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Abstract

This thesis presents the development and implementation of a position based kinematic gui-
dance system, the derivation and testing of a Dynamic Pursuit Navigation algorithm and a
thorough analysis of an aircraft’s runway interactions, which is used to implement automated
take-off of a fixed wing UAV.

The analysis of the runway is focussed on the aircraft’s lateral modes. Undercarriage and
aerodynamic effects are first analysed individually, after which the combined system is ana-
lysed. The various types of feedback control are investigated and the best solution suggested.
Supporting controllers are designed and combined to successfully implement autonomous
take-off, with acceleration based guidance.

A computationally efficient position based kinematic guidance architecture is designed
and implemented that allows a large percentage of the flight envelope to be utilised. An
airspeed controller that allows for aggressive flight is designed and implemented by applying
Feedback Linearisation techniques.

A Dynamic Pursuit Navigation algorithm is derived that allows following of a moving
ground based object at a constant distance (radius). This algorithm is implemented and veri-
fied through non-linear simulation.
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Opsomming

Hierdie tesis handel oor die ontwikkeling en toepassing van posisie-afhanklike, kinematiese
leidings-algoritmes, die ontwikkeling van ’n Dinamiese Volgings-navigasie-algoritme en ’n
deeglike analise van die interaksie van ’n lugraam met ’n aanloopbaan sodat outonome ops-
tygprosedure van ’n vastevlerk vliegtuig bewerkstellig kan word.

Die bogenoemde analise het gefokus op die laterale modus van ’n vastevlerk vliegtuig en
is tweeledig behartig. Die eerste gedeelte het gefokus op die analise van die onderstel, terwyl
die lugraam en die aerodinamiese effekte in die tweede gedeelte ondersoek is. Verskillende
tipes terugvoerbeheer vir die outonome opstygprosedure is ondersoek om die mees geskikte
tegniek te bepaal. Addisionele beheerders, wat deur die versnellingsbeheer gebaseerde ops-
tygprosedure benodig word, is ontwerp.

’n Posisie gebaseerde kinematiese leidingsbeheerstruktuur om ’n groot persentasie van
die vlugvermoë te benut, is ontwikkel. Terugvoer linearisering is toegepas om ’n lugspoedbe-
heerder , wat in staat is tot aggressiewe vlug, te ontwerp.

’n Dinamiese Volgingsnavigasie-algoritme wat in staat is om ’n bewegende grondvoor-
werp te volg, is ontwikkel. Hierdie algoritme is geïmplementeer en bevestig deur nie-lineêre
simulasie.

ii



Acknowledgements

The author would like to thank the following people for their contribution towards this pro-
ject.

• The Lord for His inspiration and guidance during this research.

• My parents for their love and support.

• Dr. Iain Peddle for his guidance, support during this research and always being avai-
lable. Without his insights, this research would not have progressed to this level.

• Armscor for funding the project.

• Deon Blaauw for his support, insights and friendship.

• Bernard Visser for his work ethic that made our collaboration an enjoyable experience.

• AM "Abel" de Jager for his help during testing, proof reading of this document and his
friendship.

• Chris "Kree" Jaquet for being a great sounding board and friend.

• Marcel "Muscle-man" Basson and Wihan "Conan" Pietersen for their help during testing.

• Michael Basson being available as a test pilot.

iii



Contents

Abstract i

Opsomming ii

Acknowledgements iii

Contents iv

Nomenclature vii

List of Figures xii

List of Tables xvi

1 Introduction 1
1.1 Focus of this research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Thesis goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I Take-off 6

2 Take-off System Design 7
2.1 Phases of Take-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Control required during Take-off phases . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Dynamic Runway Model 11
3.1 Axis, Attitude and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Undercarriage Forces and Moments . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Aerodynamic Forces and Moments [3] . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Other Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iv



CONTENTS v

4 Take-off part 1:
Aerodynamic Control 22
4.1 Axial Runway Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Runway Pitch Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Runway Roll Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Take-off part 2:
Lateral Analysis and Control 34
5.1 Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 State Space Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Understanding the Lateral Runway model for Control System Design Purposes 38
5.4 Lateral Runway Innerloop Controller Design . . . . . . . . . . . . . . . . . . . . 49
5.5 Lateral Runway Guidance Controller . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.6 Take-off path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Take-off Simulation 71
6.1 Throttle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Runway lateral position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Runway Pitch Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.4 Runway Roll Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

II Waypoint- and Dynamic Pursuit Navigation 76

7 Waypoint- and Dynamic Pursuit Navigation System Design 77
7.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8 Aircraft Dynamic Flight Model 80
8.1 Aerodynamic dynamic model [14] . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9 Innerloop Flight Control 83
9.1 Airspeed Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.2 Normal Specific Acceleration Controller [14] . . . . . . . . . . . . . . . . . . . . 87
9.3 Roll Angle Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.4 Lateral Specific Acceleration Controller [14] . . . . . . . . . . . . . . . . . . . . . 93
9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

10 Outerloop Controllers 95
10.1 Guidance method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.2 Flight Trajectory Position Controllers . . . . . . . . . . . . . . . . . . . . . . . . . 97



CONTENTS vi

10.3 Trajectory Axis Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

11 Waypoint- and Dynamic Pursuit Navigation 104
11.1 Flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
11.2 Dynamic Pursuit Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
11.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
11.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

12 Flight Control Simulation 113
12.1 Waypoint Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
12.2 Dynamic Pursuit Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
12.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

13 Conclusion and Recommendations 119
13.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
13.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Appendices 122

A Direction Cosine Matrix 123

B Super Frontier Senior 46 physical data 124

C Linearising the Runway Model 126

D Derivation of acceleration vector required for Dynamic Pursuit Navigation 130
D.1 Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
D.2 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
D.3 Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Bibliography 135



Nomenclature

Physical:

b Wing Span

c Mean Aerodynamic Chord

S Surface Area

A Aspect Ratio

e Efficiency

m Mass

Ixx Moment of Inertia around roll axis

Iyy Moment of Inertia around pitch axis
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lL Undercarriage total length

lw Undercarriage total width

ls Axial distance from CG to steering wheel

lm Axial distance from CG to centre of main wheels

ll Lateral distance from CG to left wheel

lr Lateral distance from CG to right wheel

Natural Constants:

ρ Air Pressure

g Gravitational Acceleration

Aerodynamic:

q Dynamic Pressure

CL Aerodynamic Lift Coefficient

CD Aerodynamic Drag Coefficient

Cl Aerodynamic Roll Coefficient

Cm Aerodynamic Pitch Coefficient

Cn Aerodynamic Yaw Coefficient

Cx Aerodynamic Axial Force Coefficient
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NOMENCLATURE viii

Cy Aerodynamic Lateral Force Coefficient

Cz Aerodynamic Normal Force Coefficient

Position and Orientation:

N North Position

E East Position

D Down Position

x x-axis displacement

y y-axis displacement

z z-axis displacement

φ,θ,ψ Euler Angles

i,j,k Basis Vectors

Velocity and Rotation:

V Velocity Vector

U Axial Velocity

V Lateral Velocity

W Normal Velocity

ω Angular Velocity

P Roll Rate

Q Pitch Rate

R Yaw Rate

Forces, Moments and Accelerations:

L Roll Moment

M Pitch Moment

N Yaw Moment

X Axial Force

Y Lateral Force

Z Normal Force

A Axial Specific Acceleration

B Lateral Specific Acceleration

C Normal Specific Acceleration

ax Axial Acceleration along the x-axis

ay Lateral Acceleration along the y-axis

az Normal Acceleration along the z-axis



NOMENCLATURE ix

Actuation:

TC Thrust Command

T Thrust State

τT Thrust Time Constant

δE Elevator Deflection

δA Aileron Deflection

δR Rudder Deflection

δS Steering wheel Deflection

δRun Runway Virtual Actuator Deflection

System:

A Continuous System Matrix

B Continuous Input Matrix

C Output Matrix

D Feedforward Matrix

ω System frequency

ζ System damping

Subscripts:

B Coordinated in Body Axes

E Coordinated in Earth Axes

W Coordinated in Wind Axes

S Coordinated in Stability Axes

G Gravitational force or acceleration

g Measurement relative to ground

T Coordinated in Trajectory Axes

t Related to the tyre

s Related to the steering wheel

m Related to the main wheels

l Related to the left wheel

r Related to the right wheel

Superscripts:

BI Body relative to Inertial

WI Wind relative to Inertial



NOMENCLATURE x

Take-off related:

α Wheel Side Slip

γ Wheel Camber

µ f Coefficient of kinetic friction

Vg Groundspeed

N Normal Force

N′ Aligning Moment

Flight related:

α Angle of Attack

β Angle of Side slip

Va Airspeed

Dynamic Pursuit Navigation:

Na Aircraft North Displacement on the Tracking axis

Ea Aircraft East Displacement on the Tracking axis

Nt Desired Aircraft North Displacement on the Tracking axis

Et Desired Aircraft East Displacement on the Tracking axis

ψa Heading from the aircraft to the desired point on the Tracking axis

ψA Heading of the required acceleration vector

ψt Heading from the object to the desired point on the Tracking axis

VO Object’s velocity



NOMENCLATURE xi

Acronyms:

CG Aircraft Centre of Gravity

DCM Direction Cosine Matrix

ESL Electronic Systems Laboratory

UAV Unmanned Aerial Vehicle

ATOL Automatic Take-Off and Landing

VTOL Vertical Take-Off and Landing

IMU Inertial Measurement Unit

GPS Global Positioning System

OBC OnBoard Computer

CG Centre of Gravity

DOF Degree Of Freedom

EOM Equations Of Motion

PI Proportional Integral

MIMO Multi Input Multi Output

SIMO Single Input Multi Output

2D Two Dimensional

3D Three Dimensional
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Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) are currently one of the main research fields in aeronautics,
as they have certain advantages above piloted- or remotely controlled vehicles. UAVs are able
to achieve precision flight for long periods of time without being affected by factors such as
pilot fatigue and visibility. The costs of UAVs are also much less than piloted aircraft.

However, the human element cannot yet by excluded as humans have the ability to make
split second decisions while taking a multitude of factors into consideration. Unlike UAVs,
humans also have the ability to determine the correct course of action by analysing factors
that are not necessarily related to the specific flight mission.

The future goal for UAVs is to form part of a larger system. The flight control and guidance
would be autonomous and humans would only interact by making mission critical decisions.
This would eliminate the use of pilots for all missions. These would include transport, air
combat and commercial applications. Since UAVs cannot yet accomplish all these goals, they
are currently best suited to surveillance missions.

The aim of the UAV group in the Electronic Systems Laboratory (ESL) at Stellenbosch
University is to further UAV research to push the boundaries of unmanned flight. Before that
could be accomplished, a foundation of basic flight controllers for fixed wing aircraft had to
be laid down. Previous research such as autonomous Take-off and landing (ATOL) [11, 12],
basic flight control with Waypoint navigation [13], aerobatic flight [18] and hover control for
vertical Take-off and landing (VTOL) [26] have succeeded in creating this foundation. This
has led to more advanced flight control which include the expansion of the flight envelope
of UAVs [19], allowing the aerodynamic optimisation of airframes by eliminating stability
criteria [24], precision landing [25] and improving flight safety through stall prevention [27].

This thesis has two main objectives that are largely unrelated, but both are aimed at ex-
panding the UAV knowledge base at the ESL. These are autonomous Take-off and Waypoint-
and Dynamic Pursuit Navigation of a fixed wing UAV with a tricycle undercarriage.

1
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1.1 Focus of this research

1.1.1 Take-off

In order to further UAV research into a fully autonomous system, Take-off and landing must
be automated. ATOL of an UAV is not new to the ESL and basic groundwork has been laid
by [11] and [12]. The aim of that research was a practical, low cost solution to the ATOL
problem. The motion of the aircraft while on the runway (including both aerodynamic and
undercarriage interactions) was not analysed in detail, but rather a simple and robust solution
was sought.

It was felt that more insight was required into the dynamics of fixed wing aircraft while
on the ground. This insight could be used to determine the most suitable type of control for
Take-off. This is thus the main focus of the Take-off part of this thesis.

1.1.2 Waypoint- and Dynamic Pursuit Navigation

At the time of this research, the guidance controllers that have been developed at the ESL
to allow for basic guidance (limiting the flight envelope) or complicated 3D aggressive ma-
noeuvres (full use of the flight envelope, but computationally inefficient). An intermediate
level of guidance control is desired that allows for computational efficient guidance while uti-
lising more of the flight envelope (large bank angles and high g manoeuvres). This guidance
control should be capable of being used for Waypoint navigation and the application of more
complicated algorithms, such as Dynamic Pursuit Navigation.

As UAVs are well suited for use as surveillance platforms, they are usually fitted with a
camera which allows a remote user to gain visual information about the surrounding envi-
ronment and increase situational awareness. Such UAVs are currently being used to perform
a variety of surveillance tasks, which include land surveys and patrolling of borders or coast-
lines. During these surveillance missions, there are situations when a vehicle, person or object
is spotted and needs to be inspected or followed. Since this is not a preplanned objective,
the navigation needs to be implemented while in flight with limited information about the
object. This is called Dynamic Pursuit Navigation and allows the onboard camera has to be
positioned relative to the object by using real-time data to enable an unobstructed line of sight.

This part of the thesis focusses on the development of the intermediate guidance control
and a Dynamic Pursuit Navigation algorithm.

1.2 Thesis layout

1.2.1 Take-off layout

The Take-off section begins with the system design in Chapter 2. An overview will be pre-
sented of the requirements and procedures that need to be completed to fulfil Take-off. A
description of the required controllers will then be outlined.
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Chapter 3 defines all the descriptions required to describe the aircraft’s attitude and mo-
tion. The aircraft’s interaction with the runway and atmosphere is also analysed to produce a
full non-linear model of the aircraft on the runway.

The Take-off controller design is split into two chapters. Chapter 4 designs all the aerody-
namic Take-off controllers. The lateral motion is linearised, analysed and the controllers are
designed in Chapter 5.

All these controllers are then combined and tested in a complete non-linear simulation.
The results of these simulations are shown in Chapter 6. This concludes the Take-off section.

1.2.2 Waypoint- and Dynamic Pursuit Navigation layout

Once Take-off is completed flight control will be discussed. Chapter 7 describes the system
design required for Waypoint- and Dynamic Pursuit Navigation, in which an overview of the
control strategy and controllers will be given.

The model for the aircraft in flight is not explicitly derived, instead the model designed by
[14] is used and summarised in Chapter 8.

Chapter 9 discusses the design of the flight stability (innerloop) controllers, with the focus
being on the airspeed and roll controllers. The other modes are controlled by [14]’s controllers,
as they are sufficient.

A new set of guidance (outerloop) controllers are designed in Chapter 10 that allow more
of the aircraft’s flight envelope to be used, without requiring overly complicated calculations.
All these controllers are then combined to create a flight guidance system.

The waypoint- and Dynamic Pursuit Navigation algorithms are developed in Chapter 11.
This allows the UAV to fly between specified waypoints and follow moving surface objects1.
This system is then tested in a full non-linear simulation and the results are shown in Chapter
12. This concludes the second section of this thesis.

A summary of the results of the Take-off analysis and controllers, and Dynamic Pursuit
Navigation algorithm is given in Chapter 13. Any recommendations for future research are
also made here.

1.3 Hardware

To enable the implementation of this research, a hardware platform is required. A new air-
frame and a digital avionics pack, previously designed at the ESL, was selected for this pur-
pose.

1.3.1 Airframe

Since this research is aimed at fixed wing UAV research, a suitable airframe is required. A
Super Frontier Senior 46 trainer aircraft was used as the application airframe. This airframe
was shared with another masters research project [25] and had to conform to the requirements

1Objects that travel on the surface of the earth
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of both projects. It was chosen since it has a low wing loading2, sufficient space to build in the
avionics and is configurable into two different undercarriage configurations.

Figure 1.1: Photograph of the airframe used in this research

1.3.2 Avionics

A digital electronic avionics pack was required as it allows for flexibility in the implementa-
tion of the control strategies. The avionics used has been developed in the ESL which includes
an Inertial Measurement Unit (IMU), low cost GPS, pressure sensors and a magnetometer. A
PC-104 based PC with a 300 MHz Celeron CPU was used as the Onboard Computer (OBC).

1.4 Simulation

In order to minimise risk to the aircraft, extensive Hardware In the Loop (HIL) simulations
were run to ensure the satisfactory operation of the system. These simulations use the flight
ready avionics and connects it to a simulation environment that emulates the motion of the
physical airframe and sends dummy sensor data to the avionics. Since the avionics cannot
tell the difference between real and dummy data, this test emulates actual flight with a high
degree of accuracy. The HIL simulation that was used has been developed in the ESL in
Simulink (as part of the MATLAB® software package).

2A ratio of aircraft mass to wing surface area.
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1.5 Thesis goals

In summary, the goals of this thesis are,

• Analise the interactions of the aircraft while on the runway to gain detailed insight into
the dynamics.

• Use this analysis to determine what type of control is best suited for Take-off.
• Design controllers that enable automated Take-off.
• Simulate these controllers to determine their effectiveness.
• Design new innerloop controllers that are applicable to the new guidance architecture

(airspeed and roll controllers).
• Design a new guidance architecture that utilises more of the flight envelope, while kee-

ping the computational demand low and allows the implementation of navigation algo-
rithms.

• Develop an algorithm that allows a moving surface object to be followed with no pre-
vious information about its motion (Dynamic Pursuit Navigation).

• Test the controllers and algorithms in a non-linear simulation environment.
• Practically test the working of all the controllers (Take-off and flight) and algorithms

(Waypoint- and Dynamic Pursuit Navigation).



Part I

Take-off
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Chapter 2

Take-off System Design

Before the Take-off controllers are designed, it is necessary to define Take-off. Take-off is the
procedure used to get an aircraft airborne from a stationary position. For the purpose of
controller design, the Take-off procedure has to be simplified into phases which allow one set
of controllers to be used for each phase.

2.1 Phases of Take-off

The general phases of Take-off have been defined in [11] as follows. The acceleration of the
aircraft from a stationary position up to rotation speed1 (Vr) is defined as the Groundroll
phase. Once Vr is reached, the aircraft must become airborne by rotating2. This is called the
Rotation phase. Once the aircraft is airborne it must gain altitude as fast as possible without
stalling3, which is called the Climb out phase.

2.1.1 Phases of control used by [11]

Additional phases were added for control by [11], as the avionics used put certain constraints
on the available measurements. Five phases were used, with the Groundroll phase being split
into three. Phase 1 starts by placing the aircraft in the centre of the runway, facing along its
length in the direction of Take-off. A low groundspeed is regulated until a valid GPS heading
is measured, after which phase 2 is entered.

Phase 2 is used to guide the aircraft down the runway and when it is lined up4, phase 3 is
entered. In phase 3 the aircraft accelerates up to Vr. Phases 1 to 3 are all part of the Groundroll
phase.

Once Vr is reached, phase 4 is entered. Phase 4 is the Rotation phase in which the aircraft
increases pitch to generate sufficient lift to become airborne. The Rotation phase is considered
complete when the aircraft is more that 5m above the runway. The Climb out phase (phase
5) is then entered and continues until the aircraft is 30m above the runway. Take-off is then
considered complete.

1The airspeed at which the aircraft can generate enough lift to safely depart the runway into flight.
2Increasing the aircraft’s lift to allow it to depart the runway.
3Linear airflow over the lifting surface is disrupted and does not produce sufficient lift.
4The aircraft is centred width wise along the runway and pointing down the length of the runway

7
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2.1.2 Phases used in this research

A kinematic state estimator was used to obtain accurate heading measurements while statio-
nary. The use of phase 1 is thus not necessary. The other four phases are used as defined, but
renamed as starting at phase 2 is confusing.

Phase 2 is renamed as the Taxi phase. Phase 3 is called the Acceleration phase, in which
the maximum thrust is to be used to ensure the shortest Groundroll to reach Vr. Phase 4 and
5 are called by their general description of Rotation and Climb out phases respectively. Figure
2.1 shows a comparison of the general phases, those used by [11] and this thesis.

Figure 2.1: Graphical depiction of Take-off phases

2.2 Control required during Take-off phases

The control strategies are dependant on the motion of the aircraft during each phase, during
Take-off. The motion during each phase will be analysed and used as the base for the control
strategy.

2.2.1 Strategies

Taxi phase

At low speeds the aircraft’s body does not pitch or roll, unless there is an external disturbance
present (eg: wind). It is thus assumed that all the tyres remain in contract with the runway at
all times. This simplifies motion during the Taxi phase into two modes, namely axial (forward
body motion) and lateral (changing of the aircraft’s heading). Thrust created by the engine is
designed to change the aircraft’s axial motion. The steering wheel is designed to change the
aircraft’s heading while on the runway.

Thrust will be used to ensure the aircraft maintains low ground speeds (groundspeed
controller). The steering wheel is used to control the aircraft’s lateral motion on the runway
so that it is lined up correctly for the Acceleration phase (lateral controller). Since all the other
actuators require sufficient airflow to be effective they will not be used at this low speed.
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Acceleration phase

When the aircraft accelerates to Vr the same modes of motion are present as in the Taxi phase.
The difference is that the aircraft starts producing lift, which decreases the restoring moments
of the undercarriage. It is possible that a wind gust would be able to cause the undercarriage
to lose contract with the runway, by pitching or rolling the aircraft. It is thus important that
these disturbances be actively rejected.

Maximum thrust will be applied to ensure the shortest ground roll5. Lateral motion is still
regulated by the steering wheel, but the increase of airspeed will increase the effectiveness of
the rudder. The combined use of the steering wheel and rudder to control the lateral motion
will thus be investigated. Wind disturbances will be actively rejected by the elevator and
aileron (pitch- and roll rate regulation), but in such a way as not to cause unwanted torque
effects.

Rotation phase

Once Vr is reached the aircraft has to depart the runway. The aircraft is in contact with the
runway for a very short time during this phase. The effects of the undercarriage can thus be
ignored.

Maximum thrust remains to be applied to prevent a reduction in airspeed. The aircraft
is rotated by using the elevator (pitch angle control), while keeping the wings level6 (roll
angle controller). The steering wheel is disabled since it will no longer make contact with the
runway, while the rudder is used to prevent side slip (as it would in normal flight).

Climb out phase

During the Climb out phase the aircraft is fully airborne and is more related to flight control
than Take-off, as it will rely fully on aerodynamic control to control its motion. Simplified
flight control can thus be applied to ensure sufficient altitude is gained.

In order to keep the separation between the two main sections (Take-off and navigation)
in this thesis, the Climb out phase will not be discussed. It will rather be assumed that flight
control is enabled during Climb out, with a specified airspeed and climb rate command.

Before any controllers can be designed, a model must be derived for Take-off which gives
a mathematical description of the forces and moments that act on the aircraft.

Figure 2.2: Controllers required during Take-off phases

5The distance travelled on the runway.
6Wings parallel to the horizon.
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Figure 2.2 gives a summary of the controllers used in each phase of Take-off. The overall
system construction is represented in block diagram form in Figure 2.3

Figure 2.3: Overall Take-off system construction

2.3 Summary

It is now clear what type of controllers need to be implemented during Take-off. The specific
controllers are designed in Chapter 4 and 5, after thorough analysis. But first the aircraft’s
model, while on the runway, needs be derived.



Chapter 3

Dynamic Runway Model

A mathematical description of the dynamic motion of the aircraft is required so that linear
control techniques can be applied. Since the aircraft interacts with both the runway and at-
mosphere while on the runway, a combined model will be derived.

Every model requires a frame of reference relative to which the object is to be described. As
a result, axis systems and attitude descriptions are defined in order to describe the position,
motion and orientation of the aircraft. Using these descriptions, the interactions that cause
undercarriage forces and moments are integrated with the aerodynamic forces and moments
to produce the full non-linear model of the aircraft while on the runway (called the Runway
model).

3.1 Axis, Attitude and Conventions

3.1.1 Body axis

To be able to describe motion and orientation of the aircraft we need to define an axis system.
A right-handed orthogonal axis system is defined with its origin at the aircraft’s centre of mass
(also called the centre of gravity, CG) with the positive x-axis extending through the nose of
the aircraft (parallel to the thrust line of the engine). The positive y-axis is defined along the
starboard1 main wing. Finally, the positive z-axis is defined down through the bottom of the
aircraft.

The aircraft’s body is assumed to be rigid. The Body axis thus stays fixed to the aircraft’s
body, with the position vector from any point on the aircraft to the centre of mass remai-
ning unchanged over time. The xzB-plane is usually a plane of symmetry for the aircraft.
Throughout this thesis, all forces and moments are coordinated in Body axis unless specified
otherwise.

1The right wing when looking from behind the aircraft

11
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CG

Figure 3.1: The Body axis

3.1.2 Stability axis

The Stability axis is a type of Body axis, that has been rotated about the yB-axis by the body’s
angle of attack2 (α). This causes the relative wind velocity vector (Va) to lie in the xzB-plane
and be aligned with the xS-axis.

Figure 3.2: The Stability- and Wind axis

3.1.3 Wind axis

The Wind axis is a further extension of the Stability axis by rotating it about the zS-axis through
the side slip angle (β), so that the relative wind velocity vector is always aligned with the xW-
axis. Figure 3.2 shows the relationship between the Body-, Stability- and Wind axis systems.

2Angle between the xB-axis and the velocity vector.
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3.1.4 Earth axis

The aircraft’s motion needs to be described with respect to a reference frame. All navigation
is described with relation to the Earth. The distances that will be covered by this research
are small enough to approximate the earth as a flat surface. Consequently the Earth axis is
defined as a Cartesian right-handed orthogonal axis system with the origin at the centre of
the Take-off runway. The positive xE-axis points due north, the positive yE-axis due east and
the positive zE-axis down toward the centre of the earth.

The earth is not inertially fixed as it is rotating in space. The Earth’s rotation relative to
space is very small compared to the rotations of the aircraft relative to the earth. As a result,
it can be approximated that inertial rotations of the aircraft are the same as aircraft rotations
and accelerations relative to the Earth, by ignoring the influence of the Earth’s rotation.

Figure 3.3: The Earth axis

3.1.5 Aircraft Notation and Sign Conventions

The notation used in aviation follows a consecutive alphabetical format, starting with the x-,
y- and then z-axis. Body axis velocities are U (in the positive xB-axis), V (yB-axis) and W (zB-
axis). Rates of rotation are P, Q and R. Forces acting on the aircraft in the body axis are X, Y
and Z, while moments are L, M and N. Actuator deflections are defined such that a negative
deflection will cause a positive moment about an axis. The actuator convention is clearly
visible in Figure 3.1.

3.1.6 Attitude Description

It is essential to be able to describe the orientation of the aircraft relative to the Earth axis. A
number of descriptions exist, but Euler angles are used as they are intuitive and their singula-
rities will not be a problem. Euler angles are defined as rotations about the Body axis, with the
number describing the axis rotated about. 1 is Roll (φ) about the current xB-axis, 2 is Pitch (θ)
about the current yB-axis and 3 is Yaw (ψ) about the current zB-axis. A pictorial representation
is shown in Figure 3.4.

Euler angles have a singularity at various attitudes, depending on the description. As this
research is not aimed at aerobatic flight, the Euler 3-2-1 attitude description was used that has
a singularity when the aircraft’s xB-axis lines up with the earth’s zE-axis (or±90° pitch). Euler
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3-2-1 describes the aircraft’s orientation relative to the earth by assuming initial orientation is
aligned with the Earth axis, then rotating through the ψ, then θ and finally φ angle.

Horizon

x-axis

North

x-
ax

is

y-axis

Pitch plane

Figure 3.4: Euler attitude description angles (aircraft image courtesy of [29])

The Direction Cosine Matrix (DCM) [8] is defined such that vectors coordinated in one
axis system can be coordinated in another (see appendix A). The DCM can be written using
Euler angles and in the case where a vector from the Inertial axis has to be coordinated into
the Body axis, the DCMBI is used. Coordinating a Body axis vector into Inertial axis requires
the inverse DCM, but because the DCM is orthogonal,

[
DCMBI]−1

=
[
DCMBI]T [13].

VB = DCMBIVI (3.1.1)

VI = [DCMBI ]
T
VB (3.1.2)

Since the attitude angles change, their dynamics (the rotational dynamics) need be descri-
bed. They are described by Equation 3.1.3.φ̇

θ̇

ψ̇

 =

1 sin φ tan θ cos φ tan θ

0 cos φ − sin φ

0 sin φ sec θ cos φ sec θ


P

Q
R

 (3.1.3)
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3.1.7 6 Degree of Freedom Equations of Motion

The 6-DOF EOM are derived in their scalar form in [13]. This form allows the body forces and
moments to describe the motion of the aircraft. The 6-DOF EOM in Body axis can be written
as,

X = m(U̇ + WQ−VR)

Y = m(V̇ + UR−WP)

Z = m(Ẇ + VP−UQ) (3.1.4)

L = ṖIx − ṘIxz + QR
(

Iz − Iy
)
− PQIxz

M = Q̇Iy + PR (Ix − Iz) +
(

P2 − R2) Ixz

N = ṘIz − ṖIxz + PQ
(

Iy − Ix
)
+ QRIxz (3.1.5)

The relationship between force, acceleration, velocity and position are described below
[14]. The position- and velocity vector dynamics, relative to inertial space, is shown in Equa-
tion 3.1.6.

d
dt

PBI
∣∣∣∣

I
= VBI

d
dt

VBI
∣∣∣∣

I
= ABI =

d
dt

VBI
∣∣∣∣

B
+ ωBI ×VBI (3.1.6)

3.2 Undercarriage Forces and Moments

The undercarriage model gives a mathematical description of the aircraft’s interactions with
the runway. In order to produce this model, we need to first define the forces and moments
that the undercarriage induce on the aircraft. These forces and moments are produced by the
interaction between the tyres and the ground.

After defining an appropriate axis system for the tyre, these interactions are investigated.
The forces and moments created by airflow are discussed in Section 3.3, which completes the
non-linear Runway model.

3.2.1 Tyre axis

The origin of the Tyre axis (shown in Figure 3.5) is defined at the centre of contact between
the tyre and the surface that it is on. The plane that the wheel rotates in, is called the Wheel
plane. The xt-axis is the intersection between the Wheel plane and the ground plane, with
the positive being in the forward direction of wheel motion due to rotation. The zt-axis is
perpendicular to the ground plane and positive downward. The yt-axis completes the right-
hand orthogonal Tyre axis system and is perpendicular to the xt-axis and parallel to any vector
that lies in the ground plane.

Two angles are formed between the Wheel plane and the Tyre axis. The tyre slip angle (αt)
is the angle formed between the tyre’s velocity vector (Vt) and xt-axis. The camber angle (γt)
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is formed between the Wheel plane and negative zt-axis. Tyre forces and moments are defined
according to aviation convention. The forces and moments along the xt-, yt- and zt-axis are
Xt, Yt and Zt and Lt, Mt and N′t respectively.

Tyre

Figure 3.5: The Tyre axis

Contact Area

Tire Axis
y

x

z

Figure 3.6: Tyre deformation due to slip angle [7]

3.2.2 Tyre Forces and Moments [7]

If we only consider the interaction between the tyre and ground, there are forces and moments
that influence the motion of the tyre. These are Traction- (Xt), Lateral- (Yt) and Normal forces
(Zt) as well as Overturning- (Xt), Rolling Resistance- (Mt) and Aligning moments (N′t ).

Traction force is mainly caused by the deformation of the tyre carcass. This is a mechanical
drag that does not affect the lateral dynamics of the tyre. Instead it only produces friction that
inhibits forward motion on the runway. This force varies extensively with tyre type, -pressure
and normal force, and is difficult to determine. Consequently it will be lumped with the
kinetic friction variable (µ f ). Traction force is then,

Xt = −µ f Nt. (3.2.1)

Lateral tyre force (Yt) is a result of lateral tyre deformation (shown in Figure 3.6) and is
caused by the tyre’s camber- (γt) and slip angles (αt). The contribution to lateral tyre force
due to tyre camber is about five times smaller than that of tyre side slip for the same angle
deflection [7]. As tyre camber is typically small (less than 1°) its effect can be ignored without
adversely affecting the model. The contribution to lateral force due to slip angle is modelled
well by the Foundation Stiffness Model [6] as a set of stretched out springs. Through extensive
investigation is has been found that Yt is linear as long as side slip is small (less that 4°) [7],
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and the Cornering Stiffness (Cα) is defined to relate side slip (αt) to lateral force (Yt).

Cα =
∂Yt

∂αt
[7] (3.2.2)

Vertical load (or Normal force (Nt)) is the parameter that has the largest influence on the Cor-
nering Stiffness of a tyre, which allows for the non-dimensionalising of Cα with respect to
vertical load in the variable Cornering Coefficient (Cαα). Tyre pressure only has a moderate
effect on Cornering Stiffness and does not change during the use of the tyre unless it is punc-
tured, thus it is not included as a model parameter.

Cα = CααNt (3.2.3)

Note that lateral force is negative for a positive side slip, thus Cα and Cαα are negative per
definition. Lateral force due to side slip is thus,

Yt = CααNtαt (3.2.4)

Both Overturning- (Lt) and Rolling Resistance moments (Mt) have negligibly small or no effect
on the dynamic lateral response of the tyre [7], and are also ignored. When the tyre deforms
laterally, the lateral tyre force does not act on the centre of the tyre’s contract area with the
ground. The Aligning moment is formed between Yt and the force that the undercarriage
causes on the axle of the wheel (Yaxel). This moment is very small due to the short distance
between Yt and Yaxel (see Figure 3.6). Thus it is only considered when effort to steer the wheel
is analysed.

Tyre slip angles

Each individual tyre will have its own local slip angle. Subscripts s, l and r relate to the
steering-, left- and right wheels respectively. When viewing the undercarriage from above, as
in Figure 3.7, the slip angles are calculated in equations 3.2.5.

αs = arctan
(

Vs

Us

)
= arctan

(
V + lsR

U

)
+ δs

αl = arctan
(

Vl

Ul

)
= arctan

(
V − lmR
U + ll R

)
αr = arctan

(
Vr

Ur

)
= arctan

(
V − lmR
U − lrR

)
(3.2.5)

Undercarriage Normal Forces

An aircraft’s wheels are usually connected to the airframe with a spring and damper suspen-
sion system to increase passenger comfort. UAVs do not have to take passenger comfort into
consideration and subsequently their undercarriage usually does not have suspension com-
ponents in order to reduce complexity and weight. As there are no sensors that can measure
the normal forces on the wheels and aircraft are generally parallel to the runway during Take-
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Figure 3.7: Undercarriage notation and slip angles
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Wheel
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Wheel

Left & Right
Main Wheels

Figure 3.8: View from the back and side of the undercarriage depicting the normal forces

off, the normal forces are modelled as the mass that is evenly distributed.The total normal
force will be represented by N. The magnitude of the normal forces on each individual wheel
is then,

Ns =
lm

lL
N (3.2.6)

Nl =
ls

lL

lr
lw

N (3.2.7)

Nr =
ls

lL

ll

lw
N (3.2.8)

Taking the height between the tyre’s contact area and centre of mass into account, increases
the model complexity but does not add to the fidelity of the model and is thus ignored [11].

The lateral force produced locally at each wheel (Xs, Xl and Xr) has an effect on the body,
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which is both a force and a moment. The total undercarriage force vector in Body axis is, XU

YU

ZU


B

=

 Xs cos(−δs)− Ys sin(−δs) + Xl + Xr

Xs sin(−δs) + Ys cos(−δs) + Yl + Yr

−Ns −Nl −Nr

 (3.2.9)

Each wheel creates a moment (Ls, Ml and Nr) as a result of a force acting over a distance. The
total undercarriage moment vector in Body axis is, LU

MU

NU


B

=

 Ls + Ll + Lr

Ms + Ml + Mr

Ns + Nl + Nr


B

=

 (0) + (−llZl) + (lrZr)

(−lsZs) + (lmZl) + (lmZr)

(lsYs) + (llXl − lmYl) + (−lrXr − lmYr)


B

(3.2.10)

3.3 Aerodynamic Forces and Moments [3]

Aircraft are designed to control their movement by using their aerodynamic surfaces to control
the forces and moments that are generated on the body by its motion through the atmosphere.
In [3] the model is described by analysing the aerodynamic forces and moments acting on the
aircraft’s body. This description is easier to incorporate with the Runway model.

The forces and moments created by the movement of the aircraft through the atmosphere
are modelled in [3], and only stated here. These equations have been derived assuming a
small angle of attack (α). The aerodynamic forces and moments (denoted with subscript a) are
defined in Equation 3.3.1 by using non-dimensional aerodynamic coefficients coordinated in
Stability axis.

Xa = qS (CXS − CZS α)

Ya = qS (CYS)

Za = qS (CZS + CXS α)

La = qSb (CLS − CNS α)

Ma = qSc (CMS)

Na = qSb (CNS − CLS α) (3.3.1)
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The non-dimensional aerodynamic coefficients are defined by the use of stability- and
control derivatives [1].

CXS = −CD

CYS = Cyβ
β +

b
2Va

(
CYp P + Cyr R

)
+ CyδA

δA + CyδR
δR

CZS = −CL

CLS = Clβ
β +

b
2Va

(
Clp P + Clr R

)
+ ClδA

δA + ClδR
δR

CMS = Cmα α +
c

2Va

(
Cmq Q

)
+ CmδE

δE

CNS = Cnβ
β +

b
2Va

(
Cnp P + Cnr R

)
+ CnδA

δA + CnδR
δR (3.3.2)

with,

CL = CL0 + CLα α + CLq Q + CLδE
δE

CD = CD0 +
C2

L
πAe

A =
b
c

(3.3.3)

and,

q =
1
2

ρV2
a

3.4 Other Forces

3.4.1 Thrust

A methanol internal combustion engine is used for propulsion, which can be adequately mo-
delled as a first order lag from commanded thrust (Tc) to actual thrust (T) [11, 18]. It is assu-
med that the thrust acts through the xB-axis and the torque from the prop is small compared
to the moment of inertia of the aircraft and the countering effect of the ailerons, allowing it to
be ignored. The transfer function of the dynamic response of the engine is,

T
Tc

=
1

τTs + 1
(3.4.1)

where τT is the engine time constant.
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3.4.2 Gravity

Gravity always acts from an object’s lumped centre of mass, to the centre of the earth and can
be coordinated into the Body axis,XB

YB

ZB

 =
[

DCMBI
]  0

0
mg


E

(3.4.2)

(3.4.3)

3.5 Summary

All the forces and moments that act on the aircraft while on the runway (undercarriage and
aerodynamic) have been described. Combining these with the 6-DOF EOM produces the full
non-linear Runway model, which is used for non-linear simulation. The controller designs in
the following chapter, use this model as their plant.



Chapter 4

Take-off part 1:
Aerodynamic Control

In the previous chapter the Runway model was derived. The focus of this chapter is to use
this model to design linear controllers that can be used for Take-off.

Using the complete Runway model to design control systems is possible, but unnecessa-
rily complicated. The Runway model can be simplified by analysing the coupling between
different modes of motion, and should this coupling be sufficiently small, the modes can
be assumed to be decoupled. This decreases the amount of differential equations for each
controller and reduces complexity. The model is then linearised about a specified work point
before control is applied.

A standard sequence for the design of each controller is used, which is:

• Decouple the model to reduce the DOF.
• Linearise the model.
• Design the controller.
• Show linear simulation results of the controller.

Certain assumptions are made throughout this chapter which simplifies the controller de-
sign. The effect of these simplifications will be tested when a full non-linear simulation is run
and its results shown in Chapter 6. These assumptions are:

• No wind is present, thus airspeed is equal to groundspeed.
• The lateral velocity is much smaller than axial velocity.
• The xyB-plane is parallel to the xyE-plane.

Due to the amount of detail of the lateral runway controller, its analysis and design will be
described in Chapter 5. All the other Take-off controllers are designed in this chapter.

Runway Modes of motion

Four modes of motion have been identified in Section 2.2. These are axial (along the xB-axis),
lateral (directional motion restricted to the xyB-plane), pitch (rotation about the yB-axis) and
roll (rotation about the xB-axis). The only mode of motion left is normal (along the zB-axis).

22
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If the tyres remain in contact with the runway, lift and gravity are the only two components
that influence the normal force. The amount of lift is influenced by the airspeed and static
incidence angle of the main wing.

4.1 Axial Runway Control

4.1.1 Decoupling

The mathematical model describing the axial motion can be derived from the 6-DOF EOM
developed in Chapter 3. Assuming motion only along the xB-axis, the axial EOM can be
simplified to a 1-DOF dynamic model shown in Equation 4.1.1.

T + XU + Xa + XG = m(U̇ + WQ−VR) (4.1.1)

Thrust (T) , friction from the undercarriage (XU), aerodynamic drag (Xa) and gravity (XG)
are the contributors to axial motion from the body. Friction and drag is however difficult to
model accurately and only cause steady state errors that vary with speed. This allows them
to be omitted from the dynamic model and considered disturbances. Since lateral velocity (V)
and yaw rate (R) are small, their product is negligibly small and can be ignored. Pitch rate
(Q) is ignored due to the decoupling assumption. Gravity will not act axially as the aircraft
remains parallel to the runway. Thus Equation 4.1.1 simplifies to Equation 4.1.2 for controller
design.

T = m(U̇) (4.1.2)

4.1.2 Control Design

Before the aircraft commences Take-off, it has to be lined up with the runway. This is a low
speed manoeuvre at taxi speeds. As the steering wheel only works while the aircraft is mo-
ving, a groundspeed controller is designed to regulate a low groundspeed until the aircraft is
lined up.
The design specifications are,

• Rise time under 5 seconds.
• Overshoot of less than 10%.

Steady state errors are not of much concern as the groundspeed controller is used only while
the aircraft lines up on the runway. Due to the low amount of runway friction on UAVs, any
significant throttle increase will produce motion.

The most important design constraint is not the open loop response frequency of the en-
gine, but rather its actuation. Thrust produced by the engine (or propeller) is dependant on
the airflow through the engine. If this airflow is turbulent due to a noisy throttle actuator, the
engine will produce less thrust than expected at a specified thrust setting or possibly stall. The
only sensor on our aircraft that can measure the effect of thrust, is the axial (xB-axis) accelero-
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meter. Due to vibration, this accelerometer is noisy and, as a result, direct feedback from this
sensor will be avoided.

The linear plant used for both controllers is made up of the axial EOF (Equation 4.1.2) and
the thrust actuator model (Equation 3.4.1) and stated in transfer function form in Equation
4.1.3.

ax

Tc
=

1
m

τTs + 1
(4.1.3)

4.1.3 Groundspeed Controller

The groundspeed controller does not have to be an accurate controller as it is only used to
generate some groundspeed until the aircraft is lined up. A simple proportional controller is
implemented. The control law is defined as:

Tc = kv

(
Vgre f −Vg

)
(4.1.4)

1
s

x' = Ax+Bu
 y = Cx+Du

Axial
Dynamics

Figure 4.1: Taxi groundspeed controller architecture

Implementing the control law, the closed loop transfer function is,

Vgre f

Vg
=

kv
mτT

s2 + 1
τT

s + kv
mτT

(4.1.5)

Controller gain and Pole placement

There are two poles present in the system described in Equation 4.1.5. They will be placed
as a complex pole pair with their damping (ζτ) to be controlled. The only force that can slow
the aircraft down at low speeds is the friction from the wheels, which is small. To reduce the
possibility of overshoot, this controller’s damping is high. The controller gain and damping
is calculated as,

kv =
m

4τTζ2
τ

with, ζτ = 0.9 (4.1.6)

Step Response

The closed loop root locus and linear step response is shown in Figure 4.2. As no disturbances
are present, there is no steady state error. The rise time is within the desired specification.
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Figure 4.2: Taxi groundspeed controller root locus and linear step response

4.1.4 Throttle ramp

Once the aircraft is lined up with the runway, it needs to accelerate to reach rotation speed.
The strategy of axial acceleration control can be used to quantify the response of the thrust.
There are however two limiting factors. Firstly, the quadratic increase in drag will require a
type 4 system to follow it with a zero steady state error. But by far the dominant reason is
the lack of actuation. Unless a small acceleration is required, the controller would saturate the
thrust command quickly. The purpose of this controller is to accelerate the aircraft up to Vr as
fast as possible which allows for the shortest required runway length.

It was thus deemed unnecessary to design a closed loop system. Rather a open loop ramp
is applied to the throttle that opens it to maximum within a specified time. A linear fit is used
in Equation 4.1.7 to actuate the throttle, where Tmax is the maximum thrust available, tmax is
the time the throttle takes to open the throttle to maximum. Tstart is the throttle value when
the ramp is applied at tstart. A graphical depiction is shown in Figure 4.3.

Figure 4.3: Take-off throttle ramp

Tc =
Tmax

tmax
t + Tstart (4.1.7)
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4.2 Runway Pitch Control

Pitch control is crucial during Take-off. Any wind gusts can pitch the aircraft before Vr is
reached, causing it to stall. It is thus essential that the aircraft’s pitch is controlled. The un-
dercarriage will not necessarily keep the aircraft at a zero pitch angle (θ). If the controller tries
to enforce a zero pitch angle, the actuator could saturate. Thus, during the Groundroll phase,
pitch rate will be regulated to reject any pitch disturbances due to wind. Once Vr is reached
the aircraft must pitch up to depart the runway. Pitch angle control will be required for this.

4.2.1 Decouple

Pitch motion on the runway has no lateral component as is defined as pure rotation about the
yB-axis. The undercarriage produces a stable restoring pitch moment, but as the normal forces
cannot be measured it is difficult to model. A pure aerodynamic model is thus derived so that
wind disturbances can be rejected.

Using Equation 3.1.5, the pitch motion is described by a 1-DOF EOM 4.2.1.

M = Q̇Iy + PR (Ix − Iz) +
(

P2 − R2) Ixz (4.2.1)

Enforcing the assumptions made earlier, P = Ixy = 0, the pitch EOM simplifies to Equation
4.2.2.

M = Q̇Iy (4.2.2)

Since only the aerodynamic effects are taken into account, the aerodynamic pitching mo-
ment (Ma) from Equation 3.3.1 is used. Applying a small angle of attack assumption, the
contribution to pitching moment of Cmα α is negligibly small compared to c

2V̄a
Cmq Q and is omit-

ted. The aerodynamic moment is simplified to,

Ma = qSc
(

c
2Va

CmQ Q + CmδE
δE

)
(4.2.3)

4.2.2 Linear

The dynamic decoupled equation (Equation 4.2.2) for pitch shows that the only dynamic va-
riable is pitch rate (Q), and it can be measured. The state space representation is directly
written in Equation 4.2.4.

Q̇ =

[
qSc2CmQ

2Va Iy

]
Q +

[qScCmδE

Iy

]
δE

= [AQ] Q + [BQ] δE

Q = [1]Q + [0]δE (4.2.4)
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4.2.3 Pitch Rate Controller

Since the plant can be described by a single real pole, the closed loop pole can theoretically
be placed as fast a desired. Practically this would lead to excessive actuation effort. The rate
regulator is not explicitly designed. Rather, the pitch rate controller is designed with PI control
to give a specified closed loop pole placement.

In order to implement proportional rate feedback damper, the feedback gain needs to be
designed. Instead of explicitly designing the gain, the proportional gain of the PI controller is
used for the damper. Since kq will always be positive, the rate damper will always be stable.

PI controller design

x' = Ax+Bu
y = Cx+Du

Pitch
Dynamics

1
s

Figure 4.4: Runway pitch rate controller architecture

Since the airframe is stable its natural frequency is fast enough for the purpose of controller
design, only the damping is to be changed. The closed loop poles are placed at the open loop
frequency to prevent excessive actuator use. The two complex poles that are placed will have
a frequency of ωQ and damping ζQ. The control law, architecture and gain calculations are,

δE = keEQ − kqQ

ĖQ = Qre f −Q (4.2.5)

With closed loop pole locations and controller gains of,

ωQ = AQ

ζQ = 0.8

kq =
2ζQωQ + AQ

BQ

ke =
ω2

Q

BQ
(4.2.6)

Rate regulator implementation and Disturbance rejection

Using the gain calculated above, the rate regulator implementation is shown in Figure 4.5. A
disturbance rejection plot is shown in Figure 4.6. Since no integrator is present, a steady state
error could be present. This error will be eliminated by the undercarriage.
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Pitch
Dynamics-K-

Figure 4.5: Runway pitch rate controller linear disturbance rejection
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Figure 4.6: Linear runway pitch rate regulator with a 10°/s disturbance

4.2.4 Runway Pitch Angle Control

No guidance is required for pitch control while the aircraft is busy with the Groundroll phase.
Once the aircraft has reached Vr, it has to become airborne by rotating (pitching up). A
constant pitch angle is then required to ensure the aircraft remains airborne. A pitch angle
controller is thus implemented.

The design requirements are as follows,

• Rejection within 4 seconds.
• Zero steady state error.

Pitch Angle Controller Design

The pitch angle controller is designed using consecutive loop closure, with the pitch rate PI
controller as its innerloop. The PI rate controller is designed to eliminate any steady state
errors and as no pitch angle disturbances are present, proportional control will be used for the
angle loop. The control law and architecture are shown below,

Qre f = kθ

(
θre f − θ

)
(4.2.7)
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Figure 4.7: Runway pitch angle controller architecture

Pole placement and Controller gain

This architecture takes the rate controller’s dynamics into account, which allow for the maxi-
mising of the angle loop frequency. The position of one real pole is controllable, which will be
the angle pole (ωθ). In order to keep the controller general, a frequency of ωθ is determined
in terms of the innerloop frequency (ωQ). This controller gain and closed loop frequency is
shown in Equation 4.2.8, with the resulting root locus shown in Figure 4.8.

kθ =
ω2

θ

(
AQ − kqBQ + ωθ

)
keBQ

+ ωθ

ωθ =
ωQ

4
(4.2.8)
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Step response

A pitch angle step is shown in Figure 4.9. The reference is tracked within 3 seconds with no
steady state error, fulfilling the design requirements.
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4.3 Runway Roll Control

The restoring moments that are created by the undercarriage keeps the aircraft’s wings level.
Wind disturbances can roll the aircraft and need to be rejected. As this is a purely aerodynamic
disturbance, the aerodynamic actuator is well suited to rejecting these disturbances.

The undercarriage does not guarantee a zero roll angle while stationary. Trying to regulate
the roll angle could cause the aerodynamic actuator to saturate. Wind produces a roll moment
disturbance, which can be rejected with a rolling rate regulator. Once the aircraft rotates, the
wings will be kept level with a roll angle controller.

4.3.1 Decouple

From previous work it has been found that pitching and rolling motion can be totally decou-
pled [13]. Since the ailerons are well suited to controlling the roll of the aircraft, a 1-DOF
EOM model is decoupled for wind disturbance rejection from Equation 3.1.5, and shown in
Equation 4.3.2.

L = ṖIx − ṘIxz + QR
(

Iz − Iy
)
− PQIxz (4.3.1)

If there is pure rolling motion, we can assume that there is no lateral motion (β = Ṙ = R =

Q = 0). Equation 4.3.1 then simplifies to,

L = ṖIx (4.3.2)

Since only the aerodynamic moments (La) are taken into account, Equation 3.3.1 describes
these moments. The rudder has a negligible influence on roll compared to the ailerons, and is
thus omitted. Since α is a small angle, Equation 3.3.1 simplifies to:

La ' qSb (CLS)

' qSb
(

b
2Va

Clp P + ClδA
δA

)
(4.3.3)

4.3.2 Linear

Equation 4.3.2 identifies the state for the roll EOM to be roll rate (P), which can be measured.
The state space form is thus,

Ṗ =

[
qSb2Clp

2Va Ix

]
P +

[
qSbClδA

Ix

]
δA

= [AP] P + [BP] δA

P = [1] P + [0] δA (4.3.4)

4.3.3 Roll rate regulator

Since the criteria in terms of operation is the same as for pitch control, the same control archi-
tecture will be used (Figure 4.4). Only the pole placement will differ.
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Using the state space model in Equation 4.3.4, the control law is defined in Equation 4.3.5.
The controller gains are calculated in Equation 4.3.6, with desired closed loop frequency (ωP)
and damping (ζ).

δA = keEP − kpP (4.3.5)

kp =
2ζPωP + AP

BP

ke =
ω2

P
BP

(4.3.6)

The rate damping implementation is shown below in Figure 4.10.

Roll
Dynamics-K-

Figure 4.10: Runway roll rate regulator architecture

Pole placement

The closed loop system has two poles (open loop pole and integrator), which will be placed
as a complex pole pair. The desired closed loop characteristic equation is shown in Equation
4.3.7.

sCL = s2 + (2ζPωP) s + ω2
P (4.3.7)

The closed loop poles will be placed at the same frequency as the open loop pole. This will
give good roll rate disturbance rejection, without exciting unmodelled airframe dynamics.
The damping is large since any unmodelled delays will practically reduce the damping. The
control gain calculations are shown in Equation 4.3.6 and practically implemented open loop
pole locations are shown below,

ωP = AP

ζP = 0.8

Disturbance response

The closed loop disturbance response is shown in Figure 4.11. As there is no integrator present
in the controller, the disturbance will not always be followed with a steady state error.
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Figure 4.11: 10°/s linear roll rate disturbance response (runway controller)

4.3.4 Runway Roll Angle Control

Just like the pitch controller, no guidance is required for roll control during the Groundroll
phase. Once the aircraft has rotated, its wings need to be kept level during the climb out
phase to avoid it deviating off course.

• Rejection within 4 seconds.
• Zero steady state error.

Roll Angle Controller Architecture

The roll angle controller is designed using consecutive loop closure with the PI roll rate
controller as its innerloop. As the rate controller is designed to follow references with a zero
steady state error, a proportional controller will be sufficient for the angle controller as no
angle disturbances are present. The architecture and control law are shown in Figure 4.12 and
Equation 4.3.8.

x' = Ax+Bu
y = Cx+Du

1
s

1
s

Roll
Dynamics

Figure 4.12: Runway roll angle controller architecture

Pre f = kφ

(
φre f − φ

)
(4.3.8)
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Controller gain

This control architecture allows freedom to place one real pole (ωφ). It is placed much slo-
wer that the roll rate pole (ωP) to avoid an overly aggressive controller. The controller gain
calculation and pole location is shown below.

kφ =
ω2

φ

(
AP − kpBP + ωφ

)
keBP

+ ωφ (4.3.9)

Pole placement

Since the closed loop roll rate pole is placed in terms of the plant’s open loop frequency, the
same is done with the roll angle closed loop pole. The angle controller is used to eliminate
any angle error that might be caused due to the lag in the roll rate controller. It is thus placed
at a much lower frequency.

ωφ =
ωP

4
(4.3.10)

4.4 Summary

This concludes the first part of the runway controllers design. The throttle-, pitch- and roll
controllers will enable the aircraft to accelerate and become airborne while rejecting any dis-
turbances that could cause premature rotation and a wing to strike the ground. These control-
lers can also implement the Rotation phase. The rate regulators are augmented with angle
controllers to control pitch and roll.

The lateral position control is now lacking to complete automation of Take-off. The analy-
sis and design of this controller is done in the following chapter.



Chapter 5

Take-off part 2:
Lateral Analysis and Control

This chapter is dedicated to the lateral runway controller. The lateral runway controller is
crucial to automating Take-off as it will prevent the aircraft from veering off the runway.

Since this controller must function over a large variety of speeds, the lateral modes of
motion will be analysed after decoupling assumptions have been applied. This analysis will
then be used to design a suitable innerloop controller that ensures the stability of the lateral
mode. Linear simulation results of this controller will be shown.

A lateral guidance controller will then be designed to ensure that the aircraft does not
depart the runway (off the sides). The linear simulation results of the entire lateral runway
controller will be shown.

The same assumptions are used as in Chapter 4, namely:

• No wind is present, thus airspeed is equal to groundspeed.
• The lateral velocity is much smaller than axial velocity.
• The xyB plane is assumed parallel to the xyE-plane.

Throughout this chapter undercarriage, aerodynamic and gravity components are shown
with U, a and G subscripts respectively.

5.1 Decoupling

As axial motion already covers 1-DOF in the xyB-plane, the lateral model completes the mo-
tion in the xyB-plane with a 2 DOF dynamic EOM.

YU + Ya + YG = m(V̇ + UR−WP)

NU + Na = ṘIz − ṖIxz + PQ
(

Iy − Ix
)
+ QRIxz (5.1.1)

Since lateral motion is constrained to the xyB-plane, (W = P = Ṗ = Q = YG = 0). The
undercarriage’s lateral forces and moments have a component of friction (Xs, Xl and Xr) that
can be ignored, as it has a negligibly small contribution. The aerodynamic contribution to

34
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lateral motion from the ailerons, are negligibly small. As ground- and airspeed change much
slower than lateral motion, it is considered constant.

YU + Ya = m(V̇ + UR)

NU + Na = ṘIz (5.1.2)

The runway and aerodynamic lateral forces and moments simplify to,

YU = Ys cos (−δs) + Yl + Yr ' Ys + Yl + Yr

NU = lsYs cos (−δs)− lmYl − lmYr ' lsYs − lmYl − lmYr

Ya = q̄S
(

Cyβ
β +

b
2Va

CyR R + CyδR
δR

)
Na = qSb

(
Cnβ

β +
b

2Va
CnR R + CnδR

δR

)
(5.1.3)

Normal forces on the wheels

Since there is no normal motion during Groundroll, the EOM describing the normal modes
of motion are used as a 1-DOF static model for determining the normal force on the tyres.
Applying the same simplifications as for the lateral mode, there will be no pitch or roll. There
will be no change in normal acceleration as the tyres are in constant contact with the runway.
The equation describing the normal force is thus,

ZU + Za + ZG = 0 (5.1.4)

The undercarriage force component is equal to the total normal force on the tyres (ZU = −N).
The aerodynamic force is created by the lift and drag of the aircraft. The non-dimensional
coefficients that directly affect lift are described by Equation 3.3.3. Assuming that the only
motion is axial and lift is only produced by the main wing, CL reduces to CL = CL0 + CLα α.
The total aerodynamic force thus becomes,

Za = qS (CL0 + CLα α) (5.1.5)

And the total normal force is,

N = mg− qS (CL0 + CLα α) (5.1.6)

5.2 State Space Representation

State Space is a linear representation of the model in matrix form. Writing the model in State
Space form would aid analysis, understanding and controller design of the coupled system.
The system needs to be linearised before it can be written in state space form.

Linearisation is done by applying small angle approximations and then linearising about a
small change in state. Calculating the partial derivative of the dynamic equation, with respect
to the specific state, will produce a small linear region of interaction.
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Any trigonometric function that is applied to a small angle (less than 10°), can be assumed
linear. If Θ is a small angle (in radians), the simplification would yield,

sin(Θ) ' Θ

cos(Θ) ' 1

arctan(Θ) ' Θ

Linearised Lateral Model

It is clear from equations 5.1.2 that there are two states present in the lateral mode of motion.
The first is yaw rate (R) which is a result of an applied moment. The second is lateral body
velocity (V), due to lateral forces. The V state does, however, not give much insight into the
aircraft’s motion without knowing the axial velocity (U). Side slip (β) is a more practical state
as it takes both lateral- (V) and axial velocity (U) into account, and is directly linked to the
tyre force and the direction of the velocity vector. As a result, it is preferable for the lateral
velocity state to be transformed to β, with the conversion shown below, where V is the velocity
magnitude.

V
V

= sin(β) [3]

∴ V = V sin(β) (5.2.1)

Applying a small angle approximation to Equation 5.2.1, with the knowledge that axial
velocity is significantly larger than lateral velocity (U � V) and normal velocity is zero (W =

0),

V =
√

U2 + V2 + W2 ' U

∴ V ' Uβ

V̇ ' Uβ̇ + U̇β

but U̇β ' 0

∴ V̇ ' Uβ̇ (5.2.2)

Applying a small angle approximation and the side slip conversion, yields the lateral EOM.

β̇ =
YU + Ya

mU
− R

Ṙ =
NU + Na

Iz
(5.2.3)

Y is a function of β, and lateral acceleration (aY) measurements. Lateral acceleration measu-
rements will thus contain information about β and will therefore be used as an output for
the state space model. The output equation for lateral acceleration is given in Equation 5.2.4
and the linearised state space model is summarised in Equation 5.2.5. These equations are
linearised in appendix C.
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aY =
Y
m

(5.2.4)

[
β̇

Ṙ

]
=

[
NCαα
mU + qS

mVa
Cyβ

qS
mVa

b
2Va

Cyr − 1
qSb
Iz

Cnβ

ls lm NCαα
IzU + qSb

Iz
b

2Va
Cnr

] [
β

R

]
+

[
NCαα
mU

lm
l

qS
mVa

CyδR
ls lm

l
NCαα

Iz

qSb
Iz

CnδR

] [
δS

δR

]
[

aY

R

]
=

[
NCαα

m + qS
m Cyβ

qS
m

b
2Va

Cyr

0 1

] [
β

R

]
+

[
NCαα

m
lm
l

qS
m CyδR

0 0

] [
δS

δR

]
(5.2.5)

Now that a mathematical model has been derived that describes the lateral motion of the
aircraft while it is on the runway, it would be advantageous to understand the model better
before a controller is designed.
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5.3 Understanding the Lateral Runway model for Control System
Design Purposes

As the model is made up of undercarriage- and aerodynamic components, it will first be
separated. The two separate models will be analysed independently. Once each model has
been understood separately, they will be reunited to form the complete lateral model.

5.3.1 Undercarriage

Equation 5.2.5 simplifies to Equation 5.3.1 when all the aerodynamic interactions are elimi-
nated. The normal force on the wheels are assumed to remain constant as groundspeed in-
creases, since aerodynamic lift is ignored.[

β̇

Ṙ

]
=

[
NCαα
mU −1
0 ls lm NCαα

IzU

] [
β

R

]
+

[
NCαα
mU

lm
l

ls lm
l

NCαα
Iz

]
δS[

aY

R

]
=

[
NCαα

m 0
0 1

] [
β

R

]
+

[
NCαα

m
lm
l

0

]
δS (5.3.1)

There are many ways to analyse a model, but a block diagram representation was found
to yield the best understanding. Equation 5.3.1 is shown in block diagram form in Figure 5.1.
It is clear that there are two first order systems, namely side slip (β) and yaw rate (R).
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Figure 5.1: Block diagram representation of the Runway model, undercarriage effects only
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Transient effects

A simplified progression of motion of the body due to a positive steering wheel deflection
(δS), is shown in Figure 5.2 (viewed from above). Before the steering wheel is deflected the
undercarriage is travelling forward at a constant groundspeed (Vg), with no lateral velocity
or yaw rate. A general description of an undercarriage is used, with only one wheel at the
front (steering wheel) and one wheel at the back (main wheel, a combination of the left- and
right main wheels) of the undercarriage. This simplification greatly aids insight while still
remaining valid as long as movement is restricted to the xyB-plane. It is assumed that ls = lm.

Figure 5.2.(a).1 The instant the steering wheel (δs) is deflected it creates an immediate local
slip angle on the steering wheel (αs), which causes a negative lateral force on the steering
wheel (-Ys). The local slip angle on the main wheel (αm) will not have changed yet. Assuming
the body’s side slip angle (β) dynamics are faster than the yaw rate (R) dynamics (see Figure
5.3), no R is present.

21 3a 3b

(a) Body forces and moments as a result of a δs deflection

54 6a 6b

(b) Equivalent body forces and moments created by undercarriage

Figure 5.2: Sequence of force generation due to δs deflection, undercarriage effects (viewed from above)
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Figure 5.2.(a).2 The applied force on the steering wheel will cause a negative β, which de-
creases αs slightly while αm increases negatively. This is a "differential mode" change in wheel
slip angles, as the slip angles on the steering- and main wheels change in opposite directions.
The β dynamics will settle quickly when the lateral forces on the steering wheel (Ys) and main
wheels (Ym) are equal. After they have settled, the combined effect of −Ys and Ym creates a
moment couple.

The motion that follows is separated into two sequences, as it aids understanding.

Figure 5.2.(a).3a and 3b A yaw rate is produced by the presence of the moment couple. R
will decrease αs and αm ("differential mode" change in slip angles), which decrease the forces
on the wheels (3a). Thus the moment couple is being reduced, but at the same time β increases
positively. As β builds up both αs and αm will increase in the same direction ("common mode"
increase in slip angles), increasing the forces on the wheels and thus the force being applied
to the CG (3b).

β will increase as long as there is a moment present. Once the moment has been eliminated,
there will no longer be a build up of β and the body will settle with a constant R and Y.

Figure 5.2.(b).4-6b The overall effect of the tyre forces on the body are depicted in Figure
5.2.4 to 6.b. There is an initial force that acts on the steering wheel (Figure 5.2.(b).4). The "dif-
ferential mode" change in slip angles causes a moment couple to be formed (Figure 5.2.(b).5).
The increasing R reduces N, while increasing β and thus Y on the CG (Figure 5.2.(b).6a). β

will continue to grow until N = 0, and the system will settle at a constant R and Y that acts
on the CG to counter the body’s centripetal acceleration (Figure 5.2.(b).6b).

Poles and Zeros

The poles and zeros give insight into how the system can be controlled. Figure 5.3 shows the
undercarriage pole movement with a change in groundspeed. The two poles can be identified
as the side slip angle pole (ωβ) and the yaw rate pole (ωR). Both reduce in frequency with an
increase in groundspeed.

The zeros of the system are dependant on the output under consideration. In both cases
the zeros are caused by the feedforward from the steering wheel (δS). Figure 5.4 shows the
complex pair of zeros for an acceleration (aY) output. Their position does not change much
with groundspeed as their feedforward effect is not dependant on groundspeed. Since the
steering wheel will cause a force in the same direction, too much feedback will cause the
damping of the system to decrease.

Figure 5.5 shows the zero for a yaw rate (R) output is exactly on the ωβ pole. Since β does
not feed back to create a moment, it can be seen that the zero cancels the pole. The system is
thus reduced to a 1st order system. This is also clear from the block diagram, as the β state has
no effect on the R state. There is thus no feedforward from δS to R.

Since the general placement of the poles and zeros are relatively invariant to changes in
groundspeed, it would thus be advantageous if the difference between the two real poles (ωβ
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and ωR) is large enough so that time scale separation (TSS) could be applied, which will allow
the system to be reduced to a 1st order system.

Figure 5.3: Poles of the Runway model (undercarriage effects only)

Figure 5.4: Zeros of the Runway model with aY
as output (undercarriage effects only)

Figure 5.5: Zeros of the Runway model with R
as output (undercarriage effects only)
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Decoupling the undercarriage contribution to the Runway model

ωβ

ωR
=

Iz

mlslm
(5.3.2)

The relationship between these two frequencies is given by Equation 5.3.2 and does not
vary with ground speed. It would be advantageous for future work if this equation is gene-
ralised, which would allow it to be applied to any undercarriage configuration. The radius
of gyration (rz) about the zB-axis, and the undercarriage lengths are written in terms of the
wheelbase length (lL). This defines the relationship between ωβ and ωR to be dependant on
the mass distribution and the position of the centre of mass along the length of the wheelbase.

rz =

√
Iz

m
ls = alL

lm = (1− a)lL

∴
ωβ

ωR
=

r2
z

a(1− a)l2
L
=

(
rz

lL

)2 1
a(1− a)

(5.3.3)

In order for TSS to apply, ωβ

ωR
> 5 [13]. Once the body has been designed, its weight

distribution (rz) is fixed. Thus this relationship can only be altered by the positioning of the
front and rear wheels relative to the CG. Figure 5.6 shows this relationship with variation in
CG position between the front and rear wheels (where a is denoted as a percentage of the
wheel base length, measured from the front wheels).

Figure 5.6: Undercarriage frequency variation cau-
sed by centre of mass position on the wheelbase

The minimum is found where,
∂

∂a

(
1

a(1− a)

)
=

2a− 1

(a− a2)2 = 0

∴
∂

∂a

(
1

a(1− a)

)∣∣∣∣
a= 1

2

= 0

1
a(1− a)

∣∣∣∣
a= 1

2

= 4

(5.3.4)

This minimum is at a = 1
2 , where the CG is in the middle of the wheelbase.It must be

remembered that the radius of gyration (rz) and wheel base length (lL) will change the offset
of the curve in Figure 5.6.

Using these relationships, a ground vehicle can be designed so that it can be approximated
as a 1st order system yaw rate dynamics (Ṙ).
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5.3.2 Aerodynamic

Equation 5.2.5 simplifies to Equation 5.3.5 when ignoring the effect of the undercarriage.[
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qS
m CyδR

0

]
δR (5.3.5)

Just like the undercarriage, the aerodynamic effects are represented in block diagram form in
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Figure 5.7: Block diagram representation of the Runway model, aerodynamic effects only

Figure 5.7. In this case it is a coupled 2nd order system. This is very similar to the Dutch Roll
mode of aircraft in flight. When the aircraft side slips, a lateral force is induced. This force
mostly acts on the fin at a distance, causing a moment that induces a yaw rate.

Any yaw rate creates an induced local incidence angle on the fin. This increases the lateral
aerodynamic force (lift) created by the fin, which directly induces a side slip angle while cau-
sing a yawing moment. The aerodynamic side slip and yaw rate can thus not be decoupled
since conventional airframes (like the one used in this research) are designed to be stable with
all the forces and moment restoring the aircraft to forward flight.
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Poles and Zeros

The root locus (Figure 5.8) is vastly different from the undercarriage case. The coupled system
is represented by two lightly damped complex poles. It is clear that the frequency of the poles
increases with airspeed, but the change in damping will be analysed.

The characteristic equation of Equation 5.3.5 is analysed to determine how the damping
(ζ) term is influenced by airspeed. Equation 5.3.6 shows this analysis.
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(5.3.6)

From Equation 5.3.6 it is clear that the damping of the system is not influenced by variation
in airspeed.

The zeros, when considering the aY output (Figure 5.9), show that there is non-minimum
phase present. This is caused by the rudder creating acceleration (force) in the opposite direc-
tion than the induced incidence angle in the steady state. As airspeed increases, the frequency
of the zeros increase.

Figure 5.8: Movement of the Runway model poles (aerodynamics only)



CHAPTER 5. TAKE-OFF PART 2:
LATERAL ANALYSIS AND CONTROL 45

Figure 5.9: Zeros of the Runway model with aY
as output (aerodynamic effects only)

Figure 5.10: Zeros of the Runway model with R
as output (aerodynamic effects only)

Figure 5.10 shows that when R is the output under consideration, any feedback will in-
crease the damping of the system and with enough damping, the system will approach a 1st

order response. As airspeed increases, the frequency of the system increases. The general
placement of the poles and zeros does not drastically change with airspeed.

5.3.3 Combined model

Now that the individual components to the lateral runway model are understood, they can
be combined in one block diagram, which is represented in Figure 5.11. At low speeds, the
model has the characteristics of the undercarriage model. At high speeds or when the wheels
are not in contact with the runway (due to lift), the model is the same as the aerodynamic
model. During medium speeds, these models interweave to produce a hybrid which is best
understood by looking at the change of the pole and zero locations with variations in speed
in Figure 5.12 (assuming ground- and airspeed are equal).

Poles

Assuming low initial speed, the undercarriage dominates the dynamics and we start with the
poles at the same location as the undercarriage poles at ωβ and ωR. As speed increases, ωβ and
ωR will reduce in frequency. As soon as the aerodynamic surfaces start becoming effective,
the ωR pole will increase in frequency.

The poles will continue along the real axis toward each other, until they meet at the same
frequency and become complex. It is at this speed that the aerodynamic effects start to have a
larger contribution to the model than the undercarriage. This point is affected by the amount
of grip that the wheels have (thus the normal force). The damping of the poles will now
reduce until they reach the damping of the aerodynamic model, while the frequency increases
slightly. As soon as the airspeed is sufficient to lift the aircraft so that there is no normal force,
the model will be purely aerodynamic.
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Figure 5.11: Block diagram of the Runway model, undercarriage and aerodynamics combined

Figure 5.12: Pole movement of the Runway model due to speed increase (undercarriage and aerody-
namics combined)
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Zeros

The actuator being used and output influences the zeros of the system. The effect of each
actuator on each output of the system will be analysed separately.

δS to aY: These zeros (Figure 5.13) start at the same position as in Figure 5.4. As the
speed increases, the aircraft’s lift increases therefore the normal force on the wheels decrease.
The effectiveness of the steering wheel to actuate reduces, relating to the zeros moving to the
origin. When there is no more normal force, the zeros are at the origin and the system has no
more gain.

Figure 5.13: The effect of speed on the zeros seen
from δS to aY (undercarriage and aerodynamics
combined)

Figure 5.14: The effect of speed on the zeros seen
from δR to aY (undercarriage and aerodynamics
combined)

δR to aY: At low speed there are two real zeros at high frequencies (Figure 5.14). These
represent the non-minimum phase caused by the rudder. As speed increases, their frequency
will decrease which practically means that the non-minimum phase will be more pronounced.
When the aerodynamic effects become dominant, the zeros will increase in frequency.

δS to R: Figure 5.15 shows the zero staring on the pole, but its frequency decreases slower
than the pole. The zero will finally end up at the origin as the normal force reduces to zero.
This relates to the steering wheel (δS) having no actuation at higher groundspeeds.

δR to R: The zero in Figure 5.16 starts off at a faster frequency than the closest pole. Its
frequency will reduce until the aerodynamic forces become dominant. It will then increase in
frequency.
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Figure 5.15: The effect of speed on the zero seen
from δS to R (undercarriage and aerodynamics
combined)

Figure 5.16: The effect of speed on the zero seen
from δR to R (undercarriage and aerodynamics
combined)

Most control architecture use direct feedback from a sensor to the actuator. It would thus
be prudent to analyse the effect of such feedback, and thus on the root locus.

Figure 5.17 shows the root locus of feedback from aY to δS. At low speed, only small
controller gains are advisable as large gains will reduce damping. At higher speeds, the root
locus does not lend itself to changing the response of the system.

Figure 5.18 shows the root locus when feedback from aY to δR is applied. In both cases,
any feedback will increase damping, but lower the closed loop frequency. The presence of
the non-minimum phase zero could cause instability should the system’s gain be larger than
calculated. The effect of the non-minimum phase zero will also increase as speed increases.

Since neither actuator gives desirable change in the closed loop pole locations, it is not
advisable to use direct feedback from the aY measurement. The root locus of feedback from R

Figure 5.17: Conceptual root locus of direct feedback from aY to δS at low and high speeds. (undercar-
riage and aerodynamics combined)

to both δS and δR is shown in Figure 5.19 since both root loci are similar in shape. It is clear that
at both low and high speed, this type of feedback will either increase frequency or damping,
or both. Should the actual root locus differ, due to inaccuracies in modelling, the system is
guaranteed to remain stable. Direct feedback from the R measurement is thus advisable.

Now that the lateral plant is understood, it can be used for controller design.



CHAPTER 5. TAKE-OFF PART 2:
LATERAL ANALYSIS AND CONTROL 49

Figure 5.18: Conceptual root locus of direct feedback from aY to δR at low and high speeds. (undercar-
riage and aerodynamics combined)

Figure 5.19: Conceptual root locus of direct feedback from R to δS or δR at low and high speeds.
(undercarriage and aerodynamics combined)

5.4 Lateral Runway Innerloop Controller Design

Aircraft are exposed to a number of factors that cause it to deviate from the runway. These
include wind, uneven surface and helical prop wash. This controller design is aimed at rejec-
ting the effect of any of these factors and regulating the aircraft’s stability while on the runway.
The controller is designed with an interface that allows control over the fundamental motion
of the aircraft, while on the runway. Since two actuators are present that have similar effects
on the aircraft, a method of combining them needs to be defined before the controller can be
designed.

5.4.1 Virtual actuator

The presence of two actuators, steering wheel (δs) and rudder (δR), with the capability of
controlling the lateral runway motion of the aircraft, adds an extra dimension to the already
complicated control problem. For the purpose of this thesis, it was decided to simplify the
control system architecture by combining the two actuators into a single virtual actuator
(δRun). This would allow the MIMO system to be reduced to a SIMO system, thereby sim-
plifying the control problem.
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Defining the Mix Law

A relationship between the virtual actuator δRun and the actual actuators is defined below,[
δs

δR

]
=

[
M1

M2

]
δRun (5.4.1)

Assuming an arbitrary dynamic system (shown below in state space form), the actuator
(u) drives into the dynamics via the input matrix (B). The B matrix quantifies the effect of the
actuator on the dynamics (ẋ).

ẋ = Ax + Bu

If the same arbitrary dynamics have a steering wheel and rudder as actuators, they drive
into the dynamics through their individual actuator gains (Kδs and KδR ).

ẋ = Ax +
[
KδS KδR

] [δs

δR

]

The virtual actuator has to combine the effect of the steering wheel and rudder on the
dynamics. In order to quantify this effect, KδRun is defined as the virtual actuator’s gain.

ẋ = Ax +
[
KδS KδR

] [δs

δR

]

= Ax +
[
KδS KδR

] [M1

M2

]
δRun

= Ax + [KδRun ] δRun

∴ KδRun = KδS M1 + KδR M2 (5.4.2)

In the above equation, KδS and KδR are the actual system variables, and will be discussed
later. Now that the Mix Law has been defined, we can proceed to develop the mixing strategy.

Use of the Actuators Over Speed

Before the specific mixing is done, we will first investigate under which circumstances the
actuators are best suited for use. This will give a good indication of how to mix the actuators.

Steering wheel: The effectiveness of the steering wheel is dependant on its normal force
(Ns), which changes with the aircraft’s speed. At low speed the aircraft does not generate
much lift, allowing most of the weight to rest on the undercarriage and producing a large
normal force. As speed increases, the aircraft will generate more lift, consequently reducing
the normal force. As a result, the steering wheel is a good low speed actuator.
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Rudder: The rudder’s effectiveness is proportional to the speed of the local flow across it
(VaδR

). It is thus clear that the rudder is a good high speed actuator. However, if the rudder
is in the engine’s prop wash, VaδR

could be greater than aircraft’s airspeed Va, making the
rudder more effective at low ground speeds. Determining the rudder airspeed accurately is
difficult to do mathematically, and placing an additional airspeed sensor at the rudder was
deemed over complicated and practically irrelevant since this is not a standard measurement
on actual aircraft. In order to eliminate the requirement for a rudder airspeed measurement
and reduce uncertainty, the rudder is only used at high speeds where the prop wash has little
effect, and VaδR

' Va.

Mixing the Actuators

Applying the reasoning from the previous section to Equation 5.4.2 and assuming the extreme
case where only one actuator is used due to the severe ineffectiveness of the other, yields
equations 5.4.3 and 5.4.4.

Ignoring the small effect of the rudder at low speed and not using it as an actuator, would
require M2 to be zero (Equation 5.4.3). At high speed the steering wheel’s effectiveness is
greatly reduced and it will not be used for actuation, thus M1 must be zero (Equation 5.4.4).

KδRun = KδS M1 (V = slow) (5.4.3)

KδRun = KδR M2 (V = f ast) (5.4.4)

In order to create a boundary for the conditions discussed above, two speeds are defined.
Ubend is the Vg below which the rudder has negligible effect, compared to the steering wheel,
and is not used (M2 = 0). U f ade is the Vg above which the steering wheel has negligible effect,
and is not used (M1 = 0).

M1 = 0, Vg > U f ade

M2 = 0, Vg < Ubend (5.4.5)

The value of KδRun

If we consider the arbitrary dynamics of a 1st order system (shown below), KδRun directly
influences the open loop gain of the system. From a control point of view, it would be ad-
vantageous if KδRun were a constant value. The effect of δRun on the dynamics of the system,
would then be speed invariant.

ẋ = Ax + [KδRun ] δRun

The value of KδRun is determined form the boundary condition where M1 = 1 (and Vg =

Ubend).

KδRun = KδSM1

∣∣∣
Vg=Ubend

(5.4.6)
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As Take-off starts at a low speed, we will start with the low speed mixing.

Mixing M1: At low speeds, the virtual actuator should emulate the physical low speed
actuator. Thus δRun ' δs, KδRun ' Kδs and M1 ' 1. A linear approach to mixing is followed
between Ubend and U f ade (shown in Figure 5.20), with the constraints being,

M1 = 1, Vg = Ubend

M1 = 0, Vg = U f ade

Figure 5.20: M1 plotted against groundspeed, in the mixing region

The linear relationship between M1 and Vg in the mixing region is derived from Figure
5.20, which is,

M1 =
−1

U f ade −Ubend
Vg +

U f ade

U f ade −Ubend
(5.4.7)

With this, M1 is summarised below as a piecewise defined function over groundspeed in
Equation 5.4.8.

M1 =


KδRun
KδSM1

, Vg < Ubend

−1
U f ade−Ubend

Vg +
U f ade

U f ade−Ubend
, Ubend ≤ Vg ≤ U f ade

0, Vg > U f ade

(5.4.8)
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Mixing M2: Taking all the previous sections into account, M2 can be determined from
equations 5.4.2, 5.4.4 and 5.4.5, and is given below.

M2 =


0, Vg < Ubend

KδRun−M1KδSM1
KδRM2

, Ubend ≤ Vg ≤ U f ade

KδRun
KδRM2

, Vg > U f ade

(5.4.9)

Now that a general solution to the Mix Law has been derived, we need to analyse the air-
craft’s specific parameters. The specific aircraft determines the values of Kδs and KδR , which
will be discussed in the next section. Ubend and U f ade are dependant on the values of Kδs and
KδR .

Determining the values of KδSM1
and KδRM2

The effectiveness of the actuators (or actuator gains), can be determined from the open loop
state space representation of the system dynamics. Since the Mix Law is derived for the lateral
runway model, the linear dynamic state space model (from Equation 5.2.5) is shown below.[

β̇

Ṙ

]
=

[
NCαα
mU + qS

mVa
Cyβ

qS
mVa

b
2Va

Cyr − 1
qSb
Iz

Cnβ

ls lm NCαα
IzU + qSb

Iz
b

2Va
Cnr

] [
β

R

]
+

[
NCαα
mU

lm
l

qS
mVa

CyδR
ls lm

l
NCαα

Iz

qSb
Iz

CnδR

] [
δS

δR

]
(5.4.10)

Ignoring the dynamics to determine the effect of the actuators, Equation 5.4.10 can be
written as, [

β̇

Ṙ

]
= A

[
β

R

]
+

[
NCαα
mU

lm
l

qS
mU CyδR

ls lm
l

NCαα
Iz

qSb
Iz

CnδR

] [
δs

δR

]

= A

[
β

R

]
+

[
Kδsβ

KδRβ

KδsR
KδRR

] [
δs

δR

]
(5.4.11)

As there are two states, each actuator has two contributions to the dynamics of the system
(represented by the amount of rows in the B matrix). The contribution to the β state is the la-
teral force that the actuator exerts on the body, while the contribution to the yaw rate (R) state
is the yaw moment that the actuator produces. These actuators are designed to change the
direction that the aircraft travels in, while on the runway, by changing the aircraft’s heading.
Since heading is the integral of yaw rate, the actuator contributions to the yaw rate state will
be used as the Mix Law actuator gains.
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KδSM1
= KδsR

=
lslm

l
NCαα

Iz

KδRM2
= KδRR

=
qSb
Iz

CnδR

(5.4.12)

The state space representation of the system after the Mix Law has been applied is repre-
sented as,[

β̇

Ṙ

]
=

[
NCαα
mU + qS

mVa
Cyβ

qS
mVa

b
2Va

Cyr − 1
qSb
Iz

Cnβ

ls lm NCαα
IzU + qSb

Iz
b

2Va
Cnr

] [
β

R

]
+

[
NCαα
mU

lm
l M1

qS
mVa

CyδR
M2

ls lm
l

NCαα
Iz

M1
qSb
Iz

CnδR
M2

]
δRun

=

[
a11 a12

a21 a22

] [
β

R

]
+

[
b11mix b12mix

b21mix b22mix

]
δRun[

aY

R

]
=

[
NCαα

m + qS
m Cyβ

qS
m

b
2Va

Cyr

0 1

] [
β

R

]
+

[
NCαα

m
lm
l M1

qS
m CyδR

M2

0 0

]
δRun

=

[
c11 c12

0 1

] [
β

R

] [
d11mix d12mix

0 0

]
δRun (5.4.13)

Choosing values for Ubend and U f ade

The optimal values for Ubend and U f ade were not investigated, an intuitive selection was made
instead. Ubend is chosen where the rudder has half the actuation gain of the steering wheel

(
KδSR

2 = KδRR
). U f ade is chosen where the rudder has double the actuation gain of the steering

wheel (2KδSR
= KδRR

). Equations 5.4.14 and 5.4.15 give mathematical solutions of these two
velocities.

KδSR

2
= KδRR

∴ Ubend =

√√√√√ 2mg

ρS
(

CL0 + CLα α0 +
2blCnδR
ls lmCαα

) (5.4.14)

2KδSR
= KδRR

∴ U f ade =

√√√√√ 2mg

ρS
(

CL0 + CLα α0 +
blCnδR

2ls lmCαα

) (5.4.15)

These selections for Ubend and U f ade were confirmed in simulation to give satisfactory re-
sults without requesting abnormally large actuator commands.
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5.4.2 Controller design

The lateral runway model has shown that an aircraft’s lateral dynamics during the Take-off,
vary drastically with speed. Subsequently, the control problem was separated into two sepa-
rate problems, low- and high speed.

The low speed controller is designed by applying TSS to the plant. This allows the faster
ωβ pole to be ignored when designing the controller. The TSS assumption is not valid above
velocities where ωβ ≯ 5ωR. A high speed controller is thus designed which takes the entire
model into account.

The design specifications for these controllers are,

• Rise time under 2 seconds.
• Zero steady state errors.
• Lateral acceleration interface.

The outerloop controllers are kinematic and it would simplify the control if the innerloop
controllers have an acceleration interface. State space design allows the same number of de-
grees of freedom as feedback gains (if all the states are observable and controllable). The two
open loop poles can thus be placed arbitrarily with feedback from both lateral sensors, late-
ral acceleration (aY) and yaw rate (R). Any steady state errors are removed by implementing
an integrator from the reference. A representation of such a control architecture is shown in
Figure 5.21.

x' = Ax+Bu
y = Cx+Du

Lateral
Dynamics

1
s

Figure 5.21: aY control architecture with complete control over closed loop poles

As discussed in Section 5.3.3 direct feedback from the aY measurement is not advisable.
The acceleration gain (ka) will thus be set to zero. Making the ka gain zero, leaves only two
degrees of freedom. Taking this into account, the low- and high speed controller designs
follow.

Low Speed (Yaw Rate Controller)

At low speed, the decoupling assumption discussed in Section 5.3.1 allows the β state to be
ignored from the dynamics (β̇ = 0). The kinematic relationship between yaw rate (R) and
lateral acceleration (aY) will simplify to aY = UR. Due to the low groundspeed, the aircraft
will have to experience high yaw rates in order to produce lateral accelerations that are larger
than the lateral accelerometer’s noise floor. This is not practically feasible nor desired.



CHAPTER 5. TAKE-OFF PART 2:
LATERAL ANALYSIS AND CONTROL 56

Using a TSS assumption, the side slip dynamics can be ignored and a pure yaw rate
controller is designed for low speeds Acceleration is determined from the kinematic steady
state relationship (aY = UR). The yaw rate gyro can be combined with velocity to measure
steady state acceleration, and produce a measurement with less noise (since gyros typically
have a lower noise floor than accelerometers).

The simplified lateral plant is shown in Equation 5.4.16, with the controller architecture
used is shown in Figure 5.22. This architecture allows full control over the two closed loop
poles, which can be placed anywhere as long as the closed loop frequency (ωCL) does not vio-
late time scale separation (ωCL < 5ωβ) and too much control effort is not used. The simplified
open loop plant, controller architecture and control law are shown below.

Ṙ =
[

ls lm NCαα
IzU + qSb

Iz
b

2Va
Cnr

]
R +

[
ls lm

l
NCαα

Iz
M1

qSb
Iz

CnδR
M2

]
δRun

=
[

a22

]
R +

[
b21mix b22mix

]
δRun

R =
[
1
]

R +
[
0
]

δRun (5.4.16)

x' = Ax+Bu
y = Cx+Du

Lateral
Dynamics

1
s

Figure 5.22: Low speed runway aY controller architecture

δRun = − (keER + krR)

ĖR =
aYre f

U
− R

(5.4.17)

Closed loop solution

Using the control law from Equation 5.4.17, the closed loop state space form of this controller
is, [

Ṙ
˙EaY

]
=

[
a22 − krb21mix −keb21mix

−1 0

] [
R

EaY

]
+

[
0
1

]
Rre f

aY =
[

1
U 0

] [ R
EaY

]
+
[
0
]

Rre f (5.4.18)
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The closed loop characteristic equation is,

sCL = s2 + (krb21mix − a22) s− keb21mix

= s2 + α1s + α0 (5.4.19)

Controller gains

Using Equation 5.4.19, the controller gains used to realise the closed loop poles are,

ke = − α0

b21mix

kr =
α1 + a22

b21mix

(5.4.20)

Pole placement

The placement of the yaw rate poles are critical to the overall lateral position response of the
aircraft while on the runway, as the outerloop poles cannot be placed at a faster frequency
than the innerloop. Since the low speed lateral controller is used during taxi to line up the
aircraft on the runway, the dominant closed loop frequency has to be maximised.

The closed loop poles are placed as an over damped complex pole pair at the same fre-
quency as the open loop poles (with frequency = ωR and damping = ζR). This placement is
shown in Figure 5.23. The desired closed loop pole positions and characteristic equation is
thus,

ωR =
lslmNCαα

IzU
+

qSb
Iz

b
2Va

Cnr

ζR = 0.8

∴ sCL = s2 + (2ζRωR) s + ω2
R

Step response (Root Locus)

Figure 5.24 shows the linear step response of the low speed controller at 5 m/s. The two step
responses shown are of the same controller, but applied to both the simplified 1st order plant
and the coupled plant. It is clear that the controller satisfies the design specifications without
violating the TSS assumptions.

High Speed (Lateral Acceleration Controller)

At higher speeds, the assumption that the side slip dynamics can be ignored, is no longer
valid and the full model has to be used. The architecture in figure 5.21 is used, with ka = 0.
This forms a classical rate loop, encapsulated by the acceleration integrator (shown in Figure
5.26). The control law is shown in Equation 5.4.21. The yaw rate gain (kr) will be used to
control the damping of the rate loop (ζaY ).

The closed loop root locus is influenced by the presence of the rate zero close to the ωβ

pole, and with this control architecture a wide spectrum of damping is not possible. A specific
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Figure 5.23: Root locus of innerloop low speed
runway lateral controller (at 5m/s)
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Figure 5.24: Linear step response of innerloop
low speed runway lateral controller (at 5m/s)

closed loop rate damping cannot always be achieved, as can be seen by the root loci shown in
Figure 5.25.

Figure 5.25: Limitations on the desired ζ, due to root locus shape at low and high speeds.

Thus a practically intuitive value for kr is determined (in the following section) and the
damping of the rate closed loop is calculated. Should the calculated damping be less than the
desired damping (ζaY ), kr will be determined mathematically. The control law and architecture
are shown in Equation 5.4.21 and Figure 5.26.

x' = Ax+Bu
y = Cx+Du

Lateral
Dynamics

1
s

Figure 5.26: High speed runway aY controller architecture

δRun = − (keER + krR)

ĖaY = aYre f − aY (5.4.21)
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Calculating kr (practical)

Initially a practical actuator deflection to dampen a 10°/s yaw rate is determined by analysing
the system’s natural damping to yaw rate disturbances. By decoupling the side slip state, this
damping is the a22 element from the state space model. Taking the effectiveness of the virtual
actuator into consideration, the value for the kr gain is,

kr =
a22

10b21mix

=

ls lm NCαα
IzU + qSb

Iz
b

2Va
Cnr

10
(

ls lm
l

NCαα
Iz

M1 +
qSb
Iz

CnδR
M2

) (5.4.22)

The closed loop pole position of the yaw rate feedback loop is determined with Equation
5.4.25, and it is checked that the damping is at least ζaY . If it is not, the gain is recalculated
using a mathematical pole placement approach.

Calculating kr (mathematical)

kr =
−btmp −

√
b2

tmp − 4atmpctmp

2atmp
(5.4.23)

with, atmp = b2
21mix

btmp = 4ζ2
aY
(a11b21mix − a21b11mix)− 2b21mix (a11 + a22)

ctmp = (a11 + a22)
2 + 4zetha2

aY
(a12a21 − a11a22)

[
β̇

Ṙ

] [
a11 a12 − krb11mix

a21 a22 − krb21mix

] [
β

R

]
+

[
−b11mix

−b21mix

]
Rre f (5.4.24)

Equation 5.4.24 shows the closed loop rate plant. Determining the closed loop rate damping
and frequency (if the closed loop poles are complex),

ζaY =
btmp

2ωn

ωcaY
=

krb21mix − a11 − a22

2ζaY

with,

ωn =

√
b2

tmp+|dtmp|
2

btmp = krb21mix − a22 − a11

ctmp = a11 (a22 − krb21mix) + a21 (krb11mix − a12)

dtmp = b2
tmp − 4ctmp

(5.4.25)
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Calculating ke

Finally the integrator gain is calculated, which determines the frequency of the dominant
integrator pole (ωI). The maximum frequency at which the integrator pole (ωImax ) can be
placed accurately, has been determined empirically to be three times slower than the closed
loop yaw rate poles (ωImax =

wcaY
3 ). It is possible to place the integrator pole at a higher

frequency, but this requires aircraft specific design over a variety of speeds, which is complex
and not very robust.

ke = ωI
A4tmp − A1tmp ωI + ω2

I

A5tmp − A3tmp ωI − A2tmp ω2
I

with,

A1tmp = krb21mix − a11 − a22

A2tmp = d11mix

A3tmp = (a11 + a22) d11mix − b11mix c11 − b21mix c12

A4tmp = a11a22 − a12a21 + kr (a21b11mix − a11b21mix)

A5tmp = (a22b11mix − a12b21mix) c11 + (a11b21mix − a21b11mix) c12

+ (a12a21 − a11a22) d11mix

(5.4.26)

Closed Loop solution

The closed loop solution to this controller is, β̇

Ṙ
˙EaY

 =

 a11 a12 − krb11mix −keb11mix

a21 a22 − krb21mix −keb21mix

−c11 krd11mix − c12 ked11mix


 β

R
EaY

+

0
0
1

 aYre f

aY =
[
c11 c12 − krd11mix −ked11mix

]  β

R
EaY

 [0] aYre f (5.4.27)

Pole placement

The closed loop damping (ζaY ) is set high to avoid overshoot should there be unmodelled
delays. The closed loop frequency is set in terms of the open loop plant. The resulting root
locus for two different speeds is shown in Figure 5.27.

ζaY = 0.8

ωImax =
wcaY

3
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Figure 5.27: Root locus of innerloop high speed runway lateral controller (at 9 and 16 m/s)

Step response

The step responses of the controller is shown at two speeds in Figure 5.28. It is clear that the
desired rise time cannot be met. This is due to the plant’s low open loop bandwidth. The
controller architecture that is designed to reduce noise from the accelerometer measurements,
does not allow the increase of closed loop frequency that will allow the desired rise time to be
achieved.
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Figure 5.28: Linear step response of innerloop high speed runway lateral controller (at 9 and 16 m/s)
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5.5 Lateral Runway Guidance Controller

The runway guidance controller has to ensure that the aircraft does not veer off the runway
while it accelerates up to Vr. The acceleration interface of the innerloop control allows a
kinematic controller to be designed for lateral guidance.

To simplify the controller design, the aircraft is modelled as a point mass that can generate
any required acceleration across the width of the runway (BT). Velocity (ẏT) and position
(yT) control thus become a 1D design problem, with yT = 0 when the aircraft is in the centre
of the runway. The difference in heading between the runway centreline and the aircraft, is
quantified by the heading angle ψR. Figure 5.29 shows a graphical representation.

Figure 5.29: Runway Navigation

The largest concern while designing this controller is the closed loop frequency of the ẏT

controller. Assuming that the aircraft is travelling at a constant speed, ẏT is equivalent to the
aircraft’s heading. Should the aircraft’s heading change, it could veer off the runway. It is thus
essential to be able to control heading (ẏT) as fast a possible. The guidance controller design
is thus separated into lateral velocity and position controllers.

The runway guidance controllers will take the innerloop dynamics into account. This way
the lateral velocity closed loop poles can be placed at higher frequencies. As shown in Section
5.3, the innerloop closed loop poles are very sensitive to changes in speed. A single off-line
controller design is thus not possible. A generalised control strategy is followed that designs
the lateral controllers in terms of the innerloop.
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5.5.1 Converting BT to aY accelerations

Converting BT to aY accelerations, requires a DCM that is only rotated through a heading
angle of ψR. We assume that axial body acceleration does not contribute to BT and thus the
conversion becomes a simple trigonometric relationship.

aY =
BT

cos(φR)
(5.5.1)

5.5.2 Lateral Velocity Control

The controller architecture that was empirically found to produce the fastest closed loop poles
for this system, is a lead network. There is a low- and high speed innerloop plant, but the same
control architecture is used for both. Since there will be multiple poles, only the dominant real
pole’s position will be controlled.

Low speed

A discrete implementation of the lead network controller is used as it does not require deri-
vatives of signals (that can potentially be noisy). The transfer function and discrete represen-
tation of control law is shown below,

BTre f

ẏTre f − ẏT
= kv

s + ωzero

s + ωpole

BTre f (k) =
(
1− Tsωpole

)
BTre f (k− 1) + kv (Tsωzero − 1) edot(k− 1) + kvedot(k)

where, edot(k) = ẏTre f (k)− ẏT(k) (5.5.2)

Taking the inner closed loop dynamics designed for in Section 5.4.2 into account, the
control architecture is shown in Figure 5.30.

1
s

Figure 5.30: Lateral runway velocity lead network controller architecture

The closed innerloop controller poles (frequency = ωẏT , damping = ζ ẏT ) have a characte-
ristic equation of,

sCL = s2 +
(
2ζ ẏT ωẏT

)
s + ω2

ẏT

= s2 + α1s + α0
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The zero and pole position are specified in terms of the closed loop characteristic equation.
The controller gain is calculated below to place a single dominant velocity pole (ωvel), but is
only valid as long as the maximum pole frequency is not exceeded.

ωpole = ωc

ωzero = 0.75ωc

kv =
ωvel

(
ωpole −ωvel

) (
α0 − α1ωvel + ω2

vel

)
α0 (ωzero −ωvel)

as long as, ωvel ≤ 0.5ωc (5.5.3)

Pole placement The closed loop velocity pole is placed as fast as possible, and shown below,

∴ ωvel = 0.5ωc (5.5.4)

The resulting closed loop root locus and step response at 5 m/s is shown in Figure 5.31.
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Figure 5.31: Lateral TSS runway velocity lead
network velocity controller root locus (5m/s for-
ward velocity)
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Figure 5.32: Lateral TSS runway velocity lead
network velocity controller step response (5m/s
forward velocity)

Step response Figure 5.32 shows the step response of this controller. The controller was also
applied to the 2-DOF plant to show that the TSS assumption is valid.

High speed

The same control architecture is used for the high speed plant. The controller gain calcula-
tions, zero- and pole locations change slightly, since there is a third pole that has to be taken
into account. The discrete control law remains the same as for the low speed controller (Equa-
tion 5.5.2).

Taking the closed innerloop dynamics designed for in Section 5.4.2 into account, the control
architecture remains the same as for the low speed case and is shown in Figure 5.30.
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Using the symbols defined in Equation 5.4.13, the closed innerloop controller poles have a
characteristic equation of,

sCL = s3 + α2s2 + α1s + α0

where, α2 = krb21mix − a11 − a22 − ked11mix

α1 = a11a22 − a12a21 + kr (a21b11mix − a11b21mix)

+ ke [(a11 + a22) d11mix − b11mix c11 − b21mix c12]

α0 = ke

 (a22b11mix − a12b21mix) c11

+ (a11b21mix − a21b11mix) c12

+ (a12a21 − a11a22) d11mix


The controller gain is calculated below to place a single dominant velocity pole (ωvel) in terms
of the innerloop integrator pole (ωI), but is only valid as long as the maximum pole frequency
is not exceeded.

ωpole = 2.2ωI

ωzero = 0.8ωI

kv =
ωvel

(
ωpole −ωvel

) (
α0 − α1ωvel + α2ω2

vel −ω3
vel

)
α0 (ωzero −ωvel)

as long as, ωvel ≤ 0.64ωI (5.5.5)

Pole placement The closed loop velocity pole is placed as fast as possible, and shown below,

ωvel = 0.64ωI (5.5.6)

The resulting closed loop root locus at two different speeds is shown in Figure 5.33.
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Figure 5.33: Lateral high speed runway velocity lead network velocity controller root locus (9 and 16
m/s forward velocity)

Step response Figure 5.34 shows the step response at 16 m/s.
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Figure 5.34: Lateral high speed runway velocity lead network velocity controller step response (16 m/s
forward velocity)
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5.5.3 Lateral Position Control

The lateral position (yT) loop is now closed around the lateral velocity loop to ensure that
the aircraft remains on the runway during the Groundroll phase. Since there are no position
disturbances present on the runway, a proportional controller will suffice.

At low speeds, the lateral position controller is used to line the aircraft up with the runway
before acceleration. A high closed loop frequency is needed to ensure that the aircraft does
not use a large proportion of the runway to line its self up. At higher speeds a high closed
loop frequency for the lateral position controller is not required as most of the disturbances
will be countered by the lateral acceleration and -velocity controllers.

The lateral position controller gain will be designed by applying TSS assumptions to the
innerloop dynamics. Only the velocity controller’s closed loop poles will be taken into ac-
count. The two controllers use the same control architecture, thus the control law for both is
defined as,

ẏTre f = kp

(
yTre f − yT

)
(5.5.7)

Thus the control architecture is also the same.

1
s

Figure 5.35: Runway lateral position controller architecture

The difference between the two controllers is the velocity closed loop system used to cal-
culate the controller gain. A single dominant position pole (ωpos) will be placed.

Low speed

The controller gain calculation and the maximum frequency that the position pole can ac-
curately be placed, is shown below. The position pole is placed at its maximum allowable
frequency.

kp =

 wposkvwzerow2
c − w2

pos
(
wpolew2

c + kvw2
c
)

+w2
pos
(
w2

c + 2wpoleζwc
)
− w4

pos
(
2ζwc + wpole

)
+ w5

pos


kvwzerow2

c−wposkvw2
c

as long as,ωpos ≤ 0.4ωvel

(5.5.8)

The closed loop root locus and step response at 5 m/s is shown in Figure 5.36.
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Figure 5.36: Lateral TSS runway position controller root locus (5 m/s forward velocity)

Step response The step response at 1 m/s and 5 m/s is shown in Figure 5.37.
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Figure 5.37: Low speed lateral TSS runway position controller step response (1 m/s and 5 m/s forward
velocity)

High speed

The controller gain calculation and the maximum frequency that the position pole can ac-
curately be placed, is shown below. The position pole is placed at its maximum allowable
frequency.

kp =

wposwzerokvα0 − w2
pos
(
α0wpole + kvα0

)
+ w3

pos
(
α0 + α1wpole

)
−w4

pos
(
α1 + α2wpole

)
+ w5

pos
(
α2 + wpole

)
− w6

pos


kvα0wzero−wposkvα0

as long as,ωpos ≤ 0.5ωvel

(5.5.9)

The closed loop root locus and step response at two different speeds are shown in Figure
5.38.
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Figure 5.38: Lateral high speed runway position controller root locus (9 and 16 m/s forward velocity)

Step response The step response at 16 m/s is shown in Figure 5.39.
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5.6 Take-off path

The Take-off path has to be defined so that the lateral control can be applied. Two points are
specified to describe the position and orientation of a runway in Earth axis (see Figure 5.29).
These are,

• Start of runway (Runwaystart)
• End of runway (Runwayend)

Figure 5.29 shows how these two points are used to define the heading of the runway (cen-
treline). yT will then describe the aircraft’s perpendicular distance from the runway’s centre
line, or cross track position of the aircraft on the runway.

5.7 Summary

The aircraft’s lateral position on the runway can now be controlled to ensure it remains on the
runway during the Groundroll phase. It is not advised to keep this controller active while in
the air as it does not take the aircraft’s roll into account.

All the controllers described in Chapter 2 to implement Take-off, have been designed. The
functionality of these controllers will be combined and tested in a full non-linear simulation
environment. The results of these simulations are detailed in Chapter 6.



Chapter 6

Take-off Simulation

All the Take-off controllers are now combined to produce an autonomous Take-off system. To
reduce risk to hardware and increase confidence in the system, a full non-linear Hardware In
the Loop (HIL) simulation is set up in MATLAB. Practical sensor noise and wind disturbances
are included in this simulation. The results of this simulation is shown in this chapter. Each
controller’s results are discussed individually to show its operation.

Two sets of Take-off simulations are run to test the performance of the different lateral
acceleration controllers. The aircraft is placed in the centre of the runway with a 10° heading
offset, before the simulation is started.

6.1 Throttle

Groundspeed

It is apparent in Figure 6.1 that the groundspeed is not tracked perfectly. As mentioned in
Section 4.1.3 steady state errors are not catered for by the groundspeed controller.
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Figure 6.1: Simulated runway groundspeed regulation
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Throttle ramp

Figure 6.2 shows the non-linear response to the throttle ramp. The groundspeed controller
is initially engaged and the throttle ramp is engaged at 79.7 seconds. Once the throttle ramp
starts, the axial acceleration increases quickly.

78 78.5 79 79.5 80 80.5 81 81.5 82 82.5 83
0

20

40

60

T
hr

us
t [

N
]

Take−off throttle

78 78.5 79 79.5 80 80.5 81 81.5 82 82.5 83
−5

0

5

10

a X
[m

/s
/s

]

78 78.5 79 79.5 80 80.5 81 81.5 82 82.5 83
0

10

20

V
g

[m
/s

]

Time [s]

Figure 6.2: Simulated runway axial acceleration

6.2 Runway lateral position

Yaw rate controller

Figure 6.3 shows the position of the aircraft while it is in contact with the runway. The initial
heading offset is countered before the aircraft accelerates, however the wind disturbance from
the West causes the aircraft to veer to the right of the runway. It is clear that once the aircraft’s
speed increases, it does not alter course. Should the wind cause a large disturbance at low
speeds, this could cause the aircraft depart the runway before rotation.
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Figure 6.3: Simulated runway lateral position: Yaw rate control (with wind)

Lateral acceleration controller

Figure 6.2 shows the aircraft’s heading offset is corrected. Once it accelerates down the run-
way, the position is corrected by altering the aircraft’s heading.
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Figure 6.4: Simulated runway lateral position: Lateral acceleration control (with wind)
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6.3 Runway Pitch Controller

During the first part of the Groundroll, only the pitch rate damper is active. As soon as Vr is
reached, the pitch angle controller is engaged to rotate the aircraft and make it airborne.

Figure 6.5 shows the controller’s response. It is clear that the aircraft has an initial pitch
angle when on the runway. At 28 seconds, Vr is reached and the aircraft rotates. The pitch
rate graph shows that the pitch damper succeeds in keeping the pitch mode under control.
The angle control deviates a bit from the reference. This is due to sensor noise degrading the
angle measurement. Altitude increases quickly after the aircraft rotates.
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Figure 6.5: Simulated pitch control during Take-off
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6.4 Runway Roll Regulation

The roll regulation response during Take-off is shown in Figure 6.6. Up until 81 seconds, the
aircraft is still on the runway. Even though the noise degrades the angle measurement, it is
clear that once the aircraft becomes airborne the angle is well regulated.
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Figure 6.6: Simulated roll regulation during Take-off

6.5 Summary

The non-linear simulations confirms that all the Take-off controllers function as desired to
perform Take-off. As mentioned in Section 2.2.1, Take-off specific Climb out controllers were
not designed or implemented. However, the flight controllers designed in Chapter 9 and 10
are used for the Climb out phase.

This concludes the Take-off section of this thesis. The overall conclusions of the Take-off
controllers together with recommendations, are stipulated in Chapter 13.



Part II
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Chapter 7

Waypoint- and Dynamic Pursuit
Navigation System Design

The goal of this section is to enable UAVs to fly between specified waypoints and be able
to follow moving surface objects, which will be called Dynamic Pursuit Navigation. An up-
grade of the current guidance controllers available in the ESL, need to be done to enable the
Dynamic Pursuit Navigation algorithms to be applied. Some of the flight stability (innerloop)
controllers will also require a redesign to function with the new guidance control.

Since a fixed wing aircraft is used for this research, it cannot hover. Aircraft are usually
flown at a constant airspeed as the responsiveness to thrust commands are much slower than
the aerodynamic surfaces. The dynamics and effectiveness of the aerodynamic surfaces is
also a function of airspeed. In order to simplify the object following problem, the following
assumptions are made:

• The aircraft maintains a constant airspeed.
• A stabilised camera is mounted on the aircraft that can change its line of sight to point

in the direction of the object.
• Information about the object’s motion (velocity and position) is available.
• The object being followed does not perform aggressive manoeuvres. Its velocity is assu-

med constant along straight lines for long periods of time.
• The aircraft travels faster than the object.

7.1 Strategy

7.1.1 Dynamic Pursuit Navigation

The idea behind Dynamic Pursuit Navigation, in this thesis, is to keep a constant distance
between the aircraft and a moving surface object, with minimal information about the object
and applying real-time trajectory planning. It is assumed that the aircraft flies faster than the
object moves, and a circular path of constant radius and altitude is defined around the object.
This will prevent constant change of the camera’s view.
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The information that is available about the object does not allow its dynamics to be obser-
ved. Controlling the motion between the aircraft and object by means of specialised innerloop
controllers is thus not possible. Rather an online algorithm is derived that is dependant on
the relative position and velocity of the object.

If it is assumed that the object and aircraft are point masses and the relative motion bet-
ween them can be described kinematically. The motion of the aircraft relative to the object
can then be controlled by applying an acceleration vector to the aircraft, which will ensure the
aircraft remains at the desired radius without guidance control.

7.1.2 Stability control

In order for the Dynamic Pursuit Navigation algorithm to be applied to the aircraft, the sta-
bility (innerloop) control will have to enable it to be viewed as a steerable acceleration vector.
This concept has been designed and evaluated by [14].

One of the practical disadvantages of this method is that the thrust responds too slowly
and should it be used as part of the steerable acceleration vector, large variations from the
desired path can be observed. As a result, thrust is used solely to regulate airspeed, even
when large pitch changes are made.

The main component of the acceleration vector is the lift from the main wing. This accelera-
tion can be rotated by rolling the aircraft. Using these two in combination will allow the im-
plementation of the Dynamic Pursuit Navigation algorithm. The aircraft’s side slip is also
regulated to prevent instability and reduce drag.

7.1.3 Guidance control

The purpose of the guidance controllers is not to perform Dynamic Pursuit Navigation, but
rather to act as a regulator that brings the aircraft back to the desired flight path, should it
deviate. These deviations will be caused by wind disturbances and delays in the generation
of the aircraft’s acceleration vector. As no position based kinematic guidance controllers have
been designed at the ESL, this architecture will be derived in this thesis.

7.1.4 Trajectories to be flown

Since this guidance controller architecture is new, it will also be used for Waypoint naviga-
tion. This will provide insight into its performance, should the need for comparison to other
architectures arise.

The path (or trajectory) that is to be flown for object following can be simplified to a 2D
problem since no altitude changes will be required. Navigation will also be simplified to a 2D
problem.
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All these controllers will be combined to create a complete flight control system to perform
waypoint- and Dynamic Pursuit Navigation. Figure 7.1 shows a block diagram representation
of how the flight controllers will be implemented.

Flight stability control:
Airspeed control
Lift & Roll control

Side slip regulation

Aircraft

Dynamic Pursuit
Navigation

Guidance control:
Position regulation

Relative to a
flight trajectory

Waypoint
Navigation

Figure 7.1: Block diagram representation of the Waypoint- and Dynamic Pursuit Navigation system

7.2 Layout

Before any controllers can be designed, a mathematical model must be derived for the aircraft
in flight. Since extensive research has been done in modelling an aircraft in flight, this model
is not re-derived.

Since the design strategies used for guidance is similar to the research done by [14], the
model derived by [14] is used and summarised in chapter 8. By the same reasoning, some of
the stability controllers designed by [14] are also used. Chapter 9 summarises these controllers
and highlights redesigned elements to suit this research.

The design of position based kinematic guidance controllers is shown in chapter 10. These
controllers are used to regulate the position of an aircraft about a specified trajectory. Trajec-
tories used for Waypoint navigation and the Dynamic Pursuit Navigation algorithm are then
defined in chapter 11.

All these controllers are then combined and tested in a full non-linear simulation. The
results of this simulation is shown in chapter 12.



Chapter 8

Aircraft Dynamic Flight Model

The description of the axis systems, attitude descriptions and 6-DOF EOM that describe the
position, motion and orientation of the aircraft has already been discussed in Chapter 3.

Before flight controllers can be designed, a model of the aircraft’s interactions with the
atmosphere has to be derived. This is not explicitly done in this thesis as it has been well
documented in other research. The model derived by [14] is used.

8.1 Aerodynamic dynamic model [14]

The aerodynamic model derived by [14], first mathematically describes the motion of the body
axis relative to the wind velocity vector (Wind axis), then proceeds to describe the motion of
the wind axis relative to inertial space. The modes of motion are then decoupled to produce
four decoupled systems describing the axial-, normal-, roll and lateral directional motion.

The normal motion is equivalent to the aerodynamic Short Period mode, and the lateral
directional motion is equivalent to the Dutch Roll mode. These linear decoupled models are
stated below for convenience, and used for the design of flight stability (innerloop) controllers
in Chapter 9.

Axial dynamics:

Ṫ =

[
− 1

τT

]
T +

[
1
τT

]
TC

AW =

[
1
m

]
T +

[
−qS

m
CD

]
(8.1.1)

Normal dynamics:

[
α̇

Q̇

]
=

[
− qS

mVa
CLα 1− qS

mVa

c
2Va

CLQ
qSc
Iyy

Cmα

qSc
Iyy

c
2Va

CmQ

] [
α

Q

]
+

[
− qS

mV
CLδE

qSc
Iyy

CmδE

]
δE +

− qS
mVa

CL0 +
eWI

33
Va

g
qSc
Iyy


[

CW

Q

]
=

[
− qS

m CLα −
qS
m

c
2Va

CLq

0 1

] [
α

Q

]
+

[
− qS

m CLδE

0

]
δE +

[
− qS

m CL0

0

]
(8.1.2)
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Roll dynamics:

ṖW =

[
qSb2Clp

2Va Ixx

]
PW +

[
qSbClδA

Ixx

]
δA

PW = [1] PW + [0] δA (8.1.3)

Directional dynamics:

[
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δR (8.1.4)

Wind Axis Measurements

These dynamic models require measurements of the Wind axis. The sensors used are mounted
to the aircraft, and measure the motion of the Body axis. Any variable related to the Wind axis
is denoted with a W subscript. The conversions are shown in Equation 8.1.5.AW

BW

CW

 =

 cos α cos β sin β − sin α cos β

− cos α sin β cos β sin α sin β

sin α 0 cos α


aX

aY

aZ


PW

QW

RW

 =

 cos α cos β sin β − sin α cos β

− cos α sin β cos β sin α sin β

sin α 0 cos α


P

Q
R

 (8.1.5)

This conversion still requires α and β measurements. As these measurements are generally
not available, simplifications will be made. Since α and β are small angles, small angle as-
sumptions can be applied. Conventional aircraft are designed to have a small β angle while
in flight and control is applied to ensure this. β is thus assumed to be zero. Equation 8.1.5
simplifies to, AW

BW

CW

 =

1 0 −α

0 1 0
α 0 1


aX

aY

aZ


PW

QW

RW

 =

1 0 −α

0 1 0
α 0 1


P

Q
R

 (8.1.6)

The Body axis coordinated axial acceleration (aX) is typically much smaller than the normal
acceleration (aZ). The normal acceleration will have an effect on the Wind axis coordinated
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axial acceleration. The Wind axis coordinated accelerations are approximated in Equation
8.1.7. Any rate scaled by α (a small angle) can be neglected. The Wind axis coordinated rates
shown in Equation 8.1.8.AW

BW

CW

 =

1 0 − m
qSCLα

0 1 0
0 0 1


aX

aY

aZ

+


−m
qS

0
0

CL0 (8.1.7)

PW

QW

RW

 =

1 0 0
0 1 0
0 0 1


P

Q
R

 (8.1.8)

8.2 Summary

This concludes the summary of the aircraft’s dynamic flight model derived in [14]. Other
forces that act on the aircraft, such as gravity, have already been defined in Chapter 3. This
model is used in the following chapter as the base for linear flight controller design.

Since this is a linear model, it cannot be used for full non-linear simulation. The model
derived by [3] and shown in Equation 3.3.1 is used for the full non-linear simulation.



Chapter 9

Innerloop Flight Control

The innerloop flight controllers are aimed at controlling the fundamental motion of the aircraft
while it is airborne. The architecture used to control the various flight modes of motion, is
dependant on its interface to the outerloop controllers.

As will be discussed in detail in chapter 10, the outerloop requires a steerable acceleration
vector. The lift from the main wing produces the largest force (or acceleration) by the airframe,
and is the main component of the innerloop acceleration vector. The roll angle determines the
direction in which the lift acts, thus it is used to steer the acceleration vector. In combination,
lift and roll angle are used to produce the steerable acceleration vector.

Thrust will not be used as part of the steerable acceleration vector, due to its actuation lag.
It is used solely to regulate airspeed. To ensure that the aircraft flies coordinated turns, the
lateral body acceleration will be regulated to zero to ensure that the lift vector always acts in
the xzB-plane (∴ β = 0).

A standard layout is followed for the design of each controller:

• The state space representation of the model is shown.
• The controller is designed.
• Pole placement is discussed.
• Linear simulation results of the controller are shown.

9.1 Airspeed Controller

The aircraft’s airspeed needs to be controlled to keep it flying at its trim airspeed and prevent
it from stalling. The desired controller criteria are thus as follows,

• Zero steady state errors (eliminating drag).
• Regulation within 10%.

83



CHAPTER 9. INNERLOOP FLIGHT CONTROL 84

The aircraft’s thrust is used to control the airspeed and the linearised equation of motion
derived in Equation 8.1.1 is shown below.

Ṫ =

[
− 1

τT

]
T +

[
1
τT

]
Tc

AW =

[
1
m

]
T +

[
−qS

m
CD

]
sin α (9.1.1)

Drag and gravity have the largest influence on the aircraft’s airspeed. Since drag is not ea-
sily modelled and only changes with airspeed, it is rather dealt with as a disturbance. Gravity
causes the aircraft to deviate from the desired airspeed when the aircraft’s climb rate changes.
Linear airspeed controllers can be designed by omitting the drag and gravity terms, which are
then modelled as disturbances to the system [11, 13].

When applying this control to aggressive flight (large roll- and pitch angles), the non-linear
gravity term causes a large axial acceleration disturbance. This can be countered by designing
an axial acceleration controller with integral control, and closing a velocity loop around it.
Practically this is not a good architecture, since the axial acceleration measurements are small
and typically below the sensor’s noise floor. The effect of this disturbance is pulsing of the
throttle.

The error induced by gravity will then only be countered once it manifests as an airspeed
error. Due to the lag in thrust response, these errors could potentially be large causing signifi-
cant deviations from the commanded airspeed. An attitude independent airspeed controller
design was investigated by applying feedback linearisation (also known as dynamic inver-
sion) techniques [10, 14]. This would allow for large changes in pitch angle, without compro-
mising the aircraft’s airspeed regulation.

9.1.1 Feedback Linearisation

Feedback linearisation (FL) uses a feedforward term to the actuator (thrust), to counter the
effects of a known disturbance on the state of interest (airspeed), by monitoring the rates of
change of the variables that contribute towards it. This feedforward term is determined by
differentiating the output of interest, until the actuator is present in the equation (allowing
direct access for feedforward).

V̇a = AW − g sin (θW)

=
T
m
− g sin (θW) (9.1.2)

Differentiating the output equation of interest (airspeed, Equation 9.1.2) and assuming that
angle of attack (α) is a small angle, the dynamic equation for Va becomes,

V̈a =
Ṫ
m
− g cos (θW) θ̇W (9.1.3)
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Substituting the dynamics of the thrust (Equation 9.1.1) into Equation 9.1.3, the new dynamic
equation becomes,

V̈a = −
1
τT

V̇a +
1

mτT
Tc − g cos (θW) θ̇W (9.1.4)

Before the feedback linearisation is done, a control law is defined. Feedback is possible
from AW and Va. As mentioned previously, no direct feedback from the AW measurement is
implemented. Any steady state errors will be dealt with by implementing an integrator on
airspeed. The control law and architecture are shown below in Figure 9.1 and Equation 9.1.5,
where T′ is the feedforward term used to apply the feedback linearisation.

Tc = −kvVa − keEv + T′

where Ev = Va −Vare f (9.1.5)

Substituting the control law into the dynamic equation (9.1.4) gives,

x' = Ax+Bu
y = Cx+Du

1
s

1
s

Figure 9.1: Airspeed Controller Architecture

V̈a = − 1
τT

V̇a +
1

mτT

(
−kvV − keEv + T′

)
− g cos (θW) θ̇W

=

(
−1
τT

)
V̇a +

(
−kv

mτT

)
V +

(
−ke

mτT

)
Ev +

1
mτT

T′ − g cos (θW) θ̇W

T′ is used to remove the gravity term,

0 =
1

mτT
T′ − g cos (θW) θ̇W

∴ T′ = gmτT cos (θW) θ̇W

where θ̇W = cos (φ) Q− sin (φ) R (9.1.6)

Applying the feedback linearisation defined in Equation 9.1.6, the linearised dynamic equa-
tion that is to be used for controller design is,

V̈a =

[
−1
τT

]
V̇a +

[
−kv

mτT

]
Va +

[
−ke

mτT

]
Ev
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This dynamic equation can be written in state space form as,V̈a

V̇a

Ėv

 =


−1
τT

−kv
mτT

−ke
mτT

1 0 0
0 1 0


V̇a

Va

Ev

+

0
0
1

Vare f

Va =
[
0 1 0

] V̇a

Va

Ev

 (9.1.7)

9.1.2 Pole Placement and Controller Gains

The closed loop characteristic equation is calculated by determining the eigenvalues of the
A-matrix.

sCL = |sI−A|

=

∣∣∣∣∣∣∣∣
s−

(
−1
τT

)
−
(
−kv
mτT

)
−
(
−ke
mτT

)
−1 s 0
0 −1 s

∣∣∣∣∣∣∣∣
= s3 +

(m)

mτT
s2 +

kv

mτT
s +

ke

mτT

= s3 + α2s2 + α1s + α0 = 0 (9.1.8)

As there are only two controller gains in Equation 9.1.8, a choice has to be made about the
what needs to be controlled since there will be three closed loop poles. It was decided that
two complex poles will be placed (with frequency ωV and damping ζV) with a third real pole
at a higher frequency which is not specified. The desired characteristic equation is,

sCL =
(
s2 + 2ζvωvs + ω2

v
)

Using long division, the controller gains can be calculated.

kv = mτT

[(
1− 4ζ2

V
)

ω2
V +

2ζVωV

τT

]
ke = mτT

(
1
τT
− 2ζVωV

)
ω2

V (9.1.9)

To ensure that the two complex poles are slower than the real pole, they are placed at half
the open loop frequency. The damping is set to optimally damped.

ωV =
1

2τT
ζV = 0.707 (9.1.10)
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9.1.3 Reference and Disturbance steps

Figure 9.2 shows both the step- and disturbance response of the airspeed controller. The plots
show that there is no steady state error and the disturbance rejection is within 10%, thus
complying with the design requirements.
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Figure 9.2: Linear airspeed step- and disturbance responses

9.2 Normal Specific Acceleration Controller [14]

Lift is the main aerodynamic force that is produced by the aircraft and generated by the main
wing. The Normal Specific Acceleration (NSA) controller designed in [14], allows control over
the amount of lift generated by controlling the aircraft’s short period mode. This controller
allows the design of simple, kinematic guidance controllers in Chapter 10 through its accelera-
tion interface.

For the outerloop controllers to work well, the NSA controller has to meet the following
requirements,

• Rise time under 1 second.
• Zero steady state error.

Feedback linearisation is implemented to linearise the model to gravity, which makes the
controller orientation independent. This can only be done with conventional airframes where
the lift due to pitch rate (CLQ ) and elevator deflection (CLδE

) can be ignored. The open loop
state space model from Equation 8.1.2 is written below, with CLq , CLδE

and the static terms
omitted.
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[
α̇

Q̇

]
=

[
− qS

mVa
CLα 1

qSc
Iyy

Cmα

qSc
Iyy

c
2Va

CmQ

] [
α

Q

]
+

[
0

qSc
Iyy

CmδE

]
δE

=

[
a11 1
a21 a22

] [
α

Q

]
+

[
0
b2

]
δE

CW =
[
− qS

m CLα 0
] [α

Q

]
+
[
0
]

δE

=
[
Vaa11 0

] [α

Q

]
+
[
0
]

δE (9.2.1)

The control law and architecture are,

x' = Ax+Bu
 y = Cx+Du

Normal
Dynamics
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Ke

Figure 9.3: Normal Specific Acceleration controller architecture

δE = −kqQ− kcCW − keEC + δEG

with ĖC = CW − CWre f (9.2.2)

With desired closed loop characteristic equation,

αc(s) = s3 + α2s2 + α1s + α0

The controller gains and gravity feedforward term (δEG ) are,

kq =
1
b2
(α2 + a11 + a22)

ke =
α0

Vaa11b2

kc =
1

Vaa11b2

(
α1 + a21 + a11α2 + a2

11

)
δEG = 1

Vab2
[(α2 + a11) g1 + ġ1]

(9.2.3)

where,

a11 = − qS
mVa

CLα

b2 = qSc
Iyy

CmδE

a21 = qSc
Iyy

Cmα

g1 = eWI
33 g

a22 = qSc
Iyy

c
2Va

CmQ

ġ1 = −g
[(

CW+eWI
33 g

Va

)
eWI

13 + PWeWI
23

]
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The feedback linearised closed loop state space model is,

C̈W

ĊW

ĖC

 =


(

a11 + a22

−b2kq

) (
a21 − a11a22

−Vaa11b2kc + a11b2kq

) (
−Vaa11b2ke

)
1 0 0
0 1 0


ĊW

CW

EC



+

 0
0
−1

CWR (9.2.4)

Pole placement

The above architecture allows control over all three closed loop poles. Since this NSA control-
ler is not aimed at changing the short period mode behaviour of the aircraft (which is repre-
sented by two complex poles), the frequency of the open loop poles are not changed. Their
damping is altered to ensure reduced overshoot. The integrator’s frequency is then set to be
the dominant closed loop frequency. It is not set above 6 rad/s to avoid inducing unmodelled
modes that the airframe has due to flex.

This results in the desired closed loop characteristic equation shown in Equation 9.2.5
(where the complex poles have a frequency = ωc and damping = ζc, with the integrator fre-
quency = ωI).

sCL = (s + ωI)
(
s2 + 2ζcωcs + ω2

c
)

= s3 + (2ζcωc + ωI) s2 +
(
2ζcωcωI + ω2

c
)

s + ω2
c

(9.2.5)

where,

ωn = ωc =

∣∣∣∣∣ a11 1
a21 a22

∣∣∣∣∣ ωI = 6 rad/s

ζc = 0.707
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Step response

The linear step response in Figure 9.4, shows that the NSA controller meets its requirements.
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Figure 9.4: Linear Normal Specific Acceleration step response

9.3 Roll Angle Controller

An aircraft’s direction of travel is changed by directing the main wing lift vector. This direc-
tion is controlled by rolling the aircraft to a certain angle, which changes the lateral inertial
acceleration component.

The requirements for the controller are,

• Rise time within 1 second.
• Zero steady state error.

The aircraft’s roll control is designed by incorporating both the rate and angle. As the
specific angle that the aircraft is rolled controls the amount of lateral acceleration, an integrator
is implemented on roll angle to eliminate any steady state errors. A feedforward term (N) is
used to eliminate the effect of the integrator from the input. By adding this term, the integrator
dynamics can be ignored by the outerloop controllers. Using the linear open loop plant from
Equation 8.1.3, the control law and is defined below and architecture is shown in Figure 9.5.

δA = −kpPW − kφφ− keEφ + Nφre f

where, Ėφ = φ− φre f (9.3.1)
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Figure 9.5: Roll Angle Controller Architecture

Implementing the control law, the closed loop state space representation is,ṖW

φ̇

Ėφ

 =


(
a11 − b11kp

)
−b11kφ −b11ke

1 0 0
0 1 0


PW

φ

Eφ

+

 N
0
−1

 φre f (9.3.2)

with,

a11 =
qSb2Clp

2Va Ixx
and b11 =

qSbClδA
Ixx

The closed loop characteristic equation is determined,

sCL =

∣∣∣∣∣∣∣
s−

(
a11 − b11kp

)
−
(
−b11kφ

)
− (−b11ke)

−1 s 0
0 −1 s

∣∣∣∣∣∣∣
= s3 +

(
b11kp − a11

)
s2 + b11kφs + b11ke

= s3 + α2s2 + α1s + α0 = 0 (9.3.3)

The controller gains are calculated from Equation 9.3.3 as,

kp = α2+a11
b11

ke =
α0
b11

kφ = α1
b11

N = ke
ωN

(9.3.4)

Pole placement

As with the NSA controller, there are three closed loop poles that can be placed. When a
controller is designed by using this method, it is critical to ensure that the controller gains
make sense. In this case, all gains should be negative to produce correct roll rate and -angle
disturbance rejection. If two complex poles are placed faster than the real pole, the roll angle
disturbance rejection would be under damped. If the complex poles are placed slower than
the real pole, the N term would not cancel out the effect of the integrator.

Three real poles (ωR, ωφ and ωI) are thus placed to ensure good disturbance rejection. ωR

is placed faster than the open loop pole (a11), while ωφ is placed slower to ensure that both
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controller gains (kP and kφ) are negative. The integrator pole ωI is placed much slower than
ωφ. The effect of this pole will however be eliminated by the N term.

The closed loop characteristic equation and specific closed loop pole locations are shown
in Equation 9.3.5.

sCL = (s + ωR)
(
s + ωφ

)
(s + ωI)

= s3 +
(
ωR + ωφ + ωI

)
s2 +

[
ωφωI + ωR

(
ωφ + ωI

)]
s +

(
ωRωφωI

)
ωR = 1.5 |a11| ωφ =

1
2
|a11| =

1
3

ωR ωI =
1
4

ωφ

(9.3.5)

Disturbance and Step response

A 10°/s roll rate disturbance is introduced into the system in Figure 9.6. The disturbance is
rejected very quickly allowing for minimal angle deviation.
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Figure 9.6: Linear 10°/s roll rate disturbance rejection

The effect of the N is clear, as the step response has the characteristics of the faster com-
plex pole pair. The integrator’s effect is seen as there is no steady state error. The design
requirements are thus met.
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Figure 9.7: Linear roll angle controller step response

9.4 Lateral Specific Acceleration Controller [14]

During flight, it is required that the Dutch Roll mode of the aircraft be dampened and the
side slip angle β be regulated to zero to ensure the aircraft flies in a coordinated manner. The
Lateral Specific Acceleration (LSA) controller designed in [14] is used to both dampen the high
frequency Dutch Roll mode and ensure β = 0. The control law and architecture are shown
below.

x' = Ax+Bu
 y = Cx+Du

Lateral Directional
Dynamics

1
s

Ke
Ke

Figure 9.8: Lateral Specific Acceleration Controller Architecture

δR = −krR− keEB

ĖB = BW − BWre f (9.4.1)
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The yaw rate damping (ζR) and integrator frequency (ωB) will be set. The controller gains are,

kr =
Izz

NδR

(
Yβ

mVa
+ NR

Izz
+ 2ζRωn

)
ke =

ωB
Kss

where

ωn =

√
Yβ NR

mVa Izz
+

Nβ

Izz

Kss =
YδR Yβ

mIzzω2
n

(
Nβ

Yβ
− NδR

YδR

)
Yβ = qSCyβ

YδR = qSCyδR

Nβ = qSbCnβ

NR =
qSb2CnR

2Va

NδR = qSbCnδR

(9.4.2)

The integrator gain has been calculated by applying TSS, thus

ωB <
ωn

6

9.5 Summary

The innerloop flight controllers allow control over the aircraft’s generated acceleration vector.
Due to the robust nature of feedback control, any uncertainties in the aircraft model will not
cause these controllers to become unstable or deviate much from the desired response. These
controllers will be used as the core of the kinematic guidance controllers designed in the next
chapter.



Chapter 10

Outerloop Controllers

Before the aircraft can fly a specific path (like navigate between various waypoints1 and tra-
cking objects), it has to be able to regulate its position relative to a path. The outerloop control-
lers make use of the innerloop controllers designed in Chapter 9 and is described in this chap-
ter.

10.1 Guidance method

Guidance (outerloop) controllers designed in [13] use a small bank angle approximation which
allows the controller to operate without the use of a kinematic state estimator. Small bank
angles relate to a large turning circle, which is undesirable. The kinematic state estimator de-
veloped by [25] was used to avoid this limitation. The guidance architecture developed by
[14] (called Specific Acceleration Matching) is not limited by small bank angles and was used
as the basis for the guidance architecture used in this research.

10.1.1 Specific Acceleration Matching [14]

The Specific Acceleration Matching (SAM) controller was designed to allow an aircraft to fly
any kinematically feasible trajectory. It starts off assuming the aircraft can be modelled as a
kinematic point in space, that has a three dimensional (3D) steerable acceleration vector that
can be commanded instantaneously (using TSS assumptions). A kinematically feasible tra-
jectory is then defined and the aircraft’s 3D acceleration vector is matched to this trajectory’s
acceleration vector.

This architecture defines the inertial position of the aircraft at every time step making the
trajectory time dependent. Ideally the trajectory is defined such that the aircraft will travel at
its trim airspeed. Should the aircraft’s actual airspeed vary from the desired, the aircraft will
have to alter its speed to "chase" the desired position along the trajectory. This is not a good
practical guidance method. Rather, it is desired to regulate the airspeed independently of a
predefined time variable.

The 3D steerable acceleration vector can be achieved by the aircraft’s thrust (axial body
acceleration), and rolling the lift vector of the main wing (acceleration in the yzW-plane). Due

1A point in inertial space that needs to be flown through

95
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to the thrust lag, the axial acceleration cannot be commanded instantaneously, which makes
the practical implementation difficult.

Both the above mentioned problems can be overcome by simplifying the SAM controller so
that no acceleration along the trajectory is required, thus using the aircraft’s axial acceleration
solely for airspeed regulation. This simplifies the 3D acceleration vector to a 2D commandable
acceleration vector which is always perpendicular to the trajectory. This plane that remains
perpendicular to the trajectory and passes through the aircraft’s current position, will be cal-
led the Trajectory plane. The control then reduces to regulating the aircraft’s position on the
Trajectory plane and the aircraft’s airspeed. The Trajectory plane will move along the trajec-
tory as the aircraft travels along it. This makes the architecture position dependent and will
be called Position-based Kinematic Guidance (PKG).

Before PKG can be designed, the Trajectory axis must be defined.

10.1.2 Trajectory Axis

A new orthogonal right handed axis system is defined that is used to describe the Trajectory
plane, and called the Trajectory axis. The xT-axis is defined along the trajectory, in the forward
flight direction. The yT-axis is perpendicular to the xT-axis and points out to the right of the
trajectory (when looking along the xT-axis). The yT-axis is always parallel to any vector that
lies in the xyE-axis. The zT-axis completes the axis system and is perpendicular to the xT-axis
(and the trajectory). The yT- and zT-axes span the Trajectory plane. The origin of the Trajectory
axis is the point on the trajectory that places the aircraft in the Trajectory plane.

The Euler angles that describe the orientation of the Trajectory axis are pitch (θT) and yaw
(ψT), it has no roll angle. The Trajectory axis accelerations are AT, BT and CT. A pictorial
representation is shown in Figure 10.1.

10.1.3 Position-based Kinematic Guidance

PKG may be a better practical implementation, but it will still requires complicated compu-
tations to determine the Trajectory plane’s position along an arbitrary trajectory. If the trajec-
tories that are to be flown are geometric, the PKG will be greatly simplified. This research is
not aimed at aerobatic flight, but rather tracking moving ground objects. The only trajectories
required to fulfil this type of flight are straight lines and circles (or arcs), in the xyE-plane. The
aircraft’s altitude changes need not to be gradual, thus discrete altitudes will be commanded.

Due to the above simplifications of the required flight trajectories, the Trajectory plane
does not have to pitch to accommodate sloping altitude changes (thus θT = 0). This causes
the zT-axis to be equal to the zE-axis. Since the yT- and zT-axis are independent, the PKG
controller can be split into control along these axes. Using TSS assumptions, the plant for the
yT-axis controller is a unity gain BT acceleration. The plant for the zT-axis controller is a unity
gain CT acceleration.

The combination of BT and CT accelerations will create the 2D acceleration vector required
to regulate the aircraft’s position on the Trajectory plane. These accelerations will be converted
to innerloop commands in Section 10.2.3.
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Figure 10.1: The Trajectory plane and -axis

10.2 Flight Trajectory Position Controllers

Using the PKG architecture described in Section 10.1.3, two sets of identical controllers are
designed to regulate the aircraft’s altitude and Cross Track Error while in flight. The most
significant disturbance that will be present is wind. Since wind is the movement of the air
that the aircraft flies in, a constant wind will cause an inertial velocity error, while gusts will
cause a force disturbance on the aircraft. Constant winds will be compensated for by inclu-
ding integral control on the Trajectory axis velocity controllers. Gusts will be rejected by the
innerloop controllers.

10.2.1 Altitude Controller

Controller Design

The control law is defined as,

CTre f = −k1żT + k2EzT + CTFF

ĖzT = k3

(
zTre f − zT

)
(10.2.1)

CTFF is the Trajectory axis acceleration feedforward term, which is used to counter the effect
of gravity (∴ CTFF = −g = −9.81). The control architecture is shown in Figure 10.2 and the
closed loop state space form of the system in Equation 10.2.2
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Figure 10.2: Altitude Control Architecture
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The closed loop characteristic equation is calculated as,

sCL =

∣∣∣∣∣∣∣
s− k1 −k2 0

1 s k3

−1 0 s

∣∣∣∣∣∣∣
= s3 + k1s2 + k2s + k2k3

= s3 + α2s2 + α1s + α0 = 0 (10.2.3)

The controller gains are thus,

k1 = α2

k2 = α1

k3 =
α0

α1
(10.2.4)

Pole Placement

The control architecture shown in Figure 10.2 allows the freedom to place three poles. A
complex pole pair (frequency = ωc, damping = ζc) and a real pole (frequency = ωr) are placed.
The characteristic equation of the desired closed loop poles is,

sCL =
(
s2 + 2ζcωcs + ω2

c
)
(s + ωr)

= s3 + (2ζcωc + ωr) s2 +
(
ω2

c + 2ζcωcωr
)

s + ω2
c ωr (10.2.5)
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In order not to violate TSS, the closed loop poles must be placed at least five times slo-
wer than the innerloop poles. Practically, the closed loop poles were all placed at the same
frequency and shown in Equation 10.2.6.

ωc = ωr = 0.5
[

rad
s

]
ζc = 0.8 (10.2.6)

Simulated response

Figure 10.3 shows a linear step response of the Trajectory axis altitude controller. The inner-
loop dynamics are not taken into account. It is clear that the controller performs well, with no
steady state errors.
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Figure 10.3: Trajectory axis altitude linear step response

10.2.2 Cross Track Error Controller

The Cross Track Error controller architecture is identical to the Altitude controller, as both
plants are assumed to be identical. The only difference is the pole placement.

Controller Design

The control law is defined as,

BTre f = −k1ẏT + k2EyT + BTFF

ĖyT = k3

(
yTre f − yT

)
(10.2.7)

BTFF is the Trajectory axis acceleration feedforward term and will be discussed in Chapter 11.
When circles or arcs are flown, the steady state centripetal acceleration is fed forward. This
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improves the tracking of the aircraft by eliminating the need for the velocity integrator (EyT )
to first build up to this value.

The control architecture is shown in Figure 10.4.

1

TSS inner
loop plant

1
s

1
s

1
s

Figure 10.4: Cross Track Error Control Architecture

The closed loop state space form, characteristic equation and controller gains are the same
as for the altitude controller. See equations 10.2.2, 10.2.3 and 10.2.4.

Pole Placement

The desired closed loop characteristic equation is identical to the altitude controller (Equation
10.2.5). The desired closed loop poles were all placed at the same frequency and the closed
loop pole locations are,

ωc = ωr = 0.4
[

rad
s

]
ζc = 0.8 (10.2.8)

Simulated response

A linear step response of this controller is shown in Figure 10.5, with the zero steady state
criteria is observed.

10.2.3 Mapping Body Accelerations onto the Trajectory Plane (during flight)

The Trajectory axis accelerations (BT and CT) that will be commanded by the position control-
lers in Section 10.2 now have to be mapped to the innerloop references. For this it is assumed
that the aircraft flies at a constant airspeed (no axial accelerations) and the aircraft’s side slip
angle is regulated to zero (BW = 0). The aircraft’s NSA- and roll angle controllers will be used
to generate the required 2D Trajectory plane acceleration vector.

This system can be modelled as a MIMO system, but an intuitive method is used to de-
couple the system into two SISO systems. The NSA controller is used to control the com-
ponent of acceleration along the zT-axis (CT), independent of orientation. There are however
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Figure 10.5: Trajectory axis lateral position linear step response

singularities at 90° pitch and roll, when the desired CT acceleration cannot be achieved. But,
as aerobatic flight will not be performed, these singularities will not be reached.

When the aircraft’s roll angle changes, the component of NSA along the yT-axis (BT)
changes while CT is kept constant (with the controller). The BT acceleration can thus be
controlled by controlling the aircraft’s roll angle.

The required Trajectory accelerations are coordinated into the Wind axis, but this might
cause axial Wind acceleration to be required to fulfil the Trajectory accelerations. Instead, this
method is used inversely by coordinating the Wind NSA in Trajectory axis, as axial Trajectory
accelerations do not affect the PKG controller.

Coordinating Wind accelerations in Trajectory axis

An "intermediate" Wind axis (denoted with the subscript W ′) is used where the Wind axis has
no roll angle (φW = 0). This allows the NSA and roll angle to control the 2D acceleration vector
in this "intermediate" Wind axis. The Euler angles for the DCM used for this coordination are
yaw (ψW ′T = ψW − ψT) and pitch (θW ′T = θW − θT = θW).AT

BT

CT

 =
[

DCMTW ′
]  0

BW ′

CW ′



=

cos ψW ′T cos θW ′T − sin ψW ′T cos ψW ′T sin θW ′T

sin ψW ′T cos θW ′T cos ψW ′T sin ψW ′T sin θW ′T

− sin θW ′T 0 cos θW ′T


 0

BW ′

CW ′


(10.2.9)
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Rewriting Equation 10.2.9 to make the "intermediate" Wind accelerations the subject of the
equation yields,

CW ′ =
CW

cos θW ′T

BW ′ =
BW − sin ψW ′T sin θW ′T

CW
cos θW′T

cos ψW ′T

=
BW − sin ψW ′T tan θW ′TCW

cos ψW ′T
(10.2.10)

The Wind accelerations required to realise the Intermediate-Wind accelerations can be gene-
rated by the NSA and roll angle controller. To keep the altitude dynamics separate from the
Cross Track Error dynamics, the NSA is commanded taking the current roll angle (φW) into
consideration.

CW ′ = CWre f cos φW

CWre f =
CW ′

cos φW
(10.2.11)

Using the dot product of the two "intermediate" Wind accelerations to determine the roll angle
required to produce a certain lateral acceleration (BW ′), is shown in Equation 10.2.12 (where
aW ′ = BW ′ jW ′ + CW ′kW ′).

aW ′ · (−CW ′) = |aW ′ | |−CW ′ | cos φWre f(
BW ′ jW ′ + CW ′kW ′

)
·
(
−CW ′kW ′

)
= |aW ′ | (CW ′) cos φWre f

∴ φWre f = arccos

(
−C

′
W

|aW ′ |

)
(10.2.12)

The sign is lost when the dot product is calculated, and using the lateral acceleration (B
′
W) the

reference roll angle is commanded as,

φWre f = arccos
(
−CW ′

|aW ′ |

)
sgn (BW ′) (10.2.13)

The controllers require measurements in Trajectory axis. These measurement conversions
will be discussed next.
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10.3 Trajectory Axis Measurements

The only measurements required for the PKG controller are velocity and position. These mea-
surements are made by a GPS which gives orientation independent Earth axis readings. The
velocity measurements are only dependant on the Trajectory axis orientation. Coordinating
these measurements into the Trajectory axis,ẋT

ẏT

żT

 =

 cos ψT sin ψT 0
− sin ψT cos ψT 0

0 0 1


Ṅ

Ė
Ḋ

 (10.3.1)

The position measurements are trajectory specific, where displacement along the yT-axis is
the cross track position and zT-axis is the down displacement (or negative altitude).

10.4 Summary

This concludes the flight guidance controller designs. These controllers allow the aircraft to
be flown along a specified 2D flight trajectory. The definition of these trajectories will be
discussed in the following chapter, to achieve Waypoint- and Dynamic Pursuit Navigation.



Chapter 11

Waypoint- and Dynamic Pursuit
Navigation

The guidance level controllers designed up to now allow the aircraft to be controlled relative
to a trajectory. This chapter discusses the definition of trajectories which will enable Way-
point navigation and following of moving ground objects. The PKG controllers are used to
implement all the navigation algorithms.

As discussed in Chapter 10, the guidance controllers are not designed to fly any kinema-
tically feasible trajectory, but rather geometric trajectories that are restricted to the xyE-plane.
Since circles and straight lines are both geometric and easily calculated, the desired trajectories
will be constructed from these shapes.

11.1 Flight

While the aircraft is in flight, it is guided in the Earth’s reference frame by defining 3D way-
points that are to be flown through. Each waypoint is defined with a North-, East-, and Down
position. This altitude is commanded to the flight guidance controller.

Navigation in the 2D xyE plane is done by using the algorithm developed by the late
professor G. Milne and implemented in [13]. Firstly two points are defined that describe
the aircraft’s current position and heading, and the next waypoint with its heading. Two
departure circles and two arrival circles are connected with a series of straight lines, after
which the shortest path is determined. This is shown in Figure 11.1. The resulting flight path
is thus defined by first the departure circle, then a straight line and finally the arrival circle.
The guidance of the aircraft is then simplified to circle- and straight line tracking.

104
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Figure 11.1: Path Planning

The waypoint navigation algorithm defines a couple of points that are used to define the
two circles and the straight line. These are shown in Figure 11.1 and listed below.

• CCD: 2D Departure circle centre
• CCA: 2D Arrival circle centre
• Rad: Circle radius
• PD: 2D Point of departure from initial circle to straight line
• PA: 2D Point of arrival from straight line to final circle
• LSL: Length of straight line
• HSL: Heading of straight line, unit vector
• HF: Final heading, unit vector
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11.1.1 Straight Lines

The cross track position control is done by regulating the perpendicular distance from the
trajectory to the aircraft. The departure- (PD) and arrival points (PA) are used to define the
desired trajectory. The straight line section is deemed completed when the distance travelled
from the departure point (PD) is larger than the length of the straight line (LSL).

11.1.2 Circles

When a circle is flown, the trajectory is defined around the circle’s centre at the desired ra-
dius. The Trajectory axis is positioned by constructing a straight line from the circle’s centre
thought the aircraft’s current position. The xT-axis is then perpendicular to this line in the
desired direction of rotation. The cross track position (or yT displacement) is then calculated
by comparing the aircraft’s current distance to the circle’s centre and the desired radius 1.

Figure 11.2: Circle Navigation

The circle is considered completed when the aircraft’s current heading is within 10° of the
departure heading (straight line heading (HSL) in the case of the departure circle, final heading
(HF) in the case of the arrival heading).

Centripetal acceleration

Ignoring any disturbances, the aircraft will experience a centripetal acceleration while flying
a constant circle. Since the Trajectory axis moves with the aircraft while flying a circle, there is
no implicitly commanded acceleration. To avoid increasing the closed loop frequency of the
lateral velocity (ẏT) and decreasing the settling time after transition, a lateral acceleration is
fed forward to the lateral Trajectory acceleration (BTFF ).

1This method does not include the correct sign for the yT measurement, and must be corrected.
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Since the radius and yT-axis are along the same line, the lateral Trajectory acceleration is
identical to the desired centripetal acceleration. It is a function of velocity and desired radius,
and calculated in Equation 11.1.1. The value of this feedforward term does not contain the
required sign. When circling left (looking from above) this term must be negative.

|BTFF | =
(Commanded Va)2

Desired Rad
(11.1.1)

11.2 Dynamic Pursuit Navigation

When using a UAV as a surveillance platform equipped with a camera, it would be desirable
for the UAV to follow a land- sea based object for extended periods of time. Since conventional
fixed wing UAV’s are not capable of hovering, it would need to circle the object in order to
accomplish this goal. The two main requirements while following an object are:

• The object is to be circled at a constant radius as it aids visual recognition.
• The UAV’s airspeed will be assumed constant, since this is how aircraft are practically

flown.

11.2.1 Stationary Object

The case where the object is stationary is identical to flying a circle of constant radius, des-
cribed in Section 11.1.2. The desired path is always tangential to the radius and the lateral
acceleration feedforward (described in Equation 11.1.1) is also constant.

11.2.2 Mobile Object

As soon as the object starts moving, the kinematic relationship of Equation 11.1.1 is no longer
valid. This is clear through inspection. For example:

When an UAV is travelling in the same direction as the object it is following, and the object
is travelling at the same speed as the UAV. Assuming the UAV is abreast the object and at the
desired radius, the UAV would simply have to continue flying a straight line to preserve the
constant radius criteria. The kinematic relationship of the desired path in this example is
one of zero lateral acceleration. Since the required centripetal acceleration is also the lateral
feedforward term, this kinematic relationship needs to be investigated.

Figure 11.3 and 11.4 shows a representation of the desired flight path (a constant distance
from the object) while the object is travelling a various speeds.

Kinematic Relationship

The kinematic relationship of a point mass circling a moving object at a constant radius is
unknown but calculated from the equation describing the position of the aircraft relative to
the object. To simplify the derivation the Tracking Plane is defined. It is orientated such that
Ntrack is always directed in the direction the object being tracked is moving. In other words,
it is the inertial North-East plane rotated through the heading angle of the object (or Tracking
Plane’s angle (Ψtrack) ).
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Required flight path

Object to track

Figure 11.3: The desired path when the ob-
ject’s speed is a quarter of the aircraft’s airspeed
(VO = 0.25Va)

Required flight path

Object to track

Figure 11.4: The desired path when the object’s
speed is half that of the aircraft’s airspeed (VO =
0.5Va)

Figure 11.5: Definition of Tracking axis



CHAPTER 11. WAYPOINT- AND DYNAMIC PURSUIT NAVIGATION 109

The desired path on the Tracking Plane is a constant circle around a point which is simple
and shown in Equation 11.2.1. The position relationship has been split into scalar equations
for ease of understanding and calculation. The equations describing the point mass’s acce-
lerations circling the object, is calculated by differentiating the position equation twice. The
velocity- and acceleration equations are shown in equations 11.2.2 and 11.2.3 respectively. The
derivation of these equations is shown in detail in appendix D.

P(t) = Px(t) + Py(t)

= [N(t) + R cos Ψ(t)] + [R sin Ψ(t)] (11.2.1)

V(t) = Ṗ(t) = Vx(t) + Vy(t)

=
[
Ṅ(t)− RΨ̇(t) sin Ψ(t)

]
+
[
RΨ̇(t) cos Ψ(t)

]
(11.2.2)

A(t) = V̇(t) = Ax(t) + Ay(t)

= −R
[
Ψ̈(t) sin Ψ(t) + Ψ̇(t)2 cos Ψ(t)

]
+R

[
Ψ̈(t) cos Ψ(t)− Ψ̇(t)2 sin Ψ(t)

]
(11.2.3)

Equations 11.2.1, 11.2.2 and 11.2.3 are all dependant on the desired position of the UAV on
the constant radius around the object (Nt, Et). Another, more desirable, way of describing this
position is the heading angle to the desired point on the radius (Ψt), from the object.

Figure 11.6 shows the acceleration angle (ΨA) variations relative to the radius, while va-
rying Ψt. The object is travelling at a constant velocity (VO).
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Figure 11.6: Required acceleration vector direction vs. heading from object to point on desired radius.

According to the definition of the Trajectory axis and the outerloop controllers (Chapter
10), xT is always perpendicular to the required acceleration vector of the trajectory. It is thus
clear that xT is not perpendicular to the tracking circle’s radius.

When the UAV is off of the desired radius, it is required that the angle from the UAV to
the desired position on the circle (Ψa) be equal to the heading of the acceleration vector (ΨA)
to fulfil the Trajectory axis definition. Equation 11.2.4 describes this criteria mathematically in
terms of the UAV’s position (Na, Ea), desired position (Nt, Et), UAV’s velocity (Va) and object
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velocity (VO). Unfortunately an analytical solution was not found.

ΨA = arctan
(

EA − Et

NA − Nt

)
= arctan

(
EA − R sin Ψt

NA − R cos Ψt

)
Ψa = arctan

(
Ay

Ax

)
∴ ferror (Ψt) = (EA − R sin Ψt) Ax − (NA − R cos Ψt) Ay

= (EA − R sin Ψt)
(
Ψ̈(t) sin Ψ(t) + Ψ̇(t)2 cos Ψ(t)

)
+ (NA − R cos Ψt)

(
Ψ̈(t) cos Ψ(t)− Ψ̇(t)2 sin Ψ(t)

)
= 0 (11.2.4)

Iterative solution (Newton-Raphson)

The Newton-Raphson iterative method was used2 to solve for ψt. This method aims to mini-
mise the error function (Equation 11.2.4) by varying the value of Ψt. The rest of the variables
are assumed constant for each solving process. A resulting error function is shown in Figure
11.7. Newton-Raphson uses the current value and the slope of the error function at that point,
to propagate where the zero position could be (first order approximation, Equation 11.2.5).
It then adjusts the value of Ψt with the estimated amount. This process is repeated until the
error function reaches a value sufficiently close to zero.

Ψt[n + 1] = Ψt[n]±
ferror (Ψt[n])
ḟerror (Ψt[n])

(11.2.5)

The Newton-Raphson method needs a start value and to ensure convergence, it should be
as close to the answer as possible. A good starting value has been found to be the heading
from the object to the UAV. This method does however, not always converge. The error func-
tion displayed in Figure 11.7 is such an example. This is because the calculated step sizes are
hundreds of degrees, causing multiple wrappings of Ψt. A limit in step size is introduced to
ensure that a solution is found (20◦ was used).

Due to the small slope of the error function’s derivative ( ḟerror) near to the zero crossing,
this method may take more time to converge as it jumps between answers on both sides of the
zero crossing.

A second constraint is placed on the iteration steps. The step size is halved each time
the step direction is changed, which ensures convergence. The corrected angle would still
jump around (but in small increments) as the error function approaches zero. However, a
sufficiently accurate solution was available after much less time.

A third constraint was placed on the iterative steps. Should the step size fall below a
specified value (0.5◦ was used), it was assumed that Ψt was accurate enough. These three
constraints cause a significant reduction in iterations, without sacrificing accuracy.

Through inspection it was found that this method only works when the object travels
slower than 75% of the UAV’s speed. Once this boundary is exceeded, the initial step direction

2This might not be the best method, but since this thesis is not aimed at optimal design of the Dynamic Pursuit
Navigation algorithm it was deemed sufficient.
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Figure 11.7: Newton-Raphson error functions and corresponding step sizes.

Table 11.1: Reduction in iterations per valid solution (for one specific case), by applying step size
constraints

Constraint applied Number of iterations
Constraint 1: Limiting step size Does not converge
Constraint 2: Halving of step size 51
Constraint 3: Specifying minimum step size 10

is calculated incorrectly and the absolute minimum of the error equation is not found.
In practice, when the object is travelling that fast, the UAV will need to bank at high angles

when Ψt is in the region of±90◦ (depending on the direction of rotation). When surveillance is
the goal, such high bank angles could cause the camera’s view to be obscured by the airframe.
In such a case, it is advisable to match the object’s speed and fly abreast to it.
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11.3 Simulation

In order to validate the Dynamic Pursuit Navigation algorithm, a linear simulation is run
where the aircraft is modelled as a kinematic point mass (no dynamics). No guidance control-
lers are used and an open loop implementation of the algorithm is tested. The results of this
simulation is shown in Figure 11.8 and 11.9. Both the desired and actual paths are plotted,
and it is clear that the algorithm performs well.
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Figure 11.8: Simulation of Dynamic Pursuit
Navigation algorithm. This is an open loop
implementation, thus no guidance control
(VO = 0.25Va)
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Figure 11.9: Simulation of Dynamic Pursuit
Navigation algorithm. This is an open loop
implementation, thus no guidance control
(VO = 0.5Va)

11.4 Summary

This chapter concludes the use of the outerloop controllers designed in Chapter 10 to allow a
UAV to fly between specified waypoints and follow a moving object. The performance results
of these controllers in a full non-linear simulation environment is shown in the following
chapter.



Chapter 12

Flight Control Simulation

All the flight controllers designed in the chapters leading up to this one, are now combined to
produce a system that is capable of achieving autonomous Waypoint- and Dynamic Pursuit
Navigation. To reduce risk to hardware, a full non-linear 6-DOF HIL simulation is set up
in MATLAB®, which includes practical sensor noise and wind disturbances. This chapter
discusses these simulated results.

12.1 Waypoint Navigation

Three waypoints are flown with the aircraft staring at a random position. During waypoint
flight, the aircraft’s airspeed, altitude and 2D position (xyE-plane) must be regulated. All data
on the figures below are plotted from the moment the navigation autopilot is engaged.

12.1.1 Airspeed

Figure 12.1 shows that the airspeed of the aircraft is above the desired value when navigation
starts. The airspeed is reduced and reaches its target when the aircraft reaches the desired alti-
tude. The deviations in airspeed are caused by the wind disturbances. During an altitude step
(83-96 seconds) the airspeed does not deviate drastically, proving that the airspeed controller
will prevent the aircraft from stalling.
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Figure 12.1: Simulated airspeed regulation during navigation

12.1.2 Altitude

Figure 12.2 shows the aircraft’s altitude profile. There is a slight steady state error, as the
altitude controller does not have integral control. Since this error is small, it is tolerable. The
rise time is slower than designed for. This is a result of the climb rate being limited, preventing
the aircraft from stalling.
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Figure 12.2: Simulated altitude regulation during navigation
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12.1.3 Lateral Specific Acceleration regulation

Figure 12.3 shows the regulation of the Lateral Specific Acceleration (BW during navigation.
At 176 seconds, a turn is entered and at 193 seconds it is exited. It is clear that BW is regulated
well around zero.
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Figure 12.3: Simulated Lateral Specific Acceleration regulation

12.1.4 Position and Cross Track Error

The waypoints, desired flight path and aircraft position during navigation is shown in Figure
12.4. The aircraft tracks the desired path well, even with the presence of wind. Figure 12.5
shows the lateral position deviations off the path. The largest deviations are found when the
aircraft transitions into or out of turns.
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Figure 12.5: Simulated cross track errors during Waypoint navigation

12.2 Dynamic Pursuit Navigation

Since all the controllers used for Dynamic Pursuit Navigation are also used for Waypoint
navigation, it serves no purpose in showing them again. The only difference is the lateral
acceleration feedforward term (BTFF ), which influences cross track regulation.

Two simulations are shown of the UAV following a moving object travelling at 50% of the
UAV’s airspeed. The first simulation uses a constant BTFF , while the second uses the iterative
method described in Section 11.2.2.

The iterative method drastically improved the effectiveness of the UAV to keep the desired
radius. The CTE was reduced from a maximum of 50% to 8%. CTE cannot be eliminated
completely as the roll rate dynamics cause lags in the innerloop acceleration vector response.
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Figure 12.6: Non-linear simulation plot of UAV following a moving object. The object is travelling at
0.5VA. The lateral acceleration feedforward (BTFF ) is kept constant.
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Figure 12.7: Non-linear simulation plot of UAV following a moving object. The object is travelling at
0.5VA. The lateral acceleration feedforward (BTFF ) is calculated using the iterative method described
in Section 11.2.2.
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12.3 Summary

These non-linear simulations have shown that the PKG control architecture performs well
when used to implement Waypoint- and Dynamic Pursuit Navigation. The simulations show
that the navigation is performed with satisfactory results.



Chapter 13

Conclusion and Recommendations

This concludes the research in this thesis. One of the goals of this thesis has not been achieved,
as no practical results of the controllers are available. This is due to a crash during flight
preliminary testing (the crash was not caused by the controllers). The remaining time was not
sufficient to repair the damage and allow for further test flights.

Despite this setback, a large contribution has been made toward Take-off, flight control
(stability and guidance) and object following. Even though these controllers have not been
tested practically, the results of the non-linear HIL simulation are encouraging.

13.1 Conclusions

13.1.1 Take-off

Analysis

One of the main goals of the Take-off research was to fully analyse the runway model. This
analysis (chapter 5) has given much insight into the transient response of the runway model,
as well as the coupling between the undercarriage- and aerodynamic effects during Take-off.
Most notably would be the effect of the actuators on the system during the various stages of
Take-off.

As seen from the analysis, acceleration based control is difficult to implement due to the
plant’s complexity. The position and movement of the open loop zeros are not conducive to
improving the damping or frequency of the plant through direct feedback from acceleration.
Instead, direct feedback of rate was seen to give a far more desirable closed loop response.

Control

Even though the analysis indicated that acceleration based control was not ideal, it was imple-
mented to test its feasibility. The implementation proved very intricate due to the complexity
of the plant. This also resulted in limited response rates.

If a controller is required to have an acceleration interface, this can be accomplished by
using the steady state relationship between acceleration and rate (aY = UR). However, there
are still limitations.
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Low speed The measured accelerations are in the noise floor of low cost accelerometers.
Using the steady state relationship, large yaw rates (R) will be required to get the desired
accelerations. This will cause large changes in heading to achieve the desired acceleration,
which is not ideal.

Medium speed Due to the nature of the system, the closed loop frequency at medium speeds
(when the aerodynamic effects become dominant) is fairly low when compared with other
speeds. This make control more sluggish at these speeds. This could be critical, as gusts will
have a larger effect.

High speed Acceleration control does give satisfactory control over the system at higher
speeds. Unfortunately the aircraft will no be able to use this control for very long, as the
aircraft will almost be airborne.

The augmented damping provided by the pitch- and roll rate regulators seemed to work
well, however this is very difficult to verify while on the runway. Their performance was also
tested while in flight, where they gave satisfactory results.

Ramping the throttle during the Groundroll phase eliminated the possibility of noisy sen-
sors corrupting the throttle command and possibly preventing maximum thrust. This also
ensures the shortest possible Groundroll.

13.1.2 Waypoint- and Dynamic Pursuit Navigation

The main reason for developing the Dynamic Pursuit Navigation algorithm is to be able to
continue surveillance of surface objects, even when they are moving. The algorithm develo-
ped in chapter 11 has satisfactory results even though it is not computationally efficient. Its
performance degrades when very large bank angles are required, which causes a delay in the
production of the required acceleration vector by the aircraft.

The Dynamic Pursuit Navigation algorithm required a position based kinematic flight gui-
dance controller (PKG control) to be successful. This architecture was designed and its imple-
mentation enabled the guidance to be independent from a specific airspeed or thrust com-
mand. This is particularly useful, as aircraft are generally flown by keeping their airspeed
constant.

A new airspeed controller was designed by using the technique of feedback linearisation.
It allows regulation (and control) of airspeed to within a small deviation, even when large
pitch changes were made. Even though not required for this research, this controller is well
suited to aggressive flight control.
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13.2 Recommendations

13.2.1 Take-off

• When designing Take-off controllers, it is advised that rate based control is used for
three reasons:

– Rate measurements are less susceptible to noise than accelerometer measurements.
– Rate based control gives superior results when being used to control the Groundroll

of an aircraft due to the shape of the root locus.
– At low speeds, large accelerations are required to achieve heading changes.

• Even though acceleration based control is not suited to the Take-off problem, the analysis
of the undercarriage can be used for other ground based vehicles. These vehicles should
travel quite fast in order for the kinematic relationship between lateral acceleration and
yaw rate to be viable. This control would also suit navigation around corners better than
straight line tracking.

13.2.2 Waypoint- and Dynamic Pursuit Navigation

• The Dynamic Pursuit Navigation algorithm gave good results, but is not very computa-
tionally efficient due to the iterative solver employed. Since the control strategy defines
this algorithm, further research could be done to find a more efficient control strategy
with which to accomplish Dynamic Pursuit Navigation.

• Tracking was done by commanding an arbitrary trim airspeed. The endurance of the
aircraft can be extended by flying at a loiter airspeed1. Alternatively, the object to be
tracked can be approached at cruise airspeed2.

• The trajectory used for the object following can be investigated. In this research a circle
of constant radius is flown around the object, but this is not necessarily the ideal path
when a camera is mounted on the aircraft. Flying abreast or behind the object might be
more suitable.

• Airspeed is kept constant during tracking in this research. The change in airspeed can
be used to form part of the tracking algorithm.

1The airspeed that allows maximum flight time
2The airspeed that covers the most distance with the least amount of fuel
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Appendix A

Direction Cosine Matrix

The derivation of the DCM is done in [13] and only stated here. This DCM is based on the
Euler 321 attitude description [8]. It is used to coordinate a 3D vector into another axis system.

Assuming a vector coordinated (described) in the axes system 1 (V1), it can be coordinated
in axis system 2 that is rotated through yaw (ψ), pitch (θ) and roll (φ), as the vector V2.

V2 =
[
DCM21

]
V1

where,

DCM21 =


(cos ψ cos θ) (sin ψ cos θ) (− sin θ)(

cos ψ sin θ sin φ

− sin ψ cos φ

) (
sin ψ sin θ sin φ

+ cos ψ cos φ

)
(cos θ sin φ)(

cos ψ sin θ cos φ

+ sin ψ sin φ

) (
sin ψ sin θ cos φ

− cos ψ sin φ

)
(cos θ cos φ)


The inverse is also true,

V1 =
[
DCM21

]−1
V2

But the DCM is orthogonal [13], thus the inverse is simply the transposed.

V1 =
[
DCM21

]−1
V2 =

[
DCM21

]T
V2 =

[
DCM12

]
V2

where,

[
DCM21

]T
=


(cos ψ cos θ)

(
cos ψ sin θ sin φ

− sin ψ cos φ

) (
cos ψ sin θ cos φ

+ sin ψ sin φ

)

(sin ψ cos θ)

(
sin ψ sin θ sin φ

+ cos ψ cos φ

) (
sin ψ sin θ cos φ

− cos ψ sin φ

)
(− sin θ) (cos θ sin φ) (cos θ cos φ)
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Appendix B

Super Frontier Senior 46 physical data

All the physical data that describes the physical properties of the Super Frontier Senior 46 is
listed here. This includes mass, moment of inertia, main wing- and undercarriage measure-
ments and stability and control derivatives.

Table B.1: Mass and Moment of Inertia data

m (mass) 5.12 [kg]
IXX (xB-axis moment of inertia) 0.57 [kg.m2]
IYY (yB-axis moment of inertia) 0.4 [kg.m2]
IZZ (zB-axis moment of inertia) 0.992 [kg.m2]

Table B.2: Main wing measurements

S (wing area) 0.78 [m2]
b (wing span) 2.0 [m]
c (wing chord length) 0.39 [m]

Table B.3: Undercarriage data (all measurements are taken from the CG)

ls (distance to steering wheel, along xB) 0.365 [m]
lm (distance to main wheels, along xB) 0.02 [m]
ll (distance to left wheel, along yB) 0.26 [m]
lr (distance to right wheel, along yB) 0.26 [m]
Cαα (tire cornering coefficient) 0.25 [ 1

rad ]

Stability and control derivatives of an airframe give a mathematical description of the
forces and moments created by the airframe and control surfaces of an aircraft. These deri-
vatives that describe the Super Frontier Senior 46 airframe are listed below. The unit of all
derivatives are 1

rad .
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Table B.4: Stability and control derivatives

Output due to: α β

Z force CLα = 3.326826 CLβ
= 0.000000

Y force CYα
= 0.000000 CYβ

= -0.200573
P (rolling moment) Clα = 0.000000 Clβ

= -0.041078
Q (pitching moment) Cmα = -0.978701 Cmβ

= 0.000000
R (yawing moment) Cnα = 0.000000 Cnβ

= 0.081422

Output due to: P (roll rate) Q (pitch rate) R (yaw rate)
Z force CLp = 0.000000 CLq = 6.852467 CLr = 0.000000
Y force CYp = -0.069309 CYq = 0.000000 CYr = 0.188733
P (rolling moment) Clp = -0.316317 Clq = 0.000000 Clr = 0.018895
Q (pitching moment) Cmp = 0.000000 Cmq = -10.593742 Cmr = 0.000000
R (yawing moment) Cnp = 0.005306 Cnq = 0.000000 Cnr = -0.079365

Output due to: δA (aileron) δE (elevator) δR (rudder)
Z force CLδA

= 0.000000 CLδE
= 0.531288 CLδR

= 0.000000
Y force CYδA

= -0.015387 CYδE
= 0.000000 CYδR

= 0.125860
P (rolling moment) ClδA

= -0.136923 ClδE
= 0.000000 ClδR

= 0.010171
Q (pitching moment) CmδA

= 0.000000 CmδE
= -1.280891 CmδR

= 0.000000
R (yawing moment) CnδA

= -0.001181 CnδE
= 0.000000 CnδR

= -0.057615



Appendix C

Linearising the Runway Model

Dynamic Equations

The mathematical model of the lateral runway mode is derived in chapter 3, and converted to
contain β and R states. This appendix goes through the mathematical detail of linearising this
model.

β̇ =
YU + Ya

mU
− R

Ṙ =
NU + Na

Iz
(C.0.1)

The dynamic equations for the lateral runway model (Equation 5.2.3) are stated here for
convenience. First step is to expanded and simplify the forces and moments. As the ae-
rodynamic forces and moments are already in linear form, the undercarriage forces will be
linearised first.

YU =Ys + Yl + Yr

=NSCαα

[
arctan

(
V + lsR

U

)
+ δS

]
cos (−δS)− NS · µ f sin (−δS)

+NLCαα

[
arctan

(
V − lmR
U + lw

2 R

)]
+ NRCαα

[
arctan

(
V − lmR
U − lw

2 R

)]
(C.0.2)

Applying the β conversion (Equation 5.2.2), and ignoring friction,

YU =NSCαα

[
arctan

(
V sin(β) + lsR

U

)
+ δS

]
cos (−δS)

+NLCαα

[
arctan

(
V sin(β)− lmR

U + lw
2 R

)]
+ NRCαα

[
arctan

(
V sin(β)− lmR

U − lw
2 R

)]
(C.0.3)
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Applying small angle assumptions,

YU =NSCαα

(
Vβ + lsR

U
+ δS

)
+NLCαα

(
Vβ− lmR
U + lw

2 R

)
+ NRCαα

(
Vβ− lmR
U − lw

2 R

)
(C.0.4)

As discussed in chapter 5,
V ≈ U

And U � lw

2
R

∴ U ± lw

2
R ≈ U

YU =NSCαα

(
β +

ls

U
R + δS

)
+NLCαα

(
U
U

β− lm

U
R
)
+ NRCαα

(
U
U

β− lm

U
R
)

(C.0.5)

The undercarriage moments are the forces that act on a moment arm. The undercarriage
moments are thus,

MU =lsYs − lmYl − lmYr

=lsNsCαα

(
β +

ls

U
R + δs

)
−lmNsCαα

(
β− lm

U
R
)
− lmNsCαα

(
β− lm

U
R
)

(C.0.6)

Substituting the undercarriage- and aerodynamic forces, the β̇ equation expands to,

β̇ =
NsCαα

mU

(
β +

ls

U
R + δs

)
+

NlCαα

mU

(
β− lm

U
R
)
+

NrCαα

mU

(
β− lm

U
R
)

+
q̄S

mVa

(
Cyβ

β +
b

2Va
Cyr R + CyδR

δR

)
− R (C.0.7)

Expanding the Ṙ equation in the same way,

Ṙ =
lsNsCαα

Iz

(
β +

ls

U
R + δs

)
− lmNlCαα

Iz

(
β− lm

U
R
)
− lmNrCαα

Iz

(
β− lm

U
R
)

+
q̄Sb
Iz

(
Cnβ

β +
b

2Va
Cnr R + CnδR

δR

)
(C.0.8)

Isolating the effect of each state to the dynamic equation, can be done by determining the
partial derivative of the dynamic equation with respect to the state. The system is linearised
about a certain work point, by substituting the parameters of the work point into the deriva-
tive. As the aircraft will be travelling down a straight runway, this will become the work point
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(with β = R = 0). The state space representation of this coupled system is thus,[
β̇

Ṙ

]
=

[
∂β̇
∂β

∂β̇
∂R

∂Ṙ
∂β

∂Ṙ
∂R

] [
β

R

]
+

[
∂β̇
∂δs

∂β̇
∂δR

∂Ṙ
∂δs

∂Ṙ
∂δR

] [
δs

δR

]
(C.0.9)

The partial derivatives with respect to the states are,

∂β̇

∂β
=

NCαα

mU
+

q̄SCyβ

mVa

∂β̇

∂R
=

q̄SbCyr

2mV2
a

− 1

∂Ṙ
∂β

=
q̄SbCnβ

Iz

∂Ṙ
∂R

=
lslmNCαα

IzU
+

q̄Sb2Cnr

2IzVa

∂β̇

∂δs
=

lm

ls + lm

NCαα

mU
∂β̇

∂δR
=

q̄SCyδR

mVa

∂Ṙ
∂δs

=
lslm

ls + lm

NCαα

Iz

∂Ṙ
∂δR

=
q̄SbCnδR

Iz
(C.0.10)

Output Equations

The two states are β and R. R is directly measurable from the zB-axis rate gyro sensor. It is
not possible to measure β with conventional inertial sensors or GPS. aY is an inertial measu-
rement that is a function of the forces applied to the body, scaled with its mass. As the forces
are directly related to β, the aY measurement will contain information of β. The kinematic
relationship between aY and Y is used to define the output equation for the state space model.

aY =
YU + Ya

m

=
NsCαα

m

(
β +

ls

U
R + δs

)
+

NlCαα

m

(
β− lm

U
R
)

+
NrCαα

m

(
β− lm

U
R
)
+

q̄S
m

(
Cyβ

β +
b

2Va
Cyr R + CyδR

δR

)

=

(
NCαα

m
+

q̄SCyβ

m

)
β +

(
q̄S
m

b
2U

Cyr

)
R

+

(
lm

ls + lm

NCαα

m

)
δs +

( q̄SCyδR

m

)
δR (C.0.11)

Applying the same techniques as for the dynamic equations, the output equations are a
function of the partial derivatives. R is a linear combination of the states, thus no derivative
need to be calculated.

[
aY

R

]
=

[
∂aY
∂β

∂aY
∂R

0 1

] [
β

R

]
+

[
∂aY
∂δs

∂aY
∂δR

0 0

] [
δs

δR

]
(C.0.12)
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The partial derivatives with respect to the aY output is,

∂aY

∂β
=

NCαα

m
+

q̄SCyβ

m
∂aY

∂R
=

q̄S
m

bCyr

2Va

∂aY

∂δs
=

lm

ls + lm

NCαα

m
∂aY

∂δR
=

q̄SCyδR

m
(C.0.13)



Appendix D

Derivation of acceleration vector
required for Dynamic Pursuit
Navigation

This appendix serves to explain the mathematical derivation of the kinematic position, ve-
locity and acceleration equations (11.2.1, 11.2.2, 11.2.3). The required acceleration is derived
from the position equation by differentiating it twice. All the measurements in this appendix
are relative to the Tracking Plane.

D.1 Position

The inertial position vector of the aircraft can be described using object as the centre of the
desired circle, which is described as,

P (t) = PC (t) + RrC (t)

= Px (t) + Py (t) (D.1.1)

where

PC (t) = N (t) i + E (t) j

rC (t) = cos ψ (t) i + sin ψ (t) j (D.1.2)

and

Px (t) = N (t) + R cos ψ (t)

Py (t) = R sin ψ (t) (D.1.3)
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D.2 Velocity

The velocity vector is the derivative of the position vector.

V (t) =
d
dt
[
Px (t) i + Py (t) j

]
=

d
dt
{[N (t) + R cos ψ (t)] i + [R sin ψ (t)] j}

=
[
Ṅ (t) + Rψ̇ (t) sin ψ (t)

]
i + [Rψ̇ (t) cos ψ (t)] j

= Vx (t) i + Vy (t) j (D.2.1)

but,

Vg =
√

V2
x (t) + V2

y (t)

V2
g = V2

x (t) + V2
y (t)

=
[
Ṅ (t) + Rψ̇ (t) sin ψ (t)

]2
+ [Rψ̇ (t) cos ψ (t)]2

= Ṅ2 (t)− 2RṄ (t) ψ̇ (t) sin ψ (t) + R2ψ̇2 (t) sin2 ψ (t) + R2ψ̇2 (t) cos2 ψ (t)

∴ 0 = Ṅ2 (t)− 2RṄ (t) ψ̇ (t) sin ψ (t) + R2ψ̇2 (t)−V2
g

=
[
R2] ψ̇2 (t)−

[
2RṄ (t) sin ψ (t)

]
ψ̇ (t) +

[
Ṅ2 (t)−V2

g

]
(D.2.2)

and the only unknown is ψ̇ (t).

ψ (t) =
2RṄ (t) sin ψ (t)±

√(
−2RṄ (t) sin ψ (t)

)2 − 4R2
(

Ṅ (t)−V2
g

)
2R2

=
Ṅ (t) sin ψ (t)±

√
Ṅ2 (t) sin2 ψ (t)− Ṅ2 (t) + V2

g

R

=
Ṅ (t) sin ψ (t)±

√
V2

g − Ṅ2 (t) cos2 ψ (t)

R
(D.2.3)

where ψ (t) =
Ṅ (t) sin ψ (t) +

√
V2

g − Ṅ2 (t) cos2 ψ (t)

R
for clockwise circling

and ψ (t) =
Ṅ (t) sin ψ (t)−

√
V2

g − Ṅ2 (t) cos2 ψ (t)

R
for anti-clockwise circling

(D.2.4)
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D.3 Acceleration

The forward speed of the object (centre of the circle) is assumed constant.

A (t) =
d
dt
[
Vx (t) i + Vy (t) j

]
=

d
dt
{[

Ṅ (t) + Rψ̇ (t) sin ψ (t)
]

i + [Rψ̇ (t) cos ψ (t)] j
}

= −R
[
ψ̈ (t) sin ψ (t) + ψ̇2 (t) cos ψ (t)

]
i + R

[
ψ̈ (t) cos ψ (t)− ψ̇2 (t) sin ψ (t)

]
j

= Ax (t) i + Ay (t) j (D.3.1)

D.3.1 Trajectory axis relationship (clockwise relationship)

Analysing clockwise rotation.

ψT (t) = ψ (t) + 90◦

∴ ψ (t) = ψT (t)− 90◦

sin ψT (t) = sin (ψ (t) + 90◦) = cos ψ (t)

cos ψT (t) = cos (ψ (t) + 90◦) = − sin ψ (t)

Transforming from inertial- (AI) to Trajectory axis accelerations (AT),

AT =

[
cos ψT (t) sin ψT (t)
− sin ψT (t) cos ψT (t)

]
AI

[
AT

BT

]
=

[
cos ψT (t) sin ψT (t)
− sin ψT (t) cos ψT (t)

] [
Ax

Bx

]

=

[
cos ψT (t) sin ψT (t)
− sin ψT (t) cos ψT (t)

] [
−Rψ̈ (t) sin ψ (t)− Rψ̇2 (t) cos ψ (t)
Rψ̈ (t) cos ψ (t)− Rψ̇2 (t) sin ψ (t)

]
(D.3.2)

The required lateral acceleration is BT.

BT = − sin ψT (t)
[
−Rψ̈ (t) sin ψ (t)− Rψ̇2 (t) cos ψ (t)

]
+ cos ψT (t)

[
Rψ̈ (t) cos ψ (t)− Rψ̇2 (t) sin ψ (t)

]
= − cos ψ (t)

[
−Rψ̈ (t) sin ψ (t)− Rψ̇2 (t) cos ψ (t)

]
− sin ψ (t)

[
Rψ̈ (t) cos ψ (t)− Rψ̇2 (t) sin ψ (t)

]
= Rψ̈ (t) sin ψ (t) cos ψ (t) + Rψ̇2 (t) cos2 ψ (t)

−Rψ̈ (t) cos ψ (t) sin ψ (t) + Rψ̇2 (t) sin2 ψ (t)

= Rψ̇2 (t) (D.3.3)
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But since ψ̇ (t) is known,

ψ̇2 (t) =

 Ṅ (t) sin ψ (t) +
√

V2
g − Ṅ2 (t) cos2 ψ (t)

R

2

=
1

R2

[
Ṅ (t) sin ψ (t) +

√
V2

g − Ṅ2 (t) cos2 ψ (t)
]2

=
1

R2

 Ṅ2 (t) sin2 ψ (t) + V2
g − Ṅ2 (t) cos2 ψ (t)

+2Ṅ (t) sin ψ (t)
√

V2
g − Ṅ2 (t) cos2 ψ (t)


=

1
R2

 V2
g − Ṅ2 (t)

(
cos2 ψ (t)− sin2 ψ (t)

)
+2Ṅ (t) sin ψ (t)

√
V2

g − Ṅ2 (t) cos2 ψ (t)


=

1
R2

{
V2

g + Ṅ (t)
[

2 sin ψ (t)
√

V2
g − Ṅ2 (t) cos2 ψ (t)− Ṅ (t) cos 2ψ (t)

]}
(D.3.4)

Therefore BT for clockwise rotation is,

BT =
1
R

{
V2

g + Ṅ (t)
[

2 sin ψ (t)
√

V2
g − Ṅ2 (t) cos2 ψ (t)− Ṅ (t) cos 2ψ (t)

]}
(D.3.5)

The second derivative of ψ (t) is,

ψ̈ (t) =
d
dt

 Ṅ (t) sin ψ (t) +
√

V2
g − Ṅ2 (t) cos2 ψ (t)

R


=

1
R

Ṅ (t) ψ̇ (t) cos ψ (t) +
Ṅ2 (t) ψ̇ (t) cos ψ (t) sin ψ (t)√

V2
g − Ṅ2 (t) cos2 ψ (t)


=

Ṅ (t) ψ̇ (t) cos ψ (t)
R

1 +
Ṅ2 (t) sin ψ (t)√

V2
g − Ṅ2 (t) cos2 ψ (t)

 (D.3.6)

D.3.2 Trajectory axis relationship (anti-clockwise relationship)

Analysing anti-clockwise rotation.

ψT (t) = ψ (t)− 90◦

∴ ψ (t) = ψT (t) + 90◦

sin ψT (t) = sin (ψ (t)− 90◦) = − cos ψ (t)

cos ψT (t) = cos (ψ (t)− 90◦) = sin ψ (t) (D.3.7)
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The required lateral acceleration, BT

BT = − sin ψT (t)
[
−Rψ̈ (t) sin ψ (t)− Rψ̇2 (t) cos ψ (t)

]
+ cos ψT (t)

[
Rψ̈ (t) cos ψ (t)− Rψ̇2 (t) sin ψ (t)

]
= cos ψ (t)

[
−Rψ̈ (t) sin ψ (t)− Rψ̇2 (t) cos ψ (t)

]
+ sin ψ (t)

[
Rψ̈ (t) cos ψ (t)− Rψ̇2 (t) sin ψ (t)

]
= −Rψ̈ (t) sin ψ (t) cos ψ (t)− Rψ̇2 (t) cos2 ψ (t)

+Rψ̈ (t) cos ψ (t) sin ψ (t)− Rψ̇2 (t) sin2 ψ (t)

= −Rψ̇2 (t) (D.3.8)

But since ψ̇ (t) is known,

ψ̇2 (t) =

 Ṅ (t) sin ψ (t)−
√

V2
g − Ṅ2 (t) cos2 ψ (t)

R

2

=
1

R2

[
Ṅ (t) sin ψ (t)−

√
V2

g − Ṅ2 (t) cos2 ψ (t)
]2

=
1
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 Ṅ2 (t) sin2 ψ (t) + V2
g − Ṅ2 (t) cos2 ψ (t)

−2Ṅ (t) sin ψ (t)
√

V2
g − Ṅ2 (t) cos2 ψ (t)


=

1
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 V2
g − Ṅ2 (t)

(
cos2 ψ (t)− sin2 ψ (t)

)
−2Ṅ (t) sin ψ (t)

√
V2

g − Ṅ2 (t) cos2 ψ (t)


=

1
R2

{
V2

g + Ṅ (t)
[
−2 sin ψ (t)

√
V2

g − Ṅ2 (t) cos2 ψ (t)− Ṅ (t) cos 2ψ (t)
]}
(D.3.9)

Therefore BT for anti-clockwise rotation is,

BT =
−1
R

{
V2

g + Ṅ (t)
[
−2 sin ψ (t)

√
V2

g − Ṅ2 (t) cos2 ψ (t)− Ṅ (t) cos 2ψ (t)
]}

(D.3.10)

The second derivative of ψ (t) is,

ψ̈ (t) =
d
dt

 Ṅ (t) sin ψ (t)−
√

V2
g − Ṅ2 (t) cos2 ψ (t)

R


=

1
R

Ṅ (t) ψ̇ (t) cos ψ (t)− Ṅ2 (t) ψ̇ (t) cos ψ (t) sin ψ (t)√
V2

g − Ṅ2 (t) cos2 ψ (t)


=

Ṅ (t) ψ̇ (t) cos ψ (t)
R

1− Ṅ2 (t) sin ψ (t)√
V2

g − Ṅ2 (t) cos2 ψ (t)

 (D.3.11)
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