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Abstract

The cross-entropy method for multi-objective optimisation (MOO CEM)

was recently introduced by Bekker & Aldrich (2010) and Bekker (2012).

Results presented by both show great promise. The MOO CEM assumes

that decision variables are independent. As a consequence, the question

arises: under which circumstances would an algorithm that accounts for

relationships between decision variables outperform the MOO CEM? Two

algorithms reported to account for relationships between decision variables,

the multi-objective covariance matrix adaptation evolution strategy (MO-

CMA-ES) and Pareto differential evolution (PDE), are selected for com-

parison. In addition, two hybrid algorithms (Hybrid 1 and Hybrid 2) based

on the MOO CEM are created. These five algorithms are applied to a

set of 46 continuous problems, six instances of the mission-ready resource

(MRR) problem, and three instances of a dynamic, stochastic buffer al-

location problem (BAP). Performance is measured using the hypervolume

indicator and Mann-Whitney U-tests. One of the primary findings is that

accounting for relationships between decision variables is beneficial when

solving small to medium-sized problems. In these cases, the MO-CMA-ES

typically outperforms the other algorithms. However, on large problems,

Hybrid 1 and the MOO CEM typically perform best.
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Opsomming

Die kruis-entropie metode vir meerdoelige optimering (MOO CEM) is on-

langs deur Bekker & Aldrich (2010) en Bekker (2012) bekendgestel. Hul

resultate is belowend. Die MOO CEM neem aan dat besluitnemingsveran-

derlikes onafhanklik is van mekaar. Gevolglik ontstaan die vraag: onder

watter omstandighede sal ’n optimeringsalgoritme wat moontlike verhou-

dings tussen besluitnemingsveranderlikes in ag neem, beter vaar as die MOO

CEM? Twee bestaande algoritmes, beide gerapporteer vir hul vermoë om

moontlike verhoudings tussen besluitnemingsveranderlikes in ag te neem,

naamlik die meerdoelige optimering kovariansiematriksaanpassing-evolusie-

strategie (MO-CMA-ES) en Pareto afgeleide evolusie (PDE), word met die

MOO CEM vergelyk. Twee nuwe hibriedalgoritmes (Hibried 1 en Hibried

2) word ook ter wille van dié vergelyking geskep. Die vyf algoritmes word

op ’n stel van 46 kontinue probleme, ses statiese kombinatoriese gevalle

en drie dinamies, stogastiese gevalle toegepas. Die prestasie van die algo-

ritmes word deur middel van die hipervolume-aanwyser en Mann-Whitney

U-toetse gemeet. ’n Primêre bevinding is dat dit voordelig is om moont-

like verhoudings tussen besluitnemingsveranderlikes in ag te neem wanneer

klein na medium-grootte probleme opgelos word. Vir hierdie gevalle presteer

die MO-CMA-ES tipies beter as die ander algoritmes. Vir groot probleme

presteer Hibried 1 en die MOO CEM beter as die ander algoritmes.
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τ2 Parameter used for introducing a flat region bias when

constructing a WFG problem
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Nomenclature

τ3 Parameter used for introducing a decision variable de-

pendent bias when constructing a WFG problem

τ4 Parameter used for shifting the optimum of an objec-

tive function in linear fashion when constructing a WFG

problem

τ5 Parameter used for shifting the optimum of an objec-

tive function to be deceptive when constructing a WFG

problem

τ6 Parameter used for changing a unimodal objective func-

tion to be multimodal when constructing a WFG prob-

lem

τ8 Parameter used for non-separable reduction when con-

structing a WFG problem

θ Constant used to determine the locations of disconnected

regions of a WFG problem

υ2 Parameter used for introducing a flat region bias when

constructing a WFG problem

υ3 Parameter used for introducing a decision variable de-

pendent bias when constructing a WFG problem

υ5 Parameter used for shifting the optimum of an objec-

tive function to be deceptive when constructing a WFG

problem

υ6 Parameter used for changing a unimodal objective func-

tion to be multimodal when constructing a WFG prob-

lem

ϕj The weight of MRR type j

xxvi
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Nomenclature

$3 Result of a reduction function (typically a weighted sum

reduction function) used for introducing a decision vari-

able dependent bias when constructing a WFG problem

% The percentage of population t used to estimate popu-

lation t+ 1

Roman Symbols

Aj The number of MRRs of type j that are available

a A vector of objective function values

B Normalised eigenvectors of the covariance matrix C

Bi Buffer size i

b A vector of objective function values

C Covariance matrix

c1 A constant used for the mutative step size control rule

c2 A value used for the mutative step size control rule

c3 A value used for the mutative step size control rule

CC Constant used to determine the number of convex re-

gions of a WFG problem

cc Constant for updating C

CD Constant used to determine the number of disconnected

regions of a WFG problem

cm Constant value used for mutation in DE

cp Constant for updating the covariance matrix evolution

path pc

cr Constant value used for recombination in DE

xxvii
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Nomenclature

cs Constant for updating the step size evolution pathps

cv Constant used for PDE

D Diagonal matrix made up of the square roots of the

eigenvalues of the covariance matrix C

D Cross-entropy of two probability density functions

ds Damping parameter

ei(x) The ith constraint associated with x

f∗(x) Optimal objective function value

fi(x) The ith objective associated with x

g∗(x) Optimal probability density function when deriving the

CEM

g(x) Probability density function when deriving the CEM

h(x) Probability density function when deriving the CEM

I Identity matrix

i General index

J Random value from a uniform (0,1) distribution

j General index

JV Random value uniformly drawn to fall between 1 and V

K Number of constraints

k General index

M Number of objective functions

m Number of task types for the MRR problem

N Population size

xxviii
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Nomenclature

n Number of MRR types for the MRR problem

P Matrix of random values used to construct L1ZDT prob-

lems

pc The covariance matrix evolution path

pg The goal value of the step size evolution path

ph Probability that a histogram will be inverted when using

the MOO CEM

ps The step size evolution path

pt Threshold value for updating the covariance matrix evo-

lution path

Q Matrix of random values used to construct L1ZDT prob-

lems

R Rotation matrix used in construction of R problems

v Reference parameter vector for CEM

Ri The number of MRRs required for tasks of type i

ri Randomly chosen indices with i = 1, 2, 3 used for DE

S Indicates whether or not the offspring of a parent ranked

as high or higher than the parent

t Index for the current generation

u Parameter vector for CEM

V Number of decision variables

V1 The number of decision variables used in the first objec-

tive

Vn The number variables to be reduced using a non-separable

reduction function when constructing a WFG problem

xxix
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Nomenclature

Vw The number of variables to be reduced using the weighted

sum reduction function when constructing a WFG prob-

lem

wj The weight assigned to the jth variable when using a

weighted sum reduction function when constructing a

WFG problem

X Entire population of decision vectors x1, . . . , xN

xi Decision variable i

xm Temporary vector used for DE

x A vector or matrix of decision variables

yi Variables used for documenting the WFG problems

y′i Temporary placeholders for WFG problems, with i =

1, 2, 3, 4

y′′i Temporary placeholders for WFG problems, with i =

1, 2

z A sample from a N(0, 1) distribution

Terminology

a posteriori optimisation Optimisation methods where user preferences taken into

account after the results of a mathematical model is

known

a priori optimisation Optimisation methods where user preferences are incor-

porated into a mathematical model before the results

are known

elitism The practise of carrying the best solutions found in gen-

eration t over to generation t+1 in order to avoid losing

these solutions

xxx
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Nomenclature

feasible set The set of decision vectors that satisfy all constraints

metaheuristic Algorithm designed to solve approximately a wide range

of hard optimisation problems without having to deeply

adapt to each problem

non-dominated vector A decision vector x is said to be non-dominated regard-

ing a subset A of the feasible set, if there exists no xi

in A so that xi dominates x.

Pareto front The set of objective vectors associated with the Pareto

optimal set

Pareto optimal A decision vector that is non-dominated with regard to

entire feasible set is said to be Pareto optimal

Pareto optimal set The set of Pareto optimal vectors is referred to as the

Pareto optimal set

Pareto ranking The process of finding non-dominated fronts and sets

Other Symbols

≺ For a problem where all objectives have to minimised,

xi ≺ xj means that xi dominates xj

∼ For a problem where all objectives have to minimised,

xi ∼ xj means that xi is indifferent to xj

� For a problem where all objectives have to minimised,

xi � xj means that xi weakly dominates xj

xxxi
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Chapter 1

Introduction

The main focus of this study falls on the effect of accounting for possible relation-

ships between decision variables on the performance of multi-objective optimisation

algorithms under different circumstances.

This chapter presents the background to the research problem, poses the research

question and lays out a simple methodology.

1.1 Background and research rationale

Multi-objective optimisation problems are not just encountered in the field of Industrial

Engineering, but in other disciplines as well. Whereas finding the solution to a single-

objective optimisation problem involves finding the single absolute optimum point,

finding the solution to a multi-objective problem involves finding a set of good solutions.

This means that solving multi-objective problems requires more evaluations of the

problem and is therefore more computationally expensive than solving single-objective

problems.

For his PhD, Bekker (2012) focused on lessening this computational burden. His

multi-objective optimisation cross-entropy method (MOO CEM) algorithm performs

well when compared to the multi-objective genetic algorithm implemented in Matlab

2007b. This comparison was done on a set of benchmark problems and a number of

real-world problems.

As it stands, the MOO CEM selects the values of candidate solutions variables

independently. This effectively ignores relationships that might exist between variables.

1
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1.2 Research question

Decision variables for real-world problems are not necessarily completely independent.

The term relationship is used to indicate that variable values for such problems

should preferably not be selected independently since simply improving one variable

will not necessarily yield better objective function values. Improved combinations of

variables need to be found in order to find better objective function values. It is used to

group together three terms recently used in literature on multi-objective test problem

design: linkage as used by Deb et al. (2006), rotated variables as used by Iorio & Li

(2006), and non-separability as used by Huband et al. (2006). All three works propose

multi-objective test problems for algorithm comparison with different mechanisms for

introducing relationships between decision variables.

It is suspected that an algorithm that accounts for possible relationships between

decision variables could outperform an algorithm that does not do so for some classes

of problems.

1.2 Research question

From the background, it follows that the basic research question of this project is:

Would a multi-objective optimisation algorithm that accounts for

possible relationships between decision variables outperform an

algorithm that does not do so?

The No Free Lunch theorems put forth by Wolpert & Macready (1997) state that

even though an optimisation algorithm might outperform another algorithm on a cer-

tain class of problems, the “average performance of any pair of optimisation algorithms

across all possible problems is identical”. Taking this into account, there is a simple

answer to the question above: yes, in some cases an algorithm that accounts for rela-

tionships between decision variables would outperform an algorithm that does not do

so. However, on average, algorithm performance would be identical.

The research question is thus formulated below:

For which of the problems investigated does a multi-objective al-

gorithm that accounts for possible relationships between decision

variables outperform a multi-objective algorithm that does not do

so?

2
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1.3 Methodology

1.3 Methodology

In order to answer the research question, the methodology as discussed below is fol-

lowed.

Figure 1.1 shows the typical procedure followed to compare two or more multi-

objective optimisation algorithms as described by Huband et al. (2006).

(A) Select algorithms for comparison

(B) Select a set of test problems

(C) Select a set of performance indicators

(D) Obtain results for each problem

(E) Generate performance indicator values

(F) Draw conclusions

Figure 1.1: Typical methodology for comparing multi-objective optimisation algo-

rithms.

Referring to Figure 1.1, a more detailed version of the methodology used is as

follows:

1. Select algorithms for comparison (A) – This project builds on the research

done by Bekker & Aldrich (2010) and Bekker (2012). The first algorithm is

therefore the MOO CEM. In addition to the MOO CEM, two existing algorithms

noted for their ability to solve problems where there are relationships between

decision variables were identified, namely the multi-objective covariance matrix

adaptation evolution strategy (MO-CMA-ES) and Pareto differential evolution

(PDE). In addition to these, two hybrid algorithms (Hybrid 1 and Hybrid 2)

were developed out of research curiosity. There are thus five algorithms in total.

These algorithms are discussed in Chapter 3.

2. Select a set of test problems (B) – The test suite consists of 28 continu-

ous optimisation problems with different characteristics (as discussed in Chapter

3
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1.4 Conclusion: Introduction

4), a static combinatorial problem (as discussed in Chapter 5) and a dynamic

combinatorial problem (as discussed in Chapter 6).

3. Select a set of performance indicators (C) – The primary performance

indicator is the hypervolume indicator. The relative run times of algorithms are

also recorded. More information on the performance indicators can be found in

Chapter 7.

4. Obtain results for each problem (D) and generate performance indi-

cator values (E) – Keeping in mind the aim of Bekker (2012) to reduce the

computational burden of solving multi-objective problems, the maximum num-

ber of function evaluations will be kept relatively small throughout. The results

for the continuous, static combinatorial and dynamic combinatorial problems can

be found in Appendices A, B and D respectively. The results are discussed in

Chapter 8.

5. Draw conclusions (F) – The conclusions drawn, along with recommendations

for future research, can be found in Chapter 9.

1.4 Conclusion: Introduction

This chapter presented the research rationale, posed the research question and laid out

a simple methodology.

The next chapter will focus on some basics regarding multi-objective optimisation,

specifically focusing on multi-objective optimisation using metaheuristics.

4
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Chapter 2

An introduction to

multi-objective optimisation

Chapter 1 provided the background to the research problem, put forth the primary

research question, and laid out the basic methodology.

In this chapter, important concepts relating to multi-objective optimisation are

discussed. First, a short introduction to multi-objective optimisation is presented,

followed by a short history of Pareto-based multi-objective optimisation. Next, some

important concepts are explained briefly, including concepts such as Pareto dominance,

Pareto optimality, metaheuristics and elitism.

2.1 A short introduction to multi-objective optimisation

Multi-objective problems are found in design, manufacturing, logistics, health care and

financing, to name a few areas. A multi-objective problem generally consists of a set

of M objective functions (f1(x), . . . , fM (x)). These objective functions are functions

of a set of V decision variables (x1, . . . , xV ) and are subject to a set of K constraints

(e1(x), . . . , eK(x)). The constraints are also functions of the decision variables (Zitzler,

1999).

Figure 2.1 shows how an unconstrained multi-objective problem with two decision

variables and two objectives maps from the decision space to the objective space.

A multi-objective problem is only truly multi-objective if the objectives are con-

flicting. If the objectives do not conflict, a single optimal solution exists (Zitzler, 1999).

5
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2.1 A short introduction to multi-objective optimisation

x1

x2

f1

f2

Decision space Objective space

Figure 2.1: Multi-objective optimisation mapping.

Many approaches to solving multi-objective problems exist. A few such approaches

are:

• The weighted sum approach – The various objective functions are each as-

signed a weight and summed together to form one objective function with a single

optimal answer. Even though the weights assigned to each objective can be varied

in order to find more than one solution to the problem, many points that could

otherwise have been considered optimal are missed (De Weck, 2004).

• Lexicographic ordering – The objective function considered to be most im-

portant is optimised. The second most important objective function is then op-

timised without lowering the quality of the first objective value. This is done for

all objectives (Coello Coello, 2006).

• Multi-attribute utility analysis – Optimality is measured in terms of utility

to the decision-maker. Despite being efficient and widely used, this method re-

quires extensive interviews in order to determine the relevant utility functions. It

should be noted that decision makers might be influenced by the structure of the

interviews (De Weck, 2004).

6
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2.2 A short history of Pareto-based multi-objective optimisation

• Goal programming – Each objective function is associated with a target value.

Deviations from the target values are minimised. This can be done using a

weighted sum approach, or lexicographically.

• Multi-objective metaheuristics – Metaheurstics (such as the genetic algo-

rithm, simulated annealing and differential evolution) are extended for use on

multi-objective problems. This is usually done using the concept of Pareto dom-

inance, as discussed in Section 2.3.

These optimisation approaches can generally be classified into three main categories

(De Weck, 2004):

• Methods where decision-maker preferences are incorporated into the mathemat-

ical model before the results are known. Such methods are said to be a priori.

The weighted sum approach, lexicographic ordering, multi-attribute utility anal-

ysis and goal programming are typical examples.

• Methods where decision-maker preferences are taken into account during the pro-

cess of searching for results.

• Methods where decision makers are given results from a mathematical model,

which they can then use to make an informed decision. These techniques are

referred to as a posteriori methods. The use of multi-objective metaheuristics

comes to mind.

Focus of this work falls on a posteriori methods. More specifically, this study focuses

on Pareto-based multi-objective metaheuristics.

2.2 A short history of Pareto-based multi-objective opti-

misation

In 1881, an economics professor at King’s College in London, Prof. FY Edgeworth,

defined the optimum of a multi-criteria problem where one criterion A is to be max-

imised and another criterion B minimised (Coello Coello, 2006; De Weck, 2004). From

Edgeworth (1881): “It is required to find a point (x, y) such that in whatever direction

7
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2.3 Pareto dominance and other important concepts

we take an infinitely small step, A and B do not increase together, but that, while one

increases, the other decreases.”

A similar definition, known as the Pareto optimum, can be seen as a generalisation

of Edgeworth’s definition (Coello Coello, 2006) and was proposed by Vilfredo Pareto

in 1896: “The optimum location of the resources of a society is not attained so long

as it is possible to make at least one individual better off in his own estimation while

keeping others as well off as before in their own estimation.”

David Schaffer is generally credited with the first multi-objective evolutionary al-

gorithm (put forth in 1985): the vector evaluated genetic algorithm (VEGA). VEGA

is not a Pareto-based algorithm but made use of subpopulations for selection (Coello

Coello, 2006).

In 1989, more than a century after the concept was first introduced, David Gold-

berg suggested using Pareto optimality for selection in multi-objective evolutionary

algorithms (Coello Coello, 2006). This has since been a popular method for solving

multi-objective problems – especially two- and three-objective problems.

2.3 Pareto dominance and other important concepts

When solving single-objective optimisation problems, there exists a single optimal so-

lution. This is not the case when solving multi-objective problems. Let us look at the

example of minimising the total cost of a system while minimising its stockouts. From

single-objective optimisation, there exists a solution where total cost is at a minimum,

a solution where the number of stockouts is at a minimum and a trade-off curve where

neither the total cost, nor the number of stockouts are minimal but where neither of

the objectives can be improved upon without detriment to the other. This is an in-

formal explanation of the Pareto front. In order to define it formally, we need several

definitions.

The first important definition is that of Pareto dominance. From Zitzler (1999):

Definition 2.1. Pareto dominance Consider a case where all objective functions are

to be minimised. For any two objective vectors, a and b, a is said to be equal to b

(a = b) if ai = bi for i = 1, . . . ,M . Similarly:

a ≤ b if ai ≤ ai for i = 1, . . . , k, and

8
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2.3 Pareto dominance and other important concepts

a < b if ai ≤ ai for i = 1, . . . , k and a 6= b.

For any two decision vectors xi and xj ,

xi is said to dominate xj (xi ≺ xj) if f(xi) < f(xj),

xi is said to weakly dominate xj (xi � xj) if f(xi) ≤ f(xj),

xi is said to be indifferent to xj (xi ∼ xj) if f(xi) 6≤ f(xj) and f(xj) 6≤ f(xi).

The definitions of the ≥ and >, and � and � relations are similar. The � and �
relations are used when objectives are to be maximised.

The dominance relations in Definition 2.1 give rise to the notion of non-dominance:

Definition 2.2. A non-dominated vector A decision vector x is said to be non-

dominated regarding a subset A of the feasible set, if there exists no xi in A so that

xi ≺ x.

The set of decision vectors that satisfy all constraints is referred to as the feasible set

(Zitzler, 1999). If a decision vector x is non-dominated with regard to the entire feasible

set, x is said to be Pareto optimal. The collection of all Pareto optimal solutions is

called the Pareto optimal set and the associated objective function vectors are referred

to as the Pareto front. Figure 2.2 shows a Pareto front for two minimised objectives.

f1

f2

Members of Pareto front

Figure 2.2: Pareto front explained for two minimised objectives.
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2.4 Preference order ranking

Pareto ranking involves finding all non-dominated fronts and sets, including the

Pareto optimal set and front. As mentioned above, the Pareto optimal set and front

(also referred to as the first set and front in this work) are non-dominated in terms

of the entire population. The second front is non-dominated in terms of the solutions

excluding the first front. The third front is non-dominated in terms of the solutions

excluding the first and second fronts, etc.

Pareto ranking was used for selection for all the algorithms discussed in Chapter 3.

2.4 Preference order ranking

As the number of objectives increases, the size of the Pareto optimal set and front

increases, making Pareto ranking less effective for selection (Di Pierro et al., 2007).

Das (1999) proposed a more stringent selection criterion called preference ordering.

Di Pierro et al. (2007) showed that the size of the Pareto optimal set does not increase

as dramatically when using preference order ranking as is the case when Pareto ranking

is used. However, preference order ranking is less effective at maintaining diversity than

Pareto ranking (Di Pierro et al., 2007).

A preference order algorithm was implemented in Matlab and experimented with

for solving the mission-ready resource problem, described in Chapter 5.

2.5 What are metaheuristics?

As mentioned at the start at of this chapter, the focus of this study falls on Pareto-based

metaheuristics for multi-objective optimisation. Wheras the previous section discussed

some important concepts regarding Pareto optimality, this section covers some basic

concepts regarding metaheuristics.

Boussäıd et al. (2013) provide this simple definition of a metaheuristic: “A meta-

heuristic is an algorithm designed to solve approximately a wide range of hard opti-

misation problems without having to deeply adapt to each problem.” They define hard

optimisation problems as “problems that cannot be solved to optimality, or to any

guaranteed bound, by an exact (deterministic) method within a ‘reasonable’ amount

of time.”

10
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2.5 What are metaheuristics?

Metaheuristics are typically contrasted with problem-specific heuristics, with the

Greek prefix “meta” indicating that such heuristics are higher-level heuristics than

their problem-specific counterparts (Boussäıd et al., 2013). Unlike problem-specific

exact algorithms, which guarantee the optimality of the solutions found, the solutions

found by metaheuristics are not regarded as optimal but rather as “near-optimal”

(Talbi, 2009). In contrast to approximation algorithms, metaheuristics also do not

quantify how far away the optimal solutions are from the solutions obtained (Talbi,

2009).

Successful metaheuristics are able to find a balance between exploration and ex-

ploitation. Exploration identifies areas in the search space resulting in high-quality

solutions. Exploitation intensifies the search in such areas (Boussäıd et al., 2013).

A popular classification scheme for metaheuristics differentiates algorithms based

on whether they are single-solution-based or population-based. Examples of a few

single-solution-based metaheuristics are simulated annealing (SA), tabu search (TS),

the greedy randomised adaptive search procedure for combinatorial optimisation, and

variable neighbourhood search (Boussäıd et al., 2013). SA has its roots in the Metropo-

lis algorithm and is regarded as the first metaheuristic, whereas TS uses a memory

structure to escape local minima (for minimisation problems) and enforce exploration.

Population-based searches, on the other hand, include (Boussäıd et al., 2013):

• evolutionary computation (EC) – a general term for algorithms that are inspired

by Darwin’s theory of evolution. It includes:

– evolutionary algorithms, a subset of EC that uses biological evolution mech-

anisms specifically. The selection, recombination and mutation mechanisms

are especially popular. Evolutionary algorithms include (to name a few):

∗ the genetic algorithm

∗ genetic programming

∗ evolutionary programming

∗ the memetic algorithm

∗ evolution strategy (ES), upon which the covariance matrix adaptation

evolution strategy (CMA-ES) – discussed in Section 3.2.2 – is built

∗ differential evolution (DE), which is discussed in Section 3.3.2
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2.5 What are metaheuristics?

– the cultural algorithm

– swarm intelligence, which includes (amongst others):

∗ particle swarm optimisation

∗ bacterial foraging optimisation

∗ bee colony optimisation

• the cross-entropy method, discussed in Section 3.1.2.

This is just one way of classifying metaheuristics. Other popular classification

methods include (Talbi, 2009):

• whether or not an algorithm is inspired by nature

• whether or not an algorithm makes use of a memory mechanism

• whether the algorithm is deterministic or stochastic

• whether the algorithm is iterative or greedy.

As pointed out earlier in this section, good metaheuristics are able to find a balance

between exploration and exploitation. Algorithms should therefore be able to maintain

a diverse population, without losing the best solutions. Mechanisms for accomplishing

this are discussed next.

2.5.1 Fitness functions vs objective functions

Instead of using objective functions to select good solutions, metaheuristics sometimes

make use of fitness functions in order to evaluate the performance of different solutions.

Fitness functions can be defined in many different ways. For the single-objective

case, the fitness function is a function of the objective function and constraint functions

(Zitzler, 1999). For an unconstrained problem, the fitness function is simply a function

of the objective function.

Defining fitness functions is more complicated when using multi-objective optimisa-

tion. Zitzler (1999) identifies three main multi-objective approaches to fitness assign-

ment:

• Aggregating objectives – All objective functions and constraint functions are

aggregated into a single fitness function.

12
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2.5 What are metaheuristics?

• Alternating between objectives – Instead of aggregating objective functions,

good solutions are selected based on performance on a single-objective (or the

fitness associated with that single-objective and the constraint functions). The

specific objective used to rate performance is alternated.

• Pareto-based approaches – Each objective may be associated with a fitness

function made up of that objective and the constraint functions. Good solutions

are selected using the concept of non-domination discussed above.

Out of the multi-objective optimisation algorithms investigated in this study (and

discussed in Chapter 3), only the multi-objective covariance matrix adaptation evolu-

tion strategy (MO-CMA-ES) makes use of fitness function by default. If a solution

violates the box constraints of a problem, the solution is fixed to adhere to the box

constraints and the objective functions are evaluated as usual, but the fitness associated

with each objective is decreased proportionately to the size of the violation. Otherwise

the fitness associated with each objective is simply equal to the value of the objective

function. The MO-CMA-ES is Pareto-based, and good solutions are selected by Pareto

ranking the fitness function values associated with all the objectives.

For the combinatorial mission-ready resource (MRR) problem (discussed in Chapter

5), fitness functions were used for constraint handling.

2.5.2 Elitism

Elitism is the practice of carrying the best solutions found in generation t over to gener-

ation t+1 in order to avoid losing these solutions during the selection or recombination

processes. The idea was first suggested by De Jong (1975) for the single-objective case.

Zitzler (1999) discusses some of the complexities involved in extending the principle

to the multi-objective case. Where single-objective problems have one best solution

in every generation, multi-objective problems have a set of Pareto optimal solutions.

Should all these solutions be kept? And for how long? Should these solutions have an

influence on the selection process? And if so, when and how?

Zitzler (1999) showed that algorithms that make use of an elitist set as part of the

population outperforms algorithms that do not do so. The experiments were done using

six different algorithms on the six ZDT problems (discussed in Chapter 4).

13

Stellenbosch University  http://scholar.sun.ac.za



2.5 What are metaheuristics?

De Jong (1975) found that elitism can be beneficial when solving unimodal single-

objective problems, but might lead to early convergence on local optimums when solving

multi-modal single-objective problems.

2.5.3 Maintaining population diversity

It is important to maintain population diversity in order to avoid premature conver-

gence to a local optimum (Zitzler, 1999). Several methods for maintaining population

diversity have been developed. Such methods include (Zitzler, 1999):

• Fitness sharing – The fitness function values of individuals that are surrounded

by many similar individuals are degraded. This encourages search in less well-

explored areas. The distance between individuals can be calculated in the indi-

vidual space, the decision space or the objective space. This is the most commonly

used technique for maintaining population diversity.

• Restricted mating – Only individuals within a specified distance from one

another are allowed to mate.

• Isolation by distance – Individuals are assigned a conceptual location and only

individuals that are conceptually located close to one another are allowed to mate.

• Overspecification – Individuals are made up of active and inactive parts. As the

search progresses, The active parts may become inactive and the inactive parts,

active. Information hidden on individuals thus aide in maintaining a diverse

population.

• Reinitialisation – In order to avoid premature convergence, the population (or

parts thereof) is reset at a specific point in time or when the search starts stag-

nating.

• Crowding – New individuals replace similar individuals.

These techniques for maintaining population diversity are simply popular tech-

niques; other methods may also be used.
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2.6 Conclusion: An introduction to multi-objective optimisation

2.6 Conclusion: An introduction to multi-objective opti-

misation

In this chapter, important concepts relating to multi-objective optimisation were dis-

cussed. Multi-objective optimisation was introduced briefly, followed by a short his-

tory of Pareto-based multi-objective optimisation. Finally, important concepts such as

Pareto dominance, non-domination, Pareto fronts, evolutionary algorithms and popu-

lation diversity were explained briefly.

Chapter 3 will focus on the algorithms selected for comparison.
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Chapter 3

The multi-objective optimisation

algorithms under investigation

Chapter 1 presented the research question: for which of the problems investigated does

a multi-objective algorithm that accounts for possible relationships between decision

variables outperform an multi-objective algorithm that does not do so?

Chapter 2 briefly introduced the reader to some key concepts relating to multi-

objective optimisation.

This chapter presents the algorithms selected for comparison. These algorithms

include the cross-entropy method for multi-objective optimisation (MOO CEM), the

multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES), Pareto

differential evolution (PDE) and two hybrid algorithms that were developed out of re-

search curiosity (Hybrid 1 and Hybrid 2).

The single-objective versions of the MOO CEM, MO-CMA-ES and PDE will each

be presented before their multi-objective counterparts are discussed.

3.1 The cross-entropy method for multi-objective opti-

misation

As mentioned in Chapter 1, the MOO CEM – and the single-objective cross-entropy

method (CEM) that inspired it – works based on the assumption that decision variables

are independent. This assumption forms the basis of this study.
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3.1 The cross-entropy method for multi-objective optimisation

This section motivates the investigation of the MOO CEM, presents the CEM and

subsequently the MOO CEM.

3.1.1 Why investigate the performance of the cross-entropy method

for multi-objective optimisation?

The cross-entropy method (CEM) was expanded for multi-objective optimisation and

introduced in Bekker & Aldrich (2010) and Bekker (2012). It was shown to outper-

form the non-dominated sorting genetic algorithm II (NSGA-II) on a set of continuous

benchmark problems. It also performed well when applied to stochastic, discrete prob-

lems.

The cross-entropy method for multi-objective optimisation (MOO CEM) forms the

basis of this study in a few ways:

• The results presented by Bekker & Aldrich (2010) and Bekker (2012) show much

promise, outperforming the popular NSGA-II on a variety of problems. Based on

this promise, the MOO CEM deserves further investigation.

• The MOO CEM is a novel algorithm and has thus far only officially been compared

to one published multi-objective optimisation algorithm – the NSGA-II.

• The nature of the CEM is such that it assumes that decision variables are inde-

pendent of one another. Subsequently its multi-objective counterpart, the MOO

CEM, also assumes independence of decision variables (as does the NSGA-II). As

a result, the question of whether or not the MOO CEM would be outperformed by

algorithms that do not assume independence of decision variables arises. Refer-

ring to Chapter 1, the reader is reminded that the main research question relates

directly to this.

3.1.2 The cross-entropy method for single-objective optimisation

The CEM was first introduced in Rubinstein (1999) and has since been used to solve a

variety of continuous, discrete and combinatorial problems. It aims to find the optimal

function value f∗(x) to some objective function f(x) and the decision variable values

x∗ associated with f∗(x). In the continuous case, the expected value of f(x) is
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3.1 The cross-entropy method for multi-objective optimisation

E[f(X)] =

∫
f(x)g(x)dx, (3.1)

where f(x) is the sample performance and g(x) is the probability density of X.

How would a random search algorithm go about searching for the optimal answer?

For each variable, the random search algorithm would select a value for the decision

variable by drawing from a uniform probability density function (pdf). It would then

evaluate the combination of variables and, irrespective of the function value achieved,

would once again select decision variable values from a uniform pdf. After a set number

of iterations, the random search algorithm might or might not have come across the

optimal solution. The question then arises: could the odds of finding the optimal

solution not be better if a search algorithm was more likely to draw decision variable

values that result in good objective function values?

The CEM works on this principle. Every decision variable domain is associated with

a pdf. These pdfs are used to draw decision variables from and are updated based on

the objective function value performance of different decision variables. If, for example,

x1 = b is associated with good objective function values, whereas x1 = c is not, the pdf

for x1 is adjusted so that x1 = b will be drawn more often than x1 = c. Ideally, the

values of x associated with f∗(x) should all be drawn with a probability of one by the

time the algorithm terminates.

The CEM has its roots in importance sampling, which involves choosing a sampling

distribution that favours important samples (Rubinstein & Kroese, 2008). Instead of

using importance sampling, the Kullback-Liebler distance (or relative entropy or cross-

entropy) can be used to choose a sampling distribution that favours important samples.

In short, the CEM is concerned with estimating the ideal pdf (including the param-

eters of the pdf) for each decision variable, in order to converge to an optimal answer.

It does this by using the cross-entropy (or Kullback-Liebler distance) of the two pdfs.

The cross-entropy D is a measure of the distance between two pdfs g(x) and h(x)

(Cover & Thomas, 2006; Rubinstein, 1999; Rubinstein & Kroese, 2004, 2008) and is

denoted by
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3.1 The cross-entropy method for multi-objective optimisation

D = Eg
[
ln
g(x)

h(x)

]
(3.2)

=

∫
g(x) ln

g(x)

h(x)
dx (3.3)

=

∫
g(x) ln g(x)dx−

∫
g(x) lnh(x)dx. (3.4)

If two pdfs are identical (g(x) = h(x)), then D = 0. We want to choose the pdf

from which we sample h(x) in such a way that the cross-entropy distance between h(x)

and the optimal pdf to be sampled from g∗(x) is at a minimum (Rubinstein, 1999;

Rubinstein & Kroese, 2004, 2008).

If we assume that the pdf we are sampling from and the ideal pdf are from the

same parametric family of distributions, then we can concern ourselves simply with

choosing the parameter of the sampling pdf such that the cross-entropy distance is at

a minimum (Rubinstein, 1999; Rubinstein & Kroese, 2004, 2008).

The importance sampling density is denoted as h(x,v) where v is the reference

parameter vector. Since the pdf we are trying to approximate comes from the same

parametric family of distributions, from (3.1), we denote the optimal sampling dis-

tribution as f(x)h(x,u) where u is the parameter vector of the pdf. Minimising the

cross-entropy distance with respect to v is given by

min
v

[
D =

∫
f(x)h(x,u) ln f(x)h(x,u)dx−

∫
f(x)h(x,u) ln f(x)h(x,v)dx

]
. (3.5)

Since there is no v in the first term, this is equivalent to

max
v

[
D =

∫
f(x)h(x,u) ln f(x)h(x,v)dx

]
. (3.6)

From (3.2), (3.6) is equivalent to

max
v

[D(v) = Eu [f(X) lnh(X,v)]] . (3.7)

According to Rubinstein & Shapiro (1990), D is generally convex and differentiable

with respect to v. The solution to (3.7) can therefore be found by differentiating with

respect to v and setting the result equal to zero:
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3.1 The cross-entropy method for multi-objective optimisation

Eu [f(X)∇ lnh(X,v)] = 0. (3.8)

Alternatively, the sample estimator equivalent can be set to zero:

1

N

N∑
k=1

f(Xk)∇ lnh(Xk,v) = 0. (3.9)

If the distribution of X is assumed to be from the exponential family of distributions

(which includes, among other distributions, the exponential, normal, Poisson, gamma,

chi-squared and geometric distributions), then – for a one-dimensional exponential

family, parameterised by the mean – the sample estimator of the optimal reference

parameter (when using cross-entropy) is always (Rubinstein & Kroese, 2008):

v̂i =

∑N
k=1 f(Xk)Xki∑N
k=1 f(Xk)

, (3.10)

where i indicates the ith variable.

Up to here, we have derived a sample estimator for the optimal reference parameter

if we wanted to minimise the cross-entropy of two pdfs. Next, we will see how this can

be used for single-objective optimisation.

Keeping in mind that, as discussed above, the ultimate goal of the CEM algorithm

is to find the optimal function value f∗(x) of some function f(x), the probability that

f(x) will be greater than some value γ when maximising, can be treated as a rare-event

probability

Pu(f(X) ≥ γ) = Eu(I{f(X)≥γ}), (3.11)

where the random state X has a pdf h(·,u). I{f(X)≥γ} is an indicator function

I{f(X)≥γ} =

{
1, if f(X) ≥ γ
0, if f(X) < γ

. (3.12)

Then, the optimal reference vector can be found by solving

max
v

[
D̂(v) =

1

N

N∑
k=1

I{f(Xk)≥γt} lnh(Xk,v)

]
. (3.13)

At generation t, γt is the (1− %)-quantile of ft−1(X). The answer to (3.13) can be

estimated by
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3.1 The cross-entropy method for multi-objective optimisation

v̂i =

∑N
k=1 I{f(X)≥γ}Xki∑N
k=1 I{f(X)≥γ}

, (3.14)

when the pdfs are assumed to be from exponential families.

Algorithm 1 shows the basic CEM algorithm (Rubinstein, 1999), (Rubinstein &

Kroese, 2004), (Rubinstein & Kroese, 2008).

Algorithm 1 The basic CEM algorithm.

1: Choose an initial parameter vector v0.

2: Set generation t→ 1.

While stopping criteria not met,

3: Generate sample X1, . . . ,X1 from the pdf h(·, vt−1).

4: Evaluate the sample.

5: Find the (1− %)-quantile of the sample performance.

6: Denote the solution to (3.14) by ṽt.

7: Smooth ṽt: v̂t = αṽt + (1 − α)v̂t, where α is called the smoothing parameter and

typically ranges from 0.7 to 1.
end while

3.1.3 The cross-entropy method for multi-objective optimisation

The cross-entropy method for multi-objective optimisation (MOO CEM) using invert-

ing histograms was introduced in Bekker & Aldrich (2010) and is tested extensively in

Bekker (2012). Since the CEM discussed above aims to find the single optimal refer-

ence parameter that would lead to a single optimal solution being drawn, the challenge

of expanding the CEM for use in multi-objective optimisation lies in this: a Pareto

optimal set very often contains more than one solution.

In order to overcome this challenge, Bekker & Aldrich (2010) suggest finding a near

optimal set of parameter vectors that would result in a Pareto optimal set. This is

done using inverting histograms drawn up from the Elite. The term Elite refers to a

set comprising of solutions that have ranked in the first three non-dominated fronts in

one of the last few generations.

The MOO CEM is inherently elitist as the best solutions of the current generation

are automatically kept for the next generation.

As with the CEM, pdfs for each variable are independent of pdfs for other decision

variables. Using the Elite, a histogram is constructed for each variable. The histogram
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3.1 The cross-entropy method for multi-objective optimisation

expresses the number of times that values of variable i that are part of the Elite set

have fallen into automatically determined bins. Such a histogram is shown in Figure

3.1. There are seven bins in total. The first bin has a frequency of zero as it stretches

from the lower limit of the range of the variable to the minimum value observed for

that variable. The last bin is similar and contains values between the maximum value

observed for the variable and the upper limit of the range of the variable. Due to

rounding errors the last bin might often not be empty. The remaining five bins are of

equal size.
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Figure 3.1: Example of a histogram for the decision variable xi.

The MOO CEM (shown in Algorithm 2) makes use of two mechanisms to maintain

population diversity. First, the Elite is accumulated over a few generations. At each

generation the first three non-dominated fronts, and not just the first non-dominated

front, are added to the existing Elite. After a set number of generations, the entire set

of accumulated solutions is ranked and the first two non-dominated fronts are retained.

In addition to this, inversion of the histograms is also used to avoid early conver-

gence on a local minimum (or maximum when maximising). With some probability ph

(typically 0.1 ≤ ph ≤ 0.3) the histogram for variable i is inverted. Inversion involves

subtracting the frequencies of histogram i from the maximum frequency occurring in

histogram i. The inverted histogram is shown in Figure 3.2.
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(a) Histogram to be inverted
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Figure 3.2: Example of an inverted histogram for the decision variable xi.

New decision variable vectors are created by scaling the frequencies of the histogram.

If 20% of the Elite values for variable i fell between a and b, then 20% of the values

for variable i of the new decision variable vectors will fall between a and b. To ensure

that values fall exactly between a and b (b and c, etc.), Bekker & Aldrich (2010) use

truncated normal distributions. The mean of each bin serves as mean to the truncated
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3.2 The multi-objective covariance matrix adaptation evolution strategy

normal distribution.

Algorithm 2 The basic MOO CEM algorithm.

1: Choose an initial vector v0.

2: Create an initial population using truncated normal distribution with means v0.

3: Evaluate initial population.

4: Rank initial population to find Elite – the Elite is made up of the first three non-dominated

fronts.

While stopping criteria not met,

For each variable i

5: Create histogram i using Elite.

If rand(0, 1) ≤ ph
6: Invert histogram.

end if

For each bin j in histogram i

7: Create bFrequency of bin×Population size
Total size of Elite c new decision variable vectors using a trun-

cated normal distribution with µ = mean of bin j and σ = UB of bin j −
LB of bin j

.

end for

end for

8: Evaluate new decision variable vectors.

9: Rank new decision variable vectors.

10: Add best ranked decision variable vectors to Elite.

If number of generations equals some predetermined value,

11: Rank Elite.

12: Keep only the first two non-dominated fronts.

end if

end while

13: Rank Elite.

14: Keep only the first non-dominated front.

3.2 The multi-objective covariance matrix adaptation evo-

lution strategy

The multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES)

is one of two algorithms selected from literature for its reported ability to manage

relationships between variables (the other being Pareto differential evolution (PDE)).

In this section the selection of the MO-CMA-ES is motivated, background to the
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3.2 The multi-objective covariance matrix adaptation evolution strategy

single-objective covariance matrix adaptation evolution strategy (CMA-ES) is provided,

and the CMA-ES and MO-CMA-ES algorithms are discussed.

3.2.1 Why investigate the performance of the MO-CMA-ES?

The MO-CMA-ES was introduced in Igel et al. (2007a). Although it is older than the

MOO CEM, it can still be considered a novel algorithm. The MO-CMA-ES remains

relatively uninvestigated, despite the promise shown by two variants of the MO-CMA-

ES in Igel et al. (2007a) where it was compared to the NSGA-II and the non-dominated

sorting differential evolution algorithm (NSDE). Furthermore, the general consensus is

that its single-objective counterpart, the CMA-ES, is very effective (Boussäıd et al.,

2013).

Investigating the MO-CMA-ES ties in directly with the main research question: the

algorithm is reported to keep track of relationships between decision variables. It is

therefore a good candidate for comparison to the MOO CEM.

3.2.2 The covariance matrix adaptation evolution strategy for single-

objective optimisation

The presentation of the covariance matrix adaptation evolution strategy (CMA-ES)

differs slightly from the presentation of the CEM (in Section 3.1.2) and differential

evolution (in Section 3.3.2). This is because the development of the CMA-ES is clearly

visible when looking at preceding papers by the same authors. The researcher considers

the CMA-ES to be more easily understandable in light of its background. A short

summary of the research leading up to the CMA-ES is presented next, following which

the CMA-ES for single-objective optimisation will briefly be explained.

3.2.2.1 Background to the covariance matrix adaptation evolution strategy

for single-objective optimisation

The covariance matrix adaptation evolution strategy (CMA) was first presented in

Hansen & Ostermeier (1996). It is the result of a research effort that started with

Ostermeier et al. (1994a) presenting what they refer to as a ‘derandomised approach to

self adaptation of evolution strategies’. The work builds on mutative step size control: a

method developed in the 1970s, based on the idea that the mutation step size parameter

in an evolution strategy should not simply be set beforehand, but rather be adjusted
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3.2 The multi-objective covariance matrix adaptation evolution strategy

by the algorithm itself as it progresses. The original mutative step size control rule

involves taking the product of four values, of which three have elements of randomness.

For one offspring x(t+1) mutated from one parent x(t),

x(t+1) = x(t) + c1c2c3z, (3.15)

where all vectors are of size V , and V indicates the number of decision variables.

In (3.15), c1 is a constant, whereas c2 and c3 both follow some distribution and each

element of z is drawn from a N(0, 1) distribution. ‘Derandomised’ refers to the fact

that Ostermeier et al. (1994a) adapted the mutative step size control rule to involve less

randomness. This allows the algorithm to benefit from updating the step size: changes

to the step size would correspond directly to the size of the mutations that follow.

Ostermeier et al. (1994b) expanded on Ostermeier et al. (1994a) by changing the

step size update rule to take into account information from not only the previous

generation, but all preceding generations. This concept is referred to as using an

evolution path.

Continuing this line of research, Hansen et al. (1995) compared three adaptation

strategies. In the previous works (discussed above), univariate normal distributions

are used for mutation. However, in this paper, Hansen et al. (1995) started using the

multivariate normal distribution to do mutation. The multivariate normal distribution

is a generalisation of the univariate normal distribution. It is denoted as N(µ,C) with

µ representing a vector of means of all variables and C denoting a V × V covariance

matrix. Focus falls on finding a mechanism for adapting C and as a result the mutation

distributions of evolution strategies. Such a mechanism should work independently of

the coordinate system of the decision variables as the quality of the mutation distribu-

tion should not depend on this specific position of decision variables in the coordinate

system (Hansen & Ostermeier, 1996; Hansen et al., 1995). This will ensure invari-

ance with respect to the rotation of objective functions which will make the evolution

strategy more suited to solve problems with complex fitness functions (Hansen & Os-

termeier, 1996). Hansen et al. (1995) refer to the most successful of these strategies as

the generating set adaptation (GSA). The GSA is able to reliably adapt the mutation

distribution independent of the given coordinate system.
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Hansen & Ostermeier (1996) introduced the covariance matrix adaptation (CMA)

as a mechanism for adapting mutation distributions. This built directly on both Os-

termeier et al. (1994b), with the use of an evolution path, and Hansen et al. (1995)

because the CMA is very similar to the GSA. There are two differences between the

CMA and the GSA (Hansen & Ostermeier, 1996):

• While both make use of a factor called the global step size, the global step size

for the CMA can be calculated from other information used in the CMA, whereas

the global step size for the GSA is a random factor.

• For its evolution path, the GSA weights information from all generations equally.

The CMA, on the other hand, uses exponentially decreasing weights: the older

the information, the less importance it carries.

Hansen & Ostermeier (1996) found that the CMA outperforms the GSA and should

therefore be preferred.

Where Hansen & Ostermeier (1996) used (1, 10)-evolution strategies (strategies

where one parent produces ten offspring) for their experiments, Hansen & Ostermeier

(1997) combine intermediate recombination with the CMA in order to improve the

robustness of the CMA-ES.

Hansen & Ostermeier (2001) combined the CMA with weighted recombination.

This paper was found to be the most thorough presentation of the CMA-ES.

Whereas previous implementations were all serial, Hansen et al. (2003) adapt the

CMA-ES so that it can be implemented for parallel execution. It should be noted that

there are some problems with the adjustment of the global step size when population

size is greater than 10V .

3.2.2.2 Basic algorithm for the covariance matrix adaptation evolution

strategy for single-objective optimisation

As discussed in Chapter 2, mutation forms a key part of any evolution strategy. Many

evolution strategies have some mechanism which automatically adapts the mutation

distribution, be it in a random (mutative) or controlled (calculated) fashion. The

CMA is essentially a way of controlling the adaptation of the mutation distribution

in order to favour previously successful mutation values (Hansen & Ostermeier, 2001).
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For maximum effectiveness, the mutation distribution should not be dependent on the

coordinate system of the decision variables (Hansen & Ostermeier, 1996, 2001), and

should take into account information gained in all the preceding generations (Hansen

& Ostermeier, 1996, 2001; Ostermeier et al., 1994b).

The CMA-ES as laid out below (and shown in Algorithm 3) is mostly from Hansen

& Ostermeier (2001) which uses weighted recombination. Note that, for better flow

from this section to Section 3.2.3, weights are assumed to be equal and all information

regarding weights (such as constants and subscripts) presented in Hansen & Ostermeier

(2001) are disregarded.

Algorithm 3 The basic CMA-ES algorithm.

1: Set the number of offspring λ, and the number of parents ν.

2: Initialise constants.

3: Initialise evolution paths p
(0)
c and p

(0)
s , global step size σ(0), covariance matrix C(0) and

parent vector 〈x〉(0).
4: Find B(0) and D(0) from C(0).

5: Create a set of offspring of size λ using (3.16).

While stopping criteria not met,

6: Evaluate population offspring.

7: Choose the best ν members of population (comprising of both parents and offspring).

8: Calculate evolution paths p
(t+1)
c (3.19) and p

(t+1)
s (3.21), global step size σ(t+1) ((3.22)),

covariance matrix C(t+1) (3.20) and the mean of the ν best parents 〈x〉(t+1).

9: Find B(t+1) and D(t+1) from C(t+1).

10: Create a set of offspring of size λ using (3.16).

end while.

For each offspring x
(t+1)
k with k = 1, . . . , λ, the update rule for the standard CMA-

ES is (Hansen & Ostermeier, 2001; Igel et al., 2007a)

x
(t+1)
k = 〈x〉(t) + σ(t)N(0,C(t)) (3.16)

= 〈x〉(t) + σ(t)B(t)D(t)z
(t+1)
k (3.17)

where 〈x〉(t) is the mean of the ν best individuals from the current generation t.

The step size σ(t) scales all samples drawn from a multivariate normal distribution

N(0,C(t)). Note that the covariance matrix C(t) is a symmetric, positive, definite

matrix of size V × V . When initialising, C(0) = I, where I is the identity matrix. B(t)

and D(t) can be determined from C(t)
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C(t) = B(t)D(t)(B(t)D(t))T , (3.18)

where B(t) is an orthogonal V × V matrix.

The columns of B(t) are the normalised eigenvectors of the covariance matrix C(t).

D(t) is a V × V diagonal matrix. For i 6= j, elements of D(t) equal zero. The diagonal

elements of D(t) (i = j) are the square roots of the eigenvalues of the covariance

matrix C(t). The orthogonal matrix B(t) is responsible for the rotation of the mutation

distribution, whereas D(t) is responsible for the scaling.

Members of z
(t+1)
k are drawn from independent univariate (0, 1) normal distrib-

utions. This is equivalent to sampling from a multivariate (0, I) normal distribution.

From (3.16), note that sampling using σ(t)B(t)D(t)z
(t+1)
k is equivalent to sampling from

(0, σ(t)
2
C(t)). Figure 3.3 shows how adapting C influences the multivariate normal

pdf from which samples are effectively drawn. The multivariate pdfs shown are for

two decision variables, x1 and x2. It is assumed that σ = 1. For the two top figures

C =
(
1 0
0 1

)
, while C =

(
0.25 0.3
0.3 1

)
for the two bottom figures.

In order to update C(t), the CMA makes use of an evolution path as suggested in

Ostermeier et al. (1994b). The evolution path is a cumulation of information gained

throughout the progress of the algorithm. Instead of weighting information equally,

the CMA uses exponential weights with recent information weighing heavier than older

information (Hansen & Ostermeier, 1996). The covariance matrix evolution path for

the next generation p
(t+1)
c is calculated using the covariance matrix evolution path for

the current generation p
(t)
c :

p(t+1)
c = (1− cp)p(t)

c +
√
cp(2− cp)

(
〈x〉(t+1) − 〈x〉(t)

)
, (3.19)

where cp is a constant with a value between 0 and 1. The initial value of the

covariance matrix evolution path p
(0)
c equals 0. From p

(t+1)
c , the covariance matrix for

the next generation C(t+1) is calculated using C(t):

C(t+1) = (1− cc)C(t) + ccp
(t+1)
c

(
p(t+1)
c

)T
, (3.20)

where the change rate of the covariance matrix cc is a constant with a value between

0 and 1.
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Figure 3.3: The effect of adapting C on the multivariate normal pdf from which

samples for the CMA-ES are effectively drawn.

A second evolution path, the step size adaptation path ps, is used to update the

global step size σ (Hansen & Ostermeier, 2001),

p(t+1)
s = (1− cs)p(t)

s +
√
cs(2− cs)B(t)

(
D(t)

)−1 (
B(t)

)−1 (
〈x〉(t+1) − 〈x〉(t)

)
, (3.21)

where cs is a constant with a value between 0 and 1. The initial value of the step

size adaptation path p
(0)
s equals 0. The global step size is updated with (Hansen &

Ostermeier, 2001)
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3.2 The multi-objective covariance matrix adaptation evolution strategy

σ(t+1) = σ(t) exp

(
||p(t+1)

s || − χ̂
dsχ̂

)
. (3.22)

The damping parameter ds ≥ 1 determines the range of σ, ||ps
(t+1)|| is the norm

of ps
(t+1), and χ̂ is the expected value of the length of a (0, I) normally distributed

random vector. It is calculated as

χ̂ =

√
2Γ
(
V+1
2

)
Γ
(
V
2

) , (3.23)

and can be approximated as

χ̂ ≈
√
V

(
1− 1

4V
+

1

21V 2

)
. (3.24)

3.2.3 The covariance matrix adaptation evolution strategy for multi-

objective optimisation

As mentioned in Section 3.2.1, the covariance matrix adaptation evolution strategy

for multi-objective optimisation (MO-CMA-ES) was introduced in Igel et al. (2007a).

The CMA-ES is adapted so that, instead of using the mean of the best ν parents as

above, it works with a single parent: the best solution from the previous generation.

To accommodate this change, the update rules for the step size and covariance matrix

are adapted. This elitist CMA-ES forms the basis of the MO-CMA-ES.

The MO-CMA-ES laid out by Igel et al. (2007a) is made up of multiple elitist CMA-

ESs – each with one parent generating one offspring. Although it is easy to expand

this strategy so that each parent produces more than one offspring, this study uses the

“one parent producing one offspring” strategy as this is how the basic MO-CMA-ES

functions.

The update rule for the evolution path of global step size ps differs from (3.21) and

works as follows:

p(t+1)
s = (1− cs)p(t)s + csS, (3.25)

where S = 1 if the offspring of the parent in question was ranked (using Pareto

ranking) as high or higher than the parent, otherwise S = 0. Note that ps is scalar
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here compared to (3.21) where it was a vector. The global step size is updated using

(Igel et al., 2007a)

σ(t+1) = σ(t) exp

(
ps − pg
ds(1− pg)

)
. (3.26)

The goal value of the step size evolution path pg lies between zero and 0.5. This

combination of evolution path and global step size updating ensures that σ increases if

it is associated with a high success rate and decreases if not.

Similarly, the update rules for the covariance matrix differs from (3.20). If the value

of ps is smaller than some threshold value pt, then

p(t+1)
c = (1− cp)p(t)

c +
√
cp(2− cp)

(
x(t+1) − x(t)

)
(3.27)

and

C(t+1) = (1− cc)C(t) + ccp
(t+1)
c

(
p(t+1)
c

)T
. (3.28)

On the other hand, if ps ≥ pt, then

p(t+1)
c = (1− cp)p(t)

c (3.29)

and

C(t+1) = (1− cc)C(t) + cc

(
p(t+1)
c

(
p(t+1)
c

)T
+ cp(2− cp)C

)
. (3.30)

It is important to note that, although the update rules work based on whether or

not an offspring outperforms its parent, elitism is incorporated in the MO-CMA-ES in

that the next generation for the MO-CMA-ES is made up of the λM best individuals

of the current population (offspring and parents considered together).

The parameter λM denotes the number of CMA-ESs that will make up the MO-

CMA-ES. If each parent creates one offspring, λM is equal to half the size of the

population. This relatively large number of parents helps maintain population diversity

as the parents are often made up of more than one non-dominated front.

As each parent k produces only one offspring, the update rule for generating new

offspring is:
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3.2 The multi-objective covariance matrix adaptation evolution strategy

x
(t+1)
k = x

(t)
k + σ(t)N(0,C(t)) (3.31)

= x
(t)
k + σ(t)B(t)D(t)z

(t+1)
k . (3.32)

Algorithm 4 The basic MO-CMA-ES algorithm.

1: Set the number of offspring and parents for multi-objective optimisation λM .

2: Initialise constants.

For k = 1 to λM

3: Initialise evolution paths p
(0)
ck and p

(0)
sk , global step sizes σ

(0)
k , covariance matrices C

(0)
k

and parent vectors x
(0)
k .

4: Find B
(0)
k and D

(0)
k from C

(0)
k .

end for

While stopping criteria not met,

5: Create a set of offspring: one offspring k for each parent k using (3.31).

6: Evaluate offspring.

7: Pareto rank the population (comprising both offspring and parents).

For k = 1 to λM

8: Calculate evolution paths p
(t+1)
c – (3.27) or (3.29) – and p

(t+1)
s (3.25), global step

size σ(t+1) (3.26), covariance matrix C(t+1) – (3.28) or (3.30) – and the mean of the

µ best parents 〈x〉(t+1).

9: Find B
(t+1)
k and D

(t+1)
k from C

(t+1)
k .

end for

10: Choose the best λM members of population to make up parents for next generation.

(Use indices to keep track of which evolution paths, step sizes and covariance matrices

go with which members of the population).
end while.

11: Return non-dominated solutions found during the search.

Igel et al. (2007a) presents two variations on the basic MO-CMA-ES described

here. Both these variations make use of a secondary selection criterion in order to

rank solutions on the same level of non-dominance. The first variation uses crowding

distance, whereas the second makes use of the contributing hypervolume in order to

rank solutions further.

For the purposes of this study, the basic MO-CMA-ES (as shown in Algorithm

4) is preferred to the two variations. This is because the more complicated selection

mechanisms of the two variations might make it more difficult to draw conclusions

about the effect of the MO-CMA-ES taking into account relationships between decision
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3.3 Pareto differential evolution

variables. For the same reason, alternative selection strategies suggested by Igel et al.

(2007b), Voß et al. (2010), and Loshchilov et al. (2011) were not included.

3.3 Pareto differential evolution

Pareto differential evolution (PDE) is the second optimisation algorithm selected from

literature based on its reported ability to handle relationships between decision vari-

ables.

This section motivates the selection of PDE, discusses its single-objective counter-

part, differential evolution (DE), and lays out the PDE algorithm.

3.3.1 Why investigate Pareto differential evolution?

Differential evolution (DE) is a very popular algorithm for solving continuous optimisa-

tion problems (Boussäıd et al., 2013). It has the advantage of having very few input

parameters (Boussäıd et al., 2013).

Pareto differential evolution (PDE), as presented by Abbass et al. (2001), is one of a

few multi-objective versions of DE. Other notable multi-objective differential evolution

algorithms include: another version of Pareto differential evolution by Madavan (2002),

Pareto-based multi-objective differential evolution (MODE) presented by Xue et al.

(2003), a multi-objective differential evolution algorithm by Babu & Jehan (2003), and

the NSDE presented by Iorio & Li (2005).

The NSDE variation has been used to successfully solve a set of test problems (the

R problems, discussed in Chapter 4) included in the test suite for this study. Also recall

from Section 3.2.1 that the NSDE was compared to the MO-CMA-ES. It was selected

because it was reported to be able to solve problems with relationships between decision

variables (Igel et al., 2007a).

Unfortunately all the multi-objective variations of DE cannot be included in this

study. The PDE algorithm as presented by Abbass et al. (2001) was preferred to the

other variations because it was the first multi-objective optimisation DE algorithm

to be presented. The differences between the variations are not such that a superior

performing variation could be identified from literature.
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3.3.2 Differential evolution for single-objective optimisation

Stork & Price (1997) presented the differential evolution (DE) algorithm (shown in Al-

gorithm 5). The algorithm was developed in an effort to satisfy four main requirements:

• An optimisation algorithm must be able to handle non-differentiable, nonlinear

and multimodal functions as well as combinations thereof.

• It must be possible to parallelise the optimisation algorithm.

• The optimisation algorithm should be easy to use, requiring few control param-

eters.

• The optimisation algorithm should converge to the global minimum consistently.

Algorithm 5 The basic DE algorithm.

1: Set the number of offspring λ, and the number of parents ν (equal to λ).

2: Initialise constants.

3: Randomly select an initial set of offspring of size λ.

4: Evaluate offspring.

While stopping criteria not met,

For i = 1 to λ

5: Randomly select r1, r2 and r3 with i 6= r1 6= r2 6= r3.

6: Use (3.33) to create a mutated vector.

7: Use (3.34) to create an offspring x
(t+1)
i .

If x
(t+1)
i is better than x

(t)
i .

8: x
(t+1)
i makes out part of the population for next generation.

else

9: x
(t+1)
i ← x

(t)
i , the parent for this generation outlives its offspring to form part of

the next population.
end if

end for

end while.

The inspiration for DE came from the Nelder and Mead method (introduced in

Nelder & Mead (1965)). The Nelder and Mead method is essentially a local optimisation

algorithm, and its main influence on DE is the use of information gained from the search

space to adapt members of the population (Stork & Price, 1997). (Compare this to

an algorithm that adapts members of the population using a purely random mutation

variable.)
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3.3 Pareto differential evolution

Compared to the CEM and the CMA, there is little background information or the-

ory required to understand DE. DE comprises three major, classic evolutionary com-

putation operators: mutation, recombination and selection. Mutation in DE involves

adding a weighted difference between two parent vectors to a third parent:

xm = x(t)
r1 + cm(x(t)

r2 − x(t)
r3 ), (3.33)

where r1, r2 and r3 are randomly chosen indices to parents from the previous gen-

eration.

If the index to the main parent is i, then i 6= r1 6= r2 6= r3. The weight of the

difference between x
(t)
r2 and x

(t)
r3 is denoted by cm, a constant with a value between 0

and 2.

Recombination occurs when this mutated vector is mixed with another parent vector

(the main parent x
(t)
i ) to form an offspring x

(t+1)
i . For the jth element of x,

x
(t+1)
i,j =

{
xmutated,j J ≤ cr or j = JV

x
(t)
i,j else

(3.34)

where J comes from a uniform (0,1) distribution and cr is a recombination constant

(ranging from 0 to 1).

JV is drawn uniformly to fall between 1 and V . Its function is to ensure that at

least one element of population member i is mutated.

Selection is simple: if the offspring x
(t+1)
i outperforms the main parent x

(t)
i , the

offspring would be included as parent for the next generation, otherwise the main

parent would be retained as part of the population for the next generation (Stork &

Price, 1997).

3.3.3 Differential evolution for multi-objective optimisation

Probably due to its combination of effectiveness and simplicity, several authors have

extended the DE algorithm for single-objective optimisation for use on multi-objective

problems. Four early extensions were the works by Abbass et al. (2001), Madavan

(2002), Xue et al. (2003) and Babu & Jehan (2003).

This study uses the work by Abbass et al. (2001) – their Pareto differential evolution

(PDE) is the first multi-objective DE algorithm found in literature. Pseudocode for

the PDE algorithm is shown in Algorithm 6.
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Algorithm 6 The basic PDE algorithm.

1: Set the number of offspring λ.

2: Initialise constants.

3: Randomly select an initial set of offspring of size λ.

While stopping criteria not met,

4: Evaluate offspring.

5: Pareto rank offspring and find the non-dominated solutions.

While number of non-dominated solutions > cv

6: Remove the point that has the lowest average Euclidean distance between itself and

the two points closest to it in the decision space from the set of possible parents.
end while

For i = 1 to λ

7: Randomly select r1, r2 and r3 with r1 6= r2 6= r3 from possible parents.

8: Use (3.35) to create a mutated vector.

9: Use (3.36) to create an offspring x
(t+1)
i .

If x
(t+1)
i dominates x

(t)
r1 .

10: x
(t+1)
i makes out part of the population for next generation.

else

11: x
(t+1)
i ← x

(t)
r1 , the parent for this generation outlives its offspring to form part of

the next population.
end if

end for

end while.

12: Return non-dominated solutions found during the search.

The following differentiates the single-objective DE by Stork & Price (1997) from

the PDE presented by Abbass et al. (2001):

1. The DE uses uniform distributions for initialisation, whereas the PDE uses uni-

variate normal distributions.

2. The constant cm in the DE algorithm is replaced by a normal (0,1) random

variable in the PDE algorithm.

3. For DE, an offspring outperforms its parent if it has a lower function value when

minimising (and a higher function value for maximising). The multi-objective

version makes use of elitism and Pareto ranking is used to determine whether or

not an offspring outperforms its parent. The non-dominated front makes up the

parents for the next generation.
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4. The PDE algorithm only uses non-dominated solutions for each succeeding gen-

eration. Because of this, the number of parents is not always equal to the number

of offspring required. To make up for this Abbass et al. (2001) do not select a

main parent in the same way as is done by DE. Rather, only the three randomly

selected parents are used to form an offspring with the first parent x
(t)
r1 acting as

main parent.

5. In order to maintain diversity, Abbass et al. (2001) thin out the non-dominated

set if it becomes larger than some predetermined value cv. This is done using the

average nearest neighbour distances of the members of the non-dominated set.

Due to these differences the mutation operator differs slightly from (3.33):

xm = x(t)
r1 +N(0, 1)(x(t)

r2 − x(t)
r3 ), (3.35)

and the recombination operator differs from (3.34):

x
(t+1)
i,j =

{
xmutated,j , J ≤ cr or j = JV

x
(t)
r1,j

, else
. (3.36)

3.4 The two hybrid algorithms

In addition to the three established multi-objective algorithms discussed above (MOO

CEM, MO-CMA-ES and PDE), the researcher developed two hybrid algorithms (Hy-

brid 1 and Hybrid 2). Both these algorithms exist due to research curiosity, as will be

expanded on below, and make use of the MOO CEM to some extent. This is because

the MOO CEM forms the basis for the research. Comparing these algorithms to the

three established algorithms provides information about not only their mechanisms but

also the workings of the other three algorithms.

3.4.1 Combining the cross-entropy method with clustering in the

search space

As discussed earlier, both the CEM and the MOO CEM assume that decision variables

are independent of one another. The research question to be answered by this work

relates to whether or not an algorithm which provides for some form or relationship

between variables would perform better on different test problems than others.
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Figure 3.4: A sample of clusters produced by the k-means algorithm.

The idea of using clustering in the search space builds on this: points that are close

together in the search space, are close in terms of all (or at least most) of the variables,

as illustrated in Figure 3.4. There are two variables x1 and x2, a hundred data points

and five clusters. Data for both variables were scaled to be between 0 and 1.

Would clustering the Elite before creating histograms for each cluster be more

effective than the original MOO CEM? Or would this rob the population of too much

diversity?

Hybrid 1 (shown in Algorithm 7) simply clusters the decision variables of the Elite

before creating histograms and offspring for each cluster separately. In order to try and

preserve some diversity, each cluster has an equal amount of offspring irrespective of

its size.

The clustering is done using the Matlab k-means clustering algorithm. This cluster-

ing method was the fastest of the methods that were experimented with. Even though

more accurate algorithms might exist, accuracy tends to come at a cost. Keeping in

mind that clustering has to happen tens or hundreds or thousands of times each time

the algorithm runs, the trade-off between accuracy and time does not favour accuracy

in this case. To some extent the lack of accuracy might be a bonus: it might help to

maintain some diversity. If a cluster contains some points that would perhaps have

fitted better with another cluster, the information available to create a new set of off-

spring for that cluster is less local than what would have been the case without the
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said “misplaced point”.

Algorithm 7 The basic Hybrid 1 algorithm.

1: Choose an initial mean vector v0.

2: Create an initial population using truncated normal distributions with means v0.

3: Evaluate initial population.

4: Rank initial population to find Elite – the Elite is made up of the first three non-dominated

fronts.

While stopping criteria not met,

5: Cluster decision variables in Elite,

For each cluster k,

For each variable i,

6: Create histogram i using cluster k.

If rand(0, 1) ≤ ph
7: Invert histogram.

end if

For each bin j in histogram i,

8: Create b Frequency of bin×Population size
Total size of Elite×Number of clustersc new decision variable vectors using

a truncated normal distribution with µ = mean of histogram i and σ =

UB of bin j − LB of bin j.
end for

end for

end for

9: Evaluate new decision variable vectors.

10: Rank new decision variable vectors.

11: Add best ranked decision variable vectors to Elite.

If number of generations equals some predetermined value,

12: Rank Elite.

13: Keep only the first two non-dominated fronts.

end if

end while

14: Rank Elite.

15: Keep only the first non-dominated front.

3.4.2 Hybrid 2: combining the cross-entropy method and covariance

matrix adaptation

Early runs of the MO-CMA-ES and MOO CEM algorithms indicated that the per-

formance of the MO-CMA-ES decreased as the number of variables increased, whereas

the performance for the MOO CEM was not as affected by an increase in the number
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of variables. Early runs, on small numbers of variables, also indicated that the MO-

CMA-ES outperformed the MOO CEM in terms of the hypervolume (see Chapter 7)

achieved.

As mentioned above, Hybrid 2 (shown in Algorithm 8) is the product of research

curiosity: what would happen if we combined the two algorithms? How much would be

sacrificed or gained in terms of performance? How much would be sacrificed or gained

in terms of run time?

The original Hybrid 2 used the MOO CEM to determine means for the multi-

variate normal distribution employed by the MO-CMA-ES. Initial experiments on the

continuous test problems (discussed in Chapter 4) showed that this combination of the

two algorithms showed little promise.

The version of Hybrid 2 presented here outperformed its original version on early

test runs. It is quite simple: half the population of each generation is created using the

inverting histograms from the MOO-CEM, the other half using the MO-CMA-ES.

3.5 Conclusion: The multi-objective optimisation algo-

rithms under investigation

This chapter focused on the algorithms selected for comparison. Single-objective ver-

sions (the CEM, CMA-ES and DE algorithms) of the selected multi-objective algo-

rithms were laid out, before each of the primary algorithms were discussed. In addition

to the three multi-objective algorithms found in literature (MOO CEM, MO-CMA-ES

and PDE), two hybrid algorithms (Hybrid 1 and Hybrid 2) were also presented. These

hybrids are the product of research curiosity and were developed in response to specific

questions that came up as the researcher was working on the study.

The next chapter will focus on the unconstrained, continuous test problems used

for this study. Chapter 5 will discuss the static combinatorial problem investigated,

and Chapter 6 will lay out the dynamic, stochastic problem studied.
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Algorithm 8 The basic Hybrid 2 algorithm.

1: Choose an initial mean vector v0.

2: Set the number of offspring and parents for multi-objective optimisation λM = 0.5N.

3: Initialise constants.

For k = 1 to λM

4: Initialise evolution paths p
(0)
ck and p

(0)
sk , global step sizes σ

(0)
k , covariance matrices C

(0)
k

and parent vectors x
(0)
k .

5: Find B
(0)
k and D

(0)
k from C

(0)
k .

end for

6: Create an initial population using truncated normal distributions with means v0.

7: Evaluate initial population.

8: Rank initial population to find Elite – the Elite is made up of the first three

non-dominated fronts.
While stopping criteria not met,

For each variable i

9: Create histogram i using Elite.

If rand(0, 1) ≤ ph
10: Invert histogram.

end if

For each bin j in histogram i

11: Create b 0.5Frequency of bin×N
Total size of Elite c offspring using a truncated normal distribution with

µ = mean of histogram i and σ = UB of bin j − LB of bin j.
end for

end for

For k = 1 to λM

12: Create a set of offspring: one offspring k for each parent k using (3.31).

end for

13: Evaluate offspring.

14: Rank population (parents and offspring).

For k = 1 to λM

15: Calculate evolution paths p
(t+1)
c – (3.27) or (3.29)– and p

(t+1)
s (3.25), global step

size σ(t+1) (3.26), covariance matrix C(t+1) – (3.28) or (3.30) – and the mean of the

µ best parents 〈x〉(t+1).

16: Find B
(t+1)
k and D

(t+1)
k from C

(t+1)
k .

end for

17: Add best ranked offspring to Elite.

If number of generations equals some predetermined value,

18: Rank Elite.

19: Keep only the first two non-dominated fronts.

end if

end while

20: Rank Elite.

21: Keep only the first non-dominated front.
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Chapter 4

Continuous optimisation test

problems

Previous chapters covered the research rationale, an introduction to multi-objective

optimisation, and the algorithms selected for comparison.

This chapter covers the unconstrained, continuous problems that were investigated

in this study and some significant characteristics of these problems. The problems come

from five test suites found in literature and the chapter is organised accordingly.

4.1 Test problem characteristics

Huband et al. (2006) provide a very thorough analysis of test problems found in litera-

ture. The analysis is done with regard to what they define as recommendations and

features. Recommendations can be described as characteristics or properties that prob-

lems should ideally possess (and be designed to possess) as possessing them is always

beneficial. A test problem should (Huband et al., 2006):

1. ... not have extremal decision variables. Extremal decision variables refer

to a situation where the optimal solution is located at the edge of the decision

variable domain. This should be avoided as such points can be found acciden-

tally by algorithms truncating invalid decision variables that were generated back

to their domain limits. Some algorithms reflect invalid decision variables that

were generated away from the domain edge. Such algorithms will be unfairly

disadvantaged by the presence of extremal decision variables.
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2. ... not have medial decision variables. Evolutionary algorithms that make

use of intermediate recombination could be biased toward finding the optimal

solution if medial decision variables are present. Such decision variables are at

an optimal near the midpoint of their range.

3. ... be scalable to any number of decision variables. Scalability in decision

variables allows the algorithm to be tested at various levels of difficulty.

4. ... be scalable to any number of objectives. Similar to the number of

decision variables, the number of objectives also influences the level of difficulty

of a test problem.

5. ... have decision variable domains that are dissimilar in magnitude. This

recommendation would make a test problem difficult to solve for algorithms that

do not normalise decision variable domains or that do not have another effective

mechanism to deal with the possibility of decision variable domains differing in

size.

6. ... have trade-off ranges that are dissimilar in magnitude. The range

of a Pareto front is generally not known in advance and the trade-off ranges of

the different objectives might differ in size. The aim of this recommendation is

to reward algorithms that normalise objective values before executing scaling-

dependent steps. Such algorithms will perform better on problems where the

trade-off ranges are dissimilar.

7. ... have a known Pareto front. Performance indicators often require infor-

mation about the true Pareto front. Without such information it is difficult to

independently assess the performance of a given algorithm. In cases where the

Pareto optimal front is unknown, estimated Pareto fronts found by two or more

algorithms have to be compared. In these instances performance indicator values

are not absolute, but relative to the specific Pareto front created.

From the above, it is clear that recommendations can either be adhered to or not

when designing a problem.

A feature can be seen as a difficulty presented to the optimiser (Huband et al.,

2006). A test problem may have one or more features. The five features identified by

Huband et al. (2006) are:
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1. The geometry of the Pareto optimal front and set. A Pareto optimal

front can be convex, linear, concave or mixed. It can be degenerate, referring to a

front that is of lower dimension than the number of objectives minus one. Pareto

optimal fronts and sets can be connected or disconnected. An optimal front can be

a combination of any of the above. Different geometries or combinations thereof

present different challenges to the optimiser.

2. Decision variable dependencies. The decision variables of real-world prob-

lems are not always independent. Test problems could account for this by incor-

porating relationships between variables. Objective functions which have rela-

tionships between decision variables are referred to as non-separable. Conversely,

separable is used to refer to objective functions where decision variables can be

selected independently.

3. Bias. This refers to the mapping from the Pareto optimal set to the Pareto

optimal front. If the density in the objective space (or fitness space, if applicable)

varies greatly while solutions are evenly spread in the decision variable space, the

problem has bias. Plotting solutions in the objective space (or fitness space, if

applicable) is a good indicator of bias.

4. Many-to-one mappings. A one-to-one mapping refers to a situation where

each point in the objective space (or fitness space, if applicable) corresponds to

only one set of values in the decision variable space. Many-to-one means that

more than one set of parameters can yield the same objective function value.

Many-to-one mappings could be more difficult to solve as they involve a choice

between two or more sets of decision variables.

5. Modality. Modality refers to the number of local optima to be found in the

objective (or fitness, if applicable) landscape. A multimodal objective function

has more than one local optimum. Conversely, an objective function is said to

be unimodal if it has a single optimum. A problem is referred to as multimodal

if it has at least one multimodal objective. Real-world problems are often multi-

modal problems. Such problems are more difficult to solve than their unimodal

counterparts.
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Other characteristics that could possibly be considered are whether or not a problem

is linear, or symmetric, or canonical Van Veldhuizen (1999).

4.2 Selecting a test suite

A test suite should, in principle, include a number of test problems encompassing a

wide variety of properties. The nature of multi-objective problems and the number of

combinations of properties that exists, make a test suite encompassing all the possible

combinations impractical. Huband et al. (2006) therefore suggest a set of guidelines for

selecting a test suite. These suggestions are briefly outlined below:

1. A test suite should include a few unimodal test problems. This can be used

to test convergence velocity under different Pareto optimal geometry and bias

circumstances.

2. At least the following main categories of geometries should be tested: degenerate

and disconnected Pareto optimal fronts, and disconnected Pareto optimal sets.

3. Most of the problems included in the suite should be multimodal. Some of these

multimodal problems should be deceptive. A deceptive problem has a deceptive

objective function, referring to an objective function having at least two local

optima with the majority of the search space not favouring the global optimum.

Optimisers can get stuck in these situations, making such problems difficult to

solve.

4. Some of the problems should contain relationships between decision variables.

5. Some of the problems should contain decision variable dependencies and be mul-

timodal as such problems offer a good representation of real-world problems.

Van Veldhuizen (1999) suggests that a test suite should contain problems with

characteristics similar to those of the problem which an algorithm is meant to solve.

He also suggests that part of the test suite should be made up of real-world problems

and that problems should vary in difficulty.
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Table 4.1: A summary of the analysis (by Huband et al. (2006)) of some of the selected

test problems.
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MOP 1 T F F - F T Convex S Absent Absent U

MOP 2 T F T F F T Concave S Absent Absent U

MOP 3 T T F F T F Disconnected NS Absent Absent M

MOP 4 T T T F T T Disconnected S Absent Absent M

MOP 6 F T F F T T Disconnected S Absent Absent M

ZDT 1 F T T F F T Convex S Absent Absent U

ZDT 2 F T T F F T Concave S Absent Absent U

ZDT 3 F T T F T T Disconnected S Absent Absent M

ZDT 4 T F T F F T Convex S Absent Absent M

ZDT 6 F T T F T T Concave S Present Present M

WFG 1 T T T T T T Convex, S Present Possible U

mixed

WFG 2 T T T T T T Convex, NS Absent Possible M

disconnected

WFG 3 T T T T T T Convex, NS Absent Possible U

linear,

degenerate

WFG 4 T T T T T T Concave S Absent Possible M

WFG 5 T T T T T T Concave S Absent Possible D

WFG 6 T T T T T T Concave NS Absent Possible U

WFG 7 T T T T T T Concave S Possible Possible U

WFG 8 T T T T T T Concave NS Possible Possible U

WFG 9 T T T T T T Concave NS Possible Possible M,D
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4.3 The unconstrained, continuous test suite

4.3 The unconstrained, continuous test suite

Keeping in mind the recommendations for compiling a test suite as laid out above, the

test suite for this study comprises five of the multi-objective problems (MOPs) as laid

out by Van Veldhuizen (1999), five of the Zitzler-Deb-Thiele (ZDT) problems as laid

out by Zitzler et al. (2000), five L1ZDT problems described by Deb et al. (2006), four

R problems as suggested by Iorio & Li (2006), and three variations of each of the nine

walking fish group (WFG) problems (from Huband et al. (2005), Huband et al. (2006)).

The MOPs, ZDT and WFG problems were part of the analysis by Huband et al.

(2006). Their characteristics are shown in Table 4.1. T indicates that a recommendation

is adhered to (or true), whereas F indicates that it is not adhered to (or false). U

indicates that all objective functions are unimodal, while M indicates that at least one

objective function is multimodal. A problem is classified as non-separable if at least

one objective function is deemed to be non-separable.

A similar summary of the characteristics (compiled as part of this study) of the

L1ZDT and R problems can be found in Tables 4.4 and 4.6.

There are 46 problems in total. Eight of these problems were used by Bekker

(2012). The researcher had access to Matlab implementations of these. The remaining

38 problems were implemented in Matlab by the researcher.

The newly implemented problems were validated by looking at the Pareto fronts

produced and by comparing the Matlab results with equivalent models the researcher

had implemented in Microsoft Excel.

4.3.1 The Van Veldhuizen problems

Van Veldhuizen (1999) compiled a test suite comprising seven unconstrained numeric

problems and three numeric problems with side constraints. These problems were

drawn from literature and occasionally slightly revised. Five of the unconstrained

problems constitute a part of the test suite for this study. These five problems were

included in the test suite mainly because, although the MOO CEM was compared

against the NSGA-II on these problems, this would be the first comparison of the

MOO CEM, MO-CMA-ES and PDE algorithms using these problems. The MOPs are

also commonly found in literature.
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Table 4.2 overleaf shows the function definitions and decision variable domains for

the five MOPs included in the test suite.

Table 4.2: Problem definitions for the MOPs.

Name Function definitions

Minimise both

MOP 1 f1(x) = x2

f2(x) = (x− 2)2

subject to

−105 ≤ x ≤ 105

Minimise both

MOP 2 f1(x) = 1− e−
∑3

i=1

(
xi− 1√

3

)2
f2(x) = 1− e−

∑3
i+1

(
xi− 1√

3

)2
subject to

−4 ≤ xi ≤ 4, i = 1, 2, 3

Maximise both

MOP 3 f1(x) = −(1 + (A−B)2 + (C −D)2), where

A = 0.5 sin(1)− 2 cos(1) + sin(2)− 1.5 cos(2)

B = 0.5 sin(x1)− 2 cos(x1) + sin(x2)− 1.5 cos(x2)

C = 1.5 sin(1)− cos(1) + 2 sin(2)− 0.5 cos(2)

D = 1.5 sin(x1)− cos(x1) + 2 sin(x2)− 0.5 cos(x2)

f2(x) = −((x1 + 3)2 + (x2 + 1)2)

subject to

−π ≤ xi ≤ π, i = 1, 2

Minimise both

MOP 4 f1(x) =
∑2

i=1(−10e(−0.2
√
x2i+x

2
i+1))

f2(x) =
∑3

i=1(|xi|0.8 + 5 sin(xi)
3)

subject to

−5 ≤ xi ≤ 5, i = 1, 2, 3

Minimise both

MOP 6 f1(x1) = x1

f2(x) = (1 + 10x2)×
(

1−
(

x1
1+10x2

)2
− x1

1+10x2
sin(8πx1)

)
subject to

0 ≤ xi ≤ 1, i = 1, 2
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4.3.2 The Zitzler-Deb-Thiele problems

Using the framework laid out by Deb (1999) to construct problems, Zitzler et al. (2000)

proposed six unconstrained test problems. The Zitzler-Deb-Thiele (ZDT) suite includes

problems that are concave, convex or disconnected as well as unimodal or multimodal.

ZDT 5 is a binary problem. It is therefore excluded from the continuous test suite.

Table 4.3 shows the problem definitions and decision variable domains for the se-

lected ZDT problems. The Pareto fronts for the five problems can be found by setting

g(x) = 1.

4.3.3 The L1ZDT problems

Building on Deb (1999) and Zitzler et al. (2000), Deb et al. (2006) demonstrate two

types of relationships between variables, referred to as linkages, that could be used

to ensure that there are relationships between variables. The first type of linkage

separately introduces relationships between the variables used for each objective value.

The second type of linkage introduces relationships between all decision variables.

A problem with both mechanisms is that linkages are determined randomly. There-

fore problems using these linkages change all the time.

For this study, only linkages of type one will be used. This is because the true

Pareto front is still predictable using these. However, for linkages of type two, both

the size and the location of the Pareto front can no longer be predicted (Deb et al.,

2006). The fact that the location cannot reliably be predicted poses a problem when

calculating the hypervolume of the front.

Linkages of type one (denoted as L1) are introduced using two random matrices P

and Q of sizes V1 × V1 and (V − V1) × (V − V1) respectively, where V1 denotes the

number of decision variables used in the first objective. All members of P and Q are

random values between −1 and 1. Linkages between decision variables are introduced

for the first objective by altering x1 to be x′1 using

x′1 = Px1. (4.1)

Similarly, x2,...,V is altered to be x′2,...,V when linkages are introduced for the second

objective:
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Table 4.3: Problem definitions for the ZDT problems.

Name Function definitions

Minimise both

ZDT 1 f1(x1) = x1

g(x) = 1 + 9
∑n

i=2 xi
n−1

f2(x) = 1−
√

f1
g

subject to

0 ≤ xi ≤ 1, i = 1, . . . , 30

Minimise both

ZDT 2 f1(x1) = x1

g(x) = 1 + 9
∑n

i=2 xi
n−1

f2(x) = 1−
√

f1
g

subject to

0 ≤ xi ≤ 1, i = 1, . . . , 30

Minimise both

ZDT 3 f1(x1) = x1

g(x) = 1 + 9
∑n

i=2 xi
n−1

f2(x) = 1−
√

f1
g −

(
f1
g

)
sin (10πf1)

subject to

0 ≤ xi ≤ 1, i = 1, . . . , 30

Minimise both

ZDT 4 f1(x1) = x1

g(x) = 1 + 10(n− 1) +
∑n

i=2

(
x2i − 10 cos(4πxi)

)
f2(x) = 1−

√
f1
g

subject to

0 ≤ xi ≤ 1, i = 1, . . . , 10

Minimise both

ZDT 6 f1(x1) = 1− e−4x1 sin6 (6πx1)

g(x) = 1 + 9
(∑n

i=2 xi
n−1

)0.25
f2(x) = 1−

(
f1
g

)2
subject to

0 ≤ xi ≤ 1, i = 1, . . . , 10
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4.3 The unconstrained, continuous test suite

Table 4.4: Available characteristics of the L1ZDT problems.

Name Shape of front Modality Linkages

L1ZDT 1 Convex U 3

L1ZDT 2 Concave U 3

L1ZDT 3 Disconnected M 3

L1ZDT 4 Convex M 3

L1ZDT 6 Concave M 3

x′2,...,V = Qx2,...,V . (4.2)

The available characteristics of the L1ZDT problems are shown in Table 4.4.

Table 4.5 shows the problem definition and variable domains for the L1ZDT prob-

lems. Note that the variable domains are applicable to the unaltered decision variables.

4.3.4 The R problems

Iorio & Li (2005) suggested a mechanism for introducing relationships between decision

variables. This was done in order to compare their newly developed non-dominated

sorting differential evolution (NSDE) to the non-dominated sorting genetic algorithm

II (NSGA-II).

Following from this, Iorio & Li (2006) proposed four problems (the R problems)

that use the mechanism.

The essential idea is that rotating decision variables away from their original axes

would introduce relationships between decision variables. This is accomplished using a

combination of matrix multiplication and a specially constructed rotation matrix. The

construction of the rotation matrix is shown in Algorithm 9.

Similar to the L1ZDT problems, the decision variables are adjusted:

x′ = Rx, (4.3)

where R is the rotation matrix, x is the original decision variable vector and x′ is

the resulting rotated decision variable vector.
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Table 4.5: Problem definitions for the L1ZDT problems.

Name Function definitions

Minimise both

L1ZDT 1 f1(x
′
1) = x′1

g(x′) = 1 + 9
∑n

i=2 x
′
i

n−1
f2(x

′) = 1−
√

f1
g

subject to

0 ≤ xi ≤ 1, i = 1, . . . , 30

Minimise both

L1ZDT 2 f1(x
′
1) = x′1

g(x′) = 1 + 9
∑n

i=2 x
′
i

n−1
f2(x

′) = 1−
√

f1
g

subject to

0 ≤ xi ≤ 1, i = 1, . . . , 30

Minimise both

L1ZDT 3 f1(x
′
1) = x′1

g(x′) = 1 + 9
∑n

i=2 x
′
i

n−1
f2(x

′) = 1−
√

f1
g −

(
f1
g

)
sin (10πf1)

subject to

0 ≤ xi ≤ 1, i = 1, . . . , 30

Minimise both

L1ZDT 4 f1(x
′
1) = x′1

g(x′) = 1 + 10(n− 1) +
∑n

i=2

(
x2i − 10 cos(4πx′i)

)
f2(x

′) = 1−
√

f1
g

subject to

0 ≤ xi ≤ 1, i = 1, . . . , 10

Minimise both

L1ZDT 6 f1(x
′
1) = 1− e−4x′1 sin6 (6πx′1)

g(x′) = 1 + 9
(∑n

i=2 x
′
i

n−1

)0.25
f2(x

′) = 1−
(
f1
g

)2
subject to

0 ≤ xi ≤ 1, i = 1, . . . , 10
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Algorithm 9 The construction of the rotation matrix R.

1: Create a matrix R of size V × V comprising of normally distributed random numbers with

µ = 0 and σ = 1.

For i = 1 to V

2: Calculate the first norm of R(i, :), ‖R(i, :)‖
3: Let B = R(i,:)

‖R(i,:)‖ .

4: j ← 1.

While j < i

5: C ← the first norm of B.

6: D ← B× transpose of R(j, :).

For i = 1 to V

7: B(k)← B(k)−D×R(j,k)
C2 .

end for

8: j ← j + 1.

end while

9: R(i, :) = B
‖B‖ .

end for

The adjusted decision variables are used for function evaluation as shown in Table

4.7. Similar to the L1ZDT problems, the variable domains of the R problems are

applicable to the unaltered decision variables.

The available characteristics of the R problems are shown in Table 4.6.

Table 4.6: Available characteristics of the R problems.

Name Shape of front Modality Rotated

R 1 Convex M, D 3

R 2 Disconnected M 3

R 3 Concave M 3

R 4 Convex M, D 3

4.3.5 The walking fish group problems

As mentioned above, the walking fish group (WFG) toolkit is introduced in Huband

et al. (2005). The WFG test suite comprises nine box-constrained scalable (in both

the number of variables and the number of objectives) problems built using the WFG

toolkit. The toolkit and the suggested test problems will now be discussed.
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Table 4.7: Problem definitions of the R problems.

Name Function definitions

Minimise both

R 1 f1(x
′
1) = x′1

g(x′) = 1 + 10(n− 1) +
∑n

i=2

(
x′2i − 10 cos(4πx′i)

)
h (f1(x

′
1), g(x′)) = e

−f1(x
′
i)

g(x′)

f2(x
′) = g(x′)h (f1(x

′
1), g(x′))

subject to

−0.3 ≤ xi ≤ 0.3, i = 1, . . . , 10, and |f1| ≤ 0.3

Minimise both

R 2 f1(x
′
1) = x′1

g(x′) = 1 + 10(n− 1) +
∑n

i=2

(
x′2i − 10 cos(πx′i)

)
h (f1(x

′
1), g(x′)) = 1 + e

−f1(x
′
i)

g(x′) +
(
f1(x′1)+1
g(x′)

)
sin(5πf1(x

′
1))

f2(x
′) = g(x′)h (f1(x

′
1), g(x′))

subject to

−1 ≤ xi ≤ 1, i = 1, . . . , 10, and |f1| ≤ 1

Minimise both

R 3 f1(x
′
1) = 1− e2x

′
1 sin6(6πx′1)

9

g(x′) = 1 + 10(n− 1) +
∑n

i=2

(
x′2i − 10 cos(πx′i)

)
h (f1(x

′
1), g(x′)) = 1−

(
f1(x′i)
g(x′)

)2
f2(x

′) = g(x′)h (f1(x
′
1), g(x′))

subject to

−1 ≤ xi ≤ 1, i = 1, . . . , 10, and 0.3 ≤ f1 ≤ 1

Minimise both

R 4 f1(x
′
1) = x′1

g(x′) = 1 + 0.015578(n− 1) +
∑n

i=2

(
x′2i − 0.25x′i sin(32

√
|x′i|)

)
h (f1(x

′
1), g(x′)) = e

−f1(x
′
i)

g(x′)

f2(x
′) = g(x′)h (f1(x

′
1), g(x′))

subject to

−1 ≤ xi ≤ 1, i = 1, . . . , 10, and |f1| ≤ 1
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A set of decision variables x (with the size of x being scalable), is divided into two

groups: distance-related variables and position-related variables, where the number of

distance-related variables is denoted by VD and the number of position-related variables

is denoted by VP .

An objective function is made up of transformation and shape functions, as well as

degeneracy and scaling parameters. Before any of these are used, all decision variables

are scaled to fall between 0 and 1. The scaled decision variables are adjusted using a

series of transformation functions. Before incorporating a shape function, the Pareto

front can be made degenerate by appropriately adjusting the degeneracy parameter ϑi

for each objective function i. The transformed position-related variables are used as

input to a chosen shape function. Finally, an objective function is constructed using the

scaled outputs of the reduction transformation and the shape function. Each objective

function i is associated with a scaling parameter ψi which determines the range of the

objective function. For example, if the scaling parameter for the first objective ψ1 = 2

and the scaling parameter for the second objective ψ2 = 4, and values for the first

objective are plotted along the x-axis and values for the second objective are plotted

along the y-axis, the Pareto front will intersect with the x-axis at x = 2 and with the

y-axis at y = 4.

There are eight basic transformation functions, three of which are bias functions

and three of which shift the location of the optimum. The last two are reduction

functions. The researcher can select any combination of these functions and the order

in which they should be carried out, keeping in mind that the order affects the resulting

objective function. Before these transformation functions are discussed, please note

that the original decision variables, as adjusted by the metaheuristics, are denoted by xi

throughout this chapter and this document. When referencing variables more generally,

a temporary variable yi, or temporary adjusted variables y′i or y′′i are preferred. In

reality, all these temporary variables (yi, y
′
i and y′′i ) are functions of x. However, the

exact functions vary based on the transformation and shape functions selected. As a

result, it is simpler to refer to a general variable yi (with yi(x)) than to the specific –

and unknown, varying – function of xi. In an example at the end of this section, the

relationships between xi, yi, y
′
i and y′′i will be illustrated clearly.
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4.3 The unconstrained, continuous test suite

1. A polynomial bias (determined by τ1, with τ1 > 0 and τ 6= 1), is added to a

temporary variable yi to create a temporary adjusted variable y′i

y′i = yτ1i . (4.4)

2. A flat region bias is introduced using three parameters: τ2, υ2 and ω2, with

τ2, υ2, ω2 ∈ [0, 1], υ2 < ω2, τ2 = 0 and ω2 6= 1 if υ2 = 0, and τ2 = 1 and υ2 6= 0 if

ω2 = 1. The temporary variable yi is adjusted:

y′i = τ2 + min (0, byi − υ2c)
τ2(υ2 − yi)

υ2
−min (0, bω2 − yic)

(1− τ2)(yi − ω2)

yi − ω2
.

(4.5)

Introducing a flat region bias results in all values of yi between υ2 and ω2 being

assigned a value equal to τ2.

3. A decision variable dependent bias can also be introduced to a temporary

variable. This is done using three parameters (τ3, υ3 and ω3, with τ3 ∈ (0, 1),

and 0 < υ3 < ω3) and the result of a weighted sum reduction $3 of some of the

decision variables:

y′1 = y
υ3+(ω3−υ3)(τ3−(1−$3)|b0.5−$3c|)
1 . (4.6)

4. The optimum of each objective function can be shifted linearly using a single

parameter τ4:

y′i =
yi − τ4

|bτ4 − y1c+ τ4|
. (4.7)

5. The optimum of each objective function can be shifted to be deceptive. This

is done using three parameters: τ5, υ5 and ω5, with τ5 ∈ (0, 1), 0 < υ5 � 1,

0 < ω5 � 1, τ5 6= υ5, and τ5 + υ5 < 0. The position of the global minimum

is controlled by τ5 (for yi = τ5, the solution would be optimal), ω5 controls

the position of the deceptive minimum, and υ5 controls the depth of the valley
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4.3 The unconstrained, continuous test suite

between the two. In order to shift the optimum, the temporary variable yi is

adjusted:

y′i = 1 + (|yi − τ5| − υ5)

byi − τ5 + υ5c
(

1− ω5 + τ5−υ5
υ5

)
τ5 − υ5

+
bτ5 + υ5 − yic

(
1− ω5 + 1−τ5−υ5

υ5

)
1− τ5 − υ5

+
1

υ5

 . (4.8)

6. Each objective function can be changed from being unimodal to being multi-

modal. Similar to the previous shift function, three parameters are used: τ6, υ6

and ω6, with τ6 ∈ N, υ6 ≥ 0, (4τ6 + 2)π ≥ 4υ6, and C ∈ (0, 1). The number

of minima is controlled by τ6, while υ6 controls the size of the ‘hills’ and ‘val-

leys’. The position of the global minimum is controlled by ω6 (yi is optimal when

yi = ω6). A unimodal objective function is transformed to be multimodal:

y′i =
1 + cos

(
(4τ6 + 2)π

(
0.5− |yi−ω6|

2(bω6−yic+ω6)

))
+ 4υ6

(
|yi−ω6|

2(bω6−yic+ω6)

)2
υ6 + 2

. (4.9)

7. Multiple decision variable values can be reduced to a single value using a weighted

sum reduction function:

y′i =

∑Vw
j=1wjyj∑Vw
j=1wj

, (4.10)

where wj is the weight assigned to the jth variable, and Vw is the number of

variables to be reduced using the weighted sum reduction function. The weighted

reduction function is often used as a final transformation to reduce the number

of variables from V to M .

8. Multiple decision variable values can be reduced to a single value using a non-

separable reduction function:

y′i =
τ8
∑Vn

j=1

(
yj +

∑τ8−2
k=0 |yj − y(1+(j+k) mod Vn)|

)
Vnd τ82 e(1 + 2τ8 − 2d τ82 e)

. (4.11)
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The parameter τ8 determines the degree of non-separability and Vn is the num-

ber variables to be reduced using a non-separable reduction function. The non-

separable reduction function is often used as a final transformation to reduce the

number of variables from V to M .

The degeneracy parameters are incorporated after the transformation functions and

before the shape functions. If y′ is the set of completely transformed variables, then

the set of variables with degeneracy parameters incorporated is denoted as yD and is

obtained as follows:

yD = [yD1 , . . . , y
D
M ] (4.12)

= [max(y′M , ϑ1)(y
′
1 − 0.5) + 0.5, . . . ,max(y′M , ϑM−1)(y

′
M−1 − 0.5) + 0.5, y′M ].

There are five basic shape functions, influencing whether an objective function has

a linear, convex, concave, mixed or disconnected shape. Each objective of a multi-

objective problem can have a different shape. These shape functions are laid out in

Table 4.8. The shape parameter κ determines whether an objective function is convex

(κ > 1), concave (κ < 1) or linear (κ = 1), and the parameter CC determines the

number of convex or concave sections. The parameter CD determines the number of

disconnected regions of a problem, and the parameter θ determines the locations of the

disconnected regions.

Once the shape functions have been applied, the objective functions are finished by

incorporating the scaling parameters. The basic form of the objective functions is

fi=1:M (x) = φy′M + ψihi, (4.13)

where φ is a distance-scaling constant, ψi is a shape-scaling constant and hi is the

ith shape function.

The distance-scaling constant is denoted by φ and is equal to one for all the WFG

problems. Because of this, it will not be taken into account any further.

The transformation and shape functions used for the construction of each WFG

problem is summarised in Table 4.9. The parameter values for each problem are also

summarised there. The number of variables and the number of objectives are both

scalable.
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Table 4.8: Shape functions used when constructing the WFG problems.

Shape functions

linear1(y1, . . . , yM−1) =
∏M−1
i=1 yi

linearj=2:M−1(y1, . . . , yM−1) =
(∏M−1

i=1 yi

)
(1− y(M−j+1))

linearM (y1, . . . , yM−1) = 1− y1

convex1(y1, . . . , yM−1) =
∏M−1
i=1 (1− cos(0.5πyi))

convexj=2:M−1(y1, . . . , yM−1) =
(∏M−1

i=1 (1− cos(0.5πyi))
) (

1− sin(0.5πy(M−j+1))
)

convexM (y1, . . . , yM−1) = 1− sin(0.5πy1)

concave1(y1, . . . , yM−1) =
∏M−1
i=1 (sin(0.5πyi))

concavej=2:M−1(y1, . . . , yM−1) =
(∏M−1

i=1 (sin(0.5πyi))
)

cos(0.5πy(M−j+1))

concaveM (y1, . . . , yM−1) = cos(0.5πy1)

mixedM (y1, . . . , yM−1) =
(

1− y1 − cos(2CCπy1+0.5π)
2CCπ

)κ
discM (y1, . . . , yM−1) = 1− yκ1 cos2(CDπy

θ
1)
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Table 4.9: Summary of the construction of the nine WFG problems.

For all problems
Scaling parameter ψi = 2, i = 1, . . . ,M .

yi ← xi
Upper bound of xi

, i = 1, . . . , V .

WFG 1

Degeneracy parameter ϑi = 1, i = 1, . . . ,M .

Transformation functions

1. Distance-related variables yVP+1:V shifted linearly using
(4.7) with τ4 = 0.35.

2. Flat region bias introduced in distance-related variables
yVP+1:V using (4.5) with τ2 = 0.8, υ2 = 0.75 and ω2 = 0.85.

3. Polynomial bias introduced in all variables using (4.4)
with τ1 = 0.02.

4. Weighted sum reduction (as in (4.10)) used to reduce
the number of variables from V to M . The first 1 : M − 1
new variables y′i=1:M−1 are created by reducing vectors made
up of [y(i−1)VP /(M−1)+1, . . . , yiVP /(M−1)] and a weight vector
w equal to [2((i − 1)VP /(M − 1) + 1), . . . , 2iVP /(M − 1)].
The M th new variable y′M results from reducing the vector
made up of [yVP+1, . . . , yV ] using a weight vector w equal to
[2(VP + 1), . . . , 2V ].

Shape functions
Objectives 1 to M − 1: Convex

Objective M : Mixed (with κ = 1 and CC = 5)

WFG 2

Degeneracy parameter ϑi = 1, i = 1, . . . ,M .

Transformation functions

1. Distance-related variables yVP+1:V shifted linearly using
(4.7) with τ4 = 0.35.

2. Non-separable reduction of the distance-related variables
yVP+1:V using (4.11). The number of distance-related vari-
ables is reduced from VD to 0.5VD. The new variables
yi=VP+1:VP+0.5VD are created by reducing vectors compris-
ing two members [yVP+2(i−VP )−1, yVP+2(i−VP )] with τ8 = 2.

3. Weighted sum reduction (as in (4.10)) used to reduce the
number of variables from VP + 0.5VD to M . The first 1 :
M−1 new variables y′i=1:M−1 are created by reducing vectors
made up of [y(i−1)VP /(M−1)+1, . . . , yiVP /(M−1)] and a weight

vector w equal to 1, . . . , 1]. The M th new variable y′M results
from reducing the vector made up of [yVP+1, . . . , yVP+0.5VD ]
using a weight vector w equal to [1, . . . , 1].

Continued on next page
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Table 4.9 – continued from previous page

Shape functions

Objectives 1 to M − 1: Convex

Objective M : Disconnected (with κ = θ = 1

and CD = 5)

WFG 3

Degeneracy parameter ϑ1 = 1, and ϑi = 0, i = 1, . . . ,M .

Transformation functions

1. Distance-related variables yVP+1:V shifted linearly using
(4.7) with τ4 = 0.35.

2. Non-separable reduction of the distance-related variables
yVP+1:V using (4.11). The number of distance-related vari-
ables is reduced from VD to 0.5VD. The new variables
yi=VP+1:VP+0.5VD are created by reducing vectors compris-
ing two members [yVP+2(i−VP )−1, yVP+2(i−VP )] with τ8 = 2.

3. Weighted sum reduction (as in (4.10)) used to reduce the
number of variables from VP + 0.5VD to M . The first 1 :
M−1 new variables y′i=1:M−1 are created by reducing vectors
made up of [y(i−1)VP /(M−1)+1, . . . , yiVP /(M−1)] and a weight

vector w equal to 1, . . . , 1]. The M th new variable y′M results
from reducing the vector made up of [yVP+1, . . . , yVP+0.5VD ]
using a weight vector w equal to [1, . . . , 1].

Shape functions Objectives 1 to M : Linear

WFG 4

Degeneracy parameter ϑi = 1, i = 1, . . . ,M .

Transformation functions
1. Change unimodal objective function to be multimodal
using (4.9) with τ6 = 30, υ6 = 10, and ω6 = 0.35.

2. Weighted sum reduction (as in (4.10)) used to reduce
the number of variables from V to M . The first 1 : M −
1 new variables y′i=1:M−1 are created by reducing vectors
made up of [y(i−1)VP /(M−1)+1, . . . , yiVP /(M−1)] and a weight

vector w equal to 1, . . . , 1]. The M th new variable y′M results
from reducing the vector made up of [yVP+1, . . . , yV ] using a
weight vector w equal to [1, . . . , 1].

Shape functions Objectives 1 to M − 1: Concave

WFG 5

Degeneracy parameter ϑi = 1, i = 1, . . . ,M .

Transformation functions
1. Change the objective functions to be deceptive using (4.8)
with τ5 = 0.35, υ5 = 0.001, and ω5 = 0.05.

Continued on next page
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Table 4.9 – continued from previous page

2. Weighted sum reduction (as in (4.10)) used to reduce
the number of variables from V to M . The first 1 : M −
1 new variables y′i=1:M−1 are created by reducing vectors
made up of [y(i−1)VP /(M−1)+1, . . . , yiVP /(M−1)] and a weight

vector w equal to 1, . . . , 1]. The M th new variable y′M results
from reducing the vector made up of [yVP+1, . . . , yV ] using a
weight vector w equal to [1, . . . , 1].

Shape functions Objectives 1 to M − 1: Concave

WFG 6

Degeneracy parameter ϑi = 1, i = 1, . . . ,M .

Transformation functions
1. Distance-related variables yVP+1:V shifted linearly using
(4.7) with τ4 = 0.35.

2. Non-separable reduction (as in (4.11)) used to reduce the
number of variables from V to M . The first 1 : M − 1 new
variables y′i=1:M−1 are created by reducing vectors made up

of [y(i−1)VP /(M−1)+1, . . . , yiVP /(M−1)] and τ8 = VP
M−1 . The

M th new variable y′M results from reducing the vector made
up of [yVP+1, . . . , yV ] τ8 = VD.

Shape functions Objectives 1 to M − 1: Concave

WFG 7

Degeneracy parameter ϑi = 1, i = 1, . . . ,M .

Transformation functions

1. Decision variable dependent bias introduced in position-
related variables y1:VP using (4.6) with τ3 = 0.98

49.98 , υ3 = 0.02,
and ω3 = 50. For each y′i=1:VP

, the value of $3 is obtained by
applying a weighted sum reduction to a vector [yi+1, . . . , yV ]
using weights w equal to [1, . . . , 1].

2. Distance-related variables yVP+1:V shifted linearly using
(4.7) with τ4 = 0.35.

3. Weighted sum reduction (as in (4.10)) used to reduce
the number of variables from V to M . The first 1 : M −
1 new variables y′i=1:M−1 are created by reducing vectors
made up of [y(i−1)VP /(M−1)+1, . . . , yiVP /(M−1)] and a weight

vector w equal to 1, . . . , 1]. The M th new variable y′M results
from reducing the vector made up of [yVP+1, . . . , yV ] using a
weight vector w equal to [1, . . . , 1].

Shape functions Objectives 1 to M − 1: Concave

Continued on next page
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Table 4.9 – continued from previous page

WFG 8

Degeneracy parameter ϑi = 1, i = 1, . . . ,M .

Transformation functions

1. Decision variable dependent bias introduced in distance-
related variables yVP+1:V using (4.6) with τ3 = 0.98

49.98 , υ3 =
0.02, and ω3 = 50. For each y′i=VP+1:V , the value of $3 is
obtained by applying a weighted sum reduction to a vector
[y1, . . . , yi−1] using weights w equal to [1, . . . , 1].

2. Distance-related variables yVP+1:V shifted linearly using
(4.7) with τ4 = 0.35.

3. Weighted sum reduction (as in (4.10)) used to reduce
the number of variables from V to M . The first 1 : M −
1 new variables y′i=1:M−1 are created by reducing vectors
made up of [y(i−1)VP /(M−1)+1, . . . , yiVP /(M−1)] and a weight

vector w equal to 1, . . . , 1]. The M th new variable y′M results
from reducing the vector made up of [yVP+1, . . . , yV ] using a
weight vector w equal to [1, . . . , 1].

Shape functions Objectives 1 to M − 1: Concave

WFG 9

Degeneracy parameter ϑi = 1, i = 1, . . . ,M .

Transformation functions

1. Decision variable dependent bias introduced in position-
related variables y1:VP using (4.6) with τ3 = 0.98

49.98 , υ3 = 0.02,
and ω3 = 50. For each y′i=1:VP

, the value of $3 is obtained by
applying a weighted sum reduction to a vector [yi+1, . . . , yV ]
using weights w equal to [1, . . . , 1].

2. The optimum of each objective function is shifted to
be deceptive using the position-related variables y1:VP and
(4.8), with τ5 = 0.35, υ5 = 0.001, and ω5 = 0.05. All
objective function values are also adjusted to be multimodal
using the distance-related variables yVP+1:V and (4.9) with
τ6 = 30, υ6 = 95, and ω6 = 0.35.

2. Non-separable reduction (as in (4.11)) used to reduce the
number of variables from V to M . The first 1 : M − 1 new
variables y′i=1:M−1 are created by reducing vectors made up

of [y(i−1)VP /(M−1)+1, . . . , yiVP /(M−1)] and τ8 = VP
M−1 . The

M th new variable y′M results from reducing the vector made
up of [yVP+1, . . . , yV ] τ8 = VD.

Shape functions Objectives 1 to M − 1: Concave

In order to illustrate how a WFG problem is constructed, an example will now
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be worked through. The example is the construction of WFG 1, with two objective

functions, two position-related variables x1 and x2, and two distance-related variables

x3 and x4. This is the smallest possible version of WFG 1. We will also make use of

four temporary placeholders y1 to y4.

First, all decision variables xi are scaled to fall between 0 and 1. Temporary vari-

ables yi are used to store the scaled decision variables:

yi =
xi

Upper bound of xi
(4.14)

y1 =
x1
2
, y2 =

x2
4
, y3 =

x3
6
, y4 =

x4
8
. (4.15)

For the first transformation, the position-related variables remain unchanged:

y′1 = y1 (4.16)

y′2 = y2, (4.17)

while the two scaled distance-related variables are shifted linearly. For convenience,

(4.7) is repeated here:

y′i =
yi − τ4

|bτ4 − y1c+ τ4|
. (4.18)

Substituting yi in (4.18) with y3 and τ4 = 0.35, yields:

y′3 =
|y3 − 0.35|

|b0.35− y3c+ 0.35| . (4.19)

Similarly, substituting yi in (4.18) with y3 and τ4 = 0.35, yields:

y′4 =
|y4 − 0.35|

|b0.35− y4c+ 0.35| . (4.20)

For the second transformation, a flat region bias is introduced in the distance-related

variables, while the position-related variables remain unchanged. Recall, from (4.5),

that a flat region bias is introduced as follows:

y′i = τ2 + min (0, byi − υ2c)
τ2(υ2 − yi)

υ2
−min (0, bω2 − yic)

(1− τ2)(yi − ω2)

yi − ω2
. (4.21)
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Substituting τ2 = 0.8, υ2 = 0.75 and ω2 = 0.85, and substituting yi in (4.21) with

y′3 from (4.19), yields:

y′3 = 0.8 + min
(

0,
⌊

|y3−0.35|
|b0.35−y3c+0.35| − 0.75

⌋ ) 0.8
(

0.75− |y3−0.35|
|b0.35−y3c+0.35|

)
0.75

(4.22)

−min
(

0,
⌊

0.85− |y3−0.35|
|b0.35−y3c+0.35|

⌋ ) 0.2
(

|y3−0.35|
|b0.35−y3c+0.35| − 0.85

)
0.15

Similarly, substituting τ2 = 0.8, υ2 = 0.75 and ω2 = 0.85, and substituting yi in

(4.21) with y′4 from (4.20), yields:

y′4 = 0.8 + min
(

0,
⌊

|y4−0.35|
|b0.35−y4c+0.35| − 0.75

⌋ ) 0.8
(

0.75− |y4−0.35|
|b0.35−y4c+0.35|

)
0.75

(4.23)

−min
(

0,
⌊

0.85− |y4−0.35|
|b0.35−y4c+0.35|

⌋ ) 0.2
(

|y4−0.35|
|b0.35−y4c+0.35| − 0.85

)
0.15

.

For the third transformation, a polynomial bias is introduced in all four decision

variables. Recall, from (4.4), that a polynomial bias is introduced as follows:

y′i = yτ1i . (4.24)

For the position-related variables, yi in (4.24) is simply substituted with y1 and y2

respectively. From Table 4.9, τ1 = 0.02. This yields:

y′1 = y0.021 (4.25)

y′2 = x0.022 . (4.26)

For the distance-related variables, yi in (4.24) is substituted with y′3 from (4.22) to

yield:

y′3 =

0.8 + min

(
0,

⌊ |y3 − 0.35|
|b0.35− y3c+ 0.35| − 0.75

⌋) 0.8
(

0.75− |y3−0.35|
|b0.35−y3c+0.35|

)
0.75

−min

(
0,

⌊
0.85− |y3 − 0.35|

|b0.35− y3c+ 0.35|

⌋) 0.2
(

|y3−0.35|
|b0.35−y3c+0.35| − 0.85

)
0.15

0.02

, (4.27)

and yi in (4.24) is substituted with y′4 from (4.22) to yield:
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y4 =

0.8 + min

(
0,

⌊ |y4 − 0.35|
|b0.35− y4c+ 0.35| − 0.75

⌋) 0.8
(

0.75− |y4−0.35|
|b0.35−y4c+0.35|

)
0.75

−min

(
0,

⌊
0.85− |y4 − 0.35|

|b0.35− y4c+ 0.35|

⌋) 0.2
(

|y4−0.35|
|b0.35−y4c+0.35| − 0.85

)
0.15

0.02

. (4.28)

For the fourth transformation, a weighted sum reduction is used to reduce the

number of variables from V = 4 to M = 2. The two resulting transformed variables

will be denoted as y′′1 and y′′2 . From (4.10), a weighted sum reduction involves:

y′i =

∑Vw
j=1wjyj∑Vw
j=1wj

. (4.29)

From (4.29), the first reduced variable y′′1 is created by reducing the vector [y′1, y
′
2]

using a weight vector w equal to [2, 4]:

y′′1 =
2y1 + 4y2

6
. (4.30)

Substituting y1 with y′1 from (4.25), and y2 with y′2 from (4.26) in (4.30), yields:

y′′1 =
2y0.021 + 4y0.022

6
. (4.31)

This can be simplified to be:

y′′1 =
y0.021 + 2y0.022

3
. (4.32)

The second reduced variable y′′2 results from substituting the vector [y3, y4] and the

weight vector w equal to [6, 8] into (4.29):

y′′2 =
6y3 + 8y4

14
, (4.33)

which can be simplified to be

y′′2 =
3

7
y3 +

4

7
y4. (4.34)

Subsequently substituting y3 with y′3 from (4.27), and y4 with y′4 from (4.28) in

(4.34), yields:
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y′′2 =
3

7

0.8 + min

(
0,

⌊ |y3 − 0.35|
|b0.35− y3c+ 0.35| − 0.75

⌋) 0.8
(

0.75− |y3−0.35|
|b0.35−y3c+0.35|

)
0.75

−min

(
0,

⌊
0.85− |y3 − 0.35|

|b0.35− y3c+ 0.35|

⌋) 0.2
(

|y3−0.35|
|b0.35−y3c+0.35| − 0.85

)
0.15

0.02

+
4

7

0.8 + min

(
0,

⌊ |y4 − 0.35|
|b0.35− y4c+ 0.35| − 0.75

⌋) 0.8
(

0.75− |y4−0.35|
|b0.35−y4c+0.35|

)
0.75

−min

(
0,

⌊
0.85− |y4 − 0.35|

|b0.35− y4c+ 0.35|

⌋) 0.2
(

|y4−0.35|
|b0.35−y4c+0.35| − 0.85

)
0.15

0.02

. (4.35)

The Pareto optimal front for WFG 1 is not degenerate, and incorporating the de-

generacy parameters has no effect. Next, the shape function for each objective function

is applied to the completely transformed decision variables. Note that the shape func-

tions are functions of only y′′1 in this case. A convex shape function is used for objective

function 1. From Table 4.8, the general form of the convex shape function for a first

objective function is:

h1 = convex1(y
′
1, . . . , y

′
M−1) =

M−1∏
i=1

(
1− cos(0.5πy′i)

)
, (4.36)

where h1 denotes the shape function of the first objective function.

More specifically, the equation below shows what h1 (the shape function used for

the first objective) looks like after y′′1 from (4.32) has been substituted into it:

h1 = 1− cos

(
π(t0.021 + 2t0.022 )

6

)
. (4.37)

A mixed shape function is used for objective function 2. From Table 4.8, the general

form of the mixed shape function is:

h2 = mixedM (y′1, . . . , y
′
M−1) =

(
1− y′1 −

cos(2CCπy
′
1 + 0.5π)

2CCπ

)κ
, (4.38)

where h2 denotes the shape function of the second objective function.

Substituting y′′1 from (4.32), κ = 1 and CC = 5 into h2 above, yields:

h2 = 1− y0.021 + 2y0.022

3
−

cos
(

10π
y0.021 +2y0.022

3 + 0.5π
)

10π
. (4.39)
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Recall from (4.40) that the basic form of the objective functions is

fi=1:M (x) = φy′M + ψihi, (4.40)

where φ = 1. From Table 4.9, the shape-scaling parameter for the first objective

function is ψ1 = 2, and for the second objective function ψ2 = 4.

Substituting h1, y
′′
2 , and ψ1 = 2 into (4.40) yields objective function 1:

f1 =
3

7

0.8 + min

(
0,

⌊ |y3 − 0.35|
|b0.35− y3c+ 0.35| − 0.75

⌋) 0.8
(

0.75− |y3−0.35|
|b0.35−y3c+0.35|

)
0.75

−min

(
0,

⌊
0.85− |y3 − 0.35|

|b0.35− y3c+ 0.35|

⌋) 0.2
(

|y3−0.35|
|b0.35−y3c+0.35| − 0.85

)
0.15

0.02

+
4

7

0.8 + min

(
0,

⌊ |y4 − 0.35|
|b0.35− y4c+ 0.35| − 0.75

⌋) 0.8
(

0.75− |y4−0.35|
|b0.35−y4c+0.35|

)
0.75

−min

(
0,

⌊
0.85− |y4 − 0.35|

|b0.35− y4c+ 0.35|

⌋) 0.2
(

|y4−0.35|
|b0.35−y4c+0.35| − 0.85

)
0.15

0.02

+ 2

(
1− cos

(
π(y0.021 + 2y0.022 )

6

))
. (4.41)

Substituting h2, y
′′
2 , and ψ2 = 4 into (4.40) yields objective function 2:
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f2 =
3

7

0.8 + min

(
0,

⌊ |y3 − 0.35|
|b0.35− y3c+ 0.35| − 0.75

⌋) 0.8
(

0.75− |y3−0.35|
|b0.35−y3c+0.35|

)
0.75

−min

(
0,

⌊
0.85− |y3 − 0.35|

|b0.35− y3c+ 0.35|

⌋) 0.2
(

|y3−0.35|
|b0.35−y3c+0.35| − 0.85

)
0.15

0.02

+
4

7

0.8 + min

(
0,

⌊ |y4 − 0.35|
|b0.35− y4c+ 0.35| − 0.75

⌋) 0.8
(

0.75− |y4−0.35|
|b0.35−y4c+0.35|

)
0.75

−min

(
0,

⌊
0.85− |y4 − 0.35|

|b0.35− y4c+ 0.35|

⌋) 0.2
(

|y4−0.35|
|b0.35−y4c+0.35| − 0.85

)
0.15

0.02

+ 4

1− y0.021 + 2y0.022

3
−

cos
(

10π
y0.021 +2y0.022

3 + π
2

)
10π

 (4.42)

The two objective functions can be written in terms of the original decision variables

x1 to x4, by substituting (4.15) into (4.41) and (4.44) respectively. This yields objective

function 1 in terms of x:

f1(x) =
3

7

0.8 + min

(
0,

⌊ |x36 − 0.35|
|b0.35− x3

6 c+ 0.35| − 0.75

⌋) 0.8
(

0.75− |x3
6
−0.35|

|b0.35−x3
6
c+0.35|

)
0.75

−min

(
0,

⌊
0.85− |x36 − 0.35|

|b0.35− x3
6 c+ 0.35|

⌋) 0.2
( |x3

6
−0.35|

|b0.35−x3
6
c+0.35| − 0.85

)
0.15


0.02

+
4

7

0.8 + min

(
0,

⌊ |x48 − 0.35|
|b0.35− x4

8 c+ 0.35| − 0.75

⌋) 0.8
(

0.75− |x4
8
−0.35|

|b0.35−x4
8
c+0.35|

)
0.75

−min

(
0,

⌊
0.85− |x48 − 0.35|

|b0.35− x4
8 c+ 0.35|

⌋) 0.2
( |x4

8
−0.35|

|b0.35−x4
8
c+0.35| − 0.85

)
0.15


0.02

+ 2

(
1− cos

(
π(x12

0.02 + 2x24
0.02)

6

))
, (4.43)

70

Stellenbosch University  http://scholar.sun.ac.za



4.4 Conclusion: Continuous optimisation test problems

and objective function 2 in terms of x:

f2(x) =
3

7

0.8 + min

(
0,

⌊ |x36 − 0.35|
|b0.35− x3

6 c+ 0.35| − 0.75

⌋) 0.8
(

0.75− |x3
6
−0.35|

|b0.35−x3
6
c+0.35|

)
0.75

−min

(
0,

⌊
0.85− |x36 − 0.35|

|b0.35− x3
6 c+ 0.35|

⌋) 0.2
( |x3

6
−0.35|

|b0.35−x3
6
c+0.35| − 0.85

)
0.15


0.02

+
4

7

0.8 + min

(
0,

⌊ |x48 − 0.35|
|b0.35− x4

8 c+ 0.35| − 0.75

⌋) 0.8
(

0.75− |x4
8
−0.35|

|b0.35−x4
8
c+0.35|

)
0.75

−min

(
0,

⌊
0.85− |x48 − 0.35|

|b0.35− x4
8 c+ 0.35|

⌋) 0.2
( |x4

8
−0.35|

|b0.35−x4
8
c+0.35| − 0.85

)
0.15


0.02

+ 4

1−
x1
2
0.02 + 2x24

0.02

3
−

cos

(
10π

x1
2

0.02
+2

x2
4

0.02

3 + π
2

)
10π

 . (4.44)

4.4 Conclusion: Continuous optimisation test problems

This chapter covered the test suite used for this study. It comprises problems from

five test suites found in literature: the MOPs, ZDT problems, L1ZDT problems, R

problems and the WFG problems. The test suite comprises 46 problems in total, of

which 38 were implemented in Matlab by the researcher. The test suite adheres to

the recommendations regarding the composition of a test suite made by Huband et al.

(2006).

The next chapter looks at the combinatorial cases investigated.
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Chapter 5

Combinatorial test problem – the

mission-ready resource problem

The previous chapter covered the unconstrained, continuous problems investigated in

this study.

This chapter will look at the static, combinatorial test problem used to compare al-

gorithm performance. First, the mission-ready resource (MRR) problem is introduced,

followed by the general formulation of the MRR. Then, details about the specific cases

used for this study are provided, followed by a short explanation of how the continuous

optimisation algorithms discussed in Chapter 3 were adapted for discrete optimisation.

Finally, constraint-handling strategies are discussed.

5.1 An introduction to the mission-ready resource prob-

lem

The mission-ready resource (MRR) problem stems from military decision making.

Wakefield (2001) introduced the MRR problem in order to address a discrepancy be-

tween what combatant commanders need and what logisticians can provide. An MRR

is defined to be a combination of resources (such as an aircraft, pilot, fuel, munitions,

support equipment and personnel). Different MRRs are more or less suitable to differ-

ent tasks. The degree to which an MRR is suited to a task is referred to as its task

suitability. Each MRR also has a lift cost associated with it. This lift cost can be

quantified as the weight and/or the volume of the MRR.
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The availability of MMRs vary over time, as do the combat requirements. However,

the model presented by Wakefield (2001) is not a dynamic model, but rather a static

one that can be used for resource assignment at different points in time.

The goal of the MRR problem is to maximise task suitability while minimising lift

cost.

5.2 Formulation of the mission-ready resource problem

The formulation of the MRR problem is based on the pilot problem described by

Stephen Schwartz in an unpublished report (Wakefield, 2001).

Let xi,j be the number of MRRs of type j allocated to task i, with m task types

and n MRR types.

The first objective is to maximise task suitability, with

f1(x) =
n∑
j=1

m∑
i=1

δi,jxi,j , (5.1)

where δi,j is the suitability of MRR type j for executing task i.

The second objective is to minimise the lift cost. Wakefield (2001) splits this up

into two objectives: minimising the weight of the allocated MRRs, and minimising the

volume of the assigned MRRs. The weight of the MRRs assigned is defined as

f2(x) =

n∑
j=1

m∑
i=1

ϕjxi,j , (5.2)

where ϕj is the weight of MRR type j. Similarly, the volume of the assigned MRRs

is

f3(x) =
n∑
j=1

m∑
i=1

ηjxi,j , (5.3)

where ηj is the volume of MRR type j.

The objectives are subject to two constraints:

1. The number of MRRs assigned to tasks of type i must be equal to the task

requirement Ri (the number of MRRs required) for tasks of type i.
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2. The number of MRRs of type j that are assigned cannot exceed MRR availability

Aj (the number of MRRs that are available) of MRRs of type j.

Constraint 1 is formulated as

n∑
j=1

xi,j = Ri, ∀ i, (5.4)

and constraint 2 as

m∑
i=i

xi,j ≤ Aj , ∀ j. (5.5)

The values of xi,j should be non-negative integer values.

5.3 Details about the cases used for this study

The cases used for this study are based on the work done by Wakefield (2001). He

suggested using a problem with three tasks and five MRR types. He assumed that

an infinite number of all MRR types is available and that the number of tasks to be

accomplished is the constraining factor.

The task suitability, volume and weight values selected by Wakefield (2001) are

theoretical, but realistic. The task suitability matrix along with the weight and volume

of the different MRR types are shown in Table 5.1.

Table 5.1: Task suitability, weights and volumes of different MRR types. Weights are

measured in short stones, while volume is measured in cubic feet.

Task 1 Task 2 Task 3 Weight Volume

MRR 1 0.8 0.4 0.001 20.2 1650

MRR 2 0.3 0.8 0.001 28.5 2475

MRR 3 0.6 0.6 0.1 35.7 2887.5

MRR 4 0.001 0.001 0.8 19.9 1705

MRR 5 0.001 0.001 0.4 22.5 2200

Three different combinations of the number of each task that needs to be accom-

plished during a period will be considered. These combinations were suggested by

Wakefield (2001) and are shown in Table 5.2.
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Table 5.2: Number of tasks of type i requiring MRRs per period.

Index Task 1 Task 2 Task 3 Total tasks

Combination A 10 5 1 16

Combination B 30 75 45 150

Combination C 60 90 150 300

However, for two main reasons, we will ignore the assumption by Wakefield (2001)

that an infinite number of each MRR type is available. First, it is not possible for

an infinite number of MRRs to be available. It is possible that there are enough

MRRs available so that MRR availability is not the binding constraint. For this study,

such cases are preferred to cases where infinite availability is assumed. In addition to

cases where MRR availability is large enough not to be binding, cases where the MRR

availability constraint could be binding are also considered.

The second reason for ignoring this assumption is that the total size of the decision

space is (The number of MRRs available+1)Number of variables. Keeping the assumption

means that the decision space is of infinite size. Ignoring the assumption by Wakefield

(2001) decreases the total number of possible solutions, subsequently simplifying the

task of solving the MRR cases using multi-objective optimisation algorithms.

Six cases are investigated in total. For each combination of tasks, a case where

MRR availability can be a binding constraint and a case where MRR availability is

large enough not to be binding, is investigated. For the sake of simplicity, it is assumed,

for all cases, that the number of MRRs available are equal for all MRR types. The

investigated cases are summarised in Table 5.3.

Initial experiments with the three objectives suggested by Wakefield (2001) pro-

duced Pareto fronts that were essentially only two-dimensional. This can be attributed

to the fact that the weight and volume objectives are not truly conflicting. Only con-

flicting objectives should be taken into account, as objectives that are not conflicting

have a single optimal answer (Zitzler, 1999). Even though the weight and volume

objectives do not conflict with one another, the first objective (maximising task suit-

ability) conflicts with both. Because of this, using a combination of the task suitability

objective and the weight objective would result in a Pareto front roughly equivalent to
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Table 5.3: Summary of MRR cases investigated.

Number of task i to be executed

Index Task 1 Task 2 Task 3 MRRs available

Case A 10 5 1 5 × 5

Case B 10 5 1 5 × 20

Case C 30 75 45 5 × 50

Case D 30 75 45 5 × 200

Case E 60 90 150 5 × 100

Case F 60 90 150 5 × 400

the Pareto front produced by a combination of the task suitability objective and the

volume objective. For no specific reason, the latter was preferred to the former.

5.4 From continuous to discrete optimisation

The algorithms discussed in Chapter 3 are all designed for continuous optimisation.

Discrete optimisation versions of both the CEM and the MOO CEM exist. However,

for the sake of simplicity, it was decided to adapt all the continuous optimisation

algorithms to discrete optimisation by rounding all continuous variables to the smallest

integer (this is called flooring).

Flooring is simple and consistent. Every time any algorithm chooses a value between

a and a+0.9999999, the objective functions and constraints are evaluated using a. This

procedure is similar to the procedure used to draw discrete random values.

5.5 Constraint handling

Unlike the continuous problems discussed in Chapter 4, the MRR is subject to con-

straints other than box constraints. The focus of this section falls on possible strategies

for handling these constraints when solving the MRR, the constraint-handling strategies

experimented with and the final method used for handling the constraints.
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5.5.1 Constraint-handling strategies found in literature

Talbi (2009), Deb (2001) and Coello Coello et al. (2007) provide good overviews of

popular constraint-handling strategies, including:

• Rejecting infeasible solutions – Infeasible solutions are discarded during the

search. This is simple to implement, but only effective when the proportion of

feasible solutions is relatively large.

• Penalising infeasible solutions – Infeasible solutions are considered during

the search process, but objective function values are penalised when solutions

are infeasible. These penalties can be linear or non-linear, and static, dynamic or

adaptive. In spite of the ease of implementation of penalty functions, a significant

disadvantage of using penalty functions is that choosing a penalty function and

parameters suited to a problem requires extensive experimentation.

• Repairing infeasible solutions – A heuristic transforms infeasible solutions

into feasible solutions. Such heuristics are specific to the problem at hand.

• Treating constraints as objectives – Constraint functions are ranked to-

gether with objective functions. For the Pareto ranking, constraints can either

be summed together and treated as a single function in addition to the objective

functions, or as separate functions.

• Selecting for feasibility – Selection rules preferring feasible solutions over in-

feasible solutions are used.

• Decoding strategies – Procedures where solutions in the search space are

mapped to a space consisting of only feasible solutions. These feasible solutions

are then evaluated.

• Preserving feasibility of solutions – Using problem-specific representations

and operators, only feasible solutions are generated.
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5.5.2 Unsuccessful constraint-handling strategies

Initially, the idea of comparing the abilities of the different optimisation algorithms to

find near-optimal solutions for the MRR cases with minimal guidance and relatively

small numbers of evaluations appealed greatly to the researcher. After extensively ex-

perimenting, without success, with different constraint-handling strategies, population

sizes and increasingly large numbers of maximum evaluations, the researcher came to

a conclusion similar to that of Wakefield (2001): without correcting infeasible solutions

to be feasible, there are too many possible solutions to be able to find near-optimal

solutions.

The researcher speculated that the fact that the decision space is no longer assumed

to be infinite could possibly result in different results from that of Wakefield (2001).

But even for Case B where only 16 tasks require MRR assignment and only 20 units

of each MRR type are available, there are 2115 = 6.8 × 1019 possibilities for a search

algorithm to investigate, of which (according to Wakefield (2001)) only roughly 630 000

are feasible. That translates to only one in every 1.04× 1014 solutions being feasible.

For the sake of completeness, the unsuccessful constraint-handling strategies are

described briefly:

• Using a sum penalty function – a penalty function was added to objectives

function values associated with infeasible solutions before ranking. Unfortunately,

all the solutions are infeasible most of the time, and an algorithm cannot ben-

efit from a difference between feasible solutions where no penalty is added and

infeasible solutions where penalties are added.

• Using a multiplicative penalty function – objective function values of in-

feasible solutions are multiplied with a penalty function before ranking. Similar

to the sum penalty function, the fact that a very small percentage of solutions

is feasible means that an algorithm cannot learn from the difference in function

values for feasible and infeasible solutions.

• Ranking constraints with objective function values – the constraints are

treated as objective functions and ranked with the objectives. For a solution to

outrank another solution, it has to be at least as good as or better than the other

solution in all its objectives. As the number of objectives increases, it becomes
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more difficult for one solution to clearly outrank other solutions (Di Pierro et al.,

2007). This is because even though the solution might be better than another

solution in three out of four objectives, the other solution might outperform it

on the fourth. As a result, ranking becomes weaker as the number of objectives

increases. In order to overcome this, both Pareto ranking and preference order

ranking schemes were investigated. Due to the small percentage of feasible solu-

tions, this strategy still did not result in reasonable numbers of feasible solutions.

• Ranking constraints prior to ranking objective function values – the

constraints values are ranked (using Pareto ranking) before the objectives are

ranked. The problem with this strategy is that, if a feasible solution was found,

that one solution would outrank all the infeasible solutions in the first round of

ranking. Only that solution would go on to the second round of ranking and the

algorithms that select the best few ranks of a solution would get stuck searching

around that one feasible solution. This was the strategy most likely to find a

feasible solution, but it would rarely find more than one feasible solution.

In the end, all these strategies were discarded in favour of fixing infeasible solutions.

This strategy is described in the following subsection.

5.5.3 Final constraint-handling strategy

After experimenting with the unsuccessful constraint-handling strategies discussed above,

the researcher came to the conclusion that simply penalising infeasible solutions would

not be a powerful enough constraint-handling strategy to allow the algorithms to find

near-optimal solutions. Instead, the algorithms should be provided with feasible so-

lutions in some way. Once this was decided upon, a mechanism that could provide

feasible solutions without being heavily biased towards a specific algorithm had to be

found.

It was decided that the best way to do this, would be to have a mechanism that

serves as an extension of the function evaluation. Such a mechanism would effectively

only complicate the objective function, but this complication would be similar for all

the algorithms.
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The mechanism would be fixing infeasible solutions by scaling down a solution

proposed by an algorithm to satisfy the constraints. This is done by drawing up a

probability distribution function for assigning MRRs of type j to tasks of type i.

An example using Case B further illustrates how solutions were fixed. Suppose

MRR 1 MRR 2 MRR 3 MRR 4 MRR 5
∑n

j=1

Task 1 9 12 16 10 12 59

Task 2 12 11 9 19 2 53

Task 3 13 3 19 13 3 51∑m
i=1 34 26 44 42 17

(5.6)

is an original floored solution for MRR Case B. The values of the matrix in (5.6) are

scaled so that the number of MRRs assigned to task i is equal to the task requirement

i (Ri):

MRR 1 MRR 2 MRR 3 MRR 4 MRR 5
∑n

j=1

Task 1 1.5254 2.0339 2.7119 1.6949 2.0339 10

Task 2 1.1321 1.0377 0.8491 1.7925 0.1887 5

Task 3 0.2549 0.0588 0.3725 0.2549 0.0588 1

. (5.7)

This will be referred to as the task scaled matrix.

The following steps are iterative and are repeated for k = 1 to
∑m

i=1Ri:

Step 1 Scale the task scaled matrix by dividing it by the sum of all the values in

the task scaled matrix (16 at this stage). This effectively results in a probability

distribution function for assigning MRRs to tasks. The i, jth entry of the prob-

ability distribution matrix represents the probability that MRR j will be assigned

to task i:

MRR 1 MRR 2 MRR 3 MRR 4 MRR 5

Task 1 0.0953 0.1271 0.1695 0.1059 0.1271

Task 2 0.0708 0.0649 0.0531 0.1120 0.0118

Task 3 0.0159 0.0037 0.0233 0.0159 0.0037

. (5.8)

Figure 5.1 shows the probability distribution function.
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Figure 5.1: Probability distribution function for assigning an MRR of type j to task

type i.

Step 2 The associated cumulative distribution function is:

MRR 1 MRR 2 MRR 3 MRR 4 MRR 5

Task 1 0.0953 0.2225 0.3919 0.4979 0.6250

Task 2 0.6958 0.7606 0.8137 0.9257 0.9375

Task 3 0.9534 0.9571 0.9804 0.9963 1.0000

. (5.9)

The cumulative distribution function is shown in Figure 5.2.

Step 3 Select a uniformly distributed random number between zero and one, J .

Step 4 Use J and to draw an assignment from the cumulative distribution function in

(5.9). For example, if J = 0.3708, then x1,3 ← x1,3 + 1:

MRR 1 MRR 2 MRR 3 MRR 4 MRR 5

Task 1 0 0 1 0 0

Task 2 0 0 0 0 0

Task 3 0 0 0 0 0

. (5.10)

Step 5 If the number of task type i assigned in the feasible solution is equal to Ri,

then row i in the task scaled matrix is set to zero.

Step 6 If the number of MRR type j assigned in the feasible solution is equal to Aj ,

then column j in the task scaled matrix is set to zero.

81

Stellenbosch University  http://scholar.sun.ac.za



5.6 Conclusion: Combinatorial test problem – the mission-ready resource
problem

x
1
,1

x
1
,2

x
1
,3

x
1
,4

x
1
,5

x
2
,1

x
2
,2

x
2
,3

x
2
,4

x
2
,5

x
3
,1

x
3
,2

x
3
,3

x
3
,4

x
3
,5

0

0.2

0.4

0.6

0.8

1

C
u
m
u
la
ti
ve

p
ro
b
a
b
il
it
y

Figure 5.2: Cumulative distribution function for assigning an MRR of type j to task

type i.

Even though the algorithm for fixing solutions is stochastic in nature, it constructs

feasible solutions according to the ratios suggested by the optimisation algorithm. Al-

though a ratio might not be translated to exactly the same feasible solution every time,

generally the feasible solutions for a specific ratio would be similar to one another –

enough so that an optimisation algorithm could learn which ratios give better and

which give worse results.

However, if an optimisation algorithm suggests assigning zero MRRs, the algorithm

does not fix the solution. This is because creating ratios where the algorithm did not

put forth any values would seem completely arbitrary from an optimisation algorithmic

point of view: for one set of zeros, very bad function values result; for another, very

good function values. In such cases the solution is evaluated as is and a sum penalty

function is used to penalise the resulting constraint violations.

5.6 Conclusion: Combinatorial test problem – the mission-

ready resource problem

This chapter introduced the mission-ready resource (MRR) problem and the general

formulation thereof. Details about the specific cases used for comparison were provided.

A short explanation about how the continuous optimisation algorithms discussed in
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Chapter 3 were adapted for discrete optimisation followed. Finally, constraint-handling

strategies were discussed.

The next chapter will look at the dynamic, stochastic problem that was studied.
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Chapter 6

Simulation case – the buffer

allocation problem

The previous two chapters respectively discussed the unconstrained, continuous test

suite and constrained, combinatorial cases investigated by the researcher.

This chapter will focus on the dynamic, stochastic problem that was studied. A few

cases of a dynamic, stochastic buffer allocation problem (BAP) were optimised using

a combination of Matlab and the simulation software package, Simio. An introduction

to the BAP and details of the test cases are provided below.

6.1 An introduction to the buffer allocation problem

The buffer allocation problem (BAP) is found in manufacturing, telecommunications,

material-handling systems and service provision industries such as health care.

It involves either allocating a predetermined number of buffers optimally or finding

the optimal configuration of buffers without a predetermined limit on the total number

of buffers available (Bekker, 2012).

Typically, the BAP is formulated as a single-objective problem in which the total

cost of the buffers is to be minimised subject to a constraint on the minimum allowable

throughput rate (Cruz et al., 2010).

There is a definite trade-off between the throughput rate and the total buffer cost:

as the buffer space increases, the throughput rate increases, but the buffer cost also

increases (Cruz et al., 2010). This trade-off is lost when using single-objective opti-
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misation. In this light, Cruz et al. (2010) proposed using a multi-objective approach to

the BAP. They recommend minimising the total cost as one objective and maximising

throughput rate as the other.

A similar trade-off exists between the work-in-progress (WIP) of a system and the

throughput rate of the system. As the number of buffers increases, the throughput rate

increases, but, unfortunately, the WIP also increases. Bekker (2012) prefers using this

trade-off to the one proposed by Cruz et al. (2010).

6.2 The BAP cases investigated

The cases investigated for this study are variations of a manufacturing process consist-

ing of five machines. There are four buffers, as it is assumed that the buffers before the

first and after the last machine are infinite. The configuration of the system is shown

in Figure 6.1.

M1 M2 M3 M4 M5

B0 =∞ B1 B2 B3 B4 B5 =∞

Figure 6.1: Configuration of the BAP case investigated M1, . . . ,M5 with finite buffers

B1, . . . , B4 in a queuing network.

The problem studied is stochastic and dynamic with exponentially distributed pro-

cessing rates and machine repair times. Machine failures occur based on the number of

jobs processed per machine and are Poisson distributed. The means applicable to each

machine are shown in Table 6.1. Processing times are distributed Expo(βp), failure

counts are distributed Pois(λf ), and repair times are distributed Expo(βr).

Table 6.1: Mean processing times, failure counts and repair times for the BAP cases.

βp λf βr

Machine 1 1 20 2

Machine 2 1
1.1 20 2

Machine 3 1
1.2 20 2

Machine 4 1
1.3 20 2

Machine 5 1
1.4 20 2
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Because of the dynamic, stochastic nature of the problem, it was implemented in

the simulation software, Simio. Figure 6.2 shows how simulation modelling can be used

as an MOO decision support system.

xi Simulation fi

Figure 6.2: Simulation as an MOO decision support system.

In order to solve the dynamic BAP optimisation problem using the simulation

model, Matlab and Simio were combined using a C] executable as discussed in Appendix

C.

For the cases investigated, it was assumed that there were no predetermined limits

on the number of buffers available. The aim was thus to find the Pareto optimal

configurations of buffers.

However, in order to decrease the size of the search space, upper bounds were

imposed on B1 to B4.

Three different sets of upper bounds were experimented with. For the first set, the

upper bounds chosen resulted in a relatively small search space.

The size of the search space for the second set is the same as that of the first

set. For this set, the upper bounds were determined by running the simulation model

with infinite buffer sizes and determining the 95th percentiles of the buffer sizes for

Machines 2 to 5. These 95th percentiles served as upper bounds for the multi-objective

optimisation algorithms.

For the third set, the upper bounds were all equal to 10 000 in order to drastically

increase the size of the search space. Results for the continuous and mission-ready re-

source (MRR) cases showed that the size of the decision space is an important indicator

for algorithm performance. The upper bounds for the buffers for all three cases are

shown in Table 6.2.

The box constraints were the only constraints, and the combination of objectives

preferred by Bekker (2012) was used. In other words: WIP was minimised, while

the throughput rate was maximised. The optimisation was subject only to the box

constraints.
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Table 6.2: Maximum buffer sizes allowed for the BAP cases investigated.

Buffer Case A Case B Case C

B1 3 16 10 000

B2 5 9 10 000

B3 9 5 10 000

B4 16 3 10 000

6.3 Conclusion: Simulation case – the buffer allocation

problem

This chapter covered the dynamic, stochastic problem studied. An introduction to the

BAP and details of the test cases were provided.

The next chapter will discuss details about how experiments were set up.
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Chapter 7

Experimental design

The previous three chapters discussed the test problems that were used for algorithm

comparison. This chapter will look at how algorithm performance was measured and

at details relating to the experiments – such as the parameter settings and sample sizes

used.

7.1 Performance assessment

Many methods for comparing multi-objective optimisation algorithms and the Pareto

fronts they achieve exist. Knowles et al. (2005) differentiate between two main cat-

egories of these methods: applying statistical tests directly to the found Pareto fronts,

or, alternatively, reducing each Pareto front to a single value through the use of per-

formance indicators and then applying statistical tests to these performance indicator

values. For this study, we will make use of the second class of methods.

7.1.1 Performance indicators

Many performance indicators for multi-objective optimisation algorithms have been

suggested. For this study, we will consider four characteristics of these indicators:

whether the indicator is unary or binary, whether it requires knowledge about the

Pareto front or not, the information it provides in terms of dominance relations and

the information it generally provides about the Pareto fronts themselves.

Unary performance indicators assign a single value to each approximated Pareto

front. This value represents an absolute quality of the front. Binary performance indi-
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cators, on the other hand, compare two approximated Pareto fronts with one another

and return a value that is an evaluation of the relative quality if the one front with

respect to the other (Lizárraga et al., 2009). Binary indicators are impractical for a

study of this kind as algorithms have to be compared in pairs, which makes it difficult

to draw conclusions about the overall performance of an algorithm.

Many performance indicators require knowledge of the true Pareto front. Unfor-

tunately, the Pareto front is not always known and measures that rely on knowledge

of the true front cannot be used in these cases. Even when the true Pareto front can

be calculated – for test problems such as the Zitzler-Deb-Thiele (ZDT), L1ZDT and

rotated (R) problems, for example – the true front calculated depends on the number

of solutions allowed during calculation and the random values used for these solutions.

This means that measures that rely on knowledge of a true front will behave differently

each time a true front is calculated or the size of the front is varied.

Zitzler et al. (2003) define five dominance relations:

• Algorithm A strictly dominates Algorithm B – for every member of Front

B, there exists at least one member in Front A that outperforms it in all the

objectives. This is the highest form of superiority.

• Algorithm A dominates Algorithm B – for every member of Front B, there

exists at least one member in Front A that is not worse than the objective values

of the member in Front B in all the objectives and outperforms the member in

Front B in at least one objective.

• Algorithm A is better than Algorithm B – for every member of Front B,

there exists at least one member in Front A that is not worse than the objective

values of the member in Front B in all the objectives. For an Algorithm A to be

called better than Algorithm B, the two Pareto front sets may not be equal to

one another. This is the lowest form of superiority, but the one most commonly

used in literature.

• Algorithm A weakly dominates Algorithm B – for every member of Front

B, there exists at least one member in Front A that is not worse than the objective

values of the member in Front B in all the objectives. In this case the two Pareto

front sets are allowed to be equal.
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• Algorithm A is incomparable with Algorithm B – this means that Algo-

rithm A does not weakly dominate Algorithm B, nor does Algorithm B weakly

dominate Algorithm A.

Zitzler et al. (2003) further define a difference between compatibility and complete-

ness. In order to explain these definitions, we will use the “better” dominance relation

described above. Compatibility means that whenever the indicator value of Front A

is better than that of Front B, Front A will be “better” than Front B. Completeness

means that whenever Front A is “better” than Front B, an indicator will have a better

value for Front A than for Front B as a result. Compatibility says something about

the interpretation of the results produced by an indicator: can one say that Front A is

“better” than Front B if the indicator value for Front A is better than that of Front

B? If an indicator is compatible with a dominance relation (such as “better”), one can.

Completeness, on the other hand, says something about the ability of an indicator to

identify cases where Front A outperforms Front B in terms of some dominance rela-

tion. If an indicator is complete in terms of some dominance relation, the indicator

will always show a better indicator value for Front A than for Front B when Front A

is “better” than Front B.

From this, it is clearly preferable to use a performance indicator that is compatible

and complete with regard to some dominance relation.

Finally, it is important to consider how an indicator measures performance. Does

it measure the spread of the members of the Pareto front, or the number of members

or how close the known Pareto front is to the true front? In general, it is important

to measure at least the spread of the front found and its proximity to the true front

(Bekker, 2012). Figure 7.1 shows an approximated front that is well spread, but distant

from the true front, while Figure 7.2 shows a poorly spread approximated front in close

proximity to the true front. An ideal approximated front is well spread and in close

proximity to the true front.

7.1.1.1 The hypervolume indicator

The hypervolume indicator was first introduced by Zitzler & Thiele (1998) and Zitzler

& Thiele (1999). It is also referred to as the S-measure or Lebesque measure. It

essentially measures the volume (the area for the two-objective case) of the polytope
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Figure 7.1: A well spread but distant front shown relative to a Pareto front.
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Figure 7.2: A poorly spread front in close proximity to the Pareto front shown relative

to the Pareto front.
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Figure 7.3: Example of a hypervolume (hyperarea) and reference point.

(the polygon for the two-objective case and the polyhedron for the three-objective case)

between the Pareto front and a predetermined reference point. Figure 7.3 shows an

example of such a polytope (a polygon actually, as it is calculated for two objectives),

and a hypervolume (hyperarea, since there are two objectives).

Both unary and binary versions of the hypervolume indicator exist (Zitzler et al.,

2003). For this study, the unary hypervolume indicator is used for the reasons discussed

in Section 7.1.1.

The hypervolume indicator does not require information about the true Pareto

front. However, it does require that the researcher select a reference point from which

the hypervolume will be calculated. Knowledge of the true Pareto front will enable

better selection of this reference point.

According to Zitzler et al. (2007), the hypervolume indicator is compatible with the

“weakly dominates” dominance relation. This means that if the hypervolume of Front

A is better than the hypervolume of Front B, then Front A is not worse than Front B.

The hypervolume indicator is complete with respect to the “better” dominance

relation (discussed in Subsection 7.1.1) (Knowles et al., 2005). All cases where Front

A is better than Front B are thus detected by the indicator.

The hypervolume indicator provides information about the spread of the Pareto

front and about how well an algorithm performs in terms of finding near-optimal solu-
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tions. A larger spread will result in a better hypervolume. Similarly, the closer solutions

are to being optimal, the larger the hypervolume.

7.1.1.2 Relative run times

In addition to the hypervolume indicator, the run times of the algorithms are also

recorded. Because the absolute run times depend on the computers used, the run times

of algorithms relative to one another are shown in Appendices A and B. The largest

median run time is set equal to one. All other run times are shown as fractions of this.

For this study, the performance of the algorithms in terms of run times is of sec-

ondary importance when compared to performance measured by the hypervolume in-

dicator. The relative run times are recorded mainly out of research curiosity.

7.1.2 Significance testing

As mentioned before, the approach to performance testing adopted for this study in-

volves applying significance tests on the hypervolume indicator values. Several sig-

nificance tests were considered, including the parametric two-sample t-test, the non-

parametric Kruskall-Wallis test and the non-parametric Mann-Whitney U-test.

The Mann-Whitney U-test compares the median values of two distributions, while

the two-sample t-test compares mean values (Heiberger & Holland, 2004). The two-

sample t-test requires data to be normally distributed.

Figure 7.4 shows box plots of some of the results obtained. The box plots provide

an indication of the distributions of the results.

From Figure 7.4, it can be seen that data are not normally distributed. The Mann-

Whitney U-test is thus preferred to its parametric counterpart, the two-sample t-test.

The Mann-Whitney U-test is also preferred to the Kruskal-Wallis test (the equiva-

lent of the Mann-Whitney U-test for three or more variables (McDonald, 2008)), be-

cause the result of the Kruskal-Wallis test simply shows if any one of the variables

comes from a distribution that differs significantly from the distributions of the other

variables. For this study, using the Kruskall-Wallis test would require further Mann-

Whitney U-tests to identify exactly which distributions differ from the rest.

Right-tailed Mann-Whitney U-tests were done on all pairs of algorithms in order

to determine if an Algorithm i performed significantly better than another Algorithm

j at a 5% significance level. Table 7.1 shows an example of the results for all the
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Figure 7.4: A box plot of hypervolumes achieved.

pairs. If entry ij = 1, it indicates that Algorithm i achieved a significantly higher

hypervolume than Algorithm j at a 5% significance level. The Outperformed column

sums the total number of algorithms that Algorithm i outperformed, whereas the Rank

column indicates which algorithm performed best on the problem at hand (with 1 being

the best and 5 being the worst).

Table 7.1: A sample of Mann-Whitney U-test results.
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MOO CEM - 1 0 1 0 2 3

Hybrid 1 0 - 0 0 0 0 5

MO-CMA-ES 1 1 - 1 0 3 2

Hybrid 2 0 1 0 - 0 1 4

PDE 1 1 1 1 - 4 1
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Once the right-tailed Mann-Whitney U-tests were completed, each algorithm is

assigned a rank indicating how many algorithms it significantly outperformed for the

problem at hand. A rank of 1 indicates that an algorithm significantly outperformed all

the other algorithms, whereas a rank of 5 means that the algorithm did not significantly

outperform any algorithms.

7.2 Experimental setup

7.2.1 Population size, number of evaluations and the sample size

The population sizes for all algorithms are set to a hundred for all test problems. For

the unconstrained continuous problems, the maximum number of evaluations is set to

10 000 (or a hundred generations). A thousand replications of each experiment were

done; all algorithms solved all the unconstrained problems a 1 000 times.

For the mission-ready resource (MRR) cases, the maximum number of evaluations

was increased to 15 000. This is due to the increased complexity of these problems.

Once again each algorithm solved each case a thousand times.

For the buffer allocation problem (BAP) simulation case, the maximum number of

evaluations was set to 10 000. However, instead of running each algorithm a thousand

times, a hundred replications of each algorithm was run. This is because of the increased

run time of the simulation case. Evaluating the population (of size hundred) takes

roughly 30 seconds. This is done a hundred times each time an algorithm solves the

BAP. In other words, finding a Pareto front for the BAP once takes roughly 50 minutes.

To do a thousand replications with a single algorithm would take about 833 hours, or

35 days. A hundred replications still took about three and a half days to run. For this

study, the increase in accuracy was not worth an extra month of run time.

As discussed in Chapter 6, the BAP is run in Simio. The warmup period is set to

25 hours, with the run time of each replication set to 500 hours. For one simulation

run, 25 replications of the model were run.

7.2.2 Algorithm-specific parameters

Adjustments to algorithm-specific parameters drastically influence algorithm perform-

ance. To simplify the research problem, the effect of changes to these parameters are

not investigated in this study and parameter settings were kept constant for all the
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test problems. The parameter settings used were decided upon based on the literature

accompanying the MOO CEM, MO-CMA-ES and PDE. Table 7.2 shows the algorithm-

specific parameter setting used for all problems.

Table 7.2: Algorithm-specific parameter setting used.

Algorithm Parameter Value

MOO CEM ph 0.3

MO-CMA-ES cc
2

V+2

ccov
2

V 2+6

pg
1
5.5

cs
pg

2+pg

d 1 + V
2

pt 0.44

PDE cr 0.7

Hybrid 1 ph 0.3

Cluster size 15

Hybrid 2 ph 0.3

cc
2

V+2

ccov
2

V 2+6

pg
1
5.5

cs
pg

2+pg

d 1 + V
2

pt 0.44

7.3 Conclusion: Experimental design

This chapter focused on the measurement of algorithm performance and the details of

the experimental design.

The next chapter is a summary and analysis of the experimental results.
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Chapter 8

Analysis of experimental results

The previous chapter discussed details of the experimental design.

This chapter presents an analysis and discussion of the experimental results, in

the order in which the problems were presented: the continuous problem results, the

results for the mission-ready resource (MRR) cases, and finally the results for the buffer

allocation problem (BAP) cases.

8.1 Summary of results for the unconstrained continuous

problems

Five algorithms – the multi-objective optimisation cross-entropy method (MOO CEM),

the multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES),

Pareto differential evolution (PDE), Hybrid 1 and Hybrid 2 – were compared on a

total of 46 problem instances. Each algorithm was run on each problem for a thousand

replications. Algorithm performance was measured using the hypervolume indicator

and relative run times. The relative run times were recorded out of interest and do not

form a big part of the discussion to follow. The focus is on the relative performance of

algorithms as measured by the hypervolume indicator.

Pairwise Mann-Whitney U-tests were done to identify instances where an algorithm

significantly outperformed another (at a 5% significance level) in terms of hypervolume.

In order to ease comparison of algorithms, each algorithm was assigned a rank for

each problem depending on how many algorithms it significantly outperformed. If an

algorithm outperformed all the other algorithms, it would be assigned a rank equal
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to 1. An algorithm that did not outperform any other algorithm would be assigned a

rank equal to 5. If no algorithm significantly outperformed the rest of the algorithms,

all the algorithms would have a rank of 5. Tables showing the Mann-Whitney U-test

results, box plots of hypervolumes and relative run times for all problem instances can

be found in Appendix A. Table 8.1 shows a summary of the ranks achieved by the

algorithms on all the unconstrained continuous problems. A value of 1 indicates that

an algorithm significantly outperformed all four the other algorithms for that problem.

A value of 5 indicates that an algorithm did not significantly outperform any of the

other algorithms.

Table 8.1: Summary of relative performance ranks of algorithms on continuous prob-

lems.
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MOP 1 1 Convex U 7 2 5 3 4 1

MOP 2 3 Concave U 7 3 4 2 5 1

MOP 3 2 Disconnected M 3 5 4 3 1 3

MOP 4 3 Disconnected M 7 3 5 2 4 1

MOP 6 2 Disconnected M 7 5 3 1 4 2

ZDT 1 30 Convex U 7 3 4 1 5 2

ZDT 2 30 Concave U 7 5 5 1 3 2

ZDT 3 30 Disconnected M 7 2 4 1 5 3

ZDT 4 10 Convex M 7 5 5 5 5 5

ZDT 6 10 Concave M 7 5 2 1 5 5

L1ZDT 1 30 Convex U 3 2 5 1 4 3

L1ZDT 2 30 Concave U 3 5 5 1 5 5

L1ZDT 3 30 Disconnected M 3 3 5 1 4 2

L1ZDT 4 10 Convex M 3 5 5 5 5 5

L1ZDT 6 10 Concave M 3 2 3 1 5 5

R 1 10 Convex M, D 3 4 4 5 2 1

R 2 10 Disconnected M 3 1 2 5 4 3

R 3 10 Concave M 3 3 5 5 1 2

Continued on next page
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Table 8.1 – continued from previous page
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R 4 10 Convex M, D 3 3 4 1 5 2

WFG 1 4 Convex, mixed U 7 5 4 1 3 5

WFG 1 20 Convex, mixed U 7 4 2 1 3 5

WFG 1 100 Convex, mixed U 7 4 1 3 2 5

WFG 2 4 Convex, disconnected M 3 4 3 2 1 5

WFG 2 20 Convex, disconnected M 3 1 3 4 2 5

WFG 2 100 Convex, disconnected M 3 1 3 5 2 4

WFG 3 4 Convex, linear, degenerate U 3 3 2 4 1 5

WFG 3 20 Convex, linear, degenerate U 3 2 4 1 5 3

WFG 3 100 Convex, linear, degenerate U 3 1 2 4 3 5

WFG 4 4 Concave M 7 5 4 1 3 2

WFG 4 20 Concave M 7 5 4 1 3 2

WFG 4 100 Concave M 7 5 3 2 5 1

WFG 5 4 Concave D 7 5 2 1 3 4

WFG 5 20 Concave D 7 5 2 1 4 3

WFG 5 100 Concave D 7 3 1 4 2 5

WFG 6 4 Concave U 3 5 4 1 4 2

WFG 6 20 Concave U 3 5 2 1 4 3

WFG 6 100 Concave U 3 4 1 5 2 3

WFG 7 4 Concave U 7 3 5 2 4 1

WFG 7 20 Concave U 7 3 4 1 5 2

WFG 7 100 Concave U 7 2 4 3 5 1

WFG 8 4 Concave U 3 4 5 1 3 2

WFG 8 20 Concave U 3 3 4 1 5 2

WFG 8 100 Concave U 3 2 3 4 5 1

WFG 9 4 Concave M, D 3 5 4 1 3 2

WFG 9 20 Concave M, D 3 5 2 1 3 4

WFG 9 100 Concave M, D 3 4 1 5 2 3

It is difficult to draw conclusions about the performance of the different algorithms

by simply looking at Table 8.1. Figure 8.1 more clearly reflects trends in relative
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Figure 8.1: Overall performance of algorithms on continuous problems.

algorithm performance. It shows cumulative distributions of the number of times that

each algorithm ranked first, second, third, fourth and fifth respectively.

Following from Figure 8.1 and Table 8.1:

• The MO-CMA-ES significantly outperformed all the other algorithms in 24 in-

stances (roughly 52% of the time). It significantly outperformed at least three

algorithms (ranking first or second) in 63% of the instances.

• The PDE significantly outperformed at least three algorithms in 46% of the test

cases.

In general, the MO-CMA-ES performed best on the unconstrained continuous prob-

lems. The PDE performed second best overall, but at quite a large cost in terms of

run time when compared to the other algorithms (refer to Appendix A). Very little

differentiates the performances of the remaining three algorithms.

Algorithm performance will now be analysed with respect to the primary charac-

teristics of the continuous test problems.
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8.1.1 Performance relative to the number of decision variables

One of the primary characteristics of a problem is the number of variables it has.

Figure 8.2 shows the relative performance of algorithms for few variables (10 of fewer

variables), a medium number of variables (11 to 30 variables) and many variables (more

than 30 variables).

There are visible differences in the relative performance of the algorithms depending

on the number of variables. For the 22 problems with only a few variables, the MO-

CMA-ES and PDE algorithms performed the best, while MOO CEM and Hybrid 1

performed the worst.

Fifteen problems are classified as having a medium number of variables. On 14 of

these, the MO-CMA-ES significantly outperformed all the other variables. The PDE

was the second best performer, outranking three other algorithms seven out of 15 times.

In contrast to its very good performance on a small and medium number of variables,

the MO-CMA-ES is the worst performing algorithm on the nine problems that have

many variables. Hybrid 1 performs the best when problems have a large number of

variables, despite its relatively bad performance for fewer variables. It outranked at

least three other algorithms in five of the nine test cases, and outperformed all the other

algorithms in four of these. The MOO CEM also performs well on problems with many

variables, outperforming at least three other algorithms in four of the nine test cases.

In two of these cases the MOO CEM outperformed all the other algorithms. Hybrid 2

outperforms three other algorithms in five of the nine problems. The PDE algorithm

outperformed the MO-CMA-ES but was arguably outperformed by the MOO CEM

and the two Hybrid algorithms.

Although only nine problems have many variables, these nine problems were each

run three times with the only difference being the number of decision variables: each

problem was run for four, 20 and 100 variables. The MO-CMA-ES performed relatively

well when solving the problems with four and 20 variables, but its performance dropped

drastically when the number of variables was pushed up to 100.

It is believed that the difference in performance can be ascribed to the fundamen-

tal mechanisms according to which the algorithms work. The MO-CMA-ES relies on

successfully updating a V by V matrix. If the matrix is successfully updated, the

MO-CMA-ES is very powerful. However, for many variables, it is difficult to update
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Figure 8.2: Algorithm performance relative to number of decision variables.
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such a matrix successfully and the MO-CMA-ES subsequently performs worse than it

would have done otherwise. The cases where the number of variables fall between 11

and 30 seem to be its sweet spot, where there are enough variables for it to be impor-

tant to effectively keep track of relationships between them, but not so many that the

MO-CMA-ES struggles to update the covariance matrix accurately.

The PDE has a simpler mechanism for keeping track of relationships between de-

cision variables. While this mechanism might not be as effective as that of the MO-

CMA-ES in the case for a medium number of variables, the PDE does not appear to

be affected as badly by an increase in the number of decision variables.

It is believed that the improved relative performance of the MOO CEM and Hybrid

1 as the number of variables increases can be ascribed to the fact that neither of these

algorithms relies on complicated mechanisms for keeping track of relationships between

decision variables. For problems with small or medium numbers of variables, this lack

of an intricate mechanism for keeping track of relationships between decision variables

is a relative disadvantage, and the MO-CMA-ES outperforms both these algorithms

in such cases. However, when the number of variables becomes too large for the MO-

CMA-ES to successfully keep track of the relationships between them, the fact that

the MOO CEM and Hybrid 1 do not rely on keeping track of such relationships, and

subsequently cannot fail to successfully do so, becomes a relative strength.

Hybrid 1 differs from the MOO CEM only in the way clusters are created before

histograms are drawn up. For the MOO CEM, histograms are drawn up for the entire

elite, whereas each cluster has its own histograms when using Hybrid 1. The similar

trends in performance – improved relative performance as the number of variables

increases – therefore does not come as a surprise.

The improved relative performance of Hybrid 2 as the number of variables increases

is ascribed to the fact that it contains elements of the MOO CEM. The fact that Hybrid

2 marginally outperforms the MOO CEM (and arguably Hybrid 1) on the smaller

problems is ascribed to the fact that it also contains elements of the MO-CMA-ES.

8.1.2 Performance relative to the shape of the Pareto front

The shape of the Pareto front is often said to be an important factor in algorithm

performance. So much so that that all the test suites that make up the test suite
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Figure 8.3: Algorithm performance for convex, concave and disconnected Pareto
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8.1 Summary of results for the unconstrained continuous problems

for this study were assembled to contain at least one convex, one concave and one

disconnected problem.

Figure 8.3 shows the results grouped according to the different shapes of the Pareto

fronts. There are 13 problems with convex fronts, 24 with concave fronts and nine with

disconnected fronts. Some of the problems have been classified as having both convex

and disconnected fronts. These problems are only included in the disconnected front

set.

Despite the focus placed on the importance of the shape of the Pareto front, the

relative performance of the algorithms does not vary much for the different shapes. The

MO-CMA-ES performs the best for all three shapes. The PDE performs second best

for concave shapes, while the MOO CEM places second for convex and disconnected

fronts.

The PDE seems to perform better when the fronts are concave than when they

are convex. The MOO CEM performs worse on concave fronts than on convex or

disconnected fronts.

For the algorithms investigated, the shape of the Pareto front does not affect the

relative performance of the algorithms as clearly as the number of variables does. The

MO-CMA-ES would be the best algorithm to use for all shapes.

8.1.3 Performance relative to the modality of the objective functions

Similar to the shape of a Pareto front, the modality of the objective functions is consid-

ered to be an important factor in algorithm performance. Figure 8.4 shows the results

organised according to the modality of the objective functions.

A problem is classified to be unimodal if both its objective functions are unimodal.

There are 21 such problems in the test suite. If at least one of the objective functions is

multimodal, a problem is classified as being multimodal. There are 17 such problems.

A problem is classified as deceptive if at least one of the objective functions is deceptive.

Several problems are classified as both multimodal and deceptive. These problems were

grouped in the deceptive objective function set. This set comprises eight problems.

There is no clear difference between the relative performance of algorithms as the

modality of the objective functions changes. The MO-CMA-ES was the best performer

for all three types of modality, followed by the PDE in all three modes.
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Figure 8.4: Algorithm performance for unimodal, multimodal and deceptive objective
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8.1 Summary of results for the unconstrained continuous problems

The nature of this analysis does not allow assumptions to be made about the ab-

solute performance of algorithms. However, in terms of the relative performance of

algorithms, the modality of objective functions does not have a clear effect. An algo-

rithm that outperforms another algorithm for one type of modality would likely do so

for another, and vice versa.

The MO-CMA-ES would be recommended irrespective of the modality of a problem.

8.1.4 Performance relative to the presence of reported relationships

between decision variables

The focus of Chapter 4 was to find a balance between problems that were considered

to have some form of relationship between decision variables and problems that were

considered to have independent decision variables. There are 21 problems without noted

relationships and 25 problems with reported relationships. The results are broken down

accordingly in Figure 8.5.

The MOO CEM performed better on problems with reported relationships than

on problems without reported relationships. Conversely, PDE performed better on

problems without reported relationships than on problems with reported relationships.

The MO-CMA-ES was the best relative performer irrespective of the presence of

reported relationships of the problems. PDE performed second best in cases with no

reported relationships.

The effect of the presence of relationships between decision variables on algorithm

performance was not as expected. The relative performance of the algorithms does not

change drastically if relationships are present. Also, the noticeable changes that do

exist are contrary to what was expected: the MOO CEM (which treats variables as

independent) performs better on problems with reported relationships than on problems

without, whereas the PDE (which is supposed to be well suited to solving problems

with reported relationships) performs better on problems without reported relationships

than on problems with reported relationships.

The MO-CMA-ES would be the best algorithm to select, irrespective of the presence

or absence of reported relationships.
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Figure 8.5: Algorithm performance for problems with and without reported relation-

ships between decision variables.

8.1.5 General remarks on the results for unconstrained continuous

problems

Of the four characteristics analysed, the number of variables a problem has, has the

most marked effect on algorithm performance. For few to a medium number of vari-

ables, the MO-CMA-ES would be recommended. However, for many variable problems,

the MOO CEM would be best.
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The MOPs, ZDT, L1ZDT and R problems all have too few variables to reveal the

difference in performance of the algorithms as the number of variables increases. The

WFG problems will only show this difference if the number of variables is large.

A very interesting result is that even when considering the presence of relationships

between decision variables, the same algorithm (MO-CMA-ES) would be recommended

for selection irrespective of the presence or absence of reported relationships.

The MO-CMA-ES would also be recommended irrespective of the shape of the

Pareto front of a problem and irrespective of the modality of a problem.

8.2 Summary and discussion of MRR results

Six mission-ready resource (MRR) cases were set up. For all six cases, the number of

variables was equal to 15. The size of the decision space was different for each case.

This was achieved by adjusting the total number of tasks that required doing and the

number of each MRR type that was available. Three cases were investigated where

the number of each MRR type available could be a bounding constraint. For the other

three cases, enough of each MRR type was available so that all tasks could be performed

using a single MRR type. A summary of the results for the MRR cases is shown in

Table 8.2. A value of 1 indicates that an algorithm significantly outperformed all four

the other algorithms for that problem. A value of 5 indicates that an algorithm did

not significantly outperform any of the other algorithms. Please refer to Appendix B

for more detailed results.

The MOO CEM outperformed the other algorithms on all six test cases. Hybrid

1 generally performed well for all the cases, outperforming three algorithms on all the

test cases. The relative performance of the MO-CMA-ES deteriorated as the size of

the decision space increased. For the smaller test cases (Case A and Case B), the MO-

CMA-ES outperformed two algorithms (PDE and Hybrid 1). However, on the larger

test cases (Case C, Case D, Case E and Case F), the MO-CMA-ES was outperformed

by all the other algorithms. Relatively, Hybrid 2 and the PDE performed the worst.

Similar to the continuous cases discussed above, the deteriorating performance of

the MO-CMA-ES can likely be ascribed to its inability to update the covariance matrix

accurately as the size of the decision space increases. Likewise, the good performance of

the MOO CEM is probably due to the fact that it does not rely on successfully keeping
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Table 8.2: Summary of relative performance ranks of algorithms on the MRR cases.
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Case A 16 5× 5 1 2 3 5 4

Case B 16 5× 20 1 2 3 5 4

Case C 150 5× 50 1 2 5 3 4

Case D 150 5× 200 1 2 5 4 4

Case E 300 5× 100 1 2 5 4 4

Case F 300 5× 400 1 2 5 4 4

track of relationships between decision variables and therefore is not hampered by an

inability to do so for large decision spaces.

8.3 The quality of the Pareto fronts found for the MRR

cases

Even though sensitivity analysis on the effect of changing the population size and

maximum number of evaluations falls outside the scope of this study, it should be noted

that the quality of the Pareto fronts achieved for the MRR cases can be improved by

increasing population size and the maximum number of evaluations allowed. Figure

8.6 shows the original fronts achieved for Case D.

Figure 8.7 shows a set of fronts achieved with the population size equal to 300 and

the maximum number of evaluations equal to 75 000. Even though the settings used in

Figure 8.7 are by no means optimal, it is easy to see that an increased population size

and number of evaluations has a positive effect on the quality of the fronts.

8.4 Summary and discussion of BAP results

The researcher experimented with three instances of the BAP problem. Two of the

instances are relatively small, with the search spaces comprising 4 080 feasible solutions.
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Figure 8.6: A sample of Pareto fronts achieved by the algorithms on MRR Case D
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Figure 8.7: A sample of Pareto fronts achieved by the algorithms on MRR Case D

with the population size equal to 300 and the maximum number of evaluations equal

to 75 000.
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Table 8.3: Summary of relative performance ranks of algorithms on the BAP cases.
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The third case is much bigger in relation, with a search space comprising 1 × 1016

feasible solutions. The relative performances of the algorithms on each of these cases

are summarised in Table 8.3. A value of 1 indicates that an algorithm significantly

outperformed all four the other algorithms for that problem. A value of 5 indicates

that an algorithm did not significantly outperform any of the other algorithms.

Box plots, sample Pareto fronts and the Mann-Whitney U-test results for the BAP

cases can be found in Appendix D.

Hybrid 2 performed the best when compared to the other algorithms on the two

small cases, while the MOO CEM performed the best in comparison to the other

algorithms on the large case.

The MOO CEM performed the poorest relative to the other algorithms when solving

the two small cases.

Similar to the results for the continuous and MRR cases, the relative performance

of the MO-CMA-ES declined as the size of the search space increased. Similar to the

results of the continuous cases, the relative performance of the MOO CEM, and the

closely related Hybrid 1, improved as the size of the search space increased.

In general, Hybrid 2 was the best performing algorithm on the BAP cases, while

the PDE was the worst.

8.5 Conclusion: Analysis of experimental results

This chapter presented an analysis and discussion of the experimental results.
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8.5 Conclusion: Analysis of experimental results

The next chapter is the final chapter and presents a summary of the research done,

primary findings, and recommendations for possible future research projects.
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Chapter 9

Summary and conclusions

The previous chapter presented an analysis of the experimental results.

This chapter presents a summary of the research done along with the primary

findings. Recommendations for similar research are presented, along with recommended

areas for future work. The chapter concludes with a summary of the skills acquired

and the lessons learnt by the researcher.

9.1 Summary of research done

The purpose of this project was to investigate the effect of accounting for possible

relationships between decision variables when solving multi-objective problems. This

was done by comparing the performance of five multi-objective algorithms on a variety

of problems.

The five optimisation algorithms included one algorithm known to work on an

assumption that variables are independent, two algorithms reported to be able to handle

relationships between variables, and two hybrid algorithms created by the researcher

to answer some questions she had during implementation. The five algorithms are

described in detail in Chapter 3. Four of the algorithms (the cross-entropy method for

multi-objective optimisation (MOO CEM) being the exception) were implemented in

Matlab by the researcher. An implementation of MOO CEM in Matlab was readily

available to the researcher.

The test suite was made up of 46 unconstrained continuous cases, six static, combi-

natorial cases and three dynamic, stochastic, combinatorial cases. The unconstrained
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problems are discussed in Chapter 4; details about the mission-ready resource problem

(MRR) – the static, combinatorial case – can be found in Chapter 5, and the buffer

allocation problem (BAP) – the dynamic problem – is described in Chapter 6. The

researcher implemented 38 of the continuous problems and all the combinatorial test

cases. She had access to eight already-implemented continuous problems, and to the

simulation model used for the dynamic cases.

Performance was measured using the hypervolume indicator and the Mann-Whitney

U-test. All performance results are relative to the performance of the other algorithms.

Conclusions are not drawn about the absolute performance of algorithms, but rather

about the relative performance of an algorithm when compared to the remaining algo-

rithms.

Population size and algorithm-specific parameters were kept constant throughout.

The maximum number of evaluations was also kept constant at 10 000, with the excep-

tion of the MRR cases. For these cases, the maximum number of evaluations was set

to be 15 000.

9.2 Important findings

The most important findings of this project will be discussed now.

Accounting for relationships between decision variables is benefi-

cial as long as relationships can be efficiently tracked.

For small to medium-sized problems, with the population sizes and number of evalu-

ations allowed, Pareto differential evolution (PDE) and the multi-objective covariance

matrix adaptation evolution strategy (MO-CMA-ES), but especially the MO-CMA-ES,

tended to outperform the other algorithms.

If it becomes too difficult to effectively keep track of relationships

between decision variables, an algorithm that assumes indepen-

dence is preferable.

For very large problems, Hybrid 1 and the MOO CEM typically performed the best.

Problems were considered to be large if they had a hundred or more variables in the
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continuous cases. For the combinatorial cases, it is difficult to define a large problem.

MRR Cases 2 to 6 were very large, and BAP Case 3 was the biggest of the BAP cases.

The superior performance of Hybrid 1 and the MOO CEM is attributed to the fact

that the MO-CMA-ES is unable to effectively update its covariance matrix.

It has to be noted that the MO-CMA-ES might fare better if larger population

sizes in conjunction with larger numbers of maximum evaluations were to be allowed.

However, even if this were the case, the result is still useful: if computational resources

are limited, and the problem to be solved is large, Hybrid 1 or the MOO CEM should

be preferred to the otherwise superior MO-CMA-ES.

The size of a problem is the best indicator of algorithm perform-

ance.

Despite a lot of focus falling on other problem characteristics, this study shows that the

size of a problem is a good indicator of relative algorithm performance. For very small

problems, some algorithms might perform better than others, but the differences in

performance are not that big. For small to medium-sized problems, the MO-CMA-ES

performs very well. For large problems, Hybrid 1 or the MOO CEM is recommended.

Using just one test suite from literature does not tell one much.

Very often, only one test suite is used in a study, and researchers draw very optimistic

conclusions about the performance of an algorithm they have developed based on the

results achieved on this suite. This study used a variety of test suites. The results

and conclusions of this study would have differed drastically if only one of the suites

was used. For example, the MOPs, ZDT problems, L1ZDT problems and R problems

do not include problems with enough variables to have highlighted the difference in

performance of the MO-CMA-ES or the MOO CEM as the number of variables in-

creases. Had this study used only the MOPs or ZDT problems or L1ZDT problems,

the MO-CMA-ES would probably have been recommended without reservation.

9.3 Recommendations

After implementing five algorithms to work on 46 problems, the following recommen-

dations are made:
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Recommendation 1 – Understanding the fundamental strengths and

weaknesses of an optimisation algorithm is of the utmost importance. Even

though it is possible to adapt algorithms to specific problems, all algorithms

have some inherent limitations, which can be avoided by choosing an ap-

propriate optimisation algorithm.

The first example that comes to mind is the difference in performance between Hybrid

1 and the MOO CEM on the one hand, and the MO-CMA-ES on the other as the size

of a problem increases. For small problems, the MO-CMA-ES typically outperforms

the MOO CEM. However, when it comes to solving large problems, Hybrid 1 and the

MOO CEM are superior.

Recommendation 2 – The more knowledge one has about the problem

one is trying to solve, the better.

Problem knowledge enables one to:

1. Choose an appropriate algorithm to solve the problem.

2. Incorporate problem knowledge where necessary. The mission-ready resource

(MRR) problem is a good example. Incorporating some problem-specific infor-

mation regarding the constraints into the process makes it possible to find near-

optimal solutions. Without this information, finding even feasible solutions is

difficult.

Recommendation 3 – It is important to compare algorithms on a wide

variety of problems.

Very often, researchers compare only a few algorithms on a small set of test problems

and draw conclusions about algorithm performance based on these problems. This

study shows that it becomes more and more difficult to draw definite conclusions about

algorithm performance when algorithms are compared on a larger test suite. Even if

an algorithm still outperforms other algorithms on average, exceptions to good or bad

performance are more likely to be revealed when using a larger test suite.
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9.4 Contribution to the research field

This project compared the recently developed MOO CEM with two existing algorithms

to which it has not been compared before, namely the MO-CMA-ES and PDE algo-

rithms. This comparison was done using 46 continuous problems, six cases of the

combinatorial MRR problem and three cases of a dynamic, stochastic BAP.

The MOO CEM has previously been used to solve eight of these problems (the 5

MOPs and ZDT1 – ZDT3). For the other 38 problems, this is the first application of

the MOO CEM to the problems.

For the extension of the covariance matrix adaptation evolution strategy (CMA-ES)

to the MO-CMA-ES, Igel et al. (2007a) used five of the problems used here (the five

ZDT problems) and some problems they developed specifically for their comparison.

It seems that this study is the first official application of the MO-CMA-ES to the

remaining 41 continuous problems and the combinatorial cases investigated.

Abbass et al. (2001) originally compared the performance of the PDE algorithm to

that of the strength Pareto evolutionary algorithm (SPEA) on only two problems (two

of the ZDT problems). This study is possibly the first official application of PDE to

the other 44 continuous problems. It is the first application of the PDE algorithm to

the two combinatorial problems investigated.

Two new hybrid algorithms (Hybrid 1 and Hybrid 2) were proposed and their

performance was investigated.

In order to handle constraints for the MRR in the same fashion for all the algorithms,

an algorithm for fixing infeasible solutions is suggested. This algorithm could be applied

to other resource assignment problems for similar research.

The results of this study could aid future researchers and practitioners in selecting

appropriate multi-objective optimisation algorithms for the problems they aim to solve.

9.5 Suggested future research

Possible future research related to this work includes:

• Despite the large test suite employed for this study, the performance of these

algorithms on other problems can be investigated.

– No constrained continuous problems were investigated.
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– One static combinatorial problem was investigated. Performance compar-

isons on more of these problems using these algorithms would be interesting.

– One dynamic combinatorial problem was investigated. Performance com-

parisons on more of these types of problems would be interesting.

• More algorithms can be included in the comparison.

• Future work is required to define the concepts of “small”, “medium”, and “large”

problems with respect to algorithm performance. This is true for all types of

problems. For example, what is a “large” continuous problem? And a “large”

combinatorial problem?

• Very little attention was paid to the effects of algorithm-specific parameters, pop-

ulation size and the number of generations allowed. The effects of changes to these

parameters should be investigated.

• The combination of more specific definitions of problem size and changes to par-

ameters would also be interesting.

• The method used to handle constraints could be applied to other resource assign-

ment problems and adapted for other combinatorial problems.

9.6 Skills acquired

The bulk of the work done focused on the combined field of multi-objective optimisation

and metaheuristics. The researcher has a much deeper understanding of the intricacies

of both these fields than she had at the outset of this project.

In order to complete this study, the researcher had to master three existing multi-

objective optimisation algorithms – the MOO CEM, MO-CMA-ES and PDE – and

implement two of these – the MO-CMA-ES and PDE. In order to do this, she had to

understand the workings of their single-objective counterparts as well as the complex-

ities of extending a single-objective algorithm for multi-objective optimisation.

She had to implement 38 continuous problem cases, and the MRR test cases.

All the algorithms had to be applied to these problems. This was simple for the

continuous problems, but finding a way of solving the MRR cases was far more com-

plicated.
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In order to optimise the BAP cases, the researcher had to find a way of integrating

Matlab with Simio as changes to one of the two programs had rendered a previous

student’s guidelines for this process obsolete. Eventually, C# (a language completely

new to the researcher) was used to bridge the gap.

9.7 Lessons learnt

The main lessons the researcher learnt were the following:

• There is a lot of detail to take into account when five algorithms have to be applied

to 46 problems. Even small changes have different effects on each algorithm and

keeping track of these effects becomes very difficult.

• At the outset of this project, the researcher saw it as a “black-and-white” study:

she would be able to calculate hypervolume indicator values for each algorithm

on each problem and these calculated values would then be the basis of her con-

clusions. She soon realised that it was not a “black-and-white” project at all.

For every result she got, she had to make countless decisions to get there; each

decision making the result true for a more specific case. For example, all continu-

ous results are true for a population size equal to 100, for a maximum number

of evaluations equal to 10 000, and for the algorithm parameters she decided on.

Different combinations of these might very well result in different outcomes.

• In the field of finding near-optimal solutions, there are no absolutely correct

answers; there might be better and worse answers, but the “correct” answers are

those that satisfy the stakeholders. This is a difficult thing to come to terms with

if the original appeal of the project was its apparent “black-and-white”-ness. The

researcher sees an analogy with life in this lack of “correct” answers. Even though

she would like life to have simple “correct” answers, she is relatively sure that

most of the decisions we face do not have “correct” answers, but, at best, only

near-optimal answers that we are willing to live with.
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9.8 Conclusion: Summary and conclusions

This chapter presented a summary of the research done and the primary findings of

the study. In addition, recommendations for similar research were made based on the

primary findings, and future research work was recommended. The chapter ends on a

personal note with a summary of the skills acquired and lessons learnt by the researcher.
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Appendix A

Results for the continuous test

problems

This appendix presents the results for the continuous test problems. For each problem,

a summary of some important problem characteristics, along with a sample of the

Pareto fronts achieved are presented. Each set of sample Pareto fronts is plotted with

the true Pareto front for the problem and the reference point used to calculate the

hypervolume. For improved visibility, the maximum value of the y-axis is sometimes

limited, subsequently excluding points very far away from the true Pareto front from

the plot.

For all the MOPs, ZDT problems, L1ZDT problems, and R problems, two sets of

box plots are also shown: a summary of the hypervolumes achieved and a summary of

the relative run times of the algorithms.

For each of the WFG problems, three experiments were performed: one with the

number of variables equal to four, the second with the number of variables equal to 20

and a third with 100 variables. The box plots for the each of the WFG problems show

summaries of these three experiments.

Mann-Whitney U-tests were performed on the hypervolumes achieved. These re-

sults are presented for all the experiments. For the Mann-Whitney U-test results, if

a matrix entry ij = 1, it indicates that Algorithm i achieved a significantly higher

hypervolume than Algorithm j at a 5% significance level. The Outperformed column

sums the total number of algorithms that Algorithm i outperformed, whereas the Rank
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A.1 MOP 1

column indicates which algorithm performed best on the problem at hand (with 1 being

the best and 5 being the worst).

A thousand replications of all the continuous test problem experiments were per-

formed using a population size of 100, and a maximum number of evaluations equal to

10 000. All the continuous problems have two objectives.

A.1 MOP 1

Table A.1: Problem details for MOP 1.

Number of variables 1

Box constraints −105 ≤ x ≤ 105

Geometry Convex

Relationship No reported relationships

Modality Unimodal

Function definitions Minimise both

f1(x) = x2

f2(x) = (x− 2)2

Table A.2: Mann-Whitney U-test results for MOP 1.
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Hybrid 1 0 - 0 0 0 0 5

MO-CMA-ES 0 1 - 1 0 2 3

Hybrid 2 0 1 0 - 0 1 4

PDE 1 1 1 1 - 4 1
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A.1 MOP 1
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Figure A.1: A sample of Pareto fronts achieved by the algorithms on MOP 1.
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Figure A.2: Box plot of hypervolumes achieved when solving MOP 1.
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A.2 MOP 2
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Figure A.3: Box plot of relative run times when solving MOP 1.

A.2 MOP 2

Table A.3: Problem details for MOP 2.

Number of variables 3

Box constraints −4 ≤ xi ≤ 4, i = 1, 2, 3

Geometry Concave

Relationship No reported relationships

Modality Unimodal

Function definitions Minimise both

f1(x) = 1− e−
∑3

i=1(xi− 1√
3
)2

f2(x) = 1− e−
∑3

i+1(xi− 1√
3
)2
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A.2 MOP 2
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Figure A.4: A sample of Pareto fronts achieved by the algorithms on MOP 2.

M
O
O

C
E
M

H
y
b
ri
d
1

M
O
-C

M
A
-E

S

H
y
b
ri
d
2

P
D
E

0.31

0.32

0.33

0.34

Figure A.5: Box plot of hypervolumes achieved when solving MOP 2.
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A.2 MOP 2

Table A.4: Mann-Whitney U-test results for MOP 2.
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Figure A.6: Box plot of relative run times when solving MOP 2.
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A.3 MOP 3

A.3 MOP 3

Table A.5: Problem details for MOP3.

Number of variables 2

Box constraints −π ≤ xi ≤ π, i = 1, 2

Geometry Disconnected

Relationship Reported relationships

Modality Multimodal

Function definitions Maximise both

f1(x) = −(1 + (A−B)2 + (C −D)2), where

A = 0.5 sin(1)− 2 cos(1) + sin(2)− 1.5 cos(2)

B = 0.5 sin(x1)− 2 cos(x1) + sin(x2)− 1.5 cos(x2)

C = 1.5 sin(1)− cos(1) + 2 sin(2)− 0.5 cos(2)

D = 1.5 sin(x1)− cos(x1) + 2 sin(x2)− 0.5 cos(x2)

f2(x) = −((x1 + 3)2 + (x2 + 1)2)
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Figure A.7: A sample of Pareto fronts achieved by the algorithms on MOP 3.
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A.3 MOP 3
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Figure A.8: Box plot of hypervolumes achieved when solving MOP 3.

Table A.6: Mann-Whitney U-test results for MOP 3.
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A.4 MOP 4
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Figure A.9: Box plot of relative run times when solving MOP 3.

A.4 MOP 4

Table A.7: Problem details for MOP4.

Number of variables 3

Box constraints −5 ≤ xi ≤ 5, i = 1, 2, 3

Geometry Disconnected

Relationship No reported relationships

Modality Multimodal

Function definitions Minimise both

f1(x) =
∑2

i=1(−10e(−0.2
√
x2i+x

2
i+1))

f2(x) =
∑3

i=1(|xi|0.8 + 5 sin(xi)
3)
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A.4 MOP 4
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Figure A.10: A sample of Pareto fronts achieved by the algorithms on MOP 4.
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Figure A.11: Box plot of hypervolumes achieved when solving MOP 4.
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A.4 MOP 4

Table A.8: Mann-Whitney U-test results for MOP 4.
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Figure A.12: Box plot of relative run times when solving MOP 4.
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A.5 MOP 6

A.5 MOP 6

Table A.9: Problem details for MOP 6.

Number of variables 2

Box constraints 0 ≤ xi ≤ 1, i = 1, 2

Geometry Disconnected

Relationship No reported relationships

Modality Multimodal

Function definitions Minimise both

f1(x1) = x1

f2(x) = (1 + 10x2)× (1− ( x1
1+10x2

)2 − x1
1+10x2

sin(12πx1))
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Figure A.13: A sample of Pareto fronts achieved by the algorithms on MOP 6.
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A.5 MOP 6
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Figure A.14: Box plot of hypervolumes achieved when solving MOP 6.

Table A.10: Mann-Whitney U-test results for MOP 6.
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A.6 ZDT 1
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Figure A.15: Box plot of relative run times when solving MOP 6.

A.6 ZDT 1

Table A.11: Problem details for ZDT 1.

Number of variables 30

Box constraints 0 ≤ xi ≤ 1, i = 1, . . . , 30

Geometry Convex

Relationship No reported relationships

Modality Unimodal

Function definitions Minimise both

f1(x1) = x1

g(x) = 1 + 9
∑n

i=2 xi
n−1

f2(x) = 1−
√

f1
g
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A.6 ZDT 1
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Figure A.16: A sample of Pareto fronts achieved by the algorithms on ZDT 1.
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Figure A.17: Box plot of hypervolumes achieved when solving ZDT 1.
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A.6 ZDT 1

Table A.12: Mann-Whitney U-test results for ZDT 1.
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Figure A.18: Box plot of relative run times when solving ZDT 1.
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A.7 ZDT 2

A.7 ZDT 2

Table A.13: Problem details for ZDT 2.

Number of variables 30

Box constraints 0 ≤ xi ≤ 1, i = 1, . . . , 30

Geometry Concave

Relationship No reported relationships

Modality Unimodal

Function definitions Minimise both

f1(x1) = x1

g(x) = 1 + 9
∑n

i=2 xi
n−1

f2(x) = 1−
√

f1
g
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Figure A.19: A sample of Pareto fronts achieved by the algorithms on ZDT 2.
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A.7 ZDT 2
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Figure A.20: Box plot of hypervolumes achieved when solving ZDT 2.

Table A.14: Mann-Whitney U-test results for ZDT 2.
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A.8 ZDT 3
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Figure A.21: Box plot of relative run times when solving ZDT 2.

A.8 ZDT 3

Table A.15: Problem details for ZDT 3.

Number of variables 30

Box constraints 0 ≤ xi ≤ 1, i = 1, . . . , 30

Geometry Disconnected

Relationship No reported relationships

Modality Multimodal

Function definitions Minimise both

f1(x1) = x1

g(x) = 1 + 9
∑n

i=2 xi
n−1

f2(x) = 1−
√

f1
g −

(
f1
g

)
sin (10πf1)
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A.8 ZDT 3
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Figure A.22: A sample of Pareto fronts achieved by the algorithms on ZDT 3.
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Figure A.23: Box plot of hypervolumes achieved when solving ZDT 3.

147

Stellenbosch University  http://scholar.sun.ac.za



A.8 ZDT 3

Table A.16: Mann-Whitney U-test results for ZDT 3.
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Figure A.24: Box plot of relative run times when solving ZDT 3.

148

Stellenbosch University  http://scholar.sun.ac.za



A.9 ZDT 4

A.9 ZDT 4

Table A.17: Problem details for ZDT 4.

Number of variables 10

Box constraints 0 ≤ xi ≤ 1, i = 1, . . . , 10

Geometry Convex

Relationship No reported relationships

Modality Multimodal

Function definitions Minimise both

f1(x1) = x1

g(x) = 1 + 10(n− 1) +
∑n

i=2

(
x2i − 10 cos(4πxi)

)
f2(x) = 1−

√
f1
g
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Figure A.25: A sample of Pareto fronts achieved by the algorithms on ZDT 4.
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A.9 ZDT 4
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Figure A.26: Box plot of hypervolumes achieved when solving ZDT 4.

Table A.18: Mann-Whitney U-test results for ZDT 4.
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A.10 ZDT 6
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Figure A.27: Box plot of relative run times when solving ZDT 4.

A.10 ZDT 6

Table A.19: Problem details for ZDT 6.

Number of variables 10

Box constraints 0 ≤ xi ≤ 1, i = 1, . . . , 10

Geometry Concave

Relationship No reported relationships

Modality Multimodal

Function definitions Minimise both

f1(x1) = 1− e−4x1 sin6 (6πx1)

g(x) = 1 + 9
(∑n

i=2 xi
n−1

)0.25
f2(x) = 1−

(
f1
g

)2
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A.10 ZDT 6
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Figure A.28: A sample of Pareto fronts achieved by the algorithms on ZDT 6.
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Figure A.29: Box plot of hypervolumes achieved when solving ZDT 6.
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A.10 ZDT 6

Table A.20: Mann-Whitney U-test results for ZDT 6.
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Figure A.30: Box plot of relative run times when solving ZDT 6.
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A.11 L1ZDT 1

A.11 L1ZDT 1

Table A.21: Problem details for L1ZDT 1.

Number of variables 30

Box constraints 0 ≤ xi ≤ 1, i = 1, . . . , 30

Geometry Convex

Relationship Reported relationships

Modality Unimodal

Function definitions Minimise both

f1(x
′
1) = x′1

g(x′) = 1 + 9
∑n

i=2 x
′
i

n−1

f2(x
′) = 1−

√
f1
g
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Figure A.31: A sample of Pareto fronts achieved by the algorithms on L1ZDT 1.
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A.11 L1ZDT 1
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Figure A.32: Box plot of hypervolumes achieved when solving L1ZDT 1.

Table A.22: Mann-Whitney U-test results for L1ZDT 1.
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A.12 L1ZDT 2
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Figure A.33: Box plot of relative run times when solving L1ZDT 1.

A.12 L1ZDT 2

Table A.23: Problem details for L1ZDT 6.

Number of variables 30

Box constraints 0 ≤ xi ≤ 1, i = 1, . . . , 30

Geometry Convex

Relationship Reported relationships

Modality Unimodal

Function definitions Minimise both

f1(x
′
1) = x′1

g(x′) = 1 + 9
∑n

i=2 x
′
i

n−1

f2(x
′) = 1−

√
f1
g
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A.12 L1ZDT 2
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Figure A.34: A sample of Pareto fronts achieved by the algorithms on L1ZDT 2.
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Figure A.35: Box plot of hypervolumes achieved when solving L1ZDT 2.
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A.12 L1ZDT 2

Table A.24: Mann-Whitney U-test results for L1ZDT 2.
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Figure A.36: Box plot of relative run times when solving L1ZDT 2.
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A.13 L1ZDT 3

A.13 L1ZDT 3

Table A.25: Problem details for L1ZDT 3.

Number of variables 30

Box constraints 0 ≤ xi ≤ 1, i = 1, . . . , 30

Geometry Disconnected

Relationship Reported relationships

Modality Multimodal

Function definitions Minimise both

f1(x
′
1) = x′1

g(x′) = 1 + 9
∑n

i=2 x
′
i

n−1

f2(x
′) = 1−

√
f1
g −

(
f1
g

)
sin (10πf1)
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Figure A.37: A sample of Pareto fronts achieved by the algorithms on L1ZDT 3.
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A.13 L1ZDT 3
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Figure A.38: Box plot of hypervolumes achieved when solving L1ZDT 3.

Table A.26: Mann-Whitney U-test results for L1ZDT 3.
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A.14 L1ZDT 4
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Figure A.39: Box plot of relative run times when solving L1ZDT 3.

A.14 L1ZDT 4

Table A.27: Problem details for L1ZDT 4.

Number of variables 10

Box constraints 0 ≤ xi ≤ 1, i = 1, . . . , 10

Geometry Convex

Relationship Reported relationships

Modality Multimodal

Function definitions Minimise both

f1(x
′
1) = x′1

g(x′) = 1 + 10(n− 1) +
∑n

i=2

(
x2i − 10 cos(4πx′i)

)
f2(x

′) = 1−
√

f1
g
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A.14 L1ZDT 4
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Figure A.40: A sample of Pareto fronts achieved by the algorithms on L1ZDT 4.
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Figure A.41: Box plot of hypervolumes achieved when solving L1ZDT 4.
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A.14 L1ZDT 4

Table A.28: Mann-Whitney U-test results for L1ZDT 4.
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Figure A.42: Box plot of relative run times when solving L1ZDT 4.
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A.15 L1ZDT 6

A.15 L1ZDT 6

Table A.29: Problem details for L1ZDT 6.

Number of variables 10

Box constraints 0 ≤ xi ≤ 1, i = 1, . . . , 10

Geometry Concave

Relationship Reported relationships

Modality Multimodal

Function definitions Minimise both

f1(x
′
1) = 1− e−4x′1 sin6 (6πx′1)

g(x′) = 1 + 9
(∑n

i=2 x
′
i

n−1

)0.25
f2(x

′) = 1−
(
f1
g

)2
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Figure A.43: A sample of Pareto fronts achieved by the algorithms on L1ZDT 6.
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A.15 L1ZDT 6
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Figure A.44: Box plot of hypervolumes achieved when solving L1ZDT 6.

Table A.30: Mann-Whitney U-test results for L1ZDT 6.
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A.16 R 1
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Figure A.45: Box plot of relative run times when solving L1ZDT 6.

A.16 R 1

Table A.31: Problem details for R 1.

Number of variables 10

Box constraints −0.3 ≤ xi ≤ 0.3, i = 1, . . . , 10

Geometry Convex

Relationship Reported relationships

Modality Multimodal, deceptive

Function definitions Minimise both

f1(x
′
1) = x′1

g(x′) = 1 + 10(n− 1) +
∑n

i=2

(
x′2i − 10 cos(4πx′i)

)
h (f1(x

′
1), g(x′)) = e

−f1(x
′
i)

g(x′)

f2(x
′) = g(x′)h (f1(x

′
1), g(x′))

subject to |f1| ≤ 0.3
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A.16 R 1
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Figure A.46: A sample of Pareto fronts achieved by the algorithms on R 1.
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Figure A.47: Box plot of hypervolumes achieved when solving R 1.
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A.16 R 1

Table A.32: Mann-Whitney U-test results for R 1.
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Figure A.48: Box plot of relative run times when solving R 1.
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A.17 R 2

A.17 R 2

Table A.33: Problem details for R 2.

Number of variables 10

Box constraints −1 ≤ xi ≤ 1, i = 1, . . . , 10

Geometry Disconnected

Relationship Reported relationships

Modality Multimodal

Function definitions Minimise both

f1(x
′
1) = x′1

g(x′) = 1 + 10(n− 1) +
∑n

i=2

(
x′2i − 10 cos(πx′i)

)
h (f1(x

′
1), g(x′)) = 1 + e

−f1(x
′
i)

g(x′) +
(
f1(x′1)+1
g(x′)

)
sin(5πf1(x

′
1))

f2(x
′) = g(x′)h (f1(x

′
1), g(x′))

subject to |f1| ≤ 1
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Figure A.49: A sample of Pareto fronts achieved by the algorithms on R 2.
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A.17 R 2
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Figure A.50: Box plot of hypervolumes achieved when solving R 2.

Table A.34: Mann-Whitney U-test results for R 2.
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A.18 R 3
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Figure A.51: Box plot of relative run times when solving R 2.

A.18 R 3

Table A.35: Problem details for R 3.

Number of variables 10

Box constraints −1 ≤ xi ≤ 1, i = 1, . . . , 10

Geometry Concave

Relationship Reported relationships

Modality Multimodal

Function definitions Minimise both

f1(x
′
1) = 1− e2x

′
1 sin6(6πx′1)

9

g(x′) = 1 + 10(n− 1) +
∑n

i=2

(
x′2i − 10 cos(πx′i)

)
h (f1(x

′
1), g(x′)) = 1−

(
f1(x′i)
g(x′)

)2
f2(x

′) = g(x′)h (f1(x
′
1), g(x′))

subject to 0.3 ≤ f1 ≤ 1
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A.18 R 3
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Figure A.52: A sample of Pareto fronts achieved by the algorithms on R 3.
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Figure A.53: Box plot of hypervolumes achieved when solving R 3.
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A.18 R 3

Table A.36: Mann-Whitney U-test results for R 3.
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Figure A.54: Box plot of relative run times when solving R 3.
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A.19 R 4

Table A.37: Problem details for R 4.

Number of variables 10

Box constraints −1 ≤ xi ≤ 1, i = 1, . . . , 10

Geometry Convex

Relationship Reported relationships

Modality Multimodal, deceptive

Function definitions Minimise both

f1(x
′
1) = x′1

g(x′) = 1 + 0.015578(n− 1)

+
∑n

i=2

(
x′2i − 0.25x′i sin(32

√
|x′i|)

)
h (f1(x

′
1), g(x′)) = e

−f1(x
′
i)

g(x′)

f2(x
′) = g(x′)h (f1(x

′
1), g(x′))

subject to |f1| ≤ 1
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Figure A.55: A sample of Pareto fronts achieved by the algorithms on R 4.
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Figure A.56: Box plot of hypervolumes achieved when solving R 4.

Table A.38: Mann-Whitney U-test results for R 4.

M
O

O
C

E
M

H
y
b

ri
d

1

M
O

-C
M

A
-E

S

H
y
b

ri
d

2

P
D

E

O
u

tp
er

fo
rm

ed

R
an

k

MOO CEM - 1 0 1 0 2 3

Hybrid 1 0 - 0 1 0 1 4

MO-CMA-ES 1 1 - 1 1 4 1

Hybrid 2 0 0 0 - 0 0 5

PDE 1 1 0 1 - 3 2
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Figure A.57: Box plot of relative run times when solving R 4.

A.20 WFG 1

Table A.39: Problem details for WFG 1.

Number of variables V = 4, 20 or 100

Box constraints 0 ≤ xi ≤ 2i, i = 1, . . . , V

Geometry Convex, mixed

Relationship No reported relationships

Modality Unimodal

Function definitions See Table 4.9
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A.20 WFG 1
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Figure A.58: A sample of Pareto fronts achieved by the algorithms on WFG 1 with

four variables.
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Figure A.59: A sample of Pareto fronts achieved by the algorithms on WFG 1 with

20 variables.
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A.20 WFG 1
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Figure A.60: A sample of Pareto fronts achieved by the algorithms on WFG 1 with

a hundred variables.

Table A.40: Mann-Whitney U-test results for WFG 1 with four variables.
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PDE 0 0 0 0 - 0 5
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A.20 WFG 1
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A.20 WFG 1

Table A.41: Mann-Whitney U-test results for WFG 1 with 20 variables.
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MOO CEM - 0 0 0 1 1 4

Hybrid 1 1 - 0 1 1 3 2

MO-CMA-ES 1 1 - 1 1 4 1

Hybrid 2 1 0 0 - 1 2 3

PDE 0 0 0 0 - 0 5

Table A.42: Mann-Whitney U-test results for WFG 1 with 100 variables.
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PDE 0 0 0 0 - 0 5
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A.21 WFG 2

A.21 WFG 2
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Figure A.63: A sample of Pareto fronts achieved by the algorithms on WFG 2 with

four variables.
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Figure A.64: A sample of Pareto fronts achieved by the algorithms on WFG 2 with

20 variables.
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Figure A.65: A sample of Pareto fronts achieved by the algorithms on WFG 2 with

100 variables.

Table A.43: Mann-Whitney U-test results for WFG 2 with four variables.
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A.21 WFG 2

Table A.44: Mann-Whitney U-test results for WFG 2 with 20 variables.
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MOO CEM - 1 1 1 1 4 1

Hybrid 1 0 - 1 0 1 2 3

MO-CMA-ES 0 0 - 0 1 1 4

Hybrid 2 0 1 1 - 1 3 2

PDE 0 0 0 0 - 0 5

Table A.45: Mann-Whitney U-test results for WFG 2 with 100 variables.
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A.22 WFG 3

A.22 WFG 3

Table A.46: Problem details for WFG 3.

Number of variables V = 4, 20 or 100

Box constraints 0 ≤ xi ≤ 2i, i = 1, . . . , V

Geometry Convex, linear, degenerate

Relationship Reported relationships

Modality Unimodal

Function definitions See Table 4.9
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Figure A.68: A sample of Pareto fronts achieved by the algorithms on WFG 3 with

four variables.
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Figure A.69: A sample of Pareto fronts achieved by the algorithms on WFG 3 with

20 variables.
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Figure A.70: A sample of Pareto fronts achieved by the algorithms on WFG 3 with

100 variables.
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A.22 WFG 3

Table A.47: Mann-Whitney U-test results for WFG 3 with four variables.
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MOO CEM - 0 1 0 1 2 3

Hybrid 1 1 - 1 0 1 3 2

MO-CMA-ES 0 0 - 0 1 1 4

Hybrid 2 1 1 1 - 1 4 1

PDE 0 0 0 0 - 0 5

Table A.48: Mann-Whitney U-test results for WFG 3 with 20 variables.
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A.23 WFG 4

Table A.49: Mann-Whitney U-test results for WFG 3 with 100 variables.
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MO-CMA-ES 1 1 - 1 0 3 2

Hybrid 2 0 0 0 - 0 0 5

PDE 1 1 1 1 - 4 1

A.23 WFG 4

Table A.50: Problem details for WFG 4.

Number of variables V = 4, 20 or 100

Box constraints 0 ≤ xi ≤ 2i, i = 1, . . . , V

Geometry Concave

Relationship No reported relationships

Modality Multimodal

Function definitions See Table 4.9
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A.23 WFG 4

Table A.51: Mann-Whitney U-test results for WFG 4 with four variables.
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Table A.52: Mann-Whitney U-test results for WFG 4 with 20 variables.
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Figure A.73: A sample of Pareto fronts achieved by the algorithms on WFG 4 with

four variables.

0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

f1

f 2

True Pareto front MOO CEM Hybrid 1 MO-CMA-ES Hybrid 2 PDE

Figure A.74: A sample of Pareto fronts achieved by the algorithms on WFG 4 with

20 variables.
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A.23 WFG 4
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Figure A.75: A sample of Pareto fronts achieved by the algorithms on WFG 4 with

100 variables.

Table A.53: Mann-Whitney U-test results for WFG 4 with 100 variables.
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A.23 WFG 4
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A.24 WFG 5

A.24 WFG 5

Table A.54: Problem details for WFG 5.

Number of variables V = 4, 20 or 100

Box constraints 0 ≤ xi ≤ 2i, i = 1, . . . , V

Geometry Concave

Relationship No reported relationships

Modality Deceptive

Function definitions See Table 4.9
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Figure A.78: A sample of Pareto fronts achieved by the algorithms on WFG 5 with

four variables.
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Figure A.79: A sample of Pareto fronts achieved by the algorithms on WFG 5 with

20 variables.
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Figure A.80: A sample of Pareto fronts achieved by the algorithms on WFG 5 with

100 variables.
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A.24 WFG 5

Table A.55: Mann-Whitney U-test results for WFG 5 with four variables.
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MOO CEM - 0 0 0 0 0 5

Hybrid 1 1 - 0 1 1 3 2

MO-CMA-ES 1 1 - 1 1 4 1

Hybrid 2 1 0 0 - 1 2 3

PDE 1 0 0 0 - 1 4

Table A.56: Mann-Whitney U-test results for WFG 5 with 20 variables.
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Hybrid 1 1 - 0 1 1 3 2

MO-CMA-ES 1 1 - 1 1 4 1

Hybrid 2 1 0 0 - 0 1 4

PDE 1 0 0 1 - 2 3
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A.24 WFG 5
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A.25 WFG 6

Table A.57: Mann-Whitney U-test results for WFG 5 with 100 variables.
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MOO CEM - 0 1 0 1 2 3

Hybrid 1 1 - 1 1 1 4 1

MO-CMA-ES 0 0 - 0 1 1 4

Hybrid 2 1 0 1 - 1 3 2

PDE 0 0 0 0 - 0 5

A.25 WFG 6

Table A.58: Problem details for WFG 6.

Number of variables V = 4, 20 or 100

Box constraints 0 ≤ xi ≤ 2i, i = 1, . . . , V

Geometry Concave

Relationship Reported relationships

Modality Unimodal

Function definitions See Table 4.9
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A.25 WFG 6

Table A.59: Mann-Whitney U-test results for WFG 6 with four variables.
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MOO CEM - 0 0 0 0 0 5

Hybrid 1 1 - 0 0 0 1 4

MO-CMA-ES 1 1 - 1 1 4 1

Hybrid 2 1 0 0 - 0 1 4

PDE 1 1 0 1 - 3 2

Table A.60: Mann-Whitney U-test results for WFG 6 with 20 variables.

M
O

O
C

E
M

H
y
b

ri
d

1

M
O

-C
M

A
-E

S

H
y
b

ri
d

2

P
D

E

O
u

tp
er

fo
rm

ed

R
an

k

MOO CEM - 0 0 0 0 0 5

Hybrid 1 1 - 0 1 1 3 2

MO-CMA-ES 1 1 - 1 1 4 1

Hybrid 2 1 0 0 - 0 1 4

PDE 1 0 0 1 - 2 3
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A.25 WFG 6
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Figure A.83: A sample of Pareto fronts achieved by the algorithms on WFG 6 with

four variables.
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Figure A.84: A sample of Pareto fronts achieved by the algorithms on WFG 6 with

20 variables.
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A.25 WFG 6
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Figure A.85: A sample of Pareto fronts achieved by the algorithms on WFG 6 with

100 variables.

Table A.61: Mann-Whitney U-test results for WFG 6 with 100 variables.
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MOO CEM - 0 1 0 0 1 4

Hybrid 1 1 - 1 1 1 4 1

MO-CMA-ES 0 0 - 0 0 0 5

Hybrid 2 1 0 1 - 1 3 2

PDE 1 0 1 0 - 2 3
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A.25 WFG 6
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A.25 WFG 6
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A.26 WFG 7

A.26 WFG 7

Table A.62: Problem details for WFG 7.

Number of variables V = 4, 20 or 100

Box constraints 0 ≤ xi ≤ 2i, i = 1, . . . , V

Geometry Concave

Relationship No reported relationships

Modality Unimodal

Function definitions See Table 4.9
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Figure A.88: A sample of Pareto fronts achieved by the algorithms on WFG 7 with

four variables.
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A.26 WFG 7

0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

f1

f 2

True Pareto front MOO CEM Hybrid 1 MO-CMA-ES Hybrid 2 PDE

Figure A.89: A sample of Pareto fronts achieved by the algorithms on WFG 7 with

20 variables.
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Figure A.90: A sample of Pareto fronts achieved by the algorithms on WFG 7 with

100 variables.
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A.26 WFG 7
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A.26 WFG 7

Table A.63: Mann-Whitney U-test results for WFG 7 with four variables.
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MOO CEM - 1 0 1 0 2 3

Hybrid 1 0 - 0 0 0 0 5

MO-CMA-ES 1 1 - 1 0 3 2

Hybrid 2 0 1 0 - 0 1 4

PDE 1 1 1 1 - 4 1

Table A.64: Mann-Whitney U-test results for WFG 7 with 100 variables.
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MOO CEM - 1 0 1 0 2 3

Hybrid 1 0 - 0 1 0 1 4

MO-CMA-ES 1 1 - 1 1 4 1

Hybrid 2 0 0 0 - 0 0 5

PDE 1 1 0 1 - 3 2
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A.27 WFG 8

Table A.65: Mann-Whitney U-test results for WFG 7 with 100 variables.
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MOO CEM - 1 1 1 0 3 2

Hybrid 1 0 - 0 1 0 1 4

MO-CMA-ES 0 1 - 1 0 2 3

Hybrid 2 0 0 0 - 0 0 5

PDE 1 1 1 1 - 4 1

A.27 WFG 8

Table A.66: Problem details for WFG 8.

Number of variables V = 4, 20 or 100

Box constraints 0 ≤ xi ≤ 2i, i = 1, . . . , V

Geometry Concave

Relationship Reported relationships

Modality Unimodal

Function definitions See Table 4.9
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A.27 WFG 8

Table A.67: Mann-Whitney U-test results for WFG 8 with four variables.
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MOO CEM - 1 0 0 0 1 4

Hybrid 1 0 - 0 0 0 0 5

MO-CMA-ES 1 1 - 1 1 4 1

Hybrid 2 1 1 0 - 0 2 3

PDE 1 1 0 1 - 3 2

Table A.68: Mann-Whitney U-test results for WFG 8 with 20 variables.
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Hybrid 1 0 - 0 1 0 1 4

MO-CMA-ES 1 1 - 1 1 4 1

Hybrid 2 0 0 0 - 0 0 5

PDE 1 1 0 1 - 3 2
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A.27 WFG 8
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Figure A.93: A sample of Pareto fronts achieved by the algorithms on WFG 8 with

four variables.

0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

f1

f 2

True Pareto front MOO CEM Hybrid 1 MO-CMA-ES Hybrid 2 PDE

Figure A.94: A sample of Pareto fronts achieved by the algorithms on WFG 8 with

20 variables.
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A.27 WFG 8
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Figure A.95: A sample of Pareto fronts achieved by the algorithms on WFG 8 with

100 variables.

Table A.69: Mann-Whitney U-test results for WFG 8 with 100 variables.
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MOO CEM - 1 1 1 0 3 2

Hybrid 1 0 - 1 1 0 2 3

MO-CMA-ES 0 0 - 1 0 1 4

Hybrid 2 0 0 0 - 0 0 5

PDE 1 1 1 1 - 4 1
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A.27 WFG 8
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A.27 WFG 8
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A.28 WFG 9

A.28 WFG 9

Table A.70: Problem details for WFG 9.

Number of variables V = 4, 20 or 100

Box constraints 0 ≤ xi ≤ 2i, i = 1, . . . , V

Geometry Concave

Relationship Reported relationships

Modality Multimodal, deceptive

Function definitions See Table 4.9
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Figure A.98: A sample of Pareto fronts achieved by the algorithms on WFG 9 with

four variables.
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A.28 WFG 9

0 0.5 1 1.5 2

0

1

2

3

4

f1

f 2

True Pareto front MOO CEM Hybrid 1 MO-CMA-ES Hybrid 2 PDE

Figure A.99: A sample of Pareto fronts achieved by the algorithms on WFG 9 with

20 variables.
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Figure A.100: A sample of Pareto fronts achieved by the algorithms on WFG 9 with

100 variables.
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A.28 WFG 9
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A.28 WFG 9

Table A.71: Mann-Whitney U-test results for WFG 9 with four variables.
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MOO CEM - 0 0 0 0 0 5

Hybrid 1 1 - 0 0 0 1 4

MO-CMA-ES 1 1 - 1 1 4 1

Hybrid 2 1 1 0 - 0 2 3

PDE 1 1 0 1 - 3 2

Table A.72: Mann-Whitney U-test results for WFG 9 with 20 variables.
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MOO CEM - 0 0 0 0 0 5

Hybrid 1 1 - 0 1 1 3 2

MO-CMA-ES 1 1 - 1 1 4 1

Hybrid 2 1 0 0 - 1 2 3

PDE 1 0 0 0 - 1 4
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A.28 WFG 9

Table A.73: Mann-Whitney U-test results for WFG 9 with 100 variables.
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MOO CEM - 0 1 0 0 1 4

Hybrid 1 1 - 1 1 1 4 1

MO-CMA-ES 0 0 - 0 0 0 5

Hybrid 2 1 0 1 - 1 3 2

PDE 1 0 1 0 - 2 3
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Appendix B

Results for the MRR cases

This appendix presents the results for the mission-ready resource (MRR) cases. For

each case, a sample of the Pareto fronts achieved is presented. Two sets of box plots are

also shown: a summary of the hypervolumes achieved and a summary of the relative run

times of the algorithms. The results of the Mann-Whitney U-tests as performed on the

achieved hypervolumes are presented for all the cases. For the Mann-Whitney U-test

results, if a matrix entry ij = 1, it indicates that Algorithm i achieved a significantly

higher hypervolume than Algorithm j at a 5% significance level. The Outperformed

column sums the total number of algorithms that Algorithm i outperformed, whereas

the Rank column indicates which algorithm performed best on the problem at hand

(with 1 being the best and 5 being the worst).
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B.1 MRR Case A

B.1 MRR Case A
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Figure B.1: A sample of Pareto fronts achieved by the algorithms on MRR Case A
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Figure B.2: Box plot of hypervolumes achieved when solving MRR Case A.
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B.1 MRR Case A

Table B.1: Mann-Whitney U-test results for MRR Case A.
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Figure B.3: Box plot of relative run times when solving MRR Case A.
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B.2 MRR Case B
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Figure B.4: A sample of Pareto fronts achieved by the algorithms on MRR Case B
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Figure B.5: Box plot of hypervolumes achieved when solving MRR Case B.
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B.2 MRR Case B

Table B.2: Mann-Whitney U-test results for MRR Case B.
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Figure B.6: Box plot of relative run times when solving MRR Case B.
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B.3 MRR Case C

B.3 MRR Case C
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Figure B.7: A sample of Pareto fronts achieved by the algorithms on MRR Case C
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Figure B.8: Box plot of hypervolumes achieved when solving MRR Case C.
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B.3 MRR Case C

Table B.3: Mann-Whitney U-test results for MRR Case C.
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Figure B.9: Box plot of relative run times when solving MRR Case C.
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B.4 MRR Case D
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Figure B.10: A sample of Pareto fronts achieved by the algorithms on MRR Case D
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Figure B.11: Box plot of hypervolumes achieved when solving MRR Case D.
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B.4 MRR Case D

Table B.4: Mann-Whitney U-test results for MRR Case D.
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Figure B.12: Box plot of relative run times when solving MRR Case D.
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B.5 MRR Case E
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Figure B.13: A sample of Pareto fronts achieved by the algorithms on MRR Case E
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Figure B.14: Box plot of hypervolumes achieved when solving MRR Case E.
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B.5 MRR Case E

Table B.5: Mann-Whitney U-test results for MRR Case E.
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Figure B.15: Box plot of relative run times when solving MRR Case E.
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B.6 MRR Case F

B.6 MRR Case F
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Figure B.16: A sample of Pareto fronts achieved by the algorithms on MRR Case F
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Figure B.17: Box plot of hypervolumes achieved when solving MRR Case F.
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B.6 MRR Case F

Table B.6: Mann-Whitney U-test results for MRR Case F.
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Figure B.18: Box plot of relative run times when solving MRR Case F.
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Appendix C

Integrating Matlab and Simio

This appendix provides guidelines for integrating Matlab and Simio.

The dynamic, stochastic buffer allocation problem (BAP), discussed in Chapter 6,

was implemented in Simio. In order to use the simulation model for function evaluation,

Simio and Matlab had to be integrated.

Simio provides an application programming interface (API) which allows users to

call Simio models from other programs. Unfortunately, at the time of this study, using

the Simio API in combination with Matlab was impossible.

The Simio support team suggested using C# and comma separated value (CSV)

files to integrate Matlab and Simio. Figure C.1 shows how Simio was integrated with

Matlab using C# and CSV files. A snippet of applicable Matlab source code is shown

in Listing C.1, while Listing C.2 shows the C# source code.

The C# code for writing to and reading from CSV files is attributed to Wood

(2012).

Listing C.1: Matlab code snippet for integrating Matlab and Simio using C# and CSV

files.

f unc t i on f=cal lCSharp ( Dec i s i onVar i ab l e s )

%F i l e path f o r CSV f i l e to which d e c i s i o n v a r i a b l e s are wr i t t en

ControlCSV='C:\Users\15431967\Dropbox\MrBekker_ResearchGroup\
EsmarieScholtz\SIMIO\ControlCSV.csv' ;

%Write to CSV f i l e

c svwr i t e ( ControlCSV , Dec i s i onVar i ab l e s ) ;

%Cal l C# executab l e
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Figure C.1: Integrating Simio with Matlab using C# and CSV files.
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system ('C:\Users\15431967\Dropbox\MrBekker_ResearchGroup\
EsmarieScholtz\SIMIO\RunExperimentsConsole\bin\Release\

RunExperimentsConsole.exe' ) ;

%F i l e path f o r CSV f i l e from which r e s u l t s are read

ResponseCSV='C:\Users\15431967\Dropbox\MrBekker_ResearchGroup\
EsmarieScholtz\SIMIO\ResponseCSV.csv' ;

%Read CSV f i l e

f=csvread ( ResponseCSV ) ;

end

Listing C.2: C# code for integrating Matlab and Simio using CSV files.

us ing System ;

us ing System . IO ;

us ing System . C o l l e c t i o n s . Generic ;

us ing System . Linq ;

us ing System . Text ;

us ing System . Windows . Forms ;

us ing SimioAPI ;

us ing System . Data ;

us ing System . Data .Common;

us ing System . G l o b a l i z a t i o n ;

namespace RunExperimentsConsole

{
c l a s s Program

{
s t a t i c void Main ( s t r i n g [ ] a rgs )

{
s t r i n g [ ] warnings ;

//Load Simio p r o j e c t

IS imioPro j e c t p r o j e c t = SimioPro jectFactory . LoadProject (

"C:\\Users\\15431967\\Dropbox\\MrBekker_ResearchGroup

\\EsmarieScholtz\\SIMIO\\JB_Test_BAP.spfx" , out

warnings ) ; //MOP 63 , 64 , 65

//Load the s p e c i f i c model

IModel myModel = p r o j e c t . Models [ "Model" ] ;

//Load the s p e c i f i c experiment

IExperiment myExperiment = myModel . Experiments [ "

Experiment1" ] ;

//Some d e c l a r a t i o n s

s t r i n g scenarioName ;
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IS c ena r i o myScenario ;

s t r i n g controlName ;

IExperimentControl th i sCont ro l ;

s t r i n g valueRead ;

i n t repsReq = 5 ;

i n t b = 1 ;

myExperiment . Reset ( ) ;

// Read c o n t r o l v a r i a b l e data from CSV f i l e

s t r i n g ReadPath = "C:\\Users\\15431967\\Dropbox\\

MrBekker_ResearchGroup\\EsmarieScholtz\\SIMIO\\

ControlCSV.csv" ;

us ing ( ReadWriteCsv . CsvFileReader reader = new

ReadWriteCsv . CsvFileReader ( ReadPath ) )

{
ReadWriteCsv . CsvRow row = new ReadWriteCsv . CsvRow ( ) ;

whi l e ( reader . ReadRow( row ) )

{
f o r ( i n t a = 0 ; a < myExperiment . Contro l s . Count ;

a++)

{
scenarioName = "Scenario" + b ;

myScenario = myExperiment . Scenar i o s [

scenarioName ] ;

i f ( myScenario==n u l l )

{
myExperiment . Scena r i o s . Create (

scenarioName ) ;

myScenario = myExperiment . Scenar i o s [

scenarioName ] ;

}
myScenario . Rep l i ca t i onsRequ i r ed = repsReq ;

controlName = myExperiment . Contro l s [ a ] . Name .

ToString ( ) ;

valueRead = row [ a ]

// Set the c o n t r o l va lue to be equal to the

d e c i s i o n v a r i a b l e va lue

th i sCont ro l = myExperiment . Contro l s [

controlName ] ;

myScenario . SetControlValue ( myExperiment .

Contro l s [ controlName ] , valueRead . ToString

( ) ) ;
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}
b = b + 1 ;

}
}
// Delete s u p e r f l u o u s s c e n a r i o s

i n t OrigCount = myExperiment . Scena r i o s . Count ;

i f ( OrigCount> b − 1)

{
f o r ( i n t a = b ; a <= OrigCount ; a++)

{
scenarioName = "Scenario" + a ;

myScenario = myExperiment . Scenar i o s [ scenarioName

] ;

myExperiment . Scena r i o s . Remove( myScenario ) ;

}
}
//Run s imu la t i on model s c e n a r i o s

myExperiment . Run( ) ;

// Write output data to CSV f i l e

s t r i n g WritePath = "C:\\Users\\15431967\\Dropbox\\

MrBekker_ResearchGroup\\EsmarieScholtz\\SIMIO\\

ResponseCSV.csv" ;

us ing ( ReadWriteCsv . CsvFi leWriter w r i t e r = new

ReadWriteCsv . CsvFi leWriter ( WritePath ) )

f o r each ( ISc ena r i o s c e n a r i o in myExperiment . Scena r i o s )

{
double responseValue = 0 . 0 ;

ReadWriteCsv . CsvRow row = new ReadWriteCsv . CsvRow ( ) ;

f o r ( i n t j = 0 ; j < myExperiment . Responses . Count ; j

++)

{
myExperiment . Scena r i o s [ s c e n a r i o .Name ] .

GetResponseValue ( myExperiment . Responses [ j ] ,

r e f responseValue ) ;

row . Add( St r ing . Format ( responseValue . ToString ( ) ) )

;

}
w r i t e r . WriteRow ( row ) ;

}
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}
}

}

namespace ReadWriteCsv

{
/// <summary>

/// Class to s t o r e one CSV row

/// </summary>

pub l i c c l a s s CsvRow : Lis t<s t r i ng>

{
pub l i c s t r i n g LineText { get ; s e t ; }

}

/// <summary>

/// Class to wr i t e data to a CSV f i l e

/// </summary>

pub l i c c l a s s CsvFi leWriter : StreamWriter

{
pub l i c CsvFi leWriter ( Stream stream )

: base ( stream )

{
}

pub l i c CsvFi leWriter ( s t r i n g f i l ename )

: base ( f i l ename )

{
}

/// <summary>

/// Writes a s i n g l e row to a CSV f i l e .

/// </summary>

/// <param name=”row”>The row to be written</param>

pub l i c void WriteRow (CsvRow row )

{
St r i ngBu i l d e r b u i l d e r = new St r ingBu i l d e r ( ) ;

bool f i r s tColumn = true ;

f o r each ( s t r i n g value in row )

{
// Add separa to r i f t h i s i sn ' t the f i r s t va lue

i f ( ! f i r s tColumn )
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b u i l d e r . Append ( ' , ' ) ;

// Implement s p e c i a l handl ing f o r va lue s that

conta in comma or quote

// Enclose in quotes and double up any double quotes

i f ( va lue . IndexOfAny (new char [ ] { '" ' , ' , ' }) != −1)

b u i l d e r . AppendFormat ("\"{0}\"" , va lue . Replace ("

\"" , "\"\"" ) ) ;

e l s e

b u i l d e r . Append( value ) ;

f i r s tColumn = f a l s e ;

}
row . LineText = b u i l d e r . ToString ( ) ;

WriteLine ( row . LineText ) ;

}
}

/// <summary>

/// Class to read data from a CSV f i l e

/// </summary>

pub l i c c l a s s CsvFileReader : StreamReader

{
pub l i c CsvFileReader ( Stream stream )

: base ( stream )

{
}

pub l i c CsvFileReader ( s t r i n g f i l ename )

: base ( f i l ename )

{
}

/// <summary>

/// Reads a row o f data from a CSV f i l e

/// </summary>

/// <param name=”row”></param>

/// <returns></returns>

pub l i c bool ReadRow(CsvRow row )

{
row . LineText = ReadLine ( ) ;

i f ( S t r ing . IsNullOrEmpty ( row . LineText ) )

re turn f a l s e ;
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i n t pos = 0 ;

i n t rows = 0 ;

whi l e ( pos < row . LineText . Length )

{
s t r i n g value ;

// S p e c i a l handl ing f o r quoted f i e l d

i f ( row . LineText [ pos ] == ' " ' )
{

// Skip i n i t i a l quote

pos++;

// Parse quoted value

i n t s t a r t = pos ;

whi l e ( pos < row . LineText . Length )

{
// Test f o r quote cha rac t e r

i f ( row . LineText [ pos ] == ' " ' )
{

// Found one

pos++;

// I f two quotes together , keep one

// Otherwise , i n d i c a t e s end o f va lue

i f ( pos >= row . LineText . Length | | row .

LineText [ pos ] != '
" ' )

{
pos−−;

break ;

}
}
pos++;

}
value = row . LineText . Substr ing ( s ta r t , pos −

s t a r t ) ;

va lue = value . Replace ("\"\"" , "\"" ) ;

}
e l s e
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{
// Parse unquoted value

i n t s t a r t = pos ;

whi l e ( pos < row . LineText . Length && row . LineText

[ pos ] != ' , ' )
pos++;

value = row . LineText . Substr ing ( s ta r t , pos −
s t a r t ) ;

}

// Add f i e l d to l i s t

i f ( rows < row . Count )

row [ rows ] = value ;

e l s e

row . Add( value ) ;

rows++;

// Eat up to and i n c l u d i n g next comma

whi le ( pos < row . LineText . Length && row . LineText [ pos

] != ' , ' )
pos++;

i f ( pos < row . LineText . Length )

pos++;

}
// Delete any unused items

whi l e ( row . Count > rows )

row . RemoveAt( rows ) ;

// Return true i f any columns read

return ( row . Count > 0) ;

}
}

}
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Appendix D

Simulation case results

This appendix presents the results for the buffer allocation problem (BAP) cases. For

each case, a sample of the Pareto fronts achieved is presented. Only one set of box

plots are also shown: a summary of the hypervolumes achieved by the algorithms. The

relative run times are not shown since the function evaluations are very time consuming.

As a result, differences in the run times of the algorithms are very small. The results of

the Mann-Whitney U-tests as performed on the achieved hypervolumes are presented

for all the cases. For the Mann-Whitney U-test results, if a matrix entry ij = 1, it

indicates that Algorithm i achieved a significantly higher hypervolume than Algorithm

j at a 5% significance level. The Outperformed column sums the total number of

algorithms that Algorithm i outperformed, whereas the Rank column indicates which

algorithm performed best on the problem at hand (with 1 being the best and 5 being

the worst).
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D.1 BAP Case A

D.1 BAP Case A
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Figure D.1: A sample of Pareto fronts achieved by the algorithms on BAP Case A.
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Figure D.2: Box plot of hypervolumes achieved when solving BAP Case A.
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D.2 BAP Case B

Table D.1: Mann-Whitney U-test results for BAP Case A.
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Figure D.3: A sample of Pareto fronts achieved by the algorithms on BAP Case B.
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D.2 BAP Case B
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Figure D.4: Box plot of hypervolumes achieved when solving BAP Case B.

Table D.2: Mann-Whitney U-test results for BAP Case B.
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D.3 BAP Case C

D.3 BAP Case C
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Figure D.5: A sample of Pareto fronts achieved by the algorithms on BAP Case C.
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Figure D.6: Box plot of hypervolumes achieved when solving BAP Case C.
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Table D.3: Mann-Whitney U-test results for BAP Case C.
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