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Abstract

Keywords: Dielectric Resonators, Radial Mode Matching, Whispering Gallery Modes

The aim of this investigation was to develop accurate modelling techniques to determine the res-

onant frequencies of dielectric resonators. These resonators could be simple dielectric posts, rings

or combinations of these two. To do this, a radial mode matching technique was implemented

and applied to a post resonator, a ring resonator and finally a combination of the two. The

resulting method was used to develop a model of a high-Q whispering gallery mode resonator

consisting of a post and a ring resonator combination with an spurious free region region.

Opsomming

Sleutelwoorde Dielektriese Resoneerders, Radiale Modale-Pas Tegniek, 'Whispering Gallery'

Modus

Die doel van hierdie navorsing was om 'n akkurate tegniek te ontwikkelom die resonante frekwen-

sie van 'n dielektriese resoneerder vas te stel. Hierdie resoneerders kon eenvoudige resoneerders,

ring resoneerders of kombinasies van die twee wees. 'n Radiale Modale-Pas tegniek is vir hierdie

doel geïmplementeer en is op 'n eenvoudige resoneerder, 'n ring-resoneerder en kombinasies van

die twee toegepas. Hierdie tegniek is dan gebruik om 'n hoë-Q resoneerder te ontwerp wat ge-

bruik maak van 'n 'whispering gallery' modus. In hierdie geval is die resoneerder 'n kombinasie

van 'n pil en 'n ring-resoneerder.
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Chapter 1

Introduction

Resonators are used in many applications, such as filters, oscillators and tuned amplifiers. The
most important characteristic of any resonator, aside from the resonant frequency, is the quality
factor, or Q-factor. The Q-factor of a resonator is a measure of the efficiency of energy retention
within a resonator, with a higher Q factor leading directly to a sharper phase transition of the
impedance around the resonant frequency, and a smaller frequency band of resonant behavior.
This phenomenon is also known as the selectivity of a circuit. For a detailed explanation of the
quality factor, the reader is referred to Appendix A

At frequencies below 1 GHz it is possible to use lumped element circuits, which are composed
of inductors and capacitors, as resonators. These can be implemented as either series or parallel
LC circuits. Although lumped circuit resonators with Q factors of 1000 or more can be designed,
they are only of real use at low frequencies as the properties of lumped element inductors and
capacitors change at higher frequencies, as well as the loss.

At higher frequencies, microwave resonators can be constructed from closed sections of wave-
guide. Commonly used microwave resonators are rectangular and cylindrical metallic waveguides
shorted at both ends. The electric and magnetic energy is stored in the cavity and power is mainly
lost in the metallic walls. The most commonly used waveguide modes are the dominant TElO1

mode in rectangular cavities, the T E1l1 mode in cylindrical cavities and the circular, low-loss
TEOll electric mode. Multiple modes can also be used in waveguide resonators, with dual-
mode and triple mode used most often, but 5 modes having been demonstrated. At microwave
frequencies the quality factor is proportional to volume. This means that in order to achieve
high Q resonators, these waveguide resonators become increasingly bulky, expensive as well as
impractical to manufacture.

In order to improve this aspect of waveguide resonators, scientists next filled them with a
homogenous dielectric material. For a given Q factor, the inclusion of a dielectric leads to a size
reduction of 1/ ~ of the dielectric filled waveguide resonator as compared to the size of an
empty waveguide [17]. As the Q-factor of dielectric materials became increasingly higher, the
main loss factor of resonators became due to conduction in the metallic shield. An early example

1
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CHAPTER 1 - INTRODUCTION 2

of this approach can be found in the work of George C. Southworth [27]. In his early investiga-
tions of the properties of cylindrical waveguides, he studied the behavior of these waveguides at
wavelengths of 123-300 cm. As the air-filled waveguide lengths were too long to be practical, he
proceeded to fill his waveguides with water e; = 80 which led to a size reduction by a factor 9.
The next development was to omit the metallic shield around the dielectric material, leading to a
reduction in conduction losses and a corresponding increase in radiation losses from the resonator
boundary. The first unmetallized dielectric objects (toroid) were investigated as resonators in
1939 by Richtmeyer [26]. In order to provide shielding for the radiation, a metallic boundary
was later placed at a distance of at least twice the largest resonator dimension away from the
actual dielectric resonator [10].

In the early 1960's, dielectric resonators were investigated in detail for the first time by
by researchers from Columbia University, Okaya and Barash [21], [22]. The resonators were
analyzed with respect to their resonant modes and resonator design. Extensive theoretical and
experimental evaluations of dielectric resonators were done by Cohn and his co-workers at Rantec
in the 1960s [10]. Other fundamental work on the behavior of dielectric filled waveguides and
resonators was done by Van Bladel [6], [5], and [4] The dielectric material that was used by
Cohn and other researchers at that time was Ti02 or rutile, which had a high permittivity
(e, ~ 100), but suffered from a very high temperature dependance. Ti02 has a relative change
of dielectric constant of about 1000 ppm/DC which translates to a relative frequency change of
500 ppm/Ï'C as compared to a temperature sensitivity of 20 ppm/DC for brass. This prevented
the practical implementation of these resonators. The years after 1960 were mainly concerned
with the development of better dielectric materials that had both high permittivities and were
temperature stable. The first of these were barium tetratitanate ceramics developed by Raytheon
[19] in the 1970's and barium tetratitanate with improved performance by Bell Labs [24]. These
materials led to the actual implementation of dielectric resonators, but were too expensive and
scarce to make these resonators commercially viable. The real breakthrough in this research
came with the development of (Zr-Sn)Ti02 by Murata Mfg.Co. from Japan [31]. Murata offered
adjustable compositions with temperature coefficients that could be varied from +10 and -12
ppm;aC. This allowed the design of commercially available dielectric resonators at reasonable
prices.

The quality factor of modern dielectric resonators (usually a dielectric post resonator enclosed
by a metallic sheath, which is placed at a distance from the dielectric) is limited by loss in the
material and radiation losses. Typical Q factors can exceed 10 000 at 4 GHz. Commercial
resonators, usually operating in TE and TM modes, have low quality factors when wavelengths
approach the far infrared range. As the frequency increases, conventional dielectric resonators
also become too small to be used effectively.

Dielectric resonators operating in hybrid modes avoid many of these problems. Whispering
gallery modes are a family of hybrid modes that have a high angular variation. These modes were
discovered in the field of acoustics by Lord Raleigh and were first investigated in resonators by J.
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Figure 1.1: A comparison of cavity Q factors between different modes [is}

Arnaud in 1981 [29], demonstrating the possibility of using larger resonators at higher frequencies
with an improvement in the Q factor. Whispering gallery modes are desirable as they have low
external radiation, and the Q factor is mainly limited by the dielectric properties of the resonator
itself. This means that the achievable Q factor can be very close to Q = (tan 8)-1 if a proper
whispering gallery mode has been established in the resonator, tan (8) being the loss tangent of
the material.

The improved quality factor of resonators operating in whispering gallery modes was clearly
demonstrated by Vedrenne and Arnaud [291. In his paper, the intrinsic quality factor, Qi = 40~OO

was determined to be 8800 at 4.5 GHz, and the measured Q factor was 7070 at this frequency.
Another investigation into the quality factor of these modes was made by Ji [151. The simulated
Q factors are shown in Figure 1.1. The figure was derived by using an simplified resonator
model and implementing it using a finite-element program. In this figure modes that had a field
distribution close to that of a TE mode were labelled TE, while modes which closely resembled
TM modes were labelled TM. Modes that resembled neither were labelled as mixed modes. The
figure clearly demonstrates the high Q factors that can be achieved using whispering gallery
mode resonators.

Recently, whispering gallery modes have been used to design resonators with high Q factors,
that are large enough for use at high frequencies. However, these resonators were hampered by
their relatively small spurious free regions (SFR). The spurious free region can be defined as
the frequency interval between the desired resonant mode and the nearest mode adjacent to it.
Larger spurious free regions are essential in systems covering wider bandwidths. To improve the
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CHAPTER 1 - INTRODUCTION 4

spurious free region, different layered structures were implemented by Annino [1], Han [12] and
Peng [23]. Both Annino and Peng made use of resonators placed above one another, centered
around the z-axis. This is illustrated in Figure 1.2, where Figure 1.2(a) shows the approach by
Peng and Figure 1.2(b) shows the approach by Annino. In Figure 1.2(b), the left hand figure
shows the resonator with the central layer uncoupled from the outer layers, and the right hand
figure shows the resonator with the central layer in direct contact with the outer layers. Peng
concentrated mainly on the coupling between the two resonators. Annino discussed how an ultra
wide-band resonator could be designed, whose effective frequencies differed by a factor of 20 or
more.

The paper by Han [12] used a different approach, however. As can be seen in figure 1.2(c),
a simple resonator was placed asymmetrically inside a ring resonator which was coupled to a
straight waveguide. In this case, the frequency spectrum of the simple resonator and the ring
resonator were measured individually. The SFR of the coupled structure was much larger than
both the SFR of the simple resonator and the ring resonator. In fact, the SFR of the coupled
resonator increased four times as compared to the disk resonator and seven times compared to
the ring resonator. This remarkable achievement clearly demonstrates the advantages of using
layered structures in improving the SFR.

The proposed structure is shown in Figure 1, consisting of a simple pill resonator enclosed
by a ring resonator. Both resonators are centered around the z-axis. By using two resonators of
different topologies, the frequency spectrum of the two will only overlap at the design frequency,
hopefully creating a larger SFR. This thesis presents a mode matching technique for the analysis
of layered dielectric resonating structures and can easily be generalized to any number of radial
and axial layers. A similar technique is presented by Wang [30]. The analysis technique is further
used to try to design a resonator with an improved SFR. Since the focus of this project is on
the interaction of the dielectric resonators, the metallic sheath is moved far enough away from
the ring resonator to have a minimal effect on the resonating frequency. It is important to note
that the length, l2, of the ring resonator can be shorter than that of the post resonator. The
shaded regions in Figure 1, consisting of the pill resonator and the ring resonator, is modelled
as an isotropic material with a high relative permittivity, Er 2:: 30, and a permeability, J-L, equal
to the permeability of free space. Figure 1 shows the equivalent circuit diagram of the proposed
structure. The two parallel branch structures represent the post and the ring dielectric resonator
respectively where each branch represents an individual resonance of the resonator. The ideal
transformer, represented by M, models the coupling between the two resonators. Depending on
which way the structure is feed and coupled into, the positions of the source and load could differ
from what is shown here.
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CHAPTER 1 - INTRODUCTION 8

This thesis is structured as follows:

Chapter 2 introduces some basic resonator concepts. The first section deals with parallel RLC
resonators. These resonators are discussed with reference to their Q-factor, bandwidth and ad-
mittance. Following this the fields that can exist in cylindrical structures are derived and applied
to a simple cylindrical waveguide resonator. To design an appropriate resonating structure, a
modelling technique has to be developed to derive the resonant frequencies of the combined
structure. The first step is to gain an understanding of the type of fields that can exist in the
individual regions and at what frequencies the individual elements will resonate.

These aspects are addressed in Chapter 3. In this chapter the fields that can exist in dielectric
loaded and stratified waveguides are derived. Several modelling techniques are investigated and
the main technique that was implemented, radial mode matching, is discussed in detail. The
results of the implementation of radial mode matching are discussed with respect to convergence
and accuracy. Radial mode matching is expanded to a structure with multiple radial boundaries,
which enables us to investigate the final proposed structure. Then axial mode matching is
investigated and the dielectric loaded waveguide is implemented.

Now that all the necessary theory has been developed, a resonator design can be developed
and is discussed in Chapter 4. A special emphasis is placed on comparison between the SFR of
the combined structure and the SFR of the individual decoupled resonators (post and ring). The
last chapter, Chapter 5, summarizes the research done in this report and makes recommendations
of future areas of research.
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Chapter 2

Resonators

This chapter introduces simple resonator concepts. First the parallel RLC circuit is discussed.
It can be used as a rough model for most dielectric resonator circuits and is useful in explaining
resonator parameters such as the Q factor and bandwidth. Following this, the cylindrical wave-
guide cavity resonator is presented. This is the simplest cylindrical waveguide resonator and can
be modelled analytically. Many of the electromagnetic principles that are used in later chapters
are introduced here. The fields that can exist in cylindrical structures are derived in a general
form and then applied to a cylindrical waveguide cavity, then the admittance and Q factor at
resonance are investigated.

2.1 Parallel Resonant Circuits

A simple resonant circuit, that demonstrates many of the qualities of cylindrical resonant cavities
and dielectric resonators, is the parallel resonant circuit. It is made from discrete components
and is used for applications operating below a frequency of 200 MHz. A circuit of this type is
shown in Figure 2.1. The circuit is investigated with respect to its admittance, quality factor
and bandwidth. The input admittance of this circuit, Y, can be written as

(2.1)

where R = l/G. The complex power delivered to the resonator is

(2.2)

I 2 I I
= - I V I (- + - + ]wC)

2 R ]wL

and the power dissipated in the conductance G is

(2.3)

9
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+

Y -. v(t) G

Figure 2.1: Discrete components resonator [16J

The average electric energy stored in the capacitor, C, is

(2.4)

and the average magnetic energy stored in the inductor, L, is

w; = ~ 1 I 12 t.= ~ 1 V 12 _1_
m 4 I 4 w2£

where Il is the current flowing through the inductor. By substituting Equations 2.3, 2.4 and 2.5

(2.5)

into Equation 2.2, one can derive the following equation:

Pc = Ptoss + 2Jw(Wm - We) (2.6)

The input admittance can be re-written as

y = 1 I 1
2 /2 = 1 I 1

2 /2
Ptoss Ptoss + 2Jw(Wm - We)

(2.7)

Resonance occures when Wm = We where the complex power delivered to the circuit as described
in Equation 2.6, is real and at a maximum. This also means that Y = G and the admittance is
purely real.

One can prove that if Wm = We that

1
Wo = .;re (2.8)

and the Q factor is defined as

Q = Wo(average energy stored) = WoWm + We = 2We = woRe
(energy loss/second) PI Ploss

(2.9)

The bandwidth, defined by the two frequency points a which the power delivered to the resonator
is one half of that delivered at resonance, is solved as B = b [25]. Refer to Appendix A for a
more general discussion of the quality factor and bandwidth.
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b(w)

w

Figure 2.2: Susceptance of parallel resonant circuit [16J

If the susceptance, b, as defined in Equation 2.1 is plotted as a function of w, one obtains a graph
as is shown in Figure 2.2. Two important facts can be seen from this figure. The parallel RLC

circuit only has one resonance which corresponds to the susceptance zero-crossing. The gradient
of the susceptance with respect to frequency can be derived as

d(b) = C+ _1_
dw w2L

(2.10)

Q can be written as

Q_ RC -R re
- J(LC) - YL (2.11)

and can be increased by increasing C or decreasing L. The same is true of the gradient of the
susceptance. Therefore it is true to say that an increase in the quality factor usually corresponds
to an increase in the susceptance gradient (in this case an increase in R also increases the Q

factor without affecting the susceptance). This means that if a circuit has a high quality factor,
the resonant behavior of the circuit decreases more sharply for small frequency changes from
resonance than in other circuits with lower quality factors.

If this parallel RLC circuit is now connected to an external circuit as is shown in Figure 2.3, it is
possible to define two separate Q factors: Qo = WOCRL of the internal circuit and Qe = woCRe
of the external circuit. The total Q factor of the circuit, QL, can be solved as

(2.12)
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Figure 2.3: Parallel RLC resonant circuit with an external load [25J

It is easy to prove that the quality factor is dominated by the individual quality factor defined
by the the largest loss. In the previous equation, if Rl >> Re, then Ql ~ woC Rl. Similarly, if
Re » Rl, then Ql ~ woCRe. For more information on the loading effects of individual quality
factors, refer to Appendix A. In the next section the theory of lossless cylindrical waveguide
resonators is developed.

2.2 Cylindrical Waveguide Resonators

In order to investigate the behaviour of cylindrical waveguide cavities, it is necessary to derive
the electric and magnetic fields. Using these fields it is then possible to investigate the internal
power dissipation, stored energies and energy flow out of the cavity. A typical cylindrical cavity
is shown in Figure 2.4. The first part of this section is concerned with deriving general equations

z

Figure 2.4: A cylindrical resonant cavity [25J
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CHAPTER 2 - RESONATORS 13

for electric and magnetic fields in cylindrical structures. Then the specific fields that can exist in
a cylindrical resonator (TE and TM) are examined. Finally, the admittance and quality factor
are investigated.

2.2.1 Fields in Cylindrical Structures

The derivation that follows is based on the work stated in Harrington [131. The following
Maxwell's equations define the electric and magnetic fields for the time-harmonic case in a
source-free, homogenous region:

'VxH = JWEE

'VxE -Jw/-LH

'V·H 0

'V. (ErE) 0

(2.13)

The relative permittivity, Er, is defined as

Ec E - J~ E a I "
Er = - = -- = - - J- = E - JE

EO EO EO WEo
(2.14)

where Ec is the complex dielectric constant of the material and EO= 8.854 X 10-12 farad/meter
is the permittivity of free space. Since we are assuming a loss-less material in the interior of the
cylindrical cavity, the conductivity a = 0, and E = EOEr. The relative permeability is defined as

/-L/-Lr=-
/-Lo

(2.15)

where /-La = 471"x 10-7 henry/meter is the permeability of free space. We are assuming a non-
magnetic material and therefore /-L= /-La is the permeability of the material and w = 271"f.

To simplify the problem, the concept of duality is introduced. Two vector potentials are
defined which correspond to electric type and magnetic type field excitations. They are A, the
magnetic vector potential and F, the electric vector potential. A is defined by

(2.16)

and similarly, F is defined by

(2.17)

Both potentials give rise to separate electric and magnetic fields. The total electric and magnetic
fields in a structure can be derived as the summation of individual fields as follows:

E = El +E2

H Hl +H2

(2.18)
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CHAPTER 2 - RESONATORS 14

To define A uniquely, the Coulomb gauge is used and V . jf = 0 is assumed for the source free
region. jf can be solved as

(2.19)

using Maxwell's equations, and the fields generated by A are given as

1 --V x VxA
]W€

VxA

(2.20)

(2.21)

Using duality, similar equations can be derived for the fields generated by F and the total fields
can be derived from Equation 2.18 as:

E = - V x F + _I_V x V x A with V2 A + ",2A = 0
]W€

H = V x A + _I_V x V x F with V2 F + ",2 F = 0
]WJ.1

(2.22)

This report deals with fields in cylindrical structures. Therefore the co-ordinate system indicated
in Figure 2.5 was used.

Figure 2.5: Cylindrical Co-ordinate System {2S}

In cylindrical co-ordinates, we choose

(2.23)

(2.24)
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where wa and wJ are arbitrary scalars. This leads to the scalar Helmholtz equation by sub-
stituting Equation 2.23 into (\72 + K2) jf = 0 and Equation 2.24 into (\72 + K2) F = O. The
Helmholtz equation for cylindrical co-ordinates is given by

(2.25)

In this equation W can represent either wa or wJ. The electric and magnetic fields can be solved
by substituting Equation 2.23 and Equation 2.24 into Equation 2.22. The field components are:

Ep
1 82 wa 18wJ

(2.26)= -------
]Wf.8p 8z p 8¢

E",
1 1 82 wa 8wJ

(2.27)= ----+-
]Wf. p8¢ 8z 8p

Ez 1 (8
2

2) wa (2.28)= - -+K
]Wf. 8z2

Hp
1 82 WJ 18wa

(2.29)---+--
]wf.L8p 8z p 8¢

H",
1 1 82 WJ 8wa

(2.30)= -------
]wf.Lp8¢ 8z 8p

1 (8
2

)Hz = - _+K2 wJ (2.31)
]Wf.L 8z2

Equation 2.25 defines two separate sets of solutions for the electromagnetic fields. If wa = 0, one
can see from Equation 2.28 that Ez = O. These modes are also known as transverse electric or
TE modes. Similarly, setting WJ = 0 results in Hz = O. These modes are defined as transverse
magnetic or TM modes. The two cases are normally treated separately.

The partial differential equation, Equation 2.25, is reduced to a set of ordinary differential
equations by separation of variables.

If we let W = R(p)Ip(¢)Z(z), Equation 2.25 can be written as

p 8 (8R) 1 81p 8Z 2li 8p p 8p + p2 8¢2+ 8z2 + K = 0 (2.32)

This equation can then be split into

o (2.33)

o (2.34)

o (2.35)
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Equation 2.35 can be re-written as

d2R 1dR ({32 2/ 2)-+--+ -n pdp2 pdp
(2.36)

The solutions to these partial differential equations are well known. They are given by

Z(z) =
or

(
cosh (V) )

sinh ('yz)

(2.37)

e±:rn4>

or
<I>(¢)

( cos(n¢) )
sin (n¢)

( J"(~p) )
Yn({3p)

R(p) = or

( H!.I)(~p) )
HÁ2) ({3p)

(2.38)

(2.39)

(2.40)

If 'Y becomes imaginary,

(2.41 )

and Z(z) can be derived as

Z(z) =
or

(
cos(V) )
sin ('yz)

(2.42)

It is now possible to solve for cylindrical fields in terms of functions that are only dependant on
one co-ordinate, namely R(p), <I>(¢) and Z(z), where the specific combination is determined by
the problem at hand. The method used to solve for these fields is to find functions R(p), <I>(¢)
and Z(z) that satisfy the specific boundary conditions, substitute them into Equation 2.32 and
solve for the individual fields components using Equations 2.26-2.31.
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At this point the previously derived general equations can be applied to a specific cylindrical
cavity as shown in Figure 2.4. According to convention, the modes in cylindrical waveguide
cavities are labelled according to the number of field variations along the respective axes of
symmetry. Each mode is labelled as either T Enml or T Mnml where n refers to the number of
circumferential (¢) variations, m refers to the number of radial (p) variations, and l refers to the
number of axial (z) variations. The TE and TM fields are dealt with separately.

2.2.2 TE fields

For TE fields, \Ila = 0 and from Equations 2.26 - 2.31 we can write the cylindrical cavity fields
as

Ep
1o\Il!

----
P o¢

E",
o\Il!
op

Ez = 0

(2.43)

Hp
1 02 \II!--_

)Wf..LOp oz

H",
1 1 02 \II!
-----
)Wf..LPO¢OZ

(2.44)

From Equations 2.37, 2.38 and 2.39,

\II! = Z(z)<P(¢)R(p) (2.45)

= (A cos (/'z) + B sin (/'z)) * (C cos (n¢) + D sin (n¢ )) * (E Jn ((3p) + F Yn ((3p) )

The magnetic fields are now given by

)W f..LHp = (3.,,( - A sin (/'z) + B cos (/'z)) * (C cos (n¢) + D sin (n¢ ))

*(EJ~((3p) + FY~((3p))

)pwf..LH", = n-y( -A sin ('Yz) + B cos (/'z)) * (-C sin (n¢) + D cos (n¢))

*(EJn((3p) + FYn((3p))

) WH z (32 (A cos ('Yz) + B sin (/'z)) * (C cos (n¢) + D sin (n¢ ))

*(EJn((3p) + FYn((3p))

(2.46)

(2.47)

(2.48)
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and the electric fields are given by

pEp = n(Acos (lz) + B sin (lz)) * (-C sin (n¢) + D cos (n¢))

*(EJn(f3p) + FYn(f3p))

(2.49)

13 (A cos ("(z) + B sin ("(z )) * (C cos (n¢) + D sin (n¢ ) )

*(EJ~(f3p) + FY~(f3p))

Ez = 0

(2.50)

Now we have to consider the boundary conditions. At z = 0 and z = d, the tangential electric
field must be zero. Therefore, A=O and

Bsin (Id) = 0 (2.51)

This means that

"(d = in for i = 0,1,2,3, ..... (2.52)

The problem can be further subdivided by having either an electrical wall or a magnetic wall
at ¢ = 0, leading to two sets of solutions that are referred to in this report as LEC and LMC,
for Longitudinal Electric Condition or Longitudinal Magnetic Condition respectively.
Therefore, for LEC at ¢ = 0, H",(p, z, ¢ = 0) = H",(p, z, ¢ = 2n) = 0 and for LMC at ¢ = 0,
Hz(p, z, ¢ = 0) = Hz(p, z, ¢ = 2n) = O. This gives D = 0 for LEC solutions and C = 0 for LMC
solutions.

Now consider the p dependency. Since p = 0 is a point at which the fields must exist, F must
be zero as Yn(f3p) = 00 at p = O. At P = a, the tangential electric fields must be zero. Ez is zero
from the definition of TE fields. Therefore, it is left to solve for E", = ~ = O. For this to be
true,

d(Jn(f3a)) = J' = 0
dp n

The roots of J~(x) = 0 are defined as r~m' where J~(r~m) = 0 and r~m is the mth root of J~.

(2.53)

This means that
I

/3 - rnm
nm -

a
(2.54)

where the axial propagation constant is defined as "(2 = 132 - ",,2. Therefore,

(2.55)

and x = wy1IË.

Finally, this gives the resonant frequency as

f c (r~am) 2 + (idn) 2nml = 2 /"ïI7"
ny J..LrEr

(2.56)
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where n = 0, 1,2, .., m = 1,2,3, ... and l = 1,2,3, .... The frequencies defined by this equation are
the resonant frequencies of the respective T Enml modes that can exist in the cylindrical cavity.
The final wave equation can be written as

for LEC solutions, where K = BGE, or

lTd = K sin (l; z) sin (n¢) In(:m p)

for LMC solutions, where K = BDE. Only LMC exists for n=O.

The final magnetic fields are now given by

r' In In r'
K ~m d' cos (d'z) cos (n¢)J~( ~m p)

In In. r'
-Knd' cos (d'z) * sin (n¢)Jn( ~m p)

(
r' ) 2 In r'K ~m sin (d'z) * cos (n¢)Jn( ~m p)

for the LEC case, where K = BG E or

r' In In r':
= K nm - COS (-z) sin (n¢)J~( nm p)

add a
In In r'.

Knd cos (dz) cos (n¢)Jn( ~m p)

(
r' ) 2 In r'K ~m sin(d'z)sin(n¢)Jn( ~mp)

for the LMC case, where K = BDE.

The final electric fields are given by

Knsin (l; z) sin (n¢) In (:m p)

r'ruti In r'= K-- sin (-d z) cos (n¢)J~( nmp)
a a

o

(2.57)

for LEC and

In r'pEp -Knsin (d'z) cos (n¢)Jn( ~m p)

r'nm In r'E¢ K-- sin (-d z) sin (n¢)J~( __!!!!lp)
a a

Ez = 0

(2.58)

for the LMC case.
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2.2.3 TM fields

For TM fields, wI = 0 and from Equations 2.26 - 2.31 we can write the cylindrical cavity fields
as

1 a2 Wa
---
]W€ ap az

1 1a2 wa
----
]W€ pa¢ az

(2.59)

(2.60)

Ez 1 (a
2 2) wa= - -+1\:]W€ az2

Hp
1awa

= p a¢

H¢
awa

ap

(2.61)

(2.62)

From Equations 2.37, 2.38 and 2.39 we can write

wa = Z(z)iP(¢)R(p) (2.63)

(A cos (')'Z) + B sin (rz)) * (C cos (n¢) +D sin (n¢)) * (E In((3p) + F Yn((3p))

The electric fields are given by

]w€Ep = (3,(-Asin(rz) +Bcos(rz)) * (Ccos(n¢) +Dsin(n¢))

*(EJ~((3p) + FY~((3p))

]pw€E¢ n,( - A sin (')'Z) + B cos (rz)) * (-C sin (n¢) + D cos (n¢))

*(EJn((3p) + FYn((3p))

]w€Ez (32(A cos (rz) + B sin (rz)) * (C cos (n¢) + D sin (n¢))

*(EJn((3p) + FYn((3p))

(2.64)

(2.65)

(2.66)

and the magnetic fields are given by

n (A cos (, z) + B sin (, z )) * (- C sin (n¢) + D cos (n¢ ))

*(EJn((3p) + FYn((3p))

- (3(A cos (r z) + B sin (r z )) * (C cos (n¢) + D sin (n¢))

*(EJ~((3p) + FY~((3p))

Hz 0

(2.67)

(2.68)
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As before, we now consider the boundary conditions. At z = 0 and z = d, the tangential electric

field must be zero and A=O. Consequently

Bcos (Id) = 0 (2.69)

and

"'(d= In for l = 0, 1,2,3, ..... (2.70)

The problem can again be further subdivided by having either an electrical wall or a magnetic

wall at <jJ = O. For LEC at <jJ = 0, Ez(p, z, <jJ = 0) = Ez(p, z, <jJ = 2n) = 0 and for LMC at <jJ = 0,

Hq,(p, z, <jJ = 0) = Hq,(p, z, <jJ = 2n) = O. This gives G = 0 for LEC solutions and D = 0 for LMC

solutions.

Only LMC fields are considered in the rest of this section. Therefore, D = O. Considering

the p dependency it is possible to solve for R(r). Since p = 0 is a point at which the fields must

exist, constant F must be zero as Yn((3p) = 00 at p = O. At P = a, the tangential electric fields

must be zero. For this to be true,

(2.71)

The roots of In(x) = 0 are defined as Tnm» where In(rnm) = 0 and rnm is the mth root of In.
This means that

(3 - rnmnm -
a

The axial propagation constant is defined as "'(2 = (32 - ",2. and

(2.72)

- V 2 (rnm)"'(- '" - -
a

where", = w"fïii. This gives the resonant frequency as

(2.73)

c (rnam)2 + (ldn)2fnml = 2 rtrz:nv f..LrEr
(2.74)

where n = 0,1,2, .., m = 1,2,3, ... and l = 0,1,2,3, .... The frequencies defined by this equation

are the resonant frequencies of the respective T Mnml modes that can exist in the cylindrical

cavity. The final electric fields (LMC) are given by

where K = BGE, and the final magnetic fields (LMC) are given by

Kncos (l; z) sin (n<jJ)In (:m p)

rnm (In) ( I Trvm.-K-- sin -d z cos n<jJ)Jn(-p)
a a

o

(2.75)
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Now that the TE and TM fields of a cylindrical cavity have been derived, two aspects of res-
onators, the admittance and quality factor, are discussed.

2.2.4 Admittance

For a simple, lossless, airfilled cavity, where E = EO and CT = 0, the time-average stored electric
energy in a volume, V, can be written as [251

(2.76)

and

(2.77)

The Poynting vector can be defined as S = Ex H which has units of power density (watts/m2).
The total power, Pe leaving a volume V bounded by a surface, S, can now be written as

Pe = fis (E x H)· s = li S· as (2.78)

For time-harmonic electromagnetic fields, the time-average Poynting vector is given as

1 - -*s: = '2Re[E x H 1 (2.79)

We can write the complex power leaving a point as

\7 . (E x H*) = H*· \7 x E - E . \7 x H*

= -Jwf.-ll H 1
2 +JWE 1 E 1

2

(2.80)

This can be re-written in integral form as

The current, I, is defined as

1= iH.as

and the voltage, V, is defined by

v= iE.as

(2.81 )

(2.82)

Therefore we can write the complex power flow as

Pi = 1ft - -*- ExH·as2 cl/rr -* -'2 } So H . (Ti x Eds)

vr
=

2

(2.83)
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where TL is the unit normal vector to the metallic boundary and So is the surface of the cylindrical
resonator. Using this information, and substituting the average stored electric and magnetic
power into Equation 2.81, one can derive the following equation:

VI*
-2- = J2w(Wm - We) (2.84)

This means that the admittance, Y, of a cylindrical resonator can be solved as

y I
V

= -Jb

J4w(Wm - We)

(2.85)

From the previously derived TE and TM fields of a cylindrical cavity resonator, it is easy to prove
that We = Wm at resonance and therefore the admittance due to loss in the cavity of a cavity
resonator filled with a lossless material is zero. Of course, in a physical circuit there will still be
loss due to conduction in the metallic sheath, and coupling losses. Therefore, at resonance, the
admittance will have a certain real component.

If the cavity is filled with a homogenous dielectric material with E = ErEQ and the conductivity
a#- 0, rhe complex power leaving a point now becomes

\7 . (E x H*) = H*· \7 x E - E . \7 x H*

= -a 1 E 12 -JWf.-L 1 H 12 +JWE 1 E 12
(2.86)

and is rewritten as

1Ii - -*- ExH·dS2 c
(2.87)

Finally, the admittance is written as

y =
I

(2.88)
V
G -Jb

= 1 V 1-2 [JJi al E 12 dv + J4w(Wm - We)]

where the term containing a represents the dielectric loss. The power lost in the conducting
metallic sheath is discussed in the next section which deals with the individual quality factors
which can be defined in the cylindrical cavity that correspond to different types of loss.
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2.2.5 Quality Factor

We know that

Q = wo(We +Wm)

Pt
(2.89)

If the cavity is filled with a lossless dielectric, the losses that occur are due to conduction at the
metallic boundary, and due to radiation into the external region. To solve for the conduction
losses in the metallic sheath, it is necessary to solve for the power loss in the conducting walls.
This is equal to [25]

1 ii - -*- Re (E x H ) . 'iids
2 e

~Re Jl(n x E) .H*ds
2 lie
~Re Jl(rtH) .H* ds
2 lie

(2.90)

where n is the unit normal vector to the metallic boundary and

rt= I¥
Therefore

r; = Re(rt) Jl 1 H 12 ds
2 lie

(2.91)

(2.92)

and

Re(rt) = Re [(1+J)f;ff] = f;ff = tt, (2.93)

We now substitute this back into Equation 2.90 and derive the following equation for power loss
through conduction at the metallic boundary:

(2.94)

From Pozar [25] the conducting quality factor for the TEnml mode, Qe, can be written as

r:
(lia)3'Ylad 1_ _.!!._

2
" ~~~ ~~rn~m~ ~

4(Tnm)2 u, {a2d [1 + ((~:n)2 ) 2] + (f:~)2 ( 1 - (r2~)2 ) }

(2.95)

=

If the dielectric material filling the cavity is not lossless then E/I =/:. 0 as defined in Equation 2.14,
and it is possible to define a quality factor due to power dissipation in the dielectric, Qd. The
power dissipated in the dielectric is given by [25]

(2.96)
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Therefore we can solve for Qd as

(2.97)

where tan ó = ~ is defined as the loss tangent. As discussed in Section 2.1, the total quality
factor is therefore

1 1 1-=-+-Q o, Qd
(2.98)

Note that it is assumed that losses in the metallic enclosure are small enough not to affect the
E and H-field distribution.

2.3 Conclusion

This section has discussed the resonator characteristics of cylindrical cavities which are either air-
filled or filled with a homogenous dielectric material. To model a dielectric resonator one needs
to investigate the behavior of cylindrical cavities that are only partially filled with a dielectric
material. As soon as the material in the cavity is not homogenous, it is not longer possible to find
an analytical solution for the structure. This means that some type of modelling technique has
to be used to numerically solve for the resonant frequency and field distribution of the resonator.

Chapter 3 is concerned with developing the specific modelling technique that was used to in-
vestigate layered dielectric resonators. Sincemode matching techniques are the dominant method
used, the discussion centers around them, although other modelling techniques are briefly men-
tioned. Of the two main mode matching techniques, axial and radial mode matching, radial
mode matching was chosen for the final implementation. In the process of developing the neces-
sary building blocks for mode matching, the fields in dielectric loaded waveguides and two layer
stratified waveguides are derived. Since the fields that exist in dielectric loaded waveguides can
provide useful insights concerning the final field distributions in dielectric loaded resonators, the
implementation is discussed in more detail.
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Mode Matching

3.1 Introduction

A dielectric resonator normally consists of a cylindrical waveguide cavity into which a dielectric
material is placed. The material in the cavity is therefore no longer homogenous, and it is no
longer possible to model the fields in such a structure easily. A simple example of a dielectric res-
onator is a cylindrical air-filled metallic cavity into which a dielectric pill resonator is introduced,
as is shown in Figure 3.1.

This chapter discusses modelling techniques developed to investigate dielectric resonators.
Generally, they can be divided into different categories depending on the way that the electro-
magnetic fields are defined in the model and what mathematical approach is implemented. Most
articles only investigate these modelling techniques as applied to simple dielectric structures.
The techniques described in this chapter will focus on the structure shown in Figure 3.1. In
the section on radial mode matching, this technique is expanded to layered dielectric resonating
structures.

Several simple methods for the modelling of dielectric resonators in the absence of conducting
boundaries exist. Well-known methods are the models by Cohn, and that by Itoh and Rudokas.
In the Cohn model, the walls of the dielectric resonator are replaced by a perfect magnetic wall
(PMC). The fields calculated by this method can be up to 20% off the measured values and are
not very useful for practical purposes. Several refinements of this model have been investigated.
Results as accurate as 4.8% have been achieved and perturbational corrections to the Cohn model
can improve accuracy to 0.5% for unshielded resonators [10]. Unfortunately the perturbational
model is not as accurate for shielded resonators with discrepancies up to 1.5% [16]. In the Itoh
and Rudokas model, a dielectric rod waveguide is modelled [14].

The fields in these simple models are only approximations of the true fields and the models are
generally too inaccurate to give meaningful results. Rigorous techniques have been developed,
which are capable of giving results with errors of 1 % and less. In this case, the solution

26
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that is calculated converges towards the ideal answer as the number of field approximations
in the resonating structure approaches infinity. Rigorous techniques are defined as methods
where the solution that is calculated converges towards the ideal answer as the number of field
approximations in the resonating structure approaches infinity. Practically, only a finite amount
of approximations is used, and the solution converges towards the ideal value as the number of
approximations increases.

Rigorous techniques can be subdivided according to the way in which fields are defined in the
resonator regions. Partial Region Methods (PRM), define the fields in each individual resonator
section. This means that the resonator is divided into radial or axial sections which can be mod-
elled as homogenous waveguides, dielectric loaded waveguides or layered stratified waveguides,
depending on the way the regions are defined. The most common method used to model shielded
dielectric resonators is the mode matching technique. Other methods such as finite-element and
finite-difference methods are used to solve for the resonant modes without subdividing the res-
onator into sections. The governing differential equation is either approximated in terms of finite
differences over the whole resonator cross section or the unknown field is expanded in terms
of finite elements. These methods have only been applied for axisymmetric modes. It is also
possible to apply Green's free-space function in various surface or volume integration methods.

In all rigorous methods, the fields used satisfy Maxwell's equations. This gives us the following
equations for the electric and magnetic fields that hold for all regions of the resonator:

'\1xH = JWEE (3.1)

'\1xE -Jwf-LH

'\1·H = 0

'\1 . (ErE) 0

Following the derivation in [16], the operators Land M can be defined:

L~ [~x v~ 1
M ~ [~o"j ~1

(3.2)

(3.3)

(3.4)

where i is the identity tensor of rank two.
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A

z=o
(PEC/PMC)

(a)

Lf2

z=o
(PEC(PMC)

(b)

28

Recion A : 0 ~ z S tl2
Recion B : l/2 S & ·SL/2

RtcionA:OSr$G

RqiooB:.S"S·

Figure 3.1: A symmetric dielectric loaded resonator divided into two regions with an (a) axial

boundary at z = l/2 and a (b) radial boundary at p = a. As defined in the text, Er = Erl and

E~ = Er2 [9J
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Using these operators, we can now rewrite Equation 3.1 as

fixE

(3.5)

where S represents a PEC cavity with unit normal fi.

The operators Land M are self-adjoint with the inner product given by [16]

(3.6)

For mode matching, the solution ¥ can be written as the following series

(3.7)

where aj are constant coefficients to be determined and lj are suitable basis functions. If this
sum is now substituted into Equation 3.5 and the inner product is taken with respect to ii where
i = 1, ... ,N, one can derive the followingmatrix eigenvalue equation:

L 2:= ajlj
j

(li' Llj)a

]wM2:=ajlj
j

]w(li' Mlj)a

(3.8)

where a = [al a2 a3 ... aN]'. If a complete set of basis functions lj is used, exact solutions to
the original problem can be obtained. In other words, one lets N -+ 00. The resonant frequencies
of the resonator are determined from the eigenvalues lW.

In mode matching methods, the resonating system is divided into a number of regions regular
enough to be solved by separation of variables of the wave equation. The fields in each partial
region are represented by a series of appropriate waveguide modes with unknown coefficients.
Adjacent fields are matched at the boundaries to satisfy continuity conditions, and an infinite
system of simultaneous linear equations is obtained. This system has non-trivial solutions when
the determinant is zero. The resonant frequencies can be found by truncating the system to a
finite NxN matrix and searching for the zeros of the determinant. Mode matching techniques can
be divided into different categories depending on how the regions in the structure being modelled
are defined. The two most prominent methods are axial (longitudinal) and radial mode matching.
These methods can be discussed with reference to Figure 3.1.

For radial mode matching, the resonating structure is divided into regions which have radial
boundaries. This means that a simple dielectric resonator as is shown in Figure 3.1, will be
divided into a two-layer stratified waveguide with radius a and bounded by 0 :S z < l/2 and a
hollow homogenous waveguide bounded by a < p :S b and bounded by l/2 :S z < L/2. Note
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that due to symmetry, the plane at z = 0 is modelled as either a perfect electric conductor
(PEC) or as a perfect magnetic conductor (PMC). Therefore only half of the structure needs to
be modelled as long as the fields in the structure satisfy the imposed boundary conditions. The
fields in the inner region are those of in the two-layer stratified waveguides and the fields in the
outer annular region are simply those of a cylindrical resonator where special attention has to
be given to the definition of the radial function, R(p). It is important to note that the solution
in all of the regions can be written in terms of pure TM or TE modes. This is not the case for
axial mode matching, as will be seen below.

In axial mode matching, the resonating structure is divided into regions with axial boundaries
and the simple dielectric resonator, will be divided into a dielectric loaded waveguide waveguide
bounded by 0 ::; z < l/2 with radius p = b and a hollow homogenous waveguide bounded by
l/2 < z ::; L/2 with radius p = b. Again, the plane at z = 0 is modelled as either a perfect
electric conductor (PEC) or as a perfect magnetic conductor (PMC) The fields in the dielectric
loaded waveguide waveguide are the same as those derived in Section 3.3.1 and the fields in other
region are those of a cylindrical air-filled resonator bounded by l ::; z ::;L.

When deciding which mode matching technique to implement the following issues were investi-
gated: speed of convergence, implementation of hybrid modes and the ease of integration of the
necessary field equations at the boundary.

Convergence It was shown by Kajfez [16], that for radial mode matching, the modes converge
very slowly if their electric field components are very strong and singular at the edges
of the dielectric resonator. The same was assumed to be true for axial mode matching
applied to fields with a strong radial component. It was speculated that the reason for
these observations was that in both cases an attempt was made to represent potentially
singular functions in terms of continuous waveguide modes. From this information one
can conclude that depending on which type of mode is to be investigated one method
will be more effective than the other. However, since the aim of this investigation was to
implement a general mode matching method to be applied to all modes, this argument was
not considered to be important.

Complex Modes Axial mode matching techniques will result in resonator sections that are
modelled as dielectric loaded waveguides. It has been found by Chen [8], that for certain
frequencies, complex hybrid modes with complex propagation constants can exist in the
case of infinite dielectric loaded guides as shown in Figure 3.11. When solving for the
resonant frequency by matching axial modes at the boundary of a resonator, it is necessary
to include these modes in the solution, as they have been shown to be linearly independent
of all other propagating and evanescent modes and therefore constitute part of the com-
plete set of solutions. Ignoring complex modes would lead to a violation of complex power
conservation across the discontinuity and in the actual implementation, certain resonant
modes can be missed. With the inclusion of complex axial propagation constants "f, one is
left with fields that have Bessel functions with complex arguments. These lead to math-
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Figure 3.2: w - f3 diagram of a circular dielectric loaded waveguide. a=O.4 in., b=O.6 in.,

lOr! = 36 and fr2 = 1 [9]. The propagation constant is defined as "f = a + Jf3 and the solutions

are separated and plotted as aa and f3a on the same graph. Imaginary solutions are plotted as a

negative real values. The zero crossings define the frequency point where the specific mode

changes from imaginary to real and therefore the fields change from being evanescent to

propagating.

ematical equations that can be difficult to solve numerically. In the case of radial mode
matching, the sections containing the dielectric are modelled as stratified waveguides, that
have no complex hybrid modes. It should be obvious that searching a two-dimensional
function-space for complex arguments will be much more time-consuming than searching
along a straight line for purely real or purely imaginary solutions to the characteristic
equation. Since it is difficult to predict when the hybrid modes will come into existence,
such a search would have to be carried out for axial mode matching regardless of whether
any complex modes exist. This aspect was considered to be a strong argument in favor of
implementing radial mode matching.

Complexity It must also be noted that if dielectric structures which are more complex than a
simple dielectric pill resonator need to be implemented, it is necessary to derive the fields
equations for multiple-layered dielectric waveguides for axial mode matching. This will
result in additional complexity of equations. One can also consider the behavior of the
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two matching methods at the boundaries. In both cases the transverse fields have to be
matched at the boundary between adjacent regions. For longitudinal mode matching, this
results in integrations of products of Bessel functions over ap - <jJ plane for a fixed z. These
integrations can be incredibly difficult to solve analytically. In comparison, for radial mode
matching we are required to solve integrations of products of sinusoids over a z - <jJ plane
for a fixed p. The answers to these equations are commonly known.

The preceding arguments indicate that is much easier to implement radial mode matching than
axial mode matching and radial mode matching was therefore implemented. For completeness
however, both matching methods are presented in the following sections.

This chapter starts out in Section 3.2, by describing the radial mode matching technique in
detail. First the fields that can exist in two-layer stratified waveguides are derived in Section 3.2.1
and then the specific equations derived for radial mode matching are presented in Section 3.2.2.
It is first applied using only one boundary, as would be the case for modelling a simple dielectric
resonator. The results of the implemented technique are discussed with specific attention to
convergence and accuracy in Section 3.2.2. The method is then extended to two-layer and three-
layer structures in Section 3.2.3. Following this, axial mode matching is discussed in Section 3.3.
First, infinite dielectric loaded waveguides are examined with respect to their fields in Section
3.3.1. The field distributions are plotted and examined in Section 3.3.2. This implementation can
provide useful insights regarding the possible field distributions in simple dielectric resonators
and has proved helpful in designing the final whispering gallery resonating structure. Then the
theory of axial mode matching is presented in Section 3.3.3.
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3.2 Radial Mode Matching

If radial mode matching is applied to a structure as is shown in Figure 3.1, the resulting regions
are either homogenous or two-layer stratified waveguides. The fields in homogenous lossless
cavities have been derived in Section 2.2. However, it is still necessary to derive the fields in a
two-layer stratified dielectric waveguide.

/1

z=o z=zl z-z2

Figure 3.3: A two-layered stratified dielectric waveguide. It is important to remember that the

waveguide extends into infinity in the radial p direction [9J

3.2.1 Two-layer Stratified Waveguides

A typical example of a two-layer stratified waveguide is shown in Figure 3.3. In this case it is
assumed that the waveguide extends to infinity in the ±z direction. The structure is divided
into 2 regions with an axial boundary, where region 1 is bounded by 0 ::; z < h and region 2 is
bounded by h ::;z < L where L = h+ l2. The permittivity of the dielectric material in region 1
is defined as El = ErIEO, and the permittivity of the material in region 2 is E2 = Er2EO. The fields
in this structure are divided into T Enm or T Mnm modes.
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TE Modes

Starting with the general wave equation, using Equation 2.45 we can write

iJJ{ = (Ai sinh (liZ) + Bi cosh (liZ)) * (Ci cos (nep) + Di sin (nep))

*(Edn({3p) + FiYn({3p))

(3.9)

where i = 1,2 in region 1 and 2. The structure can be divided into LEC and LMC solutions.
In this derivation we choose to work with LMC fields. Therefore Cl = C2 = 0 for the TE
solution. The fields must be finite at P = O. Therefore FI = F2 = 0 and the radial dependancy
RI({3p) = EIJn({3IP) and R2({3p) = E2Jn({3p) where {32 = Ki + "ti = K~ + 'Y~. The boundary at
Z = 0 consists of either an electric (PEC) or magnetic wall (PMC).

For a PEC wall at Z = 0, Hz,l = 0, and therefore Bl =0. If we assume a PMC wall, H</>,l= 0
which means that Al =0. At Z = L, Hz,2 = 0 and therefore

(3.10)

Now we can write A2 as

(3.11)

and the wave equation becomes

{
iJJ{ =Alsinh(llz)*Clsin(nep)*EIJn({3p) forPEC
iJJ{ = Bl cosh (lIZ) * Cl sin (nep) * Edn({3p) for PMC

(3.12)

where

Z(Z) (3.13)

= B sinh (l2(L - z))
2 sinh ('Y2L )

(3.14)

At the interface between region 1 and region 2 at Z = l, the tangential electric and magnetic
fields must match. Therefore H</>,l= H</>,2and

_ 'Y2B2 cosh ('Y2l2) = 'Yl { Al cosh (Ilh) for PEC
f2 sinh (l2L) Bl sinh (llh) for PMC

(3.15)

where l2 = (L - h).
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From Hz,l = Hz,2 we know that

B
2
sinh (l2l2) = { Al sinh ("Ylh) for PEC
sinh (l2L) Bl cosh ("Ylh) for PMC

(3.16)

If one divides Equation 3.15 by Equation 3.16, the following equation is obtained:

{
coth (,Ylh) for PEC

-'Y2 coth ('Y2l2) = 'Yl
tanh (llh) for PMC

(3.17)

Equation 3.15 is rewritten as

for PEC (3.18)

for PMC (3.19)

At this point Equation 3.17 is substituted into the previous equation and this leads to

= 'Yl
A cosh (11h)
1sinh ('Y2l2)
B sinh (11h)

'Yl 1sinh (l2l2)

for PEC (3.20)

for PMC (3.21)

This gives us

A _ sinh (l2l2) B2
1 - sinh (11h) sinh (l2L)

Bl = sinh (l2l2) B2
cosh (11 h) sinh ("(2L)

(3.22)

(3.23)

Now we can write the final wave equation as

{

'T.J KJ ((3 ) . ( "') sinh (1'212 • h ( ) for PEC'l'l = n P sin tup sinh 'nIl sin 'YlZ

w{ = KJn((3p)sin(n¢)~~~~t~~:~~ cosh ("(lZ) for PMC (3.24)

w~= K In((3psin (n¢)) sinh ("(2(L - z)).

where all the constants were combined into K. In the LEC case, the sin (n¢) must be replaced
with cos (n¢). All the modes will be treated separately during the analysis of the resonant
frequency, and constant K is used for all modes, with the assumption that K takes on different
values for each mode. The electric and magnetic TE (LMC) modal fields are now calculated by
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substituting W! into Equations 2.26 - 2.31. This gives us the following equations:

sinh ')'212 'nh ( ) Z ::; II for PECsinh ')'lh S1 'YlZ

Hz ~(3:In(f3p) sin (n¢)
sinh (l'2(L - z)) z ~ II for PEC

* sinh ')'212) h ( )
cosh ')'1 h COS 'Ylz z ::; II for PMC

sinh (1'2 (L - z)) z ~ II for PMC

,1
::~~(~~:~sinh ('Ylz) z ::; II for PEC

Kf3J~(f3p) sin (n¢)
sinh ("12(L - z)) z ~ II for PEC

E<f>
sinh {1'212 cosh ( z) z ::; II for PMCcosh {1'111 'Yl

sinh (l'2(L - z)) z ~ II for PMC
sinh ')'212 h ( ) z ::; l1 for PEC'Yl sinh ')'lh cos 'YlZ

H<f> J;/J-Jn(f3p)ncos (n¢)
-'Yl cosh (l'2(L - z)) z ~ II for PEC

* sinh ')'212 • h ( )
'Yl cosh ')'1 h sm 'Yl z z ::; II for PMC

-'Y2 cosh (l'2(L - z)) z ~ II for PMC

and Ez = O.

TM Modes

Using Equation 2.63 we can write

wi = (Ai sinh (l'iZ) + Bi cosh (l'iZ)) * (Ci cos (n¢) + Di sin (n¢))

*(EiJn(f3p) + FiYn(f3p))

36

(3.25)

(3.26)

(3.27)

(3.28)

where i = 1,2 in region 1 and 2. In this derivation we choose to work with LMC fields. Therefore
Dl = D2 = 0 for the TE solution. As before, the fields must be finite at p = 0 and Fl = F2 = O.
The radial dependancy Rl(f3p) = ElJn(f3lP) and R2(f3p) = E2Jn(f3p) where 132 = "'r + 'Yf =
"'~+ 'Yi. The boundary at z = 0 consists of either an electric (PEC) or magnetic wall (PMC).

For a PEC wall at z = 0, E<f>,l= 0, leading to Al = O. For a PMC wall at z = 0, Ez,l = 0
and Bl = O. At z = L, E<f>,2= 0 and

Therefore

A2 = - B2 sinh (l'2L)
cosh ('Y2L)

We can now re-write the wave equation as

{
w! = Bl cosh (l'lZ) * Cl COS (n¢) * ElJn(f3p) for PEC
W! = Al sinh (l'lZ) * Cl cos (n¢) * ElJn(f3p) for PMC

(3.29)

(3.30)

(3.31)
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where

Z(z) [
-sinh (1'2L) . cosh (1'2L) ]

B2 cosh (1'2L) sinh (1'2Z) + cosh (1'2L) cosh (1'2Z)

B
2
cosh (1'2(L - z))

cosh ("/2L)

(3.32)

(3.33)

At the interface between region 1 and region 2 at z = l; the tangential electric and magnetic
fields must match. Therefore E¢,l = E¢,2 and

_ "/2B2 sinh (1'212) = "/1 { Al sinh (1'lh) for PEe
E2 cash (1'2L) El Bl cash (1'lh) for PMe

(3.34)

where h = l and 12 = (L - i).

From ErlEz,1 = Er2Ez,2 we know that

Er2B
2
cash (1'212) = lOrI { Al cash (1'lh) for PEe

E2 cash (1'2L) El Bl sinh (1'lh) for PMe
(3.35)

If one divides Equation 3.34 by Equation 3.35, the following equation is obtained:

e-i { tanh (1'lh) for PEe
--"/2 tanh (1'212) = "/1
Er2 coth (1'lh) for PMe

(3.36)

Now Equation 3.34 is rewritten as

= -"/2 lOrI B2 cosh (1'212) tanh (1'212)
Er2 cosh (1'lh) cosh (1'212)

= -"/2 lOrI B2 cosh (1'212) tanh (1'212)
Er2 sinh (1'1h) cosh (1'2L)

for PEe (3.37)

for PMC (3.38)

At this point Equation 3.36 is substituted into the previous equation and this leads to

for PEe (3.39)

for PMe (3.40)

Now we can write the final wave equation as

{
1J!ï = KJn(,Bp)cos(n¢)~~:~(~~:~ cOSh(1'IZ) for PEe

1J!ï = KJn(,Bp)cos(n¢)~~~~ ~~:~ sinh(1'lz) for PMe
(3.41)

1J!~ = K In(,Bp cos (n¢)) cosh (1'2(L - z)).

where all the constants were combined into K. In the LEe case, the cos (n¢) must be replaced with
sin (n¢). As all the modes will be treated separately during the analysis of the resonant frequency,
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the constant K is used for all modes, with the assumption that K takes on different values for
each mode. The electric and magnetic TM modal fields are now calculated by substituting wa
into Equations 2.26 - 2.31. This gives us the following equations:

.( _!_ cosh 'Y212 cosh ( z) z s II for PEC
Erl cosh 'Yl I! '/'1

K{32 _!_ cosh (1'2(L - z)) z 2:: II for PEC
(3.42)Ez ]WEOIn({3p) cos (n¢) Er2

E; 1 ~~:~ (~::: sinh (1'1z) z :$ II for PMC

f- cosh (1'2(L - z)) z 2:: II for PMC
r2

cosh ('Y212 cosh (1'1z) z :$ II for PECcosh 'Ylll

-K{3J~({3p) cos (n¢)
cosh (1'2(L - z)) z 2:: II for PEC

(3.43)H", * cosh 'Y212 . h ( )
sinh ('Ylll sin '/'lZ z :$ II for PMC

cosh (1'2(L - z)) z 2:: II for PMC

..1!.. cosh 'Y212 sinh (1'1z) z:$ II for PEC
Erl cosh 'Yll!

]!EOJn({3P) - nsin(n¢)
.::l!. sinh (1'2(L - z)) z 2:: II for PEC

E¢ = * Er2
..1!.. c?sh 'Y212 cosh (1' z) z:$ II for PMCe-i sinh 'Yll! 1

.=.TI. sinh ('/'2(L - z)) z 2:: II for PMCEr2

(3.44)

and Hz = 0

The Characteristic Equation

In both derivations, we used only the E-field or H-field matching at z = l, Entering the other
condition in each case leads to a characteristic equation. First consider TE modes: At the
boundary z = h, H¢,l = H¢,2 and from the derived fields one can write the following equation

--;-;--T=T+'c:..:.;-<7-----;'" + '/'2cosh (1'2l2) for PEC

----.-,-~7_T_'7---;'" + '/'2cosh (1'2l2) for PMC
(3.45)

This can be re-written as

0= { '/'1coth (1'Ih) + '/'2coth (1'2h) for PEC
'/'1tanh '/'lh + '/'2coth (1'2h) for PMC

(3.46)

Using the same method for TM modes, where E¢,l = E¢,2 at z = ll, the characteristic equation
is solved as

'/'1tanh (1'lh) + ~'/'2 tanh (1'2h) for PEC
'/'lcoth'/'lh + ~'/'2tanh('/'2h) for PMCEr2

(3.47)
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The values of /1 and /2 which satisfy these equations are the propagation constants of resonant
modes which exist in the system at a particular frequency. Having derived the fields that can
exist in a two-layered stratified waveguide, it is now possible to investigate the theory of radial
mode matching in the next subsection.

3.2.2 Theory of Radial Mode Matching

The theory is explained with reference to the structure shown in Figure 3.1. Note that the
resonator is surrounded by a cylindrical metallic shield. In this method, the boundary of interest
is at P = a. Due to symmetry only half of the structure needs to modelled to obtain the
correct results. The cylindrical region containing the dielectric resonator bounded by 0 ~ P ~ a

and 0 ~ z ~ L/2 is modelled as a two-layer stratified waveguide, where the permittivity Er is
independent of the radial co-ordinate p. This will be referred to as region A and can again be
divided into two parts. Part 1 containing the dielectric resonator, with permittivity EA,rI, is
adjacent to the symmetry plane z = 0 and has a height of l/2. Part 2 is filled with air and the
permittivity is EA,r2 = 1. The second region is contained between 0 ~ p ~ band l/2 ~ z ~ L/2.

This region will be referred to as region B and is assumed to be air-filled. The transverse fields
in each region are expanded in terms of cylindrical waveguide modes and tangential continuity
must be enforced at the boundary p = a.

We can express the electric and magnetic fields as linear combinations of eigenmodes. In region
A, the electric and magnetic fields are given as

(3.48)

where ei and hi represent functions that are dependant on zand ¢. Additionally, ft and fih are
functions that are dependant on p. The fields in region B are given by

(3.49)

H B(p, ¢, z)
j

The mode coefficients Ai and Bj are determined by considering the boundary conditions over
the interface between the two regions. In this particular case the tangential fields must match
at the boundary between the two regions. Therefore we know that

EA(p = a, ¢, z)

HA(P = a,¢,z)

EB(P = a, ¢, z)

HB(p = a,¢,z)

(3.50)

(3.51)
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Now the cross product of Equation 3.50 with hAi is taken and the entire equation is integrated
over the interface, resulting in the following equation

Ai(êAi, hAi) fAi(a) =LBj (êBj, hAi) fBj(a)
j

(3.52)

where the inner products are defined as

J 1êAi(Z, 1» X hAi(Z, 1» ·75 ad1>dz

J1êBj(Z, 1» x hAi(Z, 1» ·75 adibd»

(3.53)

In cylindrical co-ordinates, Equation 3.53 can be re-written as

(êAi,hBj) = J l(eq"Aihz,Bj-ez,Aihq"Bj)ad1>dz

(êBj, hAi) J1(eq"Bjhz,Ai - ez,Bjhq"Ai) addxiz

(3.54)

We also make use of the orthogonality property of eigenmodes that

(3.55)

Similarly the cross-product of Equation 3.51 is taken with êAi and integrated over the interface
surface, S. This results in the following equation

(3.56)

From Equation 3.56 and Equation 3.52 we can derive the following homogenous linear set of
equations:

(3.57)

where

(3.58)

constitute the coefficients of the linear system. In this case i = 1 ... Ni represents the number of
modes in region A and j = 1 ... Nj represents the number of modes in region B. This systems
has the following matric form

Bl
B2

=XB=Q (3.59)
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At the points where the determinant of X is zero, the linear system has non-trivial solutions.
Therefore, frequencies satisfying the equation

det X = 0 (3.60)

are the resonant frequencies of the structure. It is necessary to use a computer to numerically
solve for the linear system and therefore N must be finite. The exact solution will only be obtained
if N --; 00. In this case, N = Ni = Nj. Once the resonant frequency has been obtained, it can
be substituted back into Equation 3.57 to solve for the field coefficients Ai and Bj.

When writing the above theory in a form that can be implemented on a computer to find the
resonant frequencies, the following steps are carried out:

• The fields in each region are defined.

• Using the field definitions, the inner product functions (êAi, hAi, n..i and f~i for region A)
and the corresponding functions in region B are derived

• The inner products are solved using Equation 3.54

• The set of linear homogenous equations is set up using Equation 3.58. Now a zero finding
algorithm can be used to find zeros of the determinant of the linear system defined by X

Inner Product Functions in Region A

The fields that exist in region A have been derived in Section 3.2.1. Now the ê~f and h~f
functions are defined.

For LMC, TE modes in region A they are

ê~f = EI.~i(Z) sin (neP)(/)

h~f HI.~i(Z) cos (neP) + H;'~i(Z) sin (neP)(/)

(3.61 )

(3.62)

where

sinh ('yAi 212) . h ( ) Z :::;II for PECsinh ('yAi,lll) sin 1'Ai,lZ

HTE (3~i
sinh bAi,2(L - z)) Z 2:: 11 for PEC

JWJ.L z,Ai = * sinh ('YAi 212) h ( ), COS . Z Z :::;II for PMCcosh ('yAi,lh) 1'A~,l
sinh bAi,2(L - z)) Z 2:: 11 for PMC

(3.63)

sinh ('YAi212) h ( ) Z :::;II for PEC1'Ai,l sinh hAi:lh) cos 1'Ai,lZ

HTE
-1'Ai,2 cosh bAi,2(L - z)) z 2:: II for PEC

JPWJ.L q"Ai n * sinh ('yAi 212) • h ( ). 'SIn' z z :::;11 for PMCl'A~,l cosh hAi,lh) 1'A~,l
-1'Ai,2 cosh bAi,2(L - z)) z2::l1 for PMC

(3.64)
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.( sinh ('"YAi,212) sinh ( . z) z::;lI for PECsinh hAi,lh) 'YAt,l

ETE = fJAi
sinh ('YAi,2(L - z)) z 2: II for PEC

¢,Ai sinh ('YAi,212) cosh ( . z) z ::; II for PMCcosh ('"YAi, Ill) 'YAt,l

sinh ('YAi,2(L - z)) z 2: II for PMC

(3.65)

Similarly, for LMC, TM modes in region A

HI,~(z) cos (n¢)¢

EI,~(z) sin (n¢) + EI~(z) cos (n¢)¢

(3.66)

(3.67)

and

1 cosh ('"YAi 212) h ( ) z ::;II for PEC- 'cos ·z€A,rl coshhAi,lll) 'YAt,l

E™ f31i
_1_ cosh ('YAi 2(L - z)) z 2: II for PEC

*
fA r2 '

]Wfo z,Ai 1 co~h ('"YAi 2l2) . h ( ) z ::; II for PMC-- 'sm . Z€A,rl sinh ('"YAi,lh) 'YAt,l
_1_ cosh ('YAi 2(L - z)) z 2: II for PMC
€A,r2 '

(3.68)

'YAi 1 cosh ('"YAi 212) . h ( ) z::;lI for PEC' 'sm' zfA,rl cosh hAi,lh) 'YAt,l

E™
-'YAi,1 sinh ('YAi 2(L - z)) z 2: II for PEC

](JWfO ¢,Ai = -n *
€A,r2 '

'YAi 1 cosh ('"YAi 212) h ( z ::; II for PMC..:..:..:.= 'cos .fA,rl sinhhAi,lh) 'YAt,z
-'YAi,2 sinh ('Y . (L - z)) z 2: II for PMCfA,r2 At,2

(3.69)

cosh ('"YAi 2l2) h ( ) z ::;II for PEC' cos . zcosh hAi,lh) 'YAt,l

H™ -e; cosh ('YAi,2(L - z)) z 2: II for PEC
¢,Ai = * cosh ('"YAi 2l2) • h ( ), sm . z z ::;II for PMCsinh hAi,lh) 'YAt,l

cosh ('YAi,2(L - z)) z 2: II for PMC

(3.70)

Here the subscript i indicates the position of the axial or radial propagation constant with respect
to the first solved root, 'YAI,!' 'YA1,2 or f3A1. Since region A contains the axis z = 0, the radial
dependency R(f3AiP) is the same as that of the lossless cylindrical waveguide resonator discussed
in Section 2.2. This gives

fAi(P)

f~i(P)

J~(fJAiP)

In(f3AiP)

(3.71)

for TE modes and

fAi(P) = In(f3AiP)

f~i(P) = J~(f3AiP)

(3.72)

for TM modes.
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Inner Product Functions in Region B

Region B consists of a ring-shaped lossless cylindrical waveguide. The fields in this regions are
similar to those derived for the lossless cavity resonator in Section 2.2 with two exceptions. Due
to the fact that the resonator is divided into two symmetrical halves at Z = 0, another solution
set is possible depending on whether the wall of symmetry is defined as PEC or PMC. Also, the
fields need not exist at p = 0 which results in a change in the radial function, R(p), as will be
discussed below.

The fields in the cylindrical cavity resonator are bounded by a metallic sheath, and therefore
all boundary walls are assumed to be PEC. For the dielectric resonator the Z = 0 plane is replaced
by either a PEC or PMC wall. Therefore, when modelling region B as cylindrical waveguide,
one of the end walls can be replaced by a PMC wall. For TE modes Z(z) = sin ('"yz) for a PEC
boundary at z = 0 and Z(z) = cos ('"yz) for a PMC boundary at z = O. Similarly, for TM modes,
Z(z) = cos ('"yz) for a PEC boundary at z = 0 and Z(z) = sin ('"yz) for a PMC boundary at
z = O. In order to obtain axial dependencies that are similar to those in region A, the sin ('"yz)
and cos (')'Z) terms are replaced by sinh (( z) and cosh (( z) where ( = J"Y. By making use of
Equations 2.43 and 2.44 for TE modes and Equations 2.59 and 2.61 for TM modes, the ê~f andh~:functions are derived for region B. We find that

ê~f = EI.~j(z) sin (neP)(/>h~:= HI.~j(z) cos (neP) +H;'~j(z) sin (neP)(/>

(3.73)

for LMC, TE modes in region B where

]WJ.1,H'[E #1. { sinh «(BjZ) for PEC
=

J cosh ((BjZ) for PMC

]pwJ.1,HIE ( {COSh«(BjZ) for PEC
tu;»,

J sinh ((BjZ) for PMC

ETE f3Bj {
sinh ((BjZ) for PEC

=</> cosh ((BjZ) for PMC

(3.74)

Similarly, we can derive that,

(3.75)
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where for LMC, TM modes in region B, where

]WE E™ f3~ { COSh«(BjZ) for PEC
(3.76)B z

J sinh ((BjZ) for PMC

]PWEBEIM ( {sinh ((BjZ) for PEC
-n Bj

for PMCcosh ((BjZ)

H™ -(3B. { cosh ((BjZ) for PEC
=cf;

J sinh ((BjZ) for PMC

where the subscript j indicates the position of the axial or radial propagation constant with
respect to the first solved root, (Bj or (3Bj.

Due to the fact that p = 0 is not contained in region B, the general radial dependency of the
scalar potential defined by Equation 2.2.1, where 'li = 'li f for TE modes and 'li = Wa for TM
modes, is defined as follows:

R(p) = E In((3p) + F Yn((3p) (3.77)

Therefore if the boundary condition at p = b is applied, the following equations are derived

R(b) = E In((3b) + F Yn((3b) (3.78)

For TE modes, dR(p)jdp I(p=b)= 0 and therefore

E J~((3b) + F Y~((3b) = 0 (3.79)

gives us

R(p) J~((3b)
E (In((3p) - Y'n((3b) Yn((3p))

= J'n~(3b) (In((3p)Y~((3b) - Yn((3p)J~((3b))

(3.80)

For TM modes R(p) I(p=b)= 0 and therefore

E In((3b) + F Yn((3b) = 0 (3.81 )

and

R(p) (3.82)

Therefore we determine that

fÉj(p) = J~((3Bjp)Y~((3Bjb) - Y~((3p)J~((3Bjb)

f~j(p) In((3Bjp)Y~((3Bjb) - Yn((3Bjp)J~((3Bjb)

(3.83)
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for TE modes and

fBj(P)

f~j(p)

In({3Bjp)Yn({3Bjb) - Yn({3p)Jn({3Bjb)

J~({3BjP)Yn({3Bjb) - Y~({3Bjp)Jn({3Bjb)

(3.84)

for TM modes.

It is important to note that as the value of the radial propagation constant changes from real
to imaginary, {32= _,2 - ",2 and Equation 2.36 can be re-written as

d
2
R 1dR ({32 2/ 2)-+--.- +n Pdp2 pdp

(3.85)

The solutions of this equation are

R(p) = { ( In(]{3p) )
Yn(]{3p)

(3.86)

Bessel functions with complex arguments are usually re-defined as [25]

(3.87)

(3.88)

This change in the definition of R(p) will introduce discontinuities into the determinant and
can result in incorrect roots found by the root finding algorithm. This fact has to be kept in
mind when the roots of the determinant are solved in order to eliminate some of the additional
roots.

Solving for the Inner Products

Using Equation 3.54, the inner products can be derived. In order to obtain equations for the
inner products that could easily be applied to different types of layered structures, it was decided
to also divide region B into two parts and model it as a two-layer stratified waveguide (for a
structure that has an air-filled region B, one then simply assumes the same permittivity in both
regions, and the two-layer stratified fields simplify to those of the annular air-filled cylindrical
waveguide as described above). This means that in the following inner product equations, there
will now also be two axial propagation constants, (Bj,1 and (Bj,2 which are respectively defined
for each part. The height of the fictional two-layer stratified waveguide in region B is l2 with
the condition that l1 < l2 < L/2. In order to avoid confusion, the following relationships are
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summarized:

2 2
""Ai,l ""OEAi,rl
2 2

r:Ai,2 ""oEAi,r2
2 2

""Bj,l ""0EBj,rI
2 2

""Bj,2 ""oEBj,r2
2 (32 2'YAi,l Ai - ""Ai,l
2 (32 2'YAi,2 Ai - ""Ai,2

(1j,1 = (32 2B· - ""B·IJ J,

(1j,2 = (32 2B·-""B·2J J,

(3.89)

(3.90)

where ""5 = (271'j)21-"0EO. The solution of the inner products for different combinations of TE or
TM modes in regions A and B are now given.

Inner Products (TE mode in region A, TE mode in region B)

The inner products are given by

and

(3.91 )

(3.92)

where for a PEC wall at z = 0

Al =

A2 =
A3

Zl =

z2

z3

sinh (lAi,2(L -l1)/2) sinh ((Bj,2(L -l2)/2)
sinh (lAi,ll1/2) sinh ((Bj,ll2/2)

sinh ((Bj,2(L - l2)/2)
sinh ((Bj,ll2/2)

(3.93)

1

t"Jo sinh (lAi,IZ) sinh ((Bj,IZ )dz

112
sinh (lAi,2(L/2 - z)) sinh ((Bj,lz)dz

II

1£/2
sinh (lAi,2(L/2 - z)) sinh ((Bj,2(L/2 - z))dz

l2
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and for a PMC wall at z = 0

sinh bAi,2(L - l1)/2) sinh ((Bj,2(L - l2)/2)
cosh (,Ai,111/2) cosh ((Bj,1l2/2)

A2 = sinh ((Bj,2(L - l2)/2)
cosh ((Bj,1l2/2)

(3.94)

Z1 lL1 cosh bAi,lZ) cosh ((Bj,1z)dz

Z2 1L2
sinh bAi,2(L/2 - z)) cosh ((Bj,lZ)dz

LI

1L/2
z3 = sinhbAi,2(L/2 - z)) sinh ((Bj,2(L/2 - z))dz

L2

Inner Products (TM mode in region A, TM mode in region B)

Here the inner products are

, (JBj
(êAil hBj) = -(J2 (A1z1 + A2z2 + A3z3)

Bj
(3.95)

and

(3.96)

where for a PEC wall at z = 0

cosh bAi,2(L - 1l)/2) cosh ((Bj,2(L - l2)/2)
~~i,l cosh bAi,111/2) cosh ((Bj,ll2/2)
cosh ((Bj,2(L - l2)/2)
~~i,2 cosh ((Bj,ll2/2)
1

-2-
~Ai,2

(3.97)

cosh (,Ai,2(L -l1)/2) cosh ((Bj,2(L -l2)/2)A4 =
cosh bAi,111/2) ~~j,l cosh ((Bj,ll2/2)

cosh ((Bj,l(L -l2)/2)
~~j,2 cosh ((Bj,1l2/2)
1

(3.98)

-2-
~Bj,2

and

1L1
cosh bAi,lZ) cosh ((Bj,1Z)dz

Z2 = 112
cosh bAi,2(L/2 - z)) cosh ((Bj,lZ)dz

II

1L/2
cosh bAi,2(L/2 - z)) cosh ((Bj,2(L/2 - z))dz

L2

(3.99)
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while for a PMC wall at z = 0

cosh bAi,2(L - 1l)/2) cosh ((Bj,2(L - l2)/2)
K;~i,l sinh bAi,11l/2) sinh ((Bj,ll2/2)
cosh ((Bj,2(L -l2)/2)
K;~i,2sinh ((Bj,ll2/2)
1

-2-
K;Ai,2
cosh bAi,2(L - 1l)/2) cosh ((Bj,2(L -l2)/2)

sinh bAi,lll/2) K;~j,l sinh ((Bj,ll2/2)
cosh ((Bj,l(L -l2)/2)
K;~j,2sinh ((Bj,1l2/2)

(3.100)

(3.101 )

1
-2-
K;Bj,2

and

Zl = 111 sinh bAi,lZ) sinh ((Bj,1Z)dz

Z2 112
cosh bAi,2(L/2 - z)) sinh ((Bj,lZ)dz

11

1L/2
z3 = cosh bAi,2(L/2 - z)) cosh ((Bj,2(L/2 - z))dz

12

(3.102)

Inner Products (TE mode in region A, TM mode in region B)

We find that

(3.103)

and
Ann

(êBj, hAi) = -(32 (A1zl + A2Z2 - A3z3) + -(32 (A4z4 - A5Z5 - A6z6)
P Bj P Ai

where for a PEC wall at z = 0

(3.104)

(Bj,1 sinh bAi,2(L -1l)/2) cosh ((Bj,2(L -l2)/2)
K;~j,l sinh bAi,lll/2) cosh ((Bj,ll2/2)

A
2

= (Bj,1 cosh ((Bj,2(L - l2)/2)
K;Bj,l cosh ((Bj,1l2/2)

A3 = (~j,2
K;Bj,2
'/'Ai,1 sinh bAi,2(L - ll)/2) cosh ((Bj,2(L -l2)/2)
K;~j,1 sinh bAi,lll/2) cosh ((Bj,ll2/2)
'/'Ai,2 cosh ((Bj,2(L -l2)/2)
K;~j,1 cosh ((Bj,1l2/2)
'/'Ai,2
-2-
K;Bj,2

(3.105)
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and

111Zl o sinh (rAi,lZ) sinh ((Bj,lZ)dz (3.106)

112
Z2 = sinh (rAi,2(L/2 - z)) sinh ((Bj,lZ)dz11

1LI2Z3 sinh (rAi,2(L/2 - z)) sinh ((Bj,2(L/2 - z))dz
12

111Z4 o cosh (rAi,lZ) cosh ((Bj,lz)dz

1/2
Z5 cosh (rAi,2(L/2 - z)) cosh ((Bj,lZ)dz

11
1LI2

Z6 cosh (rAi,2(L/2 - z)) cosh ((Bj,2(L/2 - z))dz
12

and for a PMC wall at z = 0

Al =
(Bj,l sinh (rAi,2(L -1l)/2) cosh ((Bj,2(L -l2)/2) (3.107)-2-

cosh (rAi,lll/2) sinh ((Bj,ll2/2)"'Bj,l

A2
(Bj,l cosh ((Bj,2(L -l2)/2)
-2- sinh ((Bj, 1l2/2)"'Bj,l

A3
(Bj,2
-2-
"'Bj,2

A4
I'Ai,1 sinh (rAi,2(L -1l)/2) cosh ((Bj,2(L - z)/2)
-2-

cosh (rAi,lll/2) sinh ((Bj,ll2/2)"'Bj,l

A5
I'Ai,2 cosh ((Bj,2(L - l2)/2)
-2-

sinh ((Bj,ll2/2)"'Bj,l

A6 I'Ai,2
-2-
"'Bj,2

and

111
Zl o cosh (rAi,lZ) cosh ((Bj,lZ)dz (3.108)

112
Z2 sinh (rAi,2(L/2 - z))COSh((Bj,lZ)dz

Il
1LI2z3 = sinh (rAi,2(L/2 - z)) sinh ((Bj,2(L/2 - z))dz
12

111Z4 o sinh (rAi,lZ) sinh ((Bj,lZ)dz

1/2
Z5 = cosh (rAi,2(L/2 - z)) sinh ((Bj,lZ)dz11

1LI2Z6 = cosh (rAi,2(L/2 - z)) cosh ((Bj,2(L/2 - z))dz
12
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Inner Products (TM mode in region A, TE mode in region B)

Here it is true that

(3.109)

and

(3.110)

where for a PEe wall at z = 0

!'Ai,l cosh bAi,2(L -ll)/2) sinh ((Bj,2(L -l2)/2)
lI:~i,l cosh bAi,lll/2) sinh ((Bj,ll2/2)
!'Ai,2 sinh ((Bj,2(L - l2)/2)
lI:~i,2 sinh ((Bj,ll2/2)
!'Ai,2
-2-
II:Ai,2

(3.111)

(3.112)

A4 = (Bj,l cosh bAi,2(L - 1l)/2) sinh ((Bj,2(L - l2)/2)
lI:~i,l cosh bAi,11l/2) sinh ((Bj,ll2/2)
(Bj,! sinh ((Bj,2(L -l2)/2)
lI:~i,2 sinh ((Bj,ll2/2)
(Bj,2
-2-
II:Ai,2

(3.113)A5

and

111
sinh bAi,lZ) sinh ((Bj,lZ)dz

Z2 = (12 sinh bAi,2(L/2 - z)) sinh ((Bj,lz)dzill

1L/2
sinh bAi,2(L/2 - z)) sinh ((Bj,2(L/2 - z))dz

12111
cosh bAi,lZ) cosh ((Bj,lZ)dz

(12 cosh bAi,2(L/2 - z)) cosh ((Bj,lZ)dzill

1L/2
Z6 = cosh bAi,2(L/2 - z)) cosh ((Bj,2(L/2 - z))dz

12

(3.114)
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and for a PMC wall at z = 0

I'Ai,l cosh (/'Ai,2(L - 1l)/2) sinh ((Bj,2(L - l2)/2)
Al = --~~~~~~~

K:~i,l sinh (/'Ai,111/2) cosh ((Bj,ll2/2)
I'Ai,2 sinh ((Bj,2(L - l2)/2)
K:~i,2 cosh ((Bj,ll2/2)

(3.115)

(3.116)

I'Ai,2
-2-
K:Ai,2

A4 = (Bj,l cosh (/'Ai,2(L -ll)/2) sinh ((Bj,2(L - l2)/2)
K:~i,l sinh (/'Ai,111/2) cosh ((Bj,ll2/2)
(Bj,l sinh ((Bj,2(L - l2)/2)
K:~i,2 cosh ((Bj,ll2/2)

A6 = (~j,2
K:Ai,2

(3.117)A5

and

Z5

Zl = 111 cosh (/'Ai,lZ) cosh ((Bj,lz)dz

112sinh (/'Ai,2(L/2 - z)) cosh ((Bj,lz)dz
11

1L/2
sinh (/'Ai,2(L/2 - z)) sinh ((Bj,2(L/2 - z))dz

12

111 sinh (/'Ai,lZ) sinh ((Bj,lZ)dz

112cosh (/'Ai,2(L/2 - z)) sinh ((Bj,lZ)dz
11

1L/2
cosh (/'Ai,2(L/2 - z)) cosh ((Bj,2(L/2 - z))dz

12

(3.118)

The solutions of the integrations of products of hyperbolic sinusoids as founds in functions Zl ... Z6
in the inner product equations are provided in Appendix C.

Solving for the Resonant Frequencies

The first step in the implementation is to solve for N axial propagation constants I'i of the
waveguide modes that exist in region A as well as N axial propagation constants (j for the fields in
region B by finding the roots of the respective characteristic equation. The root finding algorithm
used, was largely based on the work done by Lehmensiek [18]. These propagation constants are
then used to calculate the inner products when matching the modes at the boundary (each mode
in region A is matched with all modes in region B and vice versa). The propagation constants are
always taken consecutively from the first solved propagation constant, numbered 1'1. Omitting
a propagation constant can have serious consequences on the obtained inner product matrix.
Therefore it is very important to test that the root finding algorithm used to search for the
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propagation constants is accurate. In order to find the determinant of matrix X, it must be
square. This means that one must take equal numbers of modes in both regions. Therefore, if
one wants to solve for TE modes, N x TE modes in region A are matched with N x TEmodes
in region B at the boundary p = a resulting in a matrix that has dimensions ofN x N and if one
wants to solve for TM modes, N x TM modes in region A are matched with N x TM modes
in region B at the boundary. For hybrid modes equal numbers of TE and TM modes must be
matched. Therefore one can choose to match N x TE modes and N x TM modes in regions A
and B with each other again resulting in a matrix with dimensions of 2N x 2N. Note that the
number N can be chosen to be an arbitrary real integer. It represents the amount of TE and/or
TM modes from each region that are matched at the boundary.

Now it is possible to solve for the resonant frequencies by setting up matrix Xij in Equation
3.58. As the number ofmodes used in each regions increases, so does the accuracy of the obtained
results. The usual approach is to start with a small matrix size and find the zero points of the
determinant of X. These zero points correspond to rough estimates of the resonant frequency of
the dielectric resonator. Each successive increase in matrix size leads the zero points to converge
towards the actual resonant frequency. After increasing the matrix beyond a certain size, any
further increases will have very little effect on the derived zero point. Therefore, one can assume
that the answer has converged to very close to the resonant frequency of the dielectric resonator
and one can take it as the final answer. Different modes converge towards the actual resonant
frequency at different rates. This convergence is one of the aspects that are considered when the
mode matching technique is investigated with respect to efficiency.

Before the results of the implemented mode matching technique are discussed in more detail
it is necessary to define the way in which the individual modes are labelled. There is no standard
method used to label a specific dielectric resonator waveguide mode and several different methods
can be found in literature. Since most of the fundamental work of this report is based on work
done by Chen [9], his mode-labelling method is adopted.

Therefore each mode is described by three letters followedby a subscript of two numbers. The
first two letters are either TE (for TE modes), TM (for TM modes) or HE (for hybrid modes). The
third letter is either E (E-plane) or H (H-plane). This refers to the type of symmetry conditions
that are applied at the longitudinal axis of symmetry [z=D] for a cylindrical structure such as
that shown in Figure 3.1. The first subscript refers to the number of angular variations, n, and
the second subscript, m. is the order in which the mode occurs with respect to frequency, where
m = 1 designates the first resonant frequency of that particular mode. One disadvantage of this
mode designation is that it does not give an idea of the radial (p) or the axial (z) distributions
of the fields in the resonator. This means that the TEHQ1 mode is a TE mode with a magnetic
wall at z = O. It has no angular variation and is the first such mode to occur. In other words
it has the lowest resonant frequency of all T EHom modes. It can be proved [321 that the modes
that exist in a dielectric loaded waveguide resonator can be TEEom, TEHom TMEom, TMHom,
HEEnm or HEHnm modes.
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Now that the theory of radial mode matching has been discussed, several results obtained
by the implemented radial mode matching method are presented. The method is discussed with
respect to convergence and accuracy.

Implementation of Two-layer Radial Mode Matching

The results of the implementation are compared to the resonant frequencies derived by Zaki and
Chen [32]. The mode chart from this article, gives computed and measured resonant frequencies
for a dielectric resonator with relative permittivity of Er = 35.74, that has a height of l = 7.62
mm (0.3 in), a radius of a = 8.636 mm (0.34 in.) which is placed centrally inside the cylindrical
cavity. The resonator is surrounded by a metallic shield with a radius of b = 14.48 mm (0.57
in.) and a variable height, L. The chart then plots the measured and derived changes of the
resonant frequency of several modes as a function of Lil. In the implementation discussed in this
report, L was chosen to be 35.56 mm (1.41 in). The results obtained by Chen were compared
to measured results that were stated to be within ±0.5% of the calculated results with the
exception of HEH12 (the chart showing measured points as compared to the computed points
shows a difference of approximately 0.1 GHz).

As stated previously, the accuracy of the calculated resonant frequency increases as the size
of matrix Xij in Equation 3.58 increases. The convergence can be investigated by increasing the
size of matrix Xij in steps, and determining the size that the matrix has to reach before the
frequency is accurate with respect to a certain tolerance set by the user. The convergence of
several modes is plotted in Figure 3.4 - 3.5, where Figure 3.4 shows the calculated convergence
of the TE and TM modes for a simple post resonator and Figure 3.5 shows the convergence of
the hybrid modes. It can be seen that the TE and TM modes have largely converged for N > 2
while for the hybrid modes N > 4. Take note that N = Nj = Ni represents the number of
modes in each region. Therefore if N=2 for a TE mode implementation, 2 TE modes in region
A are matched with 2 TE modes in region B, or for a TM mode implementation, 2 TM modes
in region A are matched with 2 TM modes in region B. For hybrid modes, N = 2 means that
2 TE modes and 2 TM modes in each region are matched with the modes in the other region.
Therefore the ratio of modes needed for convergence of non-hybrid to hybrid modes is 1:4.

The values derived from the implementation are compared to those read off Chen's chart in
Table 3.1. As can be seen the greatest discrepancy is for the HEH12 hybrid mode. Chen states
that the derived resonant frequency of this mode is less accurate than the other modes. In the
chart, there seems to be a difference of about 0.1 GHz between the measured and the computed
value. Therefore the 3.25 % error between the value derived by the implementation and the
value derived by Chen might not be as great when the implementation is compared to the true
measured frequency. For all the values stated in the above discussion the possibility of inaccurate
plotting on the chart and errors reading the values off the chart must be kept in mind.
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Table 3.1: Comparison of Resonant Frequencies derived by the Implementation and those

derived by Chen [32} for the post resonator showing the percentage error
Mode Implementation [GHz] Chen's [GHz] Percent %
TEEOl 5.2431 5.3 1.07
TEHo2 3.2556 3.3 1.35
TMEOl 4.6669 4.65 0.36
TMHol 7.303 7.3 0.41
TEHo2 5.8470 5.9 0.89
HEEll 4.0868 4.15 1.52
HEE12 5.8501 5.85 1.7
HEE13 6.2623 6.3 0.7
HEHll 3.9730 3.98 0.18
HEH12 5.1275 5.3 3.25

In order to more precisely investigate the accuracy of the hybrid modes derived by the im-
plementation, the resonant frequencies provided by [9]were derived and compared in Table 3.2.
It can be seen that the accuracy is better than 0.6 percent. Additionally, when using the inner
products derived by [9]to implement the radial mode matching technique, the obtained resonant
frequencies are also the same as those of the implementation using the inner products stated in
this report.

Table 3.2: Comparison of Hybrid Mode Resonant Frequencies for the post resonator [GHzj.

The matrix size, N=10
Mode Chen's Implementation Percent %

HEHOl 4.147 4.1445 0.6
HEH2l 5.150 5.1474 0.5

Another aspect that was investigated was the effect of changing the height ratio of the
dielectric resonator and the metallic waveguide. The resultant graphs are shown in Figures
3.6, 3.7 and 3.8. The stars (*) show the actual values derived from the radial mode matching
implementation, and the circles show the points read off the mode chart provided by Chen [32].
The obtained results are very accurate for TE and TM modes, with slight discrepancies for the
hybrid modes. Once again, this could be as a result of inaccurate reading off the chart.

At this point radial mode matching has only been discussed as applied to a simple dielectric
resonator with a single radial boundary. The next subsection discusses the expansion of this
method to structures with multiple boundaries. This is necessary if one wants to obtain an idea
of the resonant modes of the layered structure that was proposed in Chapter 1.
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Mode Chart of simple dielectric resonator: TE and TM modes

2 0- Chen [29]
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Figure 3.6: Effect of changing the L/[ ratio on the T Eom and T !vlom modes f01' the post

resonator

Mode Chart of simple dielectric resonator: Hybrid Modes (with a PMC wall at z=O)
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Figure 3.7: E.ffect of changing the L/l ratio on the H EHnm modes f01' the post resonator
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Mode Chart of simple dielectric resonator: Hybrid Modes (with a PEC wall at z=O)
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Figure 3.8: Effect of changing the L,/l ratio on thee H EEnm modes for the post resonator

3.2.3 Multiple layered Structures

Ring Resonator

First, the method is applied to a dieledric ring resonator, as is shown in Figure 3,9 contained in
ilmetallic air-filled cavity, This means that the fields have 1,0 be matched at two boundaries. In
this derivation the resonator can once again be divided int.o symmetrical sections with either a
PEC or PI\.IC wall at z = O. The resonator is divided int.o three regions: regions A,n and C.

Region A is the inner region within 0 :::;p = a and extending from 0 :::;z < L/2. The electric
and magnetic fields are given as

(3,119)

The next region, Region B is hounded by a :::;p < b and extends from 0 :::;z < L/2. Since in
regions B the field can be separated into t he forward moving wave and the backward moving
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Figure 3.9: A ring resonator enclosed by a metallic sheath

wave, the fields in region B can be written as

(3.120)

and finally, Region C is contained within b ::; P ::; c and extends from 0 ::; z < L/2 and has
fields such that

Ec(p, cp, z) (3.121)
k

Hc(p, cp,z) L CkhCk(Z, CP)f&k(P)
k

The tangential fields must match at the two boundary at p = a and p = b. Therefore

EA(P = a, cp, z) EB(p = a, cp,z)

H A(p = a, cp, z) = H B (p = a, cp,z)

and

EB(p = b, cp, z) Ec(p = b, cp,z)

HB(p=b,cp,z) = Hc(p = b, cp,z)

(3.122)

(3.123)

(3.124)

(3.125)

The cross product of Equation 3.122 with hAi is taken and integrated over the interface, and
similarly, the cross-product of Equation 3.123 is taken with êAi and integrated over the interface
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surface, S. We can now derive the following homogenous linear set of equations

L [Xi}Bt + XijBj] = 0
j

(3.126)

where

(3.127)

and

(3.128)

The same principal can be applied at the boundary p = b and we can derive a set of linear
equations which is given by

L [Yij Bt + Yij Bj] = 0
j

(3.129)

where

(3.130)

and

(3.131 )

The derived homogenous equations therefore be combined as a single matrix which is given by

(3.132)

Again, the points where the determinant of H is zero, represent non-trivial solutions of the linear
system. It is important to be very careful when substituting the TE and TM modes into matrix,
H, when implementing hybrid modes. The field in the individual regions can once again be
modelled as cylindrical or two-layer stratified waveguides. The only difference occurs in region
B where the radial dependency, R(j3jp), does not have an external boundary, and can therefore
not be simplified as was the case when radial mode matching was applied to a simple dielectric
resonator. Therefore, in this region we simply take the radial dependency as

Ef(p)+ + F f(p)-

E In(j3jp) + F Yn(j3jp)

(3.133)

where In(j3jp) is the radial dependency of the forward travelling wave and Yn(j3jp) is the radial
dependency of the backwards travelling wave. The electric and magnetic fields for the various
modes can be solved for as before.
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Convergence of modes for the dielectric ring resonator
3.2

Ns:
!:2.
>.

~g 3.15
Q)
::J .1- TEH01 1CTe
LJ..

3.1
1 2 3 4 5 6 7 8 9 10

N

Ns:
!:2.
~c:
Q)
::J
CT
i!!
LL

2 3 4 5 6 7 8 9 10
N

4.4
N.c
!:2.
>.
g 4.35
Q)
::J
CT
i!!
LL

4.3
1 2 3 4 5 6 7 8 9 10

N

Figure 3.10: The convergence of several mode of the dielectric ring resonator. The dimensions

of the resonator are a = 2.54 mm, b = 10.16 mm, c = 15.24 mm, 1 = 6.35 mm and L = 19.05

mm

Implementation of Three-layer Radial Mode Matching

The three-layer radial mode matching technique is tested with regard to accuracy and conver-
gence. Figure 3.10 shows the convergence of the TEHob the TM Em and the HEHll mode. The
derived resonant frequencies are compared with those derived by Chen [9] in Table 3.3. Once
again the values are accurate. Take note that as defined previously, the N for the hybrid modes
means that NxTE and NxTM modes are matched at the boundary. Therefore for the same N,
the number of modes is double for hybrid modes than for the TE or TM modes.

Table 3.3: Comparison of Resonant Frequencies derived by the Implementation and those

derived by Chen [9J for the ring resonator showing the percentage error [N = 10J
Mode Implementation [GHz] Chen's [GHz] Percent %
TEHm 3.1614 3.165 0.11
TMEo2 4.8893 4.895 0.4
HEHll 4.3635 4.365 0.34
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Four-layer Mode Matching Implementation

For a structure with three radial boundaries at P = a, P = band P = c , the same method is
applied. Now there are four regions and the fields in them are defined as before. In region A

EA(P, ¢, z) L AiêAi (z, ¢)fÁ,(p) (3.134)

HA(p, ¢,z) L A hAhAi (z, ¢)f Ai (p)

in region B

EB(p, ¢, z) I)Bj(Z,¢) [Btf~j(P)+Bjf~;(P)] (3.135)
J

HB(p, ¢, z) LA [ + h h]. hBj(Z,¢) Bj fBj(p)+BjfB;(p)
J

in region C

Ee(p, ¢, z) = L êek(z, ¢) [C: f~: (p) + Ck f~; (p)] (3.136)
k

He(p, ¢, z) LA [ + h h]hek (z, ¢) Ck fe:(p) + Ck fe; (p)
k

Finally, in region D

ED(p, ¢, z) L DlêDl (z, ¢)fDI (p) (3.137)
I

HD(p, ¢, z) L A hD1hDI (z, ¢)fDI (p)
I

We assume that the tangential electric and magnetic fields match at all boundaries, therefore

EA(p = a, ¢, z) = EB(p = a, ¢, z)

HA (p = a, ¢, z) H B(p = a, ¢, z)

and

EB(p = b, ¢, z) Ee(p = b, ¢, z)

HB(p = b,¢,z) He(p = b,¢,z)

and finally that

Ee(p = c, ¢, z) = ED(p = C, ¢, z)

He(p = c, ¢, z) = HD(p = c,¢,z)

(3.138)

(3.139)

(3.140)

(3.141)

(3.142)

(3.143)
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Using the method as previously, suitable cross-products are applied to the linear equations and
multiplied over the boundary. At boundary p = a we find the following linear equations:

(êBj>hA,) {f~j(a)Bt + f~j(a)B; }

(êAi,hAJf~i(a)Ai = (êA;,hBj) {f~j(a)Bt + f~j(a)B;}

This can be expressed in matrix form as

[

f>AG~a -RABGe;+

- x.ha x.ha
PAGA -QABGB+

where

PAii (êAi,hAJ
- ea

fÁi (a)GAii
- ha

f~i (a)GAii =

Gea !'ida)Bij+ 1

Gea fÉ (a)Bij- l

Gha fl(a)Bij+ 1

Gha fl(a)Bij- l

RABij = (êBj' hA;)

QABij = (êAi,hBJ

The linear equations at boundary p = bare

(êBj,hBj) {f~j(b)Bt + f~j(b)B; }

(êBj,hBj) {f~j(b)Bt + f~j(b)B;} = (êBj,hck) {f~:(b)C: + f~;;(b)Ck}

Expressing this in matrix form the following equation results:

(3.144)

(3.145)

(3.146)

(3.147)

(3.148)

- - eb - - eb - eb - eb

[!:PBGB+ PBGB_ -RBCGC+ -RBCGC-

H2 - - hb - - hb - hb - hb C+ =0 (3.149)
PBGB+ PBGB_ -QBCGC+ -QBCGC-

C-
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where

PBjj (êBj,hBj)
- eb

fSj+(b)GBjj+ =
- eb

fSj- (b)GBjj- =
- hb

f~j+(b)GBjj+
- hb

f~j- (b)GBjj-
Geb fék+(b)Cjk+
ceb fék- (b)Cjk-
Chb = f~k+ (b)Cjk+
Chb = f~k- (b)Cjk':

RBCjk = (êck, hBj)

QABjk = (êBj, hCk)

Finally at boundary p = c,

(3.150)

(3.151 )

which can be written as

[

QCDG~+

- he
RCDGc+

- he
RCDGC-

-PDG';; 1 [~~ 1 =0
- x.hc --PDGD D

(3.152)

where

PDil (êDp hDJ

G';;ll = tDI(C)
- he

jJJI(c)GDII

CCkl+ fck(c)

CCkl- = fCk (c)

che f/!:k (c)cu+
Che f~k (c)cu-
RCDkl = (êDll hcJ

QCDkl = (êCk, hDI)
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The matrix equations, Equation 3.146, Equation 3.149 and Equation 3.152 can be combined
into a single matrix which is given by

PAG~
- ea

-RABGe;- Z Z z iI-RABGB+
- - ha - ha - ha Z B+PAGA -QABGB+ -QABGB- Z Z

Z - - eb - - eb - eb - eb Z B-PBGB+ PBGB_ -RBCGC+ -RBCGC-
- - hb - - hb - hb - hb B+ =0

Z PBGB+ PBGB_ -QBCGC+ -QBCGC- Z
Z Z z QCDG~+ QCDG~- -PDG~ B-

z Z Z - he - he - - he DRCDGC+ RcDGC- -PDGD

where Z is a NxN zero filled matrix. This matrix can now be simplified into a matrix which is
only in terms of B+ and C+. Searching for the zeros of the determinant of the system of linear
equations gives the resonant frequencies of the modes being considered.

Implementation of Four-layer Radial Mode Matching

In order to have a point of comparison, the four-layer implementation was used to investigate
a dielectric pill resonator in the central region, surrounded by 3 air-filled regions. The results
were then compared to the results derived by the two-layer implementation for the pill resonator.
Similarly, the ring resonator surrounded by two air filled regions was modelled and the results
compared to the results derived from the three-layer implementation for the simple ring resonator
implementation. The results are compared in Table 3.4 for the post resonator and Table 3.5 for
the post resonator. Once again, the hybrid modes with a PMC symmetry wall at z = 0 seem to
be more inaccurate than results for other modes, especially in the case of the ring resonator.

Table 3.4: Comparison of Resonant Frequencies [GHz} for the modes in pill resonator for the
two layer and four layer implementation, for matrix size, N=10

Mode Two-layer Four-layer Percent %
TEEOl 5.2440 5.2450 0.00
TMEOl 4.6650 4.6620 0.06
TEHOl 3.2560 3.2590 0.09
HEEll 4.1010 4.1010 0.00
HEE12 5.8600 5.8587 0.22
HEHll 4.0074 4.0040 0.084
HEH12 5.2151 5.2090 0.11
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Table 3.5: Comparison of Resonant Frequencies [GHz] for the modes in ring resonator for the

two layer and four layer implementation, for matrix size, N =10
Mode Two-layer Four-layer Percent %
TEHo1 3.1650 3.1614 0.11

TMEQl 4.8950 4.8886 0.13

HEHu 4.3636 4.2140 3.4

HEH21 5.3809 5.2393 2.63

HEH31 7.6371 7.6231 0.18

Since, it takes more time and more modes, to derive properly converged resonant frequencies
for the four layer implementation, it seems likely that these results would have been more accurate
if a larger matrix size had been used. Due to time constraints this aspect was not investigated
further.
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3.3 Axial Mode Matching

To apply axial mode matching to a structure as is shown in Figure 3.1, the resulting regions are
either homogenous or dielectric loaded waveguides. The fields in homogenous lossless cavities
have been derived in the previous chapter. However, it is still necessary to derive the fields in
a dielectric loaded dielectric waveguide. This section first derives the fields in dielectric loaded
waveguides. The fields of an infinite dielectric loaded waveguide are then plotted and discussed.
Then the theory of axial mode matching is presented.

3.3.1 Dielectric loaded Waveguides

In this case it is assumed that the waveguide extends to infinity in the ±z direction. The radius
of the dielectric rod is a, and the radius of the cylindrical metallic sheath is b. The permittivity
of the dielectric is defined as fl = frlfO, and the permittivity of the material in the outer region
is f2 = fr2fO. Figure 3.11 shows such a dielectric loaded waveguide. The structure is divided
into 2 regions with a radial boundary, where region 1 is bounded by 0 :S p < a and region 2 is
bounded by a :S p < b.

PERFECTLY
CONOUCT1NG
wAvEGUIDE

Figure 3.11: A circular dielectric loaded waveguide. It is important to note that both the

dielectric rod and the enclosing metallic sheath extend to infinity in the ±z directions.

The fields in this structure are divided into pure T Eom, T MOm and hybrid mode fields H Enm,

where the hybrid modes consist of combinations of TE and TM modes. It is important to note
that only TEom and TMom modes can exist in this structure where (as was the case for modes
in cylindrical structure) n describes the amount of angular field variations and m describes the
amount of radial variations. The TE and TM modes are investigated separately.
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TE fields

From Equation 2.45 we can write

where i = 1,2 in region 1 and 2. Once again the structure can be divided into LEC and LMC
solutions. In this derivation we choose to work with LMC fields. Therefore Cl = C2 = 0 for the
TE solution.

The next step is to investigate the p dependency. In region 1 the solution must be finite.
Therefore FI = 0 and the radial dependance Rl ({3IP) = El In ({3IP) where {3r = K:1 +,2. Addition-
ally, K:I = ErlK:6. In region 2, the Bessel functions In and Yn can be re-written as In and Kn. In
this section it is assumed that the fields in region 2 are non-propagating and {32= _(!2+K:~) > 0
where K:~ = Er2K:6. If (32 = ,2 - K:~ < 0, then the fields are propagating in region 2 and it is
necessary to replace In with In and Kn with Yn. The P dependency in region 2 is therefore
written as R({32P) = (E2In({32P) +F2Kn({3p). The boundary at P = b, is assumed to be a perfect
electric conductor (PEC). Therefore Hp,2 = 0 and

(3.154)

This means that

F __ E2I~ ((32b)
2 - K~({32b)

(3.155)

The tangential magnetic and electric fields must match at the boundary. Therefore H</J,l =
H</J,2, Hz,l = Hz,2, E</J,l = E</J,2 and Ez,l = Ez,2. Given Equations 2.49 and 2.46, we can derive
the electric and magnetic fields. From H</J,l = H</J,2 and Hz,l = Hz,2 it follows that at P = a

(3.156)

and

(3.157)

The P dependency in region 2 can now be written as

R(p) (3.158)

(3.159)
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This gives us the final wave equations

(3.160)

and

(A2e'Yz + B2e-'YZ
) * D2 sin (n¢) *

Edn((31a) In((32p)K~((32b) - I~((32)Kn((32(3)
In((32a)K~((32b) - I~((32b)Kn((32a)

(3.161)

Combining all the constants, the field equation can be written as

w{ = K! Z(rz) sin (n¢)~((3iP) (3.162)

It is important to remember that due to the way in which Z(rz) was defined,

dZ(rz)
Z(rz) = "( dz = "(Z(z) (3.163)

Substituting Equation 3.162 into Equations 2.26 - 2.31, it is possible to derive the TE field
components from w! where wa = 0 and

Hz i = _1_ (dd
2

2 + ",2) w{
, JWJ.L z

with i = 1,2 representing fields in regions 1 or region 2. This gives us

(3.164)

. _ {Hz,l = J21l(3rK{z(rz) sin (n¢)Jn((31P),
Hz,1 - H - -1 (32K!Z( ). ( ~)J ((3 ) In((hp)K~((32b)-I~((32)Kn((32(3)

z,2 - JWIl 2 2 "(Z sm nlf' n la * In((32a)K:'((32b)-I:' «(32b)Kn ((32a) ,

To simplify the previous equation, a function Pn((32P) is defined so that

(3.165)

(3.166)

and Hz,i can be re-written as

{ n., = _1 (3rK{Z("(Z) sin (n¢)Jn((31P),H . - ]Wil

Z,I - Hz,2 = ;~(3~Kt Z(rz) sin (n¢)Pn((32P),

In order to derive fields in the same format as Chen [9], it is necessary to re-write K{ = A"(aj(3r
and Kt = -A"(a/(3~ where

(3.167)

(3.168)

This is the solution to the first-order differential equation

dy = tan (a (x y)) = Ey(x, y) = Er sin (¢) + Er/>cos (¢)
dx ' Ex(x,y) Ercos(¢)-Er/>sin(¢)

(3.169)
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where Cl! is the angle between the field vector at a given point (x,y) and the positive x-axis. The
equation was derived by Nagelberg [l l].

Therefore, the TE field equations are given by

Erho,i { Epl
-dwf __ AZ('yz) cos (nq,h [cmJnUhp)]=~ pdq, - !3r p'

Ep,2
-dwf _ AZ('yz)cos(nq,h[cmPn(!32p)]=~ pdq, - !3~ p'

{ Eq,l
dWf = AZ('yz)sin(nq,h[ (3 J' ((3 )]= :::.:.l.dp !3r Cl! 1 n lP ,

Eq,,2
dwf - _AZ('yz)sin(nq,h2[ (3 PI((3 )]=~dp - !3~ Cl! 2 n 2P .

{ Hpl
1 d2wf _AZ('yz)sin(nq,)[ 2(3JI((3 )]=-~JWIl dpdz - !3?JWIl Cl!"( 1 n lP ,

Hp,2
1 d2wf = _ AZ(~1;:: (nq,) [Cl!"(2(32P~((32P)].= JWJ1 dpd;

{ Hq,l
1 d2wf _ AZ('yz) cos (nq,) [o-y2nJnUhp)]--~

- JWJ1Pdodz - !3?JWJ1 p'

Hq,,2
1 d2wf _ -AZ(-yz) cos (nq,) [o-y2nPn(!32p)]=-~

JWJ1Pddxl» - !3~JWJ1 p'

(3.170)

(3.171)

(3.172)

(3.173)

TM fields

From Equation 2.63 we can write

where i = 1,2. The structure is divided into LEC and LMC solutions. Working with LMC fields,
results in Dl = D2 = O.

Now the P dependency is looked at. In region 1 the solution must be finite. Therefore Fl = O.
In region 2, the Bessel functions In and Yn are re-written as In and Kn. The P dependency in
region 2 is written as R((32P) = E2In((32P) + F2Kn((3p) and the boundary at P = b, is assumed
to be a perfect electric conductor (PEC). Therefore Ez = 0 and

(3.175)

This means that

F2 = _ E2In ((32b)

Kn((32b)
(3.176)

The tangential magnetic and electric fields must match at the boundary. Therefore Hq"l = Hq,,2'

Hz,l = Hz,2, Eq"l = Eq,,2 and Ez,l = Ez,2. From Equations 2.49 and 2.46, we can derive the
electric and magnetic fields and from Eq"l = Eq,,2 and Ez,l = Ez,2 it follows that at P = a

(3.177)
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and

The p dependency in region 2 can now be written as

This gives us the final wave equations

and

W2 = (A2ef'Z+B2e-'f'Z)*C2cos(n¢)*
ElJn({3la) In({32p)Kn({32b) - In({32)Kn({32{3)

In({32a)Kn({32b) - In({32b)Kn({32a)

Combining all the constants, the field equation can be written as

w~= KfZ("tz)cos(n¢)~({3iP)

in Region 1,
in Region 2,

70

(3.178)

(3.179)

(3.180)

(3.181)

(3.182)

(3.183)

By substituting Equation 3.183 into Equations 2.26 - 2,31, it is possible to derive the TM field
components from wa where w! = 0 and

1 (d2 2) .T,aEzi = - -d 2 + I\; '£i
, JWf. Z

This gives us

E . _ {Ez,l =
z,~ - E

z,2

To simplify the previous equation, a function Rn({32P) is defined so that

and Ez,i can be re-written as

E
zi

= {Ez,l = J~E{3rKfZ(fZ)cos(n¢)Jn({3lP),
, Ez,2 = ;~{3~K~Z("tz)cos(n¢)Rn({32P),

(3.184)

(3.185)

(3.186)

(3.187)
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To derive fields in the same format as Chen [9], re-write Kï = - AJWE/ {3r and Kf] = AJWE/ {3~.
The TM field equations are now given by

{ Hpl
dwa __ AZ(-yz) sin (nq,H [nJnUhp) Jn., =ica - f3fJWJ.L p'= dwa _ AZ(-yz) sin (nq,)K~ [nPn(,lhp) J

Hp,2 -::.:..2.- pdq, - f3? p'

{ Hq,l
_dwa = -AZ(-yz) cos (nq,)KI [{3 J' ({3 )J=____::::_:_j._

Hq"i
dp f32JWJ.L I n lP,

-dwa 1 2

Hq,,2 =~ = AZ(-yz)cos(nq,)K2[{3 P'({3 )J
dp f3?JWJ.L 2 n 2P .

{ EpI
I d2wa = -AZ(-yz)cos(nq,)[ {3 J'({3 )J

Ep,i
= JW€ dpd; f3r ' I n lP,

Ep,2
I d2wa - AZ(-yz) cos (nq,) [ {3 P' ({3 )J=-~JW€ dpdz - f3~ , 2 n 2P .

{ Eq,l
I d2wa _ AZ(-yz) sin (nq,) ['YnJn(f31P) J--~

Eq"i = - JW€Pdq,dz - f3r p'

Eq,,2
I d2wa _ -AZ(')'Z) sin (nq,) ['YnPn(f32p) J=-~)W€P dq,dz - f3~ p'

(3.188)

(3.189)

(3.190)

(3.191)

Characteristic Equation

In order to solve for the axial propagation constant, " it is necessary to derive the characteristic
equation for fields in dielectric loaded waveguides. This is done by examining the fields at the
boundary. In this case, we concentrate on Hq"l = Hq,,2 at the boundary where P = a. Using the
field solutions for hybrid modes, we obtain the following equation:

(3.192)

If ,2 is factored out one finds that

2 [anJn({3la) ~ anPn({32a) 1 ] _ ,..i{3IJ~({3la) ,..~{32R~({32a)
, {32 + {32 - {32 + {32a I a 2 I 2

To simplify the equation, two functions are defined such that

(3.193)

x = (3.194)

y (3.195)

Working with X,

(3.196)

(3.197)

(3.198)

(3.199)
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from the definition of Cl! 3.168 and the fact that at p = a, Pn(/32p)= In(/31P). Furthermore, Y
can also be re-written as

y ~I/31J~(/31a) ~~/32R~(/32a)
/3r + /3i

~~Wna

(3.200)

(3.201)

Therefore by substituting X and Y into Equation 3.193, we can derive the characteristic equation
in terms of "(2 as

(3.202)

The values of"( that satisfy this equation are valid propagation constants for modes at a particular
frequency. Once "(has been computed it is possible to compute /31 and /32 necessary to determine
the field distributions. TE and TM modes can be considered as special cases of hybrid modes,
where n = o. If n = 0, Uo = 0 and the characteristic equation simplifies to VoWo = 0, where
Vo = 0 is the eigenvalue equation for the TE modes, and Wo = 0 is the eigenvalue equation for
the TM modes.

Next the dielectric loaded waveguide implementation is discussed. This model can be used as
a building block in the implementation of the axial mode matching technique that was previously
discussed. It can also give insight into the potential field distribution of resonant modes in a
dielectric resonator. This aspect has been made use of in the design process. Knowledge of the
field distributions can also provide valuable information which can be used to place probes in
the correct position to excite the desired fields.

3.3.2 Implementation of Dielectric Loaded Waveguide

In an attempt to gain a better understanding of the field distributions in dielectric resonators, the
fields in dielectric loaded waveguides were investigated in detail. Since the fields in the central
plane (z = 0) of a simple dielectric resonator can be modelled with the use of a dielectric loaded
waveguide, the resultant plotted fields should be a good model of fields in the central region of
a dielectric loaded resonator. It should be understood that the field distribution of a dielectric
loaded resonator will change more and more from that of a dielectric loaded waveguide as one
moves away from the central plane of the resonator.

The fields that exist in a dielectric loaded waveguide have been derived in Section 3.3.1. The
first step in modelling these fields is to solve for the axial propagation constant "( at the desired
frequency. This is done by solving the characteristic equation using some sort of root finding
algorithm. Once "( is known, we can substitute it back into the field equations and plot the
electric and magnetic fields along the P - cP axis. To test the accuracy of the implementation,
the resultant "(values were compared to work done by Chen in [7]. Some of the modes that were
compared are summarized in Table 3.6. It can be seen that the obtained results were almost
identical to those obtained by Chen.
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Figure Mode Frequency [GHz] , [7] , (this implementation) Percent error %
3.12 HEll 4.0 0.0574 0.0574 0.00
3.13 HE12 4.0 0.1119 0.1119 0.00
3.14 HE21 4.0 0.9364 0.9363 0.10
3.15 HE24 8.0 0.2254 0.2255 0.44

Table 3.6: Parameters of the Field Plots in Fiqures 3.12 - 3.15

Table 3.6 provides the information necessary to explain the obtained results as shown in
the figures. The first column consists of a list of the figures that were included. Each row
provides the necessary information for each mode that is plotted in the figure. The information
provided consists of the name of the mode, the frequency at which it was investigated, the axial
propagation factor obtained from [7],and the actual propagation factor used in the analysis. The
structure has the following parameters: The inner radius is given by p = 9.9mm and the outer
radius is given by p = 12.7mm. The relative permittivity of the inner dielectric is Erl = 37.6 and
the outer region is assumed to be air-filled with Er2 = 1.

The first sub-figure (a) of each figure shows the normalized electric and magnetic field in-
tensity as it changes along the p axis from the central axis to the outer circumference while
keeping cP constant. One important fact to note is that at the inner boundary E¢, H¢ and Hp

are continuous. This means that the important condition of tangential field continuity at the
boundary has been satisfied. The second sub-figure (b) shows the magnetic field distribution in
the p - cP plane. The arrows indicate the direction of the transverse electric fields and the color
in the background indicates the normalized field intensity at that specific point. The lightest
values indicate the highest values, and the darkest colors indicate the lowest values. Subfigure
(c) shows the electric field distribution in the p - cP plane.

The fields in this section are used to gain a more detailed understanding of what fields in a
dielectric loaded resonator would look like. However, they are only approximations. In order to
derive the exact fields, it is necessary to use mode matching. In this case, one would solve for
the resonant frequencies of the dielectric resonator. Then the field coefficients, Ai and Bj are
solved for and substituted into the field equations for each region. While this technique was not
implemented, the theory is described below for the sake of completeness.
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Figure 3.12: Held Disirilnituni of the HEll hybrid mode in an infinite dielectric loaded
wO:lJegllide

Distance from central axi!'l to outer radius [mm)

(a) Xormalizcd Field Intensity along the p axis for

¢>=o

H-ft9ld dlslJlbutbn

o
Vewolcross-s&ctloolnp,

(b) rr¢> plane Magnetic Field distribution

E-neld dls\lt)uli:m

(c) p-¢> plane Electric Field distribution
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Figure 3.1G: Field Distribution of the of!E12 hybrid mode in an infinite dielectric loaded

uuniequide

Distance from central axis to outer radius [mm)

(a) Xormalizcd Fiold Intensity along; thc p axis for
tj>=0

o
View of cross-section In p-;

(b) p-tj> plane Magnetic Field distribution

View of cross-section In p'"

(c) p-tj> plane Electric Field distribution
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Figure 3.14: Normalized Field Disiribuiior: of the HE21 hyb?-id mode in an infinite dielectric

loaded waveq'llide

Distance from central axis to outer radius [mm]

(a) Xorrnalizcd Field Intensity along the p axis for

r/>=O

(b) p-d: plane Magnetic Field distribution

(c) p-d: plane Electric Field distribution
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Figure 3.15: Normalized Field Distribuiion of the H E24 hyh1'id mode in. an i7lfinde dielectric
loaded 1JJaveg1l'ide

(a) Field Iutcnsitv along the p axis for rjJ = 0

(b) JrrjJ plane Magnetic Field distribution

-0.015 o
VIew ot cro&s-sedlon In p-.

(c) p-rjJ plane Electric Field distribution
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3.3.3 Theory of Axial Mode Matching

The theory is explained with reference to the structure shown in Figure 3.1. Note that the
resonator is surrounded by a cylindrical metallic shield. In this method, the boundaries of interest
are at z = ±l/2. Due to symmetry only half of the structure needs to modelled to obtain the
correct results. The dielectric resonator and the surrounding air-filled annular region contained
between 0 ~ P ~ band 0 ~ z ~ l/2 are modelled as a dielectric loaded radial waveguide, where
the permittivity Er is independent of the axial co-ordinate z. This will be referred to as region
A. The second region is contained between 0 ~ P ~ band l/2 ~ z ~ L/2. This region will be
referred to as region B. The transverse fields in each region are expanded in terms of cylindrical
waveguide modes and tangential continuity must be enforced at the boundary at z = l/2. The
equations describing the electric and magnetic fields in the dielectric waveguide are given in
Section 3.3.1.

We can express the electric and magnetic fields s linear combinations of eigenmodes. In region
A, the electric and magnetic fields are given as

EA(P, cp, z = l/2) (3.203)

where ei and hi represent functions that are dependant on P and cp. Additionally, g and !ih are
functions that are dependant on z. The fields in region B are given by

EB(p, cp,Z = l/2) L BjêBj(p, cp)!Sj(z = l/2)
j

(3.204)

EB(p, cp, Z = l/2)
j

In this particular case the tangential fields must match at the boundary between the two regions.
Therefore we know that

EA(p, cp,Z = l/2)

H A(P, cp, Z = l/2)

= EB(p, cp, Z = l/2)

HB(p, cp,z = l/2)

(3.205)

(3.206)

Now the cross product of Equation 3.205 with hAi is taken and the entire equation is integrated
over the interface, resulting in the following equation

Ai(êAi, hAi)!Ái(l/2) =L Bj(êBj, hAi)!Sj(l/2)
j

where the inner products are defined as

(3.207)

J 1êAi(P, cp) X hAi(P, cp) . z pdpdcp

J1êBj(p,cp) X hAi(p,CP)· z pdpdd:

(3.208)

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 3 - MODE MATCHING 79

We also made use of the orthogonality property of eigenmodes that

(3.209)

Similarly the cross-product of Equation 3.206 is taken with êAi and integrated over the interface
surface, S. This results in the following equation

(3.210)

If Equation 3.210 is subtracted from Equation 3.207 we can re-write the resulting equation as
the following homogenous linear set of equations:

(3.211)

where

(3.212)

constitute the coefficients of the linear system. This systems has the followingmatric form

Xu X12 X1N Bl

X21 X22 X2N B2

=XB=O (3.213)

XNl XN2 XNN BN

Once again, the frequencies satisfying the equation

det X = 0 (3.214)

are the resonant frequencies of the structure. Since axial mode method was not implemented,
the exact axial inner products are not provided in this report. For exact descriptions of the inner
products, the reader is referred to the article by Chen [32]and his PhD thesis [9].

3.4 Conclusion

This chapter outlined the modelling technique that was developed to model inhomogenously filled
dielectric cavities (dielectric resonators). First different modelling approaches were discussed
and then both radial and axial mode matching were discussed in more detail. This section
also introduced the fields in a two-layer stratified waveguide and an infinite dielectric loaded
waveguide. The results of the radial mode matching technique were looked at in detail with
respect to accuracy and convergence. The next chapter details the proposed design that was
obtained in order to implement a high-Q dielectric resonator with an improved SFR
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Chapter 4

Resonator Design

4.1 Introduction

The necessary tools needed to determine the resonant frequencies of dielectric resonators have
been developed. At this point, it is possible to generate a design to meet certain requirements.
This report focusses on testing whether the proposed structure shown in Figure 4.2 can be used
as a high-Q resonator with an improved SFR. In order to obtain a high Q resonator, whispering
gallery modes have been proposed. These modes have been shown to have a relatively narrow
SFR, and the use of a layered dielectric structure has been proposed to remedy this. A structure
consisting of a pill and a ring resonator is proposed that both resonate at the same frequency.
This chapter discusses the process followed to come up with a satisfactory design and then
evaluates it.

4.2 Simple Resonator

In order to have a clear idea of what the SFR of a certain post resonator would look like, all
resonant frequencies over a certain frequency band must be determined. As a starting point,
the dimensions of the post resonator as examined by Chen [32], are retained. This means that
for a resonator as shown in Figure 3.1, a=8.636 mm and 1=14.48 mm. The permittivity of the
dielectric is taken as Er = 35.74 In order to prevent the external shield from influencing the
resonant frequencies significantly, the length, L, of the shield is chosen to be 35.18 mm and the
outer radius, b, is 27.18 mm . For this resonator, the modes that exist between 1 GHz and 12
GHz are provided in Tabel 4.1 where the size of the matrix is chosen to be N=10. Note that
at 6.853 GHz a false zero crossing was detected which appeared for all modes with a PMC wall
at z=O. That is for TEH, H EH1m etc. This mode was omitted from the table as it does not
represent a true resonant frequency. The reason for the occurrence these roots is not known at
this stage.

80
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Table 4.1: Resonant frequencies [GHzJ of a simple post resonator from 1 GHz to 12 GHz [a=8.636 mm, b=27.18 mm, 1=14.48 mm L=35.18
mm, El = 35.74 and E2 = IJ

m 1 2 3 4 5 6 7 8 9 10 11 12 13

TEEom 5.206 7.443 9.829 10.617 11.209

TEHom 1.057 3.091 5.713 6.853 7.742 8.332 9.138 9.779 11.346 11.843

™Eom 3.890 4.782 7.119 8.885 9.456 9.984 10.367 11.702

™Hom 5.903 7.329 9.143 10.404 11.397

HEElm 3.991 5.859 6.188 6.800 8.588 9.200 9.893 10.855 10.964 11.050 11.406 11.575 11.984

HEE2m 4.849 6.921 7.276 9.030 9.536 9.794 10.078

HEE3m 5.781 7.902 8.418 10.559 10.956 11.096 11.163 11.360

HEE4m 6.748 9.564 11.410 11.833

HEE5m 7.735 9.802 10.702

HEE6m 8.733 10.749 11.827

HEE7m 9.736 11.699

HEEsm 10.741

HEHlm 4.039 4.610 6.645 7.087 7.689 8.144 8.611 9.381 10.159 10.208 10.747 11.996

HEH2m 5.293 6.610 7.409 8.223 8.999 9.422 9.830 10.825 11.264 11.602 11.921

HEH3m 6.387 8.107 8.448 9.392 9.879 10.342 11.907

HEH4m 7.450 8.865 10.221 10.548 10.753 11.269

HEH5m 8.498 9.654 11.619 11.683

HEH6m 9.534

HEH7m 10.562 11.336

HEHsm 11.584
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The next step is to identify a valid whispering gallery mode. It is known that a whispering
gallery mode has a high angular variation. The H EHs1 mode is at a low enough frequency to be
convenient for future measurements. It is also desirable since it is the first resonant mode of it's
particular hybrid subset. The question now remains whether this mode is a valid hybrid mode
or not. Appendix B provides a simple model of whispering gallery modes. The most important
properties are the caustic radius, Pc, the critical radius, Pp and the minimum angular variation,
nmin. Whispering gallery modes consist of waves that mainly travel in the angular direction
along the radial circumference. The critical radius defines the critical boundary within which
the wave travelling in the resonator must be confined in order to be classified as a whispering
gallery mode. It is given by

(4.1)

where a is the radius of the dielectric cylinder, E2 is the permittivity of the outer region sur-
rounding the dielectric, and El is the permittivity of the inner dielectric material. The caustic
radius is the actual boundary within which the waves are confined It is given as

(4.2)

Therefore a condition that follows is that

a> Pc> Pp (4.3)

We can find nmin by setting the caustic radius equal to the critical radius which gives us

nmin = f31 a
1

(4.4)

In order to gain an insight into the field distribution of this proposed mode, the H EHs1 is
examined in the dielectric loaded waveguide. Using radial mode matching, the resonant frequency
is determined as 8.498 GHz. Solving for the axial propagation constant in the dielectric loaded
waveguide, it is given as f31 = 1.2383 and Pc = 4.04 mm. The critical radius of a dielectric loaded
waveguide with radius a = 8.636 mm is Pp = 1.445 mm and the minimum angular variation
nmin = 2. We can also prove that Equation 4.3 holds true. This means that the HEHs1 mode
complies with the requirements of whispering gallery modes. It must be noted that an angular
variation of n = 5 is still at the low spectrum of whispering gallery mode angular variations.
These modes have been implemented with n > 25! As the angular variation increases, the
radiation becomes more and more confined and the Q factor increases. The resonances with
higher angular variations will obviously occur at higher frequencies and should be more difficult
to measure when implemented. This is the main reason for choosing a mode with a relatively
low angular variation. Figure 4.3 (a) shows the magnetic and Figure 4.3 (b) shows the electric
field distributions of the HEs1 mode in the dielectric loaded resonator. Figure 4.3 (c) shows a
close-up of a quarter of the dielectric resonator, showing the magnetic fields. One can confirm
from this figure that the calculation of Pc = 4.04 mm is quite accurate. Note that the fields that
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are plou.ed are Ihe accural e fields as del ermined for dielectric loaded waveguides. The model

for whispering gallery waveguides from which Ihe equal ion for the caustic radius is derived is an

approximation. Using the insight gained from the dieleer ric loaded waveguide implementation iI

was assurned that the H EH5l mode is indeed il whispering gallery mode in Ihe dielectric loaded

resonator.

Table 4.2: The resonant frequencies of the post resonator over a frequency range from 8.2

CIIz to 86 CJh
Mode Frequency fGlIz]

HEH24 8.223

TEHo4 8.332

HEE33 8.418

HEH33 8.448

HEH5l 8.498

HEE15 8.588

The frequency speet rum from 8.2 GlIz Lo 8.G GlIz the simple dielectric resonator, is shown

in Figure 4.2. The order of these modes from the lowest frequency point to the highest frequency

point is listed in Table 4.2. The SFTI C;Ul be seen to be only (8.498 - 8.448)/8.498 - 0.59%.

oL--L__~ -L__-L~ L-~ __ ~ ~ ~ ~
8.2 8.25 8.3 8.35 8.4 8.45

Frequency [GHz]
8.5 8.55 8.6

Figure 4.2: The mode charl. of the single post 1·eS011.at01·for a frequency range from 8.2 CJh to

8.6 CJh
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Figure 4.3: Field Distribution of the H E51 hsjbrid mode in an infinite dielectric loaded

waveguide

(a) p-¢> plane Magnetic Field distribution

(b) p-¢> plane Electric Field distribution

H-fiekldistribution

4 6
View of cross-section in p-t

10

(c) Zoomed view of Figure 4.3(a)
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4.3 Ring Resonator

The next step in the design is to find a ring resonator that will have a H EH51 mode resonating
at the same frequency as the post resonator. One can change the resonant frequency by either
changing the height of the ring resonator, or by changing the inner and outer radii. Changing
the radii has certain problems as the inner radius has to be larger than the radius of the post
resonator. As the inner radius increases (with a corresponding increase of the outer radius), the
resonant frequency becomes lower. In the implementation, it was found that it was impossible
to obtain a high enough frequency to obtain a satisfactory result. Additionally, moving the
resonator too close to the boundary causes the boundary to have significant effects on the resonant
frequency. The conduction losses also should increase, resulting in a lowered Q factor. Therefore
fixed radii were arbitrarily chosen to be a=11.43 mm and b=16.51 mm and the frequency was
changed by changing the height of the resonator. The shield dimensions were set to be the same
as those defined for the post resonator. The length, L, of the shield was to be 35.18 mm and the
outer radius, b, was 27.18 mm . Figure 4.4 shows the effect that changing the ring height has on
the resonant frequency of the H EH51 mode. One can determine that a ring height of 2.013 mm
would produce a ring resonator with the same resonant frequency as that of the post resonator
analyzed previously. The resonant frequencies of this ring resonator are shown in Table 4.3 for
frequencies between 1 GHz and 12 GHz. Note that at 1.944 GHz a false zero crossing was again
detect for all modes with a PMC wall at z=O.

Effect of ring resonator height on the Resonant frequency of the HEHs1 mode [GHz]

Height of the ring resonator [mm]

Figure 4.4: The effect of changing the ring height on the resonant frequency of the H EH51
mode fa = 11.43 mm, b=16.51 mm, c=27.18 mm and L=35.18 mm,]
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Table 4.3: Resonant frequencies {GHz} of a ring resonator from 1 GHz to 12 GHz { a = 11.43mm, b=16.51 mm, c=27.18 mm, [=2.013 mm

and L=35.18 mm}

m 1 2 3 4

TEEom 10.568
TEHom 1.944 4.053 8.448 10.349

™Eom 4.168 9.264 9.597

™Hom 5.843 10.462
HEE1m 6.608 8.908 10.516 11.843
HEE2m 8.822 9.865 11.766
HEE3m 10.815 11.114
HEHlm 4.270 6.738 8.000 11.464

HEH2m 5.914 8.036 9.248 10.617

HEH3m 7.573 8.485 11.066
HEH4m 8.227 9.901
HEHsm 8.498 11.691
HEH6m 9.534
HEHsm 9.421
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The frequency spectrum from 8.2 Gllz to 8.G GIIz for the ring resonator is shown in Figure
4.5. The order of these modes from the lowest frequency point to the highest frequency point is
listed in Table 4.4.

Table 4.4: The resonant frequencies of the ring resonator over a ft'eq'llenr:y mnge [rom. 8.2
Gllz to 8 6 GIIz

110de Frequency [GIIz]

HEH41 8.227

TEHo2 8.448

HEE32 8.485

HEH51 8.498

The SFn in this ease is (8.498 - 8.485)/8.498 - 0.15%. One can see t.hat. although the overall
amount of modes in the region being considered has decreased, the SFR of Lhe H EH51 mode
has not been improved. This is not a desirable result, and an effort should be made in fUIure
iterations of this design to find a hybrid mode that has an improved SFn for the ring resonator.

O~--~~------~----~-------L----~L---~~------~----~
8.2 8.25 8.3 8.35 8.4 8.45 8.5 8.55 8.6

Frequency [GHz]

Figure 4.5: The mode chart of the rinq resonator for a freq'llenr:y ranqe .fmm 8.2 Gllz to 8.6

Gllz
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4.4 Combined Structure

89

Finally, the resonator consisting of the post and the ring resonator was modelled. Table 4.5

shows the first two resonant frequencies of the TE and TM modes. It is clear that the modes of
the combined st ructure consist of an overlap of the frequencies of the individual resonators.

Table 4.5: The first two Resonant frequencies fGIIz/for the TE and TAf modes of the

combined resonator1'/ , " ' "

m 1 2

TEEom 5.1990 7.4290

TEHom 2.9478 4.4001

™Eom 3.8522 4.7723

™Hom 5.7670 7.326

Due LO time constraints, only the specific frequency band from 8,2 to 8.6 GIIz was considered
for the hybrid modes. Therefore it is not possible t.o group the modes according to what point
they occur in the frequency domain. The modes me described in the same manner as before
where m is designated as x t.o indicai e this uncertainty. Figure 4,6 shows the resulting mode
dICU'! over the specific frequency band, The order of these modes is HEH4x, HEH2x, TEHox,
HEH3x, HEH5x, HEH5x, and HEElx.

8,25 8,3 8.35 8.4
Frequency [GHz)

8.45 8,5 8,55 8,6

Figure 4.6: The mode chart of the combined resonator f01' a frequency range [rom. 8,;2GJh to

8.6 GJh
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Once again, the frequency band consists of an overlap of the individual resonant frequency
responses in addition to a double resonance around the design frequency. This double resonance
is due to the coupling between the two resonators. This can be explained with reference to the
equivalent circuit diagram of the proposed structure shown in Figure 4.4.

Since I am not taking the source and the load into account in my mode matching technique,
one can apply a short circuit across the source and source resistance and across the load resistance.
This is seen in Figure 4.4. Here only two resonances of each resonator are indicated for simplicity.
The resonance WI = l/JLICI is set to be common to both resonators. Mesh current analysis
can now be applied to the circuit and a linear homogenous system of equations in terms of the
individual impedances and the currents can be set up. Finally, writing this system in matrix
form will result in an equation of the shape

[Z] [I] = [0] (4.5)

where [Z] is a square matrix and [I] is a vector matrix. The non-trivial solutions of the system
are once again given by the zero points of the determinant of [Z].

When implementing this figure in Matlab, I defined three resonance, WI, W2 and W3 where
Wi = l/JLiCi· In this case WI was set to be common to both resonators. The ideal transformer
was modelled as a T-network as indicated on the figure where M represents the coupling between
the two resonating structures. I arbitrarily chose the following resonant frequencies:

Table 4.6: Different resonant frequencies assigned to the resonances of Figure 4·4
Resonance GHz

WI 5
W2 2

W3 9

The derived resonant frequencies for these resonances, where the coupling M is set to be O.lJ-LH
are shown in Figure 4.9. One can also clearly see the double resonance that occurs around WI.

The effect of changing the coupling, M, is investigated in Figure 4.10 for two different coupling
factors. One can clearly see the great effect that the coupling between the resonators has on the
double resonance.
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Figure 4.9: The resonant frequencies of the examined resonant circuit.
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Figure 4.10: The double resonance around the resonant frequency common to both resonators

for two different coupling factors, M

By using the mode matching technique, an accurate equivalent circuit model can therefore
be determined. This analysis phase can be combined with optimization algorithms to to design
coupled resonators with specific characteristics. This prototype will serve as a starting point for
an optimization phase. However, it can be already be seen for the first prototype that the choice
of dimensions can be more carefully chosen to improve the coupled structure's SFR.

4.5 Conclusion

This chapter details a design consisting of a post and a ring resonator. Both the post and ring
resonator were designed to resonate at the same frequency for a chosen whispering gallery mode.
The intention was to design a first-order prototype of a combined resonator with an improved
SFR as compared to the simple structure.
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Chapter 5

Conclusion

Starting from basic principles, the theory of radial and axial mode matching was discussed in
detail and then applied to a structure with two to three radial boundaries. Post resonators,
ring resonators and combinations of the two were implemented, and their resonant frequencies
derived. The results were compared to results provided by Chen [32], [91 and were found with
an accuracy of better than 1% for the TE and TM modes, and better than 3 % for the hybrid
modes. It is also very easy to expand the mode matching method to model a general structure
with more than three radial boundaries.

Following this, a design consisting of a post resonator and a ring resonator was investigated.
A hybrid mode of the post resonator was chosen and the ring resonator was designed to resonate
at the same frequency in an attempt to improve the SFR of the post resonator. The mode
matching technique simply provides a list of all possible resonant frequencies that can occur
over that frequency range. A final step that is necessary to design a whispering gallery mode
resonator, is to take into account the coupling between the two resonators and the coupling
between the individual resonators and the external source.

This research has provided the basic analysis tools necessary in resonator designs, but further
steps are necessary if a practical design is to be implemented. Several additional refinements to
the mode matching implementation are possible:

One critical aspect of resonators, the temperature stability, has not been included in the
model. This should really be considered if a commercial resonator is to be built. Also of interest
is the implementation of mode matching that can be applied to resonators made from anisotropic
materials such as sapphire. These types of resonators have become increasingly popular due to
their very high Q factor. Finally, if the resonator is to be built it has to be excited by some type
of source, whose effect should be considered

Concerning the present implementation, several criticisms can be made. For one, the run-time
is rather long. Although careful attention to streamlining the Matlab code for maximum efficiency
could improve this aspect a little, most of this time is spent finding the propagation constants

95
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of the TE and TM modes in each region. Since it is necessary to find all the modes, and since
the omission of a single root results in extremely incorrect results, the search algorithm stepped
through the respective function at very small intervals. Not much time was spent on determining
the best search method for the job, and an improvement seems probable. Additionally, the
determinant seems to have several false zero crossings that show up as resonant frequencies for
several modes. The origin of these false zero crossings was not yet been determined.

It would be of interest to actually build the structure and take measurements. This report
has been theoretical of nature, but has hopefully laid the foundations for future practical in-
vestigations into dielectric resonators. Due to time limitations, whispering gallery modes did
not achieve as much attentions as they deserve, but it is to be hoped that the work done in
this project will be used in the investigation and implementation of dielectric whispering gallery
resonators.
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Appendix A

Quality Factor

This Appendix demonstrates several important characteristics of the quality factor of resonant

circuits. The performance of any resonator, be it a dielectric resonator or a lumped circuit

resonator, can be characterized by it's quality factor (Q). This parameter is defined as [25]

Q = Wo (average energy stored) = Wo Wm + We
(energy loss/second) PI

(A.I)

where Wo = 211"fa is the resonant radian frequency. Wm is defined as the average stored

magnetic energy at resonance, We as the average stored electric energy at resonance and Il as
the power lost in the resonator at the resonant frequency, fa. At a given resonant frequency,

the total energy is stored in equal amounts as electric and magnetic energy. This means that

the input impedance is purely real. As soon as the structure is excited somewhere

off-resonance, the energies in the electric and magnetic fields do not balance and the extra

energy needs to be given back to the source. This means that the transmission line acts as a

reactive load on the exciting source in addition to a resistance due to loss. The following theory

develops a relationship between a resonator's quality factor and its bandwidth. After this, the

quality factors due to individual power losses in the resonator structure are investigated.

A.I Quality factor relationship to bandwidth

The Q factor can be examined by investigating the behavior of a simple resonant circuit.

Consider the simple parallel RLC circuit as shown in Figure A.I. Assume that the switch is

opened at t = O. By summing the currents at the top node, in the circuit, the following

equation can be generated:

v(t) 1 It dv(t)R + L 0 v(x)dx + C---;[t = Idcu(t) (A.2)

We know from Nilsson [20], that the resonant frequency of this circuit is Wo = vk and the

neper frequency is (J" = 2Ac. Therefore, by differentiating the equation with time and

a
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substituting Wo and a, we can derive the following differential equation [16]:

d2v dv 2
dt2 + 2a dt +WoV = f(t) (A.3)

This equation can also be obtained by proper manipulation of Maxwell's equations [16].

L vit)
t -= 0

R c

Figure A.I: Discrete components resonator showing symbols used in setting up FT equation

{16}

When a = 0 in this equation, the homogenous solution is

v(t) = Asinwot + Bcoswot (A.4)

If a > 0, this implies that the resonator has losses. The equation can now be Laplace
transformed and one can solve for the transfer function as follows:

T s _ V(s) _ 1
( ) - F(s) - s2 + 2as + w~ (A.5)

The denominator can be factored to give

T(s) = _1 { 1 _ 1 }
2w[ s + a + ]W[ s + a - ]W[

where the loaded natural frequency is defined as Wl = Jw~ - a2. This shows the presence of
loss in the resonator and a > 0 results in a change in resonance frequency. This is also known
as frequency pulling due to loss. The natural response of the differential equation is [16]

(A.6)

(A.7)

The stored energy is proportional to the average value of v2(t) and can be written as

W = ~V2e-2crt
2

(A.8)

for small values of a. The average power of the system is therefore given as

dW
p= -- =2aW

dt
(A.9)
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This gives us

p
a=2W (A.lO)

and we can rewrite the quality factor as

Q= Wo
2a

(A.11)

We can now define the loaded natural resonant frequency as

WI = WOJl- 4~2 (A.12)

and by substituting Equation A.11 into the differential equation one obtains

d2v Wo dv 2
dt2 + Cj dt +Wov = f(t) (A.13)

For S = JW and a = wo/(2Q) the transfer function T(s) becomes

(A.14)

The denominator can now be rewritten as

2 2 Wo { [ wwo] }Wo -w +JwCj =JwwoQ l+JQ Wo - ~ (A.15)

Now the W dependance can be factored out giving

W Wo _ [w - wo] [WO ]---- -- -+1
Wo W Wo W

(A.16)

Assuming a high quality factor, W is very close to Wo which means that wo/w + 1 ::::::2. We can
now write the W dependance as

(A.17)

where 8 = (w - wo)/wo is defined as the frequency tuning parameter. We can now define an
approximate transfer function

T( ) = JQ/wwo
JW 1+ JQ8 (A.18)

The magnitude of this approximate transfer function is a bell-shaped curve which is highly
dependant on Q. At this point, the half-power bandwidth, B, is defined. B is equal to the
frequency range 6.w from the half-power frequencies WI and W2 that are found where

1
1 T(w) 1= J2 1 T(wo) 1 (A.19)

By using the approximate transfer function, it is possible to rewrite the above equation as

Q/(wwo) 1 Q
Jl + 4Q282 = J2 w5 (A.20)
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This is true for 4Q282 = 1 and therefore 8 = ±ïb. The half power bandwidths can be solved as

Wo
Wi = Wo ± 2Q

where i = 1,2 and the approximate bandwidth, B, is given by

(A.21)

Wo
B = l:::.w =1 WI - w21= - = 20-

Q
(A.22)

Therefore, for a high quality factor, the quality factor can be approximated by

Q = Wo =.b._
l:::.w l:::.f

(A.23)

This gives as an indication of the relationship between the Q factor and the bandwidth. A
higher Q factor leads directly to a narrower bandwidth.

A.2 Individual Quality Factors

The Q factor discussed in the previous section is a characteristic of the resonant circuit in the

absence of any loading effects caused by external circuitry. It can be defined as the unloaded Q,

Qo = woW
Po

(A.24)

where Po is the internal power dissipation. For cavity resonators, power is lost through

conduction, dielectric losses and radiation. These losses can be used to define individual quality

factors Qe, Qd and Qr which are respectively defined by conduction, dielectric losses and

radiation losses.

Therefore, if the conduction power loss is Pc, then Qe is given by

Q _ woW
e-

Pe
where Wo is the resonant radian frequency and W is the maximum stored energy.

(A.25)

For a given dielectric material the relative permittivity, Er, is defined as

Ee E - J£ E 0- I /IEr = - = __ w = - - J- = E - JE
EO EO EO WEo

(A.26)

where Ee is the complex dielectric constant of the material and EO = 8.854 X 10-12 farad/meter

is the permittivity of free space. The relative permeability is defined as

/.L = ..!!_
/.Lo

where /.La = 471"x 10-7 henry/meter is the permeability of free space. The loss is defined as
tan 8 = 0-/( WE) where 0- is the conductivity and W is the radian frequency. Therefore the

Quality factor due to dielectric losses is defined as [251

(A.27)

Qd = WoW = wOEf 1E 12dV = WOE = _1_
Pd 0- f 1 W 12 dV 0- tan8

(A.28)
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Finally, Qr is affected by the power radiated from the cavity boundaries and can be defined as

Q _ woW
r - Pr (A.29)

where Pris the radiated power.

The total power loss is written as Po = Pc + Pd + Pr and we can write the total unloaded
quality factor as

(A.30)

and therefore we can derive

1 r; Pd Pr-=--+--+--
Qo woW woW woW

It is clear that the lowest Q of the three will dominate the total unloaded quality factor and is

(A.31)

approximately equal to Qo. When the resonant circuit is coupled to another circuit, we can
define an external Q factor, Qe, dependant on the external circuit. This can be defined as

Q _ woW
e - Pe (A.32)

where Pe is the external power loss. The stored energy W, is still the maximum energy stored
inside the cavity. The overall Q factor can now be defined as

(A.33)

and with Pt = Pe+Po we can derive

111-=-+-
Ql Qe Qo

(A.34)

Once again, the lowest quality factor dominates the final quality factor. The following section
examines the properties of a parallel RLC resonator.
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Mathematical Model of Whispering
Gallery Modes

This section investigates the characteristics of whispering gallery modes in an unshielded
dielectric pill resonator. The model is largely based on the work by Annino [2],[1],[3].This is
not a precise model and several assumptions are made. However, it dearly demonstrates the
existence of whispering gallery modes, and the corresponding high Q-factor. Since the emphasis
of this section is on the final equations, only the main steps are provided. For a detailed
explanation of this model, the reader is referred to [3].

The resonator is modelled as an infinite cylindrical dielectric structure with permittivity El and
permeability /-LI (region 1) surrounded by a medium with permittivity E2 and permeability /-L2
(region 2). The radius of the cylinder is defined as a. The elementary solutions of the wave
equation in terms of cylindrical co-ordinates can be written as [28]

<I>zn(P, </J, z, t) = C(n)Zn(/3p)e(yn4>-nz+JWt) (B.1)

where n defines the number of angular variations, and w = 271'f defines the radian frequency.
The solutions of Zn(/3p) are Bessel functions. In region 1 the solutions are Bessel functions of
the first kind, In(/3lp), and the argument /31 can be defined as /3r = E1/-L1W2 - "'(2 = "'~- "'(2.
Here "'(is defined as the axial propagation constant and /31 is the radial propagation constant in
region 1. Similarly in region 2, outside the cylinder, the solutions are Hankel functions
HÁ2) (/32p) where /32 is defined as /3i = E2/-L2W2 - "'(2 = "'~- "'(2. In this case it is assumed that
f.L1 = /-L2 = uo, where f.Lo is the permeability of free space.

By applying boundary conditions, the following characteristic equation can be derived [28]:

(B.2)

where u = /31 a and v = /32a.

f
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Equation B.2 is a transcendental equation giving the eigenvalues for f. The associated
eigenfunctions are the modes of the electromagnetic waves propagating in the structure. From
the boundary conditions it can be derived that "'I > ".? > "'~'where El > E2. It can also be
proved [31] that the solution of the Bessel equation is oscillating for P > Pc and monotonically
decreasing for P < Pc· The surface

I n IPc= --
(31

I n I (B.3)

defines the modal caustic, which is shown in Figure B.l. The radiation in the cylinder
propagates confined between the caustic and the rim. The modal caustic corresponds to the
envelope of rays of the considered resonant mode. Particular solutions of equation B.2 can be
defined as whispering gallery modes if the caustic is very close to the surface of the cylinder.

The behavior of the electromagnetic waves can be modelled by expanding the modes of the
cylinder as plane waves with complex axial propagation. From this model, Annino [3] proves
that for Re (h) < "'2 a critical angle

(B.4)

can be defined, where ee is defined as the travelling waves' critical angle of incidence at the
radial boundary. A general angle of incidence is defined in Figure B.l. The damping will be
negligible only if the radiation has an angle of incidence at the radial boundary of the cylinder
that is greater than ee. This gives an indication of the conditions necessary for low radiation
loss at the radial boundary.

From the definition of the critical angle, the surface at which total internal reflection occurs can
be defined as follows

(B.5)

This corresponds to the envelope of rays which incide at the limit angle on the curved surface
of the cylinder. The corresponding field distribution has losses weak enough to have a resolved
spectrum and a true resonant behavior for incident angles larger than the critical angle. [I]

Using a geometrical optics solution, the problem at the radial boundary can be be looked at
from another angle. Figure B.I shows the modal caustic Pc and the angle of incidence, ei, of
the propagation in the radial plane. The angle of incidence ei can be written in terms of the
modal caustic as

(B.6)

This shows that as the modal index, n, increases (and the ray of the caustic increases), the
condition ei > ee is fulfilled and whispering gallery losses decrease. From the following
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...~~l
, "----~.:....

Figure B.l: Gross-section of the dielectric cylinder with the optical ray representing the

radiation propagating tangentially to the caustic. The figure is a surface in the p-ip plane

discussion it is possible to derive a minimum n for which the structure will support a whispering
gallery mode. The minimum allowed modal caustic is reached when Pc = Pp' In other words

n
(B.7)

(31

(B.8)

Re(h)~"'~

Re(~l)

z

Figure B.2: Schematic representation of propagation inside a finite cylinder. The figure is a
surface in the z-p plane

The condition for low radiation loss from the axial boundary is also determined from the
condition of total reflection. Figure B.2 shows the propagation in the z-p plane. Total reflection
occurs at the boundary if

sinh (Cl!) > 5_y-;; (B.9)
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where Ct is defined as the travelling waves' angle of incidence at the axial boundary. Therefore
the condition for axial propagation under the weak loss limit becomes

(B.10)

Therefore one can assume that Re {'Y} ~ o.

A maximum value is assigned to the modal caustic and to the angular variation n, by the
energy dissipation due to dielectric loss. By calculating the absorption of the infinite
homogenous medium in terms of a relative wavelength, Annino [2]derived nmax = 1/ tan O.
The Raleigh Criterion was assumed in order to obtain a resolved resonance spectrum.
(Effective interference between the input wave and the wave resulting from infinite round-trips
along the resonator). The Q factor was solved as Q ~ (tan 0) -1. This demonstrates the
dependance of the Q factor on the material properties.

To summarize: a whispering gallery mode is a low loss mode with a high angular constant. To
test for the presence of the mode one can test if the angle of incidence at the cylinder boundary
is greater than the critical angle (ei> ee). This implies that

(B.ll)

Therefore the amount of radiation from the radial boundary is minimal. This also implies that
a > Pc > Pp and the resonant mode is confined effectively. For low losses at the axial boundary,
the axial propagation constant should be low. (Annino assumed that 'Y = 0 in his simplified
model)
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Appendix C

Sinusoid Integrations

The following integrations of hyperbolic sinusaids are required for determining the inner
products in radial mode matching as described in Section 3.2.2. The answers to the
integrations are given below.

• {ohsinh (xz) sinh (yz)dx = 2 x 2 (sinh (yit) cosh (xit))Jo x - y

- 2 Y 2 (sinh (xit) cosh (yit))
x -y

(C.l)

• {12 sinh (x(L _ z)) sinh (yz)dx -X cosh (xL) + Y sinh (xL)Jh (C.2)

where

X = ~ (sinh ((x + y)l2) - sinh ((x + y)it) _ sinh ((x - y)l2) - sinh ((x - y)it))
2 x+y x-y

and

Y = ~ (COSh((x + y)l2) - cosh ((x + y)it) _ cosh ((x - y)l2) - cosh ((x - y)it))
2 x+y x-y

• {L sinh (x(L - z)) sinh (y(L - z))dx =
JI2

2 X 2 sinh (y(L - l2)) cosh (x(L - l2)) -
x -y

(C.3)

2 Y 2 sinh (x(L -l2)) cosh (y(L -l2))x -y

j

Stellenbosch University http://scholar.sun.ac.za



ApPENDIX C - SINUSOID INTEGRATIONS

• {LI
Jo cosh (xz) cosh (yz)dx = 2(x ~ y) sinh ((x + y)h)

1 .
- 2(x _ y) smh ((x - y)h)

• {12 cosh (x(L - z)) cosh (yz)dx = X cosh (xL) - Y sinh (xL)
Jh

where

X = ~ (sinh ((x + y)l2) - sinh ((x + y)h) + sinh ((x - y)l2) - sinh ((x - y)h))
2 x+y x-y

and

Y = ~ (COSh ((x + y)l2) - cosh ((x + y)h) + cosh ((x - y)l2) - cosh ((x - y)h))
2 x+y x-y

• {L sinh (x(L _ z)) sinh (y(L - z))dx =Jl2 (1 ) sinh ((x + y) (L - l2))
2x+y

+ (1 ) sinh ((x - y)(L -l2))2x-y

• t1Jo cosh (xz) sinh (yz)dx
1

( ) (cosh ((x + y) h) - 1)2x+y
1

2(x _ y) (cosh ((x - y)h) - 1)

• lb
cosh (x(L - z)) sinh (yz)dx

h
X cosh (xL) + Ysinh(xL)

where

X = ~ (COSh ((x + y)l2) - cosh ((x + y)h) _ cosh ((x - y)l2) - cosh ((x - y)h))
2 x+y x-y

and

Y = ~ (_ sinh ((x + y)l2) - sinh ((x + y)h) + sinh ((x - y)l2) - sinh ((x - y)h))
2 x+y x-y

k

(CA)

(C.5)

(C.6)

(C.7)

(C.8)

(C.g)

(C.10)
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ApPENDIX C - SINUSOID INTEGRATIONS

. 112
sinh (x(L - z)) cosh (yz)dx

LI
X sinh (xL) - Y cosh (xL) (C.1l)

where

x = ~ (sinh ((x + y)l2) - sinh ((x + y)h) + sinh ((x - y)l2) - sinh ((x - Y)h))
2 x+y x-y

and

Y = ~ (COSh ((x + y)l2) - cosh ((x + Y)h) + cosh ((x - y)l2) - cosh ((x - Y)h))
2 x+y X-Y
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