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Abstract

A different approach of employing attitude sensors with incomplete measurements

in an attitude determination system is investigated. The amount of available atti-

tude sensors on small satellites are limited, and the failure of sensors can be fatal

when accurate attitude determination is necessary. The problem with sensors

with incomplete measurements is that they must be used in combination with

other sensors to obtain three dimensional attitude information. The aim is to

enhance the possible number of sensor combinations that can be employed, in an

attempt to improve the ability of the attitude determination system to tolerate

sensor failures.

An alternative sensor structure consisting of a magnetometer and two horizon

sensors is presented. A method to obtain vector observations of the attitude

from a combination between magnetometer and horizon sensor measurements is

derived and tested. A full state Extended Kalman Filter is used to determine

the satellite's attitude, attitude rate and disturbance torque from these vector

observations.

A second Extended Kalman Filter structure, using only magnetometer measure-

ments, is implemented. The magnetometer Extended Kalman Filter and the

horizon/magnetometer Extended Kalman Filter are integrated to obtain a single

Extended Kalman Filter structure to determine the satellite's full attitude state.

Integration is done by switching between the different pairs of vector informa-

tion. A systematic analysis of the integrated filter's dynamic behaviour during

the switching stages is done by means of a series of case studies.
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Opsomming

Die gebruik van oriëntasiesensore met onvolledige metingsdata in oriëntasiebepal-

ingsstelsels is ondersoek. Slegs 'n beperkte aantal oriëntasiesensore is beskikbaar

op mikro satelliete. 'n Foutiewe sensor kan dus noodlottig wees wanneer akkurate

oriëntasiebepaling nodig is. Die probleem met sensore met onvolledige metings-

data is dat dit in sensor kombinasies gebruik moet word om drie dimensionele

oriëntasieinligting te verkry. Die doel is dus om die moontlike aantal sensor kom-

binasies sodanig te vermeerder dat die oriëntasiebepalingsstelsel beter bestand

sal wees teen moontlike sensor falings.

'n Alternatiewe sensor struktuur, bestaande uit 'n magnetometer en twee horison

sensore, is ondersoek. 'n Metode vir die verkryging van 3-as oriëntasie inligting

vanaf 'n kombinasie van magnetometer en horison sensor metingsdata is afgelei

en getoets. 'n Vol toestand uitgebreide Kalmanfilter is gebruik om the satelliet

se oriëntasie, oriëntasie snelheid en versteurings draairnoment vanaf die vektor

observasies af te lei.

'n Tweede uitgebreide Kalmanfilter struktuur, wat slegs magnetometer metings-

data gebruik, is geïmplementeer. Die magnetometer filter en die horison/magne-

tometer filter is geïntegreer sodat een uitgebreide Kalmanfilter struktuur volle

oriëntasie inligting kan aflei vanaf verskillende pare vektors met oriëntasie inlig-

ting. Integrasie is gedoen deur te skakel tussen die verskillende vektorpare. 'n

Sistematiese analise van die geïntegreerde filter se dinamiese gedrag gedurende

die oorskakelingstye is gedoen deur middel van 'n reeks gevallestudies.
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Chapter 1

Introduction

1.1 Overview

In this thesis the following will be addressed:

1. A different approach of employing sensors with incomplete measurements

in an attitude determination system. Sensors with incomplete measure-

ments must be used in combination with other sensors in order to obtain

three dimensional attitude information. A possible combination between a

magnetometer and horizon sensors will be presented. An Extended Kalman

Filter (EKF) design will be used to determine the full satellite state from

these sensor combination measurements. Flexible sensor combinations will

enable satellite control systems to recover more effectively from sensor fail-

ures, especially on small satellites with a limited amount of attitude sensors.

2. Different sensor structures will be integrated to obtain a single EKF struc-

ture for attitude determination. Integration will be done by switching be-

tween the different vector observations from the sensor combinations. The

dynamic behaviour of the EKF during these switching stages will be inves-

tigated through simulation.

The aim is to use the presented sensor structures in future studies to improve the

fault tolerance of attitude determination systems.

1
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1.2 Background

Dr. W.H. Steyn (Steyn [7]) presented a new EKF design that used vector obser-

vations to obtain full attitude, attitude rate and disturbance torque information

of a satellite. Various sensors can be employed to measure the attitude of a satel-

lite. A magnetometer measures the magnitude and direction of the geomagnetic

field of the earth. Comparing these measurements with a model of the earth's

geomagnetic field, full attitude data can be acquired. The same can be done by

using a star camera and a star catalogue. Both these sensors are easy to imple-

ment in a vector based EKF as both provide 3-axis attitude information.

Horizon sensors and sun sensors on the other hand can only provide attitude

information in one axis. By placing the sensors perpendicular to each other,

3-axis attitude data can be obtained. The question is how to combine these mea-

surements so that full attitude knowledge can be determined by the EKF. The

method used by Steyn [7] was to iteratively update the filter with the measure-

ments from the horizon and sun sensors. Each sensor provides additional attitude

information due to its position, and will therefore improve the estimation error

during each update. This method proved to be very accurate, with attitude ac-

curacies of below 0.10 expected.

The problem, however, is that small satellites can only carry a limited num-

ber of backup sensors. The consequence of this is that if a sensor (e.g a horizon

or sun sensor) fails to supply valid measurements, the particular EKF will not be

able to determine the full satellite attitude state.

This thesis will look at a way to compensate for such sensor failures by investi-

gating additional sensor combinations where measurements from various sensors,

with complete and incomplete measurements, can be used to provide a measure-

ment vector to the EKF. Two combinations will be addressed in this study: one

that uses only magnetometer measurements and one that uses a combination of

two horizon sensors and a magnetometer.

2
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One is faced with two important issues when implementing the proposed mag-

netometer and horizon sensor combination. The first of these is the difference

in the nature of the measurements from each sensor. The magnetometer mea-

surement is a vector measurement of the earth's magnetic field, while the horizon

sensor provides an angle measurement of the horizon's elevation angle. The sec-

ond problem is the difference in accuracy between the sensors. One advantage

of horizon sensors is the accuracy of its measurements. The inaccuracy of the

magnetometer may therefore decrease the precision of the EKF to a degree that

the desired requirements, as specified by Steyn [7, page 1-2], cannot be met by

the attitude determination system.

The integration, by means of switching, of separately implemented EKF sys-

tems, will also be investigated. The different vector observations are obtained

from sensor measurements and used as input to a single EKF structure. The aim

is to examine the dynamic behaviour of the EKF during the switching stages.

Two sensor combinations will be used to provide the measurement vectors. The

first consists of only a magnetometer and the second of two horizon sensors and

a magnetometer.

1.2.1 Satellite

The attitude determination system developed in this thesis assumed a near cubical

micro satellite with a deployed boom and tip-mass to earth stabilize it. The

satellite's body Zb-axis was nadir pointing (pointed towards the earth). The

satellite was further kept at a slow Zb-spin during normal operation.

1.2.2 Contributions

The main contributions of this research are stated below:

• Full attitude information was determined by an EKF from vector obser-

vations obtained from a combination of magnetometer and horizon sensor

measurements. The accuracy of the EKF, however, was poor due to calcu-

lation errors in the mathematical models.

3
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• The dynamic behaviour of an integrated EKF system during the switching

stages between different vector observations was investigated by means of

simulation.

1.3 Thesis Layout

Chapter 2 will introduce the various coordinate systems used throughout this

thesis and the mathematical models employed to describe the orbital motion of

the satellite. The simulation models for the satellite's sensors will be presented.

The satellite's dynamic and kinematic equations of motion, and various external

disturbance torques will also be discussed.

Chapter 3 describes the implementation of two EKFs that will be used to de-

termine the satellite's full attitude state from vector observations of two differ-

ent sensor combinations. The first combination consist of measurements from a

magnetometer and the second of measurements from two horizon sensors and a

magnetometer. The EKFs will be implemented and tested separately through

simulation.

In Chapter 4 these sensor combinations are integrated into a single EKF by

switching between the different vector observations. The effect of the switching

on the filter's performance will be investigated by means of simulation.

Chapter 5 will summarize and reflect on the results obtained in this thesis.

4
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Chapter 2

Satellite Motion and Space
Environment Simulation Model

2.1 Introduction

This chapter describe the mathematical models used to simulate the satellite's

attitude dynamics, orbital motion and the space environment in which the satel-

lite operates.

The mathematical models used to simulate the satellite's attitude dynamics are

presented by the equations of motion as documented by Wertz [8, Chapter 16].

The equations of motion are divided into the dynamic equations of motion, which

relates the time derivative of the angular momentum vector to the applied torque,

and the kinematic equations of motion, which is the study of the satellite's motion

irrespective of the forces that bring about the motion.

Simulation of the satellite's orbital motion and space environment consists of

mathematical models of the sun's orbit, the satellite's orbit around the earth and

the most important environmental disturbance torques acting on the spacecraft.

The necessary parameters to define an orbit are found in Wertz [8, page 42 -

47] and are summarized in Section 2.2.1. The orbit propagator's output consist

5
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of the satellite's position in space at time, t, in terms of its latitudinal and longi-

tudinal components, and its distance from the earth. The output data is used to

model the earth's geomagnetic field and horizon, which are necessary for the sim-

ulation of the magnetometer and horizon sensors respectively. The mathematical

models for the magnetometer and horizon sensors are derived in Section 2.4.

Section 2.3 defines the coordinate systems used throughout this document. It also

discusses the attitude parameterization methods used to present the spacecraft's

orientation and to simplify transformations between the different coordinate sys-

tems.

2.2 Orbit Propagator

2.2.1 Satellite Orbit Propagator

The elements of an orbit are the parameters needed to fully specify the motion

of the satellite. These elements define the size and shape of the orbit, the orbital

plane and the rotation of the orbit.

• The semimajor axis, a, and the eccentricity, e, define the size and shape of

the orbit. The semimajor axis, a, of an elliptical orbit is calculated from

the perigee height, lie, the apogee height, hA, and the radius of the Earth,

R(f), as (See Figure 2.1):

(2.1)

The eccentricity, e, specifies the shape of an ellipse and is defined as the

ratio between the semimajor, a, and semiminor, b, axes. For an ellipse;

o ~ e ~ 0, and for a circle; e = O.

• The inclination, i, and the right ascension of the ascending node, n, define
the orbital plane. The inclination, i, is the angle between the orbital plane

and a reference plane i.e. the equatorial plane. The right ascension of the

6
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ascending node, 0, is the angle in the equatorial plane measured eastward

from the vernal equinox! to the ascending node? of the orbit.

• The rotation of the orbit within the plane is defined by the argument of
perigee, w, which is the angle at the barycenter, measured in the orbital

plane in the direction of the satellite's motion from the ascending node to

perigee.

Once the orbit is fully defined, the satellite's exact coordinates in the celestial

coordinate system at time, t, can be calculated as (See Wertz [8, page 135]):

r [cos(w + v) cos 0 - sin (w + v) sin 0 cos il ,
r [cos(w + v) sin 0 + sin (w + v) cos 0 cos il ,
r [sin(w + v) sin il,

(2.2)
(2.3)
(2.4)

where the true anomaly, v, is an indication of where the satellite is in its orbit

at time, t, and is defined as the angle measured at the barycenter between the

perigee point and the satellite. Thus,

v ~ M + 2 e sin M + ~e2 sin 2M, (2.5)

where M is the mean anomaly defined as 360· (t:J.tjP) with P the orbital period

and t:J.tthe time since the satellite passed perigee. The radius, r, is the distance

from the barycenter to the orbit at any time and can be calculated as:

r=q( l+e )
1+ ecosv '

where q is the distance from the barycenter to the orbit at perigee (perifocal

distance).

(2.6)

The satellite's latitude, longitude and altitude can be calculated by converting

Equations 2.2 - 2.4 to spherical coordinates.

lThe point where the ecliptic, or plane of the earth's orbit about the sun, crosses the equator
going from south to north.

2For an earth satellite, the ascending node is the point in its orbit where a satellite crosses
the equatorial plane going from south to north.

7
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~ection of satellite motion

b

a

Apogee height, hA

Figure 2.1: Orbit terminology for an elliptical orbit.

2.2.2 Sun Orbit Propagator

The parameters defined in Section 2.2.1 can also be used to model the orbit of

the sun as the earth revolves around its own axis. The sun's coordinates in the

celestial coordinates system can then be calculated from Equations 2.2 - 2.4.

2.3 Coordinate Systems

Three major coordinate systems are used to define the attitude of the satellite,

that is the inertial, orbit and body coordinate systems. Wertz [8] made a further

distinction between spacecraft-centered coordinate systems and nonspacecraft-

centered coordinate systems.

2.3.1 Spacecraft-Centered Coordinate Systems

Three basic types of spacecraft-centered coordinates are defined by Wertz [8]:

• those fixed relative to the body of the spacecraft (body coordinates),

• those fixed in inertial space, and

• those defined relative to the orbit and not fixed relative to either the space-

craft or inertial space.

8
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Body Coordinates

Body Coordinates are used to define the attitude of the satellite. It is also the

system in which sensor measurements are made. The three components of the

rectangular coordinate system will be presented by xb, Yb and Zb. The body axes

are defined as shown in Figure 2.2. The Zb-axis is parallel but opposite to the

direction of boom deployment and the Xb and Yb axes are perpendicular to two of

the side solar panels.

Yb

Figure 2.2: Body Coordinate System.

Orbit Coordinates

The Orbit-defined coordinate system maintains its orientation relative to the

earth as the spacecraft moves in its orbit. The coordinates are defined as roll,

pitch and yaw or RPY coordinates (see Figure 2.3), where the yaw axis or Zo-

axis is directed towards nadir", the pitch axis or Yo-axis is directed towards the

3The centre of the earth.
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Figure 2.3: The orbit coordinate system.

negative orbit normal and the roll axis or xo-axis completes the orthogonal set.

The attitude of the satellite can be defined by Euler angles. These angles are

obtained from an ordered series of right hand positive rotations from the orbital

axes to the body axes, This document used a Euler 3-2-1 sequence of rotations

as shown by Figure 2.4. The first rotation is a yaw around the zo-axis through

an angle, ¢' The second rotation is a pitch around the y'-axis through an angle,

e, and the last rotation is a roll around the xb-axis through an angle, 'IjJ. The

corresponding transformation matrix, A, also called the direction cosine matrix

(DCM), for a full rotation from the reference orbital to the body coordinates is:

r

coc»
A = -C'IjJS¢ + S'ljJSeC¢

S'ljJS¢ + C'IjJSeC¢

cos» -se 1
C'ljJC¢ + S'ljJses¢ S'ljJce ,

-S'ljJC¢ + C'ljJses¢ C'ljJce

(2.7)

where

C cosine function, and

S sine function,

10
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Therefore,

[

Xo

Yo
Zo

and =A-I (2.8)

From Equation 2.7 the Euler angles can again be calculated as:

roll( 1P) = arctan 4 [~::] ,

pitch(B) arcsin [- A 13] ,

(2.9)

(2.10)

yaw( cp) = arctan 4 [~~:] .

Although the Euler angle presentation gives a clear physical interpretation of

(2.11)

the roll, pitch and yaw angles, it suffers from singularities in the pitch angle, B.

This makes it undesirable to use in the control and estimation algorithms of this

document. A better presentation which is more convenient to use for numerical

computations would be the Euler symmetric parameters, qI, q2, q3, qs, which is

defined as:

where

y'

ij

<I>
Q4-cos-,

2
(2.12)

y' y'

Figure 2.4: 3-2-1 Euler angle rotation.

11

Stellenbosch University http://scholar.sun.ac.za



(2.13)

components of the unit Euler axis vector in orbit

referenced coordinates, and

rotation angle around the Euler axis.

The Euler symmetric parameters (quaternions) are not independent, but satisfy

the following constraint:

The direction cosine matrix expressed in quaternion form is:

A=
qr - q~ - q5 + ql

2( q1q2 - q3q4)

2( q1q3 + q2q4)

2(q1q2 + q3q4)

-qr + q~ - q5 + ql

2(q2q3 - q1q4)

2( q1q3 - q2q4)

2(q2q3 + q1q4)

-qi - q~ + q5 + ql

. (2.14)

From Equation 2.14 the corresponding quaternion elements can be calculated as":

1 1

"2 (1+ An + A22 + A33) 2 ,

1
-4 (A23 - A32),
q4
1
-4 (A31 - A13) ,
q4
1

- (A12 - A21) .
4q4

(2.15)

(2.16)

(2.17)

(2.18)

Inertial Coordinates

This coordinate system is used as the reference frame for the motion of the satel-

lite in inertial space. The spacecraft-centered inertial coordinate system used in

this thesis was defined by Steyn [7, page 1-9] and is shown in Figure 2.5. The co-

ordinate system coincides precisely with the orbit-defined coordinates at perigee.

Since the orbital plane experiences a slow precession, this inertial coordinate sys-

tem is not strictly inertial. However, since this precession is slow enough, it has

a negligible effect on the dynamics of the satellite. The matrix used to transform

4Note that this is only one of four possible ways to calculate the quaternion elements. If q4

becomes too small, ql, q2 or q3 can be calculated from the DCM diagonal values, and used to
calculate the remaining elements

12
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Figure 2.5: The spacecraft-centered inertial coordinate system.

from inertial to orbital coordinates is:

[ ~: 1
[ cosv(t) 0 sin ~(t) 1

Xi 1
- Si~v(t)

1 Yi , (2.19)

0 cos v(t) Zi

where
v(t) the true anomaly at time, t, and

t time.

2.3.2 Nonspacecraft-Centered Coordinate Systems

Nonspacecraft-centered coordinate systems are convenient as a means of obtaining

reference vectors such as the magnetic field vector or position vectors to objects

seen by the spacecraft. Wertz [81 define a number of possible centre references

resulting in different possible coordinate systems. In this document only the earth

centered or geocentric inertial coordinates will be used.

Geocentric Inertial Coordinates

These coordinates are also known as the celestial coordinate system and is defined

relative to the spinning axis of the earth as shown in Figure 2.6. The zc-axis is

13
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Figure 2.6: The geocentric inertial coordinate system.

parallel to the spinning axis of the earth with positive in the direction of the

geometric north pole. The xc-axis is parallel to the line connecting the centre of

the earth and the vernal equinox". The yc-axis completes the orthogonal set.

2.4 Sensor Models

2.4.1 Magnetometer

The magnetometer measures the strength and direction of the geomagnetic field

at the location of the satellite. By comparing the measurement with geomagnetic

field models, full attitude data can be obtained. The following mathematical

model is used to simulate the magnetometer measurement. The axes of the mag-

netometer are aligned with the satellite body axes, so the measured geomagnetic

5The point where the ecliptic, or plane of the earth's orbit about the sun, crosses the equator
going from south to north.
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1. Obtain the subsatellite latitude, longitude and geocentric distance from the

orbit propagator in Section 2.2.1.

field is in body coordinates.

2. An eight order IGRF model is now used to calculate the geomagnetic field

model in local tangent coordinates. See Appendix A for a detailed calcula-

tion.

3. The geomagnetic field vector in local tangent coordinates must be con-

verted to the satellite body coordinates. The transformation consists of the

following sequence of conversions:

(a) local tangent coordinates to celestial coordinates:

Bcx (Br cos Ó + Bo sin Ó) cos a - Bei>sin a,

Bey (Br cos Ó + Bo sin Ó) sin a + Bei>cos a,

(Br sin Ó - Bo cos Ó),

(2.20)

where Ó = 90° -0 is the declination and a = rp+ac the right ascension.

ac is the right ascension of the Greenwich meridian at Greenwich. 0
and rp is the coelevation and East longitude from Greenwich respec-

tively.

(b) celestial coordinates to orbit coordinates:

An Euler angle rotation that consists of four rotations is used for the

transformation from celestial coordinates to orbit coordinates. The

transformation matrix, developed by Jacobs [9], is represented by:

T=

[

C( -i)C(O')C( -w')+S(O')S( -w') C( -i)C(O')C( -w')-C(O')S( -w')

-Sc -i)C(O') -Sc -ijSCO')

C( -i)C(O')S( -w')-S(O')C( -w') C( -i)S(O')S( -w')+C(O')C( -w')

-SC -i)C( -w') 1
-cc -i) .

-sc -i)S( -w')

(2.21)
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Therefore,

(2.22)

with

w' w+v, (2.23)

where

Box .s;.e; components of the geomagnetic field vector in orbit

coordinates,

orbit inclination,

orbit right ascension of the ascending node,

orbit argument of perigee, and

orbit true anomaly.

w

v

(c) orbit coordinates to body coordinates:

The geomagnetic field vector is converted from orbit coordinates to

body coordinates with the direction cosine matrix from Equation 2.7:

[
e: ]_ [BOX ]
Bby - A Boy .
Bbz Boz

(2.24)

2.4.2 Horizon Sensor

Two CCD sensors with a field of view (FOV) of ±15° each are used to obtain

orthogonal measurements of the sunlit earth horizon. Figure 2.7 shows the place-

ment of the sensors on the satellite. The sensors are mounted at an elevation

angle of 6 = 27.310, which is equal to the nominal horizon angle at an altitude

of 800 km. The -X-horizon sensor measures pitch angle rotations of the satellite,

while the V-horizon sensor measures roll angle rotations. The measurements are,

however, only valid for valid fields of view (limited to ±15° around the nominal

16
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horizon, 6) and valid horizon illumination. The mathematical model for the -X-

and V-horizon sensors is derived as follows:

1. Three unit vectors in body coordinates can be defined: one to describe the

boresight of the sensor at angle, 6, and two to describe the FOV limitations

in minimum, 6 - 150, and maximum, 6 + 150, FOV vectors.

The three unit vectors for the -X-Horizon sensor are:

VboreX

VrninX

VrnaxX

--------------[-

~I

[

- C~S(6)

sin(Ó)

[

- COs( ~ - 15
0

) 1 '
sin(6 - 150)

- cos(6 + 15
0
) 1

o ,
sin(6 + 150)

(2.25)

(2.26)

(2.27)

Vrnax_

Horison Sensors U

Figure 2.7: Placement of the horizon sensors on the satellite.
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VboreY (2.28)

and for the V-Horizon sensor:

VrninY (2.29)

(2.30)

2. Transform the boresight vector and maximum and minimum FOV vectors

from body coordinates to orbital coordinates by using the transpose of the

DCM,A:

(Vo)bore

(Vo)rnin

(vo)rnax

AT Vbore,

ATVmin,

ATVmax. (2.31)

3. The azimuth of the boresight vector in orbit coordinates are obtained by:

A . 4 ((VOY)bore)
Z'lmbore = arctan () .

Vox bore
(2.32)

4. The angular radius of an elliptical Earth, p, at the azimuth of the boresight

vector, is calculated from the earth oblateness model as defined by Wertz

[8, page 102, Equation 4-241:

p { [
(d2 - R2) ( (2 - 1)f R2 cos2,\ . 2 ) 1!

arccot 2 1+ ( f)2 2 sm \lia 1- a

(2 - 1)fR2 sin 2'\. }
+ 2(1 _ j)2a2 sm \li , (2.33)
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where

). the geocentric latitude of the observer's (satellite's) position,

d distance from the centre of the earth to the observer (satellite),

R distance from the centre of the earth to the subobserver (sub-

satellite point on the earth),

a the equatorial radius,

'li the azimuth angle in local tangent coordinates, measured from

the east direction to the horizon boresight vector, and

f the ellipticity factor.

For a spherical Earth, f = 0, Equation 2.33 reduces to (See Figure 2.8)

p = arcsin (~) . (2.34)

5. The difference between the angular radius of the earth, p, and boresight

angle, b, will approximately be the resulting roll and pitch angles for small

roll and pitch rotations (see Figure 2.8). The boresight angle is calculated

by using the dot product between the boresight vector in orbit coordinates

and the nadir unit vector, n = [0 0 l]T, therefore:

roll( '!jJ)

pitch(B)

p - arccos((Vo)boreY . n),

p - arccos((Vo)boreX . n).

(2.35)

(2.36)

The calulated roll and pitch angles are only valid if it falls within the sensor's line

of sight (LOS). In other words, the angular radius of the earth must fall between

the maximum and minimum LOS vector angles. These angles are also calculated

by using the dot product between the LOS vectors and the nadir unit vector, n.

Therefore,

arccos((Vo)max . n) < p < arccos((Vo)min . n). (2.37)

The second constraint is that the horizon must be illuminated. For the planet to

be fully illuminated the following equation holds (Wertz [8, page 89]):

'li' > 7r - p, (2.38)
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Figure 2.8: Angular radius, p, of the earth and boresight angle, b, of the horizon

sensor as seen from the satellite.

where

'li' 'Jr - Q + b.~,

Q the angle at the centre of the earth between the spacecraft and

the sun, and

b.~ the correction terms in the dark angle, b.~ _ ~ - ~, where the

dark angle, ~, is approximately 89.15° for the earth.

2.5 Equations of Motion

This section will describe the mathematical models used to simulate the attitude

dynamics of the satellite. The equations of motion for the attitude dynamics can

be divided into two sets: the dynamic equations of motion and the kinematic

equations of motion.

2.5.1 Dynamic Equations of Motion

The basic differential equations of attitude dynamics can be expressed in vector

form as:

. I I I .IWB = Nee + NM + ND - wB X (IwB + h) - h, (2.39)

where
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i; Ixy t.,
I = Iyx Iyy t.,

i.; t., t..

w~ = l::
Wz

moment of inertia (MOl) tensor in body coor-

dinates,

body angular rate vector inertially referenced,

NGG gravity gradient torque vector in body coordi-

nates,

magnetic torque vector in body coordinates,

external disturbance torque vector in body co-

ordinates, and

reaction wheel angular momentum vector lil

body coordinates.

h

For an axially symmetric satellite the off-diagonal products of inertial elements

in the MOl tensor, I, will be zero. The deployed boom also increase the lxx and

Iyy to a much larger and equal value. This value is called the transverse MOl,

IT. The simplified MOl tensor is:

1= lI~I: ~
o 0 t.,

(2.40)

2.5.2 Kinematic Equations of Motion

The quaternion representation of the spacecraft kinematics proved to be the most

useful in spacecraft work. The kinematics of the spacecraft in orbit-defined coor-

dinates are therefore expressed in vector form as:

. Inq="2 q,
where

0 Waz -Way Wax

n=
-Waz 0 Wax Way

Way -Wax 0 Waz

-Wax -Way -Waz 0

(2.41)

(2.42)
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with

[

Wox 1wg = Way = body angular rate vector in orbit coordinates.

Woz

The body angular rate vector in orbit coordinates can be calculated from the

angular rate vector in inertial coordinates and the direction cosine matrix, A, as:

(2.43)

with

wo(t) ~ wo{l + 2e cos(wot + Mo)} for small eccentricities, e, (2.44)

where

wo(t) true orbit angular rate,

Wo orbit mean motion,

Mo orbit mean anomaly at epoch, and

e orbit eccentricity.

2.6 Disturbance Torques

The main sources of external attitude disturbance torques are the earth's gravi-

tational and magnetic fields, solar radiation pressure and aerodynamic drag.

2.6.1 Gravity-Gradient Torque

The gravity-gradient torque is the result of a variation in the earth's gravitational

force field, which tends to keep the satellite nadir pointing. It is expressed in

vector form as:

(2.45)
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where

cu;
Rs

A13

nb = A23

A33

0

Zb = 0

1

earth's gravitation constant,

geocentric spacecraft position vector length,

nadir pointing unit vector in body coordinates, and

z-axis unit vector in body coordinates.

2.6.2 Aerodynamic Torque

This torque is the result of an interaction between the upper atmosphere and the

satellite's surface. The aerodynamic torque is defined as:

(2.46)

where

Pa atmospheric density,

V magnitude of spacecraft velocity vector,

V unit spacecraft velocity vector,

A total projected area of spacecraft, and

cp vector between centre of mass and centre of pressure.

2.6.3 Solar Radiation Torque

The solar radiation torque is expressed as:

do 2 ( )NSOLAR = -V Ap cp x V ,
c

(2.47)

where

do average solar radiation constant, and

c velocity of light.
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Chapter 3

Extended Kalman Filter (EKF)

3.1 Introduction

Two Extended Kalman Filters (EKF) will be used to estimate the inertial angular

rate, the quaternion representation of the attitude and the aerodynamic distur-

bance torque. The two filters are based on the same EKF structure designed by

Steyn [7]. The main difference is that only two sensor types, a magnetometer and

two horizon sensors, will be used. The aim is to investigate an alternative sensor

structure consisting of a combination between magnetometer and horizon sensor

measurements.

The first EKF will therefore use only measurements from a magnetometer and

an eight order IGRF model of the geomagnetic field to obtain the desired vec-

tor observations. The second EKF will use measurements from both the horizon

sensors and the magnetometer. The measurement vector will consist of the roll

and pitch angle measurements from the horizon sensors, and the yaw angle cal-

culated from the magnetometer measurement. The modelled innovation vector

will comprise of the estimated roll, pitch and yaw angles. If this method proves

to be successful, it will expand the possible sensor combinations that can be used

in attitude determination systems.

Measurements from the magnetometer are available throughout the orbit, while
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horizon sensor measurements are only available during a fraction of the orbit

due to limitations on the FOV. The magnetometer EKF will therefore be used

throughout the orbit, while the horizon/magnetometer EKF will only be used

when valid measurements from both the horizon sensors are available. For sim-

ulation and testing purposes, however, it will be assumed that the earth is fully

illuminated, the horizon/magnetometer EKF will therefore run throughout the

orbit.

The magnetometer EKF runs at a sampling period of 10 seconds, while the hori-

zon/magnetometer EKF is employed at a sampling time of 1 second. Note, how-

ever, that measurements from the magnetometer are only available every 10 sec-

onds, therefore magnetometer measurement updates in the horizon/magnetometer

EKF are only possible every 10 seconds.

During the implementation of the EKFs, the following assumptions are made:

• The satellite will be axially symmetric with a deployed boom along the

spin-axis (Zb-axis). The simplified MOl tensor is:

(3.1)

• The satellite orbit will be circular with a radius of 800 km. The Gravity

Gradient torque can therefore be approximated as:

(3.2)

• The satellite will nominally be earth pointing with a certain Zb spin rate.

• The disturbance torque, ND, is generated mainly by aerodynamic pressure

on the satellite, and is modelled as a slowly varying disturbance torque,

ndoy, around the orbital Yo-axis:

ND = A [0 ndoy 0] T , where ndoy = O. (3.3)
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3.2 EKF Implementation

Figure 3.1 shows the blockdiagram of the basic EKF structure. The continuous

full state vector to be estimated is:

(3.4)

The EKF algorithm, as employed by the two filters, will now be presented. A

full derivation of the system and measurement models can be found in Steyn [7,

Chapter 5].

3.2.1 EKF Algorithm

1. Propagate the dynamic and kinematic equations of motion (Equations 2.39

and 2.41):

(3.5)

2. Compute the linearised perturbation state matrix, F(X(tk+I), tk+I):

(3.6)

3. Obtain the discrete system matrix <Pk+l/k:

(3.7)

4. Propagate the perturbation covariance matrix, Pk+l/k:

(3.8)

5. Obtain the sensor measurement vector, Vmeas,k+1, and the modelled mea-

surement vector in orbit coordinates, v orb,k+1, for the appropriate sensor

combination. If no valid sensor measurements are available, return to step

1 at the next sampling interval.
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Actuator Torques

•
•

L Equations of Motion

A rk+1A Xk+11k
Xklk +h f(Xklk>uk>k)dt I--- ....-~I

---e
(Eqn. 3.5, Section 3.2.2)

Nonlinear Discrete Observer

-I

• __ I..~ Kk+1:::Pk+11kHk+11 k ~k+11 kPk+11 kHk+11 k +R],.Hk+llk :::ah 1

.....--~I ax I=ik+llk

(Eqn. 3.9, Section 3.2.4)

Sensor Measurements

Sensor Model
A +
Vbody,k+l/k _@

8Xk+1 r------"jk+1 .
L )~l---""~---"'IKk+1

+

-------------------------------------------1------------------------------------ ---.-------------------------------------------------------------------------!--------------------------- -

+

Kalman Gain Machine

(Eqn.3.10)

- - - - - - - - - - - - - -~ - - - - - - - - - - - - - - - - - - - - --

<I>k+llk :::1+-1 .ax 1=lk+llk

(Eqn.3.7)

... ~ .
------------- 1 ----------------------
------------------1---------------------------

Pk+l/k :::<I>k+l/kPklk<I>k+l/k +Q

(Eqn.3.8)

~ahl
Hk+l/k+1 :::-ax l=ik+11 hi

(Eqn. 3.14, Section 3.2.4)

Hk+l/k+1

... ....

Vmeas,k+

Pk+l/k+1 ::: [I -Kk+IHk+llk+lfk+l/k [I -Kk+IHk+llk+IY
T

+Kk+IRKk+1 (Eqn 3.15)
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6. Compute the discrete output measurement matrix, Hk+l/k:

ahi (3.9)Hk+l/k = a-x .
X=Xk+l/k

7. Compute the Kalman Filter Gain, Kk+I:

T [ T rI (3.10)Kk+I = Pk+I/kHk+I/k Hk+l/kPk+l/kHk+I/k +R

8. Calculate the innovation error vector, ek+I:

ek+I = Vmeas,k+I - A(qk+I,k)Vorb,k+l (3.11)

9. Update the state vector with the innovation:

Xk+l/k+l = Xk+I/k + Kk+l ek+l (3.12)

After the state vector has been updated, the quaternion elements of the

state vector are normalised to ensure that the estimated quaternions still

satisfy the quaternion property, qi + q~+ q~+ ql = 1:

A qk+I/k+I
qnorm,k+l/k+1 = II A II

qk+l/k+I
(3.13)

10. Recompute the discrete output measurement matrix, Hk+I/k+I, for the up-

dated state vector, Xk+I/k+l:

(3.14)

11. Update the perturbation covariance matrix:

Pk+I/k+I = [I - Kk+lHk+I/k+I] Pk+l/k [I - Kk+IHk+l/k+l r
+Kk+IRKI+I (3.15)
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3.2.2 Propagation of the Equations of Motion

The equations of motion, as described by the differential equations, Equations

2.39 and 2.41, are solved through numerical integration to obtain a discrete so-

lution of the state at each sampling interval. The improved Euler numerical

method 1 was used and is defined as:

_ + h f(xn, Yn) + f(xn+l' Y~+l)
Yn+l - Yn 2 ' (3.16)

where

(3.17)

The dynamic and kinematic equations of motion can now respectively be solved

in the following way.

Propagation of Dynamic Equations of Motion

I I +T f(tk, W~,k) + f(tk+l, Wi!,k+l)
WB,k+l = WB,k S 2 ' (3.18)

where

(3.19)

and

Propagation of Kinematic Equations of Motion

_ + T f(tk, qk), f(tk+l, qk+l)
qk+l - qk s 2 ' (3.21)

where

(3.22)

and

(3.23)

lSee Zill & Cullen [10], page 271
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(3.24)

3.2.3 Computing the F-matrix

The linearized perturbation state model used by the EKF is:

where

the state perturbation, or the difference be-

tween the actual state and the estimated state,

the 8 x 8 linearised perturbation state matrix,

and

the process noise lil the system (zero mean

white noise with covariance matrix, Q).

The linearized perturbation state matrix, F, is defined as:

F(X(tk),tkl ~ :Ix~.
From Equations 2.39, 2.41 and 3.3 then follows:

(3.25)

OW ow ow
-ow oq ondoy

F(x(tk), tk) =
oq oq oq

-ow oq ondoy

ondoy ondoy ondoy
ow oq ondoy

where

(3.26)

• the first row represents the derivatives of w1 with respect to w1, q and
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(3.27)

ow
ow

o

o

o

ow
aq

oNce aND
aq + aq , (3.28)

ow
andoy

(3.29)

with

A A

-A13tl2 - A33tl4
o o

- A33tl2 - A23tl3 - A33tll - A23tl4

A33tll + A13tl3 -A33tl2 + A13tl4
o

(3.30)

and

aND =2
q2ndoy Qlndoy Q4ndoy Q3ndoy
-Qlndoy Q2ndoy -tl3ndoy tl4ndoy (3.31)

aq
0 0 0 0
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• the second row represents the derivatives of q with respect to w~, q and

nday:

q4 -q3 q2
aq 1 ij3 q4 -ql

(3.32)-aw 2 -ij2 ql ij4

-ql -q2 -q3

aq
aq

0 Woz -Woy Wox

1~ 1 -Woz 0 Wox Way
-0= -2 2 Way -Wox 0 Woz

-Wox -Woy -Woz 0

04Xl .

(3.33)

(3.34)

• the third row represents the derivatives of ndoy with respect to w~, q and

(3.35)

Since a discrete version of the EKF is used, the F matrix must be converted to

the discrete system matrix, <Pk, so that:

(3.36)

therefore,

(3.37)

The discrete system matrix can be approximated with a second order Taylor

series expansion as:

(3.38)
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3.2.4 Computing the H-matrix

The output measurement matrix, Hk, is a 3 x 8 matrix which relates the inno-

vation error vector, ek, to the state perturbation vector, ÓXk, in the following

way:

(3.39)

where

fik = N{O,Rk} Discrete zero mean white measurement noise with

covariance matrix, R.

Hk is derived from the innovation error vector calculation in the following way:

[
4 óA(éh) 1L Ó' Óqi,k Vorb.k + fik
i=l q~,k

[
4 óA(qk) 1L Ó. Vorb,k Óqk + fik
i=l q~,k

[hl h2 h3 h4l Óqk + fik

[03X3 hl h2 h3 h, 03XIl ÓXk+ fik

Hk(qk)ÓXk +ms.

(3.40)

From this it can be seen that:

(3.41)

with

ÓA(qk)
hi = Ó Vorb,k,

qi,k
i = 1,2,3,4 (3.42)

then

[ ql,k q2,k
Q3,k 1

2 q2,k -ql,k q~,k Vorb.k»

q3,k -Q4,k -ql,k

[ -Q2,k ql,k
-q"k 1

2 Ql,k Q2,k ': Vorb.k ,

q4,k q3,k -q2,k
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[ -Q3,k q4,k ql,k

2 -AQ4,k -Q3,k q2,k Vorb,k,

ql,k Q2,k Q3,k

[ Q4,k
Q3,k

-Q',k 1
2 ~Q3,k Q4,k ~l,k Vorb,k·

Q2,k -Ql,k Q4,k

3.2.5 Innovation Computation

The innovation error vector is computed as the vector difference between a mea-

sured normalised vector, Vmeas, and a modelled normalised vector, Vbody. Both

vectors are in body coordinates, although the modelling is actually done in orbit

coordinates, Vorb, and then transformed to Vbody by the DCM, A. In other words:

(3.43)

The vectors are normalized to reduce the effects of any magnitude errors due to

inaccurate modelling, while still preserving the directional information.

Innovation data can be obtained from any attitude sensor able to supply vec-

tor directional measurements. The EKFs presented used two different sensors to

obtain innovation data. The first used magnetometer measurements of the direc-

tion and strength of the geomagnetic field in body coordinates and the second

a combination of magnetometer measurements and horizon sensor measurements

of the sunlit earth horizon.

Magnetometer Innovation

The magnetometer EKF relies fully on the magnetometer for 3-axis measurements

at 10 second intervals to obtain the measured innovation vector. The normalised

measured innovation vector then is:

Bmeas,k
vmeas,k = [B II·

meas,k
(3.44)

An eight-order IGRF model (Appendix A) was used to calculate the modelled ge-

omagnetic field in orbit coordinates. The normalised modelled innovation vector
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in orbital coordinates will then be:

Borb,k
Vorb,k = IIBorb,kll· (3.45)

Horizon/Magnetometer Combination Innovation

The horizon/magnetometer EKF used both the horizon sensors and the mag-

netometer to construct the measurement vector. The -X-horizon sensor and

the V-horizon sensor measure the pitch and roll angles respectively, while the

measurement from the magnetometer can be used to calculate the yaw angle.

Measurements from the horizon sensors are available every second, while mea-

surements from the magnetometer are only available every 10 seconds.

The yaw angle can be calculated from the magnetometer measurement, Bmeas,k,

in the following way:

1. Obtain the geomagnetic field vector in orbital coordinates, Borb,k, from the

IGRF model in Appendix A.

2. Figure 3.2 shows the geomagnetic field vector, B, mapped onto the orbit

coordinates, Borb,kl and body coordinates, Bmeas,k. Bmeas,k are obtained

by rotating the field in orbit coordinates, Borb,k' through an Euler 3-2-1

sequence of rotations (yaw = </J,pitch = (J, roll = 'IjJ). Note that it is

assumed at this stage that any roll or pitch rotations are small enough to

be ignored. That leaves only the yaw rotation, </J.The azimuth angles of

the Borb,k and Bmeas,k vectors will then respectively be:

A . (Borb,k(Y))zlmorb,k = arctan B '
orb,k(x)

(3.46)

A . (BmeaS,k(Y) )zlmmeas,k= arctan B .
meas,k(x)

(3.47)

3. The difference between the azimuth angle of Bmeas,k and the azimuth angle

of Borb,k are the resulting yaw angle, </J.In other words:

yaw(</J)= Azimorb,k - Azimmeas,k. (3.48)
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Yb

Azimorb.k

Figure 3.2: Geomagnetic field vector mapped in orbit and body coordinates.

The measured roll, pitch and yaw angles are now used to construct the measure-

ment DCM, Ameas,k' The measurement vector is normalised by transforming a

unit vector in orbit coordinates to the body coordinates with Ameas,k:

Vmeas k = Ameas kU,, , (3.49)

where u is a unit vector in orbit coordinates of the form:
V

u=W' and V=[l 1Ir. (3.50)

The modelled normalised innovation vector are obtained by transforming the unit

vector, u, from the orbit to body coordinates, but this time using the estimated

DCM, A«}k):

Vbody,k = A(<h)u. (3.51)

3.3 EKF Simulation Results

The Extended Kalman Filters were tested through simulation. Several assump-

tions with regard to satellite parameters, orbit parameters and sensor measure-

36

Stellenbosch University http://scholar.sun.ac.za



ments were made.

• The satellite was assumed to be a near cubical micro satellite with a de-

ployed gravity boom to earth stabilize it. The body Zb-axis of the satellite

was nadir pointing and kept at a slow spin. The satellite was not ac-

tively controlled but left in a free librating mode with Ir = 40 kgm" and

lzz = 2 kgm'', The initial satellite angular rate components were zero for

the Xb and Yb axes, and 5 rpo (resolutions per orbit) for the Zb-axis (yaw

spin), unless otherwise stated.

• The orbit was assumed to be circular with a radius of 800 km and an

inclination of 45°. The orbital period was approximately 100 minutes. To

simplify the computations it was assumed that the earth was fixed about

its spinning axis. It was further assumed that a valid horizon would be

available throughout the orbit.

• Modelling errors, measurement noise and disturbances are the major causes

of filter inaccuracy or divergence. According to Psiaki [11], IGRF modelling

errors are the dominant contributing factor to the magnetometer EKF inno-

vation. The IGRF modelled vector, Borb, was therefore obtained by adding

uniformly distributed noise components, within the range -0.3 to 0.3 f1T, to

each calculated vector element. From Table 5-1 in Wertz [8] the expected

maximum and RMS errors in the field magnitude, when using the IGRF

model, are 0.54 f1T and 0.18 f1T respectively at an altitude of 445 km.

• The roll and pitch angle measurements from the horizon sensors were ob-

tained by adding uniformly distributed noise, within the range -0.03° to

0.03° (0.5 mrad), to the true horizon sensor model.

• An offset-sinusoidal aerodynamic disturbance torque with an amplitude of

ndoy = 3 f1Nm was employed during simulations.

The magnetometer EKF was implemented at a sampling time of 10 seconds, and

the horizon/magnetometer EKF at 1 second intervals, although the magnetome-

ter measurements were only available every 10 seconds.
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The initial filter covariance matrix, Po, was initialized as a diagonal matrix with

elements approximately 3 orders of magnitude higher than the system covariance

matrix, Q. The system and measurement noise covariance matrices, Q and R,

were chosen differently for each EKF to optimize the filter's performance and to

reflect the difference in measurement noise for each sensor.

The stability and ability of the EKFs to converge in the face of large initial

attitude errors, measurement noise and modelling errors were evaluated through

the simulation tests. The magnetometer and horizon/magnetometer EKFs were

tested separately.

Magnetometer EKF

• The stability of the magnetometer EKF was tested first. It was assumed

that the satellite had a zb-spin of 5 rpo and roll and pitch angles of both 0°.

The estimator state values were initialized with the correct values. Figure

3.3 show the estimated angular rate, roll and pitch angles and the estimated

disturbance torque, ndoy.

• Secondly the ability of the EKF to converge from an unknown initial at-

titude state was tested. The roll and pitch angles were 10° and 5° respec-

tively. The estimator state values were initialized with zero values, except

wz, which was set to 90% of the correct value to speed up the conversion

rate. Figure 3.4 show the estimated angular rate, roll and pitch angles and

the estimated disturbance torque, ndoy'

• Another tested characteristic of the EKF was its ability to converge from

large initial attitude errors. The roll and pitch angles were set to 50° each.

The initial estimator state values were all set to zero, except wz, which was

initialized with the correct value. Figure 3.5 display the estimated roll and

pitch angles.

• Finally the ability of the EKF to converge from an unknown torque induced

on the satellite at time, t = 4000 sec, was evaluated. The satellite had an

initial zb-spin, wz, of 5 rpo. The estimator state values were all set to the
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correct values. Figure 3.6 show the estimated angular rate and roll and

pitch angles after an unknown torque decreased the Zb-axis angular rate,

Wz, to 90% of its initial value.

All the above simulations were done over a period of two orbits (~ 12000 sec).

The filter covariance matrix, P, and system covariance matrix, Q, were initialized

with the following diagonal values:

Po [le-1 le-1 le-1 le5 le5 le5 le5 5e-6],

Q - [2e-5 2e-5 2e-5 2e1 2e1 2e1 2e1 10e-9].
(3.52)

Horizon/Magnetometer EKF

It was assumed that measurements from the horizon sensors were available through-

out the orbit during the evaluation of the horizon/magnetometer EKF. This was

to prevent the accumulation of estimation errors during the open loop period

when no measurement updates are available.

• The first test performed on the horizon/magnetometer EKF was a stability

test. It was assumed that the satellite has an initial zb-spin, wz, of 5 rpo

with roll and pitch angles of 00 each. The estimator initial values were all

set to the correct values. Figure 3.7 display the estimated angular rate, roll

and pitch angles and the disturbance torque.

• The ability of the EKF to converge from an unknown initial zb-spin rate,

wz, was tested next. It was assumed that the satellite has an initial zb-spin

of 5 rpo. Roll and pitch angles were set to zero. The estimator initial values

were all set to zero, except wz, which was initialized to 90% of the correct

value. Figure 3.8 display the estimated angular rate, pitch and roll angles

and disturbance torque.

• Finally, Figure 3.9 display the results of the EKF's convergence test from

an unknown torque induced on the satellite at time, t = 4000 sec. The

satellite had an initial wz-spin of 5 rpo. The estimator state values were
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all set to the correct values. The unknown torque reduced Wz to 90% of its

initial value.

The simulations were performed over a period of 2 orbits (~ 12000 sec). The filter

covariance matrix, P, and system covariance matrix, Q, were initialized with the

following diagonal values:

Po [ 4e-1 4e-1 4e-1 2é 2é 2é 2é 5e-5 ] ,

Q [ 2e-5 2e-5 2e-5 5e1 5e1 5e1 5e1 10e-8 ] .
(3.53)

Result Summary

• The magnetometer EKF was able to extract full attitude information in

all cases with an average convergence time of less than an orbit. Attitude

errors of less than 10 were obtained during normal operating conditions .

• The horizon/magnetometer EKF did not perform as well as would be ex-

pected. Although the filter was stable, and converged during all the tests

performed, the convergence time was too slow. The EKF could only achieve

an accuracy of approximately 50, which is even worse than the magnetome-

ter EKF. The following section will discuss possible reasons for these bad

results.
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Aerodynamic disturbance
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Figure 3.3: Estimated angular rate, roll and pitch angles and disturbance torque

from the magnetometer EKF.
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Figure 3.4: Convergence performance of the magnetometer EKF from an un-

known initial attitude state.
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Figure 3.5: Convergence performance of the magnetometer EKF from large

2000

initial attitude estimation errors.
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Figure 3.6: Convergerice performance of the magnetometer EKF from an un-

known disturbance torque.
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Figure 3.7: Estimated angular rate, roll and pitch angles and disturbance torque

from the horizon/magnetometer EKF.
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Figure 3.8: Convergence performance of the horizon/magnetometer EKF from

an unknown initial zb-spin rate.
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Figure 3.9: Convergence performance of the horizon/magnetometer EKF from

an unknown disturbance torque.
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3.4 Horizon/Magnetometer EKF Error Analysis

The first step in explaining the bad behaviour of this sensor combination is to

identify the origin of the large attitude errors. Three possible causes could be

identified:

1. Inaccuracy of the magnetometer measurements because of modelling errors

2. Calculation errors in roll, pitch and yaw angle calculations due to large roll

and pitch rotations

3. Magnetometer measurements that are only available every 10 seconds

The contribution to the total attitude error of each of the possible causes was

determined through simulation, and is summarized in Table 3.1. It is clear from

Table 3.1 that the main contributors are the calculation errors in the roll, pitch

and yaw angle calculations from the horizon sensor and magnetometer measure-

ments. The Euler angle calculations from the mathematical models of Section

2.4.2 and Section 3.2.5 are only accurate for small roll and pitch angles, as it does

not consider large roll and pitch rotations.

Possible solutions to improve the accuracy of the EKF will be to decrease the

RMS error
Error Source contribution

(deg)

None 0.0314

Magnetometer measurements at 10 seconds sampling 0

time

Calculation errors in roll & pitch angle calculation 0.1922

Calculation errors in yaw angle calculation 5.2051

Magnetometer modelling errors 0.0993

Total 5.2988

Table 3.1: Error analysis results of the horizon/magnetometer EKF.
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size of the roll and pitch angles, to upgrade the mathematical models or to de-

termine a model of the calculation errors. The error model can then be used

to correct the calculated roll, pitch and yaw angles. The third option, that of

creating an error model, will be considered first.

To get an idea of what the errors in the calculated roll, pitch and yaw angles look

like and the character of these errors, a simulation program was implemented to

calculate the difference between the computed Euler angles and the real Euler

angles at specific roll and pitch rotations. The errors in the horizon sensor model

were examined first. Figures 3.10 (a) and (b) show the respective errors in the

roll and pitch angles for real roll and pitch rotations between 00 and 150• The

parabolic character of these errors made it fairly easy to derive a mathematical

model. Therefore, the errors in the calculated angles in terms of the real angles

are:

error in roll angle (deg)

error in pitch angle (deg)

4.444e-302 + 2.222e-4?jJ02,

4.444e-3?jJ2 + 5.92ge-50?jJ2,

(3.54)

(3.55)

where 'IjJ and 0 are the respective roll and pitch angles in degrees.

An error model for the yaw calculation from the magnetometer measurements

will be more complex to derive, as is evident from Figures 3.11(a), (b), (c), (d).

Figures 3.11(a) and (b) plot the error in the yaw angle for roll and pitch rotations

between 00 and 100 respectively. The real yaw angle was 00• Figures 3.11(c) and

(d) kept the roll and pitch angles constant but vary the yaw angle between 00

and 1000• The roll angle was set at 100 and pitch at 00 in Figure 3.11 (c), while

the roll angle was fixed at 00 and pitch at 100 in Figure 3.11(d). From the results

displayed in Figure 3.11 it is evident that the errors in the yaw calculation are

not only dependent on the size of the roll and pitch angles, but also on the orien-

tation of the geomagnetic field vector relative to the orbit. This dependency will

complicate the derivation of the error model, and will, due to time constraints,

not be dealt with in this document.

It was also mentioned earlier that the problem of large calculation errors can
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Calculation error in Roll angle
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~ 1

~ 0.5
'5a:

-().5
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'011(deg) 0 0 pitch (dag)

(a) V-Horizon Sensor

Calculation error in Pitch angle

15

'011(dag) 0 0 pitch (dag)

(b) X-Horizon Sensor

Figure 3.10: Calculation errors in roll and pitch angle calculations from horizon

sensor measurements.

be solved by keeping the roll and pitch rotations small. The most effective way of

achieving this will be to implement an attitude control system like the reaction

wheel controller designed by Steyn [7, Chapter 3].

3.5 Conclusion

Two Extended Kalman Filter estimators were implemented to extract full atti-

tude, body rate and disturbance torque information from vector observations.

The first EKF used only magnetometer measurements and modelling data from

a geomagnetic field model to obtain the filter innovations. Attitude errors of less

than 10 were obtained and convergence times of less than an orbit.

The second EKF investigated a new sensor combination consisting of two hori-

zon sensors and a magnetometer. Measurements of the earth's horizon from the

horizon sensors were used to calculate the roll and pitch rotations of the satellite,

while measurements from the magnetometer were used to calculate the yaw angle

rotation. From these a measurement innovation vector could be obtained, while

the estimated Euler angles were used to construct a modelled innovation vector.

50

15

Stellenbosch University http://scholar.sun.ac.za



20
Yaw angle error calculation (roll = <1',yaw = 0°)

15

-250':------,1-'-:ooo.,---2~OOOc:----,-:3000~--4000~---,5000--'------'-6000

time (s)

(a) roll = 00, yaw = 00, pitch = 00 - 100

Yaw angle error calculation (roll = 1<1',pitch = 0°)

-20

-250':-----,.10-'-:::-00----:2:-::00::-0----::-:3000'::----,.400~0::-------:5000:-!:::-----::-:':6000
time (s)

(C) roll = 100, pitch = 00, yaw = 00 - 1000
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Yaw angle error calculation (roll = <1',pitch = 100)
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time(s)

(d) roll = 00, pitch = 100, yaw = 00 - 1000

Figure 3.11: Calculation errors in yaw angle calculation from magnetometer

measurements.

Although the filter was able to extract full attitude, body rate and disturbance

torque information from vector observations, one problem was the inaccuracy of

the filter during large roll and pitch rotations. The main reason for the inaccurate

results of the filter is the calculation errors in the calculated RPY-angles from

the sensor measurements. Possible solutions for the problem were presented in

Section 3.4, but due to time constraints, it could not be thoroughly tested during

this thesis.

The horizon/magnetometer combination presented a more flexible way of combin-
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ing sensors with incomplete measurements to obtain suitable measurement data

for attitude determination systems. It proved that different sensor combinations

are possible, although some accuracy problems may occur that will need special

attention.
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Chapter 4

Integration of the Magnetometer

and the Horizon/Magnetometer

EKFs

4.1 Introduction

The previous chapter presented two Extended Kalman Filter estimators with

different sensor combinations as input. The EKFs were implemented and tested

separately, but can be integrated into one EKF by switching between the different

sensor combinations that were used to obtain a measurement vector. Figure 4.1

shows the typical setup of such an integration. The sensor combinations consist of

either a magnetometer (COMBINATION2) in the one instance or a combination

of horizon and magnetometer (COMBINATION1) measurements. Measurements

from the magnetometer are available throughout the orbit, while measurements

from the horizon/magnetometer conjugation are dependent on a valid field of

view and an illuminated horizon. Therefore, if data are available from the hori-

zon sensors, COMBINATION1 will be used, otherwise the measurement vector

will consist of COMBINATION2.

Differences in the accuracy, noise characteristics and modelling errors of the differ-

ent sensor combinations will affect the performance of the EKF during switching.
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Figure 4.1: Block diagram of integrated EKF.
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The dynamic behaviour of the EKF during these switching periods was therefore

investigated by means of simulation during a series of case studies.

The following assumptions regarding the orbit, sun-orbit and earth were made.

Both the orbit and the earth were assumed to be circular. The orbit was posi-

tioned at an inclination of 450• The sun was set in a fixed position in its orbit, a

fixed fraction of the earth was therefore illuminated during the satellite's orbit.

The satellite was assumed to have a zb-axis, Wz, spin of 5 rpo, roll and pitch

angles of 00 and an offset-sinusoidal disturbance torque, ndoy, of 3 p,Nm. For the

estimator full attitude and angular rate knowledge was assumed, except where

explicitly stated otherwise. The initial filter covariance matrix, P, the system co-

variance matrix, Q, and the noise covariance matrix, R, were chosen depending

on the sensor combination used.

To improve the convergence performance of the Magnetometer EKF from Chap-

ter 3 at different starting-points in the orbit, some of the Q-matrix values were

slightly increased. The consequence of this was an increase in the bandwidth of

the EKF, which again means a less effective filtering of the measurement noise, as

is evident from the results displayed in Figure 4.2. The estimated values of Figure

4.2 will be used as a reference for the results obtained during the case studies in

this chapter. The initial P-matrix and Q-matrix values for the respective sensor

combinations were therefore:

Po [ 1e-l 1e-l 1e-l 1é 1é 1é 1é 5e-5 ] ,

Q [ 2e-4 2e-4 2e-4 2el 2el 2el 2el 5e-8 ] ,

for the magnetometer, and:

Po [ 4e-l 4e-l 4e-l 2é 2é 2é 2é 5e-5 ] ,

Q [ 2e-5 2e-5 2e-5 5el 5el 5el 5el 10e-8 ] ,

for the horizon/magnetometer combination.

(4.1)

(4.2)
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Figure 4.2: Estimated rate and attitude of magnetometer EKF with improved

Q-matrix.
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4.2 Systematic Analysis of the EKF's Behaviour
During Switching

The systematic analysis of the behaviour of the integrated EKF during switching

was done by means of case studies. Table 4.1 gives a summary of the different

situations that were examined.

Case studies 1 to 4 looked at the overall performance and stability of the EKF.

Case Study 1 employed the EKF in a noiseless environment to test the integration,

while Case Study 2 examined the effects of noise on the performance and stability

of the EKF. Case Study 3 started the simulation at different stages in the orbit

to make sure stability occurs throughout the orbit. Finally Case Study 4 investi-

gated the effect of the sun's relative position to the earth on the behaviour of the

EKF. The results of Case Study 2 were used as a reference for case studies 3 and 4.

Case studies 5 and 6 looked at the convergence characteristics of the EKF by

using different initial values and by employing unknown disturbance torques on

the satellite during its flight. Finally Case Study 7 did a simple robustness test

on the EKF by using different Q-matrix values.

The switching stages in each figure displaying simulation results will be indi-

cated by two abbreviations: M/HM - indicates a switch from the magnetometer

to the horizon/magnetometer combination, and HM/M - indicates a change from

the horizon/magnetometer combination to the magnetometer. The simulations

were executed over a period of two orbits (~ 12000 sec).
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Starting Sun Initial

Case point position Noise P,Q,R WZ Disturbance

(Longitude) (Longitude) (rpo)

Eq. 4.1,
1 00 00 No

Eq.4.2
Wz No

Eq.4.1,
2 00 00 Yes

Eq.4.2
Wz No

Eq.4.1,
3 1800 00 Yes

Eq.4.2
Wz No

Eq. 4.1,
4 00 900 Yes

Eq.4.2
Wz No

5(a)
Eq. 4.1,

00 00 Yes
Eq.4.2

0.9 x Wz No

5(b)
Eq. 4.1,

1800 00 Yes
Eq.4.2

0.9 x Wz No

5(c)
Eq. 4.1,

900 900 Yes
Eq.4.2

0.9 x Wz No

6(a)
Eq. 4.1,

00 00 Yes
Eq.4.2

Wz 4500 sec

6(b)
Eq.4.1,

00 00 Yes
Eq.4.2

Wz 6500 sec

7(a) 00 00 Yes Eq.4.2 0.9 x Wz No

7(b) 00 00 Yes Eq.4.1 0.9 x Wz No

Table 4.1: Summary of case studies.
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4.2.1 Case Study #1: Integration

The overall performance and stability of the integrated EKF were investigated in

the first case study. Ideal sensors were assumed. The simulation was started at

longitude = 00 in the orbit. The sun's relative position to the earth was also fixed

at longitude = 00. Only the first and last part the satellite's orbit was therefore

illuminated, as is shown in Figure 4.3. Figure 4.4 show the estimated attitude

state values during the simulation period.

Case Study Result

The EKF performed worse during the magnetometer period than during the hori-

zon/magnetometer period as indicated by markers A. Comparison with Figure

4.2 indicates that this may be caused by the integration.

A possible reason for this is the large estimation errors that occur just before the

switch from the horizon/magnetometer to the magnetometer combination, due

to the inaccuracy of the horizon/magnetometer EKF. During the magnetometer

period, the EKF must therefore converge from the initial estimation error.

The EKF, however, recovered quickly from these errors and reached convergence

before the following switching stage.
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Figure 4.3: Environmental setup for Case Study 1.

Roll angle

realw,
_ estimaledw,5.8
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-WO~--~2=~~---4~~~--~OOOO~--~OOOO==----~1~==--~12~OOO'
time(s)

Figure 4.4: Estimated rate and attitude of the integrated EKF in a noiseless

environment.
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4.2.2 Case Study #2: Effect of Noise

Case Study 2 looked at the effect of noise on the EKF's performance and stability.

The same noise models were used as defined in Chapter 3 (Section 3.3). The

environmental setup (starting-point and sun's position) was the same as that of

Case Study 1 (Figure 4.3). Figure 4.5 display the results.

Case Study Result

The only effect the added noise had, was a slight decrease in the EKF's accuracy

as would be expected. The overall performance of the EKF compared good with

that of Case Study 1.
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Figure 4.5: Estimated rate and attitude of the integrated EKF with noise added

to sensor measurements.
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4.2.3 Case Study #3: Different Starting Position

To be sure the previous cases studies' results were true independent of where

the simulation was started in the orbit, the starting-point has been changed to

longitude = 180°. The sun's relative position to the earth was kept at longitude

= 0° (See Figure 4.6). The simulation therefore started in an unilluminated part

of the earth. Figure 4.7 display the results.

Case Study Result

The behaviour of the EKF compared good with that of Case Study 2. The same

deviation from the true values as seen in case studies 1 and 2 were found (marker

B). Comparison with the results in Figure 4.4 showed that the deviation always

occur at the same position in the orbit, around longitude = 180°.

The results not only confirmed that the deviation are most probably due to

estimation errors just before switching from the horizon/magnetometer to the

magnetometer combination, but do also indicate a possible worst case scenario

for the integrated EKF.

Orbit ,
Direction ..----1' ,

'/ 1180'

270'
Earth

90'

Figure 4.6: Environmental setup for Case Study 3.
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Figure 4.7: Estimated rate and attitude of the integrated EKF with the simula-

tion started at longitude = 1800•
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4.2.4 Case Study #4: Different Sun Position

Up until now, the sun was fixed in the same position. The same fraction of the

earth was therefore illuminated in each case study. In a real space environment

the sun's position will change continuously. To make sure the EKF's stability is

independent from the sun's position, it has been shifted to longitude = 900• The

horizon/magnetometer EKF was therefore running during a different part of the

orbit. Figure 4.8 shows the sunlit part of the earth. The starting-point of the

simulation was at longitude = 00.

Case Study Result

Figure 4.9 display the results obtained during the simulation. The results dif-

fer from those of the previous studies in that large deviations occurred during

the time the horizon/magnetometer combination was running. From Figure 3.7,

however, it is evident that this behaviour is not the result of the integrated EKF

setup, but due to the calculation errors in the RPY-angle calculations.

Surprisingly the EKF performed better during the magnetometer period than in

the first three case studies, thus indicating that the magnetometer combination

was less sensitive to estimation errors from the horizon/magnetometer combina-

tion. This may mean that the effects of the switching on the EKF's performance

are also orbit dependent.
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Direction

Figure 4.8: Environmental setup for Case Study 4.

Zb -spin rate. Wz

X 10-6 Aerodynamic disturbance

~2
:I.
- M/HMJ HMiM

_1L_----~----~----~----~----~~----~o 2000 4000 6000 8000 10000 12000
time(s)

Figure 4.9: Estimated rate and attitude of the integrated EKF with the sun's

postion at longitude = 900•
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4.2.5 Case Study #5: Different Initial Values

The tests done in this case study investigated the convergence characteristics of

the EKF from unknown initial state values. Three tests were run under three

different environmental scenario's identified as possible problem areas during the

previous case studies. Figure 4.10 show the different setups.

• The first test (a), starting at longitude = 00, investigated the convergence

of the EKF when switching from the horizon/magnetometer to the mag-

netometer combination. The sun's position were therefore at longitude =

00.

• The second test (b) looked at the performance of the EKF when switching

takes place from the magnetometer to the horizon/magnetometer combina-

tion. The simulation therefore started at longitude = 1800 with the sun's

position still at longitude = 00.

• The last test (c) started in an area where the horizon/magnetometer com-

bination showed a possible problem area as identified in Case Study 4. The

simulation started at longitude = 900 with the sun's relative position to the

earth also at longitude = 900•

The estimator's initial values were all set to zero, except for the angular rate, wz,

which was initialized to 90% of the real value of 5 rpo.

Case Study Result

Figures 4.11 to 4.13 show the results of tests (a), (b) and (c) respectively. In all

three situations the EKF converged within an orbit. The behaviour of the EKF,

during the convergence time, was dependant on where in the orbit the simulation

started. This dependency was also found during the testing of the separate EKFs

in Chapter 3, and are therefore not simply a characteristic of the integrated EKF.

The behaviour of the EKF during the switching stages further agreed with the

results obtained in the case studies performed this far.
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Orbit !
Direction ~ .

.,'/" ;180'

(a) (b) (c)

Figure 4.10: Environmental setup for Case Study 5.
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~OO ~OO

Pitch angle Aerodynamic disturbance

Figure 4.11: Estimated rate and attitude of the integrated EKF with initial rate

value 90% of real value. Simulation started at longitude = 0°, with the sun's

position at longitude = 0°.
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Figure 4.12: Estimated rate and attitude of the integrated EKF with initial rate

value 90% of real value. Simulation started at longitude = 180°, with the sun's

position at longitude = 0°.
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Figure 4.13: Estimated rate and attitude of the integrated EKF with initial rate

value 90% of real value, Simulation started at longitude = 90°, with the sun's

position at longitude = 90°,
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4.2.6 Case Study #6: Disturbance

Another performance characteristic worth investigating, was the ability of the

integrated EKF to converge from an unknown disturbance torque induced on the

satellite. The effect of the disturbance torque was to decrease the satellite's atti-

tude rate to 90% of its initial value.

Two critical stages would be just before the switch from the magnetometer to

the horizon/magnetometer combination and back. The first simulation (a) there-

fore applied the disturbance torque at time, t = 4500 sec, and the second (b) at

time, t = 6500 sec. Both simulations started at longitude = 00, with the sun's

position also at longitude = 00• See Figure 4.14.

Case Study Result

Convergence in simulation (a) (Figure 4.15) was reached within an orbit, while

simulation (b) (Figure 4.16) could only reach convergence after 6000 sec (more

than an orbit).

The EKF in simulation (b) reacted very slowly to the induced disturbance torque

at first. Faster tracking was only managed after switching to the magnetometer.

Figure 3.9 showed that the horizon/magnetometer EKF has a poor convergence

performance during a disturbance torque, thus explaining the poor tracking ob-

tained in simulation (b).
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Figure 4.14: Environmental setup for Case Study 6.
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Figure 4.15: Estimated rate and attitude of the integrated EKF with an unknown

disturbance torque employed at t = 4500 sec.
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Figure 4.16: Estimated rate and attitude of the integrated EKF with an unknown

disturbance torque employed at t = 6500 sec.
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4.2.7 Case Study #7: Robustness Test

Finally, a simple robustness test was employed on the EKF. The robustness of

a filter is an indication of the sensitivity of that filter to unknown disturbance

torques and noise in the system dynamics. One goal of filter tuning is to achieve

maximum accuracy in the light of the unknown disturbance torques and mea-

surement noise. This is possible through the proper selection of the system noise

covariance matrix, Q, and the measurement noise covariance matrix, R. The

magnitudes of Q and R are representative of the expected disturbance inputs

and measurement noise in the system.

Q and R, therefore, determine the tradeoff between the tracking of disturbance

noise and the filtering of measurement noise. In the presented EKF system the

measurement noise was known; a meaningful value could therefore be assigned

to R. The disturbance torque level was based on the magnitude of possible atti-

tude control torques in the system. These disturbances was, however, not always

known. Q was therefore rather chosen in a pragmatic manner to optimize the

filter's performance.

In the previous case studies, the respective system covariance matrixes, Q, for

the different sensor combinations were used. This case study used the same Q

throughout the simulation. Two tests were performed. Both started in an illumi-

nated part of the earth at longitude = 00 (See Figure 4.17). The first (a), however

used the Q-matrix weights of Equation 4.2 and the second (b) used the Q-matrix

weights of Equation 4.1. In both cases the initial estimator angular rate, wz, was

set to 90% of the real rate.

Case Study Result

Figure 4.18 display the results of simulation (a). Comparison of Figure 4.18 with

that of study 5(a) (Figure 4.11) shows an improvement in the performance of the

EKF, especially during the magnetometer period.

This result can be best explained considering the above discussion on filter tuning.
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For smaller Q-matrix values, less disturbance noise are expected in the system.

The result of this is that the EKF will fail to converge during large disturbance

noise, but measurement noise will be filtered more effectively. The effect of the

decreased Q-matrix is therefore evident in Figure 4.18. The performance of the

EKF during the time the magnetometer was running was less noisy as was also

found in Chapter 3, Figure 3.4. The problem with this setup, however, was that

it experienced convergence problems during different starting-points in the orbit.

For larger Q-matrix values, more disturbance noise are expected in the system.

The EKF, however, will also be more sensitive to measurement noise. This is

evident from the results of simulation (b) as displayed in Figure 4.19. The EKF's

performance are noisier, but also less accurate, indicating that Q may be too large.

The results obtained suggest that the optimal point of performance of the EKF

may not yet have been reached. It further indicates that tuning of the EKF as

an integrated setup may improve the overall performance of the EKF. It will,

however, depend on both the performance specifications of the estimator and the

noise characteristics of the different sensor combinations.
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Figure 4.17: Environmental setup for Case Study 7.
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Figure 4.18: Estimated rate and attitude of the integrated EKF with the Q
matrix values of Equation 4.2.
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Figure 4.19: Estimated rate and attitude of the integrated EKF with the Q
matrix values of Equation 4.1.

77

Stellenbosch University http://scholar.sun.ac.za



4.3 Summary of Case Study Results

A systematic analysis of the behaviour of an integrated Extended Kalman filter,

during switching between different sensor combinations as input, was done by

means of case studies. Two different sensor combinations were used. The first

contained only a magnetometer and the second two horizon sensors and a mag-

netometer.

The integrated EKF performed stable during switching stages, and reached con-

vergence times of less than an orbit in most of the convergence tests. The degree

in which the EKF's performance was affected by the switching was largely depen-

dent on both the state values just before the switching and the orbital position

of the satellite and the sun.

Switching from the horizon/magnetometer combination to the magnetometer af-

fected the EKF's behaviour the most. A possible reason for this is the inaccuracy

of the horizon/magnetometer EKF, as was experienced in Chapter 3 during the

simulation tests. During the magnetometer stage, the EKF thus had to recover

from these errors.

To conclude: Two separately implemented Extended Kalman filters were suc-

cessfully integrated by switching between different sensor combinations.

4.4 Hardware Implementation

The intention was to do a hardware implementation of the EKF setup presented in

this chapter. The necessary hardware to enable interfacing between the different

sensors and the PC were developed. A DSP Microcomputer, the ADSP-2189M,

were used for the interfacing between the PC and the two CCD horizon sensors.

The necessary drivers to enable transmission of data from the horizon sensors

to the PC were written and tested. A separate board were developed and the

necessary drivers written to transmit magnetometer data to the PC.
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The hardware implementation could not be completed due to time constraints,

and will, therefore, not be further discussed here. A block diagram of the full

design can be found in Appendix B, as well as a discussion of the work that was

completed.
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Chapter 5

Conclusion

5.1 Summary of Contributions

Two areas were investigated in this thesis .

• The first investigated the use of sensors with incomplete measurements in

an attitude determination system that determine the full attitude state of

a satellite .

• The second considered the integration of Extended Kalman Filters with

different vector observations.

5.1.1 EKF with Incomplete Sensor Combinations

Two EKFs were presented. The first used only magnetometer measurements

to obtain vector observations of the attitude. The second used a combination

between a sensor with incomplete measurements (horizon sensor) and a magne-

tometer. Horizon sensors can provide attitude information in only one axis. By

positioning two horizon sensors orthogonal to each other, attitude information

in two axes can be attained. Measurements from a magnetometer were used to

provide attitude knowledge in the third axis.

Mathematical models used the measurements from the horizon sensors and the

magnetometer sensor to calculate the roll, pitch and yaw angles of the satellite,
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thus obtaining a vector observation of the attitude. From this vector observation

full attitude knowledge could be estimated.

The inaccuracy of the estimated values was, however, unacceptably large. The

main reason for this was calculation errors in the RPY-angle calculations due to

large roll and pitch rotations. Various possibilities to decrease these calculation

errors were discussed, but could not be implemented and tested. It was, however,

proved that an estimation of the full satellite attitude state is obtainable from a

horizon/magnetometer sensor combination.

5.1.2 Integration of EKFs

Instead of separate EKF implementations with different sensors or sensor combi-

nations, an integrated EKF was also implemented. Different sensor combinations

can provide attitude information to the EKF by switching between the different

measurement vectors. The second contribution of this thesis was a systematic

analysis of the dynamic behaviour of the EKF during these switching stages.

Two sensor combinations were used. The first consisting of only magnetome-

ter measurements and the second of horizon and magnetometer measurements.

The analysis was done by a series of case studies. The simulation results showed

that stability was obtained through each switching phase. Small disturbance ef-

fects mostly occurred during switching from a less accurate to a more accurate

estimation of the state values. The EKF, however, was able to recover quickly

from these disturbances.
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Appendix A

IGRF Model of Geomagnetic Field

The following theory was extracted from Appendix H in Wertz [8]. The earth's

magnetic field, B, can be expressed as the gradient of a scalar potential, V, i.e:

B=-V'V. (A.1)

V can be conveniently represented by a series of spherical harmonics:

(A.2)

where

p

the equatorial radius of the earth (6371.2 km),

gaussian coefficients of the IGRF model,

legendre functions (Scmidt normalized),

geocentric distance,

coelevation(south positive), and

east longitude from Greenwich.

a
gm and hmn n

r

()

<jY

The Gaussian coefficients are determined empirically by a least squares fit to mea-

surements of the magnetic field. A set of these coefficients constitutes a model

of the field. Table A.1 gives a set of the coefficients from the time 1990 to 1995.

With these coefficients and a definition of the associated Legendre functions, P;:"
, the magnetic field at any point in space can be calculated from Equations A.1
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and A.2 as:

Bo

av
ar

k (a)n+2 nL -;: (n + 1) L (gn,m cosm¢ + hn,m sin m¢)pn,m(e),
n=l m=O

-laV

(A.3)

r ae
k (a)n+2 n apn,m(e)-L - L (gn,m cos m¢ + hn,m sin m¢) ,

n=l r m=O ae
-1 av

(A.4)

r sine a¢
-1 k (a)n+2 n-.-L - L m(-gn,msinm¢+hn,mcosm¢)pn,m(e). (A.5)
sin é n=l T m=O

The coefficients of the IGRF assume that P:;" is Schmidt normalised. The relation

between the Gauss function, P"?", and the Schmidt function, p:;", is:

Pm = S pn,mn n,m . (A.6)

The factors Sn,m are best combined with the Gaussian coefficients because they

are independent of r, e and ¢. It is therefore only necessary to calculate them

once during a computer run. We define:

gn,m S gmn,m n'
(A.7)

The following recursion relations can be derived for Sn,m:

SOD,

Snm =,

I,

_ Sn-I,O [2n;: 1] if n :2: I,
S (n - m + 1) (ó!n + 1)
n,m-l n +m

(A.8)

if m:2:l.

pn,m can be obtained from the following recursion function:

PO,O 1,
pn,n

pn,m

sin epn-l,n-l , (A.9)
cosepn-l,m _ K':" pn-2,m ,
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where

(n - 1)2 - m2

(2n - I)(2n - 3)
o if ti = 1.

if n> 1, (A.IO)

The gradient in Equation A.I will lead to partial derivatives of P;:". We therefore
need:

apO,o
ae

apn,n
ae

apn,m
ae

0,
apn-l,n-l

(sine) ae +(cose)pn-l,n-l,
apn-l,m apn-2,m

(cose) - (sine)pn-l,m _ Kn,m _
ae ae .

(A.lI)

Also note that:

cosm¢ cos((m - I)¢) cos¢ - sin((m - I)¢) sin é,

sinm¢ - sin((m-I)¢)cos¢+cos((m-I)¢)sin¢.

(A.I2)

(A.I3)
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n m g (nT) h (nT) n m g (nT) h (nT)
1 0 -29775 - 6 2 60 83

1 1 -1851 5411 6 3 -178 78

2 0 -2136 - 6 4 2 -52

2 1 3058 -2278 6 5 17 2

2 2 1693 -380 6 6 -96 27

3 0 1315 - 7 0 77 -

3 1 -2240 -287 7 1 -64 -81

3 2 1246 293 7 2 4 -27

3 3 807 -348 7 3 28 1

4 0 939 - 7 4 1 20

4 1 782 248 7 5 6 16

4 2 324 -240 7 6 10 -23

4 3 -423 87 7 7 0 -5

4 4 142 -299 8 0 22 -

5 0 -211 - 8 1 5 10

5 1 353 47 8 2 -1 -20

5 2 244 153 8 3 -11 7

5 3 -111 -154 8 4 -12 -22

5 4 -166 -69 8 5 4 12

5 5 -37 98 8 6 4 11

6 0 61 - 8 7 3 -16

6 1 64 -16 8 8 -6 -11

Table A.l: Eigth order IGRF Gaussian Coefficients for EPOCH 1990-1995.
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Appendix B

Hardware Implementation

Figure B.l shows the block diagram of the intended hardware implementation of

the EKF setup described in Chapter 4.

B.I Horizon Sensor Hardware Setup

The hardware setup of the horizon sensor consisted of a CCD horizon sensor, a

DSP microcomputer and a FPGA board. Each part will be discussed shortly.

Horizon Sensor (KLI-2113)

The KLI-2113 is a 2098 x 3 tri-linear CCD Image sensor from Kodak. The

hardware layout for the sensor were done by a colleague, Jacques Rossouw.

ADSP-2189M DSP Microcomputer

The ADSP-2l89M DSP Microcomputer from Analog Devices was responsible for

the signal processing of the horizon sensor measurement data. This involved the

filtering of the data and the processing of the data to: 1) test for a valid horizon

and 2) obtain the horizon elevation angle.

FPGA

The hardware layout and VHDL code for the FPGA board was designed by

Jacques Rossouwas well. The board was responsible for the control of the com-
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Figure B.l: Hardware implementation.
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munication between the horizon sensor, the DSP Microcomputer and the com-

puter. It provided the necessary clock signals to clock data from the horizon

sensor to the DSP Microcomputer. An onboard UART, the MAX3110E, enabled

serial communication between the DSP Microcomputer and the PC.

Results

The necessary software for the DSP Microcomputer to receive data from the

horizon sensor was written and successfully tested. The software to send data

from the DSP Microcomputer was also written, but not successfully debugged by

the end of the thesis. Problems, like data loss, still occurred. Unfortunately, no

time was left to write and test the software for the filtering and horizon detection.

B.2 Magnetometer Hardware Setup

An 3-axis analog magnetometer was used to take measurements of the geomag-

netic field. The data acquisition board consisted of a 12-bit A/D converter

(ADUC812) and a RS232 driver/receiver (MAX232) to enable serial commu-

nication with the computer. The software for the ADUC812 to receive data from

the magnetometer and to send data to the computer was written and successfully

tested.

B.3 Computer

The computer was to receive the measurement data from the horizon sensors and

magnetometer. These measurements would be used to obtain vector observations

of the attitude necessary for the Extended Kalman Filter attitude determination

system. The Extended Kalman filter was implemented successfully in Matlab,

but as the hardware and its corresponding software drivers could not be finished,

this part of the integration was not tested.
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Appendix C

Extended Kalman Filter Code

C.1 Code Listing

C.I.I Procedures

Initialize.m Initialization of all global constants. Is called by

main.m at the beginning of the simulation.

Main procedure that starts simulation. Call Ini-

tialize.m to set global constants and set the flags

that indicates 10 second intervals and a valid horizon

sensor measurement. Call either kalman2 hor .m,
kalman _ mag.m or kalman.m to start the Kalman

Filter procedures.

Implementation of the horizon sensor EKF. Called by

main.m.

main.m

kalman2 hor.m

kalman _ mag.m Implementation of the magnetometer EKF. Called by

main.m.

kalman.m Implementation of the integrated EKF. Called by

main.m.

DrawOrbit.m Orbit propagator. Call the function orbit.m to calcu-

late the necessary orbital parameters.
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C.1.2 Functions
orbit.m Implimentation of orbit propagator III Section

2.2.1.

DCMorbo.m

DCMToEuler.m
Calculate DCM from Euler angles. Equation 2.7.

Calculate Euler angles from DCM. Equations 2.9

to 2.11.

Calculate DCM from quaternion elements. Equa-

tion 2.14.

Calculate quaternion elements from DCM. Equa-

tions 2.15 to 2.18.

qua2dcm.m

quaternion.m

magfield.m Implementation of magnetometer measurement

model from Section 2.4.1.

Implementation of horizon sensor measurement

model from Section 2.4.2.

horison.m

GravityTorque.m Calculation of Gravity Gradient torque. Equation

2.45.

Calculation of the external disturbance torque.

Equation 3.3.

DisturbanceTorque.m

EKF _propag.m EKF propagation equations between measure-

ments. Equations 3.5 to 3.8.

EKF correction equations at the measurement

time. Equations 3.9 to 3.15

Propagation of the equations of motion. Section

3.2.2.

Calculate the quaternion propagation. Equation

2.41.

Calculate the innovation vectors for the magne-

tometer EKF. Equations 3.44 and Equation 3.45.

EKF correct.m

PlantmodelPropagation.m

bodyrate2quaternion.m

mag_ innovation.m
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yaw _ innovation.m Calculate the yaw angle from the magnetometer

measurements. Section 3.2.5.

Called by kalman2 hor .m. Plot the results ob-

tained by the horizon sensor EKF.

Called by kalman mag.m. Plot the results ob-

tained by the magnetometer EKF.

Called by kalman.m. Plot the results obtained

by the integrated EKF.

kalfig.m

kalfig_ mag.m

kalfigures.m

C.2 Integrated EKF Code

The Extended Kalman Filter algorithm is presented in Chapter 3. The integrated

EKF from Figure 4.1 can be implemented in Matlab as shown by procedure

kalman.m.

C.2.1 Software Code: kalman.m
% ------------------------------------------------------------------%
% Implimentation of Integrated Extended Kalman Filter: %
% ------------------------------------------------------------------%
% ------------------------------------------------------------------%
% Initialization of Parameters %
% ------------------------------------------------------------------%
womean = ORBITn;
% Initialize real satellite parameter values
roll = SATroll; pitch = SATpitch; yaw = SATyaw;
rollq = roll; pitchq = pitch; yawq = yaw;

% OCM %
Areal = OCMorbo(roll, pitch, yaw);
Aq = OCMorbo(rollq, pitchq, yawq);

% quaternions %
[ql, q2, q3, q4] = quaternion(Areal);
[eql, eq2, eq3, eq4] = quaternion(Aq);
eqq = [eql; eq2; eq3; eq4];
qreal = [ql; q2; q3; q4];
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ï. Sampling Times ï.
dt = PredictorSampling;
dtPl = PlantSampling;

ï. Orbital angular rate ï.
woreal = [SATwox; SATwoy; SATwoz];
wo = [SATwox; SATwoy; SATwoz];

ï. Inertial angular rate ï.
wireal = woreal + Areal*[O; -womean; 0];
wi = wo + Aq*[O; -womean; 0];

ï. Disturbance Torque ï.
ndoy = 3e-6;
ndoyest = 3e-6;

ï. System Covariance matrix ï.
Pw = le-l; Pq = le5; Pndoy = 5e-5;
Pmatm = diag([Pw Pw Pw Pq Pq Pq Pq Pndoy]);
Pw = 4e-l; Pq = 2e4; Pndoy = 5e-5;
Pmath = diag([Pw Pw Pw Pq Pq Pq Pq Pndoy]);

Pmat = Pmath;

ï. System Noise Covariance matrix for horizon/magnetometer EKF ï.
Qw = 2e-5; Qq = 5el; Qndoy = 10e-8;
Qmat = diag([Qw Qw Qw Qq Qq Qq Qq Qndoy]);

ï. Horizon Sensor Noise ï.
noiseh = «0.5 - rand(l, length(timemat»»/1000;
ï. Magnetometer Noise ï.
noisemx = «0.5 rand(l, length(timemat»)*0.3/0.5);
noisemy «0.5 rand(1,length(timemat»)*0.3/0.5);
noisemz «0.5 rand(l, length(timemat»)*0.3/0.5);

ï. Measurement Noise Covariance matrix for horizon/magnetometer EKF ï.
Rmat = diag([(0.5e-3)-2 (0.5e-3)-2 0.1 ]);

ï. ------------------------------------------------------------------ ï.
ï. Calling the Kalman Filter function ï.
ï. ------------------------------------------------------------------ ï.

Mcounter 1;

Hcounter 1;
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woreal [SATwox; SATwoy; 0.9*SATwoz];

for t = l:length(timemat)

%
%
%
%

if timemat(t) == 6500

wireal = woreal + Areal*[O; -womean; 0];
end

if (mod(t,1000) 0),
t

end;

% Propagation of real plant state variables %
[wireal, woreal, qreal, Areal, NGGreal] =

PlantmodelPropagation(dtPl, wireal, qreal, ndoy);

% Normalising the q-matrix %
q_abs = sqrt(sum(qreal.-2));

qreal(l) = qreal(l)/q_abs; qreal(2)
qreal(3) = qreal(3)/q_abs; qreal(4)

qreal(2)/q_abs;
= qreal(4)/q_abs;

% The extended Kalman Filter propagation loop %
[wi, wo, eqq, Aq, NGG, PHI, Fmat, Pupdate] =

EKF_propag(dtPl, wi, eqq, ndoyest, Pmat, Qmat);

% If true innovation exist, correct the estimated state variables %
if innovtruemag(t) == 1

Rmat = diag([(0.6e-6)-2 (0.6e-6)-2 (0.6e-6)-2]);
Qw = 2e-4; Qq = 2el; Qndoy = 5e-B;
Qmat = diag([Qw Qw Qw Qq Qq Qq Qq Qndoy]);

% Obtain innovation vectors, vmeas, vest
[Br, Btheta, Bphi, Be, Borbit] = ...

magfield(SATAltitude(t,:), timemat(t), TrueAnomat(t));

ermb = [noisemx(Mcounter) noisemy(Mcounter) noisemz(Mcounter)];
erm = [000];

Bmeas = Borbit' + erm;
Bmodel = Borbit' + ermb;
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time(Mcounter) = timemat(t);

[vmeas, vest, vorb] = mag_innovation(Aq, Areal, Bmeas, Bmodel);

% The extended Kalman Filter correction loop %
[wi, eqq, ndoyest, Pmat, Hmat, Kmat, err, delta] =
EKF_correct(wi, eqq, Pupdate, Rmat, Aq, vmeas, vest, vorb,

ndoyest);

errmmat(Mcounter,:) = err';

Mcounter = Mcounter + 1;

elseif innovtruehor(t) == 2

Rmat = diag([(0.5e-3)~2 (0.5e-3)~2 0.1 ]);
Qw = 2e-5; Qq = 5el; Qndoy = 10e-8;
Qmat = diag([Qw Qw Qw Qq Qq Qq Qq Qndoy]);

% Get the roll and pitch measurements from the Horison sensor, %
% the yaw measurements will eventually come from the %
% magnetometer

num = 1;
[XHSangle] = horison(timemat(t), dt, XHSelevation, XHShighel,

XHSlowel, XHSazimuth, Areal, num);
[XHSmodel] = horison(timemat(t), dt, XHSelevation, XHShighel,

XHSlowel, XHSazimuth, Aq, num);

num = 2;
[YHSangle] = horison(timemat(t), dt, YHSelevation, YHShighel,

YHSlowel, YHSazimuth, Areal, num);
[YHSmodel] = horison(timemat(t), dt, YHSelevation, YHShighel,

YHSlowel, YHSazimuth, Aq, num);

xangle = YHSangle + noiseh(t); % roll
yangle = XHSangle + noiseh(t); % pitch

xmodel YHSmodel;
ymodel XHSmodel;

if innovtruemag(t) == 3
[Br, Btheta, Bphi, Bc, Borbit] = ...
magfield(SATAltitude(t,:), timemat(t), TrueAnomat(t));
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erh = [noisemx(t) noisemy(t) noisemz(t)J;
yawangle yaw_innovation(Borbit', Areal, erh);

else
yawangle yaw_innovation(Borbit', Areal, erh);

end

vnor [1; 1; lJ;

vabs = sqrt(sum(vnor.~2));
vorb = [vnor(l)/vabs; vnor(2)/vabs; vnor(3)/vabsJ;

% The measurement innovation vector in body axes %
hmeas = [xangle; yangle; yawangleJ;
Ah = DCMorbo(xangle, yangle, yawangle);

vmeas = Ah*vorb;
vest = Aq*vorb;

% Transforming the estimated innovation vector in orbital axes %
vorb = vorb';

% The extended Kalman Filter correction loop %
[wi, eqq, ndoyest, Pmat, Hmat, Kmat, err, deltaJ =
EKF_correct(wi, eqq, Pupdate, Rmat, Aq, vmeas, vest, vorb,

ndoyest);

% The error between the measured and estimated innovation vector%
timeh(Hcounter) = timemat(t);
errhmat(Hcounter,:) = err';
errmmat(Mcounter,:) = err';
time(Mcounter) = timemat(t);

Hcounter = Hcounter + 1;
Mcounter = Mcounter + 1;

else
Pmat = Pupdate;

end % if innovtruemag(t) _- 1

% Calculate the real and estimated roll, pitch and yaw angles %
[erollr, epitchr, eyawrJ = DCMToEuler(Areal);
[eroll, epitch, eyawJ = DCMToEuler(Aq);

% The aerodynamic disturbance torque %
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ndoymat(t) = ndoyest;

% Variable matrixes %
% The real inertial angular rate and quaternion values %
wirealmat(t,:) = wireal';
qrealmat(t,:) = qreal';

% The real roll, pitch and yaw angles %
Eulermatreal(t,:) = [erollr, epitchr, eyawr];

% The estimated roll, pitch and yaw angles %
Eulermat(t,:) = [eroll, epitch, eyaw];

% The estimated angular rate in orbital coordinates %
womat(t,:) = wo';

% The estimated angular rate in inertial coordinates %
wimat(t,:) = wi';

% The estimated quaternions %
eqqmat (t,:) = eqq';

% The Kalman filter gain %
knum = 1;
for ry = 1:8

for col = 1:3
kstruct(knum).kmat(t) = Kmat(ry, col);
knum = knum + 1;

end %for col = 1:3
end %for ry = 1:8

% The perturbation covariance matrix %
for ry = 1:8

for col = 1:8
if ry == col

pstruct(ry).pmat(t) = Pmat(ry, col);
end %if ry == col

end %for col = 1:8
end %for ry = 1:8

end % t = l:length(timemat)

% Convert angles from radians to degrees %
wirealmat = wirealmat*3120/pi;
wimat = wimat*3120/pi;
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womat = womat*3120/pi;
errmmat = errmmat*180/pi;
errhmat = errhmat*180/pi;
Eulermat = Eulermat*180/pi;
Eulermatreal = Eulermatreal*180/pi;

'lo Figures of different parameters 'lo

kalfigures(timemat, time, timeh, errmmat, errhmat, kstruct, ...
pstruct, wirealmat, wimat, womat, Eulermatreal, Eulermat,

qrealmat, eqqmat, ndoymat)

C.2.2 Software Code: PlantmodelPropagation.m
'lo ================================================================== 'lo

'lo Propagation of the plantmodel 'lo

'lo Input: Sampling Time (Ts) 'lo

'lo Inertial referenced angular rate at sampling, k (wi) 'lo

'lo Quaternion matrix at sampling, k (q) 'lo

'lo Aerodynamic disturbance torque (ndoy) 'lo

% Output: Propagated inertially referenced angular rate at 'lo

'lo sampling, k+l (wi) 'lo
'lo Propagated orbitaly referenced angular rate at 'lo

% sampling, k+l (wo) %
% Propagated quaternion matrix at sampling, k+l (q) %
ï. DeM matrix from updated quaternions (A) %
'lo Propagated Gravity-Gradient Torque at sampling, k+l (NGG)
'lo ================================================================== %

function [wi, wo, q, A, NGG] = PlantmodelPropagation(Ts, wi, q, ndoy)

% ------------------------------------------------------------------%
% Globals %
'lo ------------------------------------------------------------------ 'lo

global ORBITn
global MDI

'lo ------------------------------------------------------------------ %
'lo Propagation 'lo
'lo ------------------------------------------------------------------ 'lo

womean = ORBITn;
Il = MOI(l,l); 12 = MOI(2,2); 13 = MOI(3,3);

A = qua2dcm(q(1), q(2), q(3), q(4));
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wo = wi - A*[O; -womean; 0];

NGG = GravityTorque(womean, A, MDI);
NO = OisturbanceTorque(A, ndoy);

% Calculate f(xn, yn) from won for the quaternion update
dqn = bodyrate2quaternion(wo, q);

% Calculate f(xn, yn)
dwix = l/Il*(NGG(l) + NO(l) + (12 - I3)*wi(3)*wi(2));
dwiy 1/I2*(NGG(2) + NO(2) + (13 - Il)*wi(3)*wi(1));
dwiz = 1/13*(11 - I2)*wi(1)*wi(2);

% Calculate yn+l_star
wi_star = wi + Ts*[dwix; dwiy; dwiz];

% Calculate wo from yn+l
wo = wi_star - A*[O; -womean; 0];

% Calculate yn+l_star for the quaternion update
qn_star = q + Ts * dqn;

% Calculate f(xn+l, yn+l_star) for the quaternion update
dqn_star = bodyrate2quaternion(wo, qn_star);

% Calculate NGG_star
A qua2dcm(qn_star(1), qn_star(2), qn_star(3), qn_star(4));

NGG = GravityTorque(womean, A, MDI);
NO = OisturbanceTorque(A, ndoy);

% Calculate f(xn+l, yn+l)
dwixl l/Il*(NGG(l) + NO(l) + (12 - I3)*wi_star(3)*wi_star(2));
dwiyl = 1/I2*(NGG(2) + NO(2) + (13 - Il)*wi_star(3)*wi_star(1));
dwizl = 1/13*(11 - I2)*wi_star(1)*wi_star(2);

% Calculate yn+l
win = wi + Ts*0.5*[(dwix + dwixl); (dwiy + dwiyl); (dwiz + dwizl)];

wi = win;

qn = q + Ts * 0.5 * (dqn + dqn_star);

q = qn;
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A = qua2dcm(qn(1), qn(2), qn(3), qn(4»;

ï. Calculate the body angular rates from yn+l
wo = wi - A*[O; -womean; 0];

C.2.3 Software Code: EKF popag.m
ï. ================================================================== ï.
ï. Kalman Filter loop one: Propagation
ï. Input: Sampling Time (dt)
ï.
ï.
ï.
ï.
ï.
ï.
x
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.
ï.

Estimated inertially referenced angular rate at
sampling, k (wi)
Estimated quaternion matrix at sampling, k (eqq)
Aerodynamic disturbance torque (ndoy)
Perturbation covariance matrix at sampling, k (Pmat)
System covariance matrix (Qmat)

Output: Propagated estimated inertially referenced angular
rate at sampling, k+1 (wi)
Propagated estimated orbitally referenced angular
rate at sampling, k+1 (wo)
Propagated estimated quaternion matrix at
sampling, k+1 (eqq)
DCM matrix from quaternion matrix at sampling, k+1 (Aq) ï.
Propagated Gravity-Gradient torque at sampling, k+1 (NGG)ï.
Linearised perturbation state matrix (Fmat) ï.
Updated perturbation covariance matrix at sampling,
k+1 (Pupdate)

ï. ================================================================== ï.

function [wi, wo, eqq, Aq, NGG, PHI, Fmat, Pupdate] = ...
EKF_propag(dt, wi, eqq, ndoy, Pmat, Qmat)

ï. ------------------------------------------------------------------ ï.
ï. Globals
ï. ----------------------- ------------------------------------------ ï.

global EarthEquRadius
global ORBITeccent ORBITn
global TransMOl zaxisMOI MOl GeoGrav

ï. ------------------------------------------------------------------ ï.
ï. STEP 1: Propagate the full satellite state
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ï.
ï.
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ï.
ï.
ï.

ï.
ï.

ï.
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'lo

'lo

'lo

A = Propagate the aerodynamic disturbance torque
B = Propagate the estimated angular rate vector
C = Propagate the estimated quaternion

'lo

'lo

'lo

'lo ------------------------------------------------------------------ 'lo

[wi, wo, eqq, Aq, NGG] = PlantmodelPropagation(dt, wi, eqq, ndoy);

'lo ------------------------------------------------------------------ 'lo

'lo STEP 2: Compute the linearised perturbation state matrix Fmat 'lo

'lo ------------------------------------------------------------------ 'lo

gg = 6*ORBITn-2*(MOI(1,1) - MOI(3,3))/MOI(1,1);

cl = 1 - MOI(3,3)/MOI(1,1);
c2 = 2*ndoy/MOI(1,1);
c3 = gg*Aq(1,3);
c4 = gg*Aq(2,3);
c5 = gg*Aq(3,3);
Fmat(l,l) = 0;
Fmat(1,2) = wi(3)*cl;
Fmat(1,3) = wi(2)*cl;
Fmat(2,2) = 0;
Fmat(2,1) = -wi(3)*cl;
Fmat(2,3) = -wi(l)*cl;
Fmat(3,1) = 0; Fmat(3,2) = 0; Fmat(3,3) = 0;
Fmat(1,4) = -eqq(4)*c5 + eqq(1)*c4 + eqq(2)*c2;
Fmat(1,5) = -eqq(3)*c5 + eqq(2)*c4 + eqq(1)*c2;
Fmat(1,6) -eqq(2)*c5 - eqq(3)*c4 + eqq(4)*c2;
Fmat(1,7) = -eqq(1)*c5 - eqq(4)*c4 + eqq(3)*c2;
Fmat(2,4) = eqq(3)*c5 - eqq(1)*c3 - eqq(1)*c2;
Fmat(2,5) -eqq(4)*c5 - eqq(2)*c3 + eqq(2)*c2;
Fmat(2,6) = eqq(1)*c5 + eqq(3)*c3 - eqq(3)*c2;
Fmat(2,7) -eqq(2)*c5 + eqq(4)*c3 + eqq(4)*c2;
Fmat(3,4) = 0; Fmat(3,5) = 0; Fmat(3,6) = 0; Fmat(3,7) = 0;
Fmat(1,8) = Aq(1,2); Fmat(2,8) = Aq(2,2); Fmat(3,8) = 0;
Fmat(4,1) = 0.5*eqq(4); Fmat(4,2) = -0.5*eqq(3);
Fmat(4,3) = O.5*eqq(2);
Fmat(5,1) = 0.5*eqq(3); Fmat(5,2) = 0.5*eqq(4);
Fmat(5,3) = -0.5*eqq(1);
Fmat(6,1) = -0.5*eqq(2); Fmat(6,2) = 0.5*eqq(1);
Fmat(6,3) = 0.5*eqq(4);
Fmat(7,1) = -O.5*eqq(1); Fmat(7,2) = -0.5*eqq(2);
Fmat(7,3) = -0.5*eqq(3);
Fmat(4,4) = 0; Fmat(4,5) = 0.5*wo(3); Fmat(4,6) = -0.5*wo(2);
Fmat(4,7) = 0.5*wo(1);
Fmat(5,4) = -0.5*wo(3); Fmat(5,5) = 0; Fmat(5,6) = 0.5*wo(1);
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Fmat(5,7) = 0.5*'1010(2);
Fmat(6,4) 0.5*'1010(2);Fmat(6,5) = -0.5*'1010(1);Fmat(6,6) = o·,
Fmat(6,7) = 0.5*'1010(3);
Fmat(7,4) = -0.5*'1010(1); Fmat(7,5) = -0.5*'1010(2);
Fmat(7,6) -0.5*'1010(3);
Fmat(7,7) = O·,
Fmat(4,8) = 0; Fmat(5,8) = 0; Fmat(6,8) = 0; Fmat(7,8) = 0;
Fmat(8,1) = 0; Fmat(8,2) = 0; Fmat(8,3) 0; Fmat(8,4) = 0;
Fmat(8,5) O·,
Fmat(8,6) O· Fmat(8,7) = O· Fmat(8,8) = 0;, ,

%Fmat;

% ------------------------------------------------------------------%
% STEP 3: Obtain the discrete system matrix PHI
% ------------------------------------------------------------------%
PHI = eye(8,8) + Fmat*dt + 0.5*(Fmat*dt)~2;

% ------------------------------------------------------------------%
% STEP 4: Propagate the perturbation covariance matrix Pmat
% ------------------------------------------------------------------%
Pupdate = PHI*Pmat*PHI' + Qmat;

C.2.4 Software Code: EKF correct.m
% ================================================================== %
% Kalman Filter loop two: Correction %
% Input: Propagated estimated inertially referenced angular %
% rate at sampling, k+1 (wi) %
% Propagated estimated quaternion matrix at %
% sampling, k+1 (eqq) %
% Updated perturbation covariance matrix at sampling, %
% k+1 (Pupdate) %
% Measurement Noise covariance matrix (R) %
% DCM matrix from quaternion matrix at sampling, k+1 (Aq)
% Measured innovation vector in body coordinates (vmeas)%
% Modelled innovation vector in body coordinates (vest) %
% Modelled innovation vector in orbit coordinates (vorb)%
% Aerodynamic disturbance torque (ndoy) %
% Output: Corrected estimated inertially referenced angular %
% rate at sampling, k+1 (vi ) %
% Corrected estimated quaternion matrix at %
% sampling, k+1 (eqq) %
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% Aerodynamic disturbance torque (ndoy) %
% Updated perturbation covariance matrix at sampling, %
% k+l,k+l (Pupdate) %
% Output measurement matrix from corrected quaternion %
% matrix (Hmat) % ,
% Kalman Filter gain (Kmat) %
% Innovation error vector (err) %
% Matrix with all estimated state values (delta) %
% ================================================================== %
function [wi, eqq, ndoy, Pmat, Hmat, Kmat, err, deltaJ = ...

EKF_correct(wi, eqq, Pupdate, Rmat, Aq, vmeas, vest, vorb, ndoy)

% ------------------------------------------------------------------%
% STEP 5: Compute the discrete output measurement matrix Hmat
%

t
------------------------------------------------------------------%

hl = ...
[eqq(l) eqq(2) eqq(3); eqq(2) -eqq(l) eqq(4); eqq(3) -eqq(4) -eqq(l)J;
h2 = ...
[-eqq(2) eqq(l) -eqq(4); eqq(l) eqq(2) eqq(3); eqq(4) eqq(3) -eqq(2)J;
h3 = ...

[-eqq(3) eqq(4) eqq(l); -eqq(4) -eqq(3) eqq(2); eqq(l) eqq(2) eqq(3)J;
h4 = ...
[eqq(4) eqq(3) -eqq(2); -eqq(3) eqq(4) eqq(l); eqq(2) -eqq(l) eqq(4)J;

hO = [0 0 0; o 0 0; o 0 OJ;
hl 1 = 2*hhvorb' ;
h2 1 = 2*h2*vorb' ;
h3 1 = 2*h3*vorb';
h4_1 2*h4*vorb' ;
h5 = [0 ; 0; OJ;

Hmat = [hO hl_l h2_1 h3_1 h4_1 h5J;

% ------------------------------------------------------------------%
% %
% ------------------------------------------------------------------%

STEP 6: Compute the Kalman filter gain

Kmat = Pupdate*Hmat'*inv(Hmat*Pupdate*Hmat' + Rmat);

% ------------------------------------------------------------------%
% STEP 7: Calculate the innovation error vector ek
% ------------------------------------------------------------------%
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err = vmeas - vest;

% ------------------------------------------------------------------%
% STEP 8: Update the state vector with the innovation %
% ------------------------------------------------------------------%
dwix = Kmat(l,:)*err; dwiy = Kmat(2,:)*err; dwiz = Kmat(3,:)*err;
deql = Kmat(4,:)*err; deq2 = Kmat(5,:)*err; deq3 = Kmat(6,:)*err;
deq4 = Kmat(7,:)*err; dndoy = Kmat(8,:)*err;

wixn = wiel) + dwix;
wiyn = wi(2) + dwiy;
wizn = wi(3) + dwiz;
eqln = eqq(l) + deql;
eq2n = eqq(2) + deq2;
eq3n = eqq(3) + deq3;
eq4n = eqq(4) + deq4;
ndoyn = ndoy + dndoy;

wiel) = wixn; wi(2) = wiyn; wi(3) = wizn;
eqq(l) = eqln; eqq(2) = eq2n; eqq(3) = eq3n; eqq(4) = eq4n;
ndoy = ndoyn;

delta = [dwix dwiy dwiz deql deq2 deq3 deq4];

% STEP 9: Normalize the quaternion ql + q2 + q3 + q4 = 1
%

% ------------------------------------------------------------------%
%

------------------------------------------------------------------%
eqabs = sqrt(eqq(1)-2 + eqq(2)-2 + eqq(3)-2 + eqq(4)-2);
eqq(l) eqq(l)/eqabs; eqq(2) = eqq(2)/eqabs; eqq(3) = eqq(3)/eqabs;
eqq(4) = eqq(4)/eqabs;

% ------------------------------------------------------------------%
% STEP 10: Recompute Hmat for the updated state vector %
% ------------------------------------------------------------------%
hl = ...

[eqq(l) eqq(2) eqq(3); eqq(2) -eqq(l) eqq(4); eqq(3) -eqq(4) -eqq(l)];
h2 = ...
[-eqq(2) eqq(l) -eqq(4); eqq(l) eqq(2) eqq(3); eqq(4) eqq(3) -eqq(2)];
h3 = ...
[-eqq(3) eqq(4) eqq(l); -eqq(4) -eqq(3) eqq(2); eqq(l) eqq(2) eqq(3)];
h4 = ...
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[eqq(4) eqq(3) -eqq(2); -eqq(3) eqq(4) eqq(l); eqq(2) -eqq(l) eqq(4)];

hO = [0 0 0; 0 0 0; 0 0 0];
hl 1 2*h1*vorb' ;
h2 1 = 2*h2*vorb' ;
h3 1 = 2*h3*vorb' ;
h4_1 = 2*h4*vorb' ;
h5 = [0 ; O· 0] ;,

Hmat = [hO hl_l h2_1 h3_1 h4_1 h5];

% ------------------------------------------------------------------%
% STEP 11: Update the perturbation covariance matrix %
% ------------------------------------------------------------------%
cmat = (eye(8,8) - Kmat*Hmat);

Pnew = cmat*Pupdate*cmat' + Kmat*Rmat*Kmat';

Pmat = Pnew;
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