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Abstract

Massively Multiplayer Online Games are large virtual worlds co-inhabited by players

over the Internet. As up to thousands of players can be simultaneously connected to

the game, the server and network architectures are required to scale efficiently. The

traditional client/server model results in a heavy financial burden for operation of

the server. Various alternative architectures have been proposed as a replacement

for the traditional model, but the adoption of these alternatives are slow as they

present their own set of challenges.

The proposed hybrid system is based on many different architectures and peer-to-

peer concepts that were reviewed in the literature. It aims to provide a compromise

for existing, commercially successful MMOGs to introduce peer-to-peer components

into their systems with no requirement of modification to their server or client

software.

With the system’s design presented, the middleware software is implemented

and deployed in a real, controlled environment alongside an Ultima Online game

server and its clients. The movement game mechanic was distributed amongst the

peers while the others remained the responsiblity of the server. A number of per-

formance experiments are performed to measure the effects of the modified system

over the original client/server system on bandwidth, latency, and hardware impact.

The results revealed an increase in the server bandwidth usage by 35%, slave band-

width usage by 17% and supernode bandwiwdth usage by 3111%. The latencies of

distributed server mechanics were reduced by up to 94%, while the non-distributed

latencies were increased by up to 6000%. These results suggested that a system with

absolutely no modification to the server is unlikely to provide the desired benefits.

However, with 2 minor modifications to the server, the middleware is able to re-

duce both server load and player latencies. The server bandwidth can be reduced by

39%, while the supernode’s bandwidth is increased only by 1296%. The distributed

latencies maintain their reduction while non-distributed latencies remain unchanged

from the C/S system.

ii
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Uittreksel

Massiewe Multispeler Aanlyn Speletjies (MMAS) is groot virtuele wêrelde op die

Internet wat bewoon word deur spelers. Aangesien duisende spelers gelyktydig kan

inskakel op die speletjie word daar verwag van die bediener en netwerk argitektuur

om effektief te skaleer om die groot hoeveelhede spelers te kan hanteer. Die tra-

ditionele kliënt/bediener model lei tot ’n groot finansiële las vir die operateur van

die bediener. Verskeie alternatiewe argitekture is al voorgestel om die tradisionele

model te vervang, maar die aanvaarding en in gebruik neem van hierdie alternatiewe

(soos eweknie-netwerke) is ’n stadige proses met sy eie stel uitdagings.

Die voorgestelde hibriede stelsel is gebaseer op baie verskillende argitektuur- en

eweknie konsepte wat in die literatuur oorweeg is. Die doel is om ’n kompromie

vir bestaande komersieel suksesvolle MMASs te verskaf om eweknie komponente te

implementeer sonder om die die bediener- of kliënt sagteware aan te pas.

Met hierdie stelsel se ontwerp word die middelware sagteware gëımplementeer

en gebruik in ’n regte, dog gekontroleerde omgewing, tesame met ’n Ultima Online

bediener en sy kliënte. Die beweging speletjie meganisme word versprei onder die

eweknie netwerk en die ander meganismes bly die verantwoordelikheid van die bedi-

ener. ’n Aantal eksperimente is ingespan om die effek van die hibriede stelsel te meet

op die oorspronklike kliënt/bediener stelsel, in terme van bandwydte, vertraging en

impak op hardeware. Die resultate toon ’n toename van 35% in bediener-, 17% in

slaaf-, en 3111% in supernodus bandwydte gebruik. Die vertraging van verspreide

bediener meganismes neem af met tot 94%, terwyl onverspreide vertragings toeneem

met tot 6000%. Hierdie resultate wys dat ’n stelsel wat geen aanpassing maak aan

die bediener sagteware onwaarskynlik die gewenste voordele sal lewer.

Deur egter 2 klein aanpassings toe te laat tot die bediener, is dit moontlik vir die

hibriede stelsel om data las van die bediener en die speler se vertraging te vermin-

der. Die bediener bandwydte kan met 39% verminder word, terwyl die supernodus

bandwydte slegs met 1296% toeneem. Die verpreide vertragings handhaaf hul ver-

mindering, terwyl die onverspreide vertragings onveranderd bly van die C/S stelsel.
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Chapter 1

Introduction

Massively Multiplayer Online Games (MMOGs) are computer games that allow large

numbers of players to participate simultaneously over the Internet. Typically, an

MMOG is set in a virtual world that is co-inhabited by all players of the game.

The virtual world, also called a virtual environment, is most often persistent, where

the actions of players in the game have a lasting effect on the world beyond a single

session of gameplay. Players of the game are able to interact with the world and other

players on various scales, from small groups of players performing tasks together,

to large armies waging war on one another. While there are many characteristics

between games that are common, such as movement and speech, the setting of the

game often defines the broader goals of the players, such as: raiding a medieval

dungeon for treasure or boarding an enemy spaceship to hijack its cargo.

A player is able to join the game by executing the game client software on

their own computer, creating an account with the game host, and logging onto the

host’s server. Many games require that the player pays a once-off fee for the game

account, a monthly subscription fee to continue playing, or both. Alternatively, a

game account is free but restricted to certain in-game activities, and requires pay-

as-you-go fees to access additional game content. A player is then granted access to

the game by their account, and may participate in the virtual environment as long

as they don’t violate the game’s terms of use. This allows the game host to control

access to its system and generate long-term revenue as it maintains a large player

base over time. For this reason, it is important that players have a good experience

in the game so they remain part of the player base.

The business model of MMOGs turns players into revenue, therefore being able

to scale the game to cater for more players generates higher revenue. It is important

for the underlying network architecture and game protocol to be well designed and

1
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CHAPTER 1. INTRODUCTION 2

capable of supporting large numbers of players.

1.1 Components of an MMOG

Regardless of the underlying architecture or implementation, all MMOGs have a

common set of components. These components together make up the full function-

ality of the system and are considered the design principles of an MMOG. These

components, some of which are described in a 2013 survey by Yahvini and Kemme,

are summarised below [1].

Player Interface As the MMOG is played by people, it is necessary that the

players have a way of interacting with the game. A software game client is required

to act as an interface between the player and the game system. The client typically

presents the game by rendering 2D or 3D graphics and using sound. Through the

client, a player is able to input his desired actions, known as events, and perceive

the changes, known as updates, that result from his own and other player’s actions.

Communication The MMOG includes many players sharing the virtual envi-

ronment, playing the game together and interacting. This requires that communi-

cation channels exist between players, hosts and administrators of the game. As

the games are played over the Internet, this typically involves socket communication

between nodes.

Objects An MMOG takes place in a virtual environment made up of a number

of objects. Game objects can be categorised into four different categories: (1) Im-

mutable objects represent the set of objects which do not change throughout the

course of the game, such as buildings and terrain. They are often entirely static and

included as part of the client software. (2) Mutable objects, in contrast, are dynamic

and modifiable. For example, a player might consume some food or equip a weapon.

(3) Player mobiles, player characters or avatars are all words to describe the player’s

representation in the virtual world. A player controls their mobile through their in-

put into the game client. (4) Non-player characters (NPCs) are characters which

are controlled by artificial intelligence, acting without player input. All objects

typically have additional parameters associated with them to describe their current

state, such as the amount of health points.

When a player joins the environment, they receive a local copy of the virtual

environment made up of objects. For every object, there exists a single authoritative
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copy, and various replicas. When any player interacts with an object, the event is

first transmitted to the owner of the authoritative copy who decides whether the

event is valid. Once processed, an update is transmitted from the owner to all replica

holders who apply it to their local copy. The game client uses its copy of the objects

to populate the graphical interface.

Interactions Typically players have three categories of interaction in an MMOG:

(1) Player updates are interactions in the world which only affect the player, such

as movement causing a change in position. (2) Player-object interactions refer to

all those between the player and mutable objects, such as picking up some food.

(3) Player-player interactions occur between players, such as one player attacking

another and reducing their current health.

The manner in which these interactions may occur is defined by the rule set of the

game engine. The game engine contains game logic which processes an interaction

to produce an update.

Consistency It is necessary that all players perceive the world in the same way.

At any point in time, the virtual environment has a specific game state based on

the current state of authoritative objects. Each player has a local copy of the game

state which is displayed by their game client. If there are discrepancies between

the authoritative state and the players’ local game states, it might result in strange

behaviour, such as a player attempting to use an item that is no longer there or

out of their reach. Therefore, consistency of game state is important to ensure that

players view and interact with the world accurately.

Persistence The virtual environment continues to exist beyond when a player

leaves the game. If any player leaves the game and returns a few days later, their

player mobile should still be available and in the same state that it was when they

left. Similarly, any changes that the player made to the virtual environment should

still be in effect when they return. This requires that the game state is recorded

somewhere and stored persistently.

Interest Management Players typically have limited sensing capabilities and

are only able to perceive what is near to their player mobile in the virtual world.

A player’s interest is limited to only what is relevant to them at that point in

time. By limiting a player’s local copy of the virtual environment to what they

are interested in, it reduces the transmission of information pertaining to irrelevant
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objects. Therefore, an MMOG must be able to distinguish what is relevant to a

player’s interests and manage the objects and state accordingly.

Security Access to the game should be restricted to authorised players. The

MMOG should be secure against various negative and malicious influences such as

cheating, virtual crimes, hacking attempts, malicious attacks on the network, or

simply players who violate the terms of use.

1.2 Architectures

1.2.1 Client/Server

Traditionally MMOGs have been developed to use a Client/Server (C/S) network

architecture in which a server is the centralized authority hosting the virtual envi-

ronment. Players are required to login to the server using their accounts and are

provided access to the world. The server, being the authority, is responsible for

all aspects of the game: access control, storage of persistent game data, processing

interactions, acting for all non-player characters, informing players of updates to ob-

jects, and detection of cheating or rule violations. In this architecture every client

is connected to the server, thus all game traffic is sent to the server that responds

in kind.

Not all games use only a single server, but rather implement a Client/Multi-

Server (C/MS) architecture. Multiple interconnected servers share the load of host-

ing the game between them, allowing the game to be scaled further by introducing

additional servers which increase the hosting capacity without having to upgrade

any existing hardware.

Centralised architectures offer a number of advantages for the game host. Cen-

tralised control allows the developer to manage all access to the server, inherently

increasing the security of the system. As the server hosts all authoritative data, it is

able to verify all player actions in a consistent fashion and detect any irregularities.

If any updates or modifications to the game logic need to be made, it need only be

applied on the server to affect the whole system. All persistent data is stored by

the server, which makes the task of backing up game data trivial. Finally, the game

can be scaled to handle more players simply by upgrading the server hardware and

Internet bandwidth.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 5

However, centralised architectures are not without disadvantages. The expense

for hosting the server(s) is considerable as they have to deal with the full burden

associated with each player. Hardware for servers needs to be acquired, maintained

and even upgraded if necessary. Networking-related costs for bandwidth and traffic

usage over the Internet also contribute towards hosting expenses. The operating

expenses can consume considerable amounts of the revenue stream.

The generation of revenue relies on maintaining a strong player base, which in

turn requires the players to receive a quality entertainment experience. Players

who are not geographically situated near to the server might experience degraded

gameplay due to latency issues. For example, a delay in a combat situation can

impact the game experience negatively by breaking immersion and causing frustra-

tion. Similarly, if the server becomes overloaded, all players will suffer from latency

problems. Furthermore, servers in centralised architectures are singular points of

failure, and if one were to fail it can catastrophically affect the players of the game

by causing downtime and loss of game data.

1.2.2 Peer-to-Peer

Due to the shortcomings in centralized server architectures, alternative architectures

have been proposed in recent years. A number of these methods aim at altering the

network structure in a way that may benefit both the players and hosts of games.

One of the primary alternatives is considered to be a Peer-to-Peer (P2P) network

architecture. The aim of a P2P architecture for an MMOG is to fully distribute

the bandwidth and processor requirements of a game amongst the players rather

than being solely hosted by the server. Therefore, no central authority exists in the

system, and the game is completely hosted by the players. The motivation for this

change in architecture stems from the increase in end-user’s computing power over

the past decade coupled with the increase in Internet bandwidth availability.

Every peer in the network acts as both a client and a server with the authori-

tative objects distributed amongst them. Each peer hosting an authoritative object

is capable of processing the interaction events and producing updates which can

be disseminated to all replica holders. Distributed mechanisms exist to maintain

persistence and consistency of the objects. The network is structured so that com-

munication is done between peers rather than through a central location, and various

methods of distributed interest management exist to aid scalability. The require-

ments of P2P architectures for MMOGs, as described by Schiele et al. in [2], are

more extensive than the basic components of an MMOG.
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Distributing the load amongst the peers eliminates the need for a server. This

results in the developer no longer having the start-up and ongoing expenses that

were described in the C/S architecture. This offers the potential for new developers

to enter into the MMOG market without such a large capital investment. Lower

expenses might also translate into lower player fees, encouraging more players to

join the game.

As there is no central server, players are able to communicate more directly with

peers. This contributes to a reduction in latency, eliminating part of the delay in

interactions and producing an improved gameplay experience.

Finally, P2P systems have no single point of failure which makes them more

robust against system downtime and data loss. Many peers would have to fail si-

multaneously for the P2P MMOG to be impacted.

P2P MMOGs are not without disadvantages. As the requirements for hosting

an MMOG on a P2P architecture are extensive, each requirement presents complex

problems to the designer and no system has yet been able to meet all of them.

Beyond the complexity in designing a P2P MMOG, it is necessary for the host

of the game to relinquish its absolute control and distribute it amongst the players

of the game. It is unlikely that a company who has invested heavily into developing

an MMOG will willingly transfer control of the game to the players.

Therefore, P2P architectures are slow to be adopted as viable architectures for

commercial MMOGs [1].

1.2.3 Hybrid

As both architectures offer their own set of advantages and disadvantages, many

hybrid architectures have been proposed to incorporate aspects of both the C/S and

P2P architectures into one. By allowing the server to maintain its control over the

game, but distributing certain aspects amongst the players, a middle ground can

be established between the two architectures. An example of such a distribution

might involve the virtual world and authoritative objects being hosted by the peers,

allowing them to process interactions, while the server maintains access control to

the game, monitors security issues, and manages persistence.
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1.3 Problem Statement

Well-established MMOGs require servers that are capable of hosting thousands of

concurrent players. Each player places a further bandwidth and hardware require-

ment on the server that ultimately incurs a cost to the game host. In total, the

bandwidth and processing for hosting all of the players generates significant ongo-

ing expenses for the host. Furthermore, the host must continuously provide the

players with a quality gaming experience to maintain revenue generation.

With the idea that using a P2P architecture will reduce the server bandwidth

and improve the gameplay experience, the developer could consider redesigning their

original C/S architecture to support P2P components. However, this is not always

a viable option as doing so poses many risks, and has serious financial implications

on the developer who has already invested heavily into maturing the MMOG into a

stable and commercially viable state.

1.4 Proposed Solution

The problem statement leads to the proposition of this system: a middleware plugin

for established C/S MMOGs. The transparent middleware plugin aims to modify the

existing architecture by introducing peer-to-peer elements without any requirement

of modification to the original client or server software. It is able to autonomously

configure the peer-to-peer network and distribute the processing of any selected game

mechanics, such as movement or speech, amongst the players. This should result

in a reduced server load since the load is distributed amongst numerous peers. In

addition, as portions of the game processing will be performed by the players, a

reduction in latency should occur for players who are situated geographically close

to each other.

If this can be achieved, it should reduce the expenses of operating the server,

as well as improving the gameplay experience for players without impacting them

beyond their capabilities.

1.5 Objectives

The objectives of this study are as follows:

1. Design a novel middleware plugin that will transform an existing, unmodified

system into a hybrid P2P architecture and distribute selected game mechanics
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amongst the peers.

2. Implement the middleware plugin on an existing system as a proof-of-concept.

3. Evaluate the proposed hybrid architecture and measure its effectiveness com-

pared to the traditional C/S system.

4. Simulate the proposed architecture to confirm the trends observed in the prac-

tical tests.

1.6 Contributions

The contributions of this study are as follows:

1. The design of a peer-to-peer middleware plugin for a real game.

2. Real, practical results showing the feasibility of this type of system.

3. A base platform for further research into P2P MMOG concepts to be con-

ducted upon.

1.7 Overview

Chapter 2 introduces the background concepts pertaining to various aspects of the

middleware plugin and its hybrid system. It starts with a brief history of MMOGs,

and examines the traditional architectures used by them in some detail. Some of

the drawbacks of the traditional systems are highlighted, and what current solutions

are in place to alleviate them. This opens the door to the introduction of peer-

to-peer architectures into MMOG systems. After reviewing the basic principles

of P2P networks and their applications in MMOGs, some of the design concepts

are presented in finer detail. An examination of game state models, P2P MMOG

requirements and interest management each contribute towards the design choices

of the system. With the key concepts covered, some details of Ultima Online, the

chosen existing MMOG system, are explained, with particular attention to how they

will affect the design of the system.

This leads into chapter 3 which details the design and implementation of the

middleware plugin. Discussing from various levels, the chapter systematically goes

into finer detail beginning with a top-level description of the designed hybrid ar-

chitecture, the network architecture to support it, and the interest management

scheme that was implemented for the system. With the broader design covered, a
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more detailed examination of the design of the middleware software is presented ac-

cording to its different sub-modules. Each design component has its intended aims

presented, and how they were accomplished.

With the system implemented, Chapter 4 begins by introducing the performance

metrics by which the middleware will be measured: bandwidth, latency and hard-

ware impact. Common elements of the tests are presented before each performance

metric is measured. Three bandwidth tests define the baseline for comparison; the

middleware single region bandwidth; and the middleware inter-region bandwidth.

Three latency tests define the baseline for comparison; a hybrid system best case

configuration; and a hybrid system worst case configuration. The hardware impact

of the hybrid system is examined for its effects on the server, as well as how it will

scale for players. Each test is discussed with regards to the test platform, motivation,

configuration and results.

As a means to verify what was observed in the prior practical tests, Chapter 5

presents simulation models of the C/S and hybrid systems. The chapter discusses

the requirements, platform and design of the simulation. Results of the simulated

models are presented focusing on the effects of the hybrid system on bandwidth and

latency.

Chapter 6 concludes the thesis by presenting the final outcomes of the study and

relating it to other hybrid systems. Finally, it presents recommendations for future

work.
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Chapter 2

Background & Related Work

2.1 Introduction

This section provides background to many key concepts associated with the middle-

ware plugin and the hybrid system. It begins with a history of Massively Multiplayer

Online Games and the architectures they are built upon, the challenges of those ar-

chitectures and what some of the current solutions to the challenges are. Following

this, peer-to-peer networking architectures are introduced, along with their usage in

MMOGs and their current state of bandwidth usage.

With the base systems defined, MMOGs and their P2P architectures are ex-

amined in finer detail. The game state models of MMOGs are explained, provid-

ing context to how MMOGs maintain their virtual worlds. The requirements of

peer-to-peer MMOGs are listed and summarised. Interest management, a common

mechanism for P2P MMOGs, is investigated with a focus on area of interest and

supernode concepts and the different interest management models.

Finally, background is given on Ultima Online: the existing system chosen for

developing the middleware. The requirements of the existing system are listed,

the process of selecting a specific game is explained, and then specific aspects of

Ultima Online are discussed, such as the positional system, the built-in interest

management, how the game can be automated, and finally the limitations introduced

by this experiment and the constraints which result from them.

10
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2.2 Massively Multiplayer Online Games

2.2.1 History

Before the arrival of large-scale multiplayer games, there were Multi-User Dungeons

(MUDs). Developed first in 1978 by students of Essex University, it allowed multiple

players to connect over a network and explore a dungeon environment through a tex-

tual interface. The content and inspiration of the game derived from the traditional

tabletop roleplaying game, Dungeons and Dragons [3]. From that point, multiplayer

games continued to develop towards what some consider the first MMOG developed

in 1991, Neverwinter Nights. Supporting up to 200 concurrent players, this game

boasted simple graphics while maintaining the textual instructions that were orig-

inally featured in MUDs [4]. It was the release of Meridian 59 in 1996 that coined

the term massively multiplayer by securing the support of thousands of players.

Finally, Ultima Online (UO) was released in 1997 and is considered as the first

commercially successful MMOG. Using the Ultima title from an already successful

single player game series, UO quickly gained 100 000 subscribers and still maintains

an active player base today [5]. Many more MMOGs have since been released,

World of Warcraft being the most popular amongst them having achieved a peak of

12 million subscribers in 2010 [6]. A number of the recent MMOGs have over 600

000 concurrent players connected to their servers simultaneously [7].

2.2.2 Architecture

Currently, commercial MMOGs all fall into one of two categories of network archi-

tectures, either a Client/Server (C/S) architecture or a Client/Multi-Server (C/MS)

architecture. A game host, who produces the game, usually owns the server(s)

where the MMOG itself is hosted and all data pertaining to the virtual environment

is stored. A client is a software application which allows a player to access the

virtual world as a player mobile, a virtual representation of the player, through a

graphical interface.

A C/S based system has a single server which performs all the tasks required

of the game host. This includes: authorising access to the game through some

form of login system; storing all of the virtual environment’s data (such as objects

or non-player character locations) to ensure that players are able to experience a

persistent world; computing outcomes of player’s actions based on the set of game

rules defined for the MMOG (such as player mobile movement, spell casting, etc.);

detecting irregular activity and cheating; hosting of chat servers to allow player
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(a) Client/Server Architecture (b) Client/Multi-Server Architecture

Figure 2.1: Standard MMOG Network Architectures

communication; and various other tasks. Furthermore, the server generally hosts

patching updates for outdated clients connecting to the server [8]. A typical setup

of a C/S system is shown in Fig. 2.1a.

A C/MS based system performs similar tasks to the single server, but in a

distributed manner. There are fast, high bandwidth connections established between

each server and the tasks can be divided up in a number of ways. A typical setup

of a C/MS system is shown in Fig. 2.1b.

In all of these mentioned setups, each player has their own copy of the client

software that establishes a connection with the game host’s server and authenticates

itself. Once authenticated, this becomes the only channel of communication that

the client has with the game. Therefore, the client software must send all player-

initiated events to the server and receive the associated updates about the changes

in a player’s mobile and surrounding world. The updates received are generally

limited to what is within the player’s area of interest. The area of interest can

be described as a bounded area within the MMOG’s virtual environment that the

player is interested in. Using the area of interest principle limits the traffic that

would otherwise be used to update each player about everything in the world.

When examining the costs for developing a system to support the massive num-

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. BACKGROUND & RELATED WORK 13

ber of players, the costs incurred for both software and hardware can run well into

the millions of dollars [9][10]. For this reason it is understandable that game pro-

duction companies are reluctant to modify their well-established setups and why

start-up companies are reluctant to enter into the MMOG field at all.

2.2.3 Latency

As MMOGs are played in real-time, latency has a significant effect on the players

experience of the game. A 2002 study into the effects of latency on real-time multi-

player games reveals the importance of low latency in competitive situations [11]. If

players are competing against one another, differences in network latencies can affect

the performance of players, providing unfair advantages in terms of the gameplay.

A good example is that of player-versus-player combat in an MMOG: if two players

attack each other at the same real time, but have a difference in latencies, the player

with the lower latency will appear to the server to have struck first. Therefore, it is

important that latencies are minimized as far as possible in instances where players

are competing.

There also exists cases in MMOGs where latency is not as critical. In a study on

the MMOG Everquest2, it was shown that for simple movement and combat against

non-player characters, higher latencies were found to be tolerable [12]. The reason

behind this was found to be the queue-based combat approach that Everquest2

uses. However, in MMOGs such as Guild Wars 2, the positioning of players can

significantly impact the outcome of combat against non-player characters as dodging

mechanics are included. In this case, latencies once again become important to

decide whether the player completes the dodge in the allowed time-window.

Therefore, it can be considered that low latencies are necessary for providing

players with a positive gameplay experience through fairness, equality, and by elim-

inating the frustration that is derived from poor latency.

2.2.4 Traffic

There have been a number of studies into the bandwidth and traffic usage of clients

and servers in established MMOGs. One of these was performed in 2005 on Shen-

Zhou Online, a commercial Taiwanese MMOG hosting thousands of players. The

study implemented traffic monitoring software on the game’s server and ultimately

concluded that, with the assumption that each client requires a downstream band-

width of 10kbps to play the game, for the server to host 370 000 concurrent con-
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nections it would require a 3.7Gbps connection [13]. A 2008 study into Second Life

client bandwidth usage predicted that a minimum downstream of 10kbps would be

required when a player’s moble is not moving and its area of interest is sparsely

populated by players and objects. However, when the player’s mobile is moving

through a densely populated area of interest, the bandwidth usage can spike as high

as 877kbps [14]. A simulation of World of Warcraft concluded that a client uses an

average downstream of 51kbps over all areas of the game [15].

Given these bandwidth usage statistics of MMOGs, while no exact figures are

publically available, it is clear that the cost for hosting such a system continuously

will be very high to cater for both the bandwidth and traffic requirements [9]. In

addition to this, the server must have enough processing capabilities that it is able

to process events received from all players connected to the game. The costs of

such high-end hardware and the maintenance thereof raises the production cost of

the MMOG even further. It has been estimated that a minimum of 40 percent of

revenue generated by MMOGs is consumed by the costs to run and maintain the

server. In some cases the estimation can reach as much as 80 percent [16][17].

2.2.5 Current Solutions

While the adoption of peer-to-peer alternatives are very slow [1], C/S architectures

are achieving scalability through other means. By making use of cloud comput-

ing, game hosts are able to launch more instances of servers to manage fluctuating

player numbers. By using this technology, a host is able to temporarily scale their

processing capabilities, without the need to secure additional physical hardware.

Architectures are available to seamlessly manage multiple servers being added and

removed from the system.

One such commercial solution is BigWorld, which offers dynamic, real-time, load

balancing. Players are migrated between servers transparently, without interrupting

gameplay, allowing for additional servers to be added or removed as the load changes.

The system is also fault-tolerant, recovering from any server failures with no lost

data [18].

Kiwano, developed by Daiconu and Keller, offers a game-agnostic system for

distributing movement and positional game mechanics [19]. The system divides

the virtual world into dynamic zones, and has each zone managed by a different

server that hosts a spatial index of all objects within the zone. The servers are

interconnected and exchange information pertaining to their borders with servers

of neighbouring zones. Players connect to a proxy which connects, on behalf of
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the player, to the correct zone server and handles communications with it. When

a player changes zones, the proxy automatically switches to another server, and

the change remains transparent to the client. When the player moves, the zone

server is informed and it in turn notifies all other nearby players of the changes.

Additional servers can be added and removed from the system to handle more of

the dynamically allocated zones. The proxy in the Kiwano system shares a lot of

functionality with the proposed middleware plugin.

While solutions like these are very elegant for solving the scalability problems

inherent to C/S architectures, they are still a financial burden to the game hosts.

The volume of data requiring processing and game traffic that the players produce

must be serviced and is still the complete responsibility of the game host.

2.3 Peer-to-Peer

2.3.1 Overview

A generic decentralized P2P network architecture is very different from a C/S net-

work architecture in that there is no central server that every node connects and

communicates through. Instead, all nodes in the network are potentially directly

connected. Because there is no need for a server, developing applications to use a

P2P network architecture could dramatically lower startup and maintenance costs.

Many publications discuss how such a P2P network should be arranged and con-

nected to provide a stable network upon which an application can be built [20]. The

way in which the P2P network nodes are arranged is what is known as a network

overlay. Overlays can be considered distributed lookup protocols for P2P networks,

allowing nodes to locate where data can be stored in and accessed from the net-

work. Some of the network overlays are Chord [21], CAN [22], Tapestry [23], and

Pastry [24]. The self-organising overlays provide the functionality of a Distributed

Hash Table (DHT) where keys and address values of different nodes contained within

the network can be looked up to provide an address of where in the overlay the nodes

are located. On top of these overlays, additional layers have been constructed to

provide functionality to the network, such as multicast messaging through the use

of Scribe [25] and persistent data storage through PAST [26].

Many P2P overlays make use of direct communication, where any nodes who

need to communicate connect directly to each other [1]. Direct communication

overlays typically offer the lowest latencies as data is transmitted from the origin

directly to its destination with no additional hops. In addition, these overlays are
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often the simplest to setup and maintain. However, they are often limited by the

upload capacity of a node, as the originating node is responsible for sending the

data to all interested nodes, which in some cases might be many. Therefore, interest

management is necessary to efficiently manage direct communication.

An alternative to direct communication overlays are multicast overlays. Nodes

are organised in a tree structure where every node is responsible for transmitting

data to its children. This has a lower bandwidth requirement as nodes typically

have few children, and thus only have a few nodes to transmit data to. However,

this structure suffers from higher latencies as data requires numerous hops before

it reaches its destination. In addition, many nodes see an increase in bandwidth

even if they only act as forwarders and receive data that has no relevance to them.

Finally, multicast overlays are more complex to configure and maintain.

2.3.2 Usage in MMOGs

In a 2004 paper by Knutsson et al., the approach of using a P2P network overlay

to implement an MMOG was proposed [27]. In the experiment, a P2P MUD was

implemented using the Pastry network overlay and Scribe enhancements. With this

setup, up to 4000 players were connected simultaneously to the virtual environment.

The results of this study opened the field for research into P2P MMOGs. Since then,

many further architectures capable of supporting P2P MMOGs have been proposed.

A paper by Hampel et al. builds on Knutsson’s architecture by introducing PAST

into the system to manage game objects and resources through a storage system [28].

A fully distributed architecture focusing on scalability of the system is presented by

Hu and Laio describing how to arrange connectivity between nodes, introducing the

concept of distributed interest management [29]. Another architecture was intro-

duced in 2007 by Chan et al. called Hydra. Their system addresses the need for

reliability where network churn, the continuous entry and exit of nodes in the sys-

tem, occurs in a P2P environment, and managing nodes that leave holes in the P2P

overlay [30]. Each of these architectures are built focusing on different requirements

of P2P networks for MMOGs.

While the previous proposals were all based on pure P2P architectures where no

central authority is present, a number of others have taken a hybrid approach where

some form of centralized authority is maintained to perform chosen tasks while the

P2P network makes up the bulk of the architecture. Chen and Muntz suggest that a

solution to some of the difficulties introduced by peer-to-peer systems can be solved

by leaving the server in the system to handle issues like bootstrapping, persistence
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and security. The remaining P2P segment of the network can then manage server

computation and traffic to increase scalability of the system [31]. VoroGame, an

architecture by Buyukkaya et al., integrates the propositions of [29] into their system

to arrange connectivity between correct nodes [32]. Carter et al. developed a full

hybrid system, Net Homura 2.0, where they engineer their own server to act as a

‘bouncer’ and ‘usher’ while allowing their P2P clients to manage the game state [33].

In a 2009 paper by Varvello et al., they develop a practical P2P system for

Second Life, a commercial MMOG, and evaluate its feasibility. They distribute the

management of the virtual world amongst their peers over a structured P2P network

built atop of Kad, a P2P overlay that was developed for file-sharing. Using captured

player traces, they emulate the gameplay of Second Life on their system and show

that using the standard P2P structure, they were able to provide a consistent,

persistent and scalable virtual world. While being able to maintain some features,

players migrating between areas, or joining the game, caused a large spike in latency.

In cases where an area was densely populated, it prevented a moving player from

receiving a consistent view of their current area. However, these findings do reiterate

it is possible for peer-to-peer MMOGs to work effectively and host the entire virtual

world on a distributed system [34].

It would appear a middleware application, that can integrate into an already

established C/S MMOG to transform it into a hybrid P2P system, has not yet been

implemented.

The motivation to utilizing a P2P network is to reduce the need for a server by

having each player in the game contribute its own available processing power and

bandwidth to host itself. Thus some or all of the server tasks previously described in

section 2.2.2 are distributed between the peers. Implementing P2P MMOGs present

the developer with both benefits and challenges over a traditional C/S architecture.

If executed correctly, a P2P MMOG can be more robust, more scalable, have a lower

cost, reduce latency, handle the peak transient load more effectively and eliminate

the need for a server altogether [35].

2.3.3 Traffic

A study released in 2010 discusses the near-term feasibility of P2P MMOGs [15]. In

this study the traffic and bandwidth usage of a popular MMOG, World of Warcraft,

is simulated and analysed as both a C/S and P2P architecture. The final outcomes

were stated that for the near future, a full P2P architecture would be unsupportable

given the current capabilities of the average player’s available bandwidth. This
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points towards the use of a hybrid centralized system being a more viable possibility.

2.4 MMOG Game State Models

Describing the MMOG game state models helps in understanding how an MMOG

maintains the virtual world. Gilmore’s paper on state persistency addresses the two

traditional models: the event-based model and the update-based model [35]. Re-

iterating the following terminology aids in understanding the models he describes

which are summarised below.

Events are generated by the client software whenever a player interacts with

objects in the virtual world, e.g. Eating an apple.

Game Logic is part of the game engine and forms the rule-set of the game.

It describes the response to different activities in the game, e.g. Eating an apple

reduces hunger.

Updates are the result of applying game logic to events. They describe how

objects in the the virtual world should change, e.g. Player is no longer hungry.

Game State refers to the current state of all objects in the virtual world,

including every detail about them.

2.4.1 Update-Based Model

The update-based model is the traditional C/S model of MMOG operation. A server

hosts the authoritative game state of the entire virtual world. All the game logic

is stored on the server, and clients are required to send events to it for processing.

Each client also has its own local game state that it believes to match the servers

authoritative state.

The process of a game state change is shown in Fig. 2.2. Initially the game is in

state S0, and a client produces an event. This causes his own state to change to a

predicted next state S′
0, and for his event to be sent to the server. The server applies

the game logic to the event upon receiving it to produce an update. It applies the

update to its own global game state to update the authoritative state to S1. The

server then broadcasts the update to all clients, which apply the update to their

own local states, updating themselves to S1.

The update-based model offers strong security as clients are unable to alter the

game state in any way other than through events. They rely on updates from the

server to have their game state changed. If there are ever any conflicts in state,

the server’s state is always deemed to be authoritative and overwrites all others.
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Figure 2.2: Update-Based Model showing the process of a state update.

Therefore, all security benefits of a C/S system apply to this model. Ignoring costs,

this model has the benefit of being simple to scale, by just upgrading the server the

capability of the system grows. Just about all current MMOGs use this model.

Even is C/MS systems, update-based models are used. The authoritative game

state is just distributed across the multiple servers. One example of this is sharding

where multiple servers each host a copy of the virtual environment. Players are

able to connect to any one server and interact with that instance of the world,

but their interactions do not carry across to other worlds hosted on other servers.

Sharding is a simple way of scaling a system, and allows for a smaller virtual world

to accommodate many more people by mirroring it. Even though the full MMOG is

distributed across multiple servers, each individually manages its copy of the game

state according to the update-based model.

2.4.2 Event-Based Model

The event-based model follows a traditional fully distributed P2P model. Every

peer in the system has a full copy of the game logic and is able to process any event

to produce an update. Each player also houses his own global game state. Using

these tools, players transmit their events to all other peers, which are then able to

apply their set of the game logic to update their own game state.

In this model, event ordering becomes important. A peer might receive events

from multiple different peers that influence each other in a different order from

someone else. Processing these events might result in differing game states. There-

fore the order in which events are applied are important. It is also not a very
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scalable approach as all peers are connected with all other peers, causing traffic to

grow quadratically. Finally, this model inherently lacks security, as clients could

maliciously influence traffic, state or game logic.

2.5 Requirements for Peer-to-Peer MMOG

systems

A P2P MMOG must fulfil a number of requirements to properly facilitate the game-

play and all its associated aspects. Many of these requirements overlap with the

basic components of MMOGs, but focus on their application in a distributed archi-

tecture. A 2007 paper by Schiele et al. lays out each of these requirements which

are summarised below [2].

Distribution requires that the game logic, data and computation are all de-

centralized and distributed between the peers of the network. Peers are required

to store game data pertaining to game state, objects, and mobiles. Furthermore,

peers must be capable of processing non-player characters artificial intelligence ac-

tivities, and capable of applying game logic to player actions. The system requires

distributed data management, as well as distributed computation mechanics.

Consistency is important in MMOGs as multiple players share the same virtual

world. All players active in the world should have the same view of the world and

perceive events in an identical fashion. Although strict consistency exists in a C/S

system, P2P systems should, as a minimum, aim to meet player expectations. This

introduces complicated problems like event ordering in a distributed system to ensure

that players do not take actions that contradict each other.

Self-Organisation manages the ever-changing availability of devices in the net-

work. Players continuously joining and leaving the game can influence the perfor-

mance of the network. If a node was assigned a task, and then abruptly leaves,

the task remains unfinished and must be redistributed quickly. Alternatively, new

players joining offer more computation and storage capability, so they must be in-

corporated into the system to improve its performance and to balance the load. All

of these actions must happen autonomously throughout operation.

Persistency of the world’s state must be maintained over time. Players effects

on the world should be maintained between play sessions, and their own mobiles

should be ready for their return. This does not only apply to their own actions,

but if other players influence the world in their absence, it should be perceivable

upon return. Thus, the state of the world must be stored persistently over time,
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and not lost when players depart. This can also be extended further by recording

some history of the game state for the purpose of tracking virtual crimes.

Availability of the game is especially important for players who pay for the

service. This requires that the system have high reliability and high fault-tolerance.

The system should also be capable of dealing with issues introduced by network

address translation (NAT), firewalls and running multiple clients.

Interactivity is a fundamental aspect of MMOGs, having players interact with

the game, and receive a direct response to their actions, such as issuing orders,

taking part in combat, etc. If this is not available, it can have a significant impact

on the gameplay and players perception of the game. This leads to the requirement

of maintaining a low latency between players to receive responses to their actions as

quickly as possible to reduce experienced delays.

Scalability is necessary to achieve to massive numbers of players that MMOGs

are titled for. Large numbers of concurrent users all occupying the same virtual

world must be manageable by a P2P system. Not only must the system be able

to deal with fluctuations and peaks in numbers, but must also be continuously

expandable to be able to grow the game further. The possibility of a P2P network

to scale naturally counts as a big advantage over the traditional C/S system which

requires financially taxing server upgrades. However, this requires special attention

as scaling incorrectly could easily overload a node.

Security against virtual crimes and cheating is necessary in a game where many

players are sharing the same environment. Players seeking unfair advantages might

attempt to hack their clients to gain them. Cheating prevention is necessary to

keep the game balanced and fair for all players to keep them active and interested.

Following this, a means to track virtual crimes such as offensive language or fraud

also contributes towards maintaining a large player base. Finally, for an MMOG to

have a successful business model, it requires some form of secure accounting system

and payment management, resistant to attacks.

Efficiency of the peer-to-peer mechanics will leave hardware resources free for

processing the usually highly-detailed 3D game. If the game is not up to modern

standards, players will be disappointed and move elsewhere. Therefore, the under-

lying system must operate as efficiently as possible to still be able to contribute to

hosting the game without influencing the actual gameplay.

Maintainability of MMOGs allows the game to stay updated, often introduc-

ing new features as well as patching bugs and exploits that have been discovered.

Anti-cheating mechanisms will always need to be updated as players search for new

ways to cheat the system. While a C/S system can disconnect all players for main-
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tenance to occur, a P2P system needs to perform this on-the-fly while the clients

are operating as the hosts while playing the game. This also needs to adhere to the

consistency requirement.

These are the full requirements of developing and hosting a fully distributed

P2P MMOG. The proposed hybrid system, as a proof-of-concept, specifically focuses

on the requirements of distribution, self-organisation, interactivity, scalability and

efficiency.

2.6 Interest Management

2.6.1 Overview

In a traditional client/server MMOG setup, players are often located at entirely

different places throughout the virtual world, and are only aware of what is relevant

to them at that point in time. The amount of information that a player is made

aware of at any time is controlled by the server. This is done in an effort to reduce

the traffic that is generated and distributed to each client. If a player were to receive

updates about the entire world, it would serve little to no purpose as a player is only

actually able to see and interact with a smaller area around themselves at any given

point in time. In the context of a game, the player’s ability to only see and shoot

an arrow a limited distance translates into the player’s area of interest.

As a pure peer-to-peer system aims to eliminate the need for a server, the same

rule for a client/server system applies for a peer-to-peer system: a player should

only ever receive updates about the area in which they are situated and able to

interact with. This serves to reduce the total traffic experienced by peers in the

network, rather than facing the problem of overloading peers by transmitting every

event occurring in the world to every other peer connected to the game.

Interest management (IM) schemes aim to facilitate this server feature in a peer-

to-peer network. There have been many articles published in the last decade which

have presented different methods of defining a player’s area of interest and ways

to distribute events and updates amongst the peers. Comparisons are often drawn

between the different schemes and provide interesting insight into which are suited to

specific situations. Most IM schemes fall into one of three models as fully detailed by

Lu Fan in 3.2 of [36]: the spatial model, the region-based publish/subscribe model,

and the hybrid communication model.

In the rest of this sections, we first define area of interest, address the concept
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Figure 2.3: Area of Interest surrounding a player

of a supernode, and finally summarise the models as described by Fan.

2.6.2 Area of Interest

Across all implementations of Interest Management, the concept of an Area of In-

terest (AOI) exists [36][29][37][38]. An AOI is described as an area surrounding a

player that he has influence over, or influences him. Often described by a circle

or rectangle surrounding a player’s current position, everything within the area is

considered to be of the players interest as it is within range of his perception. The

complexity of the AOI can vary from every object within the area, to limiting it to

what is currently visible by the player, to including prediction into what will next

be visible. An example of an AOI surrounding a player is shown in Fig 2.3. The

concept is similar to a C/S MMOG system where a server only sends updates to a

player pertaining to what is nearby them.

The AOI serves as a limit to what updates a player should receive at any given

time. If something is outside of the players AOI, there is usually no value in updating

them about changes to game state in foreign areas. The exact definition of an AOI

can be entirely dependant on the bounds of the game it is being applied to. In a

paper by Bharambe et al., they develop the concept of an Interest Set which serves

the same purpose as an AOI, with the difference that it concentrates on what the

players attention is on, rather than what is in its surrounding area, and uses that

to limit the traffic to peers [39].

2.6.3 Supernode

Another IM concept which appears in many schemes is the supernode, or superpeer.

Originating from the evolution of P2P networks, the term is used to describe a peer

which has been elevated to a position of higher power, usually responsible for more
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tasks than the standard network peers. Used in aid of network efficiency, supernodes

are often the nodes with the most computing power which are selected to take on

server-like responsibilities to assist standard peers [40]. For example, a supernode

may compile a list of all objects available on its nearby standard peers, exchange

lists with distant supernodes, and use this expanded knowledge to locate a particular

object more efficiently. This reduces overhead and redundant traffic generated by

standard peers.

Supernodes are usually responsible for a smaller subset of standard peers. This

requires that the full set of peers be clustered or grouped into smaller groups. A

single peer in the group is then selected to be the supernode of the group. This

improves the organisational structure of the network by allowing every peer to be

served by one supernode, and eliminating any redundancy of contacting multiple

supernodes. Having a more reliable knowledge of the current members of the net-

work, supernodes are able to act as entry and exit points of the P2P network. Some

architectures suggest using multiple different types of supernodes to help facilitate

and maintain the P2P network successfully [41].

The selection of supernodes in a network presents an interesting problem. There

are many criteria from which a supernode could be selected such as: computation

power, network speed, position in the network, position in the virtual environment,

reliability, active duration, or proximity to other supernodes [42].

Along with the benefits of a supernode, having an elevated peer can introduce

a number of risks for the system. Any supernode becomes a point of failure in a

network, and therefore additional mechanisms must be instated to increase the fault-

tolerance of the system. The ability to exchange supernodes and recover from losses

is essential. Supernodes also become the targets for malicious attacks on a network,

such as denial-of-service attacks. If enough nodes are removed from the network to

overcome any recovery mechanisms, the entire network could collapse [43].

Because the goal of Interest Management in P2P MMOGs is to reduce the traffic

generation, a supernode is able to assist in managing the flow of updates between

nodes based on their areas of interest. Furthermore, it is able to communicate with

other supernodes to exchange summarised information about nodes under supervi-

sion. Grouping of nodes also forms a fundamental mechanic of some IM schemes.

Therefore, in many cases, supernodes are a useful mechanism for interest manage-

ment schemes.
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Figure 2.4: Spatial Interest Management Model

2.6.4 IM Model: Spatial

The spatial model completely revolves around the location of objects (mobiles or

items) in the world. An object typically has an area of interest surrounding itself at

all times, and when that area of interest intersects any other object’s area of effect

(the area surrounding an object where the effects of that object are experienced),

then they are become aware of each other and exchange data. However, this model

requires that all objects regularly exchange positional data. This model is shown in

Fig. 2.4.

Many of the more computationally complex spatial algorithms are those that

calculate an area of interest based upon a Voronoi Diagram [44]. Each player has a

dynamic Voronoi cell which borders on other players’ cells. The player is then able

to reduce the connections it maintains to only neighbours occupying cells within

the player’s own area of interest. The connected neighbours then inform the player

when there are changes within its area of interest. An example of this setup is

shown in Fig. 2.5. This requires regular computations to be performed by each peer

to calculate its own Voronoi diagram surrounding the player based on the player’s

proximity to others. Voronoi based interest management appears in [29][45] and is

also used in a comparison with alternative schemes in [46]. As the spatial information

of objects are only exchanged between connected nodes, Voronoi Diagrams aim to

reduce object location traffic of the traditional spatial model at the cost of increased

computational complexity.

2.6.5 IM Model: Region-based

The region-based publish/subscribe model divides the virtual world up into static

regions and data is only exchanged between objects within the same, or neighbour-
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Figure 2.5: Example Voronoi cells where red lines are cell borders. A player is
connected to two neighbours of cells intersecting his AOI.

ing, regions. A peer then subscribes to the regions with which its own area of interest

intersects and receives all updates pertaining to objects in those regions.

The size and shape of the static regions can have a significant effect on the

amount of data transferred between nodes. If regions are larger than what the

player is interested in, the player will receive a lot of information that has no rele-

vance to its current perceived state. It has become widely accepted that hexagonal

regions in place of square regions can already result in a significant reduction in

traffic [47][37][38]. This is largely due to the resemblance of the hexagons to a cir-

cle. Fig. 2.6 shows the difference in subscribing to neighbouring regions of different

shapes. Even more advanced shapes based upon triangles are presented in [38], but

the more advanced shapes result in higher complexity computations.

2.6.6 IM Model: Hybrid

The hybrid communication model divides the virtual world into static regions, and

promotes a peer in each region into a supernode, which effectively becomes the

administrator of that region. The supernode is then responsible for managing all

spatial-based interest management bounded within that region.

A good example of a hybrid model is MOPAR: A Mobile Peer-to-Peer Overlay

Architecture for Interest Management of Massively Multiplayer Online Games [37].

In this implementation, static hexagonal regions are defined, and supernodes are
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Figure 2.6: Region Shapes: Red represents the player AOI while grey is un-
necessary additional region information.

promoted to administrate these regions. The addressing of regions and supernodes

are handled by Pastry, a distributed hash table built into the P2P network [24].

When a player enters a region, it sends a join request to the supernode, who responds

and informs all other nodes within the region about the new player. The supernode

then manages the interest of the group members and communicates with adjacent

regions. Hybrid models attempt to exploit the benefits of both other models while

avoiding their downfalls.

2.7 Existing System

2.7.1 Requirements

As the goal of the proposed middleware plugin is to transform an existing system

without modification of the client or server software, a pre-existing system is nec-

essary to base it upon. The following requirements were deemed important for the

selection process:

• The system must use the Client/Server network architecture.

• The system must offer a freely available open-source server. Open source

will help with with designing the middleware plugin and as the system will

distribute game logic amongst the peers, it will require the use of the server

code.

• The system must offer a freely available client, preferably with an open-source

option.

• The protocol must be well documented including detailed information of the
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system’s packets.

• The system must be or have been a commercially successful MMOG.

2.7.2 Selecting a System

Two C/S MMOGs were initially identified as potential systems: World of Warcraft

and Ultima Online. Both were globally the most popular MMOGs at different times,

and both had emulated server software available, along with an easily accessible

client.

Further research into both possibilities revealed that while World of Warcraft

is more recent, the emulated server software was poorly developed, unstable and

lacking in documentation. Ultima Online, however, could offer a well developed,

stable, open-source server with an active community. As an additional benefit, an

open-source client for UO was also available. Therefore, Ultima Online was chosen

as a base system. The standard UO client is available for free download from the

developers at [48]. RunUO, the open-source, reverse engineered server is available

from [49]. Iris2, the open source client, is available from [50].

2.7.3 Automation

Many macro script applications were developed throughout the course of UO’s lifes-

pan, allowing players to automate their activities in-game. EasyUO, the macro

application available from [51], is a well established macro scripting platform which

allows for complex automation of any player activity if necessary. In the context of

the hybrid system, this is useful for facilitating the experimental evaluation of the

system as game clients are required to operate as they would in a real system and

generate interactions accordingly.

2.7.4 Architecture and Operation

Ultima Online was originally developed with a client/multi-server architecture using

the sharding principle. When a new client connects, a centralized login server au-

thenticates it before redirecting it to the shard of its choice. The client then connects

to the shard and enters into that instance of UO’s virtual world of Britannia. It

follows the update-based consistency model, where an acting client sends their event

to their world’s hosting server. The hosting server applies game logic to produce an

update which is then returned to the client for its game state to be updated. The

server hosts the global authoritative world state and is expected to process every
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client event into an update. RunUO modifies this approach slightly by disregarding

the sharding principle, and hosts a single instance of the world in the same package

as the login server.

When the login process is complete, a large set of updates is sent from the

server to the new client pertaining to its current position in the world. All these

updates are applied to the default starting game state to update it to the current

authoritative view of the world. The client holds no information from its previous

session, therefore the server sends sufficient updates at login to bootstrap any client

from nothing to the current state.

In Ultima Online, characters are known as mobiles and all parameters of their

state are stored server-side. When a player has a mobile of its own, it is only

informed of selected information by the server, such as the its current position and

the status of the mobile in terms of how strong, fast and intelligent it is. The server

maintains its security by only allowing authenticated clients to connect to it. If

the authentication check passes, the player is able to select a mobile to play, and

that mobile is associated to its connection. The server strictly only accepts events

of a player’s mobile if it originates from the connection that was associated to it

upon login. This mechanic prevents malicious players from sending rogue packets

pertaining to other players’ mobiles.

2.7.5 Positional System

The UO world functions on a discrete 3-dimensional co-ordinate system, where each

point has an associated set of (x,y,z) integer co-ordinates. Although the world is 3-

dimensional, the vertical component is often ignored for many purposes. The entire

world is divided into a collection of 7 large maps, which are sub-divided into sectors

and regions.

Sectors are the result of maps being divided up into equal-sized rectangles along

the horizontal plane, where none overlap. They facilitate organisation of data storage

on the server, where objects and mobiles are stored in a sector according to their

horizontal position. A sector is only owned by a single map.

Regions are virtual areas of variable size that can overlap and define gameplay

rules for the area. Examples of which would be defining an area as a farmland, a

guarded area, or a dungeon. A sector can have multiple regions, and a region can

span multiple sectors.
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2.7.6 Interest Management

Built into the UO server is a method of interest management that defines which

clients should receive updates to an event. When an event is generated by a client,

the server processes it and locates the point in the virtual world where the effect of

the update occurs. From this point, a radial search is performed outward until a

radius is reached where the originating point can no longer be perceived by players.

Between the start and end points of the radial search, an update is transmitted to

the associated client connection wherever a mobile is found.

The radius around the originating point can be defined as an area of effect, and

every player mobile found within the area of effect receives the update. Certain

events might produce more than one area of effect, which results in same procedure

being repeated until all affected player mobiles are identified.

2.7.7 Limitation of Modification

Once compiled, most of the game logic, packet definitions, networking capabilities

and processing rules are all sealed within the server. Additionally, the server of-

fers a scripting interface which allows for extensions to the base game within the

limitations of the script capabilities. The main use of the scripting is to introduce

additional player commands. Players are able to input textual commands into their

chat window which transmit to the server resulting in the script being executed.

Therefore, for the purposes of this project, the limitation on any modifications to

the server are through the scripting interface only.

The UO client is an entirely closed piece of software with no modifications avail-

able. For the purposes of this project, the client needs to be used entirely in its

original state. In its original state, a user is able to specify the server IP address

that the client attempts to connect to.

2.7.8 Imposed Constraints

The use of UO imposes two constraints on the design of the middleware plugin and

hybrid system.

If a supernode has to send aggregated updates on behalf of the nodes in its

group, it will be necessary to add a client command to the server scripting interface,

since the UO server natively does not support such aggregated updates. The design

impacts of this constraint are detailed in section 3.5.5.
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As mentioned in the Architecture and Operation, the server security requires that

events from a player mobile originate from the client connection that the mobile was

associated to upon login. Therefore, for any peer to communicate with the server

on behalf of another peer, the connection has to be rerouted through that peer,

and thus must re-login to the server from that peer. The design impacts of this

constraint are detailed in section 3.4.

2.8 Summary

In this chapter the background concepts of the middleware plugin and hybrid sys-

tem were presented. A brief history of MMOGs and their traditional centralised

client/server architectures were examined. Latency and bandwidth, the two im-

portant factors affecting an MMOG architecture were discussed, and some of the

current solutions for improving these factors, such as BigWorld and Kiwano, were

presented.

Following this, the focus was shifted towards peer-to-peer architectures, their

origins, and their usage in MMOGs. When examining the original P2P overlays,

the concept of a distributed hash table was introduced, and specific attention was

given to the communication protocols, namely direct communication and multicast.

Investigating the use of P2P in MMOGs revealed many existing architectures, some

fully distributed while other using a hybrid approach. No solution was found to

address the problem of introducing P2P aspects into an established C/S system. A

study into P2P MMOG traffic suggested that a pure P2P architecture would not be

a feasible near-term option due to bandwidth constraints.

After covering these base concepts, the attention was shifted to some of the

design concepts of MMOGs. The game state management models were examined,

with the update-based model being the most prevalent in current MMOGs. All the

requirements of P2P MMOGs were addressed, and distribution, self-organisation,

interactivity, scalability and efficiency were identified as the primary requirements

for the hybrid system. Interest management concepts were discussed as a method

of providing scalability to the system. The important IM concepts of a supernode

and area of interest were defined, and then various IM models were examined.

Finally, a discussion of Ultima Online as the existing system to develop upon

was presented. The client/server architecture of UO was examined, its update-

based model defined, and some basic operational characteristics discussed. Specific

attention was given to the co-ordinate system and inherent interest management
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as they factor into the design decisions of the middleware. Finally, the limitation

of modification and the constraints that result from the limitation were presented

in detail, which heavily influence the design of the middleware plugin and hybrid

system.

In the following chapter, many of the design choices are based upon concepts

that were introduced throughout this chapter.
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Chapter 3

Design & Implementation

3.1 Introduction

The middleware plugin is tasked with transforming the MMOG’s network into a

hybrid of client/server and peer-to-peer topologies. It is necessary for the system to

be designed on multiple levels to successfully implement this.

This chapter presents details on different levels of the system design. It begins

with an overview of the hybrid system. This serves as a broader view of the system

from the highest level, giving context to the rest of the chapter. It lists some of the

major design decisions of the hybrid system that led to how the system topology is

structured to facilitate the aims of the middleware.

Next, a high-level discussion of the purpose and design of the custom interest

management scheme is presented. This is followed by an examination of the network

architecture in terms of its requirements and functionality.

Finally, more detail is given to the lower level design of implementing the software

itself. Each of the software modules are presented individually: the software core,

the networking, the game logic, and the interest management. The design and

functionality of each are described.

3.2 Hybrid System Overview

The middleware plugin is developed as a proof-of-concept, focusing on introducing

specific aspects of P2P MMOGs into an existing C/S architecture. For the purposes

of the experiment, a number of P2P requirements were consciously ignored for being

outside the scope of the desired outcomes. The design choices were based upon the

33
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two primary goals of the system: (1) to reduce server load and (2) to reduce player

latency.

Because the majority of traffic in Ultima Online originates from movement events

and updates, it was chosen as the game mechanic for distribution so that the perfor-

mance of the proposed system can be evaluated. If the greatest producer of traffic

can be reduced, the server should benefit immediately. All other game mechanics

are the responsibility of the server, as they would be in a traditional C/S system.

This includes mechanics such as speech, spell casting, item interaction, non-player-

character processing, etc.

For mechanics to be distributed, the server must receive periodic updates about

the changes in the game state, so that other non-distributed game mechanics which

it processes are consistent. Therefore, supernodes are included to aggregate the

updates of all the peers they are responsible for and send batch updates to the

server containing the aggregated information. By creating batch updates, the overall

system bandwidth usage is reduced from the case where each node sends its own

updates. This results in the system using a heterogeneous peer-to-peer network

structure, where there are two levels of peers: a slave and a supernode, and every

peer has the ability to assume either of the two roles. For the purpose of this study,

the issues associated with supernode selection are ignored and simply the first node

in a group is selected to be the supernode of that group.

As the server security restricts player events originating from connections not

associated to that player, and the supernode is responsible for updating the server:

slaves are required to reroute their connections through the supernode toward the

server. An example of the hybrid topology is shown in Fig. 3.1a. This ignores any

connections resulting from shared areas of interest.

In a traditional C/S MMOG, the server hosts the authoritative copy of all game

state. The server is responsible for verification of any events received from players

in the world before producing an update and applying any changes to the game

state. As part of the distribution strategy, the game objects representing player

mobiles are replicated on each peer, and the authoritative copy is held by the owner

of the mobile. A slave always sends its movement updates to the supernode who

applies the update to its own game state. The supernode is then responsible for

sending the update to the server where it can be applied to the server’s global game

state. Verification of mobile changes could take place on the supernode’s replica,

but because security and cheating mitigation is outside the scope of the experiment,

it was not included for this implementation.
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(a) Hybrid topology, ignoring connec-
tions that would result from Interest
Management.

(b) Including IM: three slaves in a
shared area of interest, and two su-
pernodes are neighbours.

Figure 3.1: Example Hybrid Topology

In an effort to improve scalability, an interest management scheme is included in

the system. MOPAR, described completely in [37], is a good candidate for basing

the hybrid system’s IM scheme on as (1) supernodes are already included for server

updates, and (2) a region-based IM scheme is similar to the sectored architecture

of the UO server. The virtual world is divided into hexagonal regions where peer

groups are formed for each occupied region, each containing a single supernode and

any number of slaves.

The network uses a direct communication overlay, where every node has a unique

identifier derived from its IP address, and connections are established directly be-

tween peers wishing to exchange data. The overlay is aided by a directory server

which is hosted in the same place as the game server and serves as an entry point

into the overlay by providing the address of a supernode to connect to. Joining the

overlay occurs after the location of the player has been established from the game

server, and the correct supernode can be identified according to its region. The

supernode commands its slaves on how to manage their connections to other peers

according to their individual areas of interest. Fig. 3.1b shows an example topology

where IM has been applied: the two connected supernodes are in neighbouring re-

gions from one another, and the three connected slaves are within each others areas

of interest.
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3.3 Interest Management

3.3.1 Introduction

The primary function of IM is to provide scalability to the system. In the hypo-

thetical case where no IM is present in a P2P environment, no peer would be aware

of which others their events or updates apply to, and which they should be sent

to. This would result in peers either missing events and updates resulting in gaps

in gameplay, or peers receiving an excess of unnecessary data causing them to be

overloaded and resulting in increased latency and possible timeouts.

IM allows peers to maintain connections only with the relevant players and only

send and receive traffic necessary for maintaining consistent local game state. This

prevents peers from being overloaded with irrelevant data. While an overload might

still occur if an area of interest becomes overpopulated, most dynamic IM schemes

are able to adjust accordingly up until a point where the peer would anyway be

overloaded in the standard C/S setup.

3.3.2 Aims

The primary aim of the interest management scheme is to reduce the data bandwidth

experienced by peers in the network by limiting the events and updates communi-

cated to a player to only what is considered relevant to that player’s current location

and state. It is critical to the scalability of the system.

For traffic relating to distributed game mechanics, the middleware should take

into account a player’s area of interest and filter out packets which do not hold

relevant information for that area. These tasks should all be performed in a way

that does not negatively influence the latency experienced by players within the

network.

3.3.3 Design

The hybrid system’s interest management scheme is based upon the hybrid model

which was discussed previously in section 2.6.6. The scheme is largely based on

MOPAR [37], an interest management scheme used for pure peer-to-peer systems

by combining a DHT with unstructured P2P communications. It makes use of

region-based hexagonal divisions of the virtual world to organise peers into smaller

groups. Each of the groups have a master node as well as a collection of slave nodes.
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Figure 3.2: Example MOPAR connectivity for a player in a region

Supernode

The master node, which is synonymous with a supernode in this case, acts as an

administrator of the group. The master node of a region maintains connections

with the master nodes of all the neighbouring regions surrounding its own and each

exchanges group lists containing the location of players within their region. Thus,

master nodes have a much wider knowledge of the surrounding area than the slave

nodes. Through this knowledge, the master nodes are able to manage the areas

of interest for their slaves, putting slaves in connection with each other when they

are within range, and terminating their connections when they are not within range.

Therefore a slave is always connected to their master, and only to other slaves within

their own area of interest. An example of this connectivity is shown in Fig. 3.2.

The interest management in the hybrid system is similar to what has been de-

scribed by MOPAR, with a few alterations to accommodate the hybrid system in-

stead of the pure peer-to-peer system it was designed for. In addition to the master

node duties, the supernodes also remain in connection with the server and are re-

sponsible for providing the server with periodic state updates of the distributed

mechanics which have been processed by the peers. In turn, the supernode also

filters the redundant client updates which are distributed by the server in response

to the supernode’s state updates.
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Directory Server

A third node type exists in traditional MOPAR, known as a home node, and is used

for routing peer connections towards an appropriate master node based on the play-

ers location. This is achieved by using the DHT functionality of MOPAR’s overlay.

In the hybrid system, the home nodes and DHT are replaced by a directory server.

A peer queries the directory server to find which supernode it should connect to,

and then connects directly to it and becomes a member of that group. Since the

network already contains a centralised server, it is a negligible addition to include a

centralised directory server.

Migrations

Migrations occur when a player’s mobile leaves a region to enter a new region. There

are 4 types of migrations which can occur depending on the current roles of peers

in the associated regions:

1. slave→ slave

2. slave→ supernode

3. supernode→ supernode

4. supernode→ slave

Each migration type presents a number of additional effects on the migrating peer

and other peers in the region. In (1), when a slave migrates to a new region with

a different supernode, it simply has to assign itself to that new region’s supernode.

Conversely, in (2), if a slave migrates to a new empty region, it must undergo a

transformation into a supernode role.

In (3), when a supernode leaves a region to become the supernode in the new

region, it requires that a replacement supernode be selected in the old region, and

all remaining slaves reassign themselves to that supernode. Similarly, in (4) when

a supernode leaves a region to become a slave in another, the old region must un-

dergo the same procedure. In addition, the migrating peer must undergo its own

transformation and assign itself to a supernode in the new region.

The software implementing the interest management scheme is discussed further

in section 3.5.4.
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3.4 Network Architecture

3.4.1 Aims

As the middleware introduces peer-to-peer networking capabilities into the game

system, the design of the network architecture is important from both a physical

and virtual perspective.

• The goal of the network architecture is to cater for all the connectivity require-

ments of the system and to efficiently facilitate the routing of data packets.

• The architecture setup should allow communication to go uninterrupted be-

tween the server and the client when required, but should always be under

observation in the event that certain packets are to be extracted and recorded

or processed.

• For the arrival of new players into the network, an entry point must be pro-

vided. This will allow any new player to connect to and become a part of

the peer-to-peer segment of the network and participate in the distributed

processing.

• As there can be a varying number of players in the game at any time, the

architecture must be scalable. It should be able to handle the case when there

are only a few players as well as when there are a few hundred. Thus it must

be compatible with an interest management scheme to limit the amount of

traffic. The interest management design was discussed in section 3.3.

• As one of the primary system goals is to improve the game experience, latencies

should be reduced between players located within shared areas of interest.

3.4.2 Design

A conceptual diagram of the proposed network architecture is shown in Fig. 3.3.

In the figure, each block represents a physical computer running software modules

which are indicated by shaded ovals. The game server, running on the server ma-

chine, hosts the game’s virtual world. A client machine has both an instance of the

game client and middleware software running. A directory server, also hosted as a

part of the network, stores important information regarding members of the network

and acts as an entry point into the peer-to-peer network.

The middleware, which introduces the peer-to-peer segment of the network, is

responsible for establishing all inter-connectivity between players. It maintains con-

nections to other middlewares, as well as providing a dedicated route for the client

to communicate with the server while still being able to monitor all data that passes

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. DESIGN & IMPLEMENTATION 40

Figure 3.3: Modified Hybrid Network Architecture

through. This configuration ensures that each client has a path to the server and

can communicate without interruption. In addition to this, peers can communicate

directly between each other, allowing for a more efficient routing of game informa-

tion when appropriate.

Interest Management

As scalability is an important factor, the architecture is designed to accommodate

the interest management scheme. This is introduced by the ability to form smaller

administrated groups of players. When a group is created, its founding member is

designated as a supernode (previously described in section 2.6.3). Supernodes pro-

vide the ability to administrate peer groups, to facilitate connectivity between mem-

bers, to manage communications between different groups, and to perform packet

filtering. By intelligently creating groups of players, it can reduce overall traffic by

ensuring that players only receive game information that is relevant to them.

Connection Routing

Two major constraints of the UO server influence the design of network structure.

Firstly, as the server only accepts actions of mobiles who are attached to a specific

socket connection, a supernode would ordinarily be unable to communicate with the

server on behalf of its group members. This precludes the possibility of aggregated
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or batch events/updates being sent to the server by the supernode on behalf of

the group. Secondly, when the server receives some form of aggregated event or

update describing what has already occurred amongst the P2P network in the past,

the server still processes them as if it had just received them in standard C/S

operation, causing it to produce redundant updates which are transmitted to the

relevant clients. If redundant updates arrive at clients and are applied to their game

state, they could contradict the current state and disrupt the flow of gameplay. To

overcome this in a distributed manner, significant overhead would be required to

keep all peers informed of which updates needed to be ignored, and which were a

result of non-distributed game mechanics processed by the server.

Therefore, to cater for these two constraints, all members of the group route

their connections through the supernode, giving the supernode access to all com-

municated data. This allows the supernode to more effectively track player activity,

communicate with the server on behalf of the group members, and act as a point of

filtering for events and updates that are not necessary to be disseminated amongst

the group. Furthermore, as the supernodes are the only peers responsible for up-

dating the server, cheating mitigation techniques can be applied primarily at those

points in the network to ensure fairness if necessary.

To facilitate connection routing, when a middleware reroutes its connection via

the supernode to the server, it is required that the middleware autonomously per-

forms a relog. A relog is the action of logging out and back into the game in rapid

succession. This allows the connection between the supernode and server to be cor-

rectly authenticated.

Directory Server

As previously described in the IM requirements, the directory server acts as a static

point of entry into the P2P network. It maintains a list of supernodes and directs

peers to their relevant addresses. Hosting such a server is trivial as there is already

a game server present in the architecture, and the directory server can be hosted

alongside it.

Joining

The process of joining the network starts once a player has started both the client

and the middleware software instances on his machine and he begins the login pro-
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cess from the game client. An internal connection from the client software to the

middleware running on the same machine is established. The middleware connects

to the server and proceeds to login to the game up until it is aware of the player’s

position. Using the position, the middleware autonomously queries the directory

server and is provided with a supernode’s address. The middleware terminates its

connection to the server and connects to the supernode who proceeds to facilitate

the player’s integration into the P2P network. The supernode completes the con-

nection to the server on behalf of the middleware and provides the middleware with

a list of other peers within its AOI. The middleware then proceeds to establish con-

nections to the relevant peers. This completes the login process. In the event that

no supernode for the region is present on a player’s login, a new group is formed

and the new player assumes the role of the supernode.

Leaving

The process of leaving the network occurs when a player logs out from the game

and the client software terminates its connection to the associated middleware. On

detection, the middleware proceeds to gracefully terminate its connection to the

supernode and other peers within the group.

This action becomes significantly more complex if the exiting player is a super-

node. On detection of a client termination, the supernode middleware must proceed

to identify and notify a new peer to assume the role of the supernode. It informs

all other peers in the group that the supernode duties are being transferred and the

peers are required to reroute their connections through the new supernode. Once

the new supernode has taken control of all the connections, the terminating middle-

ware completes its shutdown.

Virtual Nodes

On the software level, the network can be divided up into three virtual node types.

The Server Node represents the dedicated game server which hosts the virtual en-

vironment. A Middleware Node represents a middleware plugin in the network.

Finally, a Client Node represents a player’s client application which would usually

connect directly to the game server in the absence of the middleware. These three

nodes are the software representation of the network points shown by the ovals in

Fig. 3.3 and are discussed further in section 3.5.3.
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3.5 Implementation

The previous section discussed the design requirements of the hybrid architecture,

as well as a high-level overview of the desired interest management and network

topology. In this section, the implementation details are explained.

3.5.1 Overview

The system is divided up into six modules, as shown in the overview of the middle-

ware software in Fig. 3.4. These modules make up the full functionality of the

system. The Core is the central point of the system and maintains the intercon-

nectivity between the other modules. It is also responsible for capturing statistical

data. The Networking module provides all the networking capabilities of the system,

including the P2P aspects of the network, such as grouping, storage of node infor-

mation and packet routing. The Local Game Logic module is the collection of game

processing functions specifically implemented on the middleware to process events

into updates and store game state. This module also manages, sorts and filters many

of the packets received through the networking module. It interacts directly with

the Logic Interface module which is used as an abstraction interface between the

local game logic and the libraries imported from the game server. These libraries

are located in the Imported Game Logic module which houses the server’s processing

capabilities. This allows the local logic to call functionality from the server logic

for tasks such as processing events. Finally, the Interest Management module in-

troduces functionality for regional divisions; supernode slave management; and AOI

and neighbour communication. A lot of the individual modules’ functionality is

dependant on the functionality offered by other modules.

Every peer has the full functionality of the middleware available to them as they

might be required to fulfil any role in the system. The total set of functionality can

be divided into a base set, used by both a slave and a supernode, and a extended

set that is used only by a supernode. Each of the modules are made up largely of

base functionality, and extended to facilitate supernode duties.

3.5.2 Core

Aims

The core module operates as the central point of the software system. Its first

duty is to handle the startup of the system, including the initialisation of all the
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Figure 3.4: System Modular Overview

modules. This involves establishing internal communications between the modules,

and providing a means for sharing of data. The core must also handle the graceful

shutdown of the system by prompting each module as well as properly disposing of

all used resources.

The core acts as the central processing unit of the software system. It drives

processing throughout the system’s modules in an organised fashion that is robust

against multithreaded implementations. This is important as many aspects of the

system will be operating on multiple threads and through asynchronous networking

actions.

Finally, as this is an experimental system, the core must provide a method for

data collection that can be saved to secondary storage for analysis at a later stage.

Design

As the core is the channel through which all communication takes place, all global

parameters are stored in the core module. These are accessible to all other modules

in the system.

Managing multiple threads in a robust manner can be achieved through perform-

ing all processing at a central location. Therefore, the use of Queue data structures

as processing queues is used extensively. Any data packet, connection or node that

requires any nature of processing is placed in a respective queue catering for its

type, and each queue is processed consecutively with each iteration of the process-

ing cycle. The core is responsible for initialising and maintaining the thread which

processes each queue as it is required. There are three major queues: (1) New Con-
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nections, (2) Packet Processing, and (3) Outgoing Packets. The queues are fed by

the Networking module, the methods of which is discussed in the following section.

A statistics module provides a place for timestamped events to be recorded. A

record call can be inserted anywhere in the system with arguments, where it will be

triggered and written to a buffer. When the application is shut down, the buffer is

written to secondary storage. Throughout the execution of the system, the statistics

module collects different measurements pertaining to the analytical metrics chosen

for evaluation of the system.

The startup of the system involves initialising all of the previously mentioned

core aspects as well as all the other modules with the relevant properties and es-

tablishing channels of communication between them. The core performs similar

activities for shutting down the middleware gracefully by closing the statistics ac-

tivities, prompting each module to dispose of itself, and finally disposing of the

remaining resources. This, in turn, requires that each module is capable of cleaning

up its own in-use resources.

3.5.3 Networking

Network Actions

For the networking module to establish, manage and maintain the network archi-

tecture of the hybrid system, it should be able to perform the actions below.

• Join Connect to the P2P segment of the network. Automatically orientate

itself within the architecture and assume a designated role.

• Leave Detect and disconnect from the P2P network. Provide enough infor-

mation on exit for other peers to re-arrange the network as necessary.

• Listen/Accept Listen for new connections from a new client, or other peers

in the network. Accept new connections and handle them accordingly.

• Send/Receive Routing a packet from one peer to another within its AOI.

Routing packets between supernodes. Having a dedicated communication

channel between the client and server. Accepting packets from any open

connection.

• Form Group/Disband Group/Migrate Starting a new group of peers,

terminating a group of peers, and being able to migrate between groups.

• Transform Changing roles between supernode and regular peer duties.

• Process Packet Process received packets according to registered packet han-

dlers.
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Aims

The networking module introduces and facilitates all connectivity, communication

and the transfer of data between network nodes. This fundamentally requires that

the networking module is able to send and receive packets of data. Therefore,

the module must be able to address specific nodes and be able to route data to

them, either directly or through other nodes. This requires that nodes’ information

is recorded within the module. This is of particular importance when routing data

between the client and server, for the portions of traffic pertaining to non-distributed

game mechanics.

As only certain game mechanics are being distributed amongst the peers in the

hybrid system, the networking module is required to distinguish between packets

and execute them according to their contents. This requires for specific packets to

be registered with custom defined handlers. In addition to this, a default action

for unregistered packets or packets without specific processing needs must also be

included. This will enable the middleware networking module to effectively filter

packets as intended.

For the interest management scheme to be implemented, both peer grouping and

supernode functionality is required. Each peer must maintain a record of peers they

are connected to resulting from IM, and be able to communicate with them effi-

ciently. Supernodes require additional capabilities to filter and redistribute packets

as required; to maintain a record of peers in their group and a record of neighbour-

ing supernodes; to perform administrative tasks for peers joining and leaving their

group; and finally to be able to handover their duties to a new supernode in the

event of the player departing the game, or a migration.

Design

The networking module was designed with a number of objects and sub-modules

with the ability to offer the system the required network actions. The following

elements are discussed: Nodes, Pairs, Socket Configuration, Packet Handling, Peer

Grouping, Migrations and Listening.

Nodes For the software to address specific nodes in the network, as well as record

information pertaining to that node, each virtual node in the network is represented

by a Node object in the software. The three virtual node types (server, middleware

and client) were discussed previously in section 3.4. It is these Node objects that

form the basis of the middleware networking module. Every socket connection that is
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established is assigned to an independent Node, and all interaction with the socket is

done through its associated Node. As most of the functionality between the different

node types overlap, a Node is used as the base object and functions as a middleware

node. Derived from this are the two other node types, treated as special cases of the

middleware node, namely the ServerNode and the ClientNode. The Node hierachy

is shown in Fig. 3.5a.

A Node is always instantiated with either a connected TCP/IP Socket or an IP

Address to connect to. Coupled with the connection, a Node holds a buffer for data

that has been received as well as one for data to be sent. Finally, a Node is able

capable of storing the login data that has been used by the middleware or client

to log into the game server. This is done in the event that an autonomous relog

to the server is required, such is the case during the handover of a supernode or a

migration between groups. Every Node has an ID number which is derived from its

IP address.

Pairs As the aim of the middleware is to distribute only a portion of the game

mechanics amongst the P2P section, the remaining traffic will always flow along the

traditional path between the client and the server. Therefore, a method to route

non-distributed traffic both efficiently and correctly is implemented by pairing Nodes

together. This method uses a set of ConnectionPair objects which ensure that any

data received from one Node can be routed closer to its final destination efficiently.

The three types of pairs are Client-Middleware, Client-Server, and Middleware-

Server, and their software hierarchy is shown in Fig. 3.5b. The ConnectionPair

object primarily houses two Nodes as well as logic to transform pair types in the

event of network role transformations.

The type of pairings used depends on the role and position the nodes in the

network. An example of the pairings are shown in Fig. 3.6. The supernode, having

to maintain connections between the server and other nodes, uses Client-Server and

Middleware-Server pairings. Regular peers need only maintain a paired connection

between their own client and the supernode using a Client-Middleware pair.

Socket Configuration All network connectivity runs on asynchronous TCP/IP

sockets. Using the asynchronous mode provides two major benefits for the system

over the synchronous alternative. The first of which is the reduction in the number of

threads required for maintaining the connections. In the worst case of synchronous

sockets, each connection requires a thread of its own and thus a large peer group

would result in a large number of threads on each client machine in the group.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. DESIGN & IMPLEMENTATION 48

(a) Node Objects (b) Connection Pair Objects

Figure 3.5: Basic networking module objects

Figure 3.6: Networking node pairs where the centre middleware is the super-
node

Asynchronous sockets remove the need for polling connections in any form and

this leads to the second major benefit: any connection activity triggers a callback

function which can be used as a feeder for the rest of the system. This is used

extensively to populate the processing queues in the system.

Packet Handling Packets are managed at multiple stages throughout the middle-

ware. Initially, all the packet structures are registered with the Packets class. Reg-

istering a packet involves the packet’s unique identifier number and the length of

the packet, being either a static or variable length. If a packet is one which requires

specialised processing, then a PacketHandler must be created which will be called

and executed if a packet of that type has been received and is being processed. This

provides the game logic and IM with a method to register a handler and operate on

received packets. It is a simple solution to allow any packet structure to be included
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Figure 3.7: Queue Processing Flow Diagram

within the system, and to be processed in a custom fashion. The nature of Ultima

Online’s packet defines that packet identifiers are only unique to either the client

or the server, but not when considering the full set of packets. Therefore, this re-

quired for each packet to be registered only to one of three particular set of packets,

belonging to either the client set, server set, or custom middleware set. This, in

turn, requires that each packet’s source node’s type be checked before retrieving the

registered packet information.

The full packet handling process is summarised in Fig. 3.7 and described below.

When data is first received by an asynchronous socket belonging to one of the

Node objects, the received data is placed within that Node’s receive byte array buffer.

The buffer is immediately passed onto the Node’s PacketBuffer which is an object

designed to package the received data into packets. If enough data has been received

so that one or more complete packets are detected by the PacketBuffer, they are

each packaged, placed in an output queue, and the Node from which they originated

is placed into the Core’s packet processing queue.

When the Core processes the packet processing queue, the PacketProcessor

class dequeues and processes each Node individually. Once dequeued, a Node’s

PacketBuffer is retrieved, and each packet in its buffer is processed. When a

packet is extracted from the PacketBuffer, the originating node type is checked,

and the handler of the packet is requested from the registered packet set belonging

to the node’s type. If a handler exists for the packet, it is called and executed to

process the packet. This involves either interfacing with the Game Logic module,

calling the IM module, or working internally with the networking module. If no

handler exists, this is indicative of a packet belonging to a game mechanic that is

not distributed. Thus, the default action is triggered and the packet is routed along
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to the paired Node in the originating node’s ConnectionPair. This would typically

involve routing a client’s packet towards the server, or vice versa.

If the result of any packet processing involves sending data to another Node,

or if any middleware event triggers data transfer, a generated packet is passed to

the destination Node object through its send function. A Node’s send function

adds the packet into its own outgoing buffer, and places the Node into the Core’s

outgoing packets queue. When the Core processes the outgoing packet queue, the

SocketPump class is responsible for dequeueing each Node individually and sending

all data contained in its outgoing buffer via the Node’s socket.

Peer Grouping For use with interest management, the middleware is imple-

mented with functionality to organise peers into smaller groups that are adminis-

trated each by a designated supernode. Any peer is able to form a group by becoming

a supernode on instruction from the directory server. Similarly, any supernode mi-

grating out of an otherwise empty region can disband the group by informing the

directory server.

Each peer maintains a NeighbourList structure for storing the Node objects of

peers within their own area of interest. This allows peers within a shared AOI to

communicate directly with each other. A peer is able to add to or remove from

the NeighbourList accordingly. This can be performed by the peer itself, or under

instruction from another peer, such as a supernode that has calculated an AOI.

In addition to this base functionality, the supernode requires the following extensions

to facilitate and maintain the peer grouping:

• It accepts new connections, establishes connection pairs to the server, and

maintains a list of peers within its group.

• As the IM scheme requires it to have a knowledge of other groups and their

activity, the supernode establishes connections and maintains a list of neigh-

bouring supernodes. It is able to communicate with them directly.

• Using the PacketHandler system, it is able to to filter redundant or unneces-

sary packets that shouldn’t be distributed amongst the peer group.

• In the event of a player quitting or a migration, the supernode is able to

identify and transfer its supernode duties to another group member through

the handover sequence, which is discussed below.

When a supernode migrates, it selects another peer within the group to assume

the role of the supernode. A timeline of the handover process is shown in Fig. 3.8.

The chosen peer is notified of its selection and the old supernode waits for a re-
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sponse. When the chosen peer receives notification, it sets its own supernode flag

and transmits an acknowledgement packet to the old supernode. The old supernode

then sends an update to the directory server, informing of its departure and which

peer will be assuming the new role. Following this, all the peers in the group are

informed of the handover by the old supernode and each peer closes its connection

to the old supernode. As previously mentioned, during the first login process, the

login information is farmed by the middleware and stored within the Node objects.

This allows the group members to autonomously begin a new login procedure with

the new supernode, directly if a connection already exists, or after establishing a

new connection. The new supernode, on receiving a login request from a group

peer, establishes a connection to the server and the connecting peer continues the

login emulation procedure. The communication then resumes as normal and the old

supernode shuts itself down or migrates to a different region.

Migrations Interest management requires that peers are able to migrate between

groups. As part of migrations, peers often have to undergo role transformations,

as well as reassigning themselves to different supernodes. Each of the migration

types previously mentioned in section 3.3 are managed differently, each resulting in

different changes in the connectivity.

In most cases, a migration requires that the migrating peer severs its original

connection to the server (via a supernode if applicable), and re-establishes a new

connection with the server either through a different supernode, or directly to the

server. Whenever a new server connection is established, a relog must occur and

the full login process has to be followed so that the new connection is properly

authenticated.

In the cases of an any → slave migration, where a peer has entered a new region

to be a slave, it must relog via the new region’s supernode to the server. This results

in the slave, server and new supernode each processing and communicating the relog

traffic.

Furthermore, in the case of a supernode → any migration, where a supernode

departs the old region, it can leave behind a number of slaves. If this occurs, a

supernode handover must occur, where all the remaining slaves are required to relog

via the new supernode to the server. Therefore, the server and new supernode must

both process and communicate multiple instances of relog traffic originating from

each slave.

In the case of the slave → supernode migration, the slave departing the old

region terminates its connection to the old supernode, undergoes a transformation
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Figure 3.8: Supernode Handover Timeline
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and performs a relog directly to the server.

The only migration which does not incur a relog to the migrating peer specifically

is the supernode→ supernode migration, where the supernode simply maintains its

connection with the server through the migration.

Listening As the middleware accepts connections from a variety of different

nodes, a Listener object is instantiated as part of the networking module’s startup.

The Listener maintains an asynchronous socket that listens for connections on a

specified port. When a new connection is established with the socket, the Listener

accepts the connection and places the socket into the Core’s new connection queue.

When the Core triggers the new connection queue for processing, each socket is

dequeued and begins the process of establishing a Node object to cater for it. The

method of processing a new connection is summarised in Fig. 3.9 and described

below:

Initially, the first byte is checked to see the type of connection that has been

established. Typically the first connection will arrive from a game client. The

middleware proceeds to connect to the server and log into the game. The moment

the middleware is aware of its current ingame location, it uses the IM module to

query the directory server for the relevant supernode to connect to. Once this occurs,

one of two outcomes are possible:

1. If it receives a supernode address, the middleware then connects to the super-

node and generates a ConnectionPair containing a ClientNode and a middle-

ware Node.

2. If the group is empty and no supernode address is provided, the middleware

itself assumes the role of a supernode and establishes a connection directly

to the server, in turn generating a ConnectionPair containing a ClientNode

and a ServerNode.

If the connection does not originate from a game client, but from another peer, then

three cases exist:

1. If the listener is not a supernode, the connection can only originate from a new

peer in its AOI, and thus the peer is added to the listener’s NeighbourList.

2. If the listener is a supernode, the connection can originate from a neighbouring

supernode. The new Node is then passed to the IM module for processing.

3. If the listener is a supernode, the connection can originate from a new peer

joining the group. In this case, a ConnectionPair containing a middleware

Node and a ServerNode is established. Once aware of the new peer’s in-game
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Figure 3.9: Process on the middleware’s receipt of a new connection.

position, the Node is passed to the IM module for processing as a slave.

3.5.4 Interest Management

Interest Management Actions

A peer participating in the interest management system needs a set of actions at its

disposal for navigating and operating within the virtual world. Therefore, the design

of the interest management module should provide all peers with the functionality

to perform the actions detailed below.

• Initialisation The interest management system must be initialised by di-

viding the virtual world into static regions that are consistent between all

peers. Following this, it must initialise its own location within the resulting

grid of regions and facilitate its entry into the peer-to-peer network with the
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directory.

• Query/Update Directory Querying the directory for locating the super-

node of the current region, and locating supernodes of surrounding regions if

necessary. Updating the directory of supernode changes in a region.

• Join/Leave/Migrate Region Joining a region by connecting to a supernode

and awaiting instruction. Leaving a region by gracefully disconnecting from

the supernode. Migrating from one region to another by chaining together

leave and join actions.

• Add/Remove from AOI Maintaining a peer’s own area of interest by

adding and connecting to other peers, or removing and disconnecting them.

• Broadcast Updates to AOI Broadcasting necessary information pertaining

to the distributed game mechanics amongst the peer-to-peer system.

• Transform Becoming a supernode in a region where a supernode has left, or

when joining a region that is unpopulated.

In addition to these base actions, supernodes need additional actions at their dis-

posal to manage the interest management scheme.

• Compute Computing the current state of each slave’s area of interest.

• Update Slave’s AOI Controlling the slaves’ areas of interest by sending

state updates instructing additions or removals of other peers.

• Handover Extends the leaving and migration actions by handing over the

current supernode duties to a new supernode in the region being exited.

Aims

The interest management software module aims to implement the MOPAR-like

scheme that is described in section 3.3. This is to introduce functionality to ef-

ficiently limit and control connectivity only between specific peers, in contrast to a

setup where every peer is connected to every other peer.

Each peer group should be assigned to a region, therefore the entirety of the

virtual world should be subdivided into smaller hexagonal regions. Each region

must have a single supernode which will manage all other peers located within the

same region. The regions must be uniquely identifiable and consistent between all

peers in the system.

The directory has two primary roles: it acts as an entry gateway into the peer-

to-peer system and it stores the supernode information of each region. When a new
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peer connects to the system, it queries the directory with its location to find the

supernode with which it should connect. If the region is empty, the directory must

instruct the new peer to assume the role of supernode, and to connect and pair with

all other supernodes located in neighbouring regions. The directory must always

be updated with changing supernode regional information so as to provide accurate

instruction to querying peers.

With the introduction of interest management, every peer must establish and

maintain its own AOI so that a peer’s distributed updates may be transmitted only

to interested peers. This includes making use of existing functionality to initiate

and terminate connections. A slave should accept instructions from a supernode

on how to update its AOI, and apply the changes accordingly. A supernode must

simply apply any updates to its own AOI without further instruction.

As the supernode acts as the controller for each of its slave’s areas of interest, it

must have a wider knowledge of the surrounding regions. It should always store the

locations of each peer located within its own region, as well as neighbouring regions.

The slave locations should be obtained directly from them, and the neighbouring

regions information must be obtained from neighbouring supernodes located through

the directory server. By storing this information, the supernode may then compute

the areas of interest for itself as well as each of its slaves. Once computed, the new

state of the slave areas of interest should be stored locally, and the area of interest

state updates sent to each respective peer.

Design

IM functionality A lot of the underlying functionality required for Interest

Management was developed in the networking module for facilitating peer grouping.

Peers are able to maintain their AOIs through the NeighbourList and are able

to communicate with the peers contained in the list; peers are able to join, leave

and migrate between groups; and role transformations are handled by supernode

handovers. Therefore, it was only required that the IM module expand on these

features, register specific packets and implement their associated handlers to control

the IM tasks.

Regional Division As each peer group is assigned to a virtual region, the ex-

isting virtual world must be divided. Conceptually, the two horizontal dimensions

of the 3D virtual environment are overlayed with a virtual 2D grid of hexagons to

divide the world into regions. Although it is understood as an overlayed grid, the
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only information that is actually required for further interest management action

is the mapping of a 3D point in the virtual world onto a 2D coordinate reflecting

which hexagon a player is located.

The hexagonal grid can be computed either statically at startup, or dynamically

throughout the use of the system. In the case where the grid is stored statically, every

point in the virtual world is iterated through and is computed individually with the

result stored in a large 2D array, referencing the point to an appropriate hexagon

identifier. This introduces a large computational activity at startup, and requires

storage in memory throughout the execution of the software. In the case of Ultima

Online, this translates to around 56MB1 per map, with there being up to 7 maps

in use. The benefit of static storage allows very fast lookups of any coordinate into

the hexagonal system. However, given that its purpose is to have a minimal impact

on system performance while operating in the background, the increased memory

requirement of the software is not ideal. Thus, a dynamic lookup strategy has been

selected over a static system. By distributing the initial computation between each

coordinate lookup, it offers a massive reduction in memory requirements, with a

form of on-demand computational cost. This is further justified as no peer will ever

require the full information of every point in the world.

Therefore, a HexGrid object has been created to perform this task, acting as the

2D grid. It is initialised by specifying the length of a single hexagon side. From the

side length, the other hexagonal components are calculated by creating a Hexagon

object which stores all hexagonal properties within. Using the hexagonal properties,

a virtual grid is emulated by the HexGrid and can map a 3D point onto a hexagon

in the 2D grid, an example of which is shown in Fig. 3.10. To compliment this,

a HexPoint is used to store a hexagonal coordinate, along with a unique identifier

for the particular hexagon. The algorithm of the hexagonal coordinate lookup is

detailed in Appendix A.

Directory The directory server acts as the entry point into the peer-to-peer net-

work. Therefore, its foremost function is to accept new connections. Once the

connection is established, it receives a query or update from a peer, processes it,

responds appropriately and then terminates the connection. Both queries and up-

dates requires that the directory store a dictionary of supernodes alongside their

associated hexagonal coordinates. The possible query and update communications

are listed in table 3.1.

1Calculated with the vanilla Ultima Online 7168x4096 point map at 2 bytes per hexagonal
identifier
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Figure 3.10: Hexagonal Mapping

Command Arguments Description
Region Query Hex ID Queries for the supernode in

a region. Responds with an
address, or a null to reflect
an empty region.

Handover Notification Hex ID; New IP info Updates the directory to
point to the new supernode
in a region.

Region Termination Hex ID Updates the directory to re-
flect a region as empty.

Neighbour Query Hex ID Queries for a list of neigh-
bouring supernodes of sur-
rounding regions.

Table 3.1: Directory Communications

The remaining IM module components presented in this section are for use exclu-

sively by supernodes.

Interest Units Every peer that enters into the interest management system must

be registered with a supernode and have its details recorded. Necessary information

needs to be stored to facilitate two tasks: (1) computation of areas of interest, and

(2) providing addressing data for connections to be established between slaves. In

addition to these requirements, a supernode must maintain the state of all its slaves’

AOIs so that it may correctly apply updates and prevent excessive redundancy.

From these requirements, the concept of an InterestUnit was introduced into the

system for use by supernodes. This object represented the most basic entity of a

peer located in the system, simply holding the locational information of the peer,
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Figure 3.11: Interest Units Hierarchy

its IP address information as well as its associated serial numbers. From this base

unit, four extensions were introduced to cater for the four types of units that could

exist in the system from the supernode perspective. The inheritance structure is

shown in Fig. 3.11.

A Slave extends the InterestUnit by integrating with the Networking module

and storing its Node object, which is described in section 3.5.3. This allows a super-

node to communicate directly with any slave it controls while remaining within the

bounds of the interest management scheme. More importantly, the Slave object

introduces storage of the AOI state for a supernode’s own reference. With this,

a supernode may amend changes to the current state of any slave’s area of inter-

est, while simultaneously generating and transmitting a state update packet to the

actual slave.

For the supernode to control its own AOI within the system, a SelfSlave allows

the supernode to treat itself as a slave from the computation perspective, while

interacting directly with its own AOI rather than updating itself through a packet.

This interest unit overrides most of the Slave functions.

The supernode needs to be in direct contact with neighbouring supernodes, as

well as provide them with regular updates of the positional data of slaves within its

own hexagonal region. This is handled by a NeighbourSuper object which, like the

Slave, references directly to a Node object, allowing the supernode to communicate

directly with neighbouring supernodes from within the interest management module.

Finally, a NeighbourSlave mostly resembles an InterestUnit by storing the

location and IP addressing information of all slaves located in neighbouring regions.

The only addition to the base object is that each neighbouring slave references the

NeighbourSuper is belongs to.
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The inclusion of these units provide entities for the Management Logic to operate

on.

Management Logic The management logic utilises the aforementioned building

blocks to fully implement the interest management scheme. Separate storage lists are

used for each type of InterestUnit so that each type may be processed separately,

with the exception of a SelfSlave which is treated from the processing perspective

as if it were a Slave.

As previously stated, each Slave object is able to store the state of the slave’s

AOI. The management logic introduces a delta list into the Slave object. Each

slaves’ delta list is determined by calculating if the slave is within the AOI of any

other interest units known by the supernode. When an interest unit is found to be

within a slave’s AOI, the DeltaAdd(InterestUnit) function is called. This checks

if the interest unit has already been added to the AOI and if not, it is added to

the delta list. Similarly, the DeltaRemove(InterestUnit) operates as a removal

function. Finally, once all adds and removes have been performed, the delta list

is merged with the current AOI state list, and the delta list is transmitted to the

associated slave as an AOI update packet.

The update packets instruct the slaves to either establish new connections to

additional peers, or to terminate connections with peers that are no longer within

range. When a slave receives an area of interest update from its supernode, it

applies it to its own NeighbourList. In addition, when slave A adds slave B to

its NeighbourList, B also adds A. This introduces redundancy into the system to

ensure that areas of interest are consistent between relevant slaves.

With a slave’s area of interest established and maintained by its supernode, or the

supernode having established its own AOI, it is able to update peers that are nearby

in the virtual world. The game logic module is able to transmit any distributed

mechanic updates directly to all peers contained within its NeighbourList.

The supernode uses the directory to connect itself with neighbouring supernodes,

from which it periodically receives state information about all peers in neighbouring

regions. Combining the knowledge of all surrounding peers allows a supernode to

accurately compute the area of interest for each slave within its own region. It is

therefore able to instruct its own slaves to connect with neighbouring slaves directly.

Finally, a slave always stores its supernode in its NeighbourList. This allows

a supernode’s game logic module to always receive timely updates of its slaves dis-

tributed actions and maintain an up-to-date state.
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Figure 3.12: Neighbour Updating Packet Configuration

Neighbour Updates As a region’s supernode requires information about player

mobiles in neighbouring regions to manage AOIs that cross borders, it is necessary

for supernodes of neighbouring regions to exchange information pertaining to their

slaves. In addition to region join and leave notification packets, two types of periodic

neighbour updates are used in this system: a summarised update and a full update.

The construction of the periodic neighbour update packets are shown in Fig. 3.12.

Whenever a new slave joins a region, 23 bytes are transmitted by the supernode

of that region to each of its neighbouring supernodes. This packet resembles the full

periodic update packet seen in Fig. 3.12 where s = 1. It contains enough information

for a neighbouring supernode to establish a new personal record of the joining slave

so that the neighbouring supernode (1) is able to compute AOIs, and (2) is able

to instruct its slaves to connect directly to neighbouring peers by using the stored

network addresses. Similarly, a peer leaving a region incurs 7 bytes to the supernode

for each of its neighbouring supernodes to inform them of the event.

Every 5 seconds, the supernode sends a summarised update of all slaves in its

region, seen in Fig 3.12, to each supernode in immediate neighbouring regions. The

summarised update totals n(7 + 8s) bytes transmitted by the supernode to update

its neighbours, where n is the number of current neighbours, and s is the number

of slaves currently owned by the supernode, including itself. This 5-second sum-

mary update contains limited information for a supernode to update the positional

information of player mobiles it is aware of in its own records.

Every 30 seconds, a full update, seen in Fig 3.12, is sent to each supernode in

immediate neighbouring regions. The full update totals n(7 + 16s) bytes transmit-
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ted by the supernode and contains a full detailed description of the slaves in the

region. The full neighbour update serves as an authoritative copy to overwrite any

information that might have been lost or mistaken.

These neighbour update packets allow each supernode to have a wider view of

the virtual area, and provide enough information to compute slave AOIs accurately.

3.5.5 Game Logic

Aims

The focus of the game logic is to allow portions of game mechanics to be distributed

amongst the peer section of the hybrid network. This translates to a peer being

able to receive an event from a client, process it, and produce a game state update

that can be returned to the client and applied to its own state. Not only should the

state update be applicable to the event-originating client, but to other clients that

are part of the network, so that each player experiences the world in a consistent

fashion.

As the middleware is required to process game events, it should have access to

the mechanics and functionality that the server houses. By granting access to these

functions, the middleware will be able to react in the same way that the server would

if it were to receive the same game event. However, the server logic should not be

directly inserted into the middleware, but rather abstracted through an interface

to prevent any module from having direct access to and interacting with the full

server functionality. In addition to this, abstraction will allow a separation between

game-dependant and game-independent logic. This should allow for the specific

game server logic and interface to be plugged out and interchanged when working

with other games. The game logic module should therefore initialise the necessary

server game logic on startup, and be able to access it when necessary to process

events into updates.

Furthermore, the supernode is required to periodically update the server of its

slaves’ activities. Therefore, the game logic module should be able to produce state

updates that can be sent to the server. These state updates should contain the

aggregated data of all middleware-produced updates that have been recorded in

the period of time since the last update. In addition, the game logic module should

provide functionality for a supernode to identify which game packets require filtering

out of the system.
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Design

The Game Logic Module is split into three different parts: the server game logic,

the local game logic and the logic interface.

In the implementation of this system, the server game logic is imported directly

from the server source and hosted inside the application. This allows parts of it to be

modified to suit only the specific uses within the middleware rather than to initialise

a full instance of the game server on a peer. Therefore, the server code was modified

to introduce a simplified initialisation procedure so that only the modules relating to

desired mechanics, in this case movement, are initialised on startup. With the server

logic initialised, the middleware is able to locally store replicas of the game state

pertaining to the location and status of all player mobiles involved in the system.

In addition, the server logic provides the functionality to process events the same

as the server would, directly on the local game state. The authoritative state of

a specific player’s mobile is considered to be the version hosted on the middleware

belonging to that player. Each player mobile is referenced by a serial number that

matches its reference on the server. Since each player mobile must be owned by a

peer, it is also assigned with its owners Node ID number. This allows the host of

the authoritative state to be recorded, and offers a fast lookup of mobiles according

to nodes, and vice versa.

The local game logic and logic interface are closely interlinked and make exten-

sive use of each other. The local game logic sets up all packets with the networking

interface that require processing, creating and registering packet handlers for each

that interact with the required functions from the logic interface. If the received

packet is found to be from one of the distributed game mechanics and is an event

packet, the handler will call the logic interface which will interact with the game

server logic and produce an update that can be distributed to the NeighbourList.

Similarly, if the received packet is an update packet, the handler will call the logic

interface which checks whether the update originates from the owner of the author-

itative state, and proceeds to update its local game state stored in the server logic

accordingly.

The logic interface has a standard list of functions, shown in Table 3.2. These

functions allow the game logic packet handlers to process the received data, as well

as to gain access to stored game state information. For example, if the middleware

was to receive a Movement Request packet from its client, the packet handler would

be called, which in turn would use the interface to call MoveMobile(serial). The

function would return a response validating the requested movement. If it was a
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Function Description
InitData() Calls the initialisation of the server

logic.
NewMob(Serial, Node) Creates a new mobile to be stored in

the local game state.
Find(Serial) Retrieves a mobile from the stored

game state matching the same Serial.
Dispose(Node) Disposes of the mobile associated with

Node.
UpdateMobile(Serial, Args) Updates parameters of a locally stored

Find(Serial).
QueryMobile(Serial, Args) Queries a parameter of a locally stored

Find(Serial).
MoveMobile(Serial, Direction) Processes a movement event of

Find(Serial) in the Direction.
SendPostionUpdate(Node) Sends an aggregated location update to

the server of the specified Node’s mo-
bile.

LastLocation(Serial) Queries the last location of
Find(Serial)’s update to the server.

LastUpdate(Serial, Location) Checks if a specified location is the
same as the last update of Find(Serial)
sent to server.

BroadcastUpdate(Serial) Broadcasts a state update of
Find(Serial)’s location to all neighbour
peers.

GenerateMobList() Generates a list of locally stored mo-
biles and their associated nodes.

Table 3.2: Logic Interface Functions

legal move, the local game logic would create its own Movement Acknowledge packet

and return it to the client. Following this, by calling BroadcastUpdate(serial),

it would retrieve the new location, construct an update packet, and send it to all

peers within the NeighbourList.

Beyond the base functionality, when a supernode receives an movement update

that is applied to its replica of the game state, it also informs the IM module so

that it updates its slave records of the region to perform accurate AOI calculations.
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Periodic Updates

When the server processes many of the non-distributed game mechanics, it takes a

players position into consideration. Therefore, the supernodes are required to pro-

vide the server with periodic updates of their slaves authoritative states to maintain

continuity and a degree of consistency in the gameplay.

A supernode maintains an update list, and each time the supernode receives an

update from a slave in its group, it adds that peer to the update list. Periodically, the

supernode calls the SendPositionUpdate(Node) function from the logic interface

which updates the server of each peer contained within update list. A 3 second

interval between updates was chosen to still provide an accurate state of the virtual

world to the UO server, while maximizing on the potential bandwidth reduction.

With the updates being transmitted by the supernode, the server is required to

accept the information and apply any changes to the server’s game state. However,

after assessing how to create and transmit the periodic movement updates, it was

found that the server would not accept any form of direct position updates without

administration privileges. Further investigation was performed into player interac-

tions in the hope that an event packet could be manipulated as a workaround to this

problem. An example would be using the game’s teleport spell packet to provide

changes in a mobile’s position. However, the server was secured against such exploits

by requiring the player mobile to have sufficient abilities or consumable resources to

perform them. With no manipulation possible, it required that the servers scripting

interface be used to introduce a new, hidden command that allows a player to send a

positional update of their own player mobile. Therefore, the periodic update packet

is constructed within in the middleware containing the necessary information and

disguised as a plain text packet. While cheating mitigation and security is outside

the scope of this experiment, encryption could be applied to the periodic updates

in a full system to enhance their security.

3.6 Summary

In this chapter, the design and implementation of the middleware plugin and hybrid

system was presented at various levels. It began with a high-level overview of the full

hybrid system, detailing some of the major design choices that define the structure

of the system to achieve the two primary goals: (1) to reduce server load and

(2) to reduce player latency. This included the use of direct communication; peer

grouping according to regions; the use of supernodes; how the topology is structured
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to overcome the UO server limitations; and the choice of movement for distribution

amongst the peers.

Following the overview, the conceptual design of the interest management scheme

was presented. The scheme, based on MOPAR, divides the world into hexagonal

regions, where each region forms a peer group and is administrated by a supernode.

Slaves connect to the supernodes via a directory server hosted alongside the server.

The supernodes is tasked with calculating the AOIs of its slaves and instructing

them on who to be connected with. Finally, the 4 possible migration types were

listed.

With the basic structure of the system and IM scheme covered, the conceptual

design of the network architecture was discussed. Each physical system runs a

middleware plugin and a game client, and the two are connected internally. The

directory server acts as an entry point into the P2P segment of the network. When a

player joins the game and queries the directory server, it either becomes a supernode

or reroutes its connection to the server via a supernode it is assigned to. The

direct communication principles allow peers to minimize latency by eliminating any

additional hops.

After the high-level design of the system was covered, finer details of the imple-

mentation were presented. The implementation is divided into 6 sub-modules: core,

networking, interest management, local game logic, logic interface, and server game

logic. Each of these modules were presented according to their aims and design.

While the majority of the functionality is shared regardless of the peer’s role as

supernode or slave, in some cases extended functionality was introduced to cater for

a specific role. In addition, much of the functionality in some modules is dependant

on other modules capabilities. Together, the modules made up the implemented

middleware plugin that is investigated in the following chapter.
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Experimental Investigation

4.1 Introduction

This section fully details the experiments performed on the hybrid system to evaluate

its performance when compared to the baseline client/server system. As part of the

introduction, the metrics by which the system is measured are described, along with

the method of automating the game and the motivation behind the duration of the

experiments. The remains of the chapter proceed through each metric, providing

details of every performed test: the motivation and configuration of them, and a

discussion of the results.

4.1.1 Performance Metrics

It is expected that the hybrid system will have an impact on different attributes of

the original C/S system. The exact effects need to be measured through performance

experiments, and thus three metrics are important to the performance of the system.

Data Bandwidth is defined as a measurement of the bit-rate of consumed data

communication resources. In this system, bandwidth is defined as the amount of

data sent and received by a node in the network summed over a duration of time. A

focus is placed on two measurements of bandwidth: the total recorded bandwidth

over a extended duration, and the per second bandwidth.

Bandwidth has a direct financial implication on the owner of a node. If it requires

additional bandwidth then it must purchase an upgraded capability from its service

provider at a higher fee. Therefore the lower the bandwidth experienced by a node

is, the better for the owner of it.

67
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Latency is defined as a measure of time delay in a system. In the context of

communication networks, latency typically refers to the time delay from when a

packet is sent to when it is received. In this system, latency refers to the time delay

between when a packet is sent from one node, to when it is received by the node it

was destined for. The constraints of a practical system means time measurements

across different nodes cannot be made with a resolution less than 1ms. Therefore,

it is necessary to measure latency in the form of a Round Trip Time (RTT). RTT is

defined by the time delay between when a node sends a packet and when the same

node receives a response to that packet.

Latency has a direct impact on players, and an indirect impact on the game

host. Players demand low latencies to be able to play the game to its full potential.

If latencies are high, the delay interrupts the gameplay, causes a disadvantage for a

player and will ultimately result in their dissatisfaction. If players are dissatisfied,

they leave the game resulting in lost revenue. Therefore, low latencies are better to

facilitate the gameplay and maintain a strong player base.

Hardware Impact is not formally defined, but is a more subjective measure

of how the software influences the hardware usage of a computer. This metric is

primarily focused on the processor and memory usage of the software. Each of

the hardware metrics are derived from the Windows Diagnostics tools built into

the development platform [52]. The processor usage is recorded as the percentage of

time that the processor has spent executing a non-idle thread of the process over the

sample duration. Informally, it shows how much the application process is making

use of the processor. Memory usage uses two measurements: the private bytes and

the working set. The private bytes is a measurement of how much memory has been

reserved by the process with the operating system, whereas the working set is a

measurement of how much physical memory is in use by the process.

If the software is more taxing on the computer system, better hardware is re-

quired to run it. Improved hardware comes at a higher initial cost, and often has a

higher running cost than low performance hardware.

The overall system performance will be evaluated according to these metrics.

Bandwidth and Hardware Impact have a greater influence on the game host but

also affect players of the game. Latency, in contrast, has a greater affect on the

players.
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Action Description Probability
Large Movement Move to a random location 15

units away in x and y directions.
0.1

Small Movement Move to a random adjacent tile. 0.6
Speak Say something 0.3

Table 4.1: Automated Player Behaviour

4.1.2 Game Automation

For the real implementation of the system to be evaluated, the game client would

need to perform as if it were being controlled by a real player. This involves invoking

player actions on the game client at different intervals throughout the duration of

play. Accurately modelling player behaviour is a complex activity, with activity

being dependant on the game itself, the time of day, the length of play and the level

of the character, amongst other influences [53].

To gauge the influence of this system, a simplified model of player behaviour

was created to cater for the bandwidth and latency measurements, according to the

expected traffic generation. It is expected that the accuracy of the player behaviour

will not have a significant impact on the outcome of the experiments if the same

behaviour is applied equally throughout each test across all architectures. Only

two game activities were included in the player behaviour: movement and speech.

Modelling movement and speech allows for respectively measuring the effect of dis-

tributed and non-distributed mechanics.

A script was written for the EasyUO macro application. Once the script is

launched, the automated player selects and performs an action from table 4.1. When

the selected action is complete, it waits a short duration and repeats the process.

This continues until the user intervenes and shuts down the script. The actions

were modelled to suit the style of Ultima Online, where a player will go to an area,

make various small movements around it while performing actions (such as speech),

and then make a large movement to move on to another area — a typical style of

gameplay associated with Ultima Online.

4.1.3 Testing Duration

The duration of any tests that aim to emulate standard player behaviour should

span around an average length that a player would play an MMOG in one sitting.

The average session of a World of Warcraft player spans the duration of 2.3 hours

with a median of 1.4 hours [54]. Using these as a guideline, running each test for 2
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hours should suffice as an estimation for a single session of playtime.

4.2 Bandwidth Evaluation

4.2.1 Overview

The purpose of the bandwidth tests is to measure the difference in bandwidth ex-

perienced by nodes between the original Client/Server system and the new hybrid

system. A baseline for comparison is established by measuring the C/S system. The

following two tests are performed on the hybrid system: (1) the single region test,

and (2) the inter-region test.

The single region test defines a configuration where no inter-region interest man-

agement effects take place. Each region is steady in terms of the number of peers

it has, and no migrations or supernode handovers take place. The only minor effect

of interest management on the single region is the definition and control of AOIs.

Therefore, the single region test focuses on consistent game traffic as a result of

player activity.

The inter-region test investigates traffic resulting from inter-region interest man-

agement effects. It focuses on fluctuating bandwidth as a result of migrations and

IM overhead necessary to maintain the system. Players move freely between regions,

causing migrations, supernode handovers and fluctuating region populations.

In this section, the test platform is described and the three practical tests are

discussed with respect to their motivation, configuration and results.

4.2.2 Test Platform

The amount of bandwidth generated by nodes in the system is independent of the

network latency, this led to the use of a local area network (LAN), which operates

at 100Mbps, as a platform for testing. To limit the number of physical computers

required, VirtualBox, a software package for running virtual x86 hardware, was uti-

lized [55]. VirtualBox allows the creation and execution of multiple virtual machines

on a single physical machine. Each virtual machine functions as if it were an in-

dependent system, with its own operating system, IP address and virtual hardware

with a single core processor and 512MB of memory. Using VirtualBox, each physical

computer is capable of acting as multiple machines on the network, each with their

own game client and middleware running.
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4.2.3 Test 1.1: Baseline Bandwidth

Motivation

For the effects of the hybrid system to be properly measured, they must be compared

against how the standard C/S system baseline performs. The bandwidth for both

the server and the client nodes are recorded. The movement and speech packets, as

well as the total bandwidth, are measured separately to facilitate comparison with

the hybrid system (where the movement packets are distributed, and the speech

packets are sent to the server).

Configuration

This test uses the following setup:

• The server is hosted on a dedicated computer.

• Fifteen clients are hosted on virtual machines spread over three physical com-

puters.

Since the client and server software has not been modified, simplified middleware is

used to record the bandwidth measurements. The client connects to the server via

the middleware, and every packet is transparently passed through the middleware,

without applying any game logic of modifying the packets, whilst recording the size

of the packets.

Each client executes the macro script for a period of 2 hours. All player mobiles

are limited to a shared virtual area to ensure occasional interaction.

Results & Discussion

The recorded bandwidth values of the clients and the server were processed to pro-

duce means and standard deviations. The average amount of bandwidth experienced

by a client in the C/S system is shown in Fig. 4.1a. In this, the green segments refer

to the portion of traffic resulting from movement mechanics, showing the updates

received and events transmitted respectively. It can be noted that the transmit-

ted movement traffic is greater than the received traffic, suggesting that the move-

ment events are larger than their associated confirmation updates returned from

the server. Similarly, the red segments refer to the portion of traffic resulting from

speech: updates received and events transmitted respectively. The remaining blue

segment represents the miscellaneous game traffic, and thus makes up total traffic

experienced by that node. The error bars refer to the standard deviations of each

the movement, speech, and total.
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(a) Client Bandwidth Totals

(b) Server Bandwidth Totals

Figure 4.1: C/S baseline results

Similarly, the bandwidth experienced by the server is shown in Fig. 4.1b. How-

ever, in this figure, the received traffic refers to events which it received from clients,

and the transmitted traffic refers to the updates transmitted from the server in

response to its clients. The tabulated results are available in Appendix B.

These results serve as a baseline for comparison with the hybrid system.
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4.2.4 Test 1.2: Single Region Bandwidth

Motivation

This test aims to capture the single region bandwidth experienced by nodes in

the hybrid system. It is performed in a static, single virtual region with a single

supernode for the full duration of the test. This static setup is used so that the

bandwidth differences can be observed for distributed and non-distributed game

mechanics, without any influence from the bandwidth as a result of peer migration,

supernode handovers, or relogs.

This aims to measure the additional bandwidth per slave as a result of assuming

the role of a supernode; the additional bandwidth experienced by all peers in the

P2P segment; and the change in bandwidth experienced by the server.

Configuration

Fifteen peers, each consisting of the game client, middleware and macro application,

and a server are used in this test in the following setup:

• The server is hosted on a dedicated computer.

• Fifteen peers are hosted on virtual machines spread over three physical com-

puters.

• One of the peers acts as a supernode for the complete duration of the test.

The full middleware client is used in this setup, and the full functionality of the

system is available. The directory server is hosted on the same computer as the

server.

In this test, the player mobiles are constrained to a single ingame region and

are connected for the full duration of the test. The first player to login assumes

the role of supernode and maintains that role throughout. Once the supernode is

established, all other players login to the game and all macro scripts are started.

Results & Discussion

The first comparison, shown Fig. 4.2 and tabulated in Appendix C, is between the

slave nodes in the hybrid system, and the standard client nodes of the C/S system.

As each slave is responsible for providing movement updates to each of its neighbours

located within its area of interest, the movement bandwidth shows an increase of

23%. The increase in outgoing movement packets is not unexpected as a middleware

movement update is 9n bytes per move made by the player, where n is the number

of nodes currently within interest range. This replaces the single 7 byte event that
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Figure 4.2: Bandwidth comparison between clients and slaves

was transmitted to the server per movement in the C/S system. The 58% decrease

in incoming movement packets is attributed to the slave no longer having to receive

a movement acknowledgement from the server for every move it makes.

The non-distributed speech packets see no significant change between the C/S

and the hybrid system for slaves. This as a result of no real change in protocol of

how they are handled, besides their rerouting through the supernode.

Overall, the 17% increase in slave bandwidth is acceptable for the purpose of the

hybrid system, especially if the slaves do see a significant decrease in their latencies.

This increase in slave bandwidth should translate to a reduction in server bandwidth.

The hybrid system’s server bandwidth is compared with the C/S system in

Fig. 4.3 and the tabulated results are available in Appendix C. The results proved

to be opposite to what the predetermined goals of the system were. Instead of

the reduction in bandwidth, the server experienced a 35% increase overall with the

primary contributor being the 137% increase in movement traffic received by the

server. This contradicts the expected reduction that periodic updating would offer.

The cause of this fault stems from the size of the periodic update packets, where

every 3 seconds 74n bytes of data are sent to the server, where n is the number of

supernode’s slaves who have moved in the previous 3 second time period. The large

packets are a result of the plain text command sent to the server resulting from the

UO server constraints as mentioned previously. Taking this into consideration, the
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Table 4.2: Number of movement events/updates received by the server in the
C/S and hybrid systems respectively.

System Move rx Size Count
Client/Server 729 068 7 104 153
Middleware 1 724 977 74 23 311

number of movement updates in the hybrid system, and the number of movement

events in the C/S system are shown in Table 4.2 and compared in Fig. 4.4. This

shows that periodic updating indeed reduced the number of updates sent to the

server by 77% from 104 153 to 23 311.

The server still redundantly processes any changes in the game state and pro-

duces updates accordingly. This results in the server sending movement updates

for each periodic update it receives. However, the size of each movement update

packet produced by the server is unchanged between the two systems, and thus the

28% decrease in movement traffic transmitted by the server reflects the reduction in

bandwidth resulting from fewer events through periodic updates.

The changes in bandwidth for the supernode, as compared to a client in the

C/S system, are shown in Table 4.3. The distribution of traffic is shown in Fig. 4.5.

As expected, the bandwidth experienced by the supernode increases. The large 2

899% increase in movement traffic received is a result of all slaves transmitting every

one of their movement updates to the supernode so that it is able to process AOIs

accurately and produce periodic updates for the server.

In addition to the changes in movement bandwidth, it experiences a large in-

crease of 2 575% in speech bandwidth due to the connection rerouting. Each slave

that generates a speech event routes it via the supernode to the server. The super-

node then receives the updates from that event from the server and sends the updates

to its slaves.

While the movement and speech each show individual increases, the portion of

traffic that stands out in the total distribution shown in Fig. 4.5 is the 42% of the

bandwidth experienced by the supernode due to the periodic updating of player

movement, including both the update commands sent from the supernode (account-

ing for 35%), and the redundant updates received from the server (accounting for

the other 7%). While the periodic updates are necessary and were expected to in-

crease the supernode bandwidth somewhat, they contribute significantly more than

was expected due to the size of the updates.
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Figure 4.3: Bandwidth comparison between servers in the C/S and hybrid
systems

Figure 4.4: Comparison in the number of movement events in the C/S system
and periodic updates in the hybrid system received by the server respectively.
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Table 4.3: Bandwidth values of supernode in the single region hybrid system
and change from clients in the C/S system (B)

Aspect Mean Std C/S Mean Change
Move rx 886 248 8 190 29 554 +2899%
Move tx 48 856 17 293 49 616 -1%

Move both 935 104 16 474 79 170 +1081%
Speech both 1 098 931 8 288 41 085 +2575%

Periodic upd rx 318 052 1 129 - -
Periodic upd tx 1 724 977 6 122 - -

Total rx 2 201 931 39 691 73 661 +2889%
Total tx 2 671 907 35 415 78 103 +3321%

Total both 4 873 838 75 106 151 764 +3111%

Figure 4.5: Supernode Bandwidth Distribution

Finally, the cost of hosting a slave as a supernode was investigated and is shown

in Table 4.5. In the single region configuration, it shows that each slave accounts

for 13.57 Bps inbound and 6.54 Bps outbound of the supernode. This excludes the

additional bandwidth between the supernode and server for periodic updates. Tak-

ing periodic updates into consideration, these values increase to 16.51 Bps inbound

and 22.51 Bps outbound.

With these effects established, it is worth taking into consideration the potential

benefits of the system with some flexibility in the constraints of modification. The
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Table 4.4: Potential comparisons between nodes with server modifications (B)

Node type C/S Modified Change
Slave 151 764 177 642 +17%

Supernode 151 764 3 180 466 +1995%
Server 2 278 310 1 389 018 -39%

Table 4.5: Bandwidth cost per slave for supernode (Bps)

Direction Mean Std
Received 13.57 0.734

Transmitted 6.54 2.080

data represented in the current periodic update packet could be represented in a

15n byte packet rather than the 74n bytes it is currently using in text format. If an

additional packet could be inserted into the native server code, then the amount of

data as a result of periodic updates could be reduced as follows:

total updates

bytes/node
∗ potential bytes/node =

1724977

74
∗ 15 = 349657.5 B (4.1)

If another modification could be introduced into the system to not produce redun-

dant updates for changes received via this new packet, they could also be ignored.

These two changes could produce the potential reduction in supernode and server

traffic portrayed in Table 4.4. These changes are more encouraging, since the server

shows a reduction in bandwidth of 39%.

Furthermore, if the server could be modified to accept client events from any

source, the slaves could communicate directly with the server rather than routing

their non-distributed traffic through the supernode. If this, combined with the previ-

ous suggestion, was implemented, the supernode could experience a total bandwidth

usage of 2 118 740 B, an increase of only 1 296%. The final potential values are

compared to their C/S counterparts in Fig. 4.6, highlighting the potential significant

reduction in server bandwidth.
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Figure 4.6: Potential bandwidth totals of hybrid nodes with client/server nodes
for reference.

4.2.5 Test 1.3: Inter-region Bandwidth

Motivation

With the single region effects of the system established, the inter-region effects of the

hybrid system should be observed. The IM scheme introduces migrations, supernode

handovers and relogs into the system, as well as additional overhead to maintain the

IM structure. The purpose of this test is to determine the effect of the inter-region

IM on the bandwidth experienced by the server, clients and supernodes.

Configuration

Fifteen peers, each consisting of the game client, middleware and macro application,

and a server are used in this test in the following setup:

• The server is hosted on a dedicated computer.

• Fifteen peers are hosted on virtual machines spread over three physical com-

puters.

The full middleware client is used in this setup, and the full functionality of the

system is available. The directory server is hosted on the same computer as the

server.

In this test, the player mobiles are constrained to the shared virtual area con-

taining multiple regions. Each client logs into the game through the middleware and

the macro scripts are started.
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Results & Discussion

Two items were identified as the main components of inter-region traffic: migrations

and interest management overhead. The inter-region bandwidth is dependant on a

number of different factors highlighted in these results.

Migrations On average, a login is relatively expensive and incurs the traffic

shown in Table 4.6 to the migrating peer. Because players are continuously moving,

many migrations occur, causing regular transformations and connection rerouting

that was described in section 3.5.3. This generates significant inter-region band-

width, contributing negatively towards the hybrid system. An extract of the results

are shown in Table 4.7. Large standard deviations exist for the role duration, as

well as for the number of slaves managed per supernode, and their associated login

traffic. There is a large discrepancy between the supernodes who performed their

duties the longest and shortest and, similarly, there is a large discrepancy between

the number of slaves handled by the supernodes. This suggests that the inter-region

effects are highly dependant on player behaviour, and accurate trends might only be

observable with large numbers of players over a long duration of gameplay. However,

all results suggest that the relog bandwidths negatively influence the system, albeit

at different degrees.

The cost of migrations in terms of login overhead has a significant impact on the

supernode’s cost for hosting a slave. In the previous test, the outbound cost per slave

for the supernode in the single region was shown to be 6.54 Bps. The outgoing per

second bandwidth is shown in Fig. 4.7 for different durations of ownership. In this

figure, the large spikes in bandwidth (up to 1150Bps) for shorter durations indicates

how costly owning a slave can be for a supernode if it is only owned temporarily

before another migration occurs.

Over the full duration of the test, 332 migrations occurred, causing an addi-

tional 1 033 848 bytes of traffic for the server: a +45% increase to the bandwidth

experienced by the C/S server seen in Test 1.1. From the mean values, a supernode

experiences an average of an additional 31Bps in each direction from relog traffic

alone while performing its duties.

While migrations are unavoidable, the bandwidth increase that they introduce

highlights the importance of tuning the IM scheme to reduce the impact of high-cost

transients. By predicting which peer will remain in a region the longest, it can be
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Table 4.6: Cost of a login to the migrating node (B)

Direction Mean Std
Received 363.18 54.35

Transmitted 2751.30 486.22
Both 3114.48 524.53

Table 4.7: Supernode inter-region bandwidth showing migration effects ac-
cording to duration as a supernode, number of slaves over the period, and the
amount of re-login traffic handled.

Duration(s) Slaves Login(B) Comment
2155.48 13 75256 Longest
1900.59 28 167332 Most
11.05 1 5984 Shortest

Mean Std Mean Std Mean Std -
456.6 530.4 4.8 5.6 28361 34031 -

selected as a supernode to avoid the bandwidth spikes incurred by relogs occurring

from repetitive handovers. Introducing dynamic regions that scale according to how

much the supernode can handle can allow regions to change in size, in some cases

becoming bigger, allowing players more movement before they must migrate.

Ultimately, the server could be modified in one of two ways to eliminate the

heavy migration costs: (1) the server could not produce a full login sequence in

the case of a migration, but only pass the necessary information, greatly reducing

the size of a relog; or (2) the server could accommodate direct connections between

slaves and the server while still providing the necessary functionality, eliminating the

login traffic completely along with other benefits mentioned throughout the tests.

IM Overhead The overhead costs for maintaining the interest management sys-

tem is the other major contributor to inter-region traffic, although only to peers

and not the server. The tasks for maintenance are separated into 2 portions: slave

instruction and neighbour updates.

Slave instruction involves the supernode sending commands to its slaves on who

to connect and disconnect with when other players enter and leave the slaves’ areas

of interest. However, the bandwidth generated by these instructions appears to be

minimal. Each command is 13 bytes in size, and are only sent when there is a
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Figure 4.7: Bandwidth impact on supernode for hosting a slave at different
durations

change in a player’s AOI. Therefore two players remaining in a shared AOI generate

no additional overhead. During the test, only 1 supernode experienced more than 1

Bps as a result of this component. All others were below 1 Bps over the full duration

of their time as a supernode, for multiple slaves.

The updating of neighbouring supernodes contributes more towards the total

overhead, but is also very dependant to the arrangement of players in the regions.

The size of the updates, as previously mentioned in section 3.5.4, were shown to be

dependant on the number of slaves being managed by the supernode, as well as the

number of occupied immediate neighbouring regions.

An extract of bandwidth resulting from IM maintenance are shown in Table 4.8.

In this table, the amount of neighbour update traffic experienced throughout the

duty as supernode is shown in both directions. Again, the standard deviations are

seen to be large in comparison to the mean values, suggesting large variations in each

supernode’s experience. An example of these discrepancies is shown by the super-

node who received the most updates (23 836 B) and must have been neighbouring a

heavily populated region, while its own region remained sparsely populated, result-

ing in it only transmitting 1 495 B to its neighbours. Also shown in the table is the

amount of slave instruction traffic sent by a supernode throughout its duty and the

large discrepancies of recorded values between 0 and 1 339 B.

Again, these figures illustrate that the inter-region traffic is highly dependant on

player behaviour, and accurate trends might only be observable with large numbers

of players over a long duration of gameplay. The IM overhead bandwidths differ
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Table 4.8: Supernode inter-region bandwidth showing overhead effects accord-
ing to duration as a supernode, number of slaves over the period, the amount of
neighbour update traffic experienced inbound and outbound, and the amount
of AOI instruction sent.

Duration(s) Slaves Upd rx(B) Upd tx(B) Instruct(B) Comment
2155.48 13 14378 807 0 Longest
1900.59 28 15320 35003 1339 Most
1190.87 7 23836 1495 138 Most

Mean Std Mean Std Mean Std Mean Std Mean Std -
456.56 530.36 4.8 5.6 2956.5 5136.2 2843 6581.1 96.18 246.09 -

Table 4.9: Supernode inter-region bandwidth makeup of total traffic through-
out duration

Component Portion
Mean Std

Migration 16.88% 8.04%
Overheads 4.70% 4.05%
Combined 21.58% 9.20%

greatly depending on the current state of the originating and neighbouring regions.

Table 4.9 shows a summary of how much inter-region bandwidth constitutes the

total bandwidth of supernodes for the duration of their duty. While the migration

traffic constitutes a significant portion in the bandwidth experienced by supernodes

at 16.88%, the overhead for managing the IM scheme is reasonable at only 4.7%.

No other significant trends could be established from this test due to the volatility

in the results. It is recommended that this test is run at a much larger scale, with

hundreds of real players over a long duration, so that more significant details about

the inter-region bandwidths can be determined.

4.2.6 Conclusion

The measurement of bandwidth data revealed a number of valuable points relating to

the bandwidth changes in the hybrid system. The middleware plugin, as it currently

stands, shows that all nodes in the system experience an increase in their bandwidth.

The increase seen in slaves is within an acceptable level, seeing only a minor

growth of 17% in the single region, plus small overhead for interest management
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instructions. The slave only experiences poor bandwidth performance when it is

regularly migrating between regions, generating relog traffic between short intervals.

As one of the primary goals of the system was to reduce server bandwidth,

the resulting increase is an unexpected outcome. The three causes of the recorded

increase are the large periodic updates sent by the supernode, the redundant updates

returned to the supernode, and the large login packets that are exchanged as a result

of migrations.

The supernode experiences a huge increase in its bandwidth over a client in the

standard system, servicing more traffic for its region than the server does. This will

become a definite problem if a region becomes densely populated to the point of

overloading its supernode’s capabilities. The causes of the increase are the same as

those of the server, coupled with the need for the slave connections to be routed

through the supernode.

However, the unexpected outcomes are all shown to be a consequence of the

server constraints. The following three server modifications should result in the

expected decrease in server bandwidth: (1) Introduce a custom packet for aggregated

updates, thereby reducing the required supernode/server bandwidth. (2) Eliminate

the redundant server updates that are returned from the server from the aggregated

periodic updates. (3) Accept client events from multiple sources, which allows slaves

to connect directly to the server and send non-distributed packets directly. This

modification eliminates the need for the supernode to forward non-distributed traffic.

Finally, it will also eliminate bandwidth resulting from relogs.

The current system does not perform as expected and does not achieve its band-

width objectives. However, the expected change in bandwidth that could be achieved

with minor modifications to the server are promising and show that a middleware

plugin can reduce the server bandwidth while not over-burdening the clients.

4.3 Latency Evaluation

4.3.1 Overview

The purpose of the latency tests is to measure the difference in latencies for nodes

in the network between the original Client/Server system and the hybrid system.

In this section, the protocol modifications necessary to measure latencies are

detailed; the test platform used for the tests is described; the three practical tests

that were performed are discussed with respect to their motivation, configuration
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and results.

4.3.2 Protocol Modification

This test measures the time delay between when packets are sent and received. As

it is not possible to ensure that the clocks of different nodes are in synchronisation,

the test rather measures RTT to use only the source node’s clock. This requires

that packet responses are introduced into the protocol for packets that are usually

only one directional, such as a movement update. Furthermore, as multiple packets

of the same type are transmitted at any time, it is necessary to distinguish between

them, requiring that some form of identification between packets is incorporated.

This leads to the following modifications to the protocol. Each movement update

packet broadcast from a peer to his neighbour list is affixed with a unique ID number.

When a peer receives a movement update packet, a response containing the ID is

immediately returned to the original sender. Similarly, when a speech packet is sent,

the speech text is set to a unique ID number and transmitted to the server. The

server returns the speech, including the number, as an update to the client. This

allows an affixed ID to be transmitted to the server without any packet modification.

Whenever an ID appended packet is sent or received, an appropriate event is

recorded with a timestamp by the statistics module built into the application. This

allows the difference in time to be calculated as the round trip time of the packet

delivery.

4.3.3 Test Platform

For the effects on latency to be properly gauged, nodes must be situated at different

distances away from the server and each other. This will highlight any significant

differences that would be invisible if the latency was negligibly small. This led to the

use of Amazon Web Services (AWS) as a testing platform [56]. AWS allows a user

to launch virtual machine instances hosted by Amazon in the cloud, and provides

the user with access to the system. A user may then use the virtual machines to

perform computations, host a server, or execute any software that would be run on

a regular operating system.

AWS offers different global regions around the for virtual instances to be hosted

in, providing the user with a public IP to access the virtual instance over the Internet.

Three AWS regions were chosen to offer varying delays between each: US West

(Oregon), US East (North Virginia) and Ireland.
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Table 4.10: Round Trip Time to Server per Region (ms)

Origin of Event
US West US East Ireland

Mean Std Mean Std Mean Std
6.457 20.136 94.725 37.811 196.964 74.996

4.3.4 Test 2.1: Latency Baseline

Motivation

The purpose of this test is to establish a baseline with the C/S system to which

the hybrid system can be compared. It requires that nodes simply have their RTTs

recorded between their own location and the server to derive an average latency

between each region and the server.

Configuration

Using 15 clients spread evenly between the 3 regions and the server hosted in 1 of

the regions, the node distribution is as follows:

• The server is hosted in the US West region.

• Five clients are situated in the US West region.

• Five clients are situated in the US East region.

• Five clients are situated in the Ireland region.

Since the client and server software has not been modified, simplified middleware

is used to record the latency measurements. The client connects to the server via

the middleware, and every packet is transparently passed through the middleware,

without applying any game logic, whilst inserting packet identifiers and recording

the timestamps as the packets are transmitted.

Each client executes the macro script for a period of 2 hours. All player mobiles

are limited to a shared virtual area to ensure occasional interaction.

Results & Discussion

After computing the round trip time for each recorded packet, the mean and stan-

dard deviation of each region were calculated and appear in Table 4.10.

As expected, the nodes located in the same region as the server experience the

lowest latencies. It is also clear that as the distance from the server increases, so

does the latency. These results serve as a basis for comparison with the hybrid

system.
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4.3.5 Test 2.2: Latency with Supernode situated near

server

Motivation

This setup aims to capture latency information of movement and speech packets

for the hybrid system. This test is to measure (1) the RTT of movement updates

originating from peers to update their neighbours, ie the time delay in when a

distributed update is perceived, and (2) the RTT of speech events being sent to the

server and returned as an update to the originating node.

This test, performed in conjunction with Test 2.3, aims to reveal if the selection

and placement of supernodes influences the latencies experienced by different nodes

in the system. This is the first of the two extremes, where the supernode is located

in the same region as the server, rather than in the furthest region. In order to

measure reliable results, the test is run in a static single virtual hexagonal region

with only one supernode for the duration of the test. This allows for definite results

regarding the supernode placement to be derived.

Configuration

Using the same amount of clients as the client/server system, the supernode is placed

in the same region as the server. The node distribution is as follows:

• The server is hosted in the US West region.

• One supernode is situated in the US West region.

• Four slaves are situated in the US West region.

• Five slaves are situated in the US East region.

• Five slaves are situated in the Ireland region.

The full middleware client is used in this setup, and the full functionality of the

system is available. The directory server is hosted on the same virtual instance as

the server.

In this test, the player mobiles are constrained to a single virtual region and are

connected for the full duration of the test. The first player to login assumes the role

of supernode and maintains that role for the full duration of the test. Therefore, the

first node to login is in the same region as the server. The rest of the configuration

is the same as for Test 2.1.
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Table 4.11: Average RTT of speech (non-distributed) with the supernode in
USWest Region (ms)

Origin of Event
US West US East Ireland

Mean Std Mean Std Mean Std
15.03 38.99 115.32 105.74 213.95 105.91

Table 4.12: Average RTT of movement (distributed) with the supernode in
USWest region (ms)

Destination
US West US East Ireland

Origin Mean Std Mean Std Mean Std
US West 14.05 74.38 129.50 176.72 300.37 191.80
US East 114.66 124.59 27.78 248.74 145.04 216.50
Ireland 269.92 226.95 134.42 164.2 11.67 33.01

Results & Discussion

The speech data was processed to produce round trip times for each recorded packet

that was transmitted from the originating region, via the supernode, to the server.

The round trip times experienced by each region were averaged and the standard

deviation taken of each: the results are shown in Table 4.11 and compared with the

C/S results in Fig. 4.8. As expected, the round trip times do not show a significant

difference when compared to the baseline. Each value is roughly the original C/S

RTT of that region with the addition of one US West C/S RTT resulting from the

extra hop.

The movement data was processed to produce round trip times for each recorded

packet and the destination region of the packet. The round trip times experienced

by each region were averaged and the standard deviation taken of each: the results

are shown in Table 4.12 and the best case internal-region latencies are compared to

the C/S system in Fig. 4.9.

Regions far from the server see significant internal improvements in the time

between when an event is produced to when the updated state is perceived by

interested parties. This is particularly noticeable in Ireland where the original C/S

RTT of 196.96ms is reduced by 94% to the internal region RTT of 11.67ms. Based on

the premise that friends play together, players who are located nearby geographically
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Figure 4.8: Comparison of Round Trip Times for clients sending non-
distributed events and receiving their associated updates between the C/S
system and hybrid system with a supernode located in the US West region.
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Figure 4.9: Comparison of distributed latencies for peers communicating
within the same region between the C/S system and hybrid system with a
supernode located in the US West region.
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Figure 4.10: Comparison of distributed mechanic latencies between peers
where green connections indicate hybrid latencies, and blue indicate C/S la-
tencies.

will see significant improvements to their gameplay experience.

For nodes located near the server, the reduction is not quite as significant. A US

West node experiences average movement RTTs of around 14ms, close to its baseline

RTT of 6ms. However, the latency does become independent of server load, thus

a heavily loaded server will no longer affect the movement latencies experienced by

players, even if they are located nearby the server.

In the worst case, where two nodes are located geographically far apart, there

is still a reduction over the standard C/S system. If the one-way latency between

Irish and US West regions can be approximated to 1/2 of the RTTs measured in the

C/S system, then the latencies of 2 distant nodes and the server can be described

as in Fig. 4.10. This shows that the hybrid system offers a latency of 98ms between

the nodes as opposed to the 101ms in the C/S system — a reduction of 3.1%, albeit

minor.

While these are promising results, further investigation into the effects of super-

node placement is necessary.
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Table 4.13: Average RTT of speech (non-distributed) with the supernode in
Ireland region (ms)

Origin of Event
US West US East Ireland

Mean Std Mean Std Mean Std
390.80 196.72 293.09 93.54 218.77 211.01

4.3.6 Test 2.3: Latency with Supernode situated far

from server

Motivation

This setup follows closely on Test 2.2 with the aim of gathering the same information.

The test also runs in a single in-game region occupied by one supernode and 14

slaves. However, in this test, the supernode is deployed in the furthest AWS region

from the server, in order to determine if the selection and placement of supernodes

influences the latency experienced by nodes in the system.

Configuration

Using the same amount of clients as the base case, the supernode is placed in the

furthest region from the server. The node distribution is as follows:

• The server is hosted in the US West region.

• Five slaves are situated in the US West region.

• Five slaves are situated in the US East region.

• One supernode is situated in the Ireland region.

• Four slaves are situated in the Ireland region.

This test follows the same configuration as Test 2.2 with the difference that the first

node to login is from the Irish region.

Results & Discussion

The speech data was processed according to the same method as the previous test:

the results are shown in Table 4.13. A comparison of the results to the C/S system

and the hybrid configuration of Test 2.2 are shown in Fig. 4.11. In this instance, the

significant impact of supernode placement can be observed. There is an insignificant

change in latencies experienced by nodes in the supernode’s region, where speech

latencies change from 196.97ms to 218.77ms, while nodes located in other regions

are affected poorly.
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Figure 4.11: Comparison of Round Trip Times for clients sending non-
distributed events and receiving their associated updates between the C/S
system and hybrid system configurations.

Over the standard C/S setup, the nodes located in the US East region experience

an increase in latency of 209% from 94.73ms to 293.09ms, and the nodes located in

the US West region experience an increase of 5952% from 6.46ms to 390.8ms. This

is a significantly negative impact of the hybrid system on non-distributed game me-

chanics. If players who are located near to the server are unfortunate enough to get

paired in a region with a distant supernode, it will result in a serious degradation

in the gameplay experience. Even in the case where the supernode is the originator

of the event, a distant node will experience a bigger latency, as shown in Fig. 4.12

where an event originating from the supernode in Ireland is only perceived by the

US West node 294ms after it was generated, rather than 101ms in the C/S system.

This highlights the importance of supernode placement within the P2P network,

and presents an opportunity to define criteria for supernode selection as the player

in the region who is nearest to the server. However, this still only serves as a way

to minimize the negative impact, but not eliminate it. The severe impact of the

supernode situated in Ireland is clearly visible in Fig. 4.11 where all nodes experi-

encing their highest RTT of non-distributed latencies in that setup. Also visible in

the figure is the negligible impact that a supernode in the same region as the server

has over the C/S system: where the US West supernode and Client/Server RTTs

are similar.
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Figure 4.12: Comparison of non-distributed mechanic latencies of updates
between regions in the hybrid and C/S systems

Table 4.14: Average RTT of movement (distributed) with the supernode in
Ireland region (ms)

Destination
US West US East Ireland

Origin Mean Std Mean Std Mean Std
US West 13.34 83.65 115.18 131.20 270.98 169.79
US East 134.97 325.20 14.02 98.78 155.63 354.69
Ireland 296.70 288.92 147.22 102.60 24.04 258.26

The movement data was processed according to the same method as the previous

test: the results are shown in Table 4.14. The best case latencies are shown in

Fig. 4.13 where the movement RTTs are compared between the standard C/S system

and each of the hybrid system configurations when communicating within the same

region. Comparing this to the results of the previous test, it can be concluded that

the placement of supernode has an insignificant effect on the latencies belonging to

the distributed mechanics. In all instances, the RTTs show an insignificant change

between the configurations, such as 134.97ms compared to 114.66ms when movement

updates originate from a US East node and are perceived by a US West node.

Overall, there is a significant reduction in distributed mechanic latencies, espe-

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. EXPERIMENTAL INVESTIGATION 94

USWest USEast Ireland
0

50

100

150

200

Region

R
o

u
n

d
 T

ri
p

 T
im

e
(m

s)

 

 

Client/Server
USWest Supernode
Ireland Supernode

Figure 4.13: Comparison of distributed latencies for peers communicating
within the same region between the C/S system and hybrid system config-
urations

cially noticeable in the Ireland region.

4.3.7 Conclusion

The outcomes of the tests showed that the expected latency results can be achieved

in all but one aspect of the game for the hybrid system.

The distributed movement latencies showed a decrease in all regards, with sig-

nificantly large reductions for players who are distant from the server but local to

each other. This is a very positive outcome for the system. Based on the premise

that groups of friends from the real world play together as groups in the virtual

world, the latency reductions can provide them with a highly improved gameplay

experience. Many game servers are international and have players from distant ge-

ographical locations connecting to them, and with the middleware they would no

longer suffer from international latencies with distributed mechanics.

Non-distributed mechanics result in a range of different latency changes depend-

ing on the location of the supernode. In the worst case it was observed that a player

who is nearby the server can experience an unacceptable increase of nearly 6000% in

its latency. However, since the goal of the system is to distribute most, if not all, of

the game mechanics, this increase in latency can be minimised when non-distributed

mechanics are in the minority. The priority at which mechanics are distributed can

be related to their latency requirements — where mechanics requiring low delays

are prioritised, and non-time sensitive mechanics are not.
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However, once again the poor performance is a result of the UO server con-

straints. If modification to the server is allowed, using the same modifications that

were mentioned in the bandwidth tests, the effects of selecting a distant supernode

can be entirely eliminated by allowing slaves to connect directly to the server. This

would result in slaves experiencing similar latencies for non-distributed mechanics

as clients do in the baseline C/S system.

The current system achieves one of its objectives by showing that distributed

mechanics can hugely benefit from large decreases in latency for players located

nearby one another, and be roughly equal to the C/S system when they are not

located nearby. Non-distributed mechanics show that poor supernode selection can

result in negative effects on the system, but can be eliminated by modifying the

server. This supports the hypothesis that the hybrid system improves network

latencies as experienced by the players.

4.4 Hardware Impact Evaluation

4.4.1 Overview

The purpose of the hardware performance tests is to measure the hardware usage

of the middleware software, as well as comparing the hardware usage of the server

software between the two systems. Investigation into this will show whether the

hardware requirements of the server will be lowered by using the system, and how

the middleware scales when performing supernode tasks.

In this section, the test platform used for the tests is summarised; the two

practical tests that was performed are discussed with respect to their motivation,

configuration and results.

4.4.2 Test Platform

The platform for testing is the same as described for bandwidth tests, using a number

of VirtualBox Virtual Machines spread over multiple physical computers connected

over a LAN.

For the correct perspective to be established, the same dedicated computer must

be used by the software module under investigation. The specifications of the com-

puter used in this test are shown in Appendix D.
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The software’s data capturing module samples the CPU utilization, Virtual

Bytes and Working Set of the process every 1 second.

4.4.3 Test 3.1: Hardware Impact of server software

Motivation

For the effects of the system to be properly measured, they must be compared

against C/S system baseline performance. It requires that the server records its

CPU and memory usage over the duration of the test while an increasing number

of clients connect to it, maintain their presence ingame and then disconnect.

With the baseline established, the middleware should be incorporated and the

same procedure followed to record the CPU and memory usage of the server in the

hybrid system.

Configuration

As the server is under investigation, it is hosted on the computer dedicated to

measurements. The client peers are located on virtual machines. The test follows

the following configuration:

• The server is hosted on the dedicated measurement computer.

• Fifteen clients are hosted on virtual machines spread over 3 physical comput-

ers.

With the server started, each client logs into the game with a 2 minute delay between

entries. The client runs their macro scripts while additional clients are connected.

When all 15 clients are connected, the configuration is left to run for 4 minutes.

Each client is then logged out with a 2 minute delay between departures.

As measuring the hardware impact is more subjective, the test focuses on exam-

ining the changing trends of hardware usage for varying numbers of players, rather

than the exact usage figures. Therefore, a shorter test duration is used to simplify

the test, while still allowing enough time for each client to perform a set of actions.

Following this, the middleware is introduced to each of the clients and the direc-

tory server is run alongside the server. The same procedure is followed as before.

Results & Discussion

The collected results were processed to produce an average and standard deviation

of each of the hardware attributes for each of the number of clients connected to
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the system at that time. The tabulated results are shown in Appendix E while the

summarised results are presented below.

The differences in CPU utilization were shown to be not significant, as seen in

Fig. 4.14a. This shows that the middleware plugin does not reduce CPU utilization

of the server, contrary to what was expected. As the server is still processing all

of the non-distributed mechanics, handling the overhead of hosting players, as well

as servicing the periodic updates and producing redundant updates for them, it is

within reason as to why no change has been observed.

The differences observed in memory usage are shown in Fig. 4.14b and Fig. 4.14c.

Neither the private bytes nor the working set show a significant change in memory

usage, but only minor variations. The memory usage does not seem to change sig-

nificantly between the number of clients that are connected to the game for a small

number of players.

In all of these aspects, the true changes in hardware usage might only become

evident when many more players are connected to the game, perhaps in the range

of hundreds. In addition, the predicted benefits to the server might only come into

effect if the proposed modifications from the previous tests are incorporated into the

server.

4.4.4 Test 3.2: Hardware Impact of middleware

software

Motivation

The aim of this test is to judge the impact and scalability of the middleware software.

By recording the hardware usage over time as more slaves connect through the

supernode’s middleware, it is possible to predict how significantly hosting more

slaves will impact the system hardware.

Configuration

The configuration is modified slightly from to appear as follows:

• A supernode is hosted on the dedicated measurement computer.

• The server is hosted on a dedicated computer.

• Fourteen peers are hosted on virtual machines spread over 3 physical comput-

ers acting as slaves.
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(a) Comparison of CPU utilization between C/S and hybrid system.
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(b) Comparison of Private Bytes between C/S and hybrid system.
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(c) Comparison of Working Set between C/S and hybrid system.

Figure 4.14: Hardware Usage of server software between systems.
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The directory server is hosted alongside the server, and the same test procedure is

followed as in Test 3.1.

Results & Discussion

With the data collected, it was processed to produce a mean and standard deviation

of hardware usage for different numbers of slaves connected through the supernode.

The raw results are shown in Appendix E and summarised below.

The CPU utilization is shown in Fig. 4.15a. In this it can be seen that CPU

utilization is low in the case where the system is only hosting itself as 1 slave.

By analysing the usage as the number of slaves increases, it appears to show that

CPU utilization increases roughly linearly with the number of slaves that join. The

standard deviation of the measurements also increase with the number of slaves,

suggesting that larger spikes in usage also begin to appear as more slaves connect.

Therefore, it can be concluded that if the supernode must host large numbers of

slaves in well-populated areas, it will eventually experience a significant impact on

its system CPU usage, and thus might begin to affect the gameplay itself by limiting

the resources available to the game.

The memory usage, shown in Fig. 4.15b, shows that the system uses around

40MB at startup, and then increases to around 55MB as the player connects to the

game, a 37% increase. Once assuming supernode duties with a few slaves connected,

the memory usage stabilises at around 60MB and appears to proceed unchanged

from that point, regardless of how many slaves are added.

While these trends might hold true for smaller numbers of slaves, they might

reveal different trends with significantly larger numbers of players.

4.4.5 Conclusion

The hybrid system appears to have a minimal effect on the server’s hardware usage

for the number of players in the tests. The CPU utilization appears unaffected by the

system, and the memory usage shows insignificant variations. However, the effects

of the hybrid system might become more visible with larger numbers of players.

The potential benefits, such as reducing in the frequency of CPU usage spikes or

the average CPU usage, might only take effect if the proposed server modifications

from the previous tests are applied.
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(a) CPU utilization of the middleware plugin.
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(b) Private Bytes and Working Set of the middleware plugin.

Figure 4.15: Hardware Usage of the middleware software.
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The middleware’s hardware usage shows a linear increase in CPU utilization for

small numbers of slaves. It is possible that with larger numbers of slaves, the CPU

utilization linear scale might vary, causing faster or slower changes. However, the

change in CPU utilization suggests that the supernode will need to have sufficient

hardware capabilities to manage larger numbers of slaves without overloading the

physical hardware. The memory usage appears to be constant for small numbers of

slaves, and while its possible that it could change with more slaves, it suggests that

the CPU usage will be the limiting factor for scalability of supernodes.

Overall, the middleware plugin does not appear to be hardware intensive for

slaves, or for supernodes hosting small numbers of slaves. The results show that the

middleware is lightweight and does not affect the performance of the game. Further

tests, at a much larger scale, should be done to determine how the server is affected

by the hybrid system.

4.5 Summary

In this chapter, three performance metrics were measured and compared between

the baseline client/server system and the hybrid system: bandwidth, latency and

hardware impact.

The bandwidth tests revealed that the hybrid system with no modifications to

the server could not provide the desired reductions. However, proposed modifications

were presented that would effectively reduce the bandwidth of the server, at the cost

of minor increases to the slaves and a significant increase to the supernodes.

The latency tests revealed how significantly distributed latencies can be reduced

between nodes located nearby to each other geographically. This offers an improve-

ment in the gameplay experience to players. The non-distributed latencies suffer

from poor supernode placement. However, similar proposed modifications to the

server can eliminate the negative effects while maintaining the improvement in dis-

tributed latencies.

The hardware impact tests revealed that the current hybrid system has no sig-

nificant effect on the server software for small numbers of players. The middleware

software has roughly constant memory usage, and the CPU utilization scales linearly

with the numver of slaves connected to it. Further tests should be performed with

greater numbers of players to establish more effects on hardware usage.
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Chapter 5

Simulation

5.1 Introduction

The purpose of the simulations are for verification of the trends that were obtained

and observed from the practical system. Two simulated models have been built

in OMNeT++, one representing the Client/Server system, and one for the hybrid

system.

OMNeT++ is a discrete event simulator, used for the simulation of network

models. Its website describes it as “an extensible, modular, component-based C++

simulation library and framework, primarily for building network simulators”. The

open-source platform is free for academic purposes and has a wide variety of uses [57].

This chapter discusses the requirements of the simulation models; the basic

components of the OMNeT++ platform; and the design of the modelled nodes, the

traffic generation and the model configurations. Following this, the simulations are

presented with regard to their motivation, configuration and their results. Finally,

the chapter is concluded with a summary of the simulation outcomes.

5.2 Requirements

The simulation models are based upon the practical system, and therefore must

follow the architectural design of the practical system as closely as possible. The

bandwidth generated by each node in the model should be similar to the bandwidth

generated by the real world nodes for a server, client, slave and supernode. However,

as not all the data generated by the nodes in the real system is necessary to display

the difference in performances of the systems, only the relevant mechanics should

102
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be included in the models. The model should be measurable with respect to the

different network metrics as they are detailed in Section 4.1.1.

5.3 Platform

Understanding the basic building blocks of the platform aids in the description of

the design. OMNeT++ has four basic building blocks for network simulations:

modules, channels, gates and packets. Using these components, a model of a

network can be built and simulated accordingly. Each component can be extended

with user-defined functionality to act as necessary in the simulation.

A packet is an object that holds data and has an associated size. Packets are

able to travel on channels, the communication medium of OMNeT++. Channels

can be defined to have specific properties, such as a data rate or delay. A channel

can be connected between any two gates, allowing packets to travel from one gate

and arrive at another. Gates belong to modules which are blank slates equipped

with basic functionality for sending and receiving packets through gates. Modules

can also be compounded to allow multiple sub-modules to be combined into a more

complex module.

These components are only the very base of OMNeT++’s capabilities, but are

customizable and versatile enough to create complex systems.

5.4 Design

5.4.1 Node

The simulation is made up of a number of interconnected nodes modelled to perform

like the real-world system. Each node is a compound module made up of 3 sub-

module types: buffer, router and processor. Put together, the provide the node with

the necessary functionality to generate the correct traffic and direct it to the correct

place in the network. An example of the node model is shown in Fig. 5.1. Every

node in the system has an address, akin to an IP address, and packets are sent by

address to their destinations.

The networking capabilities of each node are implemented by a combination

of buffers and a router. The buffers are the basic component for communications,

receiving a packet on the incoming channel and holding it in a queue until the

outgoing channel is free. Once it detects the channel is free, it sends the packet.
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Figure 5.1: Simulation Node Model

The router functions similarly to a real-world router, storing a record of which

communication channel is associated with which node address. When the router

receives a packet from the processor, it forwards it along the correct channel to an

output buffer, which sends it when it is able to. Similarly, if the router receives a

packet from the outside destined for the node it is part of, it forwards the packet to

the processor.

The communication channels running between the router and processor allow

the networking capacity to be defined for the node, namely the upstream and down-

stream bandwidth, and any base delay on the connection. Individual delays between

specific nodes are defined on the external connections between their routers.

The processor holds the node logic, allowing it to act as a server, client, slave,

or supernode in the simulation. The processor acts as a backbone for deciding

which packet to generate and who it must be sent to. Extensive logic is added to

the processor module to make it function similarly to the real-world system. Upon

receiving a packet, it processes it in a similar fashion to the PacketHandlers described

in the software design, where custom handlers are defined to process the different

mechanics being simulated.

5.4.2 Traffic

The traffic generation performed by the processor is modelled as an approximation

of the physical system. As the purpose of the simulation is to confirm what is
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measured in the practical system, only specific cases of traffic are implemented in

the simulation: a distributed game mechanic, a non-distributed game mechanic,

and interest management traffic. Each of these cases have a number of parameters

associated with them, which can be altered to tune the packet sizes of the simulation.

Simulating the traffic of events and updates requires that the virtual world be

modelled, and virtual areas of interest be defined for different nodes. This leads to

the definition of a virtual region and a virtual area. The virtual regions represent

the hexagonal regions in the real system. Each virtual region contains a number

of virtual areas which approximate the effects of areas of interest in the real world

game. As nodes are initialised, they are placed in an area which might be shared

with other nodes. Nodes in the same area are considered to be within each others

areas of interest. Three categories of areas exist: light, medium and dense. The

number of areas per type and the probability of selecting an area of a certain type

are defined as simulation parameters. When an event originates from a node in an

area, all nodes in that area receive the update to it. Functionality is built onto this

to allow nodes to change regions and areas as required.

The actions taken by a node are decided by a state machine, shown in Fig. 5.2.

The state machine continues indefinitely throughout the simulation, beginning in

the decide action state. A probability is assigned as a parameter for a large move, a

small move and a speech action. Once decided, the next state generates the traffic

that would be caused by the action, and waits the appropriate amount of time before

returning back to the decision state. In the case of a large move, another check is

performed to decide whether a migration occurs, also defined by a parameter. In

the migration state, one final check is performed to decide whether an area or region

migration occurs, and the appropriate traffic is generated and actions executed.

Additionally, the state machine is extended for a supernode to produce periodic

updates for the server every 3 simulated seconds, to send a summarised neighbour

update every 5 seconds, and to send a full neighbour update every 30 seconds.

5.4.3 Configurations

Using the designed components, two models were implemented in different configu-

rations. In both configurations, one node is designated as the server and maintains

that role throughout. Examples of both models are shown in Fig. 5.3.

The first configuration models the client/server system where each node, other

than the server, acts as a client and is connected by a channel directly to the server.

Each client generates traffic according to the state machine which it follows. On
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Figure 5.2: Simulated Node AI State Machine

startup, the server initialises the virtual regions and areas, and clients are able to

migrate between them as the simulation runs. Migrations do not cause any changes

in the communication channels, but clients only receive updates from the server

pertaining to other clients in their virtual area.

The second configuration models the hybrid system, where each node, other than

the server, can act as either a supernode or a slave. Supernodes connect directly

to the server, while slaves route their connections via the supernode. Again, each

supernode and slave generates traffic according to the state machine it follows. On

startup, the server initialises the virtual regions and areas, and nodes are able to

migrate between them as the simulation runs. The same 4 cases of migrations as in

the practical system can occur in the simulation, and the nodes react accordingly.

The supernode sends AOI instructions to the slaves when they share a virtual area,

and the slaves adjust their connectivity. From this, updates for a slave’s distributed

mechanics are communicated directly with other nodes in the slaves AOI. A slave’s

non-distributed traffic is communicated to the server via the supernode, and the

updates are returned similarly.

Each of these configurations are implemented to resemble the real C/S and

hybrid systems. Both models have been used in the simulations performed in sec-
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tions 5.5 and 5.6.

5.5 Simulation: Bandwidth

5.5.1 Motivation

The simulation serves as a verification of the correctness in the trends observed in

the practical testing. The first simulation models the baseline C/S system similar to

Test 1.1. Only the hybrid system without inter-region interest management, in its

single region configuration, is simulated since the inter-region IM results are highly

dependant on the model of player activity.

5.5.2 Configuration

The models implemented in OMNeT++ are used for this simulation. In the single

region configuration of the hybrid system, Node 14 is selected as the supernode.

Both models are simulated for 2 hours.

5.5.3 Results & Discussion

The simulated bandwidth results were processed in the same fashion as the practical

tests. A comparison between the clients in the simulated C/S system, and the slaves

in the simulated hybrid system are shown in Fig. 5.4. Similar changes to those

seen in the practical system are visible. The slave experiences a reduction of 68%

in received movement traffic as it processes its own events and no longer receives

movement acknowledgements from the server. This also leads to the increase in

movement traffic transmitted by the slave of 48% as it has to update the supernode

of every move, as well as any other nodes in its AOI. As expected, the speech traffic

shows negligible changes between the systems. In addition, the slaves see a small

increase in the miscellaneous traffic received due to the IM overhead transmitted

to it by the supernode. Each of these trends match those observed in the practical

testing.

The comparison in simulated bandwidth between the servers of the C/S and

hybrid systems is shown in Fig. 5.5. This figure illustrates the negligible change in

speech traffic between systems, but highlights the effects of distributing movement

traffic. The significant increase of 277% in movement traffic received in the hybrid

system is a result of the periodic updating by the supernode using the large text
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Figure 5.3: Simulation Node Model
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Figure 5.4: Bandwidth comparison between simulated clients and slaves

Figure 5.5: Bandwidth comparison between servers in the C/S and hybrid
systems

command. As the server is only receiving the movement data periodically, the server

produces fewer movement updates than in the C/S system. Therefore, the server

experiences a decrease in the movement traffic it transmits of 90%. Overall, the

simulated hybrid system’s server experiences a 64% increase in bandwidth over its

C/S system counterpart due to the periodic movement updates. These trends agree

with those observed in the practical testing.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 5. SIMULATION 110

Figure 5.6: Simulated Supernode Bandwidth Distribution

The supernode’s bandwidth distribution is shown in Fig. 5.6. The supernode

experiences an increase of 3457% in its bandwidth over a client in the C/S system.

The increase in movement traffic is attributed to receiving all the slaves’ updates,

while the decrease results from only updating nodes in the supernode’s AOI. Similar

to the practical system, the majority of supernode bandwidth (55% of it) is spent

on the expensive periodic updates. From this, a similar predication can be made

that reducing the periodic update packet size and removing the redundant updates

will improve the hybrid system performance. Furthermore, the supernode’s speech

bandwidth can be reduced by allowing the slaves to connect directly with the server.

The bandwidth observed on the supernode is similar to that of the practical system,

and the same predicted modifications to the server should improve performance.

The full results of simulated clients and server in the C/S system; and slaves,

supernode and server in the hybrid system are shown in Appendix F. The mag-

nitude of values and the their associated changes are not strictly accurate to the

practical system due to the approximation of the virtual environment in the simu-

lation. However, the trends in the effects of the hybrid system are consistent with

those observed in the practical tests, and therefore serve to verify the general effects

of the hybrid system on bandwidth.
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5.6 Simulation: Latency

5.6.1 Motivation

The simulation serves as a verification of the correctness in the trends observed in the

practical testing. The first simulation models the baseline C/S system similar to Test

2.1. Using the model of the hybrid system, a single region is simulated with a similar

number of nodes located at different distances from the server, and a supernode

located somewhere between the two extremes. This will highlight the effects of the

hybrid system on both distributed and non-distributed game mechanics.

5.6.2 Configuration

The models implemented in OMNeT++ are used for this simulation. The simulated

nodes are situated a distance away from each other, linearly proportional to the

difference in their node ID numbers. The server is considered to have an ID of 0,

therefore Node 1 is nearest the server, and Node 15 is the furthest. In the hybrid

system, Node 14 is selected as the supernode for the duration of the test. Both

models are simulated for 2 hours.

5.6.3 Results & Discussion

The speech and movement data for each node was processed according to the same

method as the practical system. The average latencies of the nodes located nearest

(Node 1) and furthest (Node 15) from the server are shown in Fig. 5.7.

The speech latencies of Node 1 are shown in Fig. 5.7a for when Node 1 generates

an event and the update is perceived by the listed node. The trends observed in this

figure are similar to what was experienced by the US West nodes in the practical

system where the supernode was located further from the server than themselves.

In the C/S system, nodes closer to the server perceive Node 1’s actions sooner than

those located further from the server. In the hybrid system, where Node 1 has

to route its non-distributed traffic through Node 14, the speech latencies increase

significantly. This is attributed to the additional latency introduced by the extra

hop. In the worst case, where the Node 1’s action is perceived via the supernode

by Node 2 which is located near the server, the latency results in a 3900% increase

over the C/S system.

The speech latencies of Node 15, shown in Fig. 5.7b, show similar trends to those

experienced by the practical nodes located in Ireland. As Node 15 is located near
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to the supernode, it does not experience significant changes in latencies to nearby

nodes, such as between itself and Node 13. However, for nodes located near to the

server, the latencies experience an increase compared to the C/S system. Node 1

only perceives Node 15’s actions around 400ms later than in the C/S system, an

increase of around 190%.

The non-distributed latencies in the simulated system show similar trends to

those observed in the practical system. In the hybrid system, nodes located nearby

the server are impacted negatively by supernodes located further from the server

than themselves, while nodes located further away from the server are impacted to

a lesser extent depending on their proximity to the supernode, but still produce

negative results.

The distributed movement latencies of Node 1 are shown in Fig 5.7c. The changes

in latencies between the C/S and hybrid system are minimal, as they are only

reduced by the additional hop between Node 1 and the server, which is negligible

due to the proximity of Node 1 to the server. This trend is similar to the one

experienced by the US West nodes in the practical system.

The movement latencies of Node 15 are shown in Fig. 5.7d. These trends are

similar to those experienced by the practical Irish nodes. The change in latency

between Node 15 and Node 1 is negligible as only the hop between the server and

Node 1 is avoided. However, as the nodes move progressively closer to Node 15,

the latencies continue to decrease. The biggest benefit is seen between Node 15 and

Node 14, where they experience a reduction of 2100% in distributed latency.

The distributed latencies in the simulated system also show similar trends to

those observed in the practical system. In all cases, the distributed latencies are

improved, especially to a large extent between nodes that are located far away from

the server, but near each other. Therefore, the outcomes of the simulated latency

tests verify what was observed in the practical latency tests.

5.7 Conclusion

In this chapter, the simulation platform was examined, the design of the simulation

was discussed, and the simulations themselves presented. Two tests were performed

to examine the bandwidth and latency of the hybrid system in comparison to a

C/S baseline. The results showed the model of the virtual environment to not be

accurate to the practical implementation, but still capable of revealing the effects of
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(a) Node 1: comparison of speech latency between C/S and hybrid
system.
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(b) Node 15: comparison of speech latency between C/S and hybrid
system.
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(c) Node 1: comparison of movement latency between C/S and
hybrid system.
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(d) Node 15: comparison of movement latency between C/S and
hybrid system.

Figure 5.7: Simulated Latency Results
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the hybrid system.

In the bandwidth simulation, the effects of the simulated hybrid system were

similar to those observed in the practical tests. The non-distributed traffic was

unchanged for both the server and slaves, while the supernode saw a significant in-

crease due to the connection rerouting. Slaves experienced a reduction in distributed

traffic they received, but an increase in distributed traffic they transmitted. The

server experienced an increase in bandwidth due to the large periodic updates, but

transmitted fewer updates than in the C/S system. The supernode experienced an

increase in bandwidth resulting from distributed mechanics and periodic updating.

While the model of the virtual environment could not produce perfect results, the

trends observed in the simulation verified those observed in the practical tests.

The latency simulation revealed similar trends to those observed in the practical

tests. The effects of the hybrid system on distributed latencies were verified to be

positive in all regards, reducing movement latencies between all nodes, and signif-

icantly between nodes located nearby to each other, but distant from the server.

The effects of the hybrid system on non-distributed mechanics were verified to be

mostly negative, where the additional hops between (1) the node and the supernode,

and (2) the supernode and the server each negatively impacted the nodes. This is

significant in cases where slaves are nearer to the server than the supernode.

Overall, the outcomes of the simulations resulted in the trends observed in the

practical results to be verified as accurate.
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Conclusion & Recommendations

6.1 Introduction

In an effort to promote commercial P2P adoption, this thesis introduced the concept

of a hybrid peer-to-peer middleware plugin for an unmodified, existing C/S MMOG

as a solution to some of the shortcomings of C/S and pure P2P architectures. With

the groundwork laid through an examination of MMOGs, existing architectures,

and P2P concepts, the designs of the hybrid system and middleware plugin were

presented. The designed system was implemented and tested in a practical setup,

rather than in the traditional theoretical or simulated fashion, and results of its

performance were discussed.

This chapter provides a summary of the performance results, concludes on the

feasibility of the system, compares the results to related systems, and lists opportu-

nities for future work.

6.2 System Performance

Testing this specific system’s performance produced a combination of both desirable

and undesirable results. The bandwidth in the hybrid system showed an acceptable

increase for slaves of only 17% in the single region configuration. The supernode

showed an unacceptably large increase of 3 111%, and the server showed an increase

of 35% instead of the desired decrease. Inter-region bandwidths showed that mi-

grations are expensive and increased the servers load by an additional 45%, while

the overhead for interest management did not contribute significantly towards total

bandwidth experienced by slaves or supernodes. From these results, predictions with

115
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minor modifications to the server were made which showed that the server could have

its bandwidth reduced by 39%, while the supernode experiences a smaller increase

of 1 995%. The potential results were shown in Table 4.4 of Chapter 4.

The latency results showed improvements in the distributed mechanics for all se-

tups, offering up to an 88.3% decrease in movement latencies. The resulting latencies

of non-distributed speech traffic varied according to the placement of the supernode,

but in the worst case increased latencies almost 6000%. While the decrease in dis-

tributed latencies could significantly improve the players gameplay experience, the

increase in non-distributed latencies could detract from that. However, predictions

were made that with modifications to the server, the negative latency results could

be eliminated entirely, resulting in a 0% change in non-distributed latencies and

maintaining the decreases in distributed mechanics. The best case latencies were

shown in Fig. 4.13 of Chapter 4

The hardware results revealed no noticeable change in the hardware impact

of the hybrid system on the server’s CPU utilization or memory usage for small

numbers of players. Investigation into the middleware plugin itself predicted that

CPU utilization, not memory usage, would become the limiting factor as a supernode

hosts more slaves. The middleware, when operating in a slave capacity, was shown

to have a relatively constant low utilization of resources, thus it would not starve

the game client.

6.3 Feasibility Outcomes

Due to the negative results, it can be concluded that a middleware plugin with no

modification of the server or client software is not a viable solution as it does not

achieve the desired results of reducing server load while improving player latencies.

The negative results can be attributed to two constraints of the server:

1. The server only accepts events from the same client that is identified during

the login process. This means another peer in the network cannot send an

update on behalf of another player. The constraint resulted in the design

decision to reroute all server bound client traffic through the supernode, sig-

nificantly increasing the bandwidth that has to be handled by a supernode.

Routing server-bound traffic through a supernode also significantly increased

the latency experienced by players, especially if the supernode’s latency to the

server was large.

2. To maintain consistency between the server state and the state stored in the
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P2P segment, the supernode needs to periodically send aggregated movement

updates to the server. The server protocol does not by default allow for

such aggregated updates, therefore a custom player command script packet

was used for sending aggregated updates. The size of the custom packet is

roughly 5 times larger than normal movement packets, resulting in the number

of movement bytes received by the server in the hybrid system to be signifi-

cantly more as compared to the number of movement bytes received by the

server in the C/S system.

However, with two primary modifications performed on the server, it is expected

that the hybrid system will be able to achieve the expected performance increases:

1. Introducing a packet natively into the server code to provide a means for the

supernode to periodically update the server will reduce the current bandwidth

associated with transmitting periodic updates by almost 80%. Furthermore,

removing the redundant updates being transmitted from the server in response

to the periodic updates will reduce the servers outgoing movement traffic by

100% and the supernodes traffic by 7% of its current value. These modifica-

tions alone will result in a 39% decrease in server bandwidth from the C/S

system, and the supernode experiencing a smaller increase of 1 995%.

2. Introducing a reduced login sequence, specifically for migrations, would re-

duce the large bandwidth spikes occurring during migrations. However, by

modifying the server to accept events and updates from any peer in the net-

work, the supernode routing would no longer be required. Doing this would

almost entirely eliminate both the migration overhead, and the increase in la-

tency for non-distributed packets. In addition, the supernode would no longer

have to manage non-distributed traffic for its slaves. Combining this with the

other primary modification, a supernode would experience an increase of only

1 296% over a C/S client.

Care needs to be taken to ensure the security of the architecture not be compromised.

This could be achieved by using some form of encryption on the client events so that

the server can uniquely identify the origin of the client events and updates.

Therefore, with minor server modification the expected performance increase

can be achieved and the middleware presents itself as a feasible solution to reduce

the risk of P2P adoption for existing systems by introducing the benefits of P2P

networks without the requirement of fully re-engineering an established system.
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6.4 Related Work

A 2003 paper by Pellegrino and Dovrolis discusses the effects on bandwidth and

latency by a custom hybrid model that resembles the middleware-plugged hybrid

system, but does not function as a plugin [58]. They find that player latencies are

reduced due to the direct communication between nodes. The bandwidth require-

ments of the server are reduced in the hybrid system where they increase linearly

with the number of players, rather than the quadratic increase in the C/S system.

However, the server’s CPU and memory utilization remain unchanged between C/S

and hybrid systems. These results agree with those of the middleware-plugged hy-

brid system.

Kiwano, the system which modifies a C/S architecture by distributing movement

amongst multiple servers, uses a proxy application similar to the middleware soft-

ware in this system. In their tests, they found that their proxy slightly reduced the

bandwidth of a player over the standard C/S system, while increasing the CPU and

memory utilization. Overall, their full system experienced a net increase in band-

width usage, but the additional load is managed by additional independent nodes

at the expense of the game’s host [59]. Therefore, the scalability offered by their

system comes at additional financial cost to the host, unlike the middleware-plugged

hybrid system which makes use of existing resources offered by the peers.

6.5 Future Work

A number of possibilities exist for future work from this point:

• The hybrid system provides a platform for experimentation of other P2P as-

pects. It can be used to implement and test: cheating mitigation techniques;

supernode selection algorithms; different P2P overlays by replacing the di-

rectory server; or different interest management schemes such as introducing

dynamic regions.

• The middleware plugin as it stands can be extended to distribute more game

mechanics. Once distributed, the different mechanics can be analysed indi-

vidually to gauge whether different mechanics produce different effects on the

performance of the system.

• The hybrid system can be applied to different existing MMOGs. Analysis can

be done into if and how the different systems are influenced by the middleware.
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Building on this, game agnostic mechanics can be identified, and a generic way

of handling game agnostic components can be implemented.

• The current middleware plugin has no recovery mechanisms, thus it can be

enhanced to include fault tolerance against network errors and dropped nodes.

• Experimentation is required to measure at what point a supernode will be-

come overloaded and how it will affect the hybrid system. From this, how to

balance and manage supernode load should be investigated to aid the system’s

scalability and robustness.

• The performed tests can be enhanced by using legitimate player traces rather

than an approximation of player behaviour. Similarly, the tests can be per-

formed at much larger scale with hundreds of players to better understand

the full effects of the hybrid system.

• The simulation model can be improved to more accurately model the virtual

environment, its regions and the players’ areas of interest.

• A practical experiment can be performed to verify that the proposed modifi-

cations result in the predicted results.

• If server modifications are allowed, a study can be performed into how exten-

sively a server must be modified to produce improved results. Finding an opti-

mal balance between modification and performance will allow for middleware-

type solutions to be better tailored to meeting those requirements.

• The middleware plugin principle shown to be feasible in this thesis can be

applied to non-MMOG client/server systems as well. Identification of systems

suited to this transformation and implementing a middleware plugin for them

could provide similar benefits.
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Appendix A

Hexagonal Co-ordinate System

The hexagonal divison algorithm is available from [60] and summarised below.

A regular hexagon is shown in fig. A.1 with a side length s. Given that the

hexagon is regular, all other parameters can be calculated in accordance with equa-

tions (A.1–A.4). If a known number of identical regular hexagons are placed together

to form a grid such as in fig. A.2a, and the size of the grid can be derived from the

hexagon parameters. From the hexagonal grid that is created, rows are created in an

alternating pattern and repeating rectangles are created in each of the rows, where

each rectangle approximates a hexagon. The result of this is shown in fig. A.2b.

Henceforth, even rows are known as an A rows, and odd rows as B rows. From

this, a continuous 2D point can be mapped onto a hexagon. As the 3rd dimension

is negligable for achieving the desired functionality from the interest management,

the vertical attribute of a player’s position is dropped.

First, it must be established which rectangle the 2D point is located in using

equations (A.5) and (A.6). With the approximate hexagon found, the inside of the

rectangle must be considered as it contains parts of three surrounding hexagons.

Using equations (A.7) and (A.8), the internal location of the point relative to the

top-left of the rectangle is found. From this, it can be identified how to offset the

approximate rectangle co-ordinate to find the exact hexagonal co-ordinate. This is

done differently for A or B rows respectively.

In an A row, the majority of the rectangle is filled with the appropriate hexagon,

correlating to the correct co-ordinate. In the case where the point is located in the

upper-left portion, x- and y-coordinates are both reduces by one. Similarly, if the

point is in the top-right section, only the y-coordinate is reduced by one.

In a B row, the rectangle co-ordinate correlates to the right-side hexagon. If the

point is located in that part of the rectangle, the co-ordinates remain unchanged.

If the point is located in the left-side section, the x-coordinate is reduced by one.

127
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Finally, if the point is in the top section then the y-coordinate is reduced by one.

All incomplete hexagons located around the borders of the rectangle grid are

treated as part of their neighbouring hexagons. These coordinate adjustment algo-

rithms are presented in pseudocode below.

if(TYPE A RECTANGLE)

if( x > r )

if( y < (h/r)x - h )

hex_X = rect_X

hex_Y = rect_Y - 1

else

hex_X = rect_X

hex_Y = rect_Y

else

if( y < (h/r)x )

hex_X = rect_X - 1

hex_Y = rect_Y - 1

else

hex_X = rect_X

hex_Y = rect_Y

if(TYPE B RECTANGLE)

if( x > r )

if( y < 2h - (h/r)x )

hex_X = rect_X

hex_Y = rect_Y - 1

else

hex_X = rect_X

hex_Y = rect_Y

else

if( y < (h/r)x )

hex_X = rect_X

hex_Y = rect_Y - 1

else

hex_X = rect_X - 1

hex_Y = rect_Y

Figure A.1: Hexagon

h = sin(30 deg)× s (A.1)

r = cos(30 deg)× s (A.2)

b = s + 2× h (A.3)

a = 2× r (A.4)

xrect = xpoint ÷ 2r (A.5)

yrect = ypoint ÷ (h + s) (A.6)

xlocal = xpoint − xrect × 2r (A.7)

ylocal = ypoint − yrect × (h + s) (A.8)
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(a) Hexagon Grid (b) Rectangle Divisions

(c) A-type Rectangle (d) B-type Rectangle

Figure A.2: Hexagonal Grid Co-ordinate Lookup
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Appendix B

Test 1.1: C/S Baseline Bandwidth Results

Table B.1: Bandwidth values of clients in the C/S system (B)

Aspect Mean Std
Move rx 29 554 8 753
Move tx 49 616 10 557

Move both 79 170 17 888
Speech rx 21 765 1 459
Speech tx 19 320 7 928

Speech both 41 085 7 648
Total rx 73 661 11 286
Total tx 78 103 3 749

Total both 151 764 12 546

Table B.2: Bandwidth totals of server in the C/S system (B)

Aspect Total Std
Move rx 729 068 21 678
Move tx 444 314 32 768

Move both 1 173 382 42 836
Speech rx 302 719 22 333
Speech tx 329 031 6 606

Speech both 631 750 25 082
Total rx 1 169 809 34 071
Total tx 1 108 501 34 039

Total both 2 278 310 44 519

130
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Appendix C

Test 1.2: Hybrid Single Region Bandwidth Results

Table C.1: Bandwidth values of slaves in the single region hybrid system and
change from clients in the C/S system (B)

Aspect Mean Std C/S Mean Change
Move rx 12 265 10 635 29 554 -58%
Move tx 85 469 11 415 49 616 +72%

Move both 97 733 19 789 79 170 +23%
Speech rx 20 675 1 177 21 765 -5%
Speech tx 16 531 1 222 19 320 -14%

Speech both 37 205 2 195 41 085 -9%
Total rx 59 004 19 357 73 661 -19%
Total tx 118 637 12 883 78 103 +52%

Total both 177 642 29 589 151 764 +17%

Table C.2: Bandwidth values of server in the single region hybrid system and
change from server in the C/S system (B)

Aspect Mean Std C/S Mean Change
Move rx 1 724 977 6 122 729 068 +137%
Move tx 318 052 1 129 444 314 -28%

Move both 2 043 029 7 251 1 173 382 +74%
Speech rx 252 616 5 572 302 719 -16%
Speech tx 315 452 1 428 329 031 +4%

Speech both 568 068 5 861 631 750 -10%
Total rx 2 069 693 8 792 1 169 809 +77%
Total tx 1 012 697 46 752 1 108 501 -9%

Total both 3 082 390 37 960 2 278 310 +35%
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Appendix D

Measurement Computer Specifications

Table D.1: Measurement Computer Specifications

Component Specification
CPU Processor Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz,

3301 Mhz, 4 Core(s), 4 Logical Processor(s)
RAM 8.00GB
Virtual Memory 16.00GB
OS Windows 7 Professional 64bit
OS Version 6.1.7601 Service Pack 1 Build 7601
Storage OCZ Vertex 4 256GB Solid State Drive
Display NVIDIA GeForce GTX 650 Ti
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Appendix E

Hardware Usage Results

Table E.1: Server without middleware

Slaves CPU(%) Working
Set(MB)

Private
Bytes(MB)

Mean Std Mean Std Mean Std
1 0.094 0.476 61.2 3.5 59.6 4
2 0.058 0.323 60.6 3.6 59.6 4.4
3 0.034 0.182 60.9 3.3 59.9 3.5
4 0.063 0.409 62 2.8 61.2 3
5 0.085 0.658 62.5 2.5 61.8 2.2
6 0.097 0.296 64 2.9 62.8 1.6
7 0.117 0.397 62.9 2.3 62.6 2.4
8 0.162 0.494 62.6 1.5 62.7 1.4
9 0.18 0.506 61.5 2.7 61.6 2.6
10 0.22 0.476 61.3 3.3 60.9 3.6
11 0.211 0.576 61.7 2.6 61.5 2.7
12 0.119 0.324 61.5 2.9 61.4 2.6
13 0.177 0.446 61.7 2.5 61.8 2.4
14 0.162 0.5 62.3 2.3 61.6 2.5
15 0.207 0.479 62.5 1.6 60.7 1
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Table E.2: Server with middleware

Slaves CPU(%) Working
Set(MB)

Private
Bytes(MB)

Mean Std Mean Std Mean Std
1 0.123 0.609 58.8 2.5 59.3 2.5
2 0.08 0.44 58 2.1 59.1 2
3 0.041 0.198 57.7 1.8 59.1 1.9
4 0.06 0.238 58.1 1.5 59.9 1.2
5 0.06 0.329 58.9 2.2 60.3 0.9
6 0.242 1.002 59 1.3 61.1 0.9
7 0.095 0.461 60 2.6 60.6 1.1
8 0.068 0.252 59.1 2.6 61.2 2.4
9 0.111 0.314 58 0.3 60.3 0.6
10 0.139 0.467 57.8 0.6 59.9 0.9
11 0.143 0.35 58 0.3 60.3 0.4
12 0.226 0.705 58 0.3 60.2 0.4
13 0.229 0.577 58.5 1.1 60.9 1.1
14 0.193 0.508 58 0.5 60.3 0.7
15 0.226 0.593 58.4 1.5 60.4 0.5
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Table E.3: Middleware software

Slaves CPU(%) Working
Set(MB)

Private
Bytes(MB)

Mean Std Mean Std Mean Std
0 0.167 0.373 41.9 3.7 40.6 2.2
1 0.09 0.787 55.7 2.2 51.5 1.7
2 0.084 0.278 57.1 1.9 53.5 1
3 0.202 0.617 57.3 1.4 53.8 0.5
4 0.232 0.649 57.3 1.7 53.8 0.5
5 0.269 0.608 57.3 1.3 53.9 0.3
6 0.221 0.576 59.4 1.3 55.6 1.1
7 0.228 0.595 58.1 1.8 54.2 1.1
8 0.442 0.903 58.6 1.5 54.9 1
9 0.6 0.894 58.4 1.5 54.5 0.8
10 0.514 0.957 58.4 1.4 54.2 0.2
11 0.62 0.955 59.8 0.6 55.6 1.2
12 0.675 1.159 58.9 1.6 54.8 1
13 0.535 0.851 59.2 1.5 55.1 1.2
14 0.515 0.788 58.5 1.8 54.2 0.3
15 0.817 1.215 59.4 1.7 55.1 1.3
16 0.754 1.089 59.2 1.8 55 1.2
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Appendix F

Simulation: Bandwidth Results

Table F.1: Bandwidth of clients in simulated C/S system (B)

Aspect Mean Std
Move rx 41426 961
Move tx 42956 836

Move both 84382 1509
Speech both 37015 2020

Total rx 66378 1248
Total tx 58018 542

Total both 124396 1528

Table F.2: Bandwidth of peers in simulated single region hybrid system com-
pared to to C/S system(B)

Slave Supernode
Aspect Mean Std Change Mean Std Change
Move rx 13092 926 -68% 721452 277 +1641%
Move tx 63687 1528 +48% 13122 930 -69%

Move both 76779 2089 -9% 734574 808 +770%
Speech both 33440 2092 -9% 1006616 2513 +2619%

Total rx 45720 1388 -45% 1312938 2908 +1877%
Total tx 77961 1042 +25% 3111473 4664 +5263%

Total both 123682 2039 +0% 4424412 4644 +3457%
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Table F.3: Bandwidth of server in hybrid and C/S systems (B)

C/S Hybrid
Aspect Mean Std Mean Std Change
Move rx 644338 1847 2433564 5420 +277%
Move tx 621385 1783 60158 1721 -90%

Move both 1265723 2568 2493722 3700 +97%
Speech both 555219 6720 503309 2513 -9%

Total rx 870275 686 2647900 6053 +204%
Total tx 995666 4612 398650 2350 -60%

Total both 1865942 5032 3046550 4361 +63%
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