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Abstract 

Experimental and Numerical analysis of axial flow fans 

O.P.H. Augustyn 

Department of Mechanical and Mechatronic Engineering, Stellenbosch 

University, 

Private Bag X1, Matieland 7602, South Africa.  

Thesis: MScEng (Mech)  

December 2013 

The majority of power stations in South Africa are located in coal rich, but arid 

regions where wet-cooled condenser systems are not feasible from an 

environmental and economic perspective. Consequently the focus on power 

generation cooling has shifted towards dry-cooling systems using air-cooled 

steam condensers (ACSC). The steam passing through the ACSC units is cooled 

by an air-draught, mechanically induced by large diameter axial flow fans. 

Consequently the effectiveness of the cooling is impacted by the performance of 

these fans, which ultimately affects the overall efficiency of the power plant. 

However, due to the large diameters (> 10 m) of these fans, their performance is 

predicted based on small scale test results using the fan scaling laws. 

The objective of this project was to develop a methodology which accurately 

predicts the fan performance of more than one fan configuration using 

computational fluid dynamics (CFD) software and validating the results with 

experimental tests. Four fans were considered in this study of which three were 

scaled fan models of large air-cooled axial fans. The performance of the scaled 

fan models (L1-, L2- and N-fan) were measured in a type A, BS 848 standard fan 

test facility. The geometries of the fans were scanned three-dimensionally to 

obtain the models for simulation purposes. The other fan considered was an 8-

bladed axial fan designed by Bruneau (1994) and referred to as the B-fan. 

Simulations were carried out for the L2-, N- and B-fan for different computational 

domains while implementing the multiple reference frames (MRF) and steady 

RANS approach. Three variations of the k-ε turbulence model were also 

investigated.  

Noticeable differences were found between the experimental and numerical 

results of the B-fan. Good correlations between the numerical and experimental 

fan static pressure, fan power and fan static efficiency were found for the two 

scaled model fans over a large operating range. The performance of the full scale 

fans, however, did not correlate well with the performance of the scaled models. It 

is concluded that accurate simulations of axial fans are possible although these 

domains require a large number of mesh elements. It is recommended that further 

research is carried out to investigate the relationship between full scale and small 

scale fan models. 
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Uittreksel 

Eksperimentele en Numeriese analiese van aksiaalvloeiwaaiers 

O.P.H. Augustyn 

Departement van Meganiese en Megatroniese Ingenierswese,  

Universiteit van Stellenbosch 

Privaatsak X1, Matieland 7602, Suid Afrika.  

Tesis: MSc. Ing. (Meg)  

December 2013 

Die meerderheid steenkool kragstasies in Suid-Afrika is geleë in droë, maar 

steenkool ryke streke waar natverkoelde kondensor stelsels uit ŉ omgewings en 

ekonomiese perspektief nie geskik is nie. Die fokus in kragopwekking verkoeling 

het dus verskuif na droë-verkoelings stelsels en spesifiek die gebruik van 

lugverkoelde stoomkondensors (LVSKs). Die stoom in LVSK eenhede word 

verkoel deur atmosferiese lug wat meganies geïnduseer word deur groot 

aksiaalvloeiwaaiers. Die effektiwiteit van die verkoelingsproses word gevolglik 

beïnvloed deur die werksverrigting van hierdie waaiers wat uiteindelik die 

algehele effektiwiteit van die kragstasie beïnvloed. As gevolg van hierdie waaiers 

se grootte word hulle werksverrigting egter bepaal op grond van kleinskaal 

toetsresultate en deur gebruik te maak van die waaierskaleringswette. 

Die hoofdoelwit van hierdie projek was om ‘n metodiek te ontwikkel wat die 

werksverrigting van ŉ aksiaalwaaier akkuraat kan voorspel vir ŉ verskeidenheid 

opstellings, deur gebruik te maak van berekenings vloei meganika (BVM) 

sagteware en die resultate eksperimenteel te verifieer. Die projek het vier waaiers 

ondersoek waarvan drie van hierdie waaiers geskaleerde modelle van groot 

lugverkoelde aksiaalwaaiers was. Die werksverrigting van die geskaleerde 

waaiers (L1-, L2- en N-waaier) was met ‘n tipe A, BS 848 standaard waaier 

toetsfasiliteit gemeet. Die geometrie van dié waaiers was ook drie-dimensioneel 

opgemeet vir simulasie doeleindes. Die B-waaier, ‘n 8 lem aksiaalwaaier, wat 

ontwerp is deur Bruneau (1994) was slegs numeries ondersoek. Die L2-, N- en B-

waaier was gesimuleer in verskillende berekeningsdomeine deur gebruik te maak 

van die multi verwysingsraamwerk en gestadigde vloeiberekenings benaderings. 

Drie k-ε turbulensie modelle was ook ondersoek. 

Merkbare verskille tussen die eksperimentele en numeriese resultate van die B-

waaier was waargeneem. Goeie korrelasie tussen die eksperimentele en numeriese 

resultate van die geskaleerde waaiers vir ‘n wye bedryfsbestek was gevind. ‘n 

Vergelyking tussen die volskaal en kleinskaal waaiers se werksverrigting het egter 

beduidende afwykings aangetoon. Deur gebruik te maak van ‘n groot aantal selle 

in die berekeningsdomein was dit moontlik om ŉ verskeidenheid 

aksiaalvloeiwaaiers akkuraat te simuleer. Verdere navorsing wat die verhouding 

tussen volskaal en kleinskaal waaiers ondersoek woord aanbeveel.  
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1 Introduction 

The majority of South Africa’s power is produced from coal-fired power plants 

situated in semi-arid regions. Choosing the source of cooling for these power 

generating cycles has become an important and increasingly complex problem. 

This can be attributed to the limited availability and rising cost of water in the 

vicinity of plant sites, noise restrictions, environmental considerations and 

proliferating legislation. Furthermore, restrictions on thermal discharge from 

natural bodies of water in evaporative cooling have more recently resulted in the 

use of closed cycle systems (Kröger, 1998). There are mainly two methods used 

for cooling power generation cycles: Evaporative- or wet-cooling and dry-cooling. 

Historically wet-cooled power stations have been utilized due to their higher 

thermal efficiencies, although an adequate supply of suitable water is required 

compared to dry-cooled systems. However, with an annual rainfall of half the 

global average, water scarcity is a reality in South Africa. Approximately 97% of 

power station water usage in South Africa is attributed to cooling, and power 

generation in South Africa accounts for 1.5 % of the country’s total annual water 

consumption (Pather, 2004). Taking this into consideration and the fact that most 

newly built and currently constructed power stations are located in coal rich but 

water scarce regions, wet-cooled systems are not feasible from an environmental 

and economic perspective. Consequently the focus on power generation cooling 

has shifted towards dry-cooling systems using air-cooled heat exchangers 

(ACHE). Figure 1.1 shows the direct dry-cooled system of the Medupi coal-fired 

power plant currently constructed in Lephalale, South Africa. At its completion 

Medupi, producing 4800 MWe, will have the largest dry-cooled system in the 

world. 

 

Figure 1.1 - Dry-cooled system of Medupi power station currently under 

construction. 
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ACHEs can be cooled by means of natural draught or mechanical draught. Natural 

draught systems usually make use of cooling towers and an indirect cooling 

process. Kendal power station situated in South Africa is an example of an 

indirect dry-cooled plant using cooling towers to induce a natural draught through 

its ACHEs. This is the largest indirect dry-cooled power station in the world 

having a total capacity of 4100 MWe. Mechanical draught dry-cooled systems use 

axial fans to force air through the ACHE. In a direct dry-cooled system, using 

mechanical draught, the steam exiting the turbine passes directly through to the 

ACHE where it condenses. These units are referred to as air-cooled steam 

condensers (ACSC).  

The performance of ACSC units, as part of the power generation cycle, has a large 

impact on the overall efficiency of the plant. This can be explained by considering 

Figure 1.2, a T-s diagram of a Rankine cycle. 

 

Figure 1.2 - Rankine energy cycle 

Heat is added (    , using a boiler, to the cycle in order for the water to reach a 

superheated steam condition (point 3). The pressure at this point is fixed and 

independent of the performance of the turbine or cooling system. The superheated 

steam passes through the turbine and work is done. The amount of work done by 

the turbine is determined by the pressure difference across the turbine inlet and 

outlet (backpressure). Thus, an increase in the back pressure will result in a 

decrease in work output (    ). Consequently the back pressure is constantly 

monitored to ensure that the pressure at the turbine outlet remains constant 

(indicated by design Path a). If the total heat rejected (      is not enough to 

ensure a condensed liquid at the condenser exit, the air flow rate through the 

ACSC units must be increased. In certain scenarios the heat rejection rate may 

still not be enough to ensure a condensed liquid and constant backpressure, 

possibly due to adverse weather conditions. In such cases the back pressure will 
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increase and the system will subsequently operate as indicated by Path b. The 

pressure increase reduces the amount of enthalpy to be removed from the 

saturated fluid to reach a fully condensed liquid. The efficiency of a plant is 

defined as, 

 
  

    

   
 (1.1) 

and therefore the efficiency of the entire power generation cycle increases with an 

decrease in the back pressure. Therefore if the ACSC units cannot provide 

adequate cooling for a wide range of operating conditions the efficiency of the 

plant will be adversely affected. The scenario presented above illustrates the 

importance of well-designed and effective ACSC units which includes the various 

factors which influence the ACSC unit’s performance. Factors which influence 

the performance (ability to reject heat) of an ACSC include the ambient dry-bulb 

temperature, air density, finned tubes temperature and air flow rate created by the 

fans (Le Roux, 2010).  

The heat rejection rate of ACSC units is greatly influenced by the air flow rate 

through the heat exchanger and recirculation forming below the cooling tower 

(Bredell et al., 2006; Zhao et al., 2012). Numerous studies have been conducted, 

specifically focussing on the effect of distorted inflow conditions which affect the 

performance of the large axial fans and consequently the performance of an 

ACSC. Distorted inflow conditions are caused by structures, windy conditions, 

other surrounding fans and the positioning of the fan itself in an array. Stinnes and 

Von Backstrom (2002) and Hotchkiss et al. (2006) showed that the performance 

of axial fans is adversely affected by cross-flow. Experimental results showed a 

reduction in the volume flow rate for the same fan static pressure values with 

increasing cross-flow angle. 

Authors such as Bredell et al. (2006), Owen and Kröger (2010) and Louw (2011) 

conducted studies simulating the full scale fans in arrays using simplified methods 

and favourable results were found. Van der Spuy et al. (2010) also carried out 

numerous simulations using simplified methods to model the performance of 

scaled axial flow fan arrays and comparing them with experimental results. 

Although simplified methods are less resource intensive, these methods have 

shown to be inaccurate in the near-stall region (Van der Spuy, 2011). Nevertheless 

Van der Spuy et al. (2010) accurately predicted the performance of the axial fan 

array for the normal operating region but recommended that a full explicit CFD 

simulation on an axial fan be carried out for off-design operating conditions. 

The performance of axial fans in an ACSC is subsequently a critical component in 

the design and operation of ACSC units. However, the performance of large 

diameter fans, such as the fans used in ACSC units, cannot be determined from 

experiments. Large diameter axial cooling fans, such as the E-series from Howden 
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(see Figure 1.3), can be up to 14.63 m (48 ft.) in diameter, which makes it 

impractical to test or monitor on site. 

Therefore, the performance specifications of these large axial fans are based on 

small scale test results. The scaled model’s performance is adjusted to the actual 

geometric specifications using the fan scaling laws. However, literature suggests 

that due to the difference between the Reynolds numbers (based on the chord 

length) of the scaled and actual fan model the performance cannot simply be 

adjusted using the fan scaling laws (Heß and Pelz, 2010; Pelz et al., 2012). 

 

Figure 1.3 - Howden E-series industrial axial fan (Howden, 2007) 

The accuracy of the design performance of large axial fans used specifically in 

large air-cooled condensers is uncertain due to the fact that these fans cannot be 

tested in a standard test facility. Studies have been conducted, as mentioned 

above, to simulate large axial fans in operation but only limited understanding has 

been gained due to the simplicity of the models. The accurate simulation of 

different geometry fans holds multiple benefits. Being able to accurately predict 

the performance of large axial fans in changing weather conditions will ultimately 

result in more efficient ACSC units and more efficient and environmentally 

friendly power plants.  
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1.1 Project objectives 

A previous study conducted by Le Roux (2010) at the University of Stellenbosch 

considered the full explicit simulation and testing of the B2-fan which was 

designed by Bruneau (1994). The simulations carried out by Le Roux (2010) 

resulted in good correlation at the design point and higher flow rates when using a 

single reference frame approach. However, the numerical results deviated from 

the experimental results in the near-stall region. Therefore, questions regarding 

the simulation of axial fans, especially in the near-stall region, remained. This 

project can be regarded as a continuation of the work of Le Roux (2010). 

The primary objective of this project is to find a methodology, using ANSYS 

CFD software, which accurately predicts the fan performance for more than one 

fan configuration. This methodology must use multiple reference frames in order 

to enable the user to simulate and examine the operation of multiple fans, as 

typically found in an ACSC. Furthermore, the economic use of computational 

resources to simulate these fans is essential. However, this should not be to the 

detriment of simulation accuracy. Therefore, the methodology is to be validated 

by simulating the B2-fan, designed by Bruneau, (1994) and comparing the 

numerical results with Le Roux (2010)’s experimental results.   

To develop the methodology mentioned above a geometric model of the B2-fan 

was initially created using the design specifications given by Bruneau (1994). 

Instead of using NUMECA FineTurbo CFD software, used by Le Roux (2010), 

ANSYS TurboGrid is be used to simulate the B-fan using the same computational 

domain and boundary conditions as described by Le Roux (2010). Once the 

simulations have reproduced the results of Le Roux (2010) a methodology would 

have been established that could be improved upon. The primary focus of the 

project was then approached. 

To achieve the primary objective three scaled axial fans (L1-, L2- and N-fan) 

were tested in a BS 848 test facility and simulated using the methodology 

developed simulating the B-fan. The geometric models of the scaled fans were 

generated by means of reverse engineering. The numerical results were compared 

to the experimental results. The possibility of generating an average representative 

blade from multiple blade measurements was also examined. 
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2 Literature review 

Initial literature studies indicated that extensive research has been performed on 

the numerical and experimental testing of turbomachinery. Lately increased 

attention has specifically been given to the simulation of axial flow fans. This can 

be attributed to the minimum energy efficiency requirements for fans that have 

been implemented, for example in Europe (Guedel et al., 2012). The earlier 

mentioned study by Le Roux (2010), simulating axial fans, pointed out that there 

was very little evidence of numerical simulations conducted on axial flow fans at 

that stage. For the purposes of this project, literature was not only used to identify 

the various methodologies that are commonly used in simulating axial fans, but 

also to examine different solving techniques, turbulence models and software used 

to simulate axial fans. Various approximations are made in the CFD modelling of 

flow fields and therefore deviations were expected. Acceptable values for 

convergence, residuals levels and correlation of general performance were 

therefore also investigated. 

To simulate rotating machinery in CFD, various approaches to modelling the rotor 

can be taken. These include approximate models of the rotor such as the pressure 

jump approach (Shankaran and Dogruoz, 2010; Van der Spuy et al., 2010) and the 

actuator disk model (ADM) approach. The ADM approach described in-depth by 

Thiart and von Backström (1993) has been validated by numerous authors 

(Bredell et al., 2006; Meyer and Kröger, 2001; Van der Spuy et al., 2010). This 

approach can accurately predict the performance of axial fans for a large range of 

flow rates. The ADM, however, was found to under-predict the performance at 

lower flow rates further away from the design point (Le Roux, 2010). The 

pressure jump and actuator disk models do not require physical modelling of the 

fan, but represents the operation of the fan by means of momentum source terms. 

A more accurate representative approach involves simulating an actual fan model 

in multiple moving reference frames. For steady state simulations, the multiple 

reference frame (MRF) approach (otherwise known as the frozen-rotor approach) 

and the mixing plane approach can be used. The sliding mesh approach is used for 

an unsteady (transient) simulation. These approaches all require a three-

dimensional model of the fan geometry (ANSYS Fluent, 2011). Most of the 

numerical simulations for rotational systems currently implement the MRF or 

sliding mesh approach. 

Le Roux (2010) conducted a study on the numerical simulation and experimental 

testing of the B2-fan. Simulations of 1/8
th

 of the fan were conducted in a 

simplified version of the BS 848 (type A) test facility using NUMECA 

FINE/Turbo. The B2-fan has a diameter of 1.542 m and hub-tip ratio of 0.4. 

Simulations were carried out using the 1-equation Spalart-Allmaras turbulence 

model (Spalart and Allmaras, 1992). A mass flow inlet and static pressure outlet 

with radial equilibrium was specified at the inlet and outlet boundaries 

respectively. Large deviations in performance (errors of 30-50%) between 

numerical and experimental values were found when the MRF and mixing plane 
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approach for rotational domains were applied. However, by rotating the entire 

domain at the rotational speed of the fan, good correlation was found at higher 

flow rates. Le Roux (2010) recommended the use of other software packages and 

turbulence models such as the k-ε turbulence models. Cyrus et al. (2012) also 

made use of NUMECA Fine/Turbo software to simulate a high pressure axial fan, 

although the fan was smaller in diameter (600 mm). A mixing plane approach 

using the Spalart-Allmaras turbulence model was applied and the boundary 

conditions resembled those of Le Roux (2010). Although periodicity was used, 

the inlet region’s periodicity differed from the rest of the computational domain 

where a 180° sector was modelled. Numerical results were validated by 

experimental tests and the data from these tests correlated well in the region of the 

design point. No simulations at a flow coefficient of less than 0.5 were conducted. 

As was the case with Le Roux (2010), the torque was under-predicted. 

According to De Gennaro and Kuehnelt (2012), axial flow fans can be seen as 

rotating fluid machines and the Navier-Stokes equations can either be solved by a 

MRF or sliding mesh approach. Principally, solving the Navier-Stokes (N-S) 

equations directly would be ideal. Due to the non-linearity of these equations and 

the computational cost, there are two main approaches for solving these equations 

– the Reynold’s Averaged Navier-Stokes (RANS) equations and Large Eddy 

Simulations (LES).  

A time-averaged decomposition of the instantaneous velocity in a flow field is 

solved using the Navier-Stokes equations, resulting in the development of the 

RANS equations. This procedure creates the problem of mathematical closure 

which results in the need for turbulence models. LES is a time-dependent 

approach which specifically focuses on capturing and accurately modelling large 

eddies by mesh filtering. Choosing the correct approach and turbulence model 

becomes a trade-off between the level of detail required and the computational 

resources available (De Gennaro and Kuehnelt, 2012).  

Cezario (2012) analysed a fan-cooled electric motor and evalutated various 

turbulence models while paying specific attention to the effect of the   -value 

and mesh size. All simulations were carried out in ANSYS CFX and were validated 

by experimental tests carried out on a specially manufactured electrical motor 

(which was simplified for close correlation with the numerical geometry). The k-

ω SST turbulence model, a combination of the k-ε and k-ω turbulence models 

derived by Menter (1993) and the standard k-ε turbulence model, was examined. 

The wall   - value for the k-ω SST model was specified to be smaller than 2 and 

for the k-ε model, utilizing the wall function, it was greater than 11. A sensitivity 

study on different   -values indicated the importance of using the correct   - 

values.  

The correlation between the numerical and experimental values for both 

turbulence models were found to range from adequate to very good, even though 

the SST model showed greater robustness, accuracy and a larger computational 
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time. The k-ω SST turbulence model was also used in simulations by Pascu et al. 

(2009), Bamberger and Carolus (2012) and De Gennaro and Kuehnelt (2012). 

Bamberger and Carolus (2012) simulated a small axial fan (D = 300 mm) in 

ANSYS CFX with periodic boundaries using a mass flow inlet and ambient static 

pressure outlet. ANSYS TurboGrid was used to create a structured hexahedral 

mesh containing 1 million cells with a ducted inlet and outlet stretching one 

diameter upstream and two diameters downstream. The numerical results were 

validated by comparison to experimental results and showed very good correlation 

for higher to mid flow rates even though the experimental test facility and 

computational domain differed slightly. Simulations were not carried out for low 

flow rates. It should be noted that the average total pressure upstream of the fan 

was determined by calculating the sum of the area-averaged static pressure    and 

the mass-averaged velocity magnitude   in the following manner: 

        
  

 
 (2.1) 

A similar setup was used for the numerical work carried out by De Gennaro and 

Kuehnelt (2012), although a polyhedral mesh was used. The focus of both studies 

was to accurately predict fan noise by numerical simulation and therefore very 

fine meshes were required. In both cases the   -value was specified to be equal to 

one. 

Pascu et al. (2009) used ANSYS CFX and the MRF approach to validate three 

axial fan designs, each fan being 280 mm in diameter. The blade region consisted 

of an unstructured tetrahedral mesh which had a ducted inlet length of 3D and a 

ducted outlet length of 2D. The designed performance was reached in all three 

cases. It must be noted that for these three cases the computational domain was 

small due to the size of the fans and the large hub-tip ratios. Therefore, the use a 

more reliable, but computationally demanding turbulence model such as the k-ω 

SST turbulence model, (which is recommended to have a y
+
 value of 

approximately 1) could be afforded for the relatively small computational domain. 

In some of the literature differences were noticed in the geometry of the numerical 

domain when compared to the test facilities that were used to validate the 

numerical simulations. This could be attributed to the large size of the test 

facilities which require much larger computational domains. In order to use 

turbulence models such as k-ω SST or LES modelling, these domains are usually 

simplified to reduce the computational domain size. The effect of different 

experimental configurations on the performance of the B2-fan was examined by 

Meyer and Kröger (2001). The fan performance for the configurations in Figure 

2.1(a-c) was compared and found to deviate only slightly from each other. A 

numerical model representing the configuration depicted by Figure 2.1(d), using 

the ADM approach, was also compared to the experimental results of the type A, 
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BS 848 facility. The numerical data correlated very well with the experimental 

results within the normal operating range of the fan, although slightly under-

predicting the fan shaft power. This suggests that the simplification of numerical 

models can be seen as a good approximation of a more complex experimental 

facility. 

 

Figure 2.1 - Various test configurations used in the experiments of Meyer and 

Kröger (2001) 

A similar study was conducted by Guedel et al. (2012) in which four different 

casing configurations were tested for a 630 mm diameter axial fan. The 

experimental facility adhered to ISO specifications. The four configurations were 

also simulated using STAR-CCM+. The purpose of the simulations was to 

investigate the feasibility of predicting test performance for axial fans only 

through numerical simulation. The full computational domain (no periodicity) 

consisted of an unstructured polyhedral mesh volume (including a large outlet 

domain) having a total of 14.65 million cells (See Figure 2.2). All simulations 

used the realizable k-ε turbulence model with a steady state MRF approach. In 

contrast to the findings of Meyer and Kröger (2001), significant differences in the 

fan performance of the experimental test results between various configurations 

were found. Even so, the numerical results correlated well with experimental 

results, although simulations were only carried out for a very small flow rate 

region. At lower flow rates, convergence was found to be problematic and in 

some cases a large number of iterations were required to reach acceptable 

correlation. Also significant is the large number of cells used in these simulations, 

already reduced by using polyhedral meshing. Modelling and simulation were 

performed on two workstations (XEON 2.93 GHz and 128 GB RAM) with 22 

parallel processors.  
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Figure 2.2 - Computational domain for one of the four numerical 

configurations of Guedel et al. (2012) 

A less computationally demanding study was performed by Masi and Lazzaretto 

(2012) on the numerical simulation and experimental validation of axial fans (D = 

630 mm) with specific focus placed on reliable performance with minimal 

computational time. Masi and Lazzaretto (2012) used polyhedral meshing but 

stated that it is slightly less accurate than hexahedral meshes and it performs 

better than tetrahedral meshes. Due to the conformal nature of polyhedral cells, 

more effective localized meshing is possible. This saves on computational 

resources. A sensitivity analysis was conducted beforehand on four different 

computational domains by varying the turbulence model and cell number in each 

case. It was found that accuracy was largely dependent on cell number rather than 

turbulence model. Masi and Lazzaretto (2012) consequently simulated the four 

computational domains, three of them being periodic domains of increasing 

refinement and varying geometry simulated by the MRF approach and using a 

two-layered k-ε realizable turbulence model. The two layer k-ε approach 

(discussed in Chapter 5) refers to the enhanced treatment of the near-wall region. 

The fourth model, a very coarse non-periodic computational domain, was 

simulated using the unsteady sliding mesh approach. Experimental tests were 

carried out on two different outlet configurations, namely a free outlet and a 

ducted outlet. The correlation between numerical and experimental tests varied 

from very poor to very good depending on the type of geometry. It was concluded 

that for very accurate meshing, a large number of cells is required and the 
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counter-acting effect of the over prediction of dissipation at the blade tip together 

with an idealized geometry produces the most favourable results. Furthermore, a 

change in the inlet velocity profile is noticed when components such as the 

bellmouth and an electric motor are considered.  

A similar study was also conducted by Jian-Hui and Chun-Xin (2008), which 

compared the RNG and standard k-ε turbulence model and found good correlation 

between experimental and numerical data for both turbulence models. Berg and 

Wikström (2007) modelled a Volvo cooling fan, which was validated by 

experimental tests and showed very good correlation, specifically for the total-to-

static pressure increase. The MRF approach was found to predict the total-to-static 

pressure increase within 3.5% of the experimental results for the operating region. 

The fully non-periodic unstructured tetrahedral computational domain was 

simulated using ANSYS Fluent with the standard k-ε turbulence model. 

Another study implementing the MRF approach and using the k-ε realizable 

turbulence model was conducted by Shankaran and Dogruoz (2010). The CAD 

model used for the numerical simulations was generated by manual measurements 

of the actual fan. However, simulations were validated by experimental tests and 

good correlation for the entire flow rate spectrum was found. The computational 

domain, however, was very small which allows for greater mesh refinement. A 

similar study was done by Vad et al. (2007). He simulated and tested a large 

forward skewed axial fan using ANSYS Fluent in a periodic computational 

domain. The standard k-ε turbulence model was used in a domain that had a rather 

short ducted inlet (mass flow) and outlet (“outflow”). Although correlation 

between experimental and numerical results was reasonable, the validity thereof 

may be questioned due to a lack of information regarding their simulations. The 

same could be said about Amano et al. (2005). Lin and Tsai (2011) also showed 

good correlation between experimental and numerical values using ANSYS Fluent 

and the standard k-ε turbulence model although there was very little information 

regarding the details of each simulation. 

Zhao et al. (2012) simulated a full scale air-cooled condenser unit using a sliding 

mesh (unsteady) approach and the standard k-ε turbulence model. The mesh 

consisted of tetrahedral and hexahedral cells and the computational domain was 

divided into different regions. Figure 2.3(a-c) shows the mesh and computational 

domain. The entire mesh consisted of 1.4 million cells and very good correlation 

between the design specifications’ operating point and the numerical results was 

shown. Only a single operating point was simulated. No cross-flow analysis was 

mentioned. To analyse the effect of installing guide vanes at the exit of the air-

cooled condenser, another simulation was carried out and a slight decrease in 

overall performance was noticed (See Figure 2.3(d)). 
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Figure 2.3 - Computational domain of an air-cooled condenser  

using a sliding mesh approach (Zhao et al., 2012) 

Unsteady simulations that make use of the sliding mesh approach and implement 

computationally expensive techniques such as LES and Detached Eddy 

Simulations (DES), are considered for a greater number of applications due to the 

availability of larger computational power (Iwase et al., 2012). De Gennaro and 

Kuehnelt (2012), however, pointed out that the application of these approaches 

still does not guarantee reliable results. In studies by Borello et al. (2012), 

Fernandez Oro et al. (2011) and Iwase et al. (2012), numerical simulations were 

conducted using LES to predict the unsteady performance of axial fans. The mesh 

sizes for Borello et al. (2012) and Iwase et al. (2012) were both greater than 13 

million cells. Nevertheless, Fernandez Oro et al. (2011), utilized ANSYS Fluent’s 

ability to apply the wall-function for larger y
+
 values and used LES in a mesh grid 

which had y
+
 values between 30 and 60. This approach dramatically reduced the 

number of domain cells to approximately 2 million, although accuracy was 

compromised as a result. This specific LES technique was referred to as the wall 

modelled LES (WMLES) approach. Good correlation was shown between 

experimental and numerical results although there was still some deviation 

prevalent. The order of error was found to be similar in comparative steady state 

simulations. It must be noted, however, that the unsteady nature of these 

simulations provided valuable information with regards to vortex formation, flow 

separation and eddy formation, which is specifically useful in the prediction of fan 

noise. The computational time in all three studies was lengthy, with the WMLES 

approach taking 350 hours (~2 weeks) per operating point to reach stable results. 
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From literature, certain commonalities with regards to numerical simulations were 

found which can be summarized by the following points: 

 The MRF approach can be regarded as the preferred approach in steady 

state rotational fluid domain simulations. For unsteady simulations, the 

sliding mesh approach is always used. 

 In most cases ANSYS Fluent and CFX software packages have been used, 

although the ability of STAR CCM+ to create polyhedral meshes has made 

it an attractive alternative. 

 The k- ω SST turbulence model proved to be the most accurate and robust 

approach, although the y
+
-value recommendation, resulting in large 

computational meshes, makes it computationally demanding especially 

when the fan becomes large (> 600 mm). There was no mention made of 

the k-ω equation which can probably be attributed to poor performance in 

the free stream. There was no distinctly preferred k-ε turbulence model, 

with all three variations showing good results. 

 The specified inlet and outlet boundary conditions varied although there 

was a tendency towards mass flow (velocity) inlet and pressure (static) 

outlet boundary conditions. Indications of greater accuracy by using non-

periodic boundary conditions could not be found, since good correlation 

was shown for computational domains using periodic boundary 

conditions. 

 Simulation sensitivity towards grid refinement was highlighted by various 

authors. Most experimental and numerical work was also carried out for 

small diameter axial fans (< 630 mm). 

 The minimum accepted residual value was 10
-4

. 

 Reliable unsteady simulations, using approaches such as LES, requires a 

large amount of computational resources although accuracy is not 

necessarily improved. Unsteady simulations were used for the prediction 

of flow field phenomena (necessary for fan noise analysis). 
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3 Fan blade data 

In Chapter 2 the various approaches for simulating axial fans were discussed. 

Examples of these approaches include the models that approximate fan 

performance by implementing mathematical interfaces such as the pressure-jump 

approach (Van der Spuy et al., 2010) and the actuator disk model (Thiart and von 

Backström, 1993). Approaches such as the multiple reference frame (MRF), 

mixing plane and sliding mesh method, however, require a three-dimensional 

geometric model of the actual axial fan that will be simulated.  

If the actual design details for a specific axial fan are known, the process of 

generating a geometric model is relatively straightforward. However, simulating 

an axial fan of which there is no design details available is more challenging. The 

design details in the case of the B2-fan, mentioned in Chapter 1, were known and 

an accurate geometry was generated. This, however, was not the case for the 

scaled models of the L1-, L2- and N-fans. 

This chapter will discuss the fundamental concepts in generating a numerical 

model from design data. More importantly, the process of creating an accurate 

numerical model using three-dimensional scanned data from an actual 

manufactured axial fan that can be used for numerical simulation purposes, will 

also be explained. 

Figure 3.1 illustrates the nomenclature for two-dimensional blade profile 

geometries that will be used throughout the rest of the thesis. The definitions can 

be set out as follows: 

 

Figure 3.1 - Nomenclature for two-dimensional blade profile geometries 

 Leading edge:  The foremost position of a blade profile, which theoretically 

also becomes the stagnation point (local velocity is zero) in a 

flow field. 

 Trailing edge:  Rearmost position of a blade profile.  

 Chord:  The maximum distance of a blade profile measured from the 

leading to the trailing edge. 
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 Camber:  The angle between a tangent to the camber line at the leading 

and trailing edge. 

  Camber line:  A curve that can be approximated to be halfway between the 

top and the bottom surfaces of the blade profile at any 

percentage chord length (A more detailed definition is given 

later). 

 Thickness:  The distance between the top and bottom surface or between 

the camber line and a surface. 

Furthermore, geometrical models are usually defined by a point cloud. A point 

cloud consists of numerous points, each point defined inside a Cartesian 

coordinate system, which can be seen as the foundation of any geometry. Curves 

can be fitted through the points to further define the geometry and a surface can 

consequently be generated from multiple curves.  

3.1 B-fan 

The B2-fan will be referred to as the B-fan in this project. The details of the 

design process that led to the development of the B2-fan can be found in Bruneau 

(1994). The focus of this section is to provide a simplified process to generate a 

three-dimensional model of the B-fan from the two-dimensional blade design 

theory formulated by Bruneau (1994). 

Axial fans (or turbomachinery in general) are often designed using two-

dimensional blade element theory. Designs use different variations of two-

dimensional aerofoils to meet certain performance requirements for different 

radial stations (Pascu et al., 2009). The data of these aerofoils are usually given in 

the form of x and y coordinates normalized in terms of the chord length. 

For the numerical model of the B-fan, the original data points were used as given 

by McGhee and Beasley (1973). The aerofoil, referred to as the NASA GA(W)-1, 

is defined by x and y coordinates in terms of percentage chord and is specified to 

have a maximum thickness distribution of 17%. The B-fan, however, was 

designed with a linear change in thickness from 13% at the hub to 9% at the fan 

tip. The original data points were therefore multiplied by a thickness distribution 

factor in order to scale the blade profiles. 

In order to define the thickness distribution of the original point data (see Table 

D.1), a camber line had to be calculated. Generally, the camber line of an aerofoil 

blade profile is defined by a function, 

          (3.1) 

and similarly the thickness distribution is also defined by a function, 

         (3.2) 
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with (see Figure 3.2),  

 
(
         

      
)    (

   
   

)⁄  (3.3) 

 

Figure 3.2 - Method of applying the thickness distribution to the camber line 

If the camber for a specific aerofoil is small relative to the chord length, as was 

the case of the B-fan, the approximate chamber line can be defined as, 

 
      

       
 

  (3.4) 

where 

         

The approximated thickness distribution    can then be defined as, 

              (3.5) 

In order to calculate the new aerofoil coordinates for the B-fan, the approximated 

thickness distribution is scaled by a new thickness distribution       , and the z-

coordinates for each       are determined in the following manner: 

 
      

         (
      
  

) (3.6) 

The numerical B-fan model used for simulation consisted of five equally spaced 

radial blade profiles from the hub to the tip of the fan (although there can be any 

number of profiles as may be required). The thickness distribution varies linearly 
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from 13 % at the hub to 9% at the tip. Since the experimental tests by Le Roux 

(2010) were carried out with a 3 mm tip clearance and a blade root setting angle 

of 59 degrees (see Figure D.2 for stagger line), the same specifications were used 

for the geometric model. For further details on how the B-fan was generated and 

the method explained above, see Appendix D.  

3.2 N and L-fans 

The three scaled models will be referred to as the L1-fan, L2-fan and N-fan. These 

fans are scaled versions of large air-cooled condenser axial fans which were 

provided by the manufacturer of the larger fans. They were to be simulated 

numerically and compared to experimental test results. No geometry or CAD 

model, however, was provided and the design specifications of these fans were 

unknown. To simulate these fans, solid CAD models were required and the scaled 

models had to be scanned three-dimensionally. 

The L1-, L2- and N-fans were scanned using two different 3D scanning 

techniques to obtain a numerical point cloud of each of the fans’ blades. The L1-

fan was initially scanned using a non-contact active 3D scanner. However, the 

scanned data produced by the non-contact scanner was considered to be 

inaccurate at the leading and trailing edge. A contact 3D scanner was therefore 

used to scan the L1-, L2- and N-fan, the details of which are set out in the 

following section. 

Theoretically (and in the case of numerical models such as the B-fan), each blade 

of the manufactured L1, L2 and N-fans would be identical. In reality, however, 

minor errors in the manufacturing process would result in the blades being slightly 

different. A visual inspection of the blades showed this to be the case. To 

accurately quantify these differences, but also determine a representative 

geometry of each manufactured fan, accurate numerical models of each fan blade 

was required. It should be noted that axial fans can be assumed to observe 

periodicity for steady state conditions and therefore the numerical simulations 

would be carried out with a single fan blade.  

All blades of the three scaled fans were scanned, although only one blade was 

required for simulation purposes. Having the data of all fan blades made it 

possible to investigate the differences between the various manufactured blades of 

the same fan. Furthermore, the uncertainty regarding the effect of simulating only 

a single blade, which does not represent the entire fan, could be investigated. The 

two scanning approaches used are discussed below. 

3.2.1 Non-contact active 3D scanner 

A non-contact scanner uses multiple cameras and emitted light to obtain the 

geometry of an object. The time required for scanning is usually independent of 

the geometry, but rather a function of the accuracy. For a fairly simplistic 

geometry such as that of a fan blade, accurate scanning requires very little time. 
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Post-processing of the scanned data generates a high definition point cloud as 

shown in Figure 3.3. The non-contact scanner was only used to scan the L1-fan. 

The large amount of data can be seen as an advantage but results in the post-

editing being time consuming. 

 

Figure 3.3 - 3D wireframes of the L1-fan scanned by the non-contact scanner 

3.2.2 Contact 3D scanner 

The contact scanner generates a point cloud of geometry by means of physical 

touch, which can be unfavourable in some cases where delicate materials are 

scanned. Contact with the fibre-glass manufactured L1-, L2- and N-fan blades 

resulted in very accurate point clouds. Each probe started at the trailing edge 

suction side, following the geometry around to the pressure side which ensured 

that the leading edge of each radial profile was accurately scanned. This 

procedure was repeated for multiple radii in the span-wise direction. Due to the 

nature of the scanning process, however, it proved to be time consuming and 

expensive. Therefore, only 8 radially spaced blade profile probe traces were 

carried out for each blade. This resulted in very low density point clouds being 

generated, as shown in Figure 3.4. 
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Figure 3.4 - 3D wireframes of the L1-fan scanned by the contact scanner 

3.2.3 Post editing 

Post-editing of the point clouds was required for both the scanning procedures 

detailed in sections 3.2.1 and 3.2.2. Due to the functioning of the non-contact 

scanner each fan blade had to be scanned in two sequences namely the pressure- 

and suction side. The pressure and suction side data were then merged to form a 

single point cloud in post-editing. The very small positional changes during 

scanning of the two sides of each fan blade resulted in inaccurate alignment of the 

pressure and suction side leading and trailing edges. 

At the time of scanning, the effect of the leading and trailing edge on the flow 

field and overall performance were not known and very accurate modelling 

thereof was required, hence the decision to rather use the contact scanner. The 

non-contact scanner data of the L1-fan, however, proved to be consistent with the 

data from the contact scanner. Although there are differences between the two 

data sets, the error was initially thought to be larger. This is illustrated in Figure 

3.5. The details regarding the differences between the two L-fans can be found in 

Appendix D. Notice the difference in thickness between the L1- and L2- fan.  

Only eight profiles per blade were scanned using the contact scanner. The hub 

region had a complex geometry in comparison to the rest of the blade and 

consequently measurements were taken at a radius of 95, 110, 125, 145, 260, 375, 

490 and 605 mm. 
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Figure 3.5 - Comparison of the scanned data between the 

 contact scanner and non-contact scanner for the L1-fan 

It is usually assumed that all the blades of a fan are identical. Consequently, the 

simulation of a single fan blade with periodic boundaries is also regarded as a 

good representation of the entire fan. In the case of the scaled fan models, there 

were differences between the different fan blades of a particular fan. Therefore the 

validity of simulating a single fan blade with periodic boundaries to represent an 

entire fan was questioned. In order to create a representative geometry of the 

entire fan, an attempt was made to create an average representation of a fan blade 

by combining all the data of each of the fan blades for a specific fan.  

Initial efforts indicated that using the original data, as was specifically the case 

with the non-contact scanner, was not feasible. The data could not simply be 

averaged because there was no regular arrangement of the scanned data’s 

coordinates. The positioning of each fan blade’s geometry also varied with radius, 

although the position of the hub remained fixed. This resulted in blade profiles of 

different fan blades not aligning onto each other at specific radii. Consequently, 

the original data had to be manipulated so that profiles at the same radial distances 

would align. Furthermore, since no information regarding the stacking line, 

camber line, stagger angle, chord line or thickness distribution were available, 

these parameters needed to be approximated accurately.  

Considering all the approximations and manipulation of the sets of fan blade data, 

the result of the representative blade did not prove to be accurate enough. It was 

found that within the scope of the project, it was not possible to determine an 

accurate average representative blade for numerical simulation. This could 

specifically be attributed to the unknown stagger angle and stacking line which 

could not be averaged. The process of approximating these parameters and 
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calculating an average blade from multiple fan blades is discussed in more detail 

in Appendix D. 

One of the main objectives, as set out in Chapter 1, was to simulate these axial 

fans rather than investigate the effects of manufacturing error on performance. 

Therefore simulations were carried out using a single fan blade for each axial fan. 

A small comparative study was, however, done to compare the fan blade 

geometry of the L2-fan and L1-fan (see Figure D.5.). Due to the contact scanner’s 

ability to measure the geometry of each blade more accurately, the numerical 

models were created using the measured data from the contact scanner. 

ANSYS TurboGrid (structured mesh turbomachinery software) was used to create 

the mesh of each fan. To generate a computational mesh for each fan, the 

geometry of the fan is imported through a .crv-file. A .crv-file is a text file, 

representing a point cloud which contains multiple layers. A layer is defined by x, 

y and z coordinates of a specified radial blade profiles. A .crv-file can be created 

by the user by specifying the coordinate points or by using ANSYS BladeModeler. 

ANSYS BladeModeler requires a CAD model (ex. .x_t, .step, .iges) of a fan blade 

to generates a .crv-file. 

In the case of the B-fan, the numerical data points were neatly arranged from the 

hub to the fan tip, which was ideal for lofting surfaces of point cloud geometries. 

The relative complexity of the hub region of the other scaled model fans and a 

large amount of data points resulted in complications with regards to surface 

lofting. ANSYS TurboGrid had difficulty in lofting between the hub region blade 

profiles of the scaled fans while maintaining the correct geometry, due to the 

limited number of blade profiles (layers) and it primarily being a meshing 

software program. Therefore, the original blade profiles were not sufficient to 

create a .crv-file. However, ANSYS BladeModeler allows the user to specify the 

position of multiple layers on an imported fan geometry (CAD model) and 

increased number of layers in the hub region would resolve the surface lofting 

problem encountered in ANSYS TurboGrid. A solid model, generated in a 

specialized CAD environment, was therefore required. 

In the context of creating a solid model with smooth surfaces, the accurate 

representation of the actual model resulted in some modelling difficulties. Delcam 

Powershape was used to loft the scanned data profiles and create an .x_t-file 

(parasolid file). Powershape is specialized reverse engineering software and is 

ideal for the purpose of post-processing scanned three-dimensional data.  

In creating a solid model, the lofting procedure creates a surface fit through a 

selection of profiles (layers) that define the shape of the geometry in a three-

dimensional environment. The geometry of each profile plays a major part in the 

outcome of the solid model surface. The high accuracy of the contact scanner 

profiles, however, resulted in lofting being impractical. Ideally, profiles of the 

same lofting sequence should have the same number of data points, regularly 

arranged with respect to the other data points in a two-dimensional plane. Initial 
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lofting of the original data resulted in a very uneven surface finish, especially at 

the leading and trailing edges. The outcome of the finish at the trailing edge of the 

lofted L2-fan can be seen in Figure 3.6. The unevenness was due to the actual 

manufactured models’ surfaces containing areas of unevenness. The effect of this 

unevenness was unfortunately magnified by the lofting procedure. It was found 

that for the purposes of meshing around the blade surface, having a smoother 

surface resulted in a much better and acceptable mesh. Therefore, the data points 

had to be edited and this meant that some of the detail of each profile would be 

lost. 

 

Figure 3.6 - Trailing edge surface of the L2-fan, lofting the original data 

layers. 

In order to simplify, but still try to maintain the original geometry of the fan 

blade, each profile was edited individually. The purpose of the simplification was 

to smooth out the existing geometry curve of each blade profile. In order to 

accomplish this, the number of data points defining any given blade profile had to 

be reduced. Having fewer, but strategically placed data points positioned on the 

original curve, resulted in a smoother curve of the same geometry. The effect of 

reducing the number of data points on the leading edge is shown in Figure 3.7. It 

is important to note the scale of the changes that were made. The largest 

deviation, only 80 microns, from the original curve’s leading edge is shown in 

Figure 3.7. 
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Figure 3.7 - Comparison between the original scanned data curve and the 

simplified curve 

The simplification procedure for each profile was divided into four sub-divisions: 

The leading edge, trailing edge, suction side and pressure side. The same number 

of data points was used for each of the sub-divisions of each profile. Once a curve 

had been simplified it was possible to increase the number of data points defining 

the simplified curve for the purposes of surface lofting. Having more data points 

increased the accuracy of surface lofting. It is important to note that decreasing 

the number of data points changed (simplified) the curve geometry while adding 

data points had no effect. 

Careful simplification, as explained above, resulted in much smoother surfaces of 

the lofted solid models. This was particularly noticeable at the leading and trailing 

edges of a model. The hub region was also characterised by subtle changes in 

geometry. Due to the fact that the contact scanner was not able to scan at the fan 

tip (r = 620 mm), the fan blade surface was extrapolated to a value greater than 

625 mm to take the tip clearance into account. Finally, the coordinate system for 

each of the solid models was changed to correspond to the required direction for 

each axis in ANSYS Turbogrid. The position of the origin was also shifted to 

where the stacking line (x-axis) and rotating axis intersect (z-axis). 

In Figure 3.8 and Figure 3.9 the solid model geometries of the L2- and N-fan 

blades are shown. Further details on how the mesh was created from these solid 

models are discussed in later chapters. It must be emphasized that importing data 

points through a user-specified .crv-file into ANSYS TurboGrid must be the first 

priority. This ensures that minimal round-off errors are introduced between the 

various software programs. This, however, is only practical if the numerical data 

was generated using the design specifications of a fan (as was the case with the B-

fan). Simply lofting the original three-dimensional data from scanned geometry 
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could result in an inaccurate solid model due to the limitations of the lofting 

procedure and the non-uniform arrangement of the data points. 

 

Figure 3.8 - Numerical solid model of the L2-fan 

 

Figure 3.9 - Numerical solid model of the N-fan 
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3.2.4 Blade-setting angle 

The blade setting angles of the solid models had to be adjusted to match the 

experimentally tested angles. It was crucial that the definition of the 

experimentally tested and numerically simulated blade-setting angles be exactly 

the same. In the case of the B-fan, the blade setting angle could be adjusted by 

altering the design values. However, this was not possible with the scanned data 

although the physical design, blade-setting angle and method of specifying the 

angles were known.  

Figure 3.10 below illustrates how the blade-setting angle should be determined 

experimentally. Measuring the blade-setting angle 5 mm from the blade tip, as 

specified by the manufacturer, was difficult due to the poorly defined fan blade 

tips. For experimental purposes, the position of measuring the blade-setting angle 

was changed to 25 mm from the fan tip (595 mm from the axis of rotation). This 

ensured repeatable accuracy when setting the angles. Further details on the blade-

setting angle can be found in Chapter 4. 

 

Figure 3.10 - Different measuring positions of the protractor 

Because there were no numerical data points available at a radius of 595 mm, the 

lofted solid model surface was used to adjust the blade-setting angle. A straight 

tangent line was fitted to the blade surface of a numerical model at the specified 

radius. The coordinates of the intersection between the blade surface and the 

straight line was used to calculate the gradient of the line that corresponds to the 

blade-setting angle. The desired blade-setting angle could be found by rotating the 

entire solid model around the stacking line until the gradient of the intersection 

coordinates were equal to the desired blade-setting angle. Once the blade-setting 

angle was adjusted the fan tip was shortened to the desired length. 
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4 Experimental work 

Testing was carried out on the three scaled model fans, namely the L1-, L2- and 

N-fan. In order to validate the numerical simulations of the B-fan, data presented 

by both Stinnes (1998) and Le Roux (2010), who carried out experiments on the 

B-fan separately, would be used. No experiments were performed on the B-fan 

during this study.  

The purpose of the experimental testing of the axial fans was primarily to 

determine the aerodynamic performance of the various fans. This includes the 

total-to-static pressure increase across the fan, the torque induced by the fan 

(measured at the shaft) and determining the fan static efficiency. These parameters 

are presented in relation to the volume flow rate, which is determined by 

measuring the pressure drop over the inlet bellmouth. Having determined the 

performance of the various fans, the fan scaling laws were used to compare the 

scale models with their full scale equivalents. Another important part of the 

experimental tests was the use of the data for the purposes of validating the 

numerical simulations. Consequently, besides ensuring that the experimental tests 

were repeatable, attention to detail and accuracy were necessary, especially during 

calibration of the measuring devices.  

4.1 L-fans 

The two L-fans, referred to as the L1-fan and L2-fan (Figure 4.1), are similar in 

geometry and shape and have exactly the same outer and inner diameters. At a 

glance the chord lengths also seem similar, although during closer inspection clear 

differences are noticeable in the thickness distribution, blade weight and surface 

finish. The blades of the L1-fan were noticeably heavier, with a larger thickness 

distribution. 

Both fans have 8 blades with an outer rotor diameter of 1 240 mm and a hub/tip 

ratio of 0.135. A comparative study on the geometric differences between the L1- 

and L2-fan is discussed in Appendix D. Figure D.5(a-b) indicates that there is 

very little variation in the chord length with change in radii in both cases. The 

chord length for most of the blade span is between 145-150 mm. The hub 

geometry for both fans is identical and consists of two totally separate parts held 

together by eight bolts and nuts. The hub was supplied originally with a shaft and 

key configuration but was customized in order to accommodate a taper lock bolt-

on-hub. The taper lock configuration resulted in easy fastening and removal of the 

fan during testing. This alteration was made to all of the fans that were tested. 
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Figure 4.1 - Tested L2-fan 

The L1-fan had a smooth surface finish in contrast to the matt surface finish of the 

L2-fan. The L2-fan’s blades weighed between 762 g and 1000 g while the L1-

fan’s blades all weighed close to 1500 g each. 

4.2 N-fan 

The N-fan has the same outer diameter and hub/tip ratio as the L-fans, but has 9 

blades with a lower solidity. The N-fan is characterised by a much smaller chord 

length which has little radial variation, as can be seen from Figure 4.2. The hub 

geometry, as mentioned in the case of the L-fans, had to be altered from its 

original design. However, having nine blades, a slightly different configuration 

was required. In comparison with the L-fans, the N-fan’s hub was much heavier. 

This resulted in further changes to the hub geometry in order to reduce its weight. 

The surface finish of the N-fan resembled that of the L2-fan and the weight 

difference between blades varied little (550-600 g). The N-fan’s small chord 

length and thin thickness distribution resulted in the fan blades being slightly 

flexible. 
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Figure 4.2 - Tested N-fan 

4.3 Setup parameters 

Axial fans are characterised by the pressure increase across a fan, the power it 

consumes and the overall efficiency of the fan. These parameters are given in 

relation to the volume flow rate passing through the fan. For a type A 

configuration (open inlet and open outlet) the pressure increase is defined by the 

difference between the total inlet pressure and static outlet pressure. The power 

used to drive the fan is measured by determining the torque on the fan shaft. The 

fan efficiency is an indication of how effectively the fan translates the power that 

is consumed into a pressure increase. To determine these characteristics for a wide 

operating range of a specific fan, the blade setting angles, volume flow rate and 

rotational speed for each fan was varied. 

As mentioned earlier, the supplied fans were scaled models of industrial size fans 

that are used for air-cooled steam condensers. To compare a full scale model of 

any nature with its scaled model, one must ensure that the operating conditions for 

both in relative terms remain the same. Although the design operating conditions 

for the small scale model fans were unknown, these operating conditions were 

determined by means of dimensional analysis. Dimensional analysis is used to 

establish similarity between the actual and scale model. The Reynolds number is 

the most useful dimensionless parameter for finding similarities in conditions in 

scaled models. The known details of the actual and small scale fans are given in 

Table 4.1. 
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Table 4.1 - Full and small scale fan specifications 

 Large scale (L-fan) Large scale (N-fan) 
Small scale 

(L1, L2, N) 

Do 34 ft (10 363 mm) 34 ft (10 363 mm) 1 240 mm 

Di - - 169 mm 

Fan speed   - 

Design static 

pressure 
  - 

Design volume 

flow rate 
  - 

Blade tip chord 

length  
  - 

*         
  

  
                

  

  
         

  

  
                

  

  
  

The Reynolds numbers of the full scale fans, based on the fan blade chord length, 

was calculated using Equation 4.1: 

    
             

 
 (4.1) 

In order to satisfy dimensional similarity the Reynolds numbers of both fans are 

required to be identical. From the formulation above it is clear that in order to 

keep the Reynolds numbers the same, the tip speed of the small scale fan will 

have to be significantly larger due to its smaller blade chord length. The chord 

length of the small scale fans can be approximated using the scale factor, 
      

    
. 

Consequently the tip speed of the small scale fan is calculated to be approximately 

4000 rpm, which is impractically high. 

To determine feasible operating conditions for the scaled fans, the obvious route 

to follow would be to simply maximize the rotational speed. This would minimize 

the difference between the Reynolds numbers of the full and scaled fan models. 

However, there are safety requirements which limit the rotational blade speed. By 

fixing the non-dimensionalised flow coefficient, calculated as follows, 

 
  

  

    
 (4.2) 

and therefore keeping the velocity triangles the same in both cases, an acceptable 

and comparable rotational speed can be determined. The blade tip velocity of the 

full scale fan is approximately 60 m/s. The required rotational speed for the small 

scale model fans was consequently calculated to be 900 rpm. The fan supplier also 

suggested that the fans should not be tested at rotational speeds above 900 rpm. 

According to Kroger (1998) fans which are much larger than the test model can 

deviate from the predicted performance of the model. This is due to the fact that 
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the fan scaling laws do not take into account frictional effects if the Reynolds 

numbers are not identical. 

4.3.1 Blade setting angles 

Geometric similarity requires the small scale blade setting angles to resemble that 

of the large scale fan. The L-fans’ design angle was known to be 6.9°, measured 

as shown below in Figure 4.3, whereas the N-fan’s design blade-setting angle was 

11.6°. For the purposes of determining the performance for a wider operating 

range in each case, five different angles were tested. Tests were conducted at the 

design angle and two setting angles above and below the design angle, at one (L-

fans) or two (N-fan) degree increments. The method for setting the blade angle 

was specified in terms of the large scale fan. The blade setting angle is specified 

to be measured 50 mm from the large scale fan’s blade tip. Determining the angle 

on the small scale fan according to the method mentioned above proved to be 

impractical due to the scale factor which reduced the distance to only 5 mm.  

The problem was aggravated by poor definition at the fan tip. To ensure that the 

blade setting angles were measured accurately for each change in angle, a fixed 

distance, further away from the tip, was defined. The angles were measured using 

a digital protractor (see insert in Figure 4.3). The blade angles were adjusted by 

placing the hub, with the blades already installed, on a level table. The necessary 

hub nuts were loosened to adjust the angle for each blade. All nuts were tightened 

thoroughly after initial adjustment and the blade setting angle of each blade was 

measured again. Setting all the angles at precisely the same value proved to be 

very difficult. A tolerance of 0.2 degrees was allowed for all blade setting angles. 

Slight changes in the blade angles during operation were noticed when failing to 

tighten the bolt and nut configuration properly. 

 

Figure 4.3 - Measuring the blade-setting angle 
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4.3.2 Positioning and tip clearance 

According to Le Roux (2010), who carried out experiments on the B-fan using the 

same facility, no noticeable change in performance was found by changing the 

axial position of the fan inside the shroud. All fans were nevertheless positioned at 

the centre of the shroud. None of the experimental fans’ designs allowed for a 

change in tip clearance and consequently the tip clearance was fixed for all fans. 

The tip clearance in all cases was 5 mm although small differences (±1 mm) were 

found due to differences between the manufactured parts. 

4.3.3 Fan Operation 

As stated previously, all three fans were to be tested at 900 rpm. During start-up, 

however, it was noticed that the supplied fans were not balanced well enough to 

enable rotation at such high speeds. The fans could not be dynamically balanced 

due to the size and geometry of the fans and an attempt was made to improve the 

balancing of the fans by imposing a static momentum balance on the blades. Each 

blade was weighed using a mass scale and the lowest force resultant was found by 

changing the arrangement of the blades by means of an algorithm written in 

Scilab (see Appendix F). This procedure, in the case of the L2-fan, improved the 

initial static resultant of 122 N to only 7 N. This enabled the fan to rotate at much 

higher speeds. However, the improvements mentioned above were not sufficient 

to enable rotation at 900 rpm. Improvements to the test facility reduced vibration 

on the entire system as discussed further in Appendix A. This allowed the tests to 

be performed at higher rotational speeds. To examine the validity of the fan 

scaling laws, certain blade setting angles were tested at various rotational speeds. 

The data of the different rotational speeds would then all be scaled to the same 

rotational speed for comparison. 

4.4 Test Facility  

All tests carried out on the N and L-fans were conducted at the large fan test 

facility situated at Stellenbosch University, Department of Mechanical & 

Mechatronic Engineering. The facility is situated outdoors and therefore weather 

conditions such as wind and fluctuating temperatures can influence the results and 

the repeatability of the tests. The specifications of the facility for axial flow fans 

are based on the type A, BS 848 standards. The type A setup specifies a free open 

inlet to open outlet configuration. The design and commissioning of the facility is 

discussed in detail by Venter (1990) and further details on the test procedure and 

the instrumentation used during the tests can be found in Appendix A. The main 

features of the facility as shown Figure 4.4 in are: 

1. A calibrated bellmouth inlet (Dbellmouth = 1008 mm) is used to measure the 

volume flow rate through the fan. Because the test tunnel is 1500 mm 

shorter than required by the BS 848 standards the compound coefficient 

(  ) was validated to be        for this particular facility (Stinnes, 1998). 
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2. A throttle unit with flow straighteners that is used to manually adjust the 

volume flow rate through the test facility. 

3. A 6 blade, 7.5 kW, axial flow booster fan with variable speed drive to 

overcome the flow resistance induced by the front tunnel-end of the 

facility. The booster fan specifically enables measurements to be taken at 

low pressure rise, high volume flow rate operating points. 

4. A flow straightener to remove swirling flows and eddies induced into the 

flow field by the booster fan. 

5. Guide vanes and three mesh screens of increasing fineness are situated 

inside the settling chamber (6) to ensure a uniform velocity profile and 

distribution of air entering the inlet of the fan. 

6. A settling chamber (4 m high, 4 m wide and 7 m long) to slow down the 

inlet flow velocity into the fan to such an extent that the dynamic pressure 

at the fan inlet is considered to be negligible if the velocity is smaller than 

2 m/s (BS 848 standards, 1997). The large dimensions of the settling 

chamber relative to the test fan diameter ensure that the fan inlet is 

considered to be “open”. 

7. The test fan(s) with diameter of 1240 mm situated inside the bellmouth. 

8. The test fan propulsion unit. The fan is driven by a 10 kW motor 

controlled by a variable speed drive. For the purposes of the tests, an 

altered 3-belt drive system to reduce the rotational speed of the fan shaft 

had to be installed. The torque transducer is positioned between the fan 

and the pulley at the end of the drive shaft. 

4.4.1 Equipment 

The equipment used to measure the performance characteristics of all the fans are 

as follows. For a detailed discussion see Appendix A. 

Pressure:  HBM PD1 inductive differential transducer. (range : ±1000 Pa) 

Torque:  HBM T2 torque transducer with slip-ring (500 Nm) 

T22 torque transducer with no-slip ring (100 Nm)  

Speed:  Turck Inductive proximity sensor (0-10 V) 

Other: A thermometer was placed inside the settling chamber to measure 

the air temperature. Atmospheric pressure was measured using a 

barometer and information from the engineering faculty’s local 

weather station. Variable speed drives were used to control the 

rotational speed of the fans. 
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Figure 4.4 - BS 848 test facility 
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5 Numerical modelling 

In Chapter 2 it was shown that a number of studies on the simulation of axial fans 

have been conducted. Most of these studies indicated that the procedure for 

simulating an axial fan is thought to be well understood. However, there were 

significant differences between the experimental and numerical results found in 

most studies mentioned in Chapter 2. Furthermore, the accurate simulation of fans 

at low-Reynolds numbers has been found to be largely overlooked in literature. 

This thesis focussed on investigating computational resource friendly, but 

accurate, ways of simulating axial fans over their full operating range. This 

included examining various turbulence models and the effect of simplifying (size 

reduction) the geometry of a domain. All fans were simulated assuming steady 

state conditions using various Reynolds averaged Navier-Stokes (RANS) k-ε 

turbulence models. The numerical results are compared to the experimental data 

presented in section 6.2. 

As previously stated a thesis on the simulation of axial fans was performed at 

Stellenbosch University by Le Roux (2010) using NUMECA FineTurbo numerical 

software. NUMECA Fine/Turbo is primarily designed for high pressure ratio and 

high flow rate turbomachinery applications. Le Roux (2010) found that NUMECA 

Fine/Turbo could not successfully attain the required convergence levels in the 

lower flow rate region found in axial flow fans and ANSYS Workbench version 

14.0 was selected for use in this thesis. ANSYS Workbench includes the 

geometrical CAD and basic meshing software (ANSYS DesignModeler, ANSYS 

Meshing), the turbomachinery meshing software (ANSYS TurboGrid) for the fan 

passage and the solver (ANSYS Fluent).  

Computational resources for modelling purposes, which include mesh generation 

and post-editing, used a 2.5 GHz quad-core processing unit and 8GB RAM. In 

general a gigabyte of RAM was required for every million cells that were meshed. 

In some cases three separate meshes were combined into a single case file which 

increased the required computational memory. This consequently limited the 

number of cells for each separate zone to a degree. The solving of a case file, 

however, was carried out on a computational cluster with a capability of up to 16 

CPU units per case. 

Three fans were simulated for the purposes of the study namely: the B-fan, N-fan 

and L2-fan. Although no experimental testing was carried out on the B-fan it was 

regarded as an ideal starting point for the numerical investigation due to the fact 

that previous numerical work had already been done on the B-fan by Le Roux 

(2010). The hub region of the B-fan rotor is also known to have little fluid 

separation for a wide range of flow conditions. 
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5.1 Computational flow modelling 

The principles of conservation of mass, energy and momentum are used to derive 

the fundamental equations necessary to describe the behaviour of any fluid. The 

governing equations relevant to this thesis, using tensor notation, are: 

 The continuity equation 

   

  
 

 

   
         (5.1) 

where    is the mass added source term (ANSYS Fluent, 2011). For 

incompressible flow the time-dependent density term can be neglected.  

 The momentum equation (Navier-Stokes formulation) for the x-direction 

 
 (

   

  
   

   

   
)  

    

   
    (5.2) 

where    represents the body forces and     is defined as 

 
                  

 

 
          (5.3) 

and 
    

 

 
(
   

   
 

   

   
) (5.4) 

The derivations for the governing equations of state can be found in Kays et al. 

(2004) and ANSYS Fluent (2011). Because of the incompressible nature of the 

flow it is assumed that solving the energy equation will have no significant effect 

on the solution. The first term on the left hand side of Equation 5.2, represents the 

time dependent nature of the velocity that can be found in a flow field. The flow is 

considered steady and the time dependent term can be neglected. This is however 

not entirely true for turbulent flow. Although the average state of the flow field 

can be considered steady, the flow properties for turbulent flow vary in an 

unpredictable manner. These fluctuations are characterized by three-dimensional 

variation which includes rotational structures called turbulent eddies that have a 

wide range of characteristic lengths and velocities. Small eddies are dominated by 

viscous effects and can be regarded as isotropic. The dominant effect of inertia 

forces in large eddies on the other hand cause its behaviour to be largely 

anisotropic (fluctuations are different for different directions). A ‘large-eddy’ 

Reynolds number can be defined, based on the characteristic length ( ) and 

velocity ( ) of larger eddies which is used in turbulence modelling (Versteeg and 

Malalasekera, 2007). 
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The most accurate approach in solving turbulent flow is by Direct Numerical 

Simulation (DNS) which uses the instantaneous continuity equation and the three 

Navier-Stokes equations to form a closed set of equations with unknowns       

and  . By using very fine spatial discretization DNS develops a transient solution 

with sufficient time steps in order to solve the small turbulent eddies and fast 

fluctuations (Versteeg and Malalasekera, 2007). For further reading on DNS see 

Moin and Mahesh (1998). Solving the flow field numerically for turbulent flow 

by direct use of the governing equations, such as DNS, is very resource intensive 

and therefore alternative solving methodologies are available which facilitate 

numerical solving by less computational demanding procedures. 

5.1.1 Turbulence modelling 

There are two major approaches used to solve turbulent flow other than DNS. The 

first approach applies a time-averaging procedure to the governing equations and 

decomposition of the instantaneous flow into a mean and fluctuating variable. 

This substitution leads to an extra term which requires at least another equation to 

establish mathematical closure. The universal behaviour of all eddies are also 

modelled by a single turbulence model. Due to the difference in behaviour of 

small and large eddies, especially in a low-Reynolds number flow regime, large 

errors in solutions can occur (Versteeg and Malalasekera, 2007).The second 

approach solves the larger turbulent eddies with a time-dependent simulation 

using spatial filters to separate the larger eddies from the small eddies. This is 

referred to as Large Eddie Simulations (LES). Further details on LES can be 

found in Versteeg and Malalasekera (2007) and Tu et al. (2008). Although LES 

takes the anisotropic nature of large eddies into account, it is important to note 

that LES does not guarantee improved results for all cases. 

The Reynolds average Navier-Stokes equations  

The random velocity fluctuations found in turbulent flow can be decomposed into 

a mean velocity     and fluctuating component    . The instantaneous velocity is 

then defined as 

              (5.5) 

Substituting Equation 5.5 into each of the governing equations and applying the 

principle of time-averaging (as described in Kays et al., 2004) results in a set of 

time averaged equations. For the    momentum equation this will give: 

  

   
(         

   
 )  

 

   
(   )     (5.6) 

Equation 5.6 is referred to as the Reynolds averaged Navier-Stokes (RANS). The 

viscous stress tensor and fluctuating convective term, referred to as the turbulent 

stress tensor, can be coupled and therefore: 
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(     )   

  

  
 

 

   
(       

   
 )     (5.7) 

Although the mathematically derived turbulent stress tensor is highly nonlinear 

and reflects the time-dependent fluctuations found in turbulent flow it can still be 

quantified experimentally. The tensor consists of nine terms for the x, y and z 

direction although symmetry reduces the number to six (Kays et al., 2004). These 

stress terms are called the Reynolds stresses. Mathematical closure, however, has 

become impossible due to the addition of the turbulent stress tensor and therefore 

another equation is required. These turbulent stress terms are modelled using 

turbulence models (Versteeg and Malalasekera, 2007). 

The Reynolds stresses which originate from the RANS approach need to be 

modelled appropriately. The first method of modelling the turbulent stress tensor 

is to solve each Reynolds stress separately. This is referred to as the Reynolds 

stress model (RSM). This model requires an equation for each term in the tensor 

(six terms for 3D flow, four terms for 2D flow) and a scale-determining equation 

(ANSYS Fluent, 2011). Modelling each Reynolds stress separately results in 

accurate modelling of the flow although an additional seven equations increases 

the required computational resources for a three-dimensional simulation greatly.  

The Boussinesq approach 

Another, more common, method is the Boussinesq approach. The additional 

    
   

  term in Equation 5.7 is defined as a shear stress, which is based on the 

assumption that there is an analogy between the viscous shear stress and turbulent 

shear stress. Based on the formulation, 

 
          (

  

  
 

  

  
) (5.8) 

Boussinesq proposed that the turbulent stress tensor is proportional to the mean 

velocity gradient. The Reynolds stresses are therefore related to the velocity 

gradient as shown below in tensor notation: 

 
     

   
    (

   

   
 

   

   
)  

 

 
(      

   

   
)     (5.9) 

where 

 
  

 

 
(           ) (5.10) 

which is the turbulent kinetic energy per unit mass. The turbulent viscosity,   , is 

defined as the proportionality factor. The second term on the right hand ensures 

that normal stresses are modelled correctly. This approach differs from the RSM 
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in that the turbulent viscosity is assumed to be isotropic, which is not strictly true. 

The assumption, however, holds for flows dominated by only one turbulent shear 

stress which covers many technical flows (ANSYS Fluent, 2011). Due to the 

relative simplicity of the approach the computational resources required is 

reduced in comparison to the RSM. The Boussinesq approach is used in the case 

of various turbulence models which include the Spalart-Allmaras, k-ε models and 

k-ω models.  

Spalart-Allmaras 

The Spalart-Allmaras model (Spalart and Allmaras, 1992) involves one additional 

transport equation for the turbulent kinematic viscosity,  ̃. The (dynamic) 

turbulent viscosity is defined as 

       ̃     (5.11) 

where 
    

  

      
     (5.12) 

and 
  

 ̃

 
 (5.13) 

The wall-damping function,    , is a damping factor between zero and one. At 

high Reynolds numbers the function tends to unity and is equal to the kinematic 

turbulent viscosity. The viscosity affected region of the boundary layer must be 

solved, which requires a y
+
-value of approximately one. Since the turbulence 

kinetic energy is not calculated the last term in Equation 5.9 is neglected. This 

model is developed for wall-bounded aerodynamic flows and gives good 

performance for boundary layers under adverse pressure gradients, which is 

important in predicting stalls. Due to the fact that the length scale is not 

calculated, but also not specifically calibrated for general internal flows, the 

model produces large errors in free shear flows and complex geometries (ANSYS 

Fluent, 2011; Versteeg and Malalasekera, 2007). 

k-ε turbulence models 

The two-equation k-ε turbulence models focus on the mechanisms which affect 

the turbulent kinetic energy. Many formulations of the k-ε turbulence model have 

been proposed, three of which will be discussed here. The variable ε represents 

the rate of dissipation of turbulent kinetic energy and is the destruction term in the 

kinetic energy equation. Important to note is that the dissipation of turbulence is a 

result of the work done by the smallest eddies against viscous stresses (Versteeg 

and Malalasekera, 2007). The turbulent kinetic energy equation is given in its 

exact form while the exact equation for the rate of viscous dissipation contains 

many unknown variables and physical reasoning is applied to define ε. In the 

derivation of the k-ε model the flow is assumed to be fully turbulent, which 

suggests that the molecular viscosity is negligible. The length scale   and velocity 

scale   for large-scale turbulence are, however, defined as 
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   √    (5.14) 

 
  

    

 
 (5.15) 

The definition of the length scale suggests that small, dissipating eddies are 

coupled to large-scale turbulence which in reality proves to be valid for higher 

Reynolds numbers. To compute the Reynolds stresses the Boussinesq approach is 

used and the turbulent viscosity is therefore defined as  

 
               

  

 
 (5.16) 

The standard k-ε model proposed by Launder and Spalding (1974) makes use of 

the universal near-wall flow behaviour at high Reynolds numbers. The validity of 

this assumption based on turbulent kinetic energy analysis proves to hold for y
+
 

values between 30 and 500 and therefore the turbulent kinetic energy and rate of 

dissipation can be used to define a log-law function 

 
   

 

  
 

 

 
          (5.17) 

where 
  

  
 

√  
 (5.18) 

and 
  

  
 

  
 (5.19) 

The Von Karman’s constant   = 0.41 and E = 9.8 are used for smooth walls. The 

variable   represents the normal distance from the wall. At low Reynolds 

numbers, however, the wall function is not valid and a damping factor similar to 

    for Spalart-Allmaras can be applied. The dynamic viscosity can also be added 

to both equations to account for low Reynolds numbers. The rate of dissipation 

tends to become very large as the wall is approached and there is no good 

approximation found to date which accurately models the dissipation rate for a 

wide variety of flows (ANSYS Fluent, 2011; Versteeg and Malalasekera, 2007). 

The standard two-equation k-ε model assumes that the Reynolds stress tensor, 

    
   

 , is proportional to the mean rate of deformation of a fluid element which 

is not valid in rapidly changing flows. Furthermore the assumption that all flow 

behaves in an isotropic manner does not hold true for situations in which adverse 

pressure gradients, recirculating or complex flows are found. Due to these 

limitations of the standard k-ε model, other formulations have been proposed. 

The two-layer k-ε model is a less grid independent and stable low-Reynolds 

number k-ε model. ANSYS Fluent however incorporates the principles of this 

formulation in the Enhanced Wall Treatment model explained later. The 

prediction of the low Reynolds number near-wall region is improved by 
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distinguishing between the fully turbulent region and the viscous sub-layer and 

placing the near-wall node in the viscous region. The two regions are identified by 

calculating      √   . The fully turbulent region,        , is solved by 

the standard k-ε formulation. In the viscous region,        , only the k-

equation is solved and the dissipation rate is determined by calculating the length 

scale by an algebraic equation (ANSYS Fluent, 2011; Versteeg and Malalasekera, 

2007). 

The RNG k-ε model is mathematically highly complex and therefore only the 

fundamental changes are mentioned, as given by ANSYS Fluent (2011). An 

additional term has been added to the ε-equation to improve performance for 

rapidly straining flows. An effective viscosity is also derived in the form of a 

differential formula which accounts for low-Reynolds effects. The prediction of 

swirl is improved by the RNG model. Consequently the RNG model out performs 

the standard k-ε model for the effects of rapid strain and streamline curvature 

effects. The RNG model, however, does not always outperform the standard k-ε 

model (Versteeg and Malalasekera, 2007).  

The realizable k-ε turbulence model (Shih et al., 1995) is different from the 

standard k-ε model in two distinct ways: The turbulent viscosity is formulated 

differently and the equation for the dissipation rate has been derived in a more 

exact manner. The realizable model mathematically satisfies certain constraints on 

the Reynolds stresses by combining the Boussinesq relationship and the turbulent 

viscosity defined by Equation 5.16. The constant    is now defined as a variable 

 
   

 

     
    

 

                           (5.20) 

where 

    √         ̃    ̃   (5.21) 

  ̃                 (5.22) 

                 (5.23) 

and     is the mean strain and     is the mean rate-of-rotation tensor in a moving 

reference frame with an angular velocity   . These equations are deemed 

important due to the fact that the extra rotational term            is not 

compatible with simulations using multiple reference frames and ANSYS Fluent, 

by default, removes this term from the realizable k-ε formulation. According to 

ANSYS Fluent (2011) the model is still relatively new but initial performance 

tests have shown the realizable model to provide the best performance for 

validation studies on complex and separated flows. 
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k-ω turbulence models 

The turbulent viscosity in the k-ε models was defined as the product of the 

velocity scale and length scale given by Equations 5.16. For the standard k-ω 

turbulence model the dissipation rate ε is replaced by another variable, the 

turbulence frequency (specific dissipation rate)      . This model is modified 

to incorporate low-Reynolds number flows and integration to the wall. Therefore 

the viscous sub-layer does not require wall damping functions as discussed in the 

case of Spalart-Allmaras. The sensitivity of simulations to the value of k and ω in 

the free stream flow region is, however, one of the downsides to this model and is 

not recommended in general flows (ANSYS Fluent, 2011).  

The k-ω SST turbulence model, proposed by Menter (1993), combines the stable 

performance of the k-ε turbulence model in the free stream region with the k-ω 

model which is characterized by the simplistic yet accurate prediction of the near-

wall region. These two models are added together by a blending function which 

activates the appropriate model in the separate regions. It also allows for smooth 

transition between the two models (ANSYS Fluent, 2011). Furthermore, 

performance in flows with adverse pressure gradients and wake regions are 

improved by limiting turbulent viscosity (Versteeg and Malalasekera, 2007). This 

model proves to be reliable and accurate for a wide variety of flows. 

Emphasis is usually placed on the importance of the correct y
+
-value for the wall 

cell although it is more important to place enough cells in the boundary layer. For 

turbulence models such as the k-ω SST and the Spalart-Allmaras model,which 

solve the boundary layer, ANSYS Fluent recommends y
+
-values of approximately 

one with at least ten cells located inside the boundary layer. If wall-functions are 

used the near-wall y
+ 

value should not be much less than 30. The sensitivity of a 

solution to the above mentioned parameters presents a challenge when creating a 

computational mesh. For this reason ANSYS Fluent has developed an Enhanced 

Wall Treatment function. 

The use of the Enhanced Wall Treatment for k-ε turbulence models results in a y
+
 

insensitive simulation which combines the two-layer approach with enhanced wall 

functions as referred to by ANSYS Fluent (2011). For the purposes of modelling 

the Reynolds stresses the two-layer model for the turbulent viscosity is blended 

with the turbulent viscosity in the high Reynolds region by 

                               (5.24) 

where the turbulent viscosity in the viscosity-affected region is defined as 

                     (5.25) 

and the length scale is calculated from the algebraic relation 

        (          ) (5.26) 
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The blending function            tends to unity as the fully turbulent region is 

approached with            . The constant    is calculated by the formulation 

      
    

 and the constant A specifies the width of the blending function. The 

dissipation rate,  , in the viscous region is calculated by 

   
    

  
 (5.27) 

where the length scale    is calculated in a similar way to   . The dissipation rate 

for the fully turbulent region is obtained from solving the transport equation. 

Furthermore a single wall function which is extended to include both the linear 

and logarithmic law-of-the-wall is included. This formulation correctly predicts 

the behaviour for large and low y
+
 values. Velocity behaviour in the buffer region 

(3 < y
+ 

< 10) is also well represented. The Enhanced Wall Treatment function is 

recommended by ANSYS Fluent for all two-equation wall function turbulence 

models. 

5.1.2 Rotational modelling 

To simulate rotating machinery various rotational modelling approaches as 

mentioned in Chapter 2 are available. Steady state modelling approaches include 

the mixing plane and MRF approach. The sliding mesh formulation is applied to 

transient simulations. Only steady state simulations were carried out for this 

thesis. The summary of the literature review given in Chapter 2 stated that most 

steady state simulations used the MRF approach and therefore this approach was 

used for all simulations. 

Both the mixing plane and MRF approaches divide the computational domain into 

different rotational parts referred to as cell zones. These zones are separated 

(connected) by interface boundaries. The mixing plane and MRF approach differ 

in the way the flow is treated at these interface boundaries. In the case of the MRF 

approach a local reference frame transformation is implemented which enables the 

calculation of fluxes at both sides of the interface. For the mixing plane approach 

the flow data is circumferentially averaged at the interface boundaries by either a 

mass-averaged or area-averaged formulation. Mixing the flow at the interface 

boundaries removes all unsteadiness and circumferential variation (ANSYS 

Fluent, 2011). 

ANSYS Fluent solves the rotating zones using a set of moving reference frame 

equations. It also allows the user to specify whether the velocity is solved in a 

relative or absolute frame of reference. The relative velocity formulation 

calculates velocities relative to its subdomain’s motion. This implies that the 

governing equations are formulated relative to the motion of the subdomain. The 

governing equations for the absolute velocity formulation are very similar 

although the velocity and velocity gradient quantities are stored in an absolute 

frame of reference. Note that the velocity and velocity gradient vector quantities 
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are the only variables which change with a change in reference frame. All scalar 

quantities such as static pressure and density are simply passed from one zone to 

the other. ANSYS Fluent recommends the absolute velocity formulation for cases 

in which most of the computational domain is specified as stationary. 

Using different software packages to model the inlet and outlet domains resulted 

in non-conformal mesh interfaces. ANSYS Fluent deals with non-conformal 

meshes by creating new faces on the interface from the two zones.  

To illustrate this procedure consider the two cell zones in Figure 5.1. New faces 

represented by a-d, d-b, b-e and e-c are produced from the intersection between 

the two interface zones. To calculate the information passed on from cell zone 1 

two new faces are defined replacing the face DE. Information from both cells I 

and III are therefore used due to the newly defined faces d-b and b-e. Partially 

overlapping meshes (e.g. face a-d) is treated as specified by the user in ANSYS 

Fluent. These faces can be treated as walls, boundaries with periodic repeats 

(usually valid for sliding meshes and turbomachinery applications) and non-

conformal periodic boundaries. 

 

Figure 5.1 - Non-conformal mesh handling (ANSYS Fluent, 2011) 

5.2 Modelling 

Figure 5.2 illustrates the fundamental processes that are involved in simulating an 

axial fan as applied to this thesis. For the purposes of this discussion these 

processes will be divided into three main sections namely: computational domain, 

meshing and solving. 
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Figure 5.2 - Fundamental processes involved with simulating an axial fan 

Geometric domain 

The geometric domain was divided into an inlet, passage (which includes 

the blade geometry) and an outlet. The physical geometry and dimensions 

for each of the three domain parts directly influence the mesh that is 

generated. The fan solid model that was created as explained in Chapter 3 

is imported into ANSYS BladeModeler (which is activated inside ANSYS 

DesignModeler) and forms part of the blade passage geometry. 

Meshing 

The meshing software uses the generated geometry to create a mesh 

according to user specifications. Each mesh was created independently of 

the other. Once the three meshes were created, they were combined (not 

merged) to form a single mesh which represented the full computational 

domain. It was possible to create a limited size mesh in ANSYS TurboGrid 

with a conformal inlet and outlet. 

Solving 

Boundary conditions and solver settings (discretization methods, 

turbulence model etc.) were applied to the computational mesh domain 

inside ANSYS Fluent. A case file consisting of the computational mesh 

and its accompanied settings were initialized and solved for a specified 

number of iterations. Post-processing followed after the convergence of a 

simulation. 

Figure 5.3 is a detailed flowchart of the numerical simulation process from 

start to finish. The purpose of the flow chart is to provide a foundation from 

where further and future numerical work on axial fans can be built upon. It 

also indicates various decision paths that could have been taken to solve a 

case. Other important points to note are: 

 All solid CAD fan models were imported into ANSYS DesignModeler and 

ANSYS BladeModeler was used to generate the blade profile file required 

in ANSYS TurboGrid. 
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 ANSYS TurboGrid only generates structured grids for turbomachinery 

applications. 

 The larger inlet and outlet domains were created in ANSYS DesignModeler 

and the meshes generated in ANSYS Meshing. 

 ANSYS Fluent was used for solving all simulations, although ANSYS CFX 

was also available. 

 

Figure 5.3 - Detailed flow chart of the process in Figure 5.2 

To examine the effect that the domain has on a simulation various alterations had 

to be considered. There were two main concepts from which all of the 
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computational domains were derived. Both these concepts are shown in Figure 

5.4. Concept A’s domain consist of a ducted inlet and ducted outlet. Both the inlet 

and outlet (or either) can be an annulus section as variant. Concept B is a 

simplified representation of the BS 848 (Type A) facility where the experimental 

tests were carried out. The inlet of Concept B can be seen as a plane, downstream 

of the screen meshes in Figure 4.4. The outlet represents atmospheric conditions. 

 

Figure 5.4 - Two main computational domain concepts 

Axial fans can be regarded as periodic machines which made it possible to reduce 

the computational domain to only an 8
th

 (B-fan and L2-fans) or 9
th

 (N-fan) of the 

size. This resulted in much less computational demanding simulations and also 

made local refinement of the mesh grid possible. The B-fan will be discussed 

separately from the L2- and N-fan with regards to geometry, meshing and 

boundary conditions. 

5.2.1 Mesh 

All computational meshes were generated using either ANSYS TurboGrid or 

ANSYS Meshing. The blade passage meshes for the different fans were all created 

using ANSYS TurboGrid’s structured grid functionality. 

The blade geometry in ANSYS TurboGrid was defined based on the data of the 

.crv-file exported from ANSYS BladeModeler. Blade profile (layer) curves, 

consisting of numerous coordinates connected by lines, were created by using a 

B-spline or linear piece-wise approach. Likewise spanwise lofting could either be 

A.) Ducted inlet & outlet 
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done by using B-splines or linear lines (“ruled”). These settings have a significant 

effect on the surface finish of the blade geometry and overall mesh quality at the 

near-blade (wall) region. 

The “ATM optimized” mesh topology option was used in all cases. Instead of 

creating a mesh using the O, H or C topologies, the “ATM optimized” option 

creates topology layers based on the geometry of the turbomachinery domain. The 

positioning of the layers is user specified across the span of the blade and the final 

mesh volume is built upon these layers. Figure 5.5 shows a layer of the leading 

edge region of the L2-fan.  

 

Figure 5.5 – Leading edge of L2-fan mesh layer 

ANSYS TurboGrid allows the user to specify a target number of cells and the near-

wall spacing  y in accordance with the required y
+
-value at the blade wall.  y is 

calculated by 

        √      
     

   
 (5.28) 

where L is the average blade chord length and Rex is approximated to be the same 

as the specified ReL-value based on the chord length. This method enables the 

user to change the target cell number but still maintain the correct near wall 

spacing   . Local refinement of the mesh was done by configuring the multiple 

layers. Important to note is that local refinement on a specific layer is carried 

through the mesh volume due to its structured nature. The number of cells in the 
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spanwise direction was determined by a proportional factor based on the 

combined limits of the wall spacing and target cells. In some cases the 

proportional factor had to be decreased in order for the wall spacing and target 

cell limits to be satisfied. 

The above described method allowed quick and easy mesh generation, but the 

quality of the mesh was indicated by mesh statistic parameters. Three specific 

mesh statistics parameters were considered important, as suggested by ANSYS 

TurboGrid: 

 Minimum volume:  If the mesh contains any negative volume 

cells ANSYS TurboGrid does not permit 

the export of the mesh. This is usually an 

indication of faulty defined cells. 

 Maximum/Minimum face angle: This parameter is an indication of the 

skewness of a cell. Values between 15° 

and 165° were considered acceptable. 

 Edge length ratio (Aspect ratio): It is a ratio of the longest edge of the face 

divided by the shortest edge of the face. 

Theoretically this parameter should be as 

close to 1 as possible. The percentage of 

cells over this limit was also considered to 

be important. 

Due to ANSYS TurboGrid placing a limit on the number of inlet and outlet cells in 

the flow direction (z-direction) the larger inlet and outlet meshes were created in 

ANSYS Meshing. The details of these larger meshes are controlled by specifying a 

number of elements to various edges. There were no significant near-wall regions 

except for the inlet bellmouth wall. Generating the larger inlet and outlet meshes 

in different software than the passage resulted in non-conformal meshes at the 

interfaces. 

5.2.2 Boundary conditions 

Boundary conditions fulfil an important role in all simulations because it governs 

the computational stability and numerical convergence thereof (Tu et al., 2008). 

The initial conditions of a simulation are also specified at these boundaries. Two 

types of boundary conditions can be specified: the Dirichlet and Neumann 

boundary conditions. The Dirichlet boundary condition involves specifying a 

physical quantity, defined as 

               (5.29) 

where   is a transport property. For the Neumann boundary condition a derivative 

of the transport property is specified, such as 
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   (5.30) 

It is generally good practise to specify a Dirichelt boundary condition at the inlet 

and Neumann boundary condition at the outlet. This, however, is not an absolute 

necessity as it is not always possible (Tu et al., 2008). Another important factor to 

consider is the specification of the entering turbulent flow. The important 

boundary conditions used for all simulations in this thesis will be discussed 

briefly. 

Mass flow inlet 

This boundary condition provides a specified mass flow rate (or mass flux) at the 

inlet. The mass flow inlet allows the total pressure to vary across the boundary as 

the solution permits. Unlike the velocity inlet, a mass flow inlet can be used for 

compressible and incompressible flow. ANSYS Fluent (2011) however, 

recommends a total pressure inlet boundary condition if the pressure at the inlet is 

known. The continual adjustment of the total pressure when using a mass flow 

rate boundary condition can cause slow convergence. 

Pressure outlet 

The specification of the static pressure is required for a pressure outlet boundary 

condition which allows the mass flow/velocity to vary. The option of specifying 

radial equilibrium as explained and used by Le Roux (2010) can also be applied. 

ANSYS Fluent (2011) also allows the user to specify the “backflow” conditions 

which can reduce instability and minimize convergence difficulties. 

Outflow 

The outflow boundary condition is used to model exits where the details of neither 

the mass flow nor pressure are known. A zero diffusion flux for all flow variables 

is specified at the boundary and therefore no specific value is required at the 

boundary. This condition is approached physically in fully-developed flow. The 

outflow boundary condition used in ANSYS Fluent cannot be specified for: 

 Flows where an inlet pressure boundary exists. 

 Compressible and unsteady flows.  

ANSYS Fluent (2011), however, states that the outflow boundary condition can 

be placed in the developed flow region if the axial flow gradients are expected to 

have a small impact on the flow. It also mentions that recirculation at the outflow 

boundary can affect convergence even if the final solution is expected to have no 

backflow (particularly in turbulent flow simulations). 
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Turbulent inlet flow parameters 

The mass flow inlet boundary condition requires the specification of the turbulent 

inlet flow conditions. The turbulent intensity I and hydraulic diameter DH were 

specified in all cases. According to ANSYS Fluent (2011) the turbulent intensity 

can be approximated by 

   
  

    
     (    

)
    

 (5.31) 

where     
is the Reynolds number based on the hydraulic diameter which is, for 

an annular duct, defined as 

          (5.32) 

For the larger square inlet, based on the BS 848 test facility, the hydraulic 

diameter was calculated by 

    √
   

 
 (5.33) 

5.2.3 Solving methods and Discretization  

ANSYS Fluent allows the user to choose between two numerical solving 

methods: pressure-based and density-based. The pressure-based method was 

developed for low-speed incompressible flows whereas the density based method 

is generally used in compressible flows. In both cases a control-volume-based 

technique is used. All simulations carried out in this study used the pressure-based 

approach due to axial fans operating in the incompressible flow regime (ANSYS 

Fluent, 2011). The choice of the pressure–velocity coupling method was based 

upon the use of the SIMPLE algorithm in fan research by authors such as Thiart 

and Von Backström (1993); Bredell et al. (2006); Fernandez Oro et al. (2011); Lin 

and Tsai (2011); Louw (2011); Masi and Lazzaretto (2012) and Zhao et al. 

(2012). 

There are various options available for handling spatial discretization in ANSYS 

Fluent. The QUICK scheme is specifically useful for swirling and rotating flows. 

It is regarded as a higher-order discretization scheme which is typically more 

accurate than a second-order upwind scheme for structured meshes with cell faces 

aligned with the flow. The QUICK scheme can also minimize diffusion errors 

although this scheme is usually less computationally stable compared to a second-

order upwind scheme (ANSYS Fluent, 2011; Versteeg and Malalasekera, 2007). 

In a study by Van der Spuy et al. (2010) evaluating various models for the 

performance of axial fans the QUICK scheme was used. Other studies using the 

QUICK scheme to simulate axial fans included Meyer and Kröger (2001), Vad et 

al. (2007) and Jian-Hui and Chun-Xin (2008). Considering all the above 
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mentioned, the QUICK scheme was used for all simulations carried out in this 

study. 

5.3 B-fan 

The purpose of simulating the B-fan was to establish a methodology that could 

also be used to simulate the L2- and N-fan. Le Roux (2010) initially simulated the 

B-fan with a large axis-symmetric inlet and outlet resembling the BS 848 test 

facility as shown by Concept B in Figure 5.4(b). The outlet boundary conditions 

of the two approaches of Le Roux (2010) used a slip wall at the upper outlet 

boundary (Figure 5.4(b-1)) and a zero static pressure at the downstream outlet 

(Figure 5.4(b-2)). The use of multiple rotating reference frames such as the 

mixing plane and MRF approach resulted in large errors. Good performance for 

higher flow rates was found when the entire domain was solved in a single 

rotating frame. Taking into consideration the final remarks of Le Roux (2010) and 

the findings of Meyer and Kröger (2001) a different approach was taken for the 

simulation of the B-fan. A systematic approach starting with the most elementary 

concept was followed. Instead of simulating the entire BS 848 test facility, a 

simplified geometry consisting of an annular duct inlet and outlet would be 

simulated without tip clearance. Once these simulations produced satisfactory 

results more detail was added to the geometry with the purpose of applying it to 

the L2- and N-fan. 

All B-fan simulations were carried out with an annular duct inlet and annular duct 

outlet. The entire mesh was generated in ANSYS TurboGrid which was 

advantageous because of ANSYS TurboGrid’s ability to generate conformal mesh 

interfaces between the various cell zones.  

Initial modelling of the B-fan, using the Spalart-Allmaras turbulence model, 

required a large number of cells in the blade passage region. This could be 

attributed to a recommended y
+
-value of 1. Although it was possible to achieve 

the required y
+
-value, the aspect ratio in the near-wall region exceeded an 

acceptable limit (~500). Based on the theory discussed in section 5.1.1 and the 

literature review in Chapter 2 the k-ε turbulence model was selected as the best 

alternative choice for further simulations. To examine the difference between 

various k-ε turbulence models a comparative study between the standard, RNG 

and realizable k-ε models were carried out. The results of these simulations would 

be used to direct the approach taken for the L2- and N-fan simulations.  

5.3.1 Computational domain 

Figure 5.6 is a meridional plane view of the computational domain used for all 

simulations of the B-fan. The length of the inlet is one fan diameter (D = 1.542 m) 

and the length of the outlet is one and a half fan diameters. Initial simulations 

were also carried out with a two diameter outlet length but no significant 

difference in the measured parameters was found. Poor quality cells were, 

however, present near the outlet of the two diameter domain and therefore the 
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outlet was shortened to one and half diameters. Note that the width of the hub is 

extended from 0.15 m to 0.2 m. This was due to the leading and trailing edges (of 

the actual blade) being very close to the edge of the hub and ANSYS TurboGrid 

being unable to generate a satisfactory mesh in those regions. A change in the hub 

length only affected the size of the relative reference frames in which the flow is 

solved if one considers that the inlet and outlet were annular ducts. 

 

Figure 5.6 - Meriodinal plane of the computational domain of the B-fan 

5.3.2 Mesh specifications 

Three B-fan meshes of increasing size were simulated to demonstrate mesh 

independence. Table 5.1 gives the specifications for each of the three meshes. 

Mesh 1 had a y
+
-value of 60 although the target number of cells was the same as 

Mesh 2. Note that the target cell size is only applicable to the blade passage. The 

inlet and outlet mesh sizes were largely based on the 100 cell limit in the flow 

direction. The number of target cells was doubled for Mesh 3, although the y
+
-

value was still set at 30. The initial high target cell number was due to the 

requirement of the mesh statistics parameters. Large aspect ratios were found in 

the trailing edge region which is due to the large blade span (~ 463 mm) and near-

wall spacing requirements. By increasing the specified y
+
-value for the first near-

wall node the total number of cells were slightly reduced. The number of cells in 

the spanwise direction was specified by the proportional factor. Increasing the 

proportional factor increased the number of cells in the spanwise direction. 

Table 5.1 - Specifications for the three different size meshes of the B-fan 

B-fan Mesh 1 Mesh 2 Mesh 3 

Target number of cells 1 000 000
 

1 000 000 2 000 000 

y
+ 

60 30 30 

ReL 630 000 630 000 630 000 

Proportional factor 1.5 1.5 2 

Total number of cells 2 354 828 3 114 586 5 478 878 

The B-fan blade was designed with a cut-off trailing edge and therefore linear 

piece wise curves were lofted in the spanwise direction using B-splines. 

Furthermore, generating a well-defined mesh in this region was problematic. 
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Although ANSYS TurboGrid has a function for cut-off trailing edges, applying the 

option did not result in a satisfying mesh. Good definition at the trailing edge was 

found when localised edge refinement was increased in this region.  

The validity of simulating the tip clearance region using wall functions was 

uncertain and therefore initial simulations were carried out without the modelling 

of a tip clearance. However, a mesh with tip clearance of 3 mm was simulated 

using the realizable k-ε turbulence model for comparative study. The mesh 

resembled the fine mesh used in the no-tip clearance case. The cell distribution in 

the 3 mm tip clearance region is shown in Figure 5.7. The near-wall spacing at the 

shroud and blade tip adheres to the y
+
-value specified.  

 

Figure 5.7 - B-fan computational mesh 

5.3.3 Boundary conditions 

Due to the fact that the entire mesh was generated in ANSYS TurboGrid the 

interfaces of the three cell zones were conformal. The blade passage cell zone, 

pressure- and suction blade surfaces and hub wall was specified to rotate at the 

design speed of 750 rpm relative to the absolute reference frame. All other cell 

zones and walls were stationary, relative to the absolute reference frame. 

An inlet mass flow boundary condition was specified and an outflow condition at 

the outlet of the relative duct. All walls were specified as smooth no-slip walls 

and periodic boundary conditions were applied. All turbulence models were 

specified to use ANSYS Fluent’s Enhanced Wall Treatment function. This is 

partially due to the fact that the near-wall mesh recommendation of the k-ε 

turbulence models (y
+
 > 30) could not be met for the entire blade surface. Each 

mesh size was simulated using each of the three k-ε turbulence models (standard, 

RNG and realizable) for three flow rates (12, 16 and 20 m
3
/s). This equates to 27 
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simulations. A further three simulations were carried out with a tip clearance of 3 

mm. Figure 5.7 shows the entire computational mesh. 

5.4 N- and L2-fan 

The L2- and N-fan were modelled similarly and will therefore be discussed 

together. Due to the fact that experiments were carried out for these fans and the 

B-fan simulations were only performed to develop a method of approach, greater 

focus was placed on the simulation of these fans. It is important to note that the 

fan geometries used in these simulations originated from the scanned data 

discussed in Chapter 3.  

With the knowledge gained from the B-fan simulations, simulating a test facility 

with the actual fan used in the experiments seemed possible. However, a 

systematic approach was again followed to eliminate obvious mistakes. Both fans 

were therefore simulated in two distinctly different computational domains: a 

simplified inlet and outlet duct (resembling the computational mesh of the B-fan) 

and a closely representative model of the test facility. 

5.4.1 Computational domain 

The two computational domains were based on the concepts shown in Figure 5.4. 

The first domain is similar to the B-fan’s domain having an annular inlet and 

outlet duct which will be referred to as Approach 1. The second domain, referred 

to as Approach 2, is based on the BS 848 facility shown in Figure 5.4(b). 

Approach 1 

The dimensions for this particular computational domain are shown in Figure 5.8. 

The inlet, similar to the B-fan’s domain, was one diameter in length and the outlet 

one and half diameters long. Due to the small diameter of the hub and a very 

narrow hub casing the interfaces had to be specifically configured to ensure a 

good quality mesh in this region. This resulted in curved interfaces at the inlet and 

outlet as shown in Figure 5.8. 

 

Figure 5.8 - Computational domain for Approach 1 of the L2- and N-fan 
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Approach 2 

The second approach resembles the BS 848 test facility where the L2- and N-fan 

were tested. The computational domain shown in Figure 5.9 is divided into five 

distinct zones. Each zone has different mesh characteristics. Due to the curved 

interfaces of the rotor passage (zone 5) a short inlet and outlet domain is required 

to provide suitable interfaces to connect with other zones. These faces form part 

of the interfaces between zone 4 and 5 and zone 1 and 5. Using various zones 

allows for local refinement of the structured mesh. 

 

Figure 5.9 - Computational domain for Approach 2 of the L2-fan and N-fan 

5.4.2 Mesh specifications 

Approach 1 

The procedure used for creating a mesh for Approach 1 was similar to the 

procedure used to create the B-fan’s mesh. As mentioned earlier the initial target 

number of cells was dependent on the geometry of the fan and the required mesh 

statistic parameters. Due to the geometry of both fans in the hub region and an 

uneven lofted surface, a fine mesh was required to ensure accurate modelling. 

Furthermore, in order to satisfy the required mesh statistic parameters, large initial 

target cell numbers were used. Therefore only a single mesh size was simulated. 

The specifications for the L2- and N-fan are given in Table 5.2.  

Table 5.2 - Mesh Specifications for Approach 1 of the L2- and N-fan 

Approach 1 L2-fan N-fan 

Target number of cells 2 000 000
 

2 000 000 

y
+ 

30 60 

ReL 600 000 600 000 

Proportional factor 2 2 

Total number of cells 5 163 087 5 080 650 
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Having found that the results of the B-fan’s simulations indicated accurate 

modelling of the tip clearance a 5 mm tip clearance was included into the model. 

Figure 5.10 shows the region between the tip and the shroud. The y
+
-value 

specified at both walls (shroud and blade tip) were between 30 and 60 with 30 

elements placed in the space between the tip and shroud. 

 

Figure 5.10 - Mesh in tip clearance region of Approach 1 for L2-fan 

Approach 2 

The details of Approach 2’s mesh (see Figure 5.11) will be discussed referring to 

the zones shown in Figure 5.9. The mesh of both fans of Approach 1 was used in 

the larger mesh of Approach 2. The conformal inlet and outlet zones were, 

however, shortened as explained earlier which reduced the total number of cells of 

the original mesh dramatically. Due to the added large inlet and outlet, multiple 

interfaces were required, most being non-conformal. Initial attempts were made to 

use tetrahedral grids for the large outlet (for local refinement purposes), but no 

significant decrease in cell numbers was found. Therefore all zones consisted of 

structured grids. 
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Figure 5.11 - Mesh of Approach 2  

The large, but shortened, inlet (zone 4) of the domain housed the inlet bellmouth. 

The cells in the bellmouth region were locally refined to ensure appropriate near-

wall spacing. The outlet consisted of zone 1, 2 and 3. The purpose of the division 

of the zones was to apply localized refinement to the necessary regions. zone 1, 

which encompasses the sensitive flow region at the exit, is a very fine mesh. This 

ensures that the larger velocity gradients and swirl which is present in the region 

behind the fan is captured. zone 2 is a coarser mesh which reduces the cell number 

in the regions where there is less flow activity. Due to practical reasons zone 3 

was modelled separately from zone 2 although the two zones were conformal at 

their interface. The details of the various zones are given in Table 5.3. 

Table 5.3 - Mesh Specifications for Approach 2 of the L2- and N-fan 

Approach 2 L2-fan N-fan 

Zone 1 3 746 040 6 446 628 

Zone 2+3 149 020 132 820 

Zone 4 497 372 454 678 

Zone 5 2 850 738 2 187 150 

Total number of cells 7 243 170 9 221 276 

5.4.3 Boundary conditions 

The boundary conditions of Approach 1 were similar to the boundary conditions 

of the B-fan. Therefore, a mass flow inlet and outflow boundary condition at the 

outlet was specified. The rotational speed of the blade passage cell zone was 
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specified to rotate at 900 rpm. The fan shroud velocity was specified as stationary 

for all fans in both approaches. 

The boundary conditions of Approach 2 were different from Approach 1, 

specifically in the case of the outlet which used a pressure outlet instead of an 

outflow boundary condition. The cell zones of zone 5 (passage inlet, blade 

passage and passage outlet) and the blade pressure-, suction- and tip surfaces were 

specified to rotate at 900 rpm relative to the stationary reference frame. All other 

walls and cell zones were stationary. The outlet of Approach 2 resembled an open 

atmosphere which required flow to enter (backflow) and exit the outlet 

boundaries. Large amounts of backflow were expected to cross the outer outlet 

boundary which would result in slower convergence. The turbulent intensity for 

the backflow was specified to be 1%, the hydraulic diameter remaining the same. 

All walls had a no-slip condition. 

The results of the B-fan’s simulations indicated that the realizable k-ε turbulence 

model performed the best of the three k-ε models. The performance was based on 

accuracy across the flow rate range, the rate of convergence and stability during 

simulations. Therefore all simulations for the L2- and N-fan were carried out 

using the realizable k-ε turbulence model. The Enhanced Wall Treatment function 

was again used for the same reasons given for the B-fan simulations. 

5.5 Solution control and monitors 

Certain measures are used to indicate and ensure reliable validation between 

experimental and numerical results. These measures include monitoring 

parameters which influence the solution and the convergence of the simulation. A 

numerical procedure has converged if the properties of a solution are 

characterized by consistency and stability (Tu et al., 2008). A more mathematical 

approach to the above statement is found by monitoring the residuals. Residuals 

represent the imbalance found at a nodal point for a cell volume. The sum of all 

local grid point residuals is defined as the global residual. According to Tu et al. 

(2008) a numerical procedure is regarded to be converged if the global residual 

has reached a tolerance level of 10
-5

.  

Although residuals are a good indication of the level of convergence it proved to 

be an inconclusive measure of convergence for the simulations of the B-, L2- and 

N-fan. Monitors were used to track the change of pressure, torque and mass flow 

values at specified locations for increasing iterations. The literature review in 

Chapter 2 indicated acceptable residual levels to be between 10
-4

 and 10
-6

. 

Solutions were therefore considered to be converged if all residuals reached a 

tolerance value of the order 10
-5

 and the monitored parameters remained constant 

for increasing iterations. Figure 5.12 indicates the converged nature of the 

pressure difference across the inlet and the outlet boundaries for Approach 2 of 

the L2- and N-fan. 
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Figure 5.12 - Convergence of pressure for the L2-fan and N-fan. 

Similarly Figure 5.13 shows the convergence of the pressure difference between 

the inlet and outlet boundaries of the different turbulence models for the ducted 

domain of the B-fan. It was found that the torque and mass flow monitors had a 

tendency to converge more quickly than the pressure, which is to be expected. 

 

Figure 5.13 - Convergence of pressure for three turbulence models of the 

B-fan 

Convergence time for the coarse mesh simulations of the B-fan were only a few 

hours. The refined mesh simulations of the B-fan, which had twice as many cells, 

converged after 10 hours of iteration. The computational time of Approach 1 
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varied between 25-30 hours whereas the large computational domains of 

Approach 2 resulted in some simulations only converging after 45-50 hours. 
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6 Results 

Details of the experimental and numerical setups have been discussed in the 

previous two chapters. This chapter focusses on the results obtained in both cases. 

The numerical results are also compared to the experiments test results in order to 

validate the CFD simulations. 

6.1 Experimental results 

Three small scale fans (L1, L2 and N) were tested for five different blade-setting 

angles at different rotational speeds. The facility was refurbished between the tests 

of the L1-fan and L2-fans and therefore the L1-fan was the only fan tested on the 

non-refurbished test facility. The refurbished facility included a new drive system, 

data acquisition hardware and software and a torque transducer. Further details on 

the changes made to the test facility are discussed in Appendix A. The 

performance characteristics for each fan are also given in Appendix E.  

 

Figure 6.1 - Repeatability of the fan static pressure of the L2-fan  

for a blade-setting angle of 6.9° 

The repeatability of all experimental tests was examined by comparing different 

test runs of similar operating conditions with each other. Figure 6.1 shows two 

tests of the total-to-static pressure performance for the L2-fan on different days. 

At higher flow rates (> 6 m
3
/s) the repeatability of measurements for the pressure 

at the inlet bellmouth and settling chamber were very good (     1%). Due to 
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the small size of the fans relative to the size of the test facility, pressure 

differences at lower flow rates (see 0 m
3
/s) became less repeatable (     2%). 

Repeatability was found to be influenced by the ambient conditions, the drift 

observed in the pressure transducers and the calibration of all instrumentation. 

Repeatability for the torque and speed measurements was found to be similar to 

the pressure measurements. 

 

Figure 6.2 - Fan static pressure comparison between the full scale  

and the small scale N-, L1- and L2- fans 

Figure 6.2– 6.4 compares the scaled models of the L1-, L2- and N-fan with the 

supplied full scale fan characteristics. For a comparative study between the scaled 

models and the full scale fan, the full scale data was scaled to the diameter 

(        m) of the small scale fans. The scaled design values of the full scale 

fans are given in Table 6.1. 

Table 6.1 – Scaled values of the full scale L-fan and N-fan used in 

comparative study 

 L-fan N-fan 

  900 rpm 900 rpm 

  1.24 m 1.24 m 

  10.18 m
3
/s 13.86 m

3
/s 

   169.43 Pa 150.56 Pa 

  2632.95 W 3343.57 W 

  65.5 % 62.42 % 
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Figure 6.3 - Fan shaft power comparison between the full scale and the small 

scale L1-, L2- and N-fans 

 

Figure 6.4 - Fan static efficiency comparison between the full scale and the 

small scale L1-, L2- and N-fans 

Figure 6.2 shows the different fan static pressure maps of the various fans. Note 

that the supplied data of the full scale fans do not extend to the lower flow rate 
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region. The figure indicates that the L1-fan and L2-fan follows the characteristic 

trend of the full scale model in the high flow rate region. For lower flow rates, this 

is not the case. It would also appear that the difference in pressure between the 

L2-fan and full scale model could be attributed to a difference in the blade-setting 

angle. A similar trend is also shown for the N-fan. It was mentioned earlier that 

the positioning of the protractor for setting the blade-setting angle differed slightly 

from the full scale models. Therefore the difference in pressures could be 

attributed to a difference in blade-setting angle. However, the fan shaft power map 

(see Figure 6.3) suggests otherwise as it shows very good correlation between the 

L2-fan and the full scale L-fan. The L1-fan’s measurements consequently differ 

from the full scale fan power design values. It would appear that there is a relation 

between the blade-setting angle and the deviations between the full and small 

scale fans. Figure 6.4 shows the large difference in fan static efficiency between 

the full scale and small scale fans. The difference between the full scale fan static 

efficiencies and peak values of the tested fans is between 10-15 %.  

 

Figure 6.5 – Performance comparison for different rotational speeds of the 

L2-fan 

The validity of the fan scaling laws (see Equations C.11 to C.13) was also 

examined by testing the L2- and N-fan at different rotational speeds. Figure 6.5 

and Figure 6.6 show the scaled performance at various rotational speeds for the 

L2- and N-fan. In both figures the entire set of rotational speeds are scaled to the 

highest speed data set. Notice that the N-fan was only tested for 750 rpm and 550 

rpm. This is due to large pressure fluctuations and reduced volume flow rates at 

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14

F
a

n
 s

ta
ti

c 
p

re
ss

u
re

 (
P

a
) 

Volume flow rate (m3/s) 

850 rpm

750 rpm*

550 rpm*

350 rpm*

L2-fan 

Blade-setting angle: 6.9° 

* Scaled to 850 rpm 

Stellenbosch University  https://scholar.sun.ac.za



 

65 

 
6
5
 

rotational speeds lower than 550 rpm which resulted in inaccurate measurements. 

Excessive vibration of the N-fan at rotational speeds higher than 750 rpm also 

resulted in the fan not being tested at higher speeds. The experimental test values 

of the L2-fan at 350 rpm also deviated significantly from the rest of the 

measurements as shown in Figure 6.5. The inaccurate measurements in both cases 

can also be attributed to the instrumentation being insufficiently sensitive for the 

lower flow rates mentioned. 

Despite the deviations found at the lower speeds, the comparisons between the 

various scaled data sets shown in Figure 6.5 and Figure 6.6, demonstrate the 

validity of using the fan scaling laws. This is based on the fact that the deviations 

shown in these figures are as a result of measurement error as explained earlier. 

 

Figure 6.6 – Performance Comparison for 750 rpm and 550 rpm for the N-

fan 

6.2 Numerical results: B-fan 

All simulations of the B-fan were carried out for a blade-setting angle of 59 

degrees (as defined in Appendix D). Three operating points for each of the 

turbulence models were simulated: 12 m
3
/s, 16m

3
/s (design) and 20 m

3
/s. Mesh 

independence was established and is indicated by Table 6.2 in which the pressure 

is compared for various operating points. Similar results were found for the power 

values. Although there are slight changes in the performance of the various 
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meshes, the results indicate that mesh independence of the B-fan is established for 

a mesh of 10
6
 target number cells and a y

+
-value of 60. All simulations were 

carried out using the QUICK spatial discretization scheme. The SIMPLE 

pressure-velocity coupling algorithm was used. Specific attention to under-

relaxation was not required and therefore default values specified by ANSYS 

Fluent were used.  

Table 6.2 – Mesh independence of the B-fan for k-ε realizable turbulence 

model 

 ̇ 
(m

3
/s) 

Mesh 1 

(2 354 828 cells) 

Mesh 2 

(3 114 586 cells) 

Mesh 3 

(5 478 878 cells) 

12 295.78 Pa 298.49 Pa 300.19 Pa 

16 202.07 Pa 201.97 Pa 203.18 Pa 

20 45.36 Pa 44.67 Pa 45.68 Pa 

The results of the fan static pressure rise across the B-fan for the various 

turbulence models of mesh 3 (fine mesh) are shown in Figure 6.7. The area-

averaged total pressure was measured at the inlet plane and the area-averaged 

static pressure measured at the outlet plane. The results show a large deviation 

between the numerical and experimental values at higher flow rates. However, 

better correlation is found at lower flow rates.  

 

Figure 6.7 – Fan static pressure comparison between experimental and the 

three refined mesh numerical models of the B-fan 
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The fan shaft power performance values deviate significantly from experimental 

results for all flow rates as shown in Figure 6.8. An inconsistent trend in the fan 

power results compared to the pressure results is also noticed, with the fan power 

error becoming larger with decreasing flow rates. The numerical results of the B-

fan correlate well with the numerical results of Le Roux (2010) for the fan static 

pressure and fan shaft power. 

 

Figure 6.8 – Fan shaft power comparison between experimental and three 

refined mesh numerical models of the B-fan 

With regards to the different turbulence models only small differences in 

performance were found between the RNG and realizable turbulence models. The 

standard k-ε turbulence model’s results for pressure and specifically power 

differed substantially from the values of the other two models. The standard 
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found to be very unstable compared to the other two models, which resulted in 

convergence taking longer. The realizable k-ε model, especially at lower flow 

rates (12 m
3
/s) was found to be very stable relative to the other models.  

There is also a prominent difference in performance between the no-tip clearance 

and 3 mm tip clearance case. The tip clearance resulted in a fairly constant 

reduction in fan static pressure of approximately 20-25 Pa. A similar trend for the 

fan power is found although at lower flow rates this tendency seems to disappear. 

A drop of approximately 500 W is found between the two higher flow rate cases. 
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raises the question whether the definition of experimental and numerical blade-

setting angles are the same. Due to the fact that no experiments were carried out 

for the B-fan no further examination of this conjecture was performed. 

The results of the B-fan’s simulations indicated the unexpected good performance 

of the standard k-ε turbulence model compared to more recent formulations. It 

was found that when the exact same simulation was carried out for a standard k-ε 

turbulence model without the Enhanced Wall Treatment a drop in pressure (4 %) 

and power (1 %) was observed. However, based on the results of the B-fan’s 

simulations and the literature study, as discussed in Chapter 2, all further 

simulations were carried out using the realizable k-ε turbulence model in 

conjunction with the Enhanced Wall Treatment. 

6.3 Numerical results: L2- and N-fan 

The results of the L2- and N-fan discussed below include the simulations of 

Approach 1 and Approach 2. As mentioned in Chapter 5, the mesh sizes of these 

two approaches were not conducive to mesh independence tests because of the 

large number of cells. Approach 1 represents the shortened annular inlet and 

outlet and Approach 2 the large domain resembling the BS 848 test facility. The 

QUICK spatial discretization scheme was used and the SIMPLE algorithm was 

used for pressure-velocity coupling. It was, however, noticed that there was no 

significant change in Approach 1’s simulation results when the first-order upwind 

scheme was used. On the other hand the QUICK scheme provided better results 

for the larger domain of Approach 2. 

Under-relaxation was required for the L2- and N-fan’s simulations, particularly at 

higher flow rates. Approach 1’s simulations were especially sensitive to the 

pressure and momentum under-relaxation factors and values between 0.15-0.25 

were used for the pressure and 0.6 for momentum settings. 

6.3.1 L2-fan 

The L2-fan was simulated for the design blade-setting angle of 6.9 degrees in both 

approaches. The design flow rate is equal to 10.18 m
3
/s and is indicated by the 

red-filled marker. The fan static pressure was calculated by the sum of the area-

averaged total pressure at the inlet and area-averaged static pressure at the outlet. 

Figure 6.9 compares the experimental and numerical results for the 6.9 degree L2-

fan. Excellent agreement with experimental results was found for the entire flow 

rate region except at a 0 m
3
/s. If one considers the pressure values of Approach 1, 

an increase in error is observed with a decrease in the flow rate. On the other hand 

the opposite trend is observed for Approach 2. A deviation of only 0.25 % for 

Approach 2 is found at 3 m
3
/s. The largest percentage pressure deviation for 

Approach 1 is 5.23% at 3 m
3
/s and 7.6% for Approach 2 at 12 m

3
/s.  

In contrast to the fan power results of the B-fan, the L2-fan’s numerical results for 

fan power show much better agreement. Figure 6.10 shows that the fan power of 
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the shortened domain is under-predicted for all operating points, although very 

good correlation is found for the fan power of Approach 2. Besides the larger 

deviation at 0 m
3
/s, which is expected, the largest percentage deviation for both 

approaches is below 8% (3 m
3
/s for Approach 1) and a difference of only 0.8 % is 

observed for Approach 2 at 3 m
3
/s. 

 

Figure 6.9 - Fan static pressure CFD validation of the 6.9° L2-fan 

Due to the good correlation shown for the fan static pressure and fan shaft power, 

good correlation for the static fan efficiency is expected. Figure 6.11 shows that 

the fan static efficiency of Approach 1 tends to be slightly over-predicted. This is 

largely due to the under-prediction of the fan shaft power. The fan static 

efficiency results of Approach 2 on the other hand are only slightly (~1.5%) 

under-predicted. In general very good agreement between experimental and 
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Figure 6.10 - Fan shaft power CFD validation of the 6.9° L2-fan 

 

Figure 6.11 - Fan static efficiency CFD validation of the 6.9° L2-fan 
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6.3.2 N-fan 

The N-fan was simulated for a blade-setting angle of 12 degrees. Due to the flow 

rate operating range of the N-fan being larger than that of the L2-fan the simulated 

operating points differed from the L2-fan’s simulation.  

Figure 6.12 shows the fan static pressure for the 12 degree blade-setting angle of 

the N-fan. As was the case with the L2-fan, very good agreement between the 

experimental and numerical results was found. Better correlation between 

Approach 1 and experimental values are also found if compared to the L2-fan. 

Similar results for pressure values with regards to Approach 2 was found although 

the fan power for the 3 m
3
/s operating point is over predicted by 4%. If the 0 m

3
/s 

case is not considered, the largest percentage deviation in pressure is 7% for 

Approach 2 at 7 m
3
/s. The fan power of the N-fan in Figure 6.13 shows very good 

correlation, especially with regards to the results of Approach 1. 

 

Figure 6.12 – Fan static pressure CFD validation of the 12° N-fan 

The fan static efficiency for Approach 1 shows excellent agreement with 

experimental results although the results of the larger domain slightly (~2%) 

under predicts the fan static efficiency. Furthermore, very good correlation for the 
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3
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Figure 6.13 – Fan shaft power CFD validation of the 12° N-fan 

 

Figure 6.14 - Fan static efficiency CFD validation of the 12° N-fan  
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6.4 Flow visualization  

Figure 6.15 shows the flow fields for the design flow rate (10.18 m
3
/s), 6 m

3
/s and 

3 m
3
/s of the L2-fan. The streamlines are released from a plane (y = 0) and do not 

cross periodicity. 

The streamlines in all three cases show that the air is entrained into the outlet 

domain, resulting in large amounts of backflow at the upper boundary. It also 

indicates that there is very little (if any) backflow over the downstream outlet 

boundary. Air exits the boundary at the upper boundary for the lowest flow rate 

case which also shows circulation in the inlet domain. This is due to air being 

sucked from the fan outlet through the fan passage and blown out on the inlet side. 

The absence of streamlines at the outlet of the fan passage indicates that the flow 

is characterized by a large relative swirl component. This is also seen further 

downstream of the fan outlet for the 3m
3
/s case. 

 

 

 

Figure 6.15 - Flow visualization of the L2-fan for 10.18 m
3
/s (top), 6 m

3
/s 

(middle) and 3 m
3
/s (bottom) 
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One would expect the flow fields of the two fans to have similar characteristics. 

Figure 6.15 and Figure 6.16 indicate that the flow field in the region close to the 

fan outlet are similar. However, the validity of the large circulation zones found in 

both fans’ flow fields cannot be verified. Another interesting observation is made 

at 4 m
3
/s (Figure 6.16) where there is no backflow observed over the fan inlet 

boundary. This explains the absence of a circulation zone in the inlet domain for 

the low flow rate of the N-fan.  

 

 

 

Figure 6.16 - Flow visualization of the N-fan for 10 m
3
/s (top), 7 m

3
/s (middle) 

and 4 m
3
/s (bottom). 

Figure 6.17 shows the flow field around the blade passage domain for the design 

(10.18 m
3
/s) and 3 m

3
/s volume flow rate of the L2-fan. The blue domain (inlet, 

passage and outlet passage) represents the rotating domain of the simulation. The 

blue streamlines represent air entering the rotor domain from the inlet and outlet. 

The black streamlines represent air exiting the domain. The figures below do not 

show cross periodicity which explains why the streamlines in the 3 m
3
/s case are 

shorter at the inlet side. This also indicates that the flow has a large tangential 

component. For both cases backflow into the rotor domain is observed. Due to the 
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large radial component of the flow at the outlet in the 3 m
3
/s case, large amounts 

of air flow back into the domain. In this specific case a small volume of air also 

cross the inlet boundary and exits into the inlet domain which results in the large 

circulation zone observed in Figure 6.15 (bottom). 

 

Figure 6.17 - Flow entering and exiting the blade passage domain for the 

design, 10.18 m
3
/s, (upper) and 3 m

3
/s (lower) volume flow rate of the L2-fan. 
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7 Conclusion and Recommendations 

Being able to numerically simulate any physical process or operation accurately 

holds many obvious advantages. Besides the fact that numerical simulations can 

save time and money, it also allows one to investigate and understand the factors 

which influence these processes and operations. A better understanding of these 

factors results in better, revolutionary designs which lead to more cost effective 

and efficient projects. 

With regulations such as the minimum energy efficiency requirements for fans 

implemented in Europe the need to understand the factors that affect the 

efficiency of these turbomachines better, has increased. This study focused on the 

possibility of simulating axial fans accurately using multiple rotating reference 

frames. A methodology and approach to simulating axial fans had to be 

developed. This would enable future research to focus on the details of the flow 

field rather than the method. Reversed engineered numerical solid models were 

created by three dimensional scanning procedures for numerical simulation 

purposes. ANSYS Fluent was chosen as the software to be used for all numerical 

simulations. The numerical simulations of the geometric models were validated 

by experimental tests carried out in a BS 848 fan test facility.  

This thesis contains the details regarding the process of developing a reversed 

engineered fan blade solid model, the procedure and instrumentation used for the 

experimental testing of the L1-, L2- and N-fan, the details of the numerical 

simulations and discussions behind the computational domain, mesh and 

turbulence models. Concluding remarks on these aspects follows. 

7.1 Numerical fan models 

Numerical models of the L1-, L2- and N-fan were successfully generated from 

three dimensional scanning procedures. Two methods of scanning were used: 

contact and non-contact scanning. The contact scanning data was used to generate 

these models since the non-contact scanner data was considered to be inaccurate. 

However, based on the simplification of the curves that was later required for 

mesh generation the non-contact scanner data may be regarded as sufficiently 

accurate for the purposes of generating a numerical fan model. 

A numerical model of the B-fan was also generated and the method described. 

Although the design details of the B-fan are given by Bruneau (1994), certain 

specifications such as the stagger angle and camber line were not defined. 

Therefore the design method has been discussed and a stagger angle and camber 

line distribution is proposed for future studies. 

7.2 Experimental tests 

The L1-, L2- and N-fan were tested in a Type A, BS 848 fan test facility for their 

complete operating ranges. Each fan was tested for five different blade-setting 
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angles. To determine each fan’s efficiency the pressure rise across the fan, volume 

flow rate and fan power were measured. The test results were satisfactory and 

repeatability of measurements was acceptable.  

The test facility was refurbished to allow for accurate test results. The bridge 

amplifier, A/D converter and measuring software were replaced by an HBM 

Spider8 unit which acts as a bridge amplifier and A/D converter. CATMAN Easy 

software was used in conjunction with the Spider8. A new torque transducer was 

installed which required the drive system to be redesigned. The new drive system 

consisted of fewer couplings and bearings which reduced frictional and 

mechanical losses. It also allowed for higher rotational speeds of the various fans 

as the new drive system reduced vibration and shaking of the fan. 

The L1- and L2-fan had very similar geometries, the most obvious difference 

being the thickness distribution. The thicker L1-fan profile attained higher 

pressure rises for a specific flow rate although it used more power. Therefore, 

although the L1- and L2-fans differed in general performance their efficiency 

characteristics were very similar. The 9-bladed N-fan, having a shorter chord 

length, attained higher flow rates in the lower pressure region but is characterized 

by lower overall efficiency operation. Interestingly the N-fan was found to be 

more efficient with a decrease in blade-setting angle. This trend is not observed 

for the L-fans. 

The performance of the scaled and full scale fans at the design point did not agree 

well. The combined effect of the deviations led to the fan static efficiency 

deviating significantly (20-24 %) from the experimental results. A study by Pelz 

et al. (2012) on the influence of Reynolds number on the fan efficiency of axial 

and centrifugal fans stated that the fan efficiency is directly proportional to a 

change in the Reynolds number and the physical size of the fan. Figure 7.1, 

presented by Pelz et al. (2012), shows the large difference in efficiency for two 

experimentally tested scaled models (with very similar surface finishes) of the 

same axial fan. The smaller (           ) fan’s maximum efficiency is 7% less 

than the larger (           ) fan’s maximum efficiency. This may explain the 

difference between the full and small scale fan results shown in Figure 6.2 to 

Figure 6.4. 

Pelz et al. (2012) suggests that the difference in efficiency can be explained by the 

proportional relation       where   is the flow coefficient. A change in the 

Reynolds number results in a change in boundary layer thickness, especially on 

the suction side of the blade. This affects the function of the stagger angle and 

therefore affects the performance of the fan. It is proposed that the scaling of axial 

fan models should include adjusting the flow coefficient   by a    correction. 

For small stagger angle (  ) changes it is shown that       and possibly 

explains the observations made in Section 6.2. 
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Figure 7.1 - Comparison between two Reynolds number efficiencies 

 for the same fan (Pelz et al., 2012). 

7.3 Numerical 

Numerical simulations were carried out for the B-fan and two scaled fan models, 

the L2- and N-fan, using ANSYS Fluent. The B-fan was only simulated in a 

simplified domain, investigating three different k-ε turbulence models (standard, 

RNG, realizable) with the purpose of developing a method for simulating the 

reversed engineered numerical fan blade models of the L2-fan and N-fan. Once 

the method was established importing the numerical models into ANSYS 

BladeModeler and the seamless integration with ANSYS TurboGrid resulted in 

accelerated set-up times for simulations. ANSYS TurboGrid was found to 
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3
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fact that the fan was never tested during this study no further conclusions can be 

drawn. 

The same methodology used to simulate the B-fan was consequently implemented 

to simulate the L2- and N-fan. Two computational domains (Approach 1 and 2) 

were investigated for each of these fans. The first domain resembled the B-fan’s 

domain and the second a larger domain resembling the BS 848 test facility with 

open atmosphere outlet conditions. All numerical fan models were simulated with 

a 5 mm tip clearance using the realizable k-ε turbulence model and ANSYS 

Fluent’s Enhanced Wall Treatment.  

Very good correlation for both fans was found for a large flow rate operating 

range. The largest deviation in fan static pressure for both fans of both approaches 

was 8 %. The good agreement between the experimental and numerical results for 

the fan static efficiency further supports the validity of these simulations.  

The good results of the L2- and N-fan simulations suggest that a simplified 

domain such as Approach 1 (annulus inlet and outlet) can accurately predict the 

performance of an axial fan. This is advantageous due to its reduced 

computational size which reduces computational resources and time compared to 

Approach 2. Notwithstanding, the value of the excellent agreement of the large 

open atmosphere simulations with experimental results must not be overlooked as 

most numerical work in literature has found to be on simplified, small scale, 

domains. The ability of the realizable k-ε turbulence model in combination with 

the Enhanced Wall Treatment to accurately model the lower flow rate operating 

range is encouraging for future numerical work. 

Improved results were found in comparison to similar studies (e.g. Le Roux, 

2010) which have focussed on the numerical modelling of axial fans in test 

facilities which differ from the typical inlet and outlet duct setups. The good 

agreement of the L2- and N-fan’s numerical results with its experiments validates 

not only the numerical results but the methodology and approach.  

However, the methodology used in this thesis can still not be regarded as a 

replacement for the simplified approaches used to model large ACSCs. Louw 

(2011) using the ADM approach, as an example, modelled an ACSC with 192 

fans using approximately 12 million cells. For the same amount of cells using the 

explicit approach one would only be able to model one full fan domain. 

Therefore, both approaches have a function in analysing ACSCs as the explicit 

model cannot yet replace the simplified approaches. As computational power 

increases in the future the feasibility of the explicit model on a larger scale will 

become possible. The methodology used in this study must, however, be seen as a 

tool to accurately validate axial fans with the ability to model multiple fans of an 

ACSC.  
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Furthermore, it is concluded that accurate simulations of axial fans require a large 

number of mesh elements (especially compared to simplified methods such as the 

pressure jump and ADM approaches). It has been found that in the case of the L2- 

and N-fan domains required at least two million cells in the passage and another 

two million for the outlet. The smallest domains had a total of approximately five 

million cells. Regions of specific importance were the tip clearance, the regions 

close to the shroud at the interfaces, the near-wall region at the blade surface and 

the mesh region at the outlet. 

Due to the fact that it is very difficult (almost impossible) to accurately measure 

the performance of an ACSC in reality the validation of any simulation can only 

produce a good approximation of the operating performance. Modelling the fans, 

which has a significant effects on the performance of an ACSC, explicitly can be 

regarded as one step closer to reality. In the far future this would enable time-

dependent simulation of the entire ACSC. 

Recommendations for future work 

Although this study has reached its objectives there are many aspects to the 

simulation of axial fans that still haven’t been fully investigated. It is 

recommended that the following areas are further researched in the future: 

 The reverse engineering of numerical fan models. This includes finding 

ways of obtaining the design specifications from a scanned blade profile 

such as the camber line, thickness distribution and stagger angles. 

Standardized guidelines with regards to post-editing of the scanned blade 

profiles should be laid out to facilitate and regulate this process. The use of 

non-contact scanning methods for future work is also recommended. 

 The feasibility of large domain simulations has been proven. It is 

recommended that future studies involving simulation of axial fans should 

investigate the following numerical aspects: 

 The effect of the outlet mesh. Is there any correlation 

between the performance (especially the fan power) the size 

and refinement of the outlet mesh? 

 The low-Reynolds number and transition region – the use 

of the k-ω SST turbulence model to improve performance 

in the low flow rate region. 

 Factors affecting the rotational domain. How far should the 

interfaces be from the rotating fan blade? How do non-

conformal interfaces affect the performance of simulations? 

 Meshing software. Although ANSYS Meshing is adequate 

for general use, it is recommended that specialized meshing 

software packages such as ANSYS TGrid be considered for 

the fan blade region. 

 Transient, non-periodic simulations. Although these 

simulations are resource intensive it may be feasible for 
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smaller domains using a RANS approach such as the 

realizable k-ε turbulence model. However, the value that 

non-periodic steady state simulation will add to the 

understanding of the flow field is questionable. 
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A Instrumentation 

To test the three axial flow fans using the BS 848 test facility required certain 

modifications. In general the following changes and improvements were made to 

the facility: 

 The drive shaft’s pulley diameter was reduced from 315 mm to 250 mm 

which enabled the fan shaft to rotate at 900 rpm at lower electrical 

frequencies. The protective casing, housing three new belts, also had to be 

altered. 

 The position of the shaft relative to the shroud had to be changed by tilting 

the entire mounting frame slightly forward. 

 A new torque transducer was implemented which eventually resulted in 

the design of a new drive system. 

 A newly designed drive system with new components was installed. 

 The analog-to-digital measuring and processing unit was replaced. 

 The pressure transducers were replaced due to increasing amounts of drift 

during operation. 

 The power unit for the use of a variable speed control on the auxiliary fan 

was altered. 

A.1 Improvements to the facility 

Most of the improvements made to the test facility were as a result of the 

increasingly unreliable nature of the facility during initial tests. The next section 

explains the improvements made in more detail.  

A.1.1 Recording equipment 

Previous experiments carried out at the test facility used a HBM bridge amplifier 

to amplify the voltage signals. The signals were converted by a data acquisition 

module and connected via USB to a computer. All experimental data from the L1-

fan was measured using the above mentioned equipment. However, due to the 

bridge amplifier becoming increasingly unreliable, new recording equipment and 

software was implemented. All further measurements from the L2- and N-fan 

were performed using the equipment described below.  

A HBM Spider8 data acquisition system with built-in bridge amplifier was used in 

conjunction with CATMAN Easy software. The Spider8 connects to a computer 

via USB. A notebook computer (not specific) was used. This simplified the setup 

considerably and also resulted in faster set-up and set-down times. The Spider8 

uses DA-15 connection channels and therefore the signal cables’ connectors had 

to be changed. 

CATMAN Easy software is a measuring and data recording software program. It 

also allows the recording of multiple channels which can be defined individually 
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according to its transducer type. The measuring frequency can be defined and 

filters can be added to the channels. The type of transducer is chosen according to 

each instruments’ requirements and the output can be specified during the 

calibration of instrumentation. The settings used for each channel during testing 

are given in Table A.1. 

Table A.1 - Catman Easy recording channel settings 

Channel Frequency/Filter Transducer type Output 

Settling chamber 5Hz/Auto filter Inductive halfbridge Pa 

Bellmouth 5Hz/Auto filter Inductive halfbridge Pa 

Torque 5Hz/Auto filter 
Inductive fullbridge (T2) 

DC Voltage 10V (T22) 
Nm/V 

Speed 5Hz/Auto filter DC Voltage 10V rpm 

When a project is initialized, all readings are zeroed and real-time outputs for each 

channel are graphically represented. The real-time output became a convenient 

indicator of whether tests had reached a steady state condition for an operating 

point. Measurements were taken at a 5Hz frequency but data recording was 

controlled manually. This ensured that signal fluctuations between steady state 

operating points were not recorded and taken into account when measurements 

were averaged. At higher flow rates there were larger pressure fluctuations at the 

bellmouth as shown in the Figure A.1. This phenomenon was also evident in 

graphical output of the settling chamber pressure readings.  

A certain degree of post-processing of the data was required because CATMAN 

Easy software has no averaging function built into the software. All data is 

recorded in real-time according to the frequency specified and stored as real-time 

data. A Scilab algorithm was written that averaged the measurements of each 

operating point for the complete set of data. 
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Figure A.1 - Real-time graph of the recorded inlet bellmouth pressure over 

time 

A.1.2 Drive train 

During the pre-test preparations large vibrations, originating from the drivetrain, 

were noticed. These vibrations intensified when the chains, fixed to the shroud of 

the test facility and steadying the driven side of the shaft, were loosened. 

Tightening the chains resulted in larger vibrations being transmitted to the settling 

chamber shroud. Inspection of the drivetrain revealed that the bearings supporting 

the two shafts had to be replaced. Large misalignment between the couplings was 

also identified as a source of vibration. 

Figure A.2 illustrates the changes that had been made. As mentioned earlier, a 

new torque transducer was installed, which reduced the number for support 

bearings needed. A new drive shaft was designed and the positioning of the 

support bearings was changed. This improved the alignment between the two 

shafts. The HRC couplings were also replaced with much lighter bellow couplings 

which further reduced the excess weight of the drivetrain. However, these 

couplings were installed for the purposes of the L2- and N-fan tests and are only 

rated at 30 Nm. The simplified arrangement reduced the vibration transferred to 

the fan considerably and it was possible to test the fan at the desired speed in most 

cases. 
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DRIVE-
SIDE

DRIVE-
SIDE

HRC coupling
Torque transducerBearing block

Bellow coupling

Old drivetrain

Improved drivetrain

 

Figure A.2 - An illustration of the old and improved drivetrain of the test 

facility 

A.2 Equipment 

Generating fan characteristic curves for low flow rate axial fans proved to be 

challenging. This is largely due to the small changes in the pressure and torque 

measurements with a change in volume flow rate. Sensitive pressure transducers 

were necessary and thorough calibration was particularly critical considering that 

the tests would be used for numerical validation. Small changes in temperature 

and atmospheric pressure could also lead to differences between experimental and 

numerical results. Measuring the right parameter with properly calibrated 

equipment was therefore essential.  

A.2.1 Pressure 

To measure the static pressure inside the settling chamber and pressure drop 

across the bellmouth, two HBM PD1 inductive differential transducers with a 

range of ±1000 Pa were used. The transducers were kept in a fixed position inside 

the control room. Due to the large drift (~20 Pa) found during continuous testing, 

calibration of the pressure transducers were frequently redone to ensure accurate 

and repeatable measurements. Both transducers were open to the atmosphere at 

one end. Due to the position of the transducers long lengths of tube was used to 

transport the pressures and subsequently one could expect small fluctuations in 

the pressure to be dampened by the long lengths of tube. The pressure transducers 

were connected directly to the Spider8 module. 

A.2.2 Torque 

The HBM T2 slip-ring torque transducer has been used for many years at the 

facility. Prior to the first tests the strain gauges of the transducer were replaced 

because of faulty operation. Due to the large size of the T2 torque transducer, 

which had a nominal rating much higher than required, and increased 
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unreliability, a smaller torque transducer was installed. The T22 torque transducer 

with nominal rating of 100 Nm (see Figure A.3), being fairly new, used no-slip 

ring technology, which is different from the old torque transducer. The L2- and N-

fan tests were carried out using the T22 torque transducer installed into the more 

simplified drivetrain which decreased frictional effects dramatically. The 

connection of the T22 to the Spider8 module differed from the other measuring 

transducers. The T22’s output signal was sent to a powered modulator which 

generated a voltage signal between 0 and 10. Zero indicated no torque was applied 

and the nominal rating of 100 Nm would be indicated by 10 V. The voltage output 

signal was connected to the Spider8 module.  

 

Figure A.3 - T22 torque transducer 

A.2.3 Speed 

The rotational speed of the fan was measured using an inductive proximity sensor 

positioned adjacent to the shaft. The output, a frequency signal that was generated 

by the proximity sensor, was converted into a 0 to 10 voltage reading through the 

use of a frequency-to-voltage modulator. The voltage output signal was connected 

to the Spider8 module. The proximity sensor was found to be very sensitive to the 

distance between the sensor and the induction material. If this distance became 

too large the voltage reading was characterized by instability at a constant 

rotational speed. 

A.2.4 Variable speed drives 

To overcome the system resistance of the facility and measure the maximum flow 

rate the use of an auxiliary fan was needed. The BS 848 test facility was designed 

for larger fans such as the B-fan which operated at much higher flow rates than 

the N and L-fans. Consequently the auxiliary fan, being designed for much larger 

fans, proved to be too powerful for the requirements of this study. Therefore, in 

order to use the installed auxiliary fan, the rotational speed had to be controlled 

(and reduced) using a variable speed drive that also required alteration of the 
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power module of the auxiliary fan. It was also found that the use of certain older 

variable speed drives introduced a disturbance onto the measuring signals. The 

problem could not be solved by changing the position of the variable speed drive 

with regards to the measuring equipment and other drives were used instead. 

A.2.5 Other 

To compensate for the change in temperature during continuous testing a 

thermometer was placed inside the settling chamber. This minimized the 

difference between the ambient temperature and the airflow temperature inside the 

settling chamber. The ambient pressure was measured by a mercury column 

barometer situated nearby. Data provided by the Engineering Faculty’s local, 

small scale, weather station was also used to validate the pressure readings. 

A.3 Experimental procedure 

As stated earlier, the facility is situated outdoors and the effect of changing 

weather conditions had to be taken into account when tests were carried out. The 

slightest presence of wind at the bellmouth inlet affected the readings, especially 

at low flow rates. 

A summary of the test procedure is as follows: 

1. The atmospheric pressure and temperature at the location of the test 

facility was taken before each test of a blade-setting angle was conducted. 

Le Roux (2010) found that changes in the ambient temperature had an 

effect on the readings of the torque transducer. Therefore, before any 

readings were taken (including the zero readings), the fan was operated at 

maximum flow rate for a duration of 5-10 minutes. The temperature inside 

the plenum and the pressure outside was then measured and the torque 

reading was zeroed.  

2. The pressure, torque and proximity sensor’s readings were zeroed by the 

measuring software and a reading for the non-operational state was 

recorded. 

3. The variable speed drive controlling the test fan was then increased to 

maximum rotational speed (900 RPM if possible) with the test tunnel 

throttle in the full open position. The auxiliary fan was started and its 

rotational speed was increased until the settling chamber pressure reading 

was just below zero Pascal. This indicated the maximum flow rate for the 

fan and the first measurements could now be taken. 

4. The real-time output provided by CATMAN Easy enables the user to 

identify when the flow has reached a steady state. Once the real-time 

graph’s reading reached a steady value at a specific throttle position, 

measurements were taken. Between 200 and 300 readings were taken at 5 
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Hz depending on how stable the measurements are (shown graphically). 

The volume flow rate, settling chamber pressure, shaft torque and shaft 

speed were measured for each flow rate change. 

5. At a certain stage the function of the auxiliary fan is not required anymore 

and it can be switched off. It was found easiest to use the auxiliary fan’s 

variable speed drive to control the flow rate further. Therefore, as the 

speed of the auxiliary fan was reduced, the flow rate was also reduced 

until it was completely switched off. 

6. To ensure that the flow was fully blocked, a large obstruction was placed 

in front of the bellmouth to block the flow of air. Measurements were 

taken and the obstruction was again removed. 

7. To test the repeatability of the data the process explained above was 

followed as the flow rate was increased again. The auxiliary fan, however, 

was not used for these purposes. Once the throttle was at the fully open 

position the test fan was switched off and zero readings were taken again 

to compensate for any drift in the system during the procedure. 

8. The temperature inside the settling chamber was taken again and the 

average between the first and second reading was used for calculation 

purposes. 

9. This process was repeated for every blade angle. For the various rotational 

speed tests, the process described above was followed similarly. 

Sample calculations illustrating the processing of the measured values are shown 

in Appendix C. Figure A.4 is a schematic layout of the test facility and the 

equipment used during testing. 
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Figure A.4 - Schematic layout of the instrumentation of the test facility 
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A.4 Fan failure 

During preparation for the final testing of the L1-fan, one of the blades failed at 

operational speed (±900 rpm). The facility was not damaged although the blade 

itself was damaged to an irreparable condition. No conclusive cause for failure 

can be given, but it is suspected that the shoulder of the blade at the hub (see 

Figure A.5) failed and due to the centrifugal force on the blade, was pulled 

outwards. The tip came into contact with the shroud and caused damage to the tip 

and root of the blade. The figure below shows the damage to the fan and blade. 

Adequate testing on the L1-fan was however conducted prior to the failure. 

 

Figure A.5 - Fan blade failure 
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B Calibration 

Although CATMAN Easy has preloaded sensor calibration data it was still 

necessary to calibrate all sensors used in the experimental setup. Calibration of the 

pressure and torque was done before each set of tests to ensure accuracy and 

repeatability. 

B.1 Torque 

Two torque transducers were used during testing. The calibration setup and 

procedure was the same for the T2 and T22 transducers. Due to the discontinued 

use of the T2 transducer, the calibration process which was followed will be 

described in terms of the T22 transducer. The details of the two torque transducers 

were already discussed in Appendix A. 

 

Figure B.1 - Setup for static torque calibration 

To calibrate the torque transducer a static procedure as shown in Figure B.1 was 

carried out. The T22 transducer was connected to a 0 to 10 voltage amplifier and 

the output signal to the Spider8 was therefore a DC voltage signal. To exert a 

rotational force on the shaft a cantilever arm was fixed to the front of the fan shaft 

with the fan removed. The torque was transmitted to the transducer by the bellow 

coupling mentioned in Appendix A. The shaft on the motor side of the torque 

transducer was locked (see “top view” of Figure B.1) using a vice grip. Mass was 

added to the cantilever beam in 1kg (5 Nm) increments (see “front view” of 

Figure B.1) and the corresponding voltage readings were taken. Before any 

measurements were taken the cantilever beam was positioned horizontally using a 

digital protractor. The measurements of the tested fans were expected to be 

between 20 and 30 Nm. The calibration data for the torque is given in Table B.1 

and the calibration trend line is given in Figure B.2. 
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Table B.1 - Calibration values for the T22 torque transducer 

Reading Mass (kg) Torque (Nm) Voltage (V) 

1 0 0 0.0532 

2 0.999 5.037298 0.2992 

3 2.015 10.16032 0.5496 

4 3.014 15.19761 0.8008 

5 4.022 20.28029 1.0564 

6 5.01 25.26212 1.3048 

 

Figure B.2 - Trend line for the torque calibration values 

To compensate for losses due to the dynamic operation of the drive system the 

blades were removed from the hub. The torque for a hub-only configuration was 

consequently measured at the design speed (900rpm). Although the measured 

torque was less than 2% of the maximum fan torque values it was subtracted from 

the calculated fan torque at design speed.  

Consider Figure B.3 which shows data from the torque transducer for 

approximately 30 seconds. It indicates a fair amount of fluctuation during normal 

operation which can be attributed to various factors: A slightly bent drive shaft, 

misalignment between connecting shafts and a slightly unbalanced fan. To 

determine the torque an average of the measurements, taken for a specific 

operating point, was calculated. 
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Figure B.3 - Torque fluctuations for 30 seconds 

B.2 Pressure 

The pressure transducers were situated inside the test room and calibration was 

also carried out there. All pressure calibrations were conducted using the Betz 

manometer. The piping connections were configured in such a way that no 

disconnection after calibration would result in movement of the pressure 

transducers. The pressure transducers were open to the atmosphere at one end and 

connected to the Betz manometer on the other end. Due to the fact that the 

pressure differences in the bellmouth were much smaller than in the settling 

chamber, calibration was carried out separately. 

Figure B.4 shows the entire configuration which was used to calibrate the pressure 

transducers. The pressure transducers were calibrated using the corresponding 

pressure value from the Betz manometer as guideline. Time had to be given for 

the water level to stabilize before measurements were taken. 

Regular calibration of the pressure transducers between blade-setting angle 

changes was also necessary due to the drift of the transducers. The drift 

significantly affected the measured results, especially in the case of the bellmouth 

measurements which had small pressure changes. To identify drift during testing, 

the Betz manometer was used to monitor the difference between the reading given 

by the software (affected by drift) and the manometer reading. 

Although the pressure transducers were the same, their calibration curves were 

notably different as shown by Figure B.5 and Figure B.6. The calibration data for 

the pressure transducers are also given below in Table B.2 and Table B.3  
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Figure B.4 - Configuration for calibrating the pressure transducers 

Table B.2 - Settling chamber pressure calibration values 

Voltage (V) Betz (mmH2O) Pressure (Pa) 

-3.265 0 0 

-3.01 10 98.0655 

-2.76 20 196.131 

-2.505 30 294.1965 

-2.255 40 392.262 

-2 50 490.3275 

Table B.3 - Inlet bellmouth pressure calibration values 

Voltage (V) Betz (mmH2O) Pressure (Pa) 

0.775 0 0 

0.87 4 39.2262 

0.965 8 78.4524 

1.06 12 117.6786 

1.155 16 156.9048 

1.25 20 196.131 
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Figure B.5 - Settling chamber trend line for calibration values 

 

Figure B.6 - Inlet bellmouth trend line for calibration values 
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B.3 Speed 

The rotational speed of the shaft was calibrated using a handheld tachometer. The 

fan was removed from the shaft and the motor frequency was increased in 10 Hz 

increments. For each frequency the tachometer measured the rotational speed in 

rpm and the corresponding voltage reading was taken (see Table B.4 and Figure 

B.7). 

Table B.4 - Proximity sensor calibration values 

Motor frequency (Hz) Voltage (V) Tachometer (rpm) 

0 0 0 

10 2.2204 193 

20 4.4504 386 

30 6.6796 578 

40 8.9056 772 

 

 

Figure B.7 - Proximity sensor trend line of calibration values 
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C Sample Calculations 

Calculations were performed in accordance with the BS 848 (1997) guidelines. 

Due to the fact that the calibration calculations are carried out in CATMAN Easy, 

there was no need for calibration equations. The values measured and the data 

exported was already calibrated and the sample calculations will use these values. 

The effect of drift is taken into consideration before the fan static pressure, fan 

shaft power and fan static efficiency is calculated. 

For the sample calculations below, the following measurements taken during the 

testing of the L2-fan will be used. 

Table C.1 - Sample calculation properties 

Axial flow fan L2 

Blade-setting angle 6.9° 

Atmospheric pressure 1014.9 hPa 

Temperature (pre-test reading) 23 °C 

Temperature (post-test reading) 23 °C 

Table C.2 - Values used for sample calculations 

 Settling 

chamber 

(mmH2O) 

Bellmouth 

(mmH2O) 

Torque 

(Nm) 

Rotational 

speed (rpm) 

Zero (pre-test) 0 0 -0.0496 -0.0348 

Data (7
th

 measurement) 14.8165 7.6028 27.7456 853.1933 

Zero (post-test) -0.1961 0.0285 -0.0329 0.0382 

 

To calculate the settling chamber and bellmouth pressures in Pascal the following 

conversion from mmH2O to Pascal is done: 
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The torque and rotational measurements were given in Nm and rpm respectively 

and requires no change. To compensate for the drift, the following equation was 

used: 

                                                 (C.1) 

Equation C.1 assumes a linear drift between the initial zero value, taken before a 

test started, and the n
th

 value taken after the test was finished. The initial deviation 

(if not zero) is also subtracted from the measurement. The drift for the sample 

measurements is therefore: 

                                                  ) 

                             

           

                                                  ) 

                             

           

                               ) 

                                ) 

           

                               ) 

                                  ) 

             

The measured ambient pressure as given in Table C.1 was, 

                 

The operating temperature in Kelvin for a test was determined by calculating the 

average between the pre- and post-temperature of a test. 

      
     

 
        (C.2) 
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The ambient density can then be calculated using the ideal gas law, 

     
    

      
 (C.3) 

 
      

             
 

              

The pressure drop over the bellmouth can be used to calculate the mass flow rate 

using Bernoulli obstruction theory which simplifies to the following equation, 

  ̇    
       

 

 
√                   

̇
 (C.4) 

where, 

              

and the compound calibration constant value obtained from Venter (1990) is 

given as, 

          

The mass flow rate is then calculated as, 

 ̇         
        

 
√                  
̇

 

              

The air density inside the settling chamber is adjusted relative to the atmospheric 

pressure as follows: 

          

                 

    
 (C.5) 

      
             

      
 

              

Having calculated the mass flow rate and settling chamber density, the average 

dynamic pressure and volume flow rate inside the settling chamber can be 

determined.  
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The volume flow rate is calculated by, 

   
 ̇

     
 (C.6) 

       
      

     
 

                

The dynamic pressure inside the settling chamber is manipulated by the following 

equation, 

       
 

 
           

  (C.7) 

 
 

 
     (

 ̇

           
)
 

 

 
 

       
(

 ̇

      
)
 

 

where the area of the settling chamber is, 

             

and the dynamic pressure inside the settling chamber is then calculated as follows, 

 
 

         
(
      

  
)
 

 

          

The fan static pressure rise is defined by BS 848 (1997) as the difference between 

the outlet static pressure and the inlet total pressure. Since the outlet static 

pressure is atmospheric, the fan static pressure can be calculated as follows: 

                                (C.8) 

                             

              

           

In Appendix B it was mentioned that a no-load measurement of the torque was 

taken at 900 rpm. The no-load torque was measured as, 
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Therefore the no-load fan power can be calculated subtracting the no-load torque 

from the measured torque. 

                        (C.9) 

                  

               

The fan power is calculated as follows, 

  
                  

  
 (C.10) 

   
                      

  
 

            

which is 40 W less than when the no-load torque would be neglected. The 

calculated data is referenced to a standard air density of 1.2 kg/m
3
 and rotational 

speed of 900 rpm, using the fan scaling laws. The fan scaling laws are defined as: 

 
(

 

   
)
 
 (

 

   
)
 
 (C.11) 

 
(

 

     
)
 

 (
 

     
)
 

 (C.12) 

 
(

 

     
)
 

 (
 

     
)
 

 (C.13) 

Due to the diameter being the same for both cases, these laws simplify to the 

following equations and the fan pressure, volume flow rate and power are 

calculated as follows, 

    (
  

 
) (C.14) 

           (
   

       
) 

                  

   
     (

  

 
)

 

(
  

     
) (C.15) 
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       (
   

       
)
 

(
   

     
) 

          

           (
  

 
)

 

(
  

     
) (C.16) 

       (
   

       
)
 

(
   

     
) 

          

Finally the fan static efficiency is calculated as, 

    
   
    

  
 (C.17) 
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D Numerical fan models 

The procedure for creating the solid models of the various fans was briefly 

explained in Chapter 3. This section will discuss the details behind the creation of 

solid models of the different fans. It also includes an analysis of the scanned fans 

using software algorithms. 

D.1 B-fan: specifications 

The original B2-fan, designed by Bruneau (1994), used the GA(W)-2 aerofoil. 

The GA(W)-2 aerofoil is a 13% thick version of the 17% thick GA(W)-1 aerofoil. 

The original GA(W)-1 aerofoil data points, as taken from McGhee & Beasley 

(1973) are given in Table D.1. 

Table D.1 - B-fan blade profile data  

Data by McGhee et al (1973)  Calculated parameters 

x/c (z/c)upper (z/c)lower  Camber line (zc) Thickness (17%) (zt) 

0 0 0 0 0 

0.002 0.013 -0.00974 0.00163 0.01137 

0.005 0.02035 -0.01444 0.002955 0.017395 

0.0125 0.03069 -0.02052 0.005085 0.025605 

0.025 0.04165 -0.02691 0.00737 0.03428 

0.0375 0.04974 -0.03191 0.008915 0.040825 

0.05 0.056 -0.03569 0.010155 0.045845 

0.075 0.06561 -0.04209 0.01176 0.05385 

0.1 0.07309 -0.047 0.013045 0.060045 

0.125 0.07909 -0.05087 0.01411 0.06498 

0.15 0.08413 -0.05426 0.014935 0.069195 

0.175 0.08848 -0.057 0.01574 0.07274 

0.2 0.09209 -0.05926 0.016415 0.075675 

0.25 0.09778 -0.06265 0.017565 0.080215 

0.3 0.10169 -0.06448 0.018605 0.083085 

0.35 0.10409 -0.06517 0.01946 0.08463 

0.4 0.105 -0.06483 0.020085 0.084915 

0.45 0.10456 -0.06344 0.02056 0.084 

0.5 0.10269 -0.06091 0.02089 0.0818 

0.55 0.09917 -0.05683 0.02117 0.078 

0.575 0.09674 -0.05396 0.02139 0.07535 

0.6 0.09374 -0.05061 0.021565 0.072175 

0.625 0.09013 -0.04678 0.021675 0.068455 

0.65 0.08604 -0.04265 0.021695 0.064345 

0.675 0.08144 -0.0383 0.02157 0.05987 

0.7 0.07639 -0.03383 0.02128 0.05511 

Stellenbosch University  https://scholar.sun.ac.za



 

108 

 

0.725 0.07096 -0.0293 0.02083 0.05013 

0.75 0.06517 -0.02461 0.02028 0.04489 

0.775 0.05913 -0.0203 0.019415 0.039715 

0.8 0.05291 -0.01587 0.01852 0.03439 

0.825 0.04644 -0.01191 0.017265 0.029175 

0.85 0.03983 -0.00852 0.015655 0.024175 

0.875 0.03313 -0.00565 0.01374 0.01939 

0.9 0.02639 -0.00352 0.011435 0.014955 

0.925 0.01965 -0.00248 0.008585 0.011065 

0.95 0.01287 -0.00257 0.00515 0.00772 

0.975 0.00604 -0.00396 0.00104 0.005 

1 -0.00074 -0.00783 -0.004285 0.003545 

Figure D.1 illustrates the small difference between the GA(W)-2 data, which had 

a thickness distribution of 13% given by McGhee et al. (1975), and the GA(W)-1 

with a calculated thickness distribution of 13% using the approximate equation for 

the camber line in Chapter 3. It clearly shows the validity of Equation 3.6 by the 

small deviations found between data points. The data found in Table D.1 was 

consequently used to determine the blade profile coordinates for a linear decrease 

of 13 to 9%.  

 

Figure D.1 - Comparison between the GA (W)-1 and GA (W)-2 aerofoils 

For the purposes of this study, five blade profiles at equally spaced radial stations 

along the blade were calculated. The angle for each profile was determined by 

calculating the stagger angle for a specified radius. Fitting a trendline through the 

data, shown by Figure D.2, the stagger angle for any radius could be calculated. A 

rotation matrix was used to rotate the data points by the calculated stagger angle. 

-0.05

0

0.05

0.1

0 0.2 0.4 0.6 0.8 1

z/
c 

x/c 

GA(W)-2

GA(W)-1(13%)

Stellenbosch University  https://scholar.sun.ac.za



 

109 

 

 

Figure D.2 - Stagger angle trendline for the B-fan  

(Stinnes, 1998) 

The chord line lengths, varying linearly from the hub to the tip, were taken from 

Meyer and Kröger (2001) and are given in Table D.2 together with other 

important specifications. The specifications of the B-fan are as follows: 

Table D.2 - General specifications of the B-fan 

Do 1.536 m 

Di 0.6168 m 

Tip clearance 3 mm 

Chord r/r0 = 0.4 184 mm 

Chord r/r0 = 1 153 mm 

Speed 750 rpm 

D.2 N and L-fans: specifications 

Because the N and L-fans were manufactured models there were no design details 

available. It was mentioned in Chapter 3 that initially an average representative 

blade was calculated for simulation purposes. The calculated blade, proved to be a 

poor representation of the real average due to specific factors. The following 

section explains the methods implemented to try and find the parameters that 

characterize these fans and also discuss the factors that resulted in the average 

blade not being used. Table D.3 gives the available data as specified by the 

supplier of the N and L-fans. The data for all the scaled fans are similar. 
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Table D.3 - General specifications for the N and L-fans 

Do  1.24 m 

Di 0.169 m 

Tip clearance 5 mm 

Speed 900 rpm 

D.3 N and L-fans: analysis 

The initial idea of calculating a representative blade included: normalizing each 

blade profile of a specified radius for an entire fan, averaging the combined 

normalized data (of all the blade profiles and repeating for various radii. The 

process of calculating an average fan blade and its characteristic parameters such 

as the chord line length, stagger angle, camber line and thickness distribution is 

divided into four sections for explanation purposes. The process is illustrated in 

Figure D.3. 

 

Figure D.3 - The four steps used to create the average representative blade. 

1. Shift & Rotate 

The original data of each scanned fan blade was positioned differently relative to 

a fixed Cartesian coordinate system. For averaging to be possible the data for each 

blade had to be shifted and rotated to a similar reference point. The origin (0,0,0) 

was used for this purpose. Due to the fact that the rotation, chord length and 

relative position varied between each profile (although care was taken during 

scanning) it was necessary to calculate these parameters for each blade profile in 

order to determine the positional change required.  

Figure D.4 (a) shows the original difference in relative position between the tip 

profiles (r = 605mm) of the L2-fan’s eight blades. To rotate each profile to the 

same relative position the chord line was calculated and the angle of the chord line 

was determined. The calculated chord lines for five radial blade profiles of a 

single fan blade are shown in Figure D.4 (b). Having determined these 

parameters, they are used to shift and rotate each profile to the origin as shown in 

Figure D.4 (c). 
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SEPARATE & 
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Figure D.4 - (a) Original position of tip profiles for the different blades of a 

fan; (b) Relative position and chord lines calculated for blade profiles of a 

particular fan; (c) Blade profiles in (b) shifted and rotated 

It was mentioned in Chapter 3 that the L1 and L2 fans are similar axial fans, 

supposedly having the same profile characteristics and chord lengths. From 

simple observations it was recognised that the thickness distribution differed 
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slightly and the experimental test results confirmed this. Using the parameters 

calculated for the shift and rotate procedure further comparisons could be made.  

Figure D.5 compares the differences between the chord line lengths at specific 

radii for the eight blades of the L1- and L2-fan. It clearly shows that the L2-fan 

has a narrower chord length range for each radius than the L1-fan. It would also 

appear that there is no definitive change in the chord length with increasing radius 

which differs from the design of the B-fan. 

 

Figure D.5 - Comparison between the L1- and L2-fan’s chord length 

distribution for 145, 265, 375, 490, 605 mm radial position 

The gradient of each chord line was used as a measure of the relative twist found 

in each fan blade profile. Figure D.6 shows the small variation in angles for 

specific radii. It must be emphasized that the angles shown in Figure D.6 are only 

a relative comparison and must not be regarded as the actual stagger angles of the 

L-fans. The second degree polynomials, fitted to the data of the L1 and L2-fans, 

indicate the trend for each data set. It shows a close correlation between the blade 

angles of both axial. However, the difference in the performance of the two fans 

may be partially attributed to the small angle differences in the tip region.  
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Figure D.6 - Relative blade angle distribution for the L1-fan and L2-fan at 

145, 265, 375, 490 and 605 mm radial position 

2. Separation and Interpolation 

The data points shown in Figure D.4(c) have no particular structure or pattern 

relative to the x-axis. To calculate the camber and thickness distribution for the 

purpose of determining an average representative blade it was necessary to 

redistribute the data points in a regular arrangement to the x-axis. For 

interpolation of the points to be possible an increasing x-coordinate array was 

required. A blade aerofoil, however, could have two y-coordinates for a single x-

coordinate and therefore it was necessary to separate the pressure and suction 

sides of each profile. Simply separating the positive y-coordinates from the 

negative y-coordinates was not found to be an accurate and effective method of 

separation. The algorithms used to separate the two sets of data had to work 

universally for any chord length and camber.  

The interpolation scheme had to create a new set of x-coordinates without 

changing the geometry of the blade profile. The separate sides’ data were used to 

interpolate the corresponding y-coordinates for an array of pre-defined x-

coordinates. Due to the large number of data points, linear interpolation was 

determined to be an acceptable approximation. Figure D.7 compares the original 

data points to the new interpolated coordinates. Note the fine distribution of the x-

coordinate points close to the leading edge to ensure a well approximated and 

defined leading edge. Combining the pressure and suction sides’ interpolated data 

resulted in there being two y-coordinates for every equally spaced, incremented, 

x-coordinate.  
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Figure D.7 - Original and interpolated points of the leading edge of a blade 

profile 

3. Camber 

Earlier in Chapter 3 the principles behind the thickness distribution and camber 

line was discussed. An approximation was also proposed for blade profiles with 

relatively small camber. Although the data was now regularly distributed for the 

approximate camber line approach, the camber was unknown. To validate the 

approximate camber line an attempt was made to find the true camber line. 

To find the true camber line an alternate method than that explained in Chapter 3 

had to be found. Figure D.8 illustrates the principle used to determine a more 

accurate estimate of the camber line. The camber line is defined below by the 

intersection point of equal distance between a specified coordinate on the suction 

side and its corresponding coordinate on the pressure side. 
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Figure D.8 - Accurate method of determining the camber line for an aerofoil 

The algorithm used the golden section search method to find the intersection 

point. This is shown in Figure D.9 where the changing boundaries can also be 

seen. The search algorithm was carried out for all the interpolated x-coordinates 

and the final camber line which was calculated is compared to the approximate 

camber line in Figure D.10. It indicates the small difference between the two 

approximations. It must be noted that although this above described method is 

referred to the true camber line, both methodologies are still considered 

approximations, the one being more accurate than the other. 

 

Figure D.9 - Search algorithm calculating the intersection point for equal 

lengths of the upper and lower tangent lines 

Although it was possible to determine a more accurate camber line, the 

methodology for determining it was less stable than the approximate equation for 

every blade profile of all the fan blades. Having determined that there was a very 

small difference in the two methodologies the approximate camber line algorithm 

was used for further calculations.  
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Figure D.10 - A comparison between the approximate camber line (average) 

and true camber line. 

In Figure D.11 the thickness distributions and camber lines calculated by the 

approximate approach for five different radii (r > 145 mm) of the L2-fan are 

compared. Figure D.11 indicates that there is no notable change in the thickness 

distribution with increase in radius. 

 

Figure D.11 - Thickness distribution and camber lines for various radial 

blade profiles of a single L2-fan blade 

4. Normalize and Average 

To determine the average representation of the blades, all camber lines and 

thickness distributions for each fan blade were normalized. An average camber 

and thickness distribution was calculated for every scanned radius using the 

combined data of eight (L-fans) or nine (N-fan) blades. Although an average fan 
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could be calculated, the validity of the final result must be questioned. 

Determining the average profiles for each radius was possible as shown in Figure 

D.12. Attempting to realign and rotate each averaged profile according to an 

average blade angle distribution, without knowledge of the real stacking line, 

included a large number of approximations. 

It is recommended that the methodology discussed above be used for the purpose 

of analysing single fan blades and comparing multiple blades of the same fan to 

each other. It was found that in determining the average representative of multiple 

fan blades, too many approximations are required. 

 

Figure D.12 - Average representative blade profiles of the L2-fan 
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E Fan performance characteristics 

The performance characteristic maps for the three tested fans are shown in this 

appendix. For each of the three fans the static fan pressure, fan shaft power and 

fan static efficiency is given. Note that for the L-fans, a 1° change between blade-

setting angles was used and for the N-fan, a 2° change. Using the fan scaling laws 

all performance characteristics were scaled to 900 rpm and a density of 1.2 kg/m
3 

 

Figure E.1 - Fan static pressure map of five blade-setting angles 

for the L2-fan 
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Figure E.2 - Fan shaft power map of five blade-setting angles for the L2-fan 

 

Figure E.3 - Fan static efficiency map of five blade-setting angles 
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Figure E.4 - Fan static pressure map of five blade-setting angles  

for the L1-fan 

 

Figure E.5 - Fan shaft power map of five blade-setting angles for the L1-fan 
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Figure E.6 - Fan static efficiency map of five blade-setting angles 

for the L1-fan 

 

Figure E.7 - Fan static pressure map of five blade-setting angles for the N-fan 
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Figure E.8 - Fan shaft power map of five blade-setting angles for the N-fan 

 

Figure E.9 - Fan static efficiency map of five blade-setting angles  

for the N-fan 
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F Scilab: Static fan blade balancing algorithm 

The algorithm presented below was used to calculate the optimal arrangement 

between the fan blades of the L1-, L2- and N-fan. It calculated the arrangement 

which would result in the minimum static resultant, R. 

function output = bladebalance(); 

 

mass = [1000 762 965 905 883 842 967 813]; //array of blade masses (g) 

angle = [0 45 90 135 180 225 270 315];  // 8 blades = 360°/8 = 45° 

R_max = 150;      // initial resultant (R) value 

mass_min=[];      //array for results 

 

for i = 1:8 

    for ii = 1:8 

        mass_temp = mass 

        temp = mass_temp(i); 

        mass_temp(i) = mass_temp(ii); 

        mass_temp(ii) = temp; 

        anglevectorx = cosd(angle);   //calculating components x 

        anglevectory = sind(angle);   //calculating components y 

        Wx = sum(mass_temp.*anglevectorx)  //summation of components x 

        Wy = sum(mass_temp.*anglevectory)  //summation of components x 

        R = sqrt(Wx^2+Wy^2)    //resultant R 

        if R < R_max then    //”if” to determine minimum 

            R_max = R 

            mass_min = mass_temp; 

        end 

    end 

 

end 

    output = [R_max mass_min];     

endfunction 
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