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SUMMARY

Supervised classifiers are the most popular appréacimage classification due to their high
accuracies, ease of use and strong theoreticahdimogt Their primary disadvantage is the high
level of user input required during the creationtlud data needed to train the classifier. One
alternative to supervised classification is an expgstem rule-based approach where expert
knowledge is used to create a set of rules whichbeaapplied to multiple images. This research
compared supervised and expert-system rule-basptbaghes for forest mapping. For this
purpose two SPOT 5 images were acquired and atragsplly corrected. Field visits, aerial
photography, high resolution imagery and expertesoy knowledge were used for the
compilation of the training data and the developmeh a rule-set. Both approaches were
evaluated in an object-orientated environment.ds$ found that the accuracy of the resulting maps
was equivalent, with both techniques returning aarall classification accuracy of 90%. This
suggests that cost-effectiveness is the decisi®rfdor determining which method is superior.
Although the development of the rule-set was timestiming and challenging, it did not require
any training data. In contrast, the supervised @ggr required a large number of training areas
for each image classified, which was time-consunaing costly. Significantly more training areas
will be required when the technique is appliedai@é areas, especially when multiple images are
used. It was concluded that the rule-set is mos¢-effective when applied at regional scale, but it

Is not viable for mapping small areas.
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Automation, expert system, forest mapping, ruleebadassification, SPOT, supervised

classification.



OPSOMMING

Gerigte klassifiseerders is die gewildste benadeion beeldklassifikasie as gevolg van hulle hoé
graad van akkuraatheid, maklike aanwending en igad¢oretiese fundering. Die préne nadeel
van gerigte klassifikasie is die hoé vlak van gédamsinsette wat benodig word tydens die
skepping van opleidingsdata. 'n Alternatief viriger klassifikasie is 'n deskundige stelsel waarin
‘n reélgebaseerde benadering gevolg word om deg@hkeénnis aan te wend vir die opstel van 'n
stel reéls wat op meervoudige beelde toegepas kad.wHierdie navorsing het gerigte en
deskundige stelsel benaderings toegepas vir boabieuikg om die twee benaderings met mekaar
te vergelyk. Vir dié doel is twee SPOT 5 beelde&kmeen atmosferies gekorrigeer. Veldbesoeke,
lugfotografie, hoé-resolusie beelde en deskundagbbdukennis is aangewend om opleidingsdata
saam te stel en die stel reéls te ontwikkel. Bbelegaderings is in 'n objekgeoriénteerde omgewing
beoordeel. Die akkuraatheidsvlakke van die resiide kaarte was ewe hoog vir beide tegnieke
met 'n algehele klassifikasie-akkuraatheid van 9D%wil dus voorkom asof koste-effektiwiteit
eerder as akkuraatheid die deurslaggewende faktomi te bepaal watter metode die beste is.
Alhoewel die ontwikkeling van die stel reéls tydewd en uitdagend was, het dit geen
opleidingsdata vereis nie. In teenstelling hiernge®m groot aantal opleidingsgebiede geskep vir
elke beeld wat met gerigte klassifikasie verwerk ia tydrowende en duur opsie. Dit is duidelik
dat meer opleidingsgebiede benodig sal word wandeetegniek op groot gebiede toegepas
word, veral omdat meervoudige beelde gebruik satwBevolglik sal die stel reéls meer koste-
effektief wees wanneer dit op streekskaal toegead. ‘n Deskundige stelsel benadering is egter

nie lewensvatbaar vir die kartering van klein gdbieie.

TREFWOORDE
Outomatisasie, deskundige stelsel, bosboukarterg@jgebaseerde klassifikasie, SPOT, gerigte

klassifikasie
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CHAPTER 1: INTRODUCTION

Spatial information is essential when undertaking form of environmental decision making and
for it to be most effective it must be detailed, topdate and accurate (Apan 1996; Benal.
2004; De Carvalhoet al. 2004; Lennartz & Congalton 2004). However, collegt such
information manually is almost impossible, partaly at large scales and for large areas (Bzxick
al. 2005; Shiba & Itaya 2006). While the advent of @ephotography and satellite imagery has
allowed the development of desktop classificatibiand-cover over much larger areas and in
much higher detail than could previously be accashed, these techniques are not without their
disadvantages. High-resolution remotely sensed enyags expensive (Lennartz & Congalton
2004), computationally demanding (Hay, Niemann &@&enough 1997) and requires specialised
training to use effectively (De Carvalkei al. 2004; Gegg, Gunther & Riekert 1990; Inglada
2007). This is particularly relevant when an ineean classification accuracy is usually
accompanied by an increase in reference data yualassification method complexity and
required image resolution (Blaschéeal 2000; Mather 2004; Moller-Jensen 1997).

1.1 Supervised classification versus rule-set classiéiton

Supervised classification is the most popular dlgimage classification method for research
applications (Brown de Colstouwgt al. 2003). The attributes favouring its selection owérer
forms of classification include its strong theccatibase, its ease of use, and its high degree of
accuracy. It does, however, suffer a major disathge the expense of identifying and
delineating the training areas necessary for thesdication procedure. These areas, which are
used to ‘train’ the classifier to recognise unknacavaas, must be carefully chosen, as the accuracy
of the outcome of the classifier is heavily depernden them. Insufficient, poorly chosen or
incorrectly defined training areas will result iomler overall accuracy (Campbell 2006; Mather
2004). In addition, the inherent differences inuesl among images of different areas often
necessitate the reconfiguration of training are&erwclassifying more than one image (Pax-
Lenneyet al. 2001). This severely limits the degree of clasatfam automation possible over

multi-image areas, such as on a regional or ndtsne.

More recent research has examined classificatistesys which use a set of expert-informed or
autonomously-created rules in logical structuresda&termine information classes from the
different features within remotely-sensed imagd8yo(vn de Colstouret al. 2003). These rule-

based classifiers have two distinct advantages avere conventional methods: the logical,



2
flexible and transparent manner in which imagernmfation is represented within a rule-set; and
the modular arrangement of the rule-set, whichvadlfor easy alterations or updates for classifier
improvement (Bolstad & Lillesand 1992). The struetwf this methodology allows for a more
accommodating approach to autonomous classificatidmere a rule-set can be specifically
designed to take into account the inherent diffeeenexperienced between images, owing to

sensor calibration, time of day of capture, andggeality.

In addition, both the supervised and rule-set diaason approaches have been enhanced by
object-orientated methods. Object-orientation imatgessification involves the delineation and
classification of image segments rather than iddial pixels, which allows for more meaningful
analysis of spectral and textural features. It aismduces the use of geometrical and contextual
features, which provide a more intuitive understagaf the relation between image-objects and
real-world objects (Benet al. 2004; Bocket al. 2005; Hayet al. 2005; Mansor, Hong & Shariff
2002; Shiba & Itaya 2006).

1.2 Remote sensing in forestry classification in SoutAfrica

Natural forests, the smallest vegetation unit imtBoAfrica (estimated at 3000Krm size), are
difficult to map, as they are both widely distribdtand highly fragmented (Geldenhuys & Mucina
2006). However, the efficient management of thedaral resources requires constant, up-to-date
and accurate inventories on a national scale (Besthkl2006). Being responsible for monitoring
and managing forests in South Africa, the DepartroéiVater Affairs and Forestry (DWAF) has
commissioned several projects to map forests a@y@mal and national level. The latest project,
namely the National Forest Inventory (NFI), was pteted in 2002, using supervised

classification techniques on Landsat imagery (Wabogy & Mabena 2002).

Although the NFI provides a good foundation forrmpleng purposes on a national level, its
accuracy and scale (1:100 000) are inadequate dmitaning and management on a local level
(Van Niekerk 2007). In addition to the low level détail, the NFI also contains many errors
(Mucina et al 2007). Consequently, a more accurate, largeresdallO 000) NFI is urgently

needed (DWAF 2008). However, to update the NFI gisinsupervised approach would be
prohibitively expensive as it will involve a detdl national survey to collect the required training

data. In this regard, an object-orientated ruleetlagproach may be more cost-effective.



1.3 Overarching aim

The aim of this study is to compare the accuraay @st-effectiveness of a supervised and rule-
based classifier, applied in an object-orientatedrenment, for mapping forests over large areas.

1.4 Research objectives

To accomplish this aim, the specific research dhjes are to:

1) Review the relevant literature and related reseswchetter understand the fundamental
remote sensing concepts involved,;

2) Acquire and pre-process the necessary imagery;

3) Use a combination of field surveys, recent aerfabtpgraphy, high-resolution satellite
imagery and expert knowledge to develop a refereiataset for rule-set development and
training data creation;

4) Carry out an object-orientated supervised clagdifio for mapping forests;

5) Develop and carry out an object-orientated ruleckesification for mapping forests;

6) Compare the accuracies and costs of the two tegesj@nd

7) Interpret the results and make recommendations abket possible application of each

approach for mapping forests over large areas.

1.5 Study area

The techniques were developed and tested in twbtkfioverlapping 60x60km areas south and
north respectively of Richards Bay in the uThungMunicipal District of KwaZulu-Natal in

South Africa, as illustrated in Figure 1.1. Theaaveas chosen for its complexity regarding forest
types (i.e. Eastern Scarp Forests, KwaZulu-Natas@d Forests, KwaZulu-Natal Dune Forests,
Swamp Forests and Mangrove Forests) and otherusesl (e.g. agricultural, natural, residential).
Natural vegetation accounts for 49.3% of the ttaatl cover in the study area, of which thicket
and bushland have the largest proportion (21.4étipvwed by unimproved grassland (14.1%) and
forest and woodland (13.8%). Agriculture compri®s2% of the total land cover, consisting
mainly of temporarily semi-commercial or subsisticyland cultivation (16.6%) and sugarcane
(10.9%), the remainder (0.3%) being horticulturedps such as citrus, subtropical fruits and
vegetables (KwaZulu-Natal Department of Transp6@8). Other significant land cover types are
commercial forestry (10.5%) consisting almost etyirof eucalyptus and pine plantations
(Mucina 2008, pers com) and degraded natural veget£9.4%). Urban-related land cover is

proportionally low (1.2%), with the town of Richar@ay being the commercial and industrial
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Figure 1.1: Location and extent of the acquireelss images which demarcate the study area

hub of the area (population 44 852 in 2001). Otiwably populated urban areas in the vicinity
are Empangeni (population 13 306 in 2001) and #aby township of Esikhawini (population 32

437 in 2001) (Statistics South Africa 2001). Thienelte of the area is subtropical, with maximum
daily temperatures ranging from 23°C in winter 85Q in summer. The rainfall average per year
is 1228mm (1961-1990) with a concentration duringhser (South African Weather Service

2008).

1.6 Research methodology and agenda

The research methodology of a study should be daatéoth the real and everyday world, and in
the more abstract world of science and scientdgearch (Mouton 2004). The relation of this
research to the world of scientific enquiry is oepiwal: it furthers the knowledge and
understanding of the methodologies being testeé. rékation of this research to the real world
lies in the functional: it applies the conclusiaoisthe research to the undertaking of forestry
mapping over a large area. An argument is madettigatwo classifiers presented, namely a
supervised and rule-set classification in an objeientated environment, are the most applicable
to the task at hand. The classifiers are then comdpa terms of cost-effectiveness and accuracy

to determine which should be utilised for naticloaést mapping.



This research can be categorised as a methoddl@gich/, which Mouton (2004:173) describes
as a study “...aimed at developing new methods... d& dallection and sometimes also
validating a newly developed instrument throughlat gtudy.” Such studies can be non-empirical
in nature, deriving conclusions based stronglystalelished theory. However, while the concepts
informing this study were acquired from theory, atclusions are derived from the evidence of
the performance of the compared methodologies/tmegun a distinctly empirical nature. The
same precept applies to the nature of the data: usettlusions are based on primary data
generated during the course of the study. The Bpégpe of data used is quantitative in nature,
comprising numerical, statistical and logical eletse with a high degree of control during
methodology comparison.

A layout of the report structure and associategra is shown below in Figure 1.2.

@ REVIEW LITERATURE | _____ ———-»]  ACQUIRE IMAGERY @
! i v
| !
! | __,] PRE-PROCESS IMAGERY @
5 PREPARE REFERENCE

o 5 DATA

: v

' v \ 4

i UNDERTAKE DEVELOP AND TEST

: SUPERVISED RULE.SET

i CLASSIFICATION e

1

A 4

ASSESS ACCURACY AND MAKE CONCLUSIONS
AND
EVALUATE RESULTS

RECOMMENDATIONS

Figure 1.2: Research diagram indicating the chagitacture of the thesis
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Chapter 2 provides a comprehensive review of ttezaliure with particular focus on image-
classification techniques, object-based classiboabnd segmentation, and image features. The
acquisition and pre-processing of the imagery, ali as the creation of the reference data are
discussed in Chapter 3. Chapter 4 details the rdetbgy used for the supervised classification
and the development of the rule-set. This inclual@sscussion of training data creation, rule-set
design and the subsequent implementation of rililes.research is critically evaluated in Chapter
5, where the accuracy and cost-effectiveness os$tipervised approach is compared to the rule-
set results. The research is concluded by providm@verview of the findings of the study and

placing them in the broader context of a forestientory.



CHAPTER 2: IMAGE CLASSIFICATION METHODOLOGIES

Digital image classification methodologies, or imaaglassifiers, involve a set of computer
procedures that assign image pixels or objectsldsses representing information categories
relevant to the user, based on a diverse selegfiorherent image features (Campbell 2006). The
development of image classifiers has been subgeongoing research since the introduction of
remote sensing, so that there now exists a widetyaof classifier types and forms, each with its
own strengths and weaknesses relative to applitatm which they may be applied (Lawrence &
Wright 2001; Mather 2004). When deciding on a cfeesgion method for an application, a user
must weigh the importance of several different dext Efficacy of classification methods is
usually judged in the literature according to th&tistical accuracies of the final classification.
However, the demand for human expertise, the timke expense of preparing and running the
classifier, and the degree of automation requiredaapects which must be taken into account (Pal
& Mather 2003). It should also be noted that thecuaacies of different classification
methodologies are often specific to the applicatmnvhich they are put (Liu, Skidmore & Van
Oosten 2002). It is therefore important that theruse aware of the different types of classifiers
available, to judge which is better suited to tppl@ation at hand. This chapter begins with an
overview of traditional and alternative pixel-basethssification methods, then examines
classification methods employed in an object-oated environment, and concludes with the
intrinsic features found in digital images whiclndae used by classifiers to identify land cover

classes.

2.1 General classification in remote sensing

The more conventional methods of classification sestn of supervised and unsupervised
procedures, which rely strongly on a variety ofistecal algorithms employed in geometric space.
Although widely used in practical applications, dbemore traditional classifiers are not without
their limitations. The progression of digital imagmalysis techniques combined with the
advancement of computer hardware and software,ldthdo the development of alternative
classifiers which display a greater degree of daitsing for image pattern recognition (Tseely

al. 2007). This is done by incorporating techniqueshsas artificial intelligence, logical structures
and expert knowledge into the classification proced (Brown de Colstouet al. 2003; Mather

2004). This subsection expounds on and evaluatbsttzalitional and alternative classifiers.



2.1.1 Traditional classifiers
Traditional classifiers refer to the two classifioa methodologies with the longest established
tradition in remote sensing applications: namelgupervised and supervised classification.

2.1.1.1 Unsupervised classification

Unsupervised classification is defined by two disti steps. The first step is the automatic
classification of pixels into a user-specified n@nbf image classes according to their spectral
properties. The second step is the manual labelifndpe classes, usually depicted in images as
areas of homogeneity, according to real-world imfation (Campbell 2006). Although the
automated nature of the spectral delineation renthes classification method less user-intensive
than others, it cannot be said to be truly unsupedvin nature. It is rather, as Mather (2004:203)
puts it, “exploratory”, where repeated unsuperviseela delineations with different parameters
allow a user to "get a feel” for which real-worldasses are spectrally distinct and which are
spectrally similar. This understanding of imagetdeas can inform the construction of the set of
real-world classes to be used in the classificatiendering unsupervised classification extremely
useful where a priorinformation regarding the study area or the classibn structure is
unavailable or not pre-determined. Conversely, ehearreal-world class structure is already
established it is rare that it will correspond witie automatically delineated spectral classes,
resulting in the lowering of the accuracy of theécoune (Campbell 2006). This is especially true
for high-resolution imagery where features of iagtrcommonly comprise multiple spectral
classes shared by more than one information cléasderzanden & Morrison 2002). This is the
primary disadvantage of unsupervised classificateo for this reason its use is often limited in

practical applications.

2.1.1.2 Supervised classification

Supervised classification is defined by the applicaof a priori information of real-world classes
to determine the identity of unknown image elemebtsa for the real-world classes are acquired
from an external source and entered into the d¢iassn the form of designated and labelled
polygons termed “training areas” or “training datd&hese training areas contain statistical
information regarding the spectral properties ofhealass, which is used by a classification
algorithm to identify the class of unknown pixe@Gafnpbell 2006; Lira & Maletti 2002; Mather
2004). Classification algorithms are widely variedt are all designed to statistically compare the
features of each of the classes with those of &mawan pixel in geometric space, and assign a

class based on the results of that comparison.mds widely used algorithm is the maximum
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likelihood classification (MLC) algorithm, due tdsiready accessibility, robustness, strong
theoretical foundation, and high accuracies foidgewange of remote sensing applications (Albert
2002; Bolstad & Lillestad 1991; Brown de Colstaetral. 2003; Pal & Mather 2003; Tserag al.
2007). Because of these traits, a number of stutsesMLC as the benchmark with which to
compare newly developed classification methods (Bieht, McCarthy & Mahlander 1996;
Hagnar & Reese 2007; Hepnet al. 1990; Liu, Skidmore & Van Oosten 2002; Nangendo,
Skidmore & Van OosteB007; Neusch & Grussenmeyer 2003; Pal & Mather 2003

Despite the advantages shown by supervised cleetsifin, it does contain a number of drawbacks.
First, while accuracies achieved are generally @etde they are often out-performed by more
elaborate classification methods, such as artificiaural networks, expert systems and
classification trees (Pal & Mather 2003). The secamd third disadvantages pertain to the
identification and delineation of training areas #tated earlier, poorly developed training areas
result in weak classification accuracies, and thaising data must be meticulously prepared. This
can become expensive in terms of both time and yaspecially for projects that span multiple
images (Albert 2002). More relevant to this stubgwever, is the low degree of automation
allowable by supervised classification due to ifragnarea creation. Again, this is amplified for
wider-scale projects, as without rigorous pre-pssg®y new training areas must be developed for
each individual image used (Pax-Lenmyl.2001).

2.1.2 Alternative classifiers

Alternative classifiers are classification methadypés that are less used for practical applications
due to their complexity and lack of software oryttege too recent innovations to have proven
credibility (De Carvalhoet al. 2004). This subsection focuses on the most weliioh@nted
alternative methodologies, namely artificial neunatworks, supervised rule-sets, and expert

systems.

2.1.2.1 Atrtificial neural networks

One of the older alternative classification metHodies, namely artificial neural network (ANN)
classifiers, was among the first to draw from tieddfof artificial intelligence (Al) in the attempt
to improve traditional classification techniquess With supervised classification, this process
requires the input of training data, but wheregsestised classification can be thought of as
“forward-propagating” (i.e. the analysis of inpuatd determines the output data), ANNs are

“back-propagating” in that the connections betw#eninput and output data are examined and
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modified according to the expected and actual ifleason results. These connections are the
links between the “neurons”. elements of the infayer, output layer and one or more hidden
intermediate layers which allow for the normalisatiweighting, summation and thresholding of
input values in approximating the output valuese Bdjustment process is the dynamic alteration
of the connection weights in the intermediate layetayers of a network, designed to bring the
actual output data closer to the expected outpiat Eamination and readjustment are performed
iteratively until a minimum return threshold is cbad or the process become asymptotic. This
process is termed “training the network” (Hepatal.1990; Skidmorest al. 1997).

One of the original purposes of the developmentAdiN classifiers was to overcome the
limitations of creating or using a predeterminedoakthm for classification. By “learning” a
classification procedure according to the trainiaga provided, no a priori knowledge of the area
is necessary and the need for specialist assessandnévaluation of the outcome is removed.
Additional advantages of back-propagating neurawaoeks include allowance for data of any
statistical distribution, higher tolerance of imageise, and the greater ability to recognise
unknown patterns which are similar but not identicathe training data (Hepnest al. 1990;
Mather 2004; Skidmoret al. 1997).

However, the development and use of an ANN doesagomwo significant disadvantages. The
first concerns the design specifics of the ANN,naswork architecture is determined mostly
through trial and error. This is because each epfplin is case-specific, and thus the literature
does not provide guidelines on, for example, homyrtadden layers to have, how many neurons
to have for each layer, what neuron connectionsi@cessary or unnecessary, what the minimum
return threshold should be, how many training pagteshould be used, and what neuron
connection weights should be (Pal & Mather 200Z&nb®t al. 2007). Skidmoret al. (1997:551)
demonstrated that these factors can significarftgcathe classification result, leading them to
conclude that while the ANN performed as expectedhe adjustments and fine tuning required
of the input parameters would deter many usersé 3é&cond disadvantage of ANN classifiers
relates directly to that experienced by traditioralpervised classification, namely the
identification and delineation of training areadthAugh findings have indicated that training
areas need not be as robust as needed for supgecléssifiers (Hepnest al. 1990), the principle

of inferior training data resulting in an unsatctay classification remains valid (Skidmaeeal.
1997). The time and monetary expenses of trainaig dollection for larger projects is therefore

applicable to this classification methodology ards,t in conjunction with only modest
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improvements to accuracy, a high processing dernf@achpbell 2006) and the complex nature

of establishing the ANN, have resulted in only n&idese of this type of classifier.

2.1.2.2 Supervised rule-sets

Like ANN classifiers, rule-based systems incorpgmaachine-learning algorithms from the field
of Al in attempting to predict digital image class&Vhile rule-based classifiers can encompass a
variety of forms, it is possible to distinguish ween those that are developed autonomously from
training data input by the user, also termed supedvrule-sets, and those developed manually

from external knowledge, which are termed expexssifiers.

One significant difference between ANN and ruledshsechniques is the transparency of each
classification method. The algorithm created froamning an ANN has been termed a “black box”
in the literature, because it provides little ifgignto the relationships between the image classes
and image features (Tsemg al. 2007). Conversely, a rule-based system is by ety wature
discerning in that feature information is used ¢sign classes by a set of threshold rules of the
“If...Then...Else” structure (Bolstad & Lillesan®92). By scrutinising the rule-set, created either
autonomously or manually, users can familiarisengeves with the more discriminating features

for each image class.

For autonomously created rule-sets the use ofifizgsn trees has, over the past decade and a
half, steadily gained in prevalence (Lawrence & §hiti2001). Classification trees, also termed
decision trees (DTs) or classification and regmesdirees (CARTS), are constructed by the
recursive division of the training data into insegly homogenous subsets. An individual node,
or split, in the classification tree is a thresheldue for the image feature which produces the
most deviance in the dataset. Subsequent subsetsubject to further division, perhaps using
other features with high heterogeneity, until eithepreset subset variance or classification tree
level is reached. The result is a hierarchical-sdeused for digital image classification (Hansen,
Dubayah & Defries 1996; Lawrence & Wright 2001).

Although classification trees show a relativelyhigdegree of classification accuracy (Bolstad &
Lillesand 1992; Brown de Colstowet al. 2003; Hansen, Dubayah & Defries 1996), their major
limitation is the same as that of traditional sypd classification and ANNSs, that is the need for
extensive and accurate training data (Homeml. 2002). Lawrence & Wright (2001) used a

CART to classify Landsat imagery of the GreaterlMgstone ecosystem in Idaho, Montana and
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Wyoming, and concluded that although classificatidth CART analysis was effective, the
outcome is as sensitive to proper training dat@csieih as the more traditional supervised
classifiers. Although no literature could be foumkdere one set of training data has been applied
to multiple images for classification tree analy#iss argued that the statement by Pax-Lergtey
al. (2001) remains valid, namely that without rigorque-processing of different images, new

training areas must be developed for each indiViohiage used.

2.1.2.3 Expert systems

The first of the alternative classifiers to overemime limitations of training data are expert
systems. The term “expert system” is used variouslyemote sensing and it can represent a
number of different techniques. Tsatsoulis (1999)nes the categories of expert systems as user-
assistance systems, classifiers, low-level prongssystems, data fusion systems, and GIS
applications. All pertain to different proceduresremote sensing analysis, but all are defined as
“expert” in that they all employ Al inference sttutes which use expert knowledge (Cohen &
Shoshany 2002). For this reason, expert systemalsoeknown in the literature as knowledge-

based systems.

For this review, only the classification techniquefs expert systems were examined. These
comprise a number of rules which use prior expadwedge to define image classes, and they
can be divided into three groups, namely relaxasigstems which apply knowledge in the
verification of a classification; pixel-level syste which apply knowledge to determine the
identity of a pixel through feature analysis; araimain-level systems where a structural model
already exists which can be used for classifica(@wy. road types, urban zoning) (Tsatsoulis
1993). Regarding classification accuracy, resustéehbeen promising. Nangendo, Skidmore &
Van Oosten (2007) demonstrated how the incorparaifeexpert rules significantly increased the
accuracy of East African tropical forest mappindgJganda. Cohen & Shoshany (2002) found that
a knowledge-based classifier returned superiortsetu unsupervised classification for a number
of different satellite images for crop recognitioncentral Israel. Although Gumbricht, McCarthy
& Mahlander (1996) showed that a manually infemalé-set is superior to a maximum likelihood
supervised classifier, they concluded that “..khewledge representation was the bottleneck, as
reported by many other studies” (Gumbricht, McCargh Mahlander 1996:278). This remark
illustrates the primary disadvantage of expertsifacstion: that the creation of a usable rule-set
from expert knowledge is time-consuming (Liu, Skae & Van Oosten 2002). Another
disadvantage of many rule-based expert systentgidirhitation imposed by per-pixel features.
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Moller-Jensen (1997) attempted to incorporate rexituto a knowledge representation model of
an urban environment, and when identifying posstbtections for future research suggested a
shift to a more object-orientated environment. Tii#xamined in more detail in the following

section.

2.2 Segmentation and use of objects

The development of classification methodologies hasn enhanced by the advent of object-
orientated analysis. Traditional methods of imagalysis consider each pixel as an individual
unit, with little cognisance of its topological aéibns to its neighbours or the class structure it
represents (Lira & Maletti 2002; Van Coillie, Vekee & De Wulf 2007). This individuality of
pixels renders them susceptible to data noise, sgihesic effects and surface variation (Wicks,
Smith & Curran 2002), and limits the usability gdestral, textural and relational information
(Lennartz & Congalton 2004; Oruc, Marangoz & Buyalks 2004; Rego & Koch 2003).
Considering these factors, Blasch#teal. (2000) argue that no form of pixel-based clasatfon
can really yield reliable, robust and accurateltesin contrast, object-orientated imagery analysi
operates on pre-defined areas of the image, degitedr from an external pre-defined source or,
more commonly, an internal region-partitioning @se known as segmentation (Blasckkel.
2000).

2.2.1 Segmentation

Segmentation is usually the first step in objecdubclassification and involves the delineation of
areas of an image into separate objects. Althohgtetare a variety of methods of segmentation,
the bottom-up, region-growing method of multiresmin segmentation has been shown to provide
good results for a variety of applications and aselarray of image types (Baatz & Schape 1999).
This method starts with objects consisting of snglxels, then repetitively merges adjacent
objects until a user-set homogeneity parameterxceared. Altering this parameter (termed
"scale"), which consists of separate object sadbgect size and object form variables, allows the
user to define a layer of image objects correspanthb actual geographical objects relative to the
scale at which the image is viewed. Repeated setgtimms with different scale parameters result
in layers of objects of different dimensions whichn be structured in a shape-constrained
hierarchical object network. Each object in sucteavork will exhibit both horizontal and vertical
spatial awareness, as it is aware of its neighhgurbjects in the same object layer, the number of
and shared borders of its sub-objects in layersvihend its membership to super-objects in
layers above (Benet al. 2004; Karakis, Marangoz & Buyuksalih 2006; Makiret al. 2007,
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Willhauck et al. 2000). The result could be termed a multi-scagganchy of object-primitives-
building blocks defined though a process of repetitesting which provides optimal information
for further segmentations or classifications foe gpecific application (Mitri & Gitas 2002). It
follows that segmentation and classification must @& collaborative process, as defining
appropriate segmentation parameters for differeates is challenging and often problematical
(Hay et al. 2005), and the quality of the segmentation wilhgigantly affect the outcome of the
classification (Bauer & Steinnocher 2001; Benal.2004; Kermad & Chehdi 2002).

To summarise, the use of multi-scale, object-oatmtt image analysis offers the following
advantages (Benet al. 2004; Bocket al. 2005; Hayet al. 2005; Mansor, Hong & Shariff 2002;
Shiba & Itaya 2006):

* Meaningful statistical calculation of spectral daagtural qualities.

» The availability of feature qualities such as shape object topology.

* The intuitive spatial relations between real-warljects and image objects.

* The ease of integration between GIS and remoteirgersivironments and flexibility

among different software platforms.

A number of researchers have argued that theser$acontribute to producing a superior image
classification result compared to those providedixel-based approaches. Several case studies
support this view. Rego & Koch (2003) illustratdte tsuperior accuracy of object-based over
pixel-based supervised classifiers in more thani@@@e classifications, using IKONOS imagery
in Rio de Janeiro City, Brazil. The superiority afject-orientated classification was also shown
by Oruc, Marangoz & Buyuksalih (2004) who compaitieel technique to three different types of
pixel-based supervised classification of Landsarihanced thematic mapper plus (ETM+)
imagery in Zonguldak, Turkey. And Bemrt al. (2004), Blaschkest al. (2000) and Willhauclet

al. (2000) all lauded object-orientation for its superntegration between continuous remote
sensing data and a vector-based GIS environment.

2.2.2 Classification techniques in an object-orientate@nvironment

Most pixel-based classifiers can be adapted suittlys$or an object-orientated environment.
Mansor, Hong & Shariff (2002) demonstrated the @ggibn of a simple supervised classification
of a Landsat TM image for land cover mapping, vaithoverall accuracy of over 90%. Ali-Akbar,
Sharifi & Mulder (2000) incorporated expert knowgedand ancillary data in image segmentation
and applied a maximum likelihood classifier to theulting objects in an attempt to improve the
accuracy of deforestation estimates in Chiong Mawviace in Thailand. Their method was used
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on Landsat thematic mapper (TM) data, and showe®-a0% increase in accuracy over
previously used methods. Berberogiti al. (2000) compared maximum likelihood and ANN
classifiers for a per-field approach to land caslassification of Landsat TM data in the Cukurova

Delta in Turkey, obtaining overall accuracies ofta@9% with eight categories.

The family of classification techniques most enleghby the use of objects is that of rule-based
classifiers. As stated earlier, each object-prireitin a hierarchy contains a number of inherent
features, as well as relative spatial awarenesshwisi ideally suited to analysis by a rule-set
structure. This has been demonstrated by a numbstudies. Lewinsky & Bochenek (2008)
undertook a land cover-based classification of & B5R image in the Kujawy region in Poland
using feature thresholding in a rule-based decisie®. Their use of spectral, textural and
relational feature thresholds to classify objettsimed a satisfactory overall accuracy of 89% with
13 categories. They admitted that although thecjpie of rule-based classification was sound,
modifications were necessary when applying the-seteto different images. Boakt al. (2005)
used a hierarchical rule-based classification attiphe scales and at multiple resolutions for
habitat mapping in Northern Germany and Wye Dowlis, and lauded the technique for its
potential to incorporate expert knowledge at aragstof the analysis. Mitri & Gitas (2002)
developed and tested a hierarchical object memipectissifier for Landsat TM images to map
burnt areas in two regions in the Mediterraneatt) &ccuracies over 98% for both images. Bauer
& Steinnocher (2001) developed a rule-set whicldudgect hierarchy aggregation and allocation

to classify urban areas from IKONOS imagery in \¢enitaly, also with favourable results.

In forestry specifically, Malliniet al. (2007) compared a nearest-neighbour classifier@GART
classifier for forest type classification from Qkidird imagery in Thessaloniki in northern Greece.
Although the overall accuracies for both class#idid not exceed 70% for the seven classes, the
authors concluded that the rule-based CART outpedd the supervised classification regarding
both accuracy and transparency. Shiba & Itaya (R0686d a rule-based classifier in conjunction
with a digital elevation model (DEM) in an objediemtated environment to detect forest change
in Japan. The classifier was used on IKONOS imaged/the authors concluded that rule-based
object-orientated approaches have the ability teatly improve forest monitoring and

management systems for decision-making processes.

More relevant to the aim of this study are expgstam rule-based classifiers, which eliminate the

need for training data and thereby increase cdstiefeness. As stated before, an expert
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understanding of the relationships between thegectsbin the real world, and their intrinsic
image features, allows the user to define compldesrfor object classification based on spectral,
textural and structural qualities, as well as tpatisl relationships among the objects (Behal.
2004; Blaschkeet al.2000). Argialas & Harlow (1990:883) put it more ga@tly when they state

that expert systems “...upgrade the state of imagalysis capabilities from brute force

mathematical and statistical approaches to anatgsisniques based on interpretation logic and
heuristics”, but also caution that feature selectrelies on the past experience, engineering
intuition and domain-specific knowledge of the systdesigner. It is therefore essential that the
variety and composition of image features is fullyderstood before an expert-system rule-set

classifier can be created. This is examined in rdetail in the following section.

2.3 Object features

All objects on earth, when struck by the electroneiy (EM) energy of the sun, absorb and
transmit a degree of that energy, and reflect éineainder back into space. The specific manner of
the object determines which specific wavelengthstled EM spectrum are absorbed and
transmitted, and which are reflected. Remote-sgnsistruments are designed to measure and
record those reflected portions of the EM spectmost practical for earth-observation purposes.
The most widely used remote-sensing instrumentsnaniéspectral scanners, such as used in this
study, and these comprise a number of sensorssgacitaneously recording different ranges or
bands of the EM spectrum (De Jong, Pebesma & aiM@er2005). The number of bands and
the EM wavelength ranges of each band vary amostesyg, but the final product is usually a
composition of all the bands together in one digiteage (Newton 2007). It is the function of the
remote-sensing expert to translate, interpret &bty these images.

Traditional image processing was primarily undesgtalon a per-pixel basis, with most analysis
limited to spectral image properties (De Jong, Betze & Van der Meef005; Tuominen &
Pekkarinen 2005), although there are examplessafareh which employ pattern recognition of
which the work of Haralick, Shanmugam & Dinst€i®73) is the most notable. Contemporary
image analyses still make regular use of spectdltaextural features, but the advent of object-
orientated image analysis has enhanced the mammdrich such features can be used. In addition
to providing an additional set of feature attrilsutethat of object geometry — feature analysis can
now be undertaken for each object (i.e. locallyithin a hierarchical object framework or on all
objects (i.e. globally) (Blaschket al. 2000; Definiens 2007). This section examines thjeat
features available for expert-based rule-set dlaasbn.
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2.3.1 Spectral features
The overview of image classifiers in the previoast®ns has provided some insight into the use
of spectral features for non-object-orientated ienagalysis. Unsupervised classifiers use spectral
properties to classify homogenous areas for madaak labelling, while supervised classifiers
match unknown areas of an image to pre-definechitrgi data, primarily using their spectral
characteristics. In addition, pixel-based expersteaays use prior knowledge of the spectral
properties of land cover features in a rule-seitrtive at a classification.

However, in an object-orientated expert system dahelysis of spectral features is different.
Multiresolution segmentation defines an object mekvaccording to the homogeneity of each
spectral band selected for the segmentation protesiseory, this creates bordered areas of low
variance, which offers a broad range of possibsitifor object comparison using statistical
measures such as band mean, standard deviatiage, rand maximum and minimum values
(Definiens 2007). Again, it must be stated thathswspectral feature comparisons can be
undertaken between objects on the same hierardewel, on levels above or below, or with the
spectral properties of the entire image. For examiolr a given object network it may be found
that it is possible to differentiate a particuldass by comparing the specific object means of a
certain band with the global mean of that same bHrttle object value is lower than the global
value, the object is assigned to that specificscldsit is higher it is left as undefined. The
undefined objects might be subject to further segat®n, creating a new object-network below
the first, where it may then be found that by cormgathe sub-objects’ standard deviation of a
second band to the standard deviation of their rsopgct, it is possible to distinguish another,
different class. Such an example illustrates thesibte use of spectral information for object-
orientated image classification. However, in thespit for more efficient information extraction
techniques, researchers have also developed a nwhlpFocedures to enhance spectral data
(Mather 2004). These procedures are termed imagsforms, and they are examined in more

detail in the following section.

2.3.2 Image transforms

An image transform is any operation which re-exgeesthe information content of an image for
the purpose of deriving usable data not immediagglgarent from individual bands (Mather
2004). The variety of image transforms is largegmg from simple arithmetical operations to
complex dimensional alteration and compressionriecies. Arithmetical transforms are defined

by the use of mathematical operators such as additubtraction, multiplication and division,
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and while these are all used in various areasmbte sensing to some degree, the most widely
used and relevant to this research are the farmisegetation ratios or vegetation indices. Of the
dimensional transforms, one of the more commorrirgcipal components analysis. This section

provides a brief overview of vegetation indices anidcipal components analysis.

2.3.2.1 Vegetation indices

Vegetation indices are arithmetical operationsgtesi to enhance green vegetation in a remotely
sensed image (Campbell 2006). To do this, theytheseinique spectral properties of green plant
material, which is highly absorbent in the red wor$ of the EM spectrum and highly reflective in
the infrared (IR) portions of the EM spectrum. Taethmetical operation most commonly
employed between these bands is division, whichonbt enhances the differences between the
red and IR reflectances of vegetation, but alsaices the effects of topographical variation on

spectral illumination (Mather 2004).

The simplest vegetation index is the ratio of red ¢R bands, which returns an image roughly
analogous to the amount of vegetative matter inirttege. However, due to the inaccuracies of
this simple vegetation indicator, it has been ssg@ed by the more robust normalised difference

vegetation index (NDVI), defined as the equation:

NDVI = (NIR — Red) / (NIR + Red)

where NIR is near infrared, a multispectral banthm IR in close proximity to visible red on the
EM spectrum and common to a number of remote-sgrsypstems. The ratio of the sums and
differences of the NIR and red bands, rather tim@nabsolute values of the IR:red ratio, render
NDVI less affected by atmospheric variation betwesages, and thus more suitable for multiple
image analysis (Mather 2004). This property, ad aglthe simplicity and relative accuracy of
NDVI, have resulted in it becoming the most widelsed vegetation index in remote sensing
(Karnieli et al. 2001). However, NDVI does contain three distinatitations. First, it does not
account for background soil reflectance properidsch are shown to have a strong influence on
NDVI values (Huete 1988). Second, the dynamic raog&lDVI is prone to saturation at the
higher end of the index spectrum, where vegetataopies are dense and multilayered (Karnieli
et al.2001). And third, while it can be said that NDVIn®re tolerant of atmospheric conditions,
it is by no means completely unaffected by thetegayg effects of cloud and aerosols (Mather
2004; Karnieliet al.2001).
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The attempts to overcome these limitations haveymed two new families of vegetation index,
namely those which correct for atmospheric inflleeand those which correct for soil reflectance.
Kaufman & Tanré (1992) developed a vegetation inchdbed the atmospheric-resistant vegetation
index (ARVI) which incorporates a blue band to itiignand compensate for the red-scattering
properties of aerosols in the atmosphere. While eraidly successful, the use of a blue band
limits the usefulness of this family of indices, ras all remote-sensing systems possess a sensor
in the blue portion of the EM spectrum (Jiagtgal. 2008). To overcome this handicap in part,
another “aerosol-free” vegetation index was devedbpy Karnieliet al. (2001), which makes use
of a band in the shortwave infrared (SWIR) portadrthe EM spectrum. This wavelength is less
affected by atmospheric gases and aerosols thaviditde spectrum, while also demonstrating a
high correlation with a red band regarding vegetateflectance properties. The vegetation index
proposed by Karnielet al. (2001) was termed the aerosol-free vegetation ifd&RI), defined

as the equation:

AFRI = (NIR - 0.66 * SWIR) / (NIR + 0.66 * SWIR)

where the SWIR band can be either of theuth6or 2.1um atmospheric windows of the EM
spectrum, both of which are commonly used bandmast remote-sensing systems. Practical
testing of this vegetation index by Karnieti al. (2001) showed AFRI to closely resemble NDVI
in clear-sky conditions, while also satisfactodigmonstrating the ability to penetrate atmospheric

interferences such as smoke or sulphates.

In an attempt to reduce the influence of soil @dace on vegetation index calculations, Heute
(1988) modelled soil brightness in relation to watjen canopy to determine a soil-adjustment
factor (L) to apply to the formula of NDVI. This weindex was named the soil-adjusted

vegetation index (SAVI), defined as the equation:

SAVI = (NIR - Red) * (1 + L) / (NIR + Red + L)

where L is determined manually according to vegatadensity. A further improvement on SAVI
was presented by @it al. (1994), where L was represented by a self-adjusongula designed
to determine the optimum value for L for any vegeta density. This index was named the

modified soil-adjusted vegetation index (MSAVI) fided by the equation:
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MSAVI = [2 * NIR + 1 —V(2*NIR + 1Y — 8*(NIR — Red)] / 2.

In testing the effectiveness of MSAVI, @t al. (1994) demonstrated a further improvement in
reducing the influence of soil reflectance beyohnat shown by SAVI, while still increasing the

dynamic range of the index to account for the hegld-saturation experienced by NDVI.

The enhanced vegetation index (EVI) was origind#yeloped to monitor climate change through
vegetation time-series analyses of images of thdemate resolution imaging spectroradiometer
(MODIS) remote-sensing system. As a vegetationXxné#®/| was created through combining the
concepts of both ARVI and SAVI, and as such it wees first vegetation index to overcome all
three limitations experienced by NDVI. Although hig successful for use in MODIS imagery,
the widespread use of EVI is limited due to thedhéar a blue band. This limitation was
overcome by Jiangt al. (2008), who developed a two-band EVI (EVI2), whiced only the red
and NIR bands. At optimal calibration, as calcuddby Jianget al. (2008), EVI2 is defined by the

equation:
EVI2 =2.5* (NIR —Red) / (NIR + 2.4*Red + 1).

EVI2 was shown by Jianet al. (2008) to be highly correlated with the original Exer a large
sample of snowl/ice-free land cover types, whilé gtaining the abilities to overcome aerosol
interference, soil-reflectance noise and densetaéige value saturation. This recommends EVI2

as an appropriate vegetation index for use in rawéia or multi-image studies.

2.3.2.2 Principal components analysis

It is common in multispectral imagery that bandsctifse proximity show a high degree of
correlation and repetition. Principal componentalgsis (PCA) is a transform procedure which
reduces the redundancy of the data by identifyinegdptimal linear combinations of the original
channels and altering the dimensional axes in suntanner that correlation is eliminated. The
outcome of PCA is a series of coefficients, or eigetors, which align the principal axis along
the strongest degree of correlation in dimensi@pace, and which therefore concentrates the
maximum amount of information possible into one daralled the first principal component
(PC1). The second principal component (PC2) isdw®nd largest axis mutually perpendicular to
the first in dimensional space, into which is concated the maximum amount of information

possible from the information remaining after tiheation of PC1. This process is repeated for the
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same number of principal components as the origimahber of bands, resulting in a set of
bands of decreasing variability, with the greateajority of the information contained in the first
three component bands (Campbell 2006; Liang 20Gthkt 2004).

The advantages of PCA lie both in data compresaimh data interpretation. Regarding data
compression, because most of the image informasimontained within the first three principal

components, it is possible to reduce the dimensudribe data by retaining PC1, PC2 and PC3,
and discarding the remaining ones. As for datarpnétation, multispectral images are usually
displayed onscreen by assigning any three of timelaf the multispectral image as red, green
and blue (RGB). By rather displaying the first #ggrincipal components as RGB, more image
information is shown onscreen making it easierdentify spectral differences in land cover,

thereby aiding in feature selection for classifmatMather 2004).

The primary disadvantage of PCA is its inability dompare the principal component values
between images. This is due to the image-spedii@acteristics of the inter-band correlation or
covariance defined by the transformation, whichmdtely restricts the usefulness of PCA in
multiple-image comparison (Mather 2004). Howeviis tlisadvantage does not extend to the use
of textural features on principal components, amdwch PCA retains an element of usefulness for
this research.

2.3.3 Texture

Although spectral properties are the primary feathor image analysis, there are certain
conditions where they are less effective for imelgessification (Neusch & Grussenmeyer 2003).
In their review of pixel-based segmentation andssifecation, Ali-Akbar, Sharifi & Mulder
(2000) state outright that spectral data alonassfficient for thorough extraction of information
from digital images. Berberoglet al. (2000) and Chica-Olmo & Abarca-Hernandez (2005) all
note that supplementing textural information fasdification in an object-orientated environment
increases overall accuracy by augmenting the dmscation of classes with similar spectral
properties. Tuominen & Pekkarinen (2005) note tfuat forestry estimation texture features
surpass spectral features for imagery with a higipatial resolution than that of Landsat TM
imagery (30x30m). Such comments suggest a neexiatoire texture as a discriminating feature

in more detail.
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Image texture has undergone much scrutiny in tleeature where it is generally agreed that
although it may be intuitively understood to thertan eye and brain, it is a difficult concept to
measure or even define. Consequently, it has béd&oull to incorporate texture into image
analysis so that its practical use has been lin{feedro & Warner 2002; Mather 2004). Haralick,
Shanmugam & Dinstei(1973), the first researchers to apply texture messents to remotely
sensed images, defined texture as the spatiadtgtatidistribution of grey-tone variations withan
band, and in an attempt to measure texture thegdated a form of second-order statistical
analysis measuring the relative frequency distrdoutof grey values within an image. This
statistical measurement, for which fourteen diffireextural features at four different directions
were proposed by Haralick, Shanmugam & Dinstdi@®73), gained a degree of popularity and
eventually became commonly known as the grey lesebccurrence matrix (GLCM). Although
not without disadvantages, the use of GLCM textdealtures became widely used in remote
sensing processing, and image classification itiquéar (Mather 2004; Tuceryan & Jain 1998).
Table 2.1 briefly explains eight of the more comigarsed textural features proposed for use on a
GLCM by Haralick, Shanmugam & Dinste{h973).

Table 2.1: Eight commonly used Haralick texturaltéees

Homogeneity A measure of local homogeneity

Contrast A measure of local variation, the oppositeomogeneity
Dissimilarity Similar to contrast, but increasingdarly

Entropy A measure of GLCM element distribution ddya
Angular second movement A measure of local homagene

Mean An average of the GLCM

Standard deviation A standard deviation of the GLCM

Correlation A measure of the grey level linear djsncy

Source: Definiens (2007)

An important aspect to consider when using texteatures in image analysis is scale. Objects of
interest occur at a hierarchy of scales within mage, requiring analysis to be undertaken at a
corresponding hierarchy of scales for optimal d¢feesdion results. With pixel-based analysis the
scale of analysis is limited to the spatial resolutof the remote sensor (Ferro & Warner 2002).
Object-orientated analysis of high-resolution imggeon the other hand, allows for the
development and analysis of an image on a hiem@atktructure of levels of varying scale, as
discussed above. This allows for a more in-dep#tutal analysis, because GLCM textural

features can be calculated and compared for e\gegioover a variety of scales.
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The literature reviewed in this chapter serves ethdéstinct purposes. The comparison of
classifiers in the first section justifies and po®s context regarding the research objectives of
creating an expert-system rule-based classified, @mparing it specifically to a supervised
classification for evaluation purposes. The ovew®f segmentation and the use of objects in
classification justifies the use of each of thessifiers tested in an object-orientated environment
The last section, an outline of spectral, index @adural object features, provides a basis for
feature testing during the creation of the rule-swever, before rule testing could begin, the
imagery had to be acquired and prepared, and refergata established. This is dealt with in the
next chapter.
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CHAPTER 3: PREPARATORY WORK

This chapter details the preparatory work requivefibre the development of the object-orientated
supervised and rule-set approaches could be atemiit specifically details and justifies the
imagery used for the research, the pre-processiaggwas undertaken both externally and in-
house on the imagery, and the creation of the erfer data used for accuracy assessment. The
chapter is concluded by a brief overview of thegiae techniques used in accuracy assessment,
which techniques were used in this study, and #wtofs of bias that may affect returned

accuracies due to the specific classification asgssment methodologies used.

3.1.1 Imagery

As one of the major objectives of this research twamaintain cost-effectiveness, the remotely
sensed imagery used had to possess a desirableddlatween the cost of the data, and the
availability, coverage and spatial and spectradltg®ns of the data. On the one hand medium-to-
very-high resolution imagery such as IRS-P6 Resmatl (5.8m), FORMOSAT-2 (2m),
IKONOS (0.82m), Quickbird (0.61m), Worldview-1 (64h) and GeoEye-1 (0.41m) were judged
to have too low an image extent, and consequentlpd financially expensive to use for mapping
over a large area, while on the other hand imagetlty higher coverage such as the advanced
spaceborne thermal emission and reflection radieméASTER; 15-90m), the moderate
resolution imaging spectroradiometer (MODIS; 250Q) and the advanced very high
resolution radiometer (AVHRR; 1.09km) were consatketo have too low a spatial resolution to
achieve the desired accuracies of the researclr(titn perhaps the three 15m near infra-red
(NIR) bands of ASTER, which alone would be insuéfirc for forest classification). Only two
remote-sensing systems satisfied the criteria sy exailability, low expense, high coverage per
image, and acceptable spatial and spectral reso|utamely Landsat 7 ETM+ and SPOT 5. The

spatial and spectral properties of the two systamset out in Table 3.1.

Table 3.1 The spectral and spatial resolutionsasfdsat ETM+ and SPOT 5 bands
Band Landsat 7 ETM+ SPOT £

Visible blue 0.45-0.52um, 30m per pixe

Visible greel  ||0.53-0.61um, 30m per pix¢ 0.5(-0.59m, 10m per pixe
Visible rec 0.65-0.69um, 30m per pixe 0.61-0.68:m, 10m per piel
NIR 0.7€-0.9Qum, 30m per pixe 0.7€-0.8um, 10m per pixe
SWIR 1.55-1.75um, 30m per pix¢ 1.5€-1.75um, 20m per pixe
SWIR 2.0¢-2.35um, 30m per pix¢

Thermal IF 10.4-12.5um, 60m per pix¢

Panchromati ||0.52-0.9Qum, 15m per pix¢ 0.4&-0.71um, 2.5m jer pixe

Sources: National Aeronautics and Space AdministidNASA) (2008); Spot Image (2005)
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National image coverage of South Africa was avélatt no cost for both systems: Landsat 7
ETM+ imagery is free of charge online, and SPOTgery is available from the Council for
Scientific and Industrial Research’s (CSIR) SatelApplications Centre (SAC), which is tasked
with providing a national SPOT 5 mosaic for usestatutory and research institutions (Llck
2007). The decision on which set of imagery to thses rested on which spectral and spatial
properties were better suited to the desired lefgirecision and accuracy for the research. As
evidenced by Table 3.1, Landsat 7 ETM+ imagery @&sss a higher spectral resolution with its
seven spectral bands to the four for SPOT 5 imademydsat 7 ETM+ imagery also possesses a
greater spatial coverage per image, with roughlpx180km per Landsat 7 ETM+ image
compared to 60x60km per SPOT 5 image. However, SBOmagery has a superior spatial
resolution to Landsat 7 ETM+. This was the decidaetor in determining which of the two
systems to use. The panchromatic resolution of SPQI5m per pixel) was deemed to be able to
significantly increase the level of detail of famgsclassification. This assessment is supported by
Salajanu & Olson (2001) who suggested that theeasmd spatial resolution of SPOT data
resulted in more accurate forestry classificatibant the equivalent multispectral bands of
Landsat, and by Radoux & Defourney (2007) who sstggethe optimal spatial resolution for
forest stand delineation is in the range of 2-3mns&quently, it was decided to use the SPOT 5

national mosaic created by SAC.

3.1.2 Pre-processing

Pre-processing involves any operations which ateedaken on the imagery prior to the primary
analysis. These operations can be grouped int@meadric pre-processing, which includes any
operation designed to adjust digital values to cemspte for atmospheric or sensor calibration
differences, or spatial pre-processing, which ideki orthorectification, fusion and subsetting
(Campbell 2006).

The SPOT 5 imagery offered by SAC was availabléhage different levels of pre-processing, or
rather, three different data products (Llck 200He first data product consisted of completely
raw, untouched data with no pre-processing undentaldt was considered that adequate
preparation of raw imagery for this research waelguire a degree of work which was not cost-
effective, both in terms of time and money. Thissvespecially true in light of the second data
product, which was both orthorectified and pan-gsbaed — a fusion technique used to match the
spatial resolution of the multispectral bands tattbhf the panchromatic band. The third data

product provided by SAC was a national true-colmasaic, produced by matching images of the
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second data product to a 16-day MODIS colour cottgoslthough effective in creating a
seamless mosaic of South Africa, this colour-maighechnique was judged to compromise the
spectral information in the image. As a resultyds decided to use the second data product of the
SPOT 5 national mosaic, and subsequently two arttified and pan-sharpened images were
acquired from SAC. The techniques of orthorectif@maand pan-sharpening used are examined in
further detail in subsequent sections, as are tleepmcessing techniques of radiometric
normalisation, atmospheric correction, and subsgtivhich were all undertaken in-house on the

imagery.

3.1.2.1 Orthorectification

Orthorectification is the process of geometricatrection where images are assigned to the
position that represents their “true” location @mtk. This is accomplished by resampling a series
of points in an unrectified image to correspondaants in a “correct” reference system, which
may be data such as pre-projected orthophotos,sttatianformation or topographical maps.
These associated points are called ground contioltg (GCPs). Orthorectification also uses a
digital elevation model to correct image geometnydistortions caused by terrain. In the case of
the SPOT 5 national mosaic, GCPs were collectedthferpanchromatic band and resampled
according to 1:30 000 and 1:50 000 orthophotoswabdn cadastral information obtained from
the Chief Directorate: Surveys and Mapping (CDSWhe four multispectral bands were then
resampled according to the rectified panchromatmb A spatial assessment using separate GCPs
indicated the spatial accuracy of the majorityraf images of the KwaZulu-Natal region to be less
than 12m at 2 sigma, denoting that any positioarinmage is within 12m of its “true” position,
stated at a 95% confidence interval. In additiasthiof the images used for the development of

the rule-set had a mean accuracy error of lessgha(Luck 2007).

3.1.2.2 Pan-sharpening

Pan-sharpening is the term given to the fusion bfgher resolution panchromatic band with a
lower-resolution multispectral band, for the pug®®f increasing the spatial resolution of the
multispectral band. A variety of pan-sharpening htegues exist. Weighted coefficient
calculations between the panchromatic and IR bamdscommon, as are the techniques of
principal component substitution, RGB-intensity-faauration, and Brovey’s transformation. It
has been noted however, that all of these techsiglier, and therefore compromise, the spectral
information of an image to some degree (Chengl. 2003; Prasacet al. 2001). The pan-
sharpening fusion used in the SPOT 5 national masai statistical fusion technique specifically
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designed to overcome this problem of colour digiartretaining the spectral qualities of each
band and allowing for meaningful quantitative asayChenget al. 2003). The result is a 2.5m
pan-sharpened image consisting of four multispebmads with very similar spectral properties
to those of the raw image (Luck 2007).

3.1.2.3 Radiometric correction

Radiometric correction consists of procedures widolrect for sensor calibration differences,
called radiometric normalisation, and rectify dittn caused by atmospheric interference.
Radiometric normalisation is the procedure of coting DN, a unitless indicator of incoming EM
radiation, to at-satellite radiation, the amoun&dM radiation recorded by the sensor in mW.cm
z.sr'l.um'l. Between-image differences can be further redidigedonverting at-satellite radiation
to planetary reflectance, where values are starsatdaccording to the earth-sun distance and
solar elevation angle at the time of image capfuish 2000). Conversion of DN values to at-

satellite radiation is calculated using the follog/formula (Irish 2000):

L = (gain. * DNX) + biask

Where . At-satellite radiance of barid
DNA: digital number of band
gain\: gain value of ban#l, read from the image metadata
bias\: bias for band, read from the image metadata.

The dynamic adjustment of SPOT 5 sensors accorttintpe intensity of incoming radiation
results in each SPOT 5 image containing a dissatof gains and bias for each band. These can
be read from the metadata file which accompaniek #aage. Theoretically, images consisting of
radiance values can be directly compared, but éarttormalisation by converting to at-satellite
reflectance is recommended (Irish 2000). Conversibrat-satellite radiance to reflectance is

calculated using the following formula (Irish 2000)
Pp=(n*LA* d®) /(ESUNL * cody)
Where B: unitless planetary reflectance

LA at-satellite radiance

d: earth-sun distance
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ESUNL: mean solar exo-atmospheric irradiances

0s: solar elevation angle.

Exo-atmospheric irradiances and solar elevationeacgn be read from the image metadata file,
and earth-sun distance can be obtained from astrpneebsites. Calculation of at-satellite
reflectance ensures the best comparability betweaages which have not been atmospherically
corrected.

Atmospheric particles scatter, absorb and refleldk adiation to different degrees and over
different wavelengths. To compensate for this, mloer of atmospheric correction pre-processing
techniques have been proposed. These can be iedsa#f either relative or absolute correction
models. Relative corrections match atmosphere4aifieband histograms to corresponding less-
affected band histograms, either in different insage to strongly correlated bands within the
same image unaffected by atmospheric distortioweé¥er, these techniques are both difficult to
implement and automate (lrish 2000), rendering themfavourable for this study. Absolute
corrections can be either empirical or physical pigrmal models use the knowledge of band-band
relationships to correct for distortion. Howeveascls models are often oversimplified and rely on
guestionable assumptions, which may lead to suspsutts. Physical models use the knowledge
of the effects of atmospheric gases on differentelengths of the EM spectrum to compensate
for each sensor band accordingly (Luck 2005). Hargethe required atmospheric information to
ensure accurate physical modelling is seldom availdor specific images, and thus sensor-
specific models for atmospheric correction are roftsed instead. Despite the generalisation
resulting from this technique, physical atmosphencrection is commonly used as it is easily
available, straightforward to implement and canapelied to a wide variety of remote-sensing
systems (Richter 2004). The physical atmosphericection model, ATCOR2, which includes
radiometric correction, was implemented on the ienggised in this study.

3.1.2.4 Subsetting

Due to the heavy computational demands of rematshsg operations, it is a generally accepted
practice to undertake analyses on smaller secbobmm entire image. Four subsets of 15x10km
were created from the southern and northern imagke. size of the subsets (1508nwas
considered to be large enough to contain adequaerage of the various land-cover types in the
area, while not so large to render object segmentdimes impracticable. The locations of the

subsets were purposefully chosen to include adtzgree of plantation and natural forest, but both
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subsets also display significant areas of watere lmgound, non-forest natural vegetation,
commercial and subsistence agriculture, and atyaoietypes of urban settlement. The location

and extent of each area is displayed in Figure 3.1.

AREA 2

AREA 4

Empangeni

AREA 1 Richards bay

AREA 3
Esikhawini

0 25 5 10 15 20 A
- e— s Kilometers

Figure 3.1: The location and extent of the foursaib

3.1.3 Reference data preparation

In order to assess the accuracy of the expertiayaiée-set it was necessary to create a dataset
consisting of the “correct” data against which tmmpare rule-set results. For this purpose a
reference dataset was created by digitising theseohatural forest, plantatiorandother from

a set of aerial photographs obtained from the CD®Mitising of classes was undertaken at
scales of 1:6000 or larger for the 156ksubsets of the northern and southern images using
ArcMap 9.2. High-resolution true-colour composi&edlite imagery (GoogleEarth) was used as a
cross reference where class differentiation was imohediately apparent. Despite the lower
resolution, the SPOT 5 images themselves were asethe conclusive class decider where
temporal discrepancies between the ancillary datairoed. Further verification was undertaken
through field observations undertaken in the stadya on 12-14 November 2008. The final

reference dataset was verified by a forestry exp#tt on-site experience of the region who
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deemed the data to be accurate enough to be usedniparisons of a minimum mapping unit

of one hectare (Mucina 2008, pers com).

3.1.4 Accuracy assessment techniques
The evaluation of each approach required a rigomeshod of determining class accuracy.
According to Levin (1999), classification accura@n be assessed in four different ways:
1) A field survey of either random or grid-allocateainds, compared to corresponding points
of the classification.
2) A visual estimate of agreement, often by overlayitng reference data with the
classification.
3) In-depth statistical analysis of numerical datangigechniques such as root mean square
error, correlation coefficients, linear or multipfegression analysis and Chi-squared
testing.

4) Error matrix compilation.

The first two methods lack precision and are priangubjectivity. Statistical comparison is more
thorough, but can become very complex, and is dfpetific to a particular feature, such as root
mean square error calculations for geometric oftltermination. Error- or confusion-matrix
compilation, which was used in this study, is thestncommonly used method for classification
accuracy assessment due to its simplicity of implatation and interpretation (Hammond &
Verbyla 1996; Verbyla & Hammond 2002). However, amprehensive understanding of
classification accuracy derived from confusion meca and accompanying statistics is incomplete
without first analysing the factors which influenaecuracy bias—a factor often lacking in many
studies (Hammond & Verbyla 1996).

Bias is any factor which either overstates or usidées the returned accuracy figure from a
classification accuracy assessment. Overstatingcaaracy figure is called optimistic bias, and
stems from three main sources: the use of traigia; in accuracy assessments; the use of
reference data with spatial or temporal proximayraining areas; and the restriction of reference
data sampling to homogenous areas. Understatimg@uracy figure is termed conservative bias,
and also stems from three main factors: refereata errors or inaccuracies, positional errors, and
generalisation of class delineation in referenda @derbyla & Hammond 2002). The severity of
these factors affecting bias is influenced by thethomdology used during classification and
accuracy assessment type (Levin 1999).
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The expert-system rule-based approach in this sletiigerately avoided the use of any form of
training data. Consequently, the first two factoasising optimistic bias are negated. However,
this is not so with the supervised classificatidine third factor, restricting reference data
sampling to homogenous areas, is usually obseneieneference data sampling is done on the
centre of a 3x3 neighbourhood of pixels of the sahass, to avoid edge effects and minimise
positional uncertainty (Verbyla & Hammond 2002). eTlaccuracy assessments for either
classification method conducted in this study apé affected by this factor, as accuracy was
calculated on a point basis i.e. the "true" refeeetlass of every point was compared to that of the
corresponding point in the classification produdawever, as a result of the first two factors
which are influenced by the use of training dale &ccuracies returned for the rule-set can be
confidently interpreted as more understated, apdetbre more reliable as that of the supervised
classification.
This chapter detailed the reference data creatrh @e-processing steps necessary prior to
classification. It also provided justification fahe specific sensor chosen for the study and
expounded on the pre-processing undertaken onntiagery prior to acquisition and further
necessary in-house preparation. With the imageny @ference data suitably prepared, the
development and application of the supervised aledget classifiers could be undertaken. This is

dealt with in the following chapter.
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CHAPTER 4: METHODOLOGY

This chapter examines the methodology used in teation and application of the two object-
orientated classifications. The first section dsttie class structure and training data usedan th
supervised classification, while the second seatixjplains the procedures used in the creation of
the rule-set.

4.1 Supervised classification

With the advent of freely-available, high-resoluticatellite imagery and object-orientated
analysis techniques, the logical alternative todhkpert-system rule-based classifier presented in
this research would be a supervised classificafldrerefore, an object-based nearest-neighbour
supervised classification was undertaken on the fiest areas, using Definiens Developer 7.0.
This was performed in a two-tier hierarchical manméth training area creation and refinement
undertaken iteratively for each class level. Thst fievel was created using a segmentation scale
parameter of 80, which returned objects of suitatiiee and variation for the desired classes.
These classes werbare ground including barren fields, open mines, beaches\arg young
plantations;built-up, including residential, commercial and industriedas;vegetation including
agriculture, natural vegetation and plantatiarsjwater.Training classes were created iteratively
for each class, where the classification resulteath iteration determined the refinement of
training classes for the next iteration until asgattory classification was obtained. Typicallyet
features used for a supervised classification legespectral bands of the sensor, but in this case a
textural measure, the standard deviation of ban(NIR), was added to improve the final
classification.

Once a satisfactory classification had been acHiéwethe first hierarchical level, theegetation
class was further segmented using a scale paraofed€, resulting in smaller “child” vegetation
objects more suitable for specific vegetation ditton. For the classification of objects on this
sub-level, training areas were again iterativelgated and refined for the following classes:
farmland, mangroves, natural forest, natural vegjetaand plantation Botanically, mangrove
forests are classified as natural forests (GeldgnlBuMucina 2006), but the textural and spectral
properties differ so significantly between the imi@tion classes ofatural forestandmangroves
that the classification was simplified by assignmgngrove forests an individual class. For the
final classificationmangrovesvasmerged intanatural forest plantationwas left as its own class

andnatural vegetation, farmland, built-up, bare grouadd water were all merged asther. To
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achieve a suitable final classification, an averaigever 80 training area objects was necessary
for each class. With nine classes over the fouasarine number of training objects delineated was
over 2400 in total.

4.2 Rule-set development

The development of the rule-set classifier was talen using Definiens Developer 7, in a two-
tier manner. The first tier consisted of the clfasaiion of the images intéorestandnon-forest
while the second tier consisted of the discrimoaif theforestclass intanatural andplantation

(See Appendix A for the complete rule-set). Thigtis@ explains each tier in more detail.

4.2.1 Tier 1: Forest/non-forest classification

The workflow of Tier 1 is comprised of a humberdtinct steps, as illustrated in Figure 4.1.
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Figure 4.1: The workflow diagram of the first tfrthe rule-set—classification &restandnon-

forest

First, an edge mask was created from the targetesubnd both the target subset and the edge

mask were then entered into a segmentation. Orgraegded, two rules were created to classify
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the vegetationand forest class respectively. The creation of rules was titeza subject to
assessment and refinement until a satisfactorgiflzetion was created. The following sections

explain each of these steps in more detail.

4.2.1.1 Edge masking

The first stage of object-based classification mually the delineation of the image into
homogenous objects using a segmentation algoritiaim & multiresolution segmentation (MRS).
In this study an additional step was performed tgefbe image was subjected to segmentation. As
objects are defined intensely along changes intsgig¢one, it was speculated that edge detection
would assist the segmentation process. An imagecveaged by applying a 5x5 variance filter on
the first principal component of each region. Thégiance image was subject to a 7x7 median
filter and then recoded according to a thresholdevaf 20. The outcome, an example of which is
displayed in Figure 4.3, was a binary mask depjctidge data. A comparison of Figure 4.3 with
Figure 4.2 which is a pseudo-colour representadiothe same area, shows that both plantation
and natural forest (indicated with red and yellovoas respectively) display a low degree of edge
data. Conversely, linear objects, such as roaddialddborders, and high-variance areas, such as
the residential area of Esikhawini in the south-e@&d-igure 4.2, are strongly represented in the
edge mask image. Edge data were assigned dsatabefore rule-set execution, which assisted in
both object creation by inherently delineating abjborders, and classification by removing

medium- to high-residential areas from the image.

4.2.1.2 Initial segmentation

MRS for object creation requires input parametersidyer weighting, scale and homogeneity
(Definiens 2007). Image-layer weighting defines tilfluence of each layer used in the
segmentation process. Theoretically, the layersvstgpthe most difference among the desired
classes would be the most suited for use in segtent Visual observation showed forests to
reflect less of band 1 (green), band 2 (red) anti bl (SWIR) electromagnetic energy than all
other land-cover types excepting water. Consequéeesiting of segmentation for suitable forest
object definition was undertaken on these layess,w&ll as NDVI and the first principal
component of a PCA on the entire subset. Diffesgaight variations were tested among the
layers, with the resulting segmentations visualialgsed for suitability. Although the results

showed little significant variation amongst thedes/
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tested for segmentation, the significant influerafethe green band during classification

promoted the use of a 100% weighting of greenHefdrestnon-forestsegmentation.

The second parameter, scale, is a unitless cowntiidble influencing the size of the resulting
objects (Definiens 2007). For the purposes of ftoodgssification, it was desirable to create a
segmentation that represents forest patches witevaobjects as possible. The results of scale
parameters ranging from 10 and 250 were sequentiedited and visually assessed. A scale
parameter of 25 was determined to be the mostkdeifar theforestnon-forestsegmentation,
creating objects which comfortably delineated foréand cover without generalisation or

unnecessary variation.

The third MRS parameter, homogeneity, comprisedrabination of the shape and compactness
criteria. The shape criterion specifies the wetplat object shape has on the segmentation, with a
higher shape value lessening the influence of sglegblues on segmentation and returning
objects with higher rectangular indices, i.e. mbtecky’. The compactness criterion is a product
of shape, defining the smoothness or compactneggedegmentation (Definiens 2007). Because
spectral properties were considered of greater iitapoe than the shape of the resulting objects

both the shape and compactness parameters weas lsfto.

4.2.1.3 Feature selection fdorestclassification

Feature selection for forest classification began ideentifying typical spectral and spatial
properties of forest land cover. Information froine fiterature, reinforced by visual observations,
showed forests to have lower values in green, retl 3WIR, medium-high vegetation index
values, and a homogenous textural structure aalbdbe bands as well as the first principal
component (Descléet al. 2006; Huanget al. 2008). Vegetation indices, however, displayed a
high degree of similarity between agricultural digland certain types of natural forest, and the
same was true for textural features between agmiebnd plantations. The individual bands of
green, red and SWIR showed the most promise fastadentification, but visual examination
showed slightly better results where band valuese iest subjected to a normalisation process
using a generigegetatiorclass. This vegetation class was created by thevaihof built-up land
cover (e.g. roads and urban areas) during edgeimgasind then through the removal of water
features and a significant amount of bare groumdgua threshold for the scene-adjusted ratio of

NIR (the mean value of NIR per object against theamvalue of NIR for the entire scene).



37
Objects were then normalised according to the aeans of the vegetation class, according to

the following formula:

RL=Oh/ VA

Where R:  Vegetation-standardised ratio of band
OL:  Specific object mean of band
VA  Vegetation mean of band

The most effective band-ratio for forest classiima, determined through experimentation,
proved to be the vegetation-standardised ratiaedry The specific values of these two rules, the
NIR threshold forvegetationclassification and the standardised green threshaidforest
classification were initially developed on Area ddahen adjusted during the testing of Area 2.
The results of this method of rule-set creationiltustrated in Table 4.1, which shows the overall
accuracies of each area for each rule. Rule 1 shdaw accuracy in Area 1 (55.6%) and a much
higher accuracy in Area 2 (81.4%). This is primadue to the non-forest vegetation in each
image, which strongly affects the accuracy ofwbgetationclass when compared to the reference
data of forest/non-forest The vegetation in Area 1 comprised a large amainagriculture
relative to forest Conversely, the vegetation of Area 2 comprised tipgslantation forests.
Overall accuracies for the classificationfofest/non-forestwere 89% for Area 2 and 98% for
Area 1. Noticeable errors in tHerest classification were predominantly darker agriclidtand
urban trees (not considered forests in the 2003. MEilempts at correcting these errors resulted in
unacceptable omissions of thHerest classification. Despite this the product was ocdesad
acceptable for use in the further classificatiomatural forestandplantation Figure 4.4 provides

a graphical illustration of theegetation(light green) andorests(dark green) near the Esikhawini

Township.

Table 4.1: Tier 1 rule descriptions and accurafme#\rea 1 and Area 2

CLASS AREA 1 AREA 2
RULE 1: | SCENE-ADJUSTED RATIO BAND 3 <= 0.23 VEGETATION 55.6% 81.4%
RULE 2: | VEGETATION-STANDARD BAND 1 <=1.1 | FOREST 98.0% 89.1%
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Figure 4.4: Thevegetatiorclassification resulbverlaid by thdorestclassification result

4.2.2 Tier 2: Discrimination of natural forest and plantation

Tier 2 comprised the discrimination of tfeestclass created in Tier 1 int@tural andplantation
classes. Figure 4.5 n!ustrates the steps takeingitie creation of this section of the rule-séte T
forestclass was first subject to resegmentation, thstedefor suitable rules for the extraction of
plantation. The remainder of thdorest class was assigned toatural, and the resulting
classification was assessed. As with Tier 1, theatoon of the rules was an iterative process.

These steps are explained in more detail in tHevimhg sections.

4.2.2.1 Resegmentation

Due to the unsuitable size of the original objdotsthis level of the classification, it was found
necessary to create a new segmentation belowrtltefie. The aim of the new object level was to
create objects in théorest category which properly defined the borders ofuredt forest and
plantation while still encompassing as much vasrates possible. Théorest objects were
therefore merged and resegmented according to% W@ghting of NIR, which showed a
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Figure 4.5: The workflow diagram of the second téthe rule-set—discrimination g@ilantation
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relatively high degree of contrast between plaotatnd natural forests, and green. Through
experimentation it was found that a scale paranwt&00 was the most suitable, returning objects
which accurately delineated borders between adjaw#nral andplantation objects, while also
being large enough to allow textural features tsbecessfully used. Segmentation homogeneity
parameters were also introduced, with values of f@r5both shape and compactness. These
parameters increased the regularity of the objecksch correlated more closely with the less

irregular plantation borders.

4.2.2.2 Feature selection fgrlantationandnatural classification

With a viable segmentation the next step undertakas an analysis of plantation and natural
forest land cover to assess the spectral and bpl#ferences between the two classes. Through
visual observations it was found that plantatiopgeared to be uniformly darker for every band
except NIR, and contained minimal grey-level vaomatwithin objects. Conversely, natural forest

objects showed wider variation between objects higher grey-level heterogeneity within
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objects. Consequently the following spectral fesgumwere tested fonatural/plantation
discrimination: green, red, NIR and SWIR, mean lungss, NDVI, AFRI, MSAVI, EVI2.
Standard deviation and the GLCM Haralick textursdtbéires of homogeneity, second angular
movement and correlation were calculated for alth@d spectral bands and the first principal
component. Features were initially assessed usemgity slicing, a procedure which assigns a
colour to the brightness of a target layer for emea visual analysis. Methodical alterations to the
threshold values, while overlaid by the refereneg¢adenabled specific threshold rules to be
created and tested for each layer. More promistagufes were initialised as individual rules and
subject to accuracy assessments. This was donssignang the most suitable threshold value of
each feature foplantation classification, assigning the remainihgyest class tonatural and
calculating overall accuracy for the final clagsation product. These accuracies, which are
shown in Table 4.2, provide a more rational indaraof the potential usefulness of the features
tested in plantation discrimination. As expectaendard deviation, correlation and homogeneity
showed high combined accuracies for the classifioaif the texturally smooth plantation objects.
Vegetation indices generally performed poorly ie tiassification, possibly due to the spectral
similarity of natural forests and plantations ire tred band, while accuracies of the individual
bands of NIR and SWIR showed noteworthy potents&aheclassification feature. Green, while
showing reasonable accuracy for Area 1, was padh#Area 2, possibly due to the large amount
of plantation relative to natural forest in thigar

Table 4.2: Overall accuracies of individual feafutlereshold rules

Features Area 1 accuracy % | Area 2 accuracy % | Combined accuracies %
NIR standard deviation 79.7 76.9 78.3
PCI correlation 85.2 70.7 78.0
NIR 75.4 76.3 75.8
NIR homogeneity 79.5 70.7 75.1
SWIR 64.5 78.4 715
MSAVI 54.4 75.6 65.0
EVI2 76.3 46.7 61.5
NIR correlation 80.8 38.3 59.6
Green 78.7 28.3 53.5
AFRI 73.3 30.9 52.1
Red 55.6 38.7 47.1
NDVI 51.8 38.9 45.4

It is important to note, however, that no one lasfeowed overall dominance in delineating either
the plantation or natural classes. Because of this the rule-set was comsttuc a manner that

used a number of different features to sequent@dygsify as many of the plantations as possible
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before assigning the remaindernatural. The exception to this methodology was the initial
extraction of mangrove swamps, a type of natunadibbordering the Richards Bay Estuary. This
land-cover type showed very similar propertieslemfation, both being spectrally very dark in the
green, red and SWIR bands, as well as texturaligdgenous. However, the waterlogged nature
of mangrove forests also causes low reflectiom@NIR region of the EM spectrum, and as such
it was possible to assign mangrove forestsnasiral prior to plantation extraction using a
threshold value of mean layer brightne®antation extraction itself was undertaken using
threshold values for features in the following ardesgetation-standardised green, ratio-to-scene
NIR, and standard deviation of the NIR band. Eagditre extracted slightly different areas of
plantations and the combination of the featuresravgd the result of the classifier over multiple

areas, as can be seen in Table 4.3.

Table 4.3: Tier 2 rule descriptions and accurafme#rea 1 and Area 2

CLASS AREA 1 AREA 2
RULE 3: | BRIGHTNESS <= 60 NATURAL n/a n/a
RULE 4: | VEGETATION-STANDARD BAND 1 >=1.23 | PLANTATION 94.4% 79.0%
RULE 5: | RATIO-TO-SCENE BAND 3 <= 1.05 PLANTATION 94.6% 87.8%
RULE 6: | STANDARD DEVIATION BAND 3 <=11 PLANTATION 94.3% 90.5%

Due to the lack oplantationclassification, the calculation of overall accurdoy Rule 3 was not

undertaken. Rules 4 and 5 return relatively higaralv accuracy for both areas, but with greater
accuracy in Area 1. This is due to the method té-set design, where the initial rule-set was
developed on Area 1 and then tested and tweakedreas 2. An example of the necessary
tweaking is Rule 6, which uses the standard denatif the NIR band to delineate plantations.
Although this rule lowers overall accuracy by 0.8%Area 1, it increases the accuracy in Area 2
by 2.7%. This slight loss of accuracy in Area 1 wiasmed to be outweighed by the increase in

accuracy in Area 2.

An area of the final classification is shown in tiig 4.6. A visual comparison of the classification
with the reference data revealed a number of raltieeclassification errors, the majority of which
are plantations classified amtural. This occurred due to the spectral differencesgainger

plantations, the textural heterogeneity of sparsmgopied plantations, and in plantations of
smaller area and therefore weaker feature reprasamt Errors of natural forest classified as
plantation were much less common, occurring where naturalstoobjects closely resembled

plantations spectrally and texturally.
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Figure 4.6: The finahatural/plantationclassification product of the area of Esikhawownship

Despite these errors, the overall accuracy of tvest maps of Areas 1 and 2 was deemed
sufficient for comparison purposes. The comparigbthe rule-set and supervised classification
approaches is described and discussed in the hepter.
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CHAPTER 5: EVALUATION AND CONCLUSIONS

This chapter begins by citing the accuracies of shpervised approach, identifying possible
reasons for class error and stating the confidevitte which accuracies can be interpreted. The
second section details the same factors for theged, and the third section compares the two
approaches in terms of accuracy and cost-effea@s®&nlhe final section of the chapter provides
an overview of the research, the conclusions ofitittdings and the recommendations for the use

of each approach in the context of forest mappirey targe areas.

5.1 Expert system versus supervised classification appaches

Although the accuracies of the forest maps of Argéaand 2 were tested during both the
supervised classification and rule-set creatiomae significant indication of the accuracy of

each approach was determined by assessing theaamsuiof all four forest maps. The maps
generated by the supervised and rule-set clagsiitsawere consequently compared using 100
random points for each test area. These points therecombined into one 400 point error matrix
for each approach. In theory, error matrixes carmreated using either point or polygon data as
reference. Although point-based accuracy assessnast less effective than polygon-based
assessments in identifying boundary inaccuraciegpiat-based approach was chosen for this
evaluation because land cover could be unambigyaletermined for each reference point using
a combination of field visits, aerial photograptapographical maps and satellite imagery. This
approach ensured that the accuracy assessmenttweesraflection of the resulting classification

quality.

5.1.1 Accuracy assessment of forest maps generated usimgupervised classifier

The results of the supervised classifications, @iveTable 5.1, show an overall accuracy of 90%.
The Kappa index value, an estimate of accuracy lwiidkes into account the possibility of
randomly selecting the correct classification, Wa&6, which is generally indicative of a better-
than-average classification (Montserud & Leaman82i9.andis & Koch 1977). The generally
higher producer’'s and user’'s accuracy of tiieer class suggests that the classifier was more
successful in differentiating betweéorest and non-forestthan separating the different types of
forests. This is also indicative of the similarity the spectral and textural features between

natural forestandplantation
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Table 5.1: The combined error matrix of the supsdiclassifications undertaken on the four

areas
Reference/Class Other Natural Plantation
Other 254 6 6 266
Natural 11 73 7 91
Plantation 5 5 33 43
270 84 46 400
Producer's Accuracy  User's Accuracy
Other 95.49 94.07
Natural 80.22 86.90
Plantation 76.74 71.74
Kappa Index 0.796
Overall Accuracy 90.00

The primary factor affecting classification accyrainstances of uncharacteristic plantations and
natural forests. Typical plantations are texturddbmogenous with low values in green and red,
while natural forest has higher grey-level variafiavith slightly higher spectral values for every
band other than NIR. A number of the occurrenceewbéserved where young or recently burnt
plantations where incorrectly classified @$er or natural. Similarly, plantations which display
patchy canopy cover, i.e. higher heterogeneity,ewdassified asatural. Conversely, certain
sections of natural forest that have homogenouspas were mistakenly classified @antation.
Non-forest riparian vegetation, which has a vemilsir spectral signature and textural structure to

typical plantations was also often incorrectly slésd asplantation.

5.1.2 Accuracy assessment of forest maps generated usimgule-set classifier

The results of the accuracy assessment carriedrotite forest maps generated by the rule-set
classifier are summarized in Table 5.2. When coegbawith Table 5.1 one can see that the
accuracies obtained using the rule-set classifier §0% and a Kappa Index of 0.788) is virtually
the same to that of the maps produced by the siggerelassification. Another similarity is the
higher producer's and user's accuracy foratiher class, which is again indicative of the greater
separability between thatherandforestclasses over th@antationandnatural.

Specific reasons for classification inaccuracieg also comparable to the supervised
classification: young, burnt or patchy plantaticare incorrectly classified asther or natural
forest natural vegetation displaying high homogeneity pdantation topography-shadowed
agriculture as eithenatural forestor plantation and riparian vegetation as natural forest.

However, in addition to these inaccuracies a nge tf error is observed, namely edge offsets.
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Table 5.2: The combined error matrix of the ruleedassifications undertaken on the four areas

Reference/Class Other Natural Plantation

Other 262 4 5 271

Natural 12 65 4 81

Plantation 7 8 33 48

281 77 42 400

Producer's Accuracy Users Accurac'y

Other 96.68 93.24

Natural 80.25 84.42

Plantation 68.75 78.57

Kappa Index 0.788

Overall Accuracy 90.00

Edge offsets are errors which are the result ofdiserepancies between the edges defined and
removed through edge detection, and the actualeb®rdf plantation and natural forest. Such
errors are slight, but tend to be more prone todddaneation of natural forest, as this land-cover
type contains a higher degree of heterogeneity. €&m@anple of this is the edge detection and
removal of the shadow of a visually distinct treaoagst other natural forest. The shadow is
erroneously classified agther, with the finalnatural classification appearing slightly patchy due
to the grey-level variation caused by the heteredgmf natural forest.

5.1.3 Classifier comparison

It is argued here, that when considering the apbiiity of the two approaches to forest mapping
over large areas, two features are prominent wietermhining which is superior: accuracy and
cost-effectiveness. The accuracies of the two iflasss as shown in previous sections, are both
reasonably high at 90%. This is reinforced by thgh lkkappa indices seen for the classifications:
both bordering on 0.8, which indicates a fair amafrconfidence with which the classifications
can be interpreted. With the accuracies of thedlassifiers showing such a high similarity, it can
be inferred that a decision on which is the supetliassifier must rest with the cost-effectiveness
of the technique. This is often directly relatedte degree to which the classification process can

be automated as one of the main costs of imagsifitasion is user input.

The degree of automation of a classification i®aly affected by the amount of input required
from a user to obtain a classification result. Fégh.1 illustrates the project workflow used in the
supervised classification approach. As can be ssmh of the four areas classified followed the

same approach. Training data was created for gaghaad the areas was classified consecutively.
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The results of the classification were assessedtl@ndraining data altered accordingly. This

process of iterative refinement was repeated arddtisfactory classification was produced.
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Figure 5.1: The project workflow of the supervisggproach

Conversely, the project workflow of the rule-sepagach shows a higher degree of automation
(i.e. less user input), as illustrated in Figurg. S'he development of the rule-set was based on
Area 1 and modified for Area 2. The rule-set wasaitively adjusted and tested on both Area 1
and 2 until a satisfactory overall classificatioasamobtained. Although the rule-set creation was
more user-intensive (i.e. costly) than the creatibtraining data for one area, the advantage ef th
rule-set classifier lies in its re-use for Areasr®8d 4 without significant loss of accuracy (see
Appendix B for individual error matrices). This v#sindicates that rule-set classifiers can be
applied to different images over a wide area, rendat more automated and therefore more cost-

effective than a supervised classification approach
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Figure 5.2: The project workflow of the rule-sepamach

5.2 Synopsis and conclusions

The aim of this study was to, using object-oriesdatechniques, compare the accuracy and cost-
effectiveness of a supervised and rule-set classidin approach for mapping forests on a regional
scale. Such a goal prompted a number of questidnshwneeded to be addressed, the first of
which was: why select these specific classificatmproaches? This question was addressed by
assessing different methods of image classificatiotme literature, analysing the advantages and
disadvantages of each, and then relating the motabte methods to the task of a multi-image,
large-scale forestry inventory. The review of r@skan this field made it apparent that, in terms
of accuracy, familiarity and ease-of-application,abject-orientated supervised classification was
the most suitable for the task at hand. Concerautgmation and cost-effectiveness, however, an
expert-systems rule-based classification in an atlggentated environment showed significant
promise, although the possible accuracies of sutlnique were unclear as it had never been

attempted for multi-image forestry mapping in So#frica. The crux of this research was then to
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develop an expert-system, rule-based classifier eaaluate its accuracy and cost-effectiveness

against a supervised classification for forest nragppn a national scale.

To undertake this, two orthorectified, pan-sharpe8POT 5 images were acquired from the SAC
of the CSIR. Images were further pre-processedguatmospheric correction procedures, and
15x10km image subsets were delineated from eaclhye@nf@eference data was compiled using
ancillary data and field visits, and verified bjoaestry expert.

The object-orientated supervised approach was tai@ger using a nearest-neighbour algorithm on
a nine-class, two-tier hierarchical classificatidmaining areas were delineated and iteratively
refined, using information obtained during a fieddrvey and by using ancillary data. The
development of the rule-set was an iterative prmcedere the accuracies of one classification
iteration determined the refinement of individuehture threshold rules used, until a satisfactory
classification was returned. When tested on fowasrspanning two SPOT5 images, both
classifiers returned overall accuracies of 90% wlthost identical kappa values of almost 0.8. In
terms of automation, the process of training dagaetbpment for each area rendered the
supervised approach more user-intensive, and tirerdess cost-effective than the rule-set
approach. Adding weight to this argument is theunsgnent that training data demands the
meticulous scrutiny of accurate, large-scale aagilidata, and should be supplemented by field-

site verification, which is both time-consuming dirdncially expensive.

Taking these findings into account, the conclusadrthis research is that the greater level of
automation shown by the expert-system rule-setagmbr renders it superior to that of supervised
classification for the task at hand. It is theref@uggested that the expert-systems rule-set
presented here should be employed for the claasdit of natural and plantation forests on
regional scales. However, more research is needddtermine whether the rule-set classifier can
be applied to other areas as it was only testednfoforest types and tree species located in the
study area. It is likely that some adjustments Wélrequired to compensate for the spectral and
textural variations of other forest types. Thusitecommended that this rule-set be subjected to
further testing in other areas. For a study ontsgonal scale, it may be necessary to modify the
rule-base to develop a catalogue of rule-setsifterdnt regions which, at a future date, could be

readily applied to any SPOT 5 imagery for monitgramd management purposes.

15608 words
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APPENDIX A: RULE-SET DOCUMENTATION

Definiens Developer 7.0 documentation of rule-s&ules26A.dcp, the final rule-set used for
the classification ofnatural, plantation and other.

Layers:
SPOT Band 1(green); SPOT Band 2 (r&P0OT Band 3 (NIR); SPOT Band 4 (SWIR); Edge
mask.

Classes:
Forest
Natural
Other
Plantation
Unsure
Vegetation
VegetationR

Customized Features:
RatioVegMnL1: [Layer mean of Layer 1, VegetaR)/[Mean Layer 1]

Process: Main:
Forest Extraction

Segmentation
multiresolution segmentation: 25 area'Level One'

Classify Vegetation
assign class: with Ratio Layer 3 <230 at Level One: Other
assign class: unclassified at Leva¢O/egetationR
assign class: Other at Level Onelassified

Classify Forest
copy image object level: at Level Ooapy creating 'Level Two' below
assign class: VegetationR at LevebTWegetation
assign class: Vegetation with RatigMalLl <= 1.1 at Level Two: Other
assign class: Vegetation at Level Tharest
assign class: Other at Level Two:lassified

Resegmentation
merge region: loop: Forest at LewabT merge region
merge region: loop: unclassified av&l Two: merge region
multiresolution segmentation: Foistevel Two: 100 [shape:0.5 compct.:0.5]
copy image object level: at Level Twopy creating 'Level Three' below
assign class: Forest at Level Thesure

Type Extraction
assign class: Unsure with Brightnes$0 at Level Three: Natural
assign class: Unsure with RatioVegim= 1.23 at Level Three: Plantation
assign class: Unsure with Ratio #ngcLayer 3 <= 1.05 at Level Three: Plantation
assign class: Unsure with Standaxdatien Layer 3 <= 13 at Level Three: Plantation

Cleanup
assign class: Unsure at Level Thikagural
merge region: loop: Natural at LeVhtee: merge region
merge region: loop: Plantation atéleVhree: merge region




APPENDIX B: INDIVIDUAL ERROR MATRICES

Table B1: Supervised classification error matriAoéa 1
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Reference/Class Other Natural Plantation Totals

Other 78 1 4 83

Natural 0 5 0 5

Plantation 3 1 8 12

Totals 81 7 12 104
Producers Accuracy Users Accuracy

Other 93.98 96.30

Natural 100.00 71.43

Plantation 66.67 66.67

Kappa Index 0.709

Overall Accuracy 91.00

Table B2: Supervised classification error matrixAoéa 2

Reference/Class Other Natural Plantation Totals

Other 66 3 0 69

Natural 4 15 1 20

Plantation 1 0 10 11

Totals 71 18 11 100
Producers Accuracy Users Accuracy

Other 95.65 92.96

Natural 75.00 83.33

Plantation 90.91 90.91

Kappa Index 0.805

Overall Accuracy 91.00

Table B3: Supervised classification error matriAoéa 3

Reference/Class Other Natural Plantation Totals

Other 76 1 1 78

Natural 3 7 0 10

Plantation 1 1 10 12

Totals 80 9 11 100
Producers Accuracy Users Accuracy

Other 97.44 95.00

Natural 70.00 77.78

Plantation 83.33 90.91

Kappa Index 0.802

Overall Accuracy 93.00




Table B4: Supervised classification error matriAoéa 4
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Reference/Class Other Natural Plantation Totals

Other 34 1 1 36

Natural 4 46 6 56

Plantation 0 3 5 8

Totals 38 50 12 100

Producers Accuracy Users Accuracy

Other 94.44 89.47

Natural 82.14 92.00

Plantation 62.50 41.67

Kappa Index 0.738

Overall Accuracy 85.00

Table B5: Rule-set classification error matrix akA 1

Reference/Class Other Natural Plantation Totals

Other 79 0 0 79

Natural 4 8 1 13

Plantation 0 3 5 8

Totals 83 11 6 100
Producers Accuracy Users Accuracy

Other 100.00 95.18

Natural 61.54 72.73

Plantation 62.50 83.33

Kappa Index 0.754

Overall Accuracy 92.00

Table B6: Rule-set classification error matrix akA 2

Reference/Class | Other Natural Plantation Totals

Other 69 0 2 71

Natural 0 7 1 8

Plantation 3 3 15 21

Totals 72 10 18 100
Producers Accuracy Users Accuracy

Other 97.18 95.83

Natural 87.50 70.00

Plantation 71.43 83.33

Kappa Index 0.797

Overall Accuracy 91.00




Table B7: Rule-set classification error matrix akA 3
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Reference/Class Other Natural Plantation Totals

Other 72 4 3 79

Natural 2 7 1 10

Plantation 1 1 9 11

Totals 75 12 13 100
Producers Accuracy Users Accuracy

Other 91.14 96.00

Natural 70.00 58.33

Plantation 81.82 69.23

Kappa Index 0.685

Overall Accuracy 88.00

Table B8: Rule-set classification error matrix akA 4

Reference/Class Other Natural Plantation Totals

Other 42 0 0 42

Natural 6 43 1 50

Plantation 3 1 4 8

Totals 51 44 5 100
Producers Accuracy Users Accuracy

Other 100.00 82.35

Natural 86.00 97.73

Plantation 50.00 80.00

Kappa Index 0.804

Overall Accuracy 89.00




