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ABSTRACT

Geological field mapping is often limited by logistical and cost constraints as well as the

scope and extent of observations possible using ground-based mapping. Remote sensing

offers, among others, the advantages of an increased spectral range for observations and a

regional perspective of areas under observation. This study aimed to determine the accuracy

of a collection of image classification techniques when applied to ASTER reflectance data.

Band ratioing, the Crosta Technique, Constrained Energy Minimization, Spectral Correlation

Mapping and the Maximum Likelihood Classifier were evaluated for their efficiency in

detecting and discriminating between greenstone and granitoid material. The study area was

the Archaean Barberton Greenstone Belt in the eastern Mpumalanga Province, South Africa.

ASTER reflectance imagery was acquired and pre-processed. Training and reference data was

extracted from the image through visual inspection and expert knowledge. The training data

was used in conjunction with USGS mineral spectra to train the five classification algorithms

using the ERDAS's software package. This resulted in abundance images for the target

materials specified by the training data. The Maximum Likelihood Classifier produced a

classified thematic map. The reference data was used to perform a rigorous classification

accuracy assessment procedure. All abundance images were thresholded to varying levels,

obtaining accuracy statistics at every level. In so doing, threshold levels could be defined for

every abundance image in such a way that the reliability of the classification was optimized.

For each abundance image, as well as for the output map of the Maximum Likelihood

Classifier, user's- and producer's accuracies as well as kappa statistics were derived and used

as comparative measures of efficiency between the five techniques. This information was also

used to assess the spectral separability of the target materials.

The Maximum Likelihood Classifier outperformed the other techniques significantly,

achieving an overall classification accuracy of 81.1% and an overall kappa value of 0.748.

Greenstone rocks were accurately discriminated from granitoid rocks with accuracies between

72.9% and 98.5%, while granitoid rocks showed very poor ability to be accurately

distinguished from each other.

The main recommendations from this study are that thermal infrared and gamma-ray data be

considered, together with better vegetation masking and an investigation into object orientated

techniques.



IV

OPSOMMING

Geologiese veldkartering word algemeen beperk deur logistiese en koste-verwante faktore,

sowel as die beperkte bestek waartoe waamemings met veld-gebasseerde tegnieke gemaak

kan word. Afstandswaameming bied, onder andere, 'n vergrote spekrale omvang vir

waamemings en 'n regionale perspektief van die area wat bestudeer word. Hierdie studie was

gemik daarop om die akkuraatheid van 'n versameling beeld-klassifikasie tegnieke, toegepas

op ASTER data, te bepaal. Bandverhoudings, die Crosta Tegniek, "Constrained Energy

Minimization", Spektrale Korrellasie Kartering, en Maksimum Waarskynlikheid Klassifikasie

is evalueer op grond van hul vermoe om groensteen en granitoled-rotse op te spoor en tussen

hulle te onderskei. Die studiegebied was die Argalese Barberton Groensteengordel in die

oostelike Mpumalanga Provinsie in Suid Afrika.

'n ASTER refleksie beeld is verkry, waarop voorverwerking uitgevoer is. Opleidings- en

verwysingsdata is van die beeld verkry deur visuele inspeksie en vakkundige kennis. Die

opleidingsdata is saam met VSGO mineraalspektra gebruik om die vyf klassifikasie

algoritmes met behulp van die ERDAS sagteware pakket op te lei. Die resultaat was

volopheidsbeelde vir die teikenmateriale gespesifiseer in die opleidingsdata. Die Maksimum

Waarskynlikheid algoritme het 'n geklassifiseerde tematiese beeld gel ewer. Met behulp van

die verwysingsdata is 'n streng akkuraatheidstoetsing prosedure uitgevoer. Vir alle

volopheidsbeelde is 'n reeks drempelwaardes gestel, en by elke drempelwaarde is

akkuraatheidsstatistieke afgelei. Op hierdie manier kon 'n drempelwaarde vir elke

volopheidsbeeld vasgestel word sodat die drempelwaarde die betroubaarheid van die

klassifikasie optimeer. Vir elke volopheidsbeeld, asook vir die tematiese kaart verkry van die

Maksimum Waarskynlikheid klassifikasie, is gebruikers- en produsent-akkuraathede en kappa

statistieke bereken. Hierdie waardes is gebruik as vergelykende maatstawwe van akkuraatheid

tussen die vyf tegnieke, asook van die spektrale skeibaarheid van die onderskeie

teikenmateriale.

Die Maksimum Waarskynlikheid klassifikasie het die beste resultate gelewer, met 'n algehele

klassifikasie akkuraatheid van 81.1%, en 'n gemiddelde kappa waarde van 0.748.

Groensteenrotse kon met hoe akkuraathede van tussen 72.9% en 98.5% van granitoledrotse

onderskei word, terwyl granitoledrotse 'n swak vermoe getoon het om van mekaar onderskei

te word.



v

Die belangrikste aanbevelings vanuit hierdie studie is dat termiese uitstralingdata asook

gamma-straal data gelmplimenteer word. Beter verwydering van plantegroei en 'n studie na

die lewensvatbaarheid van objekge6rienteerde metodes word ook aanbeveel.
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CHAPTER 1: GEOLOGICAL REMOTE SENSING

1

1.1 REMOTE SENSING AS COMPLEMENT TO FIELD MAPPING

Geological field mapping is a difficult and time-consuming task (Zumsprekel & Prins 2000).

It often entails expensive and complex logistics and great time and effort is expended in

unproductive activities such as searching for, and travelling between areas of outcrop. Direct

observation is mostly limited to areas of sufficient rock outcrop, while the vast majority of the

subject of investigation is hidden beneath the earth's surface. This introduces an inevitable

component of interpretation and speculation into the mapping process. While an experienced

geologist can make accurate observations and informed estimations, the process is to some

extent subjective and the accuracy largely dependant on the skill and experience of the field

geologist. Even when direct examination of rocks in the field is possible, the colour of rocks

and minerals is widely used in identification. While sensitive spectral analysis of rocks in a

laboratory is possible, human physiology allows the field geologist to observe colour only in a

limited subset of the electromagnetic spectrum (Campbell 1996).

Remote sensing, as defined by Sabins (1997), is the science of acquiring, processing and

interpreting images and related data, obtained from aircraft and satellites that record the

interaction between matter and electromagnetic radiation. Since the early 1980s, multispectral

remote sensing has played an important role in the geological mapping of extensive areas with

limited infrastructure, or harsh environmental conditions (Zumsprekel & Prins 2000).

For much the same reasons as those which impede field geology, remote sensing of

geological features present both practical and conceptual difficulties. These include the

limited spatial resolution of many sensors compared to field observations, the reliance on

exposed outcrop for direct sensing and the fact that the pure spectral responses of soil, rock

and vegetation are often mixed to form a composite signature, which may be unlike any of its

components (Campbell 1996).

There is therefore no substitute for accurate laboratory studies or the direct field observations

made by an experienced geologist. Factors such as the relatively coarse resolution of most

commercial satellite-based sensors and the vertical observation angle of these sensors,

contribute to the fact that accurate and detailed mapping of small-scale rock outcrops can only
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be performed by a geologist on the ground. Remote sensing, however, provides the means to

produce preliminary regional maps, the use of which enables geologist to plan and utilize

their time more efficiently. Observations of reflectance and emittance across a wide range of

wavelengths and the broad, regional perspective of patterns, shadows, soils, rocks and

vegetation offered by remotely sensed images, can form valuable complements to more

traditional methods of geological data capture (Campbell 1996).

1.2 RESEARCH PROBLEM

A wide variety of image classification and spectral unmixing techniques have evolved over

the past 20 years as researchers have attempted to identify and classify earth materials as

accurately and efficiently as possible using remotely sensed images. Literature shows that,

although some of these techniques can be used with great accuracy (Inzana, Kusky, Higgs &

Tucker 2003; Rowan & Mars 2000; Schetselaar, Chung & Kim 2001), results still vary (Patel

2002). The success of these techniques is influenced by a number of variables, ranging from

atmospheric effects, vegetation cover and the weathering and lichen cover of rocks, to the

spatial, spectral and radiometric resolution of sensor systems and the statistical distribution of

data recorded by these systems (Healy & Slater 1999; Rollin, Milton & Roche 1994; Sabins

1999; Schetselaar et al. 2000; South, Qi & Lusch 2004).

This study will evaluate a selection of image classification techniques and compare their

efficiency when applied to image data from the Advanced Spaceborne Thermal Emission and

Reflectance Radiometer (ASTER). The better these classification technique can operate

among such a large amount of variables, the more robust and reliable they will be. The

various classifiers will be trained to detect and discriminate between a variety of different

rock types in the Barberton Greenstone Belt, in Mpumalanga, South Africa. These rocks can

be roughly divided into greenstones and granitoids. The geology of the Barberton Greenstone

Belt will be discussed in more detail in Section 1.5. The classification techniques to be used in

this study have been selected for their general applicability, their ease of use and their record

of previous successes. These techniques are Band Ratioing, the Crosta Technique,

Constrained Energy Minimization, Spectral Correlation Mapping and Maximum Likelihood

Classification. The study will focus on determining the efficiency with which these different

image classification techniques can exploit the spectral information offered by the target

materials and subsequently, the accuracy with which they can perform a classification of the

ASTER image. Classification accuracy will be assessed by comparing the respective
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classification results of each technique to known reference areas defined during the training

stage of the project. Classification error matrices will be used to derive overall accuracy,

errors of omissions and of commission and kappa statistics, which will serve as comparative

measures of the efficiency between the different techniques.

1.3 RESEARCH AIMS AND OBJECTIVES

This study aims to answer the following research question:

To what degree of accuracy can classification of ASTER reflectance images, using band

ratioing, PCA, constrained energy minimization, angle mapping and probability-based

techniques, be used detect and discriminate between granitoids and greenstone material and

furthermore, between different phases of granitoid emplacement, in the semi-arid southern

Barberton Greenstone Belt?

The objectives that need to be met in order for the above question to be answered, are given

below:

a) Review the relevant supporting theory and methodology of Image classification

techniques.

b) Collect and pre-process image data and collect training and reference data from

Imagery.

c) Perform digital image classification on the ASTER scene using the five classification

techniques.

d) Perform a reliable classification accuracy assessment procedure on the different

classifications.

e) Present and evaluate accuracy assessment results.
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1.4 RESEARCH DESIGN

The process followed during this study can be grouped according to the objectives given in

Section 1.3 and is shown schematically in the diagram below.

Maximum Likelihood
Classi fication

Determine highest accuracies
using thresholds

Figure 1.1: Research design
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A review of the literature concerning geological remote sensing, the nature of electromagnetic

radiation and reflectance and the ASTER instrument was needed, to gain background

information for the study and place the research in the context of current research. From this

initial review, a selection of five classification techniques was made, all of which were

consequently researched and discussed.

ASTER reflectance images were obtained, geometrically corrected and stripped of excessive

vegetation. From this image, areas of known identity were gathered to be used as training data

during classification and reference data during accuracy assessment.

Each image classification technique was performed, according to its specific parameters and

specifications. Four band ratio abundance images were created. Three abundance images were

created with the Crosta Technique. Thirteen abundance images were obtained from the

Constrained Energy Minimization algorithm and thirteen from the Spectral Correlation

Mapper algorithm. The Maximum Likelihood classification yielded a classified thematic

image.

The practice of robust and reliable accuracy assessment was researched and accuracy

assessment theory reviewed. All the abundance images were thresholded to varying sets of

values and their correlation with data from pre-defined ground truth sites evaluated.

Thresholding ensured the ability of maximizing the respective classifier performances. The

thematic image obtained from the Maximum Likelihood classification was assessed without

the need for thresholding.

A set of tables and figures was drawn up to present the final accuracy assessment results in a

meaningful manner. The results were then reviewed, interpreted and discussed in the context

of the aims of the study.
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1.5 STUDY AREA: THE BARBERTON GREENSTONE BELT

The Archaean Barberton Greenstone Belt is located in the eastern Mpumalanga Province of

South Africa (Figure 1.2). It is an approximately 120 x 50 km, northeast-trending belt and

represents one of the oldest and best-preserved volcano-sedimentary successions in the world.

The Belt has an arcuate outcrop pattern, caused by the projection of cusps of greenstone

lithologies wedged between surrounding tonalite-trondhjemite-granodiorite (TTG) plutons

and gneisses (Anhaeuser 1999; Kisters 2003).

The rocks of the Barberton greenstone belt have been classified into three main groups on the

basis of lithostratigraphical associations (Kent 1980). These groups are, from old to young,

the ca. 3500 - 3300 Ma Onverwacht Group, made up of predominantly ultramafic- to mafic

volcanics, the ca. 3260 - 3225 Ma Fig Tree Group, containing argillaceous to arenaceous

sediments and subordinate pyroclastics and the ca. 3225 - 3215 Ma Moodies Group, which

consists of mainly coarse-clastic sediments. Significant structural repetition and distinct

tectonostratigraphic domains occur within the belt and while the correlation of deformational

events between individual domains is still controversial, there is general consensus that the

belt was formed during two main accretionary phases. These phases date at 3445 and 3230

Ma and were both temporally associated with episodes of voluminous TTG plutonism

(Kisters 2003; Ward & Wilson 1998). The latter phase introduced granites of particularly

potassic composition (Anhaeusser 1999; Stevens 2004).
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Figure 1.2: Generalized geology of the southern Barberton Greenstone Belt

In this chapter, the research problem was identified and discussed. A research question, or

aim, and objectives were specified and a research design was presented. The study area and its

geology was briefly discussed. The following chapter reviews the theory and methodology

that underlies the research done in this study.
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At the heart of remote sensing lies the interaction of electromagnetic radiation with materials

on the earth's surface. Understanding the nature of electromagnetic radiation and its

interaction with physical matter yields the ability to record, analyze and interpret this

interaction in a manner that is meaningful and applicable, To this end, satellite sensors and

image processing techniques are constantly being designed and improved. This chapter

provides an overview of the theoretical concepts underpinning electromagnetic reflectance,

absorption and emission, the way ASTER records it and the techniques used in this study to

analyze and interpret it.

2.1 ELECTROMAGNETIC RADIATION

All matter in the universe, with the exception of matter at the absolute zero temperature, emits

electromagnetic energy; and all matter, with the exception of theoretical blackbodies, reflects

this electromagnetic energy. This energy propagates as a harmonic wave pattern, with a

constant velocity of 297,793 km.s-I: the speed of light (Sabins 1997; Campbell 1996).

Electromagnetic energy can only be detected through its interaction with physical matter and

the extent and nature of this interaction is dependent on the wavelength of the wave energy

and the physical properties of the matter (Sabins 1997). The electromagnetic spectrum (Figure

2.1) is a continuum of all electromagnetic waves arranged according to their frequency.

0 c: .i'5 o 0 "0

'w'5 Q) 0lIS •..a: .:; f!! lIS .:;
.E e

Source: Nave 2003

Figure 2.1: The electromagnetic spectrum

Wavelengths of electromagnetic waves are commonly measured in microns or micrometers

(/-lm), equal to 10-6 meters (Halliday, Resnick & Walker 1997; Sabins 1997). The
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electromagnetic spectrum is divided, based on wavelength, into discrete regions. The naked

eye only observes wavelengths in the visible region, from 0.4 to O. 7 ~tm. Most passive

satellite sensors record information not only in this region, but also in the infrared (IR) region,

which ranges from 0.7 - 14 ~tm.

The IR regIOn is further subdivided into two subregions of wavelengths with different

characteristics. The shorter wavelength subregion, Reflected IR, ranges from 0.7 - 3 ~m and

constitutes reflected solar radiation. Wavelengths in this region are strongly reflected by the

internal cell structure of plant leaves, making it an important region for vegetation mapping

(Sabins 1999). The second subregion, Thermal IR, ranges from 3 - 5 and from 8 - 14 ~m and

corresponds to the thermal radiation of the earth's surface. This region has great importance

for lithological discrimination, since many minerals, especially silicate minerals that make up

the bulk of the Earth's surface, have distinctive thermal IR emissivity spectra (Jet Propulsion

Laboratory 2001; Sabins 1999).

The earth's atmosphere does not transmit all wavelengths of electromagnetic energy evenly,

but absorbs certain wavelengths. This causes "gaps" in the electromagnetic spectrum where

satellite based sensors are essentially blind. These gaps are known as atmospheric absorption

bands and are caused by the abundance of gases like CO2, H20 and 03 in the atmosphere.

These bands are shown in Figure 2.2.

ULTRA
VIOLET VISIBLE INFRARED

Reflected IR

H20 CO2
H20

E
c 0

::l..
0 (1) E E l[)
+- OJ "00 :::t :::t

2> !!? 0.2 OJ.cc:: -0 N +-
a..:J co 0 c:: a.. _ N Cf)a I

Wavelen th 1.0 1.5 2.0 3.0 4.0 5.0 10 15 20 30 jJ.

Source: After Sabins 1997:5
Figure 2.2: Atmospheric absorption bands in the electromagnetic spectrum
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2.2 SPECTRAL REFLECTANCE AND EMISSION

In a simple example involving only the visible spectrum, a red apple has its red colour

because it strongly reflects red wavelengths and strongly absorbs blue and green wavelengths.

If its spectral reflectance were to be plotted against the wavelength of the energy it reflects, it

might resemble Figure 2.3.

0.6
Q)
0
C
CtI-0 0.4Q)
;;:
Q)
0::

0.2

0.4 0.5 0.6 0.7
Wavelength (Jlrn)

Figure 2.3: Hypothetical visible spectrum of a red apple

Since all matter reflects and absorbs energy across a much wider range of wavelengths than

just the visible region of the electromagnetic spectrum, it follows that this example can be

expanded to include the infrared region also. The graph of reflectance vs. wavelength of a

sample of the green mineral malachite, for example, should then show low values around the

blue and red wavelengths and higher values around the green wavelengths (-0.6 J..lm).As is

evident from Figure 2.4, this is the case. Furthermore, the mineral has a whole range of values

across the visible and IR region of the electromagnetic spectrum.
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Clark et al., 1993 USGS
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Figure 2.4: The spectral reflectance pattern of the mineral malachite

This pattern of absorption and reflectance is known as a substance's spectral signature.

Ideally, this spectral signature is unique for each substance on the earth and can therefore

facilitate the identification of the substance by remote sensing, as noted by Parker & Wolff,

1965, p. 21: "Everything in nature has its own unique distribution of reflected, emitted and

absorbed radiation. These spectral characteristics can - if ingeniously exploited - be used to

distinguish one thing from another or to obtain information about shape, size and other

physical and chemical properties".

A complication in the discrimination of rock types by remote sensing, is the fact that many

silicate minerals, those that make up the bulk of the earth's crust, have few or no diagnostic

absorption features in the visible and reflected IR regions of the electromagnetic spectrum.

Figure 2.5 shows how quartz, the single most abundant mineral on the surface of the earth,

has no diagnostic features in the visible and reflected IR region.
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Figure 2.5: Spectral signature of quartz.

The thermal IR region of the electromagnetic spectrum offers some solutions to this problem.

Many silicate minerals have characteristic thermal emission spectra, which allows them to be

detected by remote sensing systems with an adequate spectral resolution in the thermal IR

region (Sabine, Realmuto & Taranik 1994). Figure 2.6 shows the thermal emissivity spectra

of some felsic and intermediate rock types. Notice how the emission minima indicated by the

black arrows shift toward longer wavelengths with increasing Si02 content of the rock.

Features such as these make the thermal IR region an important tool in mineral mapping and

lithological classification by remote sensing.
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Figure 2.6: Thermal emissivity spectra of igneous rocks with different silica and quartz

contents. Arrows show centers of absorption bands. Note positions of spectral bands recorded

by ASTER.

2.3 THE ASTER INSTRUMENT

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an

advanced multispectral imager that was launched on board NASA's Terra spacecraft in

December, 1999. It is a joint development between the United States and Japan, with a strong

focus on geological and mineral exploration applications. The Terra spacecraft is in a circular,

near-polar orbit at an altitude of 705 km. The orbit is sun-synchronous, crossing the equator at

10:30 a.m. local time and returning to the same orbit every 16 days. Terra and Landsat 7 are

in the same orbit, with Terra crossing the equator 30 minutes after Landsat 7.

The ASTER instrument covers a wide spectral region, with 14 bands capturing information

from the visible through the reflected IR to the thermal IR (Figure 2.7). The spatial resolution
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of the sensor varies with wavelength, with a 15m resolution in the visible and near-infrared

(VNIR), 30m in the shortwave infrared (SWIR) and 90m in the thermal infrared (TIR)

spectral bands. Each scene captured by ASTER covers an area of 60 x 60 km (Abrams et al.

2003).

ASTER
LANDSAT
(A) 0.4 0.5 0.6 0.7 0.8 0.9 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4

ASTER
LANDSAT
(B) 8 9 10 11 12 13

Source: InfoTerra 2004

Figure 2.7: Comparison of the bandwidths of Landsat and ASTER: (A) Visible, Near Infrared

and Shortwave Infrared range, (B) Thermal Infrared range

ASTER presents an increase in spectral resolution from the Landsat system, especially in the

SWIR region, where most phyllosilicates (micas, clay minerals, chlorite etc.) and sulphates

have diagnostic features (Crosta et al. 2003, Deer, Howie & Zussman 1992; Abrams et al.

2003 ). The TIR region is also well covered by ASTER, the system having five bands in this

spectral region, where Landsat only has one. This allows ASTER to detect important rock

forming minerals like quartz and feldspar that have fundamental absorption features in this

spectral region (Sabins 1999, Rowan & Mars 2003).

2.4 INFORMATION EXTRACTION AND IMAGE CLASSIFICATION

TECHNIQUES

Digital image classification can be defined as the process of assigning image pixels to

thematic classes based on their spectral and spatial properties, using a decision-making

procedure (Campbell 1996; Mather 1999). In this section, the theory behind the image

classification techniques that were used in this study are briefly discussed.
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2.4.1 Band Ratioing and Relative Band Depth Images

Band ratioing is a technique where the digital number value of one image band is divided by

the digital number value of another band. Band ratios can be useful for highlighting certain

features or materials and displaying the spectral contrast of specific absorption features

(Inzana et at. 2003; Rowan & Mars 2002). Band ratioing also suppresses variations related to

topography, overall variations in reflectance and brightness differences related to grain size,

while it emphasizes differences in shape of spectral reflectance curves (Rowan, Crowley,

Schmidt, Ager & Mars 1999; Abrams, Hook & Ramachandran 2003; Sultan, Arvidson &

Sturchio 1986 as cited in Kusky & Ramadan 2002). Band ratios commonly used for

lithological discrimination on Landsat ETM data include ratios of ETM bands 5/1, 5/7 and

5/4*3/4. The latter ratio corresponds to ASTER bands 4/3*2/3 and is useful in discriminating

mafic from non-mafic rocks (Inzana et at. 2003). ASTER's superior spectral resolution in the

SWIR and TIR regions allows for more precise band ratioing than with ETM spectral data.

An especially useful variation on traditional band ratioing is relative absorption-band depth

(RBD) images. These ratios are designed to highlight specific absorption features by

comparing the low values of an absorption trough, with the high values on either side of it.

For instance, if three bands define a absorption feature (bands 1, 2 and 3, Figure 2.8) with

band 2 being the absorption band, the RBD image for the feature would be created with the

ratio (band 1 * band3 )/band2.
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Figure 2.8: Deriving a relative band depth image.
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RBD images has proven to be very successful for the displaying of AI-OH, Mg-OH, C03

and Fe3+ intensities in rocks (Rowan & Mars 2002).

2.4.2 Principal Component Analysis and the Crosta Technique

Principal Component Analysis (PCA) is a powerful statistical technique that is used to

compress multispectral data sets by calculating a new coordinate system (Figure 2.9). The

mathematical operation performs a linear transformation of pixel values in the original

coordinate system that results in pixel values in a new coordinate system, minimizing

variation in the dataset. This transformation can be applied to multispectral data sets with any

number of bands (Sabins 1997). The reason for performing PCA on multispectral data is that

it allows the extraction of specific spectral responses, thereby enhancing the spectral

reflectance features of geological materials (Crosta et al. 2003).

X1

Y2

""

XL
Band 1 Digital Numbers

Source: After Sabins 1997:280

Figure 2.9: Using PCA transformation to create a new coordinate system (yl,y2) from two

bands, thereby minimizing variation within these two bands.

The resulting eigenvector statistics of a PCA transformation is the basis of a technique called

the "Crosta Technique" (Crosta & Souza Filho 2003). This technique includes performing

PCA on a set of bands that contain the diagnostic absorption features of a given mineral. The

weights of the original bands in each of the resulting Principal Components (PC's) are then
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examined to find the PC with a band weighting corresponding to the absorption features in the

mineral spectrum. Crosta & Souza Filho (2003) gives the following example: since the K-rich

mineral, Kaolinite, shows diagnostic features in ASTER bands 1, 4, 6 and 7, PCA is applied

to these four bands.

Table 2.1 Eigenvector statistics of PCA on ASTER bands 1, 4, 6 and 7

PCI PC2 PC3 PC4

Band I 0.667 -0.722 0.179 -0.039

Band 4 0.441 0.384 -0.258 -0.769

Band 6 0.443 0.217 -0.648 0.580

Band 7 0.406 0.532 0.694 0.266

Source: Crosta & Souza Filho 2003: 4236

Table 2.1 shows the resultant eigenvector matrix. The criterion for the selection of the correct

PC, is that this particular PC show the highest loading from the ASTER bands that coincide

with the target mineral's most diagnostic features, but with opposite signs. Since kaolinite has

high reflectance in bands 4 and 7 and strong absorption in bands 1 and 6 (Figure 2.10), the

correct PC must have strong negative loadings from band 4 and/or 7 and strong positive

loadings from bands 1 and/or 6.

1.0
Clark et al .• 1993 USGS
Digital Spectral Library

0.8

111u
~0.6
Ei
u
111
o-'lr..
[:!0.4

0.2

0.0
0.5

Kaolinite eM? WIRIBb
02/12/1986 14: 38
splib04a r 2609

1.0 1.5 2.0 2.5
WAVELENGTH (11m)

3.0

Source: USGS 2004

Figure 2.10: The kaolinite mineral spectrum, with positions of ASTER bands (After USGS

mineral spectra library).
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PC4 shows a high negative loading from band 4 and a high positive loading from band 6.

Bands 1 and 7 have noticeably lower weightings. This means that PC4 will show kaolinite as

defined by the spectral contrast of bands 4 and 6.

In regIOns subject to mineral exploration and with favourable conditions (sparse or no

vegetation, exposed bedrock, etc.), this technique has become a standard operational tool for

alteration mapping using Landsat TM. It has also been demonstrated to be effective for

mineral identification from ASTER image data (Crosta & Souza Filho 2003).

2.4.3 Constrained Energy Minimization

The Constrained Energy Minimization (CEM) algorithm originated from signal processing

research on adaptive beamforming for array processing (Frost 1972, as cited in Chang, Liu,

Chieu, Ren, Wang, Lo, Chung, Yang, Ma 2000). The algorithm attempts to maximize the

response of a target spectral signature while suppressing the response of unknown background

signatures (Homayouni & Roux 2003). This is done by selecting and evaluating the spectrum

of the target material and then constructing a linear operator, or filter, that would heighten the

desired target response, while responses caused by unknown materials are minimized (Chang

et al. 2000). The technique is, in some way, similar to an antenna set up to maximize the

signal received from one direction and minimize the responses from all undesired directions.

The technique is appropriate to the situation where the target material is a minor component

of the scene and its results are optimal when used for the detection of distributed subpixel

targets such as mineral occurrences or sparse vegetation (ERDAS 2002). According to

Farrand & Harsanyi (1997) a noteworthy strength of the CEM technique is its ability to deal

with a variety of spectral backgrounds. It has however, been found to produce more accurate

results when applied to hyperspectral image data (as opposed to the multispectral data as used

in this study) owing to the larger dimensionality of hyperspectral image data (Chang et al.

2000).

2.4.4 Angular-based Classification

Spectral angle mapping is an image classification technique whereby the angle between a

reference spectrum vector and a pixel vector is compared in n-dimensional space and used as

a measure of similarity between the two spectra (Figure 2.11).
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Figure 2.11: Two spectrum vectors with the n-dimensional angle between them

Mathematically, the angle between two vectors A and B, is defined by the following formula:

.,[ A. B Je = cos IIAIIIIBII (Anton & Rorres 1994)

For our example in Figure 2.11, this can be rewritten as:

(
AB +A B +A B Je = COS-I ~( I' 2 i 3 3 ) (Anton & Rorres 1994; ERDAS 2002)

A2 +A2 +A2 B2 +B2 +B2
1 2 3 I 2 3

The smaller this angle, the closer the match to the reference spectrum. A notable characteristic

of this technique is that it is independent of the brightness difference between the two spectra

and evaluates only the spectral "direction", or shape of the spectral curve. Consequently, it is

insensitive to variations in illumination due to topography, but disregards any information

regarding the overall brightness of materials. Since the algorithm yields low values for higher

matches, the cosine of the angle can be taken to yield more intuitive values lying between 0

and I, 1 representing a perfect match, or angle of 0° (ERDAS 2002).

Although this technique, known as the basic Spectral Angle Mapper (SAM), can be applied

per se, it assumes that positive and negative correlations are equally valid, which is rarely the

case. The Spectral Correlation Mapper (SCM) is a modification of the SAM technique, where

the data is centralized around the means of the two vectors. SCM utilizes the Pearsonian

Correlation Coefficient to determine the similarity between two spectra (Homayouni & Roux

2003). The formula for the spectral correlation is given below:
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I (x - xXy - ji)
R = -_-_-_-_-~~_=__=__======= (de Carvalho & Meneses 2000)

~I(x-xYI(y- jiY

In an example modified from de Carvalho & Meneses (2000), SCM manages to distinguish

between positive and negative correlations between a reference spectrum and four target

spectra, while SAM falsely assumes that all the correlations are almost equally valid (Figure

2.12, Table 2.2). For this reason, SCM was favoured as the spectral angle mapping technique

of choice for this study.
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Figure 2.12: A reference spectrum and four target spectra to be compared by SAM and SCM
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Table 2.2: Comparison of SAM estimate and SCM correlation

cos(SAM) SCM

Reference spectrum vs Target A 0.9692 -1

Reference spectrum vs Target B 0.9997 1

Reference spectrum vs Target C 0.9856 0.2182

Reference spectrum vs Target D 0.9401 -0.2182

Source: After de Carvalho & Meneses 2000

2.4.5 Probability-based Classification

Campbell (1996) informally defines supervised classification as the process of using samples

of known identity to classify pixels of unknown identity. The samples of known identity are

collected from the image by the user and used to create a training dataset, or signature set for

the supervised classification. The classification algorithm then evaluates each image pixel

according to these training signatures and decides in which thematic class to place the specific

pixel. The details of this process is discussed below.

2.4.5.1 Training and cluster generation

The quality of the training process determines the success of the classification stage

(Lillesand, Kiefer & Chipman 2004) and it is therefore crucial that the samples of known

identity are reliable and well-understood (Mather 1999). A first important factor is training

sample size. The effect of training set size on classification accuracy has been investigated by

many authors and in general, there has been found to be a strong positive correlation

(Campbell 1996; Foody & Mathur 2004; Lillesand et at. 2004; Mather 1999). The exact

number of training pixels recommended per thematic class differs from author to author, but

is often linked to the dimensionality of the data, or the characteristics of the classifier to be

used. The statistical minimum number of training samples needed is n+1, where n is the

number of spectral bands present. However, most of the authors mentioned above suggest

figures between IOn and lOOn. Furthermore, different classifiers have different training

requirements and in the case of small training sets, neural-based classifiers have been found to

be more effective than statistical-based classifiers (Blamire 1996, as cited in Mather 1999).

Campbell (1996) and Lillesand et al., (2004) further specify that training samples should be

homogenous, representative and complete.
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The first set of training samples gathered by the user for a particular classification may well

need refinement and since the training stage greatly influences classification accuracy, the

user is well-advised to subject the original training samples to a training set refinement

process (Lillesand et at. 2004).

2.4.5.2 Decision-making and classification

If, for example, four thematic classes were identified in the training stage, they could be

visualized in a hypothetical three-dimensional space as shown below (Figure 2.13).

Band 1

Source: After Sabins 1997:287

Figure 2.13: The positions of hypothetical training data clusters on a 3-band coordinate

system

The surface that encompasses each of these clusters is called the cluster's enveloping surface

and acts as a decision boundary. Every new image pixel that needs to be classified is

evaluated according to its position relative to the set of decision boundaries defined by the

training data and subsequently categorized into the appropriate category (Sabins 1997). In the

case of a probability-based classifier such as the maximum likelihood classifier, the decision

boundary of a cluster is not a discrete surface, but a set of equiprobability contours (Figure

2.14) centred around the cluster in a gaussian (normal) distribution. Thus, a new pixel is

evaluated according to its probability of falling within a particular class and classified

accordingly (Lillesand et al. 2004).

•
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Figure 2.14: Equiprobability contours around a set of hypothetical training clusters.

In this way, information about the mean values and variability in the data is used to make a

more informed decision, rather than using a straightforward parametric classification rule,

such as minimum distance, or parallelepiped classification. While the maximum likelihood

classification technique is computationally intensive, it is a very powerful and a commonly

used classifier (Campbell 1996).

The ASTER instrument records electromagnetic radiation radiated by the sun and reflected by

the surface of the earth. Using image classification and information extraction techniques

such as those discussed in this chapter, variations in this reflected energy can be exploited to

gather meaningful information about materials on the earth's surface. The following chapter

discusses the procedures followed to process and analyze the ASTER image in order to detect

and distinguish a collection of rock types, based on their chemical composition.
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According to Campbell (1996), the main phase of digital image analysis is preceded by

various preprocessing operations. It forms part of a preparatory phase intended to prepare and

improves images for further analysis and information extraction. This chapter discusses the

data collection and preprocessing steps taken as the prelude to the main analysis. It then

details the information extraction procedures performed during the main image analysis.

3.1 DATA COLLECTION

The ASTER satellite data used in this study was obtained from NASA's EOS Data Gateway

(Chang 2005). Two ASTER Level 2 Surface Reflectance (ASTER Product ID: AST_07)

images, a northern and a southern image, were requested and transferred via File Transfer

Protocol (FTP). These images were identified in the EOS database by screening for images

within a certain geographical range, with a minimum amount of cloud cover. Upon visual

inspection, the northern image was found to be highly vegetated, having a capture date inside

the wet season (13 Feb 2002). This image also exhibited a form of radiometric corruption in

the northwestern comer of all nine its bands. Because of this and since it is known that

vegetation cover greatly hampers lithological classification (Schetselaar et at. 2002), this

image had to be rejected. The remaining image had zero per cent scene cloud cover and was

captured in August 2002. It is centered on 26.29°S, 30.67°E and its unique ASTER image ID

is SC:AST L1R003 :2007996056.

Geological maps were obtained in ESRI shapefile format from the Department of Geology,

University of Stellenbosch. This data includes the 1:250 000 geological map of the Barberton

Greenstone Belt (Annhaeusser, Robb & Viljoen 1981).

A Landsat Enhanced Thematic Mapper (ETM) image used for preprocessing was obtained

from NASA's Earth Viewer (NASA, s.d.) and reference mineral spectra were obtained via

FTP transfer from the USGS Spectral Libraries (USGS 2004). A 1:50 000 roads vector

dataset for the area was acquired from the Chief Directorate, Surveys & Mappings, Mowbray,

South Africa.
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3.2 DATA PREPROCESSING

ASTER Level 2 Surface Reflectance image data contains radiometrically calibrated surface

reflectance values for each of the nine VNIR and SWIR bands at 15m and 30m resolutions,

respectively. This data is already atmospherically corrected to remove effects due to changes

in satellite-sun geometry and atmospheric conditions (Abrams et at. 2003). However, before

the data could be used for spectral analysis, some extra preprocessing was required.

3.2.1 Geometric Correction

The ASTER images obtained from the NASA's Earth Observation System Data Gateway had

been encoded in EOS HDF Format. This format is more complex than some more familiar

formats and consists of two separate files per image, a ".met" file and a ".hdf' file. The ".hdf'

file contains the full metadata in ODL (Object Description Language) format, the geolocation

fields for the image and the actual image data. The ".met" file contains a subset of the

metadata in ASCII format (Jet Propulsion Laboratory 2001).

The geolocation information was extracted from the .hdf file and applied to the image, but

was found to be highly inaccurate when compared to the projected 1:50000 roads vector data.

Geometric correction therefore needed to be done, but since more ground control points

(GCP's) were needed than were provided by the roads dataset, the Landsat ETM image was

used to correct the ASTER image. This was done using ERDAS IMAGINE's Image

Geometric Correction Tool (ERDAS 2003). Two hundred and thirty-four GCP's were

collected from the two images and used to correct the ASTER image with a 2nd order

polynomial nearest neighbour resampling method. While a low root mean square (RMS) error

was achieved in the V-direction (5.81m), the larger RMS error of 34.88m in the X-direction

brought the total RMS error for the correction to 35.37m. This is slightly more than the width

of one pixel in the SWIR bands and two pixels in the visible and NIR bands. However, since

no GPS inputs were required for this study and since the study is only concerned with one

image, this error was accepted and the correction deemed sufficient. The result of the

geometric correction is illustrated in Figure 3.1.
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Figure 3.1: Results of geometric correction, roads layer shown in black: (A) Uncorrected

image. (B) Corrected image.

3.2.2 Devegetation

Optical remote sensing for lithological classification is only viable in areas with no or little

vegetation cover, as a clear and uncontaminated spectral response is needed to identify and

distinguish between lithological units (Schetselaar et al. 2000; Zumsprekel & Prins 1998). In

the light of this limitation, as much as possible of the vegetation in the scene had to be

eliminated. Since no method of true vegetation stripping can leave the rest of the scene

spectrally unchanged, the only way to maintain spectral integrity was to mask out unwanted

areas. A normalized difference vegetation index (NOV!) was derived from the image and a set

of vegetation masks were created at different threshold values of this index. Through careful
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inspection of the SWIR bands, a threshold value of 0.34 was selected to mask out highly

vegetated areas (such as plantations and thick grass). The result of this process is shown in

Figure 3.2.
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Figure 3.2: Results of vegetation masking: (A) Vegetated image (B) Devegetated image

(RGB = ASTER Bands 3,2,1)

3.3 COLLECTION OF TRAINING AND REFERENCE DATA

Since all the techniques used in this study are types of supervised classification, areas of

known identity were needed to train the respective classifiers and assess their classification

accuracies.



28
The collection of training and reference data was done by visual inspection of the ASTER

image, in consultation with Dr Richard Belcher, researcher with the Barberton Research

Group at the Department of Geology, University of Stellenbosch. Samples for the granitoid

rocks were taken from six main suites and greenstone samples from three different localities.

The samples and their associated lithologies are given briefly in Table 3.1 and their general

localities are shown in Figure 3.3.

Figure 3.3: Broad locations of training areas, granitoids shown in red, greenstones in green.

(RGB = ASTER Bands 3,2,1)
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Table 3.1: Training and reference sample information

Sample Sample/Pluton Training Reference

Number Name
Lithology Age

pixels pixels

Tonalitic -
Badplaas ~3.2 Ma 338 368

Trondhemitic

2 Boesmankop 1 Syenite ~2.8 Ma 265 325

3 Boesmankop 2 Syenite ~2.8 Ma 341 377

4 Water n/a n/a 3689 17686

5 Urban n/a n/a 2101 6923

6 Greenstone 1 Mafic volcanics ~3.5 - 3.3 Ma 2748 3941

7 Greenstone 2 Mafic volcanics ~3.5 - 3.3 Ma 2696 5287

8 Greenstone 3 Mafic volcanics ~3.5 - 3.3 Ma 8889 5941

9 Dalmein Granodiorite ~3.2 Ma 307 308

10 Heerenveen Granite ~3.0 Ma 168 122

11 Mpuluzi Granite ~3.0 Ma 420 566

12 Steynsdorp Trondhjemite ~3.4 Ma 264 297

13 Tilled fields n/a n/a 9098 20261

Source of ages: Barton 1983

All the samples were taken from areas where good outcrop could be discerned. For the

Boesmankop Syenite Complex, two samples were taken, the second sample (Boesmankop 2)

representing a rock of more purely syenitic composition. The greenstone samples were taken

at different localities, but are all from the Onverwacht Group, the lowermost and oldest

succession in the Barberton Greenstone Belt. To minimize confusion during the classification

(specifically during probability based classification), three extra classes were also sampled,

Water, Urban and dark areas of tilled fields or bare soil.

A total of 93 999 pixels were digitized, of which 31 597 (33.6 %) were selected for training

and 62402 (66.4 %) were reserved for reference and accuracy assessment. A preliminary

maximum likelihood classification of the training samples produced an overall accuracy of

91.6%, with a kappa coefficient of 0.896. The aim was to establish whether the training data

was reliable and ready to use for classification. According to Montserud & Leamans (1992, as
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cited in Mather 1999), a kappa value of 0.75 or greater shows a very good to excellent

classifier performance and a value of less than 0.4 is poor. Using this measure, the

preliminary kappa was deemed more than sufficient and the training data accepted.

3.4 IMAGE ANALYSIS

3.4.1 Band Ratioing and Relative Band Depth Images

Band ratioing discriminates between the shapes of the spectral reflectance curves of different

materials (Mather 1999). While this makes the technique very powerful for identifying

materials with diagnostic spectral shapes, it does limit its ability to discern targets with little

or no spectral variation across image bands. As shown in section 2.2, quartz, the major

constituent of all the granitoid rocks in the study area, has no diagnostic spectral absorption

features.

In order to define ratios that are effective, therefore, knowledge of the ideal spectral curves of

the rocks in the scene was needed. From the USGS Spectral Library (USGS 2004), a set of

spectral plots was drawn up of the minerals that were expected to appear relatively abundantly

in the image scene, together with a plot of a selection of plants and trees. These minerals are

amphiboles (specifically hornblende and actinolite) and chlorite, which are expected to be

abundant in the greenstones and albite, orthoclase and microcline feldspars, which are

expected to be abundant in the granitoids. Kaolinite was also plotted, since rocks rich in

feldspar, especially K-spar, (like the Mpuluzi and Heerenveen rocks) typically weather to

kaolinite (Gore 2004). The spectral plots are shown in Figure 3.4 - Figure 3.11.
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Figure 3.4: Hornblende spectrum
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Figure 3.6: Actinolite spectrum
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Figure 3.10: Kaolinite spectrum
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From these spectral plots, the following statements can be made:

• The feldspars (albite, orthoclase and microcline) have a flat spectrum between bands 3 -

7, with minor absorption in band 6.

• All the mafic minerals (hornblende, chlorite and actinolite) have high values in band 4

and low values in band 2 and 3.

• Vegetation's highest value is in band 3.

• Chlorite has especially strong absorption in band 8 and strong reflectance in band 5.

• Kaolinite's reflectance drops towards the lower and higher ends of the spectrum, with an

exceptionally strong absorption feature in band 6.

Using this information, the following ratios were compiled:

•

•

•

•

Ratio A = (~)

. (4 5)RatIO B = 3Xg

Ratio J=- (T X~)
Ratio K3 = (----I---J

STDDEV (3,4,5, 7)

(Equation 3.1)

(Equation 3.2)

(Equation 3.3)

(Equation 3.4)

Ratio A (Equation 3.1) was created to highlight rocks containing mafic minerals. Ratio B

(Equation 3.2) was created to highlight rocks containing chlorite. Ratio J (Equation 3.3) was

created for its ability to discern kaolinite (Crosta et al. 2003). Ratio K3 (Equation 3.4) was

designed to highlight materials with a flat spectrum between bands 3 and 7, specifically the

feldspars. Band 6 was left out of this equation since the feldspars exhibit a degree of

absorption in this band. This ratio is insensitive to the magnitude of reflectance and hence, it

was found that water, which also has a flat spectral curve, also responded to it. This was

solved by observing that water generally has very low reflectance, with a maximum in band 8.

Therefore, Ration K3 was only applied to pixels with a value of greater than 0.1 in band 8.

This effectively masked water from the calculation.
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These ratios were created in ERDAS's Model Maker Application and the results were

grayscale abundance images; two of mafic rocks (ratios A and B) and two of felsic rocks

(ratios J and K3). Subsets of these grayscale images are shown in Figure 3.12 . .In these

images, brighter pixels denote higher abundances of the target material.

(C) - Ratio J

I 0_-=2 ==:J4_.6-=:::::J8_.1 0
Kilometres :1

Brighter pixels denote
higher abundance

Figure 3.12: Result ofratioing: (A) Ratio A, (B) Ratio B, (C) Ratio J, (D) Ratio K3
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3.4.2 Crosta Technique

The Crosta Technique, like band ratioing, utilizes absorption features and variations in the

shape of the spectral curve to identify target materials. Therefore, the same spectral features

that were identified during the creation of band ratios were now used as the input parameters

for the Crosta Technique. PCA was subsequently performed on bands 3 and 4 (after the

components of Ratio A), bands 3, 4, 5 and 8 (after the components of Ratio B), bands I, 4, 6

and 7 (after the components of Ratio J) and bands 3, 4,5 and 7 (after the components of Ratio

K3. The resulting sets of principal components (PCs) were named after the ratios that served

as their input and their analysis is discussed below.

3.4.2.1 Crosta A
This dataset was, like Ratio A, intended to identify mafic materials. Since mafic materials

have a high 4/3 ratio, the Crosta Technique dictates (Crosta et a1.2003) that the desired PC

should exhibit a high negative loading from band 4 and a high positive loading from band 3 in

its eigenvector matrix. The eigenvector matrix for this PC set is given in Table 3.2.

Table 3.2: Crosta A Eigenvector Matrix

Band 3

Band 4

PC 1

0.54376

0.83923

PC2

-0.83923

0.54376

None of these PCs meet the aforementioned criteria and Crosta A could therefore not be used.

3.4.2.2 Crosta B
Since the desired inputs for Ratio B was high values in bands 4 and 5 and low values in bands

3 and 8, the PC that will contain that information should have high negative loadings from

bands 4 and 5 and/or high positive loadings from bands 3 and 8. The eigenvector matrix

resulting from PCA on these four bands are given in Table 3.3.
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Table 3.3: Crosta B Eigenvector Matrix

PC 1 PC2 PC3 PC4

Band 3 0.42620 -0.88827 -0.06178 -0.15970

Band 4 0.66195 0.28993 -0.57879 0.37783

Band 5 0.461258 0.35108 0.18542 -0.79347

Band 8 0.40916 0.06041 0.79170 0.44959

From Table 3.3, it can be seen that the only PC that comes close to this criteria is PC 3, with a

relatively high negative value for band 4 and a high positive value for band 8. Thus, this third

component was used as an abundance map for mafic minerals, chlorite in particular.

3.4.2.3 Crosta J
For this matrix, the desired PC should exhibit high negative loadings from bands 4 and 7

and/or high positive loadings from bands 1 and 6. The eigenvector matrix is shown in Table

3.4.

Table 3.4: Crosta J Eigenvector Matrix

PC 1 PC2 PC3 PC4

Band 1 0.22747 -0.37089 -0.26495 -0.86052

Band 4 0.68660 0.47601 -0.53142 0.13996

Band 6 0.49723 0.24397 0.80278 -0.22089

Band 7 0.47917 -0.75917 0.05422 0.43717

PC 3 shows a fairly high negative loading from band 4 and a high positive loading from band

6. Consequently, PC 3 was taken to create the abundance map for weathered granitoid rocks

(containing kaolinite).
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3.4.2.4 Crosta K3
Since Ratio K3 did not attempt to exploit extremes in the spectral curves, the desired PC from

this PCA should show even loadings from all four the input bands. Table 3.5 shows the

resulting eigenvector matrix.

Table 3.5: Crosta K3 Eigenvector Matrix

PC 1 PC2 PC3 PC4

Band 3 0.41728 -0.83595 -0.28633 -0.21232

Band 4 0.64681 0.38135 -0.49498 0.43727

Band 5 0.45068 0.36849 0.17050 -0.79501

Band 7 0.45211 -0.14135 0.80246 0.36288

PC 1 has equal loadings on three bands, with a slightly higher loading on the fourth band.

This PC was taken to generate the abundance image for the feldspar-rich granitoids.

The three PC's delivered by the Crosta Technique are shown in part in Figure 3.13.

(Al - Crosta B PC3

Brighter pixels denote higher
ahundance

N

I ° 2 4 6 8 10Kilometres I A
Figure 3.13: Results of Crosta Technique: (A) Crosta B - Principal Component 3, (B) Crosta

J - Principal Component 3, (C) Crosta K3 - Principal Component 1.
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3.4.3 Spectral Correlation Mapping

The SCM algorithm was performed using ERDAS's Spectral Analysis Workstation. Since

each thematic class shown in Table 3.1 consisted of a collection of training sites from

different areas across the image (See Figure 3.3), the spectra obtained from these collections

of sites were averaged within each class. In so doing, each thematic class could now be

defined by a single mean vector, or spectrum. All 13 vectors were input into ERDAS's SCM

algorithm, with the specification that the cosine of SCM was required as output. This was

done to receive a more intuitive result where a value of zero indicates low abundance and a

value of one indicates high abundance. The result of the algorithm was a I3-band image, each

band being a grayscale abundance map of the material it was trained on. The results are

shown in Figure 3.14

6) Greenstone 1 7) Greenstone 2 8) Greenstone 3 10) H eerenveen

N
I 0

4 8 12 16
20 I AKilometres

Brighter pixels denote higher
ahundance

11)Mpuluzi 12) Sleynsdorp 13)TlIed 1ields

Figure 3.14: Results of SCM: From top left to bottom right: abundance images 1 to 13
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3.4.4 Constrained Energy Minimization

Like the SCM algorithm, the CEM algorithm also requires a single target material spectrum

as input. The same averaged spectra prepared for the SCM algorithm was input into ERDAS's

CEM algorithm. The result was, once again, a 13-band image, each band being the grayscale

abundance map of its particular target material. A subset of the results are shown in Figure

3.15.

Brighter pixels denote higher
ahundance

11) Mpuluzi 12) Steynsburg 13) Tilled fields

8 12 16
N

20Kilometresl A

Figure 3.15: Results of CEM: From top left to bottom right: abundance images 1 to 13

3.4.5 Probability-based Classification

The training data set was input into ERDAS's Signature Editor and a 13-class signature set

was created as input for the probability-based classification. Since the maximum likelihood

classifier assumes normality in the data distribution of the image, the image histogram for

each of the training classes was inspected to ascertain the level of skewness in the data. The

statistical distributions for Water (class 5) and Tilled Land (class 13) were found to be not

only fairly symmetrical, but very sharp and acute, or leptokurtic. This gave some indication

that these classes might have a high probability of being accurately discerned by the
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maximum likelihood classifier. With some exceptions, however, the data was generally found

to be normally distributed and the signatures were input into the classifier. No a priori

weights were given to any specific class. The result is a thematic layer containing the 13

classes and a fourteenth category: "unclassified". This image is shown in Figure 3.16. This

image should not be viewed as a correctly classified thematic map. The image scene is largely

covered in soil, grass and agricultural lands, and these landuse types can not be correctly

classified by an algorithm prepared to discern rock types, using predominantly outcrop

signatures for training data.

Figure 3.16: Result of maximum likelihood classification.

This chapter documented how the necessary data for the study was collected, geometric

correct jon applied and vegetation masking performed. The training process provided areas of

known identity to be used in training and accuracy assessment. Based on USGS mineral

spectra (USGS 2004), band ratioing and the Crosta Technique was performed. The training

samples were used as input to ERDAS's CEM, SCM and Maximum Likelihood classifiers.

The results of these operations were abundance images of the target materials, except for the
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Maximum Likelihood classification, which yielded a thematic map. However, the degree of

accuracy of all these classifications was still unknown. The following chapter discusses the

procedures followed to assess the reliability and accuracy of these different classification

methods.
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No image classification process is complete without performing a reliable accuracy

assessment procedure (Lillesand et al. 2004; Mather 1999). Since this project aims to make

inferences about comparative levels of accuracy between different remote sensing techniques,

accuracy assessment is crucial. This chapter discusses the accuracy assessment procedure

followed for the project presents the results and discusses the performance of the different

classifiers for different target materials.

4.1 ACCURACY ASSESSMENT THEORY

Accuracy, according to Campbell (1996) defines "correctness". It is the measure of agreement

between ground truth and a classified image of unknown quality. The greater the agreement,

the more accurate the classification is said to be. This section elaborates on some techniques

used to assess and interpret map accuracy in a meaningful way.

4.1.1 Errors and error matrices

The error matrix, or confusion matrix, is a standard form of reporting error and accuracies of

classifications and is needed for any serious study of accuracy. On the y-axis, it lists the

reference (ground truth) classes, while on the x-axis, it lists the classified classes (Campbell

1996). On the diagonal of the error matrix are the number of reference pixels that were

correctly classified. All non-diagonal row elements indicate the number of reference pixels of

a particular ground truth class that have been classified into erroneous thematic classes, while

all non-diagonal column elements enumerate the number of pixels in the particular thematic

class that do not belong to that class (Lillesand et ai. 2004). From this matrix, three

commonly used measures of accuracy are derived (Campbell 1996):

Producer's accuracy - This is the percentage of pixels in a specific ground truth reference

class that have been correctly classified into that thematic class. It is called the producer's

accuracy, since it measures how accurately the reference areas specified by the map

producer are shown on the finalised map.

User's accuracy - This is the percentage of pixels that have been classified into a

particular thematic class that truthfully belong to that reference class. It is called the user's

accuracy since it reflects the probability that, when a user of the finalised map looks at an
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area on the map, that area on the map and the same area on the ground actually correspond

to the same class.
~

Kappa coefficient (k) - Even a completely random classifier can be expected to deliver a

reasonable degree of accuracy. The k coefficient is conceptually defined as:

k = observed accuracy - chance agreement
1- chance agreement

It measures the extent to which the positive results of a specific classification is due to
~

true agreement, or merely chance. As mentioned earlier, values of k larger than 0.75 is

said to indicate "very good to excellent" classifier performance, while values below 0.4

are taken to suggest "poor" classifier performance.

The overall accuracy of a classification is measured by the ratio between the sum of the

elements on the diagonal and the total number of pixels classified. Care must be taken

however, since this value can be weighted by a reference class with significantly more pixels

than the other classes.

4.1.2 Thresholding abundance images

The abundance maps of a target material, such as those created by deriving band ratios, have

limited decision-making value if they are not thresholded to create a boolean "True" or

"False" image for the particular target material. This threshold value should maximize the

classifier accuracy. However, there is a trade-off to be made when thresholding: for example,

a boolean abundance image containing only "True" values, would have a 100% producer's

accuracy, since all the ground truth reference pixels will have been correctly identified as

target pixels. However, such an arrangement would result in a very low user's accuracy, since

the map user's probability of a classified pixel actually representing the concerned class

accurately, would be minimal. For a specific threshold value, a boolean error matrix can be

compiled, as illustrated in Table 4.1 below.
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Table 4.1: Boolean confusion matrix

Classified classes

0 1 sum

Reference 0 Tn Fp Rn

classes 1 Fn Tp Rp

sum Cn Cp N

Source: after Homayouni & Roux, 2003

where: Tn = True Negative
Tp = True Positive

Fn = False Negative

Fp = False Positive

Rn = Tn + Fp
Rp = Fn + Tp

Cn = Tn + Fn

Cp = Fp +Tp

N = Cn + Cp = Rn + Rp

In this example, the producer's accuracy is equivalent to Tp/Rp, the user's accuracy is

equivalent to Tp/Cp and the probability of false alarm, or P(Fa), is defined by Fp/Rp

(Homayouni & Roux 2003). P(Fa) is the probability that pixel classified as "True", in fact

represents a "False" according to the reference data and is equivalent to the error of omission.

For decision making and accuracy assessment of abundance maps, Homayouni & Roux

(2003) suggests the use of Receiver Operating Characteristic (ROC) Curves. It is a way of

visualizing a classifier's performance in order to decide on an acceptable threshold value. The

technique entails creating a set of thresholds, compiling a error matrix like the one in Table

4.1 for each of the thresholds and then drawing up diagrams of the producer's accuracy vs.

P(Fa) and the producer's accuracy vs. the threshold value. In this way, a threshold value can

be selected by deciding on an acceptable level of false alarm, or false positive.



47

4.2 ACCURACY ASSESSMENT PROCEDURES

For the purpose of accuracy assessment, a reference dataset was used. This dataset is double

the size of the training dataset and contains the same ground truth classes. It is however,

totally distinct from the training data and did not in any way affect the classifications it was

used to assess. While band ratioing, the Crosta Technique, SCM and CEM produces

abundance maps, the maximum likelihood classifier produces a classified thematic map. The

accuracy of these two types of output cannot be assessed in the same way, but their

performance can be expressed using the measures explained in the following section. This

section describes the processes that was used to derive meaningful information about the

accuracies of all the techniques.

4.2.1 Band Ratio Images

Since the decision of what can be defined as "an acceptable level of false alarm" is a

subjective and context specific one, a variation on the ROC Curve method was used. After

careful inspection of the histograms of the four ratio images, four thresholds per image was

defined. The lowermost threshold was set equal to the image mean, while the three remaining

thresholds were placed at multiples of the standard deviation of the image data, added to the

mean, as illustrated in Figure 4.1.

N (V) '<t
"0 32 32 32
0 a a a
.c: .c: .c: .c:
(/) (/) (/) (/)

~ ~ ~ ~
.c: .c: .c: .c:
f- f- f- f-

Figure 4.1. Setting thresholds according to the statistical distribution of the image data
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Boolean abundance images were then created at each threshold; four for each ratio image ..

For each threshold image, "True or False" error matrices were compiled using the reference

classes that the ratio was designed to detect. This process is illustrated diagrammatically for

Ratio A in Figure 4.2.

Ratio A
Threshold 3

Error Matrix:
Greenstone 1

Ratio A
Threshold 4

Error MatriX:
Greenstone 1

l= - -'-._~ ~ "~r' ,

~-~~... ' .• _-<-~ .•_" .. I~
Error Matrix:
Greenstone 2

Error Matrix:
Greenstone 2

Error Matrix:
Greenstone 3

Error Matrix:
Greenstone 3

Figure 4.2: Derivation of error matrices from band ratio image. For each error matrix in the

diagram, user's accuracy, producer's accuracy, P(Fa) and k was determined.

As a result, each threshold of each ratio image could now be assessed in terms of the user-

and producer's accuracy, the level of false alarm and the k coefficient of all its concerned

classes. According to Lillesand ef al. (2004), one of the principal advantages of determining

the k coefficient for an error matrix, is the ability to use it for determining the differences
A

between error matrices. In the light of this, the maximum k value exhibited in a class (e.g.

Greenstone 1) was used to determine which threshold value to use as the cut-off value for

assessing the relevant ratio's accuracy for that class. Subsequently, for each ratio, all the

target materials (target reference classes) now had a uniquely thresholded ratio image that
A

maximized the classification accuracy, as measured by k. For example, Ratio A achieved the

highest accuracy in classifying the Greenstone Type 1 class when thresholded to 1.534

(Threshold 1), but for Greenstone Type 2, Ratio A had to be thresholded to 2.125 (Threshold
A A

4) in order to maximize the k coefficient. Apart from the k coefficient, the user's- and

producer's accuracies for each of these optimized classifications could now be also be shown.
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4.2.2 Crosta Technique

The three resulting images from the Crosta Technique were assessed in exactly the same way

that the ratio images were. For each Crosta image, four thresholds were derived (starting at

the mean and working upwards in multiples of the standard deviation). For each threshold, an

error matrix and associated statistics was derived per target class. The k values per class were

evaluated and the highest value identified. The threshold that delivered this k value was

taken as that particular Crosta image's optimal threshold value for that particular class and

that particular error matrix's accuracy statistics were subsequently reported.

4.2.3 SCM and CEM

Since the SCM and CEM algorithms also produced abundance images, much the same

strategy was followed as with the ratio images and the Crosta Technique. However, these two

classifiers were trained on all 13 thematic classes, not just those of a specific target material.

This meant that, for SCM and SCM, 13 abundance images needed to be thresholded with four

unique thresholds each. Figure 4.3 illustrates this process for the CEM algorithm.

~~- ~
CEM Algorithm

Figure 4.3: Derivation of thresholds from CEM abundance images. For each threshold in the

diagram and error matrix together with its related statistics was compiled
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Since the outputs of the SCM algorithm generally had very high values, the thresholds for this

technique were derived by spacing the threshold values evenly between the image mean and

image maximum values. In order to ensure a fine enough scale, a fifth threshold had to be

inserted between threshold 4 and the maximum value in the SCM bands. For each of the

thresholds, a boolean image was again created, from which was derived a single error matrix
~

and related statistics for the class concerned. Again, the maximum k in a class was taken as

an indication of which threshold to use for the final accuracy reporting. The result was once

again a user- and producer's accuracy for each class of both the SCM and SAM techniques.

4.2.4 Probability-based classification

For the maximum likelihood classifier, ERDAS outputs a complete accuracy assessment

report, including the full 13x13 error matrix, user- and producer's accuracies, individual and

overall k and overall accuracy. No extra accuracy assessment needed to be done, therefore.

However, ERDAS did report an overall k value of 1.413, which is impossible, since the
~

maximum value for k is 1. The value for overall k was therefore computed manually from

the error matrix data.

4.3 CLASSIFICATION ACCURACIES

During the course of this study a voluminous amount of data was output in the form of

threshold images, error matrices and accuracy tables. This data has been condensed and

summarized in order to make meaningful conclusions about the classification accuracies. This

section presents the summarized results of the classification accuracy assessment.

The final classification accuracies are given in Table 4.2 to Table 4.4. All the accuracies given

in the tables, except for those of the maximum likelihood classifier, are those accuracies

obtained from thresholding the abundance images to the point where the k coefficient for

each class is maximized. These accuracies do not necessarily reflect the highest user- or

producer's accuracies obtained from thresholding. Rather, they indicate the accuracies of the

statistically most reliable classifications. Following the accuracy tables are Table 4.5 to Table
~

4.7, showing the maximum k values per class for each of the classification techniques.
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Table 4.2: Classification accuracies of Band Ratios, UA = User's Accuracy, PA = Producer's

Accuracy

Class RATIO A RATIOB RATIOJ RATIOK3
Class Name

Nr VA PA VA PA VA PA VA PA

1 Badplaas 0.00 0.00 3.45 10.33

2 Boesmankop1 0.00 0.00 16.94 12.92

3 Boesmankop2 0.00 0.00 0.59 37.93

6 Dalmein 0.00 0.00 0.82 2.92

7 Greenstone1 9.96 74.98 8.78 67.09

8 Greenstone2 0.00 0.00 0.00 0.00

9 Greenstone3 15.55 77.65 13.40 67.90

10 Heerenveen 0.00 0.00 5.65 11.48

11 Mpuluzi 0.00 0.00 0.96 41.34

12 Steynsdorp 0.00 0.00 1.61 1.35

Average accuracy 8.50 50.88 7.40 45.00 0.00 0.00 4.29 16.90

Overall accuracy 12.13 10.70 0.00 0.78

Table 4.3: Classification accuracies ofCrosta Technique, UA = User's Accuracy, PA =

0.34 0.82 10.78 29.51

0.00 0.00 3.34 37.63

2.04 2.02 13.47 15.15

0.83 0.85 6.47 38.71

0.03 1.58

Producer's Accuracy

Class Class Name CROSTA B - PC3

Nr VA PA
1 Badplaas
2 Boesmankop1
3 Boesmankop2
6 Dalmein
7 Greenstone1 0.00 0.00

8 Greenstone2 0.00 0.00

9 Greenstone3 18.21 77.43

10 Heerenveen
11 Mpuluzi
12 Steynsdorp

Average accuracy 6.07 25.81

Overall accuracy 7.37

CROSTA J - PC3
VA PA
0.00 0.00

3.40 3.08

0.00 0.00

0.00 0.00

CROSTA K3 - PC1
VA PA
1.68 89.40

11.38 11.69

1.62 84.35

2.99 3.25



Table 4.4: Classification accuracies of SCM, CEM and Maximum Likelihood, UA = User's

Accuracy, PA = Producer's Accuracy

Class Class Name SCM CEM MAXLIKE

Nr UA PA UA PA UA PA

1 Badplaas 2.96 7.88 1.52 55.16 12.44 40.22

2 Boesmankopl 1.62 2.77 2.00 33.23 23.74 76.62

3 Boesmankop2 4.66 68.17 9.22 36.34 78.35 52.79

4 Urban 58.80 56.81 19.25 32.33 90.80 32.08

5 Water 76.81 53.61 85.85 99.99 100.00 99.94

6 Dalmein 3.46 26.30 4.45 4.87 7.98 54.22

7 Greenstonel 33.98 57.73 19.03 76.12 72.91 82.14

8 Greenstone2 70.16 75.07 75.71 85.42 98.51 87.25

9 Greenstone3 0.00 0.00 25.28 25.20 98.33 92.96

10 Heerenveen 0.60 7.38 0.79 75.41 2.80 28.69

11 Mpuluzi 14.94 25.44 1.59 64.84 8.56 15.90

12 Steynsdorp 2.05 36.70 2.11 83.50 21.93 36.03

13 Tilled land 80.76 98.75 56.17 98.55 97.91 97.35

Average accuracy 26.98 39.74 23.31 59.31 54.94 61.25

Overall accuracy 64.58 80.24 86.52

Table 4.5: Maximum k values of classes for Band Ratios

Class Nr Class Name RATIO A RATIOB RATIOJ RATIOK3
1 Badplaas n/a n/a -0.0026 0.0432

2 Boesmankopl n/a n/a -0.0025 0.1427

3 Boesmankop2 n/a n/a -0.0026 -0.0003

6 Dalmein n/a n/a -0.0025 0.0051

7 Greenstonel 0.0724 0.0491 n/a n/a
8 Greenstone2 -0.0456 -0.0377 n/a n/a
9 Greenstone3 0.1194 0.0771 n/a n/a
10 Heerenveen n/a n/a -0.0018 0.0732

11 Mpuluzi n/a n/a -0.0028 0.0011

12 Steynsdorp n/a n/a -0.0025 0.0104

A

Average k values 0.049 0.030 0.047 0.087
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Table 4.6: Maximum k values of classes for Crosta Technique Images

Class Nr Class Name CROSTA B - PC3 CROSTA J- PC3
,

CROSTA K3 - PC1

1 Badplaas n/a 0.0000 0.0216

2 Boesmankop1 n/a 0.0275 0.1106

3 Boesmankop2 n/a 0.0000 0.0202

6 Dalmein n/a 0.0000 0.0262

7 Greenstone1 .-0.0022 n/a n/a
8 Greenstone2 -0.0023 n/a n/a
9 Greenstone3 0.1663 n/a n/a
10 Heerenveen n/a 0.0020 0.1555

11 Mpuluzi n/a 0.0000 0.0454

12 Steynsdorp n/a 0.0156 0.1383

A

Average k values 0.054 0.006 0.074
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Table 4.7: Maximum k values of classes for SCM, CEM and Maximum Likelihood. Values

above 0.5 shown in bold.

Class Nr Class Name SCM CEM MAXLlKE

1 Badplaas 0.0347 0.0184 0.1192

2 Boesmankop1 0.0139 0.0283 0.2334

3 Boesmankop2 0.0768 0.1388 0.7821

4 Urban 0.5262 0.1188 0.8965

5 Water 0.5196 0.8904 1.0000

6 Dalmein 0.0528 0.0416 0.0752

7 Greenstone1 0.3783 0.2263 0.7108

8 Greenstone2 0.6990 0.7832 0.9837

9 Greenstone3 0.0000 0.1739 0.9815

10 Heerenveen 0.0076 0.0118 0.0261

11 Mpuluzi 0.1788 0.0136 0.0773

12 Steynsdorp 0.0301 0.0322 0.2155

13 Tilled land 0.8266 0.5149 0.9690

A

Average k values 0.2573 0.2302 0.8298
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Table 4.2 to Table 4.4, distinguishes between the average user- and producer's accuracies and

the overall accuracy. The average accuracies merely computes the mean value of the

individual accuracies expressed as percentages. The overall accuracy was determined by

counting the actual number of pixels that were correctly classified per class, summing them

for all classes and dividing this sum by the total number of classified pixels. In the case of the

maximum likelihood classification, this is equivalent to the sum of the diagonal elements on

the classification error matrix, divided by the sum of the row or column totals of the matrix.
A

For Table 4.5 to Table 4.7, the average k value per technique was also computed as a broad

measure of classifier performance. The "average k" value reported for the Maximum

Likelihood classification in Table 4.7, however, is the value calculated directly from the error

matrix provided by ERDAS. Table 4.8 contains the average user- and producer's accuracies,

as well as the average k values for all the classifications done per class. While this is

somewhat of a dilution of the true meaning of k, it may still be used as a relative indication

of the ability of a class to be accurately discerned by a classifier.

Table 4.8: Average User- and Producers Accuracies and average kappa values per class, UA =

User's Accuracy, PA = Producer's Accuracy

Class Nr Class Name Average UA Average PA Average kappa

1 Badplaas 3.15 29.00 0.034

2 Boesmankopl 8.44 20.04 0.079

3 Boesmankop2 13.49 39.94 0.145

4 Urban 56.28 40.41 0.514

5 Water 87.56 84.52 0.803

6 Dalmein 2.81 13.08 0.028

7 Greenstonel 24.11 59.68 0.239

8 Greenstone2 40.73 41.29 0.397

9 Greenstone3 28.46 56.86 0.253

10 Heerenveen 2.99 21.90 0.039

11 Mpuluzi 4.20 26.45 0.045

12 Steynsdorp 6.17 24.96 0.063

13 Tilled land 78.28 98.22 0.625
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The overall accuracies and average k values for each classifier are summarized in Figure 4.4
~

and the average accuracies and average k values for each class are shown in Figure 4.5
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In order to remove the biasing effect of the Water, Urban and Tilled land classes on the

overall and individual accuracies of the Maximum Likelihood classification, the rows and

columns of these classes were deleted from the error matrix. The user's-, producer's- and

overall accuracies were recomputed, together with the k coefficient. The resulting accuracies

are shown in Table 4.9, together with the percentage accuracy gained/lost compared to the

original accuracies.

Table 4.9: Maximum Likelihood statistics after removal of Water, Urban and Tilled classes,

together with the change in accuracy.

Class Nr Class Name Producer's % User's %

1 Badplaas 24.69 -15.52 33.06 20.62

2 Boesmankopl 55.41 -21.68 68.91 45.17

3 Boesmankop2 58.78 4.99 41.18 -37.17

6 Dalmein 20.18 -35.12 43.61 35.63

7 Greenstonel 76.65 -5.53 79.57 6.67

8 Greenstone2 97.74 10.49 83.43 -15.07

9 Greenstone3 99.37 6.41 95.77 -2.55

10 Heerenveen 8.14 -21.03 30.10 27.29

11 Mpuluzi 16.14 0.24 18.88 10.32

12 Steynsdorp 51.49 15.46 57.78 35.85

Average 50.86 -6.13 55.23 12.68

Overall 81.06

Kappa 0.748

4.4 DISCUSSION

The accuracy information presented in section 4.3 can be evaluated from two perspectives:

firstly from the perspective of the spectral separability of the ground truth classes that were

classified and secondly from the perspective of the classifier efficiencies in identifying and

delineating the ground truth classes.



57

4.4.1 Spectral separability
A first observation that can be made upon investigation of Table 4.2 to Table 4.4 is that the

three greenstone classes, classes 8 - 10, exhibit the best classification accuracy by far. In all

but one of the classifications that were performed on the greenstones, one or more of the

greenstone classes were classified with a user- and/or producer's accuracy in excess of 70%.

Only the classification of greenstones using Ratio B resulted in a accuracy below 70%, i.e.

Greenstone 3's producer's accuracy of 67.9% (Table 4.2). As seen in Figure 4.5, the

greenstones also boast the highest average k values across all the classifiers, with Greenstone
~

2 having an average k value significantly higher than the other classes.

The granitoid rocks (classes 1 - 3, 6, 10 - 12), on the other hand, show very poor

classification accuracies. Only in the Maximum Likelihood classification is there a granitoid

class with a k higher than 0.25, i.e. the Boesmankop 2 class with an individual kappa of

0.782. This generally poor classification potential in the granitoids is most likely caused by

the fact that these rocks have very few and if so very small, diagnostic features in their spectra

and that the mineralogical differences between them are generally not significant (Schetselaar

et al. 2000). Moreover, the error matrix of the Maximum Likelihood Classification obtained

from ERDAS's accuracy assessment module, indicated that significant confusion existed

between the granitoid rocks and the Urban class. A large number of Urban pixels were

erroneously classified as granitoid rocks, resulting in the low Producer's accuracy for the

Urban class in the Maximum Likelihood classification. It also explains why the User's

accuracies for granitoid rocks in the Maximum Likelihood classifier are consistently lower

than the Producer's accuracies for the same rock types (Table 4.4). While removing the Urban

class from the initial training data might have alleviated this error, the precision, or thematic

resolution of the classification would have suffered.

4.4.2 Classifier performance

If the overall accuracies (Table 4.2 to Table 4.4) and the average k values (Table 4.5 to Table

4.7) are compared, as done in Figure 4.4, the only classifiers that produced acceptable results

are the SCM, CEM and Maximum Likelihood classifiers. Of these, the SCM algorithm

produced the lowest overall accuracy (64.5%), with a 0.257 average k. CEM and Maximum

Likelihood delivered overall accuracies of 80.2% and 86.5% respectively, with average k

values of 0.2302 and 0.8298. The highest classification accuracies below that of SCM, are the
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~
12.1% overall accuracy of Ratio A and the 0.087 average k for Ratio K3. In other words

none of the ratios and Crosta Technique classifications produced an overall accuracy higher
~

than 12.1%, or an average k higher than 0.087. For all the classes, except the Heerenveen
~

class, the highest k values for each class were obtained by the Maximum Likelihood

classification. The Heerenveen class responded better to the Crosta K3-PC1 classification.
~

Considering the average k values of the classifications then, only the maximum likelihood

classifier has a value above 0.4, which makes it the only classifier that does not have a "poor"

classifier performance (Mather 1999). It must be noted, however, that the high overall

accuracy and k values of the Maximum Likelihood classifier was partly a result of the fact

that the classes with the highest accuracies (Greenstones, Water, Urban and Tilled) also

contain by far the largest number of pixels in the training and reference data. Since the

formula for determining the overall accuracy weighs each class according to its pixel count,

these classes would necessarily have biased the overall accuracy for the Maximum Likelihood

classifier. When the non-geological classes were removed from the accuracy assessment (not

the training), as shown in Table 4.9, the Maximum Likelihood classification's overall

accuracy dropped from 86.5% to 81.1% and the overall k from 0.8298 to 0.7480. Even so,
~

the classification accuracy and overall k of this classifier remains impressive.

After an extensive accuracy assessment procedure that involved thresholding abundance
~

images to maximize the k value for the classification and comparing error matrices, the

performance of the different classification techniques, as well as the spectral separability of

the different classes could finally be evaluated. The following chapter concludes the research

and places the information presented in this chapter into the context of the aims set out at the

start of this project.
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5.1 CONCLUSION
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This study set out to answer the following question:

To what degree of accuracy can classification of ASTER reflectance images, using band

ratioing, peA, constrained energy minimization, angle mapping and probability-based

techniques, be used detect and discriminate between granitoids and greenstone material and

furthermore, between different phases of granitoid emplacement, in the semi-arid southern

Barberton Greenstone Belt?

An ASTER reflectance image of the southern Barberton Greenstone Belt was acquired and

geometrically corrected. Thick vegetation was masked out of the image using a thresholded

NDVI. During a sampling procedure, 93 999 pixels were acquired in 13 thematic classes,

containing samples of both greenstone and granitoid rocks. 33.6% of the samples were used to

train the classifiers, while 66.4% of the samples were reserved for accuracy assessment. Band

Ratioing and the Crosta Technique was performed after examination of USGS spectra of

minerals expected to be abundant in the various target materials. Spectral signatures of the 13

target materials were prepared from the training samples and input into the SCM, CEM and

Maximum Likelihood algorithms. Apart from the latter, which produced a thematic image,

the results of all the classifiers were grayscale abundance images. These images were

thresholded to varying levels, their accuracy evaluated at each threshold level, using the

reference samples. In so doing, each abundance image could be thresholded to an optimum

level, where its kappa value was at its highest. The thematic image delivered by the

Maximum Likelihood classifier did not necessitate thresholding and was merely evaluated

relative to the reference data. Error matrices were compiled for every image during the

accuracy assessment process, from which was derived user's-, producer's- and overall

accuracies for all classifications, together with overall kappa values. These statistics finally

served as comparative measures of efficiency between the five classification techniques and

could, by extension, also serve as indications of the spectral separability of the different rock

types.
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The results indicate that greenstone material generally exhibits the highest classification

accuracies of the 13 classes and that the mineralogy of the greenstone rocks therefore enable

them to be accurately distinguished from granitoid rocks. The accuracies obtained in

identifying greenstone rocks using the Maximum Likelihood classifier range between 72.9%

and 98.5%.

None of the classifiers succeeded to adequately distinguish different phases of granitoids from

each other. The maximum kappa value achieved in the classification of a granitoid rock, was

the value of 0.782 delivered by the classification of the Boesmankop2 granitoid by the

Maximum Likelihood method. This k value is by far the highest one for all the granitoids.

The rest of the k values for the granitoids lie between -0.0028 and 0.2334; far below the

"poor" cut-offlevel of 0.4.

The five classification techniques are ordered below, according to their descending average k

values.

1. Maximum Likelihood Classification

2. SCM

3. CEM

4. Band Ratioing

5. The Crosta Technique

The Maximum Likelihood classification was the only classification with an overall k value in

excess of the "very good to excellent" value of 0.7. It achieved an overall classification

accuracy of81.1% and an overall k of 0.748 (excluding the non-geological materials). The
A

overall k values for the rest of the classifiers all perform below 0.257, indicating "poor"

classifier performance.

The significant gap in performance between Band Ratioing and the Crosta Tecnique on the

one side, and Maximum Likelihood Classification, CEM and SCM on the other side, can most

likely be attributed to the fact that the former set of techniques utilize only a subset of the total

number of bands ASTER has to offer. The latter set of techniques exploits the full range of

ASTER's nine reflectance bands, thereby having much more information available to guide

the classification process. What further sets the Maximum Likelihood Classification apart
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from the other four techniques, is the fact that it is the only classifier that takes into account

the statistical distribution of the training data. It bases its classification procedure not only on

the similarity of an image pixel spectrum to that of a reference class, but also on that pixel's

Gaussian probability of belonging to the particular class. This statistical aspect of the

classifier seems to give it a considerable advantage over other classification techniques.

Ratio-based techniques might be more suitable in areas with better outcrop, on data with

higher spatial resolution, or where the technique can form part of a rule-based classification.

Ultimately, the results answer the research question in the following way:

Of the five classification techniques evaluated, the Maximum Likelihood classifier performed

the best by far and succeeded to detect and discriminate between greenstone material and

granitoids with accuracies ranging between 72.9% and 98.5%, depending on the greenstone

subtype. The ASTER instrument provided adequate spatial and spectral resolution for high

accuracies to be achieved in the classification of greenstone material. Classifications aimed at

discrimination of different phases of granitoids, however, proved generally poor and

untrustworthy using all five the classification techniques.

5.2 RECOMMENDATIONS FOR FUTURE RESEARCH

5.2.1 Detailed devegation

Vegetation masking in this study was done by visual inspection of a series of NDVI

thresholds and setting pixels with a high NDVI value equal to zero. This succeeded in

masking out dense and/or vigorous vegetation, mostly plantations. A confounding factor in

attempting further removal of, for example shrubs or long grass, was that grass and certain

target minerals were found to have very similar spectra. The correlation with minerals

associated with K-rich granitoids was especially high. The USGS spectrum for dry, long grass

has a 0.85 Pearson correlation coefficient with Kaolinite and a 0.89 correlation with the K-

rich feldspar mineral, Microcline. Since these minerals are influential in differentiating

different phases of granitoid emplacement from each other, performing a pre-processing

analysis which might potentially alter these signatures should be done with extreme caution.

However, since these vegetation signatures are so similar to those of target materials, the

removal of vegetation signatures might significantly reduce classification confusion and

increase the accuracy of granitoid classification.
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5.2.2 Topographic normalization

Topographic normalization of image data was not done for this study, owing to a lack of high

resolution digital elevation data. While the band ratios would not be influenced by topography

related differences in reflection, this process would, however, be necessary for further, more

detailed work. The solar azimuth angle of the ASTER image was 35.3°, with a solar elevation

angle of 41.1°. This, together with the fact that the Barberton Greenstone Belt is characterized

by NW-trending dyke swarms that cause NW-trending ridges, means that NE-facing slopes

have higher reflectance values than other slopes on the image. Topographic normalization,

using accurate elevation information needs to be done to alleviate this error and ensure

unattenuated reflectance values.

5.2.3 Thermal infrared imagery

As noted in Section 2.2, many silicate minerals have little or no diagnostic features in the

electromagnetic range covered by ASTER's first nine bands. In the thermal infrared range,

however, many silicate minerals do show absorption features that could facilitate their

identification. While TIR data was requested from NASA's EOS Data Gateway, it was found

to either be corrupt, or containing too much noise to be of any use. This spectral range

however, could have been of great value in detecting and discriminating between granitoid

varieties, since many silicate minerals that make up these granitoids, only have diagnostic

absorption features in the TIR range. Ifvalid TIR data could be incorporated into the analyses

done in this study, the spectral separability of many of the granitoid classes might be

significantly higher.

5.2.4 Gamma-ray spectroscopy

Since one of the major differences between the different phases of granitoid emplacement is a

variation in the K content of the rocks, airborne gamma-ray information should be strongly

considered. This technology measures the concentrations of radioactive elements (notably U,

Th and K) on the surface of the earth. If gamma-ray data could be acquired for the study area,

it could therefore be used to directly measure and discriminate the later K-rich granitoid

phases from earlier, more Na-rich ones. Apart from U, Th and K, 11 other variables are

usually also detected. It is possible that absolute and relative abundances of these elements

may facilitate a further, more detailed classification of the rocks of the Barberton Greenstone

Belt.
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5.2.5 Hyperspectral data

While the ASTER instrument provides a substantial increase in the number of spectral bands

from the LANDSAT ETM+ instrument, thereby increasing the spectral resolution of the

image, it is still a very discrete view of the electromagnetic spectrum. It can be seen from

Figures 3.4 - 3.11 that a great deal of spectral information is lost between the spectral bands

of the ASTER instrument. While it must be remembered that atmospheric absorption bands

prohibits certain wavelength ranges from being used, there is still a great deal of spectral

resolution to be gained from using hyperspectral-, rather than multispectral data. The

Hyperion instrument, for example, is another NASA initiative that is capable of resolving 220

bands in the same spectral range in which ASTER has its first nine bands (Speciale 2003).

While Hyperion has its drawbacks, such as awkwardly-proportioned image scenes and very

expensive data products, the conceptual advantage of hyperspectral data over multispectral

data is significant.

5.2.6 Geobotanical investigation

If vegetation signatures cannot be sufficiently removed from the image, it may be possible to

exploit it. According to Campbell (1996) geobotany rests on the study of how geologic

materials release elements that are absorbed by soils and concentrated in plant tissues and

how these elements finally influence the spectral response of plants. This can then be used to

make inferences about the underlying geology of these plants. This science is, however,

restricted by several factors, among them being the need for very fine spatial, radiometric and

spectral resolution and the fact that timing of imagery is crucial since geobotanical influences

may be detectable only at specific seasons of plant growth (Campbell 1996). It can be done,

however and might be an avenue for further research.

5.2.7 Object oriented methods

This study focused on evaluating the spectral response of image pixels in isolation. Each pixel

was evaluated on its own, without any a priori knowledge of its relationship to other pixels.

While it falls beyond the scope of this thesis, more information might be gleaned from the

training data if factors such as tone, texture, size, shape, pattern and association with

neighbouring objects are evaluated. Incorporating both spectral and spatial arrangements is

known as object oriented image analysis, which comes closer to the way human beings
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interpret information visually (Laliberte, Rango, Havstad, Paris, Beck, McNeely, Gonzalez

2004). Although geological features are often not aerially extensive, or easily discemable,

object oriented analysis might be a valuable tool in the lithological classification of terranes

such as the Barberton Greenstone Belt.

5.2.8 Greenstone mapping

This study has shown that greenstone rocks can be identified with accuracies ranging from

72.9% to 98.5% using the Maximum Likelihood Classification of ASTER reflectance data.

With refinement of the training process, more accurate, detailed and relevant input can be

provided for the Maximum Likelihood Classification. This can be used to facilitate a

greenstone mapping project, whereby greenstone remnants contained within large plutons,

such as the Mpuluzi and Heerenveen Batholiths, are detected and mapped on a regional scale .

. While this process could be hampered by vegetative cover and lack of outcrop, it might be an

worthwhile exercise that can yield meaningful information about the structural and

metamorphic history of the Barberton Greenstone Belt.
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