
Decision Forests for Computer Go
Feature Learning

Francois van Niekerk

Thesis presented in partial fulfilment of the requirements of
the degree of Master of Science in Computer Science at

Stellenbosch University.

Supervisor: Dr. Steve Kroon

March 2014

Declaration

By submitting this thesis electronically, I declare that the entirety of the
work contained therein is my own, original work, that I am the sole author
thereof (save to the extent explicitly otherwise stated), that reproduction
and publication thereof by Stellenbosch University will not infringe any third
party rights and that I have not previously in its entirety or in part submitted
it for obtaining any qualification.

Date: February 23, 2014

Copyright c© 2013 Stellenbosch University
All Rights Reserved

Stellenbosch University http://scholar.sun.ac.za

Abstract

In computer Go, moves are typically selected with the aid of a tree search
algorithm. Monte-Carlo tree search (MCTS) is currently the dominant al-
gorithm in computer Go. It has been shown that the inclusion of domain
knowledge in MCTS is able to vastly improve the strength of MCTS engines.
A successful approach to representing domain knowledge in computer Go
is the use of appropriately weighted tactical features and pattern features,
which are comprised of a number of hand-crafted heuristics and a collection
of patterns respectively. However, tactical features are hand-crafted specif-
ically for Go, and pattern features are Go-specific, making it unclear how
they can be easily transferred to other domains.

As such, this work proposes a new approach to representing domain
knowledge, decision tree features. These features evaluate a state-action
pair by descending a decision tree, with queries recursively partitioning the
state-action pair input space, and returning a weight corresponding to the
partition element represented by the resultant leaf node. In this work, de-
cision tree features are applied to computer Go, in order to determine their
feasibility in comparison to state-of-the-art use of tactical and pattern fea-
tures. In this application of decision tree features, each query in the decision
tree descent path refines information about the board position surrounding
a candidate move.

The results of this work showed that a feature instance with decision tree
features is a feasible alternative to the state-of-the-art use of tactical and
pattern features in computer Go, in terms of move prediction and playing
strength, even though computer Go is a relatively well-developed research
area. A move prediction rate of 35.9% was achieved with tactical and decision
tree features, and they showed comparable performance to the state of the
art when integrated into an MCTS engine with progressive widening.

We conclude that the decision tree feature approach shows potential as
a method for automatically extracting domain knowledge in new domains.
These features can be used to evaluate state-action pairs for guiding search-
based techniques, such as MCTS, or for action-prediction tasks.

i

Stellenbosch University http://scholar.sun.ac.za

Uittreksel

In rekenaar Go, word skuiwe gewoonlik geselekteer met behulp van ’n boom-
soektogalgoritme. Monte-Carlo boomsoektog (MCTS) is tans die dominante
algoritme in rekenaar Go. Dit is bekend dat die insluiting van gebiedskennis
in MCTS in staat is om die krag van MCTS enjins aansienlik te verbeter.
’n Suksesvolle benadering tot die voorstelling van gebiedskennis in rekenaar
Go is taktiek- en patroonkenmerke met geskikte gewigte. Hierdie behels ’n
aantal handgemaakte heuristieke en ’n versameling van patrone onderskeide-
lik. Omdat taktiekkenmerke spesifiek vir Go met die hand gemaak is, en dat
patroonkenmerke Go-spesifiek is, is dit nie duidelik hoe hulle maklik oorgedra
kan word na ander velde toe nie.

Hierdie werk stel dus ’n nuwe verteenwoordiging van gebiedskennis voor,
naamlik besluitboomkenmerke. Hierdie kenmerke evalueer ’n toestand-aksie
paar deur rekursief die toevoerruimte van toestand-aksie pare te verdeel deur
middel van die keuses in die besluitboom, en dan die gewig terug te keer
wat ooreenstem met die verdelingselement wat die ooreenstemmende blaar-
nodus verteenwoordig. In hierdie werk, is besluitboomkenmerke geëvalueer
op rekenaar Go, om hul lewensvatbaarheid in vergelyking met veldleidende
gebruik van taktiek- en patroonkenmerke te bepaal. In hierdie toepassing
van besluitboomkenmerke, verfyn elke navraag in die pad na onder van die
besluitboom inligting oor die posisie rondom ’n kandidaatskuif.

Die resultate van hierdie werk het getoon dat ’n kenmerkentiteit met
besluitboomkenmerke ’n haalbare alternatief is vir die veldleidende gebruik
van taktiek- en patroonkenmerke in rekenaar Go in terme van skuifvoor-
spelling as ook speelkrag, ondanks die feit dat rekenaar Go ’n relatief goed-
ontwikkelde navorsingsgebied is. ’n Skuifvoorspellingskoers van 35.9% is
behaal met taktiek- en besluitboomkenmerke, en hulle het vergelykbaar met
veldleidende tegnieke presteer wanneer hulle in ’n MCTS enjin met pro-
gressiewe uitbreiding geïntegreer is.

Ons lei af dat ons voorgestelde besluitboomkenmerke potensiaal toon as ’n
metode vir die outomaties onttrek van gebiedskennis in nuwe velde. Hierdie
eienskappe kan gebruik word om toestand-aksie pare te evalueer vir die lei-
ding van soektog-gebaseerde tegnieke, soos MCTS, of vir aksie-voorspelling.

ii

Stellenbosch University http://scholar.sun.ac.za

Acknowledgements

I would like to express my sincere gratitude to the following people for their
support throughout this work:

• My supervisor, Dr. Steve Kroon, for your extensive guidance and sup-
port, that frequently went beyond the call of duty.

• The MIH Media Lab, for the generous financial support and excellent
research environment.

• My fellow lab colleagues, especially Hilgard Bell, Dirk Brand, Leon van
Niekerk and the other members of the gaming research group, for your
advice and support inside and outside of the lab.

• My friends and family, for your loving help.

iii

Stellenbosch University http://scholar.sun.ac.za

Contents

Abstract i

Uittreksel ii

Acknowledgements iii

Contents iv

List of Figures vii

List of Tables ix

Nomenclature x

1 Introduction 1
1.1 Problem Statement . 2
1.2 Objectives . 3
1.3 Contributions . 4
1.4 Outline . 4

2 Background and Related Work 5
2.1 The Game of Go . 5
2.2 Computer Go . 7
2.3 Monte-Carlo Tree Search . 9
2.4 Domain Knowledge for Computer Go 12

2.4.1 Go Features . 13
2.4.2 Progressive Strategies for MCTS 15
2.4.3 MCTS Simulation Policies 16

2.5 Common Fate Graphs . 16
2.6 The Generalized Bradley-Terry Model 17

2.6.1 Minorization-Maximization 19
2.7 Decision Trees . 19

iv

Stellenbosch University http://scholar.sun.ac.za

CONTENTS v

2.8 Conclusion . 20

3 Decision Tree Features 21
3.1 Overview . 22
3.2 Application to Go . 23
3.3 Query Systems for Go . 24

3.3.1 Intersection Graph . 26
3.3.2 Stone Graph . 28
3.3.3 Resolving Multiple Descent Paths 32

3.4 Query Selection . 34
3.4.1 Descent Statistics . 35
3.4.2 Quality Criteria . 36
3.4.3 Suitability Conditions 41

3.5 Other Domains . 41
3.6 Conclusion . 43

4 System Implementation 45
4.1 Training and Testing Data . 47
4.2 Forest Growth . 47
4.3 Weight Training . 48
4.4 Action Evaluation . 49
4.5 Testing . 50
4.6 Engine Usage . 50
4.7 Conclusion . 51

5 Experiments and Results 52
5.1 Testing Methodology . 53
5.2 Training and Testing Data . 54
5.3 Tactical Features . 55
5.4 Example Decision Tree Features 55
5.5 Move Prediction Outline . 57
5.6 Tactical and Pattern Features 61

5.6.1 Tactical Features . 62
5.6.2 Utility of the M(1) Value 62
5.6.3 Impact of ξ and φ . 63

5.7 Query Systems and Quality Criteria 65
5.7.1 Quality Criteria . 66
5.7.2 Query Systems . 69
5.7.3 Query Systems per Game Stages 72
5.7.4 Impact of φ . 74

5.8 Decision Forest Parameters . 75

Stellenbosch University http://scholar.sun.ac.za

CONTENTS vi

5.8.1 Impact of τ . 76
5.8.2 Impact of ρ . 76
5.8.3 Impact of φ . 77

5.9 Comparison with State of the Art 79
5.9.1 Combinations of Query Systems 80
5.9.2 Best Feature Instances 80

5.10 History-Agnostic Features . 82
5.11 Playing Strength . 83
5.12 Conclusion . 85

6 Conclusion 88
6.1 Recommendations . 90
6.2 Future Work . 90

A Reproducibility 92

Bibliography 93

Stellenbosch University http://scholar.sun.ac.za

List of Figures

2.1 A famous Go game (Honinbo Shusaku vs. Gennan Inseki, 1846). 6
2.2 Example MCTS tree . 9
2.3 Selection step of an example MCTS iteration. 11
2.4 Expansion step of an example MCTS iteration. 11
2.5 Simulation step of an example MCTS iteration. 11
2.6 Backpropagation step of an example MCTS iteration. 12
2.7 Visualization of the circular distance (δ◦) measure. 14
2.8 Three functionally-equivalent Go positions. 15
2.9 CFG representation of two Go board portions. 17

3.1 Example small Go board position with IG representations of
the position. 27

3.2 A portion of an example IG∅ decision tree. 29
3.3 Example portion of a Go board position with SG representa-

tions of the position. 31
3.4 A portion of an example SG∅ decision tree. 33

4.1 Diagram of components for decision tree feature construction,
testing and usage. 46

5.1 First example descent path from an SG∅ decision tree. 58
5.2 Second example descent path from an SG∅ decision tree. . . . 59
5.3 The effect of the number of games used for weight training

(φ) on the move prediction of feature instances with tactical
features. 62

5.4 Move prediction performance of feature instances with tactical
and pattern features. 63

5.5 The effect of varying the number of games used for harvesting
patterns (ξ) for various tactical and pattern feature instances. 64

5.6 The effect of varying the number of games used for weight
training (φ) for various tactical and pattern feature instances. 65

vii

Stellenbosch University http://scholar.sun.ac.za

LIST OF FIGURES viii

5.7 Move prediction performance of tactical and decision tree fea-
ture instances with different query systems, separated by game
stages. 74

5.8 The effect of varying the number of games used for weight
training (φ) for tactical and decision tree feature instances
with each query system. 75

5.9 Evaluation of the impact of varying the number of trees in
the decision forest (τ) of tactical and decision tree feature
instances, with a fixed ρτ . 77

5.10 The effect of varying the number of games used for growing de-
cision trees (ρ) for tactical and decision tree feature instances
with each query system. 78

5.11 The effect of varying the number of games used for weight
training (φ) for tactical and decision tree feature instances
with each query system. 79

5.12 Comparison of move prediction performance of various feature
instances with tactical, pattern and/or decision tree features. . 81

5.13 Move prediction of various feature instances with history-agnostic
tactical features. 84

Stellenbosch University http://scholar.sun.ac.za

List of Tables

2.1 Comparison of move prediction performance of tactical and
pattern features, with various weight training algorithms. . . . 19

3.1 Summary of quality criteria. 42

5.1 List of tactical features. 56
5.2 Comparison of quality criteria for tactical and decision tree

features with the SG∅ query system. 67
5.3 Summary of results from Table 5.4 showing the top three qual-

ity criteria. 67
5.4 Comparison of the M(1) values for tactical and decision tree

feature instances with various quality criteria. 68
5.5 Variance of the natural logarithm of the decision tree weights

for tactical and decision tree feature instances with various
quality criteria. 70

5.6 Variance of the length of the descent paths for the decision
forest in feature instances with various quality criteria. 71

5.7 Comparison of the M(1) values of tactical and decision tree
feature instances with the different query systems. 73

5.8 Comparison of M(1) values for tactical and decision tree fea-
ture instances with the combination of up to two different
query systems. 80

5.9 M(1) values of various feature instances with history-agnostic
tactical features. 83

5.10 Comparison of playing strength with a few select feature in-
stances. 86

ix

Stellenbosch University http://scholar.sun.ac.za

Nomenclature

Acronyms
AIG Augmented intersection graph
ASG Augmented stone graph
AUC Area under the curve
BSG Basic seki graph
BTM Bradley-Terry model
CFG Common fate graph
DS Descent-Split
EDS Entropy Descent-Split
ELS Entropy-Loss-Split
EWS Entropy Win-Split
GBTM Generalized Bradley-Terry model
IG Intersection graph
KGS KGS Go Server
LGRF Last good reply with forgetting
LS Loss-Split
MCTS Monte-Carlo tree search
MLE Mean log-evidence
NDS Naive Descent-Split
RAVE Rapid action value estimation
RL Reinforcement learning
SG Stone graph
SS Symmetric-Separate
UCB Upper confidence bounds
VLW Variance of the natural logarithm of the weights
WE Winrate-Entropy
WLS Win-Loss-Separate
WRS Winrate-Split
WS Win-Split
WSS Weighted Symmetric-Separate
WWE Weighted Winrate-Entropy
WWLS Weighted Win-Loss-Separate

x

Stellenbosch University http://scholar.sun.ac.za

LIST OF TABLES xi

Terminology
atari When a chain has only one liberty.
augmented graph A stone or intersection graph with an auxiliary node.
auxiliary node Additional node used to indicate the candidate move.
capture Remove a chain because it has zero liberties.
CFG distance Length of the shortest path in a CFG.
chain Region of black or white stones.
circular distance Distance metric.
decision tree feature The approach proposed in this work.
descent statistics Recorded statistics used for query selection.
discovered graph Representation of the ordered list of predicates.
feature instance Set of features with trained weights.
feature levels Set of mutually-exclusive options a feature can assume.
frontier MCTS tree nodes with unexplored children.
GnuGo Traditional computer Go engine.
ko Go rule forbidding the repetition of previous positions.
komi Points to offset the advantage of moving first in Go.
liberties Adjacent empty intersections of a chain.
Mogo MCTS computer Go engine.
Oakfoam MCTS computer Go implementation used as a base.
Pachi MCTS computer Go engine.
playout MCTS simulation.
progressive bias Method for using domain knowledge in MCTS.
progressive widening Method for using domain knowledge in MCTS.
pseudo-liberties Variation of liberties used for computational efficiency.
quality criterion Component of the query selection policy.
query language Set of queries used in a decision tree feature.
query selection policy Policy for selecting decision tree queries.
query system State-action pair representation and query language.
region Orthogonally-adjacent intersections of the same type.
selection policy Policy for node selection during MCTS tree descent.
seki Stable Go situation where neither player should move.
simulation policy Policy for move selection during an MCTS simulation.
suitability condition Component of the query selection policy.
team Set of individuals in the GBTM.
test Evaluation of a set of feature instances.

Stellenbosch University http://scholar.sun.ac.za

Chapter 1

Introduction

Go is a sequential two-player board game of perfect information [1]. It is well-
known for its great tactical and strategic depth, despite its simple, elegant
rules. Partially due to this emergent complexity, Go has been played for
thousands of years and undergone extensive study by professional players
and scholars of the game. Efforts to analyze Go theoretically have led to
advancements in the field of combinatorial game theory (CGT) [2, 3, 4], and
decades of research into developing strong computer players for the game
have resulted in a number of new artificial intelligence (AI) techniques for
games [5, 6]. However, Go still remains a notable challenge for AI, with top
human players still being considerably stronger than the best computer Go
engines [6, 7].

In order to select strong moves, computer Go engines typically search a
game tree containing legal moves from the current position and their fol-
lowups, with some form of evaluation applied to the tree leaves [5, 6]. Tra-
ditionally, the minimax or negamax algorithms have been used to find the
optimal move from the root of the tree [8]. An aspect of Go which makes
computer Go particularly difficult is the huge branching factor of these trees
— in a typical Go board position there are usually more than 100 legal
moves whereas many other games have an order of magnitude fewer moves
to consider [9].

One common approach to mitigating the branching factor of Go is the
use of an ordering constructed over a position’s legal moves, to selectively
evaluate the position’s node by only investigating certain children in the game
tree selected using the ordering [6, 10, 11]. While there are various methods
of encoding domain knowledge so that it can be used for move ordering,
automated methods are typically preferred.

In order to efficiently select a move for play, various approaches to growing
and evaluating the game tree are used. In traditional computer Go engines,

1

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

game trees were usually grown and positions evaluated using a large collec-
tion of hand-crafted domain knowledge, which is difficult to maintain and
extend [12]. While these techniques have been able to achieve a moderate
level of strength, they have reached a point where progress is difficult and
has stalled [5].

Recently, traditional techniques have largely been replaced by more ef-
fective Monte-Carlo tree search (MCTS) approaches [6, 7]. MCTS combines
stochastic Monte-Carlo simulations with game tree search principles, and is
currently the de facto algorithm for computer Go [6]. The inclusion of domain
knowledge has greatly improved the strength of MCTS engines [6, 13, 14].
MCTS is able to achieve a moderate level of playing strength with very lim-
ited domain knowledge: compared to traditional techniques, MCTS is able
to achieve the same level of play with much less domain knowledge [6, 7].

There are a variety of methods for using domain knowledge in computer
Go with MCTS; most of them are focused on improving the tree and/or simu-
lation policies [6, 14]. While domain knowledge in the simulation policy often
focuses on selecting moves to make the simulations better represent the true
value of a position, domain knowledge in the tree policy is typically focused
on mitigating the large branching factor or focusing effort on more promising
moves [6]. In MCTS, the most successful approach to constructing a move
ordering for branching factor reduction is feature extraction that encodes
domain knowledge from a collection of high-level games, as presented in [11].
These features currently encode Go-specific pattern and tactical information
for move evaluation, by analyzing the surrounding board intersections and a
few simple tactics respectively. Due to their high level of accuracy for move
prediction, the use of these features is able to greatly improve the playing
strength of an MCTS computer Go engine by limiting the effective branching
factor of the game tree.

1.1 Problem Statement
While the use of features for encoding domain knowledge in computer Go has
been shown to be a powerful technique, current pattern features are specific
to Go, and it is not yet clear how they can be applied to other domains where
patterns are not readily available; also, in many other domains, tactics have
not been hand-crafted yet. Furthermore, many important Go concepts are
not represented by the current feature extraction approaches. Therefore,
a more general automated method for extracting domain knowledge in the
form of features is desirable, as hand-encoding domain knowledge is time-
consuming and error-prone, and thus often not feasible for a new domain.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

This work proposes decision tree features, a new and more flexible tech-
nique for extracting domain knowledge. These features evaluate a state-
action pair using queries structured in a decision tree. These decision trees
recursively partition the input space of state-action pairs as queries are en-
countered in a tree descent, and weights at the resultant leaf nodes are used
for state-action pair evaluation. In this work, decision tree features are ap-
plied to Go, and the state-action pair corresponds to a Go position and can-
didate move. As such, the decision tree queries examine the area surrounding
the candidate move. Due to their descriptive flexibility, these decision tree
features will be able to encode concepts from Go domain knowledge that the
automated components (pattern features) of the current approach cannot.

While decision tree features are more easily transferable to other domains,
due to the lack of comparable results in these domains, this work will evaluate
the performance of decision tree features at extracting domain knowledge
for computer Go. The hypothesis is that these decision tree features will
be able to extract domain knowledge with comparable performance to the
current feature extraction, as measured according to move prediction and the
playing strength of a computer Go engine. If this is the case, we conjecture
that decision tree features will be a feasible alternative to tactical features in
other domains.

1.2 Objectives
The objectives of this work are the following:

• Propose an approach using decision trees as features for domain knowl-
edge extraction and state-action pair evaluation.

• Apply the proposed approach to the domain of Go.

• Implement a proof-of-concept feature system for Go that allows tac-
tical, pattern, and decision tree features to be extracted, trained, and
used in both move prediction tests and an MCTS computer Go engine.1

• Investigate the performance of the Go decision tree features by mea-
suring the impact of various design choices (domain representation,
query selection policy, tree size and forest size) on move prediction and
playing strength.

• Determine the feasibility of decision tree features, as an alternative to
state-of-the-art tactical and pattern features.

1Tactical and small (3x3) pattern features were initially present in the implementation.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

1.3 Contributions
The work presented in this thesis2 makes the following contributions:

• An approach to using decision trees as features is proposed, which is
more general and flexible than the current tactical and pattern features.

• These decision tree features are applied to Go as part of an open-source
MCTS engine, and the impact of various factors on their performance,
in terms of move prediction and playing strength, is measured.

• It is shown that decision tree features are a feasible alternative to com-
puter Go tactical and pattern features, both in terms of move prediction
and playing strength with a fixed number of simulations per move.3

1.4 Outline
The remainder of this thesis is structured as follows: First, Chapter 2 in-
troduces the necessary background information, including an overview of
feature extraction and its use in computer Go, as well as the state of the
art for computer Go move prediction. Chapter 3 presents the proposed ap-
proach to using decision trees as features and applies it to computer Go, and
Chapter 4 discusses the implementation considerations for applying decision
tree features to computer Go. Chapter 5 evaluates the implementation of
the proposed approach and analyzes the results. Finally, Chapter 6 provides
a conclusion and overview of the work and results presented in this thesis.

2Initial work was presented at the Workshop on Computer Games at the International
Joint Conference on Artificial Intelligence [15].

3Decision tree features are only found to be comparable to tactical and pattern fea-
tures with a fixed number of playouts per move. However, this work only explored the
feasibility of decision tree features and as such, the implementation still has much scope
for optimization.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2

Background and Related Work

This chapter presents background information on various topics needed to
provide context in the rest of this work. The current approaches to storing
domain knowledge for computer Go will be illustrated, and their relevant
shortcomings highlighted.

First, Section 2.1 presents a summary of the board game of Go. Second,
Section 2.2 provides an overview of the field of computer Go. Then Sec-
tion 2.3 outlines Monte-Carlo tree search (MCTS), the dominant computer
Go algorithm, before Section 2.4 reviews the use of domain knowledge in
computer Go. Section 2.5 describes some uses of graphs for computer Go.
Section 2.6 discusses the generalized Bradley-Terry model (GBTM) and its
use in modeling features, and training their weights, in computer Go. Finally,
Section 2.7 outlines the traditional decision tree approach to classification.

2.1 The Game of Go
Go is a combinatorial board game, i.e. a two-player game with discrete se-
quential positions and perfect information [1, 3]. It is played on a board
consisting of a rectangular grid of intersections, with 19x19 being the stan-
dard size. This work focuses on 19x19 boards, as data with other board sizes
is limited. Figure 2.1 shows an example Go position on a 19x19 board.

The rules and essential concepts of Go that are used in this work can
be summarized as follows: two players, black and white, alternate placing
stones of their respective color on empty board intersections, or passing.1 In
this way, intersections have a status: black, white or empty. Orthogonally
contiguous intersections with the same status form a region. A region of black
or white stones is a chain, and the orthogonally adjacent empty intersections

1Pass moves are typically only played at the end of the game.

5

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND RELATED WORK 6

�������������������
���
������
�
��
��
�
�
���
��
�
��
���
�
�
�
�
��
�
����
�����������
�
�
���
���
�����
�����
�����
�
���
��
�������������
�
�
��
�������������
�
�
�
�
���
��������������
�
�
�
���
���������
���
�
�
�
�
�
��
������������
�
�
��
�
��
��
������������
�
�
�
��
��������������
�
�
�
��
������������
��
�
�
�
��
��
�������
��
�
��
�
����
������
��
���
�
�
�
�
�
���
��
��
���
����
�
�
�
�
�
���
�����
�
�
�
��
�
�
�
�
�
�
�
��
������
�
��
�
��
�
�
�
x
�
��
������������������x���x��	

Figure 2.1: A famous Go game (Honinbo Shusaku vs. Gennan Inseki, 1846).
Shusaku has just played his famous ‘ear-reddening’ move, indicated by �.
All the empty intersections, except those marked with ‘x,’ are legal moves
for white.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND RELATED WORK 7

of a chain are its liberties. After each move, chains of the opposing color
with zero liberties, are said to be captured, and are entirely removed from
the board, with the corresponding intersections becoming empty. Chains
that have only one remaining liberty are said to be in atari. Moves that
would result in a chain of the same color with zero liberties (suicide moves),
or moves that would result in a board position identical to a previous position
(ko rule) are not allowed. The game ends after two consecutive pass moves
(one by each player). The winner of the game is the player controlling the
largest portion of the board.2

A typical Go position on a 19x19 board can easily have more than 100
legal moves [9]. Figure 2.1 shows an example Go board with a position from
a famous game. In this example (which shows a critical point of the game)
there are over 200 legal moves — all but the three empty intersections marked
with ‘x’ are legal moves for white.

To improve the speed of playing moves in computer implementations,
pseudo-liberties are sometimes used [16]. Pseudo-liberties are an approxima-
tion of normal liberties that can result in a significant reduction in required
computational resources. The number of pseudo-liberties of a chain is the
sum of the number of adjacent empty intersections of each stone in the chain,
i.e. liberties that have more than one adjacent stone from the relevant chain
are counted multiple times (once for each adjacent stone in the chain). An
important attribute of pseudo-liberties is that it can easily be determined if a
chain is in atari, by keeping track of the number of pseudo-liberties, the sum
of their positional indices3, and the sum of the squares of their positional in-
dices. Refer to Appendix A for an implementation that uses pseudo-liberties.

2.2 Computer Go
Computer Go is the field of game AI concerned with playing the game of
Go. Although there has been much progress in this field in recent years,
top human Go players are currently considerably stronger than the strongest
computer Go engines on a 19x19 board [6, 7]. Among recent computer Go
results against a professional Go player, the best result is a single win on
19x19 with just four handicap stones, indicating that top humans are cur-

2An intersection is controlled by a player if it has the same color as that player, or
if the empty region containing the intersection is surrounded (on all possible orthogonal
intersections) by intersections of that player’s color.

3A positional index of an intersection is a unique numerical identifier for the intersec-
tion, such as the intersection’s row number plus the number of rows on the board times
the intersection’s column number.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND RELATED WORK 8

rently close to four ranks stronger than the best computer Go engines [17]
— four ranks difference corresponds to an expected winrate of at least 90%
for the stronger player in an even game (with no handicap).

In order to select strong moves in a game, computer Go engines typically
search a game tree. A game tree4 is a tree consisting of game states as nodes,
with actions represented by edges to other game states. In Go, the game state
is the current board position5 and the actions are player moves. To search
for a move, a game tree is constructed, with the current position at the root
of the tree and some form of evaluation applied to the tree leaves [5, 6].

Traditionally, computer Go has employed the minimax or negamax algo-
rithms to find the optimal move from the root of the game tree, by prop-
agating the evaluation values from the leaves to the root of the tree [5, 8].
Unfortunately, these algorithms rely on an evaluation function, which is no-
toriously difficult to design and implement for Go [12]. Furthermore, the
large branching factor of Go (due to the large number of legal moves in a
typical Go position) means that the overall size of the game tree, and the
number of leaves, grows very quickly with the depth of the tree, limiting the
search, and therefore the strength of the engines [5].

Traditional computer Go engines make extensive use of hand-crafted
domain knowledge for the evaluation function and mitigation of the large
branching factor [5, 12]. These approaches often attempt to mimic humans,
using high-level concepts (such as groups, territory, influence, life and death)
which can be difficult to precisely encode [5, 12].

Domain knowledge can be used to mitigate the branching factor in Go by
constructing a move ordering over a position’s legal moves, and then using
this ordering to selectively evaluate the position’s tree node by only inves-
tigating selected children in the game tree [6, 10, 11]. While there are var-
ious methods of encoding domain knowledge for move ordering, automated
methods, such as pattern features described in Section 2.4.1, are typically
preferred.

While these traditional computer Go techniques have been able to achieve
a moderate level of strength, they have reached a point where progress is diffi-
cult and has stalled, largely due to the difficulty of extending large collections
of hand-crafted domain knowledge, and the implicit limit on game tree depth
due to the branching factor [5]. Recently these traditional techniques have

4Although game trees are called ‘trees’ for historical reasons, it can be more efficient
to represent them as directed acyclic graphs, depending on the domain. In this work, the
strict definition of trees is used.

5The game state technically also contains the move history, to determine illegal moves
according to the ko rule [1].

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND RELATED WORK 9

4/9

1/3

0/1 1/1

0/1 3/5

2/3

1/1 0/1

0/1

Figure 2.2: Example MCTS tree. Nodes show the number of playout wins
over the total number of playouts through that node.8 Shaded nodes indicate
the opponent plays from this position.

largely been replaced by more effective Monte-Carlo tree search (MCTS)
approaches [6, 7].

Section 2.3 next introduces the MCTS algorithm, then Section 2.4 dis-
cusses approaches to extracting and using domain knowledge for computer
Go.

2.3 Monte-Carlo Tree Search
Monte-Carlo (MC) simulations are stochastic simulations of a model. Repe-
tition of MC simulations can result in good estimates for problems without
known deterministic solutions. In computer Go, MC simulations, usually re-
ferred to as playouts, are performed by selecting and playing moves according
to a simulation policy, beginning from an initial board position.

A feasible simulation policy can be as simple as selecting random legal
moves.6 In a playout, moves are played until the game ends due to two
consecutive passes. In this terminal position, it is easy to score the position
and therefore determine the result of the playout: win or loss. This playout
result can be considered a sample of the value of the initial playout position.
Due to their simplicity, playouts can be performed very quickly (in the order
of 1000 playouts per second per core on a 19x19 board7), to get a better idea
of the value of the initial position.

6A simulation policy in computer Go will at least typically exclude clearly bad moves
that ‘fill eyes,’ or passing while there are other legal moves that don’t ‘fill eyes.’

7A test of Oakfoam, a computer Go MCTS engine, with the MCTS implementation
used in this work, resulted in 750 playouts per second from an empty 19x19 board.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND RELATED WORK 10

Monte-Carlo tree search (MCTS) combines MC simulations with game
tree search principles by performing playouts from game tree nodes [6]. Due
to dramatic performance improvements over traditional techniques, MCTS
is currently the de facto algorithm for computer Go [6, 7]. An MCTS tree’s
nodes store the statistics of the playouts (effectively the number of wins and
losses) that start from any descendant of the node (including the node itself).
Figure 2.2 shows an example MCTS tree.

MCTS constructs a game tree by iterating the following four steps: selec-
tion, expansion, simulation and backpropagation. Figures 2.3–2.6 illustrate
the four steps, starting from the example tree in Figure 2.2.

During selection, the current MCTS tree is descended, from the root to
a frontier node9 by selecting nodes according to the selection policy. The
upper confidence bounds (UCB) policy, a popular10 selection policy, selects
the child node i that has the largest urgency U(i) at each descent step to
implement a exploration-exploitation trade-off [6]. The urgency of node i is
shown in Equation 2.1, where ni is the number of playouts through node i, ri
is the winrate11 of these playouts, N is the number of playouts through the
parent of node i, and C is the exploration constant. The exploration constant
C can be adjusted to balance exploring new nodes against the exploitation
of moves that currently appear to be more favourable. In the default UCB
policy, unexplored nodes have an urgency of infinity and are thus selected
before explored nodes.

U(i) = ri + C

√
lnN

ni

(2.1)

After selection has reached a frontier node, expansion takes place. In
expansion, a new child node, the expansion node, is added to the frontier
node found during selection. The simulation step, consisting of performing
a playout starting from the expansion node, is then performed. Finally,
backpropagation updates the expansion node and its ancestors with the result
of the playout (i.e. win and visit counts are updated).

8Note that the playout results are from the perspective of the player to move from the
root node (the game tree shown is a minimax tree, not a negamax tree), and the sum of
playouts through children nodes are typically not equal to the playouts through the parent
node, as the children are only added to the tree after a playout through the parent node
has been performed.

9A frontier node is a node that has one or more unexplored legal children moves.
10In practice, the UCB policy is typically augmented with other techniques such as

Rapid Action Value Estimation (RAVE) [6]. Refer to Section 4.6 for more details.
11The winrate of a node is from the perspective of the player that just moved at the

root of the tree (such as in a negamax tree).

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND RELATED WORK 11

4/9

1/3

0/1 1/1

0/1 3/5

2/3

1/1 0/1

0/1

Figure 2.3: Selection step of an example MCTS iteration.

4/9

1/3

0/1 1/1

0/1 3/5

2/3

1/1 0/1

0/1

Figure 2.4: Expansion step of an example MCTS iteration.

4/9

1/3

0/1 1/1

0/1 3/5

2/3

1/1 0/1

0/1

W

Figure 2.5: Simulation step of an example MCTS iteration, showing a playout
that resulted in a win (W) for the player to move from the root node.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND RELATED WORK 12

5/10

1/3

0/1 1/1

0/1 4/6

2/3

1/1 0/1

1/2

1/1

Figure 2.6: Backpropagation step of an example MCTS iteration.

A large number of these MCTS iterations, usually just referred to as
playouts12, are typically performed when searching for a move, to give a
good evaluation of the candidate moves. Due to the nature of MCTS, the
number of playouts performed is highly flexible — MCTS can make use of as
much (or little) computational power and time as is available [18]. Results
have confirmed that an increase in the number of playouts typically results
in an increase in overall playing strength (with diminishing returns) [6, 18].
Furthermore, it has been shown that, under general conditions with infinite
time and C ≥

√
2, MCTS will converge to optimal play [19].

While very simple selection and simulation policies can result in a mod-
erate level of playing strength, it has been shown that incorporating domain
knowledge into these policies can greatly improve the strength of computer
Go MCTS engines [6, 13, 14]. Incorporating domain knowledge into the
selection policy usually focuses on mitigating the large branching factor of
the tree, and domain knowledge in the simulation policy usually focuses on
making the playout results better represent the true value of a position. Sec-
tion 2.4 examines the use of domain knowledge for computer Go.

2.4 Domain Knowledge for Computer Go
Domain knowledge is critical to traditional computer Go techniques [5, 12],
and MCTS can also greatly benefit from its use [6, 13, 14]. Traditional
techniques typically attempt to encode domain knowledge corresponding to
high-level concepts used by humans (such as groups, territory, influence, life
and death) [5, 12]. This approach tends to involve constructing a number of
hand-crafted models of these different concepts, and their design and imple-

12A playout can also refer to just the simulation step, depending on the context.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND RELATED WORK 13

mentation is difficult, time-consuming and error-prone. Since the onset of the
dominance of MCTS approaches, this approach has not been directly used by
many computer Go engines [6, 7]. While there have been various attempts to
include automated methods for extracting domain knowledge in traditional
computer Go approaches, none have been particularly successful [5].

MCTS approaches often make use of simpler approaches, including tac-
tical heuristics, to guide the selection and simulation policies [6]. While
these approaches are frequently hand-crafted, their scope is severely limited
in comparison to those used by traditional techniques, making design and
construction much easier [6, 20].

Section 2.4.1 introduces Go features, a successful method of encoding
domain knowledge for MCTS approaches to computer Go that makes use of
automated methods. Section 2.4.2 then describes strategies for incorporating
domain knowledge into the MCTS selection policy, and Section 2.4.3 briefly
discusses methods of including domain knowledge into the MCTS simulation
policy.

2.4.1 Go Features

Go features are used to extract and encode domain knowledge for Go, in
order to evaluate candidate moves13 [11, 21]. Go features are traditionally
divided into pattern and tactical features. Pattern features are simple encod-
ings of the state of the board intersections surrounding the candidate move.
Tactical features encode simple domain knowledge not present in the pattern
features, such as whether a move captures a chain in atari. When evaluating
a candidate move, each feature takes on one of a number of mutually exclu-
sive feature levels. A candidate move is then described by a feature vector14,
with each vector component specifying which level the corresponding feature
assumes for the candidate move.

While the value of a candidate move should theoretically not depend on
the previous moves in a game (with some minor exceptions15), a number
of tactical features typically used depend on the previous moves, especially
the distance to the previous two moves [11, 22]. The inclusion of this history
information makes a significant difference to performance. As such, this work
typically uses this history information, with some tests in Section 5.10 that
consider a history-agnostic set of tactical features.

13Features do not typically attempt to determine the legality of a move; it is therefore
assumed that only legal moves are evaluated.

14Vector operations are not performed on this feature vector.
15The ko rule requires information about the game history.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND RELATED WORK 14

15 14 15

15 14 13 12 13 14 15

15 14 13 12 11 10 11 12 13 14 15

14 12 11 10 9 8 9 10 11 12 14

15 13 11 9 8 7 6 7 8 9 11 13 15

14 12 10 8 6 5 4 5 6 8 10 12 14

15 13 11 9 7 5 3 2 3 5 7 9 11 13 15

14 12 10 8 6 4 2 0 2 4 6 8 10 12 14

15 13 11 9 7 5 3 2 3 5 7 9 11 13 15

14 12 10 8 6 5 4 5 6 8 10 12 14

15 13 11 9 8 7 6 7 8 9 11 13 15

14 12 11 10 9 8 9 10 11 12 14

15 14 13 12 11 10 11 12 13 14 15

15 14 13 12 13 14 15

15 14 15

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

0

1

2

3

4

5

6

7

|x0 − x1|

|y 0
−
y 1
|

Figure 2.7: Visualization of the circular distance (δ◦) measure. The δ◦ value
that corresponds to a specific absolute difference in x and y coordinates is
shown.

Patterns are typically represented by a single feature with many levels,
with each level corresponding to a different pattern. The intersections in-
cluded in a pattern are typically all those within a certain distance from
the center of the pattern, and patterns are typically centered on a candi-
date move. A popular distance measure used for large patterns in Go, and
in this work, is circular distance [11]: given two intersections with coordi-
nates (x0, y0) and (x1, y1), the circular distance δ◦, between the two points is
defined by:

δ◦ = |x0 − x1|+ |y0 − y1|+max(|x0 − x1|, |y0 − y1|) (2.2)

Figure 2.7 shows a visualization of the circular distance measure by showing
the δ◦ value for a given absolute difference in x and y coordinates. In this
work, frequently-occurring patterns including intersections within a circular
distance of up to 15 are used.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND RELATED WORK 15

�
�
��
�
�
�
�

�
�
�
�

��
�
�

�
�
��

�
�
�
�
�
�
�
�

�
���

�
�
��

�
�
�
�
�
�
�
�

�
���

Figure 2.8: Three functionally-equivalent Go positions. From left to right,
the second position is a rotation and reflection of the first position, while in
the third position it is the opposite player to play in comparison with the
other two positions.

Figure 2.8 shows three Go positions that are simple transformations of
the same position. In order to ensure such transformed positions are treated
identically in terms of domain knowledge, feature levels for patterns should
be invariant to changes in rotation, reflection, and whose turn it is to play.
Invariance to player turns is usually achieved by swapping stone colors as
necessary, while the invariance requirements for rotation and reflection are
met by considering the eight combinations of rotation and reflection and
using the pattern with the lowest hash value.16

In order to make practical use of features, each level of each feature is
assigned a trained weight, as discussed in Sections 2.6. Feature weights
corresponding to the levels in each candidate move’s feature vector are then
combined to form a single weight for that move. These move weights can
then be used for move prediction, or in the selection or simulation policies of
MCTS, as described in Sections 2.4.2 and 2.4.3.

2.4.2 Progressive Strategies for MCTS

Progressive strategies for MCTS attempt to mitigate the game tree branching
factor by incorporating domain knowledge into the selection policy of the tree,
such that the effect is initially large (when the playout results are few and
therefore noisy) and decays over time, as more playout results are included
in the relevant part of the tree. Two successful progressive strategies for
computer Go are progressive bias and progressive widening17 [10, 11]. In the
following descriptions, the domain knowledge value of node i is represented
by H(i), where a larger value of H(i) indicates that it is more favourable
according to the domain knowledge.

16Pattern hashes in this work are lossless hashes constructed with 2 bits for each inter-
section, to represent empty, black or white.

17The term ‘progressive unpruning’ is avoided in this work as it is ambiguously used in
different literature [7, 10].

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND RELATED WORK 16

Progressive bias [10] modifies the UCB policy by adding a bias term,
selecting the node i that maximizes

UPB(i) = ri + C

√
lnN

ni

+ f(H(i), ni). (2.3)

In this equation, f(x, n) incorporates domain knowledge as a prior value in
a decaying manner. A typical f(x, n) is x/n.

On the other hand, progressive widening limits the node selection dur-
ing the selection step to a subset of the candidate children nodes [10, 11].
The nodes of the moves with the highest H(i) values are included in this
considered subset, and the size of the subset is slowly increased according to
a schedule. A schedule that has been shown to be useful in practice is to
add another node to the considered subset after an exponentially-increasing
number of playouts have taken place through the parent node.

2.4.3 MCTS Simulation Policies

Domain knowledge has also been successfully incorporated into the MCTS
simulation policy to improve the performance of MCTS engines [6, 10, 11, 23].
The two main approaches to including domain knowledge in the simulation
policy are the heuristic-based and sample-based approaches.

In the heuristic-based approach, moves in the playouts are chosen using
a number of heuristics. These heuristics are usually hand-crafted, and will
typically select moves in close proximity to previous moves [6, 23, 20]. This
approach was popularized by its use in Mogo, a successful computer Go
MCTS engine [6, 23].

In the sample-based approach, playout moves are selected from a proba-
bility distribution over all the legal moves, and this distribution is constructed
with the aid of domain knowledge (especially the features described in Sec-
tion 2.4.1) [11]. This approach has been successfully used in Crazy Stone,
another successful computer Go MCTS engine [6, 11]. Simulation balancing
has shown to be a successful method of training feature weights for use in
this approach [24].

2.5 Common Fate Graphs
While simple Go patterns, as described in Section 2.4.1, are useful for en-
coding domain knowledge, representations that make use of graphs are also
possible. This section examines the Common Fate Graph (CFG) represen-
tation. Alternative representations such as the Basic Seki Graph (BSG) [25]

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND RELATED WORK 17

�
�
��
�
�
�
�

�
�
�
�

��
�
�

�
�
�
��
�
�
�
�
�

�
�
�
�
�

�
��
�
�

Figure 2.9: CFG representation of a Go board portions. Two normal Go
board portions are shown on the left and right, with the common CFG rep-
resentation of both portions shown in the center.

are also possible graph representations; however, the BSG cannot represent
a complete Go board in the general case, and is therefore not considered in
this work.

In the CFG representation of a Go board, each chain of stones and each
empty intersection is represented by a single graph node, with edges be-
tween nodes with adjacent intersections [26]. In this representation, cer-
tain functionally-equivalent patterns become equal: Figure 2.9 illustrates
the CFG representation of two Go board portions. Due to computational
concerns, the practical use of CFGs in computer Go has been limited; how-
ever, one notable concept arising from this representation is the notion of
the CFG distance between intersections: the number of CFG graph edges
in the shortest path between the two intersections [7]. The compression and
empty modifications introduced in Section 3.3 are inspired by the CFG, and
the CFG distance is used in the tactical features listed in Section 5.3.

2.6 The Generalized Bradley-Terry Model
The Bradley-Terry model (BTM) can be used to model the outcome of a
competition between two individuals [27]. In this probabilistic model, the
skill of an individual i is represented by a positive value γi, with a larger
value corresponding to a more skilled individual. The model then treats the
outcome of a competition between two individuals as a Bernoulli random
variable with

P (individual i beats individual j) =
γi

γi + γj
. (2.4)

The BTM can be generalized to allow for multiple teams of individu-
als [11, 28]. In the generalized Bradley-Terry model (GBTM) we consider,
each competition is won by only one of the teams (all the other teams are

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND RELATED WORK 18

considered losers), and the skill of a team of individuals is represented by the
product of the skills of the individuals. Given that It is the set of individuals
of team t, the γ value of team t is γt =

∏
i∈It γi. The GBTM then models the

outcome of a competition between a set of teams as a categorical (generalized
Bernoulli) random variable:

P (team k wins in a competition between teams in T) =
γk∑
t∈T γt

(2.5)

So for example:

P (1-2-3 wins against 2-4 and 1-5-6-7) =
γ1γ2γ3

γ1γ2γ3 + γ2γ4 + γ1γ5γ6γ7
(2.6)

The GBTM has been successfully used to model Go features [11]. In this
scenario, candidate moves compete with the other legal moves of a position,
in an attempt to be played; feature levels are represented by individuals,
and candidate moves are represented by teams of these individuals. In this
way, training data consisting of a number of board positions as competitions,
with the actual move played in each position set as the winning team, can be
used to train the parameters of the model (corresponding to the feature level
weights) [11], using various techniques. Minorization-maximization (MM) is
an algorithm used for training weights with the GBTM, and is used in this
work. At a high level, its role in training weights is described in Section 2.6.1.

Alternative approaches not considered in this work include alternative fea-
ture models, such as the Thurstone-Mosteller model [21, 29], and alternative
techniques for training weights, such as Loopy Bayesian Ranking, Bayesian
Approximation Ranking, and Simulation Balancing [29, 24].

Table 2.1 lists a number of such algorithms and their notable published
results in terms of move prediction performance. In terms of move predic-
tion, simulation balancing is not suitable, and alternatives were inferior to
the GBTM and MM at the beginning of this work (only the first two results
from [21] and [11] were available at the start of this work), while newer re-
sults in [29] show that (when more training data is used) the performance
of GBTM and MM remains very close to the best alternatives. During the
later part of this work, Latent Factor Ranking, a new approach to modelling
and training weights with improved move prediction performance was pub-
lished [22]; however, this approach was not considered in this work due to
time constraints.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND RELATED WORK 19

Weight Training Algorithm Prediction Rate Source
Full Bayesian Ranking 34.0% [21]
Minorization-maximization 34.9% [11]
Bayesian Approximation Ranking 36.2% [29]
Minorization-maximization 37.9% [29]
Loopy Bayesian Ranking 38.0% [29]
Latent Factor Ranking 40.9% [22]

Table 2.1: Comparison of move prediction performance of tactical and pat-
tern features, with various weight training algorithms, in terms of prediction
rates. Only the first two results were available at the start of this work.

2.6.1 Minorization-Maximization

As discussed above, feature level weights correspond to skill (γ) values in
a GBTM, which are initially unknown, and can in principle be estimated
with the aid of a collection of training data. Let the training data be D,
a collection of GBTM competitions and their results. Given a vector of
candidate skill values γ, the likelihood of the training data P (D|γ) can be
calculated for the GBTM. Then, suitable γ values can be obtained from the
maximal likelihood estimate (MLE) of the training data: argmaxγ P (D|γ).

The minorization-maximization (MM) algorithm is an iterative technique
for approximating the MLE, and therefore finding suitable γ values [11, 28].
This is accomplished by repeatedly finding a surrogate function that mi-
norizes the objective function P (D|γ) and ascending to the maximum of the
surrogate function. The use of MM has shown to have good performance
for determining GBTM γ values (and therefore feature level weights) for Go
features [11, 29].

2.7 Decision Trees
Decision trees are tree structures with values at leaf nodes and queries at
internal nodes, such that results of queries map to children nodes [30]. An
input can be evaluated by descending the tree, with the result of evaluated
queries determining the descent path. The value stored at the resultant leaf
is then typically used as a predicted outcome for the input, or alternatively,
a decision action to be taken in the state corresponding to the input.

It has been shown that constructing an optimal18 binary decision tree
is NP-complete [31]. Decision trees are therefore typically constructed by

18An optimal binary decision tree minimizes the expected number of queries in a descent.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. BACKGROUND AND RELATED WORK 20

selecting queries in a greedy manner: leaf nodes are iteratively expanded by
selecting queries according to a local policy (i.e. a greedy strategy approxi-
mates the problem by consecutive local optimization), such as the Iterative
Dichotomiser 3 (ID3) algorithm [32], or the improved C4.5 algorithm [33].
At a high level, ID3 and C4.5 use labelled training data to select queries
that have minimal entropy of the distribution of this labelled data within
their children nodes (i.e. the most information gain). In this way, a fully-
constructed decision tree will tend to have homogeneous leaves (all the pre-
dictions stored corresponding to a leaf node are the same).19

Decision trees can be particularly sensitive to queries near the root of the
tree. Decision forests, also known as random forests, can be used to construct
a more robust model: this approach uses multiple decision trees that are
grown from subsets of the input data to create an ensemble of decision trees.
Such an ensemble of decision trees has been shown to yield more accurate
classification than a single decision tree in many cases [34]. In Chapter 3,
decision forests will be used to improve the accuracy of decision tree features.

2.8 Conclusion
In this chapter, a number of concepts were introduced and discussed. Key
concepts that are used in the following chapters include: Go features, the
CFG representation, the GBTM, and decision trees.

Chapter 3 will present decision tree features, which combine the concepts
of features and decision trees. Decision tree features are intended to be a
more general and flexible approach (in comparison to the tactical and pattern
features introduced in this chapter) to encoding domain knowledge.

19To prevent potential over-fitting, the expansion of leaf nodes that are relatively close
to homogeneous are often avoided.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3

Decision Tree Features

This chapter proposes an approach using decision trees to extract and repre-
sent domain knowledge. Decision tree features attempt to evaluate and rank
state-action pairs1 using the extracted domain knowledge. Decision trees
classically represent a function in a piece-wise manner, by recursively subdi-
viding the input space based on some criteria, and storing simple functions
(often constants) at the leaves. The decision trees used in this work similarly
partition the input space in a hierarchical fashion, and assign a predicted
value to each element of the final partition, corresponding to the leaves of
the tree. To evaluate a state-action pair, the decision tree is descended, with
each query result providing additional information about the evaluated state-
action pair, and splitting the input space corresponding to the query node
according to the information found; the leaf at the end of the descent path
stores a weight for the evaluated state-action pair.

In order to improve robustness, an ensemble of decision trees, a decision
forest, is proposed.2 Each decision tree in the forest is considered an inde-
pendent feature with each leaf node corresponding to a feature level (all the
feature levels of a single decision tree are mutually exclusive). We conjecture
that the use of a decision forest will reduce the overall sensitivity to our pro-
posed query selection process in the trees, especially for queries near the root
of the tree, which have a large impact on the overall structure of the trees.

In the application of the proposed approach to Go, decision tree features
will evaluate candidate legal moves in a position by descending the decision
tree, with query results during the descent collecting relevant information
about the board position surrounding the candidate move. Each node in

1Note that for domains with deterministic outcomes, such as Go, evaluating states or
state-action pairs can be considered equivalent.

2In most of this chapter, the approach for a single decision tree is discussed for clarity.

21

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 22

these decision trees thus represents a profile of the surrounding position,
with the leaves representing the most detailed profiles.

The remainder of this chapter is structured as follows: Section 3.1 presents
a description of the decision tree feature approach in a domain-agnostic set-
ting. Section 3.2 considers the application of decision tree feature to the
domain of Go. Section 3.3 describes the structure of the decision trees by
presenting two classes of query systems for Go and a modification to ensure
mutual exclusivity between the leaves. Section 3.4 describes how to construct
decision trees by specifying a policy, with a number of quality criteria, for
selecting the queries for the internal tree nodes. Section 3.5 discusses consid-
erations for applying the decision tree features approach to other domains.
Section 3.6 provides a brief summary and conclusion of this chapter.

3.1 Overview
A common problem is that of selecting an action to take in a given state. A
popular approach to solving such problems is reinforcement learning (RL),
which essentially constructs a mapping from states to actions. However,
the state space of many domains (such as Go) is too large for RL without
generalization. As such, features as described in Section 2.4.1 are used to
evaluate state-action pairs by assigning each state-action pair a weight based
on a number of potential features. These features can be hand-crafted or ex-
tracted using automated techniques. Decision tree features are an automated
approach to extracting features with limited domain knowledge. A decision
tree feature consists of a decision tree, and a forest of multiple features can
be used to improve robustness.

To construct these decision trees, a domain-specific representation of a
state-action pair is specified, and a query language is used for decision tree
queries, allowing the state-action pair to be evaluated. To evaluate a can-
didate state-action pair, the relevant decision tree is descended, with query
results refining the available information about the pair. As the decision tree
is descended, an ordered list of predicates3 is incrementally constructed at
each node in the descent path, with each predicate being a combination of
an ancestor query and its result. This list of predicates represents a profile
of the information available at the current node. A weight is stored at each
decision tree leaf and used as the evaluation of state-action pairs that result
in a descent to that leaf.

3Note that these predicates are essentially just facts, and not to be confused with
predicate logic.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 23

The term query system is used for the combination of the state-action pair
representation and query language; the query system is the representation of
the relevant domain.

3.2 Application to Go
Decision tree features are comparable with tactical and pattern features used
in Go, but require less expert knowledge and could therefore be more easily
applied to domains other than Go — in comparison to tactical and pattern
features, decision tree features are able to encode important Go concepts
that pattern features cannot, and might require extensive effort with tactical
features. Due to the availability of studies of the performance of tactical and
pattern features in Go, in this work the feasibility of decision tree features is
investigated by applying the approach to Go for comparison purposes.

In the application of decision tree features to Go, the state is the current
board position, and an action is a legal move from the board position. The
board position is represented as a graph, and used to construct an appropriate
state-action pair for the evaluation of a candidate move and its surrounding
position. The state-action pair is constructed by combining the graph rep-
resentation (state) with an auxiliary node representing the candidate move
(action), to form an augmented graph (state-action pair).

It may well be that different query systems will excel at extracting domain
knowledge from different areas of Go, such as the opening or complex fights.
As such, this work will present six query systems, based on two variations of
the board representation. Furthermore, we conjecture that a combination of
multiple query systems in a decision forest might outperform a single query
system due to the overall reduced sensitivity of the decision forest.

When descending a decision tree for Go, the augmented graph, represent-
ing the state-action pair, is queried. The discovered graph, corresponding to
the resultant ordered list of predicates, represents current knowledge about
a portion of the augmented graph. The discovered graph begins as just the
auxiliary node at the root of the decision tree and grows in size and specificity
as the tree is descended. If the discovered graph were grown to its maximum
size and detail, it would result in a graph equivalent to the augmented graph.
Each decision tree leaf stores a weight evaluating candidate moves that result
in a tree descent terminating at that leaf.

The resultant move evaluation weights can be used to generate an ordering
of the legal moves in a position. The accuracy of this move ordering can then
be evaluated and compared to variations of decision tree features or other
types of features. This move ordering can be used to mitigate the branching

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 24

factor of the game tree, by directing the exploration at that position’s node in
the tree. This branching factor mitigation can be evaluated with an empirical
playing strength test (this test is much more costly than a direct evaluation
of the move ordering accuracy). Features can also be used to guide the
playouts in MCTS (by selecting playout moves based on the result of a GBTM
competition between the moves, using the feature weights), but this is not
considered in this work.

3.3 Query Systems for Go
In this work, a single query system is used by each decision tree. A query sys-
tem is the state-action representation and query language used by a decision
tree, and could be considered the representation of the domain. This section
presents two classes of query systems for the application of decision tree fea-
tures to Go: the intersection graph and stone graph classes. Each class of
query systems is based on a graph representation of the board position, but
they differ in what the nodes of the graph represent. In their simplest forms,
a node in an intersection graph corresponds to a board intersection, while a
node in a stone graph corresponds to a stone on the board.

Variations within each class are created by applying up to two modifi-
cations to the simple graph representations. The chain compression mod-
ification represents chains of stones (contiguous regions of black or white
stones) as single nodes, and the empty compression modification (only ap-
plicable to the intersection graph class) performs a similar change to empty
intersections by merging contiguous regions of empty intersections. These
modifications are illustrated in Figure 3.1, introduced and discussed further
in Section 3.3.1.

In both classes of query systems, the number of liberties is an attribute
of black and white nodes. Instead of the true number of liberties, a variation
of pseudo-liberties [16], where chains in atari have their number of pseudo-
liberties set to one, is used. This is done to simplify implementation and
speed up execution, since we believe it is unlikely that the use of these mod-
ified pseudo-liberties (versus normal liberties) will have a large impact. Also
note that the size and number of liberties of a node, in both classes, is of the
entire region on the board containing the relevant intersection(s), and not
just the intersection(s) represented by the node.4

4This is only relevant when the relevant modification has not been used (otherwise
there is no difference), and allows the queries used by the simpler representations access
to more information.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 25

The query language for each class of query systems was designed such that
queries are invariant to rotation and reflection; this ensures that rotations
and reflections of a position are evaluated as equivalent positions. The query
languages were also designed to be invariant to whose turn it is to play by
swapping the colours of black and white stones when a move by white is
evaluated; in this way, decision trees only evaluates moves by black.

Queries consist of a query type and a number of parameters with multiple
possible outcomes. The parameters and outcomes depend on the query type.
In the following descriptions of the query languages, parameters are specified
in one of the following forms:

• [value] represents a scalar integer variable,

• [A|B|C|. . .] represents a number of mutually exclusive options, and

• [A? B? C? . . .] represents any combination of the listed options.

Section 3.4 describes how queries are selected for internal decision tree nodes.
In order to compare two scalar values, in the query languages, in all

possible ways (<, ≤, =, ≥, > and 6=) a number of relational operators are
required by relevant queries. However, due to the fact that only integer values
are used in these query systems and the order of the set of query outcomes
is insignificant, only two relational operators are required — in this work we
typically use ‘less than’ and ‘equals to.’

As described in Section 3.1, for move evaluation an auxiliary node (rep-
resenting the candidate move) is added to the graph representation of the
current position to form an augmented graph, and a discovered graph is
grown from the augmented graph as the decision tree is descended. The
discovered graph represents the information available at the current node in
the descent path.5 At the root of the tree, the discovered graph is initialized
as just the auxiliary node. At each query, either a node is added to the dis-
covered graph from the augmented graph (along with all its edges to nodes
already in the discovered graph), or information about the existing nodes or
edges in the discovered graph is refined. In order to refer to nodes in the
discovered graph, they are numbered incrementally, in the order they are
added, with the auxiliary node being node zero.

Sections 3.3.1 and 3.3.2 present the query system classes based on the
intersection graph and stone graph board representations. Section 3.3.3 then
describes a modification to ensure mutual exclusivity between tree leaves in
both classes of query systems.

5The discovered graph is only a concept for the subset of the state-action pair implicitly
contained within the ordered list of predicates.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 26

3.3.1 Intersection Graph

For the class of intersection graph (IG) query systems, we typically use nodes
to represent single intersections on the board. The chain and empty modifi-
cation will optionally extend this by merging nodes corresponding to stones
in the same chain or empty intersections in the same region. These graph
representations are referred to as IG∅ (the intersection graph with no modifi-
cations), IGC (the intersection graph with the chain modification), IGE (the
intersection graph with the empty modification), and IGCE (the intersection
graph with both modifications). This section presents the graph structure
and query language for this class of query systems.

Graph Structure

The class of intersection graph board representations (IG∅, IGC , IGE and
IGCE) is as follows:

• There is a node corresponding to each stone (IG∅ and IGE) or chain of
stones (IGC and IGCE), and each empty intersection (IG∅ and IGC) or
maximal contiguous region of empty intersections (IGE and IGCE).

• There is an edge between each pair of nodes that have adjacent inter-
sections.

• Each edge has a connectivity, which is defined as the number of pairs
of adjacent intersections between the edge’s end nodes.

• Each node has a status (black, white or empty) and a size (number
of intersections in the containing region). Black and white nodes also
have a number of liberties6 of their corresponding chain.

The above definition of the class of intersection graph representations is
designed to best represent scenarios in Go that contain many adjacent re-
gions, such as life and death scenarios. We conjecture that in these scenarios,
the various regions, their adjacency, and distance to each other, are the most
important details. Although not an explicit part of the graph representa-
tion, every pair of nodes has a graph distance, which is the number of edges
in the shortest path between the two nodes. The IGC representation also
corresponds to the well-known CFG representation [26].

The node that corresponds to the empty intersection of the potential
move under consideration, is then labelled as the auxiliary node to form the

6As noted earlier, a variation of pseudo-liberties is used.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 27

�����
��
�
��
�
�
���
����	

2

2
2

2

2
2

2 2

Figure 3.1: Example small Go board position with IG representations of the
position below. The IG representations are IG∅ (top left), IGC (top right),
IGE (bottom left) and IGCE (bottom right). The connectivity of each edge is
indicated next to the relevant edge, with edge weights of one omitted. Only
the status of each node is indicated — other attributes are omitted.

class of augmented intersection graphs (AIG), with variations AIG∅, AIGC ,
AIGE and AIGCE, from IG∅, IGC , IGE and IGCE respectively.

Figure 3.1 shows an example small Go board position with the four IG
representations of the position shown. For each edge in the representations,
the connectivity of the edge is indicated.

Query Language

During a tree descent, the discovered graph is grown from the relevant AIG,
beginning with the auxiliary node, using queries from the following query
language consisting of three types of queries:

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 28

NEW: Is there a new [black? white? empty?] node adjacent (with a
graph distance of one) to node [x]?
Look for a new node to add to the discovered graph from the AIG,
and number the new node incrementally, if one is found. If multiple
matching nodes are found, attempt to select a unique node according to
the method described in Section 3.3.3. Separate children are added to
the decision tree for each allowed status (i.e. black and/or white and/or
empty), and none.

EDGE: Is the [graph distance|connectivity] between node [x] and node
[y] [less than|equal to] [val]?
Query a single edge (connectivity) of the discovered graph, or the graph
of edges (graph distance) of the AIG. Children are added to the decision
tree for yes and no.

ATTR: Is the [size|number of liberties] of node [x] [less than|equal
to] [val]?
Query a node of the discovered graph. Children are added to the decision
tree for yes and no.

The above query language is designed to query the information that the
graph representation is designed to contain: the attributes of the nearby
regions, and their relation to each other.

Figure 3.2 shows a portion of an example decision tree using the IG∅
query system with a highlighted descent path. The leaf at the end of the
descent path corresponds to a move that results in the capture (determined
by the third query) of a single opposing chain (found by the first query) of
undetermined size (as no query measured this). We also know that there
is only a single adjacent opposing chain due to the outcome of the second
query.

3.3.2 Stone Graph

For the class of stone graph (SG) query systems, we use nodes to represent a
single stone on the board or a side of the board. The chain modification will
optionally extend this by merging nodes corresponding to stones in the same
chain. These graph representations are referred to as SG∅ (the stone graph
with no modifications) and SGC (the stone graph with the chain modifica-
tion). In contrast with IG systems, SG systems do not explicitly represent
the empty intersections on the board, and the empty modification is therefore
not applicable. In addition, SG systems explicitly represent the sides, unlike

Stellenbosch University http://scholar.sun.ac.za

C
H

A
P

T
E

R
3.

D
E

C
ISIO

N
T

R
E

E
F
E

A
T

U
R

E
S

29

NEW(W,0)

Is there a new white
node adjacent to
node zero (the
auxiliary node)?

White

NEW(W,0)

Is there a new white
node adjacent to
node zero (the
auxiliary node)?

White

None

ATTR(LIB,1,=,1)

Is the number of
liberties of node one
(white) equal to one?

Yes

No
None

Figure 3.2: A portion of an example IG∅ decision tree showing a descent path. The leaf at the end of the descent
path corresponds to a move that results in the capture of a single adjacent opposing chain of undetermined size.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 30

IG systems. This section presents the graph structure and query language
for this class of query systems.

Graph Structure

The class of stone graph board representations (SG∅ and SGC) is as follows:

• There is a node corresponding to each stone (SG∅) or chain of stones (SGC)
on the board, and each of the four board sides.

• There is an edge between every pair of nodes, i.e. the graph is fully
connected.

• The weight of each edge is the shortest Manhattan distance on the
board between the stones or chains or board sides7 represented by the
edge’s end nodes.

• Each node has a status (black, white or side). Black and white nodes
also have a size (the number of stones) and number of liberties8 of their
corresponding chain.

The above definition of the class of stone graph representations is designed
to best represent scenarios in Go that contain relatively few stones, such as
the opening or middle game. We conjecture that in these scenarios, the
stones and sides, and their relative positions, are the most important details,
while the location of empty intersections can be indirectly inferred to some
extent.

An auxiliary node, that represents the empty intersection for the potential
move under consideration, is then added to each representation in the class
of stone graphs to form the class of augmented stone graphs (ASG), with
variations ASG∅ and ASGC , from SG∅ and SGC respectively. This node has
edges to every other node in the ASG, and these edges have weights allocated
as in the associated stone graph.

Figure 3.3 shows an example portion of a Go board position with the two
SG representations of the position shown. For each edge in the representa-
tion, the weight of each edge is indicated.

7The distance between a stone on a side and that side is defined as zero, i.e. for purposes
of measuring distance, a board side is the set of intersections on that edge.

8As noted earlier, a variation of pseudo-liberties is used.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 31

����
��
��
�
�
��
����

1

2

2

0

1

2

1

1

1

2
1

2

0

1

1

2

Figure 3.3: Example portion of a Go board position with SG representations
of the position below. The SG representations are SG∅ on the left, and SGC

on the right. The weight of each edge is indicated next to the relevant edge.
Only the status of each node is indicated — other attributes are omitted.

Query Language

During a tree descent, the discovered graph is grown from the relevant ASG,
beginning with the auxiliary node, using queries from the following query
language consisting of three types of queries:

NEW: Is there a new [black? white? side?] node with an edge weight
to the auxiliary node less than or equal to [distance]?
Look for a new node to add to the discovered graph from the ASG,
and number the new node incrementally, if one is found. If multiple
matching nodes in the ASG are found, attempt to select a unique node
according to the method described in Section 3.3.3. Separate children
are added to the decision tree for each allowed status (i.e. black and/or
white and/or empty), and none.

EDGE:9 Is the edge weight between node [x] and node [y] [less than|equal
to] [val]?
Query an edge of the discovered graph. Children are added to the deci-
sion tree for yes and no.

ATTR: Is the [size|number of liberties] of node [x] [less than|equal
to] [val]?

9The keyword DIST is used in the implementation for legacy reasons.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 32

Query a node of the discovered graph. Children are added to the decision
tree for yes and no.

The above query language is designed to query the information that the
graph representation is designed to contain: the attributes of the nearby
stones and sides, and their relation to each other.

Figure 3.4 shows a portion of an example decision tree using the SG∅
query system with a highlighted descent path. The leaf at the end of the
descent path corresponds to a move on the fourth line (which has a distance
of three to the side) with no stones within a Manhattan distance of eight.
Note that node zero is the auxiliary node and, in this case, node one is the
closest side,10 due to the outcome of the second query.

3.3.3 Resolving Multiple Descent Paths

In both of the query system classes, it is possible that a NEW decision tree
query may not be able to identify a unique node in the augmented graph
to add to the discovered graph. This is because queries are designed to be
invariant to changes in rotation and reflection, and there might not be a way
to differentiate between two or more nodes in the augmented graph (to add
to the discovered graph) without breaking this invariance or making use of
information not contained within the ordered list of predicates (explicitly or
implicitly). Identifying a unique node is desirable because then the descent
path does not have to branch, and the conceptual view that decision tree
queries partition the input space can be maintained.

In the event that a unique node can not be identified, the decision tree
feature approach considers a sequence of conditions (in addition to suitability
conditions), in an attempt to maintain uniqueness. Each condition will retain
those node(s) that best satisfy the condition and eliminate the others as
potential matches for the query. These conditions are designed to enforce
invariance to changes in rotation and reflection. The sequence of conditions
used in this work is as follows:

1. Select the node(s) with the lowest edge weight to the auxiliary node (SG).

2. Select black nodes if any; otherwise select white nodes if any; otherwise
select side (SG) or empty (IG) nodes.

3. Select the node(s) with the lowest edge weight (SG) or graph dis-
tance (IG) to nodes already in the discovered graph, in reverse order
of discovery, i.e. decreasing node number in discovered graph.

10There cannot be a closer side due to the process described in Section 3.3.3.

Stellenbosch University http://scholar.sun.ac.za

C
H

A
P

T
E

R
3.

D
E

C
ISIO

N
T

R
E

E
F
E

A
T

U
R

E
S

33

NEW(BW,8)

Is there a new black
or white node with
an edge weight
to the auxiliary
node less than or
equal to eight?

Black

White

None

NEW(S,5)

Is there a new
side node with an
edge weight to the
auxiliary node less

than or equal to five?

Side

EDGE(0,1,=,3)

Is the distance
between node zero
(auxiliary node)

and node one (side)
equal to three?

Yes

No
None

Figure 3.4: A portion of an example SG∅ decision tree showing a descent path. The leaf at the end of the descent
path corresponds to a move on the fourth line with no stones within a Manhattan distance of eight.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 34

4. Select the node(s) with highest connectivity to nodes already in the
discovered graph, in reverse order of discovery (IG).

5. Select the node(s) with the most stones (SG) or intersections (IG) in
its respective chain or region.

6. Select the node(s) whose respective chain has the most liberties (if
nodes are not empty intersections or regions).

Note that for the last two conditions, the respective chain or region refers
to the entire region on the board and not just the stone or intersection rep-
resented by the node. This is similar to the graph representations.

If the above conditions are not able to identify a unique node, then each
of the possibilities are considered. This is accomplished by branching the
tree descent and considering each branch in turn. For each branch, one of
the remaining nodes from the augmented graph is added to the discovered
graph and the tree descent continues. In this way, multiple leaf nodes will
be reached.

While these conditions are not always able to find a unique node, empir-
ical results showed that a single leaf node was reached in about 85% of tree
descents for our data set (refer to Section 5.2 for details on the data set).
It was therefore decided to branch and consider all the remaining nodes and
their respective descent paths, but only return one of the final leaf nodes.
The leaf node chosen is always the left-most node, i.e. the leaf node found
first in an pre-order traversal of the tree. Preliminary investigations con-
firmed that this modification made negligible difference to move prediction
accuracy, while providing a large reduction in training time and an increase
in the size of training data set that could be handled. This modification was
therefore used throughout the rest of this work without further mention. The
improvement in training time is due to the leaf nodes of each decision tree
becoming mutually exclusive, allowing decision trees to be treated as a single
feature per decision tree as opposed to binary features for each decision tree
leaf (refer to Section 4.3 for more details).

3.4 Query Selection
In order to construct decision trees for decision tree features, a method for
selecting queries for decision tree nodes is required. Each potential query
has two or more outcomes corresponding to children nodes, as defined by the
query system in use. In traditional decision trees, the queries are typically
chosen in a greedy manner due to computational issues (refer to Section 2.7).

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 35

In decision tree features, the labels for the data are not available. The
weights could potentially be used, but they are only determined by training,
which is a fairly lengthy process that takes place on a fully-grown tree. As
such, traditional decision tree generation approaches are not suitable for
this work. The remainder of this section presents an approach to selecting
queries and constructing the decision trees for decision tree features, and the
implementation considerations of using this approach to construct decision
tree features are discussed in Chapter 4.

For decision tree features, a leaf node can be expanded by replacing it
with a query and its possible outcomes, each of which is a new leaf node.
When choosing a query to replace a leaf node (after enough data is captured),
there is a large set of candidate queries that can be chosen from. The set of
candidate queries depends on the information available in the ordered list of
predicates at that point in the tree descent. In order to select a query, the
query selection policy, as introduced in the remainder of this section, is used.

Since labelled data is not available during query selection, descent statis-
tics that capture the descent properties of the tree are instead used to aid
query selection. When enough data is captured, the candidate query that
maximizes a certain quality criterion Q is chosen, provided a number of
suitability conditions are satisfied. The relevant suitability conditions are
discussed in Section 3.4.3, and depend on the quality criterion in use. The
quality criteria are intended to use the descent statistics to guide tree growth.
Two classes of quality criteria will be investigated in this work.

Section 3.4.1 describes the descent statistics used and how they are cap-
tured after tree descents. Section 3.4.2 presents a number of proposed quality
criteria, grouped into two classes. Section 3.4.3 discusses the four suitability
conditions used by these criteria.

3.4.1 Descent Statistics

Each state-action pair corresponds to a decision tree leaf (and thus a tree
descent). Decision tree features can evaluate all the legal actions from a
state by descending the decision tree for each action. As such, a number
of positions from training data are extracted and the current decision tree
is descended for each action in each position, with the descents of correct
actions (those actions taken in the training data) being considered wins and
the others losses. These descent statistics (number of wins and losses) are
updated at the relevant leaf node: for each candidate query at the leaf node,
the candidate query is evaluated and the relevant child outcome of the can-
didate query is updated. As discussed is Chapter 4, when enough statistics

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 36

have been captured, the descent statistics are used in the quality criterion to
compare candidate queries.

For each candidate query q, the following statistics are recorded, or com-
puted from other statistics:

• the number of wins (wq);

• the number of losses (lq);

• the total number of descents (dq = wq + lq);

• the winrate (rq = wq/dq);

• the set of children outcomes (Cq);

• the number of children (‖Cq‖);

• for each child c in Cq, the descent statistics wc, lc, dc and rc; and

• the subset of Cq with at least one descent (C ′q = {c ∈ Cq|dc > 0}).

Note that in domains where there are n legal actions for a typical state,
the winrate at the root of the decision tree will be close to 1/n. As such, for
domains where n is large (such as Go), the winrate of most nodes tends to
be very low.

3.4.2 Quality Criteria

This section presents the split and separate classes of quality criteria. These
quality criteria use the descent statistics defined in Section 3.4.1 to compare
candidate queries for selection.

The split class of quality criteria attempts to choose queries that maxi-
mize the entropy of the distribution of the input space (i.e. the entropy of
the distribution of the wins, losses or descents, depending on the quality cri-
terion). The motivation is that in decision tree features a node represents
a profile of domain knowledge; therefore, if queries are chosen to maximize
the entropy of children outcomes, the leaf nodes of the decision tree should
represent as much information as possible.

The separate class of quality criteria attempts to choose queries that
separate the win and loss descents into homogeneous partitions, i.e. such
that all outcomes have a winrate of 0 or 1. We conjecture that outcomes
with a winrate close to 0 or 1 will tend to have extreme trained weights
(closer to 0 or ∞), and the motivation is that that such trained weights
should result in better performance. A potential issue is that queries with

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 37

high-winrate outcomes with only a few descents will tend to be favoured,
and therefore very unbalanced decision trees may be constructed. Weighted
variants that attempt to address this issue are therefore also proposed.

We conjecture that the separate class of quality criteria will perform bet-
ter than the split class of quality criteria, due to the expected increase in
evaluation accuracy from more extreme trained weights (closer to 0 or ∞).

The remainder of this section describes the various quality criteria. Cer-
tain technical details common to various criteria are discussed in Sections 3.4.3
and 4.2.

Split Class of Quality Criteria

In order to maximize the entropy of the distribution of descent statistics,
the split class of quality criteria will be chosen to select queries that divide
the portion of input space represented by a node into roughly equally-sized
partitions. If all candidate queries only have two outcomes this is relatively
straight-forward; however, this work also considers queries with potentially
more than two outcomes. As such, a number of quality criteria are proposed:
Naive Descent-Split, Descent-Split, Win-Split, Loss-Split, Entropy Descent-
Split, Entropy Win-Split, Entropy Loss-Split and Winrate-Split.

The Naive Descent-Split (NDS) quality criterion is maximized in an
attempt to split the descents into two equal parts by minimizing the devia-
tion from an ideal even split. For query q, the number of descents are divided
into dn and the remainder dq − dn, where n is the number of descents to the
‘none’ outcome for NEW queries and the ‘no’ outcome for EDGE and ATTR
queries. Equation 3.1 presents the selection criterion for NDS. NDS simpli-
fies queries with more than two outcomes by dividing the query outcomes’
descents into two groups in a domain-specific manner; the other criteria do
not make this simplification and are therefore domain-agnostic. NDS was
the first selection criterion implemented, and is included for comparison with
published results [15].

QNDS(q) = −
∣∣∣0.5− dn

dq

∣∣∣ (3.1)

The Descent-Split (DS), Win-Split (WS) and Loss-Split (LS) quality
criteria are maximized in an attempt to split the descents, wins or losses into
equal parts. In an ideal query q (from the perspective of the split class),
each outcome would have an equal fraction (1/‖Cq‖) of the relevant statistic
(descents, wins or losses). DS, WS and LS attempt to minimize the sum of
the deviations from such ideal splits. Equations 3.2, 3.3 and 3.4 present the
quality criteria for DS, WS and LS respectively. In comparison to NDS, we

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 38

believe DS is more accurately able to deal with queries that have more than
two outcomes. If only queries with two outcomes are compared, NDS and DS
are equivalent. We conjecture that these criteria will tend to select queries
with fewer outcomes, due to the expected practical difficulty of minimizing
the sum of the deviations over more outcomes. Due to the fact that the
winrate is usually very low, we also conjecture that LS and DS will have very
similar results.

QDS(q) = −
∑
c∈Cq

∣∣∣ 1

‖Cq‖
− dc
dq

∣∣∣ (3.2)

QWS(q) = −
∑
c∈Cq

∣∣∣ 1

‖Cq‖
− wc

wq

∣∣∣ (3.3)

QLS(q) = −
∑
c∈Cq

∣∣∣ 1

‖Cq‖
− lc
lq

∣∣∣ (3.4)

The Entropy Descent-Split (EDS), Entropy Win-Split (EWS) and
Entropy Loss-Split (ELS) quality criteria are maximized in an attempt to
maximize the entropy associated with the distribution of descents, wins or
losses between children outcomes. For query q, the entropy of the distribution
of descents is represented by − dc

dq
log2

dc
dq

for outcome c (with similar forms for
wins and losses).11 Equations 3.5, 3.6 and 3.7 present the quality criteria for
EDS, EWS and ELS respectively. We expect that these criteria will perform
similarly to DS, WS and LS, but tend to favour queries with more outcomes
as the maximum entropy of a query with k outcomes is log2 k.

QEDS(q) = −
∑
c∈Cq

dc
dq

log2
dc
dq

(3.5)

QEWS(q) = −
∑
c∈Cq

wc

wq

log2
wc

wq

(3.6)

QELS(q) = −
∑
c∈Cq

lc
lq
log2

lc
lq

(3.7)

The Winrate-Split (WRS) quality criterion is maximized in an attempt
to split the descents into outcomes with equal winrates, by minimizing the
difference between the winrate of each outcome and the parent’s winrate.
Equation 3.8 presents the quality criterion for WRS. Note that outcomes
that have no descents, and therefore an undefined winrate, are ignored.

11Note that per convention we assume 0 log 0 = 0.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 39

QWRS(q) = −
∑
c∈C′

q

|rc − rq| (3.8)

Separate Class of Quality Criteria

The separate class of quality criteria attempts to separate the wins and losses
into homogeneous partitions. While a query that separates the wins and
losses into perfectly homogeneous partitions is clearly ideal for this approach,
it is much more likely that no ideal candidate query exists and it is unclear
how to compare such non-ideal queries. Furthermore, it is possible that
maximizing such quality criteria might result in the selection of queries that
have a very small portion of the descents in one outcome (as it is practically
easier for such an outcome to be homogeneous), and thus construct very
unbalanced decision trees; therefore weighted variations of the criteria are
also proposed. The proposed quality criteria of the separate class are: Win-
Loss-Separate, Weighted Win-Loss-Separate, Symmetric-Separate, Weighted
Symmetric-Separate, Winrate-Entropy and Weighted Winrate-Entropy.

The Win-Loss-Separate (WLS) and Weighted Win-Loss-Separate
(WWLS) quality criteria are maximized in an attempt to separate the wins
and losses into homogeneous outcomes. WLS attempts to do this by maxi-
mizing the sum of the differences, |rc−rq|, between the winrate of an outcome
c and its parent query q. WWLS attempts to take the number of descents
to each outcome into account by increasing the impact of outcomes with
more descents. Outcomes that have no descents, and therefore an undefined
winrate, are ignored. Equations 3.9 and 3.10 present the quality criteria for
WLS and WWLS respectively. Note that Equation 3.9 is the negative of
Equation 3.8. Also note that for WWLS, a larger dc will more likely have a
rc closer to rq, making this measure of deviation seem more meaningful. We
conjecture that WWLS will perform better than WLS due to the weighting
of outcomes.

QWLS(q) =
∑
c∈C′

q

|rc − rq| (3.9)

QWWLS(q) =
∑
c∈C′

q

dc|rc − rq| (3.10)

The Symmetric-Separate (SS) and Weighted Symmetric-Separate
(WSS) quality criteria are maximized in an attempt to separate the wins and
losses into homogeneous outcomes while compensating for very low or high
winrates. SS and WSS assume the winrate of each outcome should strive

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 40

towards an ideal winrate of 0 or 1 (which would indicate homogeneous out-
comes). SS and WSS thus attempt to minimize the sum of the deviations,
from the ideal, of the outcomes of query q, where the deviation for outcome
c is the minimum of rc/rq and (1 − rc)/(1 − rq). In this way, the interval
from 0 to rq and rq to 1 are scaled such that potential deviations in opposite
directions (towards 0 or 1) have a symmetrical maximum deviation. Out-
comes that have no descents, and therefore an undefined winrate, are ignored.
Equations 3.11 and 3.12 present the quality criteria for SS and WSS respec-
tively. We conjecture that SS and WSS will perform better than WLS and
WWLS because the winrates are usually very low in practice, and we expect
the scaling of the winrate intervals (from 0 to rq and rq to 1) to amplify any
indication of a good candidate query.

QSS(q) = −
∑
c∈C′

q

min
{rc
rq
,
1− rc
1− rq

}
(3.11)

QWSS(q) = −
∑
c∈C′

q

dc ·min
{rc
rq
,
1− rc
1− rq

}
(3.12)

TheWinrate-Entropy (WE) andWeightedWinrate-Entropy (WWE)
quality criteria are maximized in an attempt to reduce the relative entropy12

of the outcome winrates to an ideal query split with homogeneous outcomes.
WE is designed to do this by partitioning the outcomes in C ′q into three
sets: non-empty win (W) and loss (L) sets, and a (potentially empty) un-
determined (U) set. The intuition is that the outcomes are either striving
towards a winrate of 0 or 1, or they remain close to the parent winrate; as
such, outcomes in the undetermined set are effectively ignored. The contri-
bution of the outcomes to the relative entropy of the win (resp. loss) set is
measured by comparing the winrate of each outcome c, to a desired winrate
of 1 (resp. 0), resulting in − log2 rc (resp. − log2(1− rc)). Queries that tend
towards homogeneous partitions are chosen by minimizing these terms over
the win and loss sets. Equations 3.13 and 3.14 present the quality criteria
for WE and WWE respectively. However, in both of these equations, all the
terms that are being summed are negative; as such, the maximum will be
found when W and L only contain a single outcome each. Equations 3.15
and 3.16 therefore present simplified forms of these quality criteria.

QWE(q) = max
(∑

c∈W

log2 rc +
∑
c∈L

log2(1− rc)
)

(3.13)

12The relative entropy of distribution P in terms of distribution Q is
∑

i P (i) ln
P (i)
Q(i) .

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 41

QWWE(q) = max
(∑

c∈W

dc log2 rc +
∑
c∈L

dc log2(1− rc)
)

(3.14)

QWE(q) = max
c∈C′

q

log2 rc +max
c∈C′

q

log2(1− rc) (3.15)

QWWE(q) = max
c∈C′

q

dc log2 rc +max
c∈C′

q

dc log2(1− rc) (3.16)

3.4.3 Suitability Conditions

In the two classes of query criteria, each quality criterion can have a number
of associated suitability conditions. Four suitability conditions, S1, S2, S3

and S4, are presented here. All applicable suitability conditions of a quality
criterion must be satisfied by a candidate query for the selection of that
query.

S1 specifies that the descents must go to at least two child outcomes,
i.e. dc < dq ∀ c ∈ Cq. This condition avoids the selection of queries that
add no information (according to the descent statistics seen so far), since
any potential new information is already contained within the ordered list of
predicates. As such, S1 is used by all quality criteria.

S2 requires at least one win and one loss descent for a query, i.e. wq, lq > 0.
S2 prevents the separate class of criteria from adding more queries to separate
an homogeneous partition. S2 is thus used by all the separate class of quality
criteria and also in WRS. Its use in WRS is to avoid adding queries when
the winrate is either 0 or 1, and there can therefore be no deviation in the
outcomes’ winrates.

S3 and S4 are closely related to S1, but adapted to the criteria that
are only concerned with wins (S3) or losses (S4). As such, S3 (resp. S4)
states that all the wins (resp. losses) must go to at least two child outcomes,
i.e. wc < wq ∀ c ∈ Cq (resp. lc < lq ∀ c ∈ Cq). S3 is used by DS and EDS,
while S4 is used by LS and ELS.

Table 3.1 summarizes the various quality criteria and associated suit-
ability conditions. For each quality criterion, all the associated suitability
conditions that must be satisfied are indicated.

3.5 Other Domains
In order to apply decision tree features to a new domain, a domain-specific
query system is required. The remainder of the decision tree feature ap-

Stellenbosch University http://scholar.sun.ac.za

C
H

A
P

T
E

R
3.

D
E

C
ISIO

N
T

R
E

E
F
E

A
T

U
R

E
S

42
Name S1 S2 S3 S4 Q(q)

Naive-Descent-Split X −
∣∣∣0.5− dn

dq

∣∣∣
Descent-Split X −∑c∈Cq

∣∣∣ 1
‖Cq‖ −

dc
dq

∣∣∣
Win-Split X X −∑c∈Cq

∣∣∣ 1
‖Cq‖ −

wc

wq

∣∣∣
Loss-Split X X −∑c∈Cq

∣∣∣ 1
‖Cq‖ −

lc
lq

∣∣∣
Entropy-Descent-Split X −∑c∈Cq

dc
dq
log2

dc
dq

Entropy-Win-Split X X −∑c∈Cq

wc

wq
log2

wc

wq

Entropy-Loss-Split X X −∑c∈Cq

lc
lq
log2

lc
lq

Winrate-Split X X −∑c∈C′
q
|rc − rq|

Win-Loss-Separate X X
∑

c∈C′
q
|rc − rq|

Weighted Win-Loss-Separate X X
∑

c∈C′
q
dc|rc − rq|

Symmetric-Separate X X −∑c∈C′
q
min

{
rc
rq
, 1−rc
1−rq

}
Weighted-Symmetric-Separate X X −∑c∈C′

q
dc ·min

{
rc
rq
, 1−rc
1−rq

}
Winrate-Entropy X X maxc∈C′

q
log2 rc +maxc∈C′

q
log2(1− rc)

Weighted-Winrate-Entropy X X maxc∈C′
q
dc log2 rc +maxc∈C′

q
dc log2(1− rc)

Table 3.1: Summary of the quality criteria, with relevant suitability conditions indicated.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 43

proach, including query selection13 and weight training, is domain-agnostic.
As such, decision tree features can be transferred to any domain where a
query system can be constructed. Alternatives to decision tree features in-
clude hand-crafted features (like tactical features) and domain-specific fea-
tures (such as pattern features), and these alternatives can be combined
with decision tree features; however, these alternatives require more expert
knowledge than decision tree features. We conjecture that a practical query
system for decision tree features is realizable for a large number of domains
with very little expert knowledge, especially game-related AI, and that deci-
sion tree features will be a feasible alternative in a number of these domains,
in terms of performance.

There are a number of considerations for constructing a query system for
a new domain: these include the ease of implementation, a method for effi-
ciently obtaining and storing descent statistics for the candidate queries, and
the required computational resources (both memory and processing power).
For domains where RL has been considered, it might be feasible to combine
the state representation used for RL with a query language. The ideal ex-
pressiveness of a query language is when the query system is able to (given
enough computational resources) identify complete state-action pairs unam-
biguously.

Furthermore, training data for a new domain might be abundant (such
as high-level games in a popular game-related domain such as computer Go).
However, for domains where this is not the case, training data can poten-
tially be generated with the use of a stochastic procedure that can generate
a large collection of data quickly, or a procedure with very high computa-
tional requirements (too high to be feasible in a real-time scenario) that can
generate training data of a high quality. Depending on the domain, it might
also be possible to iteratively incorporate the trained features in one of the
above procedures to generate better features overall (i.e. bootstrapping). As
such, decision tree features can be applied to domains where training data is
available, and training data can potentially be generated for other domains.

3.6 Conclusion
This chapter presented decision tree features, a new approach to extracting
domain knowledge. Decision tree features make use of decision trees with a
domain-specific query system to define the structure of the trees. A number
of query systems for the game of Go are presented. For tree construction,
a query selection policy, with a number of proposed quality criteria, was

13All of the proposed quality criteria are domain-agnostic, with the exception of NDS.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DECISION TREE FEATURES 44

presented. Finally, applying decision tree features to other domains was
discussed.

The next chapter will present the considerations of a practical implemen-
tation of decision tree features, as introduced in this chapter, to computer
Go.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4

System Implementation

Chapter 3 introduced the proposed decision tree features, and discussed their
application to computer Go. This chapter presents the major implementation
considerations and system pipeline for our implementation of decision tree
features in Oakfoam, a computer Go engine.

Figure 4.1 illustrates the relationships between the different components
required for constructing, using and testing decision tree features. The tree
growth, weight training, and action evaluation components, together with
their parameters, form the pipeline for a feature instance. In this pipeline,
a feature instance is created by growing a decision forest, training weights
for the tree leaves (together with any other features), and the use of the
decision tree features (together with any other features) to evaluate actions.
The output of some components can be reused in later pipeline executions to
limit the difference between feature instances. After executing the pipeline,
the feature instance, dependent on its settings and the training data, is the
resulting set of features (possibly including decision tree, tactical and pattern
features), with trained weights, that can be used for testing or engine usage.
Chapter 5 will measure the impact of the various input parameters, and com-
pare the feasibility of feature instances employing decision tree features to a
state-of-the-art feature instance (consisting of tactical and pattern features).

Section 4.1 describes the selection of the training and testing data used
by the system. Section 4.2 presents the process used to grow the decision
forest, while Section 4.3 outlines the weight training process for the resulting
forest and any other features. Section 4.4 explains how moves are evaluated
using these features. Section 4.5 outlines how the testing data can be used
to evaluate feature instance, and Section 4.6 describes the integration of the
feature instances into Oakfoam.

45

Stellenbosch University http://scholar.sun.ac.za

C
H

A
P

T
E

R
4.

SY
ST

E
M

IM
P

LE
M

E
N

TA
T

IO
N

46

Data

Training
Data

Testing
Data

Forest
Growth

Weight
Training

Action
Evaluation

Testing Engine
Usage

Quality
Criterion

Trees in
Forest (τ)

Query
System(s)

ρ

φ

Figure 4.1: Diagram of components for decision tree feature construction, testing and usage.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. SYSTEM IMPLEMENTATION 47

4.1 Training and Testing Data
For training and testing, a collection of GBTM competitions is required.
For Go, these competitions each consist of a board position and a resulting
move. For this work, these competitions will be harvested from a collection
of games. As such, the initial data set used for both training and testing is
a large collection of games. These games should preferably be of a high level
to improve the performance of the MCTS engine integration.

While there is a surplus of high-level training data readily available for
Go, in other domains this might not be the case. In such situations, self-play
might be able to generate useful training data, by instructing a stochastic
engine to play a series of games against itself and focusing on the moves made
by the winners of the games.1

Before a feature instance is created and tested, the data set is divided into
training and testing data sets by randomly selecting games for each set.2 In
this way, the amount of training and testing data can be adjusted as needed.
A typical division of data is: 50000 games for training (not all of which is
actually used), and 1000 games for testing.

4.2 Forest Growth
As described from a domain-agnostic perspective in Section 3.4, decision tree
features are constructed by growing a decision tree for each feature. As such,
a decision forest can be constructed from multiple decision tree features. This
decision forest is initialized as a root node per tree and grow as training data
points are processed. In this section, the selection of training points will first
be described, followed by the decision forest growing process (which involves
descending the trees using the selected training points).

In this work, the parameter τ dictates the size of the decision forest, i.e. τ
trees are grown at the same time. If multiple query systems are used in the
decision forest, then the total number of trees is τ , and each query system
is used by an equal portion of forest (in this work τ is always chosen so that
this is possible).

The collection of GBTM competitions used to grow the forest are sampled
from the training data. This is accomplished by selecting a number of games

1This process can be repeated after constructing a feature instance and incorporating
it into the next repetition of the process (i.e. bootstrapping).

2Note that it is more usual to separating the data for training and testing once, before
any testing has taken place. However, this was not done in this work to reduce the chance
of over fitting the testing data. Testing in Chapter 5 also confirmed that the extra variance
introduced by doing this is not of concern.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. SYSTEM IMPLEMENTATION 48

(ρ) from the training data in a random order, and then, for each position in
each game, selecting the competition corresponding to that position (with the
subsequent move as the competition’s winning team) with a 10% probability
for each tree in the forest. Due to limited computational resources, only
a subset of the training data can be used. As such, the 10% probability
is independently sampled for each tree in the forest, and ensures that a
diverse set of competitions are sampled from the training data. This approach
of processing games sequentially was chosen to simplify the tree growth:
because the games can be read in sequentially, competitions do not need to
be stored in a large database.3

For each team (and its corresponding move) in each competition chosen
from the training data, the current decision tree (i.e. the tree that triggered
the 10% probability, with this step repeated if multiple trees trigger) is de-
scended and the descent statistics of the resultant leaf node are updated as
described in Section 3.4.1. When a threshold number of descents through
a leaf node have been recorded, that node is expanded by selecting a new
query, according to the query selection policy. For the tests in this work,
the threshold number of descents was fixed at 1000. When no suitable query
can be found due to the suitability conditions, expansion is delayed for 10
descents.

In the process of tree growth, τ is the parameter that controls the number
of trees in the decision forest, and ρ is the parameter that controls the amount
of data used for tree growth, and therefore the approximate size of the trees.
Note that τ and ρ together control the number of leaves in the entire decision
forest, as each of the τ trees is grown with GBTM competitions sample from
ρ games. The quality criterion is the parameter that controls the query
selection, and therefore the shape4 of the resulting decision tree.

4.3 Weight Training
In this work, tactical features are present in every feature instance (with the
exception of the tests in Section 5.10). If pattern features are present, then
the patterns of intersections within circular distance of 3 to 15 of a candidate
move that occur at least 20 times in a collection of ξ games sampled from the

3In practice, positions would be stored instead of GBTM competitions, as generating
each competition is somewhat costly. However, this is further complicated by the fact
that some tactical features also depend on previous moves in the game, and not just the
current position.

4While the split criteria should result in a balanced tree shape, the separate criteria
might result in an unbalanced tree.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. SYSTEM IMPLEMENTATION 49

training data set, are used. ξ is the parameter used to control the number of
patterns used in a feature instance.

Once a decision forest has been grown and/or patterns harvested, weights
for the leaf nodes (which correspond to feature levels), and/or weights for all
of the patterns must be determined. These weights are trained together with
any other feature weights (such as other decision tree, tactical or pattern
features). A collection of GBTM competitions are selected from the training
data, by selecting a number of games (φ) randomly, and then selecting every
position’s corresponding competition with a 10% probability. Similarly to
forest growth, computational resources are limited and therefore only a subset
of the training data can be used; the 10% probability ensures that a diverse
set of training data is sampled.

The sampled GBTM competitions are then used as input for the MM
algorithm, with the output being suitable feature level weights, as described
in Section 2.6.1. MM was chosen for weight training because it has been
shown to have good performance, there are comparable results from previous
work, and there is a freely available tool5 [11]. These factors permit easier
verification of the implementation and better comparison with tactical and
pattern features for Go, due to fewer changes to the experimental setup [11,
29].

In this process, φ is the parameter that controls the amount of data used
for weight training. While an increase of φ (resulting in more training data)
will presumably result in more accurate weights, this increase will also result
in the weight training process requiring more computational resources of time
and memory. In this work, a lower φ was frequently chosen to reduce these
computational resource requirements.

4.4 Action Evaluation
Once weights have been trained for the feature instance, the feature instance
can be used to evaluate and rank moves (actions). A candidate move is
evaluated with the decision tree features by descending each decision tree in
the forest, with the descent path determined by the query results w.r.t. the
candidate move. When a leaf node is reached, the weight stored at the

5The freely available tool was optimized by Detlef Schmicker, a contributor on the
Oakfoam engine. These optimizations, available in the Oakfoam codebase, enabled
the use of larger training data sets — with the optimizations, more training data can be
handled with the same amount of memory, and the upper limit on memory (present in the
original tool) has effectively been removed; the limit is now the available memory of the
computer used.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. SYSTEM IMPLEMENTATION 50

leaf node is used as the evaluation of the candidate move by the relevant
decision tree. A final evaluation of the candidate move can then be formed
by combining this weight with the feature level weights of the other features in
the feature instance (such as other decision tree, tactical or pattern features)
by taking their product, as described in Section 2.6.

At this point, the feature instance and its action evaluation can be used
either in testing or engine usage.

4.5 Testing
In order to measure the move prediction performance of a feature instance,
it is used to evaluate all the positions in the testing data set. By evaluating
all the legal moves in a position, an ordering of the moves can be formed.
This move ordering can then be used to test the accuracy of the feature
instance, by measuring the rank of the correct move, according to the testing
data. For each position, the rank of the correct move in the ordering, and
the observation probability according to the GBTM, are measured. In this
way, each position in the testing data is used to evaluate the move prediction
accuracy of the feature instance.

4.6 Engine Usage
To use a feature instance (including decision tree features) in an MCTS
engine, they are used to evaluate moves, as described in Section 4.4, and
incorporated into the selection or simulation policies of MCTS, as described
in Section 2.4. In this work, they are integrated into Oakfoam, an open
source MCTS-based computer Go engine. Oakfoam has a number of rele-
vant attributes:

• MCTS engine with many adjustable parameters (all were left as default
unless specified otherwise).

• Tactical, pattern and decision tree feature instances can be constructed
and used (after implementing the pipeline described in this chapter).6

• In the MCTS selection policy, progressive widening is used to incor-
porate domain knowledge. The selection policy also includes other

6During this work, the use of features in Oakfoam was improved in a number of
ways: the implementation of decision tree features (and all the associated components),
larger pattern features, and a streamlined implementation of the pipeline described in this
chapter.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. SYSTEM IMPLEMENTATION 51

enhancements (such as RAVE and LGRF) over the basic MCTS de-
scribed in Chapter 2. Refer to Appendix A and the source code for
more details on the exact selection policy used.

• The simulation policy for the playouts uses a number of hand-crafted
playout heuristics (based on similar policies in successful engines such
as Mogo [23] and Pachi [20]).

• The opening book was disabled for this work, in order to not limit
testing of moves near the beginning of a game.

• Parallelization was disabled for this work, to minimize any effects in-
troduced by multi-core or cluster parallelization.

In this work, features are integrated into Oakfoam with progressive
widening in the selection policy. In this way, at each node during the MCTS
selection phase, only a subset of the children moves are considered, where
the considered subset is determined by evaluating moves with features.

4.7 Conclusion
This chapter described major implementation considerations of a pipeline
for constructing and using feature instances with decision tree features for
computer Go. This pipeline can be summarized as follows:

• Divide the data into training and testing data sets.

• Grow the decision forest of τ trees, using the query selection policy and
parameter ρ (the number of games used).

• If applicable, harvest patterns with parameter ξ (the number of games
used).

• Train weights for the forest leaf nodes (and any other features), using
MM and parameter φ (the number of games used).

• Use the decision forest (and any other features) to evaluate moves.

• Use the feature instance evaluations to test the accuracy of the gener-
ated features, or use the evaluations and progressive widening to miti-
gate the branching factor in MCTS.

The next chapter will evaluate the performance of decision tree features,
and the impact of the feature instance settings, using the implementation
described in this chapter.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5

Experiments and Results

This chapter evaluates the performance of decision tree features for computer
Go, and compares them to state-of-the-art tactical and pattern features,
using the system described in Chapter 4. The goals of this chapter are as
follows:

• Reproduce a state-of-the-art feature instance using tactical and pattern
features.

• Evaluate decision tree features by:

– measuring the impact of the relevant settings on move prediction;

– identifying the settings with good performance in terms of move
prediction and playing strength; and

– evaluating the feasibility of decision tree features, by comparing
results to the state of the art.

• Evaluate a combination of state-of-the-art and decision tree features, to
determine whether adding decision tree features will improve the state
of the art.

The remainder of this chapter is structured as follows: Section 5.1 intro-
duces the testing methodology used in this chapter. Section 5.2 describes
the training and testing data, Section 5.3 presents the list of tactical fea-
tures used, and Section 5.4 presents examples of decision tree features. Sec-
tions 5.5–5.10 outline and evaluate the move prediction performance of var-
ious feature instances. Finally, Section 5.11 evaluates a select few feature
instances in terms of playing strength.

52

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 53

5.1 Testing Methodology
This section introduces the testing methodology used in the testing of this
work, as presented in this chapter.

In this chapter, the term test is used to refer to the evaluation of one
or more feature instances in terms of move prediction or playing strength.
Each feature instance is generated by following the pipeline described in
Chapter 4, and selecting either testing or engine usage in the final step, for
a move prediction or playing strength test respectively.

Decision tree features were conceived as a way to improve upon the pat-
tern features of state-of-the-art feature instances. Additionally, while decision
tree features are history-agnostic (independent of previous moves and their
order), tactical features are not. As such, the majority of feature instances
with decision tree features will also contain tactical features. Section 5.10 will
briefly explore feature instances with just decision tree features by modifying
tactical features to be history-agnostic.

There are a number of relevant settings that potentially impact the per-
formance of feature instances. These settings are summarized as follows (only
a subset of them are relevant for most feature instances):

• The number of games used to harvest patterns for pattern features (ξ).

• The query system(s) that describes the decision tree/forest.

• The quality criterion used for query selection when growing the tree/forest.

• The number of trees in the decision forest (τ).

• The number of games used to grow the trees in the forest (ρ).

• The number of games used to train the weights for all the features (φ).

The relationship between the effects of the above settings is unclear, and
this work does not make an attempt to construct a theoretical model of
their interaction. Furthermore, while the time it takes to evaluate a feature
instance can vary, it is consistently long enough to prohibit a comprehensive
search of the multi-dimensional space which corresponds to the interaction
of all the settings. However, we do have some expectations regarding the
effects of the settings. As such, the settings will be tested systematically, in
such a way that their effects can hopefully be isolated to some extent, and
our expectations can be validated.

In this work, move prediction is measured by generating move orderings
for the positions in the testing data set and recording the rank of the correct

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 54

move for each position, according to the testing data. Move prediction tests
are described in more detail in Section 5.5.

Testing a feature instance in terms of playing strength is achieved by
integrating the feature instance into an MCTS engine, and measuring the
performance of the modified engine by playing a series of games against a
reference opponent. In this work, progressive widening is used when integrat-
ing feature instances into the MCTS engine, Oakfoam. Playing strength
tests are further described in Section 5.11.

A playing strength test is the most direct way of measuring the perfor-
mance of a feature instance for computer Go. However, in comparison with
a move prediction test, a playing strength test takes much longer to give an
accurate evaluation. Furthermore, early investigations indicated that move
prediction performance is a good indicator of playing strength. As such, move
prediction tests will predominantly be used to evaluate feature instances, and
the results will be verified by testing the playing strength of a limited number
of feature instances.

The machine used to perform the move prediction tests in this chapter has
a four-core Intel Core i5-3570K (3.4 GHz) and 16 GB of RAM. The playing
strength tests were performed with a single core per game, on a cluster of
machines, each with an eight-core Intel Xeon E5440 (2.83 GHz) and 16 GB
of RAM.

As described in Section 4.3, the MM algorithm is used to train the feature
level weights. In order to execute the algorithm in a reasonable time, all the
GBTM competitions are loaded into memory so that they can be iterated
over; φ is therefore limited by the available memory of the testing machine.
However, to further complicate the issue, increasing τ increases the memory
required for each GBTM competition (because the number of individuals
in each team increases) and therefore potentially further limits the feasible
values for φ. Even though the testing machine has 16 GB of RAM, φ was
still limited by the available memory, especially when testing larger forests.
This interaction between φ, τ , and the available memory plays a role in a
number of the tests and the choice of setting values for feature instances.

5.2 Training and Testing Data
The data set used in the training and testing in this chapter is a collection
of high-level 19x19 games. The games are from an online archive of games
played on the KGS1 Go server from 2001 to 2009 [35]. All the games that
have handicap stones were filtered out, to ensure the initial game state for

1KGS is a recursive backronym for KGS Go Server.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 55

all games in the data set is an empty board.2 After filtering, the data set
is divided into training and testing data sets before the construction of each
feature instance, as described in Section 4.1. In this work, the testing data
set always consisted of 1000 games.

5.3 Tactical Features
Table 5.1 lists the tactical features, and their various levels, used in this work.
The table also includes example weights for two feature instances: one using
tactical features with φ = 16000, and another using tactical and decision tree
features with SG∅, WWLS, τ = 16, ρ = 800 and φ = 16000.

There are some noticeable differences in the γ values (weights) between
the two feature instances for some of the tactical features. In these differ-
ences, the weights for the feature instance with decision tree features are
much closer to 1, possibly indicating that these tactical features have been
incorporated into the decision trees to some extent.

Furthermore, for both feature instances, the last four tactical features
(those that make use of the distance to recent moves) have a number of levels
with reasonably high γ values. This seems to indicate that the distances to
recent moves are important features, and is further explored in Section 5.10.

5.4 Example Decision Tree Features
This section presents two example feature levels from a forest of decision
tree features. The forest is part of a feature instance from Section 5.9.2 with
tactical and decision tree features, with setting values SG∅ + IG∅, WWLS,
τ = 16, ρ = 3200 and φ = 16000. The two selected feature levels were chosen
from the highest and lowest trained weights in the decision forest, and both
are from trees with the SG∅ query system.

Each feature level corresponds to a descent path down one of the trees in
the forest, and only these descent paths are presented in this section (not the
rest of the relevant decision trees, or the outcomes not found in these paths).

Figure 5.1 presents the first example feature level. This feature level has
a weight of 117.8, which is the highest trained weight in the decision forest.
This feature level represents a move on the 4-4 point in an empty corner,
with an opposing stone in the far corner of the board. This corresponds
with our intuition: a move near an empty corner is a good opening move.
Furthermore, the move is most likely the second move of the game and in the

2The komi of the filtered games is not restricted [1].

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 56

Feature Level γT γDT Description
Pass 1 2.75 2.03 Pass after a normal move

2 264.67 193.54 Pass after another pass

Capture 1 1.81 0.29 Capture a chain
2 1.71 2.59 Capture a chain in a ladder
3 17.19 0.86 Capture, preventing an extension
4 34.12 1.05 Re-capture the previous move
5 86.65 6.44 Capture a chain adjacent to a chain in atari
6 36.66 4.49 Capture a chain as above, of 10 or more stones

Extension 1 13.90 1.05 Extend a chain in atari
2 1.56 0.30 Extend a chain in a ladder

Self-atari 1 0.30 0.76 Self-atari of 5 or fewer stones
2 0.12 0.10 Self-atari of more than 5 stones

Atari 1 3.82 0.84 Atari a chain
2 1.63 0.36 Atari a chain and there is a ko
3 4.21 1.08 Atari a chain in a ladder

Distance to border 1 0.44 1.07
2 1.07 1.04
3 1.63 1.07
4 1.22 1.02

Circular distance (δ◦) 2 13.21 10.41
to previous move 3 6.67 6.62

4 3.80 3.51
.
10 1.32 1.57

Circular distance (δ◦) 2 1.67 1.55
to the move preceding 3 1.53 1.74
the previous move 4 1.02 1.21

.
10 0.95 1.15

CFG distance 1 3.50 2.69
to previous move 2 3.90 2.97

3 4.02 3.09
4 1.97 2.01

.
10 0.80 0.98

CFG distance 1 6.37 2.81
to the move preceding 2 4.55 2.29
the previous move 3 3.54 1.84

4 2.69 1.58
.
10 1.31 1.08

Table 5.1: List of tactical features, with example weights from two feature instances: γT for
tactical features with φ = 16000 and γDT for tactical and decision tree features with SG∅,
WWLS, τ = 16, ρ = 800 and φ = 16000. The weights for level zero of each feature (where
none of the other levels apply) are fixed at 1. When multiple feature levels are applicable,
the highest level is selected.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 57

opposite corner to the first move (considering the data set used), reducing
the opponent’s options and matching typical high-level play.

Figure 5.2 presents the second example feature level. This feature level
has a weight of 0.0194, which is one of the lowest trained weights in the deci-
sion forest. This feature level represents a move on the third line, with three
or more opposing stones in closer proximity than any supporting stones.3
This also corresponds with our intuition: a move in an area of the board
with many opposing stones in close proximity is usually a bad move.

5.5 Move Prediction Outline
This section describes the evaluation of the move prediction of various fea-
ture instances. The move prediction of a feature instance is evaluated by
performing the following process:

• A feature instance with the desired settings is generated, and a testing
data set is formed by randomly selecting 1000 games from the data set,
as described in Chapter 4.

• For each position of each game in the testing data set:

– All the legal moves are evaluated using the feature instance, re-
sulting in weights for the moves.

– The move weights are used to construct a move ordering, and the
rank of the move actually made in the testing data is determined.

– The move weights are also used to construct a GBTM competition
and the observation probability of the correct move winning is
calculated.

• The move ranks are then used to construct a cumulative distribution
M over the testing data, whereM(x) is the probability that the correct
move has rank x or less.

• The observation probabilities are used to determine the mean log-
evidence (MLE) of the testing data: the log of the likelihood of the
testing data observed, divided by the number of observations.

The above process allows feature instances to be compared in terms of
the measured M distribution and/or the MLE. The ideal situation is when

3This description of the second example feature level omits some details for simplicity.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 58

NEW(BW,9) Is there a new black or white node with an edge
weight to the auxiliary node less than or equal to nine?

NEW(S,2) Is there a new side node with an edge weight
to the auxiliary node less than or equal to two?

NEW(BW,19) Is there a new black or white node with an edge
weight to the auxiliary node less than or equal to 19?

NEW(S,3) Is there a new side node with an edge weight to
the auxiliary node less than or equal to three?

NEW(S,3) Is there a new side node with an edge weight to
the auxiliary node less than or equal to three?

NEW(BW,25) Is there a new black or white node with an edge
weight to the auxiliary node less than or equal to 25?

WEIGHT(117.761) Return a weight of 117.761.

None

None

None

Side

Side

White

Figure 5.1: First example descent path from an SG∅ decision tree. The tree
is from a feature instance with SG∅ + IG∅, WWLS, τ = 16, ρ = 3200 and
φ = 16000.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 59

NEW(W,1) Is there a new white node with an edge weight
to the auxiliary node less than or equal to one?

NEW(B,2) Is there a new black node with an edge weight
to the auxiliary node less than or equal to two?

NEW(BWS,3) Is there a new black, white or side node with an edge
weight to the auxiliary node less than or equal to three?

NEW(W,3) Is there a new white node with an edge weight
to the auxiliary node less than or equal to three?

DIST(1,2,=,3) Is the distance between node one (white)
and node two (white) equal to three?

ATTR(LIB,2,=,16) Is the number of liberties of node two (white) equal to 16?

DIST(2,3,<,4) Is the distance between node two (white)
and node three (white) less than four?

ATTR(SIZE,2,=,5) Is the size of node two (white) equal to five?

NEW(WS,2) Is there a new white or side node with an edge weight
to the auxiliary node less than or equal to two?

DIST(2,3,=,1) Is the distance between node two (white)
and node three (white) equal to one?

DIST(1,3,<,4) Is the distance between node one (white)
and node three (white) less than four?

WEIGHT(0.0194) Return a weight of 0.0194.

White

None

White

White

No

No

Yes

No

Side

No

Yes

Figure 5.2: Second example descent path from an SG∅ decision tree. The
tree is from a feature instance with SG∅ + IG∅, WWLS, τ = 16, ρ = 3200
and φ = 16000.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 60

M(1) = 1 and MLE = 0; for each game position, this would correspond to
the correct move always having the largest move weight and the chance of
the correct move winning in a GBTM competition being 100%.

As progressive widening will be used to integrate some of these feature
instances into an MCTS engine, it indicates that comparing the M distribu-
tions will be the most appropriate.4 However, it is unclear how to concisely
compare two different cumulative distributions. Comparing the area under
the curve (AUC) is a possible method; however, due to the use of progressive
widening, only the first few x values of M(x) will be relevant in practice.
Furthermore, preliminary tests (shown in Section 5.6.2) indicated that for
feature instances with the same type of features, the shape of their cumula-
tive distribution curves are very similar, and curves with higher M(1) values
stay consistently above those with lowerM(1) values;M(1) therefore already
seems to be a good metric for comparison. As such, tests in the following
sections will primarily compare feature instances based on their values for
M(1).

In order to objectively compare the M(1) values of different feature in-
stances, some indication of the variance of these values is required. We first
computed the maximum possible width of a 95% confidence interval in terms
of the testing data. This was done by using a normal approximation to the
binomial distribution corresponding to an M(1) value. Assuming that there
are at least 100 moves (typical of 19x19 games) in each of the 1000 games
in the testing data set, and M(1) = 0.5 (resulting in the maximum inter-
val width), the maximum possible width of a 95% confidence interval for an
M(1) value w.r.t. the testing data set is:

2z

√
p(1− p)

n
= 2 · 1.96

√
0.5 · 0.5
100000

= 0.00620. (5.1)

Next, the variance of M(1) in terms of the entire process (including fea-
ture instance construction and testing) was empirically measured, with set-
ting values that could be run fairly rapidly. 50 feature instances with settings
SG∅, WWLS, τ = 8, ρ = 500 and φ = 4000 were constructed and tested;
the selection of training and testing data sets for each feature instance was
independent. The standard deviation of the M(1) values of these feature
instances was determined to be σ = 0.00173, which corresponds to a 95%
confidence interval width of 0.00678 using a normal approximation. Due to
the relatively narrow confidence interval of this test, and the small theoreti-
cal maximum confidence interval width w.r.t. the testing data set, confidence

4If the feature instances were used to select moves in the simulation policy in proportion
to their weights, MLE might be a more meaningful metric for comparison.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 61

intervals are not shown in the move prediction results in this chapter. Fur-
thermore, for assessing significance, it is assumed that the 95% confidence
interval width of all the move prediction results in this chapter is 0.00678
(0.678%).

The length of time required for generating and evaluating the move pre-
diction of a feature instance can vary drastically depending on the features
used and their settings. Due to the fact that the decision tree feature imple-
mentation was not optimized, generating and evaluating the move prediction
of a feature instance with decision tree features sometimes took up to 56
hours on the testing machine. As such, some tests limited the settings to re-
duce the time needed (in addition to the limitation imposed by φ and weight
training).

Note that, in order to highlight the variation in results, the vertical axes
of the figures in this chapter show only portions of the possible range, and
some of the horizontal axes use a logarithmic scale; all relevant axes are
labelled to this effect.

In these tests, harvested patterns, decision forests, and whole feature
instances are reused if the settings are the same. As such, except where
explicitly stated, feature instances with the same setting values share the
components with the setting values in common.

First, Section 5.6 measures the move prediction performance of feature
instances with tactical and pattern features, reproducing a state-of-the-art
feature instance. Then, Sections 5.7–5.9.1 investigate the impact of the vari-
ous settings on feature instances with tactical and decision tree features. Us-
ing the findings from these tests, Section 5.9.2 evaluates the best-performing
feature instances, with various combinations of tactical, pattern and decision
tree features, in terms of move prediction. Finally, Section 5.10 introduces
the history-agnostic modification for tactical features, and discusses the re-
sults of move prediction tests on feature instances using this modification.

5.6 Tactical and Pattern Features
In this section, feature instances with tactical and pattern features are com-
pared. First, Section 5.6.1 evaluates feature instances with just tactical fea-
tures and varying φ. Then, Section 5.6.2 measures the utility of M(1) as
an indicator for move prediction. Finally, Section 5.6.3 evaluates feature in-
stances with tactical and pattern features, varying ξ and φ in an effort to
reproduce a state-of-the-art feature instance.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 62

1 5 10 50 125 250 500 1000 2000 4000 8000 16000
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

φ

M
(1
)

Figure 5.3: The effect of the number of games used for weight training (φ)
on the move prediction of feature instances with tactical features.

5.6.1 Tactical Features

The move prediction of tactical features (without pattern or decision tree
features) is evaluated in this test. In these feature instances, the only relevant
setting is φ, the number of games used for weight training. Feature instances
evaluated in this test were generated with a variety of φ values. Due to the
lack of pattern and decision tree features, there are very few weights that
need to be trained; as such, we conjecture that a relatively low φ will still
result in feature level weights close to optimal.

Figure 5.3 presents the move prediction results of tactical features, with
different values for φ. These results show that φ = 50 is enough data for
weight training when only tactical features are used. As such, in the fol-
lowing tests (where φ ≥ 4000), it will be assumed that the tactical feature
portion of a feature instance always has a sufficiently large φ, and only the
pattern and/or decision tree features potentially require a larger φ for train-
ing optimal weights.

5.6.2 Utility of the M(1) Value

As stated in Section 5.5, M(1) is used to compare different feature instances.
The purpose of this test is to confirm this decision by determining if theM(1)

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 63

1 2 3 4 5 6 7 8 9 10
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

x

M
(x
)

ξ = 1250, φ = 4000 ξ = 5000, φ = 4000

ξ = 10000, φ = 4000 ξ = 1250, φ = 16000

ξ = 5000, φ = 16000 ξ = 10000, φ = 16000

ξ = 1250, φ = 32000 ξ = 5000, φ = 32000

ξ = 10000, φ = 32000

Figure 5.4: Move prediction performance of feature instances with tactical
and pattern features, for different numbers of games used for harvesting
patterns (ξ) and weight training (φ).

value of a feature instance is a good indicator of its overall move prediction,
for tactical and pattern features. For this test, a number of feature instances
using both tactical and pattern features, and a number of ξ and φ setting
values, were evaluated.

Figure 5.4 shows the move prediction of four feature instances with vary-
ing ξ and φ. These results indicate that the M(1) value is a good metric
for comparing different M distributions: if feature instances A and B have
cumulative distributionsMA andMB respectively andMA(1) > MB(1), then
for meaningful values of x, MA(x) is consistently greater than MB(x) . This
matches the argument presented in Section 5.5. As such, the other move pre-
diction tests in this chapter will compare only the M(1) value of the various
feature instances.

5.6.3 Impact of ξ and φ

The move prediction of feature instances with tactical and pattern features is
measured in this test, in order to reproduce a state-of-the-art feature instance.
The two settings relevant for these feature instances are ξ and φ. The impact
of these settings will be measured, and the strongest feature instance used

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 64

1250 2500 5000 10000
0.34

0.35

0.36

0.37

0.38

ξ

M
(1
)

φ = 4000 φ = 8000

φ = 16000 φ = 32000

Figure 5.5: The effect of varying the number of games used for harvesting
patterns (ξ) for various tactical and pattern feature instances with select
values for the number of games used for weight training (φ).

as a proxy for the state of the art if it shows comparable performance. We
expect a larger ξ and/or φ to result in improved move prediction performance.

Figures 5.5 and 5.6 present the M(1) values of various feature instances
with a number of values for ξ and φ. Figure 5.5 shows that, given a suffi-
ciently large φ, an increase in ξ results in an improvement in move prediction.
The figure also shows that if φ is not large enough, then a larger ξ can be
detrimental. The latter effect is presumably due to the high ratio of fea-
ture levels to training data for weights in these situations, resulting in noisy
feature level weight estimates.

Figure 5.6 illustrates that a larger φ generally results in better move
prediction, as expected. The graph also indicates that the effect is more
pronounced for larger values of ξ, possibly because smaller values of ξ in this
test have φ values that are approaching optimal.

The feature instance with setting values ξ = 10000 and φ = 32000 has
move prediction ofM(1) = 38.4%. Table 2.1 in Section 2.4.1 listed the state-
of-the-art move prediction performance of feature instances with tactical and
pattern features, using various algorithms for training weights. In this work
the GBTM and MM are used for feature level weight training, and the M(1)
value of the feature instance from this work (with ξ = 10000 and φ = 32000)

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 65

4000 8000 16000 32000
0.34

0.35

0.36

0.37

0.38

φ

M
(1
)

ξ = 1250 ξ = 2500

ξ = 5000 ξ = 10000

Figure 5.6: The effect of varying the number of games used for weight training
(φ) for various tactical and pattern feature instances with select values for
the number of games used for harvesting patterns (ξ).

compares favourably to the state of the art using GBTM and MM (M(1) =
37.9%). As such, this feature instance will be used to represent the state of
the art in the remainder of this chapter.

5.7 Query Systems and Quality Criteria
This section investigates the impact of the choice of query system and quality
criterion on the move prediction performance of various feature instances with
tactical and decision tree features. This is done in an attempt to investigate
the impact of the various query systems and quality criteria, and select a
number of promising query systems and the most promising quality criterion
for further testing. Additionally, the impact of φ on some of these results is
considered.

We expect that some query systems will perform better than others, but
we expect them all to be comparable. Furthermore, we expect the separate
class of quality criteria, especially those with the weighted modification, to
perform better than the the split class of criteria.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 66

First, Section 5.7.1 compares the move prediction performance for differ-
ent quality criteria. Section 5.7.2 then compares the relative performance
using different query systems. Section 5.7.3 evaluates the move prediction
performance of different query systems, separated into game stages. Finally,
Section 5.7.4 considers the impact of φ on the move prediction performance
of various feature instances.

5.7.1 Quality Criteria

In this work, different quality criteria (divided into two classes: split and
separate) were proposed in Section 3.4.2. In order to reduce further testing,
the impact of the various quality criteria on move prediction performance was
investigated, with the aim of selecting only the best criterion for subsequent
tests. Each combination of query system and quality criterion was tested,
and all feature instances in this test used τ = 8, ρ = 500 and φ = 4000.
We expect the separate class of quality criteria, especially those with the
weighted modification, to perform better.

The move prediction performance of various quality criteria for feature
instances with SG∅ is listed in Table 5.2, sorted by descending M(1) value.
These results show that number of leaves in the decision forest is highly
dependent on the quality criterion used, and that the ordering in terms of
M(1) and MLE is very similar, reaffirming that M(1) is a good metric for
comparing move prediction. Similar observations were made for the other
query systems.

Table 5.4 presents the M(1) values of all the evaluations measuring the
impact of the quality criteria, highlighting the highest M(1) value for each
query system.

Table 5.3 summarizes the results from Table 5.4 by listing the best-
performing quality criteria for each query system. From these results it is
clear that WWLS and WSS are the best performing quality criteria overall.
WWLS will be chosen for further testing as it appears to be slightly better
than WSS in most of these results.

Section 3.4.2 makes a number of conjectures regarding the relative per-
formance of various quality criteria. The results indicate that, in general,
the separate class of criteria have better performance than the split class, as
conjectured. The results also verify that the weighted variants of the sep-
arate criteria tend to perform better than the non-weighted variants. As
conjectured, the results show that the pairs of DS/LS and EDS/ELS have
very similar results. Additionally, the results show that in contrast to our
conjecture, WWLS performed better than WSS.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 67

Quality Criterion Leaves M(1) MLE
Weighted Win-Loss-Separate 12549 31.0% -2.88
Weighted Symmetric-Separate 9617 31.0% -2.90
Symmetric-Separate 11738 29.7% -2.94
Entropy Win-Split 11998 29.5% -3.00
Win-Loss-Separate 14139 28.9% -3.03
Naive Descent-Split 17154 28.6% -3.04
Descent-Split 16233 28.6% -3.05
Loss-Split 16343 28.1% -3.06
Win-Split 10355 27.9% -3.09
Winrate-Entropy 11855 27.8% -3.07
Entropy Loss-Split 30605 27.5% -3.14
Weighted Winrate-Entropy 12244 27.1% -3.12
Winrate-Split 14563 27.0% -3.19
Entropy Descent-Split 30658 26.6% -3.16

Table 5.2: Comparison of quality criteria for tactical and decision tree fea-
tures with the SG∅ query system. All feature instances use τ = 8, ρ = 500
and φ = 4000. The leaves column for a feature instance shows the total
number of leaves in the relevant decision forest.

Rank SG∅ SGC IG∅ IGC IGE IGCE

1 WWLS WSS WWLS WWLS WRS WRS
2 WSS WWLS WSS WSS SS SS
3 SS NDS WWE SS WWLS EWS

Table 5.3: Summary of results from Table 5.4 showing the top three quality
criteria in terms of M(1), for all query systems. All feature instances use
τ = 8, ρ = 500 and φ = 4000.

Stellenbosch University http://scholar.sun.ac.za

C
H

A
P

T
E

R
5.

E
X

P
E

R
IM

E
N

T
S

A
N

D
R

E
SU

LT
S

68

Quality Criterion SG∅ SGC IG∅ IGC IGE IGCE

Naive Descent-Split 28.6% 29.0% 22.1% 22.5% 20.9% 21.3%
Descent-Split 28.6% 27.8% 21.9% 22.1% 20.8% 21.0%
Win-Split 27.9% 28.1% 22.2% 22.0% 21.0% 21.4%
Loss-Split 28.1% 27.8% 22.0% 22.0% 21.0% 21.1%
Entropy Descent-Split 26.6% 25.5% 25.0% 24.0% 20.7% 20.6%
Entropy Win-Split 29.5% 28.6% 25.9% 23.6% 21.1% 21.5%
Entropy Loss-Split 27.5% 25.5% 25.4% 24.0% 20.6% 20.5%
Winrate-Split 27.0% 25.5% 22.2% 21.7% 21.6% 21.8%
Win-Loss-Separate 28.9% 27.2% 24.5% 23.9% 21.2% 21.3%
Weighted Win-Loss-Separate 31.0% 30.3% 27.6% 25.8% 21.4% 21.4%
Symmetric-Separate 29.7% 28.0% 24.9% 24.5% 21.5% 21.7%
Weighted Symmetric-Separate 31.0% 30.7% 27.1% 25.5% 21.3% 21.5%
Winrate-Entropy 27.8% 27.3% 24.7% 23.3% 21.4% 21.3%
Weighted Winrate-Entropy 27.1% 26.0% 26.0% 23.8% 21.2% 21.3%

Table 5.4: Comparison of theM(1) values for tactical and decision tree feature instances with various quality criteria.
All feature instances use τ = 8, ρ = 500 and φ = 4000.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 69

Furthermore, an unexpected observation from these results is that the
best result between IGE and IGCE is only better than one result from any of
the other query systems. As such, the next test will attempt to determine if
IGE and IGCE will be discarded for further testing.

In Section 3.4.2, we conjectured that the separate class of criteria would
result in trained weights that are far from 1, in comparison to the split class
of criteria (due to the winrates of the descent statistics tending to 0 or 1 for
the separate class). To evaluate this conjecture, the variance of the natural
logarithm of the weights (VLW) for different quality criteria was measured,
and the results are shown in Table 5.5.

The results show that for SG∅ and SGC there is no discernible difference
between the VLW of the two classes of criteria. For IG∅ and IGC there is
a marked difference between the VLW of the separate and split classes of
criteria, with the VLW of the split class being much lower. For IGE and
IGCE, the VLW of all the criteria is also much lower than for other query
systems; this is possibly related to the poor performance of these two query
systems.

In Section 3.4.2, we also conjectured that the non-weighted separate cri-
teria would tend to have very unbalanced decision trees. To evaluate this
conjecture, the variance of the length of the descent path for different qual-
ity criteria was measured, and the results are shown in Table 5.6.

The results show that the variance of WLS is much higher than WWLS.
Although the variances of both SS and WSS are not very large (in compar-
ison to other criteria), SS tends to have a higher variance than WSS. The
variances of both WE and WWE are high (in comparison to the other cri-
teria), and there is also not a large difference between them. As such, we
conclude that WLS, WE and WWE tend to construct very unbalanced de-
cision trees. Furthermore, WS and EWS for IG∅ and IGC seem to exhibit
similar behaviour, possibly due to a low winrate of the descent statistics, and
the potential difficulty in finding candidate queries that satisfy the suitability
conditions.

In conclusion, a number of characteristics of feature instances with vari-
ous quality criteria were measured, confirming most of the conjectures from
Section 3.4.2. Furthermore, WWLS was shown to be the best-performing
quality criterion, and is therefore used in further testing.

5.7.2 Query Systems

In order to identify the feasibility of the different query systems, this test
measured the move prediction performance of feature instances with different

Stellenbosch University http://scholar.sun.ac.za

C
H

A
P

T
E

R
5.

E
X

P
E

R
IM

E
N

T
S

A
N

D
R

E
SU

LT
S

70

Quality Criterion SG∅ SGC IG∅ IGC IGE IGCE

Naive Descent-Split 0.413 0.399 0.164 0.134 0.009 0.078
Descent-Split 0.429 0.425 0.123 0.082 0.004 0.004
Win-Split 0.368 0.354 0.126 0.119 0.015 0.008
Loss-Split 0.412 0.408 0.111 0.093 0.005 0.071
Entropy Descent-Split 0.162 0.162 0.186 0.217 0.004 0.005
Entropy Win-Split 0.431 0.391 0.277 0.195 0.029 0.011
Entropy Loss-Split 0.197 0.194 0.237 0.191 0.007 0.005
Winrate-Split 0.307 0.291 0.133 0.114 0.051 0.054
Win-Loss-Separate 0.463 0.422 0.349 0.309 0.090 0.137
Weighted Win-Loss-Separate 0.432 0.393 0.293 0.257 0.061 0.062
Symmetric-Separate 0.462 0.421 0.302 0.225 0.066 0.087
Weighted Symmetric-Separate 0.407 0.378 0.270 0.209 0.032 0.036
Winrate-Entropy 0.438 0.408 0.326 0.266 0.146 0.158
Weighted Winrate-Entropy 0.437 0.396 0.330 0.280 0.109 0.142

Table 5.5: Variance of the natural logarithm of the decision tree weights for tactical and decision tree feature
instances with various quality criteria. All feature instances use τ = 8, ρ = 500 and φ = 4000.

Stellenbosch University http://scholar.sun.ac.za

C
H

A
P

T
E

R
5.

E
X

P
E

R
IM

E
N

T
S

A
N

D
R

E
SU

LT
S

71

Quality Criterion SG∅ SGC IG∅ IGC IGE IGCE

Naive Descent-Split 1.01 1.47 5.05 5.33 7.91 20.19
Descent-Split 1.25 1.06 8.16 6.71 9.23 9.75
Win-Split 5.69 5.78 444.83 843.07 56.06 74.41
Loss-Split 1.18 0.94 6.65 6.50 9.85 11.77
Entropy Descent-Split 1.49 0.84 2.04 55.93 9.25 9.04
Entropy Win-Split 6.80 4.93 431.21 548.91 33.37 81.70
Entropy Loss-Split 1.60 0.78 10.85 5.71 10.16 8.86
Winrate-Split 9.41 8.71 16.63 17.06 31.25 20.48
Win-Loss-Separate 140.89 195.45 821.22 1083.32 518.36 230.47
Weighted Win-Loss-Separate 11.19 4.75 103.29 25.65 68.15 56.07
Symmetric-Separate 12.06 7.61 23.49 19.67 132.27 39.50
Weighted Symmetric-Separate 6.49 4.96 13.47 13.58 46.48 52.22
Winrate-Entropy 149.87 233.35 1052.30 1485.64 687.27 754.38
Weighted Winrate-Entropy 345.55 374.30 941.24 1452.90 640.26 787.53

Table 5.6: Variance of the length of the descent paths for the decision forest in feature instances with various quality
criteria. All feature instances use τ = 8, ρ = 500 and φ = 4000.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 72

query systems. All feature instances have setting values WWLS, τ = 8,
ρ = 500 and φ = 4000 (the same as the previous test). Due to the poor
performance of IGE and IGCE, additional feature instances with these query
systems, but with other quality criteria (WSS and WRS) and values for ρ
(ρ = 2000 or ρ = 4000) were tested. The move prediction performance of
just tactical features with φ = 4000 are also included for comparison.

The results of this test, shown in Table 5.7, indicate that SG has better
move prediction than IG, and that the query systems with no modifications
seem to be stronger than others in the same query system class. Furthermore,
the four best-performing query systems (SG∅, SGC , IG∅ and IGC) all have
significantly better move prediction performance than just tactical features.

The results also show that, even with larger trees than in the previous test
(indicated by the number of leaves in the decision forest), tactical and deci-
sion tree feature instances with IGE and IGCE are not able to perform much
better than just tactical features. A possible explanation is that the empty
modification discards important information from the board-move pair. As
such, only SG∅, SGC , IG∅ and IGC were deemed feasible for use in further
testing. The combination of various query systems will be tested in Sec-
tion 5.9.1.

5.7.3 Query Systems per Game Stages

In Section 3.3 we conjectured that the various query system classes would
perform better at different aspects of Go — we conjectured that the SG class
of query systems would perform better at the beginning of the game, while
IG would perform better at life and death scenarios, which tend to occur
in the later part of the game. In order to validate this, game stages were
formed by separating the positions from the testing data set into independent
groups, depending on their move number in their respective game. In this
work, the width of each game stage was fixed at 30 moves, i.e. the first stage
was composed of moves 1 to 30, the second stage is composed of moves 31 to
60, so on. The length of a Go game varies considerably, with very few games
in the data set with more than 300 moves. As such, the testing data set is
limited to the first 300 moves of each game. Feature instances have setting
values WWLS, τ = 8, ρ = 500 and φ = 4000 (the same as the previous two
tests).

Figure 5.7 compares the M(1) values of the various feature instances,
separated by game stage. The results show that, as expected, SG performs
better than IG at the beginning of the game. However, in the later part of
the game SG and IG have similar behaviour — the move prediction results
tend to steadily improve from move 120 at approximately the same rate, for

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 73

Query System QC ρ Leaves M(1)
SG∅ WWLS 500 12549 31.0%
SGC WWLS 500 9288 30.3%
IG∅ WWLS 500 12262 27.6%
IGC WWLS 500 7352 25.8%
IGE WWLS 500 3977 21.4%
IGCE WWLS 500 3341 21.4%
IGE WWLS 2000 8104 21.7%
IGE WSS 2000 5924 21.6%
IGE WRS 2000 6836 21.3%
IGCE WWLS 2000 4356 21.4%
IGCE WSS 2000 5195 21.9%
IGCE WRS 2000 6674 21.7%
IGE WWLS 4000 12608 21.5%
IGE WSS 4000 9706 21.4%
IGE WRS 4000 12462 21.1%
IGCE WWLS 4000 14268 21.2%
IGCE WSS 4000 14823 21.6%
IGCE WRS 4000 16775 21.4%
Only tactics - - - 20.7%

Table 5.7: Comparison of theM(1) values of tactical and decision tree feature
instances with the different query systems, with additional feature instances
with IGE and IGCE. All feature instances use τ = 8 and φ = 4000.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 74

0 30 60 90 120 150 180 210 240 270 300
0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Game stage

M
(1
)

SG∅ SGC

IG∅ IGC

Figure 5.7: Move prediction performance of tactical and decision tree feature
instances with different query systems, separated by game stages. A game
stage consists of a period of 30 moves, measured from the start of the game.
The results for a game stages are plotted in the center of the relevant interval.
All feature instances use WWLS, τ = 8, ρ = 500 and φ = 4000.

all query systems. An intuitive explanation of this is that diversity of the
positions in the later part of a Go game is lower than during the earlier part.

5.7.4 Impact of φ

To confirm that φ = 4000 used in the tests of Sections 5.7.1–5.7.3 was suf-
ficient, this test measured the impact of φ (the number of games used for
weight training) on the feature instances from the previous tests, that com-
pared quality criteria and query systems. All feature instances used WWLS,
τ = 8 and ρ = 500.

Figure 5.8 shows the M(1) values of the various feature instances, in
terms of φ. These results show that an increase in φ will typically result
in a better M(1) value, and that φ = 4000 was a meaningful value for the
previous tests, as there is considerably more improvement up to this value
in comparison with beyond this value. For future tests that require a large
φ value (such as measuring the impact of ρ), a value of φ = 16000 will be

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 75

1000 2000 4000 8000 16000 32000
0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

φ

M
(1
)

SG∅ SGC

IG∅ IGC

Figure 5.8: The effect of varying the number of games used for weight training
(φ) for tactical and decision tree feature instances with each query system.
All feature instances use WWLS, τ = 8 and ρ = 500.

used, as the results indicate such a value will offer good performance, while
still allowing for larger values of other settings, such as τ .

At this point, a number of feature instances with decision tree feature
have been evaluated. Results have indicated that WWLS is a good quality
criterion, and that IGE and IGCE have very poor results. As such, further
testing will use SG∅, SGC , IG∅ and IGC with WWLS; the next section will
investigate the impact of τ , ρ, and φ on move prediction performance.

5.8 Decision Forest Parameters
This section considers the impact of the τ , ρ and φ feature instance settings
on the move prediction performance of feature instances with tactical and
decision tree features. For all of these settings, we expect a larger value to
result in better move prediction performance, but with diminishing returns
in each case.

First, Section 5.8.1 investigates the impact of τ (the number of trees in
the decision forest) on move prediction performance. Next, Section 5.8.2
investigates the impact of ρ (the number of games used to grow the trees).

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 76

Finally, Section 5.8.3 measures the impact of φ (the number of games used
for weight training) on the move prediction performance of various feature
instances.

5.8.1 Impact of τ

Theoretically, a single large decision tree (τ = 1) could give optimal results,
but preliminary testing confirmed the intuition that a forest of trees (τ > 1)
has superior move prediction performance. As such, this test measured the
impact of τ on the move prediction of feature instances with tactical and
decision tree features. However, simply testing different values of τ , with all
other settings fixed, will result in both the number of trees in the forest, and
the overall number of leaves being altered.5 As such, ρ will also be adjusted to
keep the number of leaves in the forest (and therefore the number of feature
level weights) approximately the same. To do this, the total number of tree
descents in tree growth is kept approximately constant by keeping the value
of ρτ fixed.

In this test, both ρτ = 4000 and ρτ = 8000 were considered; the query
systems were tested independently, and all feature instances used WWLS
and φ = 4000. This value of φ was chosen to reduce the time taken for this
test, while still leaving it large enough for adequate weight training. Values
of τ from 1 to 64 were used in this test. Feature instances with τ = 128 were
attempted, but the weight training process could not handle this setting, due
to the increase in size of the GBTM competitions and therefore the increased
memory requirement.

M(1) in terms of τ is shown in Figure 5.9. These results indicate that a
larger τ will usually result in better move prediction. While the results do
not indicate a significant plateau, a setting of τ = 16 was chosen for further
testing as (for most of the query systems and values of ρτ) there is only very
little improvement for larger values of τ , and larger values constrain other
settings due to computational considerations.

5.8.2 Impact of ρ

This test evaluated the impact of ρ on move prediction. We expect a larger
ρ to lead to larger trees, and thus improved move prediction performance
due to the increased length (and therefore specificity) of the descent paths
(corresponding to feature levels). However, when ρ is increased, the number

5The ρ games are independently considered for each of the τ trees, as described in
Section 4.2; therefore, the number of leaves in the decision forest is closely related to ρτ .

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 77

1 2 4 8 16 32 64
0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

τ

M
(1
)

SG∅, ρτ = 4000 SGC , ρτ = 4000

IG∅, ρτ = 4000 IGC , ρτ = 4000

SG∅, ρτ = 8000 SGC , ρτ = 8000

IG∅, ρτ = 8000 IGC , ρτ = 8000

Figure 5.9: Evaluation of the impact of varying the number of trees in the
decision forest (τ) of tactical and decision tree feature instances, with a fixed
ρτ . All feature instances use WWLS and φ = 4000.

of leaves will tend to increase, and therefore the number of feature level
weights that need to be trained will also increase. As such, this test used a
large value for φ, in an attempt to reduce the dependency of the results on
the weight training. For this test, all feature instances used WWLS, τ = 16
and φ = 16000, for each query system.

Figure 5.10 presents the M(1) results of this test. The results clearly
indicate that increasing ρ will usually result in improved move prediction.
Unfortunately, a number of the feature instances with ρ = 3200 took over 50
hours to evaluate. As such, later tests will typically not make use of such a
large value for ρ, to reduce the evaluation time.

5.8.3 Impact of φ

While the impact of φ was considered in an earlier test in Section 5.7.4,
subsequent tests have used significantly larger trees, which should require
more weight training data. This test investigated whether the impact of φ
on decision forests with more leaves is the same as the earlier test showed. We
conjecture that the effect of increasing φ has significant diminishing returns,
and will reach a plateau when it is large enough for the size of the trees.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 78

100 200 400 800 1600 3200
0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35

ρ

M
(1
)

SG∅ SGC

IG∅ IGC

Figure 5.10: The effect of varying the number of games used for growing
decision trees (ρ) for tactical and decision tree feature instances with each
query system. All feature instances use WWLS, τ = 16 and φ = 16000.

As such, this test was performed on trees with ρ = 800 so that a plateau
could hopefully be observed within the restrictions of the weight training.
Observing a plateau in the results might permit the combined use of results
from this test and the earlier test in Section 5.7.4, measuring the impact of φ
(and indicating a plateau), to extrapolate when the plateau would be reached
for an arbitrary-size forest of decision tree features. All feature instances in
this test use WWLS, τ = 16 and ρ = 800 for each query system and value
of φ.

Figure 5.11 shows the impact of φ on the feature instances of this test.
These results indicate that, while there are diminishing returns, increasing φ
has a significant positive effect on relatively large trees — within the range
of φ in this test, no plateau could be found; a larger φ than our system can
handle is required for optimal weights for such large trees/forests. Note that
φ = 32000 could not be used due to computational resource limitations.

The results presented in this section have shown that feature instances
with larger values of τ , ρ, and/or φ have improved move prediction perfor-
mance. However, increasing these setting values also impacts the time and
memory required to construct and test feature instances. As such, some
non-optimal values are chosen in testing to reduce the computational re-

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 79

1000 2000 4000 8000 16000
0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

φ

M
(1
)

SG∅ SGC

IG∅ IGC

Figure 5.11: The effect of varying the number of games used for weight
training (φ) for tactical and decision tree feature instances with each query
system. All feature instances use WWLS, τ = 16 and ρ = 800.

quirements. The next section will evaluate feature instances with multiple
query systems, and use all the move prediction testing results to construct
the best-performing feature instance using decision tree features.

5.9 Comparison with State of the Art
This section investigates feature instances with multiple query systems and
the combination of tactical, pattern and decision tree features. We expect
multiple query systems to have move prediction performance slightly above
the average of the separate query systems, and we expect feature instances
with the combination of tactical, pattern and decision tree features to be
stronger than other feature instances without all three feature types.

First, Section 5.9.1 evaluates feature instances with multiple query sys-
tems. Then Section 5.9.2 investigates the move prediction performance of
the best feature instances with various combinations of tactical, pattern and
decision tree features.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 80

SG∅ SGC IG∅ IGC

SG∅ 33.4% 33.2% 33.9% 33.5%
SGC - 32.9% 33.8% 32.6%
IG∅ - - 30.3% 29.5%
IGC - - - 27.7%

Table 5.8: Comparison of M(1) values for tactical and decision tree feature
instances with the combination of up to two different query systems. All
features instances use WWLS, τ = 16, ρ = 800 and φ = 8000.

5.9.1 Combinations of Query Systems

This test measured the move prediction performance of tactical and decision
tree feature instances, with a combination of different query systems in the
same forest. All feature instances in this test used WWLS, ρ = 800 and
φ = 8000. The total size of the decision forest was fixed at 16 trees (τ = 16),
and each combination of two query systems was tested with 8 trees of each
type. We conjecture that the combination of two query systems will be
slightly stronger than their average strength, as we expect the combination
will be more robust.

Table 5.8 presents the results of combining different query systems. The
results indicate that the combination of multiple query systems can have
some benefit, confirming the conjecture — all the feature instances with a
combination of two query systems are at least slightly better than the average
of the two separate query systems in terms of move prediction. Although the
difference between the strongest single query system (SG∅) and the strongest
pair (SG∅ + IG∅) is not significant, the results also indicate that the com-
bination of two query systems is usually not significantly weaker than the
strongest of the separate query systems, i.e. a single query system is not
stronger than any combination containing that query system.

5.9.2 Best Feature Instances

This test first constructs a feature instance with the best setting values for
decision tree features found thus far; then this feature instance is combined
with pattern features; and finally, these feature instances are compared to
the state-of-the-art feature instance with tactical and pattern features.6

6We will assume that comparing M(1) values is appropriate, considering these feature
instances have varying feature types (confirmed in Figure 5.12), and the 95% confidence
interval width of 0.00678 (0.678%) empirically found in Section 5.5 also applies to the
results of this test.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 81

1 2 3 4 5 6 7 8 9 10
0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

x

M
(x
)

ξ = 10000, φ = 16000

ξ = 10000, φ = 32000

SG∅ + IG∅, WWLS, τ = 16, ρ = 3200, φ = 16000

ξ = 10000, SG∅ + IG∅, WWLS, τ = 16, ρ = 3200, φ = 16000

Figure 5.12: Comparison of move prediction performance of various feature
instances with tactical, pattern and/or decision tree features. Feature in-
stance setting values are indicated in the legend.

We conjecture that the move prediction performance of the first feature
instance (with the best setting values for tactical and decision tree features)
will be comparable to the state of the art, while the second feature instance
(with tactical, pattern and decision tree features) will improve upon the
state-of-the-art results.

Figure 5.12 shows the move prediction performance of the various feature
instances used in this test. Setting values are indicated in the graph legend,
and it is assumed that feature instances with no mention of setting values
for pattern or decision tree features do not contain the relevant features.
Discussion of these results follows.

The feature instance with tactical and decision tree features was con-
structed with settings SG∅ + IG∅, WWLS, τ = 16, ρ = 3200 and φ = 16000.
These setting values were chosen as the best values found in the previous
tests (with the exception of τ , which was chosen to allow a larger ρ). The
M(1) value of the feature instance was measured to be 35.9%.

While this result is not quite as good as the state of the art, it is still
comparable. As such, we can say that tactical and decision tree features are
a feasible alternative to state-of-the-art tactical and pattern features.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 82

The feature instance with tactical, pattern and decision tree features was
constructed with settings ξ = 10000, SG∅ + IG∅, WWLS, τ = 16, ρ = 3200
and φ = 16000. The M(1) value of this feature instance was measured to be
38.3%.

This result shows that, while this feature instance is able to achieve equiv-
alent performance to state of the art, it is not able to surpass it. However, the
value of φ used for this feature instance was limited; if we compare this result
to a feature instance with tactical and pattern features and φ = 16000 (which
obtained M(1) = 37.4% in Section 5.6.3), then the inclusion of decision tree
features offers a small but significant improvement.

5.10 History-Agnostic Features
The board-move pair theoretically contains enough information to compute
an accurate evaluation for move prediction.7 However, in Go moves are
often local, i.e. moves are often close in proximity to recent moves. While
this shouldn’t make a difference (the best move should be independent of
the game history), tactical features do benefit greatly in practice from the
inclusion of one or more features that take the distance to recent moves into
account. This section briefly explores a modified set of tactical features that
are history-agnostic, for a more fair comparison of feature instances with just
decision tree features (which are only able to evaluate the board-move pair).

In this test, the abbreviations T, P and DT are used for tactical, pattern
and decision tree features respectively. All pattern features used ξ = 10000,
and all decision tree features used SG∅ + IG∅, WWLS, τ = 16 and ρ = 3200.
φ is either 16000 or 32000, depending on the limitations of weight training
due to limited memory.

The history-agnostic tactical features (THA) introduced in this test are
identical to T (see Table 5.1), except that the last four features that measure
the distance to recent moves are excluded. Of the remaining features, only
two feature levels might be considered as history-dependent: atari level 2
and capture level 4. However, atari level 2 could theoretically be determined
without the game history.8 Furthermore, it is fairly tricky to remove just
the single level of capture level 4 without extensive further computation, and
it lacks the broad applicability of the excluded features that measure the
distance to the previous two moves. As such, the atari and capture tactical
features were left as-is. Besides these potential exceptions, this set of features
(THA) is not dependent on the history of the game.

7This assumes that ko information is part of the board state.
8It can be determined that a potential move on the board is illegal due to the ko rule.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 83

T THA P DT φ M(1)
X - X - 32000 38.4%
X - X X 16000 38.3%
X - - X 16000 35.9%
- X X - 32000 26.1%
- X - X 16000 25.0%
- - - X 16000 24.7%
- - X - 32000 24.6%
X - - - 16000 20.7%
- X - - 16000 9.7%

Table 5.9: M(1) values of various feature instances with history-agnostic
tactical features. Feature instances use some appropriate subset of the fol-
lowing setting values: ξ = 10000, SG∅ + IG∅, WWLS, τ = 16, ρ = 3200 and
φ = 16000 or φ = 32000 (for P, THA + P and T + P).

Table 5.9 and Figure 5.13 present the results of this test, sorted by de-
scending M(1) value. These results show that feature instances with THA

do not perform as well as feature instances with T. Furthermore, the results
show that, THA+DT and just DT feature instances are comparable with
THA+P and just P feature instances respectively. Additionally, the results
indicate that the inclusion of any type of tactical features has a greater im-
pact on feature instances with pattern features, compared to feature instances
with decision tree features. We conjecture that this is because decision tree
features are more efficiently able to encode tactic-like concepts, but further
testing, with a larger variety of feature instances, and more in-depth analysis
is required to confirm this.

5.11 Playing Strength
This section compares a few select feature instances in terms of playing
strength, when integrated into an MCTS engine, Oakfoam.

Playing strength was compared using 10000 playouts per move with Oak-
foam, and features were integrated into Oakfoam with progressive widen-
ing, as described in Section 4.6. A fixed number of playouts per move was
used because the aim is to determine feasibility, and the decision tree feature
implementation was not optimized. For each feature instance, a series of 100
games were played on 19x19 against GnuGo (version 3.8, level 10) with 7.5
komi and alternating colors starting on consecutive games [36]. The 95%
confidence interval for a series of 100 games is fairly large, making compari-

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 84

1 2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

x

M
(x
)

THA T P
THA + P T + P DT
THA + DT T + DT T + P + DT

Figure 5.13: Move prediction of various feature instances with history-
agnostic tactical features. Feature instances use some appropriate subset
of the following setting values: ξ = 10000, SG∅ + IG∅, WWLS, τ = 16,
ρ = 3200 and φ = 16000 or φ = 32000 (for P, THA + P and T + P).

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 85

son between results difficult; however, due to the non-optimized decision tree
feature implementation, only a limited number of games could be played in
the time available.

Results of the strength comparison are shown in Table 5.10. The results
show that feature instances with decision tree features instead of pattern
features are a feasible alternative (especially with the same number of games
for φ): not as good as the state of the art, but not significantly worse.
Furthermore, the combination of tactical, pattern and decision tree features
performed marginally better than the state of the art, but not significantly so.
These results correspond well with the move prediction results, confirming
that when used for progressive widening, move prediction is a good indicator
of playing strength.

5.12 Conclusion
This chapter evaluated a large variety of feature instances in terms of move
prediction and playing strength. In Section 5.6, a state-of-the-art feature
instance with tactical and pattern features, and setting values ξ = 10000 and
φ = 32000, was constructed and evaluated in terms of move prediction. This
state-of-the-art feature instance has an M(1) value of 38.4%.

In Sections 5.7–5.9.1, feature instances with tactical and decision tree fea-
tures were evaluated, and the impact of the various relevant feature instance
settings was measured. Section 5.7.1 showed that the WWLS quality crite-
rion has the best move prediction performance and was therefore used for
subsequent tests. Section 5.7.2 illustrated that the two query systems with
the empty modification (IGE and IGCE) have poor performance in compar-
ison with the other query systems, and as such, only SG∅, SGC , IG∅ and
IGC were used in further tests. Sections 5.7.4–5.8.3 evaluated the impact
of the other relevant settings (τ , ρ and φ) of feature instances with tactical
and decision tree features on move prediction performance. The results in
these sections showed that increasing any one of the parameters resulted in
an improvement in move prediction. However, increasing these settings also
resulted in the evaluation of these feature instances requiring more compu-
tational resources. As such, many tests were performed on feature instances
with smaller-than-optimal setting values to reduce the required computa-
tional resources. Section 5.9.1 showed that the combination of multiple query
systems can result in improved move prediction performance, and the com-
bination of SG∅ and IG∅ showed the best performance.

Section 5.9.2 constructed the best feature instance with tactical and de-
cision tree features, and setting values SG∅ + IG∅, WWLS, τ = 8, ρ = 3200

Stellenbosch University http://scholar.sun.ac.za

C
H

A
P

T
E

R
5.

E
X

P
E

R
IM

E
N

T
S

A
N

D
R

E
SU

LT
S

86

Tactical Pattern Decision trees φ M(1) Winrate
X - - 16000 20.7% 8% ± 5.3%
X ξ = 10000 - 16000 37.4% 48% ± 9.8%
X ξ = 10000 - 32000 38.4% 53% ± 9.8%
X - SG∅ + IG∅, WWLS, τ = 16, ρ = 3200 16000 35.9% 48% ± 9.8%
X ξ = 10000 SG∅ + IG∅, WWLS, τ = 16, ρ = 3200 16000 38.3% 58% ± 9.7%

Table 5.10: Comparison of playing strength with a few select feature instances. All feature instances were evaluated
by incorporating them into Oakfoam with progressive widening. For each feature instance, 100 games on a 19x19
board were played against GnuGo, with a fixed 10000 playouts per move for Oakfoam. The 95% confidence
interval is indicated for each winrate.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. EXPERIMENTS AND RESULTS 87

and φ = 16000. This feature instance had an M(1) value of 35.9%, which
is inferior, but comparable, to the state of the art. A feature instance that
combined tactical, pattern and decision tree features was also constructed
and evaluated in Section 5.9.2, but this feature instance did not improve
upon the state of the art.

In Section 5.10, a history-agnostic variation of tactical features was in-
troduced, and various feature instances using these features were evaluated.
The results showed that decision tree features have comparable move pre-
diction performance compared to pattern features without tactical features,
and feature instances with history-agnostic tactical and decision tree features
have similar performance to feature instances with history-agnostic tactical
and pattern features.

Finally, in Section 5.11, the playing strength of a few select feature in-
stances was measured. These results showed that the best tactical and de-
cision tree feature instance has inferior, but comparable, playing strength
performance to state of the art.

In conclusion, the results of this chapter have demonstrated that feature
instances with tactical and decision tree features are a feasible alternative to
the state of the art, in terms of move prediction and playing strength (with
a fixed number of playout per move). However, the decision tree feature
implementation was not optimized and it remains to be seen if optimization
will make decision tree features practically usable in MCTS engines where
there is more typically a fixed amount of time available.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6

Conclusion

In computer Go, moves are selected for play from a given position, similar
to other domains where actions are selected from given states. The use of
features for encoding domain knowledge, constructing move orderings for
prediction, and incorporating the features into the move selection process,
has been shown to be powerful. These features include tactical and pattern
features; tactical features encode hand-crafted heuristics, such as playing
a move that captures an opposing chain of stones, while pattern features
encode the board position surrounding a candidate move. However, it is not
clear how current approaches that use features can easily be transferred to
other domains — tactical features require expert knowledge to encode domain
knowledge, and pattern features are Go-specific. As such, this work aimed
to propose a new more general approach to extracting and using domain
knowledge.

The proposed decision tree feature approach uses decision trees for ex-
tracting domain knowledge in an automated manner. These features evaluate
a state-action pair by descending a decision tree, with queries recursively par-
titioning the input space of state-action pairs and returning a weight stored
at the resultant leaf node. This approach required the design and implemen-
tation of a number of components, including a query system (the state-action
pair representation and query language used by the decision tree queries) and
a quality criterion for the query selection policy (used to select queries when
growing the decision trees).

This work applied decision tree features to Go, in order to evaluate board-
move pairs for move prediction and playing strength comparisons. While we
expect decision tree features to be more easily transferable to other domains
(compared to tactical and pattern features), there is a lack of comparable
results in other domains. In this application, the queries of the decision
tree features evaluate a candidate move by examining the surrounding board

88

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. CONCLUSION 89

position. This work proposed and investigated two classes of query systems,
with six variants in total, as well as twelve quality criteria. Decision tree
features can be combined with other features, such as tactical features, to
form a feature instance. These feature instances have a number of relevant
settings: the query system(s) used, the quality criterion used, the number of
trees in the decision forest (τ), the number of games used for growing the trees
(ρ), and the number of games used for training weights (φ). The hypothesis
was that feature instances with tactical and decision tree features (with select
setting values) would be able to extract and use domain knowledge with
comparable performance to the current state-of-the-art feature instances in
computer Go, as measured according to move prediction and the playing
strength of a computer Go engine.

In this work, feature instances that consist of tactical and decision tree
features were extensively tested. Tests investigated the impact of the various
feature instance settings and showed that they can greatly affect the move
prediction performance of such feature instances. Testing showed that the
strongest single query system is SG∅ (stone graph with no compression), but
that a combination of SG∅ and IG∅ (intersection graph with no compression)
is possibly marginally stronger. Testing also showed that the Weighted Win-
Loss-Separate (WWLS) quality criteria tends to be the best quality criteria
across the various query systems, in terms of move prediction. Increasing
the other settings (τ , ρ and φ) tended to improve move prediction perfor-
mance; however, the size of the decision forest was limited by the available
time, and the amount of data used for weight training was limited by the
available memory. Due to these computational limitations, many tests used
smaller-than-optimal values. The results suggest that optimization of the
implementation to allow larger setting values will result in improved results.

The results showed that, when tactical, pattern and decision tree fea-
tures are used separately, decision tree features have better performance than
tactical features, but slightly inferior performance than Go-specific pattern
features. The best-performing tactical and decision tree feature instance
was constructed with settings SG∅ + IG∅, WWLS, τ = 16, ρ = 3200 and
φ = 16000. This feature instance was shown to have comparable perfor-
mance, in terms of move prediction (M(1) = 35.9%) and playing strength,
to a state-of-the-art tactical and pattern feature instance (M(1) = 38.4%).
As such, it was shown that feature instances with decision tree features are
a feasible alternative to the current state-of-the-art tactical and pattern fea-
tures for computer Go, when used for move prediction or playing with a fixed
number of playouts.

Furthermore, due to the relative ease of applying decision tree features to
other domains, it is likely that decision tree features will be a feasible method

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. CONCLUSION 90

of incorporating domain knowledge in an automated method elsewhere — if
the results with computer Go are applicable, then decision tree features will
have better performance than hand-crafted features (such as tactical features)
while requiring less expert knowledge, and inferior, yet comparable, perfor-
mance than automated domain-specific features (such as pattern features)
while being more easily applied to a new domain.

6.1 Recommendations
This section makes some recommendations for applying decision tree features
to domains other than computer Go.

In order to apply decision tree features to another domain, an appropriate
query system must be designed and implemented.1 The testing in this work
indicates that a variety of query systems (and their combinations) can be
beneficial. In terms of the query selection policy, this work indicates that
WWLS might be a good choice for other domains, and it should be relatively
easy to explore the relative performance of the other proposed quality criteria.

In any application of decision tree features, the various settings will need
to be tuned to find the optimal values. The testing in this work suggests that
for most of the settings (such as τ , ρ and φ in this work), values correspond-
ing to providing more training data will typically have better performance.
However, it is likely that for any domain, these settings will be limited by the
computational resources available. As such, an iterative greedy process that
slowly ascends the multi-dimensional manifold describing the various settings
should be a relatively simple method to find the optimal, or close to optimal,
setting values that can be used, given limited computational resources. At
each step of this process, multiple feature instances that each increase a sin-
gle setting value can be constructed and evaluated, with the best-performing
feature instance used in the next step. This process depends on the fact that,
according to testing in this work, the performance in terms of each of the
setting values is monotonically increasing, with diminishing returns.

6.2 Future Work
Based on this work and the results found, this section proposes a number of
potential avenues for further work.

In order to be practically useful for computer Go (when the time per
move is of concern), the implementation in this work can be profiled and

1Refer to Section 3.5 for details on applying decision tree features to other domains.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. CONCLUSION 91

optimized. It is possible that such work will result in a system that will be
able to complement a state-of-the-art system and together result in improved
performance. Even if these efforts are not fruitful, it is possible that analysis
of some of the more important decision tree feature levels will result in a
number of implementable heuristics to augment current approaches.

While the the amount of training data in this work was limited by the
available computational resources, alternative techniques for modelling and
training weights for features might be able to use a much larger collection of
training data. Future work could explore such possibilities.

This work showed that feature instances with decision tree features are
a feasible alternative to state-of-the-art computer Go feature instances that
are relatively well-established. It remains to be seen if other domains without
such well-established techniques for including domain knowledge can benefit
from the application of decision tree features. Such future work requires
the design and implementation of a domain-specific query system, and the
evaluation of performance in terms of action prediction.

Future work can also investigate the possibility of using multi-core and/or
cluster parallelization for decision tree features. Possible parallelization ap-
plications include: growing a decision forest (with multiple processing nodes
per tree), training weights, and other trivial applications such as action eval-
uation (by descending each tree in the decision forest in parallel).

Furthermore, in addition to the future work proposed above, there are a
number of other minor avenues for future work, such as: adding a history-
dependant element to decision tree features (possibly in a similar fashion
to auxiliary nodes), considering query languages that are able to query the
state-action pair in a more involved manner, limiting training and testing
to separate game stages, and investigating other quality criteria for query
selection.

Stellenbosch University http://scholar.sun.ac.za

Appendix A

Reproducibility

All source code used in this work is available in the codebase of Oakfoam,
an MCTS-based computer Go engine [37]. Oakfoam is released under the
open source BSD license. Oakfoam version 0.2.0 was used for this work
and is tagged in the code repository. Default parameters were used unless
specified otherwise. The following links are relevant:

• Website: http://oakfoam.com

• Codebase: http://bitbucket.org/francoisvn/oakfoam

The MM tool of Rémi Coulom was used to train feature weights. This
tool is available at: http://remi.coulom.free.fr/Amsterdam2007/. This
tool was optimized by Detlef Schmicker, a contributor to the Oakfoam
engine, to allow larger data sets for training. These optimizations are also
included in the Oakfoam codebase, and are automatically applied when the
scripts/features/mm-fetch.sh script is executed.

The following example commands illustrate the process required to gen-
erate a feature instance and measure its more prediction performance. Note
that $ merely signifies a user prompt.

$ sudo apt-get install g++ libboost-all-dev mercurial
$ hg clone http://bitbucket.org/francoisvn/oakfoam
$ cd oakfoam
$./configure
$ make
$ cd scripts/move-prediction/
$ cp example.test params.test
$ vi params.test
$./run.sh params.test

92

Stellenbosch University http://scholar.sun.ac.za

http://oakfoam.com
http://bitbucket.org/francoisvn/oakfoam
http://remi.coulom.free.fr/Amsterdam2007/

Bibliography

[1] K. Baker, The Way to Go. American Go Foundation, 1986.

[2] J. Conway, On Numbers and Games. Academic Press Inc, 1976.

[3] E. Berlekamp, J. Conway, and R. Guy, Winning Ways for your Mathe-
matical Plays. A K Peters, 1982.

[4] E. Berlekamp and D. Wolfe, Mathematical Go: Chilling Gets the Last
Point. A K Peters, 1994.

[5] B. Bouzy and T. Cazenave, “Computer Go: An AI oriented survey,”
Artificial Intelligence, vol. 132, pp. 39–103, Oct. 2001.

[6] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A Survey
of Monte Carlo Tree Search Methods,” IEEE Transactions on Compu-
tational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–49, 2012.

[7] A. Rimmel, O. Teytaud, C.-S. Lee, S.-J. Yen, M.-H. Wang, and S.-R.
Tsai, “Current Frontiers in Computer Go,” IEEE Symposium on Com-
putational Intelligence and AI in Games, vol. 2, no. 4, pp. 229–238,
2010.

[8] N. J. Nilsson, Principles of Artificial Intelligence. Tioga Publishing
Company, 1980.

[9] R. A. Hearn, Games, Puzzles, and Computation. PhD thesis, Mas-
sachusetts Institute of Technology, 2006.

[10] G. M. J.-B. Chaslot, M. H. M. Winands, H. van den Herik, J. Uiterwijk,
and B. Bouzy, “Progressive strategies for Monte-Carlo tree search,” New
Mathematics and Natural Computation, vol. 4, no. 3, p. 343, 2008.

[11] R. Coulom, “Computing Elo Ratings of Move Patterns in the Game of
Go,” ICGA Journal, vol. 30, 2007.

93

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 94

[12] M. Müller, “Computer Go,” Artificial Intelligence, vol. 134, pp. 145–179,
Jan. 2002.

[13] S. Gelly and D. Silver, “Combining Online and Offline Knowledge in
UCT,” in 24th International Conference on Machine Learning, pp. 273–
280, ACM Press, 2007.

[14] G. M. J.-B. Chaslot, L. Chatriot, C. Fiter, S. Gelly, J. Perez, A. Rim-
mel, and O. Teytaud, “Combining expert, offline, transient and online
knowledge in Monte-Carlo exploration,” IEEE Transactions on Compu-
tational Intelligence and AI in Games, 2008.

[15] F. Van Niekerk and S. Kroon, “Decision Trees for Computer Go Fea-
tures,” inWorkshop on Computer Games at the International Joint Con-
ference on Artificial Intelligence, 2013.

[16] J. House, “Groups, liberties, and such.” Computer-Go Mailing
List Archive, http://go.computer.free.fr/go-computer/msg08075.
html, 2005.

[17] N. Wedd, “Human-Computer Go Challenges.” http://www.
computer-go.info/h-c/index.html, 2013.

[18] R. Segal, “On the Scalability of Parallel UCT,” in Computers and
Games, pp. 36–47, Springer, 2011.

[19] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo Planning,” in
17th European Conference on Machine Learning, pp. 282–293, Springer,
2006.

[20] P. Baudiš and J.-L. Gailly, “Pachi: State of Art Open Source Go Pro-
gram,” Advances in Computer Games, vol. 7168, no. Lecture Notes in
Computer Science, pp. 24–38, 2011.

[21] D. Stern, R. Herbrich, and T. Graepel, “Bayesian Pattern Ranking for
Move Prediction in the Game of Go,” 23rd International Conference on
Machine Learning, pp. 873–880, 2006.

[22] M. Wistuba and L. Schmidt-Thieme, “Move Prediction in Go - Mod-
elling Feature Interactions Using Latent Factors,” in 36th Annual Ger-
man Conference on Artificial Intelligence, 2013.

[23] Y. Wang and S. Gelly, “Modifications of UCT and sequence-like simula-
tions for Monte-Carlo Go,” IEEE Symposium on Computational Intelli-
gence and Games, pp. 175–182, 2007.

Stellenbosch University http://scholar.sun.ac.za

http://go.computer.free.fr/go-computer/msg08075.html
http://go.computer.free.fr/go-computer/msg08075.html
http://www.computer-go.info/h-c/index.html
http://www.computer-go.info/h-c/index.html

BIBLIOGRAPHY 95

[24] S.-C. Huang, R. Coulom, and S. Lin, “Monte-Carlo Simulation Balanc-
ing in Practice,” in International Conference on Computers and Games,
pp. 81–92, Springer, 2011.

[25] T. Wolf, “Basic Seki in Go,” technical report, Department of Mathemat-
ics, Brock University, 2012.

[26] L. Ralaivola, L. Wu, and P. Baldi, “SVM and Pattern-Enriched Common
Fate Graphs for the Game of Go,” in European Symposium on Artificial
Neural Networks, pp. 485–490, 2005.

[27] R. A. Bradley and M. E. Terry, “Rank analysis of incomplete block
designs: I. The method of paired comparisons,” Biometrika, vol. 39,
no. 3, pp. 324–345, 1952.

[28] D. R. Hunter, “MM algorithms for generalized Bradley-Terry models,”
Annals of Statistics, vol. 32, no. 1, pp. 384–406, 2004.

[29] M. Wistuba, L. Schaefers, and M. Platzner, “Comparison of Bayesian
move prediction systems for Computer Go,” in IEEE Conference on
Computational Intelligence and Games, pp. 91–99, Sept. 2012.

[30] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Pearson, third ed., 2010.

[31] L. Hyafil and R. L. Rivest, “Constructing optimal binary decision trees
is NP-complete,” Information Processing Letters, vol. 5, no. 1, pp. 15 –
17, 1976.

[32] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,
pp. 81–106, 1986.

[33] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[34] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–
32, 2001.

[35] “Game records in SGF format.” http://www.u-go.net/gamerecords/.

[36] “GNU Go.” http://www.gnu.org/software/gnugo/.

[37] “Oakfoam.” http://oakfoam.com.

Stellenbosch University http://scholar.sun.ac.za

http://www.u-go.net/gamerecords/
http://www.gnu.org/software/gnugo/
http://oakfoam.com

	Abstract
	Uittreksel
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Problem Statement
	Objectives
	Contributions
	Outline

	Background and Related Work
	The Game of Go
	Computer Go
	Monte-Carlo Tree Search
	Domain Knowledge for Computer Go
	Go Features
	Progressive Strategies for MCTS
	MCTS Simulation Policies

	Common Fate Graphs
	The Generalized Bradley-Terry Model
	Minorization-Maximization

	Decision Trees
	Conclusion

	Decision Tree Features
	Overview
	Application to Go
	Query Systems for Go
	Intersection Graph
	Stone Graph
	Resolving Multiple Descent Paths

	Query Selection
	Descent Statistics
	Quality Criteria
	Suitability Conditions

	Other Domains
	Conclusion

	System Implementation
	Training and Testing Data
	Forest Growth
	Weight Training
	Action Evaluation
	Testing
	Engine Usage
	Conclusion

	Experiments and Results
	Testing Methodology
	Training and Testing Data
	Tactical Features
	Example Decision Tree Features
	Move Prediction Outline
	Tactical and Pattern Features
	Tactical Features
	Utility of the M(1) Value
	Impact of xi and phi

	Query Systems and Quality Criteria
	Quality Criteria
	Query Systems
	Query Systems per Game Stages
	Impact of phi

	Decision Forest Parameters
	Impact of tau
	Impact of rho
	Impact of phi

	Comparison with State of the Art
	Combinations of Query Systems
	Best Feature Instances

	History-Agnostic Features
	Playing Strength
	Conclusion

	Conclusion
	Recommendations
	Future Work

	Reproducibility
	Bibliography

