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Abstract

Single-Trial Classification of an EEG-Based Brain
Computer Interface using the Wavelet Packet
Decomposition and Cepstral Analysis

S. Lodder

Department of Electrical and Electronic Engineering,
University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Thesis: MScEng (E&E)
December 2009

A Brain-Computer Interface (BCI) monitors brain activity by using sig-
nals such as EEG, EcOG, and MEG, and attempts to bridge the gap between
thoughts and actions by providing control to physical devices that range from
wheelchairs to computers. A crucial process for a BCI system is feature ex-
traction, and many studies have been undertaken to find relevant information
from a set of input signals.

This thesis investigated feature extraction from EEG signals using two
different approaches. Wavelet packet decomposition was used to extract infor-
mation from the signals in their frequency domain, and cepstral analysis was
used to search for relevant information in the cepstral domain. A BCI was im-
plemented to evaluate the two approaches, and three classification techniques
contributed to finding the effectiveness of each feature type.

Data containing two-class motor imagery was used for testing, and the BCI
was compared to some of the other systems currently available. Results indi-
cate that both approaches investigated were effective in producing separable
features, and, with further work, can be used for the classification of trials
based on a paradigm exploiting motor imagery as a means of control.
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Opsomming

Enkel-Lopie Klassifikasie van 'n EEG-Gebaseerde
Brein-Rekenaar Koppelvlak met behulp van Golfies
Pakkie Ontleding en Kepstrale Analise

(“Single-Trial Classification of an EEG-Based Brain Computer Interface using the
Wavelet Packet Decomposition and Cepstral Analysis”)

S. Lodder

Departement Elektriese en Elektroniese Ingenieurswese,
Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MSclng (E&E)
December 2009

'n Brein-Rekenaar Koppelvlak (BRK) monitor brein aktiwiteit deur ge-
bruik te maak van seine soos EEG, EcOG, en MEG. Dit poog om die gaping
tussen gedagtes en fisiese aksies te oorbrug deur beheer aan toestelle soos
rolstoele en rekenaars te verskaf. 'n Noodsaaklike proses vir 'n BRK is die
ontginning van toepaslike inligting uit inset-seine, wat kan help om tussen ver-
skillende gedagtes te onderskei. Vele studies is al onderneem oor hoe om sulke
inligting te vind.

Hierdie tesis ondersoek die ontginning van kenmerk-vektore in EEG-seine
deur twee verskillende benaderings. Die eerste hiervan is golfies pakkie ont-
leding, 'n metode wat gebruik word om die sein in die frekwensie gebied voor
te stel. Die tweede benadering gebruik kepstrale analise en soek vir toepaslike
inligting in die kepstrale domein. 'n BRK is geimplementeer om beide metodes
te evalueer.

Die toetsdata wat gebruik is, het bestaan uit twee-klas motoriese verbeelde
bewegings, en drie klassifikasie-tegnieke was gebruik om die doeltreffendheid
van die twee metodes te evalueer. Die BRK is vergelyk met ander stelsels
wat tans beskikbaar is, en resultate dui daarop dat beide metodes doeltreffend
was. Met verdere navorsing besit hulle dus die potensiaal om gebruik te word
in stelsels wat gebruik maak van motoriese verbeelde bewegings om fisiese
toestelle te beheer.
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Chapter 1

Introduction

1.1 Motivation and topicality of this work

Many people suffer from neurological disorders that cause paralysis of the vol-
untary muscles in the body. Although conscious and able to think and reason,
these individuals cannot speak or move, giving them no form of communica-
tion with the outside world. Examples of these disorders are motor neurone
diseases such as amyotrophic lateral sclerosis (ALS) and muscular dystrophy
(MD), and spinal cord injury (SCI).

Electroencephalography (EEG) is a non-invasive technique that measures
the electrical activity on a user’s scalp caused by neurons firing in the brain.
It can be used to provide a non-muscular pathway for communication and
control. Systems using this approach are commonly known as brain-computer
interfaces (BCIs). To bridge the gap between thoughts and actions, a BCI
distinguishes between different classes of brain activity, and provides direct
control to physical devices.

There are many ways in which this technology can be applied to improve
the quality of life for people suffering from muscular disorders. Examples are
controlling a wheelchair, or providing input to a word processor on a computer.

Beyond medical applications, a practical BCI also offers an additional and
independent communication channel to healthy users. This has a wide range
of promising applications. Examples include computer games with intuitive
control strategies and advanced virtual reality scenarios.

1.2 Background

During the execution of a unilateral movement (movement on one side of the
body), an effect known as event-related synchronisation (ERS) occurs in the
ipsilateral (same side) hemisphere of the brain, while another effect known as
event-related desynchronisation (ERD) occurs in the contralateral (opposite
side) hemisphere. ERS causes the neurons to fire in a synchronised manner,
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whereas ERD causes them to fire in a de-synchronised manner [1, 2,3, 4, 5, 6,
7]. For motor imagery, both effects take place in the mu (8-12Hz) and central
beta (18-25Hz) frequency bands. This is of particular interest to this study
because these effects also occur during the imagination of the movement, even
if it is never physically executed.

Several types of brain function have been investigated for use in BClIs [8, 9],
of which motor imagery is currently the most popular. One reason for this is
that ERD and ERS occur over the motor cortex, an area of the brain which is
close to the skull, where it can easily be measured by EEG [2, 3, 4, 5, 10, 11].

1.3 Advancements in BCI Research

BCI research started with a group of researchers at the University of California
Los Angeles (UCLA) in the 1970s, and, from the papers published by them, the
term brain-computer interface was first introduced into scientific literature [12,
13]. Since then, the field has grown exponentially in popularity. Although the
fundamental ideas behind cognitive function originated from the early stages
of BCI research, it was only later that the true potential of this technology
was brought to light.

In the mid 1990s, several groups captured complex brain signals, and
showed that it could be used to control physical devices [14]. The signals
were mostly recorded over the motor cortex, and involved motor-related men-
tal imagery, i.e., the imagination of physical movements.

In 2000, a research group implanted microwire arrays into the brains of two
monkeys, and recorded cortical activity over a period of twelve and twenty-four
months respectively [15]. The monkeys were trained to perform two tasks. For
the first task, they were given a joystick and taught how to move an object
on a digital screen. For the second task, food was placed on a tray and the
monkeys were required to reach for it in order to pick it up. During both tasks,
the motor activity that resulted in the arm movements was recorded, and a
BCI was trained to distinguish between different types of movements. After
this, real-time recordings were made and used as input signals to the system,
which then transmitted a control output over the internet to a remote location
where a robot arm was able to mimic the movements made by each monkey.
The monkeys could not see the robot arm and therefore had no feedback from
the BCI. This is known as an open loop system. Later, the group also managed
to close the feedback loop by allowing the monkeys to see the robot arm and
control its movements by adapting to the feedback they received [16].

Similar experiments were also performed by other groups, and in 2005
another group received the public’s attention when they managed to success-
fully train a monkey to feed itself with a robotic arm controlled only by its
thoughts |17].

Although these experiments show impressive results, much work is still
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needed before similar trials can be conducted on humans. This is mainly due
to the complex nature of the research and ethical boundaries.

The main focus in BCI research currently lies with the improvement of
functional abilities in humans with severe disabilities. A condition known as
locked-in syndrome leaves a patient without the ability to move any voluntary
muscles in their body [18]|. Being unable to move or speak, the patient has no
means of communication with the outside world. Devices are currently being
developed that will provide them with new ways of communication, and most
of these are in the form of specialised digital word processors |19, 10].

To capture mental activity in human brains, some existing BCIs use in-
vasive and partially invasive technologies such as electrode arrays and Elec-
trocorticography (ECoG). The main focus, however, lies with non-invasive
techniques such as Electroencephalography (EEG) [6, 7, 10, 20, 21, 22|, be-
cause it can be used by any individual without the need for surgery. It is also
more portable and affordable (and thereby more practical) than other non-
invasive technologies such as functional Magnetic Resonance Imaging (fMRI)
and Magnetoencephalography (MEG). The disadvantage of EEG signals and
other non-invasive technologies is that the measurements only take place after
the signals have passed through the skull. This results in added distortion to
the signal, and the signal to noise ratio (SNR) is considerably reduced. Be-
cause of this, the robustness and accuracy of non-invasive BCIs are typically
lower than their invasive and semi-invasive counterparts.

There are still many limitations to current BCI technology, and a few criti-
cal issues will have to be addressed before this field can reach its full potential.
Current systems have low information transfer rates and can only transmit
a few bits per minute. One of the main causes for this is the quality of the
recorded signals. To improve the signal quality, more advanced electrodes and
recording techniques are required. The second hurdle involves the response of
the system to changes in mental activity. For a BCI to be used on devices such
as wheelchairs in a real-time environment, the system will have to be agile and
respond quickly to changes in mental activity.

Until these problems are addressed, the majority of BCIs will remain in
the confinement of academic institutions. Few practical devices are currently
available; however, with the current rate of advancement, many more should
be expected in the near future.

1.4 Objectives of this study

EEG is the raw measurement of electrical activity measured from the scalp
and is used as the sole input to many BCIs. The purpose of this study is to
investigate techniques suitable for discriminating between different classes of
motor imagery from EEG, and develop a BCI using these techniques. The
primary objectives are summarised as follows:
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e Find relevant information from EEG signals that can be used to separate
two classes of motor imagery.

e Investigate methods that can be used to extract this information and
construct features from it.

e Find classifiers that are suitable for the classification of the EEG-based
features.

e Using the methods investigated, develop a BCI that is capable of dis-
criminating between two classes of motor imagery.

A practical BCI will be used in a real-time environment, which introduces
additional requirements:

e All algorithms should be causal.

e The system has to be capable of accepting a continuous (EEG) input
and producing a continuous control output.

e Apart from the classification accuracy, an important factor is the rate at
which information can be transferred.

The focus of this study should be on the investigation of several techniques
for each part of the BCI system. It is not possible or feasible to perform an
in-depth implementation of each method, but adequate references should be
provided to support further investigation for each of them.

1.5 Contributions

By following the objectives set out in the preceding section, the following
contributions were made by this study:

e BCI systems were implemented using C++, MATLAB® and python
scripts to evaluate the various methods investigated. These systems were
capable of discriminating between left and right hand motor imagery,
using both wavelet and cepstral based feature extraction algorithms.

e The wavelet packet decomposition was used to obtain a time-frequency
spectrum of the individual EEG trials. This spectrum efficiently cap-
tured the changes in brain activity over time, and was used to extract
information from the signal (relating to ERD and ERS) that could be
used to discriminate between different classes of motor imagery. Mean
error rates of 19.40% were achieved from the constructed feature sets.

e As an alternative feature type, the cepstral analysis of the EEG signals
was also investigated. Features were constructed from the coefficients of
the power cepstrum, and mean error rates of 23.42% were achieved.
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e Linear discriminant analysis (LDA), support vector machines (SVM),
and logistic regression (LR) were used to evaluate the feature sets. Re-
sults indicate that the LDA and LR classifiers were more suitable for
the task than a non-linear SVM. This could be due to the underlying
data model not being completely known, making the linear LDA and LR
classifiers less prone to overfitting than the non-linear SVM.

e In 2008, our BCI was entered into a competition where it achieved a
fourth place. After further development, results showed that an even
higher rank could have been achieved.

1.6 Overview of this work
The structure of this thesis can be summarised as follows:

e Chapter 2 reviews the most commonly used methods in BCI research.
Common spatial patterns, autoregressive parameters, Fourier transforms,
and wavelets are discussed. The chapter is concluded by comparing these
methods with the help of past BCI competitions.

e Chapter 3 introduces the wavelet transform as a frequency analysis tech-
nique. It starts by discussing the advantages and properties of a wavelet,
and then proceeds to introduce the continuous wavelet transform, dis-
crete wavelet transform, and wavelet packet decomposition respectively.
An example is used to illustrate the strengths and weaknesses of each
method.

e Chapter 4| presents the cepstrum, and describes its uses and advantages.
Homomorphic deconvolution is used to show the potential of the cepstral
domain, and an example is presented at the end of the chapter where a
series of echoes are removed from a signal. Four types of cepstrum are
described, namely: power-, complex-, real-, and phase-cepstrum.

e Chapter/5 explains how the features are constructed from the wavelet and
cepstral domains using the techniques described in Chapter 3 and Chap-
ter |4 respectively. The chapter starts by briefly describing motor-related
brain activity, and then proceeds to the feature extraction algorithms.
[lustrative diagrams are presented to show how both feature types are
generated.

e Chapter 6 introduces the three classifier types used in this study to eval-
uate the constructed feature sets. The simplest classifier, linear discrimi-
nant analysis, is presented first, followed by the logistic regression model,
and lastly support vector machines. Illustrative diagrams are included
for clarity.
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e Chapter |7/ discusses the different performance measures used to evalu-
ate the effectiveness of the two feature types. Apart from the accuracy
and error rate, Cohen’s kappa coefficient, mutual information, and the
steepness of the mutual information are all presented.

e Chapter(8 describes and discusses the experiments conducted to evaluate
the effectiveness of the two feature extraction methods. The first exper-
iment is aimed at finding the classification accuracy and robustness of
the BCIs implemented in this study. A second experiment is then used
to measure the information transfer rate of the systems. In both exper-
iments the results are compared to results obtained by other research
groups using their systems.

e Chapter|9 concludes this study by providing a brief summary of the work
done, recommendations for further work, and an overview of the entire
system. Many techniques can be used to extend the existing system, and
a brief description of a few is provided.



Chapter 2

A Review of BCI-Based Feature
Extraction

One of the main components in BCI designs is feature extraction. Several
algorithms have been proposed, and a summary of the most popular ones are
provided below.

2.1 Common Spatial Patterns

The Common Spatial Pattern (CSP) algorithm uses spatial filters to separate
classes in an EEG dataset. Given a two-class dataset, the algorithm will
attempt to find directions in the input space where the variance of one class is
maximised and the variance in the other is minimised. To find these directions,
CSP calculates spatial filters based on the simultaneous diagonalisation of the
covariance matrices of both classes [23]. In [24] it was shown how CSP can also
be extended to work with multi-class problems where more than two classes
are present.

The active frequency bands during the imagination of motor-related events
are subject specific [25], and, to train a new subject, CSP requires manual
selection of the optimal frequency bands. This is very time consuming, and
may not always produce the optimal parameter set. In [26], Common Spectral
Spatio Patterns (CSSP) was proposed to find a suitable set of frequency bands
automatically. This is done by optimising the frequency filters together with
the spatial filters for each input channel. The proposed method extended
CSP to the state space, and used time delay embedding to individually tune
the frequency filters for each EEG input channel. CSSP was later extended
in [27] to Common Sparse Spectral Spatial Patterns (CSSSP) by optimising
an arbitrary finite impulse response (FIR) filter in the algorithm.

In addition to CSSP and CSSSP, [28| proposed Sub-band CSP (SBCSP) to
find the optimal frequency bands. SBCSP decomposes each input channel into
a number of sub-bands with an infinite impulse response (IIR) filter bank. A
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CSP-based feature set is constructed for each sub-band, and linear discriminant
analysis (LDA) is used to calculate a score for each sub-band based on its
classification capability. The scores are evaluated, and a decision is made on
the optimal frequency bands for the given subject.

CSP, CSSP, CSSSP, and SBCSP were compared to each other in [28] on a
well known, publically available dataset. Comparisons were based on the t-test
statistical method |29, and it was found that there was no significant differ-
ence in classification accuracy between the four methods. It should be noted
however that the results obtained from CSP were found after an exhaustive
search and manual tweaking, whereas the other three methods could produce
a robust and consistent solution over multiple subjects, using only automatic
optimisation. The comparison thereby showed that CSSP, CSSSP, and SBCSP
were effective in finding the optimal frequency bands for CSP based feature
extraction, but they would not obtain better results than the standard CSP
algorithm.

2.2 Autoregressive Parameters

Autoregressive (AR) and Adaptive Autoregressive (AAR) parameters are com-
monly used in EEG analysis, and this is a popular method for feature extrac-
tion in BCIs. The AR model predicts the value at a specific time point in a
signal by using a combination of its past values. The order of the model is
determined by the number of values used, and the robustness of the estimation
depends on the chosen model order. Higher order models are easily affected
by noise, whereas lower order models neglect the high frequency components
in a signal. Suitable model orders have been discussed in many texts [30, 31].

A variety of methods exist to estimate the coefficients of an AR model.
They include Yule-Walker equations, Burg’s method, and the Levinson-Durbin
algorithm [32|. Standard AR models are limited to stationary signals. This
is a problem for EEG analysis, because the corresponding signals are rarely
stationary, and the features contained within them change over time. AR
models have therefore been adapted to work with non-stationary signals, and
a sliding window is used with the concept of local stationary.

Adaptive algorithms such as least-mean-squares (LMS), recursive-least-
squares (RLS), and Kalman filters have also been proposed [33, 34|. They
compare each new observation with its predicted value, and the difference is
used to update the model coefficients accordingly. The algorithms for AAR
models only use information from the signal prior to the new observation.
They are thereby suitable for use in on-line environments [31].

EEG signals are noisy and chaotic by nature [35]. This has an adverse effect
on AAR models, and often leads to a substantial decrease in classification
accuracy. A recent study proposed a new method that combines adaptive
filters with AAR models in order to remove unwanted noise components from
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the frequency spectrum [36]. The proposed method uses an Adaptive Recursive
Bandpass Filter (ARBF) before feature extraction is performed. The filter
places itself over the centre frequency of the dominant component in the signal,
and dynamically adjusts itself as the centre frequency changes. By doing this,
the subject specific frequency bands are found automatically. The results
from [36] showed that the method was effective, and improved the classification
accuracy and information transfer rate of the AAR model. The evaluations
were performed on a well known, publically available dataset [37].

2.3 Fourier Analysis

Fourier transforms (FT) are well known in signal processing, and are applied
to a wide variety of problems. For measured signals, the discrete Fourier trans-
form (DFT) and Fast Fourier transform (FFT) was defined, and the FFT is
known to be very efficient in spectral analysis. The standard Fourier trans-
form is only suitable for stationary and periodic signals. In [38], it was shown
that they are not effective in EEG analysis, because EEG signals have non-
stationary characteristics.

To work with non-stationary signals, the Short Time Fourier transform
(STFT) was introduced [39]. STFT uses a sliding window to capture local
changes in frequency information, and makes the assumption that signals are
stationary over small segments in time. The frequency resolution is determined
by the length of the sliding window; a short window will capture detailed
frequency information, whereas a long window will capture slow changes in
the signal.

The disadvantage of STFT is that it has a limited frequency resolution, and
other techniques such as AAR models [40] and wavelet analysis [41] have been
defined to work with non-stationary signals instead. In |42], STFT was com-
pared to the wavelet transform on electromyogram (EMG) signals, which have
similar properties to EEG signals. A conclusion was made that the wavelet
transform was more effective at extracting information from non-periodic sig-
nals than STFT. Similar conclusions were also made in studies involving STF'T
and ARR models [40].

2.4 Wavelet Analysis

The wavelet transform (WT) was designed specifically to work with signals
that have non-stationary properties, and, due to the characteristics of EEG,
it is a very suitable tool for feature extraction in BCI designs [43]. The basis
function of a WT is generic and localised in time. This enables it to capture
frequency changes at specific time points, and also to use a basis function
that is suitable for the characteristics of the signal. The wavelet transform
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has a continuous (CWT) and discrete (DWT) form, and the DWT uses a
dyadic grid to filter the signal into high and low pass bands. Because only
the low passed signal is filtered at each decomposition level, the resulting
spectrum has a high time resolution at high frequencies, and a high frequency
resolution at low frequencies. In [44], the DWT was successfully used to extract
information relating to ERS and ERD from EEG signals using symmetric
electrode pairs. The weighted energy difference between the electrode pairs
were used as features for a BCIL.

The wavelet packet decomposition (WPD) is a generalization of the DWT,
where the time-frequency resolution can be adjusted as desired [43|. Signals
are recursively decomposed into high and low passed sub-bands (or bases),
and the resolution of the spectrum is determined by the chosen decomposition
level. In [45, 46|, the sub-band energy from the last decomposition level was
used to construct features from EEG signals. However, in [47, 48, 49| it was
shown that the performance of a BCI depends greatly on the chosen bases.

Therefore, [47, 48, 49| proposed wavelet packet best basis decomposition
(WPBBD) for EEG-based feature extraction. WPBBD automatically finds
the best combination of bases to represent a signal, and it has been shown
that the corresponding features achieve significantly higher classification rates
than conventional WPD-based features. Because motor-related brain function
is subject specific [25], the algorithm also finds the best features for each
individual.

2.5 Cepstra

The cepstrum is calculated by finding the spectrum of the log spectrum of
a signal. It captures information about the rate of change in the frequency
spectrum and was originally used to measure seismic activity that resulted
from earthquakes [50]. Since then it has become very popular in the analysis
of speech and music [51|. The cepstrum is also a useful tool for homomorphic
signal processing, because signals convolved in time are linearly separable in
the cepstral domain.

Even though the cepstrum is widely used for many problems, literature
describing its use in EEG analysis could not be found. Thus, to the best of
our knowledge, cepstral based features have not been investigated for the use
in Brain-Computer Interfaces.

2.6 BCI Competitions and Methods used

Many studies relating to EEG-based feature extraction use common datasets
to evaluate and compare algorithms [28, 35, 36, 52, 53|. The most popular
datasets are found at the BCI competition repositories [37, 54, 55|, and con-
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tain EEG, ECoG, and MEG data that were made publicly available. The
competitions have all been used to track the progress of BCI research. Each
competition consists of multiple datasets, and for each dataset a different chal-
lenge was presented. Due to the large number of research groups participating
in these competitions, a comparison between their methods can provide a good
indication as to the popularity and effectiveness of each technique.

To compare the techniques discussed in this chapter, a summary of the
three most recent competitions is provided. Table 2.1 presents the number
of participants that used CSP, AAR parameters, and wavelet analysis in each
challenge. An extra column is added for the entries that used other methods
or who did not provide information about their techniques. Fourier analysis
was only reported once, and is therefore not showed in its own column. Take
note that CSP, AAR parameters, and wavelets may have been used by some
participants that did not specify their methods. The second column indicates
the number of electrode channels provided by each dataset, and the last column
shows the winning method for each challenge.

The challenges chosen for this comparison were all related to tasks based on
motor imagery, and required the classification of multi-class problems. Three
competitions were used: BCI Competition II [37|, BCI Competition IIT [54],
and BCI Competition IV [55]. A method count for each is presented, and a
summary is provided at the end of the table.

From Table[2.1 we see that CSP was the most frequently reported method,
and was used by 24% of the participants. AAR parameters followed in second
place with 17%, and wavelet transforms in third with 9%. Although the re-
maining methods were grouped into one column, none of them were as popular
as these three. Many of the other techniques also reported the use of signal
band power to construct their features, which indicates that the most effective
features are found from frequency based methods.

From the last column in Table 2.1, we see that CSP-based methods achieved
first place in seven out of nine challenges, and AAR parameters and wavelet
analysis each achieved first place in one. During BCI Competition II, AAR
parameters and wavelet based methods were the most frequently used. How-
ever, in BCI Competition III and BCI Competition IV, CSP became more
popular. This may have been as a result of the improvements made in spec-
tral and spatial optimisation algorithms corresponding to CSP from 2005 on-
wards [26, 27, 28|. It should be noted that the objectives for each challenge
was different, and there is not enough information provided in Table [2.1 to
compare the performance of the various techniques.

Although CSP was the most popular method in the competitions, it should
be noted that they were mainly used in the datasets where many electrode
channels were provided. This is because CSP requires a large number of chan-
nels to calculate effective spatial filters. Even though it has been shown that
the number of channels can be reduced, an average of ten to twenty channels
are typically still required to produce effective features |56].
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Table 2.1: A summary of the techniques used in BCI Competitions II, III, and
IV. The first and second columns show the different datasets used (all relating to
motor imagery tasks), and the number of electrode channels provided by each. The
third, fourth and fifth columns show the number of times CSP, AAR parameters
and wavelet analysis was used in each challenge, and the sixth column groups the
remaining techniques (known and unknown) together. The last column presents the
winning method for each challenge.

BCI Competition II (2003)
Channels CSP AAR Wavelets Other Winner
Data set I11 3 0 4 1 4 Wavelets

BCI Competition III (2005)
Channels CSP AAR Wavelets Other Winner
Dataset 1 64 3 7 2 17 CSP

Dataset I1la 60 2 0 0 1 CSP
Dataset IIIb 2 0 2 1 4 Other
Dataset Iva 118 7 2 2 6 CSP, AAR
Dataset IVc 118 2 0 1 4 CSP

BCI Competition IV (2008)
Channels CSP AAR Wavelets Other Winner

Dataset 1 64 9 1 1 14 CSP
Dataset 2a 22 5 0 0 0 CSP
Dataset 2b 3 3 0 1 2 CSP
Summary
CSP AAR Wavelets Other
All datasets 48 31 17 90

The long-term goal of BCI research is to produce user applications that
can one day be used in day-to-day activities. Therefore, a system requiring
fewer electrodes will be more practical than one with many. Wavelets and
AAR paramaters are capable of finding band energy over selected areas of the
brain with single electrodes, and this makes them more attractice for prac-
tical devices than CSP. For this reason, it was decided to investigate one of
these methods instead. AAR parameters are very refined already, but many
improvements can still be made on wavelet based techniques. To search for
improvements in frequency based techniques, wavelets were therefore chosen
as a frequency based, feature extraction method.

Cepstral analysis has not been used for BCI feature extraction before.
Therefore, it was chosen as an alternate technique with the aim of searching for
new characteristics in EEG data that may help with single trial classifications.



Chapter 3

The Wavelet Transform

The spectrum of a signal plays an integral part in many signal processing ap-
plications and a lot of research has been done to find the best way to calculate
it. The most commonly used method is the Fourier transform (FT), which
uses a combination of phase-shifted, amplitude-modulated sine waves to ap-
proximate the signal. However, because a sine wave is periodic, the FT can
only approximate periodic signals.

In most applications the signals will be non-stationary. In order to over-
come this limitation, the FT is combined with windowing to form the short
time Fourier transform (STFT) [39]. In the STFT, a window is slid over the
signal and the FT is calculated over the window, thereby localizing the spec-
trum in time. The length of the window determines the resolution of the
spectrum. A short window will capture high frequency changes, while a longer
window will capture slower frequency changes. The window is, however, of a
fixed length, and this limits the spectrum to a fixed resolution at all frequen-
cies. Apart from this, the FT also causes undesired boundary effects such as
leakage and the Gibbs effect. These effects are inherited by the STFT, which
results in a deteriorated spectrum.

The wavelet transform (WT) was designed to overcome the limitations of
the FT and STFT. It finds a multi-resolution, time-varying spectrum for any
given signal, stationary or non-stationary. This is achieved by using wavelets
as the basis function instead of waves [41]. Waves oscillate in time or space
and are periodic. Wavelets are similar to waves, but the important difference
is that they are localized in time and have finite energy. Fig. 3.1/ shows the
difference between a wave and a wavelet.

The WT uses a combination of scaled, time-shifted wavelets to approximate
a signal. The scale factor A, also known as the dilation coefficient, allows for
multi-resolution analysis, with the time shift of each individual wavelet provid-
ing a time-varying spectrum that can capture the changes in non-stationary
signals.

In the wavelet domain, frequency change is inversely related to A. Long
scales capture low frequency changes (global information) in the time series,

13
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(a) (b)

Figure 3.1: Examples of (a) a wave and (b) a wavelet

whilst short scales capture high frequency changes (detailed information).
Consequently, the WT has a high time resolution at high frequencies and
a high frequency resolution at low frequencies.

As with the FT, the WT has a continuous and discrete form. These are
discussed in Sections (3.2 and respectively.

3.1 Wavelet Properties and the Mother
Wavelet

The use of wavelet transforms has another advantage over Fourier transforms.
As mentioned in the preceding section, the FT has a sine wave for a basis
function, whilst the WT has a wavelet. Unlike a sine wave which is fixed,
the wavelet defined in the transform is a generic function referred to as the
mother wavelet, which can be implemented with any function relating to the
characteristics of the data, as long as it satisfies three constraints [43]:

i) ffooo Y(u)du =0
i) %, p(uPdu =1

iii) W(f) = [, (u)e " du, such that [ HIEqr < oo

Constraints @ and @ require the wavelet function to be uniform, because
@ requires any oscillating movement above zero to be cancelled by the os-
cillating movement below zero, and m requires 9 (-) to have some oscillating
movement away from zero. Constraint ]m is an admissibility condition that
ensures that the inverse transform can be calculated. Some commonly used
wavelets are presented in Fig. [3.2.
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Figure 3.2: Four commonly used wavelets: (a) Haar, (b) Second Order Daubechies,
(c) Mexican Hat, and (d) Complex Morlet.

3.2 Continuous Wavelet Transform

The continuous wavelet transform (CWT) is defined as [43]:

Xewr(u, \) = \/LW /_Z ()" <t - “) dt. (3.2.1)

where z(t) is a signal continuous in time and ¢* (t_T“) is the mother wavelet of

scale A\, centered at time u. The asterisk denotes the complex conjugate. The
transformation is multiplied by the scale factor |A\|~'/2 in order to normalize
the energy at all scales.

The translation parameter u relates to the location of the wavelet being
shifted over the time signal, and it corresponds to the time information in the
wavelet domain. The scale parameter A provides the variation of information
in the time series and is inversely related to the frequency. A large \ relates
to low frequency and provides global information. A small A relates to high
frequency and gives detailed information.

Fig.[3.3 shows the CWT of a linear chirp. One can clearly see how the time
and frequency resolutions change over the spectrum.
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Continuous Wavelet Transform of Linear Chirp (absolute coefficients)

fs/2

frequency

time 8 fs/2*n
0

Figure 3.3: The CWT of a linear chirp.

3.3 Discrete Wavelet Transform

One drawback of the CWT is that it takes a fair amount of time and space to
compute. It also contains information redundancy, i.e. a subsampled version
of the CWT can still be used to perfectly reconstruct the original signal.

The discrete wavelet transform (DWT) was designed using digital filtering
techniques with the aim of removing information redundancy from the CWT
and increasing computational efficiency. This is achieved by using a set of
filter banks to recursively subsample the signal up to a desired number of
decomposition levels. At each recursion level, the scale doubles and the signal
is filtered using a low- and high-pass filter. The high passed signal contains the
detailed coefficients, and the low passed signal the approximation coefficients.
The approximation coefficients are used as input for the next recursion level.
A diagram of the procedure is shown in Fig. 3.4l Each decomposition level
splits the coefficients into two orthonormal subspaces m, H], meaning that
the DWT will not contain any information redundancy.

From the Nyquist sampling theorem, a signal can be perfectly reconstructed
if the sampling rate is at least double that of the highest frequency present
in a signal. This means that, at each decomposition level, the approximation
coefficients can be halved in length without any loss of information. The
combined length of all the DWT coefficients is therefore the same as the original
time series. This saves space and has the added advantage of using fewer
computations, leading to an increase in efficiency.

By inspecting the filter structure of the DWT in Fig. 3.4, one can see that
it results in a fine time resolution at high frequencies and a fine frequency
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x[n] h[n] H |2 —> d4[n]
T gln] — 12 h[n] = |2 — di[n]
‘[: gln] 7 12 h[n] - 12 — dsn]
‘[: gln] 12 > as[n]
Figure 3.4: Calculating the discrete wavelet transform with a series of filters. hin|

and g[n| are high- and low-pass filters, d[n|, da|n| and ds[n| are the detailed coeffi-
cients and ag[n] is the approximation coefficients of the signal.

resolution at low frequencies. Fig. 3.5/shows a breakdown of the spectra of the
DWT. Take note how the time resolution halves and the frequency resolution
doubles after each decomposition level. Fig. shows the DW'T spectra of the
same linear chirp used to compute the CWT in Section Note once again
the change in time and frequency resolution at each decomposition level

Level3 Level2 Levell

fnl4 fol2 fn
frequency

f/16  f./8

Figure 3.5: Frequency range at each level of the DWT. Example: Level 1 captures
all frequencies between f,/2 and f,. f, = fs/2, where f; is the sampling rate.

Discrete Wavelet Transform of Linear Chirp (absolute coeffitients).
T max

DWT Level 11
DWT Level 31
DWT Level 4 bl
1 1 1 1 1 1 min
4 5 6 7 8 9

time(s)

Figure 3.6: DWT of a linear chirp.

Reconstruction of the original signal from the DW'T coefficients is the re-
verse process of the decomposition. The approximation and detailed coeffi-
cients are upsampled by two, passed through low pass and high pass synthesis
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filters respectively, and then summed. The reconstruction process is shown
in Fig. 3.7) however, reconstruction was not used in this study and will be
omitted from the rest of this discussion.

dun] —» 12 H hn] ]—» x[n]
do[n] —> 12 H hn] 12

]» g[n]

ds[n] —» 12 1 hn] j' 12 1 gln]

as[n] — 12 - gn]

Figure 3.7: Signal reconstruction from approximation and detail coefficients.

3.4 Wavelet Packet Decomposition

Wavelet packet decomposition (WPD) uses the same principles as the DWT,
but, instead of only decomposing the approximation coefficients at each level,
WPD also decomposes the detail coefficients. The result is a higher frequency
resolution at high frequencies, but at the cost of a decreased time resolution.
WPD produces 2" sets of coefficients (or nodes), where DWT only produces
n + 1 sets. However, due to downsampling, the total number of coefficients
remain the same. A diagram of WPD is shown in Fig. 3.8.
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Figure 3.8: Wavelet Packet Decomposition.

The same principles described in Section apply for decomposing the
detail coefficients. This means that the WPD does not contain redundant in-
formation, whilst perfect signal reconstruction is possible from its coefficients.
The WPD coefficients from the linear chirp used earlier is shown in Fig. 3.9l
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Take note of the decreased time resolution and increased frequency resolution
at high frequencies compared with the DWT in Fig. 3.6.

The WPD can often produce more desirable information than the DWT,
and is often used in combination with the best basis algorithm @, @] to find
a better set of bases to represent a signal. This helps to increase efficiency
in compression techniques and improves classification rates in pattern recog-
nition.

Wavelet Packet Decomposition of Linear Chirp (absolute coeffitients).
T T T T T T T T T max

mi¥

o (4,10)

frequency (WP
=
o

| I I
43) [}
4.2) ‘
1 1 1 1 1 1 1 1 1 m|n

1 2 3 4 5 6 7 8 9
time(s)

Figure 3.9: WPD of a linear chirp.
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Cepstrum and the Quefrency
Domain

The cepstrum is used in applications ranging from speech processing to wa-
termarking. It was first used by Bogert et al. [50] in 1963 as a technique for
finding echoes in a composite signal. It was observed that a delayed echo will
cause a ripple in the log spectrum of a signal, and by calculating a spectrum
of the log spectrum, the “frequency” of that ripple is obtained. The ripple
represents the harmonics of a signal, and because harmonics are periodic, they
appear as peaks in the spectrum of the log spectrum. In a similar way, the
cepstrum can also be used to find the fundamental frequency in a signal.

Other forms of cepstra have since been defined. To avoid confusion, the
cepstrum defined originally by Bogert et al. is now referred to as the power
cepstrum. Although a spectrum can be calculated in several ways, the Fourier
transform is usually used when calculating the cepstrum. Alternative methods
include the wavelet transform and discrete cosine transform [60, 61].

Using the Fourier transform and Bogert’s definition, the power cepstrum
is defined mathematically as [50]:

CEPyy, = |F{log(|F{signal}|*)}?, (4.0.1)
and algorithmically as
signal — |FT| — square — log — |FT| — square — CEP,,,.  (4.0.2)

Working with the spectrum of a log spectrum can lead to very confusing
descriptions and definitions. Hence, a new set of terminology was proposed
based on anagrams of existing terms used in signal analysis |50]. Although
some terms are used more frequently than others, the terminology was gener-
ally accepted and has helped to avoid confusion. Some of the more frequently

20
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used terms are:

frequency — quefrency
spectrum — cepstrum
phase — saphe
amplitude — gamnitude
filtering — liftering
harmonic — rahmonic

period — repiod

4.1 The Mel Scale and EEG Signals

When cepstral coefficients are used as features for voice or music, the power
spectrum is usually transformed with the Mel scale. The Mel scale is a per-
ceptual scale of pitches judged by listeners to be equal in distance from one
another, i.e. it provides a response that approximates the human auditory
system more closely [62]. Transforming the spectrum with the Mel scale and
then mapping the result to the quefrency domain yields Mel-Frequency Cep-
stral Coefficients, or MFCCs. Calculating MFCCs from EEG data has been
investigated briefly, but EEG data is very different to audio signals and the
human auditory system [63|. It is therefore unlikely that BCIs will benefit
from the Mel scale itself. However, using the same concept and finding a scale
relevant to motor-related EEG activity may potentially improve the features.

4.2 Processing Techniques

The power of the cepstrum lies in its ability to represent multiple signals
that are convoluted in the time domain as a summation of components in the
quefrency domain. For example, given a signal f consisting of a source fq.
convoluted by a linear filter h:

f(t) = forc(t) * hy(2) (4.2.1)
The Fourier transform of the signal is given as:
F(s) = Fye(s) x H(s) (4.2.2)
Applying the logarithm of the squared magnitude to (4.2.2) yields

g(t) = log| Fyrc(s) x Hy(s)|*
= 10g|Fore(8)|* + log|H(5)]?, (4.2.3)
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thereby separating the source and filter into 2 separate components. Finding
the squared magnitude of the Fourier transform of [4.2.3 yields the cepstrum
of the recorded signal

9(t) = Gare(t) + gp(t), (4.2.4)

which is now represented as a summation of the source and filter in the que-
frency domain. By having the two components separated in the quefrency
domain, one can isolate gy, estimate a model of the filter, and subtract it from
the signal |64, 65].

The power cepstrum does not preserve its phase information, which means
it is not invertible, and cannot be mapped back to the frequency domain or
original time domain. The complex cepstrum introduced in Section 4.3/ does
however preserve its phase information and can be mapped back.

4.3 Other Forms of Cepstrum

Three other forms of cepstrum have also been defined, namely the complex,
phase, and real cepstrum |50, 64|. Using the Fourier transform, the algorithmic
definition of the complex cepstrum is:

signal — |FT| — log — phase unwrapping — FT — CEP,,ppies.  (4.3.1)

Note that the logarithm used in calculating the complex cepstrum has to be
defined for complex values. Real- and phase cepstrum are related to the power-
and complex cepstrum in the following way:

(4 x CEP,eq)?> = CEP,,,, and 3.
CEPpase = (CEPipmpiex — time reversal of CEPrpppies)’  (4.3.3)

A major advantage of the complex cepstrum is that it retains its phase
information. This makes it possible to map from the quefrency domain back to
the frequency domain and from the frequency domain back to the time domain.
From the example in Section [4.2, we can now separate the measured signal
into gs,. and gy, remove gy, and map gs,. back to either the frequency or time
domain for further processing. The same concept applies for removing echoes
in a signal, as illustrated in the example in Section Separating signals
that are convoluted in time using cepstral analysis is known as homomorphic
deconvolution, because a signal is mapped to the quefrency domain, processed,
and then mapped back to the original domain.

4.4 Implementation Issues

Calculating the cepstrum has a few known issues, the first being aliasing. To
avoid this, it is common practice to zero-pad the spectra before mapping to
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the quefrency domain [64]. Another problem involves oversampling. Typi-
cally, signals have noise present in their spectra outside of their signal band.
This is usually not a problem, because the noise components are very low in
power. Calculating the cepstrum from the log spectrum can however be prob-
lematic because the noise components can potentially contribute as much to
the cepstrum as the signal components themselves. When oversampling, the
spectrum stretches, and the components in the frequency domain are spaced
further apart, allowing more noise to slip in between the gaps. Because of this,
the noise will have an increased contribution in the quefrency domain, which
in turn degrades the quality of the cepstrum.

The last issue to consider is when windowing is used as a preprocessing step.
This results in a convolution between the window and the measured signal in
the frequency domain, which prevents the signals convoluted in time to be
separated in the frequency domain (using the properties of the log function).
Because of this, echo detection and other methods are greatly degraded. For
applications with highly non-stationary data, however, windowing has proved
useful because it allows us to work over a single pitch period [64].

4.5 Example: Echo Removal with Cepstral
Analysis

To illustrate the power of quefrency analysis, we present an example where a
series of echoes are removed from a signal with homomorphic deconvolution.
In Fig. a fading sine wave x(t) contains echoes spaced 1.25 seconds apart.
The aim is to remove these echoes without distorting the original sine wave.
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Figure 4.1: The original signal containing echoes.

Fig. shows the spectrum of z(¢). We can see the ripples in the spectrum
caused by the echoes, but there is no direct way of removing them in the



CHAPTER 4. CEPSTRUM AND THE QUEFRENCY DOMAIN 24

frequency domain without distorting the original sine wave.
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Figure 4.2: Spectrum of z(t). The echoes cause ripples in the frequency domain.

The cepstrum of z(t) is calculated, and is shown in Fig. [4.3. The echoes
can be identified clearly as spikes in the quefrency domain.

0.5

original cepstrum

-1 L L L L L L L L L J
0 1 2 3 4 5 6 7 8 9 10
time (s)

Figure 4.3: Cepstrum of z(t) representing the echoes as spikes.

The spikes causing the echoes are removed from the cepstrum (shown in
Fig. [4.4)), and the spectrum is reconstructed and shown in Fig. [4.5. We can
see that the ripples causing the echoes are not there anymore.

The signal is reconstructed from the newly acquired spectrum, and is shown
in Fig.4.6. The echoes have been removed without distorting the original sine
wave.
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Figure 4.4: The modified cepstrum of z(¢) with the echoes removed.
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Figure 4.5: Spectrum of the modified cepstrum. The ripples seen in Fig. [4.2 are
now removed.
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Figure 4.6: The result of homomorphic deconvolution. The echoes are removed
from the signal without distorting the original fading sine wave.



Chapter 5

Feature Extraction

Electroencephalography (EEG) measures the electrical activity over different
parts of the brain using special electrodes on the users scalp. For ease of use,
the electrodes are mounted to a specifically designed cap whose positions are
determined by a standardised referencing system. Several of these referencing
systems exist, but the most popular for BCI research is the International 10-
20 System [66] shown in Fig. When used as the input to a BCI, EEG
signals are processed into features, which are then classified to determine the
performed mental task. From this, the classifier output can be used to produce
an output for the BCIL.

Nasion

Pz

Nasion

Inion

Inion

Figure 5.1: Electrode placement according to the international 10-20 system.

Although experiments on various types of brain activity have been done,
those involving motor related tasks remain the most popular. Motor related
tasks are divided into two main categories: motor execution and motor im-
agery. Motor execution involves the movement of a certain muscle group or
body part, whereas motor imagery relates to the imagination of that move-
ment, with no physical movement taking place.

26
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One of the reasons why motor related tasks are so popular is because the
associated brain activity resides in the motor cortex, an area in the brain that
is easily accessible by EEG (2, 3, 4, 5, 10, 11]. Every brain is however unique,
and although the activity of a certain task may reside very close to the scalp
for one subject, the same task can easily execute in a deeper part of the brain
for another, making it more difficult to measure by EEG. Because of this, one
subject may perform exceptionally well in a given experiment while another
may do considerably worse.

5.1 Simulating an Online System with
Pre-Recorded Data

During this study, our BCI was evaluated with pre-recorded datasets (see
Chapter [8). To simulate an online environment, a sliding window was used
to represent the input buffer of an online system. A window length of [, was
used, and a step size of one sample caused the buffer to update at the same rate
as the sampling frequency. Fig. 5.2/ shows how the sliding window was used.
Note that the datasets contained recordings from multiple EEG channels. A
buffer was simulated for each of these channels.

—
C3

Simulated buffer for C3

L

A
\

EEE—

- M\%W}J\/M\NM‘M]/\/\WW
Simulated buffer for C4

time

Figure 5.2: Sliding windows were used to simulate the input buffers of an online
system.
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5.2 Task-Related Information and ERD/ERS

So far we have explained how EEG is used to measure electrical activity in the
brain, but we have not yet discussed the details of what we expect to find in
these signals. Although the physiology of the brain plays an integral part in
BCI research, it does not fall within the scope of this study. For the purposes
of this document, brain function will only be discussed briefly at a higher level.

When the brain is awake and in an idle state, neurons fire in a rhythmic
sequence. When a mental task is performed, a cluster of neurons synchronise
in a specific part of the brain, and millions of tiny impulses fire in a uniform
manner [1, 2, 3, 4, 5, 6, 7]. This forms a signal, which passes through the
nervous system to the muscles where the desired task is then performed. The
process is referred to as event-related synchronisation (ERS). For motor related
tasks, ERS occurs in the ipsilateral hemisphere of the brain, e.g. a left hand
movement will cause ERS (in the motor cortex) over the left hemisphere of the
brain. Motor related tasks also cause an event in the contralateral hemisphere
of the brain, referred to as event-related desynchronisation (ERD). This has the
opposite effect to ERS: a cluster of neurons fire in a desynchronised manner,
which then causes a decrease in rhythmic brain activity over a specific area of
the brain.

Fig. 5.3/shows examples of ERD and ERS over electrode positions C3 and
C4. In the examples, a subject performed left- and right hand motor imagery,
and a time-frequency representation was obtained from the recorded signals.
Due to the large amount of noise present in the recordings, it is difficult to
clearly illustrate these effects using a single recorded trial. For the sake of
a better illustration, 140 trials containing left hand motor imagery and 140
trials containing right hand motor imagery were averaged respectively and the
averages of each class is presented in the examples.

ERD/ERS for left-hand motor imagery ERD/ERS for right-hand motor imagery

~ ~
T C3 T C3
2 ca ERS over C3 9 ca
& 4
4 4 ERS over C4
2 2
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£ £ h
g o [t
2
o o
o o
© ERD over C4 = ERD over C3
g ]
o o
g B > £ L
g IS ‘ left—-hand motor imager " ] }!‘ : f >
3 | idle state ‘ ‘ ‘ ‘ gery ‘ ‘ 3 | idle state ' right-hand motor imagery ‘
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9
time time

(a) (b)

Figure 5.3: ERD and ERS over electrode positions C3 and C4 during the imagi-
nation of left and right hand movements. To better illustrate these effects, the noise
was suppressed by averaging over 140 trials of each class at each time point.
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An interesting and very important property of ERD and ERS is that they
occur during both motor execution and motor imagery tasks. This is very
beneficial for BCI technology, because it allows anyone with normal brain
function to control a BCI, regardless of their ability to move their muscles.

5.3 Feature Extraction

All features were extracted on a single-trial basis, and a sliding window (as
described in Section [5.1) was used to simulate the buffer of an online system.
As the window moved across each trial, a single column vector was produced at
each discrete time point. This provided a continuous stream of feature vectors
which could then be classified to form a continuous control output.

Two feature types were used for this study. The first involved the signal
band power, and was calculated with wavelet packet decomposition. The sec-
ond type was constructed from the cepstral coefficients in the buffer. The
methods were all causal and could be used in a real-time environment.

5.3.1 Wayvelet Based Features

The band power features were constructed with the help of WPD, which was
chosen because of its speed and flexibility in frequency analysis. After each
update of the input buffer, a feature vector was constructed for that point in
time. The vector consisted of the average band power in each frequency band
for each available channel. The feature dimension was therefore determined by
the number of channels and decomposition levels ngy. The frequency resolution
for each band was given by

{ ifs G+ 1)fs} | (5.3.1)

27’Ld+1 ’ 27”Ld+1

where j = {0,...,2" — 1}, and f; is the sample frequency. To keep the fre-
quency bands narrow and the feature dimensions low, some datasets were
downsampled before the features were extracted. Fig. shows a summary
of the feature construction process. In this example, channels C3 and C4 were
available and ng; was chosen as three levels.

The band power in each dimension was determined by an average over
the last l4,, milliseconds of each frequency band. When [,,, was too large, a
smearing effect was caused which degraded the quality of the features, causing
it not to reflect rapid changes in brain activity. When [,,, was however too
small, the features became vulnerable to noise, and the error rate increased
during the classification step.
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Figure 5.4: Feature construction from the band power of the WPD coefficients.

5.3.2 Cepstral Based Features

The second feature type investigated made use of the cepstral coefficients ob-
tained from the power cepstrum. Due to a large number of coefficients, it was
not feasible to use the entire cepstra as a feature vector. Instead, a segment
was chosen where the largest differences between the two classes were noticed.
The segment was chosen from visual inspection of the training set, however,
an automated technique may have produced higher classification rates. The
extracted segments from each channel were concatenated and a single feature
vector was obtained for the signal at each point in time.

In this study, the power cepstrum was calculated using the Fourier trans-
form to obtain the frequency spectrum. Other forms of cepstra (such as real- or
complex cepstra) and other frequency analysis techniques (such as the wavelet
transform and discrete cosine transform) could also have been used to calculate
the coefficients.



Chapter 6

Classifiers

Three classifiers were investigated during this study. They were: linear dis-
criminant analysis (LDA), support vector machines (SVMs) and logistic re-
gression (LR). This chapter provides a detailed description for each of them.

6.1 Linear Discriminant Analysis

Linear discriminant analysis (LDA) can be used as a classifier or as a tool
for dimension reduction on a dataset. When used as a classifier, LDA finds
a linear hyperplane H, to separate the vectors from different classes in their
feature space. If the vectors reside in a d-dimensional feature space, a (d —1)-
dimensional hyperplane will be used. To simplify matters, let us first consider

2_
o 05 <— 1-dim projected
H, O E]El O -dim projected space
15F O
O O O
H O
1 % "
X x
05k X xx x = class1: w-x —wg >0
x X xX
x X N
0‘ i
X
-0.5F »
class 2: w-x —wp <0
_1 1 1 1 1 1 1 1 1 1 1 J

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5

Figure 6.1: Finding a separating hyperplane in a two-class dataset and projecting
the features to a one-dimensional decision space.
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2-class problems. The classifier uses a transformation function f(x) to project
new input vectors from their input space to a one-dimensional decision space,

f(x) =w-x + w, (6.1.1)

where x is the input vector being projected by w. The offset w represents the
distance of H, to the origin, and is used as a threshold value to discriminate
between the two classes. By subtracting wg, the projection of H, is shifted to
the origin, thereby placing the threshold value at zero, and enabling us to use
f(x) as a signed distance function. The predicted class for an input vector x
is then given by
[ cass 1 if f(x) >0
= { class 2 if f(x) <0 (6.1.2)

The perpendicular distance from x to the separating hyperplane H, is repre-
sented by |f(x)|, which can be used as a confidence measure for the classified
vector.

In LDA, the following assumptions are made: the data from each class is
normally distributed, and all classes have identical covariance matrices. To
find the best separation between two classes, LDA maximizes the ratio of
between-class variance to within-class variance. The variances are calculated
as |29, 36]:

2
O—getween = Z(l’l’l - I’l’) (u’l - I’I’)T7 and (613)

=1

2 ny
Tmithin = Y, )" = i) (x* — )", (6.1.4)
i=1 k=1
where n; and u; are the number of features and mean values for class i, re-
spectively. The mean across all trials is represented by p.

Several techniques are available to extend the LDA classifier to m-class
problems where m represents more than two classes [29, 67]. Some of the
techniques reduce the m-class problem to a set of 2-class problems, and then
finds a global prediction from the individual outputs accordingly. The 2-class
classifiers are trained in one of two ways: one-versus-rest or one-versus-one.
For the one-versus-rest approach, each classifier compares the input between
one class and the rest of the training set. The input is assigned to the class
producing the highest value. For the one-versus-one approach, a classifier is
trained for every combination of classes. The input is classified with each
classifier, and the class obtaining the most assignments is chosen as the overall
assigned class. The disadvantage of the two-class approach is that it forms
ambiguous regions in the input space.

In [29], alternate ways to classify multi-class problems are discussed. How-
ever, this study only evaluates two class problems, and a further discussion
into this matter is not required.
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6.2 Support Vector Machines

Support vector machines (SVMs) have been used in many fields to solve classi-
fication problems and discriminate between multi-class input vectors. If given
a p-dimensional set of training vectors with each vector assigned to one of two
classes, the SVM will attempt to find a hyperplane that can separate the two
classes from each other in the input space. It will then classify new input
vectors based on their position relative to the separating hyperplane.

We start our discussion of SVMs with the simplest case where a two-class
dataset is linearly separable in the input space, and then move to a scenario
where the classes overlap and the features cannot be separated. After this, non-
linear SVMs are introduced where kernel-based methods are used to separate
the features in a higher-dimensional feature space, and lastly we extend the
SVM to a multi-class classifier that can discriminate between any number of
classes. In this chapter we cover the main concepts of SVMs, however, an
in-depth discussion is not covered in this document. A full discussion can be
found in [29, 68, 69].

6.2.1 A SVM for Linearly Separable Datasets

Let S represent a two-class, p-dimensional training set consisting of n feature
vectors. Then,

S={(xsc)| i=10,...,n—1}, ¢ € {~1,1}, x; € RP}. (6.2.1)

Now let us suppose that the two classes in S are separable in the input
space with a (p — 1)-dimensional linear hyperplane. There may be an infinite
number of hyperplanes that can separate the classes, however, we want to find
the one that will provide the highest classification accuracy. This hyperplane
can be found by maximizing the margin between the two classes and is known
as the mazimum-margin hyperplane H,.

To find H,, we construct two parallel hyperplanes H, and H, and place
them between the two classes. We then allow them to “push” against the
borders of both classes and by doing this find the maximum margin between
them. H, is placed in the middle of the margin and has an equal distance to
both H, and H, respectively. This concept is illustrated in Fig. and the
procedure is described below.

For a vector w that is normal to H,, and a point x on the hyperplane H,:

w-x—b=0, (6.2.2)

where HTbH is the normalized perpendicular distance from H, to the origin.
The vectors intercepted by the parallel hyperplanes H, and H, are called
the support vectors. If H, and H, both have a distance of r from H,, then

w-x; —b=+r, (6.2.3)
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Figure 6.2: A dataset containing two-class feature vectors that are separable by
a linear hyperplane. Hg provides the maximum linear separation between the two
classes. It is found by constructing H, and Hjp which “push” against the borders of
both classes.

for vectors intercepted by H, and
wW-X;—b=—r, (6.2.4)

for vectors intercepted by H,. To prevent any points from falling between H,
and Hy, the following constraints are put in place:

w-x;—b>+4r forc¢; =-+1, and

w-x35—b< —r for¢ =-1.
Equations (6.2.5) and (6.2.6) can be combined to form
c(w-x;—b) >r fori={0,...n—1}. (6.2.7)

The distance between H, and H, is ﬁ, so in order to maximize the
margin, we need to minimize ||w||. This brings us to the optimization problem,

described as:
minimize(||w||), subject to (6.2.7). (6.2.8)

To find a solution for this optimization problem would be very complex.
For this reason it is simplified to an equivalent problem, and w and b are
calculated accordingly. Take note that r is not needed in our final solution
and can be discarded. To do this, we make use of scaling [29]: w — r~'w and
b — r~'b. The distance from any point x; to Hy, given by ||w||~!(w - x; — D),
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will remain unchanged. What we have gained from this however, is that the
distance between H, and H, is now HTQH Constraints (6.2.5) and (6.2.6) can
be replaced with

w-x;—b>+4+1 for¢ =41, and (6.2.9)
w-x;—b< -1 fore¢ =-—1, (6.2.10)

and they can once again be combined to form
ci(w-x;—b)>1 fori={0,...,n—1}. (6.2.11)

Minimizing ||w/|| is equivalent to minimizing ||w||?, and by using the latter
term instead, we can solve the problem with Quadratic Programming (QP)
techniques.

The optimization problem is now defined as [29, 69|

1
mim’mz’ze(§||WH2), subject to (6.2.11) (6.2.12)

In order for us to consider the constraints in this minimization, we assign
them Lagrange multipliers a, where a; > 0 for i = {0, ...,n — 1}. Hence,

n—1
1
Lp = glWII* = X oulestw - =)~ 1

n—1 n—1
1
= SIWlP =Y ac(w xi =)+ Y a (6.2.13)
=0 =0

Equation (6.2.13) describes the problem in its primal form. For us to
solve the optimization problem, we need to minimize with respect to w and
b, and maximize with respect to «, all within the constraints of a; > 0 for
i ={0,...,n — 1}. We do this by calculating the derivatives of Lp with respect
to w and b, and setting them to zero [69]:

dLP_ d 1 ) n—1 n—1 B
—— =T [5\\w|| —;aici(w-xi—b)jLZozi =

i=0
n—1
=W — Zaicixi =0
i=0
n—1
= w= Z 0 CiX; (6.2.14)
i=0

dLp  d [1, ., & |
W—%lﬁ”w” 2 clwex =D+ o) =0

n—1
= ;=0 (6.2.15)
=0
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By substituting (6.2.14]) and (6.2.15) into (6.2.13), we obtain a formulation
that is only dependent on «. This formulation is referred to as the Dual form
and is denoted by Lp [69]:

H

n—1 n—1 n—1 n—1

1
=3 Qi OGCCiXj - X — g g 0 0GCiCiXj - X + g o;cb + g o7
]:0 1=0 ] =0 =0
n—1 n—1 n—1
1
= 5 QOGCiCiXG - X + E Q;,
1 n—1 n—1 n—1
= —5 O{jOéZ'CjCik’(Xj,Xi) + E (079 ]{?(Xj,Xi) = Xj - Xyg, (6216)
j=0 i=0 i=0

subject to a; > 0 for i = {0,...,n — 1} and 37" a;c; = 0.

The structure of Lp is of partlcular interest to us, because it allows us to use
kernel-based methods to perform non-linear classifications. Non-linear SVMs
are discussed in Section [6.2.3, but for now, let us focus on the optimization
problem at hand. Lp is only dependent on &, and because (6.2.16) is a convex
quadratic optimization problem, we can use a QP-solver to maximize it and
find a [70]. If we have a, equation (6.2.14) can be used to find w. All that
remains is to calculate b.

To find b, we use the support vectors in the training set which are found
at the indices where a; > 0:

Se = (x4, ¢:) (6.2.17)
where a; > 0, i ={0,...,n — 1}. From (6.2.9) and (6.2.10) we know that
ci(w-x;—b) =1, (Xi,¢) € Sy, (6.2.18)
and substituting (6.2.14)) into (6.2.18), we find that

n—1
C; (Z ;C; X — b) = 1, (Xi,Ci) € Ssv- (6219)

Multiplying (6.2.19) through by ¢; and noting that ¢? = 1, we see that
b= C; — ZO{]'C]'X]' - X, (Xi, Ci) € Ssv- (6220)
j€S

Thus, any support vector can be used to calculate b. It is however better
practice to calculate b as the mean value obtained over all the support vectors.
Therefore, if Sy, has ng, support vectors:

b= nl Z ¢ — Z Q;CiX; - X (6.2.21)

U (x4,¢1)ESew (x5,¢5)€Ssv
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Now that we have w and b, we can classify a new input vector x with the
signed distance function

y=f(X)=w % +0. (6.2.22)

The predicted class for x is given by

(6.2.23)

~_J cass1 ify>0
ST class 2 ify <0

and |y| will give us the distance from X to the separating hyperplane Hj,
thereby providing a measure of confidence of the predicted class cx.

6.2.2 Overlapping Datasets (Soft Margin SVM)

It happens often that the two classes in a dataset overlap. For this reason
Cortes et el. suggested a way to allow mislabeled features in a training set and
approached the problem by assigning a penalty to them [71|. The method,
as shown in Fig. uses positive slack variables & > 0 which measures the
degree of misclassification. By adding slack variables to the constraints in

(6.2.9) and (6.2.10), we now have

w-x;—b>+1-¢& foreg =+1, & >0, and (6.2.24)

Equations (6.2.24) and (6.2.25) can be combined to form

As (6.2.26) shows, the mislabeled features are penalised and our optimiza-
tion problem becomes a trade off between a large margin and a small error
penalty. Similar to (6.2.8)), we need to solve the following optimization prob-
lem:

1
mim’mz’ze(inHQ), subject to (6.2.26). (6.2.27)

Again we can solve the problem by using Lagrange multipliers to minimize
with respect to w, b and & and to maximize with respect to a;, where a; > 0
and & > 0 for ¢ = {0,...,n — 1}. Describing the problem in primal form, we
have [69]

=—|IWH2+CZ& Zaz ci(w-x; —b) —1+&] - Zm&

=0 =0

——|IWH2+CZ& Zazczw xi — b) + Z Zaz& Zuz&,

(6.2.28)
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Figure 6.3: The two figures represent a two-class dataset. (a) A linear hyperplane
cannot separate the two classes. (b) Slack variables are assigned to mislabelled
features and the optimization problem becomes a trade-off between the separating
margin and error penalty.

subject to a; > 0 and & > 0 for i = {0,....,n—1}. The cost parameter,
C, controls the trade off between allowing training errors and forcing rigid
margins. It can be adjusted to either increase the margin or decrease the error
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penalty. Finding the derivatives with respect to w, b and &;:

de

— =W — Zalcle =0=> w= ZOZZCZXZ (6.2.29)
dL n—1

—=r Zazcz =0 (6.2.30)
dL
d;:C—gz-—m:o;» C' =&+ ui (6.2.31)

If we combine (6.2.31) with the constraint p; > 0, we find that 0 < o; < C,|
and by substituting (6.2.29), (6.2.30) and (6.2.31) into (6.2.28):

n—1 n—1 n—1 n—1
Lp 1 Z Z Q;0GCiCiXG - X, + Z & (o + ;) Z Z Q0GCiCXG - X
] =0 i=0 §j=0 i=0
+ Zaicib + z_:ai - z_:fzai - ifim
1 o =0 =0 . =0
5 Z Z QO CiCiXj - X + Z a;,
7=0 =0 =0
1 n—1 n—1 n—1
= —5 Cl{jOéiCjCik’(Xj,Xi) + ZOKZ', ]{?(Xj,Xi) = Xj - Xj, (6232)

=0 =0 1=0

k}

subject to 0 < a; < C' and Z?z_ol a,;c; = 0. Note that Lp has the same form
as (6.2.16) and we can find a by solving the following optimization problem:

n—1 n—1 n—1
1
maximize ( — Z Zoz a;cicik(x,x;) + Z Z) (6.2.33)
j=

= =0

such that 0 < o; < C, ZZ "o oic; = 0, and k(x;,x;) = x; - x;. This can once
again be solved with a QP-solver [70]. After finding a, w is calculated with
6.2.29) and b can be calculated in the same way as in (6.2.21) using the support
vectors. The support vectors are found at the indices where 0 < o; < C'. Thus,
for ng, support vectors in the training set:

b= nl Z C; — Z Q;CiX5 - X (6234)

sv (xi,ci)GSSU (Xj,C]')ESSU
After finding w and b, the signed distance function
y=f(X)=w-x+0b (6.2.35)

can be used the same way as in Section 6.2.2/to classify new input vectors.
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6.2.3 Non-Linear SVM

In Sections 6.2.1/ and [6.2.2 we have seen how a linear hyperplane is used to
separate two classes in the input space. Many feature sets cannot be separated
this way, but with appropriate transformations they are separable in a higher
dimension.

This brings us to kernel-based methods, where input vectors are projected
to a different feature space and then classified using the maximum-margin
hyperplane in that space, leading to a non-linear classification in the input
space. To graphically illustrate the use of kernel methods, a two-dimensional
feature set is given in Fig. 6.4(a) where the classes cannot be separated linearly.
Fig. shows how they are mapped to a three-dimensional feature space
with the Radial Basis function where they are separable.
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Figure 6.4: (a) The two-class, two-dimensional feature set cannot be separated
linearly in the input space. (b) After mapping the features to a three-dimensional
feature space with the Radial Basis function, the two classes are easily separable.
(c) The separating hyperplane from the projected space mapped back to the original
input space.
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If we go back to equations (6.2.16) and (6.2.32) we find the kernel:
k(Xj, Xi) =Xj - X;. (6236)

This is referred to as the linear kernel, because it performs a dot product on
the input features without a projection to a different feature space. We can
replace this with a non-linear kernel and map the features to a new feature
space where they are separated by a maximum-margin hyperplane. By doing
this, the SVM is extended to a non-linear classifier. There are many kernel
functions available and some of the popular ones are given in Table [6.1 |69].
Fig. 6.4(c) shows how the maximum-margin hyperplane in the projected space
is mapped back to the original input space where it serves as a non-linear
separating hyperplane.

Polynomial: k(xj,%x;) = (x5 - x;)¢

Sigmoidal: k(x;,x;) = tanh(ax; - x; — b)
Radial Basis: k(x;,%;) = e k=) for 4 > 0
Gaussian Radial Basis: | k(x;,x;) = e_%

Table 6.1: Definitions for the Polynomial, Sigmoidal, Radial Basis and Gaussian
Radial Basis kernel functions.

To use a non-linear SVM, we follow the same procedure as described in
Sections[6.2.1 and [6.2.2] but first each feature vector x is projected to the new
feature space with the kernel mapping x — ¢(x), where ¢(-) represents the
chosen kernel function. Using the Soft Margin SVM, the optimization problem
becomes

n—1ln

1n—1 n—1
. 1
maximize (—5 > Z; a;0ucck (X5, %;) + ZZ:; ozl-> (6.2.37)

7=0 =

such that 0 < a; < C, S0 aye; = 0, and k(x;,%;) = ¢(x;) - ¢(x;). This can
again be solved using a QP-solver. After finding o, w can be calculated as

n—1
=0
and b is found by
1
b= C; — Z OéjCij(Xj) . Qb(Xl) . (6239)

nSU
(xi,Ci)GSsv (xjycj)essv
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A new input vector X is then classified with the signed distance function
y=[f(X)=w-o(x)+b (6.2.40)

and the classlabel and classifier confidence can be extracted as described in
Section [6.2.2.

6.2.4 Multi-Class SVM

So far SVMs have only been described for two-class problems, however m-class
problems where m > 2 can also be solved. The same technique described for
multi-class LDA classifiers can be used for multi-class SVMs, and a detailed
discussion about this is provided in Section [6.1 and in [29]. Take note that
only two-class data was used in this study, and there was no need for any of
these techniques.

6.3 Logistic Regression

Logistic regression (LR) belongs to the group of classifiers known as generalised
linear classifiers. It takes a single input z, fits it to a logistic curve, and
produces a dichotomous result [29]:

1

1) = =

(6.3.1)

The parameter z, also known as the logit, is formed by combining a set of
weights 3 € R™! with an input vector x € R%:

zZ = ﬁo + ﬁlxo + ...+ ﬁdasd_l. (632)

0o, .., Bq are called the regression coefficients, and zg, .., z4_1 the explanatory
variables. The explanatory variables can be numerical or categorical, i.e. pro-
vide a quantity or indicate if the input data has a specific quality.

As we see in (6.3.2), LR uses the regression coefficients to model the rela-
tionship between the explanatory variables and the importance of their contri-
bution to the model. A large regression coefficient indicates a strong influence
by the explanatory variable on the outcome of the classification, and a near-
zero coefficient indicates little or no influence. Similarly, positive regression
coefficients will increase the probability of an outcome, whereas negative coef-
ficients will decrease it.

The logistic curve is sigmoidal, meaning the classifier output will always
lie between zero and one. This implies that f(z) will tend to zero for small z,
and to one for large z. Two classes can therefore be separated by estimating a
meaningful 3 that will produce an output close to zero for one class, and close
to one for the other. For the purposes of a BCI output, we can turn f(z) into
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a signed distance function by using the transformation f(z) = 2(f(z) — 0.5).
Now, f (z) will produce a negative output for all features from one class, and
a positive output for the other. The magnitude of f(z) can also be used as a
confidence measure for the predicted class.

As mentioned above, LR only discriminates between two classes. This
restriction can be lifted by training m parameter vectors { B,y s ﬁ(m_l,;)} €
R+ for data containing m classes where m > 2. Each vector By, ¢ €
{0,...,m — 1} is trained individually by finding the best separation between
class ¢ and the rest of the training set. This is called the one-versus-rest
approach. Other techniques are also available (see Chapter [6.1 and [29]).
During classification, a new input vector is classified with the parameter vector
of each class, and is then assigned to the class providing the highest probability.

The multinomial logistic model for a d-dimensional dataset containing m
classes is given by [29]:

exp(ﬁ(c,:) . X)

p(cx, B) = 7 ,ce{0,...m—1}, (6.3.3)
where Z, is the normalising factor given by
m—1
Zpy=Y ePenx (6.3.4)

/

0

Q

To find the optimal 3, we have to minimise the classification error for each
class in the training set. This can be done by descending the error function
Errg of the logistic model until a global minimum is found.

Sections6.3.1 and [6.3.2/define the error function and formulate the gradient
of Errp for a given point on the function. Section [6.3.3 will then describe how
the error is minimised with gradient descent methods, and Section will
briefly discuss the implementation of gradient descent algorithms.

6.3.1 The Error Function

Let S represent an m-class, d-dimensional training set consisting of n fea-
ture vectors, and let 3 represent the parameter set containing the regression
coefficients for each class in S:

S={(xj,¢;)] j=1{0,...n—=1}, ¢; €{0,...m — 1}, x; eR?}, (6.3.5)
B =1{B0,): - Bm-1,} € R (6.3.6)
The error function is defined as [72]

Errg(8, S, 0%) = Erry(S, B) + Err, (8, 07), (6.3.7)

where Err(-) is the likelihood error and Err,(-) the prior error for a prior of
type R. The likelihood error calculates the log likelihood of the prediction of
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each input x;:

Erry (S, B8) = —logp(S|8)

n—1

—IOng(CﬂXj,B)

1=0

= —Zlogp(cj\xj,ﬁ), (6.3.8)

and the prior error calculates the log-likelihood for 3 at each dimension and
class of S:

Err, (8, 0%) = —log pr(B|c?)

m—1d—1

= —log (H HfR(ﬁc,z‘|Ui2)>
B dcl 0 =0

lOg fR ﬁcz (639)

=0

3

Il
=)

&

where fr(-) is the density function for a prior of type R.
For Gaussian, Laplace, and Cauchy priors, the zero-centered density func-
tions are |72]:

2
1 _ﬁc,i
fgaussian(ﬁc,i‘o—?) = We 207 (6310)
\/7 _ﬁ‘ﬁc,z‘
flaplace(ﬁc,i‘o—z?) = 20_46 i (6311)
A
feanchy (Be.ilo?) = T, 00 (6.3.12)

In (6.3.12), A > 0 is the scale parameter that determines the spread of the
probability distribution. If we substitute (6.3.8) and (6.3.9) into (6.3.7), the

error function can be written as

Errr(B, 9, 0%) = Erry(S, B) + Err,(8, %)

,_.
,_.

m—1 d—

== _logplejlx;, B) - log fr(Beilo?).  (6.3.13)

c=0 =0

6.3.2 Calculating the Gradient of the Error Function

To find the optimal values for 3, we have to find the point in the error function
where the gradient is zero. To do this we need a formulation for the gradient
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at any given point (¢, ), where ¢ € {0,...,m — 1} and ¢ € {0,...,n — 1}. The
error gradient can be obtained by deriving Errgz with respect to f.. [72]:

V..Errg(3, 5,0 )

B (Erry(S, B) + Err,(8,07))
= V..Err (S, B) + V..Err, (B, 0°) (6.3.14)

The derivative of the likelihood error is:

d
dﬁc,i EI’I’Z(S, /6)

d n—1
= I <— ; log p(c;|x;, B))

“— d
= 5o log p(cjlx;, B) (6.3.15)

V..Er (S, B) =

—_

I
o

J

For a training example belonging to class ¢, the derivative at dimension i is:

1 d | B(C]' )X
og p(cilx;, 0
dﬁcz gp( ]‘ J ) dﬁc’i gZWIL 016’8
d 3 d m—1
= l (5] DN Xj _ l B(c/ ) X
T QB Og/z%
m—1
d
o) — ,3 o) %g
dﬁcz(/g(cj ) Zm 1 ﬁ(c, )X Z dﬁcz
= 2 lelc=¢) — T B Z ( B dﬂmﬁ(c
- x(iJ ( o — 0 eﬁ(d )XJ> x(Z]))
= L(i,j) (C - c] (C‘Xﬁ )x(Z]
= x5 (Le(c = ¢;) — p(c]x;, B)) (6.3.16)

where I.(c = ¢;) is an indicator function:

ifc; =c

Ic(c:cj):{(l] il (6.3.17)

“)
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The derivative of the prior error can also be distributed through its param-
eters:

V..Br,(8,0%) = 2B (8,°)
7 k—1 d—1

_ _dg 4 ZZlog fr(Boilo?)

c/=014'=0

- g log fa(Bs|0?) (6.3.18)

For the Gaussian prior:

d 1 —ﬁz’é 1 d 5 d _52,21'
log e log(27o;) loge *

_dﬁc,i V 27T0i2 B 5dﬁc,i B dﬂc,z’
d 2
T dBe (_zag)
6c,i
= p (6.3.19)
For the Laplace prior:
d | V2 Vsl | V2 d g o2
dﬂc,i o8 20i€ Z B dﬂa,z’ o8 20; dﬂa,z’ oBe
dﬁc,i o
Y2 if 3., >0
= % 6.3.20
{ —2 if B, < 0 (6.3.20)
For the Cauchy prior:
d i d d d
— 1 ! = 1 — log(\; 1 2 4 )\2
cmﬂ%(ﬂ;+v0 5 08(m) — 5 08(V) + 7 oB(, + )
1 d ,
=0 — )2
00*@%+ﬁ)@&ﬁw*%0
260@
= gy (6.3.21)

With the above equations the error gradient can be calculated at every dimen-
sion i € {0,...,n — 1} for every class ¢ € {0,...,m — 1}.
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6.3.3 Finding the Optimal Parameters from the Error
Function

In [72] it is shown that for finite priors such as Gaussian, Laplace, and Cauchy

density functions, the error function is concave, and a unique solution exists.

The optimal parameters 3 are found at the lowest point on the error func-

tion, and at this point the gradient of the error function will be zero in every
dimension i € {0,...,n — 1} for every class ¢ € {0,...,m — 1} |29, 72]:

V..Brrg(S, 8,02) = V.Err (S, 8) + V.Err,(8,02) = 0 (6.3.22)

Substituting the gradient of the likelihood error from (6.3.15) and (6.3.18)
into (6.3.22):

vc,iErrl(S> /é) + vc,iErrp(B> 02) = O

—_

n—

=3 (wn(Le = o) = plelx;. B))) + VesEiny(80%) = 0

j:
n

= o

= Y T C\XJ, Z ziple(c=c;) — V..Err,(8,0%), (6.3.23)

j=0

at every dimension i € {0,...,n — 1} for every class ¢ € {0,...,m —1}. For
the various prior types, (6.3.19), (6.3.20) or (6.3.21) can be substituted into
6.3.23) as the prior error gradient. For example, if we use the Gaussian prior:

—_

e ~
ﬁc,i

2
0;

T C\XJ, Zx(w c=c¢j)— (6.3.24)

<.
I
o

6.3.4 Gradient Descent Algorithms

To find B, we have to locate the lowest point on the error function. Too many
points exist to do this with a brute force method, so, instead, we use a gradient
descent method for this task. The gradient descent algorithm requires an error
function to be concave and to have a unique solution. If we use one of the priors
mentioned in the sections above, these conditions are met, and the algorithm
can be used.

The algorithm initiates by choosing an arbitrary point on Errg, and gradu-
ally moves down the slope of the function until the minimum error is reached.
Gradient descent is an iterative process. At each iteration V. ;Errg is calcu-
lated and the position of the point is updated accordingly. The point reaches
the global minimum when it has a zero-gradient.

The gradient descent algorithm can be implemented in several ways. Two
popular methods are batch- and stochastic gradient descent [29, 72]. Batch
gradient descent finds the true gradient, i.e. the sum of the gradients from
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each individual training example, and then updates 3 accordingly. Stochastic
(or online) gradient descent uses a single training example at a time to update
3. This allows stochastic gradient descent to find B faster than batch gradient
descent for large training sets. A combination of the two methods (“mini-
batches”) is often used to produce a method that is more robust than the
stochastic method, but faster than batch gradient descent.

An important factor in gradient descent is the step size, i.e. the amount by
which the point is moved along the gradient after each iteration. If the step is
large, the point will move in a “zig-zag” pattern towards the global minimum.
If it is too small, it will take very long to find the global minimum. For these
reasons, a dynamic step size is preferred. As the point moves in the same
direction during consecutive iterations, it builds momentum and the step size
increases. After each iteration, the error is compared to the previous point
and, if it is higher, the step size is decreased and the point is rolled back to its
previous position.

A maximum number of iterations are usually specified to prevent the pro-
cess from taking too long to find a solution. A threshold can also be used to
stop the process when the change in error is very small, indicating that the
current parameter set is very close to the optimal solution B
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Performance Quantification

There are many aspects to consider in a BCI. The processes range from feature
extraction to classification, and each of them can be implemented with a variety
of techniques. As is to be expected, BCI evaluation is not a straightforward
task, and no method takes into account all the significant characteristics of
such a system. To give an example, a BCI with perfect classification accuracy
will not have much use if it has a response time of one minute.

Several ways have been proposed to measure the performance of a BCI.
To test our system, we used three of them: the error rate (ERR), Cohen’s
kappa coefficient, and the mutual information (MI) [73, 74]. Only two-class
datasets were chosen for this study. It was therefore possible to produce a
control output with a time-varying signed distance (TSD). This is described
in Section 7.1/ below.

7.1 Time-varying Signed Distance
First, let us consider the classifiers used in this study. They were: linear
discriminant analysis (LDA), support vector machines (SVMs), and logistic

regression (LR). To summarise the models used by each of them, their trans-
formation functions are presented in Table

Table 7.1: LDA, SVM, and LR transformation functions.

LDA | f(x) =w-x+ wy
SVM | f(x) =w-¢p(x)+b

LR f(x) = };2:, where z = By + S120 + ... + Baxag_1

Now, if we define a feature set X that contains n trials, with each trial

49
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having a duration of 7 discrete time points:
X = {Xg% ={0,.on—1},t=1{0, ..., 7 — 1}} (7.1.1)
The TSD of a trial ¢ in X at time ¢ can be described by:
DY = f(x, (7.1.2)

where i € {0,...,n — 1} and t € {0,...,7 — 1}. Using the TSD, the trial is then
assigned a class label using:

@ ) class 1 if D,E“ >0

) >0 7.1.3
! { class 2 if DV <0 ( )

where ¢ € {0,....,n—1} and t € {0,...,7 — 1}. The TSD includes the confi-
dence of the classifier into the class assignment. This is determined by the
magnitude |D\").

7.2 Accuracy, Error Rate, and Cohen’s Kappa
Coefficient

The classification accuracy AC'C' and error rate ERR for a given system are
easy to calculate, but they do not take into account the probability of the
correct classification by chance. ACC'is given by

number of correct classifications

ACC = py = (7.2.1)

number of trials

and FRR =1 — py. The chance agreement p, gives the estimated accuracy of
a classifier if it was to randomly assign classes. For a problem with two-classes,
a random classifier will have a chance agreement of 50%. To calculate p, for a
m-class problem with equal class probability, we can use the following formula:

100
Pe = %. (7.2.2)
m

Cohen’s kappa coefficient k is also a measure of the classification accuracy,
but it includes the prior and posterior probability in the calculation. The
result is a coefficient of zero if the predicted classes have no correlation with
the actual classes, and a coefficient of one if perfect classification is obtained.

Kappa is calculated as |73]:

Po — De
= . 2.
K= 0, (7.2.3)
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7.3 Mutual Information and System Response

The mutual information (MI) estimates the information transfer rate of a BCI
and is measured in bits. It is based on Shannon’s theorem of information
transfer, and is calculated using the signal-to-noise ratio (SNR).

The SNR is calculated from the TSD, which is used to represent the clas-
sifier output of each trial at each time point. For two-class problems, the TSD
would ideally be positive for all trials belonging to one class, and negative for
the other. This is however not the case, because processes uncorrelated to the
motor imagery task are also captured and influence the outcome of the classi-
fication. Using the notation defined in Section 7.1, the SNR at time point ¢ is
defined as [74]:

2 xvar {Dt{L’R}}
SNR; = o oy 1, (7.3.1)
var {Dt{ }} + var {Dt{ }}

where var {-} is the variance and {L}, {R}, and {L, R} are the indices for
the trials of the left class, right class, and both classes respectively. The MI is
easily calculated from the SNR as [74]:

I; = 0.5 xlogy(1 + SNRy) (7.3.2)

and for two-class problems without trial rejection, the maximum MI is one bit.

The BCI’s response to changes in mental activity also plays an important
part in the information transfer rate. One way to measure the response is by
finding the maximum steepness of the MI. The steepness of the MI (STMI) is

calculated as [73]:

I
STML:;—Lﬁ (7.3.3)

where t.,. is the time point at which the cue was presented. STMI is measured
in bits/s.
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Experimental Investigation

To evaluate the methods investigated in this study, a BCI was developed for
both of the feature extraction algorithms described in Chapter [5. For easy
reference, the BCI using wavelet packet based features will be referred to as
BC1,, and the one using cepstral based features as BCI,,.

A BCI has many aspects that require assessment. This experimental in-
vestigation focused on four of them: classification accuracy, robustness over
multiple subjects, information transfer rate, and the response time of the sys-
tem to changes in mental activity. Due to time constraints, new recordings of
EEG data could not be made. Instead, a well known data repository was used
that consisted of competitions that were specifically aimed at evaluating BCls.
The results of the past competitions were also published, and this provided us
with a platform to compare BC1I,, and BCl,, to the systems of other groups.

Each competition consisted of several challenges, and each challenge eval-
uated a different aspect of the BCI. Two challenges were chosen as the basis
for our evaluation, and are represented by Experiment A and Experiment B
respectively. During Experiment A, the overall accuracy of BC'I,, and BCI.,
was measured, and their robustness over multiple subjects were determined.
In Experiment B, focus was placed on the information transfer rate and the
system response. Both experiments used EEG signals as input, and the sub-
jects were asked to use motor imagery to perform the required tasks. Different
recording paradigms were used for the two experiments, and a detailed de-
scription of each is provided in Appendix [A. It is important to note that the
subjects were not allowed to move during the recording sessions, meaning that
they could only use motor imagery as a means of control.

An open source toolbox referred to as BioSig [75] provided a set of functions
that were specifically designed to assess the performance of a BCI. This tool-
box was used in the competition to evaluate the submitted BClIs, and also in
Experiments A and B to ensure that the conditions of the evaluation remained
the same.
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8.1 Experiment A: Robustness and Accuracy

Two very important aspects of any BCI are its classification accuracy and its
ability to produce consistent results over multiple subjects. As mentioned in
Chapter 5, the brain function of every person is different, and a BCI requires
training for each individual subject. It is however desirable to keep the param-
eters of the underlying processes of a BCI the same (eg. feature extraction and
classification), so that the system can adapt quickly to a new subject without
the need for special calibration.

This experiment evaluates the robustness and accuracy of BCI,, and
BC1,, over a set of nine subjects using a two-class dataset consisting of left
and right hand motor imagery. The same set of training parameters were used
for all subjects. The objectives are listed in Section [8.1.1 below.

8.1.1 Objectives

e BCI Competition IV provides a dataset containing the EEG data of nine
subjects. Use the wavelet and cepstral based techniques to construct
feature sets for each of the nine subjects.

e Split each feature set into train and test sets and use the three classifiers
discussed in Chapter |6/ (LDA, SVM, LR) to evaluate them.

e Calculate the ERR of the test data over the duration of the trial. Com-
pare the results between BC1I,, and BCI.,, as well as the results ob-
tained between different classifiers. Also make a comparison between the
different subjects.

e Compare BC1I,, and BCI., to the BCIs used by the other groups in
the competition.

8.1.2 Dataset Details

The dataset was provided by the BCI Competition IV repository [55], and
consisted of nine subjects with five recording sessions for each subject. Each
session contained between 120 and 160 trials, giving a total of 720 to 800 trials
per subject. The first two recording sessions did not contain any feedback.
Instead, they were used to train a BCI that provided feedback in the last three
sessions. Paradigm P1 (described in Appendix|A) was used for the recording
runs without feedback, and paradigm P3 for the trials with feedback. The
signals were sampled at a rate of 250Hz and filtered between 0.5Hz and 1kHz.
A notch filter was also applied at 50Hz. EEG recordings were made at electrode
positions C3, Cz and C4 (see Fig.[5.1 for reference) and the parameters g,
ready, teue, and teng were Os, 2s, 3s and 7.5s, respectively.
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8.1.3 Parameters and Setup

To test BCI,, and BCI,., on each subject, the trials from the five recording
sessions were pooled together and 10-fold cross validation was performed on
the combined feature sets. To ensure an unbiased result, the evaluations took
place under double blind conditions, and the class labels of the trials were kept
hidden from the feature extraction and classification methods.

BC1,, extracted its features with a FE window length ([,,) of 2s, and each
window segment was decomposed to a depth of three levels. A fourth order
Daubechies wavelet was used, and the average bandpower in the last second
was used to generate the feature vectors (ly,y = 1s). BCI,., calculated the
power cepstrum from a FE window of 0.25s in length, and constructed its
features from the first 16 cepstral coefficients. Both BCI,, and BCI,, used
three classifiers (LDA, SVM, and LR) for the evaluation of the feature sets.
A Soft Margin SVM (with C' = 1) was used with a non-linear kernel (Radial
Basis function with v = 0.25), and for the LR classifier a Gaussian prior was
used.

After feature extraction, BCI,, and BCI,, were trained using a segment
in the train features between t4,,+ and t.,q. The segment was chosen based on
the assumption that the optimal train data was where the motor imagery task
had its maximum strength. Parameters ¢, and t.,; were therefore chosen
as 4000ms and 4500ms accordingly (between 1s and 1.5s after cue onset). It
was also realised that channel Cz did not make any relevant contribution in
the constructed feature set. It was therefore discarded, which meant that
only channels C3 and C4 were used. The feature vectors were thereby 16-
dimensional for BCI,, and 32-dimensional for BCI,.

Normalisation of the raw EEG signals and constructed feature sets did
not show any significant difference to the outcome of the experiment. It was
therefore not included in the experiment.

8.1.4 Results

An LDA, SVM, and LR classifier was used to evaluate the constructed feature
sets, and for each subject, 10-fold cross validation was performed with each of
the three classifiers. A time course of the ERR over all test trials was obtained
for each fold, and the mean time course for each subject was calculated across
the ten folds. The time courses of the classifications with the LDA classifier is
presented in Fig.[8.1, and the time courses for the SVM and LR are provided
in Appendix|B. The subfigures in Figl8.1 consist of two plots over time. One
plot shows the ERR for BCI,,, and the other a time course for BCI.,. The
time courses show how the error rate drops after cue presentation (t=3s) and
continues to do so until a minimum point is reached where the motor imagery
is at it’s strongest. A short delay is noted before the ERR begins to improve
after cue presentation.
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The minimum ERR from each of the ten folds were found, and their average
is presented in Table [8.1. The second, third, and fourth columns show the
minimum ERR for BCI,,, and the last three columns show the minimum
ERR for BCI.,. The last row in the table shows the mean ERR from each
column. It should be noted that the time plots provide the average time
course over ten folds, whereas Table uses the mean value calculated from
the minimum ERR obtained in each individual fold.

Table 8.1: Mean error rates obtained by finding the lowest point in the time course
of each fold (after cue presentation). Columns 2, 3, and 4 show the ERR for BCI,,
and columns 5, 6, and 7 for BCI.p, using each of the three classifiers respectively.

minimum ERR for BCI,, || minimum ERR for BCI,,,
Subject | LDA |LR | SVMppp || LDA |LR | SVMpggr
S1 23.06 | 23.89 | 27.36 26.53 | 26.67 | 25.83
S2 29.56 | 27.94 | 36.03 30.88 | 31.18 | 29.85
S3 31.25 | 32.64 | 36.67 30.42 | 31.11 | 31.25
S4 3.38 4.50 4.88 9.37 | 9.50 9.25
S5 12.57 | 13.11 | 20.27 21.49 |20.95 | 21.76
S6 20.69 | 23.82 | 35.83 27.64 | 26.11 | 27.36
S7 19.58 | 20.56 | 36.11 25.56 | 24.31 | 25.83
S8 16.18 | 15.79 | 20.79 17.50 | 17.37 | 20.39
S9 18.33 | 17.22 | 20.69 23.47 | 23.61 | 22.78
mean | 19.40 | 19.94 | 26.51 23.65 | 23.42 | 23.81

The overall performances of the subjects were very different. Subject S4
obtained the highest classification rate and had an overall ERR below 10%.
Another four subjects (S5, S7, S8, and S9) achieved error rates below 20%;
three more (S1, S2, and S6) below 30%; and one (S3) above 30%.

The minimum ERRs for the wavelet based BCIs were significantly lower
than those for the cepstral based BCIs. BCI., did however show a slightly
faster response after cue presentation than BC,,. The patterns of the time
courses in BC1,, and BCI,., were very similar on subject level. Both types
either obtained good results for a given subject or both of them performed
badly. This would indicate that similar features were obtained from the EGG
signals by both BCI types.

If we compare the three classifiers, we see that LDA and LR achieved very
similar results. The SVM performed worse, however, it should be noted that
this may be due to the chosen kernel and not the classifier itself.
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Figure 8.1: Time courses of the ERR for each subject calculated from the mean
TSD of the ten test folds. An LDA classifier was used by both BCI,, and BCl.,
in this figure. The dotted line at t = 3s indicates the cue onset.
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8.1.5 Results Compared to Competition Outcome

For the competition, the contestants were given all the EEG data from the nine
subjects, but the true class labels of the last two sessions were kept unknown.
The competition objective was to train a BCI with the first three sessions and
then classify the trials of the remaining two. A time course of the kappa was
calculated from the test data, and the winner was the BCI with the highest
maximum kappa over all subjects.

To compare BCI,, and BCI,, to the BCIs of the competition, the third
recording session was chosen for training, and sessions four and five were clas-
sified accordingly (sessions one and two were discarded). The same training
parameters were used as those presented in Section|8.1.4, and an LDA classifier
was selected for both BCT,, and BCI..

A time course of the kappa was obtained for each test trial and the mean
values across the time courses were calculated at each time point. These
results, together with those of the competition, are presented in Table[8.2. The
results were obtained the same way as in the competition, using the functions
provided by the BioSig [75] toolbox. The table shows the maximum kappa
of each subject, and the first row indicates the type of features used (CSP:
Common Spatial Patterns, WP: Wavelet Packets, CEP: Cepstrum, and BP:
band power calculated with unspecified method). The rows and columns each
represent a subject and contestant respectively, and the mean kappa of each
contestant is shown in the last row.

An earlier version of BCI,, was entered into the competition when it was
held in 2008. This entry is represented by contestant D. The BCI entered used
the same methods as BC1I,,, however, development was still in progress at
the time of submission and further improvements were pending. Even so, it
achieved an overall fourth place.

On subject level, BCI,,, and BCI,, obtained acceptable results except for
two subjects, S2 and S3, who could only obtain kappa values of 0.21 and 0.14
for BCI,,, and 0.16 and 0.17 for BCI.,. These two subjects were also the
worst performers for most of the other groups, which leads us to assume that
they may not have been capable of executing the motor imagery tasks in the
required manner.

A mean kappa of 0.51 over all subjects was obtained by BC1I,,, which
is 0.09 lower than the best performer and 0.08 higher than our original entry.
BC1,., could only obtain a mean kappa of 0.41 over the nine subjects, however,
it still outperformed groups E and F, who had a mean kappa of 0.37 and 0.25
respectively.

By comparing the feature extraction methods used, we see that the first
three contestants used CSP techniques, and the fifth and sixth contestants
used the signal bandpower (however they did not specify their method).
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Table 8.2: Results from BCI Competition IV (2008) showing the mean kappa for
each subject. The last two columns provide the results of BCI,,, and BCI.cp, and
the last row shows the mean kappa across all subjects. *Contestant D represents our
entry to the competition with an earlier version of BC1,,.

A | B | Cc| D | E|F |BCL,|BCL,

feature type | CSP | CSP | CSP | WPD | BP | BP | WPD CEP
S1 0.40 | 042 | 0.19 | 0.23 | 0.20 | 0.02 | 0.41 0.26
S2 021 ] 021 | 0.12 | 031 | 0.16 | 0.09 | 0.21 0.16
S3 0.22 | 0.14 | 0.12 | 0.07 | 0.16 | 0.07 | 0.14 0.17
S4 0951094 | 0.77 | 091 | 0.73 | 0.43 | 0.90 0.79
S5 086 | 0.71 | 0.57 | 0.24 | 0.21 | 0.25 | 0.60 0.48
S6 061 | 0.62 | 0.49 | 0.42 | 0.19 | 0.00 | 0.48 0.31
S7 0.56 | 0.61 | 0.38 | 0.41 | 0.39 | 0.14 | 0.49 0.34
S8 0851084 | 0.8 | 0.74 | 0.86 | 0.76 | 0.82 0.70
S9 0.74 | 0.78 | 0.61 | 0.53 | 0.44 | 0.47 | 0.55 0.47
mean 0.60 | 0.59 | 0.46 | 0.43 | 0.37 | 0.25 | 0.51 0.41

8.1.6 Discussion

In sections 8.1.4/and [8.1.5, BCI,,, and BCI,., showed that both wavelet and
cepstral based features are capable of discriminating between different classes
of motor imagery. Some subjects (especially S2 and S3) did however not
perform very well. Table 8.1/ shows that subject S4 achieved the best results
and had error rates below 5% for BC'I,, and below 10% for BCI..,. Subjects
S2 and S3 performed the worst, but still achieved error rates below 35% for
both BCI,,, and BCI..,. The remaining subjects obtained error rates between
10% and 30%, which indicated that they were also capable of controlling a
device with the use of motor imagery.

As mentioned in Section 8.1.3] the same parameters were used for all the
subjects. We see, however, that the techniques described are not yet robust
enough for this, and individual calibration is required to provide higher clas-
sification rates for the lower performing subjects.

The SVM was implemented with a RBF kernel, which resulted in worse
results than the other two classifiers. A different kernel could have produced
better results, and the classifier itself was not necessarily unsuitable for classi-
fying this feature type. The outcome does however show that the RBF is not
a suitable kernel for either of these feature types.

To summarise this experiment, we see that wavelet-packet and cepstral
based techniques are capable of producing results on the same level as more
commonly used techniques (such as CSP), but further work is needed to im-
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prove their robustness.

8.2 Experiment B: Information Transfer Rate
and System Response

In Experiment A the accuracy and robustness of BCI,, and BCI,, was eval-
uated. The accuracy plays a very important part in a BCI, however, perfect
classification rates will mean nothing if the system takes very long to produce
a control output. The response of a BCI has a direct impact on its information
transfer rate, and ultimately, this is the most important aspect of any BCI.

The goal of this experiment was to calculate the system response and infor-
mation transfer rate of BC1,, and BCl,, in order to determine the quantity
and speed at which information can be transferred by the proposed methods.
A challenge from the BCI Competition II [37| was used for the evaluation, and
the objectives of the experiment is listed in Section below.

8.2.1 Objectives

e Using the data provided, construct a feature set with the wavelet and
cepstral based techniques described in Chapter

e Use the three classifiers (LDA, SVM, and LR) to evaluate each feature
set and calculate the time course of the mean ERR and MI for each of
them. Also find the point in each time course where the maximum MI
occurs.

e Determine the system response by calculating the maximum steepness
of the mutual information (STMI) for each feature type between t = 4s
and t = 9s.

e An outcome of the competition is provided in [76]. Use this to compare
BC1,, and BCI,, to the BCIs of the competition.

8.2.2 Dataset Details

The dataset was obtained from the BCI Competition II online repository [37],
and contains the EEG data of a single subject recorded over several runs on
the same day. A two-class problem is presented and the subject was asked
to perform either left or right hand imagined movements. Paradigm P2 (de-
scribed in Appendix|A) was used for the recording runs. There were 280 trials
in total: 140 for tasks involving left hand motor imagery and 140 for right
hand motor imagery. The signals were sampled at a rate of 128Hz and filtered
between 0.5Hz and 30Hz. EEG recordings were made at positions C3, Cz, and
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C4 (see Fig.[5.1), and the parameters tyart, treadys teue, and tenq were 0s, 2s,
3s, and 9s respectively.

8.2.3 Parameters and Setup

The contestants received both train and test datasets, but the class labels
for the test data were kept unknown. The competition had however already
ended by the time of this experiment, and all the labels were made available.
Therefore, to ensure unbiased results the dataset was shuffled and new train
and test sets were assigned during the evaluation. The ratio between train
and test data was kept the same (140 trails for training and 140 trials for
testing) and each set contained an equal number of trials for left and right
hand motor imagery. Feature extraction and testing were performed under
double blind conditions, and the evaluation was repeated five times to ensure
a fair comparison. The mean result from the five evaluations was used for
comparisons and the results were obtained the same way as in the competition,
using the functions provided by the BioSig |75] toolbox.

The wavelet based BCI had a FE window length (l,,) of 2s, and 4, was
chosen as 1s. A fourth order Daubechies wavelet was chosen for the extraction,
and the signal was decomposed to a depth of three levels. BCI., calculated
the power cepstrum of the signal over a 0.25s window and constructed its
features from the first 16 cepstral coefficients. BCI,, and BCI,, used three
classifiers each to train and test their feature sets accordingly. LDA, SVM,
and LR classifiers were used. A Soft Margin SVM (with C' = 1) was used with
a non-linear kernel (Radial Basis Function with v = 0.25), and for the LR
classifier a Gaussian prior was used.

To train the BCls, a time segment was chosen where the motor imagery
was assumed to cause maximum ERD over the motor cortex. From visual
inspection of the training data, .+ and t.,q were selected as 4s and 4.5s
respectively. Only channels C3 and C4 were used, resulting in 16-dimensional
features for BC'I,, and 32-dimensional features for BC 1.

Normalisation of both EEG signals and constructed features were investi-
gated, but a significant difference could not be seen in the final outcome of the
evaluation. For the sake of simplicity, normalisation was therefore excluded
from the experiment.

8.2.4 Results

Time courses of the ERR and MI for each classifier and feature type combi-
nation are shown in Fig.8.2(a)-(f). In Fig.8.2(a), (c), and (e) we see how the
error rate drops a short time after cue presentation (¢.,e = 3s) and continues
to drop until reaching a point where the mental task is performed at its max-
imum strength. Time courses of the MI show the same effect. In Fig. [8.2(b),
(d), and (f) the MI remains around zero until cue presentation where it climbs
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steadily until reaching a peak at the same time when the error rate reaches its
lowest point.
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Figure 8.2: Time courses of the ERR and MI of each classifier and feature type
combination. Three classifiers were used by BCI,, and BCl.,, namely: LDA,
SVM, and LR.

Table 8.3 provides the minimum ERR and maximum MI for each time
course, as well as the maximum STMI for each combination of classifier and
feature type. The minimum ERR for each combination ranges from 13.14%
to 16.29%, and the maximum MI from 0.42 to 0.52 bits. The cepstral fea-
tures showed a faster response to changes in mental activity than the wavelet
features; however, the latter achieved a better overall accuracy. The lowest
ERR was found using an LDA classifier for BCI,, and a SVM for BCI,,,.
The classification rates in general were very close across all combinations
(ERR = 15.14% + ~ 2% to either side), and a similar pattern over time
can be seen for all time courses.
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Table 8.3: Summary of the results obtained during the evaluation of each clas-
sifier /feature type combination. Columns three to six present the minimum ERR,
maximum MI, time of maximum MI, and maximum steepness of the MI.

Feature | Minimum | Maximum Maximum
Classifier | Type | ERR |%] | MI [bit] time [s] | STMI [bit/s]
LDA wavelet 13.14 0.52 4.58 0.33
SVM wavelet 15.57 0.42 5.56 0.26
LR wavelet 14.57 0.46 5.64 0.28
LDA cepstral 16.14 0.46 4.26 0.39
SVM cepstral 15.14 0.45 4.15 0.40
LR cepstral 16.29 0.45 4.14 0.39

A noticeable difference exists, however, between the system response of the
two feature types. The response, measured by the STMI, shows that cepstral
features produced an average bit rate of 0.39 bits/s, whereas wavelet features
could only achieve 0.29 bits/s.

8.2.5 Results Compared to Outcome of the Competition

During the competition, the MI was used to calculate the information transfer
rate, and participants were ranked according to the maximum MI that they
could produce. Fig. 8.3 was obtained from |76], and shows the time course of
the MI for each group from the competition. Nine groups took part; however,
one of them (group H) did not provide the required information or produce the
correct output. Due to this, their results will not be considered. The results
of the eight remaining groups ranged from ERR=32.14%, MI=0.09 bits, and
STMI=0.05 bits/s to ERR=10.71%, MI=0.61 bits, and STMI=0.39 bits/s. A
summary of the results for each group is presented in Table 8.4.

The MI of groups B and C' climbs steadily and does not fall like the other
groups; however, they reach their peak much later than the other groups.
Group C has the lowest ERR and the highest MI, but, due to a slower response,
it only reaches a maximum STMI of 0.24 bits/s. Groups A and F' achieve a
maximum STMI of 0.39 and 0.28 bits/s respectively. For most groups, the MI
starts climbing around 4s and peaks between 4.5s and 6.5s. Group A peaks
earlier at 4.18s, whereas groups B and C' only reach their peak MI at 6.70s
and 7.59s respectively. The pattern over time for A and F' are similar, but a
delay of roughly 0.5s exist between them. The same pattern over time is also
observed in Fig. 8.2l with BCT,,,.

Both feature types were compared to the results provided by the outcome
of the competition, and the optimal classifier was used for the BCI of each
feature type (LDA for wavelet and SVM for cepstrum). By comparing the MI
of BC1,, and BCI,, to those of the other groups, we see that BCI,, (max
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Figure 8.3: Time courses of the MI for each contestant in the BCI Competition I
challenge (figure provided by [76]).

Table 8.4: Outcome of the BCI Competition Il challenge. Columns three to six
present the minimum ERR, maximum MI, time of maximum MI, and maximum
steepness of the MI for each contestant.

Minimum | Maximum Maximum

Group | ERR [%]| | MI [bit]  time [s| | STMI [bit/s]
C 10.71 0.61 7.59 0.24
F 15.71 0.46 5.05 0.28
B 17.14 0.45 6.70 0.16
A 13.57 0.44 4.18 0.39
G 17.14 0.29 4.66 0.19
I 23.57 0.26 6.34 0.15
E 17.14 0.21 6.13 0.07
D 32.14 0.09 5.66 0.05

MI=0.52 bits) outperformed all participants except for group C which had a
maximum MI of 0.61 bits. BCI,, achieved a maximum MI of only 0.45 bits,
but it still managed to achieve better results than six of the other groups.
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8.2.6 Discussion

BC1,, showed a lower ERR than BCI,., (average of 14.43% compared to
15.86%), but the classification rates of the evaluations were very close, and one
feature type cannot be favoured above the other. It should be noted that the
parameters were chosen manually, and it is possible that higher classification
rates could have been obtained if a better parameter set was found for either
of the feature types.

Although the error rates were similar for BC'I,,, and BCI,.,, a clear differ-
ence is seen in their response time. From Fig. (8.2 we see that BC'I., responded
faster to the motor imagery than BCI,,. This can be explained by the dif-
ference in window lengths used by BCI,, and BCI.,. The cepstral based
features were calculated with a FE window length of 0.25s, whereas BCI,,,
used the average band power over 1s. The longer window was required by
BC1,, to counteract the influence of noise in the frequency bands.

The difference in response has a big influence on the STMI, as we can see
from Table 8.3 BCI,, showed a much higher STMI than BCI,, (avg. of
0.38 bits/s over all classifiers compared to avg. of 0.22 bits/s for BCI,,),
even though it had a worse ERR.

If we compare our results to those of the competition, we see that three
contestants (A, F, and G) showed time courses similar to those of BC1,, in
Figl8.2l Tt is likely that the feature extraction methods were similar between
us and these groups.

The maximum STMI produced in the competition was 0.39 bits/s, achieved
by group A. BCI,, and BCI,.., produced a maximum STMI of 0.33 bits/s
and 0.40 bits/s respectively. The importance of the system response is clearly
illustrated by these results. Although having a lower classification rate and
MI, BC1I,, was still capable of producing a higher bit rate than BCI,,,.



Chapter 9

Conclusions and
Recommendations

9.1 Summary

This study investigated two feature extraction methods and three classification
techniques that can be used to discriminate between different classes of motor
imagery. The first feature extraction technique made use of the signal band
power to extract features, and used the wavelet packet decomposition to obtain
the spectrum accordingly. The wavelet based features could effectively be used
to classify different classes of motor imagery; however, some subjects performed
better than others, and all subjects did not achieve a desirable level of results.
None the less, error rates below 5% and information transfer rates of up to
0.33 bits/s were obtained by some.

The second feature extraction technique involved the cepstral analysis of a
signal. The power cepstrum was chosen to calculate the cepstra over a localised
time segment in the signal, and the quefrency coefficients were used as feature
vectors. Although a conclusive test was not done to directly compare the two
feature types, cepstral based features could not achieve the same classification
rates as wavelet based features. They did however show a faster response to
changes in mental activity, which resulted in them obtaining a higher informa-
tion transfer rate than the wavelet based features. Error rates below 10% and
information transfer rates of up to 0.4 bits/s were obtained by the cepstral
features.

To evaluate the constructed features, three machine learning techniques
were investigated. They were: linear discriminant analysis (LDA), logistic
regression (LR), and support vector machines (SVM). The SVM used the
Radial Basis function as a kernel, and was the only non-linear classifier in this
study. Although being the simplest technique of the three, the LDA classifier
achieved the lowest error rates across both data sets. It was however closely
followed by the LR classifier. The SVM obtained low classification rates in the

65
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first experiment, but achieved results similar to the LDA and LR classifiers in
the second. The lower performance of the SVM could have been a result of the
chosen kernel, and the classifier may have done better if something different
was chosen.

9.2 Recommendations for Future Work

Several techniques for each aspect of a BCI were investigated. It was however
not possible or feasible to perform an in-depth implementation of each method,
and many improvements can be made on the existing system. A few of them
are provided here.

9.2.1 Automated Calibration

Probably the most important aspect to consider in work following from this
study is an automated calibration system. Parameters for the experiments
were chosen manually based on a set of assumptions. Manual selection was a
tedious process and did not necessarily produce the best results. An automated
calibration system was planned for, but due to time constraints one could not
be developed. A calibration system would save time during evaluation, and
would have the added benefit of most likely producing better results. The
system would ideally optimise the following parameters:

e The train segment defined by 44+ and tepq.
e Number decomposition levels for the WPD.
e [eature extraction window length [, and l4,,.

e Cepstral coefficients to select from the quefrency domain.

9.2.2 Wayvelet Packet Best Basis

The Best Basis algorithm has been found to provide an optimal representation
of a (discrete time) signal in its frequency domain, and has successfully been
applied to the processes of a BCI [47, 48, 49]. The algorithm makes use of
wavelet packets to find the best combination of decomposition levels. Adding
the algorithm to the wavelet based methods discussed in this study could
therefore result in a possible increase to the overall performance of the system.

9.2.3 Wayvelet Based Cepstrum

The cepstrum obtained in this study made use of the Fourier transform during
its calculations. However, as mentioned in Chapter 4, other frequency analysis
techniques can also be used. An interesting experiment in future work would
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be to investigate the wavelet based cepstrum and construct features from the
coefficients accordingly.

This and other forms of cepstrum could also be investigated as a filtering
step before the actual feature extraction.

9.2.4 Dimension Reduction and DSLVQ

The feature vectors created by BC1,,, and BCI,, varied from 16-dimensional
to 32-dimensional in size depending on the parameters selected. However,
many of these dimensions were redundant and could have been discarded (the
classifiers assigned weights of zero to them). Applying dimension reduction to
the feature vectors would increase the speed of the evaluations dramatically.
Computational speed is a very important requirement in real-time systems, and
although dimension reduction would not necessarily improve the classification
rate, this aspect is just as crucial as any other. LDA is a popular technique and
could serve as an option for dimension reduction in the preprocessing steps.

Another suggested method would be to use a Distinction Sensitive Learn-
ing Vector Quantiser (DSLVQ). This technique selects a subset of features
from the feature set based on their relevance to the discrimination of different
classes. DSLVQ has already been investigated in BCI research and has proved
to be very useful [77]. DSLVQ also has another added advantage; different
combinations of the available information can be fused together and incorpo-
rated into the feature vectors. Although this means that the resulting feature
set will most likely contain redundant dimensions, the DSLVQ algorithm will
discard them and the possibility of finding new information from the data will
be greatly increased.

9.3 Conclusions

During this study, two feature types and three classifiers were investigated with
the aim of finding effective techniques for the use in online Brain Computer
Interfaces. The wavelet and cepstral based BClIs, referred to as BC1I,, and
BC1I,p, both showed that they were capable of discriminating between left-
and right-hand motor imagery.

BC1,, and BCI.., were tested over a multiple of subjects and the results
were very subject specific. Some subjects performed exceptionally well (mean
error rates below 5% and 10% for BCI,, and BCI,, respectively); however,
acceptable classification rates could not be found for all of them. This could
be due to the selection of the training parameters, or the BCIs simply did not
posses the ability to find sufficient information in the EEG signals. Whatever
the reason, more work is required to improve the robustness and accuracy of
both systems on a subject level.
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The linear classifiers (LDA and LR) obtained similar results in both exper-
iments, but the same performance levels could not be achieved by the SVM
in the first experiment. In Experiment B, however, the SVM achieved similar
results to the LDA and LR classifiers. This may indicate that it had been im-
paired by its selected parameters in Experiment A. Either way, we can conclude
that the Radial Basis function as kernel did not provide any better results for
the described feature types than the linear classifiers. A more suitable kernel
may however lead to the SVM outperforming the linear classifiers.

The main conclusion that we can make from this study is that both the
wavelet-packet and cepstral based techniques are capable of producing results
of similar nature to those of other widely used techniques (such as Common
Spatial Patterns), but more work is required to refine them. The systems
implemented were very simple, and with further development they are likely
to produce better results.



Appendices

69



Appendix A
EEG Recording Paradigms

The paradigms in this appendix describe how the recordings are made in order
to obtain the EEG datasets used by BCIs. References to experiments using
similar paradigms are given in [52, 53, 74, 78, 79, 80, 81]. All paradigms
described present two-class data, and are applied to single-trial classification
problems. Data is captured over several sessions (usually one session per day),
and each session contains several runs with several trials per run.

A.1 P1: Cue-Based Without Feedback

This cue-based paradigm without feedback is used for training a BCI when no
subject data is available. Consequently, no feedback is provided. The subject
sits in a relaxing chair with a computer screen placed at eye level roughly one
meter in front of him. Each trial starts with a blank screen, and at ¢,..q4, a
fixation cross appears in the middle of the screen and a short acoustic beep
warns the subject that the cue is about to be presented. At t... the cue is
presented. It can either be displayed as an arrow pointing left or right, or be
a low /high acoustic tone representing the left /right class. Depending on the
cue, the subject has to imagine moving his left or right hand for as long as
possible. It is very important that no physical movement takes place. At t.,q,
the trial ends and the screen goes blank. A random break is added before the
next trial starts to prevent adaptation.

+ «

beepreasy .- . beepeie ..

,,,,,,,,,,,,,,,,,,, =

3 blank screen N break
I

tstart trx-:‘ady tcue tend

Figure A.1: Cue-based paradigm without feedback.
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A.2 P2: Horizontal Bar

This paradigm is similar to P1, with the difference that feedback is provided
during sessions. The subject is instructed to move a bar left or right in a
horizontal direction based on a presented cue. The subject sits in a relaxing
chair with armrests, and a screen is placed approximately one meter in front
of him at eye level. The trial starts with a blank screen. At t,.qqy, & short
acoustic beep is sounded and a fixation cross is displayed. At t.,., an arrow
pointing either left or right acts as a visual cue instructing the subject which
side the control bar should be moved to. The subject then has to move the
bar using left and right hand motor imagery accordingly, and keep it on the
requested side of the screen for as long as possible. At t.,4 the trail ends and
the screen becomes blank. A random break is added before the next trial
starts. Feedback is provided by constructing features from the recorded data
and classifying them with a trained classifier.

+

beepready Lt . beepcue. et .

,,,,,,,,,,,,,,,,,,, N

| blank screen break
\ T T \

tstart tready Leue feedback period tend

K A

Figure A.2: Cue-based paradigm with horizontal feedback.

A.3 P3: Smiley

This paradigm is based on a smiley face image moving in the horizontal direc-
tion of imagined left and right hand movements. The subject sits in a relaxing
armchair with a flat screen placed approximately one meter in front of him. At
tstart, & gray smiley appears in the middle of the screen, followed by a warning
beep at t,eqdqy. At teye, a visual cue in the form of a green vertical bar on
either the left or right side of the screen is presented to indicate the requested
class. The subject then has to move the smiley in the direction of the cue for
as long as possible by using left or right hand motor imagery. The integrated
magnitude of the classifier output over the last two seconds determines the
horizontal offset from the centre of the screen. The smiley becomes green if it
moves towards the cue and red if it does not. At t.,q the screen goes blank
and a random break is added to the trial before the next one starts.
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movement towards cue movement away from cue

beepready
_ break

i T 5 T i
tstart tready Leue feedback period tend

K A

Figure A.3: Smiley paradigm



Appendix B

Additional Results: Experiment A

During Experiment A, a SVM and LR classifier was used to evaluate the con-
structed feature sets for each subject. Ten-fold cross validation was performed
and the mean time course across the ten folds was obtained for each subject.
Time courses for the BCIs using the LR and SVM classifiers are presented in
Fig. B.1, Fig. and Fig. The subfigures consist of two plots over time.
One plot shows the ERR for BC1,, and the other a time course for BCI,,,,.
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Figure B.1: Time courses of the ERR for subjects S1 to S4 calculated from the
mean TSD of the ten test folds. A logistic regression classifier was used by both
BC1,, and BCI., in this figure. The dotted line at ¢t = 3s indicates the cue onset.
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Figure B.2: Time courses of the ERR for subjects S5 to S9 calculated from the
mean TSD of the ten test folds. A logistic regression classifier was used by both
BC1,, and BCI., in this figure. The dotted line at ¢t = 3s indicates the cue onset.
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Figure B.3: Time courses of the ERR for each subject calculated from the mean
TSD of the ten test folds. A support vector machine was used by both BCI,,, and
BC1,p to classify the features. The dotted line at ¢ = 3s indicates the cue onset.
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