamydospora. Twee konidia 

formulasies, „n kultuurfiltraat wat bestaan het uit „n chitien-gebaseerde medium en „n 

kombinasie van gisekstrak, urea en glukose het deurlopend die effektiwiteit van biobeheer 

verbeter. Hierdie formulasies het Pa. chlamydospora infeksie verminder tot soortgelyke 

vlakke behaal deur Garrison.  

Die integrasie van chemiese- en biobeheer in wondbeskerming kan onmiddelike en 

langtermyn wondbeskerming bied, maar is beperk deur die sensitiwiteit van die biobeheer 

agent teen swamdoders. Benzimidazole-weerstandbiedende Trichoderma isolate is 

ontwikkel deur gamma-bestraling van die wilde-tipe isolate van T. atroviride (UST1 en UST2) 

en T. harzianum (T77). Mutante van UST1 en UST2 het soortgelyke biologiese fiksheid 

getoon as die wilde-tipe en het hul in vitro antagonistiese aktiwiteit teen wingerd 

stampatogene behou, terwyl die mutant van T77 verminderde fiksheid getoon het en nie 

meer antagonisties teen patogene was nie. Die wilde-tipe, UST1, en sy mutant is apart en in 

kombinasie met thiofanaatmetiel en carbendazim, respektiewelik, getoets vir die vermoë om 

snoeiwonde te beskerm teen Pa. chlamydospora. Die kombinasie van die UST1 mutant met 

carbendazim was die mees effektiewe behandeling en het die hoogste vermindering in Pa. 

chlamydospora infeksie gelewer (70 tot 93% beheer). 

As „n beginpunt om die belang van Trichoderma-wingerd interaksies in 

snoiewondbeheer te bepaal, is die invloed van T. atroviride en Eutypa (E.) lata op somatiese 

selkulture van wingerd vergelyk.  Die effek van dié behandelings op ensieme in die 

fenielpropanoïedweg en patogenese-verwante (PR) proteïene is bepaal deur intydse PKR 

(real time PCR) van die korresponderende gene oor „n 48 uur tydperk. Die swam-afkomstige 

ontlokkers het „n hipersensitiewe-tipe reaksie in die selkulture ontlok, wat tot „n afname in 

sellewensvatbaarheid gelei het. Ontlokkers afkomstig van beide swamme het dieselfde gene 

aangeskakel en het induksie van fenielalanien ammoniak-liase (PAL), 4 kumaroïel Ko-A 

ligase (CCo-A), stilbeen sintase (STS), chitienase klas IV (CHIT IV), PR 3 en PR 4 

veroorsaak en „n onderdrukking in chalkoon sintase (CHS) gene tot gevolg gehad. Hoër 

uitdrukking van PAL en CHIT IV in selkulture behandel met die T. atroviride ontlokker het 

gelei tot „n beduidende hoër (P < 0.05) totale fenoolinhoud en chitienolitiese aktiwiteit in 

selkulture in vergelyking met selkulture wat behandel is met die E. lata ontlokker. Die reaksie 

van die selkulture op die T. atroviride ontlokker dui daarop dat die induksie van wingerd 

weerstandbiedenheid betrokke mag wees in wond biobeheer. 

Die rol van sekondêre metaboliete geproduseer deur Trichoderma spp. wat gebruik 

word in snoeiwond beheer is ook ondersoek. „n Vlugtige antimikrobiese verbinding, 6-pentiel 

α-pyroon (6PP) is geïsoleer en bepaal om die hoof sekondêre metaboliet afkomstig vanuit 

die T. atroviride (UST1 en UST2) en T. harzianum (T77) isolate te wees. Hierdie metaboliet 
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is betrokke by inhibisie van miselium groei, spoor en konidium ontkieming van E. lata, 

Neofusicoccum (N.) australe, N. parvum en Pa. chlamydospora. Die produksie van 6PP is 

geïnduseer deur die T. atroviride in wingerd hout ekstrak te kweek. In die geval van UST1, is 

die 6PP konsenstrasie verdubbel deur die isolaat met saam met N. parvum te kweek. 

Hierdie resultaat is „n aanduiding dat 6PP betrokke is in die Trichoderma-patogeen 

interaksie op snoeiwonde. 

Die resultate van hierdie studie het nuwe inligting met betrekking tot die aanwending 

van Trichoderma-gebaseerde snoeiwond produkte verskaf. Die beste tyd vir aanwending 

van sulke produkte was 6 ure na snoei. Die formulasie van konidia suspensies van 

Trichoderma spp. met voeding toevoegings en in proteïen ekstrakte van die biobeheer agent 

het potensiaal getoon in die vermindering van variasie in wondbeskerming deur biobeheer 

agente. Verdere navorsing sal nodig wees om kommersiële produkte te ontwikkel. Die 

aanwending van „n swamdoder saam met Trichoderma spp. in die wingerd is belowend om 

beheer te verbeter, maar het meer proewe nodig voor kommersialisering. Hierdie studie is 

die eerste om wingerd beskerming gene wat deur Trichoderma spp. geaktiveer word aan te 

meld. Laasgenoemde, saam met die beskrywing van die hoof sekondêre metaboliete wat 

deur hierdie Trichoderma spp. geproduseer word, dra by tot „n meer volledige begrip van die 

meganismes betrokke by die komplekse interaksie tussen die biobeheer agent, die gasheer 

en die patogeen. 
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CHAPTER 1 
General Introduction and Project Aims 

1.1 Grape production in South Africa 

 Grapevines (Vitis vinifera) are grown in temperate and cool climatic regions of the 

world, traditionally in Europe and the Middle-East from where they were spread to the so 

called „new world‟ in the Americas (North and South), Australia, New Zealand and South 

Africa. In South Africa, viticulture can be traced back to the 17th century when the Dutch 

explorers arrived in the present day Cape Town. Unlike the rest of the new world where wine 

was produced for local consumption, by the 18th century wines from South Africa specifically 

from Constantia were being exported and considered among the most favoured wines of that 

time. According to the South African Wine Industry Information and Systems, and the South 

African Table Grape Industry, the land currently under grape production is just over 140 000 

hectares (Anonymous, 2012 & 2013). Grapevine production in South Africa is concentrated 

along the coastal areas of the Western and Northern Cape provinces which have a 

Mediterranean climate. Minor production of table grapes also occurs in inland regions under 

a sub-tropical climate. According to the South African Wine Industry Information and 

Systems, the grapevine industry along with the associated tourism contributes more than 

10% of South Africa‟s Gross Domestic Product (GDP). 

 To achieve optimum yields and high quality fruit, grapevines are annually pruned so 

as to maintain a balance between vegetative and reproductive growth. Winter pruning 

removes most of the previous season growth and aims at providing space among shoots for 

optimal aeration and light penetration. Pruning also reduces humidity levels in the canopy, 

which also results in a reduction of foliar diseases (Mullins et al., 1992). During the pruning 

process, unhealthy wood is also removed thereby ensuring that the new season‟s growth is 

produced on healthy wood. However, the wounds created by the pruning process are 

important infection sites for wound pathogens that cause wood diseases and grapevine 

decline. 

1.2 Grapevine trunk diseases  

Grapevine trunk diseases are caused by a broad range of wood-inhabiting fungi and 

symptoms are a result of one or a combination of several fungi. Trunk pathogens, either 

individually or collectively, are responsible for graft failure, loss of vigour and productivity in 

established vines, spots on berries, late ripening and altered flavour, as well as death of 

vines (Mugnai et al., 1999; Pascoe & Cottral, 2000; Fourie & Halleen, 2004; Gubler et al., 

2005; Lorrain et al., 2012). Grapevine trunk diseases include Eutypa dieback (Diatrypaceae 
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spp.), Petri disease (Phaeomoniella chlamydospora and Phaeoacremonium spp.), esca 

(Petri disease fungi and wood rot Basidiomycetes), Botryosphaeria dieback 

(Botryosphaeriaceae species) and Phomposis dieback (Phomopsis/Diaporthe spp.). 

Infection occurs through wounds and pruning wounds are regarded as the primary sites of 

infection (Chapuis et al., 1998; Larignon & Dubos, 2000; Van Niekerk et al., 2006). 

The occurrence of grapevine decline diseases caused by fungal trunk pathogens has 

drastically increased causing significant yield and economic losses in all grapevine 

producing areas (Scheck et al., 1998; Rumbos & Rumbou, 2001; Van Niekerk et al., 2003; 

Sosnowski et al., 2005). In addition to reducing yield and quality of grapes, they also 

increase vineyard management costs and reduce the life of a vineyard (Munkvold et al., 

1994). All of the vineyards in the different grapevine production areas in South Africa have 

trunk diseases to varying degrees (Van Niekerk et al., 2011; White et al., 2011). Due to 

continual loss of vines, reduced yield and production of poor fruit, vineyards are removed 

and new vineyards planted much sooner than planned. These diseases are occurring in a 

more severe form and have become an increasingly important limiting factor threatening the 

sustainability of grape and wine production. 

Trunk diseases are difficult to manage. This is mainly due to the complexity of the 

diseases as they are caused by a variety of unrelated fungi, which make it difficult to find one 

control method that is equally effective against all the pathogens. Cultural practices, such as 

sanitation, are very important in reducing the inoculum pressure and delaying establishment 

of the diseases. However, due to the high number of wounds made on an individual vine 

every year, it is virtually impossible to completely control trunk diseases through cultural 

practices. Preventing infection by the protection of wounds is therefore the major way of 

controlling trunk diseases. 

1.3 Grapevine pruning wound protection 

Management of the trunk pathogens involves cultural practices such as sanitation in 

the vineyard to reduce the amount of inoculum as well as the timing of pruning to avoid 

periods of high wound susceptibility. Treatment of pruning wounds with chemical fungicides, 

paints and pastes, and biocontrol agents has been found to protect wounds from infection 

and is currently the most reliable way of preventing infection. A major challenge to pruning 

wound protection is that the wounds remain susceptible for several weeks until they are fully 

healed (Munkvold & Marois, 1995; Eskalen et al., 2007; Van Niekerk et al., 2011). Wound 

treatment agents should be able to persist until wounds are healed and be effective against 

all trunk pathogens.  
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Several fungicides have been found to have a wound protective effect against trunk 

pathogens (Rolshausen & Gubler, 2005; Sosnowski et al., 2008; Halleen et al., 2010; 

Rolshausen et al., 2010). Many more fungicides have been tested in vitro (Jaspers, 2001, 

Bester et al., 2007; Amponsah et al., 2012; Gramaje et al., 2012) but very few are registered 

for pruning wound protection. Fungicide efficacy on the pruning wound declines with time 

and does not persist for the entire period that wounds remain susceptible (Munkvold & 

Marois, 1995). Some of the effective fungicides such as sodium arsenite and benomyl have 

also been pulled off the market in most grapevine producing regions due to human and 

environmental toxicity. 

Grapevine pruning wounds are colonised by naturally occurring non-pathogenic fungi 

and bacteria, some of which have been found to prevent infection by trunk pathogens 

(Carter & Price, 1974; Munkvold & Marois, 1993). These saprophytes grow on the wound 

and can provide protection until wounds heal and are no-longer susceptible to infection. 

Biological control (biocontrol) agents for pruning wound protection have thus been 

developed as alternatives to chemical control, most of which are based on Trichoderma 

species. The biocontrol effect of Trichoderma spp. has been demonstrated on a wide 

spectrum of grapevine trunk diseases (Di Marco et al., 2004; John et al., 2005; Kotze et al., 

2011). The advantage of using biological control pruning wound protection is in the long term 

protection given by the fungus growing in the pruning wound (John et al., 2005). The 

protective effect of Trichoderma biocontrol agents on the wound has largely been attributed 

to the antagonistic effect of the biocontrol agent on the pathogens which includes 

mycoparasitism, secretion of mycolitic enzymes, competition for limiting resources, as well 

as the secretion of antibiotic metabolites (Sivasithamparam & Ghisalberti, 1998; Di Marco et 

al., 2004; Kotze et al., 2011). However, there is a growing body of evidence that shows that 

Trichoderma-plant interactions may also be involved in biocontrol (De Meyer et al., 1998; 

Palmieri et al., 2012; Martínez-Medina et al., 2013).  

Despite extensive research and increased availability, there has been limited 

adoption of biocontrol agents in commercial agriculture mainly due to inconsistent and 

unpredictable performance in the field (Harman et al., 2000; Ojiambo & Scherm, 2006). 

Reports are also available of studies that question the effectiveness of biocontrol agents in 

grapevine wound protection (Larignon, 2010). The causes of poor field performance are 

usually diverse and not well understood, but are due to both biotic and abiotic factors. The 

biotic factors include host susceptibility and interactions of the biocontrol agent with the host 

plant cultivar and non-target organisms (Ryan et al., 2004; Mutawila et al., 2011). Abiotic 

factors include climate, physical and chemical composition of host substrate, as well as the 

application method/strategy. In grapevine pruning wound protection with biocontrol agents, it 
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is generally acknowledged that biocontrol agents perform better when pathogen inoculation 

is delayed to allow better colonisation by the biocontrol agents (Munkvold & Marois, 1993; 

John et al., 2005; Kotze et al., 2011). Despite the challenges of biocontrol, its importance 

cannot be contested especially with the continued deregistration of effective fungicides. 

1.4 Rationale and scope of study 

Many grapevine farmers and viticulturists realise the importance of pruning wound 

protection for sustainability and longevity of their vineyards. It has become important to 

ensure that products used for wound protection are both effective and cost effective. 

Currently in South Africa, biocontrol agents of Trichoderma spp. are the only products 

specifically registered for grapevine pruning wound protection. 

For over a decade, the grapevine trunk diseases research groups of Stellenbosch 

University and the Agricultural Research Council Infruitec-Nietvoorbij, South Africa have 

been studying the etiology, epidemiology and control of grapevine trunk diseases. 

Emanating from this research, two strains of Trichoderma atroviride (UST1 and UST2) 

isolated from grapevine wounds and a commercial T. harzianum (Eco 77®) were found to 

have substantial antagonistic properties against grapevine trunk pathogens (Kotze et al., 

2011). In vitro and field tests against grapevine trunk pathogens showed that the strains 

have grapevine pruning wound protection effect (Kotze et al., 2011; Mutawila et al., 2011). In 

vitro tests on UST1 and UST2 also showed them to secrete volatile and non-volatile 

secondary metabolites that inhibited spore germination and reduced mycelial growth of trunk 

disease pathogens (Kotze et al., 2011). The identity of these metabolites is unknown and 

needed to be determined. The huge structural and functional diversity of Trichoderma 

metabolites makes it necessary for the continual search of new metabolites. These may be 

important in selection or screening of potential biocontrol agents or may be developed for 

application as bio-active compounds in pesticides and antibiotics. However, some strains of 

Trichoderma spp. have also been reported to produce trichothecene toxins (Degenkolb et 

al., 2008) such that it has become essential to test for mycotoxins in all potential bio-

pesticide strains that may enter the food chain.  

Field studies showed that the Trichoderma isolates UST1 and UST2 are effective in 

protecting grapevine pruning wounds from trunk diseases and can persist in the grapevine 

wood for at least 8 months (Kotze et al., 2011; Mutawila et al., 2011). However, variation 

was observed in the efficacy of the biocontrol agents depending on the grapevine cultivars 

(Mutawila et al., 2011). The factors that could explain this variation were the effect of 

grapevine metabolic state on wound colonisation by Trichoderma spp. as well as the 

biocontrol-grapevine interactions. Therefore, in this study an effort was made towards 
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improving grapevine pruning wound protection by Trichoderma-based biocontrol agents. In 

order to better understand the mechanisms of biocontrol in vivo, the Trichoderma-grapevine-

pathogen interactions were also investigated.  

First, the effect of grapevine pruning time and the time, after pruning, of application of 

the biocontrol agent on pruning wound colonisation by Trichoderma spp. were determined 

(Chapter 3). Formulations that can improve colonisation of pruning wounds and efficacy of 

biocontrol agents in the field will be very important in enhancing consistency in the field while 

integration of biocontrol agents with conventional fungicides will be invaluable. In a previous 

field study the addition of a sticking agent, Nu Film 17, to T. atroviride suspensions could not 

significantly enhance biocontrol efficacy in wound protection (Mutawila, 2010). In the current 

study nutritional amendments were tested for their effect in improving T. atroviride wound 

colonisation and wound protection (Chapter 4). Fungicide resistant Trichoderma isolates 

were also generated for integration with conventional fungicides so as to benefit from the 

complementary effect of the immediate protection by the fungicide and long term protection 

by the biocontrol agent (Chapter 5).  

There are currently no studies on the molecular response of grapevine to 

Trichoderma spp. used in pruning wound protection. So as a first step to understanding 

these interactions, a model system (grapevine cell cultures) was used to compare response 

of grapevines to a trunk pathogen and the biocontrol agent (Chapter 6). Lastly, since the 

secondary metabolites of the Trichoderma spp. used in pruning wound protection are not 

known, the major metabolite from the biocontrol isolates was isolated, identified and its role 

in pruning wound protection determined (Chapter 7). 

1.5 Aims of the study  

The main aim of the study was to improve grapevine pruning wound protection 

against trunk pathogen infection with the use of Trichoderma spp. biocontrol agents. The 

study further aimed to improve the application of Trichoderma spp. biocontrol agents, to 

understand factors that affect Trichoderma efficacy in the field and gain insight into the 

biocontrol mechanisms involved. The specific objectives of the study were to:  

i. Determine the effect of grapevine pruning time and application time of the 

biocontrol agent on pruning wound colonisation by Trichoderma spp.,  

ii. Determine the effect of nutritional amendments on pruning wound 

colonisation by T. atroviride and wound protection, 

iii. Develop benzimidazole resistant Trichoderma isolates for integration with 

fungicides in wound protection, 
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iv. Determine the response of grapevine to Trichoderma colonisation by a 

comparison of grapevine cell culture response to a grapevine trunk pathogen 

and the biocontrol agent, and  

v. Isolate and identify the major secondary metabolites from the Trichoderma 

spp. used for grapevine wound protection and determine their role in 

biocontrol. 
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CHAPTER 2 
Grapevine trunk diseases: Grapevine response and disease 

management  

2.1 Summary 

Grapevine pruning is a critical viticultural practice, carried out during the dormant 

season so as to maintain a balance between vegetative and reproductive growth. Wounds 

made during this process are the primary entry sites of infection for trunk disease pathogens 

that cause premature grapevine decline. Grapevine trunk diseases namely, Eutypa dieback, 

Petri disease, esca, Botryosphaeria dieback, and Phomopsis dieback cause loss of 

productivity and increase production costs. These diseases have been reported worldwide in 

all grapevine producing areas and are an important threat to the economical sustainability of 

viticulture. There are no eradicative measures, except remedial pruning, to cure infected 

vines and so the only control strategy currently available is to protect wounds from infection. 

This review gives an overview of the current knowledge on grapevine response to infection 

by trunk pathogens and management of trunk diseases in the vineyard. 

2.2 Introduction 

Grapevine trunk diseases refer to a combination of several vine disorders that result 

from the infection of the woody perennial parts of the vine and manifest in various external 

and internal symptoms. They are caused by a complex of wood-inhabiting fungi and 

symptoms are a result of one or a combination of several pathogens. Trunk diseases are a 

cause of gradual grapevine decline and loss of productivity at all stages of vine growth 

(Munkvold et al., 1994; Mugnai et al., 1999; Pascoe & Cottral, 2000; Siebert, 2001; Van 

Niekerk et al., 2003; Gramaje & Armengol, 2011). These diseases, typically associated with 

older vines, were often overlooked due to their slow development and symptom expression 

relative to the more common seasonal foliar diseases. However, grapevine trunk diseases 

have become an important limitation to attaining full potential of vineyards. In the last and the 

first decades of the 20th and 21st centuries, respectively, the increased incidence and 

severity of grapevine trunk diseases has awakened both growers and scientists alike to a 

new threat to the long-term sustainability of grape, wine and raisin production. Grapevine 

trunk diseases now occur in all grapevine producing areas although severity of the specific 

diseases may differ among regions (Mugnai et al., 1999; Pascoe & Cottral, 2000; Halleen et 

al., 2003; Gubler et al., 2005; Kuntzmann et al., 2010; Pitt et al., 2010; Bertsch et al., 2012). 

 Trunk pathogens, either individually or collectively, are responsible for graft failure 

(Adalat et al., 2000; Fourie & Halleen, 2004), loss of vigour and productivity in established 
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vines, spots on berries, late ripening and altered flavour as well as death of vines (Munkvold 

et al., 1994; Mugnai et al., 1999; Oliveira et al., 2004; Gubler et al., 2005; Larignon et al., 

2009; Bertsch et al., 2012). In addition to reducing yield and quality of grapes, they also 

increase costs of vineyard management and reduce the life of vineyards. The main 

grapevine trunk diseases are Petri disease, esca, Eutypa dieback and Botryosphaeria 

dieback. There are no curative measures to infected vines and due to their incremental 

effect by the time symptoms appear there is not much that can be done to save the vine 

without losing production. Maintaining infected vineyards becomes unsustainable, due to 

continual loss of vines and production of poor fruit, forcing growers to re-establish the 

vineyard. 

Grapevine trunk diseases are now reported at all stages of growth, but it is in the 

vineyard that losses are substantial. Poor vine establishment due to young grapevine decline 

has resulted in replanting of parts or entire vineyards in Greece (Rumbos & Rumbou, 2001) 

and California (Scheck et al., 1998). The majority of studies on the economic losses due to 

grapevine trunk disease have been done on Eutypa dieback, once considered the most 

important trunk disease. In California, losses due to Eutypa and Botryosphaeria dieback 

have been estimated to be up to US$ 260 million annually (Siebert, 2001). In Australia 

losses due to Eutypa dieback were estimated at A$ 2, 800 (~US$ 2, 550) per hectare in 

Shiraz vineyards with more than 50% disease incidence (Wicks & Davies, 1999) while in 

South Africa yield losses in Cabernet Sauvignon were estimated at ZAR 3000 (~US$ 300) 

per hectare in the Stellenbosch grape-region (Van Niekerk et al., 2003). In the French 

regions of Indre and Loire damages due to grapevine trunk diseases have been valued at 

US$ 16-18 million (FAV 37, 2010). It is important to note that economic losses could be even 

higher as most of the loss estimates were computed using only yield loss and did not take 

into account costs associated with retraining or removal of infected vines as well as revenue 

lost in poor quality grapes produced from infected vines. 

2.3 Grapevine trunk diseases: an overview 

Grapevine trunk diseases, particularly esca have been known since ancient times in 

the Mediterranean regions (Surico et al., 2008; Surico, 2009). The pathogens that cause 

young grapevine decline were described in 1912 and 1964 in Italy  and California, 

respectively (Petri, 1912; Chirappa, 1964). These diseases were considered minor, affecting 

mainly old vines and managed by simple cultural practices. The recent occurrence of these 

diseases in a more destructive manner has been attributed to many factors, mainly the 

extensive establishment of vineyards and changes in nursery and cultural practices. In 

California, the cultivation of grafted vines with Phylloxera resistant rootstocks that are 

susceptible to some trunk pathogens as compared to the once own-rooted grapevine 
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cultivars has been attributed to the increased incidence of trunk diseases (Gubler et al., 

2004). Sodium arsenite was considered to be the most effective fungicide against grapevine 

trunk diseases, especially esca, and its ban is consequentially attributed to the increased 

disease severity (Fussler et al., 2008; Larignon et al., 2009). However, the occurrence of 

grapevine trunk diseases has been increasing at alarming rates even in areas where sodium 

arsenite was never used (Bertsch et al., 2012). Changes in cultural practices, particularly the 

reduction in sanitary care in nurseries and scion-mother vineyards, is also responsible for 

the low quality of planting material and the dissemination of trunk diseases. Grapevine trunk 

pathogens are frequently isolated from symptomless plant tissue (Halleen et al., 2003; Aroca 

et al., 2006 & 2010) substantiating suggestions that the fungi may exist as latent infections, 

becoming pathogenic or inducing plant response later when the vines are subjected to stress 

(Whiting et al., 2001; Gubler et al., 2004 & 2005). Therefore, climate change, particularly 

increases in temperature and erratic rainfall, could also have contributed to increased 

severity of trunk diseases by increasing water stress on the vines (Surico et al., 2008; 

Sosnowski et al., 2011a). Due to the intricate nature of grapevine trunk diseases, they are 

considered a disease complex and the diseases within this complex are briefly discussed 

below. 

2.3.1 Petri disease and esca 

Petri disease, also known as black goo is caused by Phaeomoniella (Pa.) 

chlamydospora and several species of Phaeoacremonium (Pm.) (Crous & Gams, 2000; 

Mostert et al., 2006a). The pathogens colonise the xylem vessels where they cause 

blockage of water and solute transport. Blockage of vessels is a result of either the presence 

of fungal mycelium in the vessel lumen or by tylosis and gums produced by the plant in 

response to vessel infection (Edwards et al., 2007; Mutawila et al., 2011). The symptoms of 

Petri disease include graft failure, shortened internodes, leaf chlorosis, dieback, wilting and 

decline of young vines. Internally, the diseased vines show black/brown spots in transverse 

section (Figure 1A) and streaks when longitudinally sectioned (Figure 1B) (Edwards et al., 

2001; Fourie & Halleen, 2002; Gubler et al., 2004; Mostert et al., 2006a). Petri disease is 

often associated with vines below the age of eight and hence is usually associated with 

nursery infections (Halleen et al., 2003; Fourie & Halleen, 2004; Gubler et al., 2004; Gramaje 

& Armengol, 2011). However, in a study of genetic variability among Pa. chlamydospora, 

Mostert et al. (2006b) found single vines infected by different pathogen genotypes, showing 

that infection occurred from different sources and could be from both the nursery and 

vineyard. Petri disease pathogens produce fruiting bodies (pycnidia and/or perithecia) on 

infected tissue from where inoculum for pruning wound infection originates (Eskalen & 

Gubler, 2002; Rooney-Latham et al., 2005a).  
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Petri disease pathogens are also associated with esca in older vines. Esca, strictly 

means wood decay which refers to the white rot internal symptoms (Figure 1C) of the 

diseases caused by Basidiomycetes, of which Fomitiporia species are the most predominant 

(Mugnai et al., 1999; Fischer, 2006; White et al., 2011). White rot is often seen in vines also 

expressing leaf-stripe symptoms (also called “tiger-stripes”; Figure 1D) and hence, the name 

esca has also been used to refer to the leaf stripe symptoms (Surico et al., 2008). Leaf-stripe 

symptoms have been shown to be caused by the tracheomycosis fungi that cause Petri 

disease in the absence of the white rot fungi (Edwards et al., 2001; Romanazzi et al., 2009). 

Surico (2009) proposed that the term esca be used to refer to the wood rot symptoms and 

“Grapevine Phaeotracheomycosis complex,” to refer to Petri disease and leaf stripe 

symptoms which are caused by the same fungi. Another symptom associated with the 

Phaeotracheomycosis complex is that berries formed on infected vines are small, cracked 

and may have small black spots (also called black measles) which are believed to be due to 

phytotoxins produced by the fungi (Mugnai et al., 1999; Gubler et al., 2004 & 2005). External 

symptom expression especially of the leaf stripes is erratic and are not seen every year in 

diseased vines (Edwards et al., 2001; Marchi et al., 2006). The apoplectic form of esca is 

characterized by a sudden loss of leaf turgor, resulting in wilting of the entire plant or a 

branch and is regarded as acute esca (Mugnai et al., 1999; Letousey et al., 2010). It usually 

occurs when a wet period is followed by hot and dry weather during the summer (Mugnai et 

al., 1999). 
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Figure 1: Symptoms of Petri disease and esca. Black goo in transverse section (A) and 

wood streaking in longitudinal section originating from a pruning wound (B) in vines with 

Petri disease. White wood rot (C) and leaf stripe symptoms (D) caused by Basidiomycetes 

and Phaeotracheomycosis fungi, respectively. (Photographs: A from Dr. L. Mostert; B and C, 

from Dr. F. Halleen). 

2.3.2 Eutypa dieback 

Eutypa dieback is caused by species of Diatrypaceae of which Eutypa (E.) lata is the 

most prevalent. Eutypa dieback was once considered to be the most important grapevine 

trunk disease (Munkvold et al., 1994; Gubler et al., 2005). This disease is still important and 

remains a major grapevine trunk disease whose management has been further complicated 

by the increased occurrence of other trunk diseases that share a similar disease cycle. 

Another diatrypaceous specie, Cryptovalsa ampelina, has long been associated with 

grapevine wood, but was considered less virulent compared to E. lata (Mostert et al., 2004). 

More diatrypaceous species have now been identified and are also associated with 

grapevine canker and Eutypa dieback-like symptoms (Trouillas & Gubler, 2004; Trouillas et 

al., 2010). 

 Symptoms of Eutypa dieback are often observed early in spring when shoots on 

infected arms show chlorotic, distorted/cupped leaves with tattered margins and shortened 
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internodes (Figure 2A). Internally, the infected arms/trunks show a wedge-shaped wood 

necrosis (Figure 2B) (Moller et al., 1974; Carter, 1988). In successive seasons the number of 

shoots showing dieback symptoms increases until eventually the whole arm fails to initiate 

new growth. The whole vine subsequently dies if the infected parts are not removed. 

Inflorescence dry out before berries form, and if bunches form they are often small and 

distorted. The pathogen mycelium does not grow in the new shoots and foliar symptoms are 

due to phytotoxins produced by the fungi growing in the arms (Tey-Rulh et al., 1991; Rudelle 

et al., 2005; Andolfi et al., 2011). 

2.3.3 Botryosphaeria dieback  

Botryosphaeria dieback, is caused by fungi of the family Botryosphaeriaceae namely 

species of Botryosphaeria (B.), Neofusicoccum (N.), Lasiodiplodia (L.), Diplodia (D.), and 

Dothiorella (Van Niekerk et al., 2004; Crous et al., 2006; Úrbez-Torres et al., 2006; Larignon 

et al., 2009; Pitt et al., 2010). Fungi of the Botryophaeriaceae are cosmopolitan, and 

colonise a wide range of woody species either as saprophytic endophytes or as pathogens. 

It is for this reason that they were often overlooked and not considered pathogens of 

grapevine (Castillo-Pando et al., 2001; Crous et al., 2006). On grapevine, some of the 

Botryosphaeriaceae species causing cankers are also isolated from asymptomatic wood and 

even non-woody tissue (Halleen et al., 2003; Van Niekerk et al., 2004; Wunderlich et al., 

2011).  

Cankers caused by species in the Botryosphaeriaceae may be chronic, causing a 

gradual grapevine decline or acute, causing a severe and rapid defoliation and wilt of part or 

the whole grapevine plant. The chronic symptoms occur in vines above the age of 8 years 

and cause a gradual loss of vigour and yield (Phillips, 1998; Larignon & Dubos, 2001). 

Symptoms include dead spurs, bud necrosis, mild leaf chlorosis (Figure 2C), and shoot 

dieback. Sometimes the bleaching of canes, associated with Phomopsis cane and leaf spot, 

is also observed (Phillips, 1998 & 2000). Cankers develop mainly on trunks, cordons and 

also on canes and are seen on the surface as sunken darkened areas of the bark often 

located close to a large wound or a spur from where they extend and may cause girdling 

which leads to wilting of shoots on the cordon. When the bark on the canker is removed it 

reveals a red-brown discolouration or wood necrosis that starts from a pruning wound and 

has a wedge shape when viewed in cross-section (Figure 2D). When large cankers are left 

to develop, they may cause the sudden wilting and collapse of shoots on a vine with no prior 

foliar symptoms (Larignon & Dubos, 2001; Gubler et al., 2005). Species associated with 

cankers are belong to the several genera that include Botryosphaeria, Diplodia, Dothiorella, 

Lasiodiplodia and Neofusicoccum (reviewed by Úrbez-Torres, 2011). Fruiting bodies 
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(pycnidia) are produced on the surface of the cankers which usually have a charcoal black 

appearance and serve as sources of inoculum for new infections. 

 

 

Figure 1.2: Typical external and internal symptoms of Eutypa dieback (A, B) and 

Botryosphaeria canker (C, D). Foliar symptoms are often severe in Eutypa dieback (A) 

compared to Botryosphaeria canker (C). Both diseases cause wedge shaped wood necrosis 

(B, D). (Photographs: A from Van Niekerk et al., 2003; B, from Dr. F. Halleen, and D from Dr 

J.R.  Urbez-Torres and Dr. G.M. Leavitt).  

2.3.4 Phomopsis dieback  

 Cosmopolitan species of Phomopsis (P.) are well known saprophytes, endophytes 

and pathogens on both woody and non-woody species (Gomes et al., 2013). In grapevines 

P. viticola is a well-known causal agent of Phomopsis cane and leaf spot while (Phillips, 

1998 & 2000; Mostert et al., 2001; Van Niekerk et al., 2005). Since the discovery of E. lata 

as the causal agent of dead arm in grapevines, Phomopsis spp. were thought to be less 

important as trunk pathogens (Moller & Kasimatis, 1981). However, recent studies have 

shown that Phomopsis and Diaporthe species are regularly isolated from cankers (Úrbez-

Torres et al., 2012 & 2013) and pruning wounds (Van Niekerk et al., 2005) of grapevines. At 
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the Grapevine Trunk Disease workshop held in Spain in 2012, it was proposed that the trunk 

disease caused by Phomopsis spp. be referred to as Phomopsis dieback. Symptoms of 

Phomopsis cane and leaf spot are often seen on green canes as brown-black lens-shaped 

lesions surrounded with a yellow hallow at the bottom of the cane near the cordon. These 

lesions may coalesce and girdle the bark causing wilt or weak stems that easily break during 

windy weather or on working the vine (Phillips, 1998 & 2000). On leaves, brown round 

lesions surrounded by pale yellow areas are seen. The disease also causes loss of vine 

vigour, smaller bunches and sometimes rotting of grapes (Phillips, 2000; Erincik et al., 

2001). Phomopsis dieback symptoms include lack of spring growth and bud mortality 

following growth (Úrbez-Torres et al., 2013). Internal wood symptoms have also been 

observed and these are similar to wood necrosis symptoms reported for other dead arm 

pathogens (Mostert et al., 2001; Van Niekerk et al., 2005; Úrbez-Torres et al., 2013). 

2.4 Infection and disease cycle of grapevine trunk diseases 

The infection process and symptom development of grapevine trunk diseases are 

very similar. For the purposes of this review, these diseases are treated as a complex rather 

than as separate diseases. 

2.4.1 Grapevine nurseries as sources of infection 

Grapevine nurseries have been found to be a major source of infected material. 

Infection may occur at various stages of the nursery propagation process. Hydration of 

rootstock and scion cuttings by drenching in hydration tanks for periods of between 1-12 

hours (Fourie & Halleen, 2006) provides an opportunity for infection early in the propagation 

process. Retief et al. (2006) detected Pa. chlamydospora in hydration water after pre-

storage hydration. Poor sanitary practices in the nursery may lead to contamination of the 

hydration water while infected cuttings and microorganisms carried on the surfaces of the 

cuttings can also contaminate the water. Infection can also occur further in the propagation 

process during grafting and callusing as well as the nursery fields (Halleen et al., 2003; 

Vigues et al., 2010)  

Grapevine trunk pathogens are wound colonisers and the large number of wounds 

created in the grafting process exposes wood to infection. Petri disease pathogens have 

been detected and isolated from washings of grafting tools and machinery (Pollastro et al., 

2009; Aroca et al., 2010). Grapevine trunk pathogens have also been detected and isolated 

from callusing material (Retief et al., 2006; Aroca et al., 2010) from where it can infect 

cuttings or infection can occur from the contact of infected and healthy material in the 

callusing boxes (Larignon et al., 2006). Infection could also originate from root infections 

after planting of the grafted material in nursery soils. Petri disease pathogens, Pa. 
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chlamydospora and Phaeoacremonium species, have also been shown to infect uninjured 

roots of tissue-cultured grapevines (Feliciano & Gubler, 2001). However, higher infection 

rates of the Petri disease pathogens are found on grafted grapevines compared to non-

grafted vines indicating the importance of wounds made during the propagation process 

(Gubler et al., 2004; Aroca et al., 2006; Gramaje & Armengol, 2011). 

Petri disease pathogens are the most predominant fungi associated with infection in 

the nursery propagation process (Halleen et al., 2003; Fourie & Halleen, 2004; Gramaje & 

Armengol, 2011). However, other trunk pathogens namely, Botryosphaeriaceae and 

Phomopsis species have also been isolated from grapevine material in the propagation 

process (Halleen et al., 2003; Vigues et al., 2008 & 2010). Vigues et al. (2008) reported 

higher infection rates by species of Botryosphaeriaceae than Petri disease pathogens after 

the hydration process of propagation material. A major source of infection to the nursery 

plants are contaminated shoots used in the grafting process originating from infected scion 

and rootstock mother plants (Fourie & Halleen 2002; Aroca et al., 2006 & 2010; Halleen & 

Mostert, 2012). These either introduce inoculum in the hydration water, callusing material 

and nursery soils or systemically infect healthy material it is grafted to. 

2.4.2 Vineyard infection processes 

In the vineyard, ascospores and/or conidiospores are released from infected vines 

where fungal fruiting bodies form on the surfaces of infected wood. Eutypa dieback is more 

common where the mean annual rainfall exceeds 250 mm, which is required for perithecia 

development (Carter, 1988). Diatrypaceous species have a large host range such that 

inoculum may not only originate from vineyards (Carter, 1991; Cloete et al., 2011). For the 

release of E. lata ascospores from the perithecia, rain events of at least 2 mm or an 

equivalent in overhead irrigation or snowmelt is required (Ramos et al., 1975; Pearson, 

1980; Trese et al., 1980). Once the stroma has been wetted, ascospore release continues 

for as long as the perithecia remain wet. The release of Pa. chlamydospora conidia 

coincided strictly with rainfall events in Californian vineyards (Eskalen & Gubler 2002; 

Eskalen et al., 2004) while aerial spores of Togninia (To.) minima, (teleomoph of Pm. 

aleophilum) were associated with rainfall, but they were also occasionally trapped in the 

absence of precipitation (Eskalen et al., 2004; Rooney-Latham et al., 2005b). In France, 

rainfall was shown to play a major role in Pa. chlamydospora wound infection while Pm. 

aleophilum spore availability was not linked to rainfall (Larignon & Dubos, 2000). The release 

of conidia of Botryosphaeriaceae species has also been found to be dependent on rainfall 

events (Epstein et al., 2008; Amponsah et al., 2009; Van Niekerk et al., 2010; Úrbez-Torres 

et al., 2010). Rainfall had no effect on the release of Fomitiporia (F.) mediterranea 
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basidiospores which occurred at average daily temperatures above 10 °C and 80% relative 

humidity (Fischer, 2009). 

Moisture together with wind is necessary for the spread of spores. Some 

Botryosheariaceae species were found mostly in rain water collected below the vines, than 

on wind/airborne spore traps indicating the role of rain in dispersal (Epstein et al., 2008; 

Amponsah et al., 2009). Waterborne dispersal was also reported for basidiospores of F. 

mediterranea, the major causal organism of white wood rot (esca) in Europe (Fischer, 2009). 

In Mediterranean areas where grapevines are produced, rainfall events are mostly 

experienced during the winter season when vines are pruned which makes pruning wounds 

ideal infection sites for rain dispersed inoculum. However, rainfall events at any time of the 

year can also trigger the release of E. lata ascospores (Pearson, 1980; Trese et al., 1980). 

Although spores of To. minima and Botryosphaeriaceae species have been linked to rainfall 

activity they were also found to be present in the vineyard all year round (Eskalen & Gubler, 

2002; Amponsah et al., 2009; Kuntzmann et al., 2009; Úrbez-Torres et al., 2010). 

Pruning wounds are the principal infection sites of aerial inoculum of trunk pathogens 

(Moller & Kasimatis, 1978; Chapuis et al., 1998; Serra et al., 2008; Fischer, 2009). Recent 

studies have demonstrated the susceptibility of wounds made after the removal of suckers 

from the trunk and canes in spring or summer. These wounds were shown to be infected by 

Botryosphaeriaceae species in California (Epstein et al., 2008) and E. lata in France 

(Lecomte & Bailey, 2011). A survey carried out in South African vineyards also revealed 

trunk infections from various trunk pathogens originating from sucker wounds (Makatini et 

al., 2012). Current studies have further shown that the wounds are susceptible to most fungi 

involved in grapevine trunk diseases. The importance of these wounds as entries of infection 

is further strengthened by reports of higher inoculum availability in the vineyards in spring 

and summer, when suckers are removed, compared to winter for species of 

Botryosphaeriaceae (Amponsah et al., 2009; Kuntzmann et al., 2009; Van Niekerk et al., 

2010).  

On the wound the spores lodge in exposed vessels where they germinate and 

colonise the wood tissue. Pathogens grow in the vascular tissue causing wood rot and a 

gradual decline in the infected grapevines. There is usually a delay between infection and 

appearance of symptoms, making the diseases difficult to detect until extensive damage has 

occurred. Cankers and fruiting bodies develop on surfaces of infected parts and become 

sources of inoculum for further infections. Cankers caused by species of 

Botryosphaeriaceae and Phomopsis may develop within the year of infection especially on 

canes (Phillips, 1998; Amponsah et al., 2009). Cankers caused by E. lata take time to 

develop and are usually found further away from the site of infection (Moller & Kasimatis, 
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1978 & 1981). Similarly, basidiocarps also take a long time to develop and are not seen on 

every vine showing wood rot symptoms. Cankers may not be easily noticeable unless the 

vines start showing decline symptoms and wood is sectioned. Also fruiting bodies are small 

and not always visible with the eye in the case of the Ascomycota. Basidiocarps of the 

Basidiomycota form rarely and are usually underneath the arms of the vines. Appearance of 

foliar symptoms, depending on the pathogens involved, is intermittent, and not observed in 

every growing season in which case infected vines are indistinguishable from healthy vines 

(Mugnai et al., 1996; Phillips, 1998; Edwards et al., 2001; Marchi et al., 2006; Sosnowski et 

al., 2007b). 

Inoculum can also originate from outside the vineyard from other woody species that 

are alternative hosts of the pathogens (Munkvold et al., 1993; Cloete et al., 2011). Fruiting 

bodies on woody hosts next to a vineyard become a continual source for future infections. 

There is also increasing evidence that spores may be deposited on the wounds by 

arthropods. Epstein et al. (2008) recovered rove beetles (Staphilinidae) infested with D. 

seriata on traps placed over pruning wounds and hypothesised that they could disseminate 

wound pathogens. A more detailed study in South Africa found several arthropods on 

grapevine trunks and pruning wounds to also carry Petri disease and other trunk pathogens 

on their exoskeletons (Moyo et al., 2012). 

2.5 Pathogenesis of Trunk Pathogens  

Once spores land on the wound and enter exposed xylem vessels, they germinate 

and grow into the wound through xylem pits and eventually through cell walls with the aid of 

cell wall degrading enzymes (English & Davis, 1978; Pascoe & Cottral, 2000; Rudelle et al., 

2005). The interaction of each specific pathogen and the grapevine host determines the 

resulting symptom expression. Grapevine trunk diseases can generally be grouped, 

depending on wood symptom development, into tracheomycosis, soft rot and white rot. 

Tracheomycosis is due to the growth of fungi in the vascular system causing blockage of 

water and nutrient transport (Edwards et al., 2007; Mutawila et al., 2011). On wood 

colonisation, Pa. chlamydospora advances slowly from the inoculation site and is mainly 

restricted to the xylem vessels and does not cause wood rot (Lorena et al., 2001; Mutawila 

et al., 2011). The host respond to the pathogen by the production of gels (gum) and tyloses 

to occlude the xylem vessels and stop further pathogen colonisation. The blockage of 

vessels by the plant response could be the reason external symptoms of tracheomycosis 

resemble those of water and nutrient deficiency which include leaf chlorosis, stunted growth, 

dieback and wilting (Pascoe & Cottral, 2000; Edwards et al., 2001).  
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On the contrary, the other Ascomycota pathogens cause wood rot that is classified 

as soft rot and is characterised by extensive carbohydrate loss in the wood with little or no 

effect on the lignin, leaving a brown and soft appearing wood rot (English & Davis, 1978; 

Worrall et al., 1997). Most of what is known about their pathogenesis is based on studies on 

Eutypa dieback. Integral to colonisation of grapevine wood by E. lata is the production of 

cellulases, hemicellulases and xylanases that degrade the structural carbohydrates making-

up the xylem secondary cell walls, especially the cellulose rich secondary wall (English & 

Davis, 1978; Blanchette, 1995 & 2000; Rudelle et al., 2005). The fungi grow and extend 

longitudinally within the secondary walls of the xylem and the fibre tracheid where they also 

penetrate and cause death of the vessel associated cells (xylem parenchyma) (English & 

Davis, 1978; Rudelle et al., 2005). The fungi do not degrade the middle lamella but can 

degrade lignin to a limited extent (Blanchette, 1995 & 2000; Rolshausen et al., 2008). Wood 

necrosis follows after the loss of xylem function and plant response by sealing-off the 

infected sites through the formation of gums and tylosis. The same enzymes in E. lata have 

also been found in species of Botryosphaeriaceae (Encinas & Daniel, 1995; Dekker et al., 

2001) which may also share a similar wood colonisation pattern. The Basidiomycota fungi 

cause white rot through the simultaneous break down of carbohydrate and lignin in the wood 

often causing a bleaching discolouration of the wood. Even after extensive decay, some 

non-decayed wood still remain which result in the friable mass characteristic of white wood 

rot (Worrall et al., 1997; Enoki et al., 1998). 

In addition to the cell wall degrading enzymes, trunk pathogens also secrete 

phytotoxic secondary metabolites that are also involved in their pathogenesis. Most of these 

toxins have been isolated in culture and their role in planta has not been well characterised 

except for toxins involved in Eutypa dieback. Eutypine, a toxin from E. lata was isolated from 

both culture and sap of diseased plants (Tey-Rulh et al., 1991). Eutypine was found to be a 

protonophoric compound, that is, it causes leakage of protons from mitochondria and cells 

which interferes with respiration and carbohydrate metabolism (Deswarte et al., 1996). 

Mahoney et al. (2003) isolated other metabolites from E. lata that caused necrosis on 

grapevine leaf disks namely, eulatinol, eulatachromene and its benzofuran cyclisation 

product. Eulatachromene was also detected in wood tissue colonised by the pathogen 

(Mahoney et al., 2003; Rolshausen et al., 2008) indicating that Eutypa dieback foliar 

symptoms could be a result of several metabolites. Toxins from the Petri disease pathogens 

(Pa. chlamydospora and Pm. aleophilum), sclerone, isosclerone and exopolysaccharides, 

are phytotoxic and could be involved in leaf stripe symptoms (Sparapano et al., 2000). 

Interestingly, isosclerone and exopolsaccharides have also been isolated from N. parvum 

(Evidente et al., 2010) which could explain leaf stripe symptoms observed on vines with 
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Botryosphaeria dieback caused by Botryosphaeriaceae species in France (Larignon et al., 

2001). The Petri disease pathogens also produce 4-hydroxybenzaldehyde, a phytotoxin, that 

was also detected in culture filtrates of F. mediterranea the causal agent of wood white rot 

(Tabacchi et al., 2000). 

2.6 Response to wood pathogens 

The wood tissue is critical for mechanical support, conduction of solutes and food 

reserve, and hence plants have evolved mechanisms to preserve its integrity. Like the rest of 

the plant, woody tissue is protected from pathogens through constitutive and inducible 

defence reactions and a clear understanding of the defence mechanisms would be critical in 

the development of pathogen resistant cultivars. However, for most woody species and 

particularly grapevines, classical breeding takes a long time as resistance to pathogens 

should augment other important qualities such as grape and/or wine quality. Nevertheless, in 

the short term an understanding of these defence mechanisms is still important for the 

enhancement of management practices which optimise the plant‟s natural disease 

resistance. 

2.6.1 Preformed barriers to wood infection 

Passive resistance is not pathogen specific and involves preformed anatomical and 

chemical barriers to penetration and/or colonisation. It is passive because it is not activated 

by the arrival of the pathogens although some of these are also inducible during or after 

infection. The outer surfaces of plants are in constant interaction with the environment and 

are responsible for the passive protection of the internal organs. The bark comprises of the 

periderm, cortex, phloem and cambial tissues which together form the first line of defence to 

the entrance of most potential pathogens. Suberized phellem (outer periderm) is waterproof 

and highly resistant to enzyme attack and slow to decompose (Merrill, 1992). Only a few 

microorganisms are able to hydrolyse suberin, a hydrophobic polyester linked to a phenolic 

matrix and wax lamellae (Ofong & Pearce, 1994; Pearce, 1996). The bark also contains 

various constitutive antimicrobial compounds that include hydrolysable and condensed 

tannins, and polyphenols (Shain, 1995; Pearce, 1996). 

Some constitutive proteins have also been implicated in protection of the bark from 

wood rotting fungi and some have been further associated with resistance. A proteinacous 

inhibitor of polygalacturonase (PG) was extracted from chestnut bark and was shown to 

inhibit PG produced by chestnut blight fungus (Cryphonectria parasitica) (Shain, 1995). 

Chitinase and β-1,3-glucanase were also reported to be constitutively expressed in healthy 

bark on oak and sugar maple trees (Wargo, 1975; Chun et al., 1999; Robinson et al., 2000). 

These enzymes could be involved in the hydrolysis of fungal cell wall components. Infection 
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by E. lata inoculated on the bark tissue (phloem) of apricot was inhibited and resulted in 

death of the pathogen soon after germination of the spores (English & Davis, 1978). 

Normal wood is constituted of approximately 20-35% lignin, the structural component 

of wood that is highly resistant to biodegradation (Barber & Mitchell, 1997). Lignin protects 

woody tissue against pathogens, however, white rot Basidiomycota fungi can break down 

lignin. Lignin is a complex polymer of phenylpropanoids (lignans) formed by the 

polymerisation of three monolignols (hydroxycinnamyl alcohol units), i.e. 4-coumaryl, 

coniferyl and sinapyl (Boerjan et al., 2003; Ralph et al., 2004). Lignans are synthesised from 

the linkage of two monolignols and also have antimicrobial properties and are presumably 

plant defence compounds (Saleem et al., 2005). Lignin is found in the plant cell wall 

interwoven with hemicellulose, together forming a formidable structural and chemical barrier 

that is resistant to cell wall degrading enzymes. During infection, cell wall lignification 

establishes a mechanical barrier by rendering the cell more resistant to mechanical pressure 

applied by the penetrating fungi as well as limit diffusion of toxins from the fungi to the host 

and of nutrients from the host to the pathogen (Nicholson & Hammerschmidt, 1992). 

Wounds create sites for pathogen infection, that are compromised in their ability to 

stop fungal infection, because the physical barriers are broken and the woody tissues are 

exposed. To preserve its integrity, the woody tissue has to be protected by active defence. 

2.6.2 Active defence to wood infection   

When the pathogen circumvents the passive defence mechanisms it becomes 

imperative that the plant detects the presence of the pathogen. Recognition of the pathogen 

triggers defence systems based on chemicals and cell wall barriers that confine the parasite 

in the infected cells and prevent further ingress. There are two main models proposed for the 

response of sapwood to fungi and/or decay namely, compartmentalisation of decay in trees 

(CODIT) and the reaction zone formation models. The CODIT model, proposed by Shigo 

and Marx (1977) and further established by Shigo (1984), describes the progression of wood 

discolouration and decay. The model is based on barriers, termed walls 1-4, that limit the 

spread of fungi. The first wall (wall 1) is formed by the plugging of vessels and tracheids and 

thus limits the axial spread of the fungi while wall 2 is an anatomical component that limits 

the radial spread by cell wall thickening. Wall 3 forms a boundary to lateral spread 

(perpendicular to the rays) and is formed by the ray parenchyma. Wall 4, also called the 

barrier zone is formed by the cambium at the time of wounding and limits the spread of 

infection into new wood tissue formed after wounding. The barrier wall is the strongest and 

most durable of the CODIT walls and unlike walls 1 to 3, which are formed with wood extant 

at the time of injury, wall 4 is formed only after wounding. 
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Shain (1967, 1971 & 1979) proposed the reaction zone model which can be equated 

to the CODIT model (Shigo, 1984) with the exception of the barrier zone (wall 4). The 

reaction zone is a zone of active host response found between infected and healthy wood. 

The reaction zone is non-specific and is continuously retreating ahead of the pathogen 

colonised wood (and hence similar to the CODIT walls 1-3). Central to both models is the 

development of physical and chemical barriers that inhibit or seal-off sound wood from 

colonisation. Extracts from the reaction zones are inhibitory to fungal growth (Shortle, 1979; 

Pearce & Woodward, 1986; Yamada, 2001), similar to extracts from similar zones in Botrytis 

cinerea and Plasmopara (Pl.) viticola infected leaves (Langcake, 1981; Dercks & Creasy, 

1989; Pezet et al., 2004). The compounds in the reaction zones are induced as they are 

found at lower levels in sound wood and increase in quantity after fungal infection (Pearce, 

1991; Yamada, 2001). Pearce (1996) argued that none of the models mentioned above is 

sufficient to fully describe the interaction between living sapwood and wood colonising fungi. 

However, these models together give an indication of the scale of interactions between the 

host and the pathogens in wood tissue. 

2.6.3 Grapevine response to wound infection 

Several studies have shown similarities in the response of grapevines to wound 

infection and those described in the CODIT and reaction zone models. Grapevines respond 

to wound infection by producing gums and tylosis that form bio-chemical and physical 

barriers to pathogen colonisation (Del Rio et al., 2001; Troccoli et al., 2001; Edwards et al., 

2007; Mutawila et al., 2011). These are similar to the wall 1 of the CODIT model (Shigo, 

1984). Strengthening of cell walls around the infected cells occurs through the deposition of 

lignin and pectin observed as thickening of secondary walls (Rudelle et al., 2005; Mutawila 

et al., 2011), similar to walls 2 and 3 of the CODIT model. Histochemical staining of infected 

wood tissue has also revealed that phenolic compounds accumulate in the tyloses, gels and 

the cells around (equivalence of the reaction zone of the Shain model) infected vessels 

(Amalfitano et al., 2000 & 2011; Del Rio et al., 2001; Troccoli et al., 2001). These 

compounds are phytoalexins and have been shown to inhibit the growth of Petri disease 

pathogens and E. lata as well as inhibit their cell wall degrading enzymes (Del Río et al., 

2004; Santos et al., 2006).  

2.6.3.1 Grapevine phytoalexins: Grapevine phytoalexins, are stilbene compounds 

whose synthesis is induced during pathogen infection (Dercks & Creasy, 1989). They are 

secondary metabolites produced from the phenylpropanoid pathway which also synthesise 

flavonoids and phenolic structural polymers, lignin and suberin (Barber & Mitchell, 1997; 

Hammerschmidt, 1999). Biosynthesis of these secondary metabolites involves the 

coordinated regulation of the general phenylpropanoid pathway as well as the flavonoid, 
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stilbene and lignin branch pathways. The phenylpropanoid pathway (Figure 3) begins with 

deamination of phenylalanine, an amino acid product of the Shikimate biosynthetic pathway, 

to cinnamic acid. This step, catalysed by phenylalanine ammonia-lyase (PAL), represents a 

switch from primary (Shikimate pathway) to secondary (phenylpropanoid pathway) 

metabolism (Barber & Mitchell, 1997). Lignin biosynthesis branches-off after the formation of 

hydroxycinnamic acid CoA esters which are reduced to their respective monolignols by the 

successive action of several enzymes that include cinnamoyl CoA reductase and cinnamyl 

alcohol dehydrogenase (Hahlbrock & Scheel, 1989). At the end of the general 

phenylpropanoid pathway, condensation of 4-coumaric acid and three molecules of malonyl-

coenzyme A (malonyl-CoA) by either of the enzymes chalcone synthase and stilbene 

synthase, marks the branching point of the flavonoid and stilbene pathways, respectively 

(Hahlbrock & Scheel, 1989; Vannozzi et al., 2012). Stilbene synthase catalyses the 

formation of resveratrol, the precursor of stilbenes, while chalcone synthase forms 

chalcones, the precursors of flavonoid compounds. 
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Figure 3: The general phenylpropanoid pathway showing the sub-branches to the synthesis 

of lignin, stilbenes and flavonoids. The enzymes catalysing each step of the general 

phenylpropanoid pathway are also shown: PAL, phenyl ammonium lyase; C4H, cinnamate 

4-hydroxylase; 4CL, 4-coumaroyl CoA ligase; STS, stilbene synthase and CHS, chalcone 

synthase. (modified from Vannozzi et al., 2012). 

2.6.3.2 Grapevine pathogenesis related proteins: Grapevines also respond to 

infection by synthesising numerous “pathogenesis-related (PR)” proteins which are low 

molecular weight (5-70 kDa) proteins that are characterised by their high solubility, stability 

at low pH, and high resistance to proteolysis (Linthorst, 1991). Most PR proteins have 

antimicrobial properties, through either their hydrolytic activities on the fungal cell walls or 

contact toxicity, or are involved in defence signalling that result in induced defence 

responses (Van Loon et al., 2006). Other defence mechanisms include enzyme inhibition as 

in the polygalactronase inhibiting proteins (PGIP), increased peroxidase activity and 

production of reactive oxygen species as well as accelerated cell death (in hypersensitive 

response). By their original definition, PR proteins are induced by biotic stress, however, 

some of them also accumulate during certain physiological processes and as a result of 

abiotic stress (Van Loon et al., 2006). Active defence can be observed at the sight of 

infection (localised acquired resistance) only or can also result in a systematic broad 
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spectrum resistance called systemic acquired resistance (SAR), observed at tissues distant 

from the site of infection (Van Loon et al., 1998; Durrant & Dong, 2004). Systemic resistance 

can also be induced by beneficial microorganisms or chemicals, which mimic the effect of 

pathogen infection or induce similar stress, through induction of a defence state known as 

induced systemic resistance (ISR) (Van Loon et al., 1998).  

Several grapevine PR genes have been characterised which include, PR 1 (Bertsch 

et al., 2003), β-1,3 glucanases (PR 2), chitinases (PR 3 and PR 4) (Kortekamp, 2006), 

thaumatin-like protein (PR 5) (Pocock et al., 2000) and a serine proteases inhibitor (PIN) 

belonging to the class of antifungal PR 6 proteins (Van Loon & Van Strien, 1999). 

Expression of PR proteins is selective and depends on the infecting pathogen or the elicitor 

(Glazebrook, 2005). Kortekamp (2006) inoculated grapevine cultivar Riesling with a non-host 

pathogen, Pseudoperonospora (Ps.) cubensis (downy mildew of cucumber) and found that 

PR 2, PR 4 and PGIP were induced and largely accumulated as compared to when 

inoculated the host pathogen Pl. viticola. When leaves were subsequently inoculated with Pl. 

viticola, after treatment with Ps. cubensis the severity of downy mildew was significantly 

reduced further demonstrating the importance of the PR genes expressed on inoculation 

with the non-host pathogen. The transcripts of genes encoding PR proteins accumulate in 

the leaves of plants infected with trunk disease pathogens. When grapevine plantlets were 

inoculated with E. lata, the expression of genes encoding PR proteins chitinases, 

glucanases, osmotins, thaumatins and polygalacturonase inhibitor proteins were strongly 

induced (Rotter et al., 2009). The same genes were also found to be overexpressed in 

leaves of grapevine plants expressing symptoms of E. lata compared to leaves from healthy 

plants (Camps et al., 2010). Letousey et al. (2010) also reported the increased expression of 

chitinase transcripts in leaves of esca diseased vines prior to the apoplectic symptom 

expression. Agüero et al. (2008) isolated some PR proteins from grapevine xylem sap, 

however, there is no information available regarding the presence of these molecules in the 

wood tissue harbouring trunk pathogens. 

Resistance or susceptibility of a plant is determined by the speed and magnitude with 

which the plant activates and expresses their defence response as well as the effectiveness 

of the response mechanism on the pathogens. The slow development of grapevine trunk 

diseases, usually taking several years between infection and expression of foliar symptoms, 

suggests that the plant can delay the development of these pathogenic fungi (Troccoli et al., 

2001; Larignon et al., 2009). There is currently limited knowledge on grapevine molecular 

response to trunk pathogens at the site of infection. 
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2.6.4 Grapevine cultivar resistance 

 There are no known cultivars resistant to grapevine trunk pathogens, however, many 

studies have shown cultivar variation in the expression of symptoms and severity of the 

diseases (Munkvold et al., 1994; Surico et al., 2000; Marchi, 2001; Sosnowski et al., 2007a). 

While environmental conditions, soil type and cultural practices also influence symptom 

expression, cultivar differences in symptom expression have been found (Mauro et al., 1988; 

Feliciano et al., 2004; Sosnowski et al., 2007b). Cultivars considered susceptible to Eutypa 

dieback include Cabernet Sauvignon, Cabernet Franc, Chenin blanc, Pinot noir, Riesling and 

Sauvignon blanc while cultivars Merlot, Sémillon and Barbera are considered tolerant 

(Mauro et al., 1988; Carter, 1991; Munkvold et al., 1994; Sosnowski et al., 2007a). The 

range of susceptibility to E. lata has been explained by the ability of cultivars to detoxify 

toxins (Mauro et al., 1988; Colrat et al., 1999). However, Rolshausen et al. (2008) showed 

that the wood tissue of Merlot, a tolerant cultivar, contained higher lignin content and hence 

could resist the pathogen colonisation better than susceptible Cabernet Sauvignon, which 

had lower lignin content. Similar data is lacking for the other trunk diseases, however, 

Cabernet Sauvignon, Chenin blanc and Sauvignon blanc are generally regarded as 

susceptible to Botryosphaeria canker while Sémillon and Merlot are considered tolerant 

(Larignon & Dubos, 2001). In Italy, Graniti et al. (2000) and Marchi (2001) reported that 

Sémillon, Cabernet Sauvignon and Sauvignon blanc were susceptible to esca while Merlot 

and Pinot noir were less susceptible.  

2.7 Management of Grapevine trunk diseases 

Since there are no eradicative control measures for infected vines, prophylactic 

treatments are the only effective way to control these diseases. There are three approaches 

to preventing wound infection by trunk pathogens and these are viticultural, chemical and 

biological control. 

2.7.1 Viticultural practices 

It is inevitable that wounds will be made on a grapevine as this is the only way to 

balance vegetative and reproductive growth of the vine. Cultural control aims at exploiting 

the biological knowledge of the wound and the pathogens to make viticultural decisions that 

will minimise infection or the impact of the trunk diseases. 

When vineyards are established, pruning the minimum required will reduce the 

surface area exposed to possible infections. A double increase in wound diameter results in 

more than four times increase in the surface area of exposed wood (Figure 4). Wounds are 

equally susceptible to infection regardless of the age on the wood on which they are made 

(Trese et al., 1980; Munkvold & Marois, 1995; Úrbez-Torres & Gubler, 2010). However, 
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wounds on older wood have a larger surface area of exposed wood than the wounds on 

one-year-old canes. High numbers and large surface area of exposed pruning wounds have 

been positively correlated with severity of Eutypa dieback (Munkvold & Marois, 1995; Gu et 

al., 2005). The severity of pruning is determined by the vigour of the vine growth. Vines with 

more vegetative growth are pruned more severely which creates more and bigger wounds 

and a greater potential for pathogen infection (Gu et al., 2005). Excessive nutrition can result 

in increased vigour and more pruning wounds (Gu et al., 2005; Dumot et al., 2012). Training 

systems that require less extensive pruning are desirable. 

 

 

Figure 4: An estimation of the total area of exposed wood in a spur pruned vineyard with a 

vine density of 3 500 /ha (1.4 × 1.4 m) and a wound diameter of 1 cm and 2 cm on the 1-

year-old cane and the 2-year-old cane, respectively. The surface area of exposed wood on 

pruning wounds increases by more than four times for every double increase in wound size. 

 

The susceptibility of wounds to infection diminishes with time after pruning (Petzoldt 

et al., 1981; Munkvold & Marois, 1995; Eskalen et al., 2007; Van Niekerk et al., 2011). The 

duration of wound susceptibility varies with pruning time and is a function of the wound 

healing process, which involves the occlusion of exposed vessels, lignification and 

suberisation (Biggs, 1987; Biggs & Miles, 1988; Munkvold & Marois, 1995; Sun et al., 2006). 

The healing process has been found to be faster at higher temperatures than at low 

temperatures due to increased rate of suberisation and thus reduced duration of wound 
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susceptibility (Biggs, 1990; Munkvold & Marois, 1995). Wounds remain susceptible for up to 

6 months but the critical time for infection ranges from two to eight weeks (Munkvold & 

Marois, 1995; Chapuis et al., 1998; Eskalen et al., 2007; Van Niekerk et al., 2011). Munkvold 

& Marois (1995) further found an increased rate of natural wound colonisation by 

saprophytes which protecting wounds from infection when temperatures are higher. These 

factors together with the reduced availability of pathogen inoculum, form the basis for the 

recommended practice of pruning grapevines late in winter when temperatures begin to rise 

as it reduces trunk pathogen infection as compared to wounds made early or in the middle of 

the winter season (Petzoldt et al., 1981; Munkvold & Marois, 1995; Chapuis et al., 1998). 

Epidemiology studies from many regions have also shown that spores of E. lata (Ramos et 

al., 1975; Pearson, 1980; Trese et al., 1980; Carter, 1991), Botryospheraiaceae species 

(Úrbez-Torres et al., 2010; Van Niekerk et al., 2010) and Pa. chlamydospora (Eskalen & 

Gubler, 2002; Rooney-Latham et al., 2005a) are released during or after rainfall events and 

hence it is recommended to avoid pruning during wet weather. 

Surico et al. (2008) recommended that in areas that experience severe winters, 

pruning should be delayed as much as possible until wounds can heal faster. In regions 

where winters are mild, pruning should be done as early as possible so that wounds heal 

before infection by newly disseminated spores. Double pruning, which involves a first non-

selective pruning to ~30 cm above the spur positions early in the dormant season, followed 

by the traditional pruning to two/three buds later in winter has been found to be effective in 

reducing Eutypa lata infection in California (Weber et al., 2007). This practice is 

recommended for large vineyards where labour costs for pruning are high and mechanical 

pruning or unskilled staff would carry out the first indiscriminate pruning while the skilled 

pruners would carry out the final pruning faster. Double pruning also holds the advantage 

that initial infections are pruned away. Weber et al. (2007) demonstrated that E. lata 

inoculated on wounds made in the first pruning was eliminated in the second pruning. 

Pathogen infection from natural inoculum was also higher in the wounds made in the first 

pruning (early winter) compared to the second pruning (late winter) further proving that 

wounds made in the late winter are less susceptible to infection. However, it is important to 

note that double pruning does not provide any additional advantages if the normal pruning 

was to be done once late in winter. 

Vineyard sanitation is also important for the reduction of inoculum. Infected wood or 

cankers in the vineyard and adjacent orchards should be removed and destroyed. The 

vineyards should be monitored during the vegetative season to identify and record all 

diseased vines which should be eliminated as they may be sources of inoculum. In order to 

replace dead arms/cordons, remedial surgery (also called trunk renewal) is carried out in 

Stellenbosch University  http://scholar.sun.ac.za



 

31 
 

which the infected cordons are removed and disease free shoots trained up, to replace the 

removed sections (Di Marco et al., 2000; Calzarano et al., 2004; Sosnowski et al., 2004 & 

2011). The effectiveness of the method is dependent on removal of all the infected parts and 

that the shoots used for training are not infected. However, using the discolored wood to 

determine depth of infection is unreliable as the pathogen grows further than the stained 

region (Di Marco et al., 2000; Sosnowski et al., 2007a) and hence it is recommended to 

remove at least 10 cm of healthy wood after the stain (Sosnowski et al., 2011b). This 

technique has been reported mainly for Eutypa dieback but can equally be applied for other 

trunk diseases. 

Cultural practices cannot guarantee wound protection and pruning wound protection 

is still needed. Pathogen inoculum can be reduced but cannot be completely eliminated and 

is always available in the vineyards. All wounds need to be protected as they are equally 

susceptible to infection regardless of the age of the wood on which they are made (Munkvold 

& Marois, 1995; Úrbez-Torres & Gubler, 2010). 

2.7.2 Chemical wound protection 

 Chemical control is based on the use of fungicides or physical barriers (paints and 

pastes) to protect the wound from infection. Sodium arsenite is considered to have been the 

best fungicide used for the control of esca as it had wound protective effect and also 

reduced disease severity in infected vines or delayed symptom expression (Mugnai et al., 

1999; Surico et al., 2008). Sodium arsenite was banned due its environmental and human 

toxicity (Fussler et al., 2008) and since then, there have been numerous studies carried out 

to find alternative fungicides. In vitro tests have shown the efficacy of several fungicides in 

inhibiting the growth of trunk pathogens (Jaspers, 2001; Bester et al., 2007; Halleen et al., 

2010; Gramaje et al., 2011; Amponsah et al., 2012; Pitt et al., 2012) while some have further 

been shown to be effective wound protectants in the field (Sosnowski et al., 2008; Halleen et 

al., 2010; Rolshausen et al., 2010; Amponsah et al., 2012; Pitt et al., 2012; Díaz & Latorre, 

2013). However, there are few fungicides specifically registered for grapevine pruning wound 

protection while several paints and pastes are generally registered for pruning wounds on all 

woody species. 

 Benomyl was found to be effective against E. lata dieback and was used in pruning 

wound protection in the USA until 2001 (Munkvold & Marois, 1993a; Rolshausen et al., 

2010). The potential of benomyl in pruning wound protection against E. lata was first shown 

on apricot (Moller & Carter, 1969) and was later adopted on grapevine (Moller & Kasimatis, 

1980) when it was shown that the same canker pathogen on apricot infects grapevine 

(Moller & Kasimatis, 1978). Several studies have confirmed the effectiveness of benomyl in 
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preventing grapevine infection by E. lata (Pearson, 1982; Gendloff et al., 1983; Munkvold & 

Marois, 1993a; Sosnowski et al., 2008; Halleen et al., 2010). Other benzimidazoles namely, 

carbendazim (Sosnowski et al., 2008) and thiophanate methyl (Rolshausen et al., 2010) 

were also found to be effective in pruning wound protection against E. lata. Thiophanate 

methyl and carbendazim have further been shown to be effective in wound protection 

against species of Botryosphaeriaceae (Rolshausen et al., 2010; Amponsah et al., 2012; Pitt 

et al., 2012; Díaz & Latorre, 2013), Pa. chlamydospora and Phaeoacremonium spp. 

(Rolshausen et al., 2010; Díaz & Latorre, 2013) and the white wood rot fungus, Inocutis sp. 

(Díaz & Latorre, 2013). Benomyl and carbendazim are no-longer available in USA, Europe 

and Australia (Rolshausen et al., 2010; Pitt et al., 2012), however, they remain available and 

are registered for the control of botrytis bunch-rot on grapevine in South Africa, New Zealand 

and Chile (Halleen et al., 2010; Amponsah et al., 2012; Díaz & Latorre, 2013). Other 

fungicides shown to also be effective in wound protection include demethylation inhibitors, 

flusilazole and tebuconazole (Rolshausen et al., 2008; Sosnowski et al., 2008; Pitt et al., 

2012; Díaz & Latorre, 2013).  

 Pruning wound paints/pastes are a popular choice for pruning wound protection on 

various woody species but their efficacy is debatable (Shigo & Shortle, 1983; Spiers & 

Brewster, 1997; Hudler & Jensen-Tracy, 2002; Van Niekerk et al., 2011). Several studies 

have shown that some wound sealants interfere with wound cicatrisation (healing) making 

the wound susceptible for longer periods. Furthermore, exposure to ultraviolet (UV)-light and 

the shrinking of dead wood under the paint creates cracks that collect moisture and create 

an ideal environment for fungal growth (Shigo & Shortle, 1983; Spiers & Brewster, 1997; 

Hudler & Jensen-Tracy, 2002). In a study of grapevine pruning wound susceptibility to 

natural air-borne inoculum, wounds  treated with a non-fungicidal bitumen based acrylic 

emulsion, Tree Seal Pruning Grade, had higher levels of pathogen infection than untreated 

wounds (Van Niekerk et al., 2011). Ideal wound sealants should therefore be breathable to 

allow natural wound cicatrisation, have high elasticity and resistance to UV-light to reduce 

likelihood of cracking and also contain fungicides (Spiers & Brewster, 1997; Epstein et al., 

2008). 

Pruning wound paints with fungicides that have been tested for grapevine wound 

protection are Gelseal and Greenseal which contain tebuconazole, Garrison which contains 

cyproconazole and iodocarb, Bioshield and Biopaste which contain boric acid (Sosnowski et 

al., 2008; Rolshausen & Gubler, 2005; Rolshausen et al., 2010; Pitt et al., 2012). Garrison, 

was developed for pruning wound protection of fruit trees from Chondrostereum purpureum, 

the causal agent of silver leaf. Several studies have shown Garrison to be effective in 

protecting grapevine pruning wounds from infection by most trunk pathogens (Sosnowski et 

Stellenbosch University  http://scholar.sun.ac.za



 

33 
 

al., 2008; Rolshausen et al., 2010; Pitt et al., 2012). Boric acid combined with a pruning 

wound paste provided antifungal activity and reduced pruning wound infection by E. lata, 

however, when applied at high concentrations the boric acid was phytotoxic and caused 

mortality of apical bud/shoots (Rolshausen & Gubler, 2005). The efficacy of 5% boric acid 

has further been confirmed against E. lata (Sosnowski et al., 2008), Botryosphaeriaceae 

species, Pa. chlamydospora and Phaeoacremonium spp. (Rolshausen et al., 2010). The 

application of pruning wound paints on all wounds in a vineyard may not be economically 

viable due to labour costs involved and so are mainly applied on larger wounds such as 

those made on the trunk or cordons on re-working the vine. 

2.7.3 Biological wound protection 

 Fresh pruning wounds are colonised by saprophytic fungi and bacteria some of which 

can prevent infection by pathogens (Carter & Price 1974; Petzoldt et al., 1981; Munkvold & 

Marois, 1993b & 1995; Chapuis et al., 1998).  Several wound colonising bacteria and fungi 

are antagonistic to grapevine trunk pathogens in vitro and these include Bacillus subtilis 

(Ferreira et al., 1991), Erwinia carotovora (Schmidt et al., 2001), Cladosporium (Cl.) 

herbarum (Munkvold & Marois, 1993b), Fusarium lateritium (Carter, 1971) and Trichoderma 

species (Munkvold & Marois, 1993b; John et al., 2004). Since the saprophytes grow on the 

wound, they are likely to provide protection until the wound is fully healed and no-longer 

susceptible to infection. The protective activity of the wound saprophytes can be attributed to 

direct antagonism, occupation of space and/or also activation of plant defence. Antibiotic 

secondary metabolites were isolated from F. lateritium (Carter & Price, 1974; Munkvold et 

al., 1993b), B. subtilis (Ferreira et al., 1991) and T. harzianum (John et al., 2004), but none 

of these metabolites have been identified. Munkvold & Marois (1993b) attributed wound 

protection by Cl. herbarum to its fast colonisation of the wound and the production of 

hydrophobic conidia that provide a physical barrier to pathogen spores carried in water 

droplets. Of the potential wound saprophytes found to protect grapevine pruning wounds, 

only Trichoderma spp. have been commercially developed for grapevine pruning wound 

protection, which is most likely due to ease of large scale production of these fungi. 

 Trichoderma spp. are among the most studied biocontrol fungi and have been 

developed into commercial products for biological control of plant pathogens (Chet, 1987; 

Harman, 2000 & 2004; Vinale et al., 2008a). The mechanisms of action of Trichoderma spp. 

include mycoparasitism, secretion of mycolitic enzymes, competition for limiting resources 

(Harman et al., 1993; Haran et al., 1995; Howell, 2006), production of antibiotic metabolites 

(Sivasithamparam & Ghisalberti, 1998; Vinale et al., 2006) as well as induction of plant 

resistance (Gallou et al., 2008; Vinale et al., 2008b). Trichoderma species are predominantly 

soil inhabitants and hence, are used mostly for the control of soil-borne pathogens of root 
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diseases. However, Trichoderma spp. have also been shown to protect pruning wounds 

against wood rot fungi. Grosclaude et al. (1973) demonstrated that T. viride could completely 

protect wounds of plum trees from infection by C. purpureum while Woodgate-Jones & 

Hunter (1983) further reported the curative effect of T. viride on trees expressing silver leaf 

symptoms. Highely (1997) found that T. virens could only protect infection of maple and pine 

by various white rot and brown fungi, but could not stop decay once the pathogen was 

established, although it reduced the rate of wood decay. Similar results were also obtained 

on the protection of pruning wound on urban trees by T. atroviride where the biocontrol 

agent was more effective against soft rot (Ascomycota) fungi than white rot fungi 

(Basidiomycota) (Schubert et al., 2008). 

 In grapevine, Trichoderma spp. have been shown to protect pruning wounds from 

infection by E. lata (Munkvold & Marois, 1993b; Hunt et al., 2001; John et al., 2005 & 2008). 

Wound protection from other trunk pathogens has also been demonstrated in nurseries and 

vineyards. Di Marco et al. (2004) showed the protection of pruning wounds and nursery 

plants from infection by Pa. chlamydospora and reduction of wood streaking caused by the 

pathogen in infected canes. Similar findings were reported from nursery plants treated with 

T. harzianum in South Africa (Fourie & Halleen, 2004 & 2006). Kotze et al. (2011) tested 

several strains of Trichoderma spp. and found that the efficacy of two isolates of T. 

atroviride, UST1 and UST2, was either similar or superior to that of benomyl when 

pathogens were inoculated 7 days after pruning. However, several reports have shown 

variable control with Trichoderma spp. when the pathogens are inoculated soon after 

application of the biocontrol agent (John et al., 2005; Halleen et al., 2010; Pitt et al., 2012). 

Since biocontrol efficacy is dependent on establishment of the biocontrol agent on 

the wound, the time that is required for the biocontrol agent to colonise the wound creates a 

window of infection. Carter & Price (1975) took advantage of the tolerance of F. lateritium to 

benomyl and applied a mixture of the biocontrol agent and the fungicide on pruning wounds 

of apricot that were immediately inoculated with E. lata. The combination of F. lateritium and 

benomyl resulted in the least infection although this did not significantly differ from the 

treatments applied separately. However, since environmental conditions on the wound are 

not always optimal for colonisation by the biocontrol agents, integration of chemical and bio-

protection is likely to provide more consistent and long term wound protection. In California, 

a mixture of boric acid and Cl. herbarum (Bioshield) provided wound protection against most 

of the trunk pathogens (Rolshausen & Gubler, 2005). The mixture gave better wound 

protection than the biocontrol agent alone but protection did not significantly differ from the 

boric acid alone. 

Stellenbosch University  http://scholar.sun.ac.za



 

35 
 

2.7.4 Management of infected vines 

Several fungicides have been tested for their curative effect with varying results. 

Injection of triazole fungicides, propiconazole and difenoconazole, and an elicitor of plant 

resistance, 2-hydroxybenzoic acid, into trunks of grapevines showing Eutypa dieback and 

esca symptoms, did not have any effect on disease development (Darrieutort & Lecomte, 

2007). Application of copper oxychloride in the vineyard after harvest, at pruning and when 

shoots were 8-10 cm reduced the foliar symptoms of esca but had no effect on wood 

colonization by Pa. chlamydospora (Di Marco et al., 2011b). In vitro tests with copper 

oxychloride inhibited the production of scytalone by Pm. aleophilum, which explained the 

reduction of foliar symptoms on grapevines (Di Marco et al., 2011b). When remedial surgery 

was used for trunk renewal of esca diseased vines, the application of fungicides 

cyproconazole, tetraconazole and fosetyl-Aluminium by trunk injection reduced the 

recurrence of esca in the new shoots (Calzarano et al., 2004). 

The application of Brotomax, an enhancer of phenolic compounds, as a foliar spray 

and drench was reported to stimulate growth and reduce Petri disease symptoms in infected 

nursery plants (Del Río et al., 2004). The injection of formulations of fosetyl-aluminium 

resulted in reduction of wood necrosis caused by Pa. chlamydospora and Pm. aleophilum on 

potted vines and reduced symptom expression and death of vines due to esca in field trials 

(Di Marco et al., 2011a). 

An ancient custom still practiced today in some European countries is believed to 

delay the recurrence of esca foliar symptoms. This involves opening the trunks, of vines 

expressing symptoms, in the middle and inserting a stone so as to expose the rotted wood to 

the air (Surico et al., 2008). The real effect of the practice has not been scientifically proven. 

Management of infected vines aims at maintaining vineyard productivity, however, 

the costs involved may be a deterrent to adoption of these practices. Applying fungicides or 

growth stimulants by trunk injection is expensive and may only be economically feasible in 

high value vineyards. Effective fungicides or biostimulants that can be applied by cheaper 

methods are more desirable. 

2.8 Conclusions  

Grapevine trunk diseases are increasingly becoming an important threat to the 

sustainability of viticulture and the industries that depend on it. In the past decade, there has 

been considerable gain in the knowledge of the etiology, symptomatology and epidemiology 

of grapevine trunk diseases. Knowledge on host-pathogen interactions is limited and could 

answer some important questions such as, the delayed and erratic expression of symptoms 

as well as the occurrence of latent pathogen infection. Grapevine trunk pathogens inhabit 
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mature wood tissue and so studies on host-pathogen interaction should target response of 

the wood tissue to the pathogen. 

Management of grapevine trunk diseases currently relies on sanitation and the 

employment of biological and chemical wound protection. Neither of these methods is alone 

sufficient for complete and long term wound protection but their integration is likely to provide 

better protection. Cure of infected vines is still yet to be achieved even at experimental level. 

With the continued loss of effective fungicides due to environmental and/or human toxicity, 

wound bio-protection seems to be the only method that is currently available that is likely to 

remain available in the long term. There exists, therefore, a challenge to improve the efficacy 

of biocontrol agents while also looking at ways to enhance the plant‟s own defence 

mechanisms against the pathogens. 
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Chapter 3 
Optimisation of time of application of Trichoderma biocontrol 

agents for grapevine pruning wound protection 

3.1 Abstract 

The protection of grapevine pruning wounds is a very important practice as these are 

entries for wood infection by trunk pathogens that cause grapevine decline. The application 

of Trichoderma species on wound surfaces reduces wound infection and several wound 

protection products based on Trichoderma spp. have been registered. The effect of pruning 

time (early or late) and five timings of application of the biocontrol agent after pruning (0, 6, 

24, 48 and 96 hours), on grapevine pruning wound colonisation by Trichoderma-based 

pruning wound protectants were determined. Field trials were carried out over two seasons 

on two wine-grape cultivars Chenin blanc and Cabernet Sauvignon which are normally 

pruned early and late in the winter season, respectively, in South Africa. These pruning 

times correspond with the time these cultivars break from the winter dormancy period. 

Colonisation of grapevine pruning wounds by the Trichoderma spp. was dependent on the 

physiological state of the vines as well as the weather conditions at pruning. In dormant 

vines colonisation remained high from immediate application (0 hours) up to 48 hours after 

pruning. In vines at break of dormancy colonisation was highest at 6 and 24 hours after 

application. Applying the biocontrol agent 6 hours after pruning consistently resulted in high 

incidences of Trichoderma spp. in both cultivars at either early or late pruning regardless of 

vine physiological state or the weather conditions. It was also found that, in the South African 

Stellenbosch wine region, wound infection from natural inoculum is higher in the late winter 

compared to the early winter. The implications of these findings on trunk disease 

management are discussed. 

3.2 Introduction 

The pruning of grapevines is a critical viticultural practice that is carried out every winter 

to maintain balance between vegetative and reproductive growth. Pruning wounds made 

during this process are important entry ports of infection for trunk disease pathogens that 

cause premature grapevine decline and loss of productivity. Grapevine trunk diseases are 

responsible for graft failure, loss of vigour and productivity in established vines, wood 

cankers, spots on berries, late ripening and altered flavour, as well as death of spurs and/or 

the entire vines (Mugnai et al., 1999; Pascoe & Cottral, 2000; Surico et al., 2008). These 

diseases are responsible for substantial economic losses and have become an important 

threat to the sustainability of viticulture and wine industries worldwide. 
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Eutypa dieback, caused by Eutypa (E.) lata, was once considered to be the most 

important grapevine trunk disease (Munkvold et al., 1994; Gubler et al., 2005). However, 

more fungi are currently known to cause grapevine decline and are important pathogens in 

the grapevine trunk disease complex. Petri disease is caused by Phaeomoniella (Pa.) 

chlamydospora and Phaeoacremonium species (Crous et al., 1996; Mostert et al., 2006). 

Wood rotting basidiomycete fungi, of which Fomitiporia species are the most prevalent 

cause esca (Fischer, 2006). Basidiomycetes often co-occur with Petri disease fungi resulting 

in both wood rot and leaf-stripe (also called tiger-stripe) symptoms and hence this condition 

has also been referred to as esca (Surico et al., 2008). Botryosphaeria dieback is caused by 

several species within the Botryosphaeriaceae family, namely species of Botryosphaeria, 

Neofusicoccum, Lasiodiplodia and Diplodia (Van Niekerk et al., 2004; Úrbez-Torres et al., 

2006). Phomopsis viticola, often associated with grapevine cane and leaf spot, and other 

Phomopsis spp. are also involved in grapevine dieback known as Phomopsis dieback (Van 

Niekerk et al., 2005). These diseases simultaneously occur in all grapevine producing areas 

although severity of the specific diseases may differ among regions (Mugnai et al., 1999; 

Pascoe & Cottral, 2000; Halleen et al., 2003; Gubler et al., 2005). 

Infection by trunk pathogens may occur through any wound, but pruning wounds are the 

principal ports of entry (Chapuis et al., 1998; Van Niekerk et al., 2011). Grapevine trunk 

diseases may also originate from the nursery where infection occurs through the propagation 

process (Fourie & Halleen, 2006; Gramaje & Armengol, 2011). Nursery infections occur 

mainly from the use of infected propagation material originating from mother plants infected 

through wounds in the vineyard (Halleen et al., 2003; Aroca et al., 2010). The pruning 

season (grapevine dormant period) coincides with the period of pathogen spore release 

which usually originates from infected wood from previous seasons. Wounds may remain 

susceptible for a very long time but the most critical time for infection ranges from two to  

eight weeks (Eskalen et al., 2007; Van Niekerk et al., 2011) and therefore it is inevitable that 

unprotected wounds will become infected. There are currently no eradicative control 

measures to cure infected vines except removal of infected vines or parts of infected vines 

(remedial surgery) (Sosnowski et al., 2011b). Due to the incremental effect of the diseases, 

by the time symptoms are observed there is not much that can be done to save the vine 

without losing production. Therefore the major way of managing trunk diseases in field 

grapevines is to prevent pathogen entry through pruning wounds. 

Wound protectants should be effective against the whole range of trunk pathogens 

while also protecting the wound for the whole period of wound susceptibility. Wound 

dressings using acrylic based paints, contaiing or without fungicides are a popular practice, 

however, their efficacy is debatable (Van Niekerk et al., 2011). Several fungicides have been 
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found to be effective, but such protection is short lived and no one fungicide is equally 

effective against the whole suite of trunk pathogens (Bester et al., 2007; Sosnowski et al., 

2008; Rolshausen et al., 2010). Sodium arsenite was considered the most effective fungicide 

against esca pathogens, having protective effect as well as delaying the onset of foliar 

symptoms (Surico et al., 2008), but was banned due to environmental and human toxicity. 

There are few or no fungicides registered for pruning wound protection in grapevine 

producing countries while often biological control agents are available, most of which are 

based on the fungal genus Trichoderma (T.). For some producers following 

„biological/organic agriculture,‟ biological control (biocontrol) is their main option for disease 

control.  

Pruning wounds are colonised by natural fungi and bacteria, some of which prevent 

trunk disease infection, particularly when pathogen infection does not occur immediately 

(Munkvold & Marois, 1995). Trichoderma species have shown success in pruning wound 

protection (John et al., 2005; Kotze et al., 2011).  Kotze et al. (2011) found fungicides to be 

less effective in pruning wound protection as compared to Trichoderma spp. treatments 

when wounds were challenged with the pathogen seven days after application. The main 

advantage of using biological control pruning wound protection is in the long term protection 

provided by the fungus growing in the pruning wound.  

The success of bio-protection is dependent on growth and establishment of the fungi on 

the wound and this can be affected by several factors. Antagonism and competitive 

exclusion of the pathogens by the biocontrol agent, as is seen in vitro, are usually 

considered the mechanisms of action of the biocontrol agent. However, plant-biocontrol 

agent interactions have also been found to be more important in some pathosystems (Elad 

et al., 1996; De Meyer et al., 1998). The physico-chemical properties of the environment in 

which the biocontrol agent is to grow as well as the response of the plant to the growth of the 

biocontrol agent may affect their establishment and efficacy. Grapevine cultivar variation to 

wound protection by Trichoderma spp. has been reported, but cultivar differences could not 

be exclusively ascribed to cultivar-Trichoderma interactions (Mutawila et al., 2011a).  

When grapevines are pruned, the various cultivars will be at different physiological 

states (active or dormant) which could have an effect on Trichoderma establishment and the 

resulting control. Cultivars are pruned early, middle or late in the dormant season according 

to the specific cultivar‟s requirement as well as to stagger the pruning work load over a 

reasonable period of time. Delaying pruning until just before natural bud break,  results in 

more uniform shoot growth and also provides better protection from frost damage (Martin & 

Dunn, 2000; May, 2004). Wounds made in late winter also heal faster, providing only a small 

window of infection and hence the recommendation to prune late (Munkvold & Marois, 
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1995). However, delayed pruning may lead to bleeding due to sap-flow which may wash 

away any pruning wound protectants applied.  

Studies on biocontrol of plant pathogens focus largely on the biocontrol agent-pathogen 

interactions and less on the effects the biocontrol-plant interactions may have on the 

resulting biocontrol efficacy. In grapevine wound protection, colonisation of the wound by the 

biocontrol agent is requisite for control. Wound colonisation may be affected by the intrinsic 

properties of the wound, which vary with the grapevine physiological state. The current study 

was carried out to determine the effect of pruning time (early or late) and the time of wound 

treatment after pruning (0, 6, 24, 48 and 96 hours), on wound colonisation by Trichoderma 

biocontrol agents. Trials were carried out on two cultivars, Chenin blanc (an early pruned 

cultivar) and Cabernet Sauvignon (a late pruned cultivar) in an effort to ascertain the best 

time to apply Trichoderma biocontrol agents. 

3.3 Materials and methods 

3.3.1 Fungal isolates and inoculum preparation 

Trichoderma atroviride isolate UST1 was isolated from grapevine pruning wounds in 

Stellenbosch, South Africa and has been shown to have pruning wound protective effect 

(Kotze et al., 2011). The isolate is stored at Stellenbosch University, Department of Plant 

Pathology culture collection accession STE-U 6514. Conidial suspensions were prepared 

from 7-day-old cultures growing on potato dextrose agar (PDA) (Biolab, Wadeville, South 

Africa) by dislodging conidia with a sterile loop and filtered through sterile cheese cloth to 

remove mycelium fragments. Conidia were counted using a haemocytometer and the 

concentration adjusted to 108 conidia/mL. A registered pruning wound protection biocontrol 

agent Eco-77® based on T. harzianum was kindly provided by Plant Health Product (South 

Africa) and was applied at the recommended rate of 0.5 g/L. For each application conidial 

suspensions were freshly prepared and after the application, 20 μL of left over suspension 

were spread plated on PDA and incubated for 24 hours to determine conidia viability.  

3.3.2 Effect of pruning time and time of application on wound colonisation   

3.3.2.1 Pruning time: Field trials were conducted twice in consecutive years (2011 and 

2012) on two 8-year-old commercial vineyards (Cabernet Sauvignon and Chenin blanc) in 

the Stellenbosch area, South Africa. Pruning was carried out on the same day in both 

vineyards at two separate times, an early pruning in July (recommended for Chenin blanc) 

and a late pruning in August (recommended for Cabernet Sauvignon). In 2011 pruning was 

carried out on the 7th of July and 10th of August, while it was carried out on the 17th of July 

and 23rd of August in 2012. At each pruning time all the vines to be treated were pruned at 
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the same time and the wound treatment applied at the designated time thereafter. The vines 

were spur pruned to three buds after which the wounds were treated with either UST1, Eco-

77 or sterile water. Natural inoculum was relied upon for wound infection and no pathogens 

were artificially inoculated. Due care was taken to prune the grapevines when there was no 

rain for the whole duration of pruning and wound treatment (4 days).  

3.3.2.2 Time of wound treatment after pruning: The wounds of spur pruned vines at 

each pruning time interval were sprayed at the following intervals after pruning: immediately 

(within 15 minutes of pruning); 6; 24; 48 or 96 hours later using a 500 mL hand sprayer. The 

nozzle of the spray bottle had a plastic shield to minimise spray drift. 

3.3.2.3 Assessment of wound colonisation by Trichoderma spp. and pathogens: 

Four months after wound treatment, the treated wounds were pruned off just above the 

second bud and brought to the lab for fungal re-isolation. The canes (3-5 cm) were surface 

sterilised by immersion in 70% ethanol for 30 seconds, one minute in 3.5% sodium 

hypochlorite and finally in 70% ethanol for 30 seconds. Shoots were then aseptically split 

longitudinally. For one position four wood tissue sections (~1  1 mm) two from either side of 

the pith of both pieces were plated onto one 90 mm PDA Petri dish. For each wound, 

isolations were made from two positions, just below the wound scar interface  and about 10 

mm below the first isolation. In total, eight wood pieces were placed on two plates per 

wound. This isolation method allowed for assessment of the extent to which the wound/cane 

is colonised by Trichoderma species or trunk pathogens (equivalent to pathogen severity) by 

computing the freqency of isolation of the fungi from the total wood pieces used for isolation, 

as reported by Mutawila et al. (2011b). Petri dishes were incubated at 25 °C for 4 weeks with 

sub-culturing when a fast growing fungus would overgrow other wood pieces. Fungal 

cultures were identified on cultural and morphological characters as species of the 

Botryosphaeriaceae (Van Niekerk et al., 2004), Diatrypaceae (Trouillas et al., 2010), 

Phomopsis species (Van Niekerk et al., 2005), Pa. chlamydospora (Crous & Gams, 2000) 

and Phaeoacremonium species (Mostert et al., 2006).  

3.3.2.3 Weather data: Data of the weather conditions prevailing at the trial sites in both 

years was obtained from meteorologists at the Agricultural Research Council Infrutec-

Nietvoorbij (Nietvoorbij Campus) who have a weather station located close to the trial sites.       

3.3.4 Experimental design and data analysis 

The trials were laid out as a randomised complete block design with three blocks per 

vineyard (cultivar). Treatments were arranged as a split plot design with the main plot a 2 × 5 

factorial. The factors were two pruning times (July and August) and five wound treatment 

times (0, 6, 24, 48 and 96 hours). The subplot treatments were the wound treatment agents 
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(UST1, Eco 77 and water). An experimental unit was a single pruning wound and each 

treatment combination (time of pruning, wound treatment time and wound treatment agent) 

was replicated 10 times per block. Each vine (for a specific pruning time and time of wound 

treatment) contained three wounds for each specific wound treatment agent (UST1, Eco 77 

and water) and the wound position, along the cordon, of each treatment was independently 

randomised. The data for the incidence of Trichoderma spp. and grapevine trunk pathogens 

were expressed as percentages of wounds from which the fungus was isolated from the total 

number of wounds. The extent of wound colonisation was determined by the isolation 

frequency and expressed as a percentage of the wood pieces from which the fungus was 

isolated from the total number of wood pieces plated per wound.  

Data were subjected to factorial analysis of variance to determine significant effects and 

interactions of cultivars, pruning time and time of wound treatment application. Significant 

differences among treatments were separated using Fisher‟s least significant differences 

(LSD) at 5% significance level. SAS version 8.2 statistical software (SAS institute Inc., Cary, 

North Carolina, USA) was used for analysis. The efficacy of the treatments in reducing 

wound infection by trunk pathogens was assessed by computing percenatge pathogen 

reduction. Pathogen reduction (Pr) was calculated as: Pr = 100 ((Pc - Pt) / Pc), where Pc is 

the mean pathogen incidence in the water control and Pt is the mean pathogen incidence in 

the given treatment. 

3.4 Results 

When pruning was carried out it was apparent that cultivars were in different physiological 

states. In the early pruning, July, the Cabernet Sauvignon was still dormant with little or no 

sap bleeding was observed from the wounds. In the late pruning, August, the vines had 

become active and wound sap was observed. Contrary, in the early cultivar Chenin blanc, 

pruning wound sap was observed from almost all wounds at both pruning times, however, 

the bleeding was observed to be less in the August pruning.  

Pruning wounds were successfully colonised by Trichoderma spp. applied onto the 

wounds. Germination percentages of all suspensions were between 98% and 100%. Control 

wounds were naturally infected by grapevine trunk pathogens. When both Trichoderma sp. 

and a pathogen were isolated from the same wound, such pruning wounds were regarded as 

infected. Trichoderma species were erratically isolated from a few water control treatments 

albeit at extremely low incidences (< 7%). 
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3.4.1 Effect of pruning time on wound colonisation by Trichoderma spp. 

To meet the assumptions of ANOVA the full data set was transformed (weighted) by the 

reciprocal of the experimental error of the incidence or isolation frequency and thus the final 

analysis was a weighted ANOVA (John & Quenouille, 1977). Analysis of variance revealed 

highly significant (P < 0.001; Appendix A, Table 1) year × cultivar × pruning time × treatment 

interactions for the incidence and isolation frequencies of Trichoderma spp. The mean 

incidences of Trichoderma spp. for each pruning time and for each cultivar are shown in 

Table 1. The incidences of Trichoderma spp. were highest in 2012 in Chenin blanc for both 

pruning times. In Cabernet Sauvignon, significantly higher (P < 0.05) incidencies of 

Trichoderma spp. were observed in the early pruning when the vines were dormant as 

compared to the late pruning when the vines were becoming active. The time of breaking 

dormancy often associated with pruning wound sap-flow, had low incidences of Trichoderma 

spp., that is, July 2011 for Chenin blanc and August 2011 and 2012 for Cabernet Sauvignon. 

The isolation frequencies of Trichoderma species followed a similar pattern as the 

incidences but revealed some further detail for Chenin blanc in 2012. Although the 

incidences of Trichoderma spp. in the July and August pruning were not significantly 

different for 2012, the extent of wound colonisation by Trichoderma spp. was significantly 

higher (P < 0.05) in the August pruning compared to the July pruning (Table 2).  

3.4.2 Effect of time of wound treatment on colonisation by Trichoderma spp. 

Analysis of variance for the sub-plot effects (pruning time, wound treatment (UST1, Eco 

77 and water) and time of wound treatment) were carried out separately for each cultivar and 

year since comparison of the full data set had revealed year × cultivar interactions. Significant 

pruning time × wound treatment × time of wound treatment interactions (P < 0.001; Appendix 

A, Tables 2 and 3) were found for the incidence and the frequency of isolation of Trichoderma 

spp. in both Chenin blanc and Cabernet Sauvignon for both field trials (2011 and 2012).  

3.4.2.1 Incidence of biocontrol agent: The Trichoderma incidences in each cultivar and 

for each treatment and for the different pruning times are shown in figure 1. In Chenin blanc, 

for UST1 in 2011, the incidence was significantly higher (P < 0.05) at the 6- and 24-hour 

application times (80.67% and 73.33% respectively) than the rest of the application times,in 

the July pruning. In the late pruning, T. atroviride incidence was high for the immediate 

application (0 hours; 93.33%) and remained relatively high for the 6 hours (83.33%) and 24 

hours (76.67%) application times which did not differ significantly (P > 0.05) but were 

significantly higher (P < 0.05) than the 48- and 96- hour application times. In Cabernet 

Sauvignon the incidence of T. atroviride was high from the immediate up to the 48 hours 

application times (ranging from 90 – 100%) in the July pruning. In the late pruning of the 2011 
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trial the Trichoderma atroviride incidence in UST1 treatment was highest for the 6 hour 

application time (83.33%) which was significantly higher (P <  0.05) than the rest of the 

application times (< 67%). Similar patterns were observed with the T. harzianum treatment, in 

the Eco 77, where the 6 hours application time had the highest Trichoderma sp. incidence 

(68.33%),  significantly higher than the rest of the application times (< 47%), in the early 

pruning of the Chenin blanc in 2011. In Cabernet Sauvignon, the July pruning had significantly 

(P < 0.05) higher T. atroviride incidence than the late pruning for each specific application 

time.  

In 2012, there was less variation in the incidence of Trichoderma atroviride between the 

early and late pruning times in Chenin blanc for the UST1 treatment except for the significantly 

low (P < 0.05) incidence (50%) at the 96 hours application time in the August pruning (Figure 

1). Variations were still observed between the early and late pruning times in Cabernet 

Sauvignon with the early pruning having relatively higher Trichoderma sp. incidences 

compared to the late pruning for most application times. The 6-hour application time resulted 

in significantly higher incidence of T. atroviride incidence in both the early (96.67%) and late 

(93.33%) pruning times in the Cabernet Sauvignon. The Eco 77 treatment followed similar 

patterns as the UST1 treatment in both cultivars except for the relatively lower Trichoderma 

sp. incidences in the Cabernet Sauvignon. Overall, the 6-hour application time had 

consistently high incidences of Trichoderma spp. regardless of the year, cultivar or 

Trichoderma treatment (T. atroviride or T. harzianum). 

3.4.2.2 Frequency of isolation of biocontrol agent: While the incidence measured the 

number of pruning wounds from where Trichoderma spp. was isolated, the frequency of 

isolation measured how many times the biocontrol agent was isolated from each pruning 

wound. This gives a relative measure of the extent (quality) of wound colonisation by the 

biocontrol agent since high wound colonisation is likely to result in better wound protection. 

Analysis of variance revealed significant pruning time × wound treatment × time of wound 

treatment interactions (P < 0.05; Appendix A, Tables 4 and 5) in the isolation frequencies of 

Trichoderma spp. in both cultivars and trials. The mean isolation frequencies of Trichoderma 

spp. in each cultivar and for each treatment and for the different pruning times are shown in 

figure 2. 

In 2011, the isolation frequencies for both treatments of Trichoderma spp., UST1 and Eco 

77, followed a similar pattern as the incidence with minor exceptions. The late pruning in 

Chenin blanc resulted in better wound colonisation for the immediate, 6- and 24-hour 

application times as revealed by the significantly high (P < 0.05) isolation frequencies than the 

early pruning for the same application times. The 6-hour application had the highest isolation 

frequency, significantly higher (P < 0.05) than all the other application times in the early 
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pruning for both Trichoderma spp. treatments. Cabernet Sauvignon in 2011 generally had 

higher isolation frequencies in the early pruning compared to the late pruning as was observed 

with the incidence.  

In the 2012 trial, the isolation frequency of T. atroviride, from the UST1 treatment, in 

Chenin blanc showed significant differences between the early and late pruning times (Figure 

2), a detail that could not be perceived from the incidence data (Figure 1). The extent of wound 

colonisation was significantly higher (P < 0.05) in the late pruning compared to the early 

pruning for all application times except for the 96-hour application. For the July pruning, the 

isolation frequencies of T. atroviride for the immediate (69.17%) and 6 hours (65%) 

applications, did not differ significantly (P > 0.05), but were significantly higher (P < 0.05) than 

the rest of the application times (< 51%). In Cabernet Sauvignon UST1 treatment, the 6 hours 

application for both pruning times had the highest Trichoderma sp. isolation frequencies of the 

application times. The isolation frequencies in the Eco 77 treated wounds in the 2012 trial 

followed similar patterns as observed with UST1 in both cultivars except that the percentage 

frequencies were relatively lower.  

3.4.3 Prevalence of grapevine trunk pathogens in pruning wounds  

Several grapevine trunk pathogens were isolated namely, Pa. chlamydospora, species 

of Phaeoacremonium and Phomopsis as well as of the families Botryosphaeriaceae and 

Diatrypaceae. Due to the high variability in the isolation of each specific pathogen between 

the cultivars and the trial years, wound infection was best analysed for all pathogens 

collectively. Comparison of the 2011 and 2012 trial data sets revealed significant year × 

cultivar interactions (P = 0.01; Appendix A, Table 6) and hence analysis of variance for each 

cultivar and year was carried out separately.  

3.4.3.1 Effect of pruning time on natural wound infection by trunk pathogens: Due 

to the high variability of pathogen infection in the Trichoderma spp. treated wounds, only the 

water control wounds were used to determine the effect of the time of pruning on wound 

infection. Analysis of pathogen incidence in the water control treatments revealed interesting 

results that have implications on the cultural practices aimed at grapevine trunk disease 

management in the trial area. Generally, pathogen incidence was higher in 2012 than 2011 

for both pruning times in the control treatments (Table 3). Late pruning resulted in 

significantly (P < 0.05) more wound infections compared to the early pruning for both field 

trials and both years. In Chenin blanc, Pa. chlamydospora and Phomopsis species were the 

major pathogens isolated from the water treated wounds in 2011 while in Cabernet 

Sauvignon it was species of Botryosphaeriaceae and Phomopsis. In 2012, 

Botryosphaeriaceae species were the main pathogens isolated from both cultivars. 
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3.4.4 Effect of Trichoderma spp. treatments on pruning wound infection 

Pathogen incidence was low and highly variable in the wounds treated with 

Trichoderma spp. wounds due to the wound protective effect of the biocontrol agent as well 

as variability of natural inoculum. Variability of natural inoculum could also be the reason for 

the lack of significant (P > 0.05; Appendix A, Table 7 and 8) pruning time × wound treatment 

× time of wound treatment interactions found in Cabernet Sauvignon for both years and 

Chenin blanc in 2011. The Trichoderma treatments resulted in significant (P < 0.05; Appendix 

A, Tables 7 and 8) reduction in wound infection in both cultivars. Among the wounds treated 

with Trichoderma spp., pathogen incidence was lower for the immediate, 6- and 24-hour 

wound treatment times whilst it was relatively higher for the 48- and 96-hour application times.   

Due to the lack of pruning time × wound treatment × time of wound treatment interactions 

for all trials, the effect of the Trichoderma spp. treatments and time of application on wound 

protection was assessed by computing pathogen reduction (Figure 3). The isolation of 

grapevine trunk pathogens was reduced by the Trichoderma treatments and pathogen 

reduction was higher for almost all application times (after pruning) in the 2012 trial. In the 

2011 trial, pathogen reduction was highest at the immediate, 6 and 24 hour applications, 

gradually declining with time. The 6-hour application time was more consistent in its pathogen 

reduction compared to the immediate and 24-hour application times regardless of the pruning 

time (July or August).  

3.4.5 Weather data  

The average temperature in the week from the day of first pruning in July and August 

2011 was 15.6 °C and 12.9 °C, respectively, while the average relative humidity was 59.48% 

and 64.80%, respectively in 2011. In comparison with the average temperatures of 12.0 °C 

and 13.4 °C, and average relative humidity of 69.14% and 73.91%, respectively, were found 

for the same period of pruning in July and August of 2012. The total rainfall received in the 

whole month was 37.59 mm and 85.34 mm in July and August of 2011, respectively, in 

comparison to 131.60 mm and 173.70 mm in the respective months in 2012. There were 

more rain events in 2012 than in 2011, a factor that has been correlated more to spore 

availability in the vineyard (Van Niekerk et al., 2010). In July and August of 2011 there were 

three and four rain events (of > 3 mm) while there were ten and twelve in the respective 

months of 2012. 

3.5 Discussion 

The current study confirms the protective effects of the Trichoderma species used in 

this study on grapevine pruning wound as reported by Halleen et al. (2010) and Kotze et al. 

(2011). The major mechanisms of action are antibiosis, mycoparasitism and competitive 
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exclusion and have been characterised both in-vitro and in-vivo (Kotze et al., 2011; Mutawila 

et al., 2011b). The efficacy of biocontrol agents at commercial level is considered moderate 

which has led to limited adoption despite their increased availability. One of the major 

setbacks to the adoption of biocontrol agents has been their inconsistency and poor disease 

control in the field. Many potential biocontrol agents have been dropped once they reach the 

field trial level of testing (Butt et al., 2001). These difficulties derive not so much from the 

lack of activity of the biocontrol agents in the field as from the existence of unknown host and 

abiotic factors which must concur for successful pathogen control. The present study 

showed that there are cultivar differences to the colonisation of grapevine pruning wounds 

by Trichoderma species in the field. These cultivar differences are compounded by seasonal 

variability to the colonisation of pruning wounds by the biocontrol agents. Cultivar differences 

could be a result of the physiological state of the vine at the time of pruning, which 

determines how the grapevine responds to the growth of the biocontrol agent on the wound.  

Pruning time had opposite effects to the colonisation of the two cultivars by the 

Trichoderma spp., the Chenin blanc having higher incidence and colonisation extent in the 

late pruning while the Cabernet Sauvignon had better colonisation following early pruning. 

The pruning times, mid-July and mid-August, used in these trials are normal pruning times 

practised in the Western Cape wine region respectively, for Chenin blanc which breaks 

dormancy earlier, and Cabernet Sauvignon which breaks dormancy later. The grapevine 

responds to pruning by cicatrisation to seal off the exposed wood. This process involves 

suberisation, lignification and occlusion of exposed vessels by the formation of pectin gels 

(or gum) and tylosis (Sun et al., 2008; Mutawila et al., 2011b). Vines in the dormant state are 

metabolically inactive and so these wound healing processes occur at a slower rate which 

could be the reason for better colonisation by Trichoderma spp. in the dormant Cabernet 

Sauvignon. On the contrary, Chenin blanc had higher colonisation in the late pruning, when 

the vines are metabolically active, compared to the early pruning when the vines were 

breaking dormancy. This difference in wound colonisation by Trichoderma spp. between the 

Chenin blanc and the Cabernet Sauvignon confirms cultivar variation to pruning wound 

protection by Trichoderma spp. (Mutawila et al., 2011a) and could also explain the 

inconsistency of Trichoderma wound protection in previous studies (Halleen et al., 2010; 

Larignon, 2010). The variation between cultivars can be explained by intrinsic wood 

properties such as nutrient content and availability and pH (Ferreira, 1999; Bates et al., 

2002; Weyand & Schultz, 2006; Holzapfel et al., 2010), and the vine‟s defence mechanisms 

which differ between cultivars. These wound properties would be expected to be expressed 

more in metabolically active grapevines than in dormant vines and hence the higher 

Trichoderma spp. incidences in July than in August for Cabernet Sauvignon. The content of 
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nitrogen and non-structural carbohydrates in grapevine canes have been shown to be 

highest during dormancy, but get depleted to their lowest during budburst and initial shoot 

development (Bates et al., 2002; Weyand & Schultz, 2006; Holzapfel et al., 2010).  

The colonisation of the Chenin blanc pruning wounds by the Trichoderma species in the 

first year of the trial (2011) followed a similar pattern as that reported for pathogen infection 

in the same cultivar and area. In a study of temporal susceptibility of grapevine pruning 

wounds to trunk disease pathogens, Van Niekerk et al. (2011), reported higher pathogen 

infection occurred in August inoculated wounds than in July inoculated wounds. This was 

attributed to more rainfall in August than July in the Stellenbosch area. High rainfall could 

also be the reason for similarly high incidences of Trichoderma spp. in the July and August 

pruning of 2012 in the Chenin blanc.  However, in the Cabernet Sauvignon, the increased 

rainfall in August of 2012 had no effect on pruning wound colonisation by the Trichoderma 

spp. This shows that, while weather conditions have a definite effect on wound colonisation, 

pathogen spore/conidia availability and dispersal patterns in the vineyard, the wound 

properties also play an important role in colonisation.  

Vascular bleeding could also be a contributing factor to the lower incidence of 

Trichoderma spp. in Chenin blanc in July of 2011 and Cabernet Sauvignon in August of both 

trial years by washing off Trichoderma spp. conidia from the wounds particularly when the 

pruning wounds received treatment immediately (Harvey & Hunt, 2006). During dormancy, 

vascular bleeding may occur when there is excess water in the soil for the root system. 

However, when pruning is carried out in late winter or early spring (before or at bud-break), 

bleeding occurs due to positive root pressure as water and reserves are mobilised to initiate 

and sustain the growth of new shoots (Winkler et al., 1974; Mullins et al., 1992). Breaking of 

dormancy is dependent on ambient and soil temperature, rootstock genotype as well as 

cultural practices such as winter pruning. Most of all, the grapevine cultivar (genotype) 

determines when budburst occurs irrespective of the climatic conditions. To the best of our 

knowledge there are currently no reports on the effect of vine physiological state on wound 

colonisation by biocontrol agents. However, such studies on pathogen infection have shown 

that wounds made late in the winter (or early spring) are less susceptible to infection by 

grapevine trunk pathogens due to faster healing (or cicatrizing) by the active vine as well as 

the faster growth of saprophytes on the wound in warmer weather (Munkvold & Marois, 

1995; Chapuis et al., 1998; Úrbez-Torres & Gubler, 2011).  

Most of the previous studies on grapevine pruning wound bio-protection applied wound 

treatments shortly after pruning with varying results (John et al., 2005; Halleen et al., 2010; 

Kotze et al., 2011; Mutawila et al., 2011a). Label instructions on most Trichoderma spp. 

based pruning wound protection products recommend application of the wound treatment 
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shortly after pruning. This stems from the need to protect the wound from as soon as it can 

be infected. However, the current study shows that immediate application of Trichoderma on 

the wounds does not necessarily result in effective wound colonisation by the biocontrol 

agent and hence may result in unpredictable or inconsistent wound protection. Waiting a few 

hours (6 and 24 hours in this study) after pruning could result in better wound colonisation by 

Trichoderma spp. and better wound protection. Harvey & Hunt  (2006) also found that 

pruning wounds treated with T. harzianum (in VinevaxTM) 4 hours or 24 hours after pruning 

had the highest incidence of the biocontrol agent.  

The current study further showed that waiting several hours after pruning to apply the 

pruning wound bio-protectant may result in consistent wound colonisation regardless of the 

pruning season. Although the 6 hour application did not always have the highest 

Trichoderma incidence, it consistently resulted in high incidences and more importantly the 

extent of colonisation (isolation frequency) was always high. This finding is significant for 

achieving more predictable and less variable control in grapevine pruning wound protection 

using biocontrol agents based on Trichoderma spp. The lower incidences and wound 

colonisation by Trichoderma spp. after 24 hours is due to the wound healing process and are 

an indication of a short window period for the application of the biocontrol agent. Although it 

has been shown that the wounds may remain susceptible to pathogen infection for longer 

than 16 weeks (Eskalen et al., 2007; Van Niekerk et al., 2011) the biocontrol agent should 

be applied within 24 hours of pruning or several hours after pruning for the best and more 

consistent results. Furthermore, Trichoderma species have only been shown to have pruning 

wound protective effect and curative effects have not been proven or demonstrated. The 

longer the time between pruning and wound treatment, the more likely the wound will be 

infected by trunk pathogens. In the first several hours after pruning, before wound treatment, 

sap bleeding is also likely to wash off most pathogen propagules that land on the wound.  

Decisions on the timing of pruning depend on viticultural, disease management and 

economic reasons. Several studies have shown that pruning late in the dormant season 

results in more even shoot growth along the cane or cordon due to reduced apical 

dominance and delayed bud break (Martin & Dunn, 2000; May, 2004). This compounded by 

reports that wounds made late in winter are less susceptible to infection due to faster wound 

healing and lower levels of pathogen inoculum (Munkvold & Marois, 1995; Chapuis et al., 

1998; Surico et al., 2008; Úrbez-Torres et al., 2010; Úrbez-Torres & Gubler, 2011) make late 

pruning a recommended practice. Findings from the current study show that pruning wounds 

made late in winter had more pathogen infections than those made earlier for both trial years 

contrary to reports from California (Munkvold & Marois, 1995; Úrbez-Torres & Gubler, 2011) 

and Europe (Larignon & Dubos, 2000). This is an indication that the levels of inoculum are 
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lower in July as compared to August in the trial area. The results obtained in this study 

confirm spore trapping (Van Niekerk et al., 2010) and wound susceptibility (Van Niekerk et 

al., 2011) results from the same region. These studies reported on a two year monitoring 

period in which more pathogen aerial spores were found in August as compared to July of 

the same season as well as higher wound infection in August compared to July. This finding 

has serious implications on the practice of late pruning as a disease management tool for 

reducing pruning wound infection. Pruning early in the dormant season could result in 

reduced wound infections as the wounds would heal before the major spore dissemination 

events late in winter. However, complete escape from infection, by timing pruning, is virtually 

impossible as inoculum is always available in the vineyards such that unprotected wounds 

will be infected. Moreover, the availability of labour also influences the time of pruning and 

so protection of wounds is essential whenever pruning is carried out. This finding cannot be 

generalised for all Cape grapevine producing areas as the current study and both studies of 

Van Niekerk et al. (2010 & 2011) were carried out in the Stellenbosch wine region.  

This study showed the importance of understanding the field environment and cultural 

practices in the agro-system to which a biocontrol agent is to be introduced. Biocontrol 

agents, being living organisms, are not likely to be equally effective in all agricultural 

situations and hence the current study unravels factors that may enhance pruning wound 

protection by Trichoderma spp. Pruning time had opposite effects on the colonisation of the 

two cultivars by the biocontrol agent indicating either cultivar differences or the effect of the 

grapevine‟s physiological state. However, wound treatment 6 hours after pruning 

consistently resulted in the highest wound colonisation regardless of the pruning time. It is 

important to note that these findings are only applicable to spur pruned grapevines and 

treatments could perform different in cane end pruned vines as well as on larger wounds.  It 

was also found that the pruning of grapevines late in winter could result in higher wound 

infection by trunk disease pathogens in the Stellenbosch wine region of South Africa. The 

recommendation to prune earlier in the dormant season would need to be validated by 

conducting similar studies on a wider selection of cultivars and in other grapevine producing 

regions in South Africa. 
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Tables and Figures 

Table 1: Percentage incidence of Trichoderma species re-isolated from pruning wounds of 

Chenin blanc and Cabernet Sauvignon treated with Trichoderma suspensions at different 

pruning times (July and August) over two seasons. Values are means of all wounds that 

received Trichoderma treatments (UST1 and Eco 77) per pruning time. 

Treatment Incidence of Trichoderma species (%) 

Chenin blanc Cabernet Sauvignon 

2011 2012 2011 2012 

July August July August July August July August 

UST1 54.80CD 68.00B 90.00A 86.67A 87.33A 44.67E 70.00B 53.33D 

Eco77 40.33E 56.67CD 87.00A 86.00A 73.33A 40.67E 59.33C 42.67E 

Values followed by the same letter are not significantly different from each other (P > 0.05; 

LSD 5.42). 

 

Table 2: The extent of wound colonisation as determined by the percentage isolation 

frequency of Trichoderma species from pruning wounds of Chenin blanc and Cabernet 

Sauvignon treated with Trichoderma suspensions at different pruning times (July and 

August) over two seasons. Values are mean isolation frequencies per wound, of all wounds 

that received Trichoderma treatments (UST1 and Eco 77) per pruning time. 

Treatment Incidence of Trichoderma species (%) 

Chenin blanc Cabernet Sauvignon 

2011 2012 2011 2012 

July August July August July August July August 

UST1 22.17EFG 35.67D 51.75B 60.33A 43.33C 18.00GHI 33.83D 25.92E 

Eco77 14.08I 24.00EF 37.42D 44.75C 34.00D 15.67I 20.67FGH 16.58HI 

Values followed by the same letter are not significantly different from each other (P > 0.05; LSD 

4.18). 
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Table 3: Pathogen incidence in Chenin blanc and Cabernet Sauvignon water treated 

(control) wounds infected by grapevine trunk disease pathogens at early and late pruning 

times (July and August) over two seasons.  

Year Pathogen Incidence (%) 

Chenin blanc  Cabernet Sauvignon 

2011 2012 2011 2012 

July 10.00B 38.00B 15.33B 34.00B 

August 22.00A 57.33A 28.67A 59.33A 

LSD2 8.53 10.88 12.76 11.00 

Values in the same column followed by the same letter are not significantly different from 

each other (p > 0.05). 2LSD – least significant difference. 
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Figure 1: Percentage of wounds from where Trichoderma species were isolated in Chenin 

blanc and Cabernet Sauvignon pruning wounds treated with Trichoderma spp. suspensions, 

UST1 and Eco 77, at different times after pruning (0 – 96 hours)in the 2011 and 2012 

seasons. Bars represent standard error of the mean. 
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Figure 2: The extent of pruning wound colonisation as estimated by the isolation frequency 

of Trichoderma species from wounds of Chenin blanc and Cabernet Sauvignon treated with 

Trichoderma suspensions, UST1 and Eco 77, at different times (0 – 96 hours) after pruning 

in the 2011 and 2012 seasons. The isolation frequency is ratio of wood pieces from which 

Trichoderma sp. grew to the total number of wood pieces plated for isolation per wound. 

Bars represent standard error of the mean.  
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Figure 3: The percentage reduction of grapevine trunk pathogens from pruning wounds of 

Chenin blanc and Cabernet Sauvignon treated with Trichoderma suspensions, UST1 and 

Eco 77, at different times (0 – 96 hours) after pruning in the 2011 and 2012 seasons. 

Pathogen reduction was calculated as a percentage of the difference between the mean 

pathogen incidence in the water control treatments and the Trichoderma treatments. Bars 

represent standard deviation from the mean. 
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Chapter 4 
The effect of biocontrol enhancers on Trichoderma atroviride 

efficacy in grapevine pruning wound protection from infection by 

Phaeomoniella chlamydospora 

4.1 Abstract  

The effect of biocontrol enhancers on the colonisation of grapevine pruning wounds 

by Trichoderma atroviride and wound protection from infection by Phaeomoniella 

chlamydospora was determined. Nutritional additives (glucose, yeast extract and urea), a 

humectant (water absorbing gel) and colloidal chitin were added to T. atroviride suspensions 

and tested either separately or in combination. Biocontrol enhancers that increased the 

colonisation extent of pruning wounds by the T. atroviride were further tested in field trials 

where a fungicide containing pruning wound paint, Garrison, and a registered T. harzianum 

biocontrol agent, Eco 77, were also included. In 2011, the field trials were carried out in 

Chenin blanc and Thompson Seedless vineyards. Pruning wounds were treated immideately 

after pruning and the pathogen was inoculated after a day. All the Trichoderma spp. 

treatments similarly reduced Pa. chlamydospora infection by 75% to 90% in the Thompson 

Seedless while in the Chenin blanc, control ranged from 40% to 74%. In 2012 the trial was 

carried out on Chenin blanc and the pathogen inoculated at intervals of one, three and 

seven days after pruning. Wound protection by the Trichoderma treatments was highest 

when wounds were inoculated with Pa. chlamydospora seven days after pruning. Garrison 

was always amongst the best treatments in reducing Pa. chlamydospora but its efficacy was 

lower on wounds infected by natural inoculum. Two nutritional amendments, a culture filtrate 

made from a chitin based medium and a combination of yeast extract, urea and glucose 

consistently enhanced efficacy in comparison with un-amended T. atroviride and they 

reduced Pa. chlamydospora infection to levels similar to those of Garrison. 

4.2 Introduction 

Phaeomoniella (Pa.) chlamydospora along with several species of 

Phaeoacremonium causes Petri disease also known as black goo (Crous & Gams, 2000). 

The pathogen is also associated with grapevine leaf-stripe symptoms (also called tiger-

stripes) and spots on fruits (black measles) (Gubler et al., 2005; Surico et al., 2008; Surico, 

2009). Due to the association of Petri disease with young vines, Pa. chlamydospora 

infections have largely been linked to the nursery propagation process (Mugnai et al., 1999; 

Gramaje & Armengol, 2011). However, nursery infections have been shown to mainly 

originate from infected scion and rootstock mother-vines (Fourie & Halleen, 2002; Halleen et 
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al., 2003; Aroca et al., 2006 & 2010). Additionally, pruning wounds have been established as 

the primary sites of infection by Pa. chlamydospora in vineyards (Larignon & Dubos, 2000; 

Eskalen et al., 2007; Rolshausen et al., 2010). The pathogen produces fruiting bodies 

(pycnidia) on wood surfaces and inside cracks of infected vines from where inoculum is 

produced usually during or following rainfall events (Larignon & Dubos, 2000; Edwards et al., 

2001; Eskalen & Gubler, 2001). The pruning season, end of winter to early spring, coincides 

with periods of wet weather in most grapevine producing regions and hence wounds made 

during this period are at high risk of getting infected.  

When pruning is carried out in warm temperatures, the rapid growth of non-

pathogenic microorganisms on the pruning wound inhibits pathogens by competing for 

space and nutrients which also contributes to lower infection levels (Munkvold & Marois, 

1993; Chapuis et al., 1998). Saprophytic wound colonisers such as Cladosporium (Cl.) 

herbarum, Fusarium (F.) lateritium and Trichoderma (T.) species have been isolated from 

pruning wounds and have been shown to be antagonistic to trunk pathogens and provide 

wound protection in vivo (Munkvold & Marois, 1993; Kotze et al., 2011). The advantage of 

biocontrol agents is they provide long term wound protection, which is needed since 

grapevine pruning wounds can remain susceptible for a period of 4 to 16 weeks (Eskalen et 

al., 2007; Van Niekerk et al., 2011). Due to the ease of large scale production, biocontrol 

agents based on Trichoderma spp. have been commercialised.  

Trichoderma spp. have shown success in the biological control of wood pathogens 

through pruning wound protection (John et al., 2005 & 2008; Schubert et al., 2008; Kotze et 

al., 2011). The ability of Trichoderma spp. to inhibit the growth of pathogens is due to the 

combined action of fungal cell wall degrading enzymes and the production of antimicrobial 

secondary metabolites that aid the biocontrol agent in competing for limited resources on the 

pruning wound (Lorito, 1998; Vinale et al., 2006 & 2008). Wound protection is thus 

dependent on the colonisation and establishment of the biocontrol agent on the wound. 

Abiotic factors such as availability of water and nutrients can determine how fast and deep 

the biocontrol agent colonises the wound.  

Nutritional enhancement of the biocontrol agent formulae can improve establishment 

of the biocontrol agent, prior to infection, resulting in better efficacy of wound bio-protection. 

The enhancement of biocontrol efficacy by nutritional amendments has been demonstrated 

for both bacterial and fungal biocontrol agents (Hjeljord et al., 2001; Schmidt et al., 2001; 

Schubert et al, 2008).  Hjeljord et al. (2000) reported delayed conidial germination and the 

loss of biocontrol activity by Trichoderma spp. against Botrytis cinerea and Mucor piriformis 

at low temperatures and nutrient-poor conditions. The addition of nutrients (carbon and 

nitrogen sources) resulted in an increase in conidia viability and germination rate resulting in 
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improved biocontrol efficacy (Hjeljord et al., 2001). On the contrary, nutrient addition alone 

had no effect on colonisation of pruning wounds on urban trees by Trichoderma sp., but the 

addition of a water storing gel increased wound colonisation by the biocontrol agent 

(Schubert et al., 2008).  

The choice of nutritional additives is very important. Simple sugars support rapid 

growth of Trichoderma but can also suppress the production of inducible hydrolytic enzymes 

involved in fungal mycoparasitism (Mach et al., 1999; El-Katatny et al., 2000). Nutritional 

addition can also increase pathogen growth and disease severity as the pathogen may also 

utilise the available nutrients (Guestsky et al., 2002). However, nutrients that are more 

efficiently used by the biocontrol agent than the pathogens may provide an advantage. 

Trichoderma spp. are known to break down chitin and can use it as a carbon source while 

the same chitinolytic enzymes are also involved in the antagonism against pathogenic fungi 

in biocontrol (Lorito, 1998; Rey et al., 2001; Sandhya et al., 2004). In addition, protein 

extracts from some Trichoderma biocontrol agents exhibit antifungal properties as they 

contain lytic enzymes such as chitinases, glucanases and proteases (Lorito, 1998; Monte, 

2001). Another strategy to enhance biocontrol efficacy would therefore be to use the protein 

extracts in the formulation.  

Trichoderma atroviride (UST1) was isolated from grapevines, tested against 

grapevine trunk pathogens and shown to be effective both in vitro and in field studies in 

South Africa (Kotze et al., 2011; Mutawila et al., 2011). In vitro, UST1 is antagonistic to 

grapevine trunk pathogens exhibiting both mycoparasitism and antibiosis. Wound protection 

by UST1 was statistically similar or better than the fungicide, benomyl, when pathogens 

were inoculated seven days after pruning (Kotze et al., 2011). However, when pathogens 

are inoculated shortly after pruning, wound bio-protection has been reported to be poor and 

inconsistent (Munkvold & Marois, 1993; Halleen et al., 2010). Field efficacy of the biocontrol 

agents seems to be dependent on the time that the Trichoderma spp. take to establish on 

the wound before exposure to the pathogen.  

In a previous study the addition of a sticking agent, Nu Film 17, to T. atroviride 

suspensions could not significantly enhance biocontrol efficacy in wound protection 

(Mutawila, 2010). The enhancement of biocontrol efficacy by nutritional additives on this 

isolate has never been tested. The objective of this study was therefore to determine the 

effect of nutritional amendments and bio-enhancers on the efficacy of T. atroviride (UST1) in 

grapevine pruning wound protection against infection by Pa. chlamydospora.  
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4.3 Materials and Methods 

4.3.1 Fungal isolates and inoculum preparation 

Trichoderma atroviride (UST1) and Pa. chlamydospora isolates are stored at the 

University of Stellenbosch, Department of Plant Pathology culture collection under 

accessions STE-U 6514 and 6384, respectively. A registered pruning wound protection 

biocontrol agent Eco 77® was kindly provided by Plant Health Products, South Africa. The 

fungal isolates were maintained in tubes of sterile deionised water at 4 °C. The fungi were 

sub-cultured onto freshly prepared potato dextrose agar (PDA; Biolab, Wadeville, South 

Africa) and allowed to grow for 5 days at 25 °C in the dark. 

Conidial suspensions of the Trichoderma isolate were prepared from 7-day-old 

cultures growing on PDA by adding sterile distilled water (10 mL) to each culture and 

scraping the surface to dislodge conidia with a sterile loop. Phaeomoniella chlamydospora 

conidia were produced by growing the fungus on PDA for 3 weeks at 25 °C. Conidial 

suspensions were prepared by flooding the Petri dishes with sterile water (10 mL) and the 

conidia dislodged using sterile loop and the suspension collected in sterile glass bottles. 

Conidial suspensions were filtered through sterile double cheesecloth to remove mycelial 

fragments. The concentrations were determined with a haemocytometer and adjusted to 5 × 

104 conidia/mL for Pa. chlamydospora and 108 conidia/mL for UST1. The suspension for Eco 

77® was prepared according to label instructions (0.5 g/L).  

4.3.2 In vitro effect of nutrients on the growth of T. atroviride  

 The effect of nutrient sources on hyphal growth of T. atroviride UST1 was determined 

in Petri dish assays. A basal medium containing 0.2% KH2PO4, 0.2% MgSO4. 7H2O and 10 

g/L agar (Biolab) was amended with variable concentrations of urea (0.1, 0.2, 0.3, 0.4 g/L), 

yeast extract (2, 3, 5 g/L) and glucose (1, 2, 3, 5, 10 g/L). Hyphal growth on all possible 

combinations of the nutrient supplements was tested at pH 5.5.  Petri dishes were inoculated 

with a 5 mm diameter mycelial plug taken from the margins of an actively growing 48-hour-

old culture. Colony diameter was measured daily for 3 days. Each amendment and 

concentration was tested in triplicate. The colony growth data was used to select the 

concentrations to use for nutritional amendment of UST1 suspensions for the glasshouse 

trials.  

4.3.3 Detached grapevine cane assay: Effect of biocontrol enhancers on T. 

atroviride wound colonisation and wound protection 

Dormant 1-year-old canes (10-15 mm-diameter) of Chenin blanc were obtained from 

a certified nursery. The four-node-length canes were hydrated by soaking in water for 4 
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hours after which they were surface sterilised by dipping in a quaternary ammonium 

compound (Sporekill™, ICA International Chemicals (Pty) Ltd, Stellenbosch, South Africa) at 

150 mL/100 L for 5 minutes and dried at room temperature. The canes were subjected to a 

hot water treatment at 50 °C for 30 minutes and then grown in a hydroponic system at ± 25 

°C until budding had occurred. The hydrponic system consisted of PVC pipes that had slots 

(~1.5 cm diameter) that held the canes in an upright postion. The water in the hydroponic 

system was changed twice weekly and a hydroponic fertilizer Chemicult® (Chemicult 

Products (Pty) Ltd, Camp‟s Bay, South Africa) was added once a week at the recommended 

rate. After budding, the distal nodes were removed by pruning approximately 10 mm above 

the third node. Each wound was separately treated with T. atroviride UST1 conidial 

suspension made in sterile water with or without biocontrol enhancers. The nutritional 

amendments were yeast extract (3 g/L), urea (0.4 g/L) and combinations of yeast extract and 

urea with or without glucose (2 g/L). The effect of a humectant (water storing gel) and 

colloidal chitin was also tested. The humactant, (Luquasorb® FP 800, BASF SE 

Ludwigshafen, Germany) was added to the UST1 suspension at 4 g/L, with or without the 

nutritional amendments to make a thick paste. A combination of the humectant and colloidal 

chitin (preparation detailed below) was also included as a treatment. Control treatments 

received sterile water only. In all treatments with UST1, the biocontrol agent was applied at a 

concentration of 108 conidia/mL. All treatments except the pastes were sprayed as a single 

application using a hand held 500 mL trigger spray bottle while the humectant containing 

pastes were painted on to the wound using a 10 mm paint brush. Approximately 1000 

conidia of the trunk pathogen, Pa. chlamydospora (20 μL of 5 × 104 conida/mL), were 

inoculated on the pruning wounds 1 day after treatment. The trial layout was a randomised 

block design with three blocks. Each treatment was applied to wounds on 15 canes (five per 

hydroponic pipe) and was randomly assigned to canes. Canes were maintained for 90 days 

after which fungal isolation was carried out.  

Canes were surface sterilised by immersion in 70% ethanol for 30 seconds, then in 

3.5% sodium hypochlorite for 1 minute and in 70% ethanol for 30 seconds and aseptically 

split longitudinally into two. Four wood tissue sections, one from either side of the pith of 

each half of the split cane, were aseptically removed and placed onto a 90 mm Petri dish 

containing PDA. Isolations were made from the wound interface of the live and dead tissue 

and at 10 mm intervals up to 40 mm below the interface. Petri dishes were incubated at 25 

°C for 8 hour under white light and 16 hours in darkness for 2-4 weeks with sub-culturing to 

prevent overgrowth of emerging colonies. The fungi were identified and their incidence and 

frequency of isolation at each isolation point recorded. The frequency of isolation estimates 

the extent to which the wound/cane is colonised by T. atroviride or Pa. chlamydospora. 
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4.3.4 Field evaluation: Effect of biocontrol enhancers on T. atroviride wound 

colonisation and wound protection 

Treatments, from the detached cane assay, that gave better Trichoderma wound 

colonization were tested further in field trials conducted in 2011 and 2012. Two additional 

treatments not tested in the detached cane assay were included, one containing the T. 

atroviride conidial suspension in a culture filtrate and a pruning wound paint. The culture 

filtrate used was prepared in minimal broth medium with colloidal chitin as the only carbon 

source and was termed broth. The harvest time of the culture filtrate was optimised using 

chitinolytic activity of the culture filtrates.  

 4.3.4.1. Optimisation of the broth formula: First colloidal chitin was prepared from 

crab-shell chitin (Sigma). A 20 g sample of crab-shell chitin was dissolved in cold 

concentrated HCl (350 mL) and placed at 4 °C for 24 hours with stirring. The mixture was 

filtered through glass into 2 L ethanol (95%) at -20 °C with rapid stirring. The resulting chitin 

suspension was centrifuged at 10 000 rpm for 15 minutes at 4 °C. The colloidal chitin pellets 

were washed repeatedly with water until the pH of the supernatant was neutral. Colloidal 

chitin was autoclaved and kept at 4 °C until it was used. 

Secondly, the effect of adding a nitrogen source (peptone) on the chitinolytic activity 

of the T. atroviride UST1 culture filtrate was determined. The fungus was grown in 100-mL 

Erlenmeyer-flasks containing 100 mL of synthetic medium with colloidal chitin as the only 

carbon source. The medium was composed of, per litre: KH2PO4, 0.68 g; K2HPO4, 0.87 g; 

KCl, 0.20 g; NH4NO3, 1 g; CaCl3, 0.20 g; MgSO4, 7H2O, 0.20 g; FeSO4, 0.002 g; ZnSO4, 

0.002 g; MnSO4, 0.002 g and 15 g colloidal chitin with or without peptone (4.20 g/L). Flasks 

were inoculated with 1-mL conidial suspension of UST1 (106 conidia/mL) freshly prepared 

from 7-day-old cultures on PDA. Flasks were incubated for 48 hours on a rotary shaker at 

120 rpm after which the culture filtrate was assayed for chitinolytic enzyme activity. The 

cultures were vacuum filtered through Whatman No. 1 filter paper (Whatman, Brentford, UK), 

then centrifuged at 10 000 rpm for 10 minutes and the clear supernatant was used as 

enzyme extract. 

Chitinolytic activity was determined using colloidal chitin as substrate. The reaction 

mixture contained 0.5 mL of enzyme extract, 0.5 mL of 0.5% colloidal chitin and 1 mL of 50 

mM potassium phosphate buffer pH 5.5. The mixture was kept in a water bath at 40 °C for 1 

hour and the reactions were stopped by the addition of 3 mL dinitrosalicylic acid (DNS) 

reagent followed by heating at 100 °C for 10 minutes with 40% Rochelle‟s salt solution. The 

reducing sugars released were measured by the DNS method (Miller, 1959) at 530 nm using 

N-acetyl glucosamine as a standard. One unit (U) of chitinolytic activity was defined as the 
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amount of enzyme which catalyzed the release of 1 μg of reducing sugar per millilitre per 

minute under the reaction conditions. 

Lastly, the optimal harvest time for the culture filtrates was determined by growing T. 

atroviride UST1 in 1.5% colloidal chitin medium with peptone as described above. Cultures 

were incubated at 25 °C on a shaker at 120 rpm in the dark. Three replicates were 

harvested at 24-hour intervals for 120 hours. Chitinolytic activity was assayed for each day 

and the time with highest enzyme activity was established as the optimal broth harvest time 

for culture filtrates. The culture filtrate was harvested by vacuum filtration through Whatman 

No. 1 filter paper and the filtrate was used for suspending UST1 conidia. The conidial 

formulation in the chitin culture filtrate was termed the broth.  

4.3.4.2. Field evaluation 2011: Field trials were conducted in two commercial 

vineyards, a wine grape cultivar, Chenin blanc, and table grape cultivar, Thompson 

Seedless, situated in Stellenbosch and Wellington in the Western Cape Province of South 

Africa, respectively. Both vineyards were 7 year-old when the field trials were established. 

The Chenin blanc was spur pruned while the Thompson Seedless was cane pruned. 

Wounds were treated with T. atroviride UST1 conidia suspensions made in sterile water with 

or without amendment. The nutritional amendments were yeast extract (3 g/L) and 

combinations of yeast extract and urea (0.4 g/L), and yeast extract, urea and glucose (2 g/L). 

A treatment comprising of UST1 conidial suspension made in a culture filtrate was included 

and was termed the broth treatment described above. Treatments with Eco 77 and a 

fungicide based pruning wound paste, Garrison (2.5 g/L cyproconazole + 1 g/L iodocarb, 

Chemcolour Industries, Christchurch, New Zealand) as well as two sterile water controls 

were also included. Treatments were applied to fresh pruning wounds within 30 minutes of 

pruning by spraying with 500 mL spray bottles for Trichoderma suspensions while the paste 

was painted onto the wounds with a brush applicator supplied by the manufacturer. All 

treated wounds were inoculated with approximately 1000 spores of the Pa. chlamydospora 

after 24 hours of pruning except for one sterile water control which was not inoculated.  

4.3.4.3. Field evaluation 2012: To assess if the nutritional amendments can shorten 

the time needed for wound colonisation and protection after Trichoderma application, a trial 

was established in which Pa. chlamydospora was inoculated at different times after pruning. 

The trial was carried out on Chenin blanc and contained the same wound treatments as in 

the 2011 trial. However, the treatments were applied on the wounds 6 hours after pruning as 

this was found to provide better pruning wound colonisation by Trichoderma spp. (Chapter 

3). The pathogen, Pa. chlamydospora, was inoculated at three time intervals, 1-, 3- and 7-

days, after pruning. Eight months after application, the wounds were pruned below the apical 

shoot and taken to the laboratory for fungal isolation. Fungal isolation was carried out after 
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surface sterilisation as described above (4.3.3) except that wood pieces were removed from 

two positions, the interface between the dead and the live tissue, and 10 mm below the 

interface.   

4.3.4.4. Identification of fungi isolated from pruning wounds: Fungal cultures 

were identified on cultural and morphological characters as species of the 

Botryosphaeriaceae (Van Niekerk et al., 2004), Diatrypaceae (Trouillas et al., 2010), 

Phomopsis species (Van Niekerk et al., 2005), Pa. chlamydospora (Crous & Gams, 2000) 

and Phaeoacremonium spp. (Mostert et al., 2006).  

4.3.5 Experimental design and data analysis  

 All field trials were laid out as a randomised block design with four blocks. The 

experimental unit was a pruning wound. Each treatment combination (treatment and 

pathogen) was replicated on four vines per block with four wounds receiving the same 

treatment per vine to make a total of 16 wounds per treatment combination per block.  

The incidences of Trichoderma and the pathogens were recorded as percentages of 

the total number of pruning wounds inoculated with each specific treatment. For wounds that 

were not artificially inoculated with the pathogen a general pathogen incidence was recorded 

for natural infection of the trunk pathogens. The incidence and frequency of isolation data 

were subjected to analysis of variance (ANOVA) and the means compared by Fischer‟s least 

significant difference (LSD) at P = 0.05. Analysis was performed with the SAS version 9.2 

statistical software (SAS Institute Inc, Cary, North Carolina, USA). Pathogen reduction (Pr) 

was calculated as: Pr = 100 ((Pc - Pt) / Pc), in which Pc is the mean pathogen incidence in 

the water control and Pt is the mean pathogen incidence in the given treatment.  

4.4 Results 

4.4.1 In vitro effect of nutrients on the growth of T. atroviride  

There was no difference in the growth rate of the T. atroviride strain on the media 

tested with glucose, urea and yeast extract additives. However, despite the similar growth 

rate, at low glucose concentrations (1-3 g) sparse mycelial growth and earlier sporulation 

was observed. At high glucose concentrations (5 and 10 g) conidia were formed after 98 

hours while at lower glucose concentration (1-3 g) conidia formed after 48 hours. Urea and 

yeast extract were neither toxic nor growth stimulating at all the concentrations tested. Since 

there were no toxic concentrations found, the following were then selected for amending the 

conidial suspensions: 0.4 g/L urea and 3 g/L yeast extract. For the glucose, a concentration 

of 2 g/L was chosen to prevent reduction in water activity of the T. atroviride suspensions 

and possible growth advantage for the pathogens. 
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4.4.2 Detached grapevine cane assay: Effect of biocontrol enhancers on T. 

atroviride wound colonisation and wound protection 

The incidence of T. atroviride and Pa. chlamydospora and pathogen reduction are 

shown in Table 1. Analysis of variance on the incidence of the biocontrol agent and 

pathogen found highly significant differences (P < 0.001; Appendix B, Table 1) between the 

treatments. Trichoderma atroviride was not isolated from wounds treated with sterile distilled 

water. The incidence of T. atroviride ranged from 68.82% to 100% in inoculated wounds. All 

Trichoderma treatments had significantly lower Pa. chlamydospora incidence compared to 

the control and reduced the pathogen incidence by at least 81% (Table 1). This was also 

true for the isolation frequency (a relative measure of the extent of wound colonisation) of 

Pa. chlamydospora which revealed significant treatment × isolation zone interactions (P < 

0.001: Appendix B, Table 2) and reduction of the pathogen isolation in all Trichoderma 

treatments. Neither the incidence of T. atroviride or Pa. chlamydospora, nor the isolation 

frequencies of Pa. chlamydospora was sufficient to discern the best treatment among the 

nutritional amendments, therefore, the isolation extent of Trichoderma wound colonisation 

with depth as estimated by the isolation frequency was used.  

Analysis of variance on the isolation frequency of Trichoderma revealed a treatment 

× isolation zone interaction (P = 0.007; Appendix B, Table 2). Trichoderma isolation 

frequency decreased with depth from the pruning wound surface in all treatments. A non-

linear regression model was derived that could reliably estimate the isolation frequency of 

Trichoderma with depth from the pruning wound surface. The regression model; y = a + b-x, 

where x is the isolation depth from wound surface, was significant (P < 0.031) for all 

Trichoderma treatments except for the Yeast extract (P = 0.061) treatment (Appendix B, 

Figure 1.). The regression coefficient (r2) for the curve of the model ranged from 0.74 to 0.98 

(Table 2). 

The Trichoderma isolation frequency at 2 cm below the pruning wound surface was 

chosen to determine which treatments had significantly higher Trichoderma isolation 

frequency than the water suspension treatment. After pruning, the wood tissue naturally 

dies-back as the wound heals. Two centimetres below the wound surface is likely to be well 

below the dieback zone and a good indicator of colonisation in the live wood tissue. Using 

the regression model the T. atroviride isolation frequency at the 2 cm position in the water 

suspension would be 11.49% (Figure 1). The Fischer‟s least significance difference was 

16.83 (P = 0.05). All treatments that had a T. atroviride isolation frequency below 28.32% at 

the 2 cm position did not differ significantly (P > 0.05) from the water suspension treatment 

(Figure 1A). Similarly, nutritional amendments that had an isolation frequency greater than 

28.32% at 20 mm depth had significantly (P < 0.05) higher T. atroviride colonisation extent 
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than the water suspension (Figure 1B). Therefore, the nutritional amendments Yeast extract, 

Yeast extract + Urea and Yeast extract + Urea + Glucose were chosen for further field 

testing. 

4.4.3 Field evaluation: Effect of biocontrol enhancers on T. atroviride wound 

colonisation and wound protection 

4.4.3.1. Optimisation of broth formulation: The addition of an organic nitrogen 

source (peptone) significantly (P < 0.001; Appendix B, Table 1) increased the chitinolytic 

activity of the culture filtrate from 3.20 U/mL to 5.36 U/mL. The nitrogen source (peptone) 

was thus included in the preparation of the broth cultures. The chitinolytic activities of the 

culture filtrate at different times after culture initiation are shown in Figure 2. The highest 

activity (15.63 U/mL) was reached after 72 hours after which the activity declined gradually 

at 96 (12.45 U/mL) and 120 hours (9.92 U/mL). The 72-hour time point was thus selected for 

harvesting the broth. 

4.4.3.2. Field evaluation 2011: Analysis of variance found significant cultivar × 

treatment interactions (P < 0.001; Appendix B, Table 3) in the incidence of Trichoderma spp. 

and Pa. chlamydospora and thus analysis for the cultivars was done separately (Appendix B, 

Table 4). The incidence of Trichoderma spp. was higher in the Thompson Seedless 

compared to the Chenin blanc (Table 3). In the spur pruned Chenin blanc, the Yeast extract 

+ Urea and the Broth treatments gave high incidences of Trichoderma, but were not 

significantly higher than the un-amended UST1 and yeast extract suspensions (P > 0.05). In 

the cane pruned cultivar, Thompson Seedless, the broth treatment gave the highest 

incidence of Trichoderma significantly higher (P < 0.05) than the rest of the treatments. 

 Pathogen incidence in the two cultivars is summarised in table 4. The pruning wound 

treatments were able to reduce the incidence of Pa. chlamydospora but with varying efficacy 

between the two cultivars. Garrison, the fungicidal paint, was the best treatment in reducing 

Pa. chlamydospora infection in the Chenin blanc while in the Thompson Seedless, Garrison 

efficacy was comparable to the biocontrol formulae. Extensive wound sap flow was observed 

after pruning and wound treatment in the Thompson Seedless such that for some of the 

wounds the Garrison paint was observed dripping off to the ground leaving the wounds 

exposed. Although wound sap was also observed in the Chenin blanc, it did not lead to 

wash-off of the Garrison paint, which could be attributed to the wound position on the spur 

compared to the wound on a 6-8 nodes length hanging cane. However, Garrison did not 

reduce natural infection in both cultivars. It was also observed that about 20% of the wounds 

treated with Garrison had no wound dieback below the paint (Figure 3). Normally after 

pruning the wood below, the wound dies back down to the first shoot (apical node). 
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 Wound treatment resulted in reduction of infection in both the pathogen inoculated 

and un-inoculated wounds. The major pathogens isolated from the pruning wounds were 

species of Botryospheriaceae, Diatrypaceae and Phomopsis. In the Chenin blanc, the 

treatments Yeast Extract + Urea + Glucose and Yeast extract + Urea had highest pathogen 

reduction (74%) in the inoculated wounds although this was not significantly (P > 0.05) 

different from the rest the Trichoderma treatments. Under natural inoculum, the Broth and 

the Yeast extract + Urea + Glucose treatments had high pathogen control, reducing infection 

by 85% and 77%, respectively (Table 4). However, this did not differ significantly (P > 0.05) 

from the rest of the Trichoderma treatments. In the Thompson Seedless, all treatments 

similarly reduced Pa. chlamydospora infection by at least 75% (Table 4). Under natural 

inoculum the treatments Yeast extract and Broth were the only treatments that significantly 

reduced infection. It was also interestingly noted that the Broth treatment also had a 

comparatively high incidence of Trichoderma in both cultivars (Table 3).  

4.4.3.3. Field evaluation 2012: The incidences of Trichoderma spp. in the Chenin 

blanc were much higher in the 2012 trial (62-78%) compared to the 2011 trial (7-18%). 

Analysis of variance found significant differences (P < 0.001; Appendix B, Table 5) in the 

incidence of Trichoderma among the treatments with the highest incidence in the Yeast 

extract + Urea treatment (77.80%) though this was not significantly different from treatments 

Yeast Extract + Urea + Glucose (76.74%), Broth (70.44%) and the un-amended UST1 

(71.01%) (Table 5). The major non-inoculated pathogens that were isolated from the wounds 

were species of Botryospheriaceae and Diatrypaceae. In wounds not inoculated with the 

pathogen, all treatments except Eco 77 significantly reduced wound infection. The treatment, 

Yeast Extract + Urea + Glucose reduced natural pathogen infection the most (84% 

reduction) although this was not significantly different (P > 0.05) from the other nutritional 

amendments (Table 5). 

In pathogen-inoculated wounds, analysis of variance found significant treatment × 

inoculation day interactions (P < 0.001; Appendix B, Table 5) in the incidence of Pa. 

chlamydospora. For better comparison between treatments the pathogen incidence was 

then analysed separately for each inoculation day. There were significant differences (P < 

0.001) in the incidence of Pa. chlamydospora among treatments (Table 6). The pruning 

wounds were more susceptible when inoculated a day after pruning (mean incidence 

73.78%) and became less susceptible with time as shown by the reduction in the pathogen 

incidence in the water control treatment (Table 6). For most of the treatments there was a 

decline in Pa. chlamydospora incidence over the seven day period of inoculation. Garrison, 

completely inhibited infection by Pa. chlamydospora in wounds inoculated with the pathogen 

a day after pruning. In wounds inoculated at day three and seven, Pa. chlamydospora 
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incidence did not significantly differ (P > 0.05) between the Garrison and the Trichoderma 

treatments. All the Trichoderma treatments significantly (P < 0.05) reduced pruning wound 

infection by Pa. chlamydospora. The treatments, Yeast extract + Urea + Glucose and the 

Broth were able to reduce infection in day-1 inoculated wounds to levels statistically similar 

(P > 0.05) to that of Garrison.  

4.5 Discussion  

The formulation of biocontrol agents in regards to additives or composition of 

formulae is held proprietary by the producers and is neither published nor patented as it is 

difficult to enforce such patents. One of the key steps in maximising the potential of 

biocontrol agents is to enhance their survival and bioactivity after delivery. Nutritional 

additives may increase efficacy by either increasing growth of the biocontrol agent or 

enhancing its antagonistic activity on the target pathogen. Nutritional amendments of T. 

atroviride increased the colonisation extent of grapevine pruning wounds in the glasshouse 

trial as shown by the higher isolation frequency of the biocontrol agent with increasing depth 

from the wound surface in comparison with the unamended T. atroviride suspension. Better 

wound colonisation at greater depth would result in better wound protection. On pruning 

wounds, Trichoderma spp. wound protection is currently believed to be due to the 

antagonistic properties of the biocontrol agent against the pathogen and occupation of space 

and making it unavailable for pathogen growth (John et al., 2005; Mutawila et al., 2011b). 

These mechanisms depend on the colonisation and establishment of the biocontrol agent on 

the wound. Another possible mode of action on the wound is the activation of grapevine 

defence by the Trichoderma spp. which still requires the colonisation of the wound during 

which the biocontrol agent produces elicitors that trigger the defence reaction. 

The use of moisture retaining polymers (humectants) in biocontrol agent preparations 

has shown potential in improving performance and consistency as they make free water 

available for the growth of the biocontrol agent (Chittick & Auld, 2001; Sanogo et al., 2002; 

Schubert et al., 2008 & 2009). In the glasshouse trial, on detached grapevine canes, the 

humectant treatments, polyacrylate alone and in combination with the yeast extract and urea 

resulted in better T. atroviride wound colonisation compared to the UST1 in water 

suspension. These treatments could not be tested further because the polyacrylate paste 

was difficult to apply on the small pruning wounds due to its granular-gel form. In the field, 

the polyacrylate may also rehydrate after any rainfall activity and form a wet „sponge‟ on the 

pruning wound. Schubert et al. (2008) reported enhanced viability, adhesion and 

establishment of T. atroviride on pruning wounds of urban trees when the biocontrol agent 

was applied in a polyacrylate formula. On the urban trees, the pruning wounds were larger 

(mean diameter of 6.4 cm), which made it easier to apply the polyacrylate gel relative to the 
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grapevine pruning wounds on one-year-old grapevine canes (of less than 2 cm diameter) 

used in the current study. Polyacrylate formulae might be applicable for larger wounds made 

on the trunk or cordons. However, it would have to be tested in the field.  

Addition of a nitrogen source, peptone, to minimal nutrient medium significantly 

increased the chitinolytic activity of the T. atroviride culture filtrate which was then used in 

combination with conidia of T. atroviride in the Broth treatment. Trichoderma spp. are well 

known producers of chitinolytic enzymes that breakdown chitin and are involved in the 

degradation of fungal cell walls and their biocontrol activity (Lorito, 1998; Rey et al., 2001; 

Sandhya et al., 2004). Chitinases are part of the antagonistic arsenal of Trichoderma spp. 

against other fungi which also includes other hydrolytic enzymes, such as glucanases and 

proteases (Schirmböck et al., 1994; Shakeri & Foster, 2007) and antibiotic metabolites  

(Vinale et al., 2006 &  2008). Although only chitinolytic activity was used for selecting the 

optimal harvest time of the culture filtrate, the filtrate also contained other Trichoderma 

hydrolytic enzymes. Culture filtrates of antagonistic Trichoderma spp. containing proteins 

have been shown to have antifungal properties (Lorito et al., 1994; Schirmböck et al., 1994; 

Lorito, 1998). 

In the detached grapevine cane assay all the T. atroviride treatments significantly 

reduced wound infection by Pa. chlamydospora at higher levels than in the field trials. 

Although some of the treatments tested further in field trials could significantly reduce wound 

infection compared to the control treatments, most were not significantly better than the un-

amended treatment (UST1 in water). In the 2011 trials there was a clear difference in 

reduction of Pa. chlamydospora between the two cultivars with better control in the 

Thompson Seedless by all the treatments. This is not likely to be due to cultivar differences 

in susceptibility to Pa. chlamydospora since the infection levels in the wounds that received 

the control treatment are quite comparable for the two cultivars. The incidence of 

Trichoderma spp. was higher in the Thompson Seedless compared to the Chenin blanc and 

the poor colonisation of the biocontrol agents in the Chenin blanc is the most likely reason 

for the poor control. A previous study on grapevine cultivar variation to pruning wound 

protection by Trichoderma spp. showed that high incidence of Trichoderma spp. was 

strongly correlated to pathogen reduction in both Chenin blanc and Thompson Seedless 

(Mutawila et al., 2011b).  

One major difference between the 2011 and 2012 trials was the low Trichoderma 

incidences found in the 2011 trials. In both trials, pruning was carried out late in winter 

(August) but in the 2011 trials the wounds were treated immediately after pruning (within 30 

minutes). Sap flow was observed after pruning in both vineyards and could have washed-off 

the Trichoderma conidia from the pruning wounds resulting in poor establishment of the 
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biocontrol agent. In the 2012 trial, pruning wound treatment was carried out 6 hours after 

pruning. This was adopted following results from Chapter 3 that showed that applying 

Trichoderma biocontrol agents 6 hours after pruning consistently resulted in higher wound 

colonisation. The importance of applying wound protectants several hours after pruning is 

further shown by the dripping-off of the paint treatment, Garrison due to sap-flow in the 

Thompson Seedless. In addition to fungicidal activity, Garrison also seals the wound 

creating a physical barrier to pathogens that fall on the wound surface. In cases where the 

paint drips off the wound is left even more susceptible for infection because the fungicidal 

activity of the paint would have exterminated saprophytes that could grow on the wound 

some of which provide protection (Munkvold & Marois, 1993). This further demonstrates the 

importance of optimising the time of application of both chemical and biocontrol agents for 

wound protection. 

Garrison was always amongst the best treatments in reducing Pa. chlamydospora 

infection, but failed to reduce natural pathogen infection in both cultivars in the 2011 trials. 

The reduction in Pa. chlamydospora wound infection by Garrison (of at least 79%) in the 

current study is slightly higher than that reported by Rolshausen et al. (2010) from California 

(63%). When Pa. chlamydospora was inoculated, the fungicidal activity of the Garrison was 

still active and when the fungicide activity diminishes the physical barrier of the paint should 

continue to provide wound protection. However, it was also observed that about 20% of 

Garrison painted wounds did not heal eight months after pruning. Infection from natural 

inoculum can occur at any time as long as the wound is still susceptible and if the integrity of 

the sealant on the wound surface is compromised then the wound below is likely be infected. 

This could explain the poor control, by Garrison, of infections due to natural inoculum. 

Garrison has been reported to be effective in grapevine pruning wound protection 

(Sosnowski et al., 2008; Rolshausen et al., 2010; Pitt et al., 2012) and the current study also 

supports these findings. However, from the current study it appears that Garrison may 

interfere with the normal pruning wound healing process and thus the host resistance but 

further research is required. In most studies on pruning wound protection, efficacy is 

assessed from inoculations carried out shortly after pruning. With pruning wound sealants, it 

may be also important to consider their effect on wound healing and inoculate the pathogen 

at different time intervals.  

In the Chenin blanc, Pa. chlamydospora was isolated at a higher incidence in 2012 

than 2011 in the control treatments that were inoculated within a day of pruning. In the 

wounds that did not receive the biocontrol treatments, in the 2012 trial, Pa. chlamydospora 

was isolated less frequently from wounds that were inoculated after three and seven days 

most likely due to the reduction in susceptibility as the wounds healed (Serra et al., 2008; 
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Van Niekerk et al., 2011). Despite higher Pa. chlamydospora infection in the 2012 than the 

2011 trial, the Broth and the Yeast extract + Urea + Glucose, treatments reduced pathogen 

infection to levels not significantly different from the fungicidal paint, Garrison, at all 

pathogen inoculation intervals. The reduction of Pa. chlamydospora infection by these T. 

atroviride treatments (of 59% to 90%) in all trials is comparable to pathogen reduction 

reported with fungicides (of 52% to 85%) in California (Rolshausen et al., 2010). Wound 

protection by the other Trichoderma treatments was generally better when wounds were 

inoculated with P. chalmydospora after seven days. 

Many studies have shown that biocontrol agents need time to germinate and colonise 

the wound before they can provide protection. Munkvold & Marois (1993) achieved better 

control of Eutypa lata using Cl. herbarum and F. lateritium when the pathogen was 

inoculated 14 days after the biocontrol agents. Kotze et al. (2011) also reported effective 

wound protection from E. lata, Pa. chlamydospora and species of the Botryospheriaceae 

when the pathogens were inoculated after seven days. John et al. (2005) proposed that 2 

days was sufficient for T. harzianum to colonise the wound and impair wound infection by E. 

lata. A way to address the need for time between wound treatment and pathogen infection is 

to apply the biocontrol agent in a formulation that is antifungal and can protect the wound 

until the biocontrol agent has germinated and colonised the wound. The T. atroviride culture 

filtrate (Broth treatment) used in the current study contains antifungal hydrolytic enzymes 

that can inhibit growth of pathogen propagules on the wound immediately after application. 

Since the culture filtrate was made using chitin based medium it therefore contained chitin 

oligosaccharides which are known to stimulate the production of chitinases in Trichoderma 

spp. and also elicit plant defence (Hahn et al., 1993; Brunner et al., 2003; Falcón-Rodríguez 

et al., 2012). The expression of chitinases by Trichoderma spp. is induced by chitin and its 

oligosaccharides (Brunner et al., 2003) and their presence on the pruning wound is therefore 

likely to result in earlier expression of cell wall degrading enzymes by the biocontrol agent. 

Chitin oligosaccharides have been shown to induce faster wound healing through the 

deposition of lignin and other phytoalexins (Barber et al., 1989; Hahn et al., 1993; Falcón-

Rodríguez et al., 2012). This could explain the relatively better control by the Broth treatment 

in the 2012 trial. Similar control by the yeast extract + urea + glucose treatment could be due 

to faster growth of the biocontrol agent due to provision of both a nitrogen and carbon source 

since the nitrogen sources alone (Yeast extract or Yeast extract + Urea) did not result in 

similar control. 

It has been shown that the co-inoculation of Trichoderma spp. and Pa. 

chlamydospora on pruning wounds reduces the wood streaking, black goo symptoms and 

the extent of pathogen colonisation of the xylem vessels (Di Marco et al., 2004; Mutawila et 

Stellenbosch University  http://scholar.sun.ac.za



 

94 
 

al., 2011b). In the current study, Pa. chlamydospora was co-isolated with the biocontrol 

agent from the same wound. Although these wounds were considered infected, it is not 

known how extensive the pathogen would grow and if disease would develop in the 

presence of the biocontrol agent. Long term studies would be required to answer this 

question. 

 The use of nutritional amendments on biocontrol agent applications has been shown 

to increase pathogen control efficacy in some pathosystems that include soil (Hjeljord et al., 

2001), leaves and fruits (Schisler et al., 2004) as well as wood (Ferreira et al., 1991; Schmidt 

et al., 2001). On the contrary, John et al. (2005) found that the nutrient base in a registered 

grapevine pruning wound bio-protectant Trichoseal had no enhancement effect on the 

efficacy of its active agent, T. harzianum. Similarly, Schubert et al. (2008) also found 

nutritional additives to have no effect on the ability of T. atroviride to protect wounds on 

urban trees, but efficacy was enhanced by adding a water retaining polymer. Our current 

study shows none or marginal improvement of grapevine pruning wound protection by T. 

atroviride bio-enhancers. However, a chitin based culture filtrate and a combination of yeast 

extract, urea and glucose showed potential in enhancing T. atroviride pruning wound 

protection. The culture filtrate can further be improved by increasing the concentration of the 

Trichoderma proteins (hydrolytic enzymes). Commercially, the T. atroviride conidia and 

protein extract concentrate of the culture filtrates could be provided separately for mixing just 

before application. However, more work would need to be done to optimise the production of 

the protein extract. Valuable knowledge has been gained on the potential of bio-enhancers 

on Trichoderma efficacy on grapevine pruning wounds. Field trials against other grapevine 

trunk pathogens, together with testing on a wider selection of grapevine cultivars will aid in 

the development of an effective Trichoderma pruning wound formulation.  

4.6 References 

Aroca, A., García-Figueres, F., Bracamonte, L., Luque, J. & Raposo, R. 2006. A survey of 

trunk disease pathogens within rootstocks of grapevines in Spain. European Journal of 

Plant Pathology 115: 195-202.  

Aroca, Á., Gramaje, D., Armengol, J., Jose, G.-J. & Raposo, R. 2010. Evaluation of the 

grapevine nursery propagation process as a source of Phaeoacremonium spp. and 

Phaeomoniella chlamydospora and occurrence of trunk disease pathogens in 

rootstock mother vines in Spain. European Journal of Plant Pathology 126: 165-174. 

Barber, M., Bertram, R. & Ride, J. 1989. Chitin oligosaccharides elicit lignification in 

wounded wheat leaves. Physiological and Molecular Plant Pathology 34: 3-12. 

Stellenbosch University  http://scholar.sun.ac.za



 

95 
 

Biggs, A. & Miles, N. 1988. Association of suberin formation in uninoculated wounds with 

susceptibility to Leucostoma cincta and L. persoonii in various peach cultivars. 

Phytopathology 78: 1070-1074.  

Brunner, K., Peterbauer, C.K., Mach, R.L., Lorito, M., Zeilinger, S. & Kubicek, C.P. 2003. 

The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase 

induction by chitin and of major relevance to biocontrol. Current Genetics 43: 289-95. 

Chapuis, L., Richard, L. & Dubos, B. 1998. Variation in susceptibility of grapevine pruning 

wound to infection by Eutypa lata in South-Western France. Plant Pathology 47: 463-

472. 

Chittick, A. & Auld, B. 2001. Polymers in bioherbicide formulation: Xanthium spinosum and 

Colletotrichum orbiculare as a model system. Biocontrol Science and Technology 11: 

691-702. 

Crous, P.W. & Gams, W. 2000. Phaeomoniella chlamydospora gen. et comb. nov., a causal 

organism of Petri grapevine decline and esca. Phytopathologia Mediterranea 39: 112-

118. 

Di Marco, S., Osti, F. & Cesari, A. 2004. Experiments on the control of esca by Trichoderma. 

Phytopathologia Mediterranea 43: 108-115. 

Edwards, J., Laukart, N. & Pascoe, I. 2001. In situ sporulation of Phaeomoniella 

chlamydospora in the vineyard. Phytopathologia Mediterranea 40: 61-66. 

El-Katatny, M., Somitsch, W., Robra, K.-H., El-Katatny, M. & Gubitz, G. 2000. Production of 

chitinase and beta-1, 3-glucanase by Trichoderma harzianum for control of the 

phytopathogenic fungus Sclerotium rolfsii. Food Technology and Biotechnology 38: 

173-180. 

Eskalen, A., Feliciano, A.J. & Gubler, W.D. 2007. Susceptibility of grapevine pruning wounds 

and symptom development in response to infection by Phaeoacremonium aleophilum 

and Phaeomoniella chlamydospora. Plant Disease 91: 1100-1104. 

Eskalen, A. & Gubler, W.D. 2002. Association of spores of Phaeomoniella chlamydospora, 

Phaeoacremonium inflatipes, and Pm. aleophilum with grapevine cordons in California. 

Phytopathologia Mediterranea 40 (Supp): S429-S432. 

Falcón-Rodríguez, A.B., Wégria, G. & Cabrera, J. 2012. Exploiting plant innate immunity to 

protect crops against biotic stress: Chitosaccharides as natural and suitable 

candidates for this purpose. In New Perspectives in Plant Protection. A. Bandani, ed. 

InTech, Doi: 10.5772/36777. 

Stellenbosch University  http://scholar.sun.ac.za



 

96 
 

Ferreira, J., Mathee, F. & Thomas, A. 1991. Biological control of Eutypa lata on grapevine by 

antagonistic strain of Bacillus subtilis. Phytopathology 81: 283-287. 

Fourie, P.H. & Halleen, F. 2002. Investigation on the occurrence of Phaeomoniella 

chlamydospora in canes of rootstock mother vines. Australasian Plant Pathology 31: 

425-426. 

Gramaje, D. & Armengol, J. 2011. Fungal trunk pathogens in the grapevine propagation 

process: potential inoculum sources, detection, identification and management 

strategies. Plant Disease 95: 1040-1055. 

Gubler, W.D., Rolshausen, P.E., Trouillas, F.P., Úrbez-Torres, J.R, Voegel, T.M., Leavitt, 

G.M. & Weber, E.A. 2005. Grapevine trunk diseases in California. Practical Winery 

and Vineyard February: 6-25. 

Guestsky, R., Elad, Y., Shtienberg, D. & Dinoor, A. 2002. Improved biocontrol of Botrytis 

cinerea on detached strawberry leaves by adding nutritional supplements to a mixture 

of Pichia guilermondii and Bacillus mycoides. Biocontrol Science and Technology 12: 

625-630. 

Hahn, M., Cheong, J.-J., Alba, R., Enkerli, J. & Côté, F. 1993. Oligosaccharide elicitors: 

structures and recognition. Pages 99-116 in: Mechanisms of Plant Defense 

Responses. B. Fritig & M. Legrand, eds. Springer: Dordrecht, The Netherlands. 

Halleen, F., Crous, P.W. & Petrini, O. 2003. Fungi associated with healthy grapevine cuttings 

in nurseries, with special reference to pathogens involved in the decline of young 

vines. Australasian Plant Pathology 32: 47-52. 

Halleen, F., Fourie, P.H. & Lombard, P.J. 2010. Protection of grapevine pruning wounds 

against Eutypa lata by biological and chemical Methods. South African Journal of 

Enology and Viticulture 31: 125-132. 

Hjeljord, L.G., Stensvand, A. & Tronsmo, A. 2001. Antagonism of nutrient-activated conidia 

of Trichoderma harzianum (atroviride) P1 against Botrytis cinerea. Phytopathology 91: 

1172-80.  

Hjeljord, L., Stensvand, A. & Tronsmo, A. 2000. Effect of temperature and nutrient stress on 

the capacity of commercial Trichoderma products to control Botrytis cinerea and Mucor 

piriformis in greenhouse strawberries. Biological Control 19: 149-160. 

John, S., Wicks, T.J., Hunt, J.S., Lorimer, M.F., Oakey, H. & Scott, E.S. 2005. Protection of 

grapevine pruning wounds from infection by Eutypa lata using Trichoderma harzianum 

and Fusarium lateritium. Australasian Plant Pathology 34: 569-575. 

Stellenbosch University  http://scholar.sun.ac.za



 

97 
 

Kotze, C., Van Niekerk, J.M., Halleen, F. & Fourie, P.H. 2011. Evaluation of biocontrol 

agents for grapevine pruning wound protection against trunk pathogen infection. 

Phytopathologia Mediterranea 50 (Supp): 247-263. 

Lorito, M. 1998. Chitinolytic enzymes and their genes. Pages 73-99 in: Trichoderma and 

Gliocladium Volume 2. C. Kubicek & G. Harman, eds. Taylor and Francis. London, 

England. 

Lorito, M., Hayes, C., Di Pietro, A., Woo, S. & Harman, G. 1994. Purification, 

characterisation, and synergistic activity of a glucan 1, 3-β-glucosidase and an N-

acetyl-β-glucosaminidase from Trichoderma harzianum. Phytopathology 84: 398-405. 

Mach, R.L., Peterbauer, C.K., Payer, K., Jaksits, S., Woo, S.L., Zeilinger, S., Kullnig, C.M., 

Lorito, M. & Kubicek, C.P. 1999. Expression of two major chitinase genes of 

Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. 

Applied and Environmental Microbiology 65: 1858-1863. 

Monte, E. 2001. Understanding Trichoderma: between biotechnology and microbial ecology. 

International Microbiology 4: 1-4. 

Mostert, L., Groenewald, J.Z., Summerbell, R.C., Gams, W. & Crous, P. 2006. Taxonomy 

and pathology of Togninia (Diaporthales) and its Phaeoacremonium anamorphs. 

Studies in Mycology 54: 1–113. 

Mugnai, L., Graniti, A. & Surico, G. 1999. Esca (black measles) and brown wood-streaking: 

two old and elusive diseases of grapevines. Plant disease 83: 404-418. 

Munkvold, G. & Marois, J. 1993. Efficacy of natural epiphytes and colonizers of grapevine 

pruning wounds for biological control of Eutypa dieback. Phytopathology 83: 624-629. 

Mutawila, C. 2010. Biological control of grapevine trunk diseases by Trichoderma pruning 

wound protection. MSc Thesis, Stellenbosch University. Stellenbosch. 

Mutawila, C., Fourie, P.H., Halleen, F. & Mostert, L. 2011a. Grapevine cultivar variation to 

pruning wound protection by Trichoderma species against trunk pathogens. 

Phytopathologia Mediterranea 50 (Supp): S264-S276. 

Mutawila, C., Fourie, P.H., Halleen, F. & Mostert, L. 2011b. Histo-pathology study of the 

growth of Trichoderma harzianum, Phaeomoniella chlamydospora and Eutypa lata on 

grapevine pruning wounds. Phytopathologia Mediterranea 50 (Supp): S46-S60. 

Petzoldt, C., Moller, W. & Sall, M. 1981. Eutypa dieback of grapevine: Seasonal differences 

in infection and duration of susceptibility of pruning wounds. Phytopathology 71: 540-

543. 

Stellenbosch University  http://scholar.sun.ac.za



 

98 
 

Pitt, W., Sosnowski, M., Huang, R., Steel, C. & Savocchia, S. 2012. Evaluation of fungicides 

for the management of Botryosphaeria canker grapevines. Plant Disease 96: 1303-

1308. 

Rey, M., Delgado-Jarana, J. & Benítez, T. 2001. Improved antifungal activity of a mutant of 

Trichoderma harzianum CECT 2413 which produces more extracellular proteins. 

Applied Microbiology and Biotechnology 55: 604-608.  

Rolshausen, P.E. & Gubler, W.D. 2005. Use of boron for the control of Eutypa dieback of 

grapevines. Plant Disease 89: 734-738. 

Rolshausen, P.E., Úrbez-Torres, J.R., Rooney-latham, S., Eskalen, A., Smith, R. & Gubler, 

W.D. 2010. Evaluation of pruning wound susceptibility and protection against fungi 

associated with grapevine trunk diseases. American Journal of Enology and Viticulture 

61: 113-119. 

Sandhya, C., Adapa, L.K., Nampoothiri, K.M., Binod, P., Szakacs, G. & Pandey, A. 2004. 

Extracellular chitinase production by Trichoderma harzianum in submerged 

fermentation. Journal of Basic Microbiology 44: 49-58.  

Sanogo, S., Pomella, A., Hebbar, P.K., Bailey, B., Costa, J.C.B., Samuels, G.J. & Lumsden, 

R.D. 2002. Production and germination of conidia of Trichoderma stromaticum, a 

mycoparasite of Crinipellis perniciosa on cacao. Phytopathology 92: 1032-1037.  

Schirmböck, M., Lorito, M., Wang, Y.L., Hayes, C.K., Arisan-Atac, I., Scala, F., Harman, G.E. 

& Kubicek, C.P. 1994. Parallel formation and synergism of hydrolytic enzymes and 

peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of 

Trichoderma harzianum against phytopathogenic fungi. Applied and Environmental 

Microbiology 60: 4364-70.  

Schisler, D.A., Slininger, P.J., Behle, R.W. & Jackson, M.A. 2004. Formulation of Bacillus 

spp. for biological control of plant diseases. Phytopathology 94: 1267-71. 

Schmidt, C., Lorenz, D., Wolf, G. & Jager, J. 2001. Biological control of the grapevine 

dieback fungus Eutypa lata II  : Influence of formulation additives and transposon 

mutagenesis on the antagonistic activity of Bacillus subtilis and Erwinia herbicola. 

Journal of Phytopathology 149: 437-445. 

Schubert, M., Mourad, S., Fink, S. & Schwarze, F.W.M.R. 2009. Ecophysiological responses 

of the biocontrol agent Trichoderma atroviride (T-15603.1) to combined environmental 

parameters. Biological Control 49: 84-90. 

Stellenbosch University  http://scholar.sun.ac.za



 

99 
 

Schubert, M., Siegfried, F. & Schwarze, F.W.M.R. 2008. Evaluation of Trichoderma spp. as 

a biocontrol agent against wood decay fungi in urban trees. Biological Control 45: 111-

123. 

Serra, S., Mannoni, M. & Ligios, V. 2008. Studies on the susceptibility of pruning wounds to 

infection by fungi involved in grapevine wood diseases in Italy. Phytopathologia 

Mediterranea 47: 234-246. 

Shakeri, J. & Foster, H.A. 2007. Proteolytic activity and antibiotic production by Trichoderma 

harzianum in relation to pathogenicity to insects. Enzyme and Microbial Technology 

40: 961-968. 

Sosnowski, M.R., Creaser, M.L., Wicks, T.J., Lardner, R. & Scott, E.S. 2008. Protection of 

grapevine pruning wounds from infection by Eutypa lata. Australian Journal of Grape 

and Wine Research 14: 134-142. 

Surico, G. 2009. Towards a redefinition of the diseases within the esca complex of 

grapevine. Phytopathologia Mediterranea 48: 5-10. 

Surico, G., Mugnai, L. & Marchi, G. 2008. The ecsa complex. Pages in: Integrated 

Management of Diseases Caused by Fungi, Phytoplasma and Bacteria. A. Ciancio & 

K. Mukerji, eds. Springer, Dordrecht, The Netherlands. 

Trouillas, F.P., Úrbez-Torres, J.R. & Gubler, W.D. 2010. Diversity of diatrypaceous fungi 

associated with grapevine canker diseases in California. Mycologia 102: 319-336.  

Úrbez-Torres, J.R., Bettiga, L.J., Gispert, C., McGourty, G., Roncoroni, J., Smith, R., 

Verdegaal, P. & Gubler, W.D. 2010. Botryosphaeriaceae species spore-trapping 

studies in California vineyards. Plant Disease 94: 717-724. 

Úrbez-Torres, J.R. & Gubler, W.D.  2009. Pathogenicity of Botryosphaeria species isolated 

from grapevine cankers in California. Plant Disease 93: 584-592. 

Van Niekerk, J.M., Crous, P.W., Fourie, P.H. & Halleen, F. 2004. DNA phylogeny, 

morphology and pathogenicity of Botyrosphaeria species on grapevines. Mycologia 96: 

781-798. 

Van Niekerk, J.M., Groenewald, J.Z., Farr, D.F., Fourie, P.H., Halleen, F. & Crous, P.W. 

2005. Reassessment of Phomopsis species on grapevine. Australasian Plant 

Pathology 34: 27-39. 

Van Niekerk, J.M., Halleen, F. & Fourie, P.H. 2011. Temporal susceptibility of grapevine 

pruning wounds to trunk pathogen infection in South African grapevines. 

Phytopathologia Mediterranea 50 (Supp): S139-S150. 

Stellenbosch University  http://scholar.sun.ac.za



 

100 
 

Vinale, F., Marra, R., Scala, F., Ghisalberti, E.L., Lorito, M. & Sivasithamparam, K. 2006. 

Major secondary metabolites produced by two commercial Trichoderma strains active 

against different phytopathogens. Letters in Applied Microbiology 43: 143-148. 

Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R., Barbetti, M.J., Li, H., Woo, S.L. 

& Lorito, M. 2008. A novel role for Trichoderma secondary metabolites in the 

interactions with plants. Physiological and Molecular Plant Pathology 72: 80-86. 

Yamada, T. 2001. Defense mechanisms in the sapwood of living trees against microbial 

infection. Journal of Forestry Research 7: 127-137. 

  

Stellenbosch University  http://scholar.sun.ac.za



 

101 
 

Tables and Figures  

Table 1: The mean incidence of the biocontrol agent, Trichoderma atroviride, grapevine 

trunk pathogen Phaeomoniella chlamydospora, and pathogen reduction from pruning 

wounds of one-year-old grapevine canes treated with T. atroviride spore suspension 

amended with different additives (formulae). Treated wounds were inoculated with Pa. 

chlamydospora one-day after treatment. 

Nutritional amendment Percentage Incidence (%)* Pathogen 

reduction (%) 
T. atroviride Pa. chlamydospora 

UST1 in water 72.72BC 9.00B 85.86 

UST1 + Yeast extract (Y.E) 88.23ABC 11.76B 81.52 

UST1 + Urea 88.23ABC 5.88B 90.76 

UST1 + Yeast extract + Urea 94.12AB 11.76B 81.52 

UST1 + Y.E + Urea + Glucose 100A 0B 100 

UST1 + Polyacrylate 94.12AB 0B 100 

UST1 + Polyacrylate + Yeast extract 76.47ABC 6.25B 90.18 

UST1 + Polyacrylate + Urea 68.82BC 0B 100 

UST1 + Polyacrylate + Y.E + Urea 94.12AB 0B 100 

UST1 + Polyacrylate + chitin 76.47ABC 0B 100 

Sterile water (control) 0D 63.63A - 

LSD (P = 0.05) 22.76 13.20 - 

*Values followed by the same letter are not significantly different. 
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Table 2: Coefficients for non-linear regression equations (y = a + b-x) for prediction of the 

isolation frequency (y) of T. atroviride with depth (x) from the surface of grapevine pruning 

wounds. The T. atroviride was applied as conidial suspensions amended with various 

nutrients. The frequency of colonisation is a relative measure of the extent of wood 

colonisation by the biocontrol agent. 

Treatment Intercept (a) Slope (b) R2-value P-value 

UST1 water suspensiom   1.946 38.35 0.96 0.003 

UST1 + Yeast extract (Y.E) 5.738 101.49 0.74 0.061 

UST1 + Urea -3.538 107.51 0.88 0.013 

UST1 + Y.E + Urea -1.103 138.18 0.96 0.003 

UST1 + Y.E + Urea + Glucose 0.450 144.98 0.92 0.011 

UST1 + Polyacrylate (Pacr) -1.676 154.58 0.88 0.018 

UST1 + Pacr + Y.E -4.454 102.34 0.94 0.006 

UST1 + Pacr + Urea 1.538 35 0.96 0.004 

UST1 + Pacr + Y.E + Ur 5.976 70.27 0.85 0.031 

UST1 + Pacr + chitin -0.135 67.81 0.98 <0.001 
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Table 3: The incidence of Trichoderma species isolated from pruning wounds of Chenin 

blanc and Thompson Seedless grapevines treated with Trichoderma atroviride UST1 with or 

without nutritional ammendments, Garrison (a fungicidal paint) and Eco 77 (a registered 

biocontrol product) for pruning wound protection in 2011 trials. 

Nutritional amendment or 

Treatment 

Trichoderma incidence (%)* 

Chenin blanc Thompson Seedless 

UST1 in water 11.98AB 20.84B 

UST1 + Broth 16.15A 42.71A 

UST1 + Y. extract (Y.E) 10.41AB 31.25B 

UST1 + Y.E + Urea 17.71A 28.13B 

UST1 + Y.E + Urea + Glucose 6.77BCD 25.52B 

Eco 77 8.33BC 23.96B 

Garrison 1.04CD 2.60C 

Water 0.00D 4.17C 

LSD (P = 0.05) 7.66 11.32 

*Values within a column followed by the same letter are not significantly different. 
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Table 4: The incidence of Phaeomoniella chlamydospora and grapevine trunk pathogens in 

pruning wounds of Chenin blanc and Thompson Seedless grapevines treated with 

Trichoderma atroviride UST1 suspensions with or without nutritional ammendments and 

formulated products, Garrison (a fungicide containing paint) and Eco 77 (a registered 

biocontrol product), for pruning wound protection in 2011 trials. Treated pruning wounds 

were either inoculated with Pa. chlamydospora a day after pruning or left to infection by 

natural inoculum. 

Treatment Pathogen incidence (%)* 

Chenin blanc Thompson Seedless 

Pa. 

chlamydospora 

Natural 

inoculum1 

Pa. 

chlamydospora 

Natural 

inoculum 

UST1 in water 27.08B 

(40)1 

14.58AB 

(46) 

4.17B 

(90) 

12.50AB 

(57) 

UST1 + Broth 18.75B 

(59) 

4.17B 

(85) 

8.33B 

(80) 

8.33B 

(71) 

UST1 + Y. extract (Y.E) 25.00B 

(45) 

14.58AB 

(46) 

10.42B 

(90) 

6.25B 

(78) 

UST1 + Y.E + Urea 27.08B 

(41) 

18.75AB 

(30) 

4.17B 

(90) 

12.50AB 

(57) 

UST1 + Y.E+Urea+Glucose 12.50BC 

(74) 

6.25B 

(77) 

6.25B 

(85) 

12.50AB 

(57) 

Eco 77 12.50BC 

(74) 

12.50AB 

(53) 

10.42B 

(75) 

12.50AB 

(57) 

Garrison 2.08C 

(95) 

10.42AB 

(61) 

8.33B 

(80) 

18.75AB 

(35) 

Water (control) 45.83A 27.08A 41.67A 29.17A 

LSD (P = 0.05) 16.09 18.66 12.25 19.31 

*Values within a column followed by the same letter are not significantly different. 

1Pathogen reduction (Pr) calculated as: Pr (%) = 100 ((Pc - Pt) / Pc), where Pc and Pt are 

the pathogen incidence in the control and treatment respectively. 
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Table 5: The effect of nutritional amendments on the incidence of Trichoderma spp. and 

grapevine trunk pathogens (in non-inoculated wounds) in pruning wounds of Chenin blanc in 

2012 field trial. Wounds were treated with T. atroviride (UST1) conidia suspensions with 

various nutritional amendments. A registered ready formulated biocontrol agent, Eco 77, 

based on T. harzianum and pruning wound paint with fungicide, Garrison, were also 

included.  

Treatment Pruning wound incidence (%) of * 

Trichoderma spp. Pathogens (Natural 

inoculum) 

UST1 in water 71.01AB 13.20C (72)1 

UST1 + Broth 70.44AB 25.00BC (48) 

UST1 + Yeast extract (Y.E) 63.46B 15.84C (67) 

UST1 + Y.E+Urea 77.80A 21.46BC (55) 

UST1 + Y.E+Urea+Glucose 76.74A 7.71C (84) 

Eco 77 61.64B 34.74AB (27) 

Garrison 4.79C 19.19BC (60) 

Water (control) 1.04C 47.57A 

LSD (P = 0.05) 12.08 21.05 

*All values within a column followed by the same letter are not significantly different 

according to Fischer‟s least significant difference (LSD) test at P = 0.05. 

1Pathogen reduction (Pr) calculated as: Pr (%) = 100 ((Pc - Pt) / Pc), where Pc and Pt are 

the pathogen incidence in the control and treatment respectively. 
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Table 6: The effect of nutritional amendments of T. atroviride (USPP-T1) conidia 

suspensions on the infection on Chenin blanc pruning wounds by Phaeomoniella 

chlamydospora in 2012 field trial. Treated wounds were inoculated with Pa. chlamydospora 

1, 3 or 7 days after pruning.  A registered ready formulated biocontrol agent, Eco 77, based 

on T. harzianum and pruning wound paint with fungicide, Garrison, were also included. 

Treatment Incidence of Pa. chlamydospora in wounds inoculated on 

Day 1 Day 3 Day 7 

UST1 in water 23.26BCD 

(68)1 

25.00B 

(54) 

5.90BCD 

(85) 

UST1 + Broth 18.81CDE 

(74) 

5.56B 

(90) 

9.03BC 

(78) 

UST1 + Yeast extract (Y.E) 21.35BCD 

(71) 

22.98B 

(58) 

9.58BC 

(76) 

UST1 + Y.E+Urea 39.43B 

(47) 

10.83B 

(80) 

0D 

(100) 

UST1 + Y.E+Urea+Glucose 10.76DE 

(85) 

6.25B 

(89) 

10.62BC 

(74) 

Eco 77 36.61BC 

(50) 

19.44B 

(64) 

12.22B 

(70) 

Garrison 0E 

(100) 

11.65B 

(79) 

2.78CD 

(93) 

Water (control) 73.78A 54.93A 40.63A 

LSD (P =0.05) 20.32 19.55 8.60 

All values within a column followed by the same letter are not significantly different. 

1Pathogen reduction (in brackets) calculated as: Pr (%) = 100 ((Pc - Pt) / Pc), where Pc and 

Pt are the pathogen incidence in the control and treatment respectively.  
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Figure 1: The effect of different nutritional additives on the extent of grapevine pruning wound colonisation by Trichoderma atroviride UST1. 

The extent of colonisation at 2 cm depth was used to determine treatments that either did not enhance colonisation (A) or enhanced T. 

atroviride colonisation (B) significantly (P = 0.05) compared to the treatment where conidia were suspended in water (UST1 in water). Isolation 

frequencies of the biocontrol agent at various depths from the pruning wound surface which were used to generate a none-linear regression 

model (y = a + b-x; where x is the depth) to estimate the colonisation extent with depth from the wound surface. The T. atroviride UST1, was 

applied as spore suspensions with various nutritional amendments as compared to application with water only. Y. Extr = Yeast extract; Gluc = 

glucose and Pacryl = Polyacrylate.   

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4

E
x
te

n
t 
o

f 
c
o

lo
n

is
a

ti
o

n
 (

%
) 

Isolation depth (cm) 

A 
UST1 in water

Urea

Polyacryl+Y.Extr

Polyacryl+Chitin

Polyacryl+Urea

0

10

20

30

40

50

60

70

80

90

0 1 2 3 40

E
x
te

n
t 
o

f 
c
o

lo
n

is
ta

io
n

 (
%

) 
 

Isolation depth (cm) 

B UST1 in water

Y. Extr

Y. Extr + Urea

Y. Extr+Urea+Gluc

Polyacryl

Pacryl+Y.Extr+Urea

Stellenbosch University  http://scholar.sun.ac.za

Stellenbosch University  http://scholar.sun.ac.za



 

108 
 

 

Figure 2: The time course chitinolytic activity of culture filtrates of Trichoderma atroviride 

UST1. This was used to determine the optimal harvest time (72 hours) for the broth which 

was used as a treatment in the evaluation of the effect of different nutritional amendments on 

T. atroviride pruning wound protection. Each value on the line represents mean chitinolytic 

activity ± the standard deviation of three independent biological replicates. 
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Figure 3: Vertical section through grapevine canes eight months after pruning wound 

treatment with a wound sealant, Garrison, showing normal wound healing (A) with wood 

dieback down to the apical node and an unhealed wound (B).  
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Chapter 5 
Development of benzimidazole resistant Trichoderma strains for 

the integration of chemical and biocontrol methods of grapevine 

pruning wound protection  

5.1 Abstract 

In the protection of grapevine pruning wounds from trunk pathogen infection, 

fungicides provide mainly short term protection while biocontrol agents provide mainly long 

term protection. The integration of fungicide and biological wound protection could provide 

better wound protection, but is limited by the susceptibility of the biocontrol agents to the 

fungicides. The susceptibility of three Trichoderma isolates (UST1, UST2 and T77) to 

benzimidazole fungicides was tested and resistant mutants were developed by gamma 

irradiation (250 Gy).  All the Trichoderma isolates were found to be naturally resistant to 

thiophanate methyl while mycelial growth was completely inhibited by 2.5 μg/mL of benomyl 

and carbendazim. Stable benzimidazole resistant mutants that could grow at 100 μg/mL 

were developed from each wild type Trichoderma isolate. There was no reduction in 

biological fitness and in vitro antagonist activity for mutants generated from UST1 and UST2 

while the mutant from T77 had reduced fitness and antagonistic activity compared to its wild 

type. The wild type and the mutant from UST1 were tested in the field, alone and in 

combination with carbendazim and thiophanate methyl, to assess their ability to prevent 

pruning wounds from infection by Phaeomoniella (Pa.) chlamydospora. The wild type and 

the mutant of UST1 reduced the infection of Pa. chlamydospora significantly when applied 

alone and in combination with the fungicides. The mutant of UST1 applied with carbendazim 

gave the best reduction of infection when Pa. chlamydospora was applied 24 hours after 

pruning. The Trichoderma transformants generated in this study can be applied in 

combination with benzimidazole fungicides for a more effective and sustainable wound 

protection.  

5.2 Introduction  

Grapevine decline caused by fungal trunk pathogens has become increasingly 

important in all grapevine producing regions of the world. Grapevine trunk diseases are 

collectively responsible for graft failure, decline and death of young vines, loss of vigour and 

productivity in established vines, spots on berries, late ripening and altered flavour, as well 

as death of vines (Mugnai et al., 1999; Fourie & Halleen, 2004; Gubler et al., 2005). These 

diseases are caused by a variety of taxonomically unrelated fungi that colonise wood tissue 

where they interfere with water and solute transport and cause degradation of conducting 
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cells (Pascoe & Cottral, 2000; Mutawila et al., 2011). The diseases include Petri disease and 

esca, caused by Phaeomoniella (Pa.) chlamydospora and Phaeoacremonium species as 

well as wood rotting basidiomycetes, Eutypa dieback caused by species of Diatrypaceae of 

which Eutypa (E.) lata is the most common and Botryosphaeria cankers caused by species 

of the Botryosphaeriaceae. 

Despite their diversity, trunk pathogens follow an almost similar disease cycle 

infecting vines through wounds, of which pruning wounds are the most important ports of 

entry (Petzoldt et al., 1981; Chapuis et al., 1998; Van Niekerk et al., 2011). Additionally the 

high pathogen diversity makes it very difficult to find one control method that is equally 

effective against the whole suite of trunk pathogens. One of the major control methods is to 

protect pruning wounds by chemical fungicides or biological control agents. Sodium arsenite 

was once considered the most effective fungicide for the control of esca as it also delayed 

the expression of foliar symptoms and reduced its severity in diseased vines (Mugnai et al., 

1999;  Surico et al., 2008). This fungicide is no longer available due to environmental and 

human toxicity (Surico et al., 2008). Other fungicides such as sterol demethylation inhibitors 

(flusilazole and myclobutanil) and boron (applied as boric acid) have also been found to be 

effective. However, the fungicides were not equally effective against all trunk pathogens 

while boron was further shown to inhibit growth of the apical bud (Rolshausen & Gubler, 

2005; Rolshausen et al., 2010). Broad spectrum benzimidazole fungicides namely benomyl, 

carbendazim and thiophanate methyl are among the most effective available wound 

protectants (Moller & Kasimatis, 1980; Rolshausen et al., 2010; Díaz & Latorre, 2013). 

Wounds remain susceptible until they are fully healed which takes a period of at least 

4 to 16 weeks depending on the time of pruning (Larignon & Dubos, 2000; Van Niekerk et 

al., 2011). Fungicide efficacy on the pruning wound is short-lived and does not last until the 

wound is no-longer susceptible to infection (Carter & Price, 1975; Munkvold & Marois, 

1993a). Multiple applications of fungicides would be needed to achieve a longer period of 

control (Munkvold & Marois, 1993a), however, this would be detrimental to the environment 

and more costly. On the other hand biocontrol agents that colonise the wound may provide 

long term protection. Fusarium (F.) lateriteum and Trichoderma (T.) species have been 

shown to protect pruning wounds from infection by several trunk pathogens (Carter & Price, 

1975; Munkvold & Marois, 1993b; John et al., 2005; Kotze et al., 2011). Munkvold & Marois 

(1993b) showed that protection by biocontrol agents was always better when pathogen 

inoculation was carried out several days after application of the biocontrol agent. However, 

despite increased availability of registered biocontrol products adoption, has been limited 

due to an inherent belief in the farming community that biocontrol agents are less effective 

than conventional pesticides (Harman, 2000). There are also reports of poor and 
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inconsistent wound protection by biocontrol agents (Gendloff  et al., 1983; Creaser & Wicks, 

2002; Halleen et al., 2010). Poor control is largely attributed to the time needed for wound 

colonisation, a period which creates a window of infection by trunk pathogens. Since there 

are currently no curative control measures for infected vines, long-term strategies for wound 

protection are needed. 

Integration of chemical and biocontrol agents can provide both short and long term 

wound protection. The major limitation to the integration of biocontrol agents into 

conventional disease management systems is their sensitivity to fungicides. The 

breeding/production of fungicide resistant biocontrol agents is a pre-requisite to such 

integration. Fungicide resistant biological strains have a further advantage that they can be 

applied together with a reduced concentration of fungicide and hence reducing 

environmental impact. Mutagenesis by exposure to chemicals and physical mutagens as 

well as protoplast fusion have been employed to improve efficacy of biocontrol agents 

(Hanson & Howell, 2002; Hatvani et al., 2006). Ethidium bromide and 1-methyl-3-nitro-1-

nitrosoguanidine are the main chemical mutagens used while ultra-violet light is the major 

physical mutagen. In several biocontrol and phytopathogenic fungi the genes responsible for 

tolerance/resistance to benomyl have been isolated (Yan & Dickman, 1996; Ma et al., 2003) 

and so genetic engineering has also been used to generate benomyl resistant biocontrol 

agents for use in integrated disease management systems (Ossanna & Mischke, 1990; 

Brunner et al., 2005). However, chemical and physical mutagenesis have an advantage over 

protoplast fusion and genetic engineering as it is much easier to get authorisation from 

regulatory authorities to apply the mutants in the field.  

Gamma irradiation and other ionising radiation are widely recognised methods for the 

decontamination of cereal grains and other food stuffs from microorganisms, worms and 

insects that degrade the quality of stored products (World Health Organisation, 1994; 

Braghini et al., 2009). Exposure of cells to gamma rays at non-lethal doses induces DNA 

damage (single or double strand breaks) which on repair may result in gene mutation. This 

has been used to generate variability in plant breeding (Ahloowalia & Maluszynski, 2001; 

Kovács & Keresztes, 2002). Ionising radiation, particularly gamma radiation cause 

deleterious single or double-strand breaks and DNA crosslinks which on repair result in 

chromosomal rearrangements and gene disruption (Dadachova & Casadevall, 2008). This 

has been used successfully to generate genetic variation in crop breeding while in 

microbiology, gamma radiation has been used to sterilise food and medical supplies. 

However, despite the potential of gamma radiation to generate novel fungal mutants there 

are only a few reports on such studies. 
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In this study we report the development of benzimidazole resistant mutants of T. 

atroviride and T. harzianum using gamma irradiation. The mutants and the wild type isolates 

were tested in vitro for their ability to inhibit the growth of trunk disease pathogens namely, 

E. lata, Diplodia (D.) seriata, Neofusicoccum (N.) parvum and Pa. chlamydospora. One of 

the wild type and mutant isolates was also tested in the field for their efficacy in protecting 

grapevine pruning wounds against infection by the trunk pathogen Pa. chlamydospora. 

5.3 Materials and Methods 

5.3.1 Source of isolates and culture conditions 

Two T. atroviride isolates UST1 and UST2, and an isolate of T. harzianum T77, all 

shown to have pruning wound protective effect (Kotze et al., 2011), were used for the 

mutation study. Trichoderma atroviride isolates UST1 and UST2 are stored under accession 

numbers STE-U 6514 and 6515 for UST1 and UST2, respectively, at the University of 

Stellenbosch, Department of Plant Pathology culture collection while isolate T77 was kindly 

provided by Plant Health Products, Pietermaritzburg, South Africa. Grapevine trunk 

pathogens namely, E. lata (STE-U 5692), D. seriata (STE-U 4440), N. parvum (STE-U 4439) 

and Pa. chlamydospora (6384) were also obtained from the culture collection of the 

Department of Plant Pathology at Stellenbosch University.  

All fungal isolates were maintained in tubes of sterile deionised water at 4 °C. Before 

use, the fungi were sub-cultured onto freshly prepared potato dextrose agar (PDA; Biolab, 

Wadeville, South Africa). Conidial suspensions of the Trichoderma isolates were prepared 

from 7-day-old cultures growing on PDA by flooding the Petri dishes with sterile distilled 

water or buffer (10 mL) to each culture and scrapping the surface to dislodge conidia with a 

sterile loop. The suspensions were then filtered through sterilised cheese cloth to remove 

mycelium fragments, conidia counted with a haemocytometer and adjusted to the desired 

concentration. 

5.3.2 Determination of sensitivity of wild type Trichoderma strains to 

fungicides  

The sensitivity of Trichoderma wild type isolates UST1, UST2 and T77 to 

benzimidazole fungicides used in pruning wound protection was tested on conidial 

germination and mycelial growth. Sensitivity was determined towards the fungicides 

carbendazim (technical grade 99.40%, UAP Crop Care, Paarl, South Africa), thiophanate 

methyl (technical grade 97.45%, Sinochem, Shanghai, China) and Benomyl (500 WP a.i. 

benomyl 500 g/kg; Villa Crop Protection, Kempton Park, South Africa). Stock solutions for all 

fungicides were prepared in acetone to make 1 mg/mL concentration of active ingredient. 
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Potato dextrose agar was then amended with 0, 1, 2.5, 5, 10, 30 and 50 μg/mL of each 

fungicide. For thiophanate methyl only, sensitivity of the wild type isolates was also tested at 

100 μg/mL.  In all cases the final concentration of acetone in the medium was 0.1% including 

the control plates without fungicide.  

 For Trichoderma spp. mycelium inhibition, mycelial plugs (5 mm diameter) taken from 

the margins of an actively growing colony were placed (mycelium facing downward) in the 

centre of each Petri dish with amended medium. Conidia germination was tested by spread-

plating 100 μL (~104 conidia) of conidial suspension on amended medium. There were two 

replicates of each Trichoderma wild type isolate per fungicide per test (mycelial or conidial 

inhibition). Plates were incubated at 25 °C in the dark for 4 days. The minimal inhibitory 

concentration for each fungicide was determined as the lowest concentration of the fungicide 

where no mycelial growth or conidia germination could be observed after 4 days of 

incubation. The screening concentration for fungicide resistant mutants was set at four times 

the minimum inhibitory concentration for mycelial growth. 

5.3.3 Irradiation and isolation of fungicide resistant Trichoderma strains  

 Conidial suspensions of 105 conidia/mL (5 mL) of the wild type Trichoderma isolates 

were prepared in 0.05 M acetate buffer (pH 5.4) from 7-day-old cultures growing on PDA. 

Suspensions were dispensed into 15 mL conical centrifuge tubes and irradiated in air with a 

60Co gamma radiation source at room temperature and atmospheric pressure (10 000 Curie; 

Insect Sterile Technique Africa (Pty) Ltd, ARC Infruitec-Nietvoorbij, Stellenbosch, South 

Africa) at doses of 0, 200, 300, 400, 500, 600 and 700 Gy at a dose rate of 15 Gy/min. 

Dosage validation was carried out by chemical dosimetry using Fricke solution (Matthews, 

1982). The survival level of conidial suspension was determined by dual spread plating (100 

μL) of serial dilutions of the irradiated suspensions onto acidified PDA (pH 3.8). The plates 

were inverted and incubated at 25 °C for 3 days, after which colonies were counted and 

survival curves constructed. Two irradiations were performed, each with triplicate samples 

per dose. The mean plate counts were used to obtain survival curves for each isolate in 

response to gamma irradiation. Data was reported as D10 values, which is the dose that 

caused 90% (1 log10) reduction in conidia survival (Moeller et al., 2007). The D10 values were 

compared between the isolates by analysis of variance, using SAS version 9.2 (SAS Institute 

Inc., Cary, North Carolina, USA), and used to determine the dosage to be used for the 

generation of mutants. 

 Mutagenesis was carried out by irradiation of conidia suspensions at dosage 250 Gy 

(determined from above) and the conidia were separately spread plated on PDA amended 

with the appropriate screening concentration for each fungicides. Petri dishes were inverted 
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and incubated at 25 °C in the dark and checked for the emergence of resistant colonies 

between 5 and 10 days. Mutants were sub-cultured on PDA amended with the screening 

concentration of the fungicide, single spored and stored in tubes of sterile deionised water at 

4 °C. Mutants were also tested for resistance to higher concentrations (20-100 μg/mL) of 

fungicides. 

5.3.4 Testing of mutant stability, fitness and cross resistance 

Stability of mutants was tested on PDA amended with the screening concentration of 

fungicide after ten cycles of sub-culturing on fungicide-free medium. The growth pattern of 

the mutants on fungicide-free PDA was compared to that of the wild type isolates at 5 to 40 

°C (at 5 °C intervals). Mutants were also tested for fungicide cross resistance, as described 

above, for both inhibition of mycelial growth and conidia germination.  

5.3.5 Test of in vitro antagonism against grapevine trunk pathogens 

The antagonism of mutants and wild type isolates was compared by observing their 

interactions in dual inoculated plates with grapevine trunk pathogens namely; D. seriata, E. 

lata, N. parvum and Pa. chlamydospora. Mycelial disks (5 mm) cut from the growing edges 

of the colonies of the Trichoderma strains, and the pathogens were placed at opposite sides 

of the same Petri dish containing PDA, simultaneously. Due to the slower growth of Pa. 

chlamydospora relative to the other pathogens, it was inoculated onto the PDA 10 days prior 

to inoculation of the Trichoderma strains. The plates were incubated at 25 °C in the dark for 

5 to 10 days after which interactions between the fungi were observed both macro- and 

microscopically. For microscopy, mycelial plugs (±5 mm2) from the mycelium interaction 

zones from different random positions were placed on a glass slide with sterile deionised 

water. Hyphal interactions were observed using a Nikon Eclipse E600 microscope fitted with 

a Nikon digital camera DXM1200 with Automatic Camera Tamer (ACT-1) software. 

5.3.6 In vivo evaluation of grapevine wound protection  

The benzimidazole resistant mutant from isolate UST1 (henceforth termed MT1) and 

the wild type UST1, which was naturally resistant to thiophanate methyl, were further tested 

in vivo for pruning wound protection.  

5.3.6.1. Field trial: A Cabernet Sauvignon (9-year-old) vineyard situated in the 

Stellenbosch area was spur pruned to three buds in August 2012. About 6 hours after 

pruning, each pruning wound received a treatment of either the Trichoderma suspensions 

(UST1 or MT1) alone or in combination with fungicides thiophanate methyl (7 g a.i/L) and 

carbendazim (0.5 g a.i/L), respectively. The two fungicides were also applied alone. A water 

control treatment was also included. All treatments were sprayed as a single application 
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using a hand held 500 mL trigger spray bottle. For the combination treatments the 

Trichoderma suspensions were made up in water, the fungicide added to the conidia 

suspension and mixed. Treated wounds were either left to natural inoculum or artificially 

inoculated with the Petri disease pathogen, Pa. chlamydospora (~1000 conidia/wound) at 24 

hours or 7 days after pruning. There were a total of 21 treatment combinations (i.e. wound 

treatment × natural or artificial inoculation × time of artificial inoculation) and all pruning 

wounds on a vine received the same treatment. 

Seven months after treatment, the spurs were pruned off just above the second node 

and the stubs with the treated wounds were taken to the laboratory for fungal isolation. The 

wood stubs were first surface sterilised by immersion in 70% ethanol for 30 seconds, then 

3.5% sodium hypochlorite for 1 minute and finally in 70% ethanol for 30 seconds. Shoots 

were then aseptically split longitudinally and four wood tissue sections (~1 mm3), two from 

either side of the pith, were plated onto PDA in one Petri dish. For each wound, isolations 

were made from two positions, at the wound scar interface (four wood pieces) and about 10 

mm below the first isolation (four wood pieces) to make a total of eight wood pieces plated 

per wound. Plates were incubated at 25 °C for 4 weeks. Fungal colonies were sub-cultured 

when a fast growing fungus would overgrow other wood pieces in the same Petri dish. 

Fungal cultures were identified on colony and microscopic morphological characteristics. 

5.3.6.2. Experimental design and data analysis: The field trial was laid out as a 

randomised block design with four blocks of 63 vines each and three vines per treatment 

combination. Each pruning wound was an experimental unit and isolation was carried out 

from five wounds per vine. 

The incidence of fungi present in the pruning wounds was expressed as a 

percentage of the total number of pruning wounds per treatment combination. The incidence 

data were subjected to analysis of variance and the means were compared using Fischer‟s 

least significant difference value (LSD) at P = 0.05. Analysis was done using SAS version 

9.2 statistical software (SAS Institute Inc, Cary, North Carolina, USA). Pathogen reduction 

(Pr) was calculated as: Pr = 100 ((Pc - Pt) / Pc), in which Pc is the mean pathogen incidence 

in the water control and Pt is the mean pathogen incidence in the given treatment. 

5.4 Results 

5.4.1 Benzimidazole sensitivity of wild type Trichoderma strains 

The minimum inhibitory concentrations of the fungicides were tested so as to 

determine the concentration to use for screening resistant mutants. All the wild type 

Trichoderma isolates were found to be naturally resistant to thiophanate methyl. Both 
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mycelium and conidia could not be inhibited by thiophanate methyl even at the highest 

concentration tested (100 μg/mL). Thiophanate methyl was thus not used further for mutant 

screening. The other fungicides, benomyl and carbendazim, completely inhibited mycelium 

growth of all the wild type Trichoderma isolates at 2.5 μg/mL, while conidial germination 

could not completely be inhibited even at the highest concentration tested (50 μg/mL). 

Conidia plated on benomyl and carbendazim amended medium could germinate (produce 

germ tube size of conidia), but the fungicides prevented further germ tube growth (Figure 

1A). However, at concentrations above 10 μg/mL conidia germination was very low (< 20%).  

The concentration for mutant screening was therefore set at 10 μg/mL for benomyl and 

carbendazim. 

5.4.2 Sensitivity of wild type Trichoderma strains 

There was a strong negative correlation (R2 = 0.88-0.94; Appendix C, Figure 1) 

between gamma irradiation dosage and conidia survival in the wild type Trichoderma 

isolates. There were no significant differences (P > 0.05) in the D10 values between T. 

atroviride [UST1 (213 Gy) and UST2 (211 Gy)] and T. harzianum [T77 (216 Gy)]. A slightly 

higher dose than the D10, 250 Gy was used for mutagenesis. 

5.4.3 Benzimidazole resistant mutants and mutant fitness 

Only one resistant colony of Trichoderma developed on benomyl and carbendazim 

amended medium from the wild type isolates UST1 and T77, respectively. Two colonies 

developed, one on each of the benomyl and carbendazim amended medium from UST2. 

When sub-cultured on fungicide amended medium, colonies of one of the mutants from 

UST2 could not grow beyond 10 mm in diameter and was not tested further. Conidia of the 

three remaining mutants MT1 (from UST1), MT2 (from UST2) and MT77 (from T77) could 

germinate on amended medium without inhibition of germ tube extension (Figure 1B) even 

at the highest concentration tested (100 μg/mL). Mycelium of the mutants could also grow on 

the amended PDA, however, growth was slower than on fungicide free medium. Mutants 

isolated from benomyl amended medium were cross-resistant to carbendazim and vice 

versa. They also maintained their resistance to thiophanate methyl. Resistance was stable 

even after ten cycles of sub-culturing on benzimidazole free medium and after storage at 4 

°C for more than a year.  These mutants are now stored at the University of Stellenbosch 

culture collection under the accession numbers STE-U 7733, 7734 and 7735 for MT1, MT2 

and MT77, respectively. 

Growth of the mutants on fungicide free PDA at different temperatures was 

compared to that of the wild type isolates so as to assess the fitness of the mutants. All 

mutants, like the wild types grew at 5 to 30 °C with the highest growth rate at 25 °C. There 
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was no growth observed at 35 and 40 °C, but when mycelium previously incubated at 35 °C 

for 7 days was transferred to 25 °C, growth resumed while there was no growth from dishes 

previously incubated at 40 °C. Mutants MT1 and MT2 had similar growth patterns as the wild 

type isolates, UST1 and UST2 respectively, at all temperatures tested but MT2 produced 

conidia after 6-7 days which was 2-3 days later than UST2. The growth of the mutant MT77 

was much slower (~36-40% less) compared to the wild type T77 at all temperatures where 

the wild type could grow. No growth was observed for T77 at 35 and 40 °C. 

5.4.4 Mutants’ in vitro antagonism against grapevine trunk pathogens 

The micro- and macroscopic interactions observed between the mutant Trichoderma 

strains and the pathogens in dual cultures are summarised in Table 1. The T. atroviride 

mutants MT1 and MT2, showed antagonistic action towards the grapevine trunk pathogens 

tested. The mutants overgrew all the pathogens tested and produced conidia profusely 

above the overgrown fungus. On plates dual inoculated with E. lata, both the mutant and the 

pathogen would stop growing just before the point of hyphae interactions with a small 

inhibition zone between the different hyphae. Later Trichoderma mutants would grow over 

the pathogen. The mutant MT77 only overgrew Pa. chlamydospora while with the other 

fungi, it would stop to grow at the point of hyphal interaction. This was different from the wild 

type T77 which overgrew all pathogens in dual plates. Microscopically, antagonistic 

interactions between hyphae of the mutants and pathogens were readily observed with 

mutant MT1 compared to the other mutants. The hypha of MT1 was observed coiling around 

the pathogen hyphae on interaction with N. parvum (Figure 1C) and Pa. chlamydospora. 

Disintegration of pathogen hyphae was observed on interaction of both MT1 and MT2 with 

D. seriata (Figure 1D). The adhesion of mutants MT1 and MT2 hyphae to pathogen hyphae 

was also observed on all pathogens. No microscopic interactions were observed with MT77. 

5.4.5 In vivo evaluation of grapevine wound protection 

5.4.5.1. Incidence of T. atroviride: Trichoderma atroviride was not isolated from 

pruning wounds that received the water and fungicide only (carbendazim and thiophanate 

methyl) treatments. The fungicide only treatments were thus excluded from the analysis on 

the incidence of T. atroviride from the pruning wounds. Mutant strain MT1 was able to 

colonise pruning wounds in the presence and absence of the fungicide carbendazim. 

Analysis of variance did not find significant treatment × inoculation time interactions (P = 

0.416; Appendix C, Table 1) nor inoculation time differences (P = 0.124; Appendix C, Table 

1), but significant treatment differences (P < 0.001; Appendix C, Table 1) on the incidence of 

T. atroviride in the pruning wounds. The mutant and carbendazim combination treatment 

(MT1+Carbendazim) had the highest T. atroviride incidence (59.03%) which was not 
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significantly (P > 0.05) higher than that of the other combination treatments, 

UST1+Thiophanate methyl (54.16%) and treatment MT1 (53.17%). All these treatments had 

significantly higher (P < 0.05) incidence of T. atroviride than treatment UST1 (36.86%). 

5.4.5.2. Incidence of Pa. chlamydospora: Significant treatment × inoculation day 

interactions (P < 0.001; Appendix C, Table 2) were found on the incidence of Pa. 

chlamydospora in the pathogen inoculated pruning wounds. The mean incidence of Pa. 

chlamydospora in the pruning wounds are shown in table 2. The pathogen was able to infect 

the grapevine pruning wounds at both inoculation times (one and seven days after pruning). 

Pruning wound treatments reduced infection by the pathogen and the reduction in infection 

was higher when the pathogen was inoculated seven days after pruning. The combination 

treatment MT1+Cabendazim resulted in significantly (P < 0.05) lower Pa. chlamydospora 

incidence of all the other treatments when the pathogen was inoculated a day after pruning, 

reducing wound infection by 70%. When the pathogen was inoculated after seven days, all 

the treatments did not significantly (P > 0.05) differ in the pathogen incidence and reduced 

the infection by 74% to 91% (Table 2). 

5.4.5.3. Pathogen incidence under natural inoculum: The incidence of grapevine 

trunk pathogens in the non-inoculated wounds is also shown in table 2. The major trunk 

pathogens isolated were species of the families Botryospheariaceae (Neofusicoccum and 

Diplodia spp.), Diatrypaceae and Phomopsis spp. The Petri disease pathogen Pa. 

chlamydospora and Phaeoacremonium spp. were isolated at a maximum of 6.25% in the 

water control treatment. Although the Trichoderma-fungicide combination treatments had the 

lowest pathogen incidences (93% pathogen reduction), this was not significantly (P > 0.05) 

different from the rest of the treatments except the water control (Table 2). 

5.5 Discussion  

Gamma irradiation of biocontrol T. atroviride and T. harzianum isolates generated 

stable benzimidazole resistant mutant strains. The mutants from the T. atroviride isolates 

were of similar fitness as the wild type isolates while the mutant MT77 was of reduced 

fitness compared to the wild type T. harzianum T77. The mutant MT1 was tested in the field 

and was able to colonise and protect pruning wounds from infection alone and in 

combination with carbendazim.  

To develop fungicide mutant Trichoderma strains by gamma irradiation, the 

sensitivity of the wild type isolates to radiation had to be determined. The sensitivity of the 

wild type isolates as estimated by the D10 values (211-216 Gy) is slightly lower than reported 

for mycotoxin producing species of Alternaria and Aspergillus (>240 Gy; Braghini et al., 

2009; Blank & Corrigan, 1995). While there are several studies on the irradiation of 
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Trichoderma spp., none of these has looked at their sensitivity to gamma irradiation or 

determined their D10 values. 

The sensitivity of the wild type isolates to the thiophanate methyl differed from their 

sensitivity to benomyl and carbendazim. All the wild type isolates were resistant to 

thiophanate methyl while susceptible to benomyl and carbendazim. Mutants isolated from 

benomyl amended media were cross resistant to carbendazim and vice versa and also 

maintained their resistance towards thiophanate methyl. Although the chemical structures of 

benomyl and thiophanate methyl are not similar, they are both metabolised to a common 

active compound, methyl 2-benzimidazole carbamate (carbendazim), and hence cross-

resistance between the fungicides is expected. Keinath & Zitter (1998) found isolates of 

Didymella bryoniae that were resistant to thiophanate methyl, but susceptible to benomyl, 

though all isolates resistant to benomyl were also resistant to thiophanate methyl. It appears 

that resistance to thiophanate methyl does not necessarily result in cross resistance to 

benomyl, while alleles conferring resistance to benomyl also confer resistance to 

thiophanate methyl. The anti-fungal effects of benzimidazoles come from their binding to β-

tubulin, the main protein in microtubules, which leads to inhibition of the microtubule 

assembly (Leroux et al., 2000). Benzimidazole resistance results from changes in the 

binding sites on the β-tubulin protein. Studies on a wide variety of fungi have identified 

several mutations in the β-tubulin gene that confer resistance to benzimidazoles (Faretra & 

Pollastro, 1991; Yan & Dickman, 1996; Leroux et al., 2000). These mutations have not been 

linked to specific benzimidazole fungicides, but it is clear from the current and the Keinath & 

Zitter (1998) study that there are some factors (natural or due to mutation) that confer 

resistance to thiophanate methyl only and not the other benzimidazoles. 

Most benzimidazole resistant fungi have been generated by ultraviolet light 

mutagenesis (Lewis & Papavizas, 1991; Hatvani et al., 2006; Paparu et al., 2009) while 

resistance has also been generated by genetic engineering. Ossanna & Mischke (1990) 

generated benomyl resistant Gliocladium virens by transformation with a resistant 

Neurospora crassa β-tubulin gene. Compared to the current study, ultraviolet light and 

transformations generated more resistant strains for each mutagenesis attempt than gamma 

irradiation. However, the number of mutants generated by physical mutagenesis (ultra violet 

light and gamma radiation) could be a function of the radiation dosage since radiation is also 

detrimental to the survival of conidia. The mutants generated in the current study retained 

their resistance after sub-culturing for ten cycles and after storage at 4 °C for more than a 

year. Some benomyl resistant F. oxysporum isolates generated by ultraviolet light 

mutagenesis lost their resistance after storage on 4 °C (Paparu et al., 2009).  
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The mutants MT1 and MT2 showed similar in vitro antagonism to grapevine trunk 

pathogens as the wild type isolates from which they were generated. Similar antagonistic 

reactions were also reported for the wild type isolates by Kotze et al. (2011). The in vivo 

wound protection effect of MT1 alone and in combination with carbendazim was further 

shown in the field trial. Mutant MT77 had reduced fitness and showed no antagonistic effect 

in vitro against most trunk pathogens compared to the wild type, a result of detrimental 

mutations by random mutagenesis. However, this is also an indication of the potential of 

gamma radiation to create novel phenotypes in fungi which can be used in functional 

genomics studies especially when such mutants can be selected for easily. For example, it 

can be speculated that if MT77 loss of fungal antagonism compromises its biocontrol action, 

then a full phenotypic and genetic characterisation of the isolate may reveal the exact mode 

of action of the wild type T. harzianum T77 and the genes responsible for its wound 

protective effect. 

The protection of grapevine pruning wounds is currently the best way to prevent the 

infection of trunk pathogens and there are no post-infection eradication methods for 

diseased vines without the loss of production. Since wounds remain susceptible to infection 

for a longer period, and wound protection by fungicides does not persist until the wound is 

no longer susceptible, some researchers have therefore suggested multiple fungicide 

applications (Munkvold & Marois, 1993a). Biological control agents such as F. lateritium and 

Trichoderma spp. grow on the wound and provide long term protection but lack the instant 

protective effect. Carter & Price (1975) took advantage of the natural tolerance of F. 

lateritium to benomyl and applied the combination of F. lateritium and a reduced 

concentration of benomyl for pruning wound protection against E. lata. The combination 

treatment was more effective than the biocontrol agent alone, but not significantly better than 

benomyl at high concentrations. In the current study, all the treatments reduced wound 

infection and there was no clear distinction of the superiority of the fungicides only 

treatments over the biocontrol agents when Pa. chlamydospora was inoculated a day after 

pruning. This highlights the difficulty of pruning wound protection with either chemical or 

biocontrol agents. Interestingly, the combination of MT1 and carbendazim gave the best 

control when wounds were inoculated a day after pruning and reduced infection by 70%. 

Wound protection by all treatments was better when Pa. chlamydospora was inoculated 

seven days after pruning. Kotze et al. (2011) reported 64% and 77% reduction in Pa. 

chlamydospora infection by benomyl and UST1, respectively, when the pathogen was 

inoculated seven days after pruning. In the current study, better control was achieved with 

the combination treatments which gave at least 85% reduction in Pa. chlamydospora 

infection when the pathogen was inoculated seven days after pruning. Efficacy of the 
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treatments when the pathogen was inoculated seven days after pruning is increased by the 

reduced susceptibility as the wounds heal (Munkvold & Marois 1993b; Van Niekerk et al., 

2011).  

Pathogen inoculum pressure had an influence on wound protection in the field. The 

infection levels of Pa. chlamydospora at both inoculation times (90% and 71% in the 

inoculated controls) was relatively higher than previously reported. Inoculation of spur 

pruning wounds with Pa. chlamydospora resulted in a maximum of 51% infection in Italy 

(Serra et al., 2008), 58% in California (Rolshausen et al., 2010), 35% (Kotze et al., 2011) 

and 25% (Van Niekerk et al., 2011) in South Africa. Rolshausen et al. (2010) reported a 52% 

reduction in Pa. chlamydospora infection when pruning wounds were treated with 

thiophanate methyl (Topsin M). It would be expected that under conditions of less inoculum, 

as was found in the un-inoculated wounds in the in vivo evaluation, wound protection should 

be very effective. The pathogen control found in the un-inoculated wounds is a closer 

representation of the efficacy of the wound treatments under natural conditions. Wounds that 

received a combination of the fungicides and biocontrol agent had the lowest incidence of 

natural infections (although not significantly lower than the rest of the treatments) 

highlighting the potential for the integration of chemical and biological wound protection. 

In most grapevine producing areas, benomyl and carbendazim have been removed 

from the market (Halleen et al., 2010; Gramaje et al., 2012) while thiophanate methyl 

remains available and has been shown to be effective in wound protection (Rolshausen et 

al., 2010; Díaz & Latorre, 2013). The combination of the wild type isolates with thiophanate 

methyl could easily be recommended for pruning wound protection in South Africa, however, 

thiophanate methyl is not registered for grapevines in South Africa. Carbendazim and 

benomyl are registered for the control of Botrytis rot, but not for pruning wound protection of 

grapevines. It is much faster and more inexpensive for manufacturers to get authorisation to 

extend use of these fungicides for pruning wound protection than register new fungicides on 

a crop. These fungicides could then be applied in combination with the resistant mutants for 

effective and sustainable wound protection. Benzimidazole fungicides have a single mode of 

action and thus are at high risk for resistance development in the pathogens (FRAC code 1: 

www.frac.info). Applying the fungicides in combination with the biocontrol agent would 

reduce the risk of resistance development as the biocontrol agent will provide an alternative 

control mechanism to fungicide resistant pathogen strains. 

In conclusion, it was found that all the wild type Trichoderma isolates were naturally 

resistant to thiophanate methyl while strains resistant to carbendazim and benomyl were 

generated using gamma irradiation. While phenotypic characterisation of the mutant strains 

revealed that two of the strains were of similar biological fitness as their wild type isolates, 
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further molecular characterisation may reveal the basis of their resistance, if it differs 

between the mutants and from that reported in other fungi. The study further highlights a 

potential use of gamma radiation in plant pathology or mycology generating novel 

phenotypes that can be used in gene annotation studies. 
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Tables and Figures 

Table 1: Macro- and microscopic interactions observed between dual cultures of benomyl and carbendazim resistant Trichoderma mutant 

strains and grapevine trunk pathogens. 

Specie Strain Interactions between Trichoderma and pathogen hyphae 

Diplodia seriata Eutypa lata Neofusicoccum parvum Phaeomoniella 

chlamydospora 

Macro1 Micro2 Macro Micro Macro Micro Macro Micro 

T. atroviride USPP-T1 OG HA, HD OG HA, HC IZ, OG HA, HC OG HA, HC 

MT1 OG HA, HD OG HA, HC IZ, OG HA, HC OG HA, HC 

T. atroviride USPP-T2 OG HA, HD OG HA IZ, OG HA OG HA 

MT2 OG HA, HD OG HA IZ, OG HA OG HA 

T. harzianum T77 OG HD OG HA, HD IZ,OG HA OG N 

MT77 N N N N N N OG N 

1Macroscopic interactions: OV – overgrowth of the pathogen by the mutant Trichoderma strain; IZ – inhibition zone between the mycelium of 

the biocontrol agent and pathogen before hyphal interaction. 

2Microscopic interactions: HA – adhesion of biocontrol agent hyphae to pathogen hyphae; HC – coiling of biocontrol agent hyphae around the 

pathogen hyphae; HD – disintegration of pathogen hyphae when the biocontrol agent hyphae is adhering to the pathogen hyphae; N – No 

interactions observed. 
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Table 2: The incidence (mean percentage) of Phaeomoniella chlamydospora in inoculated 

wounds and grapevine trunk pathogens in pathogen un-inoculated wounds of Cabernet 

Sauvignon pruning wounds treated with wild type (UST1) and mutant (MT1) Trichoderma 

atroviride suspensions and fungicides and their combination.  

Treatment Pa. chlamydospora incidence (and 

percentage control) in inoculated 

wounds1 

Pathogen incidence 

in un-inoculated 

wounds1,2 

1 day 7 days 

Carbendazim 52.09C 

(42)3 

16.67DE 

(76) 

12.50B 

(79) 

Thiophanate methyl 41.67C 

(53) 

16.67DE 

(76) 

6.25B 

(89) 

UST1 43.75C 

(51) 

18.75DE 

(74) 

10.42B 

(82) 

MT1 43.75C 

(51) 

10.42E 

(85) 

14.58B 

(75) 

UST1+Thiophanate 

methyl 

45.83C 

(49) 

6.25E 

(91) 

4.17B 

(93) 

MT1+Carbendazim 27.08D 

(70) 

10.42E 

(85) 

4.17B 

(93) 

Control 89.59A 70.84B 58.33A 

LSD 13.76 15.60 

1Mean values followed by the same letter are not significantly different according to Fischer‟s 

least significant difference (LSD) test at P = 0.05 

2The percentage wounds infected by at least one grapevine trunk pathogens in wounds that 

were not inoculated with the pathogen but received wound treatment 

3Percenatge pathogen reduction, calculated from the difference between the pathogen 

incidence in the control and the treatment as percentage of the incidence in the control. 
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Figure 1: Effect of benomly (10 μg/mL) on conidia germination and germ tube extension of 

wild type (A) and resistant (B) Trichoderma atroviride UST1 and mutant MT1, respectively. 

Antagonistic action of mutant MT1 on Neofusicoccum parvum, coiling around pathogen 

hyphae (C) and Diplodia seriata disintegration of pathogen hyphae (D), both characteristics 

of mycoparasitism. The resistant mutant was generated by gamma irradiation of the wild 

type conidia. 
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Chapter 6 
Response of Vitis vinifera cell cultures to Eutypa lata and 

Trichoderma atroviride culture filtrates: Expression of defence 

related genes and phenotypes. 

6.1 Abstract 

Cell suspension cultures of Vitis vinifera cv. Dauphine were used in a comparative 

study of the early response of grapevine to the vascular pathogen, Eutypa lata, and the 

biological control agent Trichoderma atroviride, which was used in pruning wound protection. 

The expression of genes coding for enzymes of the phenylpropanoid pathway and 

pathogenesis related (PR) proteins was profiled over a 48-hour period using quantitative 

reverse transcriptase PCR. The cell cultures responded to elicitors of both fungi with a 

hypersensitive-like response that lead to a decrease in cell viability. Similar genes were 

triggered by both the pathogen and biocontrol agent but the patterns and magnitude of 

expression was dependent on the specific fungal elicitor. Culture filtrates of both fungi 

caused up-regulation of phenylalanine ammonia-lyase (PAL), 4 coumaroyl Co-A ligase 

(CCo-A) and stilbene synthase (STS), and a down regulation of chalcone synthase (CHS) 

genes. The pathogen filtrate caused a biphasic pattern in the up-regulation of PAL and STS 

genes which was not observed in cells treated with filtrates of the biocontrol agent. 

Phenotypic assays showed significantly higher total phenolic content and chitinolytic enzyme 

activity in the cell cultures treated with the T. atroviride filtrate than the pathogen filtrate 

which corresponded to the higher expression of PAL and chitinase class IV genes. The 

response of the cell cultures to T. atroviride filtrate putatively signifies that the induction of 

grapevine resistance contributes to wound protection by the biocontrol agent.  

6.2 Introduction 

Eutypa dieback, also called eutyposis, is caused by Eutypa (E.) lata and is an 

important grapevine trunk disease reported from all major grapevine growing regions 

worldwide (Pascoe & Cottral, 2000; Rolshausen & Gubler, 2005; Halleen et al., 2010). 

Eutypa dieback is characterised by stunted new growth, usually with cupped leaves and 

marginal necrosis, withered inflorescences, wedge shaped wood necrosis, dead arms/trunks 

and, if infected parts are not removed, the whole vine eventually dies (Munkvold et al., 1994; 

Gubler et al., 2005). Infection usually occurs through pruning wounds where the fungus 

colonises exposed xylem vessels and cause necrosis by producing cell wall degrading 

enzymes (Schmidt et al., 1999; Rolshausen et al., 2008) and toxins (Molyneux et al., 2002; 

Andolfi et al., 2011). Economic losses due to the disease are primarily a result of reduced 
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grape yields, increased vineyard management costs and reduced vineyard life (Munkvold et 

al., 1994). 

There are no eradicants to cure Eutypa dieback infected vines except to remove the 

infected parts and retrain shoots from uninfected trunks, also known as remedial surgery 

(Sosnowski et al., 2011). Management of Eutypa dieback is primarily dependent on 

preventing wound infection using cultural, chemical and biological methods. Cultural 

methods are aimed at avoiding periods when wounds would be highly susceptible while 

chemical and biological methods are aimed at protecting wounds through their anti-fungal 

effects. There are limited effective fungicides available in most countries due to the banning 

and withdrawal of fungicides detrimental to the environmental and toxic to human health 

(Surico et al., 2008; Rolshausen et al., 2010). 

The protection of wounds by non-pathogenic saprophytic bacteria and fungi is well 

documented (Munkvold & Marois, 1995; John et al., 2005; Kotze et al., 2011). Several 

biocontrol agents have been registered and most of these use Trichoderma (T.) species as 

protective agents. The wound protective effect of these agents is believed to be due to the 

specific modes-of-interaction between the biocontrol agent and the pathogen, of which 

mycoparasitism (John et al., 2004) and competitive exclusion (Mutawila et al., 2011a) have 

been demonstrated in grapevine wood.  

Woody species have developed mechanisms to protect themselves against wood 

pathogens through their continued interaction with pathogens. They respond to wood 

infection by compartmentalisation of the infected area through the production of cell wall 

strengthening poly-phenolic and poly-aliphatic compounds in an attempt to impede further 

fungal ingress (Shigo, 1984). Grapevines respond by plugging the xylem vessels with gums 

and tyloses to stop further colonisation of the vessels (Amalfitano et al., 2000; Mutawila et 

al., 2011a), while chemical barriers in the form of phenolic antifungal phytoalexins 

accumulate in and around the infected areas (Schnee et al., 2008). Grapevine phenolic 

compounds are products of secondary metabolism and are synthesised by the 

phenylpropanoid pathway. These phenolic compounds can act directly in defence 

(phytoalexins) or make up polymers, such as lignin and suberin, which render the cell walls 

more resistant to pathogens and prevent water loss (Shigo, 1984). Production of stilbenes 

has been demonstrated in grapevine wood in response to infection by trunk pathogens 

(Amalfitano et al., 2000 & 2011) and these compounds have been shown to limit the growth 

of fungi and inhibit activity of their cell wall degrading enzymes (Coutos-Thévenot et al., 

2001; Del Río et al., 2004; Lygin et al., 2009; Srivastavaa et al., 2013).  
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Biosynthesis of the secondary metabolites involves the coordinated regulation of the 

phenylpropanoid pathway and its flavonoid (anthocyanin), stilbene (phytoalexins) and lignin 

branch pathways (Figure 1). The deamination of phenylalanine, an amino acid product of the 

Shikimate biosynthetic pathway, to cinnamic acid is the first committed step of the general 

phenylpropanoid pathway. This step, catalysed by phenylalanine ammonia-lyase (PAL), 

represents a switch from primary (Shikimate pathway) to secondary metabolism. The 

general phenylpropanoid pathway ends by branching to either the synthesis of flavonoids 

through chalcone synthase (CHS) or the synthesis of stilbenes by stilbene synthase (STS).  

Plants also respond to infection by synthesising numerous pathogenesis-related (PR) 

proteins which may act directly against the pathogen or its infection structures, or indirectly 

by inducing the production of elicitors that trigger defence mechanisms (Kitajima & Sato, 

1999; Van Loon & Van Strien, 1999; Van Loon et al., 2006; Fung et al., 2008; Gomès & 

Coutos-Thévenot, 2009). Several grapevine PR genes have been characterised and these 

include, signalling PR 1 (Wielgoss & Kortekamp, 2006), hydrolytic enzymes PR 2 (β-1,3 

glucanases), PR 3, PR 4 (chitinases) and chitinase class IV (CHIT IV), PR 5 (osmotin) 

(Jacobs et al., 1999), anti-microbial PR 6 (serine proteases inhibitor) and polygalacturonase 

inhibiting proteins (PGIP) (De Lorenzo & Ferrari, 2002). Expression of PR proteins is 

selective and depends on the infecting pathogen or the elicitor (Glazebrook, 2005). A state 

of enhanced defence capacity by mobilisation of cellular responses (phytoalexins and PR 

proteins) before or after pathogen attack can be induced by micro-organisms or products of 

the hydrolysis of plant cell polymers (Bishop & Ryan, 1987; Aziz et al., 2007; Hématy et al., 

2009; Seifert & Blaukopf, 2010). Induced response is regulated by signalling molecules such 

as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) which act as messengers 

resulting in the expression of different downstream signal-dependent defence pathways (de 

Wit, 2007). Studies in Arabidopsis thaliana have revealed that SA mediates systemic 

acquired resistance (SAR) and resistance to biotrophic pathogens. On the contrary, JA and 

ET mediate induced systemic resistance (ISR) and resistance to necrotrophic pathogens 

(Glazebrook, 2005).  

There are currently only a few studies on the response of grapevines to E. lata 

(Rotter et al., 2009; Camps et al., 2010). Most of what is known on grapevine response to 

fungal pathogens derives from studies on foliar and fruit pathogens while little is known 

about response to wood pathogens. The lack of information on grapevine-trunk pathogen 

interactions derives from the difficulty of carrying out gene expression studies on potted or 

field vines. This is mainly due to the impracticality of isolating RNA from lignified vascular 

tissue and the difficulty of separating biotic from abiotic response. Even when RNA is 

isolated from the wood, there is high likelihood of dilution of transcripts from the site of 
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infection by those from healthy parts since infection is rarely uniformly spread. For these 

reasons, the available studies on grapevine-E. lata interactions have been carried out on 

grapevine plantlets (Rotter et al., 2009) and leaves expressing symptoms (Camps et al., 

2010) rather than wood. Moreover, these studies investigated the response during symptom 

expression (7 weeks after infection) and did not consider the early response of the grapevine 

to the pathogen. An understanding of these early defence responses would be critical for 

understanding disease progression and be useful in cultivar comparative studies aimed at 

the development of pathogen resistant or tolerant cultivars. Cell suspension cultures provide 

a useful and reproducible model system for the study of early grapevine response to 

infection, as demonstrated by Lima et al. (2012). These authors showed the usefulness of 

cell suspension cultures in evaluating the response of grapevine to Phaeomoniella (Pa.) 

chlamydospora, which is another grapevine trunk pathogen.  

In the current study grapevine cell cultures were used in a comparative study profiling 

their response to culture filtrates of E. lata and T. atroviride. Grapevine cell suspensions, 

derived from green (pea size) berries of Vitis (V.) vinifera cv. Dauphine, were used. These 

suspensions were previously characterised (Sharathchandra et al., 2011) and shown to 

constitutively produce low levels of defence related proteins. In this study the cell suspension 

cultures were treated with extracts from the two fungi in a time-course experiment of 

molecular gene expression (qRT-PCR) and metabolite profiling (enzyme activities and 

polyphenol content). The results obtained are discussed in context of grapevine pruning 

wound susceptibility to E. lata infection and putative involvement of Trichoderma-grapevine 

interactions in pruning wound protection by the biocontrol agent.  

6.3 Materials and Methods  

6.3.1 Grapevine cell suspension cultures  

Cell suspension cultures of V. vinifera cv. Dauphine were established from callus 

derived from pea size green berries as previously described by Sharathchandra et al. 

(2011). The suspension cultures were grown in 250 mL Erlenmeyer flasks containing 100 

mL of Calderon medium (Calderon et al., 1994). Calderon medium contained Murashige and 

Skoog basal medium (4.4 g/L) supplemented with sucrose (20 g/L), casein hydrolysate (250 

mg/L), kinetin (1 μM) and α-naphthalene acetic acid (0.5 μM) and the medium was adjusted 

to pH 5.8 before sterilisation by autoclaving. The cell cultures were maintained in the same 

medium and sub-cultured weekly by transferring 40 mL of suspension to 60 mL of fresh 

medium and agitated at 100 rpm at room temperature in darkness. The growth curve of the 

suspension culture was characterised by measuring the turbidity (OD600) of the suspension 

culture over a 14-day period to determine the growth curve and optimal time for elicitation.  
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6.3.2 Fungal isolates and elicitor preparation 

The grapevine trunk pathogen Eutypa lata, isolate STE-U 5692, was isolated from 

symptomatic V. vinifera wood. Trichoderma atroviride isolate STE-U 6514 was also isolated 

from grapevine wood and has a grapevine pruning-wound-protective effect against trunk 

pathogens (Kotze et al., 2011). Both fungi were maintained on solid potato dextrose agar 

(PDA) (Biolab) at room temperature. To obtain elicitors, five disks (5 mm) from the margins 

of actively growing colonies of E. lata and T. atroviride were separately inoculated into 250 

mL Erlenmeyer flasks containing 100 mL Calderon medium on a shaker (100 rpm) at room 

temperature for 5 and 10 days, respectively. The fungal mycelium was removed by vacuum 

filtration through Whatman No.1 filter paper (Whatman, Brentford, UK). The filtrate was then 

filter sterilised through a 0.22 µm pore filter to obtain a cell free, extracellular fungal filtrate 

that was used as the elicitor. The protein content of the fungal filtrate was estimated by the 

dye binding method of Bradford (Bio-Rad Protein Assay Kit, California, USA) using bovine 

serum albumin as the standard. The elicitor preparations were diluted to a protein 

concentration of 40 μg/mL using freshly prepared Calderon medium. Some of the filter 

sterilised elicitor preparations was further autoclaved at 121 °C and 15 psi pressure for 15 

minutes to obtain a heat inactivated cell free culture filtrate. Both the fresh and autoclaved 

filtrates were used as elicitors. The elicitors were either used immediately or stored at -20 °C 

for use within 24 hours.  

6.3.3 Elicitation of cell cultures  

A preliminary trial was carried out to determine the volume to use for elicitation. In the 

test cell suspension cultures were separately treated with, 2.5 mL (2.5% v/v), 5 mL (5% v/v) 

or 10 mL (10% v/v) of fungal filtrate. The viability of the cell suspension cultures was then 

monitored for 96 hours at 24-hour intervals.  

The 2.5% (v/v) elicitor concentration which resulted in the least mortality of the cell 

suspension cultures was subsequently used for further experiments. Cell suspension 

cultures were divided into five sets; four elicited groups treated with 2.5% (v/v) of fresh or 

autoclaved culture broth of E. lata or T. atroviride and one control group treated with 2.5% 

(v/v) fresh Calderon medium. Cell suspensions were elicited on the 6th day (in the 

logarithmic phase of growth) and the cells were harvested at 6, 12, 24 and 48 hours post-

elicitation. The cells were recovered by gentle vacuum filtration and immediately frozen in 

liquid nitrogen, and stored at -80 °C. The harvested cell biomass was used for RNA 

extraction and assayed for phenolic content and enzyme activity. There were three 

independent biological replicates for each elicitor per time point. From each biological 

replicate, two technical replicates were used for each test.  
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6.3.4 Determination of cell viability 

Cell viability was measured using the TTC (2, 3, 5-triphenyl tetrazolium) test 

(Steponkus & Lanphear, 1967). One gram (fresh weight) of cells, recovered by gentle 

vacuum filtration, were suspended in 2 mL of TTC (10 g/L, in phosphate buffer pH 5.8) and 

incubated overnight in the dark at room temperature. The suspensions were then centrifuged 

at 12 000 rpm for 10 minutes, the supernatant discarded after which formazan, the product 

of TTC reduction in viable cells, was extracted from the cells in 2 mL of absolute alcohol at 

70 °C for 30 minutes. Formazan concentration was then determined by reading absorbance 

at 485 nm and viability was measured as:  

   

6.3.5 RNA extraction and quality check 

Total RNA was extracted from 5 g (fresh weight) of the frozen biomass using a 

modified cetyltrimethylammoniunm bromide (CTAB) method of White et al. (2008). The 

frozen cells were transferred to pre-warmed CTAB extraction buffer (20 mL) in a 50-mL 

polypropylene tube and placed in a 60 °C water bath for 30 minutes with vortexing every 5 

minutes. The tubes were then centrifuged at 13 000 rpm for 10 minutes at 4 °C and the 

supernatant transferred to a new tube. An equal volume of chloroform-isoamylalcohol 

(Chl:Ia) (24:1 (v/v)) was added, and to the tube was vortexed and centrifuged at 13,000 rpm 

for 10 minutes at 4 °C. The supernatant was transferred to a new tube and re-extracted with 

an equal volume of Chl:Ia and centrifuged at 13 000 rpm for 10 minutes at 4 °C. The 

supernatant (1.5 mL) was then transferred to 2 mL microfuge tubes to which 7.5 M LiCl was 

added to each tube mixed and stored at 4 °C overnight. Tubes were centrifuged at 13 000 

rpm for 60 minutes at 4 °C and the supernatant discarded. The pellet was washed in 70% 

ethanol, air dried, dissolved in 30 μl nuclease free water and the RNA from the same 

samples pooled. 

The quantity and quality of RNA extracted was assessed spectrophotometrically 

using the NanoDrop 1000 (NanoDrop Technologies Inc, Wilmington, Delaware, USA) at 

wavelength 230, 260, and 280 nm. The RNA integrity was verified by evaluating the 28S and 

18S ribosomal bands after denaturing agarose (1%) gel electrophoresis.  

6.3.6 Synthesis of cDNA and gene expression analysis 

Total RNA (5 μg) was treated with DNase I (RQ1 RNase-Free DNase, Promega 

Corporation, Madison, USA) according to manufacturer‟s protocol before cDNA synthesis. 

First strand cDNA was synthesised using the GoScriptTM Reverse Transcription System 

(Promega Corporation, Madison, USA) employing oligo-dT primers according to supplier‟s 
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instructions. The quantity and quality of cDNA were determined spectrophotometrically using 

the NanoDrop 1000 at wavelength 230, 260 and 280 nm.  

Transcript levels of defence-related genes were determined by quantitative real time 

PCR. Genes involved in secondary metabolism (phenylpropanoid pathway) namely, 

phenylalanine ammonia-lyase (PAL), 4 coumaroyl Co-A ligase (4CL) and stilbene synthase 

(STS) and chalcone synthase (CHS), as well pathogenesis related proteins PR 1, 2, 3, 4, 5, 

6 and chitinase IV (CHIT IV) were assayed. Transcript relative gene expression was 

normalised using three reference genes Actin, 60SRP and VATP16, which were found to be 

stably expressed in treated and non-treated cells. All primer pairs were designed using 

Primer3 and primer BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) except for the 

primers for the genes 60SRP and VATP16 (Gamm et al., 2011). The GenBank accession 

numbers of the sequences on which primer design was based, the primer pairs, as well as 

the annealing temperatures are given in table 1. Amplification conditions for all primer pairs 

were optimised and validated for the Rotor-Gene 6000 (Corbett Research, Mortlake, New 

South Wales, Australia) thermal cycler for amplification efficiency of 95-100% and regression 

coefficient (r2) of 0.95-1.00 (Appendix B; Table 1). The KAPA™ SYBR® FAST qPCR kit; 

Master Mix (2X) Universal (Kapa Biosystems, Boston, Massachusetts, USA) was used for 

cDNA quantification according to the manufacturer‟s protocol. Thermal cycling conditions 

used were 95 °C hold for 3 minutes followed by 45 cycles of: 95 °C for 3 seconds, annealing 

temperature for 20 seconds and 72 °C for 10 seconds followed by melt cycle from 72 to 95 

°C with 1 °C increments. Melt curve analysis was used to confirm specificity of amplification 

and gel electrophoresis was performed on randomly selected PCR products of each primer 

pair. Transcript expression levels were determined and statistically analysed using Relative 

Expression Software Tool (REST®, developed by Pfaffl et al., 2002 and freely available from 

Qiagen at: www.qiagen.com/REST). The gene expression levels in the control samples of 

each time point were defined as the 1× expression. However, when down regulation (i.e. 

expression ratio < 1) was significant (P < 0.05) the equivalent negative fold change is 

presented.  

6.3.7 Determination of phenolic content of cell cultures 

Phenolics were assayed for the 24 and 48 hour time points using a modified Folin-

Ciocalteu (FC) reagent method of Shaver et al. (2011). Cell biomass harvested from elicited 

and control cell suspension cultures were lyophilised for 48 hours and the freeze dried cells 

stored at -20 °C until extraction of phenolic compounds. Total phenolics were extracted from 

freeze dried cell biomass (200 mg) with 5 mL of 70% ethanol in 50-mL polypropylene tubes. 

The cell biomass-solvent mixture was homogenised with an ultrasonic homogeniser for 1 

minute and left in the dark overnight after which the tubes were centrifuged at 13 000 rpm for 
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5 minutes and the supernatant further filtered through a 0.22 μm filter. One millilitre of the 

filtrate was transferred to new tubes to which 2 mL of the FC reagent was added followed by 

1.5 mL of sodium carbonate mixed and placed in a water bath at 60 °C for 10 minutes. The 

tubes were quenched in an ice bath and the absorbance read at 765 nm. A blank of 70% 

(v/v) ethanol was used as a control and gallic acid was used as phenolic standard. A gallic 

acid standard curve was constructed ranging from 0 to 200 μg/mL (r2 = 0.975). The assay 

was carried out on two technical replicates for each biological replicate used in the gene 

expression experiment. 

6.3.8 Preparation of enzyme extract 

Crude cell extracts were obtained for all cell culture treatments by homogenising 

frozen cell suspension biomass (5 g) in 10 mL of 0.1 M sodium-phosphate buffer (pH 6). The 

homogenate was centrifuged at 12 000 rpm at 4 °C for 20 minutes and the supernatant was 

used as enzyme extract, immediately or stored at -20 °C until assayed for activity (within 24 

hours). Total protein of the crude extract was determined using the Bradford method (Bio-

Rad Protein Assay Kit, Hercules, California, USA) using bovine serum albumin as the protein 

standard. For all protein and enzyme assays there were two technical replicates for each 

biological replicate.  

6.3.9 Determination of chitinolytic activity 

Chitinolytic activity was measured as a reduction in the turbidity of colloidal chitin 

(Harman et al., 1993). The assay mixtures containing 1-mL colloidal chitin (0.5%) in 

potassium acetate buffer (pH 6) and 1-mL crude enzyme extract were incubated for 24 hours 

at 25 °C in a shaker incubator (100 rpm). The suspension was then diluted by adding 2 mL 

of distilled water and the absorbance measured at 510 nm. Controls for each assay were run 

parallel with boiled enzyme extract. One unit (U) of chitinolytic activity was defined as the 

amount of enzyme which resulted in 5% reduction in turbidity of the colloidal chitin 

suspension relative to the control under the reaction conditions. Colloidal chitin was 

prepared by dissolving 20 g of crab-shell chitin (Sigma) in cold concentrated hydrochloric 

acid (350 mL) and placed at 4 °C for 24 hours with stirring. The mixture was filtered through 

wool into 2 L ethanol (95%) at -20 °C with stirring. The resulting chitin suspension was 

centrifuged at 10 000 rpm for 15 minutes at 4 °C. The colloidal chitin pellets were washed 

repeatedly with water until the supernatant pH was neutral. Colloidal chitin was autoclaved 

and kept at 4 °C until it was used. 
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6.3.10 β-1, 3-Glucanase assay  

β-1,3-glucanase was assayed colorimetrically by determining the amount of reducing 

sugar released from laminarin using the dinitrosalisylic acid (DNS) reagent method (Miller, 

1959). The assay mixtures containing 250 μl of laminarin (2.5 mg/mL) in potassium acetate 

buffer (pH 6) with 100 μl enzyme extract (50% extract diluted in assay buffer) were 

incubated for 2 hours at 40 °C. The reaction was stopped by adding 500 μl DNS reagent and 

boiling on a heat block at 100 °C for 5 minutes. After cooling, 2 mL of deionised water were 

added and the absorbance was measured at 575 nm. For each assay, controls were run in 

parallel with inactivated enzyme extract (boiled enzyme extract). The quantity of reducing 

sugar released was calculated from a glucose standard curve (ranging from 0 to 63 μM; r2 = 

0.99). One unit (U) of β-1, 3-glucanase activity was defined as the amount of protein which 

catalysed the release of 1 μM of reducing sugar per millilitre per minute under the reaction 

conditions. 

6.3.11 Statistical analysis 

For gene expression, result means from technical replicates of each biological 

replicate were combined and used for the calculation of relative gene expression and the 

statistical significance thereof using REST analysis. Data for total phenolic content and 

enzyme assays for the two independent experiments was also combined before performing 

one way analysis of variance (ANOVA). Significant differences among treatments were 

separated using Fisher‟s least significant differences (LSD) at 5% significance level (P < 

0.05). SAS version 8.2 statistical software (SAS institute Inc.) was used for analysis. 

6.4 Results 

6.4.1 Grapevine cell suspension cultures  

Cell suspension cultures were monitored over 13 days and proved to be stable and 

homogenous with weekly sub-culturing. The cultures had a sigmoidal growth curve with an 

exponential growth phase between the 3rd and 8th day and hence day 6 (exponential phase) 

was chosen for elicitation (Figure 2). Elicitation of cells resulted in browning of cell 

suspension cultures and reduction of cell viability in an elicitor concentration dependent 

manner (Figure 3). Cell suspension cultures browned within 24 hours when treated with 5% 

and 10% of the T. atroviride elicitor preparation, whereas the pathogen elicitor preparation 

caused browning by 48 hours post treatment. In both cases browning was darker in cultures 

that received 10% elicitor concentration where cell viability decreased by more than 50% 

after 48 hours (Figure 3). The 2.5% concentration was chosen for elicitation, as cells 
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remained viable (> 90%) for the whole duration of the experiment, however, slight browning 

was observed in the elicitor treated cultures 48 hours post elicitation.  

6.4.2 Expression of genes involved in response to pathogenesis 

Analysis of relative gene expression in the cell suspension cultures indicated 

differential expression patterns to the E. lata and T. atroviride elicitors. Defence related 

genes of both the phenylpropanoid pathway and the pathogenesis related proteins were 

overexpressed indicating that the Dauphine cell cultures were able to recognise the fungal 

elicitors. However, the time and levels of expression were dependent on the elicitor and 

whether it was fresh or autoclaved. The pattern of expression was similar for the elicitors 

regardless of whether it was fresh or autoclaved.  

Figures 4 and 5 show relative gene expression levels over time for the enzymes of 

the phenylpropanoid pathway in response E. lata and T. atroviride filtrates. For genes of the 

phenyl-propanoid pathway, PAL, 4CL and STS, their over-expression was observed earlier 

(at 6 hours) with the pathogen elicitors and later (12 hours) with the biocontrol agent elicitor. 

The levels of the PAL gene up-regulation were much higher in the T. atroviride elicitor (10 to 

117 folds in the fresh elicitor) than in the E. lata elicitor (2 to 5 folds in the fresh elicitor) 

(Figure 4). PAL was down-regulated (-3.03 and -2.70 folds for the fresh and autoclaved 

elicitors, respectively) at 24 hours post elicitation in the E. lata elicitor treated cells. Although 

there was a down-regulation of 4CL at 24 and 48 hours post elicitation with fresh filtrate, this 

was not significantly lower than the untreated controls (Figure 4). Two primer sets were used 

to trace the expression profile of stilbene synthase and they showed a similar pattern with 

minor differences in the pathogen elicited cell cultures (Figure 5). The expression of both 

STS genes in the pathogen elicited cells also showed a biphasic expression pattern, as was 

observed with the PAL time course expression. Expression of STS was higher at 6 and 12 

hours, declined at 24 hours (not significantly different from the non-elicited control, P > 0.05) 

and increased again at 48 hours. Two sets of primer pairs were used to trace CHS and both 

showed similar expression patterns for each specific elicitor. The upregulation of the STS 

gene expression was at the expense of the CHS gene expression, whose expression either 

remained the same as in the controls, or was down-regulated in the cells treated by the fresh 

filtrate of both the E. lata and T. atroviride. Slight up-regulation of chalcone synthase was 

observed in the cells treated with autoclaved elicitors at 6 hours for T. atroviride (CHS3) and 

at 48 hours for the E. lata elicitors (Figure 5).  

Figures 6 and 7 show the time-course expression levels of pathogenesis related 

proteins after elicitation by fungal filtrates of E. lata and T. atroviride. There were no 

significant changes in the expression of the PR 1 gene in the cells treated with the pathogen 
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elicitors. The culture filtrate from the biocontrol agent caused significant (P < 0.05) down-

regulation of the PR1 gene at all time-points except 24 hours (where expression did not 

differ significantly (P > 0.05) from the non-treated control) (Figure 6). The expression of the 

other pathogenesis related proteins also showed an earlier response to the E. lata elicitors 

and a later response to the T. atroviride elicitors. At peak expression, 12 and 24 hours post 

elicitation in E. lata and T. atroviride treated cells, respectively, the PR 2 (β-1, 3-glucanase) 

gene was at least three times more over-expressed in cells treated with the fresh pathogen 

elicitor compared to cells treated with the biocontrol elicitors. PR 5 (osmotin like protein) and 

PR 6 (protease inhibitor) gene expression peaked 12 hours post elicitation in cells treated 

with the pathogen elicitor with a slower response in cells treated with the biocontrol agent 

elicitors where expression peaked at 24 hours (Figure 6). However, at peak expression, PR 

6 was over-expressed more than three times in the cells treated with the autoclaved elicitor 

of the biocontrol agent as compared to cells treated with the pathogen elicitors.  

The chitinases (CHIT IV, PR 3 and PR 4) showed differential expression patterns 

(Figure 7). In cells treated with the elicitor from the biocontrol agent, peak expression of 

CHIT IV was at 12 hours while the peak for the other chitinase genes was at 24 hours post 

elicitation. A similar pattern was also observed with cells that received the pathogen elicitor 

where peak expression for CHIT IV and PR 4 chitinase gene was observed at 6 and 12 

hours, respectively. At peak expression of CHIT IV, in cells that received the fresh T. 

atroviride elicitor expression was approximately double that of cells treated with the fresh 

pathogen elicitor (Figure 7). Over-expression of the PR 3 gene was lower in the cells that 

received the pathogen elicitors as compared to those that were treated by T. atroviride. In 

the cells treated by E. lata, over-expression of PR 3 was only significant 48 hours post 

elicitation with the fresh elicitor and at 6 and 48 hours post elicitation with the autoclaved 

pathogen elicitor (Figure 7). The expression of PR 4 gene after elicitation was also similar to 

the other chitinases where the biocontrol agent elicitors triggered slightly higher expression 

level than the pathogen elicitors at peak expression.  

6.4.3 Total phenol content of cell cultures  

Treatment of cell cultures with cell free fungal broth elicitors resulted in a significant 

(P < 0.001; Appendix B, Table 2) increase in the content of phenolic compounds (Figure 8). 

For both fungal elicitors, the phenolic content was higher at 48 hours compared to 24 hours, 

obviously due to the accumulation of the compounds over time. There were no significant (P 

> 0.05) differences in the phenolic content of cell cultures treated with the fresh or 

autoclaved elicitors of the same fungi for each assay time (24 and 48 hours). The total 

phenolic content was significantly higher in cell cultures treated with elicitors from the 

biocontrol agent (T. atroviride) than the pathogen (E. lata) for both assay times. 
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6.4.4 β-1, 3-glucanase activity  

The β-1, 3-glucanase activity of the cell cultures at 24 and 48 hours after treatment 

with elicitors from the T. atroviride and E. lata are shown in figure 9. Elicitation resulted in 

significant (P < 0.001; Appendix B, Table 2) increase in the β-1, 3-glucanase activity and 

these were higher 24 hours after treatment than at 48 hours. The fresh elicitor of E. lata 

resulted in the highest activity at both assay times (24 and 48 hours) which were significantly 

(P < 0.05) higher than the rest of the treatments. There were no significant differences in the 

β-1, 3-glucanase activity of cells treated with the fresh and autoclaved elicitors of the 

biocontrol agent (T. atroviride) for both assay times.  

6.4.5 Chitinolytic activity  

The chitinolytic activity of cell cultures harvested at 24 and 48 hours after treatment 

with fungal elicitors are shown in figure 10. The untreated cells exhibited some chitinolytic 

activity indicating constitutive activity, but elicitation resulted in a significant (P = 0.0014; 

Appendix B, Table 2) increase in chitinolytic activity. Activity was highest at 24 hours post 

elicitation. At 24 hours, the cells treated with fresh elicitor of T. atroviride had the highest 

activity (18.81 U) which was significantly higher (P < 0.05) than the rest of the elicited 

treatments. Chitinolytic activities of the other elicited treatments were significantly higher 

than the control treatments but not significantly different from each other. At 48 hours the 

chitinolytic activity was low and only the fresh broth treatments had significantly higher 

activity than the non-treated controls. 

6.5 Discussion 

Treatment of the cell cultures with the fungal culture filtrates induced changes in the 

gene expression of grapevine cell cultures typical of response to fungal infection. Elicitors in 

the fungal filtrates may include remnants of fungal cell walls and proteins secreted by the 

fungi into the medium. These elicitors were heat stable since autoclaved fungal filtrates 

retained their plant cell eliciting activity even though the levels of expression in some cases 

differed from those triggered by the fresh filtrates. Cellulases and proteinases from some 

biocontrol strains of T. virens have been shown to elicit hypersensitive responses in cell 

cultures (Calderón et al., 1993; Hanson & Howell, 2004). Eutypa lata secretes plant cell wall 

degrading enzymes (Rolshausen et al., 2008) which would also trigger plant responses. The 

current study adds to the growing knowledge of molecular interactions between grapevine 

and pathogenic and non-pathogenic fungi. Previous studies reporting on the response of 

grapevines to E. lata used diseased or infected grapevine plants in the vineyard and 

glasshouse (Camps et al., 2010), infected grapevine plantlets (Rotter et al., 2009) and cell 

cultures elicited with phytotoxic secondary metabolites of the fungi (Afifi et al., 2003). 
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The berry suspension cultures used in the current study were derived from the pea 

size hard and green pre-véraison berries. Proteomic analysis of these cells showed low 

expression levels of PR proteins (Sharathchandra et al., 2011), making them ideal for 

elicitation studies. Gene and phenotypic expression by the cell cultures was dependent on 

the elicitor, further confirming the suitability of the cell cultures.  

Fungal cultural filtrates have been successfully used for in vitro screening of cultivar 

susceptibility to fungal pathogens (Thakur et al., 2002; Esmaiel et al., 2012). In the current 

study, grapevine cell cultures treated with the fungal filtrates exhibited a hypersensitive-like 

response. This was more pronounced in the cells treated with the biocontrol agent elicitors 

as shown by the decline in cell viability. This was accompanied by changes in gene 

expression of defence related genes of the phenylpropanoid pathway as well as PR proteins. 

The synthesis of phenyl-propanoids in plants is considered an adaptive mechanism for 

defence against any kind of stress as their synthesis is elicited by both biotic and abiotic 

stimuli (Langcake, 1981). Grapevine phytoalexins belong to the stilbene family and are 

derivatives of resveratrol, a polyphenolic compound synthesised via the phenypropanoid 

pathway. The first reaction to the pathway is catalysed by phenylalanine ammonia-lyase 

(PAL) and the last step to resveratrol synthesis is catalysed by stilbene synthase (STS). A 

previous study on the response of grapevine plantlets to E. lata reported an up-regulation of 

PAL and other genes coding for enzymes of the flavonoid pathway but did not evaluate the 

expression of STS genes (Rotter et al., 2009). In the current study, the cell cultures 

responded to the culture filtrates by the up-regulation of both PAL and STS genes. There 

was a bi-phasic pattern in the up-regulation of PAL and STS transcripts in the cell cultures 

treated with the pathogen elicitor indicating a coordinated expression of genes of the 

phenylpropanoid pathway. A bi-phasic pattern in the expression of PAL and STS was also 

reported in grapevine cell cultures in response to cell wall extracts of another grapevine 

trunk pathogen, Pa. chlamydospora (Lima et al., 2012). However, the bi-phasic response 

could be due to activity of two or more elicitors, all present simultaneously, since in both the 

current and the Lima et al. (2012) studies, crude extracts (culture filtrate and fungal biomass, 

respectively) were used for the elicitation of cell cultures. A characterisation of the fungal 

extracts could clarify if this is due to a single or multiple elicitors. 

In the current study, up-regulation of the PAL gene was much higher in the cells 

treated with the T. atroviride elicitors compared to those treated with E. lata elicitors. It would 

be expected that when triggered, genes for all the enzymes involved in a specific pathway 

are up-regulated to similar levels for significant increase in metabolic products of that 

pathway (in this case stilbenes). It is therefore, not unexpected that the cells treated with 

elicitors from the biocontrol agent had significantly higher total phenolic compounds than the 
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cells treated with the pathogen filtrates (Figure 8). The cell cultures used in the current study 

are from a white grapevine cultivar, Dauphine, which lack anthocyanins (Boss et al., 1996) 

and hence the increase in phenolic content of the cells is only likely to be due to the 

accumulation of stilbenic compounds. However, the STS gene expression results without the 

phenotypic characterisation should be interpreted with caution stemming from the recent 

annotation of STS genes in the V. vinifera cv. Pinot noir genome that has revealed an 

unusually large STS gene family (Vannozzi et al., 2012). 

The efficacy of the increase in phenolic compounds in stopping E. lata infection in 

grapevine wood tissue is equivocal. Coutos-Thévenot et al. (2001) have shown that 

resveratrol limits the growth of E. lata in vitro while Del Río et al. (2004) showed that 

phenolic compounds inhibited activity of its cell wall degrading enzymes suggesting that 

phenolic compounds play a role in limiting wood colonisation in vivo. The accumulation of 

phenolic compounds in response to either E. lata or Trichoderma species has not been 

shown in grapevine wood despite extensive knowledge of the wound protective effect of 

pruning wound saprophytes, some of which have no direct antagonistic effect on the 

pathogens (Munkvold & Marois, 1995; Chapuis et al., 1998). However, the accumulation of 

phenolic compounds has been demonstrated in grapevine response to Pa. chlamydospora 

(Amalfitano et al., 2000). This response to Pa. chlamydospora was shown to be insufficient 

to stop the pathogen growing in the wood tissue as the pathogen was observed actively 

growing in xylem vessels clogged with phenolic deposits (Mutawila et al., 2011a). 

Comparative studies of the response of cell lines of susceptible V. vinifera and generally 

resistant V. rupestris to a bacterial effector, Harpin elicitor, also alluded to similar 

conclusions. Both Vitis species responded with an increased STS transcription, but levels 

were lower in susceptible V. vinifera compared to V. rupestris and resveratrol accumulation 

in the cells followed a similar pattern as the transcription (Qiao et al., 2010; Chang et al., 

2011). It could be concluded from the current study that grapevines exhibit a basal response 

to E. lata, an indication of plant recognition of the pathogen but the response may not be 

sufficient to stop infection. Induction of the accumulation of phenolic compounds by a 

biocontrol agent could aid wound protection from pathogen infection. The synthesis of 

stilbenes is induced through the induced systemic resistance pathway involving signalling 

molecules jasmonic acid and ethylene (Belhadj et al., 2008; Lijavetzky et al., 2008). 

Recently, Lima et al. (2012) have shown that grapevine cell cultures respond to methyl 

jasmonate (methyl ester of jasmonic acid) in a similar pattern as they respond to Pa. 

chlamydospora. The application of T. harzianum to pruning wounds of kiwi fruit (Actinidia 

deliciosa) has been demonstrated to increase the content of wood phenolic compounds 
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which aids wound protection against wood pathogens Phaeacremonium aleophilum and 

Fomitiporia mediterranea (Neri et al., 2008).  

There are no known Eutypa-dieback resistant cultivars, but the cultivar Merlot is 

considered more tolerant to the disease. Tolerance in Merlot has largely been attributed to 

its ability to break down phytotoxins, secreted by the fungi (Colrat et al., 1999), as well as a 

relatively higher wood lignin content compared to susceptible cultivars (Rolshausen et al., 

2008). In addition to antifungal effects, grapevine stilbenes could also be involved in cell wall 

strengthening. Adrian et al. (2012) observed the accumulation of resveratrol on to cell walls 

from culture medium after treatment of grapevine cell suspension cultures with resveratrol. In 

the same study, absorption of resveratrol by leaf petioles resulted in its localisation in cell 

walls of non-lignified (parenchyma and collenchyma) and lignified (xylem and sclerenchyma) 

tissue. Localised cell wall thickening and increased fluorescence of the thickened walls, 

which is likely due to stilbene accumulation, was also observed in mature grapevine wood 

infected with E. lata (Mutawila et al., 2011a). 

The up-regulation of STS transcripts was at the expense of the flavonoid pathway 

which branches from the phenylpropanoid pathway. Chalcone synthase (CHS) catalyses the 

first committed step in the synthesis of flavonoids using/competing for the same substrates, 

coumaroyl CoA and malonyl CoA, as STS. A switch from flavonoid synthesis to stilbene 

synthesis signifies a shift to defence metabolism. Similar results were also obtained with 

grapevine cell culture elicited by the bacterial effector Harpin (Qiao et al., 2010) and in 

grapevine leaves elicited by Plasmopara (Pl.) viticola (causal organism of downy mildew) 

(Vannozzi et al., 2012). However, this is in contrast to the results obtained from grapevine 

plantlets infected with E. lata, where an overexpression of genes of the flavonoid pathway 

(chalcone synthase, chalcone isomerase, dihydroflavonol 4-reductase and anthocyanidin 

reductase) was reported (Rotter et al., 2009). This discrepancy can be explained by the use 

of transcripts from the whole plantlet (leaves and stems), in the Rotter et al. (2009) study, 

rather than the infected parts where response is likely to be localised. In cell suspension 

cultures, all cells are in contact with the elicitor and are likely to respond similarly. 

Furthermore, in the Rotter et al. (2009) study, the plantlets were harvested seven weeks 

after infection and hence the response observed may not represent the early events in the 

interaction of the pathogen and the plant. In another study, treatment of grapevine cell 

suspension cultures with E. lata phytotoxin, eutypine, had no effect on the expression of both 

CHS and leucoanthocyanidin dioxygenase (LDOX) but UDP glucose-flavonoid 

glucosyltransferase (UFGT) (Afifi et al., 2003). This may show that grapevine cells respond 

differently to the pathogen proteins/enzymes compared to the toxin. The suppression of the 

flavonoid pathway following exposure to fungal pathogens has also been shown in other 
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plant species namely parsley (Lozoya et al., 1991), onion (Mclusky et al., 1999) and 

sorghum (Lo & Nicholson, 1998). It is important to note however, that STS genes are known 

to occur as a family of closely related highly conserved genes and it is difficult to clearly 

discriminate between individual members (Vannozzi et al., 2012) and in the current study, 

only two STS genes were tracked. Unlike STS which belongs to a large gene family, CHS is 

coded by three genes in the grapevine (Vannozzi et al., 2012). It can therefore be concluded 

from the current study, that flavonoid synthesis is repressed in the early response of 

grapevines experiencing biotic stress. 

The cell cultures also responded to the fungal filtrates by activating some of the 

genes coding for pathogenesis related proteins. Significant down-regulation of PR 1 was 

observed in cells treated with elicitors from the biocontrol agent (at 6, 12 and 48 hours) while 

there were no significant changes in the cells treated with the pathogen elicitor. This is 

contrary to the study of Camps et al. (2010) where PR 1 overexpression was found in leaves 

of diseased grapevines. Wielgoss & Kortekamp (2006) found that PR 1 was constitutively 

expressed in grapevine callus and there was no further induction after treatment with 

elicitors from the biotrophic pathogen Pl. viticola. Constitutive expression in callus cells was 

attributed to induction by sugars in the culture medium.  However, PR 1 was induced in 

leaves of grapevine plants inoculated with Pl. viticola (Wielgoss & Kortekamp, 2006). The 

down regulation of PR 1, in the current study, could hint to an alternative pathway to 

grapevine response to a pathogen/non-pathogen compared to that of the biotrophic 

pathogen Pl. viticola. However, this cannot be concluded from this study as there were no 

significant changes in PR 1 expression in response to the necrotroph E. lata.  

A coordinated expression of PR 2 and PR 5 was observed. These genes exhibited a 

single peak at similar time for each specific elicitor, 12 and 24 hours post treatment for the 

pathogen and biocontrol elicitors, respectively. A coordinated over expression of PR 2 and 

PR 5 has also been observed in Arabidopsis thaliana inoculated by the necrotrophic bacteria 

Erwinia carotovora sbsp. carotovora (Li et al., 2004). PR 1, together with PR 2 and PR 5 are 

considered markers for systemic acquired resistance (SAR). In most herbaceous species the 

activation of these genes is classically believed to be regulated by the signalling molecule 

salicylic acid (Van Loon & Van Strien, 1999; Van Loon et al., 2006a; Loake & Grant, 2007). 

Transcription factors of the WRKY family have been shown to be responsible for the 

regulation of expression of PR 2 and PR 5 in grapevine (Marchive et al., 2013) and A. 

thaliana (Li et al., 2004). A slightly higher relative expression of PR 2 in the fresh pathogen 

elicitor treated cells after 12 hours also resulted in a significantly higher β-1, 3-glucanase 

activity in the pathogen treated cells at 24 hours compared to cells treated with the fresh 

elicitor of T. atroviride. The antifungal effect of β-1, 3-glucanase has been demonstrated on 
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the grapevine powdery mildew fungus, Erysiphe nector (syn. Uncinula nector), where β-1, 3-

glucanase activity of leaves was correlated with resistance (Giannakis et al., 1998). The 

same study also found a synergy between the β-1, 3-glucanase and chitinase enzymes in 

limiting fungal growth. 

Chitinase pathogenesis proteins (CHIT IV, PR 3 and 4) were also triggered by culture 

filtrates of both the pathogen and the biocontrol agent, although the expression patterns 

were different. Peak expression of CHIT IV occurred earlier, before peak expression of PR 3 

and 4, which may imply a role by CHIT IV in the regulation or induction of other chitinases. 

Chitinase class IV proteins are found in the apoplast (Anand et al., 2004; Pechanova et al., 

2010) and these apoplastic chitinases are believed to be part of the early defence response 

as they act directly on the invading fungal hyphae (Gerhardt et al., 1997). The action of 

apoplastic chitinases on hyphae releases fungal elicitors that penetrate the plant cells and 

further trigger other defence genes (Kasprzewska, 2003; Grover, 2012). Expression levels of 

CHIT IV and PR 3 were much higher in cells treated with the culture filtrate of the biocontrol 

agent as compared to the pathogen and likewise chitinolytic activity was higher in the cells 

treated with the biocontrol agent filtrate than those elicited with the pathogen filtrate.  

Also interesting was the much higher overexpression of PR 6, the protease inhibitor, 

in cells treated with the T. atroviride compared to those treated with the pathogen culture 

filtrates. Proteases are essential for the breakdown of plant proteins for nutrition of the 

invading pathogens. PR 6 is induced by the jasmonic acid signalling pathway and which is 

also associated with induced systemic resistance (ISR) (as reviewed by Koiwa et al., 1997 

and Haq et al., 2004). A cysteine protease inhibitor from pearl millet was shown to have 

potent antifungal activity against several plant pathogenic fungi and a wood saprophyte, T. 

reesei (Joshi et al., 1998). It is possible that during the grapevine-Trichoderma interactions, 

the host regulates growth of the saprophyte by producing inhibitors to the Trichoderma 

proteases. These inhibitors are also likely to inhibit pathogen proteases if infection was to 

occur after the host response to Trichoderma spp. Pathogenesis related proteins have been 

found in xylem sap (Buhtz et al., 2004; Kehr et al., 2005) where their antifungal activity may 

inhibit xylem pathogens while products of such activity may trigger downstream defence 

pathways through pathogen associated molecular patterns.  

The protection of grapevine pruning wounds by Trichoderma spp. is largely attributed 

to the antagonistic effect of the biocontrol agent against trunk pathogens. The response of 

the cell cultures to the Trichoderma filtrates by increasing the phenolic content and activity of 

fungal cell wall hydrolytic enzymes, suggests a more complex involvement in the grapevine-

Trichoderma interactions to afford pruning wound protection. Trichoderma colonisation could 

prime the wound for a quicker and more intensive response to trunk pathogen infection, 
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which warrants further study. In a study of grapevine cultivar variability to pruning wound 

protection by Trichoderma spp., some cultivars were identified where extensive wound 

colonisation by Trichoderma spp. could not reduce pruning wound infection (Mutawila et al., 

2011b). This could have been a result of Trichoderma-grapevine interactions that negatively 

influence the grapevine-pathogen interactions. Further studies could also compare defence 

response of grapevine cultivars to colonisation by the biocontrol agent and how it may affect 

infection by trunk pathogens. 

In conclusion, the grapevine cell cultures responded to elicitors from the trunk 

pathogen E. lata and a wound protectant biocontrol agent T. atroviride by increasing 

expression of defence related genes on the phenylpropanoid pathway and some PR 

proteins. Response to T. atroviride elicitors was, for several of the defence genes and 

phenotypes, more pronounced compared to response to the pathogen elicitors. This may 

suggest the involvement of Trichoderma-grapevine interaction in the protection of pruning 

wounds and/or a priming effect of the grapevine against pathogen infection, but this needs 

further investigation in planta. Response of grapevine cell cultures to elicitation by culture 

filtrates of E. lata and T. atroviride, in the current study, triggered genes associated with both 

the salicylic acid and jasmonic acid signalling pathways. Induced resistance in plants can be 

obtained by SAR mediated by salicylic acid or through ISR mediated by jasmonic acid and/or 

ethylene (Van Loon et al., 2006 a,b). These pathways are not mutually exclusive such that 

some pathogens can trigger both SAR and ISR (Kariola et al., 2003; Li et al., 2004). It is not 

known what kind of synergistic or antagonistic interactions occur between these pathways. 

The cell culture model that was developed in this study can provide a simple but reliable 

system for gene expression studies. The different patterns of expression of the defence 

related genes could be an indication of the participation of transcription factors in the 

response of grapevine to pathogenic and non-pathogenic fungi which later determine 

whether interactions will result in disease, resistance or symbiosis.  
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Tables and Figures 

Table 1: Primers used in quantitative reverse transcriptase-PCR and GenBank accession of 

the sequences on which primer design was based. 

Gene Accession 
No. 

Primer  Sequence (5’-3’) Amplicon 
size 

Annealing 
Temp (°C) 

PR1 XM002273752 Sense GCAACTATATCGGACAACGTCCTT   80 56 

Antisense TCACCATGCTCTAACAGTACCCA 

PR2 XM002277475 Sense TTCAAGCCTGAAGTCACGTCC 89 56 

Antisense TAAGGGTACAGGTTAACAAGCAGT 

PR3 XM002281734 Sense GGTAGACCTGGTAAACAACCCT 85 56 

Antisense GGGTGTCATCCAGAACCAGAAG 

PR4 XM002264684 Sense GCCCAGAGCGCCAGCAATGT 125 56 

Antisense CGCCATGCCAAGGGCTTGCT 

PR5 XM002282928 Sense TGGGCACATTTTCGTGGTCATGT 138 58 

Antisense ACTTGGACGGGACCATAGAGGTTAG 

PR6 XM002284411 Sense AACCATTAAGAGGGAGAATCCTCA 95 56 

Antisense CACGGACCCTAGTGCAGTAAA 

CHIT IV XM002275480 Sense GTGTGTCCGGGAAGGATTACT 99 54 

Antisense TCAAGCCATCAAACCCAATGC 

PAL XM002281763 Sense GGTGAGCTTCACCCCTCCAGGT 96 56 

Antisense GGAGCTGCAGGGGTCATCAATGT 

CHS1 AF020709 Sense CATTGGTGCAGACCCAGATAC 94 54 

Antisense GATTGCACCCTCGGAGTCG 

CHS3 XM002263983 Sense CCGCTGTTATAGTTGGTTCCG 81 56 

Antisense GGATTGTCTGGGCTGCTGA 

STS XM002268806 Sense AAGGGTCCGGCCACCATCCT 115 58 

Antisense ACGCAGTCATGTGCTCGCTCT 

STS2 XM003634020 Sense TCGAAGCAACGAGGCATGTGCTAA 118  58 

Antisense TCACCTGTGGTGGCCCTCTCC 

4CL XM002273418 Sense ATTGTTACGGAAAGGCGGT 113 56 

Antisense GGATTGAAGCAATGGTCCTAGC 

Actin AF369525 Sense TGGTCGTACAACTGGTATTGTGCTG 116 58 

Antisense CACGTCCAGCAAGGTCAAGACGA 

60SRP XM002270599 Sense ATCTACCTCAAGCTCCTAGTC 165 50 

Antisense CAATCTTGTCCTTTCCT 

VATP16 XM002269086 Sense CTTCTCCTGTATGGGAGCTG 112 50 

Antisense CCATAACAACTGGTACAATCGAC 
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Figure 1: A simplified representation of the general phenylpropanoid pathway showing the 

switch from primary metabolism (shikimate pathway) and the branches leading to the sub-

pathways for the synthesis of stilbenes (phytoalexins), flavonoids (anthocyanins and tannins) 

and ligninols (monomers of lignin). Enzymes catalysing each step are: PAL, phenylalanine 

lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumaroyl CoA ligase; STS, stilbene synthase 

and CHS, chalcone synthase.  

Stellenbosch University  http://scholar.sun.ac.za



 

158 
 

 

Figure 2: Growth curve of cell suspension culture of Vitis vinifera cv. Dauphine derived from 

green berry explants. Suspension elicitation was carried out at day six (log phase). Each 

point on the line is the mean ± the standard deviation of two independent biological 

replicates. 
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Figure 3: Concentration depended, decrease in the viability of grapevine cell suspensions 

after elicitation with fresh cell free culture filtrates of T. atroviride and E. lata. Cell suspension 

cultures were treated with varying concentrations (2.5, 5 and 10% v/v) of the elicitor on day 

six after sub-culturing  and cell viability measured at 24 hour intervals using the TTC (2, 3, 5-

triphenyl tetrazolium) test. Reduction of TTC was not detected in cultures treated with 10% 

filtrate of T. atroviride after 96 hours. Values are means ± the standard deviation of two 

independent biological replicates.  
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Figure 4: Time-course changes in relative expression of genes coding for enzymes of the 

general phenylpropanoid pathway, phenylammonium lyase (PAL) and 4-coumaryl Co-A 

ligase (4CL), in V. vinifera cv. Dauphine cell cultures treated with freshly prepared or 

autoclaved fungal culture filtrates of trunk pathogen E. lata and bio-control agent T. 

atroviride. Expression was measured relative to untreated controls for each time point. Bars 

are mean ± standard deviation of three independent biological replicates. Where expression 

was not significantly different (P > 0.05) from the untreated control the bars are labelled with 

an „x‟. 
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Figure 5: Relative gene expression in V. vinifera cv. Dauphine cell cultures treated with 

freshly prepared or autoclaved fungal culture filtrates of trunk pathogen E. lata and bio-

control agent T. atroviride showing the up-regulation of stilbene sysnthase (STS and STS2) 

and down-regulation of chalcone synthase (CHS and CHS3) enzymes of the 

phenylpropanoid pathway. Expression was measured relative to untreated controls for each 

time point. Bars are mean ± standard deviation of three independent biological replicates. 

Where expression was not significantly different (P > 0.05) from the untreated control the 

bars are labelled with an „x‟. 
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Figure 6: Relative expression of genes coding for pathogenesis related (PR 1, 2, 5 and 6) 

protein in V. vinifera cv. Dauphine cell suspension cultures at 6, 12, 24 and 48 hours after 

treatment with freshly prepared or autoclaved culture filtrates of either E. lata or T. atroviride. 

Expression was measured relative to untreated controls of each time point. Bars are mean ± 

standard deviation of three independent biological replicates. Where expression was not 

significantly different (P > 0.05) from the untreated control the bars are labelled with an „x‟.   
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Figure 7: Relative expression with time of genes coding for chitinase pathogenesis related 

proteins (CHIT IV (Chitinase IV), PR 3 and 4) in V. vinifera cv. Dauphine cell suspension 

after treatment with freshly prepared (fresh) or autoclaved cell free culture filtrates of trunk 

pathogen E. lata and bio-control agent T. atroviride. Expression was measured relative to 

untreated controls of each time point. Bars are mean ± standard deviation of three 

independent biological replicates. Where expression was not significantly different (P > 0.05) 

from the untreated control the bars are labelled with an „x‟.   
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Figure 8: Total phenolic content of V. vinifera cv. Dauphine cell suspension cultures showing 

a significant (P < 0.001) increase in phenolic content of the cells 24 hours (A) and 48 hours 

(B) post elicitation with cell free culture filtrate elicitors (freshly prepared (fresh) or 

autoclaved) from either pathogen (E. lata) or bio-control agent (T. atroviride). Phenolics were 

extracted from freeze dried cells and quantities determined by the Folin-Ciocalteu reagent as 

gallic acid equivalents. Bars are mean ± standard deviation of three independent biological 

replicates.  
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Figure 9: Activity of β-1, 3-glucanase enzymes from grapevine cell suspension cultures, at 

24 hours (A) and 48 hours (B) after treatment with freshly prepared (fresh) or autoclaved cell 

free culture filtrate of either E. lata or T. atroviride. Enzyme activity was measured as 

released reducing sugars from laminarin, as substrate. Bars are mean ± standard deviation 

of three biological replicates. A unit (U) of activity was defined as the quantity of protein that 

released of one μ Mole of reducing sugar per millilitre per minute. 
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Figure 10: Activity of chitinolytic enzymes from grapevine cell suspension cultures, at 24 

hours (A) and 48 hours (B) after treatment with freshly prepared (fresh) or autoclaved cell 

free culture filtrates of either E. lata or T. atroviride, showing much higher activity at 24 hours 

with the T. atroviride fresh elicitor. Enzyme activity was measured as reduction in turbidity of 

a chitin (1%) substrate suspension. Bars are mean ± standard deviation with of three 

independent biological replicates. A unit (U) of activity was defined as the quantity of protein 

that reduced the turbidity of chitin substrate by 5% per minute. 

 

  

0

5

10

15

20

25

Control Fresh Autoclaved

C
h
it
in

o
ly

ti
c
 a

c
ti
v
it
y 

(U
) 

T. atroviride

E. lata

0

5

10

15

20

25

Control Fresh Autoclaved

T. atroviride

E. lata

A B 

0

5

10

15

20

25

Control Fresh Autoclaved

C
h
it
in

o
ly

ti
c
 a

c
ti
v
it
y 

(U
) 

T. atroviride

E. lata

0

5

10

15

20

25

Control Fresh Autoclaved

T. atroviride

E. lata

A B 

Stellenbosch University  http://scholar.sun.ac.za



 

167 
 

Chapter 7 
Isolation, production and in vitro effects of the major secondary 

metabolite produced by Trichoderma species used for the control 

of grapevine trunk diseases 

7.1 Abstract 

Antibiosis has been shown to be an important mode of action by Trichoderma species 

used in grapevine pruning wound protection from infection by trunk pathogens. The major 

active compound from Trichoderma isolates, shown to protect grapevine pruning wounds 

from trunk pathogen infection was isolated and identified. The compound, 6-Pentyl α-pyrone 

(6PP) was found to be the major secondary metabolite, by quantity, from culture filtrates of T. 

harzianum isolate T77 and two T. atroviride isolates UST1 and UST2. Benzimidazole 

resistant mutants generated from these isolates also produced 6PP as their main secondary 

metabolite except for the mutant from T77 which had been found to have had lost its in vitro 

antagonistic activity. The isolates UST1 and UST2 were co-cultured with grapevine trunk 

pathogens Eutypa lata and Neofusicoccum parvum in a minimal defined medium and a 

grapevine cane based medium (GCBM). Co-culturing UST1 with N. parvum induced 6PP 

production in the minimal defined medium and the GCBM. The production of 6PP by UST2 

was induced in the GCBM while co-culturing with the two trunk pathogens either reduced or 

had no effect on 6PP production. Mycelial growth and spore/conidia germination of E. lata, N. 

australe, N. parvum and Phaeomoniella chlamydospora were inhibited by 6PP in a 

concentration dependent manner. The results showed that the presence of a pathogen and 

grapevine wood elicits the production of 6PP, suggesting that the metabolite is involved in 

Trichoderma-pathogen interactions on pruning wounds. 

7.2 Introduction  

Grapevine trunk diseases are a silent and often hidden cause of decline and loss of 

productivity in vines at all stages of growth and are increasingly becoming an important 

limiting factor to the long-term sustainability of grape and wine production (Van Niekerk et al., 

2003; Gubler et al., 2005; Larignon et al., 2009). These diseases are caused by various 

xylem-inhabiting pathogens that include Eutypa (E.) lata (eutypa dieback), Phaeomoniella 

(Pa.) chlamydospora and Phaeoacremonium species (Petri disease), Fomitiporia spp. (esca) 

and Botryosphaeriaceae fungi (Botryosphaeria dieback). Infection occurs through any type of 

wound, of which pruning wounds are the principal ports of entry (Chapuis et al., 1998; Serra 

et al., 2008; Rolshausen et al., 2010; Van Niekerk et al., 2011).  
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The grapevine pruning wound is colonised by naturally occurring fungi and bacteria 

and these may inhibit infection of the wood tissue by trunk pathogens. Pruning wound 

protection by biological agents offers an alternative and more sustainable long-term control 

of trunk disease pathogens on wound surfaces. Biological wound protection from Eutypa lata 

infection by Fusarium (F.) lateritium, Cladosporium herbarum, Bucillus subtilis and 

Trichoderma (T.) spp. has been reported (Ferreira et al., 1991; Munkvold & Marois, 1993; 

John et al., 2008). The biocontrol effect of Trichoderma spp. has also been demonstrated on 

a wide spectrum of grapevine trunk diseases both in vitro and in vivo (Fourie & Halleen, 

2004; Di Marco et al., 2004; Kotze et al., 2011). Due to the ease of large scale production, 

Trichoderma spp. have been developed into commercial products for biological control of 

numerous plant pathogens (John et al., 2008; Vinale et al., 2008).  

 The mechanisms of action by Trichoderma spp. may either be a result of its 

antagonistic action against the pathogen or from its interaction with the plant. Trichoderma-

pathogen interactions involve mycoparasitism and secretion of mycolytic enzymes (Howell, 

2006; Woo et al., 2006), competition for limited resources, as well as production of antibiotics 

(Sivasithamparam & Ghisalberti, 1998; Harman, 2006). Central to the biocontrol activity of 

Trichoderma spp. is the production of secondary metabolites, which are natural compounds 

that aid the producing organism in survival and basic functions such as symbiosis, 

competition and differentiation (Shwab & Keller, 2008). The production of antibiotic 

secondary metabolites is often correlated to the biocontrol activity of Trichoderma strains 

(Ghisalberti et al., 1990; Worasatit et al., 1994; Vinale et al., 2006).  

Trichoderma secondary metabolites are chemically diverse and their production 

varies greatly between species and strains of the same species. The huge structural and 

functional diversity of Trichoderma metabolites makes it necessary for the continual search 

of new metabolites. These may be important in selection or screening of potential biocontrol 

agents or may be developed for application as bio-active compounds in pesticides and 

antibiotics.  

A strain of T. harzianum (T77 now commercialised as Eco 77®) was isolated from 

grapevine nursery rhizosphere and two strains of T. atroviride (UST1 and UST2) isolated 

from grapevine wood, have shown to be good pruning wound colonisers. Field studies 

against grapevine trunk pathogens have shown that these strains are consistent in grapevine 

pruning wound protection (Kotze et al., 2011; Mutawila et al., 2011). In vitro studies showed 

that the volatile and culture filtrates from the two T. atroviride strains significantly reduced 

mycelial growth and inhibited spore germination of different trunk disease pathogens (Kotze 

et al., 2011). The identity of the active compounds in culture filtrates needed to be 

determined. Mutant isolates with high tolerances to benzimidazole fungicides, for possible 
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integrated application, were developed from these strains by gamma irradiation (Chapter 5). 

One of the mutants lost its in vitro antagonistic activity and therefore, it was important to 

determine the effect of mutation on secondary metabolite production.  

This study reports the isolation and identification of the major secondary metabolite 

from both the wild type and mutant Trichoderma spp. strains. The production of the isolated 

metabolite was evaluated under different growth conditions, particularly when grown on 

grapevine wood extracts and co-cultured with trunk pathogens, so as to establish its role in 

biocontrol. The effect of the metabolite on mycelial growth and spore germination of 

grapevine trunk pathogens was also tested. 

7.3 Materials and Methods  

7.3.1 Fungal isolates 

Trichoderma atroviride isolates, UST1 and UST2, are stored at the Stellenbosch 

University, Department of Plant Pathology culture collection under accession numbers STE-

U 6514 and 6515, respectively. Isolate T77 is the active ingredient of a registered pruning 

wound protection biocontrol agent, Eco 77®, and was kindly provided by Plant Health 

Products (South Africa). 

Four grapevine trunk pathogens namely, E. lata (STE-U 5692 and 6513), 

Neofusicoccum (N.) australe (STE-U 7025 and 7029), N. parvum (STE-U 4439 and 4584) 

and Pa. chlamydospora (STE-U 6384 and 7732) were also used. All fungal isolates were 

maintained in tubes of sterile deionised water at 4 °C. Before use, the fungi were sub-

cultured onto freshly prepared potato dextrose agar (PDA; Biolab, Wadeville, South Africa) 

and allowed to grow for 5 days at 25 °C in the dark. 

7.3.2 Extraction, purification and identification of the major secondary 

metabolites from culture filtrates of Trichoderma isolates.  

The secondary metabolites were produced and extracted using the method reported 

by Vinale et al. (2006). Five 5 mm diameter plugs from each of the Trichoderma isolates 

(UST1, UST2 and T77) obtained from the margins of actively growing cultures on PDA were 

separately inoculated into 5 L conical flasks containing 1 L potato dextrose broth (PDB, 

Biolab,  Wadeville, South Africa). The suspension cultures were incubated for 30 days at 25 

°C without shaking after which the fungal mycelium was removed from the broth by vacuum 

filtration through Whatman No. 4 filter paper (Whatman, Brentford, UK).  

Culture filtrates were then extracted twice with equal volumes of ethyl acetate (99.5%, 

Sigma). The organic fractions were combined, then dried with sodium sulphate (Na2SO4) and 

evaporated under reduced pressure at 35 °C. The residue (crude extract) recovered was 
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subjected to flash column chromatography through silica gel (50 g), eluting with a gradient of 

petroleum ether : acetone  (9 : 1 to 7 : 3 v/v). Fractions showing similar thin-layer 

chromatography (TLC) profiles were combined and further purified by preparative TLC (Silica 

gel G, 500 μm, UNIPLATE™, Analtech Inc, Delaware, USA). The major fraction obtained had 

a characteristic smell of a known Trichoderma metabolite, 6-pentyl α-pyrone (6PP). Fractions 

were run on TLC (silica gel 60; EMD Millipore, Darmstadt, Germany) developed in hexane : 

acetone (7:3 v/v) alongside a standard  of 6PP. The standard for 6PP was previously isolated 

and characterised by Vinale et al. (2008). The compounds were detected using UV light (254 

or 366 nm) and/or by spraying the plates with a 5% (v/v) H2SO4 solution in ethanol followed 

by baking at 110 °C for 5 min.  

The major fraction was further characterised to confirm identity using nuclear 

magnetic resonance (NMR) and mass spectroscopy (MS). The proton (1H) NMR spectra 

were recorded with a 400 MHz Brüker Avance spectrometer, equipped with a 5mm Bruker 

Broad Band Inverse probe (BBI), working at the 1H frequencies of 400.13, and using residual 

and deuterated solvent peaks as reference standards. A high resolution mass spectrum was 

obtained by a VG Autospec mass spectrometer.  

7.3.3 Time-course production of 6PP in static and shaking cultures 

A single metabolite, 6PP was found to be the major secondary metabolite produced 

by all the isolates of Trichoderma spp. tested.  Tests were carried out to determine the time 

course production of this metabolite among the wild type isolates. Liquid cultures of the 

Trichoderma isolates were prepared by separately inoculating 100 mL of PDB in 250 mL 

flasks with three agar plugs (5 mm) of the respective isolates (UST1, UST2 and T77). The 

cultures were incubated at 25 °C with or without shaking at 120 rpm. Two replicates of each 

isolate culture were harvested at 5, 10, 15 and 20 days of incubation for metabolite 

extraction. The cultures were filtered and the major secondary metabolite quantified from the 

culture filtrate as described above. 

7.3.4 Comparison of the production of 6PP by Trichoderma isolates 

Three additional strains, MT1, MT2 and MT77, which are mutant progeny developed 

from the wild type isolates UST1, UST2 and T77, respectively were also included for these 

tests. The mutants were developed by gamma irradiation and are resistant to benzimidazole 

fungicides (Chapter 5). Broth cultures of the Trichoderma isolates were prepared by 

separately inoculating 100 mL of either full strength PDB or quarter strength PDB in 250 mL 

flasks with five agar plugs (5 mm) of the respective isolates. The cultures were incubated at 

25 °C with or without shaking at 120 rpm for 20 days. Each treatment combination of medium 

(full strength or quarter PDB) and culture condition (shaking or static) was replicated twice. 
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Culture filtrates were harvested by vacuum filtration through a Whatman No. 1 filter paper 

and 2 mL of the filtrate was further filtered through a 0.20 μm RC-membrane filter (Sartorius 

Stedim Biotech, Goettingen, Germany) into glass vials for direct quantification by liquid 

chromatography-mass spectroscopy (LC-MS). Chromatographic separation was performed 

by an ultra-high performance liquid chromatography (HPLC) apparatus equipped with two 

micropumps (Waters Synapt G2) and a BEH C18-column (Waters BEH C18, 2.1 × 100 mm, 

particle size 1.7 μm). The eluents used were A: 1% formic acid (in acetonitrile) and B: 

acetonitrile and the gradient used was as follows: 95% A (0.1 min); 40% A (4 min); 100% B 

(5 min) and 95% A (5.1 min) eluted at a flow rate of 0.4 mL/min. Quantification was done 

using a standard curve constructed by standards prepared from pure 6PP (Apollo Scientific, 

Manchester, UK). 

7.3.5 Effect of growth medium and pathogen co-inoculation on 6PP 

production 

Cultures were grown in defined minimum medium (Pezet‟s) and grapevine cane 

based medium (GCBM). Pezet‟s medium was prepared as by Pezet (1983) without 

modifications and contained 1% (m/v) glucose and 0.5% (m/v) sucrose as the carbon 

sources. The GCBM was prepared by sonifying 100 g of ground dormant Cabernet 

Sauvignon canes in 500 mL boiling deionised water (100 °C). The extract was then clarified 

by filtration through a series of double miracloth and Whatman No. 1 and finally Whatman 

No. 3 filter papers. Sucrose (10 g/L) was added to the filtrate, the pH adjusted to 5.8 using 

either 1 M NaOH or 1 M HCL and sterilised by autoclaving.  

 Erlenmeyer flasks containing 100 mL of medium were co-inoculated with 5 mycelial 

disks (5 mm) of T. atroviride, either UST1 or UST2, and a grapevine trunk pathogen, either 

E. lata (STE-U 5700) or N. parvum (STE-U 4439). The flasks were incubated at 25 °C with 

shaking at 120 rpm for 10 days, after which the cultures were filtered and 6PP quantified 

from the culture filtrate as described above. 

7.3.6 Determination of the sensitivity of grapevine trunk pathogens to 6PP 

The sensitivity of grapevine trunk pathogens to 6PP was determined on mycelium 

and conidia/spores of four fungal pathogens namely, E. lata, N. australe, N. parvum and Pa. 

chlamydospora. Mycelial inhibition was tested on five different artificial growth media. Three 

complex media and two defined media were used, so as to determine the effect of growth 

medium on sensitivity of fungi to 6PP. 

7.3.6.1 Preparation of fungal growth medium: Complex media comprised of PDA, 

Malt extract agar (MEA, Biolab) and GCBM. Defined media were Vogel‟s medium N (Vogel) 
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and Pezet‟s. The grapevine cane based medium extract was prepared as described above 

and agar (15 g/L, Biolab) was added before sterilisation. 

Vogel medium N was prepared as modified by Metzenberg (2003) and consisted of 

20 mL Vogel‟s 50× salts, 1% (m/v) glucose as the only carbon source. Pezet‟s medium was 

prepared as previously described. The pH for both Vogel‟s and Pezet‟s media was adjusted 

to 5.8 using 1 M NaOH or 1 M HCl before adding agar (15 g) and sterilised by autoclaving. 

7.3.6.2 Pathogen conidia and spore production: Phaeomoniella chlamydospora 

(STE-U 6384) conidia were produced by growing the fungus on PDA for 3 weeks at 25 °C. 

The conidia suspension was prepared by flooding the Petri dishes with sterile water (10 mL) 

and the conidia dislodged from the media using a sterile needles. The suspension was 

collected in a sterile glass bottle. Eutypa lata ascospores are produced in perithecial stroma 

on infected old wood. For a spore suspension, pieces of wood bearing stroma were collected 

from infected vines at the Nietvoorbij vineyards of the Agricultural Research Council of South 

Africa in Stellenbosch. The wood pieces were immersed in sterile water for 15 minutes after 

which the surface was lightly scrapped with a scapel to expose perithecia. Single perithecia 

were removed using a sterile needle, placed in a glass bottle containing sterile water (10 mL) 

and the bottles shaken to release ascospores from the asci. Conidia of N. australe (STE-U 

7025) and N. parvum (STE-U 4439) were produced from pycnidia induced on grapevine 

shoots using the method of Amponsah et al. (2008) with some modifications. Briefly, green 

lignified shoots (~20 cm) of cultivar Cabernet Sauvignon were inoculated with mycelial plugs 

on wounds (5 mm)  made in the centre of the shoots. The base of the shoots were inserted 

into glass bottles containing sterile water and incubated in a moist chamber. After two weeks, 

shoot pieces (5 cm) around the wound were excised, surface sterilised, air dried and placed 

in Petri dishes with moist filter paper and incubated until pycnidia emerged on the surface. 

Pycnidia were collected using a sterile scapel, placed in glass bottles containing sterile water 

and crushed to release the conidia. Before the assays, all conidia and spore suspensions 

were filtered through sterile cheesecloth to remove mycelial fragments and the concentration 

adjusted to 2 × 106 conidia or spores/mL.  

7.3.6.3 Mycelial inhibition by 6PP: Eight isolates (two of each pathogen) were used 

to determine the effect of 6PP on mycelial growth. The metabolite was dissolved in methanol 

to make a 10 g/L stock solution. Mycelial growth inhibition was tested on PDA amended with 

0 (control), 50, 100, 150, 200, 250, 300 and 400 mg/L of 6PP. In all cases, the final 

concentration of methanol in the medium was 0.1%, including in the control plates. Mycelial 

plugs (5 mm diameter) taken from the margins of an actively growing colony were placed in 

the centre (mycelium side facing down) of metabolite amended agar plates. Plates were 

incubated at 25 °C in the dark and the radial growth of the fungal colonies was measured at 
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24 hour intervals for all the fungi except Pa. chlamydospora where colony diameter was 

measured at 3 day intervals. Each isolate had three replicates per concentration and the 

colony diameter was measured twice perpendicularly per plate. Percentage inhibition relative 

to the control was calculated from the day-three colony diameters for all fungi except P. 

chlamydospora where day-12 colony diameter was used. The percentage inhibition was 

used to determine the effective concentration that inhibited mycelial growth by 50% (EC50). 

7.3.6.4 Effect of growth medium on mycelial sensitivity to 6PP: The eight isolates 

of grapevine trunk pathogens were grown on complex (PDA, MEA and GCBM) and defined 

minimal medium (Vogel‟s and Pezet‟s) amended with 150 mg/L of 6PP. Plates were 

incubated at 25 °C in the dark and the radial growth of the fungal colonies was measured 

twice perpendicularly per plate at day 3 for all fungi except P. chlamydospora where it was 

measured at day 12. There were three replicates for each isolate per medium. Radial colony 

diameters were used to calculate percentage inhibition relative to the control. 

7.3.6.5 Inhibition of conidia/spore germination: Effect of the metabolite on 

inhibition of conidia/spore germination was tested on one isolate of each pathogen (listed 

above in 7.3.6.2). Conidia or spore suspensions were amended with 6PP to concentrations 

of 0, 50, 100, 200, 300 and 400 mg/L to a total volume of 1.5 mL in 2 mL centrifuge tubes. 

These were incubated at 25 °C for 24 hours after which microscope slides were made from 

the suspensions and spores counted under the microscope (× 400, Nikon, Japan). Spores 

were considered germinated when the germ tube was the size of the conidia/spore. The 

percentage germinated conidia/spores was determined from at least 50 conidia/spores per 

slide and there were three slides per centrifuge tube and three tubes per concentration. 

7.3.7 Statistical analysis 

For the quantification of the secondary metabolites, there were three biological 

replicates for each treatment and assays were carried out on two technical replicates. The 

means from each treatment were compared for significant differences using factorial analysis 

of variance (ANOVA) and the means were separated by computing the Fischer‟s least 

significant difference (LSD) at P = 0.05. For the anti-fungal assays, there were three 

replicates for each isolate per assay and all experiments were independently repeated once. 

Data from the two independent repeats was combined and the non-linear regression model 

describing the inhibition × concentration interaction (used for EC50 determination) as well as 

levels of sensitivity of the pathogens between isolates were compared by ANOVA. For the 

effect of growth medium on 6PP inhibition of mycelial growth and the inhibition of 

spore/conidia germination, treatments within each pathogen were compared separately by 

analysis of variance followed by Fischer‟s LSD test at P = 0.05. All statistical analysis were 
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carried out using SAS version 9.2 statistical software (SAS institute Inc., Cary, North 

Carolina, USA).   

7.4 Results 

7.4.1 Isolation and identification of secondary metabolites 

Five homogenous fractions were obtained from the T. atroviride isolates and seven 

fractions were obtained from the T. harzianum isolate. The first fraction (fraction I) from all 

the isolates showed similar chromatographic and spectroscopic properties and was also 

isolated in the highest quantities. It was extracted at 280-340 mg compared to 21- 43 mg for 

the next highest fraction for all isolates, making it the major secondary metabolite by quantity. 

Fraction I showed similar chromatographic and spectroscopic properties as the standard 

sample of 6-pentyl α-pyrone (6PP). The metabolite‟s Rf value was 0.65 in hexane : acetone 

(7:3 v/v). The MS spectral data indicated a protonated molecular ion peak at m/z 167.1 and 

the 1H NMR spectrum was consistent with that of 6PP reported by Cutler et al. (1986). 

7.4.2 Effect of culture harvest time on concentration of 6PP 

The time course production of 6PP by the wild type Trichoderma isolates is shown in 

figure 1. Analysis of variance found significant isolate × culture condition × time interactions 

(P < 0.001; Appendix E, Table 1). The T. atroviride isolate UST1, produced more 6PP and 

faster under the shake conditions reaching a maximum of 82 mg/L at day 10 which was 

significantly higher (P < 0.05) than the rest of the isolates at that time point (Figure 1A). 

Contrarily, under static conditions, isolate UST2 produced significantly higher (P < 0.05) 

quantities of 6PP on all days except for day 20 where the quantity was not significantly (P > 

0.05) different from that of UST1 (Figure 1B). The T. harzinum produced more 6PP in the 

shake than static cultures but in both conditions the 6PP quantities were significantly lower 

(P < 0.05) than in the T. atroviride isolates except for the 20-day shaking conditions where it 

was not significantly different from that of UST1. 

7.4.3 Comparison of the production of 6PP by Trichoderma isolates 

A comparison of the LC-MS total ion chromatograms (TIC) of the wild type isolates is 

shown in figure 2. The production of secondary metabolites was dependent on the richness 

of the medium (full strength or quarter PDB) and the culture conditions (shake or static). 

However, 6PP was the most common and abundant metabolite from all the isolates for all 

media and culture conditions except for the mutant of T. harzianum, MT77, which could not 

produce 6PP. A metabolite with retention time 2.33 min and a molecular weight (Mw) of 

726.3795 was found in shaking cultures of UST1 and MT1. This compound was also found in 

UST2 and MT2 but the peak was much less pronounced and inconsistent indicating minor 
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production compared to the UST1 strains. Since T. atroviride are also known to produce 

peptaibiotics (Degenkolb et al., 2008), the compositional analysis data and compound 

fragmentation pattern was used to find similarities with known peptaibiotics. A database of 

peptaibiotics compiled by Stoppacher et al. (2013) was downloaded from http://peptaibiotics-

database.boku.ac.at. With aid of the database the closest match to the compound was found 

to be members of the trichocompactin group (C33H58N8O10; Mw 726) of peptabiotics isolated 

from T. brevicompactum (Degenkolb et al., 2006).  

Analysis of variance of the quantities of 6PP produced by each isolate in the different 

media and culture conditions revealed significant isolate × medium × culture condition 

interactions (P < 0.001; Appendix E, Table 2). In full strength PDB, 6PP was produced by all 

the isolates (except MT77) in both static and shake cultures (Figure 3A) while in quarter 

strength PDB, UST1 and MT1 could not produce 6PP (Figure 3B). The isolate UST2 and its 

mutant, MT2, were the highest producers of 6PP. For the T. atroviride strains 6PP production 

was either similar (P > 0.05) or higher (P < 0.05) in the static than shake cultures, while in the 

T. harzianum isolate 6PP production was always significantly (P < 0.05) higher in the shake 

than static cultures (Figure 3).  

7.4.4 Effect of growth medium and pathogen co-inoculation on production of 

6PP 

Analysis of variance showed significant isolate × medium × co-culture interactions (P 

= 0.038; Appendix E, Table 3). The effect of medium and pathogen co-inoculation on 6PP 

production by the T. atroviride isolates is shown in figure 4. In both isolates, 6PP production 

was significantly higher (P < 0.05) in the GCBM compared to the defined Pezet‟s medium 

except for UST1 when it was co-cultured with N. parvum. Isolate UST2 generally produced 

more 6PP than UST1 in GCBM except when UST1 was co-cultured with N. parvum. The co-

culturing of UST1 with N. parvum resulted in significant increases (P < 0.05) of 6PP 

production in both culture media. This was not observed with UST2 where only a slight 

increase in 6PP production was observed when it was co-cultured with N. parvum in Pezet‟s 

medium but the increase was not significantly higher (P > 0.05) than in the control culture. 

The pathogen E. lata had no effect on 6PP production when co-cultured with both T. 

atroviride isolates. 

7.4.5 Sensitivity of grapevine trunk pathogens to 6PP 

There were no differences in mycelial growth between the two independent 

experiments (P > 0.05), so the data from both experiments were combined. The effect of 6PP 

on both mycelial growth and conidia/spore germination was highly significant at all 

concentrations tested (P < 0.001). 
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7.4.5.1 Mycelial inhibition: Three non-linear regression models (Gompertz, Logistic 

and Modified Exponential) were fitted to the mycelial growth inhibition data and all gave good 

statistical fits (R2 > 0.798). The Gompertz (sigmoidal) model consistently gave the highest 

correlation for all isolates (R2 > 0.95, P < 0.01; Appendix E, Table 4). Based on the mean 

EC50 values (Table 1), the inhibition of mycelial growth by 6PP varied for the different 

pathogens. There were no significant differences (P > 0.05) in the susceptibility of isolates of 

the same pathogen to 6PP, despite some noticeable differences in the EC50 values between 

the isolates of N. parvum (P = 0.057; Appendix E, Table 5). Phaeomoniella  chlamydospora 

was the least sensitive (EC50 = 91.72 mg/L) of the trunk pathogens. The mean mycelial 

growth with time on 6PP amended medium for one of each isolate of the pathogens tested is 

shown in figure 5. There was significant (P < 0.01) reduction in mycelial growth from the 

lowest concentration tested (50 mg/L) and mycelial growth was totally inhibited at 400 mg/L 

in all pathogens.  

7.4.5.2 Effect of growth medium on mycelial sensitivity to 6PP: There were 

significant isolate × pathogen × medium interactions (P < 0.001; Appendix E, Table 6) for all 

the pathogens. Inhibition of mycelial growth was dependent on growth medium and the 

pathogen isolate (Table 2). All the pathogens were more sensitive to 6PP when growing on 

nutrient poor, defined medium (Vogel‟s N). However, there was variation in the sensitivity of 

the pathogens when growing on the other media. Sensitivity to 6PP on Pezet‟s medium did 

not significantly differ (P > 0.05) from that on the complex medium for the Neofusicoccum 

spp. Inhibition of Pa. chlamydospora on amended malt extract agar was significantly higher 

(P < 0.05) than on PDA and GCBM. 

7.4.5.3 Conidia/spore germination: Conidia/spore germination was significantly (P < 

0.001; Appendix E, Table 7) reduced by all concentrations tested and totally inhibited at 300 

and 400 mg/L. The latter two concentrations tested were excluded from the analysis of 

variance for the effect of 6PP concentration on conidia/spore germination. The effect of 6PP 

on conidia/spore germination is shown in figure 6. Germination was inhibited by more than 

60% at 100 mg/L in all pathogens. Due to high variation between treatments EC50 values 

could not be computed for the sensitivity of conidia/spore germination to 6PP.  

7.5 Discussion  

The antagonism of culture filtrates and volatiles produced by Trichoderma species 

used in grapevine pruning wounds has previously been demonstrated (John et al., 2004; 

Kotze et al., 2011). However, the secondary metabolites responsible for these properties had 

not been identified or characterised. This is the first report on the identification of secondary 

metabolites produced by Trichoderma isolates used in grapevine pruning wound protection 

Stellenbosch University  http://scholar.sun.ac.za



 

177 
 

and a characterisation of their in vitro effect on mycelial growth and spore germination of 

grapevine trunk pathogens. The metabolite 6-pentyl α-pyrone (6PP), was the major 

metabolite produced by all the three isolates tested and it is a well-known antimicrobial 

compound produced by Trichoderma species (Ghisalberti & Sivasithamparam, 1991; Vinale 

et al., 2006; El-Hasan et al., 2007). This compound is a volatile and has a characteristic 

sweet coconut smell which is characteristic of Trichoderma species of the section 

Trichoderma (Dodd et al., 2003). However, other Trichoderma species, not included in the 

section Trichoderma such as T. harzianum, can also produce this metabolite (Rey et al., 

2001; Vinale et al., 2008), despite some suggestion that this could be a result of miss-

identification (Dodd et al., 2003).  

The production of 6PP was highly dependent on strain, nutrition and culture 

conditions. It appears that after reaching a peak the concentration of 6PP starts to decline. 

This is in agreement with other studies that aimed at maximising 6PP production in vitro 

(Prapulla et al., 1992; Sarhy-Bagnon et al., 2000; Serrano-Carreόn et al., 2004). The 

producing fungus is also inhibited by the 6PP at concentrations of 90-110 mg/L and the 

addition of resin (amberlite) in the medium reduces inhibition (Prapulla et al., 1992). The T. 

atroviride strains (UST1 and UST2) produced more quantities of 6PP than the T. harzianum 

(T77). There was a large variation between the T. atroviride strains with strain UST2 

producing more than UST1 when grown under static (none-shaking) conditions. These 

isolates have been evaluated for their grapevine wound protective effect against infection by 

trunk pathogens and the T. atroviride isolates were found to be better than the T. harzianum 

(Kotze et al., 2011; Mutawila et al., 2011) which is likely due to the T. atroviride producing 

more 6PP. Another metabolite from T. atroviride that had a fragmentation pattern almost 

similar to that of trichocompactum Ia and Ib isolated from T. brevicompactum (Degenkolb et 

al., 2006) could also be involved in their biocontrol activity. Peptaibiotics from Trichoderma 

are known antibiotics, however, the biological activity of the brevicompactum group has not 

been characterised.  

To establish the likelihood of 6PP production during wound colonisation, a grapevine 

cane extract culture medium was used as a close approximation of the natural substrate. 

Mahoney et al. (2003) demonstrated enhanced production of toxins (eutypine and 

eulatachromene) by E. lata isolates grown in a grapevine extract compared to artificial 

media. The more natural substrate could be representative of secondary metabolite 

production on the wound. Production of 6PP in the GCBM varied between the two isolates, 

but was higher in the GCBM compared to the defined medium for both isolates. However, 

what was particularly interesting was that 6PP production almost doubled in the GCBM when 

isolate UST1 was co-cultured with N. parvum. Previous reports have also demonstrated that 
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the production of secondary metabolites is induced by fungal cell wall material (Serrano- 

Carreόn et al., 2004; Vinale et al., 2009). In the current study, the induction of 6PP 

production was only observed with N. parvum and not with E. lata. The difference in 

behaviour of T. atroviride towards the two fungi is difficult to explain since it was not possible 

to measure the growth of the T. atroviride isolates in co-cultures. However, it can be 

speculated that the slow growing E. lata was inhibited by the T. atroviride before the 

competing fungus could elicit the production of the antifungal 6PP in the biocontrol agent. 

Again it is difficult to explain why the co-cultivation of UST2 with N. parvum in GCBM did not 

result in significant 6PP production. A possible explanation is that the interaction of UST2 

and N. parvum could have resulted in the reduction of growth of UST2 as the biocontrol 

agent is also likely to have responded by producing hydrolytic enzymes (chitinases and 

glucanases) which also consume metabolic resources (Serrano-Carreόn et al., 2004; Rocha-

Valadez et al., 2005). In vitro assays showed that UST1 was more aggressive than UST2. 

UST1 overgrew and inhibited most grapevine trunk pathogens in dual plate assays (Kotze et 

al., 2011), while chitinase assays also revealed higher activities in UST1 compared to UST2 

(unpublished data). It is therefore a possibility that the growth of N. parvum was inhibited by 

UST1 before the interactions between the two fungi could have an effect on the growth of 

UST1. However, the initial interactions could have induced a competitive response from 

UST1 and hence the higher level of 6PP production. 

Some reports on the mechanisms of action of Trichoderma spp. have associated 

pyrone production with biocontrol activity. Worasatit et al. (1994) found no correlation 

between the production of fungal cell wall hydrolytic enzymes (chitinase, glucanase and 

xylanase) by T. koningii and their protection of wheat against Rhizoctonia root rot, but could 

associate efficacy with pyrone production. More specifically, the production of 6PP has been 

correlated with biocontrol activity of T. harzianum on Petri dish assays and in vivo for the soil-

borne pathogen Gaeumanomyces graminis (Ghisalberti et al., 1990) and the post-harvest 

pathogen Botrytis (B.) cinerea (Pezet et al., 1999). In the current study, the high production 

of 6PP in the GCBM strongly suggests the involvement of 6PP in the protection of wood from 

infection by wood rotting fungi. 

Volatile compounds from T. harzianum isolates used in Vinevax® had fungistatic 

effects on E. lata mycelium, while the cultural filtrates completely inhibited the pathogen 

mycelial growth (John et al., 2004). More recently, Kotze et al. (2011) further demonstrated 

the inhibitory effects of T. harzianum and T. atroviride, on more grapevine trunk pathogens in 

vitro and the wound protective effect of the Trichoderma spp. isolates in vivo. None of these 

reports identified the compounds that were responsible for this, although John et al. (2004) 

speculated on the involvement of 6PP due to the coconut smell that was produced by the 
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isolates that had mycelial inhibitory activity. The fungal inhibitory concentrations of 6PP on 

grapevine trunk pathogens are comparable to those reported for B. cinerea (Walter et al., 

2000) and Fusarium verticillioides (syn. F. moniliforme) (El-Hasan et al., 2007). 

Conidia/spore germination was more sensitive to 6PP compared to mycelial growth on all the 

grapevine trunk pathogens tested. Mycelial inhibition also varied with the pathogen, 

indicating that 6PP is not equally effective on all fungal pathogens. Since pruning wound 

infection occurs mainly through conidia/spores, a higher inhibitory effect on conidia/spore 

germination by 6PP is more likely to result in reduced infection of Trichoderma protected 

wounds. However, the reduced effect on mycelial growth may also suggest that 6PP 

producing Trichoderma are less likely to eliminate pathogens already growing in the pruning 

wound. Currently, there are no reports of Trichoderma spp. eliminating pathogen (curative 

effect) infected wounds, but only wound protective action when the pathogen is inoculated 

after the biocontrol agent. Better wound protection is achieved when a longer time is allowed 

between the application of Trichoderma biocontrol agents and pathogen inoculation 

(Munkvold & Marois 1993; John et al., 2005 & 2008). This is related to the need by the 

Trichoderma biocontrol agent to grow on the wound and start responding to stimuli such as 

the presence of competitors on the wound. The importance of 6PP in the Trichoderma-

pathogen interaction is further demonstrated by the reduction/loss of in vitro antagonistic 

ability of the mutant MT77 which could not produce 6PP. The loss of 6PP production by the 

mutant was also accompanied by poor conidia production indicating a possible link between 

genetic control of 6PP production and asexual reproduction. This has also been reported in 

other fungal species such as the aflatoxin producing Aspergillus spp., where conidia 

production has been shown to be regulated by the same genes as aflatoxin production (Fox 

& Howlett, 2008). 

Although there was less/little variation in the sensitivity of isolates of the same 

pathogen to 6PP, in the natural populations such variation may occur. Walter et al. (2000) 

produced mutant B. cinerea strains that were tolerant to high concentrations of 6PP by UV 

irradiation, but the tolerance to 6PP was lost after growth on plant material (kiwifruit slices). 

Some fungi that can breakdown 6PP to less toxic compounds have also been reported 

(Cooney & Lauren, 1999). Therefore, there is a possibility that 6PP tolerance/resistance may 

develop in natural populations if 6PP was to be applied as a fungicide. However, since 

biological control agents have more than one mechanism of action, resistance to the 

biocontrol agent is not likely to develop. Testing of sensitivity of B. cinerea to pyrrolnitrin, an 

antifungal substance produced by a biocontrol strain of Pseudomonas chlororaphis, revealed 

a wide range of sensitivity to the compound, but all isolates were equally sensitive to the 
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bacteria (Ajouz et al., 2011). This indicates the involvement of other mechanisms and the 

importance of having more than one mode of action. 

Applying 6PP as a fungicide has several disadvantages which include the facts that it 

is volatile and therefore, it is not likely to persist on the site of application and that it is also 

phytotoxic at high concentrations. The phytotoxic concentrations of 6PP, are much less than 

those reported to be antimicrobial (Cutler et al., 1986; Parker et al., 1997). When produced 

by the biocontrol agent in situ the 6PP concentrations are likely to be higher at the micro-

level of interaction between the competing fungi (Trichoderma and pathogen) and are not 

toxic to the plant. The 6PP will continue to be produced for as long as the Trichoderma 

persists in the plant, which makes it important to choose a strain that is a high producer of 

the secondary metabolite if it is the major mode of action.  

Trichoderma species are amongst the most commercialised genus of biocontrol 

agents and for grapevine trunk diseases they are the only registered (or commercialised) 

biocontrol agents. The selection of potential biocontrol agents is largely based on their ability 

to antagonise pathogens in vitro and activity of their cell wall degrading enzymes (Elad et al., 

1996; Harman et al., 1993 & 2004). For current and potential agents for wound protection the 

same selection methods have been used. However, the production of secondary metabolites 

may be important for some patho-systems and should also be considered in selection of 

potential biocontrol agents. The search for bio-active compounds from biocontrol agents 

should continue to be an important branch of traditional biotechnology, especially in the light 

of continued reduction in chemical fungicides. Secondary metabolites, being natural 

products, are bio-degradable and should attract attention for the development of safe 

fungicides. It would be interesting to also investigate the effect of Trichoderma secondary 

metabolites on pathogen toxin production since the pathogenicity/virulence of some 

grapevine trunk pathogens is attributed to their toxin production. 
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Tables and Figures 

Table 1: Sensitivity of grapevine trunk pathogens to the secondary metabolite, 6-pentyl α-

pyrone (6PP), of Trichoderma spp. based on in vitro inhibition of mycelial growth. The EC50, 

is the effective concentration of 6PP (in mg/L) that inhibited radial mycelial growth by 50%. 

Pathogen Isolate 

STE-U No. 

EC50 (mg/L) of 6PP* 

EC50 Mean EC50
1 

Eutypa lata 5692 48.41 47.41 ± 1.41 

6513 46.41 

Phaeomoniella 

chlamydospora 

6384 90.02 91.72 ± 1.70 

7732 93.42 

Neofusicoccum australe 7025 46.99 47.96 ± 1.54 

7029 48.92 

Neofusicoccum parvum 4439 48.60 46.04 ± 3.62 

4584 43.48 

*EC50 values compared to the control with solvent only (0.1% methanol), computed from a 

Gombertz (sigmoid) function (for all isolates R2 > 0.956; P < 0.001). 

1EC50 ± standard error of mean of each isolate from two independent experiments. 
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Table 2:  Effect of growth medium on sensitivity of grapevine trunk pathogens to 6-pentyl α-

pyrone (6PP), a secondary metabolite from Trichoderma spp. Pathogens were grown on 

medium amended with 150 mg/L of 6PP. 

Medium1 Inhibition of mycelial growth of pathogen isolates (%)2 

Eutypa lata Phaeomoniella 

chlamydospora 

Neofusicoccum 

australe 

Neofusicoccum 

parvum 

5692 6513 6384 7732 4439 4584 7025 7029 

PDA 82.48C 80.31C 70.01E 60.52F 73.97C 78.74B 78.26C 78.13CD 

MEA 73.87E 77.01D 78.07D 87.35BC 64.23E 72.00CD 75.48DEF 76.80CDE 

GCBM 69.45F 76.32D 68.50E 62.68F 64.87E 69.46D 69.88H 74.16EFG 

Pezet‟s 92.05B 100A 85.74C 85.27C 72.19CD 72.96C 71.56GH 73.13GF 

Vogel‟s N 100A 100A 92.09A 90.49AB 83.75A 81.56AB 93.75B 96.88A 

LSD3 2.26 2.98 2.70 4.62 

1PDA – potato dextrose agar; MEA – malt extract agar; GCBM – grape cane based medium 

2Values followed by the same letter are not significantly different for the same pathogen.  

3Data was analysed by ANOVA followed by Fischer‟s LSD test at P = 0.05 for each pathogen 

separately.  
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Figure 1: Time course production of 6-pentyl-α-pyrone (6PP) by T. atroviride (UST1 and 

UST2) and T. harzianum (E77), used in grapevine pruning wound protection, grown in full 

strength PDB in shake (A) and static (B) cultures. Each point on the line is the mean ± the 

standard deviation of three independent biological replicates. 
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Figure 2: LC-MS chromatograms showing the major secondary metabolite peaks from T. 

atroviride (UST1 and UST2) and T. harzianum (E77) isolates grown in full strength potato 

dextrose broth for 20 days with shaking at 120 rpm. The major secondary metabolite in all 

isolates was 6-pentyl α-pyrone with a molecular weight of 167.1 (M+H). Another major peak 

was observed from UST1 with a molecular weight of 727 (M+H) which was found to be 

closely related to peptaibiotics of the trichocombactum group.  
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Figure 3: A comparison of 6-pentyl α-pyrone production between wild type T. atroviride 

(UST1 and UST2) and T. harzianum (E77) used in grapevine pruning wound protection, and 

their mutant strains (MT1, MT2 and ME77). The fungi were grown in full strength potato 

dextrose broth (A) and quarter strength potato dextrose broth (B) for 20 days either shaking 

or static. The mutants were generated by gamma irradiation and are resistant to 

benzimidazole fungicides. Each bar is the mean ± the standard deviation of three 

independent biological replicates. Bars with the same letter on top show means that are not 

significantly different for each medium. LSD = 39.65 (PDB) and 12.39 (quarter PDB). 
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Figure 4: The effect of growth medium (Pezet and grapevine cane based medium (GCBM)) 

and the co-inoculation with a pathogen (E. lata and N. parvum) on the production of 6PP by 

two isolates of T. atroviride, UST1 and UST2. Each bar is the mean ± the standard deviation 

of three independent biological replicates. Bars with the same letter on top show means that 

do not significantly differ according to Fischer‟s least significant difference (LSD; UST1 = 

10.22 and UST2 = 8.72: P = 0.05). 
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Figure 5: Mean mycelial growth inhibition with time, of grapevine trunk pathogens (E. lata, 

Pa. chlamydospora; N. australe and N. parvum) on potato dextrose agar amended with 

varying concentrations (0 – 300 mg/L) of 6-pently α-pyrone (6PP). Radial mycelial growth 

was assessed by calculating the mean diameter from two perpendicular measurements and 

then subtracting 5 mm from each value to account for the original plug. All amended medium 

contained 0.1% of methanol (solvent for 6PP) and hence methanol only amended medium 

(Meth) was included as a control.  
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Figure 6: Inhibition of spore and conidia germination by varying concentration (0-200 mg/L) 

of 6-pentyl α-pyrone (6PP) on grapevine trunk pathogens E. lata, Pa. chlamydospora (Pa. 

chlam), N. australe and N. parvum. Percentages of germinated spores/conidia are means of 

three replicates of two independent experiments. Bars with the same letter on top show no 

significant differences in the percentage germination within a pathogen according to 

Fischer‟s least significant difference (LSD; E. lata = 13.82, Pa. chlamydospora = 10.74, N. 

australe = 12.42, and N. parvum = 9.91: P = 0.05). 
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Chapter 8 
Concluding remarks and future perspectives 

The general aim of this study was to improve grapevine wound protection with 

Trichoderma (T.) spp. biocontrol agents. A better understanding of the factors that influence 

control efficacy from the plant and the biocontrol agent were obtained. The effect of the time 

of pruning and the time of wound treatment after pruning, on the colonisation of grapevine 

wounds by Trichoderma spp. was investigated in an effort to come up with a 

recommendation on the best time to apply Trichoderma products. Several nutritional 

amendments were also tested for their effect on enhancing wound protection efficacy by T. 

atroviride. Benzimidazole resistant mutants of T. atroviride and T. harzianum were also 

developed for possible integration of chemical and biological control. A cell culture model 

system was employed to compare the response of grapevines to a biocontrol agent, T. 

atroviride, and a trunk pathogen, Eutypa (E.) lata, as a first step to determining the 

importance of Trichoderma-grapevine interactions in pruning wound bio-protection. Lastly the 

major secondary metabolite produced by the T. atroviride and T. harzianum isolates used in 

the present study was identified and its role in pruning wound protection investigated.  

8.1 Improving wound protection 

8.1.1 Time of application of Trichoderma biocontrol agents 

The present study has shown that grapevine pruning time has an effect on 

colonisation of pruning wounds by the Trichoderma spp. Budburst is associated with wound 

sap bleeding and a reduction in the carbon and nitrogen content of grapevine canes. In 

addition, wound healing and activation of defence is much faster in an active than dormant 

grapevine. The effect these factors had on wound colonisation is distinctly observed in the 

Cabernet Sauvignon which had higher Trichoderma colonisation in July when it is dormant 

than in August at bud burst. In the Chenin blanc this effect of the physiological state on 

wound colonisation was observed only in 2011. In 2012 the high rainfall and relative humidity 

was associated with higher levels of wound colonisation at both pruning times than in 2011.  

There are no reports on the effect of grapevine physiological state on grapevine 

pruning wound colonisation by Trichoderma spp. Sap-flow or bleeding, the wound healing 

process and defence response, all of which are associated with physiological status of the 

grapevine, could be factors that affect wound colonisation by Trichoderma spp. This can 

explain the variation in pruning wound colonisation and protection by Trichoderma spp. 

observed between grapevine cultivars when pruning was carried out at the same time on all 
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cultivars (Mutawila et al., 2011). While the effect of sap-flow is obvious, the effect of 

grapevine wound healing and response cannot be concluded from the current study and 

should be studied further.  

The application of the biocontrol agents 6 hours after pruning resulted in consistently 

high incidences and wound colonisation extent by the Trichoderma spp. regardless of the 

cultivar, pruning time or weather. This is in agreement with a study from New Zealand 

(Harvey & Hunt, 2006) which found the highest wound colonisation by T. harzianum when it 

was applied 4 hours after pruning. Further evidence of the importance of applying the 

biocontrol agent after 6 hours is shown by the field trials carried out and described in Chapter 

4. In the 2011 trial, the biocontrol agent treatments were applied immediately after pruning 

and low Trichoderma incidences were found. In the follow-up trial, in 2012, the treatments 

were applied six hours after pruning, resulting in Trichoderma incidences that were 

significantly higher. 

It was also found that in both cultivars and trial years, pruning wound infection due to 

natural inoculum was higher in wounds made in late winter (August) than those made earlier 

(in July), regardless of the cultivar‟s physiological state. This confirms the results obtained by 

Van Niekerk et al. (2011), from artificial inoculation of a Chenin blanc vineyard from the same 

area. However, it differs from several studies that have shown that wounds made later in 

winter or in spring are less susceptible to infection compared to wounds made earlier in the 

dormant period (Petzoldt et al., 1981; Larignon & Dubos, 2000; Munkvold & Marois, 1995; 

Úrbez-Torres & Gubler, 2011). From the current and the Van Niekerk et al. (2011) studies it 

can be concluded that in the Stellenbosch area pruning wounds made earlier in winter are at 

less risk of getting infected than those made late. This could be due to the high rainfall 

received in the area in late winter which makes more inoculum available for wound infection. 

However, this cannot be generalised for the whole South African Cape region and future 

studies should validate the risk of infection of wounds made in early and late winter in other 

grapevine producing regions. 

8.1.2 Use of nutritional amendments  

Several nutritional amendments were shown to increase the extent of pruning wound 

colonisation by T. atroviride in a glasshouse trial. However, in field trials none of the 

nutritional amendments gave significant increase in wound colonisation by T. atroviride 

compared to the non-amended suspension. In the first field trial pathogen control was better 

in the Thompson Seedless compared to the Chenin blanc. This was likely due to the higher 

incidences of Trichoderma spp. in the Thompson Seedless compared to the Chenin blanc. 

Garrison, a fungicide containing pruning wound paste was the best treatment in the Chenin 
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blanc while in the Thompson Seedless, Garrison efficacy did not differ from the Trichoderma 

spp. treatments. The lower efficacy of Garrison in the Thompson Seedless was more likely 

due to sap drip-off from the almost vertically pruned canes which aided wash-off on painted 

wounds.  

This study also confirmed results from previous reports that biocontrol agents need 

time to colonise the wound before they can provide protection (Munkvold & Marois, 1993; 

John et al., 2005). After three days of applying the biocontrol agent, it had colonised the 

wound sufficiently to provide similar protection the wound sealant. 

Two amendments namely, the broth and the yeast extract + urea + glucose 

treatments were consistent in their efficacy in the field and provided protection almost similar 

to the wound sealant (Garrison) even when the pathogen was inoculated within a day of 

pruning. The effect of yeast extract + urea + glucose can be attributed to mainly, the faster 

wound colonisation by T. atroviride while for the broth treatment there are several possible 

mechanisms of action. In addition to faster growth of the T. atroviride, the broth also contains 

hydrolytic enzymes (chitinase and glucanase) and chitin oligomers. The hydrolytic enzymes 

are antifungal and hence provide instant wound protection while some proteins are involved 

in activation of defence as shown in Chapter 6. Chitin oligomers are known to induce 

chitinase production in Trichoderma spp. (Brunner et al., 2003; Djonovic et al., 2007; Wasli et 

al., 2010) and also activate plant defence (Barber et al., 1989; Kasprzewska, 2003; Zipfel & 

Robatzek, 2010). Further studies should elucidate the exact mode of action of the broth 

formulae and its possible application in other systems such as in the grapevine nursery 

where it can be used to prime (immunise) nursery plants.  

8.1.3 Integration of biological and chemical control 

 The wild type isolates were found to be naturally resistant to thiophanate methyl. 

However, this fungicide is currently not available in South Africa as it is not registered for any 

crop. Benomyl and carbendazim are available and are registered for the control of Botrytis 

bunch rot on grapevines. It would be easier to extend the label of benomyl and carbendazim 

to include pruning wound protection than to register thiophanate methyl on grapevine. 

Gamma irradiation was able to generate stable benzimidazole resistant Trichoderma 

strains. Mutants from T. atroviride (MT1 & MT2) retained their in vitro antagonism against 

trunk pathogens while the mutant from T. harzianum (MT77) did not. The growth of MT77 

was also different from the wild type (T77) and could not produce the major antifungal 

secondary metabolite secreted by T77 (Chapter 7). Molecular characterisation of MT77 could 

reveal genes that are responsible for the disrupted functions and aid in the annotation of 

important biocontrol genes. The current study shows the potential use of gamma irradiation 
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to generate novel fungal traits in the same way as used in plant breeding to generate plant 

variability. 

 There was no difference in wound protection efficacy between the benzimidazole 

fungicides and biocontrol agents when applied separately, but the combination of the mutant 

MT1 and carbendazim was the best treatment when Phaeomoniella (Pa.) chlamydospora 

was inoculated within a day of pruning. The integration of biological and chemical control 

could provide better wound protection than either method separately. Benomyl and 

carbendazim are only available in a few grapevine producing countries and hence the scope 

of integrating the mutants generated here is limited. However, the mutants can also be used 

in ecological studies such as determining the fate of Trichoderma spp. in the environment 

since their benzimidazole resistance provides a selectable marker. 

8.2 Grapevine response to E. lata and T. atroviride. 

Pruning wound protection by Trichoderma spp. is currently thought to be only due to 

the antagonism of the biocontrol agent on the pathogens or competition for space. While the 

Trichoderma-pathogen interactions are well documented, the Trichoderma-grapevine 

interactions have received little attention. The response of grapevine cell suspension cultures 

to cell free culture filtrates of T. atroviride and Eutypa lata showed that the grapevine 

responds to the biocontrol agent by activating the same defence genes as activated by the 

pathogen. Cell cultures responded to the biocontrol and pathogen culture filtrates in a 

hypersensitive-like response which caused a browning and decline of viability of cell cultures 

and is associated with oxidative burst. This response was more pronounced in the cells 

treated with the biocontrol agent than the pathogen. Elicitors from both fungi caused an up-

regulation of genes involved in the synthesis of phytoalexins and a down regulation of genes 

involved in the flavonoid synthesis indicating a switch to defence metabolism. The pathogen 

elicitors caused a biphasic pattern in the up-regulation of phenylalanine ammonia-lyase 

(PAL) and stilbene synthase (STS) an indication of coordinated expression or metabolic 

channelling. Biphasic gene expression of PAL and STS has also been shown on response of 

grapevine cell cultures to cell extracts of Pa. chlamydospora (Lima et al., 2012). Elicitors 

from T. atroviride caused a slow but higher expression of PAL and STS compared to the 

pathogen elicited cells.  

No prior studies have reported on the initial response of grapevine to infection by E. 

lata. Rotter et al. (2009) reported the over-expression of PAL and CHS seven weeks after 

grapevine plantlets were inoculated with E. lata. The over-expression of CHS is contrary to 

the current study where expression of CHS was down regulated when measured after 6 to 

48 hours. However, the down-regulation of CHS and over-expression of STS in response to 
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infection has been reported in grapevine leaves infected with Plasmopara viticola after 6 to 

48 hours of infection (Vannozzi et al., 2012) similar to results from the current study. Eutypa 

lata infection can therefore trigger a basal defence response from the grapevine which is not 

necessarily sufficient to stop colonisation. The T. atroviride and E. lata elicitors also caused 

an up-regulation of antifungal pathogenesis related proteins (PR 2, 3, 4, 5, 6 and chitinase IV 

(CHIT IV)). The biocontrol elicitors caused down regulation of PR 1 while the pathogen 

elicitor had no effect on PR 1 expression. It cannot be ascertained which defence 

mechanism is triggered by the biocontrol and pathogen elicitors between systemic acquired 

resistance and induced systemic resistance as genes involved in both mechanisms were 

triggered by elicitors from both fungi. 

The gene expression patterns were further confirmed by metabolic profiling of 

products of the defence genes. The higher levels of PAL and STS expression in the cells 

treated with biocontrol elicitor also resulted in a significantly higher increase in total phenolic 

content of these cells compared to the cells treated with the pathogen elicitor. The chitinolytic 

(CHIT IV, PR 3 and 4) and β-1, 3-glucanase activities also increased in the elicitor treated 

cells in a similar pattern as the expression of the genes coding for the enzymes.  

The current study gives first evidence of the role of Trichoderma-grapevine 

interactions in pruning wound protection by Trichoderma species. It has been shown that 

grapevines respond to trunk pathogen infection by production of phenolic compounds that 

limit fungal growth and activity of their hydrolytic enzymes (Del Río et al., 2004; Amalfitano et 

al., 2011). The antifungal activity of chitinase and β-1, 3-glucanase enzymes is well-

established. From Chapter 3, it was shown that the grapevine defence response to wound 

colonisation by Trichoderma spp. may affect establishment of the biocontrol agent on the 

wound. In the same way, the response of the vine to the growth of the biocontrol agent on 

the wound could limit pathogen infection. This could be through induction of defence genes, 

though further research is necessary to confirm if findings on cell cultures are the same as in 

pruning wounds. 

8.3 The role of secondary metabolites in wound protection 

 The present study showed that 6-pentyl α-pyrone (6PP) a volatile antimicrobial is the 

major secondary metabolite from the T. atroviride and T. harzianum isolates used in this 

study. Prior studies on Trichoderma spp. used in grapevine pruning wound protection had 

demonstrated that the different isolates produce volatile antimicrobial compounds (John et 

al., 2004; Kotze et al., 2011), but the identity of the metabolites was not known. Production 

levels of 6PP were dependent on the Trichoderma isolate, growth medium and culture 

conditions. Higher concentrations of 6PP were obtained when the T. atroviride isolates were 
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grown in a grapevine cane extract based medium while for UST1 the concentration further 

doubled when it was co-cultured with Neofusicoccum (N.) parvum. This indicates that 6PP 

production is enhanced by wood tissue as has been shown with secondary metabolite (toxin) 

production in E. lata (Mahoney et al., 2003). The stimulation of 6PP production in the 

presence N. parvum further shows that the metabolite is involved in the Trichoderma-

pathogen interactions in vivo.  

The secondary metabolite, 6PP, reduced mycelial growth, spore and conidia 

germination of grapevine trunk pathogens. The germination of spores and conidia was more 

susceptible than mycelial growth, however, mycelial growth was more susceptible on nutrient 

poor culture media. The presence of 6PP on wounds can, therefore, reduce infection of 

pruning wounds from spores or conidia and inhibit wood colonisation. Wood is a nutrient poor 

substrate and it would be expected that 6PP would inhibit pathogens in this environment. 

Future studies should also look at the effect of 6PP on the production of toxins by pathogens 

as it has been shown to inhibit the production of fusaric acid, a phytotoxic pathogenicity 

factor of maize pathogen Fusarium verticillioides (El-Hasan et al., 2008). The metabolite, 

6PP, has also been reported to have plant growth promotion activity (Vinale et al., 2008). It 

can be speculated that its production on the wound can result in faster wound healing and 

thus decreasing the risk of wound infection by reducing the time it remains susceptible. This 

will need to be explored as it may provide another mechanism of wound protection by the 

biocontrol agent or for possible application of the secondary metabolites in combination with 

fungicides. 

Other secondary metabolites were also found in the Trichoderma spp. culture 

filtrates. These could not be identified due to the low levels secreted. Peptibiotic metabolites 

from the T. atroviride isolates were detected. These compounds are interesting because they 

appear to be novel. Peptibiotic metabolites are known to be potent antibacterial, antifungal, 

antiviral as well as elicitation of plant defence (Szekeres et al. 2005). Further studies should 

identify these metabolites and characterise their biological activity. 

8.4 Conclusion 

Pathogen inoculum is always available in vineyards at pruning and so it is inevitable 

that unprotected wounds are likely to be infected. It is clear from this study that pruning 

wound colonisation by Trichoderma spp. will differ between cultivars depending on when 

they are pruned and the time they are applied on the wound after pruning. From a practical 

point of view, Trichoderma pruning wound protection agents should be applied six hours after 

pruning. This is more important when sap-flow is observed from pruning wounds. 

Understanding the complex mechanisms involved in the three way interaction between 

Stellenbosch University  http://scholar.sun.ac.za



 

199 
 

grapevine host, pathogen and Trichoderma biocontrol agent will aid in obtaining more 

consistent results with biocontrol. Further research is necessary to fully understand 

grapevine response as well as cultivar variability to Trichoderma biocontrol of trunk diseases. 
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Appendix A 

Table 1: Analysis of variance for the effects of year, cultivar and pruning time on the 

incidence and isolation frequency of Trichoderma species from pruning wounds of Chenin 

blanc and Cabernet Sauvignon treated with the bio-control agents after pruning in July and 

August over two trial seasons, 2011 and 2012. 

Factor Degrees of 

freedom 

Incidence Isolation frequency 

F-value P-value F-value P-value 

Year  1 339.78 < 0.001 72.05 < 0.001 

Cultivar (Cult) 1 36.65 < 0.001 1.63 0.021 

Pruning time (Pt) 1 47.90 < 0.001 16.40 < 0.001 

Treatment (Trt) 2 3086.21 < 0.001 1703.88 < 0.001 

Year × Cult 1 255.12 < 0.001 238.58 < 0.001 

Year × Pt 1 3.82 0.053 21.19 < 0.001 

Year × Cult × Pt 1 63.39 < 0.001 29.65 < 0.001 

Year × Cult × Pt × Trt 2 16.13 < 0.001 7.11 < 0.001 

 

Table 2: Analysis of variance for the effects of pruning time, time of wound treatment after 

pruning and the wound treatment agent on the incidence of Trichoderma species in pruning 

wounds of Chenin blanc treated with the bio-control agents, T. atroviride (UST1) and T. 

harzianum (Eco 77), at different times after pruning (0, 6, 24, 48 and 96 hours) in July and 

August over two trial seasons, 2011 and 2012. 

Factor Degrees 

of 

Freedom 

2011 2012 

F-value P-value F-value P-value 

Pruning time (Pt) 1 115.35 < 0.001 0.61 0.444 

Time of wound treatment (Wt) 4 316.68 < 0.001 8.53 0.001 

Treatment agent (Trt) 2 888.32 < 0.001 1421.89 < 0.001 

Pt × Wt 4 40.87 < 0.001 6.07 0.003 

Pt × Tmt 2 19.74 < 0.001 0.79 0.462 

Wt × Trt 8 51.87 < 0.001 5.91 < 0.001 

Pt ×Wt × Trt 8 8.61 < 0.001 4.59 0.001 
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Table 3: Analysis of variance for the effects of pruning time, time of wound treatment after 

pruning and the wound treatment agent on the incidence of Trichoderma species in pruning 

wounds of Cabernet Sauvignon treated with the bio-control agents, T. atroviride (UST1) and 

T. harzianum (Eco 77), at different times after pruning (0, 6, 24, 48 and 96 hours) in July and 

August over two trial seasons, 2011 and 2012. 

Factor Degrees 

of 

Freedom 

2011 2012 

F-value P-value F-value P-value 

Pruning time (Pt) 1 377.27 < 0.001 44.49 < 0.001 

Time of wound treatment (Wt) 4 133.22 < 0.001 48.09 < 0.001 

Treatment agent (Trt) 2 893.04 < 0.001 226.54 < 0.001 

Pt × Wt 4 11.59 < 0.001 6.36 0.002 

Pt × Trt 2 80.83 < 0.001 4.18 0.022 

Wt × Trt 8 32.91 < 0.001 5.62 < 0.001 

Pt ×Wt × Trt 8 7.83 < 0.001 2.43 0.0303 

 

Table 4: Analysis of variance for the effects of pruning time, time of wound treatment after 

pruning and the wound treatment agent on the isolation frequency of Trichoderma species in 

pruning wounds of Chenin blanc treated with the bio-control agents, T. atroviride (UST1) and 

T. harzianum (Eco 77), at different times after pruning (0, 6, 24, 48 and 96 hours) in July and 

August over two trial seasons, 2011 and 2012. 

Factor Degrees 

of 

Freedom 

2011 2012 

F-value P-value F-value P-value 

Pruning time (Pt) 1 207.71 < 0.001 6.81 0.018 

Time of wound treatment (Wt) 4 339.61 < 0.001 28.19 < 0.001 

Treatment agent (Trt) 2 592.73 < 0.001 399.68 0.002 

Pt × Wt 4 46.94 < 0.001 6.67 < 0.001 

Pt × Trt 2 37.78 < 0.001 2.91 0.066 

Wt × Trt 8 58.30 < 0.001 12.54 < 0.001 

Pt ×Wt × Trt 8 7.26 < 0.001 2.71 0.017 
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Table 5: Analysis of variance for the effects of pruning time, time of wound treatment after 

pruning and the wound treatment agent on the isolation frequency of Trichoderma species in 

pruning wounds of Cabernet Sauvignon treated with the bio-control agents, T. atroviride 

(UST1) and T. harzianum (Eco 77), at different times after pruning (0, 6, 24, 48 and 96 

hours) in July and August over two trial seasons, 2011 and 2012. 

Factor Degrees 

of 

Freedom 

2011 2012 

F-value P-value F-value P-value 

Pruning time (Pt) 1 54.65 < 0.001 11.33 0.003 

Time of wound treatment (Wt) 4 220.31 < 0.001 82.51 < 0.001 

Treatment agent (Trt) 2 557.77 < 0.001 192.60 < 0.001 

Pt × Wt 4 33.22 < 0.001 3.09 0.042 

Pt × Trt 2 84.71 < 0.001 3.02 0.060 

Wt × Trt 8 39.04 < 0.001 22.43 < 0.001 

Pt ×Wt × Trt 8 9.55 < 0.001 2.20 0.048 

 

Table 6: Analysis of variance for the effects of year, cultivar and pruning time on the 

incidence of grapevine trunk pathogens in pruning wounds of Chenin blanc and Cabernet 

Sauvignon treated with the bio-control agent after pruning in July and August over two trial 

seasons, 2011 and 2012. 

Factor Degrees of 

freedom 

F-value P-value 

Year  1 41.91 < 0.001 

Cultivar (Cult) 1 0.01 0.907 

Pruning time (Pt) 1 52.70 < 0.001 

Year × Cult 1 6.77 0.0104 

Year × Pt 1 2.17 0.1431 

Year × Cult × Pt 1 0.57 0.4528 
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Table 7: Analysis of variance for the effects of pruning time, time of wound treatment after 

pruning and the wound treatment agent on the incidence of grapevine trunk pathogens in 

pruning wounds of Chenin blanc treated with the bio-control agents, T. atroviride (UST1) and 

T. harzianum (Eco 77), at different times after pruning (0, 6, 24, 48 and 96 hours) in July and 

August over two trial seasons, 2011 and 2012. 

Factor Degrees 

of 

Freedom 

2011 2012 

F-value P-value F-value P-value 

Pruning time (Pt) 1 14.60 0.001 30.94 < 0.001 

Time of wound treatment (Wt) 4 2.84 0.055 14.21 < 0.001 

Treatment agent (Trt) 2 4.86 0.013 168.39 < 0.001 

Pt × Wt 4 5.56 0.004 4.97 0.007 

Pt × Trt 2 0.92 0.405 5.77 0.006 

Wt × Trt 8 2.36 0.035 3.17 0.007 

Pt ×Wt × Trt 8 1.13 0.365 3.03 0.009 

 

Table 8: Analysis of variance for the effects of pruning time, time of wound treatment after 

pruning and the wound treatment agent on the incidence of grapevine trunk pathogens in 

pruning wounds of Cabernet Sauvignon treated with the bio-control agents, T. atroviride 

(UST1) and T. harzianum (Eco 77), at different times after pruning (0, 6, 24, 48 and 96 

hours) in July and August over two trial seasons, 2011 and 2012. 

Factor Degrees 

of 

Freedom 

2011 2012 

F-value P-value F-value P-value 

Pruning time (Pt) 1 3.98 0.061 18.70 0.004 

Time of wound treatment (Wt) 4 6.62 0.002 0.68 0.616 

Treatment agent (Trt) 2 5.05 0.011 115.5 < 0.001 

Pt × Wt 4 5.89 0.003 0.63 0.650 

Pt × Trt 2 2.86 0.069 10.20 < 0.001 

Wt × Trt 8 0.58 0.785 0.81 0.597 

Pt ×Wt × Trt 8 0.52 0.838 0.50 0.849 
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Appendix B 

Table 1: Analysis of variance for the incidence of Trichoderma atroviride and Phaeomoniella 

(Pa.) chlamydospora in detached cane assay, and the chitinolytic activity of culture filtrates 

from T. atroviride grown in suspension with or without peptone. 

Factor Degrees of 

Freedom 

F-value P-value 

T. atroviride 10 12.46 <0.0001 

Pa. chlamydospora 10 17.06 <0.0001 

Chitinolytic activity 1 23.61 <0.0001 

 

Table 2: Analysis of variance for the isolation frequency of Trichoderma atroviride and 

Phaeomoniella (Pa.) chlamydospora in detached cane assay. 

Factor Degrees of 

Freedom 

T. atroviride Pa. chlamydospora 

F-value P-value F-value P-value 

Treatment (trt) 10 3.27 .0008 5.51 <0.0001 

Isolation zone (Iso Z) 4 63.40 <0.0001 3.31 0.0107 

Trt × Iso Z 40 1.66 0.0071 4.13 <0.0001 

 

Table 3: Analysis of variance on the incidence of Trichoderma spp. and Phaeomoniella (Pa.) 

chlamydospora in the Chenin blanc and Thompson Seedless. 

Factor Degrees 

of 

Freedom 

Trichoderma spp. Pa. chlamydospora 

F-value P-value F-value P-value 

Cultivar (Cult) 1 29.57 < 0.001 21.61 < 0.001 

Treatment (Trt) 7 14.02 < 0.001 11.32 < 0.001 

Cult × Trt 7 16.63 < 0.001 7.14 < 0.001 
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Table 4: Analysis of variance on the incidence of Trichoderma spp. and Phaeomoniella (Pa.) 

chlamydospora for the cultivars separately. 

Factor Degrees 

of 

Freedom 

Chenin blanc Thomson Seedless 

F-value P-value F-value P-value 

Natural Inoculum 7 3.19 0.018 3.39 0.007 

Trichoderma spp. 7 5.81 < 0.001 10.20 < 0.001 

Pa. chlamydospora 7 9.64 < 0.001 6.41 < 0.001 

 

Table 5: Analysis of variance for incidence of Trichoderma spp., Phaeomoniella (Pa.) 

chlamydospora and natural pathogens infection in 2012. 

Factor Degrees of 

Freedom 

F-value P-value 

Natural Inoculum 7 18.27 < 0.001 

Trichoderma spp. (Trich) 7 54.15 < 0.001 

Pa. chlamydospora (Pch) 7 22.69 < 0.001 

Day 3 32.02 < 0.001 

Trich × Day 21 0.95 0.527 

Pch × Day 21 3.86 < 0.001 
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Figure 1: Graph of the actual versus the predicted isolation frequencies of T. atroviride for 

the treatments, UST1 water suspension (UST1 in water) and yeast extract + urea + glucose 

(Y.E+Urea+Gluc). 
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Appendix C 

Table 1: The analysis of variance for the differences in D10 values for the susceptibility the 

wild type Trichoderma isolates to gamma irradiation. Also shown is the analysis of variance 

for the incidence of Trichoderma atroviride in grapevine pruning wounds treated with the wild 

type or carbendazim resistant mutant strains of biocontrol agent alone or in combination with 

a fungicide.  

Factor Degrees of 

Freedom 

F-value P-value 

D10-values 2 1.39 0.3310 

Treatment (trt) 4 76.34 < 0.0001 

Inoculation day (Inoc D) 2 2.19 0.1244 

Trt × Inoc D 8 1.05 0.4163 

 

Table 2: Analysis of variance for the incidence of Phaeomoniella chlamydospora in 

grapevine pruning wounds inoculated with the pathogen a day or seven days after pruning 

and treatment with Trichoderma atroviride and fungicides separately or in combination. The 

analysis of variance for the incidence of grapevine trunk pathogens in un-inoculated wounds 

is also shown.  

Factor Degrees of 

Freedom 

F-value P-value 

Treatment (trt) 6 25.08 < 0.0001 

Inoculation day (Inoc D) 2 152.06 < 0.0001 

Trt × Inoc D 12 6.04 < 0.0001 

Natural Inoculum 6 13.38 < 0.0001 
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Figure 1: Sensitivity of wild type isolates of Trichoderma harzianum (T77) and T. atroviride 

(UST1 and UST2) to gamma irradiation. Correlation analysis revealed strong negative 

relationship between gamma irradiation dosage and conidial colony forming units. 

Correlation coefficients (r2) for the isolates were 0.938, 0.879 and 0.944 for T77, UST1 and 

UST2, respectively.  
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Appendix D 

Table 1: Quantitative PCR (qPCR) parameters, after validation, of the amplification of 

defence related and reference genes used in the gene expression experiment. 

Gene qPCR efficiency Slope 
(M-value) 

R2 

PR1 0.950 -3.343 0.985 

PR2 0.976 -3.380 0.994 

PR3 1.092 -3.119 0.985 

PR4 0.953 -3.475 0.998 

PR5 0.993 -3.337 0.986 

PR6 1.041 -3.210 0.995 

CHIT IV 0.993 -3.477 0.999 

PAL 0.992 -3.342 0.949 

CHS1 0.974 -3.385 0.984 

CHS3 1.041 -3.209 0.996 

STS 0.986 -3.353 0.997 

STS2 1.039 -3.210 0.994 

4CL 1.030 -3.249 0.996 

Actin 0.959 -3.412 0.998 

60SRP 0.983 -3.492 0.998 

VATP16 0.973 -3.389 0.992 
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Table 2: Analysis of variance for the differences total phenolic content, chitinolytic and 1, 3-

glucanase activity in cell suspension cultures elicited with cell free culture filtrates. 

Factor Degrees of 

Freedom 

F-value P-value 

Phenol content 3 118.08 < 0.001 

Glucanase activity  3 113.32 < 0.001 

Chitinolytic activity 3 18.51 0.0014 
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Appendix E 

Table 1: Analysis of variance on the effect of culture conditions on the time course 

production of 6-pentyl α-pyrone. 

Factor Degrees of Freedom F-value P-value 

Isolate (I) 2 16.12 < 0.001 

Condition (C) 1 20.02 < 0.001 

Time (T) 4 24.42 < 0.001 

I × C 2 11.47 < 0.001 

I × T 8 18.23 < 0.001 

T × C 4 10.63 < 0.001 

I × C × T 8 14.62 < 0.001 

 

Table 2: Analysis of variance for the differences in 6-pentyl α-pyrone production in different 

media and culture conditions. 

Factor Degrees of Freedom F-value P-value 

Isolate (I) 5 17.15 < 0.001 

Medium (M) 1 9.63 0.005 

Condition (C) 1 18.32 < 0.001 

I × M 5 21.34 < 0.001 

I × C 5 28.11 < 0.001 

M × C 1 4.69 0.041 

I × M × C 5 42.54 < 0.001 
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Table 3: Analysis of variance for the effect of medium and co-culturing with a pathogen on 

6PP production. 

Factor Degrees of 

Freedom 

F-value P-value 

Isolate (I) 1 7.07  0.014 

Medium (M) 1 5.13 0.033 

Co-culture(Cc)(Medium) 1 2.23  0.149 

I × M 1 0.39  0.540 

Cc (I × M) 1 4.85  0.038 

 

Table 4: Regression coefficient and probability of fit for the Gombertz (sigmoidal) function 

used to determine the LD50 for the sensitivity of grapevine trunk pathogens to 6PP. 

Pathogen Isolate R2 P-value 

Eutypa lata 5692 0.97 0.001 

6513 0.96 0.002 

Phaeomoniella chlamydospora 6384 0.98 < 0.001 

7732 0.98 < 0.001 

Neofusicoccum australe 7025 0.96 0.002 

7029 0.95 0.003 

Neofusicoccum parvum 4439 0.98 0.003 

4584 0.98 0.002 
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Table 5: Analysis of variance on the difference in susceptibility to 6PP between isolates of 

grapevine trunk pathogens as measured by their LD50. 

Pathogen Degrees of 

Freedom 

F-value P-value 

E. lata 1 0.90 0.518 

Pa. chlamydospora 1 1.86 0.402 

N. australe 1 0.69 0.558 

N. parvum 1 123.16 0.057 

 

Table 6: Analysis of variance on the effect of growth medium on isolates of grapevine trunk 

pathogens sensitivity to 6PP. 

Factor Degrees of 

Freedom 

F-value P-value 

Pathogen (P) 2 40233.50 < 0.001 

Isolate (Pathogen) 3 48.10 < 0.001 

Medium (M) 14 10647.00 < 0.001 

M × P 28 388.55 < 0.001 

Isolate (P × M) 42 19.22 < 0.001 

 

Table 7: Analysis of variance on the effect of different concentrations of 6PP on the 

germination of spores and conidia of grapevine trunk pathogens. 

Pathogen Degrees of 

Freedom 

F-value P-value 

E. lata 4 53.31 < 0.001 

Pa. chlamydospora 4 91.31 < 0.001 

N. australe 4 85.89 < 0.001 

N. parvum 4 94.29 < 0.001 
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