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ABSTRACT
A unified method is proposed to treat saturation in both Multi-Input-Multi-Output MIMO
and Single-Input-Single-Output controllers. This method offers superior performance over
existing MIM 0 anti-saturation schemes.

The anti-saturation problem is posed as a linear programming problem. A practical and
efficient implementation of the algorithm is developed by transforming the problem into its
dual linear programming form. The problem, in dual form, is then solved using the dual
simplex method rather than the primal simplex method. The nature of the problem when
expressed in dual form and the properties of the dual simplex method are harmonised to
guarantee an initial basic feasible solution and an optimal bounded final solution in a finite,
predictable and minimal number of iterations.

The resultant controller never saturates, hence cannot windup. Furthermore the resultant
controller always applies the optimal control effort to the plant to minimise the error signal
input as follows:

• The controller is governed such that while the future free response combined with the
present forced response of the controller results in no saturation limits being exceeded,
now or at some time in the future, the normal linear response of the controller prevails.

• When the future free response combined with the present forced response of the con-
troller will result in a saturation limit being reached, now or at some time in the future,
the present time input signal into the controller is optimally governed to prevent the
saturation limit from being exceeded at any future time.

ABSTRAK
'n Metode word voorgestel waarmee versadiging in enkel-inset enkel-uitset en meer-inset meer-
uitset (MIMU) stelsels beheer kan word. Die metode presteer beter as ander huidige teen-
versadiging-maatreels vir (MIMU) beheerders.

Die teen-versadigings-probleem word as 'n lineere programmeringsprobleem herformuleer. 'n
Praktiese en effektiewe implementering van die algoritme word verkry deur die probleem na
die duale vorm te transformeer. Die probleem, in duale vorm, word opgelos met die duale
simplex metode, in plaas van die direkte metode. Die eienskappe van hierdie formulering is 'n
gewaarborgde, aanvanklike, bereikbare oplossing en 'n optimale, begrensde, finale oplossing in
'n eindige, voorspelbare en minimum aantal stappe.

Die uiteindelike beheerder versadig nooit nie, en wen gevolglik nie op nie. Die beheerder wend
altyd die optimale aanleg-inset aan om die foutsein te minimeer soos volg:

• Wanneer die nul-inset gedrag saam met die huidige inset-gedrag geen beperkings nou
of in die toekoms saloorskry nie, word geen beperkende aksie geneem nie, en tree die
beheerder dus lineer op.

• Sodra die toekomstige nul-inset gedrag saam met die huidige inset-gedrag, nou of later
versadiging sou veroorsaak, word die huidige inset tot die beheerder optimaal begrens
om latere versadiging te voorkom.
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ABBREVIATIONS
Continous state space state transition matrix
Linear program constant coefficient matrix
Linear program constraint constants
Continous state space state input matrix
Bounded input Bounded Output
Linear program objective function coefficients
State space output matrix
Conventional Anti Windup
State space direct coupling matrix
Steady state
Error signal
Vector error governor
Matrix error governor
Error Governor
Discrete state space state input matrix
Generalised Conditioning Technique
Dynamic plant
Optimisation horizon
Internal Model Control
Gain
Gain
Dynamic compensator
Scalar error governor (Kapasouris)
Linear Quadratic Gaussian
Linear Quadratic Regulator
Number of controller inputs
Multi Input Multi Output
Number of controller states
Proportional + Integral controller
Reference signal
Realisable reference signal
Linear program slack/surplus variables vector
Single Input Single Output
Time constant
Time
Control signal
Constrained control signal
Control maximum limit
Control minimum limit
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x State
x State vector
x Linear program optimisation variables vector
i; State derivative
y Plant output
p Number of controller outputs
cp Discrete state space state transition matrix
q Vector error governor
Q Matrix error governor
z Linear program objective function
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Chapter 1

Introduction

1.1 Motivation for Research and Problem Statement

In practical control engineering applications, the actuators are subject to hard physical con-
straints such as limitations on the maximum force, torque output, stroke, power consumption,
and linear/angular rates. For example, the elevator of an aircraft can only deflect over a
certain limited angular range and a jet engine has a thrust limit than cannot be exceeded.
Nevertheless, a fighter pilot might require full elevator deflection for maximum climb rate and
full thrust from the engine for maximum speed in a combat situation. To operate a control
system only in the actuator's linear region would require, in this example, an aircraft designed
with an oversized elevator and engine that are purposefully under utilised in order to avoid
reaching the saturation limits. This would amount to a very conservative control system de-
sign and an ineffective utilisation of the available aircraft resources. In order to maximise the
system's performance it is preferable to optimally utilise all the control available and to take
precautions in the controller to compensate for the effects of saturation in the actuator.

The typical closed loop feedback control system block diagram shown in Figure 1.1 can be
analysed as follows:

• The controller is driven by the difference or error signal, e, between the reference com-
mand, r, and the system's output, y, as measured by the sensor. The outputs in an
aircraft, for example, could be the altitude, air speed, heading and bank angle.

• The controller produces an output called the control signal, u, which commands the
actuator. In an aircraft, for example, the actuator could be the elevator servo or engine
throttle servo.

• The servo has maximum physical constraints that cannot be exceeded. This is modelled
by the limiter preceding the servo that clips the controller output signal, u, to give the
bounded servo input signal, u.

• The linearised servo, system and sensor dynamics form the design plant for the linear
controller design.

The control input saturations are often the dominant nonlinearity in the system that is to be
controlled. It is well known that unless precautions are taken in the control law, undesirable

12
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Plant

r +
Controller

y

Figure 1.1: Typical control system with plant input constraint.

behaviour such as large overshoots, long settling times and even instability can result if the
actual plant's input, U, is different from the controller's output, u, [Yoshida et al.]. Thus, the
control system design process must account for input constraints associated with the system's
actuators. The presence of control saturations results in a nonlinear control design problem.
Nevertheless, the relatively simple form of the input saturations, together with the extensive
design theory available for linear systems, is such that the dominant means of dealing with
the problem is to design a linear controller ignoring the input nonlinearities. Thereafter some
form of post-compensation is added to deal with the effects of the nonlinearity [Pachter and
Miller].

Saturation in a dynamic controller results in the phenomenon known as windup. Windup
is said to occur when the states of the controller are driven by the error while the actuator
is in saturation [Campo and Morari] and anti-windup compensation is taken to mean any
attempt to reduce the undesirable effects of windup. The goal of anti-windup compensation is
to limit the increase of the controller's state while the plant's input is in saturation, and thus
to achieve a graceful performance degradation of the control system as compared to the fully
linear system.

Several attempts to address the plant input saturation issue can be found in the literature.
See Kothare et al. and numerous references therein. These methods can be divided into
those specifically for single-input-single-output (SISO) controllers and those more generally
intended for multi-input-multi-output (MIMO) controllers, where the SISO controller could
be considered as a special case 1. The methods intended for SISO applications are generally
easier to apply and require less computational effort than the MIMO methods. Inside each of
these classes of anti-saturation methods there are two further broad classifications:

• The explicit class of methods ignores the saturation limit during the design phase, and
then places some form of governor around the linear controller to cope with the saturation
limit during implementation.

• The implicit class of methods treat the saturation limit as part of the design plant and
impact directly on the control law formulation. The implicit methods produce directly
nonlinear controllers and are usually classed as nonlinear design methods. Constrained
Model Predictive Control is such a method. These methods prescribe a particular control
design philosophy on the designer.

Traditionally, the input saturation problem is treated by ad hoc desensitization schemes that
are based on designer intuition with no a priori guarantees of system stability and performance
[Davidson and Jiao]. These customised anti-saturation solutions are specific to the controller
structure and may vary from controller to controller. Furthermore these schemes are best

IBut the method would probably be an overkill for SISO applications.
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applied to SISO controllers and they are not easily extended to MIMO controllers. Only
a few methods have been proposed for MIMO controllers. Control saturation in MIMO
controllers is a major contributor to the failure of many theoretically sound modern control
design methods when applied to real plants in practice [Kapasouris].

This research was initiated to formulate a unified strategy for treating saturation in MIMO
controllers, resulting in the following problem statement:

Saturation of a plant's input adversely affects the performance and robustness of any controller
used with that plant. Several attempts to address this issue, have been described in the literature,
but a successful unified strategy for all linear control systems has not yet been formulated. In
particular, while the case for SISO systems has been welt researched, there does not exist a
unified practical and optimal engineering strategy to deal with saturation in MIMO control
systems.

This research stemmed from the idea that it should be possible to prevent the windup and asso-
ciated performance degradation resulting from controller saturation by preventing saturation
from occurring in the first place.

It is hypothesised that it should be possible to condition the error signal input into the con-
troller in such a way that the performance of the control system would be optimal up to the
saturation limit of the actuator and that deeper saturation (or windup) beyond the limit would
be averted.

1.2 Objectives

The purpose of this work was to investigate the issues associated with control saturations in
both SISO and MIMO control systems and to look at typical solutions to these problems
and the extension of these solutions to MIM 0 systems. The aim was to formalise a unified
approach to treating saturation in MIMO controllers with the following objectives in mind:

• The methodology must not restrict or prescribe the linear control theory that may be
used to design the controller. The method must form a jacket or shell around the linear
controller during the implementation phase and must be transparent during the design
phase of the controller.

• The method itself must not be dependent on any plant model that may contain inac-
curacies or unmodelled dynamics, nor should it depend upon state feedback or state
estimation of the plant's state. That is, state feedback may be used in the linear con-
troller 2 but not by the anti-saturation algorithm since it would make the anti-saturation
mechanism only as optimal as the sub-optimal plant's state measurement or estimation.
Furthermore, this would restrict the application of the method to the few cases where
all the states are measured or estimated.

• The closed loop system must remain stable at all times. That is, the anti-saturation
mechanism must not be the cause of instability in the closed loop system.

2Such as a linear quadratic regulator which employs full state feedback or a linear quadratic gaussian model
based controller employing state estimation.
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• The method must allow for the maximum error signal to be applied to the controller
before saturating the control signal, ensuring optimal performance up to the saturation
limit.

• There must be no integrators or slow dynamics that windup in the controller during
periods of control saturation.

• The method should be practical, easy to apply and efficient to compute in real time.
The method must not require off line computation of high dimensional surfaces that
have large storage requirements for gain scheduling of the controller when on line.

In summary, an algorithm is sought that will form a shell around the linear controller to guide
the actions of the controller in such a way that performance is optimal under the constraints
of actuator saturation. The algorithm must not impose any particular linear control design
method on the designer. The control engineer must be able to design the controller based on
the linear control theory of own choice and then simply pass the controller description, the
saturation limits and error signal to this shell and be able to rest assured that the controller
will have optimal and robust performance under all conditions and inputs.

1.3 Scope of Research and Assumptions

The scope of this research is constrained by the following assumptions:

• It is assumed that the controlled system is unconditionally stable. That is, for any
reduction in loop gain the system remains stable. By implication this means that the
plant is assumed to be strictly stable as well, meaning the plant has no positive real
poles.

• It is assumed that the controller was designed for an assumed linear plant using linear
control theory. In particular it is assumed that the actuator saturation limits were
ignored during the linear controller design phase. Saturation in controllers designed
using nonlinear control methods and controllers designed by methods that consider the
actuator constraints implicitly during the design phase are therefore not considered.
It does not necessarily follow that the proposed algorithm cannot be applied to these
controllers, only that the application was not investigated. The proposed algorithm may
be applicable in certain cases.

• It is assumed that the implementation of the controller will be by digital computer
because the proposed algorithm requires the on line numerical solution of a linear pro-
gramming problem.

1.4 Methodology

This research was tackled by examining the effects that actuator saturation introduced into a
control system in general and thereafter for SISO and MIMO control systems in particular.
Some existing schemes for the treatment of the saturation condition, as described in the
literature, were then examined to highlight their relative strengths and weaknesses.
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A new algorithm was developed from first principles by analysing the time propagation of the
controller's state that eventually leads to saturation. The proposed algorithm then applies the
adage, prevention is better than cure, to ensure that the controller never enters into saturation.
Most of the existing anti-saturation (or anti-windup) schemes described in the literature wait
for saturation to occur before any action is taken to prevent further and deeper saturation.

The advantages and improvements offered by this new proposed methodology over existing
anti-saturation methodologies, particularly for MIMO control systems, are demonstrated by
comparative simulations.

1.5 Contribution of Research

A unified method is proposed to treat saturation in both MIMO and SISO controllers, subject
to the scope and assumptions stated above. This method offers superior performance over
existing MIMO anti-saturation schemes.

The anti-saturation problem is posed as a linear programming problem. A practical and
efficient implementation of the algorithm is developed by transforming the problem into its
dual linear programming form. The problem, in dual form, is then solved using the dual
simplex method rather than the primal simplex method. The nature of the problem when
expressed in dual form and the properties of the dual simplex method are harmonised to
guarantee an initial basic feasible solution and an optimal bounded final solution in a finite,
predictable and minimal number of iterations.

The resultant controller never saturates, hence cannot windup. Furthermore the resultant
controller always applies the optimal control effort to the plant to minimise the error signal
input as follows:

• The controller is governed such that while the future free response combined with the
present forced response of the controller results in no saturation limits being exceeded,
now or at some time in the future, the normal linear response of the controller prevails .

• When the future free response combined with the present forced response of the con-
troller will result in a saturation limit being reached, now or at some time in the future,
the present time input signal into the controller is optimally governed to prevent the
saturation limit from being exceeded at any future time.

In order to determine the future response of the controller due to the present state of the
controller (hence free response) and present error input (hence forced response), the controller
state must be propagated into the future. The number of time steps of propagation into the
future is referred to as the Anti-saturation Horizon in this research.

1.6 Organisation of Thesis

Throughout this thesis the emphasis is placed on practical issues. Control saturation is largely
ignored by most texts on linear control theory because it is considered, correctly so, to be a
nonlinear issue. Nevertheless, it is a practical problem that must be solved for the correct and
reliable implementation of any realistic control system.
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The current chapter, Chapter 1, introduced the control saturation problem, it motivated why
this research was necessary and it stated the objectives of the research. The effects of control
saturation are examined in more depth in Chapter 2. In Chapter 3, the results of a literature
survey are presented to expose the existing methods for handling control saturation in both
SISO and MIMO controllers. One piece of work stands out for MIMO systems, that of
Kapasouris. This method is evaluated and used as a benchmark to compare the performance
of the method proposed in this thesis. The merits and pitfalls of each of these methods
are presented. In Chapter 4 a method, resulting from this research, is developed to handle
saturation in both MIMO and SISO controllers in a unified and general way. Application of
this method is, however, limited to unconditionally stable systems. A practical method for
solution of this algorithm, using linear programming, is discussed in Chapter 5. Chapter 6
documents the adaptation of the proposed algorithm to the linear programming dual standard
form. The reasons for, and application of the dual simplex method to solve the optimisation
problem are also presented. In Chapter 7, simulations are performed to demonstrate the
advantages of this new method over existing methods. Conclusions and recommendations for
future research are presented in Chapter 8. The Appendices contain support material for the
linear programming used in this thesis.

17
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Chapter 2

Effects of Saturation

2.1 Overview

The main possible effects of actuator saturation on a control system are poor performance
and/or instability [Middleton]. The mechanisms by which actuator saturation affect a con-
trol system are presented in this chapter. These mechanisms are categorised below and are
discussed further in the sections that follow:

• Windup

Both SISO and MIMO controllers that contain free integrators and/or slow dynamics
suffer from the phenomenon termed integral windup [Middleton].

• Gain decrease

The apparent loop gain of the system decreases as a result of actuator saturation. This
affects both SISO and MIMO control systems. This has important implications for
unstable plants and conditionally stable systems [Middleton, Ogata].

• Control vector direction

The direction of the control signal vector may be altered by the saturation nonlinearity
in MIMO systems. For SISO systems, the control signal is a scalar and thus direction
is not a consideration [Kapasouris].

2.2 Terminology

A controller with n-states is said to have a state vector, x = [XI,···, xn]T. The individual
elements, Xi, of the state vector being the actual states of the controller. In a minimal state
space representation, these states are orthogonal (linearly independent) to one another and
can be plotted in n-dimensional Cartesian space as a vector, x, where each axis represents the
individual components, Xi, of this vector. Both SISO and MIMO controllers can have more
than one state.

By definition, only MIMO controllers have more than one input and/or output. Assume the
controller has rn-inputs and p-outputs. In the same sense then as the n-dimensional state vector

18
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was defined, the m-dimensional input error vector, e = [el,"', em]T, and the p-dimensional
output control vector, u = [UI,'" ,upV, are defined.

2.3 The Saturation Element

Mathematically, the action of a saturating actuator can be described as:

{

umax
U = sat(u) = u

umin

: u ~ umax }
: umin < U < umax
: u:S umin

(2.1)

where u is the input, u the output, Umax and Umin the upper and lower bounds of the actuator
respecti vely.

Output u

,------ ------,-------

Umin:
Input u

:Umax

Figure 2.1: Saturation nonlinearity

2.4 Windup

The linear controller, in Figure 1.1, is designed ignoring actuator nonlinearities, but in practice
the hard limits of the actuator will present themselves in the control loop for u < Umin and for
U> umax. Controllers that contain pure integrators and/or slow dynamics will windup during
the periods when the controller's output exceeds the plant's input range. The adverse effect of
windup caused by the presence of such nonlinearities is in the form of performance degradation,
as compared with the expected linear performance. This can result in large overshoots and/or
poor response time in the output and sometimes even instability [Middleton].

Windup occurs when the error input, e, to the controller persists for sufficient time for the
controller's output, u, to reach a saturation limit. If the error persists thereafter then the
controller goes deeper into saturation in an attempt to drive (or control) the plant such as to
reduce the error. However, the plant only experiences the saturated control signal, u, which is
less than the output the controller assumes is being applied to the plant. There is therefore an
information mismatch, lui =I lui, between the controller's output and the plant's input. The
linear design assumes that no mismatch can occur between the controller's output and the
plant's input and thus the linear design becomes invalid during the periods of saturation.

19
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The simulated response for the example system depicted in Figure 2.2 is shown in Figure 2.3.

Controller Saturation Plant

+ll---------je {:IJ u .~ U
'c___1 S!____,5 f----a--j -- Y

r

Figure 2.2: Block diagram of a control system with saturating actuator.

2,-----~----~----~R~e~~~er~e~n~c~e~(~:s~o~li~d~)~O~u~tP~lu~t~(~cd~a~s~h~e~dL-)----~----~----_,

1.5 I-----------~------------------_,

0.5

°0~----~-----2L------3L-----~4------5l-----~6L-----~7------~8------9~~~10
Time [sJ

3

2

1

1 2 3 4 5
Time [sJ

6 7 8 9 10

Figure 2.3: Response of a control with saturating actuator.

Initially the system is at rest. The controller is a pure integrator and the plant is a unity
gain first order system with input constraints of ±1. At time t = 0 s, a reference step of
1.5 units is applied to the system. The control signal output of the controller starts to increase
in magnitude. When it reaches +1 units at time t = 0.9 s, the input to the plant saturates.
Because the plant has unity gain, the output of the plant is restricted to unity as well. The
error signal into the controller is therefore e = 0.5 units (the difference between the reference
input and the plant output). Because the plant's output cannot increase further, due to the
plant's input saturation limit, this error will persist indefinitely. The controller's state (a pure
integrator) will therefore ramp or windup indefinitely. At time t = 5 s the reference command
was reduced to zero again. By this stage, the controller's state is 3 times the input limit of
the plant and therefore in deep saturation. It takes about 2 s for the controller's state to
unwind to the linear region again. The plant's output therefore only responds to the change
in reference command at about time t = 7 s after the 2 s delay period, resulting in a response
degradation due to saturation.

Quite clearly this response delay will depend upon how long the controller was driven into
saturation for. Thus the performance degradation can be anything from a brief moment for
short periods of saturation to any large (infinite) time period. In an analogue control circuit
there will be some ceiling (due to the power supply voltage) where the analogue circuitry will
limit. In a digital implementation, in the worst case, a numerical overflow would result if the
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integration persisted for long enough. This could have catastrophic effects on the rest of the
computerised system.

2.5 Gain Decrease

Heuristically, it can be seen that once in saturation, the incremental or small signal gain of
the actuator becomes zero [Middleton]. That is, once the saturation limits have been reached,
no further increase in the input will result in any corresponding increase in the output. The
output remains constant at the value of the saturation limit. Because there is no change in
the output for an incremental increase in the input one says that the incremental gain is zero.

Alternatively, from a transfer function point of view, the saturation element is a nonlinearity
that has a range of gains starting at unity and reducing asymptotically to zero as the input
amplitude increases beyond the linear region. The saturation element in Figure 2.1 can be
modelled as follows. Here, for notational convenience alone, the saturation limits have been
assumed to be ±1. The arguments that follow are not restricted by this simplification and
apply to the more general case where the limits are not unity, as well.

N(u) = { i lul < 1 }
lul ~ 1

(2.2)

The normalised nonlinear gain, N(u), is plotted for increasing values of amplitude, u, in
Figure 2.4. The output, il, is linear for amplitudes less than the saturation limit (a gain of
unity) and decreases inversely with amplitude for amplitudes greater than the saturation limit.
This illustrates the effective loop gain decrease in a control system when saturation occurs.

Saturation Nonlinearity Gain
1.2,-----~----~----~----~----~----~------~----~----~----~

0_8
:=:-;;:;
0
<U 0_6-::u
~
t-Ll

OA

0_2

8 9 10

Input Amplitude

Figure 2.4: Transfer function Gain of the Normalised Saturation Nonlinearity

From a sinusoidal input describing function perspective the saturation element is an example
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of a sector nonlinearity with the following normalised transfer function:

lui < 1 }

lui ~ 1
(2.3)

This describing function [Franklin et al.] confirms the nonlinear gain decrease of the saturation
nonlinearity for input amplitudes greater than the saturation limits. Furthermore, describing
function theory shows that the saturation nonlinearity does not introduce a phase shift between
the input, u, and output, u: That is, the saturation limit transfer function is independent of
the frequency of the input signal. Thus it is sufficient to analyse and model the saturation
element as a nonlinear gain.

2.5.1 Controller with Unstable Plant

An unstable plant may be stabilised by a closed loop control system employing the appropriate
feedback network. Stability is achieved by the specific response of the applied control signal
at the plant input. For this reason, once the required stabilising control signal can no longer
be applied to the input of the plant, due to actuator saturation, the plant can no longer be
stabilised. Another way of seeing this is that once the incremental gain of the control signal
becomes zero (i.e. at the point of entry into saturation) the closed loop feedback system reverts
to the open loop system of the original unstable plant and is thus unstable. It has long been
known that strictly unstable plants with actuator constraints can never be globally stabilised
[Middleton, Pajunen and Erdol] .

For control systems with unstable plants, actuator saturation must be avoided at all times
through judicious selection of the operation envelope of the controlled system such that there
is always sufficient excess control signal available to stabilise the plant in the presence of
disturbances. The operation envelope is defined by the range and rate of change of the reference
commands to the controller. Saturation prevention, once saturation has occurred, cannot be an
effective solution in a control system with an unstable plant. Instead, command conditioning
that limits the action envelope of the system should be implemented to completely avoid
saturation. This will result in a conservative system that remains well within the linear bounds
of the controllable performance envelope.

2.5.2 Conditionally Stable Systems

A conditionally stable system is stable for values of the open loop gain lying between critical
values, but is unstable if the open loop gain is either increased or decreased sufficiently. Such
a system becomes unstable when large input signals are applied since a large signal can cause
actuator saturation, which in turn reduces the open-loop gain of the system [Ogata].

The plant itself may be stable, but the combined effect of the plant and controller dynamics
with the reduced loop gain due to saturation at the plant input may result in an unstable
system. Simple describing function arguments show that the combination of a conditionally
stable control system and a saturating actuator can give rise to limit cycle behaviour. It is
advisable to avoid such control system designs [Middleton]. The addition of a well designed
compensating network will eliminate conditional stability [Ogata].
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Note that actuator saturation results only in a decrease in loop gain, not an increase. Therefore
systems that are conditionally stable for increased loop gain but that are unconditionally stable
for reduced loop gain will remain stable even during actuator saturation.

Consider the system [Ogata] shown in Figure 2.5. The root locus for this system is plotted
in Figure 2.6. It can be seen that this system is stable for limited ranges of the value of K,
namely for 0 < K ::::;14 and 64 < K ::::;195, while the system is unstable for 14 < K ::::;64 and
K> 195.

R(s) + Y(s)
S(s+4)(s+6)(S2 +1.4s+ 1)

Figure 2.5: Block diagram of the conditionally stable control system
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Figure 2.6: Root locus of the conditionally stable control system

2

It is noted that most of the current work into saturation avoidance is limited to stable open
loop plants [Pachter and Miller].

2.6 Control Vector Direction

Kapasouris states:

"Almost every current design methodology for linear systems inverts the plant and replaces
the open loop system with a desired design loop. This inversion is done through the controls
with signals at specific frequencies and directions. The saturations alter the direction and fre-
quency of the control signal and thus interfere with the inversion process. The main problem
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is that although both the compensator and the plant are multivariable highly coupled sys-
tems, the saturations operate as SISO systems. Each saturation operates on its input signal
independently from the other saturation elements."

Figure 2.7 shows an illustration of four different control vectors u~,u~,u3,u~ of a two output
controller are mapped by the saturation element to only two vectors Ua and uf). Note how both
the magnitude and direction of the resultant control vector is affected. This argument applies
to controllers with more than two outputs as well, however, it is more difficult to represent
this graphically.

• The saturation limits convert the desired control vectors u~ and u~ to Ua. Therefore
both control vectors that violate different control bounds are converted by the saturation
bounds to the same control vector .

• Likewise, the control vectors u3 and u~ are reduced to the same vector uf) which is
applied to the input of the plant.

Figure 2.7: Examples of control directions at the input of the saturation u~,u~,u3,u~ and at
the output of the saturation Ua, uf).

2.7 Summary

The following main conclusions are drawn at this stage:

• It is not possible to ensure global stability in the face of actuator saturation for a control
system with an unstable plant. It is frivolous to attempt to develop an anti-saturation
algorithm for the case of an unstable plant. Rather one must condition the reference
signal to conservatively limit the operational envelope of the control system to the ac-
tuator's linear region only. The same applies to systems that are unstable for reduced
loop gain.

24

Stellenbosch University http://scholar.sun.ac.za



• In MIMO control systems, the saturation elements on the controller outputs act in a
scalar sense and thus can alter both the magnitude and direction of the effective control
vector.

• The saturation element can be treated as a nonlinear gain. There are no phase depen-
dancies.
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Chapter 3

Prevention of Saturation

3.1 Overview

Actuator saturation cannot always be completely avoided. Consequently several methods have
been devised to reduce the effects of actuator saturation. These methods are the subject of
this chapter. Middleton sites three broad principles that can be applied to reduce the effects
of actuator saturation, namely:

• Avoid conditionally stable control systems where possible.

Note that a controller for a plant can be designed that gives unconditional stability if
and only if the plant has:

No poles with positive real parts.

No purely imaginary poles of repetition greater than 2.

Therefore, a plant that is open loop strictly unstable can only be conditionally stabilised.

• Avoid applying unrealistic commands to a control system.

The implementation of this type of idea is often termed a reference governor or reference
conditioner for the system. Refer to Bemporad et al. for an example of a nonlinear com-
mand governor for constrained control systems. Kapasouris also shows a development of
a reference governor.

• Utilise saturation feedback to implement the controller.

Saturation feedback is a signal derived by taking the difference between the controller
output and the plant input and feeding this difference back into the controller to pre-
vent windup and deeper saturation. When the controller output is within the bounds
of the actuator, the difference signal will be zero and no corrective action will occur.
During saturation the difference signal will be non-zero and proportional to the depth
of saturation.

Kothare et al. presents a summary of all known linear time-invariant anti-windup
schemes.

26

Stellenbosch University http://scholar.sun.ac.za



The first two principles are not the topic of this research. The last principle, employing
saturation feedback, is discussed in the sections that follow, and is largely sourced from Kothare
et al. Comments are made to highlight the strengths and weaknesses of each method and its
suitability for application to MIMO control systems.

3.2 SISO Windup Prevention Schemes

3.2.1 Anti-reset Windup

The windup phenomenon was first encountered when using PI and PID controllers with satu-
rating actuators. One of the earliest works to overcome windup was by Fertik and Ross (1967).
Their strategies have been referred to as anti-reset windup, back calculation and tracking and
integrator resetting [Kothare et al.]. Integrator windup is only a special case of the more gen-
eral case whereby any controller with relatively slow dynamics or unstable modes (pole at the
origin) can windup.

The equations of the PI controller shown in Figure 3.1 are:

K(s) k(l + T;8)
t

u k(e+~Jedt)
• 0

ii, sat(u)
e r-y

+'y_e I I u [JLl ii, ~ y
- lI-· ---+1' k(l + h) f----+l'~I----+i'~I----tr~--r

Figure 3.1: PI control of plant G(s).

Windup occurs when the error, e, is a non-zero constant for a sufficient period that the control
signal, u, exceeds the control limits. The integrator continues to integrate this error signal
resulting in deeper saturation. Refer to Chapter 2 for an example.

An ad hoc approach to preventing windup is to simply stop the integral action in the con-
troller when the output of the controller exceeds the saturation limit. This approach is often
used in computer implemented controllers where it is relatively easy to stop the integral ac-
tion in software. The exact implementation depends upon the insight and ingenuity of the
programmer.

A formal approach is to use an extra feedback path in the controller as illustrated in Figure 3.2.
This method is known as classical anti-reset windup. The difference between u and ii, is fed
back via the gain .L to the input of the integrator. This feedback signal attempts to driver-
the difference between the controller output and the plant input to zero by recomputing the
integral such that the output of the controller remains exactly at the saturation limit [Kothare
et al.]. This prevents the integrator from winding up.
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r + y

Figure 3.2: Classical anti-reset windup.

The modified controller output equation is:

t
U = k[e + .1J(e - f-(u - u)) dt]

Tt 0 TT

Clearly when u = u the modified controller output equation is identical to the linear PI
controller output equation, as would be expected.

An alternative implementation to the classical anti-reset windup is shown in Figure 3.3. See
Astrom and Hagglund (1988) for further details. This seemingly different anti-reset windup
scheme for PI controllers is identical for the well known heuristic choice of Tr = Ti [Kothare et
a~.

r + e y

1
Tis+1

Figure 3.3: Alternate anti-reset windup implementation.

Comment:

• These techniques are only suited to SISO controllers and in particular to PI controllers.

• In a MIM 0 controller with p-output control signals one would need to determine the p xp
mix of transfer function feedback paths to deal with the presently saturated controller
output. The saturated controller output may well be the sum of more than one integrator,
neither of which may be exceeding the saturation limit individually. No procedures or
guidelines are given in the literature on how to extend this anti-windup mechanism to
MIMO systems.

• By nature of the formulation, the anti-windup mechanism only engages when the dif-
ference between u and u is non-zero. Technically, by this stage the controller is already
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in saturation. While these methods have been applied successfully they are nevertheless
suboptimal in that they do allow a brief period of saturation and hence windup to occur.

3.2.2 Conventional Anti-windup (CAW)

It is reported by Kothare et al. that Doyle (1987) adopted a similar philosophy to that of
anti-reset windup. Thus, in some sense, CAW can be considered a direct extension of the
anti-reset windup to general controllers. CAW is not too dissimilar to the methods described
above. An attempt is made by the method to cater for MIMO systems. Compensation is
provided by feedback of the difference u - il through a high gain matrix, X, to the controller
input as illustrated in Figure 3.4. For a MIMO controller, typically X = ol,where the scalar
a» 1.

r + e + u y

+

Figure 3.4: Conventional anti-reset windup.

Comment:

• The gain matrix X must be chosen to somehow relate the controls Urn to the error inputs
el. The gain is static and could therefore only cater for the static (DC gain) relationship
in the controller between controller input and controller output.

• The choice of X = al would be a very poor choice for cross-coupled controllers because
the saturations would be acting in a SISO sense and directly relating particular controller
outputs to controller inputs and ignoring the cross-coupling dependancies and side effects.

• Since X has no dynamics, it can only cancel the error input when the residue between
u and il is non-zero. There is the likelihood therefore of a limit cycle occurring at the
saturation limit as the controller bounces against and away from the saturation limit in
alternate controller update cycles, as the error cancellation is effectively switched on and
off. This will be particularly evident in digital implementations.

3.2.3 Hanus Conditioned Controller

This conditioning technique is attributed to Hanus and Kinnaert, 1989. It is an extension
of the back calculation method proposed by Fertik and Ross (1967) [Kothare et al]. In this
technique the reference is modified to what is called a realisable reference r" such that if the
realisable reference had been applied to the controller instead of the actual reference then the
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controller would not have issued a saturating control. The realisable reference is chosen to
maintain consistency with the controller state and the plant input, thus avoiding windup.

The equations for the anti-windup conditioned controller are:

X Ax + B(r - y)
u Cx + D(r - y)
u sat(u)

Following Hanus et al., (1987), a realisable reference can be applied to the controller such that
the output of the controller is u. Thus

X Ax+B(rr-y)
u Cx+D(rr-y)

Subtracting u from u gives
u - u = D (r" - r)

Hence

Combining the equations leads to the conditioned controller:

X (A - BD-IC)x + BD-Iu
u Cx+D(r-y)
u sat(u)

Several drawbacks have been reported for this scheme. Kothare et al. sites the following
reports:

• The strategy fails for controllers having rank deficient D matrices (Hanus and Peng,
1992).

• The strategy is an inflexible design tool since it modifies the controller without usmg
any additional tuning parameters for optimising the nonlinear performance.

• The technique can only handle one saturation level, either the upper or the lower limit.

Comment:

• The error signal that drives the controller into saturation is made up of two components,
namely the reference and the plant output.

e=r-y

While a realisable reference takes care of the case where the reference could have been
the cause for saturation, it does not take care of the case where the plant output causes
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the saturation. The plant output can be modelled as the ideal plant output summed
with an unknown plant output disturbance as shown below:

All the signals, with exception of the disturbance can be accounted for in constructing
the realisable reference. Thus it is not possible to prevent the controller from saturating
under all conditions.

3.2.4 Generalised Conditioning Technique (GCT)

The generalised conditioning technique attempts to address the problems with the Hanus
conditioning controller. Two modifications are proposed:

• The input conditioning mechanism is improved by introducing a degree of caution so
that the change in the modified set point at controller saturation is smoothed [Walgama
et al., 1992: Section 4]. The realisable reference r" is modified by introducing the user
chosen parameter p as follows:

where O:S p :S 00 .

• A more general modification is presented in Walgama et al., 1992: Section 5 where the
prefiltered reference rf command is used instead of the direct reference r. The derivation
of the controller equations can be followed in Kothare et al. The method, although
overcoming some of the problems in the Hanus conditioned controller introduces new
problems in that the filter must be tuned to obtain the desired transient performance
of the saturated system. No guidelines are given as to how to tune this filter while
maintaining acceptable performance and stability.

Comment:

• The modification, however, introduces the new problem of finding a suitable and optimal
choice for p.

3.2.5 Observer-based Anti-windup

The windup problem results in the states of the controller not corresponding to the control
signal input of the plant due to the saturation nonlinearity. In order to correctly estimate the
controller's states during saturation an observer is introduced into the controller. By obtaining
the correct or consistent state estimates, windup is avoided. Kothare attributes this work to
Astrom and Hagglund, 1988 and to Astrom and Rundqwist, 1989.
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Assuming that (C,A) is detectable, the nonlinear observer equations for the controller are
given by:

e = r-y
i; Ai;+Be+L(u-Ci;-De)
u Ci: + De
u sat(u)

where i; is an estimate of the controller state and L is the observer gain.

These nonlinear equations describe the observer as well as the controller. In the linear region
when u = u and hence i; = x the innovations multiplied by the gain matrix L are zero and the
linear controller equations for K (s) remain:

e r - y
1; Ax + Be
u Cai-i-De

When u i- u, during saturation, the observer introduces a corrective action due to the non-zero
innovations (u - Cii - De) through the gain matrix L to the controller's states.

Comment:

• The observer gain must be determined such that the controller is stable, but also fast
enough so that it can track the states of the real plant.

• The observer gain is chosen to minimise some cost function. The gain will only be
optimal for this cost function and not for a different cost function. No guidelines are
given for choosing the cost function. Therefore the same controller, implemented by
different engineers may well have difference performance characteristics depending on
their choice of cost function.

• Brief periods of saturation are still possible because the scheme only takes action once
the plant output has saturated.

3.2.6 Internal Model Control (IMC)

This method, although never originally intended as an anti-windup scheme, has potential for
application to the anti-windup problem, for cases where the plant is stable [Kothare].

r + e y

+

Figure 3.5: The IMC structure.
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The plant model, G(s), is driven by the saturated control u as shown in Figure 3.5. Kothare
states that, under the assumption that the plant model is exact, it can be shown that the
IMC structure remains effectively open loop, since y and i) cancel exactly and that stability is
guaranteed by the stability of the open loop plant G(s) and the IMC controller Q. Further-
more the IMC structure offers the opportunity to implement complex (even nonlinear) control
algorithms without generating complex stability issues providing the plant model is exact.

Kothare continues that although the IMC implementation guarantees nominal stability in the
presence of actuator constraints for stable plants, the cost paid for this global stability is
sluggish performance. This is because (for exact plant models) the output of the controller
is independent of the plant output in both linear and nonlinear regimes. Although this does
not matter in the linear regime, the implication in the nonlinear regime is that the controller
is unaware of the effects of its control actions on the output of the plant. The sluggishness
effect is reported to be most pronounced when the IMC controller has fast dynamics that
are chopped oiJ by the saturation. Furthermore the IMC controller does not give satisfactory
performance for a saturating system unless it has been specifically designed to optimise the
nonlinear performance.

Lastly, Kothare sites Zheng et al.(1994) who have proposed a modified IMC structure for
optimising performance in the face of saturation. The controller Q( s) is factorised as

and implemented as shown in Figure 3.6. See Zheng et al. (1994) and Goodwin et al. for
details.

+ yr

+

Figure 3.6: Anti-windup implementation of the IMC.

Comment:

• In both of these schemes, if G(s) and 6(s) are exact then the only way that their
outputs could differ is if an unknown disturbance, do, was acting on the output. In
essence then, this IMC scheme is an open loop reference command follower and a closed
loop disturbance regulator.

• In practice is would never be possible to obtain an exact model of the plant. If it were,
then one could simply premultiply the plant by the plant model inverse resulting in an
input to output transfer function of unity. Thus the output would exactly follow the
reference command and there would be no need for feedback control.
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3.2.7 The Extended Kalman Filter

Anti-windup compensation for controllers that are observer based (for example, LQG con-
trollers) revolves around maintaining consistency of the controller (and hence the observer's)
states with the actual input of the plant. This requires a modification to the observer's equa-
tions such that the state estimate is based on the actual input ft to the plant [Kothare].

According to Kothare, the classical separation principle of the observer jstate-feedback con-
troller is lost with this implementation during the period of saturation. Thus even though
the controller and observer are stable, the overall closed loop nonlinear system need not be
asymptotically stable.

3.3 MIMO Windup Prevention Schemes

3.3.1 Scalar Error Governor

The method proposed by Kapasouris is specifically designed to deal with multiple saturations
in MIMO controllers. As discussed in Chapter 2, the two major problems that multiple
saturations can introduce into the performance of the MIMO system are:

• The windup problem .

• Multiple saturations may alter the direction of the control vector.

To prevent the above two effects from occurring, Kapasouris introduces an operator called the
Error Governor (EG) into the controller as shown in Figure 3.7. Here the signals are vectors
because the system is MIMO.

r y

1
Figure 3.7: MIMO controller with Error Governor (EG)

The saturation is effectively transferred, by the action of the Error Governor, from the con-
troller output to the controller input. Kapasouris makes the following claim:

"The selection of the EG operator will be such that the controls will never saturate; and if,
for example, the compensator was designed to invert or partially invert part of the plant, then
the inversion process will not be disturbed by the saturation and both G and K will remain
linear and equal to GK. In the closed loop system with the EG operator the compensator will
never cause windups. The integrators and slow dynamics of the compensator will never cause
the controls to exceed the limits of the saturation and thus windups can never occur."

The EG is implemented as a time-varying gain. With the EG operator at the error signal,
the system will remain unaltered (linear) when the references and disturbances are such that
they do not cause saturation. For large references and disturbances the EG operator will scale
the error signal to ensure that the controls will never saturate. The value of the EG operator
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gain >.(t) is thus bounded to the range, 0 ~ >.(t) ~ 1. The error governor can therefore reduce
the loop gain and for this reason this control structure is only useful in unconditionally stable
systems. In order to maintain direction of the control vector (i.e. linearity) Kapasouris scales
all the error inputs equally by the same factor >.(t) as shown in Figure 3.8

e(t)

I I

: Logic :
I I

u(t)ê(t)
f-----+j Controller

Figure 3.8: Time-varying Error Governor gain.

In dealing with the anti-saturation problem, that is the design of a time varying gain that
bounds the outputs of a linear system, Kapasouris considers three regions, namely the:

• Internal region, a space where no saturation occurs.

• External region, a space where saturation has occurred.

• Boundary region, a surface between the internal and external regions.

The mathematical background supporting the development of Kapasouris's algorithm can be
found in Kapasouris, Athans, and Stein (1988 IEEE). Central to the notation is the hyper
space of admissible states, denoted by BA,e. This hyper space B is a set of states due to the
controller dynamics represented by the A-matrix subscript and their mapping to the control
vector represented by the C-matrix subscript. The construction of >.(t) is performed as follows.
Let the compensator K(s) be defined by the state space system:

e(t) r(t) - y(t)
±(t) Ax(t) + B>.(t)e(t)
u(t) Cx(t)

Note: A slightly modified algorithm is given for controllers with a D matrix, i.e. u(t) =
Cx(t) + De(t).

It is assumed that the initial state of the controller is such that the output of the controller
is unsaturated, i.e. x(t) E BA,e where BA,e is the set of admissible states the controller can
assume without leading to saturation.

Following Kapasouris, a function g(x) and a set BA,e are defined and then the construction
of >.(t) follows.

g(xo) : g(xo) = Ilu(t)lloo
where

x(t) Ax(t) x(O) = Xo
u(t) Cx(t)

BA,e {x: g(x) ~ i}
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For g(x) to be finite, for all x, the compensator has to be neutrally stable. With finite g(x)
and for no D matrix, the EG operator A(t) is given by:

For every time t choose A(t) as follows:

• If x(t) E Int BA,C

If the controller's states x(t) are within the internal (Int) region of the admissible states
hyper space BA,C then no saturation will occur and so the error governor is unity. i.e.
the EG plays no role.

A(t) = 1.

• If x(t) E Bd BA,C

If the controller's states are on the boundary (Bd) of the admissible states hyper space,
then chose the largest A(t) such that:

o < A(t) ::; 1

1· g(x(t) + f[Ax(t) + BA(t)e(t)]) - g(x(t)) ::; 0lmsup--~~~~--~----~~~--~~~
f-tO lo

or for plants where g(x) is differentiable choose the largest A(t) such that:

o ::; A(t) ::; 1

D g(x(t) )[Ax(t) + BA(t)e(t)] ::; 0

where D g(x(t)) is the Jacobian matrix of g(x(t)).

• if x(t) 3 BA,C

If the controller's states are outside of the admissible set then then choose A(t) such that:

V t > 0

o ::; A(t) ::; 1

1. g(x(t) + f[Ax(t) + BA(t)e(t)]) - g(x(t)) ::; 0
im sup
f-tO lo

is a minimum.

An additional important property, besides avoiding saturation, is that the saturation operator
no longer alters the direction of the control vector, nor the relative magnitude of the controls.
Thus, if the compensator inverts part of the plant, the saturation does not alter the inversion
process [Kapasouris].

3.3.2 Scalar Reference Governor

This method, originally proposed by Kapasouris and also worked on by Patcher and Miller,
derives a conditioned reference command from the applied reference command so as to avoid
the controller attaining an inadmissible state and hence avoid issuing a control that violates
the control bounds. The method of Kapasouris is reported by Patcher and Miller to be
computationally intensive. Another problem is that the reference governor only operates on
the reference signal, not the error signal, hence the influence of output disturbances are not
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catered for in the anti-saturation scheme. The reference governor does have a particular
usefulness in systems with unstable plants in that it can be used to constrain the operational
envelope such as to avoid saturation induced by excessive reference commands. Bemporad et
al. also derive a command (reference) governor mechanism, from a different perspective to
that of Kapasouris, based on ideas originating from predicative control.

It should also be noted that although the linear system may be Bounded-Input-Bounded-
Output (BIBO) stable, that saturation mitigation strategies which solely modify the incoming
reference in order to avoid saturation do not necessarily yield an overall BIBO stable control
system [Patcher and Miller].

3.3.3 Neural Net Based Suboptimal Controller

In a paper by Sznaier and Damborg 1992, a suboptimal minimum time controller, based
upon on-line optimisation, for systems with linear state and control inequality constraints is
proposed. The algorithm is suited to MIMO systems and an example is given. The algorithm
yields asymptotically stable closed loop systems but prescribes the design methodology to be
used. The algorithm can be coded as an analogue neural network yielding fast solution which
could be advantageous in environments where digital computation was limited, although this is
hardly a consideration only a decade later. They note that the controller is overly conservative.

3.3.4 Full State Feedback

Methods derived by Castelan et al., Lin et al. and Patcher and Miller all rely upon full state
feedback of the plants state to guarantee that any state trajectory emanating from a given
set of admissible initial states remains in that set. Full state feedback is now days more likely
possible given modern compact sensors and in the case of aircraft where space and cost is
not such a premium as would be the case in a missile. Nevertheless, under the scope of this
research, an anti-saturation scheme that did not rely upon plant state feedback was sought.
Therefore these methods were not pursued further.

3.4 Summary

In this chapter, existing anti-windup and anti-saturation schemes were considered. The pri-
mary conclusion was that most schemes were suited only to SISO systems. They were sub-
optimal in that they only took action once the controller had already entered into saturation.
They should rather be classified as neither anti-windup nor saturation avoidance, but rather
as performance enhancement schemes [Patcher and Miller]. The only MIMO scheme of note
was that developed by Kapasouris. This was an attempt to completely avoid saturation from
occurring, thus avoiding the negative consequences of saturation completely. The method has
been reported to be computationally intensive and complex which has practical limitations in
the application of the method [Patcher and Miller]. The method has only one degree of free-
dom, namely the scalar error governor >.(t), whereas the controller may have multiple inputs
and/or outputs and thus multiple degrees of freedom.

Sznaier and Damborg (1990), state that in spite of the significance of the saturation problem,
it has not been solved satisfactorily and most of the design procedures available are severely
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restricted in their domain of application.
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Chapter 4

Proposed Anti-saturation Algorithm

4.1 Overview

In the previous chapters the controller saturation issue was considered in detail. The most
significant result was that saturation of the plant's input adversely affects the performance
and robustness of all control systems. Several attempts have been made in the literature on
the subject to address this issue but a successful unified strategy for all linear control systems
has not yet been formulated.

In this chapter the foundation is laid for the development of an anti-saturation algorithm for
MIMO control systems. The algorithm can be applied to SISO systems as the special case of
the more general MIMO case.

The proposed algorithm introduces, as did the method of Kapasouris, an error governor into
the input path of the controller. Kapasouris used a scalar error governor to scale the entire
error vector. The proposed algorithm uses a vector error governor to scale the individual
elements of the error vector.

4.2 Preliminaries

As was illustrated in Chapter 2, the effects of controller saturation in a control system are
threefold, namely:

• The controller dynamics windup.

• The loop gain decreases.

• In a MIMO control system the direction of the control vector is altered.

An error governor (EG), depicted in Figure 4.1, was introduced into the forward path of the
feedback control loop to provide a mechanism to deal with saturation in the controller.

Note that the error governor can only pass or attenuate the error signal, e. It cannot amplify
or change the polarity of this signal. The mechanism by which the error governor addresses
the effects of saturation on a control system are discussed below:
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r

Figure 4.1: Control system with error governor EG.

• Windup

The idea is to regulate or govern the error input (energy into the controller) such that the
controller output never exceeds the saturation limits of the actuator. Thus the controller
dynamics can never windup and the first effect of saturation has been addressed.

• Loop gain

In the scope of this thesis the plant was assumed to be stable. Also the control system
(combined controller and plant) was assumed to be unconditionally stable for loop gain
decreases. These assumptions were made on the grounds that it is well known that is not
possible to globally stabilise an unstable plant or a conditionally stable control system
in the face of actuator saturation.

The effective loop gain decrease that would have been introduced by the saturation
element has now been shifted to (or replaced by) the controlled loop gain decrease intro-
duced by the error governor. Thus the unavoidable loop gain decrease due to saturation
has been moved from the controller output (plant input) to the controller input where
it can be effectively managed to control the otherwise negative effects of saturation.

• Control vector direction

Kapasouris maintained a linear relationship between the components of the control vector
and hence the direction of the control vector by linearly scaling all the error inputs by the
same scale factor, effectively maintaining the linear state of the controller. Kapasouris
argued that maintenance of the direction of the control vector was critical in ensuring
correct and stable operation in controllers that had partially inverted some of the plant's
dynamics.

Besides the fact that the newly proposed algorithm is developed along different lines
to the algorithm of Kapasouris's and the fact that the implementations are completely
different, the fundamental difference between these two algorithms is the divergence in
philosophy taken regarding maintenance of the direction of the control vector.

4.3 Divergence from Kapasouris' Methodology

In Chapter 2, Figure 2.7 and the related argument illustrated what happened when individual
saturation elements acted on the individual components of a MIMO control vector in a SISO
sense. Although this illustration provided a good insight into what physically happens during
saturation, it is the opinion of this author that the illustration can be particularly misleading
for the following reasons:

• Weakly coupled dynamics
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Consider, for example, the extreme case where two totally unrelated SISO control sys-
tems are implemented as a MIMO controller as depicted in Figure 4.2.

MIMO Controller

Yl

Y2

Figure 4.2: MIMO implementation of two SISO controllers.

Assume that the controller K; (s) has issued a saturated control signal (i.e. lUll> 1'11,11)
and that K2(S) is unsaturated (i.e. U2 = '11,2). Following Kapasouris' approach both error
signals el and e2 would be equally scaled by the error governor such that controller Kl (s )
does not saturate (i.e. UI = '11,1). The net result is that the control vector u = UI + U2
does not saturate and its direction remains unaltered. Nevertheless, the performance of
controller K2(S) has been compromised by a saturation in controller K2(s).

The purpose of this example is evident. Control Ioop. and loop-. are totally unrelated to
each other. The effect of a saturation in one control loop should have no performance
bearing on the other control loop whatsoever. Control signal U2 is not a function of
control signal UI, plant GI(s), controller KI(S) or the error signal el in any way and
vice-versa. Therefore control vector direction is irrelevant in this example.

It may be argued that it is unlikely to ever implement two SISO controllers as a MIMO
structure in practice and that this example is extreme. Consider then a controller in
which the cross coupling between channels is very weak or only unidirectional as in a
controller with triangular structure. Clearly it would be extremely conservative to scale
both controls that are weakly related or have a unidirectional relationship simply because
one of them has saturated.

• Direct feed through
As another counter illustration, consider a MIM 0 control system with cross coupled
dynamics. In the state space form the control signal is given by:

u(k) Cx(k) + De(k)
Cx(k) + D(r(k) - y(k))

For a non-zero D matrix (i.e. a controller with proportional control) the magnitude and
polarity of each component of the control vector can be directly manipulated from the
reference input r(k). Therefore the direction of the control vector is arbitrary since the
reference input, r(k) which is set by the operator, can be arbitrary and different at each
instant k.

What then is the real issue? - The real issue is that the direction of the control vector
must accurately reflect or map to the internal state of the controller. That is, the control
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vector must be consistent (linearly related) to the states of the controller and the states of the
controller must be such that saturation does not occur. It is, however, improper to force the
control vector direction to be maintained since this may imply forcing an unnatural relationship
between unrelated states and error inputs in the controller.

4.4 Controller State Propagation

It is proposed that one cannot begin to treat saturation in a MIMO control system only once
it has occurred. Rather one must prevent saturation from ever occurring in the first place.
In this section the time propagation of the controller states are considered, in the light of the
above proposition.

Given the discrete state space description of the linear time-invariant controller:

x(k + 1)
u(k)

<I>x(k) + re(k)
Cx(k) + De(k)

The future time response of the propagated controller states for h time steps are:

x(k + 1)
x(k + 2)

<I>x(k) + re(k)
<I>x(k + 1)+ re(k + 1)

x(k+h+1) <I>x(k + h) + re(k + h)

The associated controller outputs are:

u(k)
u(k + 1)

Cx(k) + De(k)
Cx(k + 1) + De(k + 1)

u(k + h) Cx(k + h) + De(k + h)

The response of the controller at the present time u(k) and future time u(k + h) due only
to the present state vector x(k) (free response) and present input error vector e(k) (forced
response) can be determined by setting:

e(k) = r(k) - y(k)

and making the error vector zero for all time steps thereafter, i.e.

e(k + 1) = e(k + 2) = ... = e(k + h) = 0

The error vector may be set to exactly zero since this is a signal internal to the controller's
workings. Although the measurement cannot be changed, the applied reference could be made
equal and opposite to the measurement thus forcing the error to zero. The reason for making
the error zero for all future time steps is to investigate the time response that the free response
of the controller due to its current state combined with the present forced response due to the
present error would be. It should be borne in mind that the controller is an exact entity. It
is not some approximation or model of reality as is the case with the plant model. Thus it is
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possible to make exact predictions or extrapolations of future free response behaviour given
the present state and present forcing function.

Thus the propagated controller's state can be written as:

x(k + 1)
x(k + 2)

~x(k) + re(k)
~x(k + 1)

x(k+h+1) ~x(k + h)

and the propagated controller's output as:

u(k)
u(k + 1)

Cx(k) + De(k)
Cx(k + 1)

u(k + h) Cx(k + h)

With suitable substitutions, the recursive state equation and the output equation after h time
steps can be written in terms of the present state and present error (assuming all future errors
were zero) as follows:

x(k+h+1)

and

u(k+h) = {
Cx(k) + De(k)
C[~hx(k) + ~h-lre(k)l

: h = 0 }
: h > 0

Therefore, given the state x(k) of the controller and the error e(k) at the time step k, one
can predict the present forced and future free response of the controller for any future time h
steps ahead.

Assume now that for the present state x(k) and error e(k) that at some time h steps in the
future the controller issues a saturating control (i.e. lu(k + h)1 2: lui). To try to establish the
path or sequence of events (or error signals) that caused the saturation once the saturation
has occurred is practically impossible. Even if it were practically possible to back propagate
the saturating control signal to the instant when the responsible error signal (forcing function)
was applied to the controller, this would be of no value since it is not possible to go back into
the time history of the controller and of the plant and undo the past. The damage, as it were,
has already been done. That is, the controller has attained a state that will lead to saturation
even if the error input was made zero. The free response of the controller, due to its state
alone, will in time saturate and windup. The sequence of control signals that eventually led up
to the moment of saturation have already been applied to the input of the plant and the plant
has reacted to this input and this history cannot be retrieved from the plant and re-applied
in a modified and more desirable manner with the recently acquired hindsight.

In an interacting MIMO controller the state transition matrix, ~, will have off-diagonal entries
and therefore the higher powers of ~ will be full matrices. Therefore the mix of the original
state x(k) (free response) as well as the distribution of the original error e(k) (forced response)
in the future response u(k + h) of the controller becomes very complex to unravel and even
more so if the error vectors e(k + 1), e(k + 2),· .. ,e(k + h) had been non-zero. Likewise,
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if the controller had been time varying (for example, due to gain scheduling) the problem
becomes even more complex as one would need to keep a history of the gains of the controller
at each time step so that the state propagation of the controller could be consistently reversed
or back propagated. The possibility exists that for the same state the controller could issue
either saturated or unsaturated control signals depending upon the particular value of the
controller's gain at that instant.

It has thus been established that one cannot start to address the saturation of the controller
once the saturation has occurred because the free response, due to the dynamic behaviour of
the controller, may lead to deeper saturation even after the error signal driving (forcing) the
controller has been removed. The only way to avoid saturation is to never allow the controller
to attain a state that will eventually lead to saturation. The bottom line, to use an old cliche,
is that prevention is better than cure. In the MIMO case, prevention may well be the only
viable option.

Therefore, in summary, one must never apply an error signal to the controller that will result
in saturation now nor at any time step in the future response of the controller, thus preventing
saturation altogether rather than trying to remedy it only once it has occurred.

4.5 Methodology behind the Proposed Algorithm

In the proposed anti-saturation algorithm, the underlying methodology is to condition the
error input of the controller such that saturation can never occur, not now nor at any time
in the future free or forced response of the controller. The following two definitions regarding
the controller's state are made:

• A controller state that leads to the controller issuing a saturated control for the free and
unforced response of the controller is defined to be an inadmissible state.

• A controller state that does not lead to the controller issuing a saturated control for the
free and unforced response of the controller is defined to be an admissible state.

Let the applied error input, ê(k), into an m-input controller be defined by:

ê(k) = Q(k)e(k)

or

o

o 1 [e
1

(k) 1o e2(k)

qm:(k) em:(k)
[

ê1(k)1
ê2(k)

êm(k)

o
q2(k)

where the diagonal error scaling matrix Q(k) is constrained by 0 :S IIQ(k)112 :S 1 and e(k) is
the actual error between the reference set point and the plant output as shown in Figure 4.3.

In other words the problem then reduces to determining the maximum error vector ê(k) that
can be applied to the controller, taking into account the controllers current state x( k) and hence
free response, such that the controller never saturates now nor at any future propagation of
the controller output.
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e(k)

I I

: Logic :
I I

u(k)ê(k)
I-----~ Controller

Figure 4.3: MIMO controller with diagonalised error governor, Q, on error input.

Assuming that the current controller state x( k) is an admissible state and that one can op-
timally determine the matrix Q(k) for all time steps in the future, one can ensure that no
external error input e( k) can ever make the controller acquire a state that is inadmissible.
Therefore saturation can always be avoided by regulating the external energy into the con-
troller.

Note that by having individual operators, qi(k), each acting on an individual component of the
error vector, e(k), it means that each component, ei(k), of the error vector can be individually
scaled. This deviates fundamentally from the ideas of Kapasouris who scales the entire error
vector by the same scalar, )"(k), (see Figure 3.8) in order to hold to the premise that the
direction control vector must be maintained during saturation. Therefore the newly proposed
algorithm forsakes the linearity dependance requirement of the error vector components that
was enforced by Kapasouris. Nevertheless the proposed algorithm does not allow the controller
to saturate. Furthermore, the proposed algorithm does not suffer from the conservatism of
Kapasouris's algorithm in that weakly coupled or uncoupled controllers will now be able to
perform optimally in all channels up to the saturation limit of each channel.

4.6 Anti-saturation Algorithm

The anti-saturation algorithm for an m-input, n-state, p-output MIMO controller can be
stated as:

Find the maximum individual error, ei, scale factors, qi, such that 0 :::;qi :::;1 and such that
all the future propagated outputs of the controller due to the present controller state and this
scaled error lie between the actuator saturation bounds. This can be stated mathematically
as follows:

maximise z = ql + q2 + ... + qm
subject to

Umin < u(k) < Umax

Umin < u(k + 1) < Umax

Umin < u(k +h) < Umax

0 < ql < 1
0 < q2 < 1

1
0 < qm < 1
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where z is the maximised scalar sum of the individual error, ei, scale factors, qi, and the
saturation limit vectors and controller's output vector are given by:

Umin l~lmln]
2m1.n

upmin

u(k) lUl(k)]u2(k)

up(k)

Umax lUlmax ]
U2max

Upmax

with the propagated controller's output being given by:

u(k)
u(k + 1)

Cx(k) + DQ(k)e(k)
C[cpx(k) + rQ(k)e(k)]

u(k + h) C[cphx(k) + cph-1rQ(k)e(k)]

where h is the number is steps (optimisation horizon) it takes for the controller to settle to
steady state, with h ~ 1 for a controller with dynamics. For a controller with no dynamics,
(h = 0), steady state is reached immediately and windup prevention and therefore saturation
prevention is not a concern.

Once the optimal error governor matrix, Q(k), has been found the controller is implemented
by:

x(k + 1)
u(k)

cpx(k) + rê(k)
Cx(k) + Dê(k)

or
x(k + 1)

u(k)
cpx(k) + rQ(k)e(k)
Cx(k) + DQ(k)e(k)

Note that the optimisation problem must be solved afresh for every discrete time step k.

In essence the proposed anti-saturation algorithm for MIMO controllers, within the assump-
tions and constraints posed, has been formulated. In practice, however, certain difficulties still
need to be overcome, notably:

• A suitable numerical optimisation algorithm must be identified to determine the error
governor Q (k ).

• The minimum (optimal) horizon or number of look-ahead steps h needs to be determined.

• Calculation of <I>h may be computationally intensive for controllers with many states.

4.7 Summary

• The requirement for maintaining control vector direction was dispensed with.

• An Error Governor was introduced into the controller loop to prescale the individual
error vector components such that the controller never attains an inadmissible state and
therefore never saturates.

• The anti-saturation problem was cast as a numerical optimisation problem with a linear
cost function subject to inequality constraints.
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Chapter 5

Linear Programming

5.1 Introduction

The anti-saturation algorithm for MIMO controllers developed in Chapter 4 was cast as a
bounded or constrained optimisation problem. Although by design intentionally so, it can be
verified by inspection that the optimisation problem is linear in both the objective function as
well as the constraints, both being linear combinations of the optimisation variables.

While sophisticated complex nonlinear algorithms or quadratic optimisation algorithms (of
which many exist as routines in numerical software toolboxes) may be employed to solve
this optimisation problem, the definite linearity in the problem should rightly be exploited
to the fullest advantage in simplifying the solution. Ultimately this algorithm is intended for
practical application. Thus, despite the ever increasing computational capacities of embedded
micro controllers and computers used in control applications, the optimisation process must
itself be as optimal as possible so that the process can be completed and repeated every update
cycle of the discrete controller. Typical update cycles used for aircraft autopilots are 20 ms
(50 Hz) and for missiles this may be an order of magnitude faster, say 2 ms (500 Hz).

Linear optimisation techniques can be broadly classified as those:

• Methods that systematically cross the interior region of the solution space following
steepest gradients in search of the optimum .

• Methods that examine the boundary of the region of the solution space for the optimum.

In a linear optimisation problem, the linear cost function to be minimised or maximised is
called the objective function. There are usually infinitely many solutions to the system of
linear constraints, which may be equalities or inequalities. These solutions are called feasible
solutions or feasible points. The aim is to find one such solution that is an optimum solution,
that is, one that gives the minimum or maximum value of the objective function.

Following the arguments presented in most texts on linear programming lone can conclude
from the underlying theoretical aspects of the geometry of the problem that in order to deter-
mine the optimal solution of a constrained linear optimisation problem one need only consider

lLinear programming is a well established and popular technique for solving linear optimisation problems.
The linear optimisation problem is generally referred to as a linear program.
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a finite number of candidate solution points. Furthermore, it turns out that these points
all exist on the boundary of the region of all (infinite) feasible points [Ignizio and Cavalier].
Nevertheless, to actually identify these points in a linear program of nontrivial size is not so
straightforward. It is necessary to examine the linear program from an algebraic viewpoint.
This algebraic viewpoint relies heavily on linear algebra, and, in particular, on the concept of a
basic solution to a linear system. Linear programming, developed by George B. Danzig in the
late 1940's, is the topic of a great many authors and these references should be consulted for
a detailed exposition on the subject 2. In this thesis only the relevant subset of the available
linear programming theory has been extracted and applied to specify a mechanical procedure
that can be used to solve the MIMO anti-saturation algorithm optimisation problem in a
practical implementable way.

It is necessary to examine linear programming, relative definitions and terminology in order
to set the stage for customising the application of linear programming to the MIMO anti-
saturation algorithm. Most texts on linear programming treat the subject systematically,
beginning with the concepts, moving on to the theory behind the algorithm, various methods
of solution, examples and so on. In the process, one has to study all the material sequentially
to grasp the full picture. In this section a summary is presented to put the various aspects
into context and to provide an immediate reference framework for the reader. It is not the
intention of this thesis to present a full treatment of linear programming.

5.2 General Form

In a linear program an objective function must be optimised (minimised or maximised) subject
to a list of constraints that are placed on the values that the variables in the objective function
may assume.

The general form of the (single-objective) linear programming model can be stated mathemat-
ically as:

Find q = [ql, q2, ... ,qmV so as to optimise, the objective function, m-variables, subject to the
specified i-constraints.

maximise Z = Clql + c2q2 + ... + cmqm
subject to

al,l ql + al,2q2 + + al,mqm {~,=,2:} bl

a2,lql + a2,2q2 + + a2,mqm {~,=,2:} b2

al,lql + al,2q2 + + al,mqm {~,=,2:} bl
and ql, q2, ... ,qm 2:0

where Ci are constant coefficients assigning relative weighting to the decision variables, qi, in
the cost function, z, and the ai,j are the constant coefficients of the decision variables in the
constraints. The bi are the constants, independent of the decision variables, in the constraints.

Each constraint may be either a (~) inequality, a (2:)inequality or an equality (=). Also in
some instances the nonnegativity restrictions on the decision variables may not be appropriate.

2The book Linear Programming by James P. Ignizio and Tom M. Cavalier is worth particular consider-
ation and was used extensively during the development of this thesis.
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It is always possible, through the use of certain linear transformations, to convert any linear
programming model into the foregoing form [Ignizio and Cavalier:18,19].

5.3 Assumptions of the linear programming model

There are four basic assumptions that ensure that a real situation can be represented as a
linear programming problem [Ignizio and Cavalier: 19].

• Certainty
The problem data (cj,bi and ai,j; i = 1, ... , l; j = 1, ... ,m) are assumed to be known
with certainty. That is, there is no stochastic element to the data.

• Proportionality
The contribution of a decision variable, qj, to the objective function is Cjqj and its
contribution to the ith constraint is ai,jqj. That is, the contribution of qj is always
directly proportional to the level of the variable qj. This simply means, for example, that
if the value of qj doubles, then its contribution to the objective function also doubles.
There are no setup costs, discounts, or economies of scale.

• Additivity
This assumption ensures, for example, that the total cost is the sum of the cost contri-
butions of each individual variable. That is, the contributions from individual variables
combine linearly in both the objective function and the constraints. There are no inter-
actions that could reduce or increase the level of the combined contributions.

• Divisibility
Divisibility implies that the decision variables are continuous variables, that is, they can
be divided into fractional parts.

Despite what appears to be somewhat restrictive assumptions, linear programming remains
one of the most widely used modelling techniques [Ignizio and Cavalier: 19].

5.4 Canonical Form

In the canonical form, in general, the constraints are written as inequalities. Typically either
all as (~) or (~) inequalities depending upon the problem. The entire constraint may be
multiplied by -1 and the direction of the inequality reversed to get it into this form if necessary.
If an equality constraint was specified by the optimisation problem, then equalities may exist
in the constraints of the canonical form as well. In the case of the anti-saturation algorithm
developed in this thesis all the constraints are inequalities, there are no equality constraints.

5.5 Standard Form

Since it is easier to work with equations rather than inequalities, the constraints are converted
into equations by the addition of surplus and/or slack variables as necessary. Therefore in
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the standard form there are only equalities, no inequalities. In the case of the anti-saturation
algorithm developed in this thesis there are no surplus variables, only slack variables. The
presence of a surplus variable would indicated that one of the saturation bounds have been
violated.

5.6 Constraint Conversion

Any inequality can be converted into an equation by the introduction of slack or surplus
variables. For simplicity it is assumed that regardless of the form of the inequality, the right-
hand side is nonnegative (that is, bi 2: 0). Thus if the constraint initially has a negative bi,
then multiply the entire constraint by -1 and reverse the direction of the inequality.

5.6.1 Conversion of a (::=;) inequality

Consider an inequality, say constraint r, of the following form:

m

L ar,jqj < br
j=l

Introduce a new variable, Sr 2: 0, called the slack variable, so that:

m

L ar,jqj + Sr = br
j=l

That is:

m

Sr = br - L ar,jqj
j=l

In words, Sr is the (nonnegative) difference between the right-hand side constant and the
original left-hand side and, thus, it takes up the slack. Physically, it often represents the
amount of resource r (that is br) that is unused or idle. From a mathematical view, it allows
one to express an inequality in a more convenient format.

5.6.2 Conversion of a (2:) inequality

Consider an inequality, say constraint t, of the form:

m

Lat,Nj 2: bt
j=l

In this case, introduce a new variable, St 2: 0, so that:
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m

L ar,jqj = bt + St
j=1

Thus:

m

St =L ar,jqj - bt
j=1

That is, St represents the (nonnegative) difference between the left-hand side and right-hand
side of the inequality. Such a variable is termed a surplus variable. Physically, the surplus
variable represents the amount by which the right-hand side is exceeded.

5.7 The Objective Function

The choice of decision variables (that is, the qjls) directly affects the value of the objective
function. This holds true as well for the slack and surplus variables. As a result, each variable
introduced in the constraint conversion process should also be introduced, with a proper
coefficient, into the objective function. Consider the standard form of the objective function to
be maximization. This in no way eliminates the consideration of minimization type objectives,
because if a function z is to be minimized one can use the simple equivalence:

minimize z == - maximize (- z )

Thus, given a maximization objective z, and p surplus and slack variables, the modified ob-
jective is

1 p

maximise z =L Cjqj +L CkSk
j=1 k=1

The first term, is simply the original objective function, and the second term corresponds to
the impact of the slack and surplus variables.

5.8 Companion Form

Associated with every linear program there is a companion form called the dual. The original
form of the linear program then being referred to as the primal. Defining the problem at hand
as the primal and the companion form as the dual is arbitrary and interchangeable. Both
forms are linear programs, defining either one to be primal implies the other form is its dual.
In this thesis and in keeping with the conventions used in other texts, the original form of the
maximisation problem will be defined to be the primal form. This primal-dual relationship is
far more than a curious relationship [Ignizio and Cavalier:167]. In linear programming, duality
is used in a wide variety of both theoretical and practical ways. Included among these are the
following:
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1. In some cases, it may be easier (less iterations, etc.) to solve the dual than the primal.

2. The dual variables provide important economic interpretations of the results obtained
when solving a linear programming problem.

3. Duality is used as an aid when investigating changes in the coefficients or formulation of
a given linear programming problem (Le. in sensitivity analysis).

4. Duality will be utilised to allow one to employ the simplex method to solve problems in
which the initial basis is infeasible (the technique itself is known as the dual simplex).

5. Duality is used to develop a number of important theoretical results in linear program-
ming.

Points (1) and (4) are exploited in this thesis.

Formulation of the dual problem is actually a mechanical, straightforward process. However
the mechanics differ somewhat according to the form of the primal. Refer to Ignizio and
Cavalier:168-188 for a comprehensive treatment. In the context of this thesis, the dual can be
viewed as the transpose of the primal.

During the execution of the simplex algorithm one not only derives the optimal solution for a
given linear system, but one also solves a companion problem called the dual problem. In this
context, the original problem is generally referred to as the primal problem.

The following rules [Ignizio and Cavalier:169] are followed when specifying the dual from the
primal:

• The objective of the primal is to be maximised; the objective of the dual is to be min-
imised.

• The maximisation problem must have all (~) constraints and the minimisation problem
has all (~) constraints.

• All primal and dual variables must be nonnegative.

• Each constraint in one problem corresponds to a variable in the other problem. For
example, given m primal constraints, there are m dual variables, and, given n primal
variables there are n dual constraints. Consequently, if one problem is of order m x n,
the other is of order n x m.

• The elements of the right-hand side of the constraints in the one problem are the respec-
tive coefficients of the objective function in the other problem.

• The matrix of constant coefficients for the one problem is the transpose of the matrix of
coefficients for the other problem.

5.9 Methods of Solution

Various methods have been devised to solve linear programming problems when presented
in the standard form. The best known of these methods is the simplex method, which is a
mechanical process that systematically steps from one feasible solution of the linear program
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to the next until the optimum solution (if it exists 3) has been reached. The revised simplex
method is a computationally more efficient version of the simplex method. Another method,
of which little mention is made in most texts, is the dual simplex method (often just called the
dual method).

Note that the dual method should not be confused with the dual form. That is:

• The one is a method or algorithm used for solving linear programming problems and the
other is a form or way of stating a linear programming problem. The use of the word
dual in both cases is perhaps a little unfortunate.

• The simplex method can be used to solve linear programming problems written in both
the primal and the dual form.

• Likewise the dual method can be used to solve linear programming problems written in
both the primal and the dual form.

5.10 Problem Transformation Options

Figure 5.1 shows graphically the options available in linear programming. In words, the linear
problem in canonical form can be transformed between the primal canonical form and dual
canonical form. Likewise, the linear problem in standard form can be transformed between the
primal standard form and the dual standard form. All the solution methods (either simplex or
dual method) operate on the linear program when in the standard form. Thus the canonical
form (either primal or dual) must first be converted to the standard form (either primal or
dual).

Primal Canonical Form Dual Canonical Form

Primal Standard Form

Figure 5.1: Linear Programming Overview

Assuming one always begins with the primal canonical form, there are four routes one could
take to the standard form, each eventually being solved by applying either the simplex method
or the dual method.

3For an unbounded solution space, an optimum cannot be found.
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1. Primal Canonical Form
--+ Primal Standard Form
--+ Solve

2. Primal Canonical Form
--+ Primal Standard Form
--+ Dual Standard Form
--+ Solve

3. Primal Canonical Form
--+ Dual Canonical Form
--+ Dual Standard Form
--+ Solve

4. Primal Canonical Form
--+ Dual Canonical Form
--+ Dual Standard Form
--+ Primal Standard Form
--+ Solve

It is important to note that although (1) and (4) are both in primal standard form, because
of the different routes taken to reach this form, the two linear programs are not equal in
dimension. Likewise, although (2) and (3) are both in dual standard form, their dimensions
are very different. Therefore, while the forms are equivalent and the solutions the same, the
actual linear programs are very different in dimension. The dimensions of these seemingly
equivalent problems are different because the slack and/or surplus variables are introduced at
different stages of the transformation. The various routes to standard form from canonical
form and different methods of solution have advantages and disadvantages relative to one
another.

Assume that all l constraints in canonical form were inequalities. Then one would require l
slack or surplus variables to convert all the inequalities into equalities to get the standard form.
The derivation of the resulting dimensions of the various routes can be found in Appendix A.
The table below summarises these results:

Route Number of Number of Standard
number equalities variables form

1 l m+l Primal
2 m +L l Dual
3 m l+m Dual
4 l +m m Primal

In the proposed MIMO anti-saturation algorithm optimisation problem, there will typically
be few variables m (only as many as the number of inputs to the controller), while the number
of constraints l depends upon the update period of the controller and the time it takes for the
dynamics of the controller to reach steady state.

It is thus typical to have hundreds or even thousands of constraints. The number of constraints
l is therefore orders of magnitude larger than the number of variables m to be solved for. Since
the number of pivot operations (Le. iterations) that the solution method, either simplex or
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dual, takes to find the optimum is proportional to the number of constraints, one would prefer
to solve the problem that has fewest constraints.

Thus in the context of the MIM 0 anti-saturation algorithm where m < < l it makes com-
putational economic sense to adopt Route (3) since this results in the fewest iterations in
determining the optimum. One proviso is that an initial basic feasible solution must exist as
a starting point for the solution method (simplex or dual) to begin the search. If no initial
basic feasible solution exists, then procedures exist for creating this basis, but the overheads
of implementing these procedures might not justify the use of this particular form.

5.11 The Simplex Method

If a finite optimal solution to a linear programming problem exists, then an extreme-point
optimal solution exists [Ignizio and Cavalier:80]. Thus, in the search for an optimal solution,
one need only consider the extreme points of the feasible region. This is a very important fact
because the solution space is reduced to a finite number of candidate points. Algebraically,
these extreme points correspond to basic feasible solutions of the linear constraint set:

Ax = b, x 2: 0

The simplex method is a systematic procedure for iteratively moving from one extreme point
to an adjacent extreme point in the search for an optimal solution. Tabular formats have been
established to simplify the bookkeeping aspects of the simplex method.

To start the simplex algorithm one must identify an initial basic feasible solution. In some
cases this is straight forward, but in some cases it is not always available. When the initial
basis is not available, other methods can be employed to artificially generate such a basis
in order to begin the simplex algorithm. Such methods are the Two Phase Method and the
Big-M Method, the details of which can be found in Ignizio and Cavalier:103-112. The general
approach of the two phase method is to create an identity submatrix by adding the necessary
artificial variables to the original constraints and proceeding from there.

For the purposes of the anti-saturation algorithm it would be preferable if an initial basic
solution always existed so that the simplex algorithm could be started without any need for
artificial variables. The reason for this is that the anti-saturation algorithm needs to be
deterministic and guaranteed to work for it to be practically applicable in real-time in real-
world control problems. So a formulation of the anti-saturation linear programming problem
that always has an initial basic solution is sought.

5.12 The Dual Method

The Dual Simplex Algorithm was initially developed by Lemke (1954) [Ignizio and Cava-
lier:197]. This text should be consulted for a full treatment, but in summary, the dual simplex
method operates on the linear program in much the same way as the primal simplex method,
except that it operates on the dual space rather than on the primal space. Such an approach
is only possible if the current solution is dual feasible. That is, primal optimality conditions
are satisfied. If the initial solution is not dual feasible, then artificial variable techniques exist
to create such a solution.
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• Thus, the dual simplex method maintains dual feasibility and complementary slackness
throughout its operation, while trying to achieve primal feasibility .

• The primal simplex method maintains primal optimality and complementary slackness
throughout, and tries to restore dual feasibility.

A sufficient and necessary condition for the dual feasible solution to exist is that the coefficients
of the objective function (in minimisation form) must be all nonnegative.
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Chapter 6

Implementation

6.1 Introduction

It is necessary to examine the characteristics of the MIMO anti-saturation algorithm to gain
the necessary insight into what considerations must be addressed when applying linear pro-
gramming to this optimisation problem.

6.2 Problem Transformation

The anti-saturation algorithm optimisation problem developed in Chapter 4 is repeated here
for convenience. That is:

maximise z = ql + q2 + ... + qm
subject to

Umin < u(k) < Umax
Umin < u(k + 1) < Umax (6.1 )

Umin < u(k + h) < Umax

where the control vector values and limits are made up of the individual control values and
their limits as follows:

[~Imm] [UI(k)] [Ulm •• ]u2(k) U2max2m1.n
u(k)Umin Umax

upmin up(k) upmax

with:
u(k) Cx(k) + DQ(k)e(k)

u(k + 1) C[~x(k) + rQ(k)e(k)]

u(k+h) C[~hx(k) + ~h-lrQ(k)e(k)]
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and:

Q

ql 0 0
0 q2 0

0 0 0
with 0 < IIQI12 ~ 1

0 0 qm

el

e2

em

e

where h is the number is steps or look ahead horizon it takes for the controller to settle to
steady state.

Objective function

By inspection the objective function is already in linear programming primal canonical form.

maximise z = ql + in + ... + qm = cq

where c is a unity 1x m vector of the coefficients of the optimisation variables q of the objective
function. These coefficients are all unity since the relative weighting between the optimisation
variables is equal. That is, no one error input into the controller is more important than any
other.

The primal canonical form requires that c ~ 0, which is the case in the proposed anti-saturation
algorithm.

Constraints

The constraints require transformation to get them into the desired linear programming primal
canonical form. One can expand each of the control constraints with suitable substitutions to
give:

Umin < Cx(k) + DQ(k)e(k) < Umax

Umin < C[cI»x(k) + rQ(k)e(k)] < Umax
(6.2)

Umin < C[cI»hx(k) + cI»h-1rQ(k)e(k)] < Umax

Since it is necessary to resolve this optimisation problem afresh every time step of the discrete
controllers update period, one can consider the kth time step to always be the present time step.
Thus the suffix (k) will be dropped at this stage of the development in favour of conciseness.
Each constraint of (6.2) is a double inequality. These double inequalities can be rewritten as
single inequalities as follows:

58

Stellenbosch University http://scholar.sun.ac.za



Cx+DQe < Umax

CCPx+ crQe < Umax

CcphX + ccph-1rQe < Umax

Cx+DQe > Umin

CCPX+ crQe > Umin

(6.3)

The primal canonical form requires that:

• All the constraints be of the (:~) inequality form.

• Terms on the left-hand side be linearly related to the optimisation variables Q.

• The terms on the right-hand side be all non-negative constants.

Thus (6.3) can be reworked to give (6.4)

DQe < Umax - Cx
cro- < Umax - CCPx

ccph-1rQe < Umax - Ccphx

-DQe < -Umin + Cx
(6.4)

-crQe < -Umin + CCPx

-ccph-1rQe < -Umin + Ccphx

The constraints in (6.4) are now almost in the primal canonical form, apart from the fact
that the optimisation variables, Q, are caught-up in the matrix algebra of the terms on the
left-hand side and as such the coefficients of the optimisation variables have not been isolated.

Recall that the elements qi of the error governor, Q, were stacked to form a diagonal matrix
of dimension m x m and then multiplied by the error vector, e, to produce the applied input
to the controller, that is

ê = Qe = Q(r - y)

Each element qi of Q scales only the corresponding element ei of e since Q is diagonal by
definition.

The matrix and vector notation for Q and e respectfully was useful for the controller rep-
resentation. The problem is that this now spoils the formulation of the linear programming
problem. In the context of linear programming it would have been more convenient if the error
vector had been a diagonal matrix and the error governor the column vector. Fortunately this
can be arranged by exploiting the diagonality of the error governor Q as follows:
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Define a diagonal matrix E and a column vector q such that the product E q is given by (6.5)

Eq [1
o

o

and by earlier definition recall that

[

~ ~2 :::

o 0 qm

Qe

o
o

[T

[T
Now because ei and qi are scalars the following equality holds:

[T o

o

[T o

o

(6.5)

o

o
(6.6)

o

(6.7)

Hence from (6.7) the equality E q = Q e has been established. Therefore the constraints can
be rewritten, making the substitution E q = Q e, to give:

DEq < Umax - Cx
CrEq < Umax - C<I>x

C<I>h-1rEq < Umax - C<I>hx

-DEq < -Umin + Cx
(6.8)

-CrEq < -Umin + C<I>x

-C<I>h-1rEq < -Umin + C<I>hx

Besides the constraints on the control variable, there was a constraint on the decision variables
as well, namely:

This implies that the elements of qi of Q must all satisfy:

o ~ qi ~ 1

which intern implies:

By definition of the linear programming form, the decision variables are always nonnegative,
thus, the lower bound inequality is automatically catered for and may be dispensed with
leaving the additional constraint:
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and hence the optimisation variable, q, can now be isolated from its coefficients to give the
full set of constraints:

DE Umax - Cx
crE Umax - Cq,x

cq,h-1rE Umax - Cq,hx

-DE q <
-Umin + Cx (6.9)

-crE -Umin + Cq,X

-cq,h-1rE -Umin + Cq,hx
I I

where I is the m x 1 unity vector.

and by setting

Á

Umax

Then:

[
DE IcrE

cq,h-lr~

[

Umax

Umax

Umax

[

Umin IUm~n

Umin

[

CX
Cq,X

Cq,h~

[(h + l)p x m]

[(h + l)p x 1]

[(h + l)p x 1]

[(h + l)p x 1]

[2(h + l)p x m]

[2(h + l)p x 1]

So finally the constraints can be written as:

Aq < b
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While the constraints have the appearance of the desired linear programming primal canonical
form, the following question and answer check list proves that this is indeed the case:

• Optimisation variable coefficients isolated?
The A matrix contains only constants and these constants are the coefficients of the
optimisation variables, q, only.

• Optimisation variables q 2': 0 ?
The definition of the optimisation variables was that 0 ::; IIql12 ::; 1. Thus the optimisa-
tion variables satisfy the linear programming restriction that q 2': o.

• Inequalities ?
All the inequalities are written as (::;) inequalities.

• Right hand side terms all positive?
An important observation to note is that b 2': 0 for all admissible states, x.

Proof:
An admissible state was defined, in Chapter 4, to be a controller state that does not
lead to the controller issuing a saturated control for the free and unforced response of
the controller, not now nor at any time in the future. Thus b will always lie between
the control bounds, Umin and Umax, that is Umin ::; b ::;umax.

Therefore
b ::;Umax

b 2': Umin

:::::}umax - b 2': 0
:::::} -Umin + b 2': 0

Hence

6.3 Summary

The anti-saturation problem has been properly transformed into the linear programming pri-
mal canonical form given by:

maximise z = cq
subject to
Aq < b
q 2': 0

(6.10)

In Chapter 5 it was determined that the most economical route to solving this linear program-
ming problem was to transform the primal canonical problem to the dual canonical form as
shown below:

minimise z = btw
subject to
Atw 2': ct

w > 0

(6.11)
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Note now that because b is always positive, that the coefficients of the new optimisation
variables ware thus all positive and thus of the correct form. The right-hand-side terms of
the (2:) inequality are all positive since c was unity in the original problem. This is also of the
correct form. The canonical dual is therefore of the correct form as a whole and any controller
can be processed by the proposed anti-saturation algorithm providing that the initial state of
the controller is an admissible state.

The dual canonical form can then be converted to dual standard form by the addition of
surplus variables, s, to give:

minimise z = hw
subject to
Áw ë
w > 0

(6.12)

where
[AT I]

[mx (2(h+1)p+m)]

[ bT I]
[lx(2(h+l)p+m)]

[ : L2(h+llp+m'llj

A necessary and sufficient condition for finding a dual feasible basis was that lJ 2: O. This
is the case. Thus, the anti-saturation algorithm transformed from primal canonical to dual
canonical to dual standard form is directly amenable to solution by the dual simplex method.
This form also requires the minimum iterations for solution, namely, m.
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Chapter 7

Simulation and Evaluation

In this chapter, simulation examples of the application of the proposed anti-saturation algo-
rithm are performed. The purpose of these simulations are to demonstrate that the algorithm:

• Does prevent windup in both SISO and MIMO controllers .

• Offers enhanced performance over the existing MIMO anti-saturation algorithm pro-
posed by Kapasouris.

Simulation is the only general method of analysis applicable to finding solutions of arbitrary
linear and nonlinear differential and difference equations. Simulation, however, only finds
particular solutions, that is, solutions to the equations with specific inputs, initial conditions
and parametric conditions. For this reason, simulation does not supplant other forms of
analysis. Important properties such as stability and conditional stability are not proven with
simulations. Nevertheless, in the case of a nonlinear process, even if there is no proof or
guarantee of stability, simulation can build confidence that under certain operating conditions
expected, the system is stable. Although proof of stability is always desirable, sometimes it is
necessary to rely on simulation alone [Franklin, Powell and Workman:5l7].

7.1 Example 1 - SISO system

This is a simulation of a second order SISO controller as shown in Figure 7.1. The linear
controller is marked by the dashed section. The input to the controller, ê, is derived from the
real error, e, scaled by the error governor EG. The output of the controller, u, is bounded by
the actuator saturation limits of the plant to ±1. The input to the plant is given by iL = sat(u).

The controller was discretised with a sample period of T = 0.1 seconds in the simulation. The
initial conditions on the integrator states were zero. The controller was specified as a stable
second order system with a damping of ( = 0.2, a natural frequency Wn = 1.0 rad/s and a
steady state gain of unity. Note that the controller was not designed for any particular plant.
The controller is synthetic and for illustrative purposes only.

During the simulations, the error input was held constant at e = 0.9. This can easily be
arranged by letting the reference r = y + 0.9. That is, the reference input is always 0.9 units
larger than the current plant output. The steady state gain of the controller is unity and the

64

Stellenbosch University http://scholar.sun.ac.za



Linear controller~--------------------------------------------~
I

I +1
e u

-1

I~--------------------------------------------~
Figure 7.1: Block diagram of second order SISO controller.

controller output should therefore settle at u = 0.9 in the steady state. The controller state
Xl maps directly to the controller output u. The controller state X2 remains an internal state
of the controller.

Three simulations were performed, namely:

• A linear simulation.

• A nonlinear simulation with error governor horizon of 8 steps.

• A nonlinear simulation with error governor horizon of 3 steps.

The linear simulation is used as a benchmark for performance evaluation of the two nonlinear
simulations. The two nonlinear simulations contrast the effect of the error governor horizon.
These simulations are discussed in the subsections that follow.

7.1.1 Linear simulation

In the linear simulation the error governor is unity and thus ê = e. The output constraints
play no role.

• Figure 7.2 shows the linear unconstrained response of the states of the controller. As
expected the system is underdamped and oscillatory but stable.

• The magnitude of the controller state Xl exceeds unity between approximately 2 and 4.5
seconds and between 9 and 10.25 seconds. Itwould be during these periods that controller
windup would occur if the output, u, was constrained by the saturation element to unity.

• The time for Xl to reach unity (the upper saturation limit) is about 2 seconds.

• The controller reaches steady state after about 20 seconds.

7.1.2 Nonlinear simulation with error governor horizon of 8 steps

This is the first of the two nonlinear simulations, demonstrating that saturation can be avoided
by the action of the error governor. Refer to Figure 7.3 which shows the controller's states and
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1.5 Ou ut state x1 of controller

----------.- - - - - - - - -
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Internal state x2 of controller
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0

-0.5

- 1
0 2 4 6 8 10 12 14 16 18 20

Time [s]

Figure 7.2: Linear simulation. The state signals are shown by the solid trace and the error
signal by the dashed trace.

the error signal for comparison with the linear simulation in Figure 7.2. Refer to Figure 7.4
which shows the controller's output and error governor's signals.

• The output state, Xl, has been correctly constrained between the saturation limits of
±l.

• The rise time of state Xl to the saturation limit remains unchanged compared to the
linear case.

• Note that the rate state, X2, of the controller is modified by the error governor to ensure
that the position state, z i , does not overshoot the saturation bound.

• The settling time is also the same as for the linear case.

• The action of the error governor gain is to effectively remove or scale the input, ê,
(forcing function) to the controller at the correct time step such that the controller's
future unforced free response does not violate the saturation bound. Once the controller's
output state starts to move away from the bound, the error governor returns to a gain
of unity restoring linearity and loop gain to the controller loop.

• The error governor horizon of h = 8 steps was determined by trial and error.

7.1.3 Nonlinear simulation with error governor horizon of 3 steps

This is the second of the two nonlinear simulations, demonstrating that saturation cannot be
avoided if the error governor horizon is not long enough. Refer to Figure 7.5 which shows the
controller's states and the error signal for comparison with the linear simulation in Figure 7.2.
Refer to Figure 7.6 which shows the controller's output and error governor's signals.
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Figure 7.3: Controller states for the nonlinear simulation with an error governor horizon of 8
steps. The state signals are shown by the solid trace and the error signal by the dashed trace.

• The output state, Xl, has not been correctly constrained between the saturation limits
±l. The controller thus winds up between 2 and 2.75 seconds. The error governor
does not have sufficient horizon to predict the impending saturation bound violation
and so by the time that the error governor removes the input, ê, (forcing function) to
the controller, the controller has already attained an inadmissible state. The unforced
free dynamic response of the controller therefore drives the output beyond the bounds.
The error governor only has the freedom to limit the energy into the controller. No
mechanism exists to remove excess energy from the controller, since the error governor
may not become negative.

• The rise time of Xl to the saturation limit remains unchanged compared with the linear
case.

• The settling time was also the same as the linear case, in this example.

• The error governor horizon of h = 3 steps was chosen to demonstrate the significance of
this parameter to the saturation prevention algorithm.

7.1.4 Summary

The following observations are made:

• The linear simulation output state, Xl, is driven to exceed the saturation bounds.

• The error governor, with a horizon of 8 steps, prevents the controller output from sat-
urating by controlling the amount of energy into the controller. Thus the controller's
state has been successfully constrained to the set of admissible states.
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1.5 Output of saturation element
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Figure 7.4: Controller output and error governor gain for the nonlinear simulation with an
error governor horizon of 8 steps .

• The error governor, with a horizon of 3 steps, is unable to prevent the controller out-
put from saturating because the horizon is too short and once too much energy has
been allowed into the controller the free and unforced response of the controller causes
saturation to occur. Thus the controller has been allowed to attain an inadmissible state.

• The error governor horizon is therefore an important parameter in the application of
the proposed anti-saturation algorithms performance. The shorter the horizon, the less
computational effort required to compute the anti-saturation error governor gains. The
minimum number of steps (optimisation horizon) needs to be determined for optimal
application.
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Figure 7.5: Controller states for the nonlinear simulation with an error governor horizon of 3
steps. The state signals are shown by the solid trace and the error signal by the dashed trace.
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Figure 7.6: Controller output and error governor gain for the nonlinear simulation with an
error governor horizon of 3 steps.
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7.2 Example 2 - MIMO Simulation

Kapasouris introduced this 2-input 2-output example with the purpose of illustrating how the
saturation can disturb the direction of the controls and hence alter the controller inversion of
the plant. The theoretical plant, G(s), has two zeros with low damping which the controller,
K (s ), was designed to cancel. In addition, the controller does not have any free integrators
and so the windup phenomena is not expected to occur [Kapasouris].

The plant, G (s), has the following state space representation:

[

-1.5 1.0 0.0 1.0 1 [1.0 0.0 1
2.0 -3.0 2.0 0.0 xp(t) + 0.0 0.0 u(t)
0.0 0.5 -2.0 1.0 1.0 1.0
1.0 -1.5 0.0 -5.0 0.0 1.8

y(t) [
0.0 2.4 -3.1 1.0 1 ()
1.0 6.0 -0.5 -2.8 xp t

The plant has four real poles at -0.577, -2.246, -2.722 and -5.955 rad/s and a complex pair
of zeros at -0.544 ± j 2.423 with a damping of 0.219 and two more zeros at infinity. Figure 7.7
shows the singular values of the plant. Note the lightly damped resonant zeros at 2.5 rad/so

u(t) = sat(u(t))
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Figure 7.7: Singular values of the plant.
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The controller, K(s), as designed by Kapasouris, has the following state space representation:

Xc = [
-2.6093
-7.1476

2.9890 ]_( )
10.8387 e t

1.4180 ] [ -29.8308
1.5213 xc(t) + -68.7543

u(t) [-~ _~] xc(t)

The compensator has a complex pole pair that cancels the complex zeros of the plant at
-0.544 ± j 2.423 rad/s and has no finite zeros. The singular values of the open loop controller
and plant are shown in Figure 7.8.

Singular values of controller + plant
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Figure 7.8: Singular values of the open loop controller and plant.

A linear simulation of the unconstrained system was performed. The results of this simulation
are plotted as the dashed traces in the simulation plots in this section. The solid traces are
the results of the constrained simulation.

Besides the reference linear simulation, the following three constrained simulations were per-
formed:

• No anti-saturation mechanism.

• The proposed anti-saturation algorithm.

• Kapasouris's anti-saturation algorithm.

7.2.1 Simulation with no Anti-saturation Mechanism

In Figure 7.9 and Figure 7.10 the dotted trace in each graph represents the response of the
linear unconstrained system. The solid trace in each graph is the corresponding response of
the constrained system when no anti-saturation algorithm is employed.
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Figure 7.9: Outputs with no anti-saturation mechanism.

Figure 7.9 and Figure 7.10 show the response of the plant due to the saturation elements in
both controls. The plant does not see the same control that the controller issues. Kapasouris
argues that this changed the direction of the applied control vector resulting in the unsatis-
factory performance shown. It is further argued by Kapasouris that because the controller
contains no free integrators that this response is therefore not due to the controller winding
up but rather due to the change in the control vector direction which spoils the inversion of
the plant by the controller. In the comparative simulations that follow it is evident that the
direction of the control vector is not the concern, but that consistency between the controller
states and the applied control vector is relevant. The algorithm proposed in this thesis pre-
vents saturation and maintains better performance than the algorithm of Kapasouris without
taking the direction of the applied control vector in to consideration. This is discussed in the
comparative simulation results in the sequel.

7.2.2 Simulation with Anti-saturation Mechanism

In Figure 7.11, Figure 7.12, Figure 7.13 and Figure 7.14 the dotted trace in each graph rep-
resents the response of the linear unconstrained system with the error governor EG = l.
The solid trace in each graph is the corresponding response of the parameter when the anti-
saturation algorithm is employed. The upper graph of each Figure is the result of the proposed
algorithm while the lower graph of each Figure is the result of applying Kapasouris's algorithm.
The controller and plant are initially at rest and a step command of r = [0.3 0.3V was issued
to the system. These simulations replicate the results found in Kapasouris's work .

• Figure 7.11 and Figure 7.12 show the time histories of the two plant outputs. The
proposed algorithm demonstrates a closer resemblance to the linear controller and reaches
steady state faster than the response of Kapasouris. This is particularly evident in the
second output, Y2.
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Control ui - No anti-saturation mechanism
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Figure 7.10: Controls with no anti-saturation mechanism .

• Figure 7.13 and Figure 7.14 show the time history of the two control signals. The pro-
posed algorithm follows the linear response for longer before levelling off at the saturation
bound. Kapasouris's algorithm shows earlier deviation from the ideal linear signal, par-
ticularly for the second control, U2. Both algorithms constrain the system correctly.
The proposed algorithm leaves the saturation bound earlier than Kapasouris's algorithm
thus returning to the linear system behaviour quicker. The overall difference between
the linear response and the constrained response is less for the proposed algorithm.

The improvement between both algorithms is evident, albeit it marginal. The margin of im-
provement was limited by the choice of the singular values of the controller and plant loop. This
example, taken from Kapasouris for comparative purposes, had its singular values designed to
be coincident at low frequencies. Thus the low frequency performance of the controller is iden-
tical in both channels. The cross-over frequency difference between maximum and minimum
singular values is not too large either, giving more or less equal performance and bandwidth
over all frequencies of interest. This is a somewhat contrived situation. For example, typical
loop dynamics between the longitudinal channels of an aircraft MIMO autopilot, control-
ling airspeed and altitude with the elevator and engine will most likely have maximum and
minimum singular values far from coincident. In order to force these singular values to be
coincident, it would be necessary to either boost the performance of the engine or to drop
the performance of the elevator. In practice neither are practical options. The elevator has
large bandwidth over influencing both airspeed and altitude compared with the bandwidth of
influence that the engine has on these same outputs. This is a typical case where the controller
would have a triangular dominant structure. The algorithm of Kapasouris cannot discriminate
between cause and effect, that is the error signal responsible for a control saturating and so
deals with the problem by scaling all error signals equally. The proposed algorithm has the
required degrees of freedom necessary to make this discrimination and will thus not penalise
all error signals equally. Indeed, in the case of a totally unrelated error signal, as in the non-
interacting channel of a triangular sturctured controller, this error signal will not be scaled at
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all when the interacting channel has saturated.
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Figure 7.11: Output 1 with error governor anti-saturation mechanism.

Figure 7.15 shows the time history of the error governor gains for both algorithms. In the
case of Kapasouris, the gain is a scalar. In the proposed algorithm there are individual gains
acting on each error input into the controller. This extra freedom is used in the proposed
algorithm to optimise the energy allowed into the controller. With Kapasouris's method,
both channels are switched off simultaneously at time t=0.15 s. In the case of the proposed
method, the second channel E2 is kept at full strength (as in the linear case) until t = 0.3 s.

Likewise, the error governor in the proposed algorithm returns both El and E2 to unity before
the error governor, A, of Kapasouris returns to unity. Thus, the net energy into the controller
is maximised by the proposed algorithm, while avoiding saturation. Furthermore, if the two
channels of the particular plant and controller had not been so equally matched in dynamics
and cross-coupling, then the performance of the one channel that might be saturating would
have had far less impact on the unrelated channel. Clearly this would not have been true for
the algorithm of Kapasouris whereby all channels (related or not) are equally penalised for a
saturation anywhere in the control system.
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Figure 7.12: Output 2 with error governor anti-saturation mechanism.
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Figure 7.13: Control1 with error governor anti-saturation mechanism.
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Figure 7.15: Error governor
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Figure 7.14: Control 2 with error governor anti-saturation mechanism.
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Chapter 8

Conclusions and Recommendations

The following may be concluded from this research:

• This research stemmed from the idea that it should be possible to prevent the windup and
associated performance degradation resulting from controller saturation by preventing
saturation from occurring in the first place. The hypothesis was that it should be possible
to condition the error signal input into the controller in such a way that the performance
of the control system would be optimal up to the saturation limit of the actuator and
that deeper saturation (or windup) beyond the limit would be averted.

This has been demonstrated through simulation.

• An anti-windup algorithm was developed for unconditionally stable MIMO (or SISO)
controllers.

This algorithm has superior performance compared with existing techniques and
was demonstrated in simulation.

The algorithm is posed as a linear optimisation problem subject to linear inequality
constraints, leading to solution by linear programming techniques.

A practical and efficient implementation of the algorithm is presented by transform-
ing the problem into its dual linear programming form. This reduced the number
of iterations required by the linear programming algorithm by orders of magnitude.
The dual form problem is then solved using the dual simplex method, rather than
the direct simplex method. This guaranteed an initial basic feasible solution and
an optimal bounded final solution in a finite and predictable number of iterations.

The following topics are recommended for future work in this field of research:

• Extend the proposed algorithm to handle time-varying controllers, such as gain scheduled
controllers. This will impact on the assumption made thus far that the initial state of
the controller is feasible. As the controller gains are changed, the potential exists for
the previously feasible controller state to become infeasible, resulting in windup of the
controller dynamics.

• Determine a procedure for determining the minimal or optimal look ahead horizon.
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• Investigate efficient matrix multiplication algorithms or other methods for determining
the higher order state propagation matrices cph required by the proposed anti-saturation
algori thm. This is of particular interest for controllers of high order, such as model based
controllers that include a model of the plants dynamics in the form of a Kalman Filter
or full state estimator, for example Linear Quadratic Gaussian (LQG) Controllers .

• Investigate the proposed anti-saturation algorithm in the context of a Variable Structure
Controller framework. The anti-saturation algorithm dynamically modifies the structure
of the linear controller by scaling input channel gains as well as effectively removing input
channels completely by reducing the scaling gain to zero as and when necessary to avoid
saturation in the controls.
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Appendix A

Linear Programming Options

A.1 Purpose

The purpose of this section is to analyse the options available in linear programming and to
determine the dimension of the problem when converted to standard form via the various
possible transformation routes. The dimension of the problem when in standard form impacts
directly on the number of iterations required to solve the linear program.

A.2 Problem Transformation Options

Primal Canonical Form Dual Canonical Form

Figure A.I: Linear Programming Overview

Figure A.I shows diagramitcally the options available in linear programming. The linear
problem in canonical form can be transformed between the primal canonical form and dual
canonical form. Likewise, the linear problem in standard form can be transformed between the
primal standard form and the dual standard form. All the solution methods (either simplex or
dual method) operate on the linear program when in the standard form. Thus the canonical
form (either primal or dual) must first be converted to the standard form (either primal or
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dual).

Assuming one always begins with the primal canonical form, there are four routes one could
take to the standard form, each eventually being solved by applying either the simplex method
or the dual method.

1. Primal Canonical Form
--+ Primal Standard Form
--+ Solve

2. Primal Canonical Form
--+ Primal Standard Form
--+ Dual Standard Form
--+ Solve

3. Primal Canonical Form
--+ Dual Canonical Form
--+ Dual Standard Form
--+ Solve

4. Primal Canonical Form
--+ Dual Canonical Form
--+ Dual Standard Form
--+ Primal Standard Form
--+ Solve

It is important to note that although (1) and (4) are both in primal standard form, because
of the different routes taken to reach this form, the two linear programs are not equal in
dimension. Likewise, although (2) and (3) are both in dual standard form, their dimensions
are very different. Therefore, while the forms are equivalent and the solutions the same, the
actual linear programs are very different in dimension. The dimensions of these seemingly
equivalent problems are different because the slack and/or surplus variables are introduced at
different stages of the transformation.

Consider the linear programming problem in Primal Canonical Form, having l constraints and
mvariables.

maximise z = cx
subject to
Ax ::; b
x 2:: 0

(A.l)

with
Alxm

blx1
Clxm

Xmxl

(A.2)
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A.3 Route 1

• Primal Canonical Form
--+ Primal Standard Form
--+ Solve

To convert from the primal canonical form to the primal standard form, one must add
slack/surplus variables, s, to convert the l inequality constraints into equalities, giving:

.. [ I] [ Xmxl 1maXImIse Z = Clxm lxi
lx(m+l) Slxl ( )m+l x l

subject to

[ Alxm IIXI] [ Xmxl 1
lx(m+l) Slxl

(m+l)xl

blxl (A.3)

Hence, this Route to primal standard form results in:

• l equality constraints

• m + l variables

A.4 Route 2

• Primal Canonical Form
--+ Primal Standard Form
--+ Dual Standard Form
--+ Solve

To convert the primal standard form, of Route I, to dual standard form requires transposing
the problem. Hence this Route to the dual standard form results in:

• m + l equality constraints

• l variables

A.5 Route 3

• Primal Canonical Form
--+ Dual Canonical Form
--+ Dual Standard Form
--+ Solve
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To convert the primal canonical form to the dual canonical form requires transposing the
problem, giving:

minimise z = bTw
subject to
ATw cT

w ;::: 0

(A.4)

where the new variables, w, have the dimension l x 1.

To convert this problem, in dual canonical form to dual standard form requires the addition
of m slack/surplus variables, s, to convert the inequality constraints into equalities, giving:

minimise z = [(blxl)T Ilxm] [ Wlxl 1
lx(l+m) Smxl ( )l+m xl

subject to

Imxm LX(m+l) [
wlxl 1
Smxl (l+m)xl

(A.5)

[ ~:: 1(l+m)xl > 0

Hence, this Route to primal standard form results in:

• m equality constraints

• l +mvariables

A.6 Route 4

• Primal Canonical Form
--t Dual Canonical Form
--t Dual Standard Form
--t Primal Standard Form
--t Solve

To convert the dual standard form, of Route 3, to primal standard form requires transposing
the problem. Hence this Route to the primal standard form results in:

• l +m equality constraints

• mvariables
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