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ABSTRACT 

 

Obsessive-compulsive disorder is a severe, debilitating psychiatric disorder for which the 

underlying molecular aetiology still remains unclear. Evidence from family studies have 

suggested that OCD may be caused by a complex interplay of environmental and genetic 

factors. 

 

In order to identify the genetic factors that mediate OCD susceptibility, several genetic 

association studies have been undertaken, which have yielded inconsistent findings. Moreover, 

the majority of these studies have focused on a small number of candidate genes that encode 

components of the serotonin and dopamine neurotransmitter pathways. However, based on the 

complexity of clinical manifestations observed in OCD, it is likely that its pathogenesis is 

mediated by a broader complex of interrelated neurotransmitter systems and signal transduction 

pathways; consequently there is a need to identify and assess novel candidate genes.  

 

One method of identifying such novel OCD candidate genes is by utilising knowledge of diseases 

with phenomenological overlap with OCD, which lend themselves to better genetic dissection 

through linkage analysis and animal studies. Genetic loci for such disorders, identified though 

linkage analysis, could potentially harbour novel OCD candidate genes, while genes implicated 

through animal models may lead to the identification of additional susceptibility genes through  

delineation of pathways by, for instance, interactome analysis. One such disorder is 

schizophrenia, which manifests overlap in both symptoms and brain circuits with OCD. In 

schizophrenia, in addition to several case-control association studies having been performed, 

linkage data, studies of chromosomal aberrations and animal models have led to the identification 

of many chromosomal regions that may contain genes involved in its aetiology and thus may also 

contain OCD candidate genes. 

 

In the present investigation, this approach was employed using previously reported schizophrenia 

susceptibility loci to identify novel OCD candidate genes. All genes residing in each of these loci 

were catalogued and individually analysed using a battery of bioinformatic techniques in order to 

assess their potential candidature for OCD susceptibility. These analyses yielded 13 credible 

OCD candidate genes. 
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Additional candidates were sought using information regarding a well-defined schizophrenia 

animal model, the heterozygous reeler mouse, that exhibits neurodevelopmental, neuroanatomical 

and behavioural abnormalities, similar to those displayed by patients with schizophrenia. The 

phenotype of these mice is caused by a mutation in Reln, which encodes reelin, a large 

extracellular matrix protein that plays a pivotal role in the ordered migration of neurons during 

the development of laminar brain structures. The fact that both reelin protein and mRNA levels 

have been shown to be reduced in post-mortem brain sections of schizophrenic patients, coupled 

with the observed behaviour and neurochemical similarities between the heterozygous reeler 

mouse and schizophrenic patients suggests that reelin may be involved in the pathogenesis of 

schizophrenia and hence also OCD. Furthermore, genes encoding proteins that interact with reelin 

may thus also be considered plausible candidate genes for both schizophrenia and OCD. For this 

reason, novel reelin-interacting proteins were sought using the N-terminal reeler-domain of 

reelin, a domain only found in proteins involved in neuronal migration, as “bait” in a yeast two-

hybrid screen of a foetal brain cDNA library. Putative reelin ligands were subsequently re-

evaluated using co-immunopreciptitation and mammalian two-hybrid analysis to corroborate the 

yeast two-hybrid findings. Results of these analyses showed that WDR47, a WD40-repeat domain 

protein, interacts with reelin via its reeler-domain;  therefore, the gene encoding this ligand 

protein, as well as RELN itself, was also considered a credible OCD candidate gene. 

 

Each of the candidate genes identified using the afore-mentioned strategies were assessed for 

their potential role in the aetiology of OCD by case-control association studies of a cohort of 

Afrikaner OCD patients and control individuals. Statistically significant associations were 

detected for two genes, DLX6 and SYN3, with the disorder. These associations are exciting as 

they may point to novel mechanisms involved in OCD development.  

 

The identification of WDR47 as a novel reelin-interacting protein has significant implications for 

our understanding of reelin-dependant signalling. Using this protein as the starting point, further 

novel components of the reelin signalling pathway may be unravelled, an investigation which 

may lead to the identification of novel roles for reelin in neurodevelopment. Such novel 

components may, of course, also be considered OCD and schizophrenia candidate genes, which 

may, in turn, augment the existing knowledge of the pathophysiologies of OCD, schizophrenia 

and other neurodevelopmental disorders.  
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Taken together, the current study yielded exciting results that warrants follow-up investigation in 

future. The identification of DLX6 and SYN3 as novel OCD susceptibility genes as well as the 

identification of WDR47 as a reelin-interacting protein may provide investigators with alternative 

avenues of research into potential pathological mechanisms involved both in OCD and 

schizophrenia, which may ultimately lead to alternative pharmacotherapy.  
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OPSOMMING 

Obsessiewe kompulsiewe steuring (OKS) is `n ernstige, verswakkende psigiatriese steuring 

waarvan die onderliggende molekulêre etiologie steeds onbekend is. Bewyse verkry vanuit 

familiestudies het voorgestel dat OKS moontlik veroorsaak word deur `n komplekse interaksie 

van omgewings en genetiese faktore. 

 

Om die genetiese faktore te identifiseer wat OKS vatbaarheid veroorsaak, is `n hele aantal 

genetiese assosiasie studies onderneem, wat teenstrydige resultate gelewer het.  Wat meer is, die 

grootste hoeveelheid van hierdie studies het gefokus op `n klein aantal kandidaatgene wat vir 

komponente van die serotonien en dopamine neurotransmittor weë enkodeer. Dit is egter, 

gebaseer op die kompleksiteit van die kliniese manifestasies wat waargeneem word in OKS, heel 

moontlik dat die patogenisiteit van die siekte bemiddel word deur `n breër kompleks van 

interverwante neurotransmittor sisteme en seintransduksie weë. Daar is dus `n behoefte na die 

identifikasie en ondersoek van nuwe kandidaatgene.   

 

Een metode om sulke nuwe OKS kandidaatgene te identifiseer, is deur die gebruik van bestaande 

kennis oor siektes wat fenomenologiese ooreenkomste het met OKS, siektes wat makliker 

geneties ontleed kan word deur koppelingsanalises en dierestudies.  Genetiese lokusse vir sulke 

versteurings, geïdentifiseer deur koppelingsanalises, het die potensiaal om nuwe OKS 

kandidaatgene in te sluit, terwyl gene wat geïmpliseer word deur dierestudies mag lei tot die 

identifisering van bykomende vatbaarheidsgene deur die ondersoek van weë deur, byvoorbeeld, 

interaktoom analises.  `n Voorbeeld van so `n versteuring is skisofrenie, wat in manifestasie 

oorvleuel in beide simptome en breinstroombane met OKS.  In skisofrenie het, addisioneel tot 

verskeie geval-kontrole assosiasiestudies wat gedoen is, koppelingsdata, studies van 

chromosomale afwykings en dierestudies gelei tot die identifikasie van verskeie chromosomale 

gebiede wat gene mag bevat wat betrokke kan wees in die etiologie van die siekte, en dus ook 

OKS kandidaatgene mag bevat.  

 

In die huidige ondersoek is hierdie benadering gevolg en is gebruik gemaak van voorheen 

gerapporteerde skisofrenie vatbaarheidslokusse om nuwe OKS kandidaatgene te identifiseer.  

Alle gene wat in hierdie lokusse voorkom is gekatalogiseer en individueel geanaliseer deur 

gebruik te maak van `n battery van bioinformatika tegnieke om hul potensiaal as kandidate vir 

OKS vatbaarheid te bepaal.  Hierdie analise het 13 geloofwaardige OKS kandidate opgelewer.   
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Addisionele kandidate is gesoek deur inligting van `n goed gedefinieerde skisofrenie dieremodel 

te gebruik, naamlik die heterosigotiese “reeler” muismodel, wat neuro-ontwikkelings-, 

neuroanatomiese- en gedragsabnormaliteite vertoon, soortgelyk aan dié wat voorkom by pasiënte 

met skisofrenie.   

 

Die feit dat daar aangetoon is dat beide reelin protein en bRNS vlakke verlaag is in post-mortem 

brein seksies van skisofrenie pasiënte, gekoppel aan die gedrags- en neurochemiese ooreenkomste 

wat gesien word tussen heterosigotiese “reeler” muise en skisofrenie pasiënte, stel voor dat reelin 

betrokke is by die patogenese van skisofrenie en dus ook OKS.   

 

Vir hierdie rede is nuwe proteïene gesoek wat `n interaksie met reelin toon, deur gebruik te maak 

van die N-terminale reeler-domein van reelin, `n domein wat slegs gevind word in proteïene wat 

betrokke is by neuronale migrasie, as “aas” in `n gis-twee-hibried sifting van `n fetale brein cDNS 

biblioteek.  Vermeende reelin ligande is vervolgens herevalueer deur gebruik te maak van ko-

immunopresipitasie en soogdier twee-hibried analises om die gis-twee-hibried bevindings te 

bevestig.  Resultate van hierdie analises het getoon dat daar interaksie is tussen WDR47, `n 

WD40-herhalingsdomein protein, met reelin via sy reeler-domein.  Die geen wat hierdie ligand 

protein enkodeer, sowel as RELN self, is dus beskou as ‘n  geloofwaardige OKS kandidaatgeen.   

 

Elkeen van die kandidaatgene wat geïdentifiseer is deur gebruik te maak van bogenoemde 

strategieë is ondersoek vir `n potensiële rol in die etiologie van OKS deur gebruik te maak van 

geval-kontrole assosiasie studies met `n groep Afrikaner OKVS pasiënte en kontrole individue.  

Statisties-betekenisvolle assosiasies met die versteuring is vasgestel vir twee gene, DLX6 en 

SYN3. Hierdie assosiasies is opwindend aangesien hul nuwe meganismes betrokke by OKS 

ontwikkeling mag aantoon. 

 

Die identifikasie van WDR47 as ‘n nuwe protein wat interaksie met reelin vertoon, het 

betekenisvolle implikasies vir die verstaan van reelin-afhanklike seining.  Deur hierdie proteïn as 

die beginpunt te gebruik kan vêrdere nuwe komponente van die reelin seinweg ontdek word, `n 

ondersoek wat mag lei tot die identifisering van nuwe funksies vir reelin in neuro-ontwikkeling.  

Sulke nuwe komponente mag, natuurlik, ook in aanmerking kom as OKS en skisofrenie 

kandidaatgene, wat op sy beurt weer die bestaande kennis van die patofisiologie van OKS, 

skisofrenie en ander neuro-ontwikkelings versteurings mag verbreed.   
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In samevatting, hierdie studie het opwindende resultate gelewer wat opvolgondersoeke in die 

toekoms regverdig.  Die identifikasie van DLX6 en Syn3 as nuwe OKS vatbaarheidsgene, sowel 

as die identifisering van WDR47 as ‘n protein wat interaksie vertoon met reelin, mag aan 

navorsers alternatiewe navorsingsweë voorsien om die moontlike patologiese meganismes wat 

betrokke is by beide OKS en skisofrenie te ondersoek, wat uiteindelik mag lei tot alternatiewe 

farmakoterapie.   
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CHAPTER 1: INTRODUCTION 

1. PYCHIATRIC DISORDERS 

Psychiatric disorders are among the most widespread and disabling of all illnesses in developed societies. 

However, since they are not listed among major causes of death, they rarely receive the attention given to 

diseases such as cancer or AIDS which have high mortality rates. 

 

In terms of their overall prevalence, economic burden and the long-sustained suffering they cause, these 

disorders exceed most forms of ill health. In the United States of America (U.S.A) alone, the estimated 

collective cost per year is around $400 billion (Cowan et al.,  2002). Furthermore, on the basis of a large 

epidemiological study conducted in the U.S. in 1991, the life-time prevalence of mental illness was estimated 

at 32% and in the year preceding the study, as many as 20% of the population was affected. (Robins and 

Reiger, 1991). More recent surveys estimate the number of affected individuals in the U.S at 43 million adults 

(over the age of 18 years) (US Department of Health and Human Services, 1999). In addition, four of the ten 

leading causes of disability in the U.S. and other developed countries are mental disorders such as major 

depression, bipolar disorder, schizophrenia, and obsessive-compulsive disorder (Murray and Lopez, 1996). 

 

Moreover, the “Disability Adjusted Life Year” or “DALY” scale (a scale that measures the years of healthy 

life lost due to mortality and disability) shows that psychiatric disorders are responsible for a significant 

number of years lost due to disability (with mortality excluded) (Murray and Lope., 1996, Michaud et al.,  

2001). When mortality is included, psychiatric illnesses rank second only to cardiovascular disease on the 

DALY scale (Murray and Lopez, 1996). 

 

These statistics emphasise the severity and prevalence of mental illness and stress the importance of getting a 

clear handle on the pathophysiology of these disorders, in order to develop better diagnostic tools and 

treatment regiments. In the last 20 years, much progress has been made in improving diagnosis and treatment 

of many psychiatric disorders (Cowan et al., 2002). However, in the majority of psychiatric disorders, little 

knowledge exists about the cellular and molecular abnormalities and their relationship to the nervous system’s 

structure and function.  

 

Recent years have seen many major advances in biomedical research and, like the rest of medicine, psychiatry 

has entered the “molecular medicine revolution” with all its exponentially improving technologies (Gould and 

Manji, 2004). However, the field of psychiatry still lags behind other medical conditions, with respect to 

delineating pathophysiology, for a number of reasons. These include the lack of a clearly defined 

pathogenesis, the sheer complexity of human behaviour and of the central nervous system (CNS), and the 

multifactorial molecular pathophysiology of psychiatric illnesses (Gould and Manji, 2004). Compared to 

organs such as the liver where the cells are nearly all identical, have similar phenotypes, transcriptomes and 

proteomes, and have homogeneous interactions, cell types in the brain are quite different from each other, have 

different transcriptomes and proteomes and display heterogeneous interactions (Gottesman and Gould, 2003). 

Comment [MB1]: Robins, L.N. and Regier, D.A. 
Psychiatric Disorders in America. New York: The 
Free Press, 1991 
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The complex interactions of the brain are not only limited to genes, proteins and cell types, but varying 

individual experiences all contribute to phenotype.  

 

Despite these obstacles, many researchers have sought to elucidate the multifaceted pathophysiology of 

psychiatric disorders using a variety of approaches, including identifying genetic loci involved in the 

development of these disorders. The focus of this thesis is the identification of novel susceptibility genes for 

obsessive-compulsive disorder (OCD). One method of identifying such novel OCD candidate genes is by 

utilising knowledge of diseases with phenomenological overlap with OCD, which lend themselves to better 

genetic dissection through the approach of linkage analysis and animal studies. Genetic loci for such disorders, 

identified though linkage analysis, could potentially harbour novel OCD candidate genes, while genes 

implicated through animal models of the “overlapping disorder” may lead to the identification of additional 

susceptibility genes through delineation of pathways by, for instance, interactome analysis. One such 

overlapping disorder is schizophrenia, which manifests some similarities both in symptoms and the brain 

circuits with OCD. For this reason, the sections that follow will describe each of these disorders, focusing on 

symptoms and theories regarding their pathogeneses, the evidence for a genetic component to their etiology, as 

well as some of the approaches used in the identification of susceptibility genes to date will be reviewed.  

 

1.1 SCHIZOPHRENIA 

Schizophrenia is a devastating mental illness that impairs some of the most advanced functions of the human 

brain(reviewed in Picchioni and Murray, 2007). Its lifetime prevalence has been estimated at 1% worldwide 

and an annual incidence of 0.16-0.42 per 1000 population has been predicted (Jablensky, 2000). Symptoms 

usually appear during the second decade of life, but cases of late-onset schizophrenia have also been reported.  

 

The symptoms of shcizophrenia can be divided into three main categories (Kelly et al.,  2000; Hales et al., 

1994) namely, psychotic (or positive symptoms) symptoms, deficit (or negative symptoms) symptoms and 

cognitive impairment. The negative and cognitive symptoms are more persistent and chronic, while the 

psychotic symptoms have an episodic pattern that, when active, is usually the reason for hospitalization of 

patients (Andreasen et al., 1995). A complete summary for Diagnostic and Statistical Manual on Mental 

Disorders (DSM-IV) diagnostic criteria for schizophrenia is shown in Table 1.1. Genetic studies of 

schizophrenia often differ with respect to definition of phenotype, eg. some studies include individuals with 

schizophrenia spectrum disorders, while others include only individuals with narrowly defined schizophrenia, 

and yet others make use of intermediate phenotypes, it is necessary to discuss these phenotypic concepts 

below.  

 

1.1.1. Psychotic symptoms 

Psychotic symptoms, a feature of a number of brain disorders, fall into three main groups (Hales et al., 1994), 

namely hallucinations, delusions and thought disorder. In schizophrenia, the hallucinations experienced are 

usually auditory, in the form of human speech, i.e. “hearing voices” (Andreasen and Black., 1991). The typical 

schizophrenic delusions are usually paranoid and include delusions of persecution, grandiosity, external 

Comment [MB2]: Picchioni MM, Murray 
RM.  

Related Articles, Links Schizophrenia. 
BMJ. 2007 Jul 14;335(7610):91-5. 

Comment [MB3]: Hales R.E, Yudofsky S.C, 
Talbott J.A Eds. The American psychiatric press 
textbook of psychiatry. Washington, D.C: American 
Psychiatric Press, Inc; 1994 
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control, having thoughts inserted or withdrawn from one’s head, ideas of reference and mind reading (Stompe 

et al., 1999). Thought disorder refers to the abnormalities in the form of thought. Its cardinal features are 

improper use of semantic and rational aspects of language, which the listener experiences as disorganised 

speech (Goldberg et al., 1998).  

 

1.1.2. Negative symptoms and cognitive impairments 

Negative symptoms consist of severe disturbances in social interaction, motivation, expression of affection, 

ability to experience pleasure and spontaneous speech (Hale et al., 1994). Thus the negative symptoms can be 

described as a loss of normal functions (Andreasen and Olsen, 1982; Andreasen, 1990). Cognitive impairment 

in schizophrenia affects executive functions, memory, attention and general intellectual functioning (Wiekert 

et al., 2000).  

 

Table 1.1 The DSM-IV diagnostic criteria for Schizophrenia.  

 A. Characteristic symptoms: Two (or more) of the following, each present for a significant portion of time during a 1-
month period (or less if successfully treated):  
(1) delusions  
(2) hallucinations  
(3) disorganized speech (e.g., frequent derailment or incoherence)  
(4) grossly disorganized or catatonic behavior 
(5) negative symptoms, i.e., affective flattening, alogia, or avolition  

Note: Only one Criterion A symptom is required if delusions are bizarre or hallucinations consist of a voice keeping up a 
running commentary on the person's behavior or thoughts, or two or more voices conversing with each other.  

B. Social/occupational dysfunction: For a significant portion of the time since the onset of the disturbance, one or more 
major areas of functioning such as work, interpersonal relations, or self-care are markedly below the level achieved prior 
to the onset (or when the onset is in childhood or adolescence, failure to achieve expected level of interpersonal, 
academic, or occupational achievement).  

C. Duration: Continuous signs of the disturbance persist for at least 6 months. This 6-month period must include at least 
1 month of symptoms (or less if successfully treated) that meet Criterion A (i.e., active-phase symptoms) and may include 
periods of prodromal or residual symptoms. During these prodromal or residual periods, the signs of the disturbance may 
be manifested by only negative symptoms or two or more symptoms listed in Criterion A present in an attenuated form 
(e.g., odd beliefs, unusual perceptual experiences).  

D. Schizoaffective and Mood Disorder exclusion: Schizoaffective Disorder and Mood Disorder With Psychotic Features 
have been ruled out because either (1) no Major Depressive, Manic, or Mixed Episodes have occurred concurrently with 
the active-phase symptoms; or (2) if mood episodes have occurred during active-phase symptoms, their total duration has 
been brief relative to the duration of the active and residual periods.  

E. Substance/general medical condition exclusion: The disturbance is not due to the direct physiological effects of a 
substance (e.g., a drug of abuse, a medication) or a general medical condition.  

F. Relationship to a Pervasive Developmental Disorder: If there is a history of Autistic Disorder or another Pervasive 
Developmental Disorder, the additional diagnosis of Schizophrenia is made only if prominent delusions or hallucinations 
are also present for at least a month (or less if successfully treated).  

 

1.1.3. Schizophrenia spectrum disorders 

The concept of schizophrenia spectrum disorders dates back to the observations of  Kraepelin, who noted some 

less severe schizophrenia-like characteristics in families of patients with schizophrenia (described in 

Lichtermann et al.,  2000). These characteristics were termed schizophrenia spectrum disorders and are 

thought to share a familial-genetic aetiology with schizophrenia (Lichtermann et al.,  2000). 
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Valid members of the spectrum included schizoaffective disorder and schizotypal personality disorder 

(Kendler et al  .,1993; Maier et al., 1994). Biometric analysis of available family data has confirmed that 

schizophrenia spectrum disorders do indeed share common familial factors with schizophrenia (Baron and 

Risch, 1987; Kendler et al., 1995). Moreover, biometric analysis of the Copenhagen adoption study cohort 

confirmed a genetic link between schizophrenia and schizotypal personality disorder (Tyrka et al., 1995). 

 

1.1.4. Schizophrenia endophenotypes 

In the study of Mendelian disorders, genotypes are usually found to be to a greater or lesser extent indicative 

of phenotypes (Gottesman and Gould, 2003). Even this degree of genetic certainty is, however, not applicable 

to complex disorders where a complex interplay between genetic factors, epigenetic factors and the 

environment give rise to the phenotype. 

 

Many investigations have been undertaken to investigate the genetic aetiology of various psychiatric disorders, 

with little success. Undoubtedly, this is partly due to the fact that current diagnostic criteria describe a group of 

heterogeneous disorders rather that a single phenotypic entity (Andreasen, 1999, 2000; Lewis, 2002). In 

psychiatry, the phenotype, ie., behaviour, is complex and therefore classification of psychiatric disorders on 

the basis of overt phenotypes may not be optimal for genetic elucidation. Thus, the concept of endophenotypes 

or intermediate phenotypes was introduced to bridge the gap between genotype and phenotype. Gotessman and 

Shields describe endophenotypes as “internal phenotypes discoverable by a biological test or microscopic 

examination” (Gottesman and Shields, 1973). 

 

Endophenotypes are traits that are associated with the expression of a disorder and are believed to represent a 

genetic liability among non-affected individuals. They can be biochemical, neurophysiological, 

neuroanatomical, cognitive or neuropsychological in nature. (Leboyer et al., 1998; Glahn et al., 2007). The 

rationale for dissecting a condition into  endophenotypes is that, if phenotypes associated with a disorder are 

very specialized and represent biologically measurable phenomena, the number of genes involved in the 

manifestation of variation of these traits may be fewer than those producing the particular psychiatric 

diagnostic entity (Fig. 1.1) (Leboyer et al., 1998). 

 

It should, however, be noted that putative endophenotypes do not always reflect a genetic vulnerability and 

may in fact have epigenetic or environmental origins (Gottesman and Gould, 2003). Therefore, Gottesman and 

Gould, in their review of endophenotypes in psychiatry, adapted criteria useful in identification of markers in 

psychiatric genetics (Gershon and Goldin, 1986) to apply to endophenotypes (Gottesman and Gould, 2003). 

These criteria state that endophenotypes should be associated with illness in populations, be heritable, 

primarily state-dependent, ie. manifest within an individual in a family whether or not the illness is active, and 

be found in non-affected family members at a higher rate than in the general population. 

Comment [MB4]: Glahn DC, Thompson PM, 
Blangero J.  

Related Articles, Links Neuroimaging 
endophenotypes: strategies for finding genes 
influencing brain structure and function. 
Hum Brain Mapp. 2007 Jun;28(6):488-501 
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Fig 1.1. The rationale for using an endophenotype approach for genetic analysis of complex disorders 
(Adapted from Gottesman and Gould 2003). 
 

An example of how endophenotypes help to dissect complex genetic problems comes from studies of epilepsy, 

a complex disorder that shows similar difficulties to those experienced in psychiatric disorder in terms of 

dissecting complex genetic aetiologies: Greenberg and colleagues by using electro-encephalographic (EEG) 

signature of seizures identified a genetic susceptibility factor for juvenile myoclonic epilepsy (Greenberg et 

al., 1988). Schizophrenia lends itself to sub-stratification into a number of endophenotypes. As these are 

pertinent to the discussion of schizophrenia genetic locus identification, some of these endophenotypes will be 

briefly discussed.  

 

1.1.4.1. Sensory motor gating 

In schizophrenia, deficiency in sensory motor gating is a consistent neurobiological finding (Braff and 

Freedman, 2002; Braff et al., 2001). Sensory motor gating refers to the regulation of sensitivity to sensory 

stimuli and is a crucial psychophysiological mechanism in brain function. It is the mechanism underlying 

one’s ability to process information selectively in order to screen or “gate out” trivial stimuli, so that one is 

able to focus on the most salient aspects of the environment (Broadbent, 1971).  

 

One strategy to evaluate sensory gating is to measure the decrement in the brain’s evoked response to repeated 

auditory stimuli (Callaway, 1973). This measure is known as pre-pulse inhibition (PPI) of the startle response. 

When auditory stimuli are repeated at close intervals, the evoked response is normally diminished or “gated” 

(Davis et al., 1966). The first sound (or the pre-pulse) activates inhibitory neuronal pathways, so that the 

response to the second sound (pulse) is diminished. A positive event-related potential is then measured using 

an EEG. 

 

1.1.4.2. Eye movement dysfunction 

Another neurobiological dysfunction that has received much attention in the study of schizophrenia 

pathophysiology is eye-tracking (or ocular motor) dysfunctions. At the turn of the last century, Diefendorf and 

Dodge observed that patients with dementia praecox, later to be known as schizophrenia, had difficulty 

following a swinging pendulum with their eyes (Diefendorf and Dodge., 1908), later termed “eye movement 

dysfunction” (EMD) (Holzman et al., 1973). It is consistently observed that non-psychotic first-degree 

relatives of schizophrenic patients also exhibit EMD; this suggests that EMD may shed some light on the 

genetic mechanisms involved in schizophrenia pathogenesis (Calkins and Iacono, 2000). 
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The investigations of EMDs in schizophrenia have focused on the smooth eye pursuit (SEP) and saccade eye 

movement systems, all indicating that patients with schizophrenia have significant impairments in SEP 

(Reviewed by Calkins and Iacono, 2000; Lee and Williams, 2000). In general, these deficiencies are manifest 

as corrective saccade, which follow SEP movements that are slightly slower than the target object (Calkins and 

Iacono, 2000). The SEP dysfunction was found to be stable over time and is present before onset of 

schizophrenia symptoms and during symptom remission (Gooding et al., 1994; Iacono et al., 1982, 1992). The 

heritability of this trait has been investigated extensively and the generated data have suggested that relatives 

of schizophrenic patients have increased rates of SEP dysfunction. Furthermore, 40%-80% of schizophrenic 

patients, and 25%-45% of their first degree relatives show this trait, compared to approximately 10% of the 

general population (Calkins and Iacono, 2000; Lee and Williams, 2000). These results indicate that SEP 

dysfunction can be considered a schizophrenia endophenotype.  

 

Investigations have also focused on the saccadic system in schizophrenia. Saccadic eye movements are 

composed of several subtypes that include voluntary (intentional) and reflexive. Voluntary saccades, including 

the antisaccade and the memory guided saccade, are eye movements intentionally triggered by an individual to 

achieve a goal (eg. examine details in a photograph), while reflexive saccades are triggered externally in 

response to a suddenly approaching object (Calkins and Iacono, 2000). Schizophrenic patients and their 

biological relatives have shown a replicated deficiency in their capacity to inhibit reflexive saccades to the 

target object (Clementz et al., 1994; Katsanis et al., 1997; McDowell and Clementz, 1997; Ross et al., 1998; 

Curtis et al., 1999; McDowell et al., 1999; Curtis et al., 2001). The few studies on memory guided saccade 

EMD have shown that schizophrenic patients and their biological relatives are slow to move their eyes toward 

a remembered target once the cue for the saccade has been issued. Furthermore, schizophrenic patients often 

generate inappropriate reflexive saccades to the initial target (McDowel and Clementz, 1996).  

 

These data suggests a familial component to both types of voluntary saccade eye movement; this coupled with 

the fact that it is comorbid with schizophrenia, makes voluntary saccade EMD a pertinent schizophrenia 

endophenotype.  

 

1.1.4.3. Spatial working memory 

Spatial working memory (SWM) has also been used as a schizophrenia endophenotype in a number of 

investigations (Pisculic et al., 2007). Spatial working memory is the temporary storage and manifestation of 

spatial information in the service of ‘higher” cognitive processing (Glahn et al., 2003). Impairments of SWM 

in schizophrenia sufferers, as well as their biological relatives, have been well documented (Park and 

Holzman, 1992; Park et al., 1995).  

 

Cannon and colleagues (2000) proposed that SWM deficits constitute an effective endophenotype for 

schizophrenia (Cannon et al., 2000). They found that healthy monozygotic (MZ) co-twins of affected 

individuals performed worse than did healthy dizygotic (DZ) co-twins of healthy individuals, who in turn 
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performed worse than the control twins without a family history of schizophrenia, on a spatial span task of the 

Wechsler-Memory Scale-Revised (Wechsler et al., 1981). Glahn et al. (2000) also provided further 

confirmation of the validity of this observation in a subsequent investigation using a spatial delayed response 

task paradigm (Glahn et al., 2003).These results indicate that performance on the spatial span test is 

genetically predetermined (Cannon et al., 2000) and can be used as an endophenotype for schizophrenia.  

 

Several other endophenotypes have been identified in schizophrenia; these include impairments of executive 

dysfunctions and impaired verbal memory. These endophenotypes, in addition to providing a measurable 

phenotype for genetic studies of schizophrenia, have additional value in psychiatry. These include more 

accurate diagnosis, classification of the disorder into homogeneous subtypes and providing measurable 

phenotypes in animals that can be used to model human illness. 

 

1.1.5. Pathogenesis 

1.1.5.1 The Genetic basis for Schizophrenia 

As the search for genetic components of any disease should be preceded by proof of the existence of such 

components, the following sections will describe such evidence for schizophrena.  

 

1.1.5.1.1. Family Studies 

Between 1920 and 1987, as many as 40 independent European family studies, that were similar in diagnostic 

and ascertainment criteria, were undertaken to investigate the possible role of genetic factors in schizophrenia 

(reviewed by Shih et al., 2004). From these studies, the risk to first-degree relatives of developing 

schizophrenia was estimated at 6% for parents, 9% for siblings, 13% for offspring of one schizophrenic parent 

and 46% for offspring of two schizophrenic parents (Figure 1.2) (Gottesman et al., 1991). From data generated 

from these studies, it is clear that the risk of schizophrenia in different classes of relatives does not conform to 

those predicted by a simple Mendelian pattern of inheritance. Some families do contain multiple affected 

individuals; however, these cases are rather rare (McGuffen et al., 1995). In fact, in a long-term follow up 

study, Bleuler found that over 60% of schizophrenic patients had no history of the disorder in first or second 

degree relatives (Bleuler, 1978). Thus, with the mixed evidence from family studies, the question still arises: is 

the familiality of schizophrenia the result of genetic influences or can it be explained, even in part, by shared 

environmental effects? In order to answer this question, several investigators have gathered information from 

twin and adoption studies. 

 

1.1.5.1.2. Twin studies 

A systematic review of the results of twin studies found the rate of concordance of approximately 53% for MZ 

monozygotic twins and 15% for DZ twins (Kendler, 1983). In a similar review, Gottesman found a 

concordance rate of 48% for MZ twin pairs and 17% for DZ twin pairs (Gottesman, 1991). Taken together, 

these reviews show that MZ twins are approximately three times more likely to exhibit concordance than are 

DZ twin pairs, which provides persuasive evidence of a genetic component for schizophrenia. This conclusion 

is further strengthened by research concerning 12 pairs of MZ twins who were reared apart and were 
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systematically evaluated for schizophrenia, which showed a 58% concordance (Gottesman, 1991; Prescott and 

Gottesman, 1993). 
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Fig. 1.2: Estimated lifetime risk of schizophrenia in relatives of schizophrenia probands (Adapted from 

from Gottesman, 1991). 

 

Gottesman and Bernstein showed that children of unaffected co-twins displayed a morbid risk of 17.4%, 

which is similar to that of the affected twin’s offspring (16.8%) (Gottesman and Bernstein, 1989). By contrast, 

the risk for a child of an unaffected DZ co-twin was much lower (2.1%). This finding further emphasizes that 

genetic factors underlie at least part of the pathogenesis of the disorder. 

 

1.1.5.1.3. Adoption Studies  

One of the first adoption studies in schizophrenia was performed by Heston (Heston, 1966). This study 

compared, at maturity, 47 adoptees who had been separated from their schizophrenic mothers within three 

days of birth with a control group of about 50 adoptees who were separated from non-schizophrenic mothers. 

This study found that five of the experimental group developed schizophrenia compared to none of the control 

group (Heston, 1966). Similarly, Rosenthal and colleagues also found an excess of schizophrenia spectrum 

disorders in children of schizophrenia patients raised by normal parents, as compared to a group of adoptees 

whose parents had no history of schizophrenia (Rosenthal et al., 1988).  

 

Kety and co-workers studied 5483 Danish children between 1923 and 1947. Here again, the study showed that 

more adopted children separated from a schizophrenic biological parent developed schizophrenia or a related 

disorder than did the control adoptees (32% versus 18%, respectively) (Kety et al., 1968). These authors also 

determined the prevalence of schizophrenia and related disorders among the biological relatives of 

schizophrenic adoptees. They found that 21% of the biological relatives of 33 schizophrenic adoptees were 

diagnosed with schizophrenia or a related disorder. By contrast, only 11% of the biological relatives of non-

schizophrenic adoptees suffered from any schizophrenia-related disorder. (Kety et al., 1968). Moreover, no 

differences were observed in the rates of schizophrenia in adoptive relatives of schizophrenic and non-

schizophrenic individuals, indicating that the adoptive environment was not likely to be responsible for the 
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increase in schizophrenia rates in the blood-relatives of schizophrenia patients. Furthermore, children born to 

non-schizophrenic parents but raised by a schizophrenic parent did not show rates of schizophrenia higher than 

predicted in the general population (Kety et al., 1968). 

 

1.1.5.1.4. Mode of inheritance 

Thus, there is ample evidence for a role for genetics in schizophrenia pathogenesis, but it is clear that the 

recurrence risk decreases rapidly with increasing genetic distance from the proband (Fig 1.2). Therefore, 

schizophrenia cannot be a single-gene disorder or even a collection of single-gene disorders, even when taking 

incomplete penetrance into account (Owen et al., 2004; Crow, 2007). Studies of the segregation of the disorder 

in families have been undertaken to predict the most likely disease model. Using the lambda risk ratio, Risch 

reported that three to four interacting loci (a multiplicative model) were most likely involved in determining 

risk, rather than an additive model (Risch, 1990). In a complex segregation analyis of schizophrenia in Chile, a 

mixed model with a high environmental component was proposed (Ruiz et al., 1997). Freedman and co-

workers proposed a multigenic model, in which alleles associated with schizophrenia are relatively common in 

the general population and individuals inherit schizophrenia risk through at least two loci (Freedman et al., 

2001).  

 

Thus, the number of genes proposed to impact on schizophrenia pathogenesis are small. However, to better 

predict the type of genes that may be involved in schizophrenia, and thus in its overlapping disorders, it is 

necessary to discuss possible etiologies of schizophrenia, which include neuropathology, neurochemistry and 

neurodevelopment. 

 

1.1.5.2. Neuropathology 

1.1.5.2.1. Macroscopic neuropathology 

Over the past 100 years, many neuropathological investigations of schizophrenia have been undertaken. 

Despite this, no infallible diagnostic neuropathology has been identified, although a number of interesting 

findings should be highlighted. 

 

Numerous post-mortem studies of schizophrenia show a decreased brain weight, increase in ventricular 

volume and a decrease in cortical grey matter volume. Relatives of schizophrenia patients have also been 

reported to have a decreased cortical volume and enlarged ventricles (Cannon et al., 1993); Lawrie et al., 

1999; Honer et al., 1994; Silverman et al., 1998). Moreover, in MZ twin who are discordant for schizophrenia, 

the affected twin tends to have decreased cortical volume and larger ventricles compared to the unaffected co-

twin (Suddath et al., 1990). These studies further suggest that the temporal lobe (Fig 1.3) and the 

corresponding temporal horn are the most affected (Bogerts et al., 1985; Pakkenberg, 1987). It should, 

however be noted that other studies found no significant differences in brain size and cortical volume in post-

mortem brain sections of schizophrenia subjects compared to control specimens (Rosenthal et al., 1972; 

Heckers et al., 1990; Pakkenberg et al., 1990; Dwork et al., 1997). 
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There have also been a large number of studies conducted that employed computed tomography (CT) and 

magnetic resonance imaging (MRI) of the brains of schizophrenic individuals. These studies have largely 

confirmed widespread cortical grey matter deficits in schizophrenia compared to control subjects (eg. 

Johnstone et al., 1976; Cannon et al., 1998). Computed tomography and MRI findings have also confirmed 

post-mortem findings of increased ventricular volume and degree of cortical volume loss (Ward et al., 1996). 

 

1.1.5.2.2. Histopathology of schizophrenia 

Several interesting studies investigating the histological pathology of schizophrenia have been completed, 

providing much insight into possible pathogenic mechanisms that may be involved in schizophrenia, and 

hence possibly in overlapping disorders. 

 

 

                      

Fig 1.3: Brain regions implicated in the pathogenesis of schizophrenia. The basal ganglia are involved in 
integrating sensory information and emotion. Abnormal functioning of the basal ganglia is thought to contribute to 
paranoia and hallucinations experienced by patients with schizophrenia. Frontal lobe disturbances in schizophrenic 
patients are hypothesised to be responsible for difficulty in planning and organising thoughts, while limbic system 
disturbances are thought to contribute to the agitation frequently observed in these patients. Auditory and visual 
hallucinations are caused by disturbances in the auditory system and the occipital lobe, respectively, while hippocampal 
pathology leads to impaired learning and memory in schizophrenic patients (adapted from Alfre Kamajian, 
http://www.schizophrenia.com). 
 

A number of studies have found slight reductions in hippocampal formation grey matter volume which is 

attributable to reduced size and number of hippocampal neurons in schizophrenia patients (Benes et al., 1991; 

Arnold et al., 1995; Zaidel et al., 1997). These findings were further supported by studies showing decreased 

expression of presynaptic and dendritic markers such as synaptosomal associated protein of 25kDa (SNAP-25) 

(Young et al., 1998; Mukaetova-Ladinska et al., 2002); complex II (Harrison et al., 1998), synaptophysin 

(Eastwood et al., 2000) and microtubule-associated protein 2 (MAP2) (Cotter et al., 1997) in schizophrenia 

post-mortem brain specimens. Furthermore, in vivo proton spectroscopy studies have found that the expression 

of N-acetyl aspartate, a putative marker for neuronal integrity, is reduced in schizophrenic patients (Bertolino 

et al., 1998). Results from these studies have given rise to the hypothesis that genes encoding proteins 
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involved in the development and maintenance of the hippocampal formation may be involved in the 

pathogenesis of at least some aspects of schizophrenia. 

 

The number of neurons has also been shown to be reduced in the dorsolateral prefrontal cortex (DLPFC) and 

hippocampus of schizophrenia patients. There have also been reports of a 5-10% reduction in cortical 

thickness and an increase in neuronal cell packing density and decrease in neuronal size in the DLPFC of 

schizophrenia subjects compared to control individuals (Selemon et al., 1995, 1998, 2003; Rajkowska, 1997). 

These observations may reflect a decrease in the number of PFC neurons (Rajkowska et al., 1995) or a 

decrease in the number of axon terminals, distal dendrites and dendritic spines that represent the principal 

components of the cortical synapse (Lewis and Lieberman, 2000). In addition, as in the hippocampal 

formation, expression of N-acetyl aspartate and synaptophysin have been shown to be reduced in the PFC of 

schizophrenia patients (Bertolino et al., 1999 Karson et al., 1999). A similar reduction in the volume of the 

thalamus has also been reported in schizophrenic patients (Andreasen et al., 1994; Frazier et al., 1996; Gur et 

al., 1998), which may reflect fewer axonal projections into the PFC (Portas et al., 1998). Backing these 

observations are studies that show an up to 30% reduction in neuronal number in the mediodorsal (MD) 

thalamic nucleus, which is the main source of neuronal projections from the thalamus into the PFC; as well as 

in the anterior nuclei, which project to the PFC and anterior cingulated cortex (Pakkenberg et al., 1990; 

Popken et al., 2000; Young et al., 2000). 

 

Investigations have also provided some evidence of cyto-architectural abnormalities in the cortex of 

schizophrenia patients. Jakob and Beckmann (1986) reported abnormalities in the cyto-architecture and 

lamination of the entorhinal cortex in schizophrenia (Jakob and Beckmann, 1986). Even though Jakob and 

Beckmann extended their work and their study was partially replicated by others (Arnold et al., 1991), their 

results were still questionable because of a small number of subjects, the absence of a suitable control group 

and the lack of objective criteria for the cyto-architectural disturbance. These deficiencies were later overcome 

by the work of Arnold and colleagues (1995, 1997), who provided further evidence for a disturbance in the 

location, clustering and size of entorhinal cortical neurons (Arnold et al., 1995; 1997). Disarray in 

hippocampal pyramidal neurons has also been reported. A number of studies reported disorientation of 

pyramidal cells in the hippocampus, a decrease in cell density in deeper cortical layers I and II of the rostral 

entorhinal cortex, incomplete glomerular clustering in layer II and abnormal clustering in deeper cortical 

layers (Benes et al., 1991, Jakob and Beckman, 1986, Arnold et al., 1991; Conrad et al., 1991). Abnormalities 

of cyto-architecture were subsequently also noted in an animal model which recapitulates some behavioural 

aspects of schizophrenia, and which was subsequently shown to be due to defects in the gene encoding the 

reelin protein (Costa et al., 2002).  

 

The data described above provide persuasive evidence implicating a compromised DLPFC, as well as the 

hippocampal formation in schizophrenia pathogenesis, which may be due to neurodegenerative, 

neurodevelopmental or neurochemical mechanisms, which, in turn, could have environmental or genetic 

underpinnings.  
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1.1.5.3. The neurodevelopmental hypothesis of schizophrenia 

The neurodevelopmental hypothesis of schizophrenia suggests that subtle disease processes affecting cortical 

brain circuits during early development reaches full-blown consequences during adolescence or early 

adulthood (Marenco and Weinberger, 2000). Orginally, schizophrenia was described as an adult-onset brain 

disorder similar to other disorders of dementia such as Alzheimer’s disease (Bleuler, 1902). Thus, for a great 

part of the 20th century, schizophrenia was thought to be a neurodegenerative disorder and many studies of the 

time focused on proving this (Reviewed by Marenco and Weinberger, 2000).  

 

However, the first retrospective studies of schizophrenia performed in the 1970’s (Watt et al., 1972) revealed a 

pattern of abnormalities in neurological and behavioural parameters that dated back to childhood. Furthermore, 

seminal longitudinal studies indicated that some degree of recovery was possible in schizophrenia, thereby 

undermining the concept that schizophrenia is a neurodegenerative disorder (Tsuang et al , 1979).  

 

In the late 1970’s and 1980’s, further evidence for a neurodevelopmental component to schizophrenia 

pathophysiology, in the form of several underlying macroscopic changes in the schizophrenic brain, had 

emerged. Firstly, many studies indicated an increased ventricle size and loss of cortical volume in post-

mortem schizophrenic brains (Johnstone et al., 1976; Weinberger, 1979; 1982) (section 1.1.5.2.1). Moreover, 

the fact that the enlarged ventricles were present at the onset of disease and that this enlargement did not 

progress with the illness provided further evidence against the involvement of neurodegenerative processes in 

the pathogenesis of schizophrenia (Illowsky et al., 1988). Secondly, cortical cyto-architecture was found to be 

altered, with neurons being incorrectly positioned and of abnormal size (Harrison, 1997) (section 1.1.5.2.2). 

Since brain neurons reach their optimal size and position during neurodevelopment, after which they remain 

static, it suggests that the abnormal cyto-architecture observed in schizophrenia is due to neurodevelopmental 

insults and not neurodegenerative processes. Thirdly, the majority of post-mortem studies failed to provide any 

evidence of gliosis in the brains of schizophrenic subjects (Harrison, 1997). Gliosis is a marker for past 

inflammation and is considered an indicator of damage after the second trimester of gestation (Kreutzberg et 

al., 1997). The absence of gliosis in schizophrenia would suggest that the changes within the brain would have 

occurred prior to the third trimester. Since a neurodevelopmental insult before the second trimester would 

result in overt abnormalitites in the cerebral cortex, some investigators believe that the neurodevelopmental 

abnormalities in schizophrenia occur during the second trimester (Roberts et al., 1991, Bloom et al., 1993). 

This would suggest that genes that are expressed in the developing brain in utero would be strong candidates 

for genetic studies of schizophrenia. 

 

This paradigm shift in the thinking about schizophrenia as a neurodevelopmental, rather than a 

neurodegenerative illness, has led to a large number of epidemiological studies focusing on prenatal, 

behavioural and developmental factors associated with the disorder. These studies provide some of the most 

compelling evidence to bolster the credibility of the neurodevelopmental hypothesis of schizophrenia and by 

the end of the 1980’s, a comprehensive neurodevelopmental hypothesis emerged (Weinberger, 1986, 1987) 
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based on the idea that a “brain lesion can remain clinically silent until normal developmental processes bring 

the structures affected by the lesion ‘on-line’” (Marenco and Weinberger, 2000). 

 

Epidemiological studies, longitudinal patient follow-up, brain MRI and neuropathological investigations over 

the last decade have further supported this hypothesis.  

 

1.1.5.3.1. Neuropathological evidence 

As mentioned earlier, cerebral vertricular enlargement is perhaps the most frequently reported 

neuropathological finding in schizophrenia, demonstrated at all phases of illness (Degreef et al., 1992; De Lisi 

et al., 1991; Gur, 1998, Wienberger, 1982), have been interpreted to reflect a static neuropathology that 

predates onset of overt illness (Marenco and Weinberger, 2000). Several longitudinal CT and MRI studies 

have confirmed the lack of progression of ventricular enlargement during the course of illness (Jaskiw et al., 

1994, Illowsky et al., 1988; Degreef et al., 1991, De Lisi et al., 1992). There were, however, investigations 

that found, in a subset of patients, that ventricular enlargement was progressive (Davis et al., 1998; Vita et al., 

1991). These inconsistent findings may indicate that, in a subset of schizophrenic patients, the pathogenesis 

may be attributed to factors other than neurodevelopmental insults. 

 

Cytoarchitechtural abnormalities have also been reported in schizophrenia (section 1.1.5.2.2). These include 

neuronal disarray, heterotopias and neuronal malpositioning which may be a consequence of disrupted 

neuronal proliferation or migration during the gestational period. These findings have been supported by 

reduction of the reelin protein by up to 50%. This protein is an extracellular matrix glycoprotein for which one 

function is to act as a “stop signal” for neuronal migration during development (D’Arcangelo and Curran, 

1998). Reelin is one of the main focuses of the present study and will therefore be discussed in detail in 

section 1.4.9.1.1. 

 

Other studies have shown low neutrophil levels and abnormalities in synaptic, dendritic, axonal and white 

matter tract organisation (Lin et al., 1999). Furthermore, the abnormalities in glutamatergic neurotransmission 

are consistent with impaired connectivity between various brain regions including the mid-brain, nucleus 

acumbens, temporo-limbic and prefrontal cortices (Ohrmann et al., 2005, Ghose et al., 2004; Dracheva et al., 

2004; Miyamoto et al., 2003).  

 

In summary, several lines of clinical and neuropathological evidence suggest a neurodevelopmental 

component to the aetiology of schizophrenia. While there is substantial evidence for a role for an early 

neuropathological insult, occurring during the second trimester of gestation, there has been no evidence that 

rules out factors operating later, during infancy or adolescence, as other possible causes of the disease 

(Marenco and Weinberger, 2000). The neurodevelopmental hypothesis remains one of the most widely 

accepted and best supported theories regarding the pathogenesis of schizophrenia and has opened the door to 

investigating a variety of novel potential candidate genes for schizophrenia pathogenesis.  
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1.1.5.4. Neurochemical pathology 

1.1.5.4.1. Dopamine 

Traditionally, the dysregulation of the dopamine system has been the dominant neurochemical hypothesis of 

schizophrenia (Di Forti et al., 2007). The role of the dopamine system has been suggested by the antipsychotic 

effects of dopamine receptor 3 (DRD3) receptor blockers (Carlsson and Lindqvist, 1963) and by the psychotic 

symptoms induced by indirect dopamine agonist such as amphetamine and cocaine (Randrup and Munkvad, 

1987). Recently, the over-activity of dopaminergic neurons in the limbic areas of the brain has also been 

implicated in the development of positive symptoms, while under-activity in the frontal cortex is thought to be 

responsible for negative symptoms and cognitive impairments in schizophrenia (Kerwin, 2000).  

 

Evidence from positron-emission tomography (PET) studies has shown an increase in dopaminergic 

transmission in schizophrenics (Laruelle et al., 1998, Breier et al., 1997). Elkashef and colleagues further 

showed abnormal dopamine metabolism in drug-free schizophrenia patients using PET (Elkashef et al., 2000). 

Increased dopamine receptor densities have also been reported in schizophrenics. For example, both post-

mortem and functional MRI studies showed evidence of an increase in the number of dopamine receptor 2 

(DRD2) in the brains of schizophrenic patients compared to control individuals (Kestler et al., 2001). Other 

dopamine transmission abnormalities reported in schizophrenia include increased amphetamine-induced 

release of dopamine in the striatum, elevated DOPA-decarboxylase activity and increased DRD2 density in the 

striatum (Laruelle et al., 1996; Breier et al., 1997; Abi-Dargham et al., 2000; Ginovart et al., 1999).  

 

1.1.5.4.2. Serotonin 

The idea that the serotonergic system may be involved in schizophrenia has long been advocated based on 

pharmacological evidence. The serotonergic system is a major therapeutic target for several of the newer 

antipsychotic agents and, furthermore, the hallucinogen, lysergic acid diethylamide (LSD), is a serotonin (5-

hydroxy-tryptophan [5-HT]) agonist (Harrison, 1999). Moreover, the 5-HT2A receptor (5-HT2A) density was 

found to be significantly reduced in post-mortem brain sections of schizophrenic patients without any prior 

drug treatment (Mita et al., 1986). Serotonin dysfunction has also been implicated in the pathogenesis of 

impulsive behaviour such as violence and suicide. Furthermore, there is a constant association between 

decreased levels of 5-hydroxy-indoleacetic acid (5HIAA), a serotonin metabolite, and suicidal behaviour in 

schizophrenia (Åsberg, 1997).  

 

Many neurochemical studies have provided further evidence for the connection between serotonin system 

dyregulation and schizophrenia pathogenesis. The 5-HT2A receptor expression in the frontal cortex of 

schizophrenia patients was reported to be lowered compared to control subjects (Harrison, 1999). In addition, 

an elevated number of 5-HT1A receptors have been reported in the schizophrenic frontal cortex (Burnet et al., 

1997).  
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1.1.5.4.3. Glutamate 

Glutamate is the primary excitatory neurotransmitter and binds two main types of receptors, the ionotropic and 

metabotropic (Newcomer and Krystal, 2001). The excitatory effect of glutamate is mediated by three 

ionotropic receptors ie. the N-methyl-D-aspartate (NMDA), the amino-hydroxy-5-methyl-4-isoxazole 

(AMPA) and the kainic acid receptors (Newcomer and Krystal, 2001). The glutamatergic dysfunction 

hypothesis of schizophrenia was born out of observations that phencyclidine (PCP) and ketamine, both potent 

non-competitive antagonists of the NMDA subtype of glutamate receptor, induce schizophrenia-like 

symptoms in healthy individuals and worsen some symptoms in schizophrenic patients (Javitt and Zukin, 

1991; Coyle, 1996; Jentsch and Roth, 1999). Therefore, decreased NMDA receptor (NMDA-R) function may 

play a crucial role in schizophrenia pathogenesis (Stahl, 2007). Moreover, post-mortem expression studies of 

schizophrenics indicate abnormalities in the pre- and pos-synaptic glutamatergic indices, which include 

decreased expression of non-NMDA-R in the temporal cortex and hippocampus, increased cortical expression 

of some NMDA receptor subunits, increased glutamate reuptake in frontal cortex and decreased cortical 

glutamate release (Miyamoto et al., 2003).  

 

NMDA-Rs play critical roles in excitatory synaptic transmission and plasticity in the CNS. These receptors 

exhibit an array of unique features, which include voltage-block by extracellular Mg2+, a high permeability to 

Ca2+ and unusually slow “activation/deactivation” kinetics, as well as sensitivity to a variety of endogenous 

modulators present in the vicinity of the synapse (Martucci et al., 2003). Functional characteristics of NMDA-

Rs are determined by their subunit composition. To date, three distinct NMDA-R subunits have been 

identified: the NR1 subunit that is ubiquitously expressed, a family of four distinct NR2 subunits (A, B, C and 

D) and two NR3 subunits (Moriyoshi et al., 1991; Sugihara et al., 1992; Das et al., 1998; Hollmann et al., 

1999). 

 

The involvement of glutamate in schizophrenia is in keeping with the dopamine hypothesis because of the 

anatomical and functional interrelationship between these two systems. There are reciprocal connections 

between the fore-brain dopamine connections and systems that use glutamate (Walker et al., 2004). 

Morphological studies have shown that dopamine terminals can be in close apposition to glutamate terminals 

in the prefrontal cortex (PFC) (Goldman-Rakic et al., 1999). This observation led to the suggestion of local 

modulation of dopamine release by glutamate. Several in vivo studies have supported this theory by showing 

that the local stimulation and blockade of glutamate ionotropic receptors change the basal and stimulated 

levels of dopamine release (Feenstra et al., 1995, 2002; Jadema and Moghaddam, 1996; Takahata and 

Moghaddam, 1998; Wu et al., 2002; Lorrain et al., 2003). Del Arco and Mora (2001) showed that stimulation 

of NMDA receptors produces a dose-dependant release of dopamine and dopamine metabolites 3,4-

dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), an effect that was blocked by specific 

NMDA receptor antagonists (del Arco and Mora, 2001). 

 

Thus, dysregulation in the glutamatergic system would be expected to alter neurotransmission in the 

dopaminergic system (Walker et al., 2004). It has therefore been suggested that inhibition of NMDA-Rs would 
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influence dopamine neurotransmission (Miyamoto et al., 2003; Zheng et al , 1999). Indeed, positron emission 

topography (PET) studies of dopamine receptor occupancy, after acute administration of the NMDA-R 

antagonist ketamine, shows an increase in dopamine release from the striatum, while chronic administration of 

ketamine elicits hypoactivity of dopamine in the prefrontal cortex (Breier et al., 1998; Smith et al., 1998; 

Jentsch and Roth, 1999). 

 

Given the possible role of glutamate dysregulation in schizophrenia, the expression of glutamate receptors has 

been studied in the post-mortem schizophrenic brain. Results of these studies have not been entirely consistent 

from study to study; however one consistent feature appears to be the under-expression of the NR1 subunit of 

NMDA-R in the cortex of schizophrenics (Meador-Woodruff and Healy, 2000).  

 

Recently, the glutamatergic dysfunction hypothesis of schizophrenia was expanded to include metabotropic 

glutamate receptors. Moghaddam and Adams (1998) showed that PCP induced psychosis in rats is reversed by 

agonists specific to the metabotropic glutamate receptors group II, mGlu2 and mGlu3 (Moghaddam and 

Adams, 1998). This implies that mGlu2 and mGlu3 may be involved in the aetiology of schizophrenia. 

 

1.1.5.4.4. GABA 

Alterations in γ-aminobuteric acid (GABA), the major inhibitory neurotransmitter in the CNS have indirectly 

been implicated in schizophrenia pathogenesis. Several studies, utilising either immunohistochemical (IHC) or 

mRNA expression analysis, have produced convincing evidence for reduced expression of pre-synaptic GABA 

markers in subpopulations of GABAergic interneurons in the frontal cortex of schizophrenic patients (Benes 

and Berretta, 2001; Lewis et al., 2003; Roberts, 2007). For example, mRNA levels of the 67kDA isoform of 

glutamate decarboxylase (GAD67), the rate-limiting enzyme responsible for the conversion of glutamate to 

GABA, have been shown to be decreased in the prefrontal cortex and hippocampus of schizophrenic patients 

in several studies (Akbarain et al., 1995; Volk et al., 2000) . 

 

γ-Aminobuteric acid has also been shown to facilitate the release of dopamine in the PFC. When the 

concentrations of GABAergic compounds are low and dopaminergic cells are at a state of rest, dopamine 

levels are increased, while under conditions of high GABA concentrations and active dopaminergic cells, 

dopamine levels are decreased (Cheramy et al., 1977). Therefore, GABA has a modulatory effect, reducing 

cortical dopamine when levels are high and increasing dopamine levels when concentrations are low (Wassef 

et al., 2003). Therefore, the involvement of GABA in schizophrenia is also in line with the dopamine 

hypothesis. 

 

Two distinct receptor subtypes that GABA interacts with to achieve its inhibitory effects have been identified. 

These are the ionotropic GABAA and GABAC receptors that are involved with fast inhibitory synaptic 

transmission and the metabotropic GABAB receptors that are involved in slow, prolonged synaptic 

transmission (Bowery, 2000).The GABAA receptors are comprised of different combinations of α, β, γ, ε and π 

subunits with the α1/β2/γ2–containing heteropentamer being the dominant subtype in the mammalian brain 
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(Benke et al., 1994; Nusser et al., 1998). The GABAB receptors are highly expressed in the brain where they 

comprise a heterodimer of two related subunits, GABAB1 and GABAB2 (Bowery, 2000). 

 

Having set the scene for the role, and types, of genes that may be involved in schizophrenia development, we 

can now consider similarities and differences between schizophrenia and obsessive compulsive disorder, the 

disorder under investigation in this study. 

 

1.2. OBSESSIVE-COMPULSIVE DISORDER 

Obsessive-compulsive disorder has been described as a disabling psychiatric disorder (Murray and Lopez., 

1996) which significantly impairs the sufferer’s social functioning. It is characterised by recurrent obsessions 

or compulsions that are time consuming, ie., take more than one hour per day, or are severe enough to cause 

marked distress or significant social and work impairment (Julien et al., 2007).  

 

Obsessions are persistent ideas, thoughts, impulses or images that are experienced as intrusive and 

inappropriate and that cause marked anxiety and distress. The most common obsessions are: i) repeated 

thoughts about contamination, eg., being contaminated by shaking hands with another person, ii) repeated 

doubts, eg., wondering whether one has performed some act, such as having hurt someone in a traffic accident 

or not having turned off the stove at home, iii) a need to have things arranged in a particular order, eg., intense 

distress when objects are not ordered or symmetrical, iv) aggressive impulses, eg., recurrent thoughts of 

hurting one’s own child and v) sexual imagery, eg., a recurrent pornographic thought. 

 

Compulsions are repetitive behaviours or mental acts, which a sufferer is driven to perform to reduce or 

prevent anxiety and distress often caused by obsessions. Adults suffering from OCD, at some point during 

their illness, recognise that their obsessions or compulsions are excessive or unreasonable. This, however, does 

not apply to children, since they lack significant cognitive awareness to make this judgement. 

 

A number of clinical syndromes and OCD overlap in terms of phenomenological factors, clinical course and 

treatment. These disorders form a distinct category of inter-related disorders referred to as obsessive-

compulsive spectrum disorders and that may share a common pathophysiologic and genetic basis with OCD 

(Hollander et al., 1996; Rasmussen, 1994; McElroy et al.,  1994), hence they will be discussed below. 

 

1.2.1. Obsessive-compulsive spectrum disorders 

Obsessive-compulsive spectrum disorders include impulse control disorders (eg., trichotillomania [TTM], 

pathological gambling and compulsive buying), somatoform disorders (eg., body dimorphic disorder), eating 

disorders (eg., anorexia and binge eating), compulsive sexual disorders, Tourette’s syndrome (TS) and other 

movement disorders (reviewed by Ravindran, 1999; Dell’Osso et al., 2007). 
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The phenomenological similarities between OCD and obsessive-compulsive spectrum disorders have been 

well documented (McElroy et al., 1994; Hollander and Benzaquen, 1997). These similarities include the 

nature and content of thoughts, the associated distress caused by these thoughts, the frequent self-evaluation 

and the demand for reassurance (reviewed by Rivindran, 1999). 

 

Obsessive-compulsive spectrum disorders, like OCD, often have onset in childhood or early adult life. 

Comorbidity data is perhaps the strongest evidence for a link between OCD and obsessive-compulsive 

spectrum disorders (Barsky et al., 1986; Hollander, 1993; Rubenstein et al., 1993) and there have been reports 

of high rates of obsessive-compulsive spectrum disorders in patients with OCD (Rasmussen and Tsuang, 

1987; Tamburrino et al., 1994). Further support for this comes from the reports of high rates of OCD in family 

members of probands with obsessive-compulsive spectrum disorders (Pauls et al., 1995). 

 

The pathophysiology of obsessive-compulsive spectrum disorders still remains unclear, and it has been 

proposed that they form an overlapping, but heterogeneous group, of disorders with multifactorial aetiology 

(Rasmussen, 1994). 

 

1.2.2. Epidemiology of OCD 

A number of studies have attempted to determine the prevalence of OCD. These studies can be divided into 

the earlier studies in which diagnosis of OCD was solely based on clinical judgement and the modern studies, 

in which structured or semi-structured instruments were used in the diagnosis. Early studies revealed that 

approximately 0.3-1% of the population had OCD (Roth and Luton, 1942; Brunetti, 1977). The more recent 

surveys can be divided into three groups: the 14 worldwide studies based on the Present State Examination 

(PSE) (reviewed by Wing et al., 1974); studies based on the Diagnostic Interview Schedule (DIS), of which 

the most significant are the Epidemiological Catchments Area (ECA) surveys carried out in the U.S in the 

1980’s (Robbins and Reiger., 1991) and the British National Survey of Psychiatric Morbidity (Jenkins et al., 

1997, Meltzer et al., 1995). Overall results from these epidemiological surveys suggest that OCD is prevalent 

in approximately 2-3% of the population, which makes it more common than schizophrenia (1%) and less 

prevalent than depressive disorders (Karno et al., 1988) 

1.2.3 Pathogenesis 

Although the pathogenesis of OCD remains largely unknown, several contributors have been put forward. 

These include 1) genetic factors, 2) dysfunction of certain brain regions and 3) immunological factors. The 

following section describes each of these three models. 

 

1.2.3.1. Genetic aetiology of OCD 

1.2.3.1.1. Family Studies 

Several investigations in the past have indicated that OCD is familial. Several twin studies have found that 

concordance for OCD is substantially greater in MZ twins (53%-87%) than DZ twins (22%-47%) (Rasmussen 

and Tsuang, 1986).  
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Some studies found rates of OCD as high as 35% (Lenane et al., 1990) among first-degree relatives of OCD 

probands, whereas other studies found no increase in rates (Rosenberg 1967; Insel et al., 1983). There are 

many reasons for these discordant results, including differences in diagnostic criteria and methods of 

assessment. Most of the earlier studies did not directly interview relatives of OCD sufferers, while others 

failed to include control groups.  

 

Since the early 1990’s, seven studies addressed the shortcomings of the earlier studies (Lenane et al., 1990; 

Riddle et al., 1990, Bellodi et al., 1992; Black et al., 1992; Leonard et al., 1992; Pauls et al., 1995; Nestadt et 

al., 2000). Findings from these studies estimated the risk for OCD in first degree relatives of OCD probands at 

between 10.3% to 35.9%. In the most recent reports (Pauls et al., 1995; Nestadt et al., 2000), the evidence for 

the familial nature of OCD was considered so strong that the authors speculated on the presence of a gene of 

major effect which contributes to the pathogenesis of OCD. Hence, the evidence for a genetic component to 

the etiology of OCD, is at least as strong as that existing for schizophrenia. 

 

1.2.3.1.2. Mode of inheritance 

The mode of inheritance of OCD has been investigated by means of segregation analysis in four independent 

studies (Nicolini et al., 1993; Cavallini et al., 2000; Nestadt et al., 2000). Two of these studies (Nicolini et al., 

1993; Cavallini et al., 2000) suggested a gene of major effect, but failed to show any distinct mode of 

inheritance. The study by Nestadt et al., (2000), investigating 80 case families and 73 control families, showed 

strong evidence supporting a Mendelian dominant or codominant mode of inheritance.  

 

Additional support for the involvement of specific genes in OCD came from twin and family studies of TS. 

Tourette’s Syndrome is a disorder that typically develops in childhood and is characterised by tics manifested 

as involuntary movements or vocalisations. Just like compulsions, these tics tend to be exacerbated in times of 

stress and can be suppressed for a short while, during which time a patient’s anxiety escalates. Many patients 

with TS experience concurrent symptoms of OCD. Also, there is a disproportionately higher incidence of 

OCD in the family members of TS sufferers (Lenane et al., 1990). Similarly, OCD patients are more likely to 

suffer from tics or have family members who have tics than control individuals (Pittman, 1989)., As TS 

appears to have a substantial genetic basis (Pauls, 1992, Simonic et al., 1998), the higher rate of OCD among 

the relatives of TS probands suggests that certain forms of OCD might be genetically related to TS.  

 

1.2.3.2. Neuropathology 

The neuropathological model of OCD pathogenesis holds that OCD is the consequence of malfunctioning of 

particular regions of the brain. Currently, there are several brain regions that are prime candidates as possible 

sites of dysfunction in OCD (Fig 1.4). 

 

1.2.3.2.1. Basal Ganglia 

The basal ganglia are subcortical nuclei that comprise the extrapyramidal system and are closely associated 

with the cortical and limbic structures. They consist of the caudate nucleus, putamen and the globus pallidus 
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(together, these three make up the corpus striatum) and the amygdaloid complex. Historically, the basal ganlia 

have been attributed a role in the modulation of corticospinal outflow or movement. 

 

There is some evidence linking basal ganglia dysfunction with TS (Devinsky, 1983) as well as Sydenham’s 

chorea (SC) (Swedo et al., 1989), a disease which is closely related to OCD. Patients with SC, which is a 

movement disorder that afflicts up to 20% of patients who have suffered from rheumatic fever (RF), have a 

higher prevalence of OCD symptoms than individuals with RF without SC (Swedo et al , 1989). 

 

The basal ganglia are implicated in OCD beyond the above mentioned mutual relationship between movement 

disorders. The basal ganglia nuclei participate in cognitive aspects of behaviour; whereas the motor functions 

of the basal ganglia are carried out predominantly by the putamen, the cognitive functions are thought to be 

carried out by the caudate nucleus (Cote et al , 1995) (Fig 1.4a). Thus, the basal ganglia are involved in 

thought, and abnormalities in these structures could result in obsessions and repetitive patterns of behaviour.  

Computerized tomography has suggested structural differences in the brains of OCD patients and control 

individuals. As in schizophrenia, ventricle/brain ratios have been shown to be enlarged in OCD patients 

(Behar, et al , 1984), and caudate volumes were found to be reduced in OCD patients as compared to normal 

control individuals (Luxenberg et al , 1988). 

1.2.3.2.2. Frontal Cortex 

The frontal lobes are associated with neuropsychological functions of programming, regulating, controlling 

and verifying behaviour. Therefore, frontal lobe pathology correlates with inflexibility, decreased response 

inhibition, preservation and stereotypy, characteristics which are reminiscent of OCD symptoms (Otto, 1992). 

Indeed, frontal lobe dysfunction has been implicated in some neuropsychological studies of OCD (Flor-Henry 

et al , 1985; Behar et al., 1984; Malloy et al., 1989). 

 

Positron emission tomography studies have revealed increased metabolic activity of the frontal cortex in the 

brains of OCD patients compared to control individuals (Fig 1.4b) Positron emission tomography analysis of 

ten OCD subjects and ten controls demonstrated increased metabolism in the orbital gyrus and orbital 

gyrus/ipsilateral hemispheric ratio bilaterally in the patient group (Baxter, 1992); these findings have been 

replicated (Nordahl et al., 1989). Similarly, PET investigation of 18 adult childhood-onset OCD subjects, 

versus control individuals, revealed increased metabolism of the bilateral prefrontal areas and left orbitofrontal 

cortex (Swedo et al., 1989). Furthermore, in two separate case reports, OCD patients were found to have local 

lesions involving the caudate and putamen as determined by MRI (Weilburg et al , 1989; Williams et al , 

1988). 
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Fig 1.4: Brain regions involved in OCD pathogenesis. A: The structure of the basal ganglia showing the caudate 
nucleus, which is responsible for cognitive functions, the globus pallidus, the thalamus and the putamen, which is 
responsible for motor function (taken from http://www.colorado.edu). B: PET scan of a control individual's brain (left) 
and an OCD patient’s brain (right). These scans show an increased frontal cortical metabolism in OCD patient compared 
to the control individual (taken from www.ncbi.nih.gov/publicat/ocdbrain.htm).  
 

 

Animal models of OCD include bilateral hippocampectomised rats that display repetitive behaviour (discussed 

in more detail in section 1.4.9.2), invariability, enhanced avoidance and excessive behaviour (Pitman, 1989). 

One model provides data suggesting that the  septohippocampus interacts with cortical outputs to compare 

sensory information with anticipated conditions, and then modulates behaviour accordingly. This 

‘comparative’ pathway responds to novel or threatening stimuli with behavioural inhibition, enhanced 

attention and arousal. So, the repetitive behaviour seen in OCD may be due to a malfunction in the 

septohippocampus. 

 

A 

B 
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The cingulum is closely related to the septohippocampal system and the thalamocortical tracts. Positron 

emission tomography analysis of OCD subjects has shown increased metabolic activity bilaterally in the 

anterior cingulated cortex (Swedo et al., 1989). Also, it has been shown that cingulate lesions ameliorate OCD 

symptoms in some patients (Jenike et al., 1991; Kelly et al., 1973; Martuza et al., 1990) and may act by 

disrupting the thalamocortical tract, as seen in leucotomy1 (Rees, 1973). It has, therefore, been proposed that 

cingulum hyperactivity may play a role in compulsive behaviour. 

 

The temporal lobes are thought to be involved in OCD because of the clinical similarities between OCD and 

temporal lobe epilepsy. Complex partial seizures are characterised by behavioural manifestations which 

include “forced thinking” that is practically indistinguishable from obsessions experienced in OCD (Bear, 

1985). In addition to this, several reports have demonstrated that temporal lobe electroencephalogram (EEG) 

abnormalities co-exists with OCD (Jenike, 1984).  

 

1.2.3.2.4. OCD functional circuit 

Functional imaging studies have suggested that in OCD patients, there is abnormal activity in the orbito-

frontal cortex, the anterior cingulate/caudal medial prefrontal cortex and the caudate nucleus (Saxenna et al., 

1998). These studies show an increase in metabolic activity at rest in the cortico-basal ganglia network (OCD-

circuit) of OCD patients compared to control individuals, an accentuation during provocation of symptoms 

and a decrease following successful treatment (Saxen et al., 1998; Graybiel and Rauch, 2000). Rauch and 

colleagues (1997), using PET studies, observed brain activation patterns in OCD patients and compared them 

to those of control individuals. In their investigation, they demonstrated that OCD patients did not activate the 

left or right inferior striatum in response to learning tasks as did control individuals (Rauch et al., 1997). 

Obsessive-compulsive patients, instead, appeared to access the medial temporal regions of the brain, regions of 

the brain that are more associated with conscious and emotional memory (Rauch et al., 1997).  

 

It is hypothesised that, if the cortico-striatal regions are dysfunctional in OCD patients, these patients may 

access conscious mechanisms to accomplish tasks that would come automatically to the unimpaired brain. 

Consequently, inappropriate thoughts repeatedly intrude and the conscious thought process must attempt to 

suppress them, along with the accompanying behaviour and anxiety (Blier, 2000). 

 

In summary, by using a variety of brain scanning techniques, researchers have shown anatomical and 

metabolic variations in different brain regions of OCD patients compared to control individuals, thereby 

implicating these regions in OCD pathogenesis. Furthermore, investigations have identified a functional brain 

circuit, that encompass these brain regions, which may be involved in the pathogenesis of OCD. Interestingly, 

several of these regions (eg thalamus, basal ganglia and the amygdala complex) have also beein implicated in 

the pathogenesis of schizophrenia (Kwon et al., 2003).  Therefore, schizophrenia-implicated genes that are 

expressed in regions of the brain that overlap with the OCD functional circuit, may be particularly good 

candidates for OCD susceptibility. 

                                                
1 surgical interruption of nerve tracts to and from the frontal lobe of the brain 
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1.2.3.3. Neurochemical pathology 

The neurochemical model of pathology of OCD hypothesises that dysregulation in neurotransmitter pathways 

may involved in its pathogenesis.  

 

1.2.3.3.1. Serotonin 

The notion of the involvement of the serotonergic system in the pathogenesis of OCD stems from 

pharmacological treatment studies. For over a quarter of a century, clomipramine, a potent 5-HT reuptake 

inhibitor, has been effectively used as a first-line drug against OCD. Other selective serotonin reuptake 

inhibitors (SSRI) such as fluoxetine, sertraline, fluvoxamine, cepramil and paroxetine have also been shown to 

be effective in the treatment of OCD and to exert their action by blocking the reuptake of 5-HT (Stahl, 1997; 

Bloom and Kempfer, 1995). 

 

The suggestion that the efficacy of SSRI treatment of OCD is due to blockade of serotonin reuptake is further 

supported by studies showing a strong positive correlation between improvement in obsessive-compulsive 

symptoms during clomipramine treatment and drug-induced decreases in the cerebro-spinal fluid 5HIAA and 

platelet 5-HT concentrations (Baumgarten and Grozdanovic, 1998).  

 

Further evidence for the involvement of 5-HT in OCD comes from studies conducted by Zohar and colleagues 

(1987, 1988). Their investigations showed that obsessive-compulsive symptoms could be transiently 

exacerbated in some OCD sufferers by orally administering the 5-HT agonist (m-CCP) and that this effect 

could be blocked by long-term treatment with clomipramine (Zohar et al., 1987, 1988). 

 

The evidence presented above builds a strong case for the involvement of the serotonergic system in the 

pathogenesis of OCD. However, serotonergic dysfunction alone cannot account for range of phenotypes 

observed in OCD. Therefore, other neurotransmitter systems may be implicated, and investigations into such 

systems have yielded some interesting results. 

 

1.2.3.3.2. Dopamine 

As for schizophrenia, neuroanatomical and pharmacological data have provided substantial evidence for the 

involvement of dopaminergic neurotransmission in the pathogenesis of OCD. Tourette’s Syndrome has been 

shown to be mediated through the dopaminergic system (Pauls et al., 1986, 1991; Pitman et al., 1987). 

Furthermore, 40%-60% of OCD patients do not respond to SSRI monotherapy; in some of them, considerable 

improvements in symptoms have been observed following SSRI augmentation with dopamine antagonists 

(McDougle et al., 1994, 2000). In addition, the emergence of obsessive-compulsive symptoms during 

treatment of schizophrenia patients with clozapine, a DRD4 antagonist, provides further evidence for the 

involvement of dopamine dysregulation in the aetiology of OCD (Baker et al., 1992). Dopamine agonists have 

also been shown, in animal models, to induce stereotypies and repetitive behaviour that are reminiscent of 

OCD symptomology (Fog et al., 1972).  
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Furthermore, some clinical evidence points to the possible role of dopamine system genes in the development 

of OCD, viz., insults to basal ganglia structures of the brain, an area intimately linked to rich dopamine 

innervations, have been associated with the emergence of obsessive-compulsive behaviour (Carmin et al., 

2002).  

 

Based on all the above-mentioned evidence, in can be concluded that genes encoding for dopamine receptors 

or components of the dopaminergic system may be considered plausible candidate genes for OCD 

pathogenesis. 

 

1.2.3.3.3. Glutamate and GABA 

The possible roles of glutamate and GABA signalling in the aetiology of OCD have also been investigated 

(Cortese and Phan, 2007). Evidence for the involvement of GABA in OCD has been suggested mainly because 

of the observation that the augmentation of SSRI treatment of OCD with Gabapentin, a synthetic GABA 

analog, has been shown to be beneficial in managing OCD in clinical trials (Cora-Locatelli et al., 1998).  

 

Furthermore, McGrath and colleagues (2000) demonstrated, using transgenic mice, that the TS-OCD 

phenotype may be mediated by cortico-limbic glutamate signalling (McGrath et al., 2000). These investigators 

created a transgenic mouse model (D1CT-7line) of comorbid OCD and TS by expressing a neuropotentiating 

cholera toxin (CT) transgene in a subset of dopamine D1-expressing (D1+) neurons thought to be involved in 

the induction of cortical and amygdalar receptor binding (Campbell et al., 1999), to evaluate the role of 

glutamate in the TS-OCD. To this end, they tested the effect of glutamate receptor-binding drugs on the 

behaviour of the D1CT-7 mice. Their results showed that MK-801, a non-competitive NMDA receptor agonist 

that indirectly stimulates cortical-limbic glutamate output, aggravated the transgene-dependent abnormal 

behaviour (repetitive climing and leaping ) of the D1CT-7 mice (McGrath et al., 2000).  

 

1.2.4. Immunological aetiology of OCD 

Immune-based theories of OCD pathogenesis stem from the observed similarities between its symptoms and 

those of SC. As mentioned previously, SC is a disorder developed in a subset of patients with RF, and is 

thought to be an immunological illness in which infection with group A β-haemolytic streptococci (GABHS) 

induces the production of antibodies that cross-react with neuronal proteins (Taranta et al., 1956). 

 

Swedo et al., (1989) showed that patients with SC might show obsessive-compulsive symptoms in up to 75% 

and clinical OCD in 33% of cases. Furthermore, a symptom pattern of sudden dramatic onset and slow waxing 

and waning over a period can be found in SC and a subgroup of OCD (Leonard, 1993; Swedo et al., 1989; 

Swedo et al., 1994). This symptom pattern was described in four paediatric patients by Allen et al., 1995. 

These observations provided a diagnostic criterion for a subgroup of patients called paediatric, infection-

triggered, autoimmune neuropsychiatric disorders (PITANDs) (Allen et al., 1995). Subsequently, many cases 

of paediatric autoimmune neuropsychiatric disorders associated with streptococcal infection have been 

described (PANDAS) (Swedo et al., 1997) The diagnostic criteria of PANDAS include evidence of 
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adventitious movements (eg., mild chorea of motor hyperactivity) (Swedo et al., 1998). The presence of 

abnormal movements (eg., choreiform) has been reported in OCD patients (Hollander et al., 1989), while tic-

like movements have been reported in streptococcal infection and SC (Kiessling et al., 1993), further 

emphasising the link between OCD and these immune-derived conditions. 

 

The involvement of the basal ganglia in both OCD and SC has been well documented (Berthier et al., 1996, 

Giedd et al., 1995; Hebebrand et al., 1993; Heye et al., 1993). In a recent study, basal ganglia enlargements 

were found among patients with PANDAS (Giedd et al., 2000). This result was found to be similar to a report 

of basal ganglia enlargements in patients with SC (Giedd et al., 1995). Taken together, these studies are 

consistent with the hypothesis of cross-reactive antibody-mediated inflammation of post-streptococcal OCD or 

tics in some patients. These studies, however, did not investigate a possible relationship between basal ganglia 

size and symptom severity, which may indicate that basal ganglia size and pathophysiology are not directly 

related. 

 

1.3. OCD-SCHIZOPHRENIA OVERLAP 

Although OCD and schizophrenia exist as two separate clinical entities, patients having comorbidities of these 

two disorders are frequently seen in clinical practice. The occurrence of obsessive-compulsive symptoms in 

schizophrenia patients had been reported well before the introduction of the DSM (Jahrreis, 1926; Gorden, 

1926, Parkin, 1966; Bernie and Litman, 1978). The majority of recent reports on schizophrenia-OCD 

comorbidity utilised rigorous Diagnostic and Statistical Manual on Mental Disorders Third edition Revised 

(DSM-III-R)/DSM-IV diagnostic criteria for schizophrenia and OCD (Poyurovsky et al., 2004). Several 

investigations have reported on rates of OCS and OCD among patients with DSM diagnoses of schizophrenia 

ranging from 3.8% (Craig et al., 2002) to 45% (Lysaker et al., 2000) (see Table 1.2. for summary). 

 

It has been suggested that the co-expression of these symptoms may reflect an overlap of the structural and 

functional brain abnormalities associated with schizophrenia and OCD. Indeed, based on structural and 

functional neuro-imaging studies, abnormalities in the frontal striatal circuits have been identified in both 

disorders (Cummings et al., 1993). Other brain structures implicated in the pathophysiology of both disorders 

include the thalamus, basal ganglia and the amygdala complex (Kwon et al., 2003). It should, however, be 

noted that although similar brain regions have been identified as being functionally and structurally abnormal 

in both disorders, the abnormalities are not always the same, but are often at opposite ends of the functional 

spectrum. For example, in OCD, hyper-functionality of the frontal-striatal system has been implicated (Baxter 

et al., 1988), whereas in schizophrenia, hypo-functionality has been implicated (Kim et al., 2000). Also, 

studies have shown that in OCD (Kim et al., 2001) the thalamus is enlarged, while in schizophrenia a decrease 

in thalamic volume has been reported (Andreasen et al., 1994). 
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Table 1.2. Rates of obsessive-compulsive symptoms/obsessive-compulsive disorder in schizophrenia patients  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abbreviations AIMS, Abnormal Involuntary Movement Scale; BAS, Barnes akathisia scale; CGI Clinical Global Impression scale; DSM-III-R, Diagnostic and Statistical Manual of Mental 
Disorders (3rd edition, Revised) DSM-IV, Diagnostic and Statistical Manual of Mental Disorders (4th edition); ESRS, Extrapyramidal Symptom Rating Scale; GAF, General Assessment of 
Functioning; OCD, Obsessive-compulsive disorder; OCS, Obsessive-Compulsive Symptoms; PANNS, Positive and negative syndrome scale for schizophrenia); SANS, Scale for the 
Assessment of Negative Symptoms; SAPS, Scales for the Assessment of Positive symptoms; SAS, Simpson-Angus Scale (Simpson, and; Angus); SCID-I/P, Structured Clinical Interview for 
Axis I Disorders - Patient Version; SCID-II/P, Structured Clinical Interview for Axis II Disorders - Patient Version; Y-BOCS, Yale-Brown Obsessive-Compulsive Symptom Severity Scale.  
Adapted from Poyurovsky et al., 2004). 

Study Study Sample OCD/OCS rates in 
Schizophrenia 

Diagnostic criteria 

Eisen et al., 1997 Outpatients: Schizophrenia/ 
schizoaffective disorder 

OCD 6/77 (7.8%) DSM-IV for OCD and schizophrenia; SCID-P 

Porto et al., 1997 Outpatients: Schizophrenia/ 
schizoaffective disorder 

OCD 13/50 (26%)OCS  
10/50 (20%) 

Structured clinical interview of patients’ therapists; DSM-III-R 
for schizophrenia,; operational criteria fro OCD 

Poyurovsky et al., 1998 Inpatients: 1st episode schizophrenia/ 
schizophreniform disorder 

OCD 7/50 (14%) DSM-IV for OCD and schizophrenia; SCID-P;SANS; ;CGI, 
SAPS; Y-BOCS 

Dominquez et al., 1999 Outpatients: Schizophrenia/ 
schizoaffective disorder 

OCS 17/52 (32.7%) Chart review, self-rated MOCI for OCS 

Tibbo et al.,   2000 Outpatients OCD 13/52 (25%) SCID-P; DSM-IV for schizophrenia and OCD; PANSS, Y-
BOCS; GAF; ESRS 

Lysaker et al.,   2000 Outpatients: Schizophrenia/ 
schizoaffective disorder 

OCD 21/46 (45%) Chart review; PANNS; Y_BOCS 

Bermanzohn et a.,l 2000 Outpatients: chronic schizophrenia OCD 11/37 (29.7%) SCID-P; DSM-IV for OCD and schizophrenia; Y-BOCS 
Poyurovsky et a.,l 1999 Inpatients: chronic schizophrenia OCD 16/68 (23.5%) SCID-P; DSM-IV for schizophrenia and OCD; SANS; SAPS; 

AIMS; CGI HDRS; SBS, Y-BOCS; BAS 
Fabisch et al., 2001 Inpatients: acute schizophrenia/ schizo-

affective disorder 
OCS 10% DSM-IV for schizophrenia, operational criteria for OCS; 

PANNS; Y-BOCS 
Craig et al.,  2002 Inpatients: 1st admissions; schizophrenia/ 

schizoaffective disorder 
OCS 73/450 
(16.2%OCD 17/450 
(3.8%) 

SCID-P; DSM-III-R for schizophrenia and OCD 

Ohta et al.,  2003 In- and outpatients OCD 13/71 (18.3%) SCID-P; DSM-IV for schizophrenia and OCD; Y-BOCS; 
PANNS; AIMS; BAS;SAS 

Nechmad et al.,  2003  Inpatients: adolescents OCD 13/50 (26%) SCID-P; DSM-IV for schizophrenia and OCD; Y-BOCS; 
SANS; SAPS; GAF 
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More evidence for a pathological overlap between schizophrenia and OCD comes from retrospective 

pharmacological studies and case reports that suggest that antipsychotic pharmacotherapy may induce OCS or 

exacerbate existing OCS in schizophrenic patients (Eales and Layeni, 1994; Morrison et al., 1998; de Haan et 

al., 1999; Mottard and De la Sablonniere, 1999; Tibbo and Warneke, 1999). However, in two prospective 

longitudinal studies, induction or exacerbation of OCS in schizophrenia patients on antipsychotic medication 

(olanzapine) was not observed (Baker et al., 1996; de Haan et al., 2002). 

 

In summary, OCD/schizophrenia co-morbidity data, overlapping brain regions and structures from structural 

and functional studies, and the possible role of antipsychotic medication in mediating obsessive-compulsive 

symptoms, suggests that these two disorders may share aspects, including genetics, of a pathological pathway. 

It may be further hypothesized that, although some susceptibility genes may be shared, the functional 

characteristics of the actual susceptibility variants may be opposed. This idea is exploited and further 

investigated in the present study of OCD susceptibility genes, and hence a discussion of previously reported 

genetic studies of both schizophrenia and OCD follows. 

 

1.4. THE SEARCH FOR SCHIZOPHRENIA AND OCD SUSCEPTIBILITY GENES. 

The predicted lack of a simple one-to-one relationship between genotype and phenotype in schizophrenia and 

OCD makes identification of genes involved in their pathophysiology quite a daunting task. However, 

traditional genetic approaches have yielded some interesting susceptibility genes (Kim and Kim, 2006; 

Venken and Del-Favero, 2007). The following section will deal with these methods in more detail. 

 

1.4.1. Linkage studies 

1.4.1.1. Parametric linkage analysis 

Linkage analysis is the first step in positional cloning, which is a two-step genetic search strategy to find 

disease-causing genes. This method is used to identify allelic variations of genes or genetic markers of known 

chromosomal location that are co-inherited with a disease phenotype, indicating that the disease-causing gene 

is located in close physical proximity to the marker, in a family setting (reviewed by Keating, 1992). As this 

technique deals with the comparison of genotype and phenotype, an incorrect or inconsistent diagnosis could 

lead to incorrect interpretation of linkage data (reviewed by Keating, 1992).  Computational linkage 

programmes analyse the genotype:phenotype data of the family members and calculate the odds that a DNA 

marker and disease are linked, ie., they are co-inherited more often than would be expected by chance 

(reviewed by Burmeister, 1999). These odds are represented in a logarithmic form known as the logarithm of 

odds (LOD) score. A LOD score of +3, which represents odds of 1000:1, is considered as good evidence for 

linkage, whereas a LOD score of –2, which represents odds of 1:100, means that a locus can effectively be 

excluded (reviewed by Burmeister, 1999).  

 

Locus heterogeneity, which is when the same clinical disease in different families is caused by mutations in 

different genes, is a major complication in linkage mapping. Furthermore, for linkage analysis to be effective, 

the mode of transmission, the definition of phenotype and the degree of penetrance must be known. 
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Unfortunately, for most complex disorders these parameters are not yet known. Furthermore, in the case of 

psychiatric disorders, there is a large degree of phenotypic diversity within a specific diagnosis and the 

definition of the phenotype is not always accurate or consistent between studies. To compensate for these 

shortcomings, linkage analysis can be performed repeatedly with different values for each set of parameters. 

The disadvantage of this approach is that positive results must be viewed conservatively as the number of false 

positive increases with the number of tests performed.  

 

1.4.1.2. Non-parametric linkage analysis 

Parametric linkage analysis is most effective in uncovering variations in genes that cause disorders that follow 

Mendelian patterns of inheritance. It is, however, less effective in identifying genes with small to moderate 

effect on phenotype, which is the most likely scenario in psychiatric disorders.  To avoid some of the problems 

of selecting a specific mode of inheritance for complex disorders, while still employing some of the power of 

linkage analysis, non-parametric linkage analysis methods, which are mode-of-inheritance-independent, were 

developed.  

 

One such method is affected sib pair (ASP) or, more generally, affected pedigree member (APM), analysis. In 

this method, only sib pairs or other pairs of affected relatives are studied. This, however, means that the power 

of observing alleles segregating in large families is lost. The basis underlying this strategy is that, 

independently of whether a disease is dominant, recessive or complex, if there is a disease-causing mutation in 

a specific chromosomal region, two affected members of a family can be expected to share an allele of a 

marker in a gene involved in disease development, or adjacent to it, more often than can be expected by 

chance. With this method, studies can be designed to include very specific diagnoses, eg., only bipolar I 

disorder with exclusion of bipolar II disorder within a family, thus avoiding unclear phenotypes. Also, no 

genetic model of the disease needs to be specified and linkage can be detected in the presence of genetic 

heterogeneity (reviewed by Burmeister 1999). However, the interpretation of levels of significance in these 

types of linkage studies differs from parametric studies. Lander and Krugylak (1995) suggested guidelines for 

the interpretation of lod scores in linkage studies where the mode of transmission is unknown. The lod scores 

in non-parametric analysis depends on the family structure. According to the Lander and Kruglyak guidelines, 

significant versus suggestive linkage for large pedigrees correspond to lod scores of >3.3 or between 3.3 and 

1.9, respectively. For sib-pairs, on the other hand, the corresponding lod scores for significant versus 

suggestive linkage corresponds to 3.6 or 1.2 respectively (Lander and Kruglyak, 1995; Sham, 2002). 

 

Both parametric and non-parametric linkage analyses are based on following the inheritance of marker alleles, 

that are close to a disease-causing mutation on a chromosome, through a family. They are therefore family-

based and rely on a number of affected individuals within a two or multi-generation family. Linkage analysis 

can be conducted with no knowledge of pathophysiology of the disorder and is therefore not necessarily 

hypothesis driven. Linkage analysis can, of course, be applied to the analysis of particular candidate causal 

genes, derived by hypothesis, but the approach is more commonly applied to genome-wide screens, in which 

sets of markers, roughly evenly spaced throughout the genome (or sometimes through a chromosome of 
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interest), are tested for linkage to the disease phenotype. However, linkage analysis in this context rarely pin-

points the disease gene. Instead, a region surrounding the linked marker is implicated as containing a disease-

related gene. When such a chromosomal region is shown to be linked to a phenotype, it may be quite extensive 

and may contain hundreds of genes. Identifying the particular gene thereafter requires an additional round of 

screening with more closely spaced markers in the region(s) of interest and subsequent screening of candidate 

genes within the fine-mapped region for variants associated with the disease. Thus, the ultimate identification 

of the variants that are contributing to the disease phenotype may be laborious and resource intensive 

(reviewed by Malhotra and Goldman, 1999). 

 

1.4.2. Association studies 

In contrast to linkage analysis, association studies typically allow the identification of susceptibility genes by 

using knowledge of the disease pathogenesis. These studies rely on the hypotheses of the molecular causes of 

the disorder being investigated and, unlike linkage analysis, are not necessarily family-based. In association 

studies, an individual is the basic unit of analysis and no knowledge of the genetic mode of inheritance is 

needed. Therefore, these studies are well-suited to investigating genetic influences in complex disorders. 

 

Genetic case-control association studies compare the frequency of alternative polymorphic forms (alleles) of a 

specific candidate gene within a patient group, with that of a control group, with statistical support provided. 

The generation of a statistically significant difference between allele frequencies and genotype distribution in 

patient and control groups suggests either a causative role for a functional polymorphism tested or the 

presence of another functional variant in the same gene, or in a genetically closely-linked one. Since 

psychiatric disorders are common, and it is assumed that multiple genes play a role in the development of 

these disorders, the predisposing alleles are expected to be fairly common polymorphisms in the general 

population rather than rare mutations (Burmeister et al., 1999). 

 

When designing genetic case-control association studies, many factors need to be taken into account. One 

major pitfall of case-control association studies is the potential for ethnic stratification between subjects. If a 

particular allele occurs at a different frequency across ethnic groups, and cases and controls are not precisely 

ethnically matched, differing allele frequencies between the two groups may create the impression of 

association between one allele and the phenotype of interest, when, in fact, it does not exist (reviewed by 

Malhotra and Goldman, 1999). One method to control for genetic complexity among population groups is to 

conduct association studies in populations that are either physically or culturally isolated, as these are 

frequently also genetically isolated, leading to increased genetic homogeneity (Sheffield et al., 1998). Another 

way to overcome this population stratification problem in case-control studies is by using family-based 

approaches such as haplotype relative risk (HRR) and transmission disequilibrium test (TDT).  

 

Candidate genes are generally chosen for analysis based on either their position (as they are located in regions 

of the genome implicated by linkage analysis) or function (because they encode proteins implicated by 

biochemical or pharmacological investigations into the pathogenesis of the disease). However, in the case of 
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complex disorders, if there is moderate or inconclusive evidence for linkage to a number of chromosomal 

areas, the number of potential candidate genes to be analysed could be extremely large. Additionally, as the 

complete pathophysiology of the disorder may not be fully understood, genes that encode proteins involved in 

mechanisms yet-to-be-identified as contributory to disease pathogenesis, may be bypassed. 

 

The selection of an appropriate sequence variant(s) is also crucial in the design of case-control association 

studies. Polymorphic variants with low frequencies of one allele may provide little statistical power to detect 

significant associations unless the size of the study group is large enough, or the variant has a strong influence 

on phenotype. Variants with several relatively frequent alleles provide a number of potential genotypes, 

thereby increasing the informativeness of the locus, but complicating the statistical analysis (Chang et al., 

1996). The functionality of the selected polymorphism must also be considered. Although they may indeed 

indicate the presence of a closely-linked functional polymorphism in the same or an adjacent gene (linkage 

disequilibrium), positive findings with non-functional variants may be the result of inadvertent ethnic 

stratification of cases and controls (reviewed by Malhotra and Goldman, 1996). Of course, this is equally true 

for functional variants, and furthermore, the functional effects of many variants, non-synonymous as well as 

variants in non-coding, gene regulatory regions, are still untested. The number of known SNPs has increased 

exponentially in the last few years (Table 1.4) with completion of the HAPMAP project. Along with that 

knowledge has come understanding of the extent of LD blocks in various genomic regions; this has impacted 

on the manner in which association studies have been approached: Whereas, prior to completion of the 

HAPMAP project, candidate gene analysis typically involved investigation of single polymorphisms in 

candidate genes, the focus of late has shifted to analysis of HAPMAP derived haplotype tag-SNPs spread 

throughout the gene of interest. The latter more thorough approach of course comes at a higher cost. 

 

Table 1.3. Number of Homo Sapiens SNPs represented in different builds of dbSNP over the last 6 years 

dbSNP Build Genome 

Build 

Number of 

submissions 

(ss#) 

Number of  RefSNP 

Clusters (rs#'s) 

 ( # validated) 

Number of 

(rs#'s) in gene 

Number of 

(ss#'s) with 

genotype 

Number of 

(ss#'s) with 

frequency 

106 (Aug 2002) 30 4,873,188 2,817,196 1,337,870 16,986 47,577 

110 (Jan 2003) 31 4,894,587 3,049,569 1,093,014 35,785 199,849 

117 (Oct 2003) 34 9,628,832 5,772,564 2,038,150 93,808 287,066 

122 (Apr 2004) 35.1 19,950,411 9,839,968 (4,544,754) 3,738,137 235,026 917,990 

123 (Nov 2004) 35.1 21,564,104 10,079,771 (5,007,794) 4,007,305 1,822,844 1,045,322 

124 (Jan 2005) 35.1 21,581,724 10,054,521 (5,054,675) 3,998,762 2,727,888 488,391 

125 (Oct 2005) 35.1 27,189,291 10,430,753 (4,868,126) 4,236,590 2,918,978 662,975 

126 (May 2006) 36.1 27,846.394 11,961,761 (5,646,244) 4,116,991 5,546,513 682,608 

127 (May 2007) 36.2 31,035,607 11,811,594 (5,689,286) 5,028,168 5,559,898 710,090 

 

Another aspect of association studies that needs to be carefully evaluated, are sample size and the statistical 

power of the study. In designing this type of study, the sample size needs to be sufficiently large to create 

enough statistical power to reduce the probability of generating false-positive associations (Type I errors) 

Stellenbosch University  http://scholar.sun.ac.za



 34
(Berry et al., 1998). In cases where association studies may lack sufficient power to prove or disprove an 

association, a meta-analysis can be performed. A meta-analysis is a statistical procedure that integrates the 

results of several independent studies of a particular disease provided that the investigators have 1) followed 

the same diagnostic criteria, 2) followed the same methodology and 3) conducted the study in sufficiently 

similar population groups as defined by allele frequencies in the control groups. The ability to conduct a 

successful meta-analysis relies on the availability of all the relevant data. The inclusion of only a subset of all 

the available data in a meta-analysis may introduce biases and threaten its validity. This is a major 

disadvantage of meta-analyses, since many studies, especially negative association studies, remain 

unpublished. Other studies may have limited distribution, or may be published in journals not currently on the 

bibliographical databases, making their detection and inclusion into a meta-analysis rather difficult (McAuley 

et al., 2000). 

 

1.4.3. Schizophrenia linkage studies 

Several linkage studies of schizophrenia have been completed over the last two decades, yet the numerous loci 

suspected of carrying the genes predisposing schizophrenia have often not been replicated. Such regions of 

putative susceptibility vary significantly from study to study and from pedigree to pedigree. The section that 

follows, will focus on findings that seem promising by virtue of statistical significance or some measure of 

consistency among studies. These investigations are summarised in table 1.4 and figure 1.5. 

 

1.4.3.1. Chromosome 1 

Brzustowicz and co-workers, in their study of 22 schizophrenia-affected Canadian pedigrees, generated a LOD 

score of 6.5 at chromosomal region 1q21-22 between markers D1S1653 and D1S1679, using a recessive 

model of inheritance and a narrow disease definition (only individuals with schizophrenia and chronic 

schizoaffective disorder) (Brzustowicz et al., 2000). Marginal support for linkage to this region has also been 

reported by Shaw and colleagues (Shaw et al., 1998) in their study of 70 European schizophrenia associated 

pedigrees (Table 1.4). They observed a LOD of 2.4 at marker D1S196 using a recessive model and a narrow 

disease definition (Shaw et al., 1998). 

 

Several other studies have implicated loci on other regions of chromosome (chr) 1q in the development of 

schizophrenia. Hovatta and others reported a three-stage genome-wide scan in 69 schizophrenia affected 

families collected from a sub-isolate within the late settlement region of Finland. They observed a maximum 

LOD score of 3.82 at marker D1S2891 (1q32.2-q41), under a dominant model and narrow disease definition, 

with no evidence for locus heterogeneity (Hovatta et al., 1999). This finding was later replicated in a genome-

wide scan in a sample of 134 affected sib pairs from Finland (Ekelund et al., 2000). Gurling and co-workers 

demonstrated a multipoint LOD score of 3.2 at marker D1S196 on 1q32.2 in 13 British and 5 Icelandic 

pedigrees using a recessive model and broad disease definition (Gurling et al., 2001). 

 

All these studies provided some compelling evidence for chr1q as a schizophrenia susceptibility locus. This 

substantial evidence for linkage was evaluated in eight independently collected samples consisting of 779 
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informative schizophrenia pedigrees containing 984 affected sib pairs (ASP), by genotyping 16 DNA markers 

across 107 centimorgans (cM) of chr 1 in a large multicentre study (Levinson et al., 2002). No linkage to 

schizophrenia was identified in any of the eight independent samples. This suggests that while any 

schizophrenia susceptibility genes present in chr1q may carry a large genetic contribution in the reported 

linked families (Brzustowicz et al., 2000), they are likely to only have a small genetic effect in the overall 

population (Levinson et al., 2002). 

 

In a more recent study, Abecacis and collaborators conducted a genome-wide scan using a cohort of 143 

pedigrees from the Afrikaner sub-population of South Africa (Abecacis et al., 2004). They reported a LOD 

score of 2.28 at D1S2141 using a recessive model of inheritance and broad diagnostic definition 

(schizophrenia, schizophreniform disorder, delusional disorder, atypical psychosis, and schizoaffective 

disorder), providing suggestive evidence for a novel schizophrenia susceptibility locus on chr1. The identified 

region resides on the p arm of the chromosome approximately 148-154cM and 208cM from the loci described 

by Brzustowitz et al  (2000) and Hovatta et al  (1999), respectively (Abercacis et al., 2004). The p-arm of chr1 

has also been implicated in schizophrenia susceptibility in a high-density SNP linkage study of 236 Japanese 

families (Arinami et al., 2005). In this study, a LOD score of 3.39 was reported at chr1p21.-p13.2 usnig a 

narrow diagnostic definition (Arinami et al., 2005). 

 

1.4.3.2. Chromosome 2 

Loci on chr2 have also been linked to schizophrenia. Blouin and others typed 31 markers on chromosome 2 

and reported a maximum non-parametric (NPL) LOD score of 1.26 with the marker D2S405, which maps to 

chr2p22.1 (Blouin et al., 1998). A maximum multipoint NPL score of 2.13 was observed at marker D2S1337 

by Shaw and colleagues in their genome-wide scan (Shaw et al., 1998) (Table 1.4) In a study of a large 

pedigree from the Micronesian population of Palou, Coon and co-workers reported a maximum LOD score of 

2.17 at D2S441 using a dominant model of inheritance (Coon et al., 1998) and narrow disease definition. 

 

1.4.3.3 Chromosome 5 

In a genome-wide scan of 188 pedigrees from Finland, the highest LOD score (3.56) was found on chr5q at 

D5S804 using a recessive inheritance model and broad disease definition (Paunio et al., 2001), whereas 

another study investigating various regions including chr5q in 62 pedigrees from Finland found little evidence 

to support this region (Hovatta et al., 1998). 
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Table 1.4. Summary of selected schizophrenia linkages studies. 
 

 Chromosome Locus Marker Cohort structure LOD / p-values  Mode of 
inheritance 

Phenotype 
definition 

Reference 

 
 
 
 
1 

 
 
1q21-22 

D1S1653 22 Canadian pedigrees 
 

LOD=6.5 Recessive  Narrow Brzustowicz et al., 2000 

 

D1S196 

70 European pedigrees 
 

LOD=2.4 Recessive  Narrow Shaw et al., 1998  

13 British and 5 Icelandic 
pedigrees 

LOD=3.2 Recessive Broad Gurling et al., 2001 

 
1q32-44 

D1S2891 69 Finnish pedigrees 
 

LOD=3.82 Dominant  Broad Hovatta et al., 1999 

D1S2833 134 Finnish Pedigrees LOD=2.65 Recessive broad Ekelund et al., 2000 

 
1q32-41 

 

D1S2141 

20 Finnish pedigrees from 
small internal isolate 

LOD=3.73 Not specified Broad Hovatta et al., 1998 

143 South African Afrikaner 
pedigrees 

LOD=2.28 Recessive Narrow Abecacis et al., 2004 

 
1p35-32 

D1S3669 21 African-American 
pedigrees  

NPL=2.13 (p=0.002) Not specified Broad Garver et al., 1998 

1p-ter-21 D1S3721 21 African American 
pedigrees 

NPL=2.18 (p=0.002) Not specified Broad Garver et al., 1998 

1p21.2-
13.32 

 236 Japanese familes LOD=2.33 Not specified Narrow Arinami et al., 2005 

 
 
 
 
 
2 

2q12-13 
 

D2S135- 

D2S540 

5 Icelandic pedigrees p=0.000001 
 

Not specified Narrow Moises et al., 1995 

2q12 D2S293 43 European-American 
Pedigrees 

NPL=2.41 (p=0.008) Not specified Narrow Faraone et al.., 1998 

 
2q37 
 
 

D2S427 53 Finnish pedigrees (small 
internal isolate) 

LOD=4.43 Recessive Narrow Paunio et al., 2001 

D2S1337 70 pedigrees (111 sib-pairs) NPL=2.13 (p<0.001) Not specifies Broad Shaw et al., 1998 
 

 
2p15-14 

D2S441 

 

Large Micronesian pedigree LOD=2.17 Dominant Narrow Coon et al., 1998 

D2S358 7 Micronesian pedigrees LOD=4.8 Recessive Narrow Camp et al., 2001 
 

Chromosome Locus Marker Cohort structure LOD / p-values  Mode of 
inheritance 

Phenotype 
definition 

Reference 

 
 
 
 
1 

 
 
1q21-22 

D1S1653 22 Canadian pedigrees 
 

LOD=6.5 Recessive  Narrow Brzustowicz et al., 2000 

 

D1S196 

70 European pedigrees 
 

LOD=2.4 Recessive  Narrow Shaw et al., 1998  

13 British and 5 Icelandic 
pedigrees 

LOD=3.2 Recessive Broad Gurling et al., 2001 

 
1q32-44 

D1S2891 69 Finnish pedigrees 
 

LOD=3.82 Dominant  Broad Hovatta et al., 1999 

D1S2833 134 Finnish Pedigrees LOD=2.65 Recessive broad Ekelund et al., 2000 

 
1q32-41 

 

D1S2141 

20 Finnish pedigrees from 
small internal isolate 

LOD=3.73 Not specified Broad Hovatta et al., 1998 

143 South African Afrikaner 
pedigrees 

LOD=2.28 Recessive Narrow Abecacis et al., 2004 

 
1p35-32 

D1S3669 21 African-American 
pedigrees  

NPL=2.13 (p=0.002) Not specified Broad Garver et al., 1998 

1p-ter-21 D1S3721 21 African American 
pedigrees 

NPL=2.18 (p=0.002) Not specified Broad Garver et al., 1998 

1p21.2-
13.32 

 236 Japanese familes LOD=2.33 Not specified Narrow Arinami et al., 2005 

 
 
 
 
 
2 

2q12-13 
 

D2S135- 

D2S540 

5 Icelandic pedigrees p=0.000001 
 

Not specified Narrow Moises et al., 1995 

2q12 D2S293 43 European-American 
Pedigrees 

NPL=2.41 (p=0.008) Not specified Narrow Faraone et al.., 1998 

 
2q37 
 
 

D2S427 53 Finnish pedigrees (small 
internal isolate) 

LOD=4.43 Recessive Narrow Paunio et al., 2001 

D2S1337 70 pedigrees (111 sib-pairs) NPL=2.13 (p<0.001) Not specifies Broad Shaw et al., 1998 
 

 
2p15-14 

D2S441 

 

Large Micronesian pedigree LOD=2.17 Dominant Narrow Coon et al., 1998 

D2S358 7 Micronesian pedigrees LOD=4.8 Recessive Narrow Camp et al., 2001 
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Chromosome Locus Marker Cohort structure LOD / p-values  Mode of 

inheritance 
Phenotype 
definition 

Reference 

 
 
 
 
 

5 

5q D5S414 Finnish late settlement 
cohort (118) 

LOD=3.56 Recessive Broad Paunio et al., 2001 

5q22-31 D5S804 265 Irish Pedigrees LOD=3.35 Recessive Narrow Straub et al., 1997 
 

 
5q32-33 
 
 

D5S422 

 

 

5 British and 8 Icelandic 
pedigrees 

LOD=3.6 Recessive Broad Gurling et al., 2001 

1 large extended Puerto 
Rican pedigree 

LOD=4.37 Dominant Broad Silverman et al., 1996 
 

 
5p14.1-
13.1 
 

D5S111  
 

NPL=2.49 (p=0.008) Not specified Broad Sherrington et al., 1988 

 

D5S426 

 

5 British and 8 Icelandic 
pedigrees 

LOD=2.8 Dominant Intermediate Gurling et al., 2001 

21 African-American 
pedigrees 

NPL=2.55 (p=0.009) Not specified Broad Garver et al., 1998 

D5S426 1large Costa Rican 
Schizophrenia pedigree 

LOD=2.7 Not specified Broad Cooper-Casey et al., 
2005  

 
 
 
 

6 
 
 
 
 
 
 
 
 

 
6p24-22 

D6S296 265 Irish pedigrees LOD=3.55 Additive Broad Straub et al., 1995 
 

MHC 
region 

305 sib-pairs NPL=3.13 (p=0.0015) Not specified Broad Schwab et al., 1995 

6p25 D6S253-

D6S297 

12 generation, 3400 
member pedigree 

MLS=7.7   Lindholm et al., 2001 

 
 
6q21-22.3 

 

 

D6S474 

81 independent sib-pairs 
from 53 multiplex U.S 
pedigrees 

69% IBD allele 
sharing 
 

Not specified Broad Coa et al.,  1997 

141 independent sib-pairs NPL=3.82 
(p=0.000014) 

Not specified Broad Martinez et al., 1999 
 

6q23 D6S1626 155 subjects from 21 
families 

NPL=4.6 
(p=0.000004) 

Not specified Broad Lerer et al., 2004 
 

D6S1626 155 subjects from 21 
families 

LOD=4.63 Dominant Broad Levi et al., 2005 
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Chromosome Locus Marker Cohort structure LOD/p-value Mode of 

inheritance 
Phenotype 
definition 

Reference 

 
 

7 
 

 
7q22 

 

D7S486 

 
134 Finnish Pedigrees 
 

 
LOD= 3.18 

 
Dominant 

 
Broad 

 
Ekelund et al., 2000 

 
 
 
 
 

8 
 
 
 
 

 
 
 
 
 
8p22-21 
 

 

D8S136 265 Irish pedigrees LOD=2.34 Dominant Broad Pulver et al., 1995 
 

D8S1771 54 multiplex North 
American pedigrees 

LOD=4.54 
NPL=3.4 (p=0.00001) 

Dominant Narrow Blouin et al., 1998 
 

D8S261 Maryland (U.S) pedigrees LOD=3.06 Recessive Broad Levinson et al., 1996 
 

D8S136 21 Canadian pedigrees LOD=3.49 Not specified Narrow Brzustowicz et al., 1999 
 

D8S503 5British and 8 Icelandic 
pedigrees 

LOD=3.6 Dominant Intermediate Gurling et al., 2001 

D8S1769 40 Korean Families NPL=1.68 Not specified Narrow Kim et al., 2006 

9 
 

9q32-q34 D9S175 30 African-American 
nucler families 
 

NPL=1.96 p=0.027  Narrow Kaufman et al., 1998 

5 Icelandic Pedigrees, 
54 European and 
European-American and 
11 Asian families  

P<0.01 
 
 
 
 
 
 
 

Not specified Narrow Moises et al., 1995 
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Chromosome 

 
Locus Marker Cohort structure LOD/p-value Mode of 

inheritance 
Phenotype 
definition 

Reference 

 
 
 
 
 
 
 

10 

10p12.31 D10S582 146 North American 
pedigrees 

NPL=3.24 (p=0.0006) Not specified Broad Faraone et al., 1998 
 

D10S2440 265 Irish Pedigrees LOD=1.91 Recessive Intermediate Straub et al., 1998 
 

D10S582 36 German and 13 Israeli 
pedigrees 

69.5% IBD allele 
sharing 
(p=0.0058) 

Not specified Narrow Schwab et al., 2000 

D10S1423 36 German and 13 Israeli 
pedigrees 

58% IBS allele 
sharing 

Not specified Narrow Schwab et al., 2000 

10q24  

D10S189 

155 subjects from 21 
families 

NPL=3.4 
LOD=2.65 

Not specified 
Dominant 

Broad Lerer et al., 2004 
 

10q22.3 D10S1744 29 Multiplex Ashkanazi 
Jewish families 
 

NPL=4.27 Not specified Narrow Fallin et al., 2003 

D10S2327 606 Han Chinese Families NPL=2.88 Not specified Narrow Faranone et al., 2006 

10p15 
 
 

D10S119 382 Affected sib-pairs NPL=3.6 Not specified Narrow De Lisi et al., 1998 
 

 
 
 
 
 

13 
 
 
 
 
 
 
 
 

 
 
 
 
 
13q32 

D13S128 Maryland (U.S) pedigrees LOD=2.54 Dominant Narrow Antonarakis et al., 1996 
 

D13S 174 54 North American  
multiplex pedigrees 

NPL=4.18 
(p=0.00002) 

Not specified Narrow Blouin et al., 1998 
 

D13S1793 21 Canadian pedigrees HLOD=4.42 Not specified Narrow Brzutowicz et al., 1999 
 

D13S122 10 British and 34 
Taiwanese pedigrees 

LOD=1.06 Dominant Broad Lin et al., 1997 

D13S779 ISHDF pedigrees LOD=1.36 Recessive 
 
 
 

Narrow 
 

Straub et al., 1997 
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Chromosome 

 
Locus Marker Cohort structure LOD/p-value Mode of 

inheritance 
Phenotype 
definition 

Reference 

13  
13q12-13 

 

D13S1293 
70 pedigrees (111 affected 
sib-pairs 

NPL=1.8 (p<0.001) Not specified Narrow Shaw et al., 1998 

20 20p12-p11 D20S171 62 Finninsh pedigrees LOD=1.22 Not specified Broad Ekelund et al., 1998 
20q13.3 D20S172 12 African-American 

pedigrees 
NPL=3.4 Not specified Broad Garver et al., 1998 

 
 
 
 

22 

22q12-13.3 
 

D22S268-

D22S307 

39 Maryland (U.S) 
pedigrees  

LOD=2.82 Dominant Broad Pulver et al., 1994 

D22S278-

D22S276 

23 Multiplex pedigrees LOD=1.5 Recessive Narrow Vallada et al.,  1996 

D22S776 9 pedigrees LOD=2.09 Recessive Narrow Coon et al., 1994 
 

D22S278 113 unrelated 
schizophrenic patients and 
their 226 parents 

P = 0.02 Not specified Narrow Moises et al., 1995 
 

22q11 
 

4cM 353 affected sib-pairs 
from the U.K, U.S and 
Sweden 

NPL=2.29 Not specified Narrow Williams et al., 2003 

Abbreviations: HLOD, Heterozygosity logarithm of odds score, IBD, Identity by descent; ISHDF, Icelandic schizophrenia high density families; LOD, Logarithm of 
odds; MLS, Multipoint logarithm of odds score; NPL, non-parametric logarithm of odds score. 
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Brzutowicz et al., 2000 
Shaw et al., 1998 
Gurling et al., 2001 
 

Hovatta et al., 1999 
Ekelund et al., 2000 
Hwu et al., 2003 
Abercasis et al., 2004 
Acetylcholine receptor M3 

(CHRM3) 
 

Garver et al., 1998 

Arinami et al., 2005 

Chromosome 1 

Regulator of G-

protein signalling4 

(RGS4) 

Coon et al., 1998 
Camp et al., 2001 
Shaw et al., 2998 

Moisis et al., 1995 
Faraone et al., 1998 

Paunio et al., 2001 

Blouin et al., 1998 

Chromosome 2 

Straub et al., 1997 
Schwab et al., 1997 
Paunio et al., 2001 
Gurling et al 2001 
Beyerly et al., 1999 
Garner et al., 2001 
 

Chromosome 5 

Silverman et al., 1996 
Sherrington et al., 1998 
Gurling et al., 2001 
Garver et al., 1998 

Chromosome 6 

 Ocatmer binding 

transcription 
factor 7 (POU3F2) 
Coa et al., 1997 
Martinez et al., 

1999 
Kaufman et al., 

Lehrer et al., 

2004  
Levi  et al., 2005 

Straub et al., 1995 
Schwab et al., 1995, 
2000 
 Moises et al.,   1995 
  GABAβ receptor 1                         

(GBR1) 
 

Retinoid X Recpetor 

β (RXR β) 

Lindholm et al., 2001 

Dysbindin 

(DNTBP1) 

Ekelund et al., 2000 
   Reelin (RELN) 

Distal-less 
likehomeobox 6 

(DLX6)  

Gluatamate receptor, 

Metabotripic 3 

(GRM3) 

Chromosome 7 

Pulver et al., 1995 
Blouin et al., 1998 
Levinson et al., 1996 
Brzustowicz et al., 1999 
Stefansson et al., 2002 
Kim et al., 2006 
  Solute carrier family  

18, member 1 

(SLC18A1) 

Chromosome 8 

Neuregulin 1 

(NRG1) 
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Chromosome 9 

Riley et al., 

1997 

Dopamine Beta 

hydroxylase (DBH) 

Glutamate receptor, 
ionotropic, N-methyl 

D-aspartate 1  (GRIN1) 

 

GABAβ 

receptor 2                         

(GBR2) 
 

Chromosome 10 

Fallin et al., 2003 
Faraone et al., 2006 

Lin et al., 1995 

De Lisi et al., 1998 

Faraone et al., 1998 
Straub et al., 1998 
Schwab et al., 2000 
 

Williams et al., 2003 

Glutamate receptor, 

ionotropic, delta 1 

 (GRID) 

Chromosome 11 

Karayiorgou et al., 
1994 
 
Dopamine receptor 
D2 (DRD2) 

Glutamate 
receptor, 

ionotrophic, 
AMPA 4 
(GRIA4) 

 

Chromosome 13 

Lin et al., 1995 
Antonarakis et al., 1996 
Blouin et al., 1998 
Brzustowicz et al., 1999 
Camp et al., 2000 
Lin et al., 1997 
Straub et al., 1997 
 D-amino acid oxidase 

(DAAO)/G72/G30 

Shaw et al., 1998 

Serotonin 

receptor 2A 

(5-HT2A) 

Chromosome 20 
Synaptsomal-

associated protein, 
25kDA (SNAP 25) 
 
Ekelund et al., 1998 

Williams et al., 
2003 

Pulver et al., 1994 
Vallada et al.,  
Coon et al., 1994 
Gill et al., 1996 
Kalsi et al., 1995 
Moises et al., 1995 

Chromosome 22 Synaptsomal-
associated 

protein, 29kDA 

(SNAP 29) 

Synapsin III 

(SYN3) 

Benzodiazapine 
receptor, 

peripheral (BZRP) 

 22q deletion region 
 

 

Catechol-O-

methyltransferase 

(COMT) 

 Proloine Dehydrogenase 
        (PRODH2) 

Fig 1.5: Chromosomal regions implicated in schizophrenia susceptibility Size of implicated regions are indicated 
by vertical bars. Red bars indicate regions that have been replicated in independent studies; blue bars indicate loci 
that have not been replicated in independent samples and the green bar shows the position of the chromosmome 22q 
deletion syndrome locus. The positions of the candidate genes investigated in the present study are also indicated by 
purple arrows, while functional and positional candidate genes reviewed in section 1.4.6.1 are indicated by green 
arrows.  
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Straub and colleagues reported a maximum heterogeneity LOD (HLOD) score of 3.35, in their cohort of 265 

Irish pedigrees, at marker D5S804 (mapping to chr5q22-q31) under a narrow phenotypic definition and a 

recessive genetic model (Straub et al., 1997). This result was, however, not replicated in a large multi-centre 

study (The schizophrenia Collaborative Group III), which included the above-mentioned Irish cohort 

(Levinson et al., 2000). However, additional support for linkage to this region was reported by Schwab and 

collaborators (1997) in German and Israeli families (Schwab et al., 1997). 

 

There has also been some evidence for a susceptibility locus on chr5p. In a study of one large Puerto Rican 

pedigree, Silverman and co-workers reported a maximum LOD score of 4.37 at D5S111, which maps to 5p13-

14, under a dominant model of inheritance and a broad description of disease (Silverman et al., 1996). 

Following from the afore-mentioned study, Gurling and others observed a five-point HLOD of 2.8 at D5S462 

(which also maps to chr5p13-14) in a large British and Icelandic cohort. Their study made use of a combined 

diagnostic system and a dominant model of inheritance.  

 

Chr5p has also been implicated in schizophrenia susceptibility in one large, schizophrenia pedigree from the 

central valley of Costa Rica. A whole genome scan analysis of this pedigree, which included 11 cases of 

schizophrenia and schizoaffective disorder, identified a number of markers on chr5p that appear to co-

segregate with the disease with a maximum lod score of 2.70 at marker D5S426 situated at chr5p13 (Cooper-

Casey et al., 2005). 

 

1.4.3.4. Chromosome 6 

One of the best supported regions for linkage in schizophrenia resides on chr6. The chr6p24-22 locus has been 

implicated in a number of studies. Straub and colleagues obtained a maximum LOD score of 3.55, 0.4 

centimorgans (cM) away from marker D6S296, using a broad disease definition, with 15-30% of the families 

linked (Straub et al., 1995). Evidence for linkage declined substantially when a narrow disease definition was 

used.  

 

Lindholm and colleagues (2001) reported evidence for a schizophrenia susceptibility locus at chr6p25. These 

researchers completed a genome-scan of 3400 members of a single 12 generation pedigree with schizophrenia. 

A maximum LOD score of 6.6 was observed with marker D6S253, as well as with a 6cM haplotype stretching 

across markers D6S253 and D6S264 that segregated (after 12 generations) with the majority of affected 

individuals. This study also performed multipoint analysis with markers in the chr6p25 region and a maximum 

LOD score of 7.7 was obtained (Lindholm et a., 2001). Additional evidence for linkage to this region was 

reported by Schwab et al . (1995 and 2000) and Moises et al . (1995) (Table 1.4). 

 

Regions on chr6q have also been linked to schizophrenia. Cao and colleagues reported possible linkage to 

chr6q21-22.3 in 81 independent sib-pairs from 53 multiplex North American families. (Cao et al., 1997). This 

study was unique in that a second independent sample of families held by the same researchers was used to 

replicate the original finding (Riley and McGuffen, 2000, Cao et al., 1997), which provided stronger evidence 
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for a schizophrenia locus in this area of chr6. A follow-up study, also by the above-mentioned group of 

researchers, found positive, but less significant, identity-by-descent (IBD) allele sharing using yet a third 

independent sample (Martinez et al., 1999). In an independent study, data from the African-American 

pedigrees in the “National Institute of Mental Health (NIMH)/Millennium” schizophrenia genome screen also 

provided support for the presence of a susceptibility locus at chr6q21-22.3 (NPLZ=1.89 at D61009 and 

NPLZ=1.56 at D6S2056) (Kaufmann et al., 1998). 

 

Significant evidence for linkage at the adjacent chromosomal region, chr6q23, was reported in an autosomal 

scan using 350 microsatellite markers in two Israeli-Arab families (Lerer et al., 2003). This study reported a 

non-parametric LOD score of 3.3 using a dominant model and a broad disease definition (Table 1.4). In a 

follow-up study, 42 additional microsatellite markers, located wihin the linked region reported in the afore-

mentioned study, were genotyped. This follow-up study reported a peak multipoint parametric LOD score of 

4.63 at D6S1626 under a dominant genetic model and narrow disease definition (Levi et al., 2005)  

 

1.4.3.5. Chromosome 7 

In a four-stage genome-wide scan in a study sample comprising 134 schizophrenia affected sib-pairs from 

Finland, Ekeland and co-workers found evidence of linkage for schizophrenia to chr7q22. Their most 

significant finding was a two-point lod score of 3.18 with marker D7S486 using a dominant model of 

inheritance (Ekelund et al., 2000). This finding has however not been replicated in independent studies.  

 

1.4.3.6. Chromosome 8 

Pulver and co-workers first found preliminary evidence for linkage to chr8p21-22 in a genome wide search, 

with a maximum LOD score of 2.35 at D8S136 under a dominant model, and 2.20 under a recessive model of 

inheritance (Pulver et al., 1995). Blouin and others following up on this study, using a different set of markers 

within the same family sample, reported a LOD score of 3.64 (Blouin et al., 1998) (Table 1.4). In another 

independent follow-up study, Kim and co-workers genotyped seven microsatellite markers across this region 

in 40 Korean families with schizophrenia and reported suggestive evidence for linkage with a NPL LOD score 

of 1.68 at D8S1769 under a narrow disease definition (Kim et al., 2006).  

 

The 8p21-22 region was also implicated in the study of 21 narrowly defined Canadian pedigrees (Brzustowicz 

et al., 1999). Data from the above-mentioned study gave a LOD score of 3.49 at D8S136, but this decreased to 

2.13 in multipoint analysis (Brzustowicz et al., 1999).  

 

Additional support for the presence of a schizophrenia susceptibility gene within chr8p21-22 was reported in a 

genome scan in 5 British and 8 Icelandic families (Gurling et al., 2001) (Table1.4). Futhermore, Steffansson 

and colleagues reported suggestive evidence for linkage to chr8p12-p22 in a large Icelandic population 

(Steffansson et al., 2002). 
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1.4.3.7. Chromosome 9 

The q32-34 region of  chromosome 9 has been implicated in the development of schizophrenia in a linkage 

study by Kaufman and co-workers (Kaufman et al., 1998). In their study these investigators made use of 30 

African-American nuclear families with 79 DSM-III-R diagnosed schizophrenia probands. Using a narrow 

disease definition, a NPL score of 1.96 between D9S930 and D9S1818 peaking at D9S175 (Kaufman et al., 

1998). 

 

In another study, Moises and colleagues  implicated a region extending from D9S175 to D9S160 in five large 

Icelandic pedigrees (p<0.01). D9S175 was also implicated in an international follow-up study comprising 54 

European and European-American and 11 Asian families (Moises et al., 1995).. 

 

1.4.3.8. Chromosome 10 

A number of regions on chr10 have been linked to schizophrenia, although only the chr10p11-15 and 

chr10q22 loci have been convincingly replicated. The chr10p11-15 locus was first implicated in the 

NIMH/Millennium genome screen (Faraone et al., 1998) of 146 North American families of European 

descent. These researchers observed statistically suggestive evidence for linkage at D10S1423 (p=0.0004) on 

chr10p13 and the nearby D10S582 (p=0.0006) on chr10p12.31. A consortium that included the above-

mentioned NIMH data set and seven other groups (Levinson et al., 2000) also provided some evidence of 

excess allele sharing in this region. 

 

Supportive evidence was further provided by a number of subsequent investigations. Straub and colleagues, 

using their cohort of 265 Irish pedigrees, reported a maximum pair-wise HLOD score of 1.91 at D10S2440 

(also situated on chr10p12.31) using an intermediate disease phenotype and a recessive model (Straub et al., 

1998). Schwab and others demonstrated a non-parametric lod score (NPL) of 3.2 at D10S1714 in their 36 

German and 13 Israeli family cohorts (Schwab et al.,  1998). The remarkable aspect of linkage to this locus is 

the relatively small region (5 megabases [Mb]) around which linkage has been found in these four studies 

(Faraone et al., 1998; Levinson et al., 2000; Schwab et al., 2000; Straub et al., 1998). 

 

Evidence for linkage chr10q22 was first reported in a genomewide linkage scan for schizophreinia 

susceptibility among 29 multiplex Ashkenazi Jewish families conducted by Fallin and co-workers (Fallin et 

al., 2003). Their strongest linkage signal was achieved at D10S1686 located at chr10q22.3, with a NPL of 3.35 

using a norrow diagnostic definition. Upon follow-up with 23 additional markers in the chr10q region, these 

investigators reported in increased NPL of 4.27 at D10S1774 (Fallin et al., 2003). Linkage to this region was 

subsequently replicated in an independent genome scan of 606 Han Chinese schizophrenia families 

comprising 1234 affected members (Faranone et al 2006). In their study, Faranone and colleagues reported a 

NPL of 2.88 for marker D10S2327 which is located within the 12.2Mb between D10S1753 and D10S1677 

implicated by Fallin an co-workers (Faraone et al, 2006). 
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1.4.3.8. Chromosome 13 

Interest in chr13 was first generated by Lin and colleagues, who investigated eleven moderately large 

pedigrees from the United Kingdom (U.K) and  two from Japan. These researchers reported a maximum LOD 

score of 1.62 for D13S119 located on chr13q32 using a narrow disease definition (Lin et al., 1995). 

 

In an attempt to replicate the above-mentioned findings, Lin and others studied another 10 British families as 

well as 34 Taiwanese families. The British sample showed a maximum LOD score of 1.72 at D13S128, using 

the same diagnostic criteria as the  original study, while the Taiwanese sample showed no evidence of linkage 

to this region (Lin et al., 1997).  

 

Significant linkage to chr13q32 was also obtained from a genome scan of 54 multiplex pedigrees of mixed 

ethnicity near marker D13S174 with an NPL score of 4.18 (p=0.00002) using a narrow disease definition 

(Blouin et al., 1998). Shaw and co-workers (1998) also provided suggestive evidence for linkage to chr13q32 

in the genome scan of 70 pedigrees containing multiple affected individuals by the generation of a maximum 

LOD score of 2.85 at D13S1293 (Table 1.4) 

 

Weaker support for this locus was found in the Irish sample of Straub and co-workers (1997). This sample 

showed a multipoint HLOD score of 1.36 at marker D13S779 (Straub et al., 1997). Brzustowicz and others, in 

an investigation of 21 Canadian schizophrenia affected pedigrees, reported a maximum multipoint HLOD 

score of 4.42 0.1cM centromeric to D13S793 under a recessive model using a broad disease classification 

(Brzustowicz et al., 1999). Furthermore, the chr13q32 region has been linked to schizophrenia by data 

generated from a large Veterans Affairs cooperative linkage study of schizophrenia (Faraone et al., 2002) in 

which linkage between markers D13S1241 and D13S159 was detected.  

 

Since these positive findings produced from non-overlapping families cluster together within the same region 

of chr13q, it was suggested that this region may harbour one or more schizophrenia susceptibility genes 

(Faraone et al., 2002). Despite this, there are many negative reports of linkage to this region. Most notably is 

the report from the large multi-centre study by Levinson and collaborators (Levinson et al., 2000). They 

studied linkage to chr13q in 784 informative pedigrees containing 823 independent sib-pairs collected from 

eight centres; two of the included centres (Blounin et al., 1998; Shaw et al., 1998) had previously reported 

linkage to chr13q32. In this multi-centre study, however, the maximum LOD score at chr13q32 was 0.09 

which lacked support of evidence for linkage to this region (Levinson et al., 2000). However, since this 

multicentre study was made up of a combination of cohorts from different ethnic backgrounds, it is possible 

that genetic heterogeneity may have masked the “signal” from the chr13q32 locus. 

 

1.4.3.10. Chromosome 20 

Two regions on chromosome 20 have been implicated in schizophrenia susceptibility. In an investigation by 

Ekelund and co-workers, reported a maximum lod score of 1.22 at D20S172 located on 20p11.3 in a set of 62 

pedigrees from Finland (Ekelund et al., 1999) using a broad disease definition.  
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In another investigation, Garver and co-workers also reported positive linkage to chromosome 20. In their 

study of 12 African-American, these investigators reported an maximum NPL of 3.4  at D20S171 located at 

20q13.3 using a braod disease model (Garver et al., 199). 

 

1.4.3.9. Chromosome 22 

Chr22 has been one of the most extensively studied chromosomes for putative schizophrenia susceptibility 

loci. In a study of 39 North American pedigrees, a LOD score of 2.82 at marker locus ILBR2β (interleukin 

receptor 2 beta chain) was observed between D22S268 and D22S307, which maps to chr22q12-13 (Pulver et 

al., 1994). Furthermore, as part of a systematic search for a major schizophrenic genetic locus, Vallada and co-

workers conducted a linkage analysis of chr22 using highly polymorphic and evenly spaced genetic markers in 

23 multiplex schizophrenia pedigrees (Vallada et al., 1995). These researchers found suggestive evidence for 

linkage between markers D22S278 and D22S283 (which both map to chr22q12-13) (Table 1.4). 

 

Coon and colleagues (1994) observed a LOD score of 1.45 at D22S4 (chr22q13-qter) under a recessive model 

(Coon et al., 1994a) in nine clinically narrowly defined families in their first stage genome scan. Further 

analysis of their sample, using a dense map of markers across chr22q13-qter, yielded a LOD score of 2.09 for 

D22S276, also under a recessive model of inheritance (Coon et al., 1994b) (Table 1.4). Another locus on chr22 

that has been implicated in schizophrenia is chr22q11. Williams and colleagues reported a maximum LOD 

score of 2.29 at chr22q11 in 353 clinically narrowly defined affected sib-pairs (179 from the U.K, 134 from 

Sweden and 40 from the U.S) (Table 1.4).  

 

A multi-centre collaborative study subsequently attempted to replicate the findings of the original study by 

Pulver and others (Pulver et al., 1994). by using 217 families, which included the families originally analysed 

by Pulver et al . However, the analysis of the combined sample of 217 families failed to show any evidence for 

linkage to the chr22q12-q13 region (Gill et al., 1996). Studies by Kalsi and others (1995), as well as, 

Polymeropoulos and colleagues (1994) also found no evidence for linkage to chr22q11-q13 (Kalsi et al., 1995; 

Polymeropoulos et al., 1994) (Table 1.4). 

 

1.4.3.10. Linkage of Schizophrenia Endophenotypes 

Segregation analysis of sensory motor gating deficits in schizophrenia was found to be consistent with an 

autosomal dominant model of inheritance (Elston, 1996). In an initial linkage analysis using this model of 

inheritance, Coon and co-workers used PPI (section 1.1.4) suppression to identify a potential schizophrenia 

susceptibility locus at chr15q14 (Coon et al., 1993). Subsequent linkage analysis performed by Freedman and 

colleagues showed linkage between sensory motor gating deficits in schizophrenia to D15S1360 on 15q14 

(Freedman et al., 1997). This marker was identified in a yeast artificial chromosome (YAC) that contained the 

α-7-nicotinic cholinergic receptor, which has been the focus of numerous association studies in schizophrenia 

(Freedman et al., 1997). Linkage of schizophrenia to chr5q14 was further supported by ASP analysis 

performed but the National Institute of Mental Health (NIMH) genetics initiative (Leonard et al., 1998), which 

investigated 20 nuclear families (84 individuals and 26 affected sibpairs) with at least one sibpair concordant 

Comment [IT45]: Elston RC (1996): SIBPAL, 
Statistical Analysis for Genetic Epidemiology 
(Case Western Reserve, Cleveland, OH), version 2.7. 
 

Stellenbosch University  http://scholar.sun.ac.za



 48
for schizophrenia. Sibpair analysis showed that a significant percentage of alleles of the marker D15S1360 was 

shared identical by descent (p<0.0024). 

 

Gasperoni and colleagues (2003) used four schizophrenia endophenotypes (including choice reaction time, 

attention deficits, recall intrusions and spatial working memory dysfunctions) to further elucidate the nature 

and location of the schizophrenia susceptibility locus on chr1q implicated in two previous studies (Hovatta et 

al., 1999; Ekelund et al., 2000). Using a composite measure of these four endophenotypes, these investigators 

produced marginal evidence for linkage at the same marker (D1S2833) implicated by Ekelund et al. (2000) 

using twin pairs from Finland (Gasperoni et al., 2003). Of the four variables comprising the composite 

measure, only impaired spatial working memory (assessed using the visual span subtest of the Wechsler 

Memory Scale) was linked to D1S2833. Thus this study provides evidence that disturbances in the frontal-

executive function are central to the pathophysiology of schizophrenia (Weinberger, 1987; Park and Holzman, 

1992; Park et al., 1995, 1999; Cannon et al., 2000). 

 

The linkage studies and genome scans discussed in the above section show that several genetic loci have been 

identified that possibly harbour schizophrenia susceptibility genes. Relatively few of these loci have been 

confirmed in independent studies. Furthermore, loci that have been replicated in some independent 

investigations have not been replicated in others. These discrepant results could imply that genetic factors do 

not influence schizophrenia pathogenesis; however, this is refuted by data from twin and adoption studies. 

Another possibility for the disparate genetic results centres around schizophrenia as a complex threshold 

disease where multiple genetic and environmental insults are required to cause disease. The multiple loci 

generated by linkage analysis could imply genetic heterogeneity in schizophrenia, where the major genetic 

contributors to disease are different for different families and population groups or are brought into play by 

different environmental insults.  

 

1.4.4 Obsessive-compulsive disorder linkage studies 

As opposed to the vast amount of linkage and genome scan data available for schizophrenia, to date, only one 

genome-wide scan has been undertaken for OCD (Hanna et al., 2002). These authors initially completed their 

genome scan using 56 individuals from seven families, including 27 individuals with a definite OCD 

diagnoses. A maximum multipoint LOD score, prior to fine mapping, of 2.25 was reported for marker D9S288 

on chr9p24, while three other regions had LOD scores of less than 1 (chr16q, chr2q and chr19q) under a 

dominant model and narrow a phenotype definition. Denser mapping was subsequently performed using the 

original 56 subjects plus 10 additional individuals (Hanna et al., 2002). This subsequent fine mapping of chr2, 

chr9 and chr16 showed a peak multipoint LOD score of 1.97 at D9S288 on 9p24 (Hanna et al., 2002). This 

study provided the first linkage data on OCD offering suggestive linkage on chr9p24 while identifying other 

possible susceptibility loci (chr2p, chr6p and chr19q). 

 

In an attempt to replicate the findings of Hanna and co-workers, the Johns Hopkins OCD research group 

genotyped 50 small nuclear OCD pedigrees using the 13 microsatellite markers spanning chr9p24 

Stellenbosch University  http://scholar.sun.ac.za



 49
(approximately 19cM) (Willour et al., 2004) used in the original OCD genome-wide scan (Hanna et al., 2002; 

Willour et al., 2004). As in the original study, this replication study also reported that the strongest parametric 

findings were under a dominant model of inheritance using a narrow phenotype definition (Willour et al., 

2004). A maximum parametric LOD score of 2.26 was found at D9S1792, while the nonparametric signal 

peaked at D9S1813. These two markers are approximately 1.1cM and 0.8cM, respectively, telomeric to marker 

D9S288, which showed the maximum LOD score in the original study. The replication study made use of 

small nuclear pedigrees that excluded probands with Tourette’s syndrome, while the genome scan used 

multigenerational multiplex pedigrees. It is important to note that while this replication study varied from the 

original in important ways, both studies gave suggestive evidence for the involvement of chr9p24 in OCD 

susceptibility. However, to date, no susceptibility gene residing within this locus has been implicated in 

increasing susceptibility to OCD. It is also of interest to note that none of these loci overlapped with 

schizophrenia linkage loci. 

 

1.4.5. Chromosomal Abnormalities 

In addition to chromosomal regions implicated by linkage analysis, some chromosomal regions have also been 

implicated in the development of these disorders based on chromosomal abnormalities such as deletions, 

translocations and trisomies.  

 

There are few reports of chromosomal abnormalities associated with major psychiatric disorders (Bassett, 

1992; Craddock and Owen, 1994, De Lisi et al., 1994). It is speculated that this is likely due to the fact that 

geneticists usually consult on paediatric cases and seldom follow up into adolescence or adulthood, when 

many psychiatric disorders first appear. It would also appear that psychiatrists generally do not suspect genetic 

syndromes in psychiatric patients as a first cause (Bassett et al., 2000). 

 

Despite this, some researchers have provided compelling evidence for increased prevalence of a number of 

psychiatric illness among patients suffering from syndromes caused by chromosomal abnormalities. 

Furthermore, there are numerous examples of diverse conditions where a chromosomal aberration has led the 

way to the identification of possible susceptibility loci (Castermans et al., 2004). The section that follows will 

deal with these chromosomal abnormalities, how they provide a possible means to help localise causative 

genes and the roles they play in our understanding of the genetic complexity of mental illness.  

 

1.4.5.1. Chromosome 22q11 deletion syndrome 

Chromosome 22 deletion syndrome (22qDS) is the second most common genetic syndrome after Down 

Syndrome (Gothelf and Lambroso, 2001) that affects approximately one in 4000 individuals worldwide (du 

Montcel et al., 1996). The syndrome encompasses velocardiofacial syndrome (VFCS), DiGeorge syndrome 

and conotruncal anomaly face syndrome (CTAFS), all due to chr22q11.2 microdeletions (Fig 1.7) (Demczuk 

and Aurias et al., 1995), which generally occur de novo (Demczuk and Aurias et al , 1995; Leana-Cox et al., 

1994). Learning disabilities, palatal anomalies, cardiac defects and atypical facial features are common, 

although the presentation is highly variable (Yamagisgi et al., 1999). It is inferred that the symptoms 
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associated with the deletions, which vary in extent in different patients, are associated with the loss of 

particular genes harboured in the missing region. Most interestingly, a review of 22qDS found that psychiatric 

disorders, of which schizophrenia was the most frequent, were reported in 53% of cases of 22qDS that were 

not ascertained from psychiatric sources (Papolos et al., 1996; Pulver et al., 1994). Studies have also shown an 

increased rate of 22qDS among schizophrenia patients. These studies used fluorescence in situ hybridization 

(FISH) and a chr22q11.2 probe to demonstrate that approximately 2% of patients with schizophrenia have the 

chr22q11.2 microdeletion, compared to 0.0025% in the general population. 

 

The findings above lend support to the likelihood that a meaningful association exists between this 

chromosomal anomaly and schizophrenia (Propping et al., 1995; Karayiorgou et al., 1996; Bassett et al., 

1999). There have been some positive linkage data to markers on chr22q11.2 (section 1.4.3.9), but most 

linkage findings have tended to cluster around a 4-5 cM region around 22q13, approximately 25Mb telomeric 

to chr22q11.2. This could suggest that there may be two or more loci on chromosome 22 involved in 

schizophrenia (Schwab et al., 1999) (Fig 1.7). 

 

Obsessive-compulsive symptoms have also been observed in a number of 22qDS patients (Karayiorgou et al., 

1997, Pulver et al., 1994). A follow up study by Papolos and colleagues on behavioural phenotypes of patients 

with 22qDS observed a high rate of OCS in many of these patients (Papolos et al., 1994). In fact, Gothelf and 

colleagues noted that, in their clinical experience, not only did many of their VCFS patients suffer from OCS, 

but the family members of many of these patients reported that the OCS were the most disruptive behavioural 

symptoms of the patient (Gothelf et al., 2004). Three investigations reported rates of OCS and OCD in VCFS 

patients of 14% (Pulver et al., 1994), 8% (Papolos et al., 1996) and 12% (Feinstein et al., 2002). These 

findings provide strong evidence that genes involved in increased OCD susceptibility may be harboured at the 

chr22q11 region.  

 

1.4.5.2. Other chromosomal aberrations 

A balanced (1;11)(q42;q14.3) reciprocal translocation has been found to co-segregate with schizophrenia in a 

large Scottish family (Millar et al., 2000; Blackwood et al., 2001; St Clair et al., 1990). In a linkage study of 

schizophrenia in this family, the translocation generated a LOD score of 3.6 when the phenotype was restricted 

to schizophrenia. The LOD score increased to 7.0 when the disease definition was expanded to include major 

depression and bipolar disorder (Blackwood et al., 2001). Furthermore, the Disrupted in Schizophrenia (DISC) 

genes (Sawamura and Sawa, 2006), DISC1 and DISC2, are disrupted by this translocation that segregates 

within the family (Blackwood et al., 2001). Interestingly, in an earlier study by Ekelund and colleagues, the 

strongest evidence for linkage in their combined sample was obtained for marker D1S2709, which is an 

intragenic marker of the DISC1 gene (Ekelund et al., 2001) (Table 1.4)  

 

In their cytogenetic analysis of an extended pedigree, Calzolari and colleagues identified two individuals 

carrying a balanced translocation with a breakpoint at chr15q13-14. One was diagnosed with psychotic 

disorder at 15 years of age, while the other was diagnosed with schizoaffective disorder at 16 years of age, 
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neither of these two disorders were otherwise present within the pedigree (Calzolari et al., 1996). Other 

genetic illnesses linked to chr15q have been reported to co-express psychosis resembling schizophrenia, 

namely Prader-Willi syndrome, a disease involving imprinting of genes at chr15q11-12 (Clarke, 1993), 

Marfan syndrome, which generally involves mutations of the fibrillin gene at chr15q21 (Sirota et al., 1990) 

and Andersmann’s angenesis of the corpus collosum, which is caused by a deletion of chr15q (Casaubon et al., 

1996). 

 

Translocations have also been utilised to identify possible OCD susceptibility loci in various studies. 

However, many of these studies make use of a wide phenotypic definition, viz., TS/OCD/chronic tic disorder 

(CTD) phenotypic spectrum (Cuker et al., 2004) (section 1.2.1). 

 

Three cases of this TS/OCD/CTD spectrum phenotype associated with translocations have previously been 

reported. In 1996, Boghosian-Sell and co-workers reported a familial form of TS associated with obsessive-

compulsive sympoms that segregated with a balanced t(7;18)(q22-q31; q22.3) translocation (Boghosian-Sell et 

al., 1996). Subsequently, State and colleagues reported on a young man with CTD and OCD, who was found 

to carry a paracentric inversion i(18q21.1-q22.2) (State et al., 2003). These investigators mapped the telomeric 

end of the inversion to a genomic location that is less than 1Mb from the translocation described by Boghsian-

Sell and others (1996) (State et al., 2003). More recently, Cuker and others described a 14 year-old girl with a 

t(2,18)(p12;q22) translocation with severe OCD (Cuker et al., 2004). Fine mapping of the patient’s chr18 

breakpoint revealed it to be within 4.7Mb of the previously reported breakpoint (Bogh-Sell et al., 1996); thus 

these studies implicate a locus on chr18q in the development of OCD. 

 

Moreover, two chromosomal breakpoints associated with TS/OCD/CTD has been shown to disrupt particular 

genes. Petek and co-workers described a 13-year-old boy with a de novo duplication of a region of chr7 [dup 

(7)(q22.1-q31.1)] who developed TS/OCD/CTD without any signs of overt mental retardation. These 

researchers further showed that this duplication was inverted and disrupted IMMP2L, the human homologue to 

the yeast mitochondrial inner membrane peptidase subunit 2 (Petek et al., 2001). Whether it is this gene that 

plays a role in OCD or whether inversion of, or the presence of, genes on the duplicated region are involved, 

has not yet been investigated (Cuker et al., 2004). 

 

In another study, the contactin-associated protein (CNTNAP2) gene (CNTCAP2) was found to be disrupted in 

a TS/OCD/CTD family with a complex translocation involving chr2 and chr7 (Verkerk et al., 2003). Three of 

the family members investigated (a father and two children) share a chr2q21-p23 insertion on chr7q35-q36, 

which disrupts the CNTNAP2 gene. This gene encodes a membrane protein located in a specific compartment 

at the nodes of Ranvier of axons. The authors speculate that the disruption of CNTNAP2 could lead to a 

disturbed distribution of potassium (K) channels in neurons, thereby affecting repolarisation of action 

potentials and causing the TS/OCD/CTD syndrome. 
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1.4.6. Association studies in Schizophrenia  

To further lay the ground for prioritising novel OCD candidate genes, the genes that have already been 

implicated in both schizophrenia and OCD by association studies will be reviewed in the following sections. 

 

To date, hundreds of schizophrenia association studies, primarily focused on functional candidate genes have 

been undertaken (Owen et al., 2004), and typically involved genes chosen based on neuro-

psychopharmacological data. For this reason, genes of the dopamine and serotonin systems have been 

extensively studied in the past; however, given the evidence for other mechanisms in schizophrenia etiology, it 

can be questioned whether those are the only valid candidate categories. Details of functional candidate genes 

reviewed in this section are summarised in Table 1.5. 

 

1.4.6.1. Functional candidate genes 

1.4.6.1.1. Dopaminergic system 

The dopamine D2 (DRD2) and D3 (DRD3) receptors have been extensively studied. Several studies have 

indicated that the density of DRD2 receptors is abnormally elevated in post-mortem striatum samples from 

schizophrenic patients (Lee et al., 1978, Owen et al., 1978). Although the results of these investigations were 

often dismissed as only reflecting the effects of antipsychotic pharmacotherapy (Mackay et al., 1980; 1982), 

many drug-naïve patients, as well as patients who have not been under antipsychotic treatment for over one 

year, have also shown increased numbers of DRD2 receptors over that of unaffected subjects (Crow et al., 

1978; Lee and Seeman, 1980). 

 

In 1997, Arinami and colleagues ascribed functional relevance to a polymorphism in the promoter region of 

the DRD2 gene (DRD2) designated -141C Ins/Del (Arinami et al., 1997). Using a luciferase enzymatic 

activity assay, they demonstrated that expression from the -141C Del allele was 21-42% of that from the -

141C Ins allele. Furthermore, the -141C Ins allele frequency was higher in schizophrenia patients that in the 

control subjects (Arinami et al., 1997). Subsequently, a number of studies have demonstrated an association 

between DRD2 and schizophrenia (Ohara et al., 1998; Jönsson et al., 1999, Breen et al., 1999). The studies by 

Ohara and colleagues in a Japanese sample, and Jönsson and colleagues in a Swedish population, both found 

an association with the -141 Ins and schizophrenia (Ohara et al., 1998; Jönsson et al., 1999), but, in a study of 

a British sample, association was demonstrated with the -141 C Del allele (Breen et al., 1999). 

 

The Cys311 allele of the Ser311Cys variant of DRD2 (Cravchik and Goldman, 2000), located on the third 

cytoplasmic loop of DRD2, has been shown to be less effective in inhibiting the synthesis of cyclic AMP 

(Cravchik et al., 1996). Association studies of this polymorphism have yielded inconsistent results; however, 

in a recent meta-analysis of DRD2 Cys311 schizophrenia association studies conducted before June 2002, the 

data supported the involvement of DRD2 in schizophrenia (Jönsson et al., 2003). 
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Table 1.5. Summary of association studies of functional candidate genes in schizophrenia discussed in this review. 

Candi-

date 

gene 

Polymorphism Sample Findings Referrence 

DRD2 -141Cins/del Case-control study of 260 unrelated Japanese schizophrenic 
patients and 312 unrelated Japanese controls 

-141Cins allele frequency higher in 
schizophrenic patients 

Arinami et al., 1997 

Case-control study 170 unrelated Japanese schizophrenic 
patients and 121 unrelated Japanese controls 

-141Cins allele frequency higher in 
schizophrenic patients (p=0.042);  

Ohara et al., 1998 

Case-control study of 129 unrelated Swedish schizophrenic 
patients and 179 unrelated Swedish controls 

-141Cdel allele frequency lower in 
schizophrenic patients 

Jönsson et al., 1999 

Case-control study of 439 Caucasian schizophrenic patients 
and 437 unrelated Caucasian controls (patients and controls 
of British and Scottish descent) 

-141Cdel allele frequency higher in 
schizophrenic patients (p=0.02) 

Breen et al., 1999 

Ser-311-Cys Case-control study of 153 Japanese schizophrenic patients 
and 300 unrelated Japanese  controls 

No association Arinami et al., 1994 

Case-control study of  78 Okinawan schizophrenic patients 
and 112 unrelated controls  

No association Kaneshima et al., 

1997 
Case-control study of  366 European schizophrenic patients 
and 267 unrelated controls  

No association Serretti et al., 2000 

DRD3 Ser-9-Gly Meta-analysis of 29 independent case-control samples from 
24 association studies (2619 schizophrenic patients and 2517 
controls) 

Excess homozygosity for allele 1 in African 
and Caucasian group (p=0.05) 

Dubertret et al., 

1998 

Meta-analysis of 30 schizophrenia case-control association 
studies and 57 parent/proband trios 

association between DRD3 Ser9Gly 
homozygosity and schizophrenia 
(p=0.0009) 

Williams et al., 1998 

Case-control study of  311 schizophrenic patients and 306 
unrelated controls in European Multi-centre Association 
Study of Schizophrenia 

Excess homozygotes of allele 1(p=0.003) Spurlock et al, 1998 

5-

HT2A 

 
 

T102C Case-control study of 62 Japanese schizophrenia 
patients and 96 unrelated Japanese controls 

102C allele found in excess in 
schizophrenic patients 

Inayama et al., 

1994 
Case-control study of 278 German schizophrenia 
patients and 207 unrelated German controls 

102C allele found in excess in 
schizophrenia patients (p=0.041) 

Erdman et al., 

1996 
Case-control study of 571 Caucasian schizophrenia 
patients and 639 unrelated Caucasian controls 

102C allele found in excess in 
schizophrenia patients 

Willams et al., 

1996 
TDT analysis of 63 schizophrenic parent/offspring trios  Excess of 102C allele transmission from 

parents to affected offspring (p=0.001) 
Spurlock et al., 

1998 
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Candi-

date 

gene 

Polymorphism Sample Findings Referrence 

5-HT2A 

 

 

T102C 101 Chinese male unrelated schizophrenic patients and 103 
Chinese male control subjects. 

Excess of 102T allele in schizophrenia 
patients 

Tay et al., 1997 

Case-control study of 97 Chinese schizophrenia patients and 
101 unrelated Chinese controls 

No association Lin et al., 1999 

Case-control study of 471 Han Chinese schizophrenia patients 
and 523 unrelated Han Chinese controls  

No association Chen et al., 2001 

Meta-analysis if 15 studies (1533 schizophrenia patients and 
1771 controls 

Association found between 102C allele and 
schizophrenia (p=0.0009) 

Williams et al., 

1997 
Meta-analysis of 31 case-control association studies (4632 
schizophrenia cases and 4410 controls) and 5 family-based 
studies (473 parent/offspring trios) 

Association found between 102C allele and 
schizophrenia in case-control sample 
(p=0.015); no evidence for association in 
family-based studies 

Abdolmaleky et al., 

2004 

HRR in 67 schizophrenia affected nuclear families and case-
control study of 100 schizophrenia patients and 103 controls 

No association found in either HRR or 
case-control studies 

Verga et al., 1997 

GRIN1 1719G/A Case-control study of 96 Japanese schizophrenia patients and 
96 unrelated Japanese controls 

No association Sakurai et al., 2000 
 

IVS2-22T/C Case-control study of 96 Japanese schizophrenia patients and 
96 unrelated Japanese controls 

No association 

IVS2-11G/A Case-control study of 96 Japanese schizophrenia patients and 
96 unrelated Japanese controls 

No association 

IVS4-34C/T Case-control study of 94 Japanese schizophrenia patients and 
95 unrelated Japanese controls 

No association 

GRIN1/1 (C/G) HRR of 86 parent/schizophrenic offspring trios and case-
control study of 91schizophrenia patients and 91 unrelated 
controls from Toronto  

No association in TDT analysis (p=0.14) 
No association in case-control analysis 
(p=0.908) 

Martucci et al., 

2003 
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Candi-

date 

gene 

Polymorphism Sample Findings Referrence 

GRIN1 GRIN1/10 (A/G) TDT of 86 parent/schizophrenic offspring trios and case-
control study of 91schizophrenia patients and 91 unrelated 
controls from Toronto 

No association in TDT analysis 
(p=0.22)No association in case-control 
analysis (p=0.544) 

Martucci et al., 

2003 

GRIN1/1 

GRIN1/10 

haplotype 

TDT of 86 parent/schizophrenic offspring trios and case-
control study of 91schizophrenia patients and 91 unrelated 
controls from Toronto 

Borderline significant association with 
GRIN1/1 G-allele/GRIN 1/10 A-allele 
haplotype (p=0.049) 

GRM3 +1131C/T Case-control study of 265 German schizophrenic patients and 
227 unrelated German controls 

Association found with +1131T allele 
(P=0.0022) 

Marti et al., 2002 

Second independent case-control study of 288 German 
schizophrenia patients and 162 unrelated German controls; 
TDT using 128 parent/schizophrenic offspring trios 

Previous association not replicated in 
either second, independent case-control 
study or TDT analysis 

rs146812 Case-control study of 100 Japanese schizophrenia patients 
and 100 unrelated Japanese controls 

Significant difference in allele frequency 
of rs146812 between groups (p=0.011) 
Identified 3-marker at-risk haplotype 
(including rs146812) for schizophrenia 
(p=0.00083) 

Fujii et al., 2003 

Rs229925 Case-control study of 752 Chinese schizophrenic patients and 
752 unrelated Chinese controls 

Significant difference in allele frequency 
of rs2299225 between groups (p=0.0297) 
Identified 3-marker at-risk haplotype for 
schizophrenia (rs2237562-C, rs1468412-T 
and rs2299225-C) (p=0.008) 

Chen et al., 2005 

Abbreviations: 5-HT2A, Serotonin receptor 2A; DRD2, Dopamine receptor 2; DRD3, Dopamine receptor 3; GRIN1, N-methyl-D-aspartate glutamate receptor NR1 subunit; GRM3, 
Metabotropic glutamate receptor 3; HRR; Haplotype relative risk; TDT; Transmission disequilibrium test 
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The DRD3 gene (DRD3) is expressed selectively in the brain regions associated with emotional control, 

motivation and reward and is the target for most antipsychotic agents (Sokoloff et al., 1990). Two meta-

analyses of association studies of the Ser9Gly polymorphism in DRD3 (Dubertret et al., 1998; Williams et al., 

1998) both provided evidence for association between DRD3 Ser9Gly homozygosity and schizophrenia in 

certain populations. Moreover, very recently, this polymorphism was also found to be associated with 

diminished parietal function and affected PPI in schizophrenia patients (Mulert et al., 2006). 

 

1.4.6.1.2 Serotonergic system 

Much of the current focus of research into the role of the serotonergic system in schizophrenia is on serotonin 

receptor 2A (5-HT2A) (Harrison and Burnet, 1997). The first genetic evidence for the involvement of the 

serotonin system in schizophrenia came from a report of an association with the T102C polymorphism in 5-

HT2A in a Japanese sample, in which the 102C allele was associated with schizophrenia. (Inayama et al., 

1994) This association was later replicated by a European multicentre association study (Willams et al., 1996), 

as well as studies by Erdman and colleagues (1996) and Spurlock and colleagues (1998). However, in a study 

of 101 Chinese male schizophrenic patients and 103 controls, it was the 102T allele that was found to be 

predominant in schizophrenic patients (Tay et al., 1997). This may indicate that the T102C polymorphism is in 

linkage disequilibrium with the real functional variant. 

 

There have also been a number of published studies that failed to replicate these initial 5-HT2A findings 

(Verga et al., 1998; Lin et al., 1999; Chen et al., 2001). As a result of these inconsistencies within the 

literature, several researchers performed meta-analyses on the available data. Williams and co-workers 

completed a meta-analysis of 15 studies (1533 patients and 1777 controls) that supported the association 

between 102C allele (Williams et al., 1997). Six years later, after many more association studies of 5-HT2A 

T102C and schizophrenia had been published, Abdolmaleky and colleagues performed another meta-analysis 

(Abdolmaleky et al, 2003), using the 15 studies from the first meta-analysis as well as an additional 21 new 

studies, and showed a significant association between the 102C allele and schizophrenia in the case:control 

studies. Included in the 21 new studies were five family-based studies which themselves had not show any 

evidence of association (Abdolmaleky et al., 2003).  

 

1.4.6.1.3. Glutamatergic system 

The NR1 (section 1.1.5.3.3) subunit of NMDA-R is encoded by the GRIN1 gene located on chr9q34.3. In 

studies done by Rice and colleagues and by Sakurai and colleagues, none of a number of novel identified 

sequence variations showed any significant association with schizophrenia in a case-control setting either 

(Sakurai et al., 2000; Rice et al., 2001).  

 

Martucci and colleagues used both TDT (86 nuclear families) and case-control analysis (91 ethnically matched 

case-control pairs) of GRIN1 and showed a borderline significant association for a GRIN1 haplotype in 

schizophrenia susceptibility consisting of two SNPs (Martucci et al., 2003).  Zhao and co-workers also 

investigated five SNPs within GRIN1 in a cohort of 707 unrelated Han Chinese schizophrenia patients and 689 
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control individuals, and found highly significant association with schizophrenia with the SNP rs11146020 

(Zhao et al., 2006). 

 

The gene encoding the metabotropic glutamate receptor 3 (GRM3) has been mapped to chr7q22-31, a region 

previously implicated in schizophrenia pathogenesis by linkage analysis (Enkelund et al., 2000). Marti and 

colleagues (2002) identified a synonymous C to T substitution at nucleotide position 1131 (+1131C/T) in 

GRM3 and tested it for association with schizophrenia in a sample of German descent. Their data showed a 

significant over-representation of the GRM3 +1131T allele in schizophrenic patients compared to ethnically 

matched control individuals (Marti et al., 2002); however, this was not replicated in a follow-up study by the 

same authors using an independent German schizophrenic patient and matched controls sample (Marti et al., 

2002). These authors concluded that GRM3 may, in fact, not play a crucial role in the development of 

schizophrenia, at least not in the German population (Marti et al., 2002). 

 

Fujii and co-workers (2003) reported a significant difference in the distribution of alleles of SNP rs1468412 in 

GRM3 in a Japanese cohort (Fujii et al., 2003). Furthermore, they identified an at-risk haplotype, constructed 

from three SNPs, including rs146812, that showed a significant association with schizophrenia (Fujii et al., 

2003). In an attempt to replicate this data, Chen and colleagues (2005) investigated GRM3 SNPs (Fig 1.6) used 

in the two previous reports (Marti et al., 2002; Jujii et al., 2003). This investigation was unable to replicate the 

previous association with rs1468412 and the three-marker at-risk haplotype (Fujii et al., 2003). Their data, 

however, revealed an association between SNP rs2299225 and schizophrenia. Furthermore, another 3-marker 

at risk haplotype that includes rs2299225 was identified (Chen et al., 2005). However, in an investigation of 

the potential role of GRM3 in the development of schizophrenia, conducted using a cohort of 674 unrealated 

Caucasian schizophrenia patients and 716 unrealted Caucasian control individuals from the UK,  Norton and 

co-workers did not find any evidence for association (Norton et al., 2005).   

 

Taken together, these results seem to indicate that GRM3 may play an important role in the aetiology of 

schizophrenia in some population groups, the Japanese for example, while in others, like the Caucasian 

population, the role of GRM3 may not be that significant, if it plays a role at all. 
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Fig1.6: Schematic representation of spread of SNPs across GRM3 used in the study by Chen et al., 2005. 
Exons are represented by solid yellow blocks introns are represented by solid black lines and the untranslated regions are 
represented by open blocks. 
 

1.4.6.1.4. GABAergic system 

The GABAA and GABAB receptors have been investigated as possible schizophrenia susceptibility genes in a 

number of investigations. Papadimitriou and colleagues tested a dinucleotide (CA)n repeat marker at the 

promotor region of the GABAA α5 subunit gene for association with schizophrenia in a case-control 

association and found that the frequency of the 282-bp allele was 43.3% in the patient group with late age of 

onset compared to 23.9% in control individuals (p<0.005) (Papidimitriou et al., 2001). This increased 

frequency was not observed in the unstratified case group. A more recent study investigated the possible 

association of 19 SNPs in the genes encoding the α1 (2SNPs), β2 (10SNPs), γ2 (4SNPs), ε (1SNP) and π 

(2SNPs) GABAA subunits with schizophrenia in a Han Chinese case-control cohort (Lo et al., 2004). None of 

the SNPs investigated in the α1, γ2, ε or π subunit genes were found to be associated with schizophrenia, 

however, five of the ten SNPs in the β2 encoding gene (GBRβ2) showed a significant association at both 

genotype and allele levels. The five disease associated SNPS, B217G1584T, rs1816071, rs194072, rs252944 

and rs187269, are all located in either intron 7 or 8 of GBRβ2 (Fig 1.7). In an attempt to confirm the results 

obtained by Lo and colleagues, Liu and co-workers applied TDT analysis to these five SNP genotypes as well 

as SNP rs1816072 in 352 Han Chinese trio families (Liu et al., 2005). They found no significant association 

with any of the six investigated SNP and schizophrenia, but did provide strong evidence for association with 

haplotypes consisting of combinations of these SNPs (Liu et al., 2005) 
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Fig 1.7: Schematic representation of a portion of GBRβ2 showing the locations of the 10 SNPs analysed 

in the study by Lo and co-workers (2004) (Adapted from Lo et al., 2004). The five SNPs that were found to be 
significantly associated with schizophrenia in the study by Lo and co-workers (2004) are shown in red font. 
 

 

Imai and colleagues analysed a dinucleotide repeat (AC)n polymorphism, located approximately 1.6kb 

upstream from the GABAB  receptor 1 gene (GBR1) but found no significant differences between their 

Japanese schizophrenic patient and control groups at either genotypic or allelic levels (Imai et al., 2002). 

 

In a more recent investigation, Zai and co-workers investigated a possible association between five SNPs 

(rs29218, rs29220, rs29225, rs29230 and rs3095273) in GBR1 and schizophrenia (Zai et al., 2005) (Fig 1.8). 

In their study, these researchers genotyped a sample of 110 small nuclear families amd 150 case-control pairs 

matched for age, ethnicity and gender. When analysing the family sample, they did not observe preferential 

transmission of alleles or haplotypes in a TDT analysis. However, in their case-control analysis, they reported 

an association between the rs29218 polymorphism, which is an A to G substitution at position -7265 of the 

promoter region of GBR1, and schizophrenia (Zai et al., 2005). 

 

To date, the two above-mentioned studies are the only two studies that specifically focus on the role of GBR1 

polymorphisms and schizophrenia and do not lend strong evidence supporting a role for GBR1 in the 

development of schizophrenia. However, based on the important roles of the GABA system in the 

development of schizophrenia (section1.1.5.3.4), further studies of this gene’s possible role in schizophrenia 

susceptibility are warranted. 

 
Fig 1.8: Schematic representation of a portion of GBR1 showing the locations of the 5 SNPs analysed in 

the study by Zai and co-workers (2005). Solid black lines represent introns, while solid blue blocks represent 
exons. Open blocks represent untranslated regions. 
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The evidence presented in the sections above illustrates how many of the studies investigating candidate genes 

for schizophrenia have focused mainly on neurotransmitter systems (dopamine, serotonin, glutamate and 

GABA) that have been implicated by pharmacological evidence. The section that follows will focus on 

association studies of genes that are candidates by both position, from linkage data, and function. 

 

1.4.6.2. Positional candidate genes 

1.4.6.2.1. Dysbindin 1 (DNTBP1) 

In an attempt to identify the susceptibility genes responsible for the linkage they previously found to 

chromosome 6p, Straub and co-workers applied a systematic linkage disequilibrium (LD) mapping approach 

using their original 270 Irish pedigrees ( Straub et al., 1996) (section 1.4.3.4) (Table 1.4). These investigators 

performed a family-based association analysis of simple sequence length polymorphism (SSLP) markers and 

analysis of SNP haplotyping in 6p22. They found significant evidence for association with SNPs within the 

dysbindin (DNTBP1) gene (DNTBP1) with p-values <0.01 for a number of individual SNP markers and p-

values of between 0.001-0.08 for multiple 3-marker haplotypes (Straub et al., 2002). 

 

The human DNTPB1 encodes a 40kDA coiled-coil-containing protein that binds to α-and β-dystrobrevin in 

muscle and brain tissue to form the dystrobrevin-associated protein complex (Benson et al  2001). This protein 

complex plays an integral structural role in synapse formation and maintenance and is also thought to be 

involved in NMDA and GABA receptor signalling (Benson et al., 2001). 

 

Since the original association between DNTBP1 and schizophrenia, several follow-up investigations have been 

undertaken. In view of the fact that DNTBP1 is located in the centre of their previously reported linkage peak 

on 6p (Schwab et al., 1995, 2000), Schwab and colleagues analysed the six most positive SNPs from an earlier 

study by Straub et al. (1996) in a cohort of 78 German and Israeli families, as well as 127 parent-proband trios 

in an attempt to replicate the finding by Straub and co-workers (Schwab et al., 2003). Evidence for association 

was observed in the two samples separately, as well as when they were combined (Schwab et al., 2003). 

 

However, a second attempt at replication in 219 Irish cases and 231 control individuals failed to support the 

involvement of DNTBP1 in schizophrenia (Morris et al., 2003), as did a separate study of 708 DSM-IV 

diagnosed schizophrenia cases and 711 control subjects from the UK and Ireland (Williams et al., 2004). 

However, investigators involved in the later study screened all exons and the promoter region of DNTBP1 and 

identified novel SNP markers. When these novel SNPs were included in the study, together with markers from 

the original study, highly significant evidence for association with an identified common risk haplotype was 

obtained (Williams et al., 2004). These same markers were then examined in the Irish cohort (Morris et al., 

2003) and the observed risk haplotype reported in the afore-mentioned study was found to be significantly 

more common in affected individuals within this group (Williams et al., 2004). 
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The discrepant results in these studies is quite interesting in view of the fact that all these studies were 

conducted exclusively in European populations, yet the data suggests differences in LD between these 

populations. 

 

1.4.6.2.2.Catechol-O-methyl transferase (COMT) 

The gene encoding catechol-O-methyltansferase (COMT), COMT, has been localised to chr22q11.1-q11.2 by 

Grossman et al., (1985), at a genomic locus that has been implicated in schizophrenia by linkage studies 

(Williams et al., 2003) and chromosomal abberations. COMT catalyses the transfer of the methyl group from 

S-adenosyl-L-methionine to a phenolic hydroxyl group of catechol neurotransmitters, catechol steroids and 

catechol drugs (Axelrod, 1966; Campbell et al., 1984). In the brain, COMT degrades catechol amines such as 

norephinepherine, epinephrine and dopamine into O-methyl esters (Guldberg and Marsden, 1975).  

 

Cell fractionation and immunological studies have shown that the COMT enzyme occurs as two distinct forms 

in mammals: in the cytoplasm as a soluble form (S-COMT) and associated with membranes as a membrane-

bound form (MB-COMT) (Assicot and Bohuon, 1971). S-COMT activity is the more prevalent form in all 

tissues, while MB-COMT generally represents less than 5% of the total COMT activity (Guldberg and 

Marsden, 1975; Jeffery and Roth, 1984; Grossman et al., 1985). However, in the brain, MB-COMT activity 

has been reported to be higher than in other tissues (Rivett et al., 1982).  

 

A functional polymorphism in COMT, in which the high (H) and low (L) activity alleles encode a valine or 

methionine amino acid residue, respectively, at codon 158 of the MB-COMT and codon 108 of S-COMT, has 

been described (Val/Met polymorphism). There is a three- to four-fold reduction in enzyme activity between 

the variants encoded by the H/H and L/L genotypes, with heterozygotes (H/L) showing intermediate enzyme 

activity. This polymorphism is represented by a G to A (Lachman et al., 1996) and has been the focus of 

numerous association studies in schizophrenia (Table 1.5), but have yielded ambiguous results (Li et al., 1996 

Chen et al., 1997; Kunigi et al., 1997; Strous et al., 1997; Ohmori et al., 1998; de Chaldee et al., 2001; Egan et 

al., 2001; Liou et al., 2001; Norton et al., 2002, Williams et al., 2005; Tsai et al., 2006). Whereas studies by 

Ohmori and co-workers (150 schizophrenia patients and 150 control individuals) and Kremer and co-workers 

(276 cases and 77control individuals) found significant evidence for association between the L allele and 

schizophrenia, several other studies failed to find any association (Strous et al., 1997; Chen et al., 1997; 

Norton et al., 2002; Williams et al., 2005; Tsai et al., 2006). Moreover, a number of family-based association 

studies have provided weak and inconsistent evidence that the H allele may be involved (Table 1.6).  

 

The largest reported case-control association study investigating the role of COMT in schizophrenia was 

performed using over 700 patients and more than 7000 control individuals (Shifman et al., 2002). These 

investigators not only tested the Val/Met polymorphism for association, but also several other SNPs across the 

COMT gene in an Ashkenazi Jewish cohort (Shifman et al., 2002). Interestingly, the Val/Met polymorphism 

by itself only showed modest evidence for association, however, when it was analysed as part of a haplotype 

study that included two non-coding SNPs, a high level of significance was achieved (p=9.5x10-8). These two 
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non-coding SNPs (one in intron 1 of MB-COMT [rs737865] and the other near the 3’ UTR [rs165599]) were 

themselves significantly associated with schizophrenia, with rs165599 showing the highest levels of 

significance (Shifman et al., 2002) (Fig 1.9). Even though this study reached statistical significance, it remains 

unreplicated. The data generated in this study suggests that if an association exists between the COMT locus 

and schizophrenia, it cannot wholly be explained by the Val/Met polymorphism (Owen et al., 2004). 

 

Given that COMT degrades dopamine, that most treatments for schizophrenia are dopamine blockers and that 

a deletion of chr22q11, which includes COMT, are all associated with increased schizophrenia risk, Bray and 

colleagues hypothesized that the COMT haplotypes associated with schizophrenia in the study by Shifman et 

al., (2002) would also be associated with lowered COMT mRNA expression levels (Bray et al., 2003). These 

investigators made use of SNPs within an expressed sequence as a tag for mRNA transcribed from each 

chromosomal allele and applied quantitative methods of allele discrimination to mRNA from individuals who 

are heterozygous for the marker polymorphism to measure relative allelic expression. They applied this 

principle to investigate the possible cis-acting mechanisms that affect expression of COMT in the human brain 

using 23 heterozygous individuals. Their data showed that the COMT haplotype implicated in schizophrenia is 

indeed associated with lowered COMT expression. Furthermore,  they showed that the SNP rs165599 (3’ UTR 

SNP), which gave the best evidence for association in the study by Shifman and co-workers, is transcribed in 

the human brain and exhibits allelic expression differences, with lower expression of the schizophrenia-

associated allele (Bray et al., 2003). These results support the hypothesis that the COMT haplotype implicated 

in schizophrenia susceptibility may exert its effect by the down-regulation of COMT and is also compatible 

with the hyperdopaminergic hypothesis of schizophrenia. 

 

 

 

 

 

 

 

 

 

 

 
Fig 1.9: Location of SNPs in COMT investigated in the study by Shifman et al., 2002. The capital letters 
represent each of the SNPs as follows: A(rs737685); B(rs174686); C(rs740603); D(rs6269); E(rs6270); 
F(rs4633); G(rs6267); H(rs165688); I(rs174689); J(rs362204); K(rs165599). Solid blue rectangles represent 
transcribed regions, whereas open rectangles represent untranslated regions.  
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Table 1.6: Association studies of COMT Val/Met polymorphism in schizophrenia 

Abbreviations: COMT, Catechol-O-methyltransferase; TDT, Transmission disequilibrium test; Val, Valine 

Study reference Study Design  Findings Statistical values 

Li et al., 1996 TDT of 178 Han Chinese parent/schizophrenic offspring 
trios consisting of schizophrenic patients and their 
parents 

Val-108 allele predominantly transmitted to affected 
offspring 

p=0.005 

Daniels et al., 1996 Case-control association study of 78 unrelated 
schizophrenia patients and unrelated controls 

No association χ2 =0.12, 1df, p=0.81 (allele) 
χ2 =0.32, 2df, p=0.83 (genotype) 

Chen et al., 1997 Case-control association study of 177 unrelated Chinese 
schizophrenic patients and 99 unrelated Chinese controls 

No association χ2 =0.01, 2df, p=0.99 (genotype) 
χ2 =0.000, 1df, p=1.00 (allele) 

Strous et al., 1997b Case-control association study of 42 unrelated 
Caucasian schizophrenia patients and 87 unrelated 
Caucasian controls from the U.S 

No association p=0.07 (genotype) 
p=0,15 (allele) 

Ohmori et al., 1998 Case-control association study of 150 unrelated 
Japanese schizophrenia patients and 150 unrelated 
Japanese controls 

Val-108 allele associated with schizophrenia χ2 =4.83, 1df, p=0.028 (allele) 
χ2 =7.26, 2df, p=0.026 (genotype) 

Egan et al., 2001 TDT of 104 Caucasian parent/schizophrenic offspring 
trios  

Val-108 allele transmitted more frequently to affected 
offspring 

χ2 =4.57, p=0.03 

Liou et al., 2001 Case-control association study of 198 unrelated Chinese 
schizophrenia patients and 188 unrelated Chinese 
controls  

No association between COMT and schizophrenia, but 
significant differences in age of onset among the 
different genotypes 

χ2=5.501; p=0.005 

Kremer et al., 2002 TDT of 194 Palestinian Arab parent/ schizophrenic 
offspring trios 
Case-control association study of 276 unrelated 
Palestinian Arab schizophrenia patients and 77 unrelated 
Palestinian Arab controls 

Val-108 allele associated with schizophrenia in case-
control study. Association stronger in females. 
No preferential transmission of either allele in TDT 

χ2=3.935; 1df, p=0.047 
χ2=5.89; 1df, p=0.015 (females) 
χ2= 0.14, p>0.05 

Norton et al., 2002 Case-control association study of 346 unrelated 
Caucasian schizophrenia patients and 334 unrelated 
schizophrenia controls 

No association χ2=0.73; 1df; p=0.55 

Glatt et al., 2003 Meta-analysis of 14 case-control association studies 
(2205 cases, 2236 controls and 5 family-based studies 
(584 parent/offspring trios) 

No association found in case-control studies 
No preferential transmission of either allele found in 
family-based studies  

p=0.57 
p=0.13 

Sazci et al., 2004 Case-control association study of 297 unrelated Turkish 
schizophrenia patients and 341 unrelated Turkish 
controls 

Val-108 allele and Val/Val genotype associated with 
schizophrenia.  
 

χ2 =13.03, p=0.001 (allele) 
χ2 =4.048,  p=0.020 (genotype) 

Williams et al., 2005 Case-control association study of 709 
unrealated Caucasian schizophrenia patients 
and 710 unrelated Caucasian controls and TDT 
analysis of 488 parent/offspring trios 

No association found in case-control studies 
No preferential transmission of either allele 
found in family-based studies 

p=0.9 
p=0.75 
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1.4.6.2.3.Proline dehydrogenase 2 (PRODH2) 

The high frequency of schizophrenia in patients with 22q11DS has led to the hypothesis that sequence 

variation within one or several genes in the deleted region of chr22q11 (Fig 1.5) might contribute to 

schizophrenia in the general population (Egan et al., 2001). The overwhelming majority of chr22q11 deletions 

are 3Mb in size whereas approximately 8% involve a smaller 1.5Mb deletion. Karayiourgou et al. reported a 

schizophrenic patient carrying this smaller 1.5Mb deletion and thus defined the “schizophrenia critical region” 

on chr22q11 (Karayiourgou et al., 1995). Linkage disequilibrium mapping of this 1.5Mb region in 

schizophrenic patients identified a segment containing the gene encoding proline dehydrogenase (PRODH) 

(Lui et al., 2002). PRODH is a mitochondrial enzyme that converts proline to ∆-1-pyrroline-5-carboxylate and 

is involved in the transfer of redox potential across the mitochondrial membrane (Gogos et al., 1999). ∆-1-

Pyrroline-5-carboxylate can be converted to glutamate and GABA, both of which are candidate 

neurotransmitter systems implicated in schizophrenia (Pearlson 2000). Additionally, mice with an inactivated 

PRODH gene have abnormal sensorimotor abnormalities (discussed in section 1.1.4.1.) similar to 

schizophrenic patients (Gogos et al., 1999).  

 

Liu and colleagues analysed polymorphisms in PRODH and found an association between the 

PRODH
*
1945T/C SNP and schizophrenia using TDT in 107 independent North American triads. These 

investigators subsequently revealed an association with a two marker haplotype, PRODH
*
1945/1766, which 

was significantly more associated with schizophrenia than either SNP individually, when analysed using the 

North American triads and a case-control sample of 109 unrelated Afrikaner schizophrenic patients and 75 

unrelated Afrikaner control individuals) (Liu et al., 2002). However, Fan and colleagues found no evidence of 

preferential transfer of PRODH
*
1945T/C alleles to affected offspring using both TDT and HRR methods in 

166 family trios from east China. This study (Fan et al., 2003).  

 

Williams and colleagues undertook a detailed analysis of PRODH using a large case-control cohort (368 

unrelated Caucasian schizophrenic patients from the U.K and Ireland and 368 unrelated matched Caucasian 

control individuals, a sample of VCFS probands with and without schizophrenia and a sample of 55 proband 

trios with juvenile-onset schizophrenia) (Williams et al., 2003). They found none of the SNPS employed in the 

Liu et al. study, nor nine newly identified cDNA varients, to be associated with schizophrenia susceptibility 

(Williams et al., 2003).  

Thus, despite several lines of evidence suggesting that PRODH is likely to be a promising candidate gene for 

schizophrenia, given the lack of replication of the original findings in studies employing 95% power to 

replicate, PRODH, as other schizophrenia implicated genes, may not be ubiquitously associated with increased 

schizophrenia risk (Owen et al., 2004).  

 

1.4.6.2.4. Neuregulin 1 (NRG1) 

Neuregulin 1 (NRG1), a member of a family of four growth factors, the neuregulins, plays multiple roles in a 

number of organs including the nervous system, heart and breast (Lemke et al., 1996; Ozaki et al., 2000; Falls 

et al., 2003). In the brain, NRG1 is involved in synapse formation, activity-dependent synaptic plasticity and 
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regulation of NMDA, GABAA and acetylcholine receptor subunit expression (Ozaki et al., 1997; Yang et al., 

1998; Rieff et al., 1999; Liu et al., 2001, Liu Stefansson et al., 2002). Neuregulin 1 also regulates the 

proliferation and migration of Schwann cells (Dong et al., 1995; Lemke, 1996; Gassmann and Lemke,1997) 

and neurons within the brain (Rieff et al., 1999; Schmid et al., 2003). It has been suggested that NRG1 may 

mediate schizophrenia by changing expression profiles of a wide variety of neuroreceptors, particularly 

NMDA and glutametergic receptors (Stefansson et al., 2002). 

 

The neuregulin1 gene (NRG1) has been localised to chr8p12-22, which has been implicated in schizophrenia 

susceptibility in a number of independent studies in varying population groups (Pulver et al., 1995; Kender et 

al., 1996; Levinson et al., 1998, Brustowicz et al., 1999; Gurling et al., 2001). Stefansson and colleagues 

conducted a genome-wide scan for schizophrenia linkage in a large Icelandic population and detected 

suggestive evidence for linkage to chr8p12-21 (Stefansson et al., 2002). This was followed up with systematic 

LD analysis around the linked region on 8p and three “at-risk” haplotypes (HapA, HapB and HapC) were 

identified. Each “at-risk” haplotype shared a 290kb core haplotype of seven markers (5 SNPs and 2 

microsatellites), upstream from the first 5’ exon of NRG1, that showed an estimated frequency of 7.5% in the 

general population and 15.4% among schizophrenic patients (Stefansson et al., 2002) (Fig 1.10). This core “at-

risk” haplotype is defined by a minimum haplotype of one SNP (SNP8NRG221533) and two microsatellites 

(478B14-848 and 420M9-1395). Following the identification of the “core at-risk haplotype” in an Icelandic 

population, Stefansson and co-workers replicated this finding in a Scottish cohort of 609 schizophrenic 

patients and 618 control individuals, suggesting that the “at-risk” haplotype is not specific to the Icelandic 

population (Stefansson et al., 2003) 

 

Since these initial studies, several investigations of NRG1 involvement in schizophrenia have been completed. 

Several of these studies provided further evidence for the association of NRG1 and schizophrenia risk. 

Williams and colleagues genotyped SNP8NRG221533, 478B14-848 and 420M9-1395 (defined by Stefansson 

et al., [2002] as the minimum “core at-risk” haplotype) in their sample of 709 unrelated Caucasian 

schizophrenic patients and matched control individuals born in the U.K. and Ireland (Williams et al., 2003). 

None of the three analysed markers achieved significant allelic association with schizophrenia by themselves, 

however, when testing for haplotype association, the previously described “at-risk” haplotype was 

significantly more common in the patients than in the control group (Williams et al., 2003). 

 

Corvin and colleagues provided additional support for a susceptibility locus for schizophrenia on chr8p12-22 

by replicating (Corvin et al., 2004) the two above-mentioned studies (Stefansson et al., 2002; Williams et al., 

2003) in an Irish case-control sample. They identified an ‘at-risk’ haplotype that overlaps one of the “at-risk” 

haplotypes (HapB) reported in the Icelandic population (Corvin et al., 2004; Stefansson et al., 2002). This 

refined haplotype (HapBIRE) was found in significant excess in the Irish schizophrenia cases versus control 

individuals (Corvin et al., 2004). These results were also confirmed in the Scottish schizophrenia cohort 

described by Stefansson et al . Moreover, this study suggests that the expressed sequence tag (EST) cluster 

Hs97362 may potentially be a susceptibility gene at the NRG1 locus (Corvin et al., 2004). However,
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Fig 1.10: Schematic representation of markers used in the study by Stefansson and colleagues (2002). A:. 
Microsatellite markers on chromosome 8p. The position of NRG1 is schematically shown (taken from Stefansson et al., 

2002). B: Microsatellite markers and SNPs at the 5’ end of NRG1. The 4 haplotypes, HapA-HapC2, were individually 
found in excess in schizophrenia patients. The blue arrows indicate the three markers that minimally define the core 
haplotype. The panel on the right indicates the frequencies of each of the four “at-risk” haplotypes in all affected 
individuals (taken from Stefansson et al., 2002). C: Schematic representation of the truncated forms of the ‘at-risk’ 
haplotypes. Haplotype frequency of HapBIRE  and HapD (the haplotypes that were found to be associated with 
schizophrenia in the Irish cohort in the study by Corvin et al., 2004) is shown in the panel on the right. The relative 
physical position of each of the markers on NRG1 is indicated by the black arrows. The positions of the Chinese 
haplotypes are indicated by solid black lines, while the position of the Scottish/Icelandic haplotype is indicated by the 
solid blue line (taken from Corvin et al., 2004). 
 

 

independent studies conducted in the Irish study of high-density schizophrenia families (ISHDSF) (Thiselton 

et al., 2004) and in a Japanese cohort (Iwata et al., 2004) found no evidence for linkage or association with the 

previously described “at-risk” haplotypes (Stefansson et al., 2002; Williams et al., 2003; Corvin et al., 2004) 

at the NRG1 locus.  

 

But, a novel “at-risk” haplotype was identified at this locus in a Han Chinese sample (Li et al., 2004). In this 

study, five of the seven markers used in the Icelandic sample were genotyped and used for haplotype analysis 

in family-based (184 parent-offspring trios and 138 affected siblings with at least one parent) and case-control 

association studies (298 unrelated Han Chinese schizophrenic patients and 336 unrelated Han Chinese control 

individuals) (Li et al., 2004). Neither the haplotype nor alleles associating with the Icelandic “at-risk” 

haplotype were found in excess in the Chinese schizophrenia cases. Three interesting haplotypes where, 

however, identified, ie. HapCHINA1, HapCHINA2 and HapCHINA3.. HapCHINA1, situated immediately upstream of the 

Icelandic “at-risk” haplotype was found in excess in schizophrenic patients versus control individuals. 

However, this association was lost when family-based methods were used. HapCHINA2 was associated with 

schizophrenia in both case-control and family-based studies, while HapCHINA3 was only associated in family-

based studies (Li et al., 2004).  

 

HapCHINA3 HapCHINA1 HapCHINA2 

Scottish/Icelandic 
haplotype 
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Recently, Kim an co-workers genotyped the seven markers used in the Icelandic sample (Stefansson et al., 

2002) in a cohort of  242 unrelated Korean schizophrenia patients and 242 matched controls (Kim et al., 

2006). In the above-mentioned study, only SNP8NRG241930 showed a tendacy toward significance in the 

schizophrenia sample and a significant association was only observed when the schizophrenia group was sub-

stratified into patients with auditory hallucinations (section 1.1.1). However, as with the study by Li et al., 

2004, this study also did not replicate the haplotype association findings of Stefannson and colleagues. Instead, 

their results showed that another haploytype containing the opposite alleles reported by Stefansson and co-

workers was significantly increased in the control group (Kim et al., 2006). 

 

The failure of the studies by Li and co-workers and Kim and co-workers to replicate the findings in the 

Icelandic, Scottish and Irish studies (Stefansson et al., 2002, Williams et al., 2003; Corvin et al., 2004) is not 

surprising as the origins of Northern European and Chinese populations are separated by tens of thousands of 

years and different relationships between risk haplotypes and disease susceptibility variants may have evolved 

during this time (Owen et al., 2004). The same unidentified disease-predisposing genetic variant or variants 

may be present in both European and Chinese populations but are associated with different overlying 

haplotypes (Li et al., 2004). 

 

There have also been reports of association studies between a non-synonymous NRG1 polymorphism 

(Arg38Gln), located in exon 2 of NRG1, and schizophrenia. Yang et al., in a study of 246 Han Chinese trios, 

reported a significant association between this polymorphism and schizophrenia (Yang et al . 2003). In an 

attempt to replicate this finding, Hong and co-workers conducted case-control and family-based association 

studies of NRG1-Arg38Gln in 228 schizophrenic patients and 269 control individuals (Hong et al., 2004). The 

family-based analysis showed that the 38Gln allele was transmitted in excess to affected offspring, however no 

association was detected in their case-control analysis. The discrepancy between results from family-based and 

case-control studies can be explained in various ways. Firstly, the NRG1 polymorphism may be a disease locus 

of small effect and, therefore, the failure of these investigators to detect any association in their case-control 

study may be a false negative result due to low statistical power for detecting such effects. Secondly, the 

NRG1 polymorphism may have no involvement in schizophrenia pathogenesis and the positive finding from 

the family-based study could be a false positive finding. Thirdly, since the case-control and family-based 

samples were from different sources (ie. different enthic origins, different diagnostic criteria), the 

inconsistency of association results between the two samples may be because of differences in disease severity 

or subtypes of the patients studied or genetic heterogeneity in susceptibility loci. 

 

1.4.6.2.5. G72/G30 and D-amino acid oxidase (DAAO) 

As a result of significant linkage of schizophrenia to chr13q34, Chumakov and colleagues (2002) conducted 

an in-depth study of SNPs localized to this region in 213 French-Canadian schizophrenia cases and 241 

French-Canadian control subjects. One hundred and ninety one SNPs were identified across the region of 

interest from pools of 100 unrelated individuals, by sequencing amplicons across the 5Mb segment from 

chr13q34. Disease association analysis in the schizophrenia affected patients revealed two smaller regions 
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containing markers that reached nominal significance (p<0.05), which these investigators referred to as Bin A 

(65.9Kb containing 11 SNPs) and Bin B (1.380Kb containing 5 SNPs) (Chumakov et al., 2002). Bin A was 

shown to harbour two possible schizophrenia susceptibility genes, G72 and G30, which are overlapping but 

located on opposite DNA strands. G30 did not produce a translation product in vitro, thus only G72 was used 

in subsequent studies (Chumakov et al., 2002). Polymorphisms in and around these genes were reported to be 

associated with schizophrenia in the French/Canadian sample, as well as a Russian sample (183 cases and 183 

controls) (Chumakov et al., 2004) (Tables 1.7 and 1.8). 

 

No homologues for G72 were present in any databases at the time, nor did sequence analysis of putative open 

reading frame (ORF) yield any likely function. Consequently, Chumakov and colleagues used yeast two-

hybrid (Y2H) analysis in order to identify putative G72 interactors in an attempt to assign function to G72. 

Their analysis showed that G72 interacts with D-amino acid oxidase (DAAO), a detoxifying enzyme against 

exogenous D-amino acids (Owen et al., 2004) and a potent activator of NMDA and glutamate receptors 

(Stevens et al., 2003), implicating G72 in schizophrenia via the glutamatergic theory (Konradi and Heckers, 

2003). Subsequently, assuming that the interactor(s) of a putative schizophrenia susceptibility gene may 

themselves also constitute schizophrenia susceptibility factors, eight SNPs covering the DAAO gene on 

chr12q24 were genotyped and tested for association in the same French-Canadian sample that led to the 

discovery of G72 (Chumakov et al., 2002). Four intronic SNPs in partial LD (MDAAO-4, MDAAO-5, 

MDAAO-6 and MDAAO-7) were significantly associated with schizophrenia. 

 

The G72/G30 genes were also reported to be associated with schizophrenia in an Ashkanazi Jewish cohort of 

60 patients and 130 unrelated controls (Korostishevsky et al., 2004). Moreover, the expression of G72 was 

shown to be decreased in the post-mortem dorsolateral prefrontal cortex (DLPFC) of schizophrenics, 

compared to control subjects  (Korostishevsky et al., 2004). Association with these two genes has also been 

reported in a Chinese schizophrenia sample (Wang et al., 2004)., while the association of DAAO with 

schizophrenia in the French/Candian sample (Chumakov et al., 2002) has recently been replicated in an 

independent study of 547 Chinese schizophrenia patients and 536 matched control individuals (Liu et al., 

2004). 

 

The discovery of the interaction of G72 with DAAO (Chumakov et al., 2002), coupled with the reported 

association of both these two genes with schizophrenia, represents the first time it was demonstrated that the 

interaction between two genes, by means of physical interaction of their products, can potentially account for 

increased risk of developing schizophrenia (Cloninger et al , 2002). This, together with the fact that 

associations of G72 and DAAO with schizophrenia has been replicated in both European and non-European 

populations, will have important implications in our understanding of schizophrenia pathogenesis. 

Furthermore, the success of this approach in identifying novel candidate susceptibility genes emphasize the 

need for a mindshift from the investigation of single genes, to the contemplation of pathways and interactomes 

in the search for genes involved in complex disorders. 
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Table 1.7: Statistical analysis of SNPs in and close to Bin A in French Canadian and Russian cohorts from the study by Chumakov et al., 2002. 

French-Canadian Sample (213 schizophrenia cases and 241 control subjects.) 
SNPs M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 
BinA position                       

Gene position 
(G72) 

                   

Polymorphism A/G A/G A/G C/T A/G C/T A/G A/C A/G A/G A/G A/G A/C C/T A/G C/T A/G C/T A/T 

Allele frequency 
(cases) 

0.50 0.65 0.32 0.30 0.69 0.44 0.64 0.63 0.64 0.65 0.61 0.69 0.44 0.31 0.40 0.63 0.69 0.57 0.55 

Allele frequency 
(controls) 

0.49 0.62 0.29 0.27 0.66 0.37 0.55 0.57 0.58 0.58 0.57 0.67 0.40 0.28 0.39 0.58 0.60 0.49 0.47 

p-value for 
allelic tests 

>0.01 >0.01 >0.01 >0.01 >0.01 0.062 0.007 0.071 0.038 0.032 >0.01 >0.01 >0.01 >0.01 >0.01 0.069 0.003 0.019 0.019 

Russian Sample (183 schizophrenia cases and 183 control subjects.) 
Allele frequency 
(cases) 

not 
done 

not 
done 

not 
done 

0.27 0.71 0.40 0.57 0.56 0.53 not 
done 

not 
done 

0.72 0.41 not 
done 

0.41 0.62 0.65 0.60 0.54 

Allele frequency 
(controls) 

not 
done 

not 
done 

not 
done 

0.29 0.71 0.37 0.59 0.58 0.53 not 
done 

not 
done 

0.76 0.43 not 
done 

0.39 0.61 0.63 0.51 0.48 

p-value for 
allelic tests 

not 
done 

not 
done 

not 
done 

>0.01 >0.01 >0.01 >0.01 >0.01 >0.01 not 
done 

not 
done 

>0.01 >0.01 not 
done 

>0.01 >0.01 >0.01 0.017 >0.01 

Abbreviations: DAOO, D- amino acid oxidase 

Twenty markers were selected in and around Bin A and analysed for association with schizophrenia. The results shown in this Table represents univariate analysis. The position of Bin 
A in reference to the SNP markers is shown by the solid yellow block, while the position of G72 is shown by the solid orange block. The polymorphism studied is indicated and the 
allele with increased frequency in French Canadian cases compared to French Canadian controls is indicated by blue font. Significant p-values lower than 0.05 are highlighted in red 
(Adapted from Chumakov et al., 2002) 
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Table 1.8. Analysis of DAAO SNPs in French-Canadian samples  

SNPs MDAAO-
1 

MDAAO-
2 

MDAAO-
3 

MDAAO-
4 

MDAAO-
5 

MDAAO-
6 

MDAAO-
7 

MDAAO-
8 

DAOO gene 
location 

        

Polymorphism C/T C/T A/C A/C C/T G/T A/G A/G 

Allele frequency 
in cases (N=213) 

0.76 0.44 0.50 0.36 0.28 0.59 0.33 0.63 

Allele frequency 
in controls 
(N=241) 

0.75 0.42 0.47 0.28 0.21 0.49 0.25 0.61 

p-value for 
allelic tests 

>0.01 >0.01 >0.01 0.017 0.007 0.0001 0.01 >0.01 

Abbreviations: DAOO, D- amino acid oxidase 
Eight SNPs analysed in and around DAAO: 24-1443/126 (MDAAO-1), 27-81/180 (MDAAO-2), 24-1457/52 (MDAAO-
3), 27-29/224 (MDAAO-4), 27-93/181 (MDAAO-5), 27-2/106 (MDAAO-6), 24-1461/256 (MDAAO-7) and 27-
1/61(MDAAO-8). Data for markers and results from univariate analysis are shown. The DAAO gene’s relative position 
in reference to SNPs is indicated by the solid green block. The allele with increased frequency in French Canadian cases 
,compared to French Canadian controls, is indicated in blue font. P- values (lower than 0.05) are shown in red (Adapted 
from Chumakov et al., 2002). 
 

1.4.6.2.6. Regulator of G-Protein signalling 4 (RGS4) 

The regulator of G-protein signalling 4 (RGS4) is a member of a GTPase-activating protein family that 

modulate many heterotrimeric G-protein-coupled receptors (GPCR). They shorten the duration of the 

intracellular signaling of many G-protein-coupled receptors belonging to the dopamine, GABA, glutamate and 

other neurotransmitter systems (Chowdari et al., 2002). 

 

cDNA microarray analysis of global gene expression showed that RGS4 was most consistently and 

significantly down-regulated in the prefrontal cortex (PFC) of schizophrenic patients, compared to control 

subjects (Mirnics et al., 2001). Interestingly, expression levels of other members of the RGS family remained 

unchanged (Mirnics et al., 2001). RGS4 maps to chr1q21-22, which has been linked to schizophrenia 

susceptibility in a number of independent linkage studies (Brzustowicz et al., 2000; Shaw et al., 1998). RGS4 

is also highly expressed in brain regions implicated in the pathophysiology of schizophrenia (Ni et al., 1999). 

 

Chowdari and co-workers used a combination of family-based and case-control association strategies to 

determine whether altered RGS4 expression reflects a primary inherited anomaly in schizophrenia (Chowdari 

et al., 2002). They investigated two parent-proband trio samples sets from the North American cohorts, 

comprising 55 Caucasian parent-offspring trios from Pittsburg and 25 parent-offspring trios from the National 

Institute of Mental Health Collaborative Genetics sample. The study further investigated the possible role of 

RGS4 in schizophrenia using 269 parent-offspring trios from India, as well as a Caucasian cohort from the U.S 

comprising 55 schizophrenia cases and 85 control individuals for case-control analysis. These investigators 

reported significant associations that were independently obtained in the North American trio samples for 

three SNPs as well as a haplotype encompassing four SNPs (designated SNP 1, 4, 7 and 18) in the 5’ flanking 

region and first intron of RGS4 (Chowdari et al., 2002) (Fig 1.11). No evidence for association was detected in 

the Indian sample at the SNP or haplotype level. In the two U.S samples (two trio cohorts and the case control 

Comment [IT48]: Ni, Y.G., Gold, S.J., Iredale, 
P.A., Terwilliger, R.Z., Duman, R.S. and Nestler, E.J. 
(1999) Region-specific regulation of RGS4 (regulator 
of G-protein-signaling protein type 4) in brain by 
stress and glucocorticoids: in vivo and in vitro studies. 
J. Neurosci., 19, 3674–3680  
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cohort), different alleles and haplotypes were associated with disease, which raises the possibility that the 

results of the TDT analysis may reflect independent risk factors between the two samples. Although 

significant TDT results were not obtained for the Indian cohort, the overall probability for biased parental 

transmission of haplotypes bearing SNPs1, 4, 7 and 18 was significant when accumulated over the three 

cohorts. 

 

RGS4 involvement in schizophrenia was also evaluated in the ISHDF sample from Ireland. Single marker 

TDT for the four core SNPs implicated in the original study (Chowdri et al., 2002) showed modest association 

with SNP 4 and 18, while for SNPs 1 and 7, the overtransmitted alleles to schizophrenia subjects were the 

same as previously reported (Chen et al., 2004). 

 

Williams and co-workers was able to replicate the evidence for two of the four SNPs (SNPs 4 and 18) that had 

previously been associated. Furthermore, their global tests for association using two, three and four marker 

haplotypes provided strong evidence for association with a haplotype contructed from these two markers 

(Williams et al., 2004). 

 

These three reports represent the body of evidence collected, thus far, implicating RGS4 as a schizophrenia 

susceptibility gene.  However, no studies have yet provided a link between particular RGS4 genotypes or 

haplotypes and decreased gene expression in the PFC of schizophrenic patients. Furthermore, in a more recent 

family-based association study, Liu and co-workers failed to show an association with any of the four SNPs 

used in the afore-mentioned investigations (Chowdari et al., 2002; Chen et al., 2004; Liu et al., 2004) at single 

locus or haplotype level in 218 schizhophrenia pedigrees from Taiwan (Liu et al., 2006). 

 

1.4.6.3. Association studies of schizophrenia endophenotypes 

Schizophrenia endophenotypes (section 1.1.4) have also been used in candidate gene association studies. 

Specifically, the Val158 allele of COMT has been linked to impaired working memory and executive 

dysfunction as assessed by the Wisconsin Card Sorting Test (WCST) and N-back test (Egan et al., 2001; 

Joober et al., 2002; Goldberg et al., 2003). On the other hand, Bilder et al., (2002) reported that schizophrenic 

patients carrying the Val158 allele performed worse on tasks testing attention and speed of information 

processing, but not on executive functions  

 

Tsai and colleagues (2003) provided support for these findings. They considered performance on the WCST 

and the auditory P300 ERP, a PPI test, to test for association with COMT, using a cohort of 120 healthy young 

Chinese females. They failed to find an association with COMT and performance on the WCST, but showed 

that subjects with the Val158 showed prolonged latency to the P300 ERP (Tsai et al., 2003). Moreover, in a 

recent study of 49 unrelated schizophrenia sufferers of German descent and 170 unaffected control 

individiuals (also of German descent), these findings were replicated (Gallinat et al., 2003).  
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Antal and co-workers (2004) recently reported an association between the DRD3 ser9 allele and impaired 

executive function. These investigators demonstrated that schizophrenic patients carrying the ser9 allele of 

DRD3 exhibited worse performances on the WCST compared to those carrying the gly9 allele (Antal et al., 

2004). Interestingly, the COMT Val158 and DRD3 ser9 alleles have both been associated with EMD in 

schizophrenia (Rybakowski et al., 2001; 2002). 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.11: Schematic representation of the genomic organization of RGS4 and flanking regions. The RGS4 
gene is indicated by a yellow block in panel A. Exons are indicated by blue blocks, while introns are represented by a 
black line and the promoter by a red line in panel B. All SNPs are indicated on the diagram, with SNPs comprising the 
four marker haplotype indicated by the blue font (Adapted from Chowdri et al., 2002). 
 

1.4.7. Association Studies in OCD 

To date, association studies in OCD have focused on functional candidate genes. Most of the candidates 

analysed are involved in the metabolism of CNS neurotransmitters. Recently, however, genes involved in CNS 

development have also been targeted. As these results also have bearing on choosing novel candidate genes, 

the following section will review the result of studies of some of the most promising candidate genes for OCD.  

 

1.4.7.1. Serotonin system genes 

The efficacy of SSRIs, and the absence of improvement of OCD symptoms after treatment with 

norepinephrine-reuptake inhibitors and dopamine antagonists, presents strong evidence for the involvement of 

5-HT in the pathophysiology of OCD (Barr et al., 1992; Goodman et al., 1990; Murphy et al., 1989). Thus, 

genes in the serotonergic pathway, such as the 5-HT transporter (SLC6A4) and serotonin receptors (5-HTR), 

are good candidate genes for conferring susceptibility to OCD. Neurotransmission mediated by 5-HT 

contributes to many physiological functions such as motor activity, food intake, sleep and reproductive 

activity. It also contributes to cognition and emotional states including mood and anxiety (Ramboz et al., 

1998). 

 

1.4.7.1.1. Serotonin Transporter (5-HTT) 

Serotonergic neurotransmission is terminated by the active transport of 5-HT back into the presynaptic neuron 

by the serotonin transporter protein (5-HTT). The latter regulates the magnitude and duration of serotonergic 
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responses by mediating the sodium-dependent re-uptake of 5-HT into presynaptic nerves, and, in so doing, it is 

central to the fine-tuning of brain serotonergic neurotransmission and the peripheral actions of 5-HT (Lesch et 

al., 1996). The expression of 5-HTT in the brain is notably abundant in the cortical and limbic areas involved 

in the emotional aspects of behaviour. 

 

The 5-HTT protein is one of several structurally similar sodium-dependent transporter proteins that contain 12 

putative membrane-spanning regions (Amara and Kahar, 1993), and is encoded by a single gen e, SCL6A4 

(solute carrier family 6 [neurotransmitter serotonin], member 4),on chromosome 17q12 (Ramamoorthy et al., 

1993) and has the official gene symbol. A unique GC-rich repetitive sequence is located in the proximal 5’ 

regulatory region of SCL6A4. Heils et al., (1996) revealed a common polymorphism in this region (5-

HTTLPR) generated by a 44bp insertion/deletion sequence (l/s) This polymorphism has been shown to have a 

significant effect on blood 5-HT level (Hanna et al., 1998), and has been the subject of numerous OCD 

association studies, summarised in Table 1.9. 

 

In an association study between SCL6A4 and OCD, McDougle et al., (1998) employed a TDT design in 34 

European-American triads and found that the l allele of 5-HTTLPR was significantly more commonly 

transmitted by heterozygous parents to their OCD affected offspring. In a population-based association study 

of 75 Caucasian OCD patients and 397 ethnically matched control individuals, Bengel et al., (1999) 

demonstrated that OCD patients were more likely to be homozygous for the 5-HTTLPR l allele than control 

individuals. In a meta-analysis of association studies of 5-HTTLPR and OCD (129 Caucasian OCD patients 

and 479 Caucasian control individuals), however, Kinnear and colleagues found no association (p=0.108) 

(Kinnear et al., 2000). Moreover, another study found that the 5-HTTLPR polymorphism did not appear to 

influence response to pharmacotherapy in OCD, thus raising some doubt about the functional importance of 

the above-mentioned findings (Billett et al., 1997). 

  

1.4.7.1.2. Serotonin receptors 

The serotonin receptors 1Dβ, (5-HT1Dβ ), 2A (5-HT2A) and 2C (5-HT2C) have also been extensively 

investigated as possible OCD susceptibility genes (Table 1.10). The 5-HT1Dβ  gene (5-HT1Dβ) is of particular 

interest: it encodes a terminal auto-receptor and challenge studies of non-selective ligands of this receptor (eg. 

meta-chlorophenyl piperazine, m-CPP) showed an acute worsening of OCS in OCD patients (Gross et al., 

1998). Worsening of OCS has also been reported following acute administration of sumatriptan, a selective 

agonist to 5-HT1Dβ (Gross et al., 1998). However, some OCD patients who do not respond to conventional 

pharmacotherapy have been reported to respond to chronic administration of sumatriptan (Stern et al., 1998). 

Comment [IT49]: Gross R, Sasson Y, Chopra M, 
Zohar J: Biological models of obsessive-compulsive 
disorder: the serotonin hypothesis, in Obsessive-
Compulsive Disorder: Theory, Research, and 
Treatment. Edited by Swinson RP, Antony MM, 
Rachman S, Richter MA. New York, Guilford, 1998, 
pp 147–148 
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Table 1.9: Association studies of 5-HTTLPR and OCD  

Study Cohort Method Findings p-value 

McDougle et al., 

1998 
• 34 European-American 

parent-offspring trios 
TDT The “l” allele was found to be 

transmitted more frequently to 
patients 

χ
2 =4.83,  

p=0.03 

Bengel et al., 1999 • 75 Caucasian OCD 
patients and 397 ethnically 
matched controls 

Case-control 
association 

Patients were more likely to carry 
two copies of the “l” allele 

χ
2 =5.19, 

p=0.023 

Frisch et al., 2000 • 39 Ashkanazi Jewish OCD 
patients and 112 ethnically 
matched controls 

Case-control 
association 

No association p>0.05 

• 34 non-Ashkanazi Jewish 
OCD patients and 60 
ethnically matched 
controls 

Case-control 
association 

No association p>0.05 

Kinnear et al., 

2000 
• Meta-analysis of 129 

Caucasian OCD patients 
and 379 matched controls 

Case-control 
association 

No association p>0.05 

Camarena et al., 

2001 
• 115 Mexican OCD patients 

and 136 ethnically matched 
controls 

Case-control 
association 

No assocaition χ
2 =1.54,  

p=0.21 

43 Mexican parent-offspring 
OCD trios 

TDT No association p>0.05 

Meira-Lima et al., 

2001 
• 79 Brazilian OCD patients 

and 202 controls   
Case-control 
association 

No association p>0.05 

Chabane et al., 

2004 
• 106 French OCD patients 

and 171 ethnically matched 
controls 

Case-control 
association 

No association χ
2 =0.84,  

p=0.36 

• 116 parent-offspring OCD 
trios 

TDT No Association p>0.05 

Walitza et al., 

2004 
• 64 parent-offspring OCD 

trios 
TDT No association p=0.16 

Denys et al., 2006 • 156 Caucasian OCD 
patients and 134 ethnically 
matched controls 

Case-control 
association 

Female patients were more likely 
to carry the S allele compared to 
female controls 

χ
2 =6.0,  

p=0.014 

Abbreviations: OCD, Obsessive-compulsive disorder; TDT, Transmission disequilibrium test 
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Mundo and colleagues reported an association between a silent G-to-C substitution at nucleotide 861 (G861T) 

of 5-HT1Dβ using a family-based study design (Mundo et al., 2000). Their investigation showed the 

preferential transmission of the G allele to affected individuals (Mundo et al., 2000) (Table 1.9). This finding 

was followed up in an extended sample of 121 OCD families in whom the G861C polymorphism, as well as a 

T-to-G substitution at nucleotide 371 (T371G), were used in a TDT analysis (Mundo et al., 2002) (Table 1.9), 

which confirmed the findings of the original investigation (Mundo et al., 2000; Mundo et al., 2002). However, 

two independent studies found no association of the 5-HT1Dβ G861C polymorphism with OCD (Di Bella et 

al., 2002, Hemmings et al., 2003) (Table 1.10). 

 

The 5-HT2A receptor gene (5-HT2A) encodes a G-protein-coupled receptor that controls signal transduction 

pathways by activating phospholipase C (Berg et al., 1998). Furthermore, the enhancement of serotonergic 

neurotransmission by activation of 5-HT2A is a common feature of many serotonin-reuptake inhibitors (SRI) 

(Greenberg et al., 1998). Two 5-HT2A SNPs, in complete LD with each other, have been investigated for their 

potential role in OCD pathogenesis: a T-to-C transition at nucleotide 102 (T102C), that does not alter the 

amino acid sequence of the encoded protein, and a G-to-A transition at position -1438 (-1438G/A) in the 

promoter region. The -1438G/A polymorphism was reported to be associated with TS with co-morbid OCD 

but not with pure TS in both case-control and TDT analyses of a cohort of Chinese individuals (Huang et al., 

2001). From these results, it can be speculated that while the 5-HT2A -1438G/A polymorphism may not be 

involved in the pathogenesis of TS, it may play a role in the manifestation of OCS. However, several other 

investigations failed to show any association between 5-HT2C and OCD (Table 1.10). 

 

Serotonin 2C receptors are the most abundant 5-HT receptors in the basal ganglia, particularly in the globus 

pallidus and the substantia nigra, which are involved in the neural circuit invoked for OCD (Rapoport et al., 

1990). This, coupled with the fact that the effects of m-CCP can be inhibited by a variety of agonists and 

antagonists that specifically act on the 5-HT2C receptor, makes this receptor an attractive OCD candidate. A 

polymorphism causes an amino acid change at position 23 (Cys23Ser) (Lappalainen et al. 1995), although the 

variant has no clear functional significance (Cavallini et al., 1998). Association studies have been undertaken 

of this 5-HT2A polymorphism in OCD, however, none have as yet reported an association (Table 1.10). 

 

1.4.7.2.Dopamine system genes 

1.4.7.2.1. Dopamine receptor 4 (DRD4)  

Augmentation of SSRI treatment with dopamine agonists appears to be useful in a subset of OCD patients 

(McDougle et al., 1994), implicating the dopaminergic pathways in OCD pathogenesis. Of all the dopamine 

receptors, the dopamine receptor 4 (DRD4) has received most attention as possible role player in OCD. For 

this reason, this section of the review will only focus on DRD4. The DRD4 gene (DRD4) encodes a receptor 

with seven hydrophobic trans-membrane regions joined by three extra-cellular peptide loops (Baldessarini and 

Turazi, 1996). The 48-bp variable number of tandem repeats (VNTR) polymorphism in exon 3 (van Tol et al., 

1992) has been the DRD4 variant most frequently investigated. 
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Table 1.10: Summary of association studies of 5-HT receptors and OCD. 

Receptor Polymor-

phism 

Cohort Method Findings P-value Reference 

5-HT1Dβ 

 

G861C 

 
• 22 OCD trios 

where 10 were 
sib-ships of one 
affected and one 
unaffected sib 

Combination of 
TDT and ASP 

Preferential 
transmission of 
the G allele to 
affected 
individual 

p<0.006 Mundo et 

al., 2002 

• 121 OCD trios TDT Preferential 
transmission of 
the G allele to 
affected 
individual 

p=0.02 

79 OCD parent-
offspring trios 

TDT No association p=0.13 Di Bella et 

al., 2002 
• 71unrelated 

Afrikaner OCD 
patients and  129 
ethnically 
matched 
controls 

Case-control 
association 

No association p=0.621 Hemmings 
et al., 2003 

5-HT2A 

 

-1438G/A 

 
• 62 Caucasian 

OCD patients 
and 144 
Caucasian 
controls 

Case-control 
association 

Increase 
frequency of 
the A allele in 
OCD patients 
compared to 
controls 

p<0.05 Enoch et 

al., 2001 

• 101 Caucasian 
OCD patients 
and 138 
Caucasian 
controls 

Case-control 
association 

Increase 
frequency of 
the A allele in 
OCD patients 
compared to 
controls 

p=0.015  

• 58 Turkish 
unrelated OCD 
patients and 
ethnically 
matched 
controls 

Case-control 
association 

No association p>0.05  Tot et al., 

2003 

•  156 Caucasian 
OCD patients 
and 134 
ethnically 
matched 
controls 

Case-control Patients with 
family istory of 
OCD had a 
significant 
perponderance 
of GG 
genotype 

p=0.015 Denys et 

al., 2006 

T102C • 75 unrelated 
Jewish OCD 
patients and 172 
ethnically 
matched 
controls 

Case-control 
association 

No association p>0.05 Frisch et 

al., 2000 
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Receptor Polymor-

phism 

Cohort Method Findings P-value Reference 

5-HT2A T102C • 67 Mexican 
OCD patients 
and 54 
ethnically 
matched 
controls 

Case-control 
association 

No association p>0.05 Nicolini et 

al., 1996 

• 157 Chinese 
Tourette’s 
syndrome trios  

TDT Association 
found only in 
Tourette’s 
patients with 
co-morbid 
OCD 

p=0.02 Huang et 

al., 2001 

• 157 Chinese 
Tourette’s 
patients and 120 
Chinese controls 

Case-control 
association 

Association 
found only in 
Tourette’s 
patients with 
co-morbid 
OCD 

p=0.004  

• 58 Turkish 
unrelated OCD 
patients and 
ethnically 
matched 
controls 

Case-control 
association 

No association p>0.05 Tot et al., 

2003 

• 71unrelated 
Afrikaner OCD 
patients and  129 
ethnically 
matched 
controls 

Case-control 
association 

No association p=0.24 Hemmings 
et al., 2003 

5-HT2C Cys23Ser • 109 Italian OCD 
patients and 171 
ethnically 
matched 
controls 

Case-control 
association 

No association p=0.224 Cavallini et 

al., 1998 

• 75 unrelated 
Jewish OCD 
patients and 172 
ethnically 
matched 
controls 

Case-control 
association 

No association p>0.05 Frisch et 

al., 2000 

Abbreviations: 5-HT1Dβ, Serotonin receptor 1D β subunit; 5-HT2A, serotonin receptor 2A; 5-HT2C, serotonin recptor 
2C; OCD, Obsessive-compulsive disorder; TDT, Transmission disequilibrium test 
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While examining the role of DRD4 in OCD in a case-control setting, Billett and colleagues (1998) observed a 

decrease in frequency of the exon 3 VNTR 2-4 repeat alleles among the patient group (Table 1.10). This 

observation was, however, found to be non-significant following correction for multiple testing (Billett et al., 

1998). Frisch and co-workers (2000) also failed to provide compelling evidence for the involvement of this 

gene in OCD (Frisch et al., 2000) (Table 1.10). Recently, however, Millet et al., (2003) reported an 

association between the 2-repeat allele and OCD in both population-and family-based association studies 

(Millet et al., 2003) (Table 1.11). Interestingly, in an investigation into the possible role of DRD4 in 

phenotypic variance among OCD patients, Cruz and co-workers observed a high frequency of the 7-repeat 

allele among the group with comorbid chronic motor and vocal tics (Cruz et al., 1997). This finding was later 

replicated by the same group of researchers in an independent patient sample (Nicolini et al., 1998) (Table 

1.11). However, the study by Millet et al . (2003) did not find any association between any DRD4 VNTR 

alleles and the presence of comorbid tics (Millet et al., 2003). 

 

1.4.7.2.2. Catechol-O methyltransferase (COMT)  

The COMT Val/Met polymorphism (section 1.1.3.1.1) was used in two North American studies to determine 

the role of COMT in OCD. Both of these studies showed an association between OCD and the Met allele of 

COMT (Karayiorgou et al., 1997; Karayiorgou et al., 1999) (Table 1.11). However, in a subsequent study on a 

Japanese population, no association between functional variants of COMT and anxiety disorders, including 

OCD, was detected (Ohara et al., 1998b). More recently, Niehaus and co-workers (2001) reported association 

between the Val/Met heterozygous genotype and OCD in a cohort of Afrikaner subjects (Niehaus et al., 2000), 

while Alsobrook found an association with the Met allele in female OCD patients. The latter confirmed a 

previous report supporting a sexual dimorphic effect of the COMT Met allele and OCD (Karayiorgou et al., 

1999; Alsobrook et al., 2002) (Table 1.11). In 2003, Azzam and Mathews published a meta-analysis of three 

case-control and five family-based association studies of COMT and OCD (Azzam and Mathews., 2003). 

Overall, the findings from their meta-analysis provided no evidence for an association between COMT and 

OCD.  

 

These disparate results may be a reflection of the genetic differences between population groups used in the 

various studies; thus, it could be speculated that the impact of COMT on disease susceptibility may vary from 

population to population. One also has to consider the varying diagnostic criteria used in the different studies. 

Earlier studies (eg., Karayiourgou et al., 1997, Ohara et al., 1998) used DSM-III-R diagnostic criteria, while 

the more recent studies (Karayiourgou et al., 1999, Niehaus et al., 2001, Alsobrook et al., 2002) used DSM-IV 

criteria. The clinical heterogeneity of OCD further confounds association studies. Several reports provide 

evidence for distinctive OCD subtypes eg., age of onset (Hemmings et al, 2004 ), symptom dimensions 

(Lochner et al., 2005) and gender (Lochner et al., 2004), therefore, the variability between studies may be the 

result of the particular combination of OCD subtypes, presumably driven by diverse combinations of genetic 

and environmental susceptibility factors, used in each study. Thus, it is likely that the complex role of COMT 

in OCD may be better elucidated using clinically and genetically homogeneous OCD cohorts. 
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14.7.2.3. Monoamine oxidase A (MAOA) 

Monoamine oxidase (MAO) is a flavin-containing enzyme that degrades a variety of biogenic amines, 

including the neurotransmitters norepinepherine, dopamine and 5-HT (Weyler et al., 1994). Two forms of the 

enzyme, MAOA and MAOB, have been identified on the basis of the difference in their molecular 

weight,substrate specificity, substrate affinities, inhibitor sensitivities and immunological properties (Garrick 

and Murphy, 1982). In the human brain, MAOB is the prominent form (Garrick and Murphy, 1982), expressed 

at the highest levels in the astrocytes and serotonergic neurons. In contrast, MAOA, although expressed in the 

serotonergic neurons as well, is expressed at highest levels in the catecholaminergic neurons (Fowler et al., 

1987; Thorpe et al., 1987). In MAOA knock-out mice, 5-HT levels in the brain have been shown to be 

increased up to nine-fold, with the mice exhibiting distinct behavioural changes, including trembling, 

difficulty in righting (getting upright after being inverted), and fearfulness (Cases et al., 1995). In humans, 

moderate inhibition of MAOA and MAOB activity can lead to mood elevation, loss of ‘rapid eye movement’ 

(REM) sleep, motoric hyperactivity, orthosomatic hypertension and hyperflexia without spasticity (Kupfer and 

Bowers 1972; Murphy et al., 1983). 

 

The two MAO isoform-encoding genes, MAOA and MAOB, have been mapped to Xp11.23-11.4 (Ozelius et 

al., 1988; Levy et al., 1989). Abnormal and often overly aggressive behaviour in five male cases of X-linked 

borderline mental retardation was attributed by Brunner et al., (1993) to a truncating point mutation in exon 8 

of MAOA, suggesting a correlation between inappropriate emotional responses and the elimination of MAOA 

activity via a genetic mutation. However, it has also been observed that drugs that inhibit MAOA activity is 

effective in the treatment of OCD (Erfurth and Schuss, 1993), and, as MAOA plays crucial roles in COMT-

controlled pathways, the gene has been investigated for involvement in OCD pathogenesis.  

 

Hotamisligil and Breakefield (1991) described a silent A to G substitution at codon 287 (exon 8) of MAOA 

(Hotamisiligil and Breakefield, 1991). This synonymous substitution has been associated with varying enzyme 

activity levels (Hotamisligil and Breakefield, 1991), with the 297CGG allele conferring higher enzyme 

activity. Karayiorgou and colleagues (1999) used this polymorphism in an association study of OCD. As they 

previously described a sexual dimorphic effect of COMT on OCD, and since MAOA is localised to the X 

chromosome, they tested for homogeneity of transmission disequilibrium between male and female probands, 

by comparing transmission of alleles from heterozygous mothers. They showed a significant difference 

between the transmission of alleles between the two genders. They then investigated 110 nuclear OCD 

families using TDT and HRR analysis, which confirmed a sexual dimorphic effect of MAOA on OCD, with 

preferential transmission of the 297CGG allele to affected male probands (Karayiorgou et al., 1999). 

Similarly, Camarena and colleagues, in both a case-control association study and in 51 OCD parent-offspring 

trios, found that significantly more female OCD patients carried the 297CGA allele compared to male OCD 

patients (Camarena et al., 1998) (Table 1.10). Lochner and co-workers showed a significant association 

between OCD and another MAOA polymorphisms, a C to T substitution at position 1460, with the C allele 

being more prevalent in female OCD patients (v2=6.763; p=0.009).  
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Table 1.11: Association studies of selected Dopamine system genes in OCD. 

 

Gene Polymorphism Cohort Method Findings p-value Reference 
DRD4 48bd VNTR • 12 OCD patients with comorbid tic and 

49 OCD patients without comorbid tics 
Case-control 
association 

7-repeat allele associated with presence 
of tics in OCD 

p=0.018 Cruz et al., 

1997 
• 12 OCD patients with comorbid tic and 

66 OCD patients without comorbid tics 
Case-control 
association 

7-repeat and 2-repeat allele associated 
with presence of tics in OCD 

p=0.018 (7-repeat) 
p=0.028 (2-repeat) 

Nicolini et al., 

1998 
• 118 Caucasian OCD patients and 118 

ethnically matched controls 
Case-control 
association 

No association after correcting for 
multiple testing 

p>0.05 Billett et al., 

1998 
• 75 unrelated Jewish OCD patients and 

172 ethnically matched controls 
• (39 Ashkanazi Jewish OCD, 36 Non-

Ashkanazi Jewish OCD; 112 Akanazi 
Jewish , 60 non-Ashkanazi Jewish 
controls   

Case-control 
association 

No association in Ashkanasi Jewish 
sample, however the 7-repeat allele 
was significantly less frequent in non-
Askanazi Jewish sample compared to 
controls 

p>0.05 
p=0.04 (non-
Ashkanazi sample)  

 
 
Frisch et al., 

2000 

• 71unrelated Afrikaner OCD patients and  
129 ethnically matched controls 

Case-control 
association 

No association p=0.07 Hemmings et 

al., 2003 
• 55 OCD parent-offspring trios 
 

Extended 
TDT 

Absence of transmission of allele 2 to 
OCD patients 

p=0.003 (allele) 
p=0.003 (genotype) 

 
Millet et al., 

2003 • 49 French OCD patients and 63 
ethnically matched controls 

Case-control 
association 

Significantly lower frequency of the 2-
repeat allele in OCD patients 

p=0.002 

COMT Val/Met 

 

73 unrelated Caucasian OCD patients and 
148 unrelated Caucasian controls 

Case-control 
association 

L allele significantly associated with 
OCD, particularly in males 

p=0.0002 Karayiorgou et 

al., 1997 
110 nuclear OCD families TDT 

HRR 
L allele associated with OCD only in 
males 

p=0.0079 (TDT) 
p=0.00146 (HRR) 

Karayiorgou et 

al., 1999 
  • 72 OCD parent-offspring trios TDT No association with either allele, 

however an association with 
homozygosity  

p=0.056 (genotype) 
p=0.46( allele) 
p=0.017 
(homozygosity) 

Schindler et 

al., 2000 

• 54 unrelated Afrikaner OCD patients 
and 54 unrelated Afrikaner controls 

Case-control 
association 

H/L genotype significantly associated 
with OCD 

P=0.017 Niehaus et al., 

2001 
• 56 OCD parent-offspring trios Case-control 

association 
No association with family sample as a 
whole, however  HRR gave a 
statistically significant association of L 
allele with OCD in females 

p=0.174 (whole 
sample) 
p=0.0048 (HRR-
females) 

Alsobrook et 

al., 2002 
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Gene Polymorphism Cohort Method Findings p-value Reference 

COMT 

 

 

Val/Met 

 
• 59 OCD patients and 114 unrelated 

controls 
Case-control 
association 

No association P>0.05 Erdal et al., 

2003 
• Meta-analysis of 3 case-control 

association studies and 4 familiy-based 
studies 

Case-control 
asoociation 
and TDT 

No association Not available Azzam and 
Mathews, 
2003 

• 110 nuclear OCD families  TDT and 
HRR 

Preferential transmission of 297CGG 
allele to affected males  

p=0.018 (TDT) 
p=0.012 (HRR)9 

 

MAOA 

 

 

A297G • 122 Mexican OCD patients and 124 
Mexican controls 

Case-control 
association 

Association found with 297CGA allele 
and OCD in females 

p=0.024 Camarena et 

al., 2001b 

• 51 OCD parent-offspring trios HRR Association found with 297CGA allele 
and OCD in females 

p=0.022  

Abbreviations: COMT, catecol-O-methyltransferase; DRD4, Dopamine receptor 4; HRR, Haplotype relative risk; MAOA, Monoamine oxidase A; OCD, Obsessive-compulsive 
disorder; TDT, Transmission disequilibrium test 
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All the results above provide compelling evidence that gender plays a critical role in OCD, and more 

specifically, that MAOA exerts its effect on OCD in concert with both genetic and physiological mechanisms 

that are gender-specific. 

 

1.4.8. Interactome analysis of previously identified candidate genes 

The interactome refers to the interactions of proteins with one another within the cell. Investigating the 

interactions of candidate genes that have previously been implicated in disease aetiology can be used as a 

starting point to identify novel candidate genes for a particular disorder. One way of doing this is by using the 

yeast two-hybrid (Y2H) system (Fields and Song, 1989). This approach forms an integral part of the present 

investigation, so in this section, two examples of how the Y2H system (discussed in Chapter 2) has been 

successfully used in the identification of novel schizophrenia susceptibility genes will be discussed. 

 

1.4.8.1. G72 and DAAO 

The first example was alluded to in section 1.4.6.2.5 and involves the identification of DAAO as a possible 

disease susceptibility locus using G72 as a “bait” in a Y2H screen. 

 

In their investigation of the schizophrenia-linked genomic region on chromosome 13 (13q34), Chumakov an 

co-workers identified G72 as a potential schizophrenia susceptibility gene (Chumakov et al., 2002). 

Preliminary functional analysis of the G72 protein indicated that it is localised to the endoplasmic reticulum 

and Golgi in transfected cells, is able to form multimers and is able to bind carbohydrates. The next question 

addressed by these investigators was whether the G72 protein could influence a pathway that is implicated in 

schizophrenia pathogenesis. To this end, they screened 500 000 independent clones from a human brain 

complementary (cDNA) library using the G72 protein as a bait. Their investigation identified DAAO as a 

protein that could bind to G72.  

 

D-amino acid oxidase is a protein that oxidises D-serine, an allosteric activator of the NMDA type glutamate 

receptor (Fields and Song, 1989). Measurements of the ability of DAAO to effectively oxidise D-serine in the 

presence of increasing concentrations of G72 suggested that the G72 protein acts as an activator of DAAO. 

These results suggested that this interaction plays an important role in the regulation of NMDA glutamate 

receptors and that a dysregulation of either G72 or DAAO could result in glutamate receptor hypofunction. 

Glutamate receptor hypofunction, in turn, is a mechanism that has been implicated in schizophrenia 

susceptibility (Chumakov et al., 2002). The identification of DAAO as an interactor of G72 has lead to its 

candidature as a schizophrenia susceptibility factor (section 1.4.6.2.5). 

 

1.4.8.2. Acetylcholine receptor α4 subunit and the chaperone protein 14-3-3η (YWHAH) 

The second example of how the Y2H system has been used in the identification of novel schizophrenia 

susceptibility genes focuses on the nicotinic acetylcholine receptor (AChR) α4 subunit. Nicotinic acetylcholine 

receptors, a family of ligand-gated homo-or heteropentameric ion channels expressed in the peripheral and 

CNS (Betz, 1990; Bernard, 1992), are made up of different combinations of α1- α9 and β2-β4 subunits 

Comment [IT50]: Fields S, Song O-K (1989) 
A novel genetic system to detect protein-protein 
interactions. Nature 340: 245-246 
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(Deneris et al., 1991; Sargent, 1993). The large cytoplasmic domain present in each subunit is the most 

variable domain between the different AChR subunits and this variability provides the diversity for each 

AChR subtype to interact with unique cytosolic proteins with varying function (Jeanclos et al., 2001).  

 

In their investigation, Jeanclos and co-workers aimed to identify the interactors of the large cytoplasmic 

domain of α2β4 AChR. In order to achieve this, they used the large cytoplasmic domain of the nicotinic AChR 

α2 subunit as a “bait” to screen a mouse brain cDNA library by Y2H (Jeanclos et al., 2001). They indentified a 

known protein, 14-3-3ή (YWHAH), which belongs to a family of proteins that primarily function as 

intracellular regulators or chaperone/scaffolding/adaptor proteins in diverse cellular processes (Wang and 

Shakes, 1996). 

 

Jeanclos’s investigation has some pathophysiological significance to schizophrenia, as it is well established 

that the chronic intake of nicotine in smokers increases the expression of α2β4 AChRs in their brains (Marks 

et al., 1983), and that the frequency of smoking among schizophrenics is higher compared to non-

schizophrenic individuals. Breese and colleagues (2000) investigated the levels of [3 H]-nicotine binding sites 

in the brains of schizophrenic patients. They showed reduced levels of nicotine binding, particularly to α4β2 

AChR (Breese et al., 2000) in schizophrenic smokers compared to control smokers, which could suggest that 

schizophrenics have deficencies in regulating the expression of α4β2 AChR (Jeanclos et al., 2001). 

 

Interestingly, YWHAH had previously been associated with schizophrenia in a Japanese population-based case-

control association study (Toyooka et al., 1999). The frequency of the 2-repeat allele of a VNTR 

polymorphism in the 5’-non-coding region of YWHAH occurred more frequently in Japanese schizophrenic 

patients than control individuals (Toyooka et al., 1999).  

 

1.4.9. Animal Studies 

Animal models have generally been extremely useful in the investigation of mechanisms underlying human 

disease and the design of novel treatment strategies; however, this has not often been the case for psychiatric 

illnesses: it is impossible to faithfully reproduce cognitive disorders in less-cognitively developed animals 

(Marcotte et al., 2001). Accordingly, current animal models of psychiatric disorders are not intended to serve 

as the complete animal equivalent of the human disorder; instead, they are often designed to model specific 

aspects of the disease and to test specific causative or mechanistic hypotheses. 

 

These models can be validated on the basis of how well the animal’s performance in a given test predicts the 

performance of humans with a specific condition (predictive validity) and on whether the model provides a 

sound theoretical rationale (construct validity), or whether it faithfully reproduce symptoms of the human 

condition (face validity). The latter is the most difficult to assess in behavioral disorders, however, a variety of 

behavioral correlates in animals have been considered to serve as appropriate markers for psychiatric disorders 

(Marcotte et al., 2001). Thus, although it may not be possible to recreate the diversity and complexity of 

specific psychiatric disorders in a single animal model, combining insights gained via different models for a 
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specific condition, eventually leads to a better understanding of the aetiology of the disorder. In the following 

section, animal models of schizophrenia and OCD will be reviewed and their impact on our present 

understanding will be discussed.  

 

1.4.9.1. Animal models of schizophrenia 

Since a significant portion of the present study is based on the findings derived from the naturally occurring 

heterozygous reeler mouse model, and its relevance to the neurodevelopmental hypothesis of schizophrenia, 

particular emphasis will be placed on this animal model of schizophrenia in this review. 

 

1.4.9.1.1. The Heterozygous Reeler Mouse (HRM): Neuropathology and behaviour  

The reeler mouse first appeared spontaneously in 1948 in a stock of “snowy-bellied” mice kept at the Institute 

of Animal Genetics in Edinburgh, Scotland (D’Arcangelo and Curran, 2000). Currently, this strain, the rled 

strain, is being maintained in the Jackson Laboratory in Maine. In 1961, a second spontaneously occurring 

reeler mouse strain, the rlor strain, appeared in a laboratory in Orleans, France, currently maintained at the 

Pasteur Institute in Paris.  

 

The reeler locus (rl) localized, by linkage analysis of the mutant phenotype in backcross progenies, to the 

proximal region of mouse chromosome 5 (section 1.4.1). Fine-mapping and exon-trapping eventually led to 

the discovery of reelin as the reeler-phenotype causing gene (D’Arcangelo et al., 1995). Since then, several 

more reeler mouse strains have been generated spontaneously as well as by deliberate mutagenesis 

(D’Arcangelo and Curran, 2000). The characteristics of the different reeler strains are summarised in Table 

1.12.  

 

Table 1.12: Characteristics of different reeler mouse strains.  

(Adapted from D’Arcangelo and Curran, 2000) 

 

In the rl
or and rl

ed strains, the reeler mutation is autosomal recessive, and, by two weeks postnatally, 

homozygotes exhibit ataxia, tremors, imbalance and a typical reeling gait. These symptoms are associated with 

Origin Symbol Reelin mutation  mRNA mutation Protein mutation 
Edinburgh  rl

ed
 Spontaneous ~150 kb 

genomic DNA deletion 
Predicted truncation, no 
expression 

No expression 

Orleans rl
or Spontaneous L1 insertion 

near 3’ 
220 bp exon skipping and 
frameshift 

C-terminal 
truncation 

Transgene rl
tg 

supfos transgene insertion 
intragenic 7-to 10-kb 
deletion 

No expression No expression 

Albany 1 rl
alb1 Chlorambucil-induced 

 

Unknown Unknown 

Albany 2 rl
alb2 Chlorambucil-induced IAP 

insertion 
85bp exon skipping and 
frameshift; reduced expression 

Low-level 
predicted truncated 
product 

Jackson 3J rl
3J Spontaneous Reduced levels, higher 

molecular weight transcript 
No expression 
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severe hypoplasia of the cerebellum, as well as malpositioning of the neurons in the laminated brain structures 

such as the neocortex and hippocampus (Mariani et al., 1977; Caviness and Rakic, 1978; Goffinet, 1984; 

Caviness et al., 1988) (Fig 1.12)  

 

Fig 1.12: Early cortical development in normal and reeler mice. At embryonic day 12, the preplate (PP) 
appears as a population of horizontal neurons, which include Cajal-Retzius cells (red cells), which secrete reelin. During 
corticogenesis, proliferation of germinal cells (black) occurs in the ventricular zone (VZ); Post-mitotic neurons exit the 
VZ, attach to radial glial fibres (fibres that extend the width of the developing neocortex- represented by black lines in the 
diagram) and migrate through the intermediate zone (IZ) into the developing cortical plate (CP), bypassing the subplate 
(SP) neurons (purple) and previously born neurons. The CP develops between the subplate and the marginal zone (MZ) 
that contains Cajal-Retzius cells which secrete reelin. Neurons stop migrating at the top of the CP. Later born neurons 
migrate past their predecessors in the inner cortical plate (ICP) and settle into ever more superficial positions of the upper 
CP (UCP)_ resulting in an “inside-out” laminar organization. In normal mammalian neocortical development, the 
noecortex comprises six layers (as shown in the E16 normal panel ). Analysis of the reeler mouse cortex shows that the 
CP (green) develops beneath the sub-plate (purple). In addition, cellular layering the CP is inverted in an “outside-in” 
laminar organization (E16 Reeler). Taken from Bar et al., 2000. 
 

The heterozygous reeler mice (HRM), in contrast, do not express the aforementioned anatomical and 

behavioural abnormalities. Instead, they exhibit several other neuropathological and neurochemical 

abnormalities that are considered typical of schizophrenia (Table 1.13). Moreover, HRM exhibit several 

behavioural abnormalities that have been linked to schizophrenia. The HRM present with postpubertal 

appearance of sensorimotor gating deficits, that is reminiscent of that expressed by schizophrenic patients 

(Tueting et al., 1999), and generally have slow acquisition rates in radial maze as well as olfactory 

discrimination tasks; these features are comparable to learning deficits experienced by schizophrenia sufferers 

(Costa et al., 2001; Hoffmann et al., 2001). Furthermore, after approximately five weeks of social isolation, 

the HRM experience a short-lived depression followed by apathy (Costa et al., 2002). This apathy is 

reminiscent of schizophrenia social withdrawal (Costa et al., 2002). All in all, the neurochemical, 

neuroanatomical and behavioural abnormalities common to both HRM and schizophrenia sufferers are strong 

indicators that the HRM is a valid schizophrenia animal model.  

Comment [IT51]: Caviness VSJ, Crandall 
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Malformation. Implications for Neocortical 
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Table 1.13: Neurochemical and neuroanatomical similarities between HRM and schizophrenia. 

Physiological cortical measures Schizophrenia HRM 

GAD67 expression Decreased Decreased 
Reelin expression Decreased Decreased 
Neurophil expression Decreased Decreased 
Neuronal cell packing density Increased Increased 
Dendritic spine density Reduced Reduced 
Abbreviation: GAD67, glutamate decarboxylase (67kDA); HRM, heterozygous reeler mice 
(Taken from Costa et al., 2002) 

 

Since the discovery of the HRM model, several additional lines of evidence suggest that reelin plays a role in 

the pathogenesis of schizophrenia. The gene encoding human reelin, RELN, has been mapped to chr7q22 

(DeSilva et al., 1997), a region that has been suggested as a possible schizophrenia susceptibility gene 

(Ekelund et al., 2000). In addition, several studies have shown a decrease of reelin expression in post-mortem 

brain sections of schizophrenic patients (Impagnatiello et al., 1998; Fatemi et al., 1999; Guidotti et al., 2000). 

Accordingly, association studies of reelin in schizophrenia have been undertaken (Akahane et al., 2002; Chen 

et al., 2002), but have failed to show any association. However, it remains possible that downstream defects in 

the reelin signaling pathway may have the same effect as defects within reelin itself.  

 

Reelin 

Reelin is synthesized in the telencehphalon by Cajal-Retzius cells (Fig 1.12) and in the embryonic cerebellum 

by external granule cells. The reelin protein has a relative mass of 388 kilo Dalton (kDa) and contains 3461 

amino acid residues which are organised into a number of domains (Fig1.13). The carboxy-terminus (C-

terminal) of reelin consists of a series of eight tandem repetitive units called reelin repeats, each divided into 

three further regions, subrepeat A, EGF-like domain and subrepeat B (D’Arcangelo et al., 1995). N-terminal to 

the reelin repeats, amino acid residues 230-346 of reelin encompass the epitope for the anti-reelin 

monoclonocal antibody CR-50 (Ogawa et al., 1995; Utsunominiya-Tate et al., 2000). Between the amino-

terminal signal peptide and the CR-50 epitope, lies a domain known as the reeler domain, to date found only in 

one other protein, F-spondin. F-spondin promotes adhesion and outgrowth of commissural axons and inhibits 

adhesion of neural crest cells (Burstyn-cohen et al., 1998) and plays a critical role in the development of the 

spinal chord. 
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Fig.1.13: Schematic representation of the structure of the reelin protein. Reelin contains a series of eight 
repeats in which each repeat consists of 2 sub-repeats (sub-repeats A and B) separated by an EGF-like domain. The CR-
50 epitope (represented by the blue rectangle) is recognised by the CR-50 antibody that inhibits the function of reelin. 
The reeler domain stretches from aa 22 to 190 (represented by the yellow rectangle). A cleavable signal peptide (for 
transport out of the cell) is located at the N-terminus. Binding sites of reelin ligands ApoER2, VLDL and  CNR proteins 
are indicated with blue brackets. Green broken arrows indicate sites at which reelin is cleaved by yet-to-be-identified 
mettaloproteinases. 
 
Reelin and corticogenesis 

During embryonic corticogenesis, reelin has been shown to function as a key regulator of ordered neuronal 

alignment (D’Arcangelo et al., 1995; Ogawa et al., 1995; Lambert de Rouvroit and Goffinet, 1998). Neurons 

born in the ventricular zone (VZ) exit the cell cycle and attach to radial glia and migrate radially along these 

glial fibres into more superficial positions in the developing cortical plate. Studies have shown that the 

neuronal cells migrate towards the subplate, penetrate this structure and accumulate below the marginal zone 

(Rakic and Caviness, 1995; reviewed by Gleeson and Walsh, 2000) (Fig.1.12). In the marginal zone, Cajal-

Retzius cells secrete reelin into the extracellular matrix (D’Arcangelo et al., 1995; Miyata et al., 1997; Rice 

and Curran, 1999; Lambert, de Rouvroit and Goffinet, 1998), which in turn directs the organisation of the 

neurons into the six neuronal layers that will ultimately develop into the adult neocortex. Later-born neurons 

migrate past their predecessors and settle into ever more superficial positions, forming the cortical plate 

between the subplate and the marginal zone. This results in an “inside-out” laminar organization, in which 

earlier born neurons are located in deeper layers than later born ones (Rakic, 1995; Rakic et al.,  1996) 

(Fig1.12) 

 

Reelin subsequently binds to receptors on the surface migrating neuron, specifically apolipoprotein E receptor 

2 (ApoER2) and very low density lipoprotein receptors (VLDLR). Binding of reelin to ApoER2 and VLDLR 

leads to the phosporylation of the adapter molecule Disabled 1 (Dab1), which is bound to the cytoplasmic tails 

of these receptors (Hiesberber et al.,  1999 D’Arcangelo et al., 1999), as well as the internalisation of reelin 

into the cell (D’Arcangelo  et al.,  1999).  

 
In vivo, reelin is processed by cleavage by yet-to-be-identifed mettaloproteinases between reelin repeats 2 and 

3, and between repeats 6 and 7 (Fig. 1.13), resulting in three final physiologically relevant fragments (Lambert 
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de Rouvroit et al., 1999). The central fragment, viz. repeats 3 through 6, is both necessary and sufficient for 

receptor binding to ApoER2 and VLDLR proteins (Jossin et al., 2004). The function(s) of other two peptides 

remains unknown. 

 
Downstream signaling continues via a PI3-mediated pathway that involves interaction of the PI3 kinase 

regulatory subunit, p85, with the tyrosine phosphorylated Dab1(Bock et al., 2003). Activation of PI3 kinase 

leads to the phosphorylation of Akt and GSK3β, resulting in hyperphophorylation of the microtubule-

associated protein, tau, and subsequent microtubule rearrangements. This pathway eventually leads to the 

modulation of the actin cytoskeleton (Heisberger et al., 1999; Beffert et al., 2002) (Fig1.16), a pre-requisite for 

cellular motility such as neural migration. Additionally, phosphorylated Dab1 has also been found to bind Lis1 

(Assadi et al.,  2003) which interacts with the NUDEL/cytoplasmic dynein complex to regulate lamination of 

the CNS (Niethammewr et al.,  2000; Sweeney et al.,  2001; Sasaki et al.,  2000). 

 

Anton and colleagues (1999) provided evidence that ECM reelin signal transduction is also initiated when 

reelin binds to integrin receptor subtypes that include the α3 integrin receptor subunit (Anton et al., 1999; 

Dulabon et al., 2000); the region of reelin responsible for the binding to integrin α3β1has not yet been 

identified. These integrin receptors link the ECM signals to the neuronal cytoskeleton proteins via a reelin-

mediated receptor clustering. This clustering activates focal adhesion kinase (FAK), which, in turn, 

phosphorylates Dab1 (Dulabon et al., 2000) (Fig1.14). In addition, a family of cadherin-related neuronal 

proteins (CNRs) has also been identified as a putative receptor for reelin (Yagi and Takeichi, 2000); sub-repeat 

B of the first reelin repeat domain is crucial for CNR binding (Senzaki et al., 1999). The cytosolic domain of 

CNR associates with fyn, which has been shown to phosphorylate Dab1(Costa et al., 2001).  

 

An investigation by Utsunomiya-Tate and colleagues found that the reelin epitope recognised by the CR-50 

antibody contributes to the formation of linear, soluble reelin homopolymers at physiological concentrations 

(Utsunomiya-Tate et al., 2000). Deletion of the amino acid residues containing the CR-50 epitope inhibits the 

homopolymerisation as well as reelin-induced phosphorylation of Dab1. This suggests that the CR-50 domain 

of reelin plays an important role in the function of reelin.  

 

Not all reelin interactions and functions are known. In particular, the function of the reeler domain remains 

unknown, but given that this domain only occurs in reelin and in F-spondin, a protein that plays a critical role 

in the development of the spinal chord, it could be suggested that this domain has an important function in 

neurodevelopment and warrants further investigation.  
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Fig 1.14: The Reelin signaling system. Reelin can bind its receptors ApoER2/VLDLR and α3β1 integrins, directly 
initiating a signal transduction pathway. Reelin induction of the cascade leads to the clustering of the receptors causing 
the tyrosine phosphorylation of the adapter protein Dab1 by the Src family of protein kinases. This leads to the activation 
of downstream signaling pathways that result in cytoskeletal rearrangements and neuronal migration (taken from et al., 
Gupta et al., 2002). 
 

1.4.9.1.2. Pharmacological models 

Traditionally, most pharmacological animal models of schizophrenia have focused on phenomena linked to 

dopamine system dysfunction, since this system has been strongly implicated in the disorder (Kornetsky and 

Markowitz, 1978, McKinney and Moran, 1981, Costall and Naylor, 1995). Dopamine-based animal models 

have been found to have some predictive validity (Table. 1.14). Examples of these include dopamine-drug 

induced stereotypies which represent schizophrenia motor behaviour and apomorphic induced PPI 

abnormalities which represent information processing deficits (Braff and Geyer, 1990; Costall and Naylor, 

1995). 

 

The administration of amphetamine and related psychostimulants to rats reliably simulates some of the 

schizophrenia behavioural changes, viz. hyperlocomotion and stereotypic movements (Kokkinidis and 

Anisman, 1980; Sharp et al., 1987). Furthermore, amphetamine-induced stereotypic behaviour can be 

attenuated by administration of antipsychotic medication, which lend further support for the validity of these 

dopaminergic animal models (Pijnenberg et al., 1975), as do the disruptive effects of dopamine receptor 

agonists on PPI (Swerdlow and Geyer, 1998, Swerdlow et al., 1994).  

 

The glutamatergic system has also been the focus of animal studies of schizophrenia pathogenesis. 

Phencyclidine, a hallucinogen that acts predominantly on the glutametergic NMDA receptor and PCP-like 

drugs, has been shown to induce altered social behaviour in rats (Steinpreis et al., 1994; Sams-Dodd, 1995). 
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Administration of PCP was also shown to disrupt PPI and startle habituation in rats (Swerdlow and Geyer, 

1998; Geyer et al., 1984). Moreover, PCP produces amphetamine-like behavioural alterations in rats that 

include stereotyped movements, circling and ataxia; these effects are attenuated by antipsychotics (Javitt and 

Zukin, 1991; Jenysch et al., 1997, Rao et al., 1989).  

 

The serotonin system has also been frequently implicated in the aetiology of schizophrenia (section 1.1.5.3.2). 

Lysergic acid diethylamide (LSD), a major psychedelic hallucinogenic drug that mediates its effects through 

the 5-HT2A receptors (Aghajanian and Merek, 1994), has been found to disrupt PPI and startle habituation in 

humans, as well as rats. Serotonin receptor 3 antagonists have also been shown to attenuate behavioral 

hyperactivity caused by PCP and amphetamine administration (Costall et al., 1987). The relevance of this 

model to schizophrenia, is however, flawed since chronic LSD administration in humans and animals leads to 

behavioral tolerance, unlike the situation in schizophrenia. 

 

1.4.9.1.3.Transgenic models 

1.4.9.1.3.1. Models of neurotransmitter systems 

The dopamine transporter (DAT) knock-out mouse (DAT-KO) model is an animal model with clear relevance 

to the dopamine hypothesis of schizophrenia (Giros, 1996). The homozygous (-/-) DAT-KO mice are 

incapable of reuptake of released dopamine, resulting in increased dopamine levels. These mice show 

increased stereotypic behaviour (Jones et al., 1998) and hyperlocomotion (Ralph et al., 2001). The 

hyperlocomotion of these mice is reversed by the administration of dopamine receptor antagonists such as 

haloperidol and clozapine, which are used in treatment of schizophrenia (Gainetdinov et al., 1999, Spieleway 

et al., 2000).  

 

However, the DAT-KO heterozygous (+/-) mouse is considered to be a better approximation of the reduced 

DAT acting in schizophrenia (Lankso et al., 2001). The DAT-KO heterozygous model reproduces several of 

the features of the amphetamine-administrated animal model (Table1.13). Aside from hyperactivity and 

stereotypic behaviour, the mutants also show deficits in PPI and spatial cognitive function (Gainetdinov et al., 

1999; Ralph et al., 2001). However, as with the amphetamine model, several features of these mice do not 

correlate well with those of schizophrenic patients. For instance, the mutant mice do not show any deficits in 

social interactions (Spielewoy et al., 2000). In addition, psychostimulants known to exacerbate psychotic 

symptoms in schizophrenic patients have been shown to produce a calming effect in these mice. Therefore, 

although the DAT-KO model may be useful in studying certain aspects of schizophrenia, it does not 

encompass a full range of schizophrenia-related behaviours. 
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Table 1.14: Pharmacological and genetic animal models of schizophrenia with respect to behavioural 

abnormalities. 

Behaviour Amphetamine 
treated 

DAT-KO NMDA-
antagonist 
treated 

NR1-KO 
mice 

NR2A-KO 
Mice 

Hyperactivity Extreme Extreme Modest Modest Modest 
Deficit in 
social 
interaction 

No No Yes Yes Not tested 

Sensorimotor 
gaiting deficits 

Yes Yes Yes Not tested Not tested 

Cognitive 
deficits 

Yes Deficits in 
spatial learning 

Yes Not tested Not tested 

Locomotor 
responses to 
antipsychotics 

Haloperidol 
and clozapine 
effective 

Haloperidol 
and clozapine 
effective 

Haloperidol 
and clozapine 
effective 

Clozapine 
effective 

Haloperidol 
and risperidone 
effective 

Abbreviaitions: DAT-KO, Dopamine transporter knockout; NMDA, n-methyl-D-aspartate; NR1-K,O, n-methyl-D-
aspartate receptor 1 knock out; NR2A, n-methyl-D-aspartate receptor 2A knock out 
 

Knock-out mouse models of dopamine receptors (Sibley, 1999; Kelly et al., 1998; Xu et al., 1994; 1997; 

Rubenstein et al., 1997) as well as key enzymes involved in dopamine synthesis and degradation, eg., TH 

(Zhou and Palmiter, 1995; Kim et al., 2000), COMT (Gogos et al., 1998) and MAOA (Shih et al., 1999) have 

also been characterized. However, none of these mice were reported to exhibit any dysfunction in social 

interactions and only the DRD2 knockout mouse showed some PPI dysfunction (Ralph et al., 1999).  

 

Mice deficient in NMDA glutamate receptors have been generated by targeted mutations of the NR1 subunit 

gene (Mohn et al., 1999). These NR1 knock-down (NR1-KD) mice display similar behaviour to those 

observed in mice treated with PCP (Table 1.13). Several 5-HT mutant models are also available at present, but 

have, as yet, not been fully characterised using behavioural tests with relevance to schizophrenia (Murphy et 

al., 1999). 

 

1.4.9.2. Animal models of OCD 

A number of animal models of OCD have been identified and developed. These models can essentially be 

divided into three distinct classes, ie., ethnological models, pharmacological models and transgenic models. 

For OCD in humans, information on ritualistic behaviours and obsessions is captured using a battery of rating 

scales (eg Leyton Obsessional Card Mauldsey Obsessive-Compulsive Inventory, Yale-Brown Obsessive-

Compulsive Scale). For animal models, such rating scales, that rely on the subjects’ introspection and self-

reporting, are obviously not appropriate (Eilam and Szechtman, 2005). Szechtman and colleagues thus 

developed a spatio-temporal paradigm in which compulsive checking could be evaluated in animals 

(Szechtman et al., 1998). They reasoned that compulsive checking in animals would present itself to an 

observer as behaviour that met the following five criteria: in the subject’s living space, there would be one or 

two key areas/objects to which the subject would return more frequently than others; the time taken to return 

to the particular place/object would be significantly shorter than to other places/objects; excessively few 

places/objects would be visited in between returns to the key place/object; a characteristic set of rituals would 
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be performed at the particular place/object; activity would be changed if the key object was removed from the 

subjects living area or the properties of the environment was changed. 

 

1.4.9.2.1. Ethnological models 

Several interesting naturally-occurring, ethnological, animal models of OCD are represented by animals that 

present with abnormal repetitive, non-functional motor behaviours in veterinary clinics (Overall, 2000). These 

include acral lick (paw licking) dermatitis (ALD) in dogs, hair pulling in cats and feather picking in birds 

(Dodman et al., 1997). 

 

In particular, ALD in dogs seems to have a high level of similarity to OCD. Just like OCD, ALD also appears 

to have a strong genetic component as this condition appears to be confined to only a few breeds and even to 

reside within certain families of particular breeds (Overall, 2000). Furthermore, there is relative homology 

between the two disorders. Acral lick dermatitis is characterised by repetitive paw licking that may result in 

severe inflammatory complications, a condition which appears to be very similar to compulsive hand washing, 

which frequently also presents with complications (Man et al., 2004). Another interesting link between OCD 

and ALD is that pharmacotherapyknown to be effective in the treatment of OCD, such as clomipramine, is 

also effective in treating ALD (Rapaport et al., 1992). Unfortunately, the neurobiological mechanisms for 

ALD remain unknown at present (Man et al., 2004), however, they could be investigated by brain imaging 

strategies. Indeed, if similar abnormal brain circuits are found to be involved in ALD and OCD, this would 

represent the best animal model for OCD. 

 

1.4.9.2.2. Pharmacological models 

One of the most widely investigated pharmacological animal models of OCD is the DRD2/DRD3 agonist, 

quinpirole (QNP)-treated rat model. Several investigations have shown that rats chronically treated with QNP 

develop locomotor sensitisation (Culver et al., 2000; Einat et al., 1996; Einat and Szechtman, 1993; 

Kostrzewa, 1995, Mattingly et al., 1993). Based on their observations, Szechtman and co-workers proposed 

that QNP-induced behaviour in rats has the form of compulsive checking and may constitute a 

pharmacological animal model of OCD (Szechtman et al., 1998). Furthermore, motor rituals as a result of 

chronic administration of QNP have also been reported (Ben Pazi et al., 2001). A follow-up investigation by 

the same researchers found that QNP-treated rats are able to resist (or interrupt) their obsessive checking 

(Szechtman et al., 2001). This is reminiscent of OCD patients who, despite having urges to perform rituals, 

may resist engagement in them for varying amounts of time depending on the circumstances. 

 

Pharmacological animal models based on the serotonergic neurotransmission system have also been described. 

Yadin et al. proposed spontaneous alternation deficits resulting from administration of serotonergic agonists, 

such as 8-hydroxy-2(di-n-propylamino) tetralin (8-OH-DPAT), as an animal model of OCD (Yadin et al.,  

1991). This model is based on the natural tendency of rodents to enter first one arm and then the other alley of 

a T-maze in two successive, equally rewarded trials (Ellen and Deloache, 1968). In this serotonergic 

pharmacological model, rodents persevere in the alley section of the T-maze (Yadin et al., 1991). 

Comment [IT57]: Dodman, N.H. et al.,   
"Veterinary Models of OCD Obsessive-Compulsive 

Disorders: Diagnosis, Etiology, Treatment. Eric 
Hollander, Dan J. Stein. Eds. New York, Marcel 

Dekker, pp. 99-143 (1997) 

Comment [IT58]: . Man, J; Hudson, A.L; Ashton, 
D;  Nutt, D.J (2004). Current Neuropharmacology, 2 ( 
2) 153-168 
 

Comment [IT59]: Ellen P, Deloache J (1968) 
Hippocampal lesions and spontaneous 
alternation behavior in the rat. Physiol Behav 3:857–
860 

Stellenbosch University  http://scholar.sun.ac.za



 94
1.4.9.2.3. Transgenic models 

An intriguing genetic animal model for OCD is the HoxB8 knock-out (HoxB8-KO) mouse model. HoxB8 is a 

member of the mammalian homeobox-containing complex (Hox) group of 39 transcription factors that are best 

known for their roles during early neurodevelopment in providing positional information along the 

anteroposterior axis (Capecchi et al., 1997).  

 

Two HoxB8 loss-of-function mutants were engineered that contains nonsense mutations in the first exon of the 

gene (Greer and Capecchi, 2002). One mutant contained both the exon 1 mutation, as well as a floxed 

neomycin resistance (neo
r) cassette in exon 2, while the other contained a loxP site in exon 2. Homozygotes of 

both mutant strains showed, with 100% penetrance, excessive grooming leading to hair loss and deep skin 

wounds (Greer and Capecchi, 2002). However, the HoxB8neo mutant also demonstrated skeletal abnormalities 

that were also present in HoxB9 and HoxB6 mutants, thus only the HoxB8lox mutant strain was used in the 

subsequent analysis. 

 

The excessive grooming behaviour demonstrated by these animals is an interesting finding in the context of 

OCD research. Grooming is an innate spontaneous behaviour that generally occurs between periods of rest and 

activity in most animal species, including humans (Fentress, 1988). In rodents, as in many other mammalian 

species, grooming follows a general pattern. First the head is groomed, followed by the body and finally the 

anogenital region and tail. This highly ordered pattern of grooming, referred to as the “idealized syntactic 

grooming chain” (Berridge et al., 1987), was observed in a study of grooming behaviour in rodents, which 

suggested that pattern-generating signals originating in the CNS organise physical movements required for 

each bout of grooming (Berridge et al., 1988; Berridge and Whishaw, 1992). 

 

Greer and Cappechi (2002) demonstrated that the excessive grooming behaviour of the HoxB8 transgenic 

mouse model has a high degree of similarity to OCD in humans. Firstly, OCD is often characterised by 

excessive behaviours dealing with cleanliness, including grooming. Secondly, the activity of these mutant 

mice seem to mimic OCD in humans in that, other than the obsessive grooming, their activity is similar, if not 

identical, to their control littermates, in the same way as the obsessions and compulsions are the only factors 

separating OCD patients from control individuals. Thirdly. Greer and Capecchi, using in situ hybridization 

assays, showed that HoxB8 is expressed in several brain regions including the ones making up the OCD circuit 

(section 1.2.3.2.4). Finally, the excessive grooming that leads to loss of hair and formation of lesions is similar 

to what is observed in TTM, which is an OCS.  

 

Campbell and colleagues generated another transgenic mouse line that expresses an intracellular form of the 

cholera toxin (D1CT), in order to study the role of DRD1 neurons in behaviour (Campbell et al., 1999). The 

cholera toxin is a neuropotentiating enzyme that chronically activates stimulatory G-protein signal 

transduction and cAMP synthesis under the control of the DRD1 promoter (Burton et al., 1991; Zeiger et al., 

1997).  
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They found that in a founder line of these transgenic animals, in which transgene expression was restricted to 

the areas of the somatosensory cortex and the intercalated nucleus of the amygdala, abnormal psychomotor 

activity occured. These D1CT mice exhibited a wide range of compulsive behaviours that included episodes of 

perseverance or repetition of all normal behaviours, repetitive non-aggressive biting during grooming of 

littermates and repetitive leaping (Campbell et al., 1999). The results of their investigations suggest that 

chronic potentiation of cortical and limbic DRD1-positive neurons causes behaviours in these mice that are 

reminiscent of human cortical-limbic induced compulsive disorders, such as OCD (Campbell et al., 1999). 

 

In summary, several different animal models for OCD have either been developed or occur naturally. These 

animal models have provided researchers with unique opportunities to investigate aspects of OCD 

pathogenesis in an in vivo system. Several of these animal models have good face and predictive value, 

however, none of them can completely encapsulate the full spectrum of OCD symptoms and sub-types. 

Bearing this in mind, they do provide clues about genes that may be involved in certain aspects of OCD. For 

instance, the excessive grooming behaviour of the HoxB8 mutant mouse could suggest that HoxB8 may play a 

pivotal role in OCD, particularly in those individuals who have grooming compulsions, while the D1CT 

transgenic mouse model may suggest a role for DRD1 in OCD. However, investigators have not fully taken 

advantage of the potential of animal models to provide novel candidate genes for OCD. To date no association 

studies investigating the possible role of either HoxB8 or DRD1 in OCD have been reported, yet the two 

genetic animal models discussed in this section provide compelling evidence for the involvement of these two 

genes, or other components within the pathways they direct, in the development of obsessive-compulsive 

behaviour.  

 

1.5. THE PRESENT STUDY 

The literature reviewed in this chapter provides evidence for a genetic component in both schizophrenia and 

OCD. Moreover, the data presented in section 1.3 as well as Table 1.2 suggest that, although schizophrenia 

and OCD are considered distinct disorders, clinical overlap between the two exists. This reciprocal 

comorbidity as well as the polygenic nature of both disorders, suggests at least a partially shared genetic 

aetiology. Thus, the present investigation hypothesised that different combinations of normally occurring 

polymorphic variants in a host of distinct genes are conditional for the development of either OCD or 

schizophrenia, but that variants in some of these genes may contribute to the development of both disorders. 

Thus, genes that have been implicated in one disease could be considered candidate genes for susceptibility to 

the other disorder. As schizophrenia has been somewhat more amenable to genetic dissection than OCD, this 

disease was used as a platform for identifying novel OCD-susceptibility loci.  

 

1.5.1. Bioinformatic identification of novel schizophrenia-linked OCD candidate genes 

Firstly, schizophrenia-linked genomic regions were combed for plausible candidate genes by bioinformatics 

means, secondly, interactome analysis of reelin, previously implicated in an animal model of schizophrenia, 

was used to identify additional novel candidate genes. 
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Genes used in case-control association studies were chosen and prioritised based on two criteria: they had to 

reside in schizophrenia susceptibility loci that have been statistically linked to the condition in independent 

linkage studies were considered, whether or not the particular gene had previously been implicated in 

schizophrenia or OCD. Secondly, the candidacy of such genes selected purely by position was strengthened, if 

they were reported to be expressed in the brain and/or show homology to genes encoding enzymes or receptors 

with roles in the neurotransmitter systems already implicated in OCD pathogenesis. 

 

1.5.2. Interactome-based identification of novel OCD candidate genes  

Earlier, two examples were given of how the interactors of proteins implicated in schizophrenia have 

themselves also been implicated in schizophrenia (section 1.4.8). The present study used a similar approach to 

identify novel schizophrenia and/or OCD candidate genes.  

 

The starting point of this part of the study was the gene encoding reelin (section 1.4.9.1.1). This gene has been 

considered a candidate gene for schizophrenia based on a number of factors, discussed in section 1.4.9.1.1. We 

reasoned that, since reelin is implicated in schizophrenia susceptibility, proteins interacting with reelin may 

also be involved in schizophrenia, and thus also OCD, development. 

 

Several reelin interacting proteins have been indentified and their binding sites on reelin have largely been 

determined (section 1.4.9.1.1.) However, the functions of the N-terminal repeat region and reeler domain have 

not yet been determined. The reeler domain was of particular interest, as it has only been identified in one 

other protein, F-spondin, which is also involved in neurodevelopment. Therefore, since the reeler domain 

occurs only in proteins essential for neuronal migration, we hypothesised that this domain plays a critical role 

in neurodevelopment, probably through protein-protein interactions, and that these interactors may themselves 

be implicated in schizophrenia and thus in OCD. To test this hypothesis, a foetal brain cDNA library was 

screened, using the reeler domain of reelin as “bait” in Y2H analysis. Putative reeler-interactions identified 

from the Y2H screen were subjected to co-immunoprecipitation and mammalian-two-hybrid analyses (M2H) 

as verification.  

 

1.5.3. Case-control association studies of novel candidate genes 

Genes identified either from bioinformatic analysis of schizophrenia-linked loci, or by interactome analysis of 

reelin were then investigated for a role in OCD susceptibility. Previously reported polymorphisms in the 

prioritised candidate genes were retrieved electronically (NCBI.NIH.NLM.GOV/dbSNP), while in the case of 

POU3F2 (one of the prioritised candidate genes), polymorphisms were sought by polymerase chain reaction 

(PCR) single strand conformational polymorphism (SSCP) analysis as, at the time, no validated SNPs were 

found in the the publically available SNP databases.. Selected polymorphism(s) within these genes were 

genotyped in a group of unrelated OCD-affected individuals and a group of unrelated, ethnically matched 

control individuals belonging to the genetically homogeneous Afrikaner sub-population of South Africa, and 

differences between cases and controls evaluated statistically. 
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CHAPTER 2 MATERIALS AND METHODS 

2.1 STUDY SUBJECTS AND BLOOD COLLECTION 

Unrelated OCD patients and controls were recruited through the Medical Research Council (MRC) Unit on 

Anxiety and Stress Disorders from throughout South Africa by trained clinical psychologists and via media 

advertisements. These controls were matched to the case subjects according to ethnicity, gender and age. All 

patients and control subjects participating in this study were of Afrikaner descent, based on Afrikaans being 

their home language and at least three of their four grandparents being of Afrikaner descent. The University of 

Stellenbosch Ethics Committee approved the protocol (project number 99/013) and all subjects provided 

written informed consent.  

 

All OCD patients underwent a structured interview, which included the SCID-I, the Yale-Brown Obsessive-

Compulsive Scale (Y-BOCS) and the Yale Global Tic Severity Scale (YGTSS) (First et al.,  1994; Goodman 

et al.,  1989; Leckman et al.,  1989). A trained research clinician conducted each interview. All case subjects 

selected for inclusion in the present study met DSM-IV criteria for OCD and had no history of psychotic 

disorders. Importantly, the presence or absence of schizophrenia or schizotypal traits was not used as inclusion 

or exclusion criteria, and enrolled OCD patients were not substratified according to these traits, since the 

fundamental overlap between OCD and schizophrenia exists regardless of whether both disorders are present 

in the same patient. Controls underwent a semi-structured interview (SCID-I screening) and those selected for 

inclusion in the genetic study had no reported history of an anxiety, mood or psychotic disorder.  

 

Blood samples were drawn from both patients and control individuals by means of venous puncture and 

collected into 5 ml ethylene-diamine-tetra-acetic acid (EDTA) tubes. The EDTA tubes were immediately 

processed, if blood was drawn at the MRC Unit on Anxiety and Stress Disorders, while blood drawn from 

patients from around South Africa was couriered to the research laboratory within 24 hours of sampling. 

 

2.2 DNA PURIFICATION 

2.2.1. Extraction of nuclei from whole blood 

Blood from three 5ml EDTA tubes per patient was transferred into a 50ml Falcon tube. The tube was then 

filled to 20 ml with ice-cold lysis buffer (appendix I). After gently inverting the tubes a few times, the sample 

was incubated on ice for 5-10 min. The sample was then centrifuged at 2500-3000 rpm at room temperature in 

a Beckman model TJ-6 centrifuge (Scotland, UK). The supernatant was discarded and the pellet was 

resuspended in 20ml, ice-cold lysis buffer, followed by another round of incubation and centrifugation. The 

supernatant was discarded and the pellet resuspended in DNA extraction buffer (appendix I), after which the 

nuclei were either immediately used for DNA extraction, or stored at -70°C until DNA was required. 

 

2.2.2. Extraction of DNA from nuclei. 

To the freshly prepared or thawed nuclei, 100µl of proteinase K (10µg/ml) was added and the mixture was 

incubated overnight at 37°C. After this step, 2ml distilled water, 500µl 3M sodium-acetate (appendix I) and 

25µl phenol/chloroform (appendix I) were added to the sample. The tubes were subsequently inverted and 
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mixed gently for 10 min on a Voss rotator (Voss of Maldon, England) at 4°C. The mixture was then 

transferred to a glass Corex tube so that the aqueous phase could be clearly distinguished from the organic 

phase, followed by centrifugation in a Sorvall RC-5B refrigerated super-speed centrifuge (rotor SS 34, Dupont 

Instruments) at 8000 rpm for 10 min at 4°C.  

 

The upper aqueous phase, containing the DNA, was transferred to a clean Corex tube using a sterile plastic 

pasteur pipette, while taking care not to disturb the interface or the organic phase. Approximately 25ml 

chloroform/octanol (appendix I) was added to the aqueous phase after which the tube was closed with a 

polypropylene stopper and gently inverted for 10 min. This mixture was centrifuged at 4°C, followed by the 

removal of the upper aqueous phase as described earlier. The DNA was then ethanol precipitated by adding 

two volumes of ice-cold 96% ethanol and inverting gently until DNA strands appeared as a white precipitate.  

 

The DNA strands were removed using a yellow-tipped Gilson pipette and placed in a clean, 1.5ml Eppendorf 

microfuge tube. One millilitre 70% ethanol was then added to the DNA and the mixture centrifuged in a 

Beckman microfuge for 3 min at 13000 rpm. The ethanol was carefully decanted and the 70% ethanol wash 

repeated one more time in order to remove any excess salts. After careful removal of most of the ethanol, the 

DNA pellet was air-dried for 30-60 min at room temperature by inverting the Eppendorf  microfuge tube on 

Carlton paper. Two hundred microlitres Tris-EDTA (appendix I) buffer was added and the DNA was 

resuspended, initially by stationary incubation at 37°C overnight and subsequently by gentle mixing in a Voss 

rotator  at 4°C for a further 3 days. This was followed by stationary incubation at 4°C until the DNA had been 

fully resuspended. 

 

After 1-2 weeks, when the DNA had completely resuspended in the buffer, the optical density (OD) of the 

DNA was determined in a Milton Roy series 120i spectrophotometer (USA) at 260nm (OD260). The DNA 

concentration, in µg/µl, was determined by diluting 10µl of DNA in 500µl of TE and multiplying the 

measured OD260  by a factor of 2.5, while the purity of the DNA was monitored by the OD260//OD280 ratio, 

which should be approximately 1.8 for pure DNA. 

 

2.2.3. Gel purification of PCR-amplified products from agarose gels 

Purification of PCR-amplified DNA products from agarose gels was performed to obtain DNA products 

suitable for sequencing reactions and cloning. The relevant PCR-amplified DNA product was electrophoresed 

in a 1% agarose gel (section 2.4) and subsequently viewed under ultraviolet (UV) light. The segment of the gel 

containing the DNA to be purified was excised using a sterile scalpel blade, and the DNA subsequently 

extracted from the agarose using the GFX® DNA purification kit  (AmershamPharmacia Biotech, New Jersey, 

USA) as per the manufacturer’s instructions.    

 

2.2.4.Bacterial plasmid purification 

One Escherichia coli (E.coli) colony containing the plasmid of interest was picked from an appropriate 

selection plate and inoculated into 10 ml of Luria-Bertani Broth (LB) (appendix I), supplemented with the 
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correct antibiotic, in a 50ml polypropylene tube. The culture was then incubated at 37°C overnight, while 

shaking at 250rpm in a YIH DER model LM-530 shaking incubator (SCILAB instrument Co LTD., Taipei, 

Taiwan).  

 

The following morning, the culture was centrifuged for 10min at 3000rpm in a Beckman model TJ-6 

centrifuge (Beckman Coulter, Scotland, UK), after which the supernatant was discarded and the pellet was 

resuspended gently by pipeting in 1ml of cell suspension solution (Appendix I). Two millilitres of cell lysis 

solution (Appendix I) was added and the contents were mixed by gentle inversion of the tube which was then 

incubated at room temperature for 5 min. Two millilitres of neutralisation solution (Appendix I) was added to 

the tube and the contents were once again mixed by gentle inversion and incubated at room temperature for 5 

min. Following this incubation, 5ml of phenol/chloroform/isoamyl alcohol (25:24:1) (Sigma, St Louis, MO, 

USA) was added to the tube and the contents mixed by gentle inversion, followed by centrifugation at 3000 

rpm for 15 min at 4°C in a Multex centrifuge (MSE instrumentation, England, UK) in order to allow for phase 

separation.  

 

The upper clear plasmid-containing top (aqueous) phase was transferred into a new sterile 50ml polypropylene 

tube and approximately 0.7x volume 100% isopropanol (Merck, Darmstadt Germany) was added to the tube, 

which was mixed well by gentle inversion. This was followed by centrifugation at 4°C for 45 min in a Multex 

centrifuge (MSE Instrumentation, England, UK). After centrifugation, the supernatant was discarded and the 

pellet was washed twice with 2ml ice cold 70% ethanol and then air-dried. The dried pellet was resuspended in 

100-200µl ddH2O and subsequently 3µl of this plasmid preparation was resolved on a 1% T.B.E agarose gel 

for verification (section 2.5).  

 

2.2.5. Bacterial plasmid purification using Wizard
®
 Purefection Plasmid DNA purification kit  

One E. coli colony containing the plasmid of interest was picked from an appropriate selection plate and 

grown overnight, in 20ml of LB with appropriate antibiotic, as described above. The following morning the 

culture was centrifuged for 10min at 3000rpm in a Beckman model TJ-6 centrifuge, and the supernatant 

discarded. The plasmid DNA was then extracted from the pellet using the Wizard® Purefection Plasmid DNA 

purification kit (Promega Corp. Madison Wisconsin, U.S.A). as per manufacturer’s instructions.  

 

2.2.6.Yeast plasmid purification 

A yeast colony containing the plasmid of interest was inoculated into 1ml synthetic dropout (SD) medium 

containing the appropriate dropout supplement (BD Bioscience, Clontech, Paulo Alto, CA, U.S.A) and 

incubated overnight at 30°C in a shaking incubator at 250rpm. The following morning, 4ml YPDA (appendix 

I) was added to the culture, which was incubated for an additional 4 hours at 30°C. Thereafter, 1.5ml of the 

culture was transferred into a 2ml Eppendorf microfuge tube, which was benchtop centrifuged at 14000rpm 

for 30sec in a Beckman Microfuge Lite (Beckman Instruments Inc., CA, USA). The supernatant was discarded 

and to the pellet was added 200µl yeast lysis buffer (Appendix I), 200µl PCI and 0.3g sterile 450-600µm glass 

beads. The yeast cells were milled by vortexing this mixture for 2.5min using a Snijders model 34524 press-
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to-mix vortex (Snijders Scientific, Tilburg, Holland), followed by benchtop centrifugation at 14000rpm for 

5min at room temperature  for phase separation. The aqueous phase was transferred to a new, sterile 1.5ml 

microfuge tube. 

 

Subsequently the DNA was precipitated by adding 20µl of 3M NaAc (pH 6.0) (appendix I) and 500µl 95% 

ethanol, after which the mixture was incubated at -20°C for 30 min. Following incubation, the mixture was 

benchtop centrifuged at 14000rpm for 15 min at room temperature. The supernatant was discarded and the 

pellet washed twice with 1ml 95% ethanol, before being air-dried and resuspended in an appropriate volume of 

ddH2O. 

 

2.3. POLYMERASE CHAIN REACTION  

2.3.1 Oligonucleotide primer design and synthesis 

Oligonucleotide primer sequences were obtained from published data, where possible. When no published data 

was available, primers were designed using sequence data available either from the Ensembl database 

(http://www.ensembl.org) or the Genbank database (http://www.ncbi.nlm.nih.gov/Entrez). Before synthesis, 

each set of primer sequences were analysed for complimentarity (self-complimentarity and primer-primer 

complimentarity) and compatibility of melting temperatures using DNAmanTM version 4 software (Lynnion 

Biosoft Corp© ). 

 

2.3.1.1. Primers for genotyping 

Oligonucleotide primers were synthesised according to phosphoramidite methodology at the Department of 

Molecular and Cell Biology, University of Cape Town (UCT), South Africa. Primer sequences used for each 

of the polymorphisms genotyped is summarised in Table 2.1. 

 
2.3.1.2. Primers for single strand conformational polymorphism analysis 

The sequences of all the primers used to screen the single POU3F2 exon was obtained using sequence 

information available in the Ensembl database. Since the POU3F2 exon is 1331 bp long, primers were 

designed that generated 7 overlapping amplicons, designated POU3F2.1A-POU3F2.1G (Table 2.2), of a size 

suitable for SSCP analysis. All primers for this part of the study were synthesised at the Department of 

Molecular and Cell Biology, UCT, Cape Town, South Africa. 
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Table 2.1. Primer sequences used for genotyping of polymorphisms tested in the present study. 

Gene/ Polymorphism Primer name Primer sequence Ta(°C) Reference 

SNAP25/DdeI SNAP25F 5’ TTCTCCTCCAAATGCTGTCG 3’ 
60 

Barr et al.,  2000 
SNAP25R 5’ CCACCGAGGAGAGAAAAT 3’ 

SNAP25/MnlI SNAP25F 5’ TTCTCCTCCAAATGCTGTCG 3’ 
60 

SNAP25R 5’ CCACCGAGGAGAGAAAAT 3’ 
SNAP29/C56T SNAP29F 5’ GGAAGGAGTTCGCGCGACGA 3’ 

68 
Saito et al.,  2001 

SNAP29R 5’ GCGAGTCCACACCAGCCCTG 3’ 
SNAP29/G92A SNAP29F 5’ GGAAGGAGTTCGCGCGACGA 3’ 

68 
SNAP29R 5’ GCGAGTCCACACCAGCCCTG 3’ 

GRIA4/rs609239 GRIA4-1F 5’ TCCAGTCTAGAAGGCAGGAAA 3’ 
61 

Makino et al.,  2003 
GRIIA4-1R 5’ AACGTCCACATCACACATTCA 3’ 

GRIN1/1 GRIN1/1F 5’ GGACGATGCTGCCACTGTAT 3’ 
60 

Martucci et al.,  2003 
GRIN1/1R 5’ CGGTGATGTTCTCCTTCTCG 3’ 

DLX6 IVS1C>T DLX6F 5’ TGGTGCAGCTTCCTTTACCT 3’ 
60 

Nabi et al.,  2003 
DLX6R 5’ TGCTGCAGACTGATTCTGTG 3’ 

BZRP Ala147Thr PBREx4A 5’ TGGGACAGGCACTTGGGTGAAC 3’ 
60 

Kurumaji et al.,  
2001 PBREx4B 5’ AAGGCACCTGCTGGTGCAGCT 3’ 

DBH (I/D) DBHF 5’ GCAAAACTCAGGCACATGCACC 3’ 
55 

Yamamoto et al.,  
2003 DBHR 5’ CAATAATTTGGCCTCAATCTTG 3’ 

SYN3/ -631C>G SYNP3.1F 5’ AGGCATGTACTTGCGTTACC 3’ 
58 

Tsai et al.,  2002 
SYN3.11R 5’ CCAAATGACTACAAAGATGTACCA 3’ 

GBR1.1-C39T GBR1-EX1F 5’ AACCGGCAAGAGGTCGAGTAG 3’  
60 

Hisama et al.,  2001 
GRR1-EX1R 5’ CAGGGAAAGGGAAGTGGAGCG 3’ 

GBR1.11-T1545C GBR1-EX11F 5’ CACACCCACACACATTCAG 3’ 
58 

GBR1-EX11R 5’ GAATGCATGTTTGTAGAAGGTG3 ’  
RXRβ/Val95Ala RXRβEX2F 5’ CGGTGGGGTATTAGAGAATT 3’ 

60 Present  study 
RXRβEX2R 5’ CCCATGGAAGAACTGATGACGG 3’ 
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Abbreviations: BZRP, peripheral benzodiazepine receptor; DBH, Dopamine beta hydroxylase; °C, degrees Celsius; CHRM3, Acetylecholine receptor, Muscarinic 3;, DLX6, Distal-less like homeobox 6; 

ATG16L2, Hyoptherical protein ATG16L2; GBR, GABA receptor 1; GRIA4, AMPA receptor subunit GluR4; GRIN1, N-methyl-D-aspartate receptor NR1 subunit; RXRβ, retinoid X receptor beta; SLC18A1 

Vesicular monoamine transporter; SNAP25 Synaptosomal-associated protein of 25kDa: SNAP29, Synaptosomal-associated protein of 29kDa; SYN3, Synapsin III; RELN, Reelin; Ta, Annealing temperature used in 

PCR, WDR47, WD-repeat protein 47 

Gene/ Polymorphism Primer name Primer sequence Ta(°C) Reference 

CHRM3/MnlI 
CHRM3-F  5’ GCCAATGAGCCTCCCCAATTC 3’ 

60 Present study 
CHRM3-R 5’ CCAGTGACCACTTGGACATG 3’ 

SLC18A1/BseRI 18A1F 5’ ACT GTT TGT CCT TCG ATT 51 
Present study 

18AR 5’ GGA CCT TGA AAG GGT TTA AAT TCA 
RELNIVS59C/T RELNint59C/TF 5’ GAAGATACAAGCAGCTTCCAGAATGG 3’  55 

Present study RELNint59C/TR 5’ CCTGGGATTCAGACTTGGAA 3’ 
RELNint59C/T 5’ TCCCCTCTCCCAGAGGCTGGAGGCAAGA 3’ 

WDR47rs2591000 rs2591000-F 5’ TCCTGCAAGGAGGATGTATTG 3’ 52 
Present study 

rs2591000-R 5’ CTCTGCCTCCCAAGTTCAAG 3’  
GRID1 rs10887523 GRID1-F 5’ CAACCAGTGACTGCCATGAT 3’ 60 

Present study 
GRID1-R 5’ CCTTCCAAGGTGCTGTGTTT 3’ 

ATG16L2rs2282613 rs2282613-F 5’ CCCTGGGATGTCTTCGTTT 3’  50 Present study 
rs2282613-R 5’ CCAGGGCAGGATGAAAGTTA 3’ 
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Table 2.2. Primer sequences used in PCR-amplification of the protein-encoding region of POU3F2. 

Amplicon Size 
(bp) 

Forward Primer Reverse Primer Ta 
(°C) 

POU3F2.1A 251 5' GAGGGAGCCCGAGGCGAAAA 3’ 5’ GCGTGGCTGAGCGGGTGT 3’ 61.6 
POU3F2.1B 263 5’ CTACCGCGAAGCGCAGAC 3’ 5’ GCCCGTGCSGCTCGTCTC 3’ 63.1 
POU3F2.1C 311 5’ GGCCAGCCGGACATCAAG 3’ 5’ CCCAGCATGCCGTTCACC 3’ 61.2 
POU3F2.D 318 5’ ACCTCCCACCCTCCATGG 3’  5’ TCCGCCGCTGCTTGAACT 3’ 61.7 
POU3F2.1E 339 5’ CACCATGCCGACCACCAC 3’  5’ CGCCTCCTCCAACCACTT 3’ 58.8 
POU3F2.1F 219 5’ ACCACCATCTGCAGGTTT 3’ 5’ CTTGGGGCATTTGAGGAA 3’ 54.4 
POU3F2.1G 350 5’ CAAGATCGCAGCGCAAGG 3’ 5’ CCAAGGACCGAAGGGGAG 3’ 58.7 
Abbreviations: bp, base pairs; °C, degrees Celsius; POU3F2, POU domain, class 3, transcription factor 2; Ta: Annealing 
temperature used in PCR 
 

2.3.1.3 Primers for generation of insert for Y2H cloning 

Since the reelin cDNA sequence is 12500bp long, it was decided to use PCR-based exon splicing rather than 

RT-PCR, to generate the reeler domain-encoding fragment, which is encoded by the first four exons of the 

reelin gene (Fig 2.1). Primers were designed to amplify each of these exons individually. To facilitate cloning 

into the appropriate vector, the exon 1 forward primer was designed to contain an NdeI restriction sequence at 

the 5’ end, while the exon 4 reverse primer contained an EcoRI restriction site and a “stop” codon. In addition, 

these two primers also included additional “overhang” nucleotides at their 5’ ends to facilitate restriction 

enzyme digestion of the engineered NdeI and EcoRI sites. The remaining primers were designed so that each 

contained a “tag” sequence that is complementary to the sequence of the adjacent exon (Fig 2.1). The 

sequences of the primers used for this part of the study are shown in Table 2.3 

 

2.3.1.4 Primers for Y2H insert screening 

In order to amplify inserts cloned into Y2H cloning vectors, primers were designed to vector-specific 

sequences flanking the multiple cloning site (MCS) of pGBKT7 and pACT2 (BD Bioscience, Clontech, Paulo 

Alto, CA, U.S.A) Y2H cloning vectors. The specific vector sequences used in the design of these primers were 

obtained from the ClontechTM MatchmakerTM vector handbook (www.clontech.com). The sequences of these 

vector-specific primers are shown in Table 2.4. 
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Fig 2.1: Schematic representation of protocol used to generate insert from genomic DNA for cloning into Y2H vector.  
a) Briefly, each exons was amplified separately. b) Aliquots of exons 1 and 2 were mixed, and aliquots of exons 3 and 4 were mixed in separate tubes and used in a two-step PCR 
reaction that effectively joined exons 1 and 2 (using exon1F and exon2R) together and exons 3 and 4 together (using exon 3F and exon 4R). c) The two resulting fragments were then 
joined in another two-step PCR reaction using exon 1F and exon 4R generating a fragment that comprised the four reeler-encoding exons, as well as appropriate restriction sites for 
cloning into a Y2H vector, as well as a stop codon for in vitro translation. 
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Table 2.3. Primer sequences used to amplify each of the first four exons of the reelin gene from genomic 

DNA. 

Primer Name Sequence Ta  
(°C) 

Ta (°C) 
tag 

Reeler Exon 1F 5’ ACTGCAGAACATATGCTGTGCACCACACACGGG  3’ 62 39 
Reeler Exon 1R 5’ TTGTTGAAATTGTCACATGGTATTCTTGTCCCGGAA 3’ 66 35 
Reeler Exon 2F 5’ GACAAGAATACCATGTGACAATTTCAACAAGCACC 3’ 56 39 
Reeler Exon 2R 5’ GGTCAGACATGATCCCAAATCCGAAAGCACTGG 3’ 54 43 
Reeler Exon 3F 5’ CTGCTTTCGGATTTGGGATCATGTCTGACCACCAG 3’ 62 41 
Reeler Exon 3R 5’ TGTGTTGCTGTAGCCATGAAATTCACACAGCCTGTGC 3’ 66 43 
Reeler Exon 4F 5’ CTGTGTGAATTTCATGGCTACAGCAACACACCGG 3’ 62 37 
Reeler Exon 4R 5’ ACTCGAGAATTCCTAATCTTTGAAAATAACCTGGCCC 3’ 62 39 
Abbreviations: °C, degrees Celsius Ta, Annealing temperature. 
 Sequences in black font represent the sequence of the primers that anneals to the DNA in the PCR reaction. Sequences in 
coloured fonts represent the various tags used to effect splicing and cloning (shown in Fig 2.1). Light blue, “overhang” 

tag; red, NdeI restriction site; brown, exon 2 5’- tag; dark blue, exon 1 3’-tag; orange, exon 3 5’-tag; grey, exon 2 

3’-tag; green; exon 4 5’-tag; teal, exon 3 3’-tag; purple, EcoRI restriction site; pink, stop codon. 
 

Table 2.4. Primer sequences and annealing temperatures used for the amplification of inserts from 

cloning vectors. 

Name Sequence Ta (°C) 
pGBKT7-F 5’ TCATCGGAAGAGAGTAG 3’  50 
pGBKT7-R 5’ TCACTTTAAAATTTGTATACA 3’  51 
pACT2-F 5’ CTATTCGATGATGAAGATACCCCACCAAACC 3’ 68 
pACT2-R 5’ GTGAACTTGCGGGGTTTTTCAGTATCTACGA 3’ 68 
Abbreviations: °C, degrees Celsius; Ta, Annealing temperature 

 

2.3.1.5. Primers for in vitro transcription and translation 

Primers for the generation of products used in in vitro transcription and translation experiments were designed 

using the sequence of the pGBKT7 and pGADT7 vectors obtained from the ClontechTM MatchmakerTM vector 

handbook (www.clontech.com). The primer sequences and annealing temperatures are shown in Table 2.5. 

 

2.3.1.6. Primers for mammalian two-hybrid analysis (M2H) 

Primers were designed in order to amplify the reeler insert from pGBK and clone it into the pM GAL4 DNA-

binding domain cloning vector for mammalian two-hybrid (M2H) screening (section 2.17). Separate sets of 

primers were designed to amplify reeler putative ligands from pACT2 for cloning into the pVP16 GAL4 

activation domain M2H vector. The sequence and annealing temperatures of these primers are shown in Table 

2.6 
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Table 2.5. Primers for the generation of products used in in vitro transcription and translation 

experiments. 

Name Sequence Ta (°C) 
BK-Myc 5’ AATAAAATTGTAATACGACTCACTATAGGGCGAGCCGCC 

ACCATGGAGGAGCAGAAGCTGATGTCA 3’ 

65 

BK-R 5’TCACTTTAAAATTTGTATACAC 3’ 44 
ADHA-F 5’ AATAAAATTGTAATACGACTCACTATAGGGCGAGCCGCC 

ACCATGTACCCATACGACGTTCCAGAT 3’ 

61 

AD-R 5’ GGGGTTTTTCAGTATCTACGAT 3’ 52 
Abbreviations: °C, degrees Celsius; Ta, Annealing temperature 
 

Table 2.6. Primers for the generation of inserts for the creation of constructs to be used in M2H analysis. 

Name Sequence Ta (°C) 

ReelerF-EcoR1 5’ACTGCAGAAGAATTCATGCTGTGCACCACACACGGG 3’ 65 
ReelerR-Sal1 5’ ACTCGAGTCGACCTAATCTTTGAAAATAACCTGGCC 3’ 44 
WDR47-BamHI-F 5’ ACTGCAGAAGGATCCGTTGGCACAACATTTCAT 3’ 48 
ATG16L2-EcoRI-F 5’ ACTGCAGAAGAATTCCGGGCTCAGGATGTGCTG 3’ 56 
pACT2-SalI-R 5’ ACTGCAGAAGTCGACTATCTACGATTCATACATCT 3’ 52 
Abbreviations: °C, degrees Celsius; Ta, Annealing temperature 
Sequences in black font represent the sequence of the primer that anneals to the DNA in the PCR reaction. The sequence 
in coloured fonts represents tags for cloning: Blue, “overhang” tag; red, EcoRI restriction site; purple, SalI 

restriction site; and green, BamHI restriction site. Prey constructs were generated using gene-specific forward primers 
(WDR47-BamH1F; ATG16L2-EcoRI-F) and a the pACT2-SalI-R pACT2 specific primer.  
 

2.3.2. PCR for genotyping and SSCP analysis 

DNA amplification was performed in a 50µl reaction containing 0.1µg genomic DNA, 75µM of each of 

dATP, dCTP, dGTP and dTTP (Promega Corp., Madison Wisconsin USA), 5µl of a 10x Taq DNA 

polymerase buffer (Bioline UK Ltd, London, UK), 1.5mM magnesium chloride (Bioline UK Ltd, London, 

UK), 150ng of each oligonucleotide primer, 0.5U Taq DNA polymerase (Bioline UK Ltd, London, UK), 5% 

glycerol (Sigma chemical company, St Louis, Missouri, USA) and water to a final volume of 50µl. 

Amplification was performed in a GeneAmp®, PCR system 9700 thermal cycler (P.E Biosystems, Forster, 

City CA. U.S.A). A typical cycling profile consisted of a single incubation at 94°C for 5 min cycle to allow for 

the denaturation of the double stranded DNA, followed by 30 cycles of 94°C for 30s, appropriate annealing 

temperature (Table 2.2) for 30s to allow for the primers to anneal to their target sequences and 72°C for 30s to 

allow for extension of the PCR product. These 30 cycles were followed by single final incubation at 72°C for 

7 min. Following amplification, 5µl aliquots of each sample were electrophoresed on 1-2% agarose gels 

(section 2.4) for verification.  

 

2.3.3. High fidelity PCR 

High fidelity PCR was used to amplify the exons coding for the reeler domain from genomic DNA. These 

amplified products were subsequently joined together in a PCR-based splicing strategy and the resulting 

fragment cloned into the pGBKT7 Y2H cloning vector. 

 

For the amplification of the above-mentioned exons, 100ng of human genomic DNA from a control individual 

was used as a template in a reaction performed in a 50µl volume containing: 150ng of each primer (Table 2.3) 
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1.5µl of an equimolar dNTP (2.5mM of each, dATP, dCTP, dGTP and dTTP) solution, supplied by the 

manufacturer (TaKaRa Shuzo Co.Ltd, Shiga, Japan), 5µl ExTaqTM Mg2+-containing 10x reaction buffer 

supplied by the manufacturer (TaKaRa Shuzo Co.Ltd, Shiga, Japan), 2U ExTaqTM  (TaKaRa Shuzo Co.Ltd, 

Shiga, Japan) and ddH2O to a final volume of 50µl. Amplification was performed as above in a GeneAmp ®, 

PCR system 9700 thermal cycler.  

 

2.3.4. PCR-amplification for generation of reeler domain fragment.  

The generation of the reeler domain fragment for use in Y2H analysis was performed in a three-stage PCR 

reaction. First, each of the four reelin gene exons which together encode the reeler domain was amplified 

individually using the appropriate primer set (Table 2.3) following the protocol described in section 2.3.3. The 

PCR products were electrophoresed on a 2% agarose gel from which they were subsequently excised and 

purified (section 2.2.4). Purified products of exon 1 and exon 2 were then mixed in one microfuge tube, while 

purified products of exon 3 and 4 were mixed in a separate microfuge tube. 

 

A PCR reaction mix was made up consisting of 15µl of an equimolar dNTP (2.5mM of each, dATP, dCTP, 

dGTP and dTTP) solution, supplied by the manufacturer (TaKaRa Shuzo Co.Ltd, Shiga, Japan), 50µl ExTaqTM 

Mg2+-containing 10x reaction buffer supplied by the manufacturer  and 395µl ddH2O. Five aliquots of 46µl 

each of this reaction mix were transferred into 5 sterile microfuge tubes to which 1µl of either the purified 

exon1-exon2 mix or purified exon3-exon4 mix was added. To each tube, 0.5µl ExTaqTM (TaKaRa Shuzo 

Co.Ltd, Shiga, Japan) was added. The rest of the reaction mix was stored for further use. Thermo-cycling was 

performed in a GeneAmp®, PCR system 9700 thermal cycler using the following cycling parameters: 15 

cycles of 94°C for 30s, Ta of the “tag” (Table 2.3) for 30s and 72°C for 30s. During this step, and in the 

absence of any primers, the exonic overlaps provided by the primer tags used in the first amplification reaction 

allowed exons 1 and 2, as well as exons 3 and 4 to partially anneal to each other. This double-stranded region 

then primed extension and conversion of a partially annealed exon1-exon2 or exon3-exon4 fragments into full 

double-stranded fragments of exons 1 through 2 and exons 3 through 4.  To the remaining, stored reaction 

mix, 150ng of each of the appropriate primer set (Exon 1F and Exon2R for exon1-exon2 fragment and Exon 

3F and Exon4R for exon3-exon4 fragment) and 25µl formamide were added. Following thermo-cycling, 45µl 

of the reaction mix and 0.2µl ExTaq  were transferred to each of the 5 sample tubes and samples were thermo-

cycled again for 15 cycles of 94°C for 30s, Ta of the primers (Table 2.3) for 30s and 72°C for 30s in 

GeneAmp®, PCR system 9700 thermal cycler. During this step, the two-exon extension products are 

exponentially amplified. The PCR products were electrophoresed for verification as well as DNA purification 

(section 2.2.4). After the exon1-exon2 fragment and exon3-exon4 fragments were generated, the two 

fragments were purified, mixed and the same protocol as above was followed to generate a full exon 1 through 

exon 4 fragment. A schematic representation of the above protocol is shown in Figure 2.1 and the PCR 

conditions are summarised in Table 2.7. 
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Table 2.7. PCR conditions used to amplify the first 4 exons of reelin from genomic DNA. 

Primer set 

 

[MgCl2] 

mM 

TD 

°C 

Time 

sec 

TA 

°C 

Time 

sec 

TE 

°C 

Time 

Sec 

Exon1F/ 
Exon1R 

1.5 94 30 62 30 72 30 

Exon2F/ 
Exon2R 

1.5 94 30 59 30 72 30 

Exon3F/ 
Exon3R 

1.5 94 30 63 30 72 30 

Exon4F/ 
Exon4R 

1.5 94 30 63 30 72 30 

Abbreviations: °C, degrees Celcius; mM, millimolar; sec, sec; TA, annealing temperature; TD, denaturing temperature; 
TE, extension temperature 
 

2.3.5. Bacterial colony PCR 

As the vectors used in Y2H and M2H do not support blue-white selection, and in order to rapidly identify 

bacterial colonies harbouring the desired recombinant plasmid to be used in these analyses, bacterial colony 

PCRs were performed. In these PCR reactions, instead of using 100ng of genomic DNA as template, a 

miniscule amount from an individual bacterial colony was picked from an agar plate containing the 

appropriate antibiotic, and used as template. Y2H vector-specific primers (Table 2.4.) were used in 

conjunction with PCR reaction mixtures and conditions  as described in section 2.3.2 to perform these colony 

PCR amplifications. PCR amplified products were subsequently electrophoresed on a 1% agarose gel for 

verification. 

 

2.3.6. Yeast colony PCR 

The protocol used for yeast colony PCR was virtually identical to the protocol used for bacterial colony PCR, 

with the only difference being that a tiny amount of a yeast colony, instead of a bacterial colony was used as 

template. These reactions were performed as the first step towards generating a restriction enzyme map of each 

of the putative interactor prey inserts obtained in Y2H library screening. 

 
2.3.7. PCR-amplification for in vitro transcription and translation 

The Y2H cloning vector containing the ‘bait’ insert, as well as the clones isolated in the Y2H screen were used 

as templates for the amplification of inserts for in vitro transcription and translation. Amplification was 

performed as in section 2.3.3, in a 50µl reaction volume containing 0.5µl plasmid preparation (section 2.2.5) as 

template, and PCR conditions as summarised in Table 2.8. 
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Table 2.8. PCR conditions used for generation of templates for in vitro transcription/ translation 

 
 
 
 
 
 
 
 
 

Abbreviations: °C, degrees Celcius; MgCl2, Magnesium chloride mM, millimolar; sec, sec; TA, annealing temperature; 
TD, denaturing temperature; TE, extension temperature 
The thermocycler was set to perform 30 amplification cycles  
 

2.3.8. PCR-amplification for mammalian two-hybrid analysis 

The Y2H cloning vector containing the “bait” insert, as well as the putative reeler-interacting clones isolated in 

the Y2H screen were used as templates for the PCR preparation of inserts for M2Hconstructs. Amplification 

was performed as described above, using primers listed in Table 2.6, and PCR conditions described in Table 

2.9. 

 
Table 2.9. PCR conditions used for amplification of inserts for M2H analysis. 

Primer set 
 

[MgCl2] 
mM 

TD 
°C 

Time 
sec 

TA 
°C 

Time 
sec 

TE 
°C 

Time 
sec 

ReelerF-EcoRI/  
ReelerR-SalI 

1.5 94 30 62 30 72 30 

WDR47-BamHI-F/  
pACT2-SalI-R 

1.5 94 30 50 30 72 150 

ATG16L2-EcoRI-
F/ pACT2-SalI-R 

1.5 94 30 50 30 72 150 

Abbreviations: °C, degrees Celcius; MgCl2, Magnesium chloride mM, millimolar; sec, sec; TA, annealing temperature; 
TD, denaturing temperature; TE, extension temperature 
The thermocycler was set to perform 30 amplification cycles  
 
2.4. GEL ELECTROPHORESIS 

In the present study, agarose gel electrophoresis was used either to visualise PCR-amplified fragments or 

plasmid preparations for verification, or for excision of DNA fragments for purification (section 2.2.3), while 

both agarose and non-denaturing polyacrylamide gel electrophoresis (PAGE) were used to visualise restriction 

enzyme digested PCR-amplified products for allele specific restriction enzyme analysis (Table 2.11). Sodium 

dodecyl sulphate  (SDS) PAGE was used to visualise translated protein products as well as co-

immunoprecipitation reactions. The solutions used for making these various types of gels are shown in 

appendix I. 

 

2.5. SINGLE STRAND CONFORMATIONAL POLYMORPHISM ANALYSIS  

Single strand conformation polymorphism (SSCP) analysis was performed on the coding region of POU3F2 in 

order to identify polymorphisms that could be used in subsequent case-control association studies. Briefly, 8µl 

of PCR-amplified product (section 2.3.2.) was mixed with 8µl SSCP loading dye (Appendix I) and incubated 

at 94°C for 5min in order to denature the DNA. Following the incubation period, the sample was loaded onto a 

mildy denaturing polyacrylamide gel (appendix I), containing 5% glycerol and electrophoresed at 25W for 16h 

Primer set 
 

[MgCl2] 
mM 

TD 
°C 

Time 
sec 

TA 
°C 

Time 
sec 

TE 
°C 

Time 
sec 

BK-Myc/  
BK-R 

1.5 94 30 49 30 72 150 

ADHAF/  
AD-R 

1.5 94 30 42 30 72 150 
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at 4°C in 0.5xTBE running buffer. Eight microlitres of a non-denatured control sample and 2µl λPst 

(Appendix I) size marker, both of which were mixed with 8µl SSCP loading dye, were co-electrophoresed 

with the heat-denatured PCR product. After electrophoresis, the bands were visualised by silver staining 

(section 2.6). For each panel of samples analysed, an 8% as well as a 10%, polyacrylamide gel of 

400x300x1mm dimensions (appendix I), which had been covalently bound to a nylon support sheet [Gelbond 
® PAG film] (Cambrex Bio Science, Rockland, Inc, Rockland, Maine, U.S.A)] during gel polymerisation, were 

used in PCR-SSCP mutation screening. 

 

2.6. VISUALISATION OF POLYACRYLAMIDE ELECTROPHORESED PRODUCTS 

2.6.1. Silver staining of polyacrylamide gels 

After completion of electrophoresis, the gel was immersed in solution B (0.1% AgNO3) and gently shaken for 

10 min, then rinsed with water, and subsequently agitated in solution C until stained bands could be seen. The 

gel was then viewed on a white light illuminator (Lauda Thermostat, Germany) and photographed using a 

Video Printer (Sony Corporation, Shinagawa-ku, Tokyo, Japan). 

 

2.6.2. Autoradiography of SDS polyacylamide gels 

After SDS-PAGE, the electrophoresis apparatus was dismantled and the gel transferred to Whatman 3M paper 

(Whatman International Ltd, Maidstone, England), and heat- and vacuum-dried in a Drygel SrTM slab gel drier 

(Hoeffer Scientific Instruments, San Francisco, C.A., U.S.A) for one hour. After drying, the gel was exposed 

to autoradiography film [Kodak (Eastman Kodak Company, Rochester, New York, U.S.A)] for 1 day to two 

weeks (depending on the strength of the radioactive signal and concentration of proteins) after which it was 

developed in a Hyperprocessor TM automatic autoradiography film processor (Amersham pharmacia biotech 

U.K Ltd., Little Chalfont, Bucks, U.K). 

 

2.7. AUTOMATED DNA SEQUENCING  

Automated DNA sequencing of PCR-amplified products, as well as cloned inserts, was performed either at the 

Core Sequencing Facility at the Department of Genetics of the University of Stellenbosch, RSA on an ABI 

PrismTM 377 or an ABI PrismTM 3100 automated sequencer (P.E. Applied Biosystems, Forster City, CA, 

U.S.A) or at the Department of Medical Biochemistry at the University of Stellenbosch, RSA on an ABITM 

3100 Avant automated sequencer (P.E. Applied Biosystems, Forster City, CA, U.S.A). The primers used for 

these sequencing reactions for PCR-amplified products were identical to the original PCR primers, while for 

the sequencing of Y2H constructs, the vector-specific primers were used. 

 

2.8. SEQUENCE ANALYSIS 

2.8.1. DNA sequence analysis 

Sequence analysis was done using the ChromasPro computer program (Techelysium Pty Lmt, Helensvale, 

Queensland, Australia) to verify the sequence integrity of the reeler fragment generated by PCR-amplification 

(section 2.3.4), as well as to identify Y2H putative interactor prey clones isolated during Y2H library 

screening. The nucleotide sequence of the spliced reeler domain-encoding exon (section 2.7) was compared to 
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the reelin reference sequences obtained from the Genbank database (www.ncbi.nlm.nih.gov/Entrez) and the 

Ensembl database (www.ensembl.org). The Y2H prey constructs were identified by BLASTn comparison of 

the nucleotide sequences against the GenBank database (www.ncbi.nlm.nih.gov/Entrez) and the Ensembl 

database (www.ensembl.org). The insert sequence was also translated in the frame dictated by the preceding 

GAL4AD reading frame (i.e. reading frame 1), and this deduced protein sequence compared against proteins 

in the Swissprot database by BLASTp analyses. 

 

2.8.2. Protein sequence analysis 

Following the identification of the protein encoded by each of the clones obtained from the Y2H screen, the 

protein sequence was analysed using Proteome Analyst 

(http://www.cs.ualberta.ca/%7Ebioinfo/PA/Sub/index.html) and ESLpred 

(http://www.imtech.res.in/raghava/eslpred/.) to determine protein domain structure. 

 

2.9. GENOTYPING BY SINGLE NUCLEOTIDE ddNTP PRIMER EXTENSION (SNaPshot) 

ANALYSIS OF REELIN INTRON 59 POLYMORPHISM  

The SNaPshot genotyping method (Applied Biosystems, Foster City, California, USA) involves the extension 

of an oligonucleotide probe (that terminates immediately 5’ to the SNP of interest) by one of four 

fluorescently-labelled dideoxynucleotides complementary to the base sequence at the SNP site of interest. The 

sequences of primers used in the SNaPshot genotyping of RELNIVS59C/T polymorphism are shown in Table 

2.1. 

 

2.9.1. PCR reaction clean-up 

The first step in the SNaPshot reaction entails a PCR-product purification step to remove excess dNTPs and to 

dephosphorylate unincorporated outer primers that may interfere with the SNaPshot reaction. Here, 5µl of the 

relevant PCR products were incubated with 0.33U ExoI (Amersham, Little Chalfont, Buckinghamshire, UK) 

and 0.66U shrimp alkaline phosphatase (SAP) (Roche Applied Science, Basel, Switzerland) at 37˚C for one 

hour, followed by an enzyme deactivation step at 75˚C for 30 min. The purified PCR template was 

subsequently stored at 4˚C until required. 

 

2.9.2. Primer extension reaction conditions 

The internal interrogation primer (RelnIVS59C/T Table 2.1) to be used in a singleplex reaction was diluted to a 

concentration of 0.2µM using ddH2O. The extension reaction, comprising 3µl of previously cleaned, pooled 

PCR products, 3µl SNaPshot Multiplex Ready Reaction mix (Applied Biosystems, Foster City, California, 

USA), which contains differentially fluorescently labelled ddATP, ddCTP, ddGTP and ddTTP, 1µl internal 

primer and 1µl de-ionised water, was performed by repeating the following cycle 27 times: 96˚C for 10s, 50˚C 

for 5s, and 60˚C for 30s. Thereafter, a post-extension purification step was employed to avoid further primer 

extension. This was performed by adding 1U of SAP to the sample, which was subsequently incubated at 37˚C 

for one hour, and then at 72˚C for 30 min to deactivate the enzyme. 
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2.9.3. Analysis on ABI Prism 3130 Genetic Analyser 

The fluorescently extended probes were separated and detected on an ABI Prism 3130 Genetic Analyser 

capillary electrophoresis system (Applied Biosystems, Foster City, California, USA). After an appropriate 

spectral matrix using materials from the matrix standard DS-02 (Applied Biosystems, Foster City, California, 

USA) was created, the ABI Prism 3130 Genetic Analyser was used with filter set E5 to process the data from 

the 5 dyes, namely dR110, dR6G, dTAMRA, dROX and LIZ.  

 

Fluorescently labelled extension reactions were prepared for capillary electrophoresis analysis by mixing 9µl 

of Hi-Di formamide (Applied Biosystems, Foster City, California, USA), 1µl of the SNaPshot product and 

0.4µl of GeneScan-120 LIZ internal sizing standard (Applied Biosystems, Foster City, California, USA). The 

samples were then denatured by placing them at 95˚C for 2 min and thereafter, the prepared samples were then 

stored on ice until loaded into the capillary electrophoresis system. 

 

A 36cm capillary array filled with denaturing POP4 performance optimised polymer (Applied Biosystems, 

Foster City, California, USA) was used for DNA fragment separation. Genetic Analyser electrode running 

buffer with EDTA was used in 1x concentration. Typical run module parameters were: run temperature 60˚C, 

capillary fill volume 38000 steps, pre-run voltage 15kV, data delay 3600s and run time 14000s. 

 

Two negative controls were electrophoresed with each reaction: a PCR template without primers, and the 

internal pooled primers without template. Allele assignment was subsequently performed using ABI Prism 

Genotyper software (GeneMapper ID, Ver 3.7 [Applied Biosystems, Foster City, California, USA]). 

 

2.10. GENOTYPING BY TAQMAN® SNP GENOTYPING ASSAYS  

Two SNPs in SYN3 (rs130753 and rs130454) and two SNPs in DLX6 (rs1207728 and rs1004278) were 

genotyped using validated Taqman® SNP genotyping assays (Applied Biosystems, Forster City U.S.A), 

purchased from Applied Biosystems. The assay number for each of the relevant SNPs are summarised in 

Table 2.10. 

 

The procedure for the assay was as follows. Briefly, 2.5µl Taqman® Universal PCR Mastermix was added to 

0.25µl, 20x Taqman® SNP genotyping assay mix and 2.25µl dH2O. This mixture was then added to 1µl 

genomic DNA template and PCR-amplified using an ABI 7900HT fast real-time PCR system (Applied 

Biosystems) at the Centre for Proteomic and Genomic Research (CPGR) at the University of Cape Town. The 

PCR-cycling parameters were set as follows: An initial hold at 50°C followed by another hold at 95°C for 

10min. These two holds were followed by 40 cycles each at 92°C for 15sec and 60°C for 1min30sec. 

Following the 40 cycles another hold was set at 4°C for 7min. Once amplification was complete, allele 

assignment was performed using Applied Biosystems Sequence Detection Software (SDS) version 2.3. 

Comment [MB63]: 4% DMA Homopolymer,8M 
Urea, 5% 2-pyrrolodine, 100mM N-
tris(hydroxymethyl)-methyl-3-aminopropanesulfonic 
acid (TAPS) adjusted to pH 8.5 w/ ddH2O. electrode 
buffer = EDTA 
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Table 2.10. rs numbers and Taqman assay numbers of SNY3 and DLX6 polymorphisms used. 

Gene Polymorphism Taqman® Assay number 

SYN3 
rs130753 c___2228023_10 
rs130454 c____898390_1_ 

DLX6 
rs1207728 c___887662_10 
rs1004278 c___9507865_10 

Abbreviations: DLX, Distal-less like homeobox 6;  ; SYN3, Synapsin III 

 

2.11. RESTRICTION  ENZYME DIGESTION 

2.11.1. Allele-specific restriction enzyme analysis (ASREA) for genotyping 

Allele-specific restriction enzyme analysis (ASREA) was used to screen OCD patients and control individuals 

for previously described polymorphisms. Generally, 5µl of a PCR-amplified product was added to a reaction 

mix comprising 1-3U of the relevant enzyme (Table 2.11), 1µl of the relevant restriction enzyme buffer and 

ddH2O to a final volume of 10µl. The mixture was subsequently incubated for 2-16 hours at the optimal 

temperature for the particular enzyme used (Table 2.11).  

 

Following digestion, 8µl of the digested sample was mixed with 1µl bromophenol blue loading dye and loaded 

either onto a 2% agarose gel or a 12% polyacrylamide gel, depending on the size of the products (Table 2.11), 

and visualised either on a long wave 3UV transilluminator (UVP, Inc. Upland, CA, U.S.A), for agarose gels, 

or silver staining, for acylamide gels (section 2.6.1). 

 

2.11.2. Restriction enzyme digestion for cloning 

To clone the PCR-generated fragment (section 2.3.4) into the pGBKT7 vector , for Y2H analysis, and pM and 

pVP16 vectors for M2H both the insert and vector were sequentially double-digested with appropriate 

restriction enzymes [NdeI and EcoRI for Y2H and EcoRI and SalI for M2H]. The digests were prepared in a 

100µl reaction volume as follows: 50µl insert DNA or 20µl vector DNA was mixed with 5µl restriction 

enzyme , 10µl restriction enzyme buffer and the appropriate volume of ddH2O (Insert, 35µl; vector, 65µl). The 

mixtures were incubated at 37°C for 3h. Following this, the samples were purified using the GFX® DNA 

purification kit, as discussed in section 2.2.3, with the only exception being that instead of gel electrophoresis 

and excision of DNA from the gel for purification, the samples were purified directly.  

 

The samples were subsequently eluted in 50µl ddH2O and mixed with 5µl the second restriction enzyme, 10µl 

restriction buffer and 35µl ddH2O. These samples were incubated at 37°C for 3 hours, after which they were 

again purified using the GFX® DNA purification kit  

 

2.11.3. Restriction mapping of Y2H prey clones 

Restriction mapping of Y2H prey-inserts was performed in order to group identical prey-plasmids identified 

by Y2H analysis as interacting with the reeler bait construct. The prey-inserts were PCR amplified by yeast 

colony PCR (section 2.3.6) and the PCR products digested with HaeIII restriction enzyme. Five microlitres of 

PCR product was mixed with 2U HaeIII, 1µl appropriate restriction enzyme buffer and 3.8µl ddH2O to a final 
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reaction volume of 10µl. The samples were then incubated for 2 hours at 37°C and subsequently 

electrophoresed on a 12% polyacrylamide gel (section 2.4.2.1), and bands visualised by silver staining (section 

2.6.1). The restriction pattern of each prey-insert was evaluated and compared to each other. Inserts with the 

same HaeIII restriction pattern were then digested with RsaI in a separate reaction, following conditions 

described above, to verify the similarity of the inserts. Inserts with the same HaeIII and RsaI restriction 

enzyme digestion patterns were then considered as identical clones and only one representative of the group 

was used in further analyses. 

 

Table 2.11. Restriction enzymes and digestion conditions for genotyping by ASREA 

 

Polymorphism Restriction 
Enzyme  

Optimal temperature 
for enzyme (°C) 

Type of gel 
electrophoresis 

SNAP25/DdeI DdeI 37 2% agarose 
SNAP25/MnlI MnlI 37 2% agarose 
SNAP29/C56T 

and 

SNAP29/G92A 

 

DdeI 
 
37 

 
12% acrylamide 

GRIA4/rs609239 HSp92I 37 12% acrylamide 
GRIN1/1 BseRI 37 2% agarose 
DLX6 IVS1C>T ApoI 50 2% agarose 
BZRP Ala147Thr NruI 37 2% agarose 
SYN3/ -631C>G BsrI 65 3% agarose 
GBR1.1-C39T HhaI 37 12% acylamide 
GBR1.11-T1545C EarI 37 2% agarose 
GRID1 rs1088753 BfaI 37 2% agarose 
CHRM3/MslI MslI 37 2% agarose 
SLC18A1/BseRI BseRI 37 2% agarose 
RXRβ/Val95Ala BanII 37 2% agarose 
WDR47rs2591000 HinfI 37 2% agarose 
ATG16L2 rs2282613 MboII 37 20% acrylamide 
Abbreviations: BZRP, peripheral benzodiazepine receptor; DBH, Dopamine beta hydroxylas; °C, degrees Celsius DLX, 

Distal-less like homeobox 6; GBR, GABA receptor 1; GRIA4, AMPA receptor subunit GluR4; GRIN1, N-methyl-D-
aspartate receptor NR1 subunit; RXRβ, retinoid X receptor beta; SNAP25 Synaptosomal-associated protein of 25kDa: 
SNAP29, Synaptosomal-associated protein of 29kDa; SYN3, Synapsin III 
 

2.12. GENERATION OF CONSTRUCTS 

2.12.1. Generation of Y2H and M2H constructs 

The Y2H bait-insert was cloned into the pGBKT7 bait-vector and, after verification of the integrity of the 

sequence and conservation of the GAL4 DNA-BD reading frame by automated sequencing, transformed into 

the yeast strain AH109. This construct was used to screen a CLONTECH MATCHMAKER pre-transformed 

foetal brain cDNA library, comprising foetal brain cDNAs cloned into the pACT2 prey-vector and 

transformed into the yeast strain Y187. For generation of M2H constructs, the reeler bait-insert was cloned 

into the pM GAL4-DNA binding domain vector, while putative reeler-interacting clones was cloned into the 

pVP16 GAL-activation domain vector (pVP16). The integrity of the sequence and conservation of the GAL4 

DNA-BD and GAL-activation domain reading frame was also verified by automated sequencing. 
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2.12.2. Alkaline phosphatase treatment of vector 

To prevent the vector re-circularising by self-ligation, following the final restriction enzyme digestion step 

(section 2.10), the ends of the linearised plasmid were CIP-treated to remove the phosphate groups. This was 

accomplished by mixing 50µl of the digested vector with 1µl CIP (Promega, Madison WI, USA), 10ul CIP 

buffer and 38µl ddH2O. The sample was incubated at 37°C for 30 min, after which another 2µl CIP was added 

and the mixture incubated for a further 30min. Following this, 2µl 0.5M EDTA (Appendix I) was added and 

the sample was incubated at 65°C for 20 min to inactivate the enzyme. The vector was subsequently purified 

using the GFXTM DNA purification kit (AmershamPharmacia Biotech, New Jersey, USA) (section 2.2.3). 

 

2.12.3. DNA ligation 

DNA ligations were performed in order to generate the Y2H bait constructs to be used in Y2H analysis and 

M2H bait and prey constructs for M2H analysis (vector maps are supplied in Appendix VI). In general, 2µl of 

the double-digested insert (section 2.10.4) was added to 1µl of CIP-treated, double-digested vector (section 

2.10.4). To this mixture, 5µl 2x T4 DNA ligase buffer (Promega, Madison WI, USA), 5U T4 DNA ligase and 

ddH2O, to a final volume of 10µl, were added. The sample was then incubated for 16 hours at 4°C. Following 

incubation, 5µl of the sample was transformed into the bacterial strain DH5α (section 2.15.1) which was plated 

onto LB agar plates containing the appropriate antibiotic. After incubation of the plates, successful ligation 

reactions were confirmed by bacterial colony PCRs (section 2.3.5.). 

 

2.13. BACTERIAL STRAINS, YEAST STRAINS AND CELL LINES 

2.13.1. Bacterial strains 

To facilitate the selection and purification of Y2H constructs, ligation reactions were transformed into the 

E.coli DH5α strain. Transformed bacterial colonies were selected on the basis of their ability to grown on LB 

agar plates (Appendix I) containing selection antibiotics, and recombined plasmids identified by colony PCR 

(section 2.3.5). When selecting for pGBKT7, kanamycin was used as a selection antibiotic, while ampicillin 

was used when selecting for pACT2. 

 

2.13.2. Yeast strains 

The pGBKT7 bait construct was transformed into the yeast strain AH109, while all the clones present in the 

pre-transformed CLONTECH cDNA library (section 2.16.1) used in the Y2H analysis had been transformed 

into the yeast strain Y187 by the manufacturer. 

 

2.13.3. Cell lines 

The pM and pVP-16 constructs were co-transfected into a HEK293 cell line for M2H analysis together with 

the pG5SEAP vector.  

 

2.14. GENERATION OF E.Coli DH5α COMPETENT CELLS 

A scrape of an E.coli DH5α frozen (-70°C) glycerol stock was inoculated into 10ml LB-media. The culture 

was then incubated overnight at 37°C in a YIH DER model LM-530 shaking incubator (SCILAB Instrument 
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CO. Ltd, Taipei, Taiwan) at approximately 200rpm. Following incubation, a 1ml aliquot of this culture was 

inoculated into a 2l Ehrlenmeyer flask containing 200ml LB media (Appendix I). This culture was incubated 

at room temperature for 24 hours, while shaking at 200rpm, to mid-log phase (OD600nm=0.6) on a Labcon 

orbital shaker (Labcon Pty, Ltd, Maraisburg, RSA). At this point the culture was decanted into 4x 50ml 

polypropylene tubes, which were centrifuged at 3000rpm for 15 min at 4°C in a Multitex centrifuge (MSE 

instruments, England). The supernatant was removed and 8ml of ice-cold CAP buffer (Appendix I) was used 

to resuspend the pellet. The cells were re-pelleted by centrifugation at 3000rpm for 15 min at 4°C in a Multitex 

centrifuge. The supernatant was discarded and the pellet was resuspended in 4ml of ice-cold CAP buffer. The 

suspended cells were subsequently transferred into 1.5ml microfuge tubes in 500µl aliquots and snap frozen by 

immersion in liquid nitrogen. The cells were then stored at -70°C until they were needed. 

 

2.15. CULTURING OF THE HEK293 CELL LINE 

2.15.1. Culture of HEK293 cells from frozen stocks 

2.15.1.1 Thawing the cells 

Frozen HEK293 cells, a kind gift from Prof Janet Hapgood, Dept Biochemistry, University of Stellenbosch, 

were thawed rapidly by immersing the vial containing the frozen stock in a 37°C waterbath (Memmert®, 

Schwabach, Germany) for 10min. Once the cells were thawed, the outside of the vial was immediately 

sterilized with 70% ethanol.  

 

2.15.1.2. Removing DMSO from stocks and culturing cells 

As the frozen stocks contained DMSO, it was necessary to remove the DMSO for maximum viability of the 

cells upon plating, using the following method. One millilitre of growth media (Appendix I), prewarmed to 

37°C was added to the thawed stock and mixed by gentle pipetting. The mixture was transferred to a 12ml 

Greiner tube (Greiner Bio-one, Frickenhausen, Germany) and another 5ml growth media was added. The cells 

were then pelleted by centrifugation at 10000rpm for 1min using a Sorval® GLC-4 General Laboratory 

centrifuge (Separations Scientific, Johannesburg, South Africa), followed by removal of the supernatant. The 

pellet was resuspended in another 5ml growth media and the cells were once again centrifuged at 10000rpm 

for 1 min. Following this, the cells were resuspended in 10ml growth media and transferred into a T25 culture 

flask. The flask was gently swirled in order to distribute the cells evenly over the growth surface of the flask. 

The flask was then incubated at 37°C in a Farma termosteri-cycle 5% carbon dioxide humidified incubator 

(Farma International, Miami, Florida, U.S.A).  

 

2.15.2. Splitting of cell cultures 

Cell cultures were split every 2-4 days when they reached approximately 80%-90% confluency. Briefly, the 

growth media was removed from the flask as the cells were washed with sterile phosphate buffered saline 

(PBS) containing no calcium or magnesium. To this, 2ml of trypsin (Highveld Biological, Lyndhurst, South 

Africa) was added to facilitate the detachment of the cells from the growth surface of the flask. After 3min, 

5ml growth media was added and the cells were gently resuspended. The cells were then transferred into 4 

flasks each containing 10ml of growth media. 
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2.16. TRANSFORMATIONS AND TRANSFECTION OF PLASMIDS INTO PROKARYOTIC AND 

EUKARYOTIC CELLS 

2.16.1. Bacterial plasmid transformations 

Prior to the transformation, an aliquot of competent E.coli DH5α was removed from the  

-70°C freezer and allowed to thaw in ice for 20-30 min. Once the cells had thawed, 1µl plasmid preparation 

(section 2.2.4), or 3-5µl of the ligation reaction (section 2.11.2), was added. This mixture was then incubated 

on ice for 20-30 min after which they were placed in a Lasec 102 circulating water-bath (Lasec Laboratory and 

Scientific Company Pty Ltd, Cape Town, R.S.A) at 42°C for exactly 45s. The sample was then removed from 

the water bath and left at room temperature for 2min. Next, 1ml of LB media was added to the mixture and the 

sample was incubated for 1h at 37°C, while shaking at 200rpm in a YIH DER model LM-530 shaking 

incubator shaking. Following this incubation step, 200µl of the sample was plated onto LB agar plates 

containing the appropriate selection antibiotic (Appendix I). The remaining transformation reaction mixture 

was centrifuged at 13000rpm for 2min in a Beckman Microfuge Lite, the supernatant discarded and the pellet 

resuspended in 200µl LB media. This was then also plated onto the appropriate LB-agar plates. All the plates 

were incubated, inverted, for 16h at 37°C in a model 329 stationary CO2 incubator (Former Scientific, Marieta, 

Ohio, U.S.A). 

 

2.16.2. Yeast Plasmid transformations 

The yeast strain to be transformed was streaked from frozen stocks onto YPDA agar plates (Appendix I). 

These plates were then incubated at 30°C for 2-3 days in a Sanyo MIR262 stationary ventilated incubator 

(Sanyo, Electronic Company Ltd, Ora-Gun, Japan). Following incubation, a volume representing 20-50µl of 

yeast cells was picked and resuspended in 1ml sterile ddH2O in a sterile 2ml tube. The cells were then re-

pelleted by centrifugation at 13000rpm for 30sec in a Beckman Microfuge Lite. The supernatant was removed 

and the pellet was resuspended in 1ml 100mM lithium acetate (LiAc) (Appendix I) and incubated for 5 min at 

30°C in a MIR262 stationary ventilated incubator. The cells were again pelleted by centrifugation at 13000 

rpm for 20s in a Beckman Microfuge Lite and all the LiAc was removed. Next, 240µl of 50% polyethylene 

glycol (PEG) (Appendix I), 36µl 1M LiAc (Appendix I), 25µl of 2mg/ml heat-denatured and snap-cooled 

sonicated herring sperm DNA (Promega, Madison WI, USA) and 10-20µl plasmid preparation and ddH2O 

were added to a final volume of 350µl. The sample was then mixed by vortexing for at least 1 min and 

incubated at 42°C for 20-30 min in a Lasec 102 circulating water-bath. Following incubation, the cells were 

pelleted by centrifugation at 13000rpm in a Beckman Microfuge Lite and all the supernatant was removed. 

The cells were resuspended in 250µl sterile Millipore ddH2O. One hundred and fifty microlitres of this sample 

was plated onto the appropriate selection plates (Appendix I) and incubated inverted at 30°C for 2-5 days in a 

Sanyo MIR262 stationary ventilated incubator. 

 

2.16.3. Transfection of HEK293 cells 

Forty-eight hours before transfecting the cells, approximately 1-3 x 104 cells per well were plated in complete 

growth media in a 24-well tissue culture plate (Appendix I) and incubated at 37°C in a 5% Farma- thermosteri-
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cycle carbon dioxide humidified incubator (Farma, international, Miami, Florida, U.S.A). Two days later, the 

cells were visualised under a Nikon TMS light microscope (Nikon, Tokyo, Japan) to determine the level of 

confluence. Cells were only transfected once they reached approximately 80% confluence. For each 

transfection performed, 100µl of serum-free medium was aliquoted into a sterile 1.5ml eppendorf tube. Three 

microlitres GeneJuice® (EMD Biosciences, Darmstadt, Germany) was added to each tube. This mixture was 

thoroughly vortexed and incubated at room temperature for 5 min. A total of 1µg of the three plasmids 

combined (pM-reeler, pVP16-putative ligand and pG5SEAP reporter vector [Appendix 1], Table 2.12) was 

added to the mixture and mixed gently by pipetting. The GeneJuice/DNA/medium was incubated at room 

temperature for 15min. The entire volume of the mixture was then added drop-wise to the cells in the growth 

media. The culture plates were gently rocked back and forth in order to evenly distribute the drops across the 

surface of the plate. The cells were incubated at 37°C, in a 5% carbon dioxide humidified incubator (Farma, 

International, Miami, Florida) for 48 hours. The cells were subsequently pelleted by centrifugation at 

13000rpm in a Beckman Microfuge Lite  and 1ml of the supernatant transferred into a sterile Eppendorf tube. 

The supernatants were stored at -20°C until needed for reporter assays (section 2.20). 

 

Table 2.12 Setup of the transfection experiments used in the present study 

Transfection (5:5:1) GAL4 DNA-Binding 
plasmid (µl) 

VP16 Activation Plasmid(µl) Promoter(µl) 

Experimental 1 pM-Reeler  (2.2) pVP16-WDR47 (2.9) pG5SEAP 

Experimental 2 pM-Reeler  (2.2) pVP16-ATG16L2 (1.9) pG5SEAP 

Untransfected control None None None 

GeneJuice control None None None 

Basal Control pM              (1.5) pVP16 (2.8) pG5SEAP 

GAL4 DNA-B control pM-reeler    (2.2) pVP16 (2.8) pG5SEAP 

VP16 AD control (1)  pM              (1.5) pVP16-WDR47 (2.9) pG5SEAP 

VP16 AD control (2)  pM              (1.5) pVP16-ATG16L2 (1.9) pG5SEAP 

Positive control (1) pM3-VP16 (2.8) None pG5SEAP 

Positive control (2) pM53         (1.8)  pVP16-T (0.9) pG5SEAP 

The ratio of pM: pVP16:pG5SEAP used in the transfections were 5:5:1. 

 

2.17. ASSESSMENT OF Y2H CONSTRUCTS 

2.17.1. Phenotypic assessment of yeast strains 

Prior to being transformed, each of the yeast strains used in the Y2H analysis was assessed phenotypically. 

This involved plating strains AH109 and Y187 onto agar plates lacking individual essential amino acids, ie., 

agar plates SD-A, SD-w, SD-H, SD-L and SD-Ura. Non-transformed yeast cells that were unable to grow on SD-A, 

SD-w, SD-H, SD-L but able to grow on SD-U were used for transformation with bait vector and subsequent Y2H 

analysis. Following transformation of the reeler bait contruct into AH109, the transformed yeast was again 

streaked onto agar plates SD-A, SD-w, SD-H, SD-L and SD-U in order to test whether the AH109 transformed 

with the bait construct was able to activate transcription of reporter or selection genes autonomously. Yeast 

containing the bait construct should only be able to grow on SD-w and SD-U plates. 
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2.17.2. Toxicity tests of transformed yeast cells 

In order to proceed with the Y2H assay, it was important to establish whether the bait-construct (section 2.11) 

had any markedly toxic effect on its host yeast strain, AH109 (section 2.13.2). To achieve this, a growth curve 

of AH109 transformed with the pGBKT7-bait construct was generated and subsequently compared to a growth 

curve of AH109 yeast transformed with non-recombinant pGBKT7. These two growth curves were set up 

concurrently and under the same experimental conditions.  

 

The two growth curves were generated by growing each of the transformed yeast strains to stationary phase in 

SD-W in a 50ml polypropylene tube at 30°C in a YIH DER model LM-530 shaking incubator shaking at 

200rpm. Following this incubation, a 1:10 dilution of each primary culture was made in SD-W and incubated 

for an additional 24h in a 50ml polypropylene tube at 30°C in a YIH DER model LM-530 shaking incubator 

shaking at 200rpm. Every 2 hours, over a period of 8 hours during this incubation, a 1ml aliquot of the culture 

was taken and its OD600nm was measured. An overnight (24h) reading was also taken. A linearised graph of the 

log of these OD600nm readings versus time was constructed and the slopes of the graphs generated for the 

recombinant and non-recombinant transformants were compared. 

 

2.17.3 Mating efficiency test 

In order to determine the effect that the bait construct (section 2.12.2) had on the mating efficiency of AH109, 

small scale yeast matings were performed. In these mating experiments, the AH109 transformed with 

pGBKT7-reeler bait construct was mated with the prey host strain, Y187 transformed with the non-

recombinant prey vector pACT2 or the control prey vector, pTD1.1, supplied by the manufacturer (BD 

Bioscience, Clontech, Paulo Alto, CA, U.S.A). Concurrently, control matings were also performed in which 

the yeast strain AH109 transformed with non-recombinant pGBKT7 or the control pGBKT7-53 vector 

supplied by the manufacturer (BD Bioscience, Clontech, Paulo Alto, CA, U.S.A) was mated with the prey host 

strain, Y187 transformed with the non-recombinant prey vectors pACT2 or the Clontech pTD1.1 control 

vector. The experimental procedures were as follows: 

 

Each of the yeast strains used in the mating efficiency experiments was plated onto the appropriate nutritional 

selection plates (AH109 pGBKT7-reeler, AH109 pGBKT7 and AH109 pGBKT7-53 on SD-W plates; Y187 

pACT2 and Y187 pTD.1.1 on SD-L plates). These plates were incubated for 2-5 days in a a Sanyo MIR262 

stationary gravity-ventilated incubator. A single colony from these agar plates was used for each the test 

mating experiments; which was performed in 1ml YPDA media (Appendix I) in a 2ml microfuge tube. The 

matings were incubated overnight at 30°C, shaking at 200rpm, in a YIH DER model LM-530 shaking 

incubator. Following the overnight incubation, serial dilutions (1:10; 1:100; 1:1000 and 1:10000) of the mating 

cultures were plated onto SD-L, SD-W and SD-L-W agar plates and incubated for 4-5 days at 30° in a Sanyo 

MIR262 stationary ventilated incubator. After the incubation period, the colonies on each plate were counted 

and used to calculate the mating efficiency (Appendix II). 
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2.18. Y2H ANALYSIS 

2.18.1. The foetal brain cDNA library 

A pre-transformed human MATCHMAKER foetal brain cDNA Library (BD Bioscience, Clontech, Paulo 

Alto, CA, U.S.A) consisting of S.cerevisiae Y187 transformed with a foetal brain cDNA library, constructed 

in pACT2, was used in the Y2H library assay.  

 

This library had been constructed from a pool of nine male or female Caucasian foetuses aged between 20-25 

weeks. The library was XhoI-(dT)15 primed and contains approximately 3.5x106 independent clones inserted 

into pACT2 through EcoRI and XhoI sites. The average insert size for this library was reported by the 

manufacturer as 2.0kb, with a range of between 0.5 and 4.0kb. 

 

2.18.2. Establishment of bait culture 

A colony of AH109 transformed with the reeler bait construct was streaked out onto  

SD-W plates. Four of the resultant yeast colonies were inoculated into four separate 500ml Erlenmeyer flasks, 

each containing 50ml SD-W media. The reason for producing four bait cultures was to facilitate the pooling of 

the initial cultures, thereby allowing the generation of a final bait culture with a titre of at least 1x1010, i.e. 100-

fold excess of bait to prey, to facilitate high mating efficiency. The four initial cultures were incubated at 30°C 

overnight, while shaking at 200rpm in a YIH DER model LM-530 shaking incubator. Following overnight 

incubation, the cultures were transferred into individual 50ml polypropylene tubes and the cells pelleted by 

centrifugation at 3000rpm for 10min at room temperature in a Beckman Microfuge Lite. The supernatants 

were discarded and the four pellets were resuspended together in 50ml SD-W following which, the suspension 

was transferred to a single 500ml Erlenmeyer flask and the culture was incubated for a further 16h at in a YIH 

DER model LM-530 shaking incubator, shaking at 200 rpm. After incubation, the titre of the bait culture was 

estimated by measuring the OD600nm of a 1ml aliquot of the bait culture. This estimation was subsequently 

confirmed by means of a haemocytometric cell count.  

 

The bait culture was centrifuged at 3000rpm at room temperature for 10min in a Beckman Microfuge Lite to 

pellet the cells, the supernatant was removed and the pellet resuspended in ml SD-W media. An appropriate 

number of 10µl aliquots of this culture was removed for control mating experiments. 

 

2.18.4. Library mating 

A 1ml aliquot of the pre-transformed foetal brain cDNA library was removed from the  

-70°C freezer and thawed at room temperature (BD Bioscience, Clontech, Paulo Alto, CA, U.S.A). Once 

thawed, the library aliquot was vortexed and 10µl aliquoted into a sterile 1.5µl microfuge tube for library 

titering. The pGBKT7-Reeler transformed AH109 pellet (section 2.17.2.) was then resuspended in 45ml 2x 

YPDA media (Appendix I) supplemented with 10µg/ml kanamycin (Kan) in a 2L Erlenmeyer flask ). 

Subsequently, the remaining 990µl of the library culture was added to this Erlenmeyer flask. This mating 

culture was incubated at 30°C overnight, while shaking at 200rpm in a YIH DER model LM-530 shaking. 
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After the overnight incubation, the entire mating culture was transferred into a sterile 50ml polypropylene 

centrifuge tube and the cells pelleted by centrifugation in at 3000rpm for 5min in a Multex centrifuge (MSE 

Instrumentation, England, UK), and the supernatant subsequently removed. The Erlenmeyer flask in which the 

library mating was performed was rinsed twice with 40ml 2x YPDA containing 10µg/ml Kan. Each time the 

flask was rinsed, the 2x YPDA medium was used to resuspend the cell pellet and the cells then re-pelleted by 

centrifugation at 3000rpm for 10min at room temperature in Multex centrifuge . Following the final 

centrifugation step, the supernatant was removed and the pellet resuspended in 15ml 0.5x YPDA containing 

10µg/ml Kan (Appendix I). 

 

Serial dilutions of 100µl aliquots (1:10; 1:100; 1:1000; and 1:10000) of this cell-suspension were plated onto 

90mm SD-L, SD-W and SD-L-W agar plates, in order to determine bait:library mating efficiency. Two hundred 

and fifty microlitres aliquots of the remainder of the culture was plated onto each of 59 140mm diameter TDO 

(media lacking leucine, trytophan and histidine) plates (Appendix I) (250µl culture/plate for14.9ml culture = 

59 plates). The TDO plates were incubated, inverted, at 30°C for 2 weeks in a Sanyo MIR262 stationary 

ventilated incubator.  

 

2.18.5. Establishing a library titre 

The serial dilutions of the mating culture plated onto the 90mm SD-L, SD-W and SD-L-W agar plates were 

inverted and incubated in a Sanyo MIR262 stationary ventilated incubator  for 4 days. Colony counts were 

performed on the SD-L, SD-W and SD-L-W plates after the 4 day incubation in order to calculate the mating 

efficiency of the library mating and the number of library plasmids screened (section 2.17.3). 

 

2.18.6. Control matings 

Control matings were set up concurrently with library matings, in order to determine whether the recombinant 

reeler construct (transformed into AH109) had any negative effect on the ability of the transformed AH109 

strain to mate with the library strain (Y187). A 10µl aliquot of the bait culture and a single test prey- (yeast 

strain Y187 transformed with pTD 1.1 control vector) colony were co-inoculated in 1ml 0.5x YPDA 

containing 10µg/ml kanamycin (Appendix I) in a 2ml centrifuge tube. This culture was subsequently incubated 

for 24h at 30°C in a YIH DER model LM-530 shaking incubator, shaking at 200 rpm. Following incubation, 

serial dilutions (1:10; 1:100; 1:1000; 1:10000) were plated onto SD-L, SD-W and SD-L-W agar plates and 

incubated for 4 days in a Sanyo MIR262 stationary ventilated incubator. Following this, colony counts were 

done and the mating efficiency was calculated (section 2.17.3). Control preys included non-recombinant 

pACT2 transformed into Y187 and the pTD1.1 control vector supplied by Clontech. 

 

2.18.7. Detection of activation of nutritional reporter genes 

2.18.7.1. Selection of transformant yeast colonies 

Yeast transformed with the bait construct to be used in Y2H analysis was plated onto SD-W agar plates. 

Following incubation of these plates for 4-6 days in a Sanyo MIR262 stationary gravity-ventilated incubator, 
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transformant yeast colonies were picked and used in small and large scale bait cultures (section 2.16.2) and 

library matings (2.18.3). 

 

2.18.7.2. Selection of diploid yeast colonies containing putative interactor peptides 

In order to identify yeast colonies in which an interaction between the bait- and prey-fusion peptides had taken 

place, yeast colonies were plated onto TDO plates (Appendix I) as well as QDO (media lacking leucine, 

histidine, tryptophan and adenine) plates (Appendix I). Growth of the yeast cells on TDO plates signified the 

transcriptional activation of the HIS3 nutritional reporter gene, while growth on the QDO plates indicated that 

both the HIS3, as well as the ADE2 nutritional reporter genes had been transcriptionally activated. The 

activation of these genes in these diploid yeast cells is indicative of an interaction between the bait and prey 

peptides. 

 

Briefly, the library mating culture was plated directly onto 59 140mm TDO agar plates (Appendix I) (section 

2.18.3) and incubated in a Sanyo MIR262 stationary ventilated incubator  for 2 weeks. The growth of these 

colonies on the TDO plates were monitored every 2 days and colonies were picked and restreaked onto TDO 

and QDO plates in order to test for the activation of HIS3 and ADE2 nutritional reporter genes. These plates 

were incubated for 3-6 days at 30°. Colonies growing on QDO plates after incubation were picked and plated 

onto QDO plates containing X-α-galactose, to assess activation of the MEL1 gene, and incubated at 30°C in a 

stationary gravity-ventilated incubator  for a further 3-5 days.  

 

2.18.8. Detection of activation of colourimetric  reporter genes 

2.18.8.1. X-α-Galactosidase assay 

X-α-galactosidase assays were performed, in order to test for the activation of the MEL1 reporter gene by the 

specific interaction between specific bait and prey peptides. Briefly, yeast colonies in which the HIS3 and 

ADE2 reporter genes have been activated, as determined by their growth on QDO agar plates, were replicated 

from QDO plates onto Hybond N+ nylon membranes. These membranes were subsequently placed colony-side 

up onto a QDO plate impregnated with 20mg/ml X-α-Gal solution (BD Biosciences, Clontech, Palo Alto, CA, 

U.S.A). The plates were subsequently incubated at 30°C in a Sanyo MIR262 stationary ventilated incubator. 

Following incubation, the intensity of the blue colour of yeast colonies that had activated the MEL1 reporter 

gene was assessed. 

 

2.18.9. Rescuing prey plasmids from diploid colonies. 

In order to identify the interactor proteins, each individual prey needed to be isolated from the diploid 

colonies. To this end, plasmid DNA was isolated from each of the diploid cells following the protocol 

discussed in section 2.2.6 and transformed into E.coli strain DH5α as described in section 2.16.1. The 

transformants were plated onto LBamp plates which only allows for the growth of transformants containing 

the prey constructs. These prey constructs were subsequently transformed into the yeast strain Y187 (section 

2.16.2). 
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2.18.10. Interaction specificity test 

To test whether the interactions detected by Y2H analysis, through the activation of nutritional and 

colourimetric reporter genes, were specific interactions between the pGBKT7-Reeler bait and a particular prey 

peptide, interaction-specificity tests were used. Y187 colonies expressing the specific prey peptide were 

individually mated with the yeast strain AH109, transformed with the pGBKT7-Reeler construct, AH109 

transformed with non-recombinant pGBKT7, AH109 transformed with the pGBKT7-53 control bait-plasmid, 

encoding murine p53, supplied by the manufacturer (BD Biosciences, Clontech, Palo Alto, CA, U.S.A) and 

AH109 transformed with a heterologous bait, encoding a cytosolic cardiac myosin binding protein C 

(MyBPC) C5 domain. After the resulting diploid clones were selected on SD-L-W plates (section 2.18.6.2), 

these clones were streaked onto TDO and QDO selection plates to test for the activation of nutritional reporter 

genes (section 2.18.6), thereby testing whether the prey-peptides were able to interact with these heterologous 

baits as well as with the reeler bait. 

 

Clones that interacted specifically with the reeler bait, during these interaction specificity tests were, 

considered putative true interactors. The inserts of these putative interactors were then sequenced to determine 

their identities.  

 

2.19. CO-IMMUNOPRECIPITATION 

Once putative ligands for the reeler domain had been identified by means of the Y2H experiments, the 

interactions were confirmed using in vitro co-immunoprecipitation (Co-IP) analysis.  

 

2.19.1. Creating an RNase-free experimental environment 

In order to reduce the chances for RNase contamination during transcription/translation and Co-IP 

experiments, all surfaces and instrumentation used in these experiments were wiped thoroughly using RNase 

Zap wipes (Ambion Inc, Austin, TX, U.S.A). Furthermore, only pipette tips and microfuge tubes certified 

RNase free by the manufacturer (Porex, Fairburn, Georgia, U.S.A) were used. 

 

2.19.2. Transcription and translation of bait and preys 

Following the identification of putative preys that interact with the reeler domain, based on their ability to 

activate both nutritional (section 2.18.6) and colourimetric reporter (section 2.18.7) genes, these prey clones 

were isolated from Y187 (section 2.2.5). These clones were then PCR amplified using the ADHA-F and AD-R 

primers (Table 2.5) under conditions described in section 2.3.7, in order to generate a PCR fragment 

comprising the prey insert linked to the HA-antibody epitope-encoding sequence and a T7 promoter sequence; 

this promoter sequence is crucial for in vitro transcription. The pGBKT7-Reeler construct was also amplified 

under conditions described in section 2.3.7, using the BK-Myc and BK-R primers (Table 2.5), thereby 

generating a PCR fragment comprising the reeler domain insert linked to the myc antibody epitope-encoding 

sequence and a T7 promoter sequence. These two PCR fragments were subsequently transcribed and translated 

in a one-tube coupled reaction, using the TNT® Quick Coupled Transcription/Translation system (Promega 

Corporation, Madison, WI., U.S.A) as per manufacturer’s instructions.  The translated products were 
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subsequently  electrophoresed in a 15% SDS polyacrylamide gel (section 2.4.2.2) and visualised using 

autoradiography (section 2.6.2).  

 

2.19.3. Co-immunoprecipitation of translated PCR products  

Once the PCR products had been translated into the respective bait and prey fusion peptides, these two 

products were co-immunoprecipitated to assess the interaction identified by Y2H. In brief, 5µl bait and 5µl 

prey were mixed in a sterile, RNAse-free 1.5ml microfuge tube and incubated at room temperature for 1h, 

with mixing by gently tapping the tube every 15 min. Following the incubation, 1µl Myc antibody (5µg/ml) 

(Roche Biosciences, Palo Alto, CA., U.S.A) was added to the mixture. The sample was then incubated at room 

temperature for 1h. Subsequently, 10µl pre-washed protein G agarose (Appendix I) (Kirkegaard and Perry 

laboratories, Gaithersburg, ML, U.S.A) and 135µl Co-IP buffer (Appendix I) were added to each mixture. The 

sample was rotated on a Labnet rotor (Labnet Inc, NJ., U.S.A) at 10rpm at 4°C for 1 hour and was 

subsequently washed 5 times with TBST (Appendix I). 

 

Single immunoprecipitation experiments with the reeler bait using the Myc antibody (Roche Biosciences, Palo 

Alto, CA., U.S.A), as well as each of the putative preys using the HA antibody (Roche Biosciences, Palo Alto, 

CA., U.S.A) were performed in conjunction with the Co-IP experiments to serve as controls. In brief, the 5µl 

reeler bait was mixed with 1µl Myc antibody in a sterile, RNase-free 1.5ml microfuge tube and incubated at 

room temperature for 1h. In separate 1.5ml microfuge tubes, 5µl of each of the putative prey ligands were 

incubated with 5µl HA antibody (Roche Biosciences, Palo Alto, CA., U.S.A). Each of these tubes were also 

subsequently incubated at room temperature for 1h. Following the incubation, 10µl pre-washed protein G 

agarose (Appendix I) (Kirkegaard and Perry laboratories, Gaithersburg, ML, U.S.A) and 135µl Co-IP buffer 

(Appendix I) were added to each tube. The samples were rotated on a Labnet rotor (Labnet Inc, NJ., U.S.A) at 

10rpm at 4°C for 1 hour and were subsequently washed 5 times with TBST (Appendix I). 15µl SDS loading 

dye was added to each samples which were subsequently incubated at 95 °C for 5 min. The samples were then 

loaded onto a 15% SDS polyacrylamide gel and visualised using autoradiography. To separate peptides of 

similar size, 20% SDS polyacrylamide gels were used. A schematic representation of the co-

immunoprecipitation technique is shown in figure 2.2. 

2.20. M2H ANALYSIS 

The M2H analysis was performed using the MatchmakerTM Mammalian Assay Kit 2 (BD. Biosciences, Palo 

Alto, U.S.A.). This kit includes the pM, pVP16 and pG5SEAP vectors (Figs. 2.4, 2.5 and 2.6, respectively). 

The HEK293 cells used for the M2H analysis were cultured and transfected as described in sections 2.13 and 

2.16.3. Expression of the secreted alkaline phosphatase (SEAP) reporter gene (SEAP) from the pG5SEAP 

reporter vector (Appendix VI) occurs when there is an interaction between the fusion proteins generated by the 

pM and pVP16 constructs that were co-transfected with the reporter vector. Whether or not the SEAP reporter 

gene was activated was determined using the Great EscAPeTM chemiluminescent Detection Kit (BD 

Biosciences, Clontech, Palo Alto, CA, U.S.A) by measuring the SEAP activity in the culture medium (since 

this is a secreted alkaline phosphatase) using a chemiluminescent substrate. 
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SINGLE IMMUNOPRECIPITATION CO-IMMUNOPRECIPITATION 

BAIT PREY INTERACTOR NON-INTERACTOR 

 
 

Fig 2.2. Schematic representation of Co-IP protocol.      Protein A;     Protein B;   Myc Antibody;  HA Antibody;            
Protein G agarose. Experiments 1 and 2 represent the immunoprecipitation of the proteins using the appropriate antibody. 
On a 15% SDS-PAGE gel the immunoprcipitation is represented by a single band as seen in lanes 1 and 2 of the gel. 
Experiment 3 represent Co-IP reactions showing an interaction between the two proteins. Co-IP reactions showing an 
interaction between proteins A and B is seen as two bands (lane 3);one band for each protein. Experiment 4 shows a Co-
IP experiment where protein A and Protein B do not interact with each other. After the 5 TBST washes, unbound proteins 
are washed away, leaving only proteins bound to the Myc antibody and hence only one band is seen in lane 4. 
 

 

2.20.1. Secreted alkaline phosphatase (SEAP) reporter gene assay  
Fifteen microlitres of each culture medium supernatant from transfected HEK293 cells (see section 2.16.3) to 

be assayed was aliquoted into separate wells of a white opaque 96-well flat-bottom microtitre plate 

(PerkinElmer Life And Analytical Sciences, Inc Boston, MA, U.S.A.). To this, 45µl of 1X dilution buffer (BD 

Biosciences, Clontech, Palo Alto, CA, U.S.A ) was added and the plate incubated at 65°C for 30 min in a 

waterbath (Memmert ®, Schwabach, Germany). Following the incubation, the plate was left on ice for 3min to 

cool down the samples. The samples were then allowed to equilibrate to room temperature before 60µl assay 

buffer (BD Biosciences, Clontech, Palo Alto, CA, U.S.A) was added to each well. 

 

The chemiluminescent substrate (CSPD) was then prepared by making a 1:20 dilution of the CSPD (BD 

Biosciences, Clontech, Palo Alto, CA, U.S.A ) in chemiluminescent enhancer (BD Biosciences, Clontech, 

Palo Alto, CA, U.S.A). The diluted substrate was then added to each well and the plate was incubated for 10 

min at room temperature. The SEAP activity was then determined by reading the chemiluminecent signal 

every 10 min for a period of 2 ½ hours using a Bio-Tek® Synergy HT plate luminometer (Winooski, Vermont, 

U.S.A.). 

 

Incubate at room 
temperature for 1h, 
with tapping 

Add antibody, incubate 
for 1h at room 
temperature and 
subsequently  add pre-
washed protein G agarose 
and Co-IP buffer 

Incubate at 4°C rotating at 
10rpm for 1h and 
subsequently wash 5 times 
with TBST in order to 
remove any unbound 
protein 

    

    Add SDS loading 
dye, incubate at 
95°C for 5min, load 
onto 12% SDS 
PAGE gel 
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Several control assays were included as comparisons for each experiment as shown in Table 2.12. The reading 

obtained for the untransfected control represents the background SEAP signal of the HEK293 cells used in the 

experiments, while the basal control reading corresponds to basal level of SEAP activity in the experiments. 

The GAL4 DNA-B control and the VP16 AD controls shown in Table 2.12 were included in order to 

determine whether the reeler construct or each of the putative ligands used in the experiments function 

autonomously as SEAP reporter gene transcriptional activators. Positive control assays were also included in 

the experiment. The pM3-VP16 positive control plasmid (Table 2.12) encodes a fusion of the GAL4 DNA-

binding domain and VP16 activation domain and therefore gives very strong SEAP expression when co-

transfected with pG5SEAP. The co-transfection of the pM53, pVP16T and pG5SEAP was also included in the 

experiment as a positive control. The pM53 expresses a fusion of the GAL4 DNA binding domain to the 

mouse p53 antigen, while the pVP16T expresses a fusion of the VP16 activation domain to the Simian Virus 

40 large T-antigen which is known to interact with p53 and therefore produces strong SEAP expression. Two 

independent experiments (each assay performed in quadruplicate in each experiment) were conducted and the 

data from each experiment were analysed separately as well as in a combined data set. The data for each 

experiment was normalised to the untransfected control so that the data from each separate experiment could 

be combined and analysed together. 

 

2.21. BIOINFORMATIC SEARCHES OF SCHIZOPHRENIA SUSCEPTIBILITY LOCI FOR 

PLAUSIBLE OCD CANDIDATE GENES. 

2.21.1. Identification of schizophrenia susceptibility loci 

Literature searches were conducted using the publicly available PUBMED database 

(http://www.ncbi.nlm.nih.gov/PubMed), in order to identify all previously reported schizophrenia 

susceptibility loci. The PUBMED database was searched with the terms “schizophrenia linkage”, 

“schizophrenia genetic linkage” and “schizophrenia genetics”, and articles reporting on schizophrenia 

susceptibility loci identified from the resulting list. 

 

2.21.2. Prioritising of genes and polymorphisms within each locus as OCD candidate genes. 

The Ensemble (http://www.ensembl.org), the Universitiy of California Santa Cruz 

(http://www.genome.ucsc.edu) and the NCBI databases provided in silico catalogues of all annotated and 

predicted genes within each of the identified loci. The annotated genes are defined as expressed in vivo as 

identified by experimental analysis (Stein, 2001). By comparison, predicted genes are in silico derived 

sequences that meet the criteria for classification as a gene, but for which no experimental data exists to 

support that it has a biological function.  

 

Once all the genes within the selected loci were catalogued, they were prioritised based on function and 

expression profile as plausible OCD candidate genes. For each gene, whose function had been experimentally 

determined, the OMIM database (http://www.ncbi.nlm.nih.gov/OMIM) was searched to ascertain whether it 

may be a plausible OCD candidate gene.  
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Genes that encoded proteins with unknown function were analysed by homology searches to predict a possible 

function based on their protein domain composition using the pfam (http://www.sanger.ac.uk/Software/Pfam) 

and prosite (http://www.expasy.org/prosite/) algorithms. The protein sequence encoded by each of these genes 

were retrieved from the NCBI GENBANK database in FASTA format. Brain tissue expression was a 

prerequisite in the selection of plausible candidate genes. Therefore, the expression profiles for all genes 

within the loci were determined using the Unigene EST database (http://www.ncbi.nlm.nih.gov/unigene).  

 

Previously reported polymorphisms within the selected candidate genes which had been targeted in past 

psychiatric association studies were selected for investigation in the current analysis. Where no investigations 

of a candidate gene had been reported in the literature, target polymorphisms were selected from a publicly 

available single nucleotide polymorphism databases (http://www.ncbi.nlm.nih.gov/SNP; 

http://www.hapmap.org) based on a minor allele frequency of greater than 0.3. 

 

2.22. STATISTICAL ANALYSIS 

2.22.1. Calculating allele frequencies 

The frequency of alleles of each of the polymorphisms tested in the present study were calculated by dividing 

the total number of a particular allele by the total number of chromosomes in the study group.  

 

2.22.2. Calculating expected allele frequencies 

In order to predict the expected distribution of alleles at each of the loci in the study, the Hardy-Weinberg 

formula was used. This formula predicts that p2+2pq+q2=1 (where p= frequency of allele A and q= frequency 

of allele B), if the genotypes in the population are in Hardy-Weinberg equilibrium. The observed allele 

frequencies at each locus were inserted into the Hardy-Weinberg equation, while the expected number of 

genotypes was calculated by multiplying the values of p2 (AxA), 2pq [2(AxB)] and q2 (BxB) by the total 

number of individuals genotyped in the control and OCD patient groups. 

 

2.22.3. χχχχ2
 analysis of the expected versus observed genotype frequencies 

To determine whether the genotype frequencies were in Hardy-Weinberg equilibrium, the expected and 

observed genotype frequencies for OCD patients and control individuals were displayed in a 3X2 contingency 

Table and χ2 analysis performed using the Software Programme for Social Science (SPSS). 

 

2.22.4. Assessment of association between OCD and polymorphic loci  

In order to best assess the involvement of variants in the development of OCD, with dominant or codominant 

(additive) effects, while at the same time keeping the number of analyses to a minimum, logistic regression 

was used to model case-control status as a function each genotype (Lize van der Merwe, Biostatistics Unit, 

MRC). Each genotype factor was modelled as two variables, one counting the number of SNAP25/MnlI G, 

SNAP29 C56T T, GRIA4/rs630567 T, GRIN1/1 G, BZRPAla147Thr, Thr, DBH I/D, I, GBR T1545C C, 

RXRβVAl95ala, Val, DLX6 IVS1C>T, SYN3-639C>G, G, RELNIVS59C>T C, WDR47 rs2591000 C and the 

ATG16L2 C alleles (0, 1 or 2): the additive effect (add) and another taking the value 0 for any homozygote and 
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1 for the heterozygotes (the dominance (dom) effect) as described by Cordell and Clayton, 2005. The resulting 

optimal models are described and summarised in the results. Functions from base R and R packages (R 

Development Core Team, 2006) were used for all statistical analyses. 
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CHAPTER 3: RESULTS 

The sections that follow will describe first the results of the process of identifying plausible novel OCD 

candidate genes, either bioinformatically or by interactome analysis, and thereafter the results of assessment of 

particular polymorphisms within those genes in an OCD case:control study. 

 

3.1. BIOINFORMATIC SEARCHES OF SCHIZOPHRENIA-LINKED LOCI FOR NOVEL 

PLAUSIBLE OCD CANDIDATE GENES. 

Eighteen schizophrenia susceptibility loci were searched for plausible OCD candidate genes based on function 

and expression (Table 3.1). Individual genes within each of the loci were prioritised based on the criteria 

expounded in section 1.5.1. and 14 functionally and positionally plausible genes, which had not yet been 

studied in OCD, were selected for proof-of-principle case-control association studies; these genes are listed in 

Table 3.1. The region of the documented schizophrenia loci that were searched for plausible OCD candidate 

genes were delineated by markers that defined the linkage area in the relevant reported studies (Table 3.1.)  

 

Table 3.1. Schizophrenia loci searched for plausible OCD candidate genes 

Locus Reference Region Genes prioritised Genes screened 

1q21-q22 Brustowicz et al., 

2000 
Shaw et al., 1998 

D1S1653-
D1S1679 

Synaptic vesicle glycoprotein 2A 
(SV2A) 

Regulator of G-protein signalling 
(RGS4) 

None 

1q32-q41 Hovatta et al., 1998 D1S1599-
D1S196 

None None 

1q41-q44 Hovatta et al., 1999 9cM on 
either side 
of 
D1S2891 

*Acetylcholine receptor 3, 
muscarinic (CHRM3) 
Geranylgeranyl pyrophosphate 
synthetase (GGPS1) 
Kynurenine 3-monooxygenase 
(KMO) 

*Acetylcholine 
receptor 3, 
muscarinic 
(CHRM3) 
 

1p35-p32 Garver et al., 1998 D1S434-
D1S1372 

Opioid receptor, delta 1 (OPRD1) 
Glycine transporter (SLC6A9) 

None 

2q12-q13 Moises et al., 1995 D2S135-
D2S2540 

None None 

2q37 Paunio et al., 2001 
Shaw et al., 1998 

10cM  on  
either side 
of D2S427 

None None 

2p15-p14 Coon et al., 1998 
Camp et al., 2001 

D2S337-
D2S286 

None None 

5q22-q33 Straub et al., 1997 
Schwab et al., 1997 
Paunio et al., 2001 
Gurling et al 2001 
Beyerly et al., 1999 
Garner et al., 2001 
 
 
 

D5S818-
D5S422 

Calcium/calmodulin-dependent 
protein kinase II alpha (CAMK2A) 

None 
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Locus Reference Region Genes prioritised Genes screened 

6p25-21 Schwab et al., 1995 
Lindholm et al., 
2001 
Moises et al., 1995 

D6S470-
D6S264 

Retinoid X receptor β (RXR β) 
Dysbindin (DNTBP1) 
GABAβ receptor 1 (GBR1) 

Retinoid X 
receptor β (RXR 

β) 
GABAβ receptor 
1 (GBR1) 

6q16-q23 Coa et al., 1997 
Martinez et al., 1999 
Kaufman et al., 1998 

D6S445-
D6S310 

Trace amine receptor-3 (TRAR3) 
Trace amine receptor-4 (TRAR4) 
Trace amine receptor-5 (TRAR5) 
Ocatmer binding transcription 
factor 7 (POU3F2) 

**Octamer 
binding 
transcription 
factor 7 
(POU3F2) 

7q22 Ekelund et al., 2000 D7S477-
D7S486 

Disital-less like homeobox 6 
(DLX6) 
Piccolo (PCLO) 
Reelin (RELN) 

Distal-less like 
homeobox 6 
(DLX6) 
Reelin (RELN) 

8p22-21 Pulver et al.,  1995 
Blouin et al., 1998 
Levinson et al., 1996 

D8S503-
D8S1171 

*Vesicular monoamine transporter 
1 (SLC18A1) 
Nociceptin (PPNOC) 
Neuregulin  (NRG1) 

*  Vesicular 
monoamine 
transporter 1 
(SLC18A1) 

9q34 Riley et al., 1997 D9S1825-
D9S1818 

N-methyl-D-aspartate receptor 
NR1 subunit (GRIN1) 
Dopamine β hydroxylase (DBH) 

N-methyl-D-
aspartate receptor 
NR1 subunit 
(GRIN1) 
Dopamine β 
hydroxylase 
(DBH) 

10q22.3 
 

Fallin et al., 2003 
Faraone et al., 2006 

D10S1677-
D10S1753 

Glutamate receptor, ionotropic, 
delta 1(GRID) 

glutamate 
receptor, 
ionotropic, delta 1 
(GRID1) 

11q21-q23 Karayiorgou et al., 
1994 

D11S2002-
D11S4464 

AMPA receptor subunit GluR4 
(GRIA4) 

AMPA receptor 
subunit GluR4 
(GRIA4) 

13q21-q32 Lin et al., 1999 
Shaw et al., 1998 

D13S119-
D13S128 

Neurobeachin (NBEA) 
Doublecortin and CaM kinase-
like 1 (DCAMKL1) 

None 
 

20p12-p11 Ekelund  et al., 1998 5cm on 
either side 
of 
D20S172 

Synaptosomal-associated protein 
of 25kDA (SNAP25) 

Synaptosomal-
associated protein 
of 25kDA 
(SNAP25) 

22q11-
q13.3 

Williams et al., 2003 
Pulver et al., 1994 
Vallada et al., 1995 
Moises et al, 1995 

D22S446-
D22S276 
 

Synaptosomal-associated protein 
of 29kDA (SNAP29) 
Proline dehydrogenase (PRODH) 
Synapsin III (SYN3) 
Benzodiazapine receptor 
(peripheral) (BZRP) 
Catechol-O-methyltransferase 
(COMT) 
Proline dehydrogenase 
(PRODH2) 

Synaptosomal-
associated protein 
of 29kDA 
(SNAP29) 
Synapsin III 
(SYN3) 
Benzodiazapine 
receptor 
(peripheral) 
(BZRP) 

• *Polymorphism within gene screened was found to be monomorphic in the Afrikaner cohort 
• ** No polymorphism identified by SSCP analysis in present study 
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3.1.1. Synaptosomal-associated protein of 25kDa (SNAP 25) 

Synaptosomal-associated protein of 25 kDa (SNAP 25), a hydrophilic protein of 206 amino acids, is an 

integral component of the vesicle docking and membrane fusion machinery that mediates the regulated release 

of neurotransmitters (Wilson et al., 1996). It is expressed in axonal growth cones and is located on the 

cytoplasmic face of the plasma membrane in synaptic terminals throughout the axon (Hanson et al., 1997). 

Developmentally regulated splice variants of SNAP-25 have been identified, with SNAP-25a being expressed 

early in development, and SNAP-25b expression occurring concurrently with synaptogenesis at which time it 

functions in axonal growth (Wilson et al., 1996). The gene encoding SNAP-25 resides on chr20p11.2, a locus 

that has been linked to schizophrenia in a linkage study by Ekelund  et al., 1998.  

 

SNAP-25 forms a stable complex with syntaxin and synaptobrevin, to form the soluble N-ethylmaleimide 

sensitive factor attachment receptor (SNARE) complex, which helps attach neurotransmitter-containing 

vesicles to the inner plasma membrane (Wilson et al., 1996). The formation of this complex is essential for 

membrane fusion and regulated exocytosis (Chen and Scheller, 2001) of neurotransmitters. 

 

Interestingly, several post-mortem investigations have reported abnormal levels of SNAP-25 expression in 

various nervous tissues in schizophrenia, compared to unaffected control individuals (Gabriel et al., 1997; 

Karson et al., 1999). Young and co-workers found that the levels of SNAP-25 protein were reduced in the 

hippocampus of schizophrenia patients compared to control individuals (Young et al., 1998). This finding was 

replicated in the study by Thompson and colleagues who found 49% less hippocampal SNAP-25 immuno-

intensity of a group of schizophrenia patients compared to control individuals (Thompson et al., 2003). Karson 

and co-workers demonstrated significantly decreased SNAP-25 mRNA levels in the prefrontal cortex of 

schizophrenia patients (Karson et al., 1999). In a preliminary study, Thompson and colleagues found elevated 

levels of SNAP-25 in the CSF of schizophrenia patients compared to controls (Thompson et al., 1999); a 

finding which they later replicated in a different cohort of subjects (Thompson et al., 2003).  

 

Taken together, the important role of SNAP-25 in regulated exocytosis of neurotransmitters, as well as 

evidence of abnormal SNAP-25 levels in various brain regions, provide compelling evidence for a role for this 

protein in the pathogenesis of schizophrenia. Indeed, one genetic association investigation has been undertaken 

to assess the role of SNAP-25 in schizophrenia pathogenesis. Tachikawa and co-workers (2001) analysed a 

polymorphic (TAAA)(n) tandem repeat in the 5’-upstream region of SNAP-25 for association with 

schizophrenia in a cohort of 87 unrelated schizophrenia patients and 100 control individuals of Japanese 

descent. Their results, however, showed no association between the analysed polymorphism in SNAP-25 and 

schizophrenia in their study sample. 

 

The possible role of SNAP-25 in OCD has not yet been investigated. However, SNAP-25 meets the criteria in 

the present study for analysis as a plausible candidate gene in that it has been implicated in schizophrenia 

pathogenesis and is located in a schizophrenia linked locus. Additionally, the gene encoding SNAP-25 is 

Comment [IT64]: Garver DL, Barnes R, 
Holcomb J, Filbey F, Wilson R, Bowcock A. 1998. 
Genome-wide scan and schizophrenia in African-
Americans. Am J Med 
Genet 81:454. 
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highly expressed in the brain and, furthermore, it plays an important role in the release of neurotransmitters; all 

factors justifying its candidature for association analysis in OCD. 

 

3.1.2. Synaptosomal-associated protein of 29kDa (SNAP-29) 

SNAP-29 is a 258 amino acid protein that is proposed to be a ubiquitous soluble N-ethylmaleimide-sensitive 

factor attachment (SNARE) protein (similar to SNAP-25) involved in membrane trafficking of 

neurotransmitters (Hohenstein and Roche, 2001). Its role in neurotransmitter release is not yet fully 

understood; however, data obtained in a recent study by Pan and co-workers suggest that SNAP-29 acts as a 

negative modulator for neurotransmitter release, possibly by slowing the SNARE-based membrane fusion 

mechanism and synaptic turnover (Pan et al., 2005). 

 

The gene encoding SNAP-29 (SNAP-29) maps to the 22q11DS region (Dunham et al., 1999) (section 1.4.5.2, 

Fig 1.7) that has been implicated in both schizophrenia and OCD pathogenesis (section 1.4.5.1). SNAP-29 has 

previously been tested for association with schizophrenia in an investigation by Saito and colleagues. In their 

case-control association study of 97 unrelated Caucasian schizophrenic patients and 95 unrelated Caucasian 

control individuals, they found an association with the G allele of an A to G SNP at position -849 of SNAP-29 

and schizophrenia (p=0.009) (Saito et al., 2001). Therefore, because of its previous association in 

schizophrenia (Saito et al., 2001), genomic location, and its role in neurotransmitter release (Pan et al., 2005), 

SNAP-29 was considered an attractive candidate gene for OCD susceptibility in the present study. 

 

3.1.3. AMPA receptor subunit GluR4 (GRIA4) 

The glutamate receptor 4 (GluR4), a member of the family of AMPA glutamate receptors (section 1.1.5.3.3) 

which are the predominant excitatory neurotransmitter receptors in the mammalian brain, is encoded by the 

GluR4 gene, GRIA4, located on chromosome 11q22.3 (Meador-Woodruff and Healy, 2000). Meador-

Woodruff and Healy (2000) showed decreased expression of AMPA receptor subunits mRNAs in various 

brain regions in schizophrenia patients compared to control individuals (Meador-Woodruff and Healy, 2000). 

Based on this, and the important role of glutamate in mediating schizophrenia pathogenesis (section 1.1.5.3.3), 

GRIA4 has been investigated in association studies for possible involvement in schizophrenia susceptibility 

with varying results. While Makino and colleagues found an association between a 3-marker haplotype (SNP3, 

SNP4 and SNP 5 – Fig 3.1) in GRIA4 and schizophrenia in their study of 100 unrelated Japanese patients and 

100 unrelated Japanese controls (Makino et al., 2003), Gou and colleagues detected no association of this gene 

with schizophrenia in their study of 372 unrelated Chinese schizophrenia patients and 392 unrelated Chinese 

control subjects (Guo et al., 2004). These conflicting results may indicate that the role of GRIA4 in the 

pathogenesis of schizophrenia varies between population groups.  

 

However, the fact that GRIA4 is important in mediating glutamatergic neurotransmission, the dysregulation of 

which has been implicated in OCD pathogenesis, coupled with its possible role in schizophrenia pathogenesis, 

was the rationale for evaluating GRIA4 as a potential role player in the aetology of OCD in the present study. 
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Fig 3.1. Genomic organization of GRIA4 and locations of SNPs used for haplotype analysis in the studies 

by Makino and co-workers (2003) and Gou and co-workers (2004). Solid blue lines represent exons, while the 
solid black lines represent the intronic and untranslated regions. The identity of the SNPs used are as follows: SNP0- 
rs1938960 (C/T); SNP1- rs630567 (A/T); SNP2- rs682708 (A/G), SNP3- rs609239 (A/G); SNP4- rs642574 (A/G) and 
SNP5- rs659840 (A/G)  
 

3.1.4. N-methyl-D-aspartate receptor NR1 subunit (GRIN 1) 

The NMDA receptor NR1 subunit, encoded by GRIN1, is localised to chr9q34.3 (Zimmer et al., 1995), a locus 

that showed suggestive evidence of linkage in studies by Reily and colleagues, as well as Kaufman and co-

workers (Reily et al., 1997; Kaufman et al., 1998). To date, GRIN1 has not been investigated as a possible 

OCD susceptibility gene, however, several studies have been undertaken investigating its possible role in 

mediating schizophrenia pathophysiology (section 1.4.6.1.3). Most of these studies failed to find any 

association between GRIN1 and schizophrenia (Rice et al., 2001; Sakurai et al., 2000), with only one study 

showing a borderline significant association (Martucci  et al., 2003). Despite this, inclusion of GRIN1 into the 

present study was warranted based on its chromosomal location, as well as its important role in mediating 

glutamatergic neurotransmission, which has been shown to be important in the aetiology of OCD 

(section1.2.3.3.3). 

 

3.1.5. Distal-less like homeobox 6 (DLX6) 

Human distal-less like homeobox 6 (DLX6) is a member of the distal-less like homeobox (DLX) gene family 

related to the Drosophila Distal-less gene (Simeone et al., 1994), genes which are thought to act as 

transcription factors (Merlo et al., 2000). All DLX genes are expressed in a spatial and temporal pattern in 

craniofacial primordia, the developing brain and limbs (Robledo et al., 2002). 

 

In the developing brain, the genes encoding DLX5 and DLX6 (DLX5 and DLX6) are detected early in the 

development of the primordium of the ganglionic eminence and the ventral diencephalons (Simeone et al., 

1994). Of particular interest to the present study is evidence that suggests that each DLX gene is expressed in 

the primordium of the basal ganglia, in an overlapping pattern according to the stage of cell differentiation 

(Liu et al., 1997). This suggests that each member of the DLX gene family plays a specific role in the 

development of the basal ganglia, a brain structure that has been implicated in the pathogenesis of both 

schizophrenia and OCD (section 1.3).  
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The DLX6 gene is located on chr7q21-22 (Simeone et al., 1994), a locus to which suggestive evidence for 

linkage to schizophrenia has been reported (Ekelund et al., 2000). Therefore, based its role in the developing 

basal ganglia, its expression profile and genomic location, DLX6 was included in the present association study. 

 

3.1.6. Benzodiazapine receptor (peripheral) (BZRP) 

The benzodiazepine (BZD) class of pharmaceuticals are used for their CNS depressant properties, which 

include sedation, facilitation of sleep, seizure control and general anesthesia (Roy-Burne and Cowley, 1991). 

Furthermore, benzodiazepines are used in the treatment of various anxiety disorders such as social anxiety 

disorder and generalised anxiety disorder (reviewed by Davidson, 2004). All benzodiazepines in clinical use 

bind in a saturable and stereotypic manner to a high affinity neuronal GABA-A/chloride-channel complex 

known as the central type BZD receptor (BZDR) (Braestrup et al., 1977, Mohler and Okada, 1977).  

 

There is, however, a second type of high affinity BZDR known as the peripheral BZDR, that occurs in non-

neuronal brain tissue, as well as in many other peripheral tissues including the heart, kidneys and peripheral 

blood cells (Gavish et al., 1992; Parola et al., 1993). This receptor, which plays a key role in the rate-limiting 

step in steroid genesis is localised in the outer mitochondrial membrane of steroid-producing cells such as the 

astroglial cells in the brain (Itzhak et al, 1993). In the brain, the peripheral BZDR is involved in production of 

neurosteroids. Neurosteroids are steroid hormones, which may potentially change the electrical properties of 

neuronal membranes (McCauley et al., 1995; Papadopoulos et al., 1992). Therefore, it has been proposed that 

the peripheral BZDR plays a role in the firing of neurons. 

 

The diazepam-binding inhibitor and its processing products, as well as porphyrins, have been identified as 

putative endogenous ligands for the peripheral BZDR (Weizman and Gavish, 1993). Overproduction of 

porphyrins have been shown to give rise to photosensitivity in cutaneous porphyrias, a disease of 

dysfunctional haeme biosynthesis. Interestingly, some sub-types of this disease has been shown to give rise to 

a variety of neuropsychiatric symptoms, including anxiety and schizophrenia (Crimlisk, 1997). Furthermore, 

in a post-mortem study, Kurumaji and colleagues found a decrease in peripheral BZDR density in the superior 

parietal cortex, primary visual area and putamen of chronic schizophrenic patients compared to control 

subjects (Kurumaji et al., 1997). In a post-mortem study of thirteen chronic schizophrenic patients and ten 

control individuals, Kiuchi and co-workers showed an increase in BZDR density in the brains of chronic 

schizophrenic patients (Kiuchi et al., 1989). Alterations in peripheral BZDR densities have also been reported 

in platelets of schizophrenic patients (Gavish et al., 1986; Tanne et al., 1987). 

 

The peripheral BZDR gene (BZRP) is localised to 22q13.3 (Riond et al., 1991), a locus that has previously 

been linked to schizophrenia (Coon et al., 1994; Pulver et al., 1994, Moises et al., 1995) (Table 1.3). Kurumaji 

and coworkers have reported an association between two missense polymorphisms in BZRP and schizophrenia 

in a cohort of 304 unrelated Japanese schizophrenia patients and 369 unrelated Japanese control individuals 

(Kurumaji et al., 1998). This study, however, has not been replicated. 
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This gene selected for investigation as it is located in a genomic locus previously linked to schizophrenia and 

because it is highly expressed in the brain. Moreover, the fact that benzodiazapines are used in the treatment of 

certain anxiety disorders makes this gene an ideal candidate gene for OCD susceptibility. 

 

3.1.7. Dopamine β-hydroxylase (DBH) 

Dopamine β-hydroxylase (DβH) is an enzyme localised within the soluble and membrane fractions of 

secretory vesicles of norepinepherine (NE)- and epinephrine-producing neurons and neurosecretory cells 

(Cubells et al., 1998). It is responsible for the catalysis of dopamine to NE and is present in both the plasma 

and cerebrospinal fluid (CSF) (Weinshilboum, 1978; O’Connor et al., 1983).  

 

Several studies have investigated the plasma and CSF levels of DβH in schizophrenia patients and patients 

exhibiting psychotic symptoms. Fujita and co-workers reported that the serum DβH levels were significantly 

lower in schizophrenic patients compared to control subjects (Fujita et al., 1978), an observation consistent 

with a post-mortem study of schizophrenic and control brains by Wise and Stein (Wise and Stein, 1973). 

Despite this, several studies have found no association between decreased DβH levels and schizophrenia 

(Meltzer et al., 1976, 1980; Sternberg et al., 1982, 1983).  

 

The gene encoding DβH (DBH) has been located on chr9q34 (Craig et al., 1988), a locus that showed 

evidence of linkage to schizophrenia in studies by Riley and co-workers, as well as Kaufman and co-workers 

(Riley et al., 1991; Kaufman et al., 1998). Several polymorphisms within this gene have been identified and a 

number of genetic association studies have been undertaken to investigate the possible role of DβH in 

schizophrenia, yet no positive associations have been reported. (Meszaros et al., 1996; Wei et al., 1997, 

Williams et al., 1999; Arrufat et al., 2000, Jonsson et al., 2003, Yamamoto et al., 2003). However, even-

though it is not thought to play a major role in schizophrenia pathogenesis, it has been suggested that DβH 

may act as a modifier of the schizophrenia phenotype (Cubells and Zabetian, 2004). For example, Sternberg 

and co-workers showed that low CSF DβH activity predicted more severe positive symptoms, but better 

overall clinical outcome in a small group of schizophrenic patients (Sternberg et al., 1982, 1983). Consistent 

with these findings, Frecka and colleagues performed a factor analysis of a large number of predictive 

variables in schizophrenia patients and found that low serum DβH levels had a small but significant degree of 

predictive value of good neuroleptic response in schizophrenic patients (Frecka et al., 1990).  

 

Therefore, because of the chromosomal location of this gene, its role as a possible modifier of schizophrenia 

symptomology (Cubells and Zabetian, 2004), together with its high expression in the brain (Cubells et al., 

1998) and important role in dopamine catalysis (Weinshilboum, 1978; O’Connor et al., 1983), this gene was 

used included in the present case-control association study of OCD.  

 

3.1.8. Synapsin III (SYN3) 

Synapsin III is member of a family of neuron-specific phosphoproteins expressed primarily in the brain 

(Ferreira et al., 2000). Synapsins are located mainly on the cytoplasmic surface of small synaptic vesicles in 
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mature nerve terminals (Sudhöf et al., 1995; Hosaka and Südhof, 1998; Hilfiker et al., 1999) where they 

regulate short-term neurotransmitter release, synaptic vesicle function and neural plasticity (Greengard et al., 

1993; Südhof et al., 1995). Synapsin III is developmentally regulated and is predominantly expressed during 

embryogenesis (Ferreira et al., 2000), where it helps regulate axonal formation (Ferreira et al, 2000).  

 

The gene encoding synapsin III (SYN3), consisting of 13 exons and encoding a 581 amino acid protein (Kao et 

al., 1998), is located on the long arm of chr22q13 (Kao et al., 1998), a locus previously linked to 

schizophrenia (Coon et al., 1994; Vallada et al., 1994; Pulver et al., 1994; Moises et al., 1995) (Table 1.1.1). 

Furthermore, previous studies have demonstrated reduced synapsin immunoactivity in the hippocampus 

(Browning et al., 1993) and age-specific abnormalities of mRNA encoding synapsin proteins in the temporal 

cortex (Petersohn et al., 1995) of schizophrenic patients. Several association studies of SYN3 and 

schizophrenia have been undertaken. Porton and colleagues identified a rare polymorphism (S470N) in SYN3 

and reported that the S470 allele occurred more frequently in their group of 118 unrelated Caucasian 

schizophrenic patients than in their group of unrelated Caucasian control individuals (Porton et al., 2004). 

However, in an independent case-control association study of the S470N SYN3 polymorphism and 

schizophrenia in an African-American cohort, Lachman and co-workers found an increase in the frequency of 

the 470N allele in the schizophrenia group (Lachman et al., 2005). Aside from the two above-mentioned 

studies, no other positive associations have been reported for any polymorphism in SYN3 and schizophrenia 

(Ohmori et al., 2000; Stober et al., 2000; Imai et al., 2001). 

 

Thus, due to its role in neurotransmission, its chromosomal location and its association with schizophrenia, 

SYN3 was selected as a potential OCD candidate gene in the present study. 

 

3.1.9. GABAB receptor 1 (GBR1) 

Gamma-aminobutyric acid is the major inhibitory neurotransmitter and its relevance to the pathophysiology of 

schizophrenia is discussed in section 1.1.5.3.4 of this review. The GABA type B receptors are associated with 

potassium/calcium (K+/Ca2+) channels and act via guanosine 5’-triphosphate binding (G-) proteins to produce 

slow, prolonged inhibitory signals (Bowery et al., 2000; Olsen and Homsnics, 2000). They are highly, indeed 

almost exclusively, expressed in the human brain in regions such as the cerebellum, cerebral cortex, thalamic 

nuclei and the dorsal horn of the spinal chord (Bowery et al., 1987; Chu et al., 1990).  

 

The functional GABA B type receptor consists of a heterodimer of two related 7-transmembrane domain 

subunits GABAB 1 (GBBR1) and GABAB 2( GBBR2). The gene encoding GBBR1 (GBR1) has been mapped 

to the q21.3 region on chr6 (Goei et al., 1998), a region previously linked to schizophrenia susceptibility (Cao 

et al., 1997, Martinez et al., 1999) (Table 1.1.3). Studies have previously been performed to determine 

whether an association exists between GBR1 and schizophrenia but they have generated conflicting 

results(Imai et al., 2002; Zai et al., 2005). Imai and colleagues failed to provide evidence for an association 

between a dinucleotide repeat polymorphism in GBR1 and schizophrenia in a cohort of 102 unrelated Japanese 

schizophrenic patients and 100 unrelated Japanese control individuals (Ismai et al., 2002). More recently, 
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however, Zai and colleagues evaluated five SNPs in GBR1 for association with schizophrenia in a study 

sample compring 150 case/control (gender, age and ethnicity matched) pairs, as well as 101 schizophrenic 

families (Zai et al., 2005). Their investigation also failed to show any preferential transfer of alleles to affected 

offspring in the family sample; however, an association was found between the A-7265 polymorphism and 

schizophrenia in the case-control sample.  

 

However, due to the gene’s chromosomal localisation, its role in mediating GABAergic neurotransmission, as 

well as its tissue expression pattern, GBR1 was investigated as a novel OCD candidate gene in the present 

study. 

 

3.1.10. Retinoid X receptor beta (RXR β) 

Vitamin A and its derivatives, the retinoids, have been shown to regulate growth, survival and differentiation 

of a wide variety of cell types by modulating the expression of several genes (Feng et al., 2005). In the 

developing brain, retinoids have been shown to regulate genes that control neuronal differentiation and 

migration (Thorogood et al., 1982; Maden and Holder, 1992).  

 

Goodman presented three lines of evidence that suggest that retinoid dysregulation may play a crucial role in 

the pathogenesis of schizophrenia. Firstly, studies have shown that retinoid toxicity, or deficit, causes mental 

deficit, enlarged ventricles, microencephaly and an array of major and minor congenital abnormalities that 

have been shown to occur with increased frequencies in schizophrenia pedigrees compared to control 

pedigrees (Goodman, 1996). Secondly, genes that have been identified as targets of retinoid transcriptional 

regulation include those encoding dopamine receptors (Farooqui et al., 1994; Samad et al., 1997), serotonin 

receptors (Altaba and Jessell, 1991; Ito and Morita, 1995) and glutamate receptors (Ray and Gottlieb, 1993; 

Hardy et al., 1994), all of which have been shown to play a role in the pathogenesis of schizophrenia (Section 

1.1.5.3.3). Finally, several genes of the retinoid cascade are mapped to chromosomal regions that have 

previously been linked to schizophrenia (Goodman, 1998). 

 

The effects of retinoic acid, the biologically active form of retinoids, are mediated by specific transcription 

factors. These are the retinoic acid receptor (RAR) α, β and γ and retinoid X receptors (RXR) α, β and γ 

(Giguere et al., 1987; Petovich et al., 1987; Mangelsdorf et al., 1990). In the presence of retinoic acid, these 

transcription factors bind to specific DNA motifs (known as retinoic acid response elements or RAREs) within 

the promoter regions of target genes and drive gene transcription. 

 

The retinoid X receptor β was assessed in the present study, firstly, because of its role in mediating the effects 

of retinoic acid in regulating genes involved in neurodevelopment and, secondly, because the gene encoding it, 

RXRβ, is located on chromosome 6p21.3 (Hoopes et al., 1992), a genomic locus that has previously been 

linked to schizophrenia susceptibility (Table 1.3) (Martinez et al., 1999; Lerer et al., 2004).  
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3.1.11. Glutamate receptor, ionotropic, delta 1 (GRID1) 

The glutamate receptor, ionotropic, delta1 (GRID1) is encoded by a gene, GRID1, located on chr10q22.3. This 

locus has previously been implicated in schizophrenia susceptibility in studies by Fallin and co-workers (Fallin 

et al., 2003) and Faranoe et al., 2006). 

 

Inclusion of this gene in the present study was based on an investigation by Fallin and colleagues, who 

reported an association between GRID1 and schizophrenia in a large family-based association study (Fallin et 

al., 2005). In their large study of 227 schizophrenia trios, SNPs in 64 genes were investigated for possible 

association with schizophrenia, only 6 genes showed association with schizophrenia. Of these, five had been 

previously associated with schizophrenia, while the association with GRID1 was novel. Thus, because of its 

association with schizophrenia, chromosomal location, and role in glutamatergic neurotransmission, GRID1 

was considered a novel OCD candidate gene. 

 

3.1.12. Reelin (RELN) 

Reelin is a secreted glycoprotein involved in the ordered migration of neurons during neurodevelopment 

(Curran and D’Arcangelo, 1998). The gene encoding reelin has been mapped to chromosome 7q22 (De Silva 

et al., 1997), a region previously linked to schizophrenia susceptibility (Ekelund et al., 2000). Furthermore, 

one of the most robust findings in post-mortem brains of schizophrenia patients is a reduced level of reelin 

protein and mRNA (Fatemi et al., 2000; Guidotti et al., 2000; Knable et al., 2004). 

 

Moreover, heterozygous reeler mice, mice that are haplo-insufficient for the expression of reelin exhibit 

several behavioural abnormalities that have been linked to schizophrenia (Tueting et al., 1999, Costa et al., 

2001; Hoffmann et al., 2001; Costa et al., 2002). Also they exhibit several neuropathological and 

neurochemical abnormalities that are considered typical of schizophrenia (see table 1.13). Taken together, the 

above-mentioned data provides compelling evidence for the involvement of reelin in the pathogenesis of 

schizophrenia and hence was considered a plausible OCD candidate gene and thus included in the present 

investigation. 

 

3.1.13. Acetylecholine receptor, Muscarinic 3 (CHRM3) 

The gene encoding acetylecholine receptor, muscarinic 3 mapped to chromosome 1q43 (Bonner et al., 1990), a 

locus previously associated with schizophrenia susceptibility (Hovatta et al., 1998). Inclusion of this gene into 

the current investigation was based on the fact that Acethylcholine receptors have be linked to schizophrenia 

susceptibility in several investigations (see Singh et al., 2004 for review). It should, however be noted, that 

most studies implicate nicotinic acetylcholine receptors in schizophrenia, however, there has been some 

evidence that muscarinic receptors may also play a role. Most notably are the post-mortem studies that have 

shown decreased radioligand ([3H]pirenzepine) binding to muscarinic receptors in the frontal and anterior 

cortices, caudate-putamen and hippocampus of schizophrenia subjects (Crook et al, 2000, 2001; Dean et al, 

2002; Zavitsanou et al., 2004).  
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3.1.14. Vesicular Monoamine transporter 1 (SLC18A1) 

Vesicular monoamine transporters (VMATs) are responsible for the mediation of accumulation of 

monoamines such as serotonin, dopamine and noradrenaline from the cytoplasm into storage oganelles 

(Edwards, 1992). Two isoforms of VMATs exists, namely VMAT1 and VMAT2 and they are also the first 

two members of the solute carrier family 18 , hence the genes encoding them have been designated SLC18A1 

and SLC18A2, respectively.  

 

The gene encoding VMAT1 is an attractive candidate gene for schizophrenia given its role in modulating 

monoamines and that it has been mapped to chromosome 8p21.3 (Peter et al., 1994), a locus that has been 

previously implicated in schizophrenia susceptibility (Pulver et al., 1994). Furthermore, as monoamines such 

as dopamine and serotonin has also been implicated in the development of OCD, SLC18A1 was considered an 

attractive candidate gene and hence included in the present study. 

 

3.1.15 Octamer binding transcription factor 7 (POU IIIF2) 

The octamer binding transcription factor 7 (OCT7) encoding gene, POU3F2, is mapped to chromosome 6q16 

(Atanasoski et al., 1995). This gene was included in the present investigation for a number of reasons. Firstly, 

it is widely expressed in the developing mammalian CNS (Fujii and Hamada, 1993). Secondly, is a neuronal 

transcription factor that is necessary for the maintenance of neuronal cell differentiation (Fujii and Hamada, 

1993) and therefore may be important in regulating brain development and, thirdly, it contains a RARE 

(section 3.1.10) in its promoter. The latter point suggests that it is regulated by retinoic acid, which is known 

to play a crucial role in regulating neuronal differentiation and migration (Thorogood et al., 1982; Maden and 

Holder, 1992). 

 

3.2. IDENTIFICATION OF PLAUSIBLE OCD CANDIDATE GENES BY INTERACTOME 

       ANALYSIS OF REELIN 

3.2.1 YEAST-2-HYBRID ANALYSIS OF REELER DOMAIN OF REELIN 

3.2.1.1 Integrity of Y2H constructs 

3.2.1.1.1 Sequence analysis of pGBK-reeler bait construct 

Following the generation of the pGBK-reeler bait construct, the construct was sequenced in order to verify that 

the integrity of the coding sequence and reading frame had been maintained. Results of the sequence analysis 

showed that pGBK-reeler was in the correct reading frame and revealed that the integrity of the nucleotide 

sequence of the reeler insert had been preserved through the multiple rounds of PCR amplifications used to 

create the fragment (section 2.3.4). 

 

3.2.1.1.2. Phenotype and toxicity tests 

The yeast strain AH109 transformed with the bait construct was able to grow on the appropriate selection 

media (SD-W and SD-U), but not on selection media lacking other essential amino acids (SD-A, SD-L and SD-H ). 

This confirmed that the phenotype of the AH 109 strain was retained after transformation.  
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To determine whether the bait construct had any toxic effect on the yeast cells, growth curves comparing 

AH109 transformed with empty pGBK vector and AH109 transformed with pGBK-reeler (section 2.14.2) 

were constructed. The slopes of these curves were virtually identical, indicating that the bait construct had no 

toxic effect on the growth of the yeast (Fig 3.2). 

 

 
Fig 3.2. Linear growth curves of yeast strain AH109 transformed with non-recombinant pGBK and 

pGBK-reeler bait construct. In order to determine whether the bait construct had any toxic effect on the AH109, the 
growth rate of the pGBK-reeler transformant was compared to the pGBKT7 transformant. The growth rate was 
determined by calculating the slope of each of the curves. The slopes of the two curves were identical indicating that the 
bait construct had no toxic effect on the growth of the host yeast strain. 
 

3.2.1.1.3. Mating efficiency of AH109 transformed with bait construct 

In order to determine whether transformation of the pGBK-reeler construct had significantly affected the 

mating ability of the AH109 host strain, small scale yeast matings were performed. These mating experiments 

allowed for the calculation and comparison of mating efficiency of the pGBK-reeler transformant with that of 

AH109 strains transformed with control plasmids (pGBKT7 and pGBK53) when mated with standard prey 

transformants (pACT2 and pTD1.1). 

 

The mating efficiency results (Table 3.2) show that pGBK-reeler impeded the mating efficiency of the AH109 

slightly. The calculated mating efficiency of the pGBK-reeler transformant (4.1-9.2%) was, however, 

significantly higher than the minimum of 2% recommended by the manufacturer of the MATCHMAKER 

Y2H system (BD Bioscience, Clontech, Paulo Alto, CA, U.S.A), and would still, theoretically, result in 

screening of 106 individual clones if mated at a 100-fold excess against the commercial pretransformed library 

(titre=3x108). 
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Table 3.2. Effect of reeler bait construct on AH109 mating efficiency  

Mating Mating efficiency (%) 

pGBK-Reeler (AH109)and pACT2 (Y187) 9.2 

pGBKT7 (AH109) and pACT2 (Y187) 30.2 

pGBK53 (AH109) and pACT2 (Y187) 10.9 

pGBK-Reeler (AH109) and pTD1.1 (Y187) 4.1 

pGBKT7 (AH109) and pTD1.1 (Y187) 11.8 

pGBK53 (AH109) and pTD1.1 (Y187) 25.6 

Control matings indicated in normal font, while bold-face font indicates test matings of the pGBK-reeler transformants. 
Yeast strains used are indicated in brackets 
 

3.2.1.2. Y2H screening of pretransformed foetal brain cDNA library. 

Library mating efficiency calculations indicated that approximately 5.9 x 106 pretransformed foetal brain 

cDNA library clones were screened with the pGBK-reeler construct. This screen yielded 92 clones which were 

able to activate the HIS3 reporter gene as judged by growth on TDO plates (Table 3.3 column A). Forty-eight 

of these clones were also able to activate the ADE2 reporter gene, as they demonstrated growth on QDO plates 

(Table 3.3 column B). These 48 clones were then analysed for their ability to activate the colourimetric 

reporter gene MEL1 (Table 3.3 column C); only 34 clones were found to activate the MEL1 reporter gene 

(Table 3.3).  

 
Following restriction digestion of these 34 remaining clones with HaeIII and RsaI, five clones were 

represented twice and only single representative clones of these groups of identical clones were analysed 

further. An additional seven clones were discarded because they contained prey peptides which activated 

transcription of reporter genes in the presence of heterologous baits (Table 3.4).  

 

Thus, 22 remaining clones were classified as putative interactor clones; these prey constructs were sequenced 

and their insert identity determined by mining of nucleotide and protein sequence databases. The identities of 

these clones are shown in Table 3.5. Fifteen of the 22 sequenced clones contained prey insert sequences; that 

were discarded since their open reading frames (ORFs), fused to the GAL4-AD ORF, did not match the ORF 

predicted from the gene locus in either NCBI Genbank (http://www.ncbi.nlm.nih.gov) or Ensemble 

(http://www.ensembl.org) protein databases. This, however, is not unexpected as only one sixth of the clones 

represented in MatchmakerTM pretransformed cDNA libraries are in the correct reading frame (Clontech 

MATCHMAKER Two-Hybrid Assay Kit User Manual).  Figure 3.4 shows the in silico translation of the prey 

clone insert ORF, in the reading-frame dictated by the GAL4-AD sequence, of two representative examples of 

clones whose ORFs did not match that predicted from the nucleotide homology, as well as those two whose 

ORFs did match. Five clones were also discarded as putative interactors because their nuclear localisation 

(determined using Proteome analyst [http://www.cs.ualberta.ca/~bioinfo/PA/Sub] and ESPpred 

[http://www.imtech.res.in/raghava/eslpred/]) would place them in a cellular compartment incompatible with 

reelin’s extracellular and cytosolic localisation.  
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Table 3.3. Activation of nutritional and colourimetric reporter genes by prey-reeler interaction. 

Colonies in bold-face activated HIS3, ADE2 and MEL1  reporter genes. TDO= solid media lacking Leu, Trp and His, 
QDO= solid media lacking Leu, Trp, His and Ade. Growth of clones on solid media: ++++ = very good; +++ = good; ++ 
= weak; +=very weak, - = no growth  

 

Colony# 

 

Identical 

clones
a
 

            A 

Growth on TDO 

(HIS3 activation) 

           B 

Growth on QDO 

ADE2 activation) 

                    C 

X-α-galactosidase assay 

(colour) (MEL1 activation) 

1 none ++++ - - 
2 none +++ +++ + (light blue-green) 
3 none ++++ ++++ + (light blue-green) 
4 none +++ + - (pink) 
5 none ++++ +++ + (light blue-green) 
6 none ++ ++ ++ (light blue-green) 
7 none ++ ++ ++ (light blue-green) 
8 none ++++ ++++ ++ (light blue-green) 
9 none ++++ +++ ++ (yellow) 
10 none +++ +++ +++ (blue-green) 

11 15a ++++ +++ ++++ (blue) 

12 none ++ ++ +++ (light blue-green) 

13 none + +++ +++ (light blue-green) 

14 none +++ +++ ++ (light blue-green) 
15 none +++ - -  
16 none ++++ ++++ +++ (light blue-green) 

17 none +++ +++ +++ (light blue-green) 

18 none ++++ ++++ -  
19 none +++ ++++ +++ (light blue-green) 

20 none + ++++ ++ (light blue-green) 
21 none ++++ +++ +++ (blue-green) 

22 none ++++ ++ ++ (light blue-green) 
23 none ++ + + ( very light blue-green) 
24 none ++ ++++ +++ (light blue-green) 

25 none ++ ++ ++ (light blue-green) 
26 none ++++ +++ + (light blue-green) 
27 none ++++ +++ + (very light blue-green) 
28 none ++ - -  
29 none +++ ++ + (light blue-green) 
30 none +++ ++ +++ (blue-green) 

31 none +++ + + (very light blue-green) 
32 none ++++ ++++ + (very light blue-green) 
33 none +++ +++ + (very light blue-green) 
34 none ++++ ++++ +++ (blue-green) 
35 none + - - (pink) 
36 none ++++ ++++ +++ (light blue-green) 
37 none ++++ ++++ +++ (blue-green) 

38 57 ++++ +++ ++++ (blue-green) 

39 none +++ - -  
40 none ++++ - -  
41 none +- - -  
42 none ++++ ++ ++ (blue-grey) 
43 none +++ +++ + (very light blue-green) 
44 none ++ ++++ +++ (blue-green) 
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45 none + - -  
46 none ++++ - -  
47 none ++++ +++ + (very light blue-green) 
48 none +++ ++ +++(light blue-green) 

49 none +++ ++ +++ (blue-green) 

50 none +++ +++ ++ (blue-green) 
51 none +++ ++ +++ (blue-green) 
52 none ++ - -  
53 none ++++ +++ + (very light blue-green) 
54 none +++ +++ ++ (light blue-green) 
55 none ++++ +++ + (very light blue-green) 
56 none ++++ +++ + (very light blue-green) 
57 38 +++ ++++ ++++ (blue-green) 

58 none + - -  
59 none + - -  
60 none + - -  
61 none ++++ ++++ ++++ (blue-green) 

62 none +++ ++ +++ (light blue-green) 

63 none ++++ ++++ ++ (light blue-green) 
64 none ++++ +++ ++++ (blue-green) 
65 none ++++ ++++ +++ (light blue-green) 

66 none + - - (pink) 
67 none ++ +++ ++ (light blue green) 
68 none +++ - -  
69 none + - -  
70 none + - -  
71 none +++ +++ ++ (light blue-green) 
72 none ++++ ++++ ++++ (blue) 
73 none +++ - -  
74 none ++++ ++++ +++ (blue-green) 
75 none ++++ ++++ +++ (blue-green) 

1a none + - - 
2a none + - - 
3a none ++++ ++++ +++(light blue-green) 
4a none ++++ - - 
5a none + - - 
6a 7a +++ ++++ +++ (light blue-green) 
7a 6a ++ ++++ +++ (light blue-green) 

8a none ++++ ++++ +++ (light blue-green) 

9a none ++++ +++ + (yellow) 
10a none ++++ - - 
11a none +++ +++ +++ (light blue-green) 
12a none ++ - - 
13a none + - - 
14a none +++ +++ +++ (light blue-green) 
15a 11 ++++ +++ +++ (light blue-green) 

16a none ++++ ++ +++ (light blue-green) 

17a none + - - 
Colonies in bold-face activated HIS3, ADE2 and MEL1  reporter genes. TDO= solid media lacking Leu, Trp and His, 
QDO= solid media lacking Leu, Trp, His and Ade. Growth of clones on solid media: ++++ = very good; +++ = good; ++ 
= weak; +=very weak, - = no growth  

 

Colony# 

 

Identical 

clones 

              A 

Growth on TDO 

(HIS3 activation) 

           B 

Growth on QDO 

ADE2 activation) 

                       C 

X-α-galactosidase assay (colour) 

(MEL1 activation) 
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As a result of these bioinformatic analyses of the sequences of the putative interacting proteins, the number of 

clones to be investigated was narrowed down to two: the cytosolic proteins, WDR47 and FLJ00012, also 

known as ATG16 autophagy-related 16-like 2 (S. cerevisiae) (ATG16L2). The function of neither of these 

proteins are clear at present. Both proteins contain WD40-repeat domains, which have been implicated in a 

wide variety of cellular functions that include signal transduction (Li and Roberts, 2001). Moreover, proteins 

containing WD40 repeats are known to serve as platforms for the assembly of protein complexes or mediators 

of transient interplay among other proteins (Smith et al., 1999). Furthermore, the WDR47 protein also contains 

a LIS1 homology domain, a domain with homology to the LIS 1 protein which has been shown to be involved 

in neuromigration and neurodevelopment (Gupta et al., 2002 ) as well as a “C-terminal to LIS homoly domain 

(CTLH), a domain with homology to RAN-binding protein 9, a protein shown to be involved in microtubule 

assembly (Nishitani et al., 2001).   ATG16L2 shares homology with the mouse Pre-mRNA-processing factor 

17, a protein which associates with the spliceosome and may play a role in the second step of pre-mRNA 

splicing (http://harvester.fzk.de/harvester/human/IPI00025/IPI00025503.htm). 

 

Table 3.4. Interaction of preys with heterologous baits in specificity tests as assessed by ADE2 

and HIS3 activation. 

Clone 

# 

x pGBK-

reeler 

TDO 

x pGBK-

reeler 

QDO 

x 

pGBKT7 

TDO 

x 

pGBKT7 

QDO 

x pGBK-

53 

TDO 

x pGBK-

53 

QDO 

x pGBK-

C5
* 

TDO 

x pGBK-

C5
* 

QDO 
10 ++++ ++++ + + - - - - 
11 ++++ ++++ +++ +++ +++ +++ ++++ ++++ 
12 +++ ++++ - - - - - - 
13 ++++ ++++ - + - - - - 
16 +++ ++++ - ++ + + - - 
17 ++++ ++++ - + - - - - 
19 ++++ +++ + + - - - - 
21 ++++ ++++ + + + - - - 
24 ++++ ++++ - ++++ + +++ ++ +++ 
30 ++++ ++++ + ++ - - - - 
34 +++ +++ ++ ++ + + - - 
37 ++++ +++ + + - - - + 
38 ++++ +++ ++ - + - - - 
44 +++ ++++ ++++ +++ + - - - 
48 +++ +++ ++ +++ ++ +++ + + 
49 ++++ +++ ++++ ++++ ++++ ++++ ++++ ++++ 
61 ++++ ++++ + - - - - - 
62 +++ +++ + - - - - - 
64 ++++ ++++ ++ +     
65 +++ +++  + - - -  
72 +++ ++++ + - - - - - 
74 ++++ ++++ + + - + - - 
75 ++++ ++++ ++ - +++ ++ - - 
3a ++ - ++ ++ +++ ++++ - - 
7a ++++ ++++ + + - - - - 
8a +++ ++++ ++ + - - - - 
11a ++++ ++++ + + + - - - 
14a +++ +++ + - - - - - 
16a ++++ ++++ + - + - - - 
Red font denotes clones that were discarded from further analysis based on their ability to activate reporter genes in the 
presence of heterologous baits. TDO= solid media lacking Leu, Trp and His, QDO= solid media lacking Leu, Trp, His 
and Ade. Growth of clones on solid media: ++++ = very good; +++ = good; ++ = weak; +=very weak, - = no growth  
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Table 3.5. Identification of putative interactor clones from Y2H screen of foetal brain cDNA library. 

Clone # 
(identical 
clones) 

Insert 

size 

(bp) 

BLASTn 

Acc # (e-

value) 

Identity In-frame ORF 

BLAST2SEQ 

(length of ORF) 

Cellular 

localisation 

11 801 NM_005883.1 
(0.0) 

Adenomatous 
polyposis coli 
protein 

No significant 
similarity 
 

N/A 

72 664 XM_212565.1  
(1x10-148) 

Beta5-tubulin No significant 
similarity 
 

N/A 

12 1397 NM_003757  
(0.0)  

eukaryotic 
translation 
initiation factor 
3, subunit 2 
beta 

No significant 
similarity 
 

N/A 

64 554 AC098484 
(1x10-179) 

Homo sapiens 
clone RP 
5994D16 
(chr1) 

Serine/threonine-
protein kinase 
NEK4 [From AA 
457-841] 

Nucleus 

17  AC137783  
(6x10-94) 

Homo sapiens 
clone RP11-
124P23 (chr16) 

No significant 
similarity 
 

N/A 

8a 789 AC009364.9 
(0.0) 

Homo sapiens 
clone RP11-
348A15 (chr7) 

No significant 
similarity 
 

N/A 

10 833 AC006332.3 
(0.0) 

Homo sapiens 
clone RP11-
376O1 (chr7) 

No significant 
similarity 
 

N/A 

16a 800 AC100844  
(0.0) 

Homo sapiens 
clone RP11-
659F24  
(chr18) 

Tigger 
transposable 
element-derived 
protein 1 [From 
AA 85-131] 

Nucleus 

7a  1102 AC058823.4 
 (0.0) 

Homo sapiens 
clone RP11-
810D13 (chr 4) 

No significant 
similarity 
 

N/A 

13 (34) 1320 AF330044.  
(0.0) 

Homo sapiens 
KIAA1008 
protein 

KIAA1008 [From 
AA 16-57] 

Nucleus 

34 (13) 1320 AF330044 
(0.0) 

Homo sapiens 
KIAA1008 
protein mRNA 

KIAA1008[From 
AA 16-57] 

Nucleus 

21 555 BC013374. 
(0.0) 

Homo sapiens 
tubulin, beta 
polypeptide, 
mRNA 

No significant 
similarity 
 

N/A 

62 455 NM_000431 
(0.0) 

Mevalonate 
Kinase 

No significant 
similarity 
 

N/A 
 

37 563 NM_181689.1 
(0.0) 

Neuronatin 
(NNAT) 

No significant 
similarity 
 

N/A 

16 1142 BC036713.  

(2x10
-90

) 

Homo sapiens 

ATG16L2 

protein 

ATG16L2 

NP_203746.1 

[from AA 327-

619] 

Cytosolic 

19 855 AB020700. 

(0.0)  

Homo sapiens 

WDR47 

protein 

(KIAA0893) 

WDR47 

NP_055784.2 

[from AA 793-

920] 

Cytosolic 
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Clone # 

(identical 
clones) 

Insert 

size (bp) 

BLASTn 
Acc # e-value) 

Identity In-frame ORF 

BLAST2SEQ 

Cellular 

localisation 

14a 611 BC_006468.1 
(0.0) 

Tubulin alpha 3 No significant 
similarity 
 

N/A 

30 292 BC_053521.1 
(0.0) 

Spectrin Alpha 
(non- 
ethrythroid) 

No significant 
similarity 
 

N/A 

38 (61) 545 BC_033870.1  
(1x10-146) 

Synaptobrevin 
2 

No significant 
similarity 
 

N/A 

61 (38) 545 BC_033870.1  
(3x10-81) 

Synaptobrevin 
2 

No significant 
similarity 
 

N/A 

65 863 AK_125367.1 
(0.0) 

Tropomyosin 3 No significant 
similarity 
 

N/A 

74 1127 NM_005378 
(0.0) 

MYCN MYCN [From AA 
275-464] 

Nucleus 

Clones in bold font were chosen for further analysis by co-immunoprecipitation. 
N/A= not applicable, AA= amino acid residue 
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A.i)  Translation of A03_37_pACT2FN_NP_01 (NNAT) using Universal code 
  Number of bases: 1153bp  
  Total amino acid number: 375, MW=37954 
  Max ORF: 1-375, 125 AA, MW=13254 
 

1         ACTCCGAGACCAGCGGATCTCGGCAAACCCTCTTTCTCGACCACCCACCTACCATTCTTG 

1          T  P  R  P  A  D  L  G  K  P  S  F  S  T  T  H  L  P  F  L   

 

61        GAACCATGGCGGCAGTGGCGGCGGCCTCGGCTGAACTGCTCATCATCGGCTGGTACATCT 

21         E  P  W  R  Q  W  R  R  P  R  L  N  C  S  S  S  A  G  T  S   

 

121       TCCGCGTGCTGCTGCAGGTGTTCAGGTACTCCCTGCAGAAGCTGGCATACACGGTGTCGC 

41         S  A  C  C  C  R  C  S  G  T  P  C  R  S  W  H  T  R  C  R   

 

181       GGACCGGGCGGCAGGTGTTGGGGGAGCGCAGGCAGCGAGCCCCCAACTGAGGCCCCAGCT 

61         G  P  G  G  R  C  W  G  S  A  G  S  E  P  P  T  E  A  P  A   

 

241       CCCAGCCCTGGGCGGCCGTATCATCAGGTGCTCCTGTGCATCTCGGCCAGCACGGGAGCC 

81         P  S  P  G  R  P  Y  H  Q  V  L  L  C  I  S  A  S  T  G  A   

 

301       AGTGCCGCGCAGGAATGTGGGGTCCCCTGTGTTCCCTCGCCAGAGGAGCACTTGGCAAGG 

101        S  A  A  Q  E  C  G  V  P  C  V  P  S  P  E  E  H  L  A  R   

 

361       TCAGTGAGGGGCCAGTAGACCCCCGGAGAAGCAGTACCGACAATGACGAAGATACCAGAT 

121        S  V  R  G  Q  *  T  P  G  E  A  V  P  T  M  T  K  I  P  D   

 

421       CCCTTCCCAACCCCTTTGCACCGGTCCCACTAAGGGGCAGGGTCGAGAGAGGAGGGGGGA 

141        P  F  P  T  P  L  H  R  S  H  *  G  A  G  S  R  E  E  G  G   

 

481       TAGGGGGAGCAGACCCCTGAGATCTGGGCATAGGCACCGCATTCTGATCTGGACAAAGTC 

161        *  G  E  Q  T  P  E  I  W  A  *  A  P  H  S  D  L  D  K  V   

 

541       GGGACAGCACCATCCCAGCCCCGAAGCCAGGGCCATGCCAGCAGGCCCCACCATGGAAAT 

181        G  T  A  P  S  Q  P  R  S  Q  G  H  A  S  R  P  H  H  G  N   

 

601       CAAAACACCGCACCAGCCAGCAGAATGGACATTCTGACATCGCCAGCCGACGCCCTGAAT 

201        Q  N  T  A  P  A  S  R  M  D  I  L  T  S  P  A  D  A  L  N   

 

661       CTTGGTGCAGCACCNACCGCGTGCCTGTGTGGCGGGACTGGAGGGCACAGTTGAGGAAGG 

221        L  G  A  A  P  T  A  C  L  C  G  G  T  G  G  H  S  *  G  R   

 

721       AGGGTGGTTAAGAAATACAGTGGGGCCCTCTCGCTGTCCCTTGCCCAGGGCACTTGCATT 

241        R  V  V  K  K  Y  S  G  A  L  S  L  S  L  A  Q  G  T  C  I   

 

781       CCAGCCTCGCTGCATTTGCTCTCTCGATTCCCCTTTCCTCCTCACTGCCTCCCAAGCCCA 

261        P  A  S  L  H  L  L  S  R  F  P  F  P  P  H  C  L  P  S  P   

 

841       CCCTACTCCAAAATAATGTGTCACTTGATTTGGAACTATTCAAGCAGTAAAAGTAAATGA 

281        P  Y  S  K  I  M  C  H  L  I  W  N  Y  S  S  S  K  S  K  *   

 

901       ATCCACCTTTACTAAAACACTTTCTCTGAACCCCCTTGCCCNTANTGATCTTGCTTTNCC 

301        I  H  L  Y  *  N  T  F  S  E  P  P  C  P  X  *  S  C  F  X   

 

961       TGGTCTCATGCAGTTGTGGTCATATNGNGGTATCNCTATTGTACTGATTGTTNAGTGTGC 

321        W  S  H  A  V  V  V  I  X  X  Y  X  Y  C  T  D  C  X  V  C   

 

1021      ATAGTTGGGNCTCCCAGCTAGATGGAAGCTCTGGANGAANGGACACTCTACAAAATAAAA 

341        I  V  G  X  P  S  *  M  E  A  L  X  E  X  T  L  Y  K  I  K   

 

1081      AGTCCTCCCTGTCTCGAAGTGTCCAGGACCTGGGGGGATAAGGCCCCCNNNAAAANNAAN 

361        S  P  P  C  L  E  V  S  R  T  W  G  D  K  A  P  X  K  X  X   

 

1141      NAANNNNANNNNN 

381        X  X  X  X   
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A.ii) Optimal alignment of protein reference sequence for NNAT (NP_005377.1) and the above translation of 
03_37_pACT2FN_NP_01 (NNAT) sequence  
 
Gap_Open_Penalty=10.0  Gap_Extend_Penalty=0.1  
Upper line: NNAT NP_005377.1, from 8 to 80 
Lower line: A03_37_pACT2FN_NP_01_Translation, from 41 to 112 
 

NNAT NP_005377.1:A03_37_pACT2FN_NP_01_Translation identity= 19% 

 

8     SAELLIIGWYIFRVLLQVFLECCIYWVGFAFRNPPGTQPIARSEVFRYSLQKLAYTVSRT 

      ||          |              | |   || |   | |    |    |    |   

41    SACCCRCSGTPCRSWHTRCRGPGGRCWGSAGSEPP.TEAPAPSPGRPYHQVLLCISASTG 

 

68    GRQVLGERRQRAP 

                  | 

100   ASAAQECGVPCVP 
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B.i) Translation of E02_142_pACT2FN_NP_10 (TUBA3) using Universal code 
 Number of bases: 628bp 

Total amino acid number: 204, MW=22836 
 Max ORF: 232-486, 85 AA, MW=10355 
 

1         GTGACGTGGTTCCCAAAGATGTCAATGCTGCCATTGCCACCATCAAGACCAAGCGTACCA 

1          V  T  W  F  P  K  M  S  M  L  P  L  P  P  S  R  P  S  V  P   

 

61        TCCAGTTTGTGGATTGGTGCCCCACTGGCTTCAAGGTTGGCATCAACTACCAGCCTCCCA 

21         S  S  L  W  I  G  A  P  L  A  S  R  L  A  S  T  T  S  L  P   

 

121       CTGTGGTGCCTGGTGGAGACCTGGCCAAGGTACAGAGAGCTGTGTGCATGCTGAGCAACA 

41         L  W  C  L  V  E  T  W  P  R  Y  R  E  L  C  A  C  *  A  T   

 

181       CCACAGCCATTGCTGAGGCCTGGGCTCGCCTGGACCACAAGTTTGACCTGATGTATGCCA 

61         P  Q  P  L  L  R  P  G  L  A  W  T  T  S  L  T  *  C  M  P   

 

241       AACGTGCCTTTGTTCACTGGTACGTTGGGGAGGGGATGGAGGAAGGTGAGTTTTCAGAGG 

81         N  V  P  L  F  T  G  T  L  G  R  G  W  R  K  V  S  F  Q  R   

 

301       CCCGTGAGGACATGGCTGCCCTTGAGAAGGATTATGAGGAGGTTGGTGTGGATTCTGTTG 

101        P  V  R  T  W  L  P  L  R  R  I  M  R  R  L  V  W  I  L  L   

 

361       AAGGAGAGGGTGAGGAAGAAGGAGAGGAATACTAAAGTTAAAACGTCACAAAGGTGCTGC 

121        K  E  R  V  R  K  K  E  R  N  T  K  V  K  T  S  Q  R  C  C   

 

421       TTTTACAGGGAAGCTTATTCTGTTTTAAACATTGAAAAGTTGTGGTCTGATCAGTTAATT 

141        F  Y  R  E  A  Y  S  V  L  N  I  E  K  L  W  S  D  Q  L  I   

 

481       TGTATGTAGCAGTGTATGCTCTCATATACAATTACTGACCTATGCTCTAAAACATGAATG 

161        C  M  *  Q  C  M  L  S  Y  T  I  T  D  L  C  S  K  T  *  M   

 

541       CTTTGTTACAGACCCAAGCTGTCCATTTCTGTGATGGGTTTTGAATAAAGTATTCCCTGT 

181        L  C  Y  R  P  K  L  S  I  S  V  M  G  F  E  *  S  I  P  C   

 

601       CTTAAAAAAAANNNNANAAANNNNNANA 

201        L  K  K  X  X  X  X  X  X   

 
 
B.ii) Optimal alignment of protein reference sequence for TUBA3 (NP_006000.2) and above translation of 
E02_142_pACT2FN_NP_10 (TUBA3) sequence 
Upper line: TUBA3 NP_006000.2, from 145 to 315 
Lower line: E02_142_pACT2FN_NP_10_Translation, from 2 to 57 
 
TUBA3 NP_006000.2:E02_142_pACT2FN_NP_10_Translation identity= 30% 

 

145   TGSGFTSLLMERLSVDYGKKSKLEFSIYPAPQVSTAVVEPYNSILTTHTTLEHSDCAFMV 

      |     | |    |              |    |     |  | |   | |          

2     TWFPKMSMLPLPPSR.............PSVPSSLWIGAPLASRLASTTSL......... 

 

205   DNEAIYDICRRNLDIERPTYTNLNRLIGQIVSSITASLRFDGALNVDLTEFQTNLVPYPR 

                                                                   

40    ............................................................ 

 

265   IHFPLATYAPVISAEKAYHEQLSVAEITNACFEPANQMVKCDPRHGKYMAC 

                                       |    |   ||     || 

40    .................................PLWCLVETWPRYRELCAC 
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C.i)  Translation of F07_19_pACT2FN_NP_11 (WDR47) using Universal code 
 Number of bases: 855bp 

Total amino acid number: 277, MW=27173 
 Max ORF: 1-384, 128 AA, MW=13720 
 

1         GTTGGCACAACATTTCATGGAACTGGCAGTGCAGTGGCATCTGTAGCTGTAGATCCCAGT 

1          V  G  T  T  F  H  G  T  G  S  A  V  A  S  V  A  V  D  P  S   

 

61        GGTCGTCTCTTAGCCACAGGTCAAGAAGATTCTAGCTGCATGTTGTATGACATAAGAGGA 

21         G  R  L  L  A  T  G  Q  E  D  S  S  C  M  L  Y  D  I  R  G   

 

121       GGAAGAATGGTACAAAGTTATCATCCTCATTCCAGTGATGTTCGCTCTGTTCGATTCTCC 

41         G  R  M  V  Q  S  Y  H  P  H  S  S  D  V  R  S  V  R  F  S   

 

181       CCTGGAGCTCACTACTTGCTAACAGGCTCTTATGATATGAAAATAAAGGTGACAGACCTA 

61         P  G  A  H  Y  L  L  T  G  S  Y  D  M  K  I  K  V  T  D  L   

 

241       CAAGGGGACCTCACCAAGCAKCTTCCTATCRTGGTGGTGGGGGAGCACAAGGACAAAGTG 

81         Q  G  D  L  T  K  X  L  P  I  X  V  V  G  E  H  K  D  K  V   

 

301       ATTCAGTGCAGATGGCACACCCAGGATCTTTGCTTCCTGTCATCCTCTGCAGATAGAACT 

101        I  Q  C  R  W  H  T  Q  D  L  C  F  L  S  S  S  A  D  R  T   

 

361       GTCACCCTCTGGACTTACAATGGGTAGAGCACACCGCATGTCAGTCTATGCAGCAAAAGC 

121        V  T  L  W  T  Y  N  G  *  S  T  P  H  V  S  L  C  S  K  S   

 

421       ACAGAGACTTAAGACTACTGAGTTGTGAAAATTACAAATCTGAAGAACATAGTGTCCAGG 

141        T  E  T  *  D  Y  *  V  V  K  I  T  N  L  K  N  I  V  S  R   

 

481       AKAGTGGTTTAGCACGAAGAGGCCCCTTATTACCATGTATCCCACTGATAGGAGGTGTTG 

161        X  V  V  *  H  E  E  A  P  Y  Y  H  V  S  H  *  *  E  V  L   

 

541       GGTGGTGTTATTCCGCAGTGCTTTCAGTCTTCCATGTGAGCTCGTGCTGCTGTGACCTGC 

181        G  G  V  I  P  Q  C  F  Q  S  S  M  *  A  R  A  A  V  T  C   

 

601       TATATGTAGTCTCGTTGCCAAAGTCTGCAGAAGAGCTCTTCAGTTGGTTGGYGYGCACTC 

201        Y  M  *  S  R  C  Q  S  L  Q  K  S  S  S  V  G  W  X  A  L   

 

661       CAGTCAGGATGGACAATGGGGTTTACNGGTTTAGTATTCAATGCATTCCTTGGTCTTTGC 

221        Q  S  G  W  T  M  G  F  T  G  L  V  F  N  A  F  L  G  L  C   

 

721       CTAAATAACAGNTTTTAWATGCCMMATKGAAATGGAATTTWTNCTTCAACTANTATNATT 

241        L  N  N  X  F  X  M  P  X  X  N  G  I  X  X  S  T  X  X  I   

 

781       AAANGGNAANGCAACCNARTTNCCTCCCAAANTAAACNTCCCCRGGGGNTCAAAAATTNN 

261        K  X  X  X  N  X  X  X  S  Q  X  K  X  P  X  G  X  K  N  X   

 

841       TTTTGCCNCTCCCCM 

281        F  C  X  S  P   
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C.ii) Optimal alignment of protein reference sequence for WDR47 (NP_055784.2) and above translation of 

F07_19_pACT2FN_NP_11 (WDR47) sequence 

 
Gap_Open_Penalty=10.0  Gap_Extend_Penalty=0.1  
 
Upper line: DNAMAN5, from 793 to 920 
Lower line: F07_19_pACT2FN_NP_11_Translation, from 1 to 128 
 
DNAMAN5:F07_19_pACT2FN_NP_11_Translation identity= 97% 

 

793   VGTTFHGTGSAVASVAVDPSGRLLATGQEDSSCMLYDIRGGRMVQSYHPHSSDVRSVRFS 

      |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

1     VGTTFHGTGSAVASVAVDPSGRLLATGQEDSSCMLYDIRGGRMVQSYHPHSSDVRSVRFS 

 

853   PGAHYLLTGSYDMKIKVTDLQGDLTKQLPIMVVGEHKDKVIQCRWHTQDLSFLSSSADRT 

      |||||||||||||||||||||||||| ||| ||||||||||||||||||| ||||||||| 

61    PGAHYLLTGSYDMKIKVTDLQGDLTKXLPIXVVGEHKDKVIQCRWHTQDLCFLSSSADRT 

 

913   VTLWTYNG 

      |||||||| 

121   VTLWTYNG 
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D.i)  Translation of D07_16_pACT2FN_NP_07 (ATG16L2) using Universal code 
 Number of bases: 1142bp 

Total amino acid number: 377, MW=41899 
 Max ORF: 1-879, 293 AA, MW=32087 
 

1         CGGGCTCAGGATGTGCTGGATGCCCACCTCTCTGAGGTCAATGCTGTTCGTTTTGGCCCC 

1          R  A  Q  D  V  L  D  A  H  L  S  E  V  N  A  V  R  F  G  P   

 

61        AACAGCAGCCTCCTGGCCACTGGAGGGGCTGACCGCCTGATCCACCTCTGGAATGTTGTG 

21         N  S  S  L  L  A  T  G  G  A  D  R  L  I  H  L  W  N  V  V   

 

121       GGAAGTCGCCTGGAGGCCAACCAGACCCTGGAGGGAGCTGGTGGCAGCATCACCAGTGTG 

41         G  S  R  L  E  A  N  Q  T  L  E  G  A  G  G  S  I  T  S  V   

 

181       GACTTTGACCCCTCGGGCTACCAGGTTTTAGCAGCAACTTACAACCAGGCTGCCCAGCTC 

61         D  F  D  P  S  G  Y  Q  V  L  A  A  T  Y  N  Q  A  A  Q  L   

 

241       TGGAAGGTGGGGGAGGCACAGTCCAAGGAGACACTGTCTGGACACAAGGATAAGGTGACA 

81         W  K  V  G  E  A  Q  S  K  E  T  L  S  G  H  K  D  K  V  T   

 

301       GCTGCCAAATTCAAGCTAACGAGGCACCAGGCAGTGACTGGGAGCCGCGACCGGACAGTG 

101        A  A  K  F  K  L  T  R  H  Q  A  V  T  G  S  R  D  R  T  V   

 

361       AAGGAGTGGGACCTCGGCCGTGCCTATTGCTCCAGGACCATCAATGTCCTTTCCTACTGT 

121        K  E  W  D  L  G  R  A  Y  C  S  R  T  I  N  V  L  S  Y  C   

 

421       AATGACGTGGTGTGTGGGGACCATATCATCATTAGTGGCCACAATGACCAGAAGATCCGG 

141        N  D  V  V  C  G  D  H  I  I  I  S  G  H  N  D  Q  K  I  R   

 

481       TTCTGGGACAGCAGGGGGCCCCACTGCACCCAGGTCATCCCTGTGCAGGGCCGGGTCACC 

161        F  W  D  S  R  G  P  H  C  T  Q  V  I  P  V  Q  G  R  V  T   

 

541       TCCCTGAGCCTCAGCCACGACCAACTGCACCTGCTCAGCTGTTCCCGAGACAACACACTC 

181        S  L  S  L  S  H  D  Q  L  H  L  L  S  C  S  R  D  N  T  L   

 

601       AAGGTCATCGACCTGCGTGTCAGCAACATCCGCCAGGTGTTCAGGGCCGATGGCTTCAAG 

201        K  V  I  D  L  R  V  S  N  I  R  Q  V  F  R  A  D  G  F  K   

 

661       TGTGGTTCTGACTGGACCAAAGCTGTGTTCAGCCCGGACAGAAGCTATGCACTGGCAGGC 

221        C  G  S  D  W  T  K  A  V  F  S  P  D  R  S  Y  A  L  A  G   

 

721       TCCTGTGATGGGGCCCTTTACATCTGGGATGTGGACACCGGGAAACTGGAGAGCAGACTA 

241        S  C  D  G  A  L  Y  I  W  D  V  D  T  G  K  L  E  S  R  L   

 

781       CAGGGACCCCATTGCGCTGCCGTCAACGCCGTGGCCTGGTGCTACTCCGGGAGCCACATG 

261        Q  G  P  H  C  A  A  V  N  A  V  A  W  C  Y  S  G  S  H  M   

 

841       GTGAGCGTGGACCAGGGCAGGAAGGTTGTGCTCTGGCAGTAGGGCCACGACCTGCCTGCC 

281        V  S  V  D  Q  G  R  K  V  V  L  W  Q  *  G  H  D  L  P  A   

 

901       TGGGCTGGAGCTCTTGCCCGAAGCCTGAAGCTTCCTTCGGCGCCATGCAGGGGTTGGGGT 

301        W  A  G  A  L  A  R  S  L  K  L  P  S  A  P  C  R  G  W  G   

 

961       TGGGACTGGAGCTGGCCTTGGGATTTAATGGGGAAGAAGGCCTGGCAGGACCTGGCCTGT 

321        W  D  W  S  W  P  W  D  L  M  G  K  K  A  W  Q  D  L  A  C   

 

1021      TTGTTTAAAAATGAAGTATGGGTTGGGGGATTACGCTAGTTTTTCTTTGTATTTTTATCT 

341        L  F  K  N  E  V  W  V  G  G  L  R  *  F  F  F  V  F  L  S   

 

1081      CTATCTCCTCACTTTTTCTCCCAAAGTAGAAAAAAATGATATCTGAAAAAAAAAAAAAAA 

361        L  S  P  H  F  F  S  Q  S  R  K  K  *  Y  L  K  K  K  K  K   

 

1141      AA 
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D.ii) Optimal alignment of protein reference sequence for ATG16L2 (NP_203746.1) and 
D07_16_pACT2FN_NP_07 (ATG16L2) sequence 
 
Gap_Open_Penalty=10.0  Gap_Extend_Penalty=0.1  
 
Upper line: ATG16L2 NP_203746.1, from 327 to 619 
Lower line: D07_16_pACT2FN_NP_07_Translation, from 1 to 293 
 
ATG16L2 NP_203746.1:D07_16_pACT2FN_NP_07_Translation identity= 100% 

 

327   RAQDVLDAHLSEVNAVRFGPNSSLLATGGADRLIHLWNVVGSRLEANQTLEGAGGSITSV 

      |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

1     RAQDVLDAHLSEVNAVRFGPNSSLLATGGADRLIHLWNVVGSRLEANQTLEGAGGSITSV 

 

387   DFDPSGYQVLAATYNQAAQLWKVGEAQSKETLSGHKDKVTAAKFKLTRHQAVTGSRDRTV 

      |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

61    DFDPSGYQVLAATYNQAAQLWKVGEAQSKETLSGHKDKVTAAKFKLTRHQAVTGSRDRTV 

 

447   KEWDLGRAYCSRTINVLSYCNDVVCGDHIIISGHNDQKIRFWDSRGPHCTQVIPVQGRVT 

      |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

121   KEWDLGRAYCSRTINVLSYCNDVVCGDHIIISGHNDQKIRFWDSRGPHCTQVIPVQGRVT 

 

507   SLSLSHDQLHLLSCSRDNTLKVIDLRVSNIRQVFRADGFKCGSDWTKAVFSPDRSYALAG 

      |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

181   SLSLSHDQLHLLSCSRDNTLKVIDLRVSNIRQVFRADGFKCGSDWTKAVFSPDRSYALAG 

 

567   SCDGALYIWDVDTGKLESRLQGPHCAAVNAVAWCYSGSHMVSVDQGRKVVLWQ 

      ||||||||||||||||||||||||||||||||||||||||||||||||||||| 

241   SCDGALYIWDVDTGKLESRLQGPHCAAVNAVAWCYSGSHMVSVDQGRKVVLWQ 

 

 

Fig 3.3. Assessment of match between protein predicted by Blastn of prey clone insert sequence and 
protein encoded by in-frame ORF of prey clone. A.i-D.i: Translation of in-frame nucleotide sequence of prey 
clone; A.ii-D.ii: Alignment of these translated ORF sequences with protein reference sequence predicted by identity of 
prey insert nucleotide sequence. In A and B, two representative clones (NNAT and TUBA3) whose translated ORFs did 
not match the ORFs predicted by their respective gene identity, are shown. In C and D, the two clones (WDR47 and 
ATG16L2) whose translated ORFs matched the ORFs predicted by their respective gene identities, are shown.. 
Translations of cloned insert DNA sequence as well as protein sequence alignment was performed using the 
DNAMANTM software program (Lynnon Biosoft) 
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3.2.2. CO-IMMUNOPRECIPITATION ANALYSIS 

The two prioritised putative reeler ligands (WDR47 and ATG16L2) identified in the Y2H analysis were co-

immunoprecipitated, in vitro, with the reeler domain to verify these interactions in the absence of the GAL4 

domains. Table 3.6 shows the predicted sizes of each of the translated products as well as the predicted sizes 

and actual sizes of the fusion proteins used in the co-immunoprecipitation reactions. The co-

immunoprecipitation analysis revealed a positive interaction between the reeler domain and WDR47 (Fig 3. 

4B), but not between the reeler domains and ATG16L2 (Fig 3.4C). Figure 3.5 shows the region of each 

identified protein encoded by the isolated clones.  

 

Table 3.6. Predicted molecular weights and approximate molecular weights of  fusion proteins used in 

co-immunoprecipitation analysis. 

Cloned insert Numberof predicted 

amino acids 

Predicted 

size (kDa) 

Size by electrophoresis 

(kDa) 

Myc-Reeler 191 20.6 ≈20 
HA-WDR47 155 17.0 ≈17 
HA-ATG16L2 320 35.15 ≈35 
Predicted sizes were determined using  http://www.basic.northwestern.edu/biotools/proteincalc.html 

 

3.2.3. MAMMALIAN 2-HYBRID ANALYSIS 

As post-translational modification and protein folding may not occur appropriately in either the coupled in 

vitro transcription-translation system, or the Y2H system, results of the Y2H screen needed to be verified in a 

mammalian cell system. Thus, mammalian two-hybrid (M2H) analysis was performed on both putative reeler-

interactor clones identified in section 3.2.1.  

 

The SEAP reporter activity was determined for each of the putative interactor constructs co-transfected with 

the reeler bait construct in HEK293 cells, in two independent experiments, with n=4 replicates per sample in 

each experiment. A positive interaction between reeler bait and putative interactor was confirmed if the SEAP 

activity of the interactor construct co-transfected with the bait construct was significantly higher than the basal 

SEAP level [basal control= background experimental SEAP level in cells transfected with the unrecombined 

bait (pM) and prey (pVP16) vectors] as well as the sample’s two negative controls, viz. the reeler bait co-

transfected with empty pVP16 vector (bait control), and the particular prey co-transfected with the empty pM 

vector (prey control) (Fig 3.6). The ability of the reeler bait construct or each of the putative ligands used in 

the experiments to function autonomously as SEAP reporter gene transcriptional activators was also assessed 

by the use of the sample controls. Specifically, SEAP activity of the bait control and the prey controls were 

compared to that of the basal control, which demonstrated that the neither the reeler bait nor any of the 

putative ligand constructs were able to autonomously activate SEAP gene transcription. Significance was 

determined using the one-way ANOVA followed by a post-hoc Bonferroni multiple comparison test, where a 

p-value of less than 0.05 indicated a significant difference. (See appendix VI for Bonferroni matrices which 

compares each experiment with the appropriate controls).  
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Fig 3.4. Co-Immunoprecipitation of Reeler domain with putative ligands:  A. Autoradiograph of radio-
actively labeled products from coupled in vitro transcription-translation electrophoresed on a 15% SDS-polyacrylamide 
gel. Black lines indicate positions of the non-radioactive High-Range RainbowTM molecular weight marker (Amersham 
Biosciences) bands as transferred from the dried polyacrylamide gel. B. Autoradiograph of Co-IP of Reeler domain and 
WDR47. Co-IP products were electrophoresed on a 15% SDS-polyacrylamide gel. Arrows indicate the reeler domain 
(blue arrow) co-immunoprecipitating with the hypothetical protein WDR47 (red arrow). Black lines indicate positions of 
the non-radioactive High-Range RainbowTM molecular weight marker (Amersham Biosciences) bands as transferred from 
the dried polyacrylamide gel. C. Autoradiograph of Co-IP of Reeler domain with ATG16L2 (green arrow) Co-IP products 
were electrophoresed on a 20% SDS-polyacrylamide gel. Black lines indicate positions of the non-radioactive High-
Range RainbowTM molecular weight marker (Amersham Biosciences) bands as transferred from the dried polyacrylamide 
gel. 
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Fig 3.5. Schematic representations of the structures of WDR47 and ATG16L2 .A. WDR47 contains 
a series of seven WD40 repeat domains (blue triangles). The Lis1 homology domain (LisH) is represented by the yellow 
rectangle, while the C-terminal of Lis1 domain (CTLH) is represented by the green oval. The blue numbers indicate 
amino acid numbers, while the blue line below the graphic shows the fragment of WDR47 encoded by clone 19, viz. the 
last 3.5 WD40 repeats of WDR47. B. ATG16L2 also contains seven WD40 domains (blue triangles) and one ATG16 
domain (yellow rectangle). The blue numbers indicate amino acid numbers, while the blue line shows the fragment of  
ATG16L2 encoded by clone 16, viz. the seven WD40 repeats (Table 3.5). 
 

The two independent M2H experiments generally demonstrated results in the same direction, although the 

magnitude of the luminescence values differed. Thus, in order to compare results between these experiments, 

luminescence values were normalised to the mean luminescence of the mock-transfected control (HEK293 

cells transfected with water, in stead of DNA) of each experiment. The results of the individual experiments, 

as well as of the combined data-sets, are shown in Figure 3.6. The interaction between the reeler domain and 

WDR47, already confirmed by the co-immunoprecipitation analysis, was further validated by M2H analysis, 

as determined by the significantly higher SEAP activity compared to the basal level in each individual 

experiment (experiment 1: p=0.01126, Fig 3.6A; experiment 2: p=0.00005, Fig 3.6B) as well as the when the 

data from the independent experiments were combined (p=0.00013, Fig 3.6C).  No significant increase in 

SEAP activity was detected for the reeler-ATG16L2 (experiment 1: p=1.00000, Fig 3.6A; experiment 2: 

p=1.00000, Fig 3.6B; combined experiments: p=1.00000, Fig 3.6C) co-transfections, indicating that the 

ATG16L2 peptide did not bind the reeler domain in the HEK293 cells. The Bonferroni matrices for each 

experiment and combined experiments, as well as the box plots for the WDR47xreeler and ATG16L2xreeler 

experiments with only their appropriate controls are shown in appendix VI. 

 

The data presented above provides compelling evidence for an interaction between WDR47 and the reeler 

domain of reelin. Since reelin is a good candidate gene for human schizophrenia, its ligand, WDR47, can also 

be considered a plausible schizophrenia candidate gene and hence a plausible OCD candidate gene (section 

1.5.2). For this reason, the gene encoding WDR47 was included in the case-control association component of 

the present study. Even though no interaction was detected between ATG16L2 and the reeler domain, the gene 
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encoding ATG16L2 was investigated as a candidate OCD gene, as spliceosome proteins have been implicated 

in the consolidation of fear memory, and thus may play a role in anxiety disorders (Najholt et al., 2004).  
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Fig 3.6. Box plots of secreted alkaline phosphatase activity of co-transfected HEK293 cells. Two independent SEAP 
assays (n=4 samples in each) were performed and the data for each assay was normalised to the mean luminescence value 
of the mock-transfected control of each experiment. The SEAP activity of each experiment was compared to its 
corresponding bait and prey control assays as well the basal SEAP activity levels, using ANOVA and post-hoc 
Bonferroni multiple comparison tests. * indicates a significant difference between experiment and basal control.  A. * 
p=0.01126; B. p=0.00005. C. *p=0.000129 
 
 
3..3 ASSOCIATION STUDIES 

In all, 20 polymorphisms in 14 candidate genes identified either from schizophrenia-linked chromosomal loci 

(12), or through interactome analysis using the reeler domain of reelin as bait (2), were assessed for their 

potential role in OCD pathogenesis. In the following sections, where previously investigated polymorphisms 

were investigated in the present study and had been deposited in dbSNP, rs-identification numbers are given 

along with the original nomenclature. 
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Comment [MB69]: Nijholt et al 2004 Stress-
induced alternative splicing of 
acetylcholinesterase results in enhanced fear 
memory 
and long-term potentiation 
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Table 3.7. Number of OCD patients and control individuals genotyped for each polymorphism 

investigated. 

Polymorphism 
OCD Control 

Male Female Total Male  Female Total 

SNAP25/DdeI (C/T) 28 34 62 14 48 62 

SNAP25/MnlI (T/G) 39 42 81 11 53 64 

SNAP29/C56T (C/T) 27 31 58 12 52 64 

SNAP29/G92A (G/A) 27 31 58 12 52 64 

GRIA4/HSp92II (A/G) 33 35 68 20 68 88 

GRIN1/1 (G/C) 38 33 78 20 41 61 

DLX6 IVS1C>T (C/T) 20 22 42 18 63 81 

BZRP Ala147Thr (A/G) 33 34 67 22 69 91 

DBH (I/D) 38 37 75 17 43 60 

SYN3/ -631C>G (C/G) 43 43 86 24 93 81 

GBR1.1-C39T (C/T) 16 24 40 22 18 40 

GBR1.11-T1545C (C/T) 16 24 40 22 18 40 

RXRβ/Val95Ala (G/A) 16 24 40 22 18 40 

CHRM3/MslI (G/A) 16 24 40 22 18 40 

SLC18A1/BseRI 16 24 40 22 18 40 

RELNIVS59C/T (C/T) 18 26 44 15 26 41 

GRID1 rs0887523 24 26 50 30 34 64 

WDR47 rs2591000 25 21 46 17 31 48 

ATG16L2 rs2282613 23 22 45 18 28 45 

POU3F2 16 24 40 22 18 40 

Abbreviations: BZRP, peripheral benzodiazepine receptor; CHRM3, Acetylcholine receptor, muscarinic 3; DBH, 
Dopamine beta hydroxylase; DLX, Distal-less like homeobox 6; GBR, GABA receptor 1; GRIA4, AMPA receptor subunit 
GluR4; GRIN1, N-methyl-D-aspartate receptor NR1 subunit; POU3F2, OctamerRELN, Reelin; RXRβ, retinoid X receptor 
beta; SLC18A1, Solute carrier family 18 member 1, SNAP25 Synaptosomal-associated protein of 25kDa: SNAP29, 
Synaptosomal-associated protein of 29kDa; SYN3, Synapsin III 
 

Each of the chosen polymorphisms was genotyped in an Afrikaner cohort. Two genes (SLC18A1 and CHRM3) 

were not investigated further when the polymorphism chosen was uninformative in the Afrikaner population, 

while a third gene (POU3F2) was excluded because SSCP analysis of the coding region of the gene performed 

in the present study yielded no polymorphisms to test (Table 3.1). This investigation forms part of a larger 

ongoing investigation in which new patients and controls are constantly being recruited, while other samples 

were depleted during the study. This accounts for the varying number of individuals genotyped for each 

polymorphism as shown in Table 3.7.  

 

Comparisons of distributions of genotypes and frequencies of alleles between OCD patients and control 

individuals for each polymorphism tested will be discussed in the following sub-sections; results of logistical 

regression analysis of each polymorphism is also summarised in Table 3.24).  
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3.3.1.1.  SNAP25/DdeI and MnlI polymorphisms 

The SNAP25/DdeI and MnlI polymorphisms were chosen for analysis as they have previously been used in 

schizophrenia genetic association studies (Barr et al., 2000).  PCR amplification of the 3’UTR of SNAP25 

containing both the MnlI and DdeI polymorphisms (section 2.3.2) analysed yielded a 261bp fragment. This 

fragment contains an invariant MnlI restriction site; MnlI digestion yields two fragments (255bp and 6bp) for 

the T allele, while for the G allele, which introduces another MnlI site the fragment was cleaved into three 

fragments (211bp, 44bp and 6bp) (Fig 3.7). Genotyping for the DdeI polymorphism yielded a 261bp fragment 

for the T allele as no DdeI restriction site is present; however, as the C allele creates a DdeI restriction site, 

DdeI digestion yields two fragments of 228bp and 33bp in size (Fig 3.8). The genotype distributions and allele 

frequencies for each of these polymorphisms are shown in table 3.8 (SNAP25/MnlI) and table 3.9 

(SNAP25/DdeI). 

 

Logistic regression analysis, applied to the data to determine whether these SNAP25 polymorphisms are 

associated with OCD, revealed no significant association for either polyrphism using the additive model 

[p=0.484 for MnlI and, p=0.272 for DdeI (Table 3.24)] or the dominant model [p=0.763 for MnlI and p=0.838 

for DdeI (Table 3.24)] between patient and control groups. Both OCD and control groups were in Hardy-

Weinberg equilibrium for these two polymorphisms. 
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Fig 3.7. ASREA of the SNAP25/ MnlI polymorphism. A. Representative 2% agarose gel showing the fragment 
sizes of the SNAP25 amplicon after digestion with MnlI. The 44bp and the 6bp fragments were too small to be resolved 
on a 2% agarose gel. Lane M: λPst molecular weight marker; Lanes1 and 3: T/T homozygous individual; Lane2 and 4: 
G/T heterozygote individual and Lane 5: G/G homozygote individual. B. Schematic representation of the SNAP25 

amplicon, generated by PCR-amplification for genotyping, showing the positions of the non-polymorphic and 
polymorphic MnlI restriction site and the sizes of the fragments generated following MnlI digestion.  
 
 
Table 3.8. Genotype distribution and allele frequencies of SNAP25/MnlI polymorphism in OCD patients 

and control individuals. 

 

 

 

 

 
 
 
 
 

 (Genotype and allele percentages shown in brackets) 
 

 GENOTYPES  ALLELES  

SNAP25/MnlI TT TG GG Total T G Total 

OCD 
31 

(32.2%) 
42 

(51.9%) 
8 

(9.9%) 
81 

104 
(64.2%) 

58  
(35.8%) 

162 

Control 
30 

(46.9%) 
29 

(45.3%) 
5 

(7.8%) 64 
87 

(69.5%) 
39 

(30.5%) 128 

211bp 

1 2 3 4 5 M 

T/T G/T T/T G/T G/G 

261bp 

6bp 211bp 44bp 

255bp 

255bp 
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Fig 3.8. ASREA of the SNAP25/DdeI polymorphisms. A. Representative 2% agarose gel showing the fragment 
sizes of the SNAP25 amplicon after digestion with DdeI. The 33bp fragment was too small to be resolved on a 2% 
agarose gel. Lane 9:  T/T homozygote individual; Lanes 2,3,5,7 and 8: C/C homozygote individuals, and Lanes 1,4 and 6: 
C/T heterozygote individuals. B. Schematic representation of the SNAP25 amplicon, generated by PCR-amplification for 
genotyping, showing the position of the DdeI restriction sites and the sizes of the fragments generated following DdeI.  
 

 

Table 3.9. Genotype distribution and allele frequencies of SNAP25/DdeI polymorphism in OCD patients 

and control individuals. 

 

 

 
 
 
 
 
 
 

 (Genotype and allele percentages shown in brackets) 

 GENOTYPES  ALLELES  

SNAP25/DdeI TT TC CC Total T C Total 

OCD 
31 

(50.0%) 
25 

(41.9%) 
6 

(8.19%) 
62 

104 
(64.2%) 

58  
(35.8%) 

162 

Control 33 
(54.5%) 

23 
(34.4%) 

6 
(11.5%) 

62 87 
(69.5%) 

39 
(30.5%) 

128 

261bp 
228bp 

1      2      3        4        5        6       7        8       9  

C/T  C/C  C/C    C/T  C/C   C/T   C/C  C/C  T/T 

261bp 

DdeI  

228bp 33bp 
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3.3.1.2. SNAP29/C56T and SNAP29/ G92A polymorphisms 

The SNAP29/C56T (rs1061063)and SNAP29/G92A (rs1061064) polymorphisms have previously been used in 

a schizophrenia genetic association study and was therefore selected for analysis here (Saito et al., 2001). 

Since these two polymorphisms are located only 36bp from each other, one PCR fragment of 377bp was 

generated to genotype both polymorphisms (section 2.3.2). Furthermore, the amplicon contains one invariant 

DdeI restriction site and two polymorphic DdeI restriction sites that were used for genotyping. Digestion of 

the amplicon with DdeI yields two fragments of 269bp and 108bp as a result of the invariant DdeI site; the 

269bp fragment contains both polymorphic DdeI sites. For the SNAP29/C56T C allele, the 269bp fragment 

remained undigested as no DdeI site is present, while the T allele creates a DdeI site resulting in the digestion 

of the 269bp fragment into two fragments of 177bp and 92bp (Fig 3.9). For the SNAP29/G92A A allele the 

269bp fragment remained undigested, while for the G allele, which creates another DdeI restriction site, the 

digestion resulted in the 269bp fragment being cleaved into two fragments of 128bp and 141bp. Thus, 

electrophoresis of the single 377bp DdeI digested product resulted in banding patterns that were used to 

genotype both polymorphisms simultaneously. The genotype distribution and allele frequencies for each of the 

polymorphisms are shown in table 3.10 (SNAP29/C56T) and table 3.11 (SNAP29/G92A). 

 

Both the OCD patient group as well as the control group were in Hardy-Weinberg equilibrium for both of the 

SNAP29 polymorphisms tested. Logistic regression analysis revealed no significant association between any 

of these two polymorphisms on either the additive [p= 0.432 for SNAP29/C56T (table 3.24) and p= 0.432 for 

SNAP29/ G92A (table 3.24) or the dominant model [p=0.145 for SNAP29/C56T (table 3.24) and p=0.145 for 

SNAP29/ G92A (Table 3.24) Because of the data observed in tables 3.10 and 3.11, the level of linkage 

disequeilibrium (LD) between these two markers were tested using the HaploviewTM software package. This 

analysis confirmed that these two polymorphisms are in complete linkage disequilibrium with each other (Fig 

3.10).  

Stellenbosch University  http://scholar.sun.ac.za



 169
A 

 

 

 

 

 

B 

 

 

 

 

 

Fig 3.9. ASREA of the SNAP29/C56T and SNAP29/ G92A polymorphisms. A. Representative silver-stained 
12% acrylamide gel showing the fragment sizes of the SNAP29 amplicon following digestion with DdeI. Lane M: λPst 
molecular weight marker; Lane1: C56T/G92A; Lane 2 C56C/A92A; Lane3: T56T/G92G. B. Schematic representation of 
the SNAP25 amplicon, generated by PCR-amplification for genotyping, showing the positions of the non-polymorphic 
and two polymorphic DdeI restriction sites and the sizes of the fragments generated following DdeI digestion. 
 
Table 3.10. Genotype distribution and allele frequencies of SNAP29 C56T polymorphism in OCD 

patients and control individuals. 

 
 
 
 
 
 
 
 
 
 
 

(Genotype and allele percentages shown in brackets) 
 

 GENOTYPES  ALLELES  

SNAP29-C56T CC CT TT Total C T Total 

OCD 
14 

(24.1%) 
29 

(50.0%) 
15 

(25.9%) 
58 

57 
(49.1%) 

59 
(50.9%) 

116 

Controls 9 
(14.1%) 

40 
(62.5%) 

15 
(23.4%) 

64 58 (45.3%) 70 
(54.7%) 

128 

92bp 

108bp 

141bp 

269bp 

M 1  2  3 

377bp 

92bp 

128bp 
269bp 

Polymorphic 
DdeI site 

Polymorphic 
DdeI site 
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141bp 

Invariant 
DdeI site 
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56
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56
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Table 3.11. Genotype distribution and allele frequencies of SNAP29 G92A polymorphism in OCD 

patients and control individuals 

 
 
 
 
 
 
 
 
 
 
 
 

(Genotype and allele percentages shown in brackets) 
 

 

   

 

    

Fig. 3.10. Linkage disequilibrium plots of SNAP29 SNPs SNAP29C56T and SANP29G92A.  From this 

linkage disequlibrium plot it is clear that these two polymorphisms are in complete LD with one another. Red 

square represents a D’ value of 1. 

 GENOTYPES  ALLELES  

SNAP29-

G92A 
GG GA AA Total G A Total 

OCD 
14 

(24.1%) 
29 

(50.0%) 
15 

(25.9%) 
58 

57 
(49.1%) 

59 
(50.9%) 

116 

Controls 9 
(14.1%) 

40 
(62.5%) 

15 
(23.4%) 

64 58 (45.3%) 70 
(54.7%) 

128 
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3.3.1.3. GRIA4/ rs630567 polymorphism 

The rs630567 polymorphism was selected for analysis as it has previously been used in a schizophrenia 

genetic association study (Makino et al., 2003). The PCR amplification of the GRIA4 intron 3 region where 

rs630567 resides yielded a 255bp fragment (section 2.3.2) containing a polymorphic Hsp92II restriction site. 

For the T allele, the 255bp fragment remained undigested as the Hsp92II site is abolished, while for the C 

allele, the fragment was cleaved into two fragments of 145bp and 110bp following Hsp92II digestion (Fig 

3.11). The genotype distribution and allele frequencies for this polymorphism is shown in table 3.12 

 

Testing for Hardy-Weinberg equilibrium in both OCD and control groups showed that both groups obeyed the 

equilibrium rule. Logistic regression analysis of the rs630567 data revealed no association with OCD using 

either the additive model (p=0.344) or dominant model (p=0.248) (Table 3.24). 

   

3.3.1.4. GRIN1/1 polymorphism 

The GRIN1/1 (rs11146020) polymorphism has previously been used in a genetic association study of 

schizophrenia (Martucci et al., 2003) and hence was included here. The PCR amplification of the region 

around the GRIN1/1 polymorphism yielded an amplicon of 308bp (section 2.3.2) containing a polymorphic 

BseRI restriction site. For the C allele, which abolishes the BseRI site, the 308bp fragment remained 

undigested, while for the G allele, the 308 bp fragment was cleaved into two fragments of 275bp and 33bp 

following BseRI digestion (Fig 3.12). The genotype distribution and allele frequencies for this polymorphism 

is shown in table 3.13 

 

Logistic regression analysis of the GRIN1/1 data generated no statistically significant association with  OCD 

under either the additive model (p=0.648) or the dominant model (p=0,455 (table 3.24). Both OCD patient and 

control groups were in Hardy-Weinberg equilibrium. 
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Fig 3.11. ASREA of GRIA4/ rs630567 polymorphism. A. Representative silver stained 12% arcylamide gel 
showing the fragment sizes of the GRIA4/rs630567 amplicon following digestion with Hsp92II. Lanes 1 and 2: 
homozygous T/T individuals; Lanes 3 and 4: homozygous A/A individuals; Lane 5: heterozygous T/A individual. B. 
Schematic representation of the GRIA4 rs630567 amplicon, generated by PCR-amplification for genotyping, showing the 
positions of the polymorphic Hsp92II restriction site and the sizes of the fragments generated following Hsp92II 
digestion. 
 
 
Table 3.12. Genotype distribution and allele frequecy of GRIA4/rs630567 polymorphism in OCD 

patients and control individuals. 

 
 
 
 
 
 
 
 
 
 
 

(Genotype and allele percentages shown in brackets) 
 

 GENOTYPES  ALLELE  

GRIA4/ 

rs630567 
AA AT TT Total A T Total 

OCD 
23 

(33.8%) 
41 

(60.3%) 
4 

(5.9%) 
68 

87 
(63.9%) 

49 
(36.1%) 

136 

Controls 
31 

(34.8%) 
48 

(53.9%) 
10 

(11.3%) 
89 

110 
(618%) 

68 
(38.2%) 

178 

110bp 

145bp 

255bp 

 1       2        3      4     5 

T
/T

 

T
/T

 

A
/A

 

A
/A

 

T
/A

 

255bp 

110bp 145bp 
Hsp92II 
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Fig 3.12. ASREA of GRIN1/1 polymorphism. A. Representative 2% agarose gel showing the fragment sizes of the 
GRIN1/1 amplicon following digestion with BseRI. Lane M: 100bp molecular weight ladder; Lane 1: homozygous G/G 
individual; Lane 2: heterozygous G/C individual; Lane 3: homozygous C/C individual. B. Schematic representation of the 
GRIN1/1 amplicon, generated by PCR-amplification for genotyping, showing the position of the polymorphic BseRI 
restriction site and the sizes of the fragments generated following BseRI digestion.  
 

 

Table 3.13. Genotype distribution and allele frequencies of GRIN 1/1 polymorphism in OCD patients 

and control individuals. 

  

 

 

 

 

 

 

 

 

 

 
 

(Genotype and allele  percentages shown in brackets) 
 

 GENOTYPE  ALLELE  

GRIN1 CC CG GG Total C G(M
b
) Total 

OCD 
12 

(15.4%) 
21 

(26.9%) 
45 

(57.7%) 78 
45 

(28.8%) 
111 

(71.2%) 156 

Controls 
10 

(16.4%) 
21 

(34.4%) 
30 

(49.2%) 
61 

41 
(33.6%) 

81 
(66.4%) 

122 

33bp 

275bp 

308bp 

M 1 2 3 

308bp 

 33bp 275bp 

polymorphic 
BseRI 

G
/G

 

G
/C

 

C
/C
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3.3.1.5. DLX6 IVS1C>T polymorphism 

The DLX6IVS1C>T polymorphism was selected for analysis as it has previously been used in an autism 

association study (Nabi et al., 2003).  Amplification of the region of intron 1 of the DLX6 gene where the 

DLX6 IVS1C>T polymorphism resides yielded a 203bp fragment containing a polymorphic ApoI restriction 

site. For the C allele, which abolishes the ApoI restriction enzyme site, the 203bp fragment remained 

undigested, while for the T allele, the fragment is cleaved into two fragments of 176bp and 27bp following 

ApoI digestion (Fig 3.13). The genotype distribution and allele frequencies for the DLX6IVS1C>T 

polymorphisms is shown in table 3.14. 

 

Both OCD and control groups were found to be in Hardy-Weinberg equilibrium. Using logistic regression 

analysis a statistically significant protective effect of the CT genotype of DLX6IVS1 C/T was observed under a 

dominant model (p=0.013, Table 3.24). No statistically significant association was shown under the additive 

model (Table 3.24).  

 

3.3.1..6. SYN3/-631C>G polymorphism 

The SYN3/-631C>G polymorphism has previously been the focus of a genetic association study in 

schizophrenia (Ohmori et al., 2000) and hence was chosen for analysis here. The PCR-amplification of the 

promoter region of SYN3 containing the -631 polymorphism generated a 105bp fragment with a polymorphic 

BsrI restriction site. For the G allele, which abolishes the BsrI restriction site, the 105bp fragment remains 

undigested, while for the C allele, which creates a BsrI restriction site, the fragment is cleaved into two 

fragments of 84bp and 21bp following digestion with BsrI (Fig 3.14).  

 

The genotype distribution and allele frequency of this polymorphism is shown in table 3.15. Both OCD and 

control groups were in Hardy-Weinberg equilibrium. Logistic regression analysis revealed a statistically 

significant protective effect of the G allele of the SYN3/-631C>G polymorphism, under an additive model 

(p=0.009, Table 3.24).  
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Fig 3.13. ASREA of the DLX6 IVS1C>T polymorphism. A. Representative 12% acrylamide gel showing the 
fragment sizes of the DLX6IVS1C>T polymorphism following digestion with ApoI. Lane M: λPst molecular weight 
marker; Lane 1: T/T homozygous individual ; Lanes 3 and 4: C/C homozygous individuals; Lanes 2 and 5: C/T 
heterozygous individuals. B. Schematic representation of the DLX6IVS1C>T amplicon, generated by PCR-amplification 
for genotyping, showing the position of the polymorphic ApoI restriction site and the sizes of the fragments generated 
following ApoI.  
 

 

Table 3.14. Genotype distribution and allele frequencies of DLX6 IVS1 C/T polymorphism in OCD 

patients and control individuals. 

 
 
 
 
 
 
 
 
 
 

(Genotype and allele percentages shown in brackets) 
 

 GENOTYPE  ALLELE  

DLCX6 

IVS1C>T  
CC CT TT Total C T Total 

OCD 
14 

(33.3%) 
16 

(38.1%) 
12 

(28.6%) 42 
44 

(52.4 
40 

(47.6%) 84 

Controls 
10 

(13.3%) 
47 

(58.1%) 
24 

(34.6%) 
81 

67 
(41.4%) 

95 
(58.6%) 

162 

176bp 
203bp 

1 2 3 4 5 6 

T/T C/T C/C C/C C/T 

ApoI 

27bp 176bp 

203bp 
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Fig3.14. ASREA of SYN3/-631C>G polymorphism. A. Representative 12% acrylamide gel showing the fragment 
sizes of SYN3/-631C>G amplicon following digestion with BsrI. Lane M: λPst molecular weight marker; Lanes 1,2,7 and 
8: G/G homozygous individuals; Lanes 6 and 9: C/G heterozygous individuals; Lanes 3 and 5: C/C homozygous 
individual. B. Schematic representation of the SYN3/-631C>G amplicon, generated by PCR-amplification for genotyping, 
showing the position of the polymorphic BsrI restriction site and the sizes of the fragments generated following BsrI 
digestion. 
 

 

Table 3.15. Genotype distribution and allele frequencies of SYN3/ -631C>G polymorphism in OCD 

patients and control individuals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Genotype and allele  percentages shown in brackets) 

 GENOTYPE  ALLELE  

SYN3-631C>G CC CG GG Total C G Total 

OCD 37 
(43.1%) 

42 
(48.8%) 

7 
(8.1%) 

86 116 
(67.4%) 

88 
(54.3%) 

172 

Controls 
24 

(29.6%) 
40 

(49.3%) 
17 

(21.1%) 
81 

56 
(32.6%) 

74 
(45.7%) 

240 

 M     1       2     3     4     5     6    7      8      9 

105b
p 

G/G  G/G G/G G/G C/C C/C G/C G/C 

84b

105 

84 21 

BsrI 
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3.3.1.7. BZRP Ala147Thr polymorphism 

The BZRP Ala147Thr (rs6971) polymorphism was included in the current analysis as it has previously been 

used in a genetic association study of schizophrenia. Amplification of the exon 4 region of BZRP, where the 

Ala147Thr polymorphism resides yielded a 299bp fragment containing a polymorphic NruI restriction site. For 

the Ala allele, which abolishes the NruI restriction site, the 299bp fragment remained undigested, while for the 

Thr allele, the fragment was cleaved into two fragments of 115bp and 184bp following NruI digestion (Fig 

3.15). The genotype distribution and allele frequencies are shown in table 3.16. Both patients and control 

groups were in Hardy-Weinberg equilibrium. Logistic regression analysis showed no association of this 

polymorphism under either an additive (p=0.362, Table 3.24) or a dominant model (p=0.571, Table 3.24).  

 

3.3.1.8. DBH (I/D) polymorphism 

The insertion/ deletion polymorphism of DBH (rs34879977)  was chosen for analysis based on the fact that it 

has previously been the focus of an association study for schizophrenia (Yamamoto et al., 2003). PCR 

amplification of the region containing the DBH (I/D) polymorphism generated an amplicon of 144bp for the 

DBH (D) allele or one of 163bp, for the DBH (I) allele was generated (Fig 3.16). The OCD study group and 

the control group were both found to be in Hardy-Weinberg equilibrium. The genotype distribution and allele 

frequencies are shown in table 3.17. 

Logistic regression analysis showed  no statistically significant association between the DBH (I/D) 

polymorphism  and OCD using either the dominant (p=0.517, Table 3.24) or the additive model (p=0.395, 

Table 3.24). 
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Fig 3.15. ASREA of the BZRP Ala147Thr polymorphism: A. Representative 2% agarose gel showing the 
fragment sizes of the BZRP Ala147Thr polymorphism following digestion with NruI. Lane M: λPst molecular weight 
marker; Lane 1: Ala homozygous individual; Lane 2:Thr homozygous individual; Lane 3: Ala/Thr heterozygous 
individual. B. Schematic representation of the BZRP Ala147Thr  amplicon, generated by PCR-amplification for 
genotyping, showing the position of the polymorphic NruI restriction site. The sizes of the fragments generated following 
NruI digestion are also indicated.  
 
 
Table 3.16. Genotype distribution and allele frequencies of BZRP Ala147Thr polymorphism  

in OCD patients and control individuals. 

  

 

 

 

 

 

 

(Genotype and allele percentages shown in brackets) 

 

 GENOTYPE  ALLELE  

BZRP 

Ala/147Thr 
Ala/Ala Ala/Thr Thr/Thr Total Ala Thr Total 

OCD 10 
(14.9%) 

25 
(37.3%) 

32 
(47.8%) 

67 45 
(33.6%) 

89 (66.4%) 134 

Control 9 
(9.9%) 

36 
(39.6%) 

46 
(50.5%) 

91 54 
(29.7%) 

128 
(70.3%) 

182 

299 

NruI 

115 184 

184bp 

299bp 

115bp 
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Fig 3.1. Genotyping of DBH (I/D) polymorphism. Representative 2% agarose gel of PCR fragments generated for 
genotyping the I/D polymorphism. Lane M: λPst molecular weight marker; Lane1: heterozygous I/D individual; Lane 3: 
homozygous I/I individual Lanes 2 and 4: homozygous D/D individuals. 
 

Table 3.17. Genotype distribution and allele frequencies of DBH (I/D) polymorphism in OCD patients 

and control individuals. 

(Genotype and allele percentages shown in brackets) 
 

 GENOTYPE  ALLELE  

DBH (I/D) I I/D D/D Total I D Total 

OCD 
20 

 (26.6%) 
40 

(53.4%) 
15 

(20%) 75 
80 

(53.3%) 70 (46.6%) 150 

Control 17 
(28.4%) 

34 
(56.6%) 

9 
(15%) 

60 68 
(56.6%) 

52 (43.3%) 120 

163bp 

144bp 

M   1     2      3       4 

  I/D      D/D        I/I         D/D 
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3.3.1.9. GBR1.1-C39T and GBR1.11-T1545C polymorphisms 

Following the genotyping of 40 OCD patients and 40 control individuals for the GBR1.1-C39T polymorphism 

, it was found that this polymorphism was not informative in the study population used in the present study, as 

only TT homozygotes were observed (Fig 3.17). Thus, no further analysis was performed for GBR-C39T.  

 

A 

 

 

 

 

 

B 

 

 

 

 

Instead, another polymorphism within this GBR1 gene was targeted. Amplification of exon 11 of GBR1 where 

this T1545C polymorphism resides yielded an amplicon of 375bp containing a polymorphic EarI restriction 

site. For the C allele, which abolishes the EarI restriction site, the fragment remained undigested, while for the 

T allele, which creates an EarI site, the fragment was digested into two fragments of 271bp and 104bp 

following EarI digestion (Fig 3.18). The genotype distribution and allele frequencies are shown in Table 3.18.  

 

Both OCD patient and control groups were in Hardy-Weinberg equilibrium. Logistic regression analysis 

showed no significant association between the GBR1.11-T1545C polymorphism and OCD under either the 

dominant model (p=0.248, Table 3.24) or the additive model (p=0.344, Table 3.24).  
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Fig 3.17.  ASREA of GBR1.1-C39T polymorphism. A. Representative 12% acrylamide gel showing the 
GBR1.1-C39T fragment sizes and digestion with HhaI. Lane M: λPst molecular weight marker; Lane1-9: homozygous 
C/C individuals. The T allele was not found in the 80 individuals of the population used in the present study. B. 

Schematic representation of the GBR1.1-C39T amplicon, generated by PCR-amplification for genotyping, showing 
the positions of the polymorphic and invariant HhaI restriction site and the sizes of the fragments generated following 
HhaI digestion. 
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       271bp       104bp 

 

       375bp 

 
Fig 3.18.  ASREA of the GBR1.11-T1545C polymorphism. A. Representative 2% agarose gel showing the 
fragment sizes of GBR1.11-T1545C amplicon following digestion with EarI. Lane M: λPst molecular weight marker; Lane 
1: T/T homozygous individual; Lane 2-3: C/C homozygous individuals; Lane 4: C/T heterozygous individual. B. 

Schematic representation of the GBR1.11-T1545C amplicon, generated by PCR-amplification for genotyping, showing the 
position of the polymorphic EarI restriction site and the sizes of the fragments generated following EarI digestion. 
 

Table 3.18. Genotype distribution allele allele frequencies of GBR1.11-T1545C polymorphism in OCD 

patients and control individuals. 

 
 
 
 
 
 
 
 
 
 
 

(Genotype and allele percentages shown in brackets) 
 

 

 GENOTYPE  ALLELE  

GBR T1545C TT TC CC Total T C Total 

OCD 
36 

(90%) 
3 

(7.5%) 
1 

(2.5%) 40 
75 

(93.8%) 
5 

(6.2%) 80 

Controls 
38 

(95%) 
1 

(2.5%) 
1 

(2.5%) 
40 

77 
(96.3%) 
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3.3.1.10. CHRM3 MslI and SLC18A1 polymorphisms 

Following genotyping of 40 OCD cases and 40 control individuals, for the CHRM3/MslI (rs2067481) and the 

SLC18A1 polymorphism, it was found that both of these polymorphism were not informative in the study 

population used in the present study, as only GG homozygotes were observed for the CHRM3/MslI 

polymorphism and only TT homozygotes (Fig 3.19) were observed for the SLC18A1 polymorphism (Fig 3.20). 

Thus, these two polymorphisms were excluded from any further analuysis. 

 

3.3.1.10. RXRβ Val95Ala polymorphism 

Amplification of the exon 2 region of RXRβ where the Val95Ala polymorphism resides yielded a 164bp 

fragment containing a polymorphic BanII restriction site. For the Val allele, which abolishes the BanII 

restriction site, the fragment remains undigested, while for the Ala allele, the fragment is cleaved into two 

fragments of 136bp and 28bp following BanII digestion (Fig 3.21). The genotype distribution and allele 

frequencies are shown in table 3.19. 

 

Both the OCD patient group and control group were in Hardy-Weinberg equilibrium for the RXRβ Val95Ala 

polymorphism. Logistic regression analysis could however not be performed because of the lack of Val/Val 

homozygotes in the OCD group (Table 3.19).  

 

3.3.1.11. GRID1 rs10887523(C/A)  polymorphism 

PCR-amplification of the region of GRID1 containing rs1088753 resides yielded a 343bp fragment containing 

a polymorphic BfaI restriction site. Digestion of the 343bp fragment with BfaI yielded two fragments of 239bp 

and 114bp for the C allele. For the A allele,  which abolishes the BfaI site, the fragment remained undigested 

(Fig 3.22). The genotype distribution and allele frequencies are shown in Table 3.20. 

 

Both the OCD patient group and control group were in Hardy-Weinberg equilibrium for the GRID1 

rs10887523(C/A) polymorphism. Logistic regression analysis showed no significant association between 

GRID1 rs10887523 and OCD under either the dominant model (p=0.838, Table 3.24) or the additive model 

(p=0.272, Table 3.24). 
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Fig 3.19.  ASREA of CHRM3MslI polymorphism. A. Representative 2% agarose gel showing the CHRM3MslI 
fragment sizes and digestion with MslI. Lane M: λPst molecular weight marker; Lane1-6: homozygous G/G individuals. 
The A allele was not found in the 80 individuals of the population used in the present study. B. Schematic representation 
of the CHRM3MslI amplicon, generated by PCR-amplification for genotyping, showing the positions of the 
polymorphic MslI restriction site and the sizes of the fragments generated following MslI digestion. 
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Fig 3.20.  ASREA of SLC18A1 polymorphism. A. Representative 2% agarose gel showing the SLC18A1 
fragment sizes and digestion with MslI. Lane M: λPst molecular weight marker; Lane1-6: homozygous G/G individuals. 
The A allele was not found in the 80 individuals of the population used in the present study. B. Schematic representation 
of the SLC18A1amplicon, generated by PCR-amplification for genotyping, showing the positions of the polymorphic 

MslI restriction site and the sizes of the fragments generated following MslI digestion. 
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A 

      1          2                3        4               5              M                 6               7        

 

  Val/Val               Ala/Ala                 Val/Ala      Ala/Ala      

 

B 

 

 

 

 

Fig 3.21. ASREA of RXRβ Val95Ala polymorphism: A. Representative 2% agarose gel showing the fragment 
sizes of the RXRβ Val95Ala amplicon following digestion with BanII. Lane M: λPst molecular weight marker; Lane 1: 
Val/Val homozygous individual; Lanes 5&7: Ala/Ala homozygous individuals; Lane 6: Val/Ala heterozygous individual. 
Lanes 2-4: genotyping results were ambiguous, and were therefore repeated. B. Schematic representation of the RXRβ 

Val95Ala amplicon, generated by PCR-amplification for genotyping, showing the position of the polymorphic BanII 
restriction site and the sizes of the fragments generated following BanII digestion.  
 

 

Table 3.19. Genotype distribution and allele frequencies of RXRβ Val95Ala polymorphism in OCD 

patients and control individuals 

 
 
 
 
 
 
 
 
 
 
 

(Genotype and allele  percentages shown in brackets) 
 

 GENOTYPE  ALLELE  

RXRβ Val95Ala Val/Val Val/Ala Ala/Ala Total Val Ala Total 

OCD 0  
(0%) 

2 
(5%) 

38 
(95%) 

40 2 
(2.5%) 

78 
(97.5%) 

80 

Controls 
1 

(2.5%) 
2 

(5%) 
37 

(92.5%) 40 
6  

(7.5%) 
74 

(92.5%) 80 

28bp 136bp 

164bp 

BanII 

164bp 

136bp 
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A 

 

 

 

 

B 

 

 

 

Fig. 3.22. A.  ASREA of GRID1 rs10887523 polymorphism: A. Representative 2% agarose gel showing the 
fragment sizes of the GRID1 rs10887523 amplicon following digestion with BfaI..  Lanes 1 and 8: A/A homozygous 
individuals. Lanes 2-4 and 6: C/A heterozygous individuals. Lanes 5 and 7: C/C homozygous individuals. B. Schematic 
representation of the GRID1 rs10887523 amplicon, generated by PCR-amplification for genotyping, showing the position 
of the polymorphic BfaII restriction site and the sizes of the fragments generated following BfaI digestion.  
 
 
Table 3.20. Genotype distribution and allel frequencies of GRID1 rs10887523(C/A)  polymorphism in 

OCD patients and control individuals. 

 
 
 
 
 
 
 
 
 
 
 

(Genotype and allele percentages shown in brackets) 
 

 GENOTYPE  ALLELE  

GRID1 

rs10887523  
CC CA AA Total C A Total 

OCD 
21 

 (42%) 
23  

(46%) 
6  

(12%) 
50 

65  
(65%) 

35  
(35%) 

100 

Control 
20 

 (31.3%) 
33 

 (55.1%) 
11 

(17.2%) 
64 

73 
(57%) 

55 
(43%) 

128 

1     2      3          4  5   6      7       8 
  

343bp 

239bp 114bp 

239bp 

114bp 

343bp 

BfaI 
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3.3.1.12. RELNIVS59C>T polymorphism 

The PCR-amplification of the region of the reelin gene where the intron 59C/T polymorphism is located 

yielded a 380bp fragment. The PCR fragments generated were then SNaPshot genotyped (section 2.9) (Fig 

3.23). The genotype distribution and allele frequencies are shown in Table 3.21..  

 

Both OCD and control groups were found to be in Hardy-Weinberg equilibrium. . Logistic regression analysis 

showed no significant association between the RELNIVS59 C>T polymorphism and OCD under either the 

dominant model (p=0.840) (Table 3.24) or the additive model (p=0.765) (Table 3.24).  

 

A    B    C 

 
Fig 3.22. SNaPshot results for the RELNIVS59C/T polymorphism. A: representative SNaPshot result for the 
C/C-genotype, B: representative SNaPshot result for the C/T-genotype and (C): representative SNaPshot result for the 
T/T-genotype. 

 

 

Table 3.21. Genotype distribution and allele frequencies of RELN IVS59C/T polymorphism in OCD 

patients and control individuals 

 
 
 
 
 
 
 
 
 
 
 

(Genotype and allele percentages shown in brackets) 

 GENOTYPE  ALLELE  

RELN IVS59C/T  CC CT TT Total C T Total 

OCD 
20 

 (45.5%) 
21 

(47.5%) 
3  

(6.8%) 
44 

27 
(30.7%) 

61 
(69.3%) 

88 

Control 16 
 (39%) 

17 
 (41.5%) 

8 
(19.5%) 

41 33 (40.2%) 49  
(59.8%) 

82 

C/C C/T T/T 
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3.3.1.13. WDR47 rs2591000 polymorphism 
PCR amplification of intron 10 of WDR47 where rs2591000 resides yielded a 574bp fragment that contains an 

invariant HinfIII restriction site. Digestion of this fragment with HinfIII yielded two fragments of 549bp and 

25bp for the T allele, while for the C allele, which creates another HinfIII restriction site, the 549bp fragment 

was digested into two fragments of 375bp and 174bp (Fig 3.24). The genotype distribution and allele 

frequencies are shown in table 3.22. 

 

Both OCD and control groups were in Hardy-Weinberg equilibrium. Logistic regression analysis showed no 

significant association between rs2591000 and OCD under either the dominant model (p=0.620, Table 3.24) 

or the additive model (p=0.302, Table 3.24).  

 

3.3.1.14. ATG16L2 rs2282613 polymorphism 

PCR amplification of intron 4 of the gene encoding ATG16L2 where rs2282613 resides yielded a 312bp 

fragment that contains three invariant MboII restriction sites. Digestion of this fragment with MboII yielded 4 

fragments of 134bp, 113bp, 62bp and 3bp for the C allele, while for the T allele, which creates another MboII 

restriction site, the 113bp fragment was digested into two framents of 105bp and 8bp (Fig 3.25). The genotype 

distribution and allele frequencies are shown in table 3.23. 

 

Both OCD and control groups were found to be in Hardy-Weinberg equilibrium. Logistic regression analysis 

showed no significant association between rs2282613 and OCD under either the dominant model (p=0.367, 

Table 3.24) or the additive model (p=0.653, Table 3.24). 

 

 

Stellenbosch University  http://scholar.sun.ac.za



 188
A 
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Fig 3.24. ASREA of WDR47 rs2591000 polymorphism. A. Representative 2% agarose gel showing the fragment 
sizes of WDR47 rs2591000 amplicon following digestion with HinfIII. Lane 1: T/T homozygous individual; Lane 2-3: 
C/T heterozygous individuals; Lane 4: C/C homozygous individual. The 174bp fragment is not shown. B. Schematic 
representation of the WDR47 rs2591000 amplicon, generated by PCR-amplification for genotyping, showing the position 
of the polymorphic and invariant HinfIII restriction sites and the sizes of the fragments generated following HinfIII 
digestion. 
 

Table 3.22. Genotype distribution of WDR47 rs2591000 polymorphism in OCD patients and control 

individuals. 

 
 
 
 
 
 
 
 
 
 
 

Genotype and allele percentages shown in brackets) 
 

 GENOTYPE  ALLELE  

WDR47 

rs2591000 
CC CT TT Total C T Total 

OCD 17 (36.9%) 17 (36.9%) 
12  

(26.2%) 
46 51 (55.4%) 

41  
(44.6%) 

92 

Control 
16 

 (33.3%) 19 (39.6%) 
13  

(27.1%) 48 51 (53.1%) 
45  

(46.9%) 96 

25bp 
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375bp 174bp 

  T/T          C/T    C/T  C/C 

549bp 

549bp 

375bp 
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B 

 

 

 

 

 

 

        312bp 

 

Fig 3.25. ASREA of ATG16L2 rs2282613 polymorphism. A. Representative 20% acrylamide gel showing the 
fragment sizes of the ATG16L2 rs2282613 amplicon following digestion with MboII. Lanes 1 and 5: T/T homozygous 
individuals; Lane 2: C/C homozygous individual; Lanes 3 and 4: C/T heterozygous individual. The 3bp, 8bp and 62 bp 
fragments are not shown. B. Schematic representation of the of ATG16L2 rs2282613 amplicon, generated by PCR-
amplification for genotyping, showing the position of the polymorphic and invariant MboIII restriction sites and the sizes 
of the fragments generated following MboII digestion.  
 

Table 3.23. Genotype distribution and allele frequencies of ATG16L2 rs2282613 polymorphism in OCD 

patients and control individuals 

 

 

 

 

 

 

 

Genotype and allele percentages shown in brackets) 

 GENOTYPE  ALLELE  

ATG16L2 

rs2282613 
CC CT TT Total C T Total 

OCD 
19 

(42.2%) 
19 

(42.2%) 
7 

(15.5%) 45 
57 

(63.7%) 
33 

(36.7%) 90 

Control 19 
(42.2%) 

20 
(44.4%) 

6 
(13.3%) 

45 58 
(64.5%) 

32 
(35.5%) 

90 
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3.3.1.15.PCR-SSCP analysis of POU3F2  

At the time of this study, no polymorphisms were available on any of the public databases. Hence, in order to 

identify sequence variation ab initio, the single exon of POU3F2 was PCR amplified in seven overlapping 

PCR fragments using the primer sets shown in Table 2.2. and subjected to PCR-SSCP. After screening 40 

OCD patients and 40 control individuals under two conditions optimised for high sensitivity (de Lange, 2004) 

no mobility shifts were detected in any of the fragments indicating that no there is no informative polymorphic 

sites in the coding region of POU3F in the population sample under investigation. Therefore, no association 

analysis was performed using this gene in the present study.  
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Table 3.24. Summary of logistic regression analysis of genotypes of novel OCD candidate genes.  

 
Polymorphism OR 95% CI p-value 

SNAP2 5MnlI    

TT 1    
For each G allele 1.24 0.68 2.37 0.484 
Heterozygote 1.13 0.51 2.43 0.763 

SNAP25/DdeI     

CC 1    
For each T allele 0.721 0.392 1.28 0.272 
Heterozygote 0.921 0.419 2.05 0.838 

SNAP29 C56T 
    

CC 1   0.301 
For each T allele 0.802 0.457 1.39 0.432 
Heterozygote 0.581 0.278 1.2 0.145 

SNAP29 G92A 
    

GG 1   0.301 
For each A allele 0.802 0.457 1.39 0.432 
Heterozygote 0.581 0.278 1.2 0.145 

GRIA4.1 
    

AA 1    
For each T allele 0.73 0.73 1.39 0.344 
Heterozygote 1.57 1.57 1.48 0.248 

GRIN 1.1 
    

CC 1    
For each G allele 1.118 0.687 1.81 0.648 
Heterozygote 0.745 0.343 1.61 0.455 

DLX6 IVS1 C>T     

CC 1    
For each T allele 0.69 0.41 1.15 0.158 
Heterozygote 0.38 0.18 0.81 0.013 

SYN3 -631C>T 
    

CC 1    
For each G allele 0.51 0.30 0.83 0.009 

Heterozygote 1.36 0.71 2.69 0.362 

BZRP Ala/147Thr 
    

Ala/Ala 1    
For each Thr allele 0.79 0.47 1.31 0.362 
Heterozygote 0.81 0.39 1.66 0.571 
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Significant associations are highlighted in red. 

 

3.3.2 Further exploration of associated loci 

Two investigated loci demonstrated association with OCD, viz. the DLX6IVS1 C>T and SYN3-631C>G. As 

these results were tantalizing, further investigation of these polymorphisms as well as additional 

polymorphisms within these genes were undertaken.  

 

In order to further investigate the role of the DLX6IVS1C>T polymorphism in the development of OCD, the 

sample size of the case and control groups were increased and the analysis repeated (Seaman and Műller-

Myhok, 2005; Skol et al., 2006). The genotype distribution and allele frequencies of the expanded sample is 

shown in Table 3.25. Logistic regression analysis again showed a dominant protective effect of the T allele of 

DLX6 IVS1C>T polymorphism (p=0.038, Table 3.26).  

 

Two more SNPs, rs127728 and rs1004278, residing in the DLX6 gene were genotyped using Taqman® 

genotyping assays (Table 3.27). These SNPs were chosen as, at the time of the study, they were the only other 

known SNPs residing within this gene with a minor allele frequency greater than 0.1 in the CEU population, 

which is the HAPMAP population closest to the Afrikaner. No association was observed between any of these 

markers and OCD (Table 3.28). The level of linkage disequilibrium between  DLX6 IVS1C>T, rs127728 and 

Polymorphism OR 95% CI p-value  

DBH (I/D)     

D/D  1    
Add 0.73 0.73 1.39 0.344 

Heterozygote 1.57 1.57 1.48 0.248 
     

GRID1 

rs1088532 
    

C/C 1    
For each A allele 0.721 0.392 1.28 0.272 

Heterozygote 0.921 0.419 2.05 0.838 

RELN IVS59C/T     

T/T 1    
For each C allele 1.10 0.60 2.01 0.765 

Heterozygote 0.91 0.38 2.22 0.840 

WDR47 

rs2591000     

T/T 1    
For each C allele 0.776 0.47 1.25 0.302 

Heterozygote 0.781 0.29 2.06 0.620 

ATG16L2 

rs228261    
 

T/T 1    
For each C allele 0.87 0.45 1.62 0.653 

Heterozygote 0.66 0.26 1.62 0.367 
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rs1004278 were also analysed using the HaploView software program. These analyses revealed no linkage 

disequilibrium between these three markers (Fig 3.26), which may explain why an association was observed 

with DLX6 IVS1C>T  but not with the other markers. 

 

As with DLX6IVS1C>T, the observed association of the SYN3/-631C>G polymorphism with OCD prompted 

further investigation in an enlarged sample of OCD cases and control individuals. The genotype distribution 

and allele frequency of the larger cohort is shown in Table 3.25. In this larger cohort, the additive protective 

effect of the G allele was once again observed (p=0.011, Table 3.26). 

 

Following from these results, two more SNPs (rs13075 and, rs130454) within SYN3 were genotyped using 

Taqman® genotyping assays and analysed for their potential association with OCD (Table 2.27). These SNPs 

were chosen as they were spread over the gene and had minor allele frequencies greater than 0.4 in the CEU 

HAPMAP population. These two SNPs were in Hardy-Weinberg equilibrium, but did not show any 

association with OCD (Table 3.28). The level of linkage disequilibrium between SYN3/-631C>G, rs130753 

and rs130454 was also evaluated using the Haploview software program. These analyses revealed no linkage 

disequilibrium between the three markers (Fig 3.27), which may explain the observed association with SYN3/-

631C>G, but the absence of association with the other two markers. 

 

 

Table 3.25 Genotype distribution and allele frequency of the DLX6IVS1C>T and SYN3-631C>G 

polymorphisms in the increased sample of OCD patients and control individuals 

 

 

 

 

 

 

 

 

 

 

 

DLCX6 int1C/T  CC CT TT Total C T Total 

OCD 
15 

(16.9%) 
39 

(43.8%) 
35 

(39.3%) 89 
69 

(38.8%) 
109 

(61.2%) 178 

Controls 13 
(9.7%) 

76 
(56.7%) 

45 
(33.6%) 

135 102 
(31.1%) 

166 
(61.988 

268 

SYN3-631C>G CC CG GG Total C G Total 

OCD 
47 

(37.1%) 
65 

(50%) 
17 

(12.9%) 
127 

164 
(62.1%) 

100 
(37.9%) 

264 

Controls 
33 

(23.2%) 
77 

(54.2%) 
32 

(22.6%) 
142 

143 
(50.4%) 

141 
(49.6%) 

284 
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Table 3.26. Summery of logistic regression model for DLX6 IVS1 C>T and SYN3 -631C>G for case-

control status for the increased sample of OCD patients and control individuals 

 

DLX6 IVS CT OR 95% CI Estimate SE z-value p-value 

C/C 1       

For each T allele 0.82 0.53 1.27 -0.197 0.22 -0.90 0.371 

Heterozygous 0.54 0.30 0.96 -0.613 0.296 -2.07 0.038 

SYN3 -631C>G OR 95% CI Estimate SE z value 
p-value 

 

C/C 1       

For each G allele 0.51 0.42 0.89 -0.482 -0.188 -2.56 0.011 

Heterozygous 1.36 0.59 1.59 -0.035 -0.253 -0.14 0.891 

 

 

Table 3.27. Genotype distribution and allele frequencies of additional DLX6 and SYN3 SNPs in OCD 

patients and control individuals 

 

DLX6  rs1004278 
 AA AG GG Total A G Total 

OCD 
11  

(17.4%) 
26  

(41.3%) 
26 

(41.3%) 
63 

48 
(38.1%) 

79 
(61.9%) 

126 

Control 6 
(9.8%) 

28 
(45.9%) 

27 
(44.3%) 

61 40 
(32.8%) 

82 
(67.2%) 

122 

DLX6  rs1207728 

 
CC CG GG Total C G Total 

OCD 
4 

(6.4%) 
27 

(43.6%) 
31 

(50.0%) 62 
35 

(28.2%) 
89 

(71.8%) 124 

Control 3 
(5.1%) 

19 
(32.2%) 

37 
(45.7%) 

59 25 
(21.2%) 

93 
(78.8%) 

118 

SYN3 rs130753 CC CT TT Total C T Total 

OCD 
28 

(44.4%) 
24 

(38.1%) 
11 

(17.5%) 
63 

80  
(63.5%) 

46 
(36.5%) 

126 

Control 
27 

(45.8%) 
27 

(45.8%) 
5 

(8.5%) 59 
81 

(68.6%) 
37 

(31.4%) 118 

SYN3 rs130454 AA AG GG Total A G Total 

OCD 
17 

(26.5%) 
28 

(43.8%) 
19 

(29.7%) 
64 

62 
(48.4%) 

66 
(51.6%) 

128 

Control 
12 

(20.7%) 
28 

(48.3%) 
18 

(31.0%) 58 
52 

(44.8%) 
64 

(55.2%) 116 
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Table 3.28 Summary of logistic regression analysis of additional SNPs genotyped in DLX6 and SYN3.   

Polymorphism OR 95% CI p-value 

DLX6 rs1004278 

 
OR 95% CI p-value  

A/A 1    
For every G allele 0.73 0.40 1.26 0.265 

Heterozygote 0.70 0.32 1.51 0.367 
     

DLX6 rs1207728 

 
OR 95% CI p-value  

C/C 1    
For every G allele 0.79 0.34 1.75 0.562 

Heterozygote 1.35 0.49 3.60 0.554 

SYN3 rs130454 OR 95% CI 
p-value 

  

A/A 1    

For every G allele 0.86 0.53 1.41 0.556 

Heterozygote 0.82 0.40 1.68 0.583 

SYN3 rs130753     

C/C     

For every T allele 1.46 0.82 2.74 0.212 

Heterozygote 0.59 0.26 1.30 0.198 
Add= additive model, Dom = dominant model, CI = confidence interval 
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Figure 3.26.  Linkage disequilibrium plots of DLX6 SNPs DLX6IVS1C>T, rs1207728 and rs1004278. D΄ 
values are indicated in blocks. The low D΄ values and a the lack of a clear haplotype block shows that these 3 markers are 
not in strong linkage disequilibrium with each other. 

 
 

 

 

 

Figure 3.27.  Linkage disequilibrium plots of SYN3 SNPs, SYN3/-631C>G, rs130753 and rs130454. D΄ 
values are indicated in blocks. The low D΄ values and a the lack of a haplotype block shows that these 3 markers are not 
in linkage disequilibrium with each other. 
 

3.3.3. Analysis of epistatic interaction between SNPs associated with OCD development. 

As the DLX6IVS1C>T and SYN3-631C>G demonstrated association with OCD in both the original and the 

enlarged cohort, further logistic regression analysis was performed in order to assess whether there was 

indication of a significant interactive effect of these two polymorphisms on the development of OCD. Results 

from this analysis showed that there was indeed a significant interactive effect between these two 
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polymorphisms and OCD (p=0.039, Table 3.29), where individuals who were heterozygous CG for the SYN3/-

631C>G polymorphism as well as homozygous CC for the DLX6int1C/T polymorphism had increased 

susceptibility to developing OCD, while individuals who were heterozygous at both these loci were protected 

against OCD (Fig 3.28).  

 

Table 3.29. Analysis of deviance table for logistic regression model including interaction between 

DLX6IVS1C>T and SYN3-631C>G. Significant interaction is highlighted in red 

 df Deviance Residual df 

Residual 

Deviation p-value 

NULL   169 233.3  

SYN3-631C>G 2 2.7 167 230.6 0.300 

DLX6IVS1C>T 2 2.8 165 227.8 0.200 
SYN3-631C>G:  

DLX6IVS1C>T 4 10.1 161 217.7 0.039 
df= degrees of freedom 

 

 

 
Fig. 3.28. Bar graphs representing joint DLX6IVS1C>T and SYN3-631C>G genotype frequencies A 
Genotype frequencies for the control panel, B Genotype frequencies for the OCD patients. 
 

A B 
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CHAPTER 4: DISCUSSION 
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CHAPTER 4: DISCUSSION 

 

Obsessive-compulsive disorder is a common, disabling psychiatric condition for which the underlying 

molecular pathophysiology still remains unclear. Currently, it is proposed that this disorder is caused by the 

complex interplay of various environmental and genetic factors. In order to dissect the intricate relationship 

between these factors, researchers have adopted several strategies in an attempt to identify genes involved in 

the pathophysiologies of these disorders. Although no susceptibility gene that plays a major role in OCD has 

been identified to date, a number of plausible candidate genes that may contribute modest effects have 

received attention. The involvement of these genes has been investigated in several population and family-

based association studies, however, divergent results have generally confounded final interpretation (section 

1.4.7). A possible explanation for these inconsistencies is that genes found to be associated with OCD in some 

populations may only contribute very minor effects to disease susceptibility within those populations while 

having no effect in others. This could have serious implications for the identification of genetic factors 

involved OCD, given that the focus of many investigations is the replication of previously reported 

associations in different populations. A consequence of all these replication attempts is that the same genes are 

constantly being analysed, hence, no concerted effort is being made to identify novel OCD candidate genes 

which may in fact play larger contributory roles to the pathogenesis of the disorder in wider populations.  

 

One possible approach to identifying such OCD candidate genes is to utilise existing knowledge of diseases 

with phenomenological overlap with OCD, which lend themselves to better genetic dissection by linkage 

analysis and animal models. Genetic loci for such disorders identified through linkage analysis could 

potentially harbour novel OCD candidate genes, while genes implicated through animal models may lead to 

the identification of additional susceptibility factors by interactome analysis. One such disorder is 

schizophrenia, where, in addition to several case-control association study data, linkage data, studies of 

chromosomal aberrations and animal models have led to the identification of many chromosomal regions that 

may contain genes involved in its aetiology (reviewed by Owen et al.,  2004) and may therefore also harbour 

plausible OCD candidate genes.  

 

This approach was employed in the present investigation, where schizophrenia susceptibility loci were 

searched for credible OCD candidate genes, and information regarding a well-characterised schizophrenia 

animal model, the heterozygous reeler mouse, was used as a gateway for interactome analysis to identify 

further OCD candidate genes. The identified genes were then assessed for their potential contributory effects 

to OCD susceptibility in case-control association studies in an Afrikaner study cohort, in a proof-of-principle 

study. 
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4.1. BIOINFORMATIC SEARCHES OF SCHIZOPHRENIA LOCI 

In order to identify potential candidate genes for OCD, 18 reported schizophrenia susceptibility loci where 

searched. Each of the loci searched in the present investigation, were chosen as they were regions implicated 

in previous linkage studies.  

 

One problem using this approach is the sheer number of genes located in each of the identified regions (table 

3.1). Therefore searching these 18 loci is a time-consuming and arduous task. Furthermore, during the course 

of the present investigation, several builds of the human genome (in both NCBI and ensemble) have been 

released. The data represented in each of these builds tend to differ somewhat resulting in the delineation of 

some of the schizophrenia susceptibility loci changing as a result of repositioning of markers from build to 

build. To overcome this dilemma, the databases were regularly monitored during the course of the 

investigation.  

 

4.2. INTERACTOME ANALYSIS OF REELIN 

As described in section 1.4.9.1. reelin is a large secreted glycoprotein involved in the regulation of ordered 

neuronal alignment during the development of laminar brain structures (D’Arcangelo et al., 1995; Ogawa et 

al., 1995; Lambert de Rouvroit and Goffinet, 1998). The gene encoding reelin has been considered a good 

schizophrenia candidate gene for a number of reasons. These include its vital role in neurodevelopment, with 

several studies showing reduced reelin protein and mRNA levels in post-mortem brains of schizophrenic 

patients, its chromosomal location and the observed behaviour and neurochemical similarities between the 

heterozygous reeler mouse and schizophrenia patients.  

 

In the present study, the proposal that reelin can be considered a plausible schizophrenia susceptibility gene 

was extended to include genes encoding proteins that interact with reelin. This reasoning, as expounded in 

section, 1.5 can thus be applied to OCD susceptibility gene candidature. To date, several reelin-interacting 

proteins have been identified and their binding sites on reelin have largely been determined (section 1.5.2.). 

The reelin region containing reelin repeats 3-6 has been shown to be necessary for the binding of reelin to 

ApoER2/VLDLR (Jossin et al., 2004), while sub-repeat B of the first reelin repeat domain is crucial for CNR 

binding (Senzaki et al., 1999) (Fig 1.14). However, the function of the reeler domain of reelin still remained 

unknown. As mentioned in the first chapter, the reeler domain has only been identified in one other protein, F-

spondin, which is also an extracellular matrix protein that is involved in neural crest cell migration. Therefore, 

since the reeler domain occurs only in proteins essential for neuronal migration, it was hypothesised that, by 

directing neuronal migration, it plays a critical role in neurodevelopment, probably through protein-protein 

interactions. To further understand its function, a foetal brain cDNA library was screened, using the reeler 

domain of reelin as “bait” in Y2H analysis. 
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4.2.1. Yeast two hybrid analysis to identify ligands for the reeler domain of reelin 

4.2.1.1. Number of independent clones screened 

Library mating efficiency calculations indicated that approximately 5.9 x 106 pre-transformed foetal brain 

cDNA library clones were screened (section 3.2.1.1.3) Therefore, since the pre-transformed foetal brain cDNA 

library used contained approximately 3.5x106 independent clones, statistically, each clone represented in the 

library was screened at least once. 

 

4.2.1.2. Preys excluded from further analysis 

Following the Y2H mating and subsequent stringency experiments to test for the activation of reporter genes, 

22 clones were identified. However, sequence analysis showed that 22 of these clones could be considered 

unlikely to encode biologically relevant reelin-interacting proteins for a number of reasons discussed in the 

following section. 

 
4.2.1.2.1. No significant protein matches 

The insert sequences of fifteen of the 22 clones had significant DNA matches in both NCBI Genbank 

(http://www.ncbi.nlm.nih.gov) or Ensemble (http://www.ensembl.org) databases, yet the ORF in-frame with 

the GAL4 activation domain had no significant protein matches in either of these databases (Table 3.5). One 

reason for the lack of significant protein matches, in spite of significant DNA matches is due to the fact that in 

classical two-hybrid library constructions such as the Clontech library used in this study, which are derived 

from oligo-dT primed cDNA, only one out of six of all cloned inserts are in frame with the transcription factor 

activation domain (van Criekinge and Beyaert, 1999).  

 

4.2.1.2.2. Incompatible cellular compartments 

The identification of the sub-cellular location of proteins is key to understanding their functions. This is 

especially true in the context of protein-protein interactions as proteins that are localised in separate cellular 

compartments would not be able to interact with one another. However, for a number of proteins, the sub-

cellular localisation has not yet been experimentally determined. To overcome this obstacle, several systems 

have been developed that support automated prediction of sub-cellular localisation, based on amino acid 

sequence information. (Nakai and Kanehisa, 1992; Horton and Nakai, 1997; Reinhardt and Hubbard, 1998; 

Hua and Sun, 2001; Emanuelssen, et al.,  2000; Nair and Rost, 2002). There are, however, two limitations to 

these systems. Firstly, they have limited accuracy for predicting sub-cellular localisation and secondly, they 

have limited coverage (the number of sub-cellular regions supported by the predictor) (Lu et al., 2003).  

 

The accuracy of the publicly available sub-cellular localisation prediction programs vary quite significantly. 

For this reason, the present study used two prediction programs, namely “Proteome Analyst” and “ESLpred” 

which have reported prediction accuracy of 92% (Lu et al.,  2003) and 88%, respectively. Although, several 

other programs are available to predict sub-cellular localisation, these two programs were chosen as they have 

the highest accuracy and cover nine cellular compartments (mitochondrion, nucleus, endoplasmic reticulum, 

extracellular, cytoplasm, plasma membrane, golgi, lysosome, peroxisome).  
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Using Proteome Analyst and ESLpred, five clones were found to encode proteins that localise to the nucleus, a 

cellular compartment incompatible with reelin’s reported (and predicted) extracellular localisation. However, 

investigations have shown that reelin is internalised into the cell following binding to VLDL receptors via 

clathrin-dependant enocytosis (section 1.4.9.1.1) (D’Archangelo et al., 1999). For this reason, cytosolic prey 

proteins were also considered as physiologically plausible interactors. However, as the automated prediction 

programs are not 100% reliable, it remains possible that some preys identified may have been assigned to 

incorrect cellular compartments, but due to project constraints, the predicted sub-cellular localisation of each 

prey was not verified experimentally.  

 

4.2.1.3. Preys identified as putative reelin ligands 

Two prey clones, encoding WDR47 and ATG16L2, were identified as putative reelin interacting proteins. 

Although the functions of each of these proteins are not fully understood, there is evidence, discussed below, 

to suggest that they may both play a role in neuronal migration and brain development.  

 

4.2.1.3.1. WDR47 

Although the function of the WDR47 protein, which has been predicted to localise to the cytosol, is unknown, 

its domain structure was of considerable interest as it is very similar to that of LIS1, a protein which forms part 

of the reelin signaling pathway  (Fig 4.1). In addition to having seven WD40-repeat domains in common, both 

WDR47 and LIS1 contain a LISH domain at their N-termini. The high degree of similarity between WDR47 

and LIS1 may cause one to speculate that they represent two aliases of the same protein. However, based on 

the sequence alignment shown in Figure 4.2 it is clear that they are two distinct proteins. WDR47 also contains 

a C-terminal to LISH domain, that is not present in LIS1. While the CTLH domain is a domain of unknown 

function, the WD40-repeat and the LIS1 domains both play essential roles in neuronal migration. Furthermore, 

it is interesting to note that the CTLH domain is also found in RAN-binding protein 9, a protein shown to be 

involved in microtubule assembly (Nishitani et al., 2001).  One could therefore deduce, based on their similar 

domain structure, that since LIS1 plays a vital role in neuronal migration, that WDR47 may also be important 

in this process.  

 

WD40 repeat Domain 

WD40 repeat domains are minimally conserved domains of approximately 44-60 amino acids that typically 

contains a glycine-histidine (GH) dipeptide 11-24 residues from the N-terminus and with a tryptophan-aspartic 

acid (WD) dipeptide at the C-terminus. Between the GH and WD dipeptides is a minimally conserved core 

sequence of approximately 40 amino acids (Smith et al.,  1999). This domain type was first recognised in the β 

subunit of the GTP-binding protein transducin (van der Voorn and Ploegh, 1992) and has since been found in 

approximately 136 human proteins. WD 40 repeat proteins perform a wide range of cellular functions, which 

include signal transduction, RNA synthesis and processing, chromatin assembly, cytoskeletal assembly, cell 

cycle control and apoptosis (Li and Roberts, 2001). The underlying common function of all WD40 proteins, 

however, is coordinating the assembly of large protein complexes. These repeating units are thought to serve 
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as a platform for protein interactions and these interactions can occur concurrently with a number of different 

proteins (Tyers and Williams, 1999).  

 

Of particular interest to the present study is the fact that some of the identified WD40 repeat-containing 

proteins play crucial roles in signal transduction and cytoskeletal assembly, two processes that are vital for 

neuronal migration and neurodevelopment. Moreover, mutations in WD-40 domain genes have been identified 

that result in inherited diseases of impaired neurodevelopment. One such disorder is Joubert Syndrome, a rare, 

autosomal recessive, neurodevelopmental disorder characterised by hypoplasia of the cerebellar vermis, 

hypotonia, ocular motor apraxia and global developmental delays (Dixon-Salazar et al.,  2004). There is a 

large degree of clinical heterogeneity within this disorder, which has hampered efforts to decipher its 

molecular aetiology. Interestingly, mutations in AHI1, the gene encoding the WD40-40 domain protein, 

jouberin, has been shown to result in a specific Joubert syndrome subtype that is characterized by excessive 

cortical folding and a simplified four-layered or unlayered cortical architecture (Dixon-Salazar et al.,  2004) 

resulting from aberrant neuronal migration.  

 

The lissencephaly-1 (LIS1) gene, LIS1, was the first WD40-repeat encoding gene identified as playing a role 

in human disease. Mutations in LIS1 have been shown to cause Miller-Dieker lissencephaly, a brain 

malformation that results in severe mental retardation, epilepsy and an early death. Patients exhibit a smooth 

cerebral surface that arises from disturbances in neuronal migration (Morris, 2000). The amino acid sequence 

of LIS1 shows significant homology to that of β subunits of heterotrimeric G-proteins with multiple WD40-

repeats in their primary structure, suggesting that LIS1 may play a fundamental role in the signal transduction 

pathway involved in cerebral development (Reiner et al.,  1993).  

 

LIS1 homology domain 

The LIS1 homology domain was first described as a novel sequence motif in the products of genes mutated in 

Miller-Dieker Lissenecephaly, Treacher Collins and oral-digital type 1 syndromes, three disorders associated 

with defects in cell migration (Emes and Ponting, 2001). As mentioned in the previous section, mutations in 

LIS1 are associated with Miller-Dieker lissencephaly, which is a consequence of abnormal neuronal migration. 

Interestingly, in mice heterozygous for a LIS1 mutation, that removed the LISH domain, aberrant morphology 

of the developing cortex was found, which is consistent with defects in neuronal migration (Cahan et al.,  

2001). Furthermore, in a patient with low severity lissencephaly, a mutation was found within the LISH 

domain of the LIS1 gene (Cahan et al.,  2001). This suggests that the LISH domain may play a vital role in 

mediating neuronal migration during neurodevelopment. Additionally, LISH domains have also been 

suggested to contribute to the regulation of microtubule dynamics, either by mediating dimerisation, or by 

binding cytoplasmic dynein heavy chain or microtubules directly (Emes and Ponting, 2001). Microtubule 

rearrangement has been shown to play an important role in neuronal migration (reviewed by Jossin, 2004).  

 

Based on the functions of both WD40-repeat domains and LISH domains in neuronal migration, it is quite 

reasonable to assume that the WDR47 protein, which contains both of these domains, may also play a critical 
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role in the process of neuronal migration. Therefore, since reelin is a pivotal component of neuronal migration, 

WDR47 can be considered a plausible putative reelin ligand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.1. Domain structures of WDR47, LIS1 and ATG16L2. A comparison of the domain structures of WDR47, 
LIS1 and ATG16L2. This comparison shows that WDR47 and LIS1 have a similar domain composition and structure. 
WD40 repeat domains are represented with blue triangles. The Lis1 homology domain (LisH) is represented by the 
yellow rectangles, while the C- terminal of Lis1 domain (CTLH) is represented by the green oval. The ATG16 domain of 
ATG16L2 is represented with the green rectangle. The blue lines represent the fragment of WDR47 and ATG16L2 
encoded by clones 19 and 16, respectively. The scale indicates number of amino acids.  
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CLUSTAL W (1.83) multiple sequence alignment 

 

LIS1            ------------------------------------------------------------ 

ATG16L2         ------------------------------------------------------------ 

WDR47           MTAEETVNVKEVEIIKLILDFLNSKKLHISMLALEKESGVINGLFSDDMLFLRQLILDGQ 60 

                                                                             

 

LIS1            ------------------------------------------------------------ 

ATG16L2         ------------------------------------------------------------ 

WDR47           WDEVLQFIQPLECMEKFDKKRFRYIILKQKFLEALCVNNAMSAEDEPQHLEFTMQEAVQC 120 

                                                                             

 

LIS1            ------------------------------------------------------------ 

ATG16L2         ------------------------------------------------------------ 

WDR47           LHALEEYCPSKDDYSKLCLLLTLPRLTNHAEFKDWNPSTARVHCFEEACVMVAEFIPADR 180 

                                                                             

 

LIS1            ------------------------------------------------------------ 

ATG16L2         -----------------------------------------------------MAGPGVP 7 

WDR47           KLSEAGFKASNNRLFQLVMKGLLYECCVEFCQSKATGEEITESEVLLGIDLLCGNGCDDL 240 

                                                                             

 

LIS1            ------------------------------------------------------------ 

ATG16L2         GAPAARWKRHIVRQLRLRDRTQKALFLELVPAYN-HLLEKAELLDKFSKKLQPEPNSVTP 66 

WDR47           DLSLLSWLQNLPSSVFSCAFEQKMLNIHVDKLLKPTKAAYADLLTPLISKLSPYPSSPMR 300 

                                                                             

 

LIS1            ------------------------------------------------------------ 

ATG16L2         TTHQGPWEESELDSDQVPSLVALRVKWQEEEEGLRLVCGEMAY----------------Q 110 

WDR47           RPQSADAYMTRSLNPALDGLTCGLTSHDKRISDLGNKTSPMSHSFANFHYPGVQNLSRSL 360 

                                                                             

 

LIS1            -----------------------------------------MVLSQRQRDELNRAIADYL 19 

ATG16L2         VVEKGAALGTLESELQQRQSRLAALEARVAQLREARAQQAQQVEEWRAQNAVQRAAYEAL 170 

WDR47           MLENTECHSIYEESPERSDTPVDAQRPIGSEILGQSSVSEKEPANGAQNPGPAKQEKNEL 420 

                                                            .   .    :   : * 

 

LIS1            RSNG--YEEAYSVFKKEAELDVNEELDK--KYAGLLEKKWTSVIRLQKKVMELESKLNEA 75 

ATG16L2         RAHVGLREAALRRLQEEARDLLERLVQR--KARAAAERNLRNERRERAKQARVSQELKKA 228 

WDR47           RDSTEQFQEYYRQRLRYQQHLEQKEQQRQIYQQMLLEGGVNQEDGPDQQQNLTEQFLNRS 480 

                *      :       .  .   :.  ::        *    .      :    .. *:.: 

 

LIS1            KEEFT--SGGP--LGQ-KRDPKEWIPRP-------PEKYALSGHRSPVTRVIFH--PVFS 121 

ATG16L2         AKRTVSISEGPDTLGDGMRERRETLALA-------PEPEPLEKEACEKWKRPFRSASATS 281 

WDR47           IQKLGELNIGMDGLGNEVSALNQQCNGSKGNGSNGSSVTSFTTPPQDSSQRLTHDASNIH 540 

                 :.    . *   **:     .:    .       ..  .:        :   :  .    

 

LIS1            VMVSASEDATIKVWDYETG--------------------------DFERTLKG------- 148 

ATG16L2         LTLSHCVDVVKGLLDFKKRRGHSIGGAPEQRYQIIPVCVAARLPTRAQDVLDA------- 334 

WDR47           TSTPRNPGSTNHIPFLEESPCGSQISSEHSVIKPPLGDSPGSLSRSKGEEDDKSKKQFVC 600 

                   .   . .  :   :                                  .         

 

LIS1            -----HTDSVQDISFDHSGKLLASCSADMTIKLWDFQG--FECIRTMHG----------- 190 

ATG16L2         -----HLSEVNAVRFGPNSSLLATGGADRLIHLWNVVGSRLEANQTLEG----------- 378 

WDR47           INILEDTQAVRAVAFHPAGGLYAVGSNSKTLRVCAYPDVIDPSAHETPKQPVVRFKRNKH 660 

                     . . *. : *   . * *  . .  :::    .    . :                

 

LIS1            HDHNVSSVAIMPNGDHIVSASRDKTIKMWEVQTGYCVKT-----FTGHREWVRMVRPNQD 245 

ATG16L2         AGGSITSVDFDPSGYQVLAATYNQAAQLWKVGEAQSKET-----LSGHKDKVTAAKFKLT 433 

WDR47           HKGSIYCVAWSPCGQLLATGSNDKYVKVLPFNAETCNATGPDLEFSMHDGTIRDLAFMEG 720 

                   .: .*   * *  : :.: ::  ::  .    .  *     :: *   :         

 

LIS1            -----GTLIASCSNDQTVRVWVVATKECKAELREHEHVVECIS----------------- 283 

ATG16L2         -----RHQAVTGSRDRTVKEWDLGRAYCSRTINVLSYCNDVVCGDH--IIISGHNDQKIR 486 

WDR47           PESGGAILISAGAGDCNIYTTDCQRGQGLHALSGHTGHILALYTWSGWMIASGSQDKTVG 780 

                          : : * .:             :         :                   

 

LIS1            -WAPESSYSSISEATG-------SETKKSGKPGPFLLSGSRDKTIKMWDVSTGMCLMTLV 335 

ATG16L2         FWDSRGPHCTQVIPVQGR-----VTSLSLSHDQLHLLSCSRDNTLKVIDLRVSNIRQVFR 541 

WDR47           FWDLRVPSCARVVGTTFHGTGSAVASVAVDPSGRLLATGQEDSSCMLYDIRGGRMVQSYH 840 

                 *  . . .:    .          :   .     * : ..*.:  : *:  .        

Comment [MB70]: Why do the LISH  domains of 
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program??? 
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LIS1            GH-----DNWVRGVLFHSGGKFILSCADDKTLRVWDYK---NKRCMKTLN-AHEHFVTSL 386 

ATG16L2         ADGFKCGSDWTK-AVFSPDRSYALAGSCDGALYIWDVD---TGKLESRLQGPHCAAVNAV 597 

WDR47           PH-----SSDVRSVRFSPGAHYLLTGSYDMKIKVTDLQGDLTKQLPIMVVGEHKDKVIQC 895 

                 .     .. .: . * ..  : *: : *  : : * .   . :    :   *   *    

 

LIS1            DFHKTAPYVVTGSVDQTVKVWECR- 410 

ATG16L2         AWCYSGSHMVSVDQGRKVVLWQ--- 619 

WDR47           RWHTQDLSFLSSSADRTVTLWTYNG 920 

 

Fig 4.2. Multiple protein sequence alignment of WDR47, ATG16L2 and LIS1. The Clustal-W alignment of 
the protein sequences of WDR47, ATG16L2 and LIS1 clearly shows that these are three distinct proteins. The positions 
of the seven WD40 repeat domains in each of the proteins are highlighted in yellow, LIS homology domains are 
highlighted in green and the CTLH is highlighted in blue.  "*" residues in that column are identical in all sequences in 
the alignment, “:”conserved substitutions have been observed and “.”semi-conserved substitutions are observed 
 

 

4.2.1.3.2. ATG16L2 

The ATG16L2 protein, like WDR47, is predicted to be a cytosolic protein of unknown function, and also 

contains seven WD40-repeat domains (Fig 4.1). Besides the WD40-repeat domains, no other known conserved 

protein domains are present in ATG16L2. ATG16L2 shares homology with the mouse Pre-mRNA-processing 

factor 17, a protein which associates with the spliceosome and may play a role in the second step of pre-

mRNA splicing (http://harvester.fzk.de/harvester/human/IPI00025/IPI00025503.htm). Interestingly, 

alternative splicing and spliceosome components have been implicated in neurological responses during fear 

conditioning. 

 

4.2.1.4. Limitations of Yeast two-hybrid analysis 

Despite the yeast two-hybrid system being a popular method to detect protein-protein interactions, it has its 

limitations. To begin with, some classes of proteins are not suitable for analysis using this system, for example 

transcriptional activators that may activate transcription of reporter genes without any interactions with other 

proteins (auto activation). Another limitation of the Y2H system is the necessity for nuclear localisation of the 

interacting ligands in order to activate transcription of reporter genes. This is problematic since many proteins, 

such as membrane-bound proteins and proteins with competing organellar translocation signals, may not be 

amenable to this recruitment. Furthermore, the nucleus may not be the appropriate organelle for the 

investigation of certain interactions (Mcalister-Henn et al.,  1999). 

 

The use of artificially made fusion proteins is also potentially risky when attempting to identify protein-protein 

interactions. The fusion might alter the conformation of the bait and/or prey proteins and consequently may 

alter their functions and binding properties.  

 

Although providing a Eucaryotic environment, the use of the yeast Saccharomyces cerivisiae as a host is 

another potential disadvantage for study of mammalian protein interactions. Some interactions between 

proteins depend upon post-translational modifications that either do not occur, or occur inappropriately, in 

yeast. Such modifications occur frequently and include the formation of disulphide bridges, glycosylation and 

phosphorylation (Walhout et al.,  2000). Furthermore, the yeast cells may not be able to correctly fold the 

constructed fusion protein as the necessary chaperones may be absent (Walhout et al.,  2000).  

Comment [MB71]: Add reference: 
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Hochner3,7, 
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Molecular Psychiatry (2004) 9, 174–183 
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Yeast two-hybrid assays are also notorious for producing false positives, that is, indicating reporter gene 

activity where no direct bait-prey interaction has taken place. False positive interactions are frequently caused 

by the bait construct acting as an auto-activator of transcription. In the present study, the ability of the reeler 

bait construct to act as an auto activator of the reporter genes was evaluated. The results show that the reeler 

bait construct was unable to activate transcription of reporter genes autonomously. In order to minimise the 

number of false positives, the present study employed a system that utilises multiple reporter genes, each 

under slightly altered GAL4-responsive upstream activation sequences. Furthermore, heterologous mating 

experiments were performed in order to further weed out non-specific protein-protein interactions.  

 

For the reasons of limitation noted above, protein-protein interactions detected using Y2H analysis should be 

viewed as hypotheses and need to be confirmed using other molecular biochemical tools. The present study 

made use of two such methods in order to validate the Y2H results, namely M2H analysis and co-

immunoprecipitation.  

 

4.2.2. Verification studies 

As post-translational modification and protein folding may not occur appropriately in the Y2H 

system, the two putative interactions identified in the Y2H screen were investigated in a mammalian 

cell system by M2H analysis. Additionally, to assess the observed interactions between the reeler 

domain and the two putative reeler interactors in the absence of GAL4 transcription factor domains, 

in vitro co-immunoprecipitation was used. 

 

The interaction between the reeler domain and WDR47, identified by Y2H, was validated by the M2H 

analysis (section 3.2.3), while no interaction was observed between the reeler domain and ATG16L2. 

Similarly, co-immunoprecipitation analysis confirmed the interaction between WDR47 and the reeler domain 

of reelin detected by Y2H analysis (section 3.2.2). The interaction between the reeler domain of reelin and 

ATG16L2 was not confirmed by co-immunoprecipitation analysis.  

 

4.2.2.1. Limitations of verification studies 

A limitation of the M2H system, as for Y2H, is the necessity for nuclear localisation of the interacting ligands 

in order to activate transcription of reporter genes, and thus proteins with strong targeting signals for particular 

cellular compartments may not assort to the nucleus. However, in the system used in this study, a nuclear 

localization signal precedes the GAL4 transcription factor domains, which are also N-terminal to the proteins 

of interest, and alleviating this potential problem. Additionally, the proteins studied by M2H did not assort to 

any particular subcellular compartment.  

 

Another potential problem with M2H is that bait or prey fusion constructs autonomously activate transcription 

of reporter genes. For this reason, several control experiments were included to determine whether any of the 

constructs were auto-activators of transcription (section 2.19; Table 2.11). These experiments showed that 

Stellenbosch University  http://scholar.sun.ac.za



 208
none of the constructs acted as auto activators of transcription; therefore, any increase in SEAP activity was 

due to a protein-protein interaction. 

 

A limitation of in vitro co-immunoprecipitation systems like the one used in the present study is that the 

interactions of proteins detected may not represent true physiological interactions that occur in vivo, as in this 

system, proteins that would not normally have the opportunity to interact with each other because of their 

cellular localisations, may now do so. However, in this study, only proteins that occur in cellular 

compartments where reelin has been reported to occur, were tested. Another way to overcome this potential 

problem is to perform in vivo co-immunoprecipitation studies in appropriate cell lines. However, the ability to 

perform these types of analyses is dependent on the availability of either an appropriate cell line or a neuronal 

primary cell culture expressing reelin. Unfortunately, these options were not available in the laboratory at the 

time when this investigation was conducted and therefore, it was decided to use the in vitro method. 

 

Furthermore, in co-immunoprecipitation studies, some of the peptides being analysed may bind the protein G 

agarose beads non-specifically and precipitate in this manner, rather than via their binding partner, thereby 

giving a false positive precipitation result. In the present investigation however, the protein G agarose beads 

were pre-washed multiple times in order to overcome this problem. 

 

Thus, the results of this study provided compelling evidence for biologically relevant interactions between the 

reeler domain and WDR47.  

 

4.2.3. Possible mechanisms of action of WDR47 in reelin-dependant neuronal migration 

Since the function of the novel reelin-interacting protein, WDR47 has not yet been determined, one can only 

speculate on its potential roles in reelin-dependant neuronal migration; further investigations into the functions 

of this protein are warranted if we are to fully understand reelin-dependant neuronal migration. However, 

given our current state of knowledge, the following models for reelin signalling could be proposed: Certainly, 

as WDR47 is localised to the cytosol of the cell, they are only able to interact with cytosolic reelin. Therefore, 

it could be speculated that they could form part of the VLDLR/ApoER2 receptor pathway, as binding of reelin 

to VLDLR has been shown to result in the internalisation of reelin (D’Arcangelo et al.,  1999). 

 

Reelin binds to VLDLR/ApoER3 receptors of the cell surface, which leads to the tyrosine phosphorylation of 

dab1, as well as to the internalisation of reelin. Cytosolic reelin could then bind the WD40-repeat domains of 

WDR47, via its reeler domain. WDR47, in turn, could be bound either to microtubules directly (Fig 4.3B) or 

to cytoplasmic dynein heavy chain (Fig 4.3A) via its LISH domain, thereby regulating microtubule dynamics 

in a reelin-dependent manner. As LIS1 is known to dimerise via its LISH domain, it is also possible that, in 

these interactions, WDR47 may be acting as a dimmer. 

 

 

 

Comment [MB72]: The Structure of the N-
Terminal Domain 
of the Product of the Lissencephaly Gene 
Lis1 
and Its Functional Implications 
Myung Hee Kim,1 David R. Cooper,1 
Arkadiusz Oleksy,2 Yancho Devedjiev,1 
Urszula Derewenda,1 Orly Reiner,3 
Jacek Otlewski,2 and Zygmunt S. 
Derewenda1,* 
Structure, Vol. 12, 987–998, June, 2004 
 

Stellenbosch University  http://scholar.sun.ac.za



 209

Reelin

V
L
D
L

A
P
O
E
R
2

 C R - 5 0   R ee l e r  

Dab1

Reelin

 

C R -5 0   

R e el er  

Map 1b

Tau NUDEL

Dcx Lis1 Dynactin

Dynein
Dynein

WDR47

Dab1

SFK

Dab1-P

Lis1

Microtubules

Dab1-P

PI3K

GSK
3β Akt

Cytoplasm

 

B u y  S m a rtD ra w ! -  p u rc h a s e d  c o p ie s  p r in t  th is  

d o c u m e n t w ith o u t a  w a te rm a rk .
V is it  w w w .s m a rtd ra w .c o m  o r  c a ll  1 -8 0 0 -7 6 8 -3 7 2 9 .

V
L
D
L

A
P
O
E
R
2

 C R - 5 0   R e e le r  

Dab1

Reelin

 

C R - 5 0   

R ee le r  

Map 1b

Tau NUDEL

Dcx Lis1 Dynactin

Dynein
Dynein

Dab1

SFK

Dab1-P

Lis1

Microtubules

Dab1-P

PI3K

GSK
3β Akt

Extracellular

WDR47

Reelin

Cytoplasm

 

B u y  S m a r tD r a w ! -  p u r c h a s e d  c o p ie s  p r in t  t h is  

d o c u m e n t  w i th o u t  a  w a te r m a r k .
V is i t  w w w .s m a r td r a w .c o m  o r  c a l l  1 - 8 0 0 - 7 6 8 - 3 7 2 9 .  

Fig 4.3. A schematic representation of the proposed mechanisms of action of WDR47 in the reelin 

signalling pathway. Reelin binds to the VLDLR and ApoER2 receptors on the cell surface and is internalised into the 
cell. Reelin then binds to the WD40-repeat region of WDR47 through its reeler domain. A. WDR47 binds dynein heavy 
chain via its LISH domain, thereby regulating microtubule dynamics in a reelin-dependent manner. B. WDR47 could also 
bind microtubules directly via its LISH domain and influence microtubule dynamics   
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4.3. CASE-CONTROL ASSOCIATION STUDIES. 

In the present study, a total of 20 sequence variants in 14 candidate genes were examined in a panel of 

unrelated Afrikaner OCD patients and control individuals (Table 3.7). These genes derived from schizophrenia 

susceptibility loci were chosen for analysis based on the fact that: they were reported to be expressed in the 

brain, that they either are or show homology to genes encoding enzymes or receptors with roles in the 

neurotransmitter systems already implicated in OCD pathogenesis and/or are involved in brain development. 

The genes derived from the interaction study included both WDR47 and ATG16L2; although the latter was 

not shown to be a reeler domain interactor, it was included as a potential novel OCD candidate gene, due to 

the involvement of alternative splicing in fear conditioning (Najholt et al., 2004). As the pathogenesis of OCD 

still remains unresolved, with dysregulation of several neurotransmitter and neurodevelopmental systems 

implicated, it was decided not to focus on one specific neurotransmitter or neurodevelopmental system for the 

present investigation. Thus other than the criteria expounded above, the genes chosen for analysis have little 

else in common. Polymorphisms within the selected candidate genes previously targeted in psychiatric 

association studies were selected for investigation in the current analysis; alternatively, where no 

investigations of a candidate gene had been reported in the literature, target polymorphisms were selected from 

a publicly available single nucleotide polymorphism databases (http://www.ncbi.nlm.nih.gov/SNP; 

http://www.hapmap.org) based on a minor allele frequency of greater than 0.3 in a Caucasian population, to 

maximise likelihood for informativeness. 

 

Logistic regression analysis of the genotypes, employed to assess the involvement of variants under more than 

one genetic model simultaneously and so reduce the number or statistical tests (Dr Lize van der Merwe, 

Biostatistician, MRC Biostatistics unit), generated statistical support to implicate two of the selected candidate 

genes, namely DLX6 and SYN3, in the development of OCD.  

 

4.3.1. DLX6IVS1C>T and SYN3-631C>G association with OCD 

4.3.1.1. DLX6IVS1>/T 

Logistic regression analysis revealed that the CT heterozygote genotype of the DLX6IVS1C>T polymorphism 

confers protection against the development of OCD, with the odds of developing OCD significantly reduced in 

heterozygous individuals (Table 3.24). In order to further investigate the observed association, additional OCD 

patients and control individuals were obtained, genotyped and a joint analysis (as per advice from Dr Lize van 

der Merwe, Biostatistician, MRC Biostatistics unit; Skol et al., 2006)of the original and new subjects 

performed. In this larger cohort the dominant protective effect of the T allele was once again observed 

(p=0.038, Table 3.26). To the author’s knowledge, the present study represents the first report of association 

between OCD and DLX6.   

 

The above-mentioned association prompted further investigation into the role of DLX6 in OCD by analysis of 

two further polymorphisms (rs127728 and rs1004278) within DLX6. No association was found between either 

of these two SNPs and OCD. Analysis of linkage disequilibrium between the three analysed DLX6 markers 
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(DLX6IVS1C>T, rs127728 and rs1004278) showed that these markers were not in LD with one another (Fig 

3.23), which may explain why an association was observed with the original marker and not the later two.  

 

Since DLX6 is a key regulator of fore-brain development, it has been investigated as a potential autism 

susceptibility gene in an association study (Nabi et al., 2003). Although the aforementioned study showed no 

significant association of DLX6 with autism, it may be possible that it plays a role in the aetiology of a sub-set 

of autistic patients with increased obsessive-compulsive tendencies, as, in a study by Bolton and colleagues, 

OCD was found to occur more commonly in family members of autistic probands compared to the general 

population (Bolton et al.,  1998).  

 

Whether the DLX6IVS1C>T intronic polymorphism has any functional significance is yet to be determined, 

hence explanations for the described association are currently speculative. One explanation is that the 

DLX6IVS1C>T polymorphism is in linkage disequilibrium with a functional polymorphism, either within 

DLX6 itself or an adjacent gene that is associated with OCD pathogenesis. In fact, DLX6 forms a bigene 

cluster with another DLX gene, DLX5, a gene that has also been shown to be involved in basal ganglia 

development (section 1.5.1.1.5) (Liu et al., 1997).  

 

Another possibility is that, although this polymorphism resides within an intron, it may indeed be functional. 

Introns were traditionally considered “genetic waste” (Hill et al.,  2006); however, the recent discovery of 

intron-derived micro RNA (miRNA) completely changed that perception (Ying and Lin, 2006). Micro RNAs 

are ubiquitous, small, single stranded RNA, distinct from, but related to, small interfering RNA that regulate 

gene transcription by binding specific sequences within the 3’ UTR of target mRNA to which it is 

significantly complementary (Sevignani et al.,  2006). The binding of the miRNA to mRNA results in either 

the target mRNA remaining untranslated, which reduces the levels of the corresponding protein, or the 

degradation of the bound mRNA, resulting in reduced transcript levels. Intronic miRNA is a sub-population of 

miRNAs that are derived from introns (Lin et al., 2003). It is therefore conceivable that polymorphisms within 

introns from which miRNA are produced could have an effect on the generation of these intronic miRNAs and 

thus influence levels of gene expression. To date, approximately 1000 miRNAs have been identified that have 

been catalogued in the miRNA database (http://microrna.sanger.ac.uk/sequences/) and this number is 

constantly growing. Whether an intronic miRNA derived from intron one of DLX6 exists remains 

undetermined, however, if one does exist, it is feasible to consider that DLX6IVS1C>T may have a functional 

influence of the expression levels of DLX6 or some other gene. It may also be possible that the region of DLX6 

in which DLX6IVS1C>T resides contains a recognition sequence for a miRNA.   

 

To investigate this possibility, the DLX6 intron 1 sequence was analysed for potential miRNA target sequences 

using the PicTar program (Krek et al., 2005). This analysis showed that no known miRNA target sequence 

resides within intron 1 of DLX6 (data not shown). 
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An additional functional effect of an intronic polymorphism is that it may influence gene splicing by affecting 

a splice donor or acceptor site. In order to investigate this possibility, the intron 1 sequence was analysed using 

the NetGene2 internet-based neural network (http://www.cbs.dtu.dk/services/NetGene2/). Data from this 

analysis showed that this polymorphism had no effect on either donor or acceptor splice sites or that it created 

a cryptic splice site (data not shown).  

 

4.3.1.2. SYN3-631C>G 

In the present study, the G-allele of the SYN3-631C>G polymorphism was found to confer protection 

against OCD, with an additive effect (Table 3.24). This observed association was further investigated by 

genotyping additional OCD patients and controls and analysing the larger combined cohort, as for 

DLX6IVS1C>T. Using the larger cohort, the additive protective effect of the G allele was again observed 

(p=0.011, Table 3.26). 

 

Again, to further investigate SYN3 involvement in OCD, two more SNPs (rs130753 and rs130454) within 

SYN3 were genotyped. No association was observed between the two markers, rs130753 and rs130454, and 

OCD. Linkage disequilibrium analysis of these two SNPs and SYN3/-631C>G showed no linkage 

disequilibrium between these SNPS (fig 3.24), which could explain why an association was observed with 

SYN/-631C>G but not any of the other SNPs tested. 

 

SYN3 has been the focus of many association studies in schizophrenia (Ohmori et al., 2000; Ohtsuki et al., 

2000; Imai et al 2001; Tsai et al., 2002; Porton et al., 2004; Lachman et al., 2005; Lachman et al., 2006). 

Three of these studies (Ohmori et al., 2000; Ohtsuki et al., 2000; Tsai et al.,  2002) specifically investigated 

the role of the SYN3-631C>G polymorphism in this disorder, but failed to show any statistically significant 

association. A statistically significant association has, however, been reported between schizophrenia and a 

rare S470N polymorphism in SYN3 in a group of unrelated Caucasian schizophrenic patients and control 

individuals (Porton et al., 2004). However, the level of LD between the SYN3-631C>G and S470N 

polymorphisms have not yet been evaluated.  

 

The functional significance of the SYN/-631C>G polymorphism still remains undetermined. Since this 

polymorphism resides in the promoter region of the gene, it is tempting to speculate that it may disrupt binding 

of transcription factors, thereby altering SYN3 gene expression. This possibility was investigated by Ohmori 

and co-workers who scanned the SYN3 promoter sequence for known transcription factor recognition sites 

using the TRANSFAC database (http://www.gene-regulation.com/pub/databases.html), which represents the 

largest repository of experimentally-derived transcription factor binding sites (Fogel et al., 2005). Their 

analysis showed that SYN3-631G>C was not located in any known transcription factor binding site and thus 

these researchers concluded that it has no effect on gene expression (Ohmori et al., 2000). However, care 

should be taken when interpreting data generated by transcription binding site recognition programs such as 

TRANSFAC, since they rely on pre-existing knowledge of experimentally determined recognition sequences 
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for known transcription factors. Therefore, one cannot rule out the possibility that SYN3-631C>G may disrupt 

a recognition sequence for an unidentified transcription factor. 

 

Another explanation for the observed association between SYN3 and OCD in the present study is that the 

SYN3-631C>G polymorphism is in linkage disequilibrium with a functional polymorphism, either within 

SYN3 or an adjacent gene. Interestingly, the SYN3-631C>G polymorphism was found to be in almost complete 

linkage disequilibrium with another polymorphism, -196G>A, in the promoter region of SYN3 in a Japanese 

schizophrenia cohort (Ohmori et al., 2000) and an Italian multiple sclerosis cohort (Liguori et al.,  2004). The 

A allele of the latter polymorphism results in a 6bp base match to the core recognition octamer sequence of the 

Oct-1 transcription factor (Lachman et al., 2006). The level of linkage disequilibrium between these two 

polymorphisms in the Afrikaner population has not been determined, however, based on the aforementioned 

observations, one could speculate that the association of SYN3-631C>G polymorphism with OCD observed in 

the present study may reflect an association with the -196G>A polymorphism.  

 

4.3.1.3. Analysis of epistatic interaction between SNPs associated with OCD development 

Another interesting finding emerging from this study was the observed interactive effect of  DLX6IVS1C>T 

and SYN3-631C>G, where individuals who carried at least one C allele of both variants were more susceptible 

to OCD than individuals who were TT and GG homozygotes at the DLX6IVS1>T and SYN3 -631C>G loci, 

respectively.  

 

One possibility is that these two proteins may be involved in a common pathway or have similar functions. 

However when examining DLX6 and SYN3 using gene ontology tools (http://amigo.geneontology.org), it 

showed that while DLX6 functions as a transcription factor during neuronal development, SYN3 is involved in 

neurotransmitter release. Also, using SMART (http://smart.embl-heidelberg.de/) analysis revealed that these 

two proteins have no functional motifs in common.   

 

Another other possible explanation for the observed interaction between the DLX6 IVS1C>T and SYN3 -

631C>G polymorphisms would be that the transcription factor DLX6 is involved in regulating the 

transcription of SYN3. However, in silico analysis of the SYN3 promoter region using the Gene2Promoter 

program (http://www.genomatix.de/products/Gene2Promoter/index.html) did not reveal any DLX6 binding 

sites (data not shown). Therefore, the interactive effect between SYN3 and DLX6 remains unresolved and 

warrants further investigation. 

 

4.3.2. Limitations of association studies 

The DLX6 and SYN3 genes represent two attractive candidate genes for OCD development and the data 

presented in this investigation provides evidence suggesting proof of the proposed principle. Their vital roles 

in brain development and modulation of neurotransmitter release respectively, along with the previously 

reported association of SYN3 with increased schizophrenia susceptibility further provides a priori support for 

their involvement in OCD. 
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One should, however, bear in mind that, although the data presented here is intriguing, case-control 

association studies by nature have several short-comings. Confounding factors such as population 

stratification, phenotypic heterogeneity, number of markers tested and statistical power and sample size, have 

limited the success of association studies in general. The relevance of these pitfalls in the present study will be 

discussed in the sections that follow. 

 

4.3.2.1. Population stratification 

Difficulties in confirming positive or negative associations detected between a specific candidate gene and a 

disease, in different studies, are often ascribed to underlying genetic differences between populations. Our 

current understanding of complex disorders, such as OCD and schizophrenia, is that several mechanisms 

(genetic and environmental) may play a role in the presentation of disease phenotype in different individuals 

(Zohar et al., 1987; Stein 2000). Taking into account the genetic and environmental differences among 

population groups, it is possible that different combinations of environmental and genetic mechanisms could 

contribute to disease pathogenesis in each population. Furthermore, in all major population groups, there 

seems to be some degree of cryptic population substructure, which generally follows ethnic lines (Ziv and 

Burchard, 2003). Therefore, if the population used in the association study comprises cryptic subpopulations 

in which allele frequencies for the chosen candidate gene and disease risk differ, it may result in spurious 

association between the genetic variant and the disease under investigation. The reason for this is that any 

allele that occurs at a higher frequency in the subpopulation with greater disease risk will be associated with 

the disease. Similarly, population stratification may also result in a Type II error (not finding an association 

when one does exist) if the disease is more prevalent amongst the subpopulation with the lower allele 

frequency. 

 

To circumvent this problem OCD, patients and control individuals of Afrikaner descent were recruited. These 

study subjects were classified as being Afrikaner if at least three of their grandparents were of Afrikaner 

descent; however, this may have introduced genetic admixture because of the lack of rigour regarding the 

ethnicity of the fourth grandparent. This raises the question of whether the study population was sufficiently 

genetically homogeneous. This question was answered in a concurrent collaborative study, utilising the same 

cohort as the present investigation (Appendix IX) (Hemmings, 2005; Hemmings et al., 2007). In that study, 

genotypes from 23 unlinked autosomal polymorphisms, including some genotypes generated in the present 

study, were analysed using the Structure (version 2) program to detect population substructure. The 

investigation revealed no evidence for a cryptic sub-population in the Afrikaner OCD or control cohorts 

(Hemmings, 2005; Hemmings et al., 2007), which suggests that the cases and controls used in the present 

study were genetically matched and that the fourth grandparent did not confound the data (Hemming et al., 

2007). 

 

4.3.2.2 Phenotypic resolution 

The current understanding of OCD is that it is a clinically heterogeneous disorder and that a whole host of 

environmental and neurobiological factors influence the expression of the phenotype. Indeed, several OCD 
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subtypes have been identified recently (Leckman et al.,  2003; Ball et al.,  1996; Mataix-Cols et al.,  1999), 

and it is possible that each subtype may be mediated by different neurobiological, environmental and genetic 

factors (Miguel et al.,  2005). Thus, these OCD subtypes may represent specific phenotypes that are more 

closely related to a particular genetic mechanism than the higher order construct of OCD (Hemmings et al., 

2004). Therefore, classifying OCD patients into clinically defined subtypes in genetic association studies 

increases the power to detect small effect sizes, as well as reducing the background “noise” created by using a 

clinically heterogeneous sample. However, even though several genetic association analyses make use of 

clinically define sub-types of OCD, it should be noted that the formal, categorical OCD diagnosis may still 

give an indication as to which genes contribute to the overall pathology of OCD.  

 

In the present study, the OCD patient sample was not sub-stratified into clinically defined subtypes because of 

the relatively small sample size; sub-stratifying the OCD patient sample into various OCD subtypes could 

have drastically reduced the study power. Moreover, given that the original hypothesis was based on the 

clinical overlap between OCD and schizophrenia and since there is no evidence to suggest that any particular 

OCD subtype occurs more frequently than others in schizophrenia affected individuals, there was no rationale 

to select any particular OCD subtype. Hence, the objective here was only to identify genes involved in general 

OCD pathology. 

 

4.3.2.3. Statistical power and sample size 

Statistical power and sample size are other confounding factors that could account for the inconsistencies 

between association studies of specific candidate genes and complex diseases. The sample size required to 

reach statistical significance in genetic case-control association studies is dependent on a number of interacting 

factors. These include i) the power of the study (ie., the expression of the ability of the study to detect a true 

effect if one exists and the ability to differentiate between a significant negative association and an 

inconclusive result) and ii) the specific effect size (ie. the contribution to disease pathogenesis made by the 

specific allelic variation under investigation) (Berry et al.,  1998).  

 

It has been proposed that as a convention, when an investigator has no other basis for choosing the desired 

power of the study, a value of 80% be used, which represents the ability to detect a 20% difference between 

two values. (Berry et al.,  1998). It is also common practice that the level of significance (ie., the p-value) be 

set at 0.05, that is with a 95% confidence level. The association between the DLX6IVS>T polymorphism and 

OCD reported was achieved using a cohort of 42 OCD patients and 81 control individuals (Table 3.7). In order 

for the investigation to have reached the above-mentioned criteria for power, and given the allele frequencies 

in our population, 239 OCD cases and 497 control individuals should have been analysed (calculated using the 

“Power for Association with Error” program- http://linkage.rockefeller.edu/pawe). Similar analysis performed 

using the SYN3 data reported revealed that 175 OCD cases and 350 control individuals should have been 

analysed to reach 80% power. Therefore, the sample sizes used in the analyses of the DLX6 and SYN3 

polymorphisms, even when enlarged (DLX6: 89 OCD, 135 controls; SYN3:127 OCD, 142 controls) were too 

small to detect an association at the 95% confidence level and thus may have led to a Type I error (the 
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probability that the test statistic indicates an association with the disease, when in fact none exists). It is 

therefore important to re-evaluate the findings of the DLX6IVS1C>T and SYN3/-631C>G polymorphisms 

association studies in a follow-up study employing a second, larger group of OCD patients and control 

individuals of Afrikaner descent. Replication of the association would confirm the involvement of DLX6 and 

SYN3 in OCD pathogenesis in the Afrikaner population.  

 

Likewise, the analyses in which candidate loci were found to have no statistically significant association with 

OCD may also have been the result of analysing insufficient samples which did not allow the detection of a 

significant association (Type II error). One is therefore unable to exclude these markers as playing a role in 

OCD and these results should be viewed as inconclusive. The data, therefore, warrant follow-up studies using 

larger sample sizes to determine whether these markers can conclusively be excluded as playing a role in OCD 

pathogenesis. 

 

The small sample size employed in the present study can be attributed to a number of factors. One major 

contributing factor is the problem of recruiting OCD patients from the community. Patients often feel ashamed 

of their condition because of the stigma placed on psychiatric disorders and therefore do not seek the 

appropriate help. This significantly reduces the number of patients willing to participate in association studies.  

 

Another factor limiting the number of samples analysed in the present study is the lack of a renewable source 

of DNA. When studies are conducted over a period of several years, it is important that a renewable source of 

patient and control DNA (such as cell lines) is available, especially, as is the case in the present study, when 

several concurrent investigations using the same sample are being performed. Unfortunately, due to financial 

constraints, no renewable DNA sources were available for many of the patients, which greatly reduced the 

amount of good quality DNA. This accounts for the discrepancy in the number of samples genotyped for each 

of the markers tested. 

 

One way to overcome small sample sizes in genetic association studies is to use meta-analyses, a strategy 

which applies a set of statistical procedures designed to accumulate experimental and correlational results 

across independent studies that address a related set of research questions. Thus, in genetic case-control 

association studies, meta-analyses provide one with the means to increase the study power. In the present 

study, however, performing meta-analyses was not possible since the markers investigated have been assessed 

in OCD for the first time in the present study. However, when these results are published, it may encourage 

other investigators to attempt to replicate them, which may, in turn, make meta-analyses feasible. 

 

4.3.2.4. Number of markers tested 

In the present study, the classic case-control analysis comparing allele frequency and genotype distribution 

differences of a single SNP between case and control groups was employed. Over the last five years, the 

manner in which genetic association studies are performed has changed exponentially, as the generation of the 

HAPMAP and similar datasets lead to greater understanding of LD structure and its influence on association 
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studies. The norm in the early 2000’s was to approach association studies by means of single SNPs. However, 

single SNP-based approaches have their limitations. Firstly, a single SNP generates relatively low information 

content and, secondly, for a gene with multiple tightly linked SNPs, linkage disequilibrium information 

contained in flanking markers will be ignored (Niu et al., 2002). This situation is exacerbated in complex 

disorders such as OCD, where it is currently proposed that several genes act in unison with unknown 

environmental factors to predispose to disease. The single SNP analysis approach with multiple candidate 

genes and SNPs may require tens of thousands of samples to detect significant associations (Lee  et al., 2005).  

 

The understanding of the need for greater coverage of a gene or genetic region in genetic association studies 

which flowed from the HAPMAP project lead to other approaches. Once such method involves using 

haplotype analysis, which combines the information of multiple adjacent SNPs evenly spread across the gene 

of interest. Not only are haplotypes more informative, but they also capture the regional LD information. 

These methods have been shown to be much more powerful and robust to detect associations in the study of 

complex disorders (Akey et al.,  2001, Daly et al.,  2001; Prichard et al.,  2001).  

 

More recently, the use of tagSNPS for association studies have become popular. TagSNPs are SNPs that are in 

strong LD with other SNPs, therefore genotyping a tagSNP will provide the researcher with information 

regarding all other SNPs in LD with it. Depending on the extent of LD in the particular genetic region of 

interest, using tagSNPs may reduce the number of SNPs that would otherwise be typed using SNPs evenly 

spread across the region (i.e. selected by SNP density approaches). However, in regions with little LD, the 

number of SNPs, and with it, genotyping costs, remain large.  

 

The more frequent use of tagSNPs in association studies in recent years has certainly been stimulated by the 

availability of data generated by the international HAPMAP project. This project, launched in October 2002 

and first released in 2006, is a multi-country collaborative effort to identify patterns of LD in human 

population (www.HAPMAP.org). The HAPMAP database provides researchers with information regarding 

LD patterns across the genomes of four different population groups (Central European from Utah [CEU], 

Yoruba from Ibadan, Han Chinese and Japanese from Tokyo) and the opportunity to identify tagSNPs, and the 

SNPs “tagged” by them.  

 

Several studies have, however, shown that patterns of LD vary between populations and ethnic groups 

(Abecasis et al., 2001, Zavattari et al., 2000). Therefore it remains controversial whether the data of the four 

populations sampled by the HAPMAP project is transferable to other populations or whether it would be 

necessary to construct specific haplotype maps for each of the world’s population groups. However, some very 

recent studies have suggested the transferability of HAPMAP tagSNPS between populations, but a bias 

towards SNPs with a high minor allele frequency exists.(Ribas et al., 2006). However, in other populations, 

transferability of tagSNPs may not be as clearcut. At the time of the study, and indeed to date, no data on the 

transferability of the HAPMAP data and tagSNPs to the Afrikaner population was available; for this reason, 

and for reasons of cost, the original approach of first using single SNPs was not altered to involve the use of 
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HAPMAP tagSNPs or the identification of population-specific SNPs by resequencing. For interest though, the 

number of tagSNPs, with r2  of >0.8, available for each of the genes investigated is given in Table 4.1. This 

table also highlights another problem with using HAPMAP data, viz. genetic variation is not equally covered 

in all genes under the current HAPMAP data; however, this situation will no doubt improve as additional 

similar datasets become available. 

 

Table 4.1. Number of tagSNPs with r
2 

threshold of 0.8 and minor allele frequency≥0.2 in the CEU 

population of the HAPMAP project, identified in July 2007 by the Tagger algorithm in each of the 

genotyped genes in the present study 

 

Gene Number of TagSNPs 

SNAP25 19 

SNAP29 3 

GRIA4 24 

GRIN1 1 

DLX6  0 

BZRP  6 

DBH  13 

SYN3 98 

GBR1 0 

RXRβ 3 

CHRM3 46 

SLC18A1 11 

RELN 104 

GRID1  79 

WDR47  4 

ATG16L2  0 

POU3F2 0 

 

4.4 FUTURE DIRECTIONS 

Novel and very exciting data has been presented that warrants further investigation in order to fully appreciate 

the significance of these findings in the context of the pathophysiologies of OCD and schizophrenia. The 

identification of the novel reelin-interacting protein, WDR47 has created an opportunity to further augment 

our understanding of the reelin signalling pathway. However, defining their role in reelin-dependant neuronal 

migration is dependent on knowledge of their own particular functions, which are yet to be determined. 

Therefore, in future it is planned that Y2H screens of foetal brain cDNA libraries will be conducted using 

WDR47 the bait. The identification of ligands of WDR47, other than reelin, may elucidate their functions and 

thus clarify their roles in the overall architecture of the reelin-dependant neuronal migration pathway and brain 

development. 
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The observed associations of DLX6 and SYN3 with OCD will have to be confirmed by replication in an 

independent study cohort. The present investigation forms part of a larger, ongoing collaborative research 

endeavour to unravel the intricate pathophysiology OCD in the relatively genetically homogeneous Afrikaner 

population. Therefore, new OCD patients and controls are constantly being recruited for this larger study 

which will provide the independent sample for a replication study. Future studies of DLX6 and SYN3I will also 

have to be extended to include the screening of additional, preferably tag-SNPS across both genes in order to 

capture as much genotypic information within these genes as possible and  dramatically increase the power of  

the case-control association studies using the single marker approach (Akey et al.,  2001, Daly et al.,  2001; 

Prichard et al.,  2001). These types of analyses could also be extended to the selected candidate genes analysed 

in the present investigation in which no association was detected. Also the observed interactive effect observed 

between DLX6 and SYN3 in the development of OCD needs to be further investigated in order to fully 

appreciate the significance of the findings of this study. 

 

4.5. CONCLUSION 

This investigations had two major outcomes that may contribute to our understanding of the pathophysiologies 

of OCD and schizophrenia: the novel associations of SYN3 and DLX6 with OCD and the identification of a 

novel reelin-interacting protein, WDR47. The associations of SYN3 and DLX6 with OCD are rather exciting as 

they may point to mechanisms involved in OCD that have not been investigated as yet. The identification of 

WDR47 as a novel reelin-interacting protein has significant implications to our understanding of reelin-

dependant signalling. This investigation is the first to report interaction of reelin with cytosolic proteins and, 

therefore, may lead to the identification of novel roles for reelin in neurodevelopment. These novel 

components of the reelin signalling pathway may, based on our initial hypothesis, also be considered OCD and 

schizophrenia candidate genes. This may, in turn, augment the existing knowledge of the pathophysiologies of 

OCD, schizophrenia and other neurodevelopmental disorders.  

 

The identification of genetic susceptibility factors to psychiatric disorders such as OCD and schizophrenia 

remains a daunting task. Nonetheless, the recent advances in technologies and statistical methodologies have 

provided researchers with valuable tools and novel approaches to identify and assess potential candidate genes 

for these disorders. With the availability of resources such as gene and protein micro-arrays, the increasing 

amount of information on the human genome sequence and whole genome association analysis, much of the 

“guess-work” in identifying potential candidate genes for the psychiatric disorders may be a thing of the past. 

These technologies, however, may not currently be readily available in most laboratories therefore, many 

researchers will have to, for now, develop innovative approaches to identify candidate genes for psychiatric 

disorders.  

 

The present investigation is a good example of how unconventional approaches can be used to identify 

plausible candidate genes for a complex disorder, such as OCD. By utilising existing knowledge of 

schizophrenia, a disorder that has been shown to have phenomenological overlap with OCD, the search for 

novel OCD candidate genes was extended to genetic loci implicated in schizophrenia. The fact that two genes, 
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DLX6 and SYN3, located in schizophrenia susceptibility loci were found to be associated with OCD shows that 

this is method is valid. In fact, genetic investigation of bipolar disorder, another disorder that has been shown 

to share pathological mechanisms with schizophrenia, have identified genes such as COMT, G70/G30 and 

BDNF (reviewed by Maier et al.,  2005), that have been associated with both disorders. Therefore, the use of 

clinically and pathologically overlapping disorders is an tactic that should be explored further and could be 

utilised more frequently to identify novel candidate genes for many complex disorders.  

 

Furthermore, one does not often consider the Y2H system as an option when designing research strategies to 

identify novel candidate genes for complex disorders. However, in the present investigation, this method was 

applied to identify novel OCD candidate genes based on an animal model of schizophrenia. Although 

preliminary data suggests that genes identified using this method do not play a major role in the aetiology of 

OCD, the Y2H system has previously been successfully used to identify schizophrenia candidate genes. In 

their investigation of the schizophrenia-linked genomic region on chromosome 13 (13q34), Chumakov an co-

workers identified G72 as a potential schizophrenia susceptibility gene (Chumakov et al.,  2002). 

Subsequently, these researches used G72 as bait in a Y2H screen in order to elucidate its function and isolated 

DAAO as a ligand. The gene encoding DAAO was later shown to also be associated with schizophrenia 

(Chumakov et al.,  2002) (section 1.4.8.1). In another study, Jeanclos and co-workers aimed to identify the 

cytosolic ligand(s) of the large cytoplasmic domain of α2β4 AChR, a receptor whose expression has been 

shown to be abnormal in the brains of schizophrenic patients, using Y2H. These researchers isolated protein 

14-3-3ή (YWHAH) (Jeanclos et al.,  2001), which has previously been shown to be associated with 

schizophrenia susceptibility in a Japanese population (Toyooka et al., 1999). Thus the approach is validated, 

and WDR47 may yet be proven to be a schizophrenia susceptibility gene, an angle that was not explored in the 

current investigation. 

 

The data presented in the present study yielded exciting results that warrant future follow up investigation. 

Ultimately, the goal of studies, like this one, is to get a clearer handle on the aetiologies of complex psychiatric 

disorders, such as OCD and schizophrenia. The identification of DLX6 and SYN3 as novel OCD susceptibility 

genes, as well as the identification of WDR47 as a reelin-interacting protein, may provide investigators with 

alternative avenues of research into potential drug targets for OCD and schizophrenia pharmacotherapy.  
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APPENDIX I 

 

1 DNA EXTRACTION SOLUTIONS 

 

CELL LYSIS BUFFER 
Sucrose        0.32M 
Triton-X-100       1% 
MgCl2        5mM 
Tris-HCl       10mM 
H2O        1l 
 
3M NaAc 
NaAc.3H2O (Merck)       40.18g 
ddH2O         50ml 
Adjust pH to 5.2 with glacial acetic acid and adjust volume to 100ml with ddH2O 
 
DNA EXTRACTION BUFFER 
NaCl        0.1M 
Tris-HCl       0.01M 
EDTA (pH8)       0.025M 
SDS        0.5% 
Proteinase K       0.1mg/ml 
 
T.B.E-BUFFER (10x stock) 

Tris-HCl       0.89M 
Boric Acid       0.89M 
Na2EDTA (pH8)      20Mm  

 
2. BACTERIAL PLASMID PURIFICATION SOLUTIONS 

CELL RESUSPENSION SOLUTION 
50mM Tris-HCL, pH 7.5     2.5ml 1M Tris 
10mM EDTA    1ml 0.5M EDTA 
Make up to 50 ml with H2O 
 
CELL LYSIS SOLUTION 
0.2M NaOH    2.5ml 4M NaOH 
1% SDS    5ml 
Make up to 50ml with H2O 
 
NEUTRALISATION SOLUTION 
1.32M KOAc, pH 4.8    13.2ml 5M KOAc 
Make up to 50ml with H2O 
 

3. YEAST PLASMID PURIFICATION SOLUTIONS 

 

YEAST LYSIS BUFFER 
SDS        1% 
Triton X-100       2% 
NaCl        100mM 
Tris (pH8)       10mM 
EDTA (pH8)       1mM 

Stellenbosch University  http://scholar.sun.ac.za



 222
 

4. ELECTROPHORESIS SOLUTIONS  
 

10% AMMONIUM PERSULPHATE (APS)  
APS         10g 
ddH2O         100ml 
 
T.B.E-BUFFER (10x stock) 
Tris-HCl        0.89M 
Boric Acid        0.89M 
Na2EDTA (pH8)       20mM 
T.A.E BUFFER 
Tris-HCl        0.89M 
Boric Acid        0.89M 
Na2EDTA (pH8)    
 
SDS-PAGE RESOLVING GEL BUFFER (4X) 
Tris base        109.2g 
ddH2O         330ml 
10%SDS        24ml 
pH to 8.8 using 1N HCL 
Make up to 600ml using ddH2O 
 
SDS-PAGE STACKING GEL BUFFER (4X) 
Tris base        36.3g 
ddH2O         330ml 
10%SDS        24ml 
pH to 6.8 using 1N HCL 
Make up to 600ml using ddH2O 

 
SDS-PAGE RUNNING BUFFER (10X) 
Tris base        30g 
Glycine         144g 
10%SDS        100ml 
Add ddH2O to a final volume of 1L 
 

5 GELS 

 

12% POLYACRYLAMIDE GEL 
30 acrylamide/0.8% bis-acrylamide stock    4ml 
10xTBE        1ml 
Distilled H2O        5ml 
APS         80µl 
TEMED        30µl 
10% MILDLY DENATURING POLYACRYLAMIDE GEL WITH 5% GLYCEROL 
30 acrylamide/0.8% bis-acrylamide stock    40.5ml 
10xTBE        8ml 
Urea         24g 
Distilled H2O        84ml 
APS         1000µl 
TEMED        160µl 

 
6. LOADING DYES 

 

BROMOPHENOL BLUE 
Bromophenol blue       0.2%(w/v) 
Glycerol        50% 
Tris (pH8)        10mM 
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SSCP LOADING DYE 
Formamide        95% 
EDTA         20mM 
Bromophenol blue       0.01% 
Xylene cyanol        0.05g 

 
SDS LOADING DYE 
1M Tris-HCl (pH6.8)       50Mm 
DTT         100m 
SDS         2% 
Bromophenol blue       0.1% 
glycerol        10% 
 

6.  MOLECULAR SIZE MARKER (LAMBDA PstI) 

Bacteriophage Lambda DNA (250µg)     100µl 
Buffer M (Boerhinger Mannhein)     15µl 
PstI (Boerhinger Mannheim)      11µl 
H2O         32µl 
Incubate at 37°C for 2 hours followed by heat inactivation at 65°C for 5 min. Load 2µl onto 
polyacrylamide gels. 
 

7 SOLUTIONS FOR SILVER STAINING 

 

0.1% AgNO3 (Solution B) 
AgNO3          1g 
H2O         1L 

 
DEVELOPING SOLUTION (Solution C) 

NaOH         15g 
NaBH4         0.1g 
Formaldehyde        4ml 
H2O       
 

8. PCR BUFFER 
 
10x NH4 PCR BUFFER (BIOLINE U.K.) 
Ammonium sulphate       160mM 
Tris-HCl (pH 8.8)       670mM 
Tween-20        0.1% 
 

9 CO-IMMUNOPRECIPITATION BUFFER  
1M Tris base (pH-7.5)       400µl 
5M NaCl        60µl 
1M DTT        20µl 
2ng/ml Aprotinin       50µl 
50mM PMSF        200µl 
Tween 20        20µl 
Make up to 20 ml using ddH2O 
 

10.  SOLUTIONS USED FOR THE ESTABLISHMENT OF BACTERIAL COMPETENT CELLS 

 

CAP BUFFER: 
60 mM CaCl2     2.21 g 
15% glycerol      37.5ml  
10mM PIPES     0.76 g 
Make up to 250ml with sterile millipore H2O. pH to 7.0. Keep in fridge. 
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11. BACTERIAL MEDIA 

 
LURIA-BERTANI (LB) MEDIA 

Bacto tryptone        5g 
Yeasy extract        2.5g 
NaCl         5g 
ddH2O to final volume of 500ml 
Autoclave at 121°C for 20min and add appropriate antibiotic (ampicillin, 25mg/ml; Kan 5mg/ml) to 
media when a temperature of >55°C is reached.  
 
LB AGAR PLATES 
Bacto tryptone        5g 
Yeasy extract        2.5g 
NaCl         5g 
Agar         8g 
ddH2O to final volume of 500ml 
Autoclave at 121°C for 20min and add appropriate antibiotic (ampicillin, 25mg/ml; Kan 5mg/ml) to 
media when a temperature of >55°C is reached, prior to pouring plates. 

 

12 YEAST MEDIA 
 
YPDA MEDIA 
Difco peptone        10g 
Yeast extract        10g 
Glucose        10g 
L-adenine hemisulphate (0.2% stock)     7.5ml 
Autoclave at for 121°C 15min 
 

YPDA AGAR 
Difco peptone        10g 
Yeast extract        5g 
Glucose        10g 
Bacto agar        10g 
L-adenine hemisulphate (0.2% stock)     7.5ml 
Autoclave at 121°C for 15min and allow to cool to approximately 55°C prior to pouring plates. 
 
SD

-W
 MEDIA 

Glucose        12g 
Yeast nitrogen base without amino acids     4g 
SD-w amino acid supplement      0.4g 
0.2% adenine hemisulphate      9ml 
ddH2O to a final volume of 600ml 
Autoclave at 121°C for 15min. 
 
SD

-W
 PLATES 

Glucose        12g 
Yeast nitrogen base without amino acids     4g 
SD-w amino acid supplement      0.4g 
Bacto agar        12g 
0.2% adenine hemisulphate      9ml 
ddH2O to a final volume of 600ml 
Autoclave at 121°C for 15min and allow to cool to approximately 55°C prior to pouring plates. 
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SD
-L

 MEDIA 
Glucose        12g 
Yeast nitrogen base without amino acids     4g 
SD-L amino acid supplement      0.4g 
0.2% adenine hemisulphate      9ml 
ddH2O to a final volume of 600ml 
Autoclave at 121°C for 15min. 
 
SD

-L
 PLATES 

Glucose        12g 
Yeast nitrogen base without amino acids     4g 
SD-L amino acid supplement      0.4g 
Bacto agar        12g 
0.2% adenine hemisulphate      9ml 
ddH2O to a final volume of 600ml 
Autoclave at 121°C for 15min and allow to cool to approximately 55°C prior to pouring plates. 
 
SD

-L-W
 MEDIA 

Glucose        12g 
Yeast nitrogen base without amino acids     4g 
SD-L-W amino acid supplement      0.4g 
0.2% adenine hemisulphate      9ml 
ddH2O to a final volume of 600ml 
Autoclave at 121°C for 15min. 
 
SD

-L-W
 PLATES 

Glucose        12g 
Yeast nitrogen base without amino acids     4g 
SD-L-W amino acid supplement      0.4g 
Bacto agar        12g 
0.2% adenine hemisulphate      9ml 
ddH2O to a final volume of 600ml 
Autoclave at 121°C for 15min and allow to cool to approximately 55°C prior to pouring plates. 
 
TDO MEDIA 
Glucose        12g 
Yeast nitrogen base without amino acids     4g 
SD-L-W-H amino acid supplement      0.4g 
0.2% adenine hemisulphate      9ml 
ddH2O to a final volume of 600ml 
Autoclave at 121°C for 15min. 
 
TDO PLATES 
Glucose        12g 
Yeast nitrogen base without amino acids     4g 
SD-L-W-H amino acid supplement      0.4g 
Bacto agar        12g 
0.2% adenine hemisulphate      9ml 
ddH2O to a final volume of 600ml 
Autoclave at 121°C for 15min and allow to cool to approximately 55°C prior to pouring plates. 
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QDO MEDIA 
Glucose        12g 
Yeast nitrogen base without amino acids     4g 
SD-L-W-H-Ade amino acid supplement     0.4g 
0.2% adenine hemisulphate      9ml 
ddH2O to a final volume of 600ml 
Autoclave at 121°C for 15min. 
 
QDO PLATES 
Glucose        12g 
Yeast nitrogen base without amino acids     4g 
SD-L-W-H-Ade amino acid supplement     0.4g 
Bacto agar        12g 
0.2% adenine hemisulphate      9ml 
ddH2O to a final volume of 600ml 
Autoclave at 121°C for 15min and allow to cool to approximately 55°C prior to pouring plates. 
 

13. EUKARYOTIC CELL CULTURE MEDIA 
 
COMPLETE GROWTH MEDIA 
DMEM         90ml 
Hams F12        90ml 
Foetal calf serum       20ml 
Penstrep 
 
SERUM-FREE MEDIA 
DMEM         100ml 
Hams F12        100ml 
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APPENDIX II 
 

CALCULATING YEAST MATING EFFICIENCIES 

 
Count number of colonies on all plates with 30-300 colonies after 4 days 
 
#colony forming units (cfu)/ml=  cfu x 1000µl/ml 
     volume plated (µl) x dilution factor 
 
1. Number of cfu/ml on SD-L plates = viability of prey partner 
2. Number of cfu/ml on SD-W plates = viability of bait partner 
3. Number of cfu/ml on SD-L-W plates = viability of diploids 
4. Lowest Number of cfu/ml of SD-L or SD-W plates indicate limiting partner 
 
5. Mating efficiency= #cfu/ml of diploids x 100 
   #cfu/ml of limiting partner 
 
Library titre 
Count number of colonies on all plates with 30-300 colonies after 4 days 
 
#cfu/ml=   #colonies 
  plating volume(ml) x dilution factor 
 
# colonies clones screened= # cfu/ml x final resuspension volume 
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APPENDIX III 
 
LIST OF SUPPLIERS 

 
AciI        New England Biolabs 
Acrylamide       Merck 
Adenie hemisulphate      Bio101 
Agar        Merck 
Agarose       Whitehead Scientific 
AgNO3        Merck 
Ammonium persulphate      Merck 
Ampicillin       Roche 
Aptotinin       Roche 
Autoradiography film      Kodak 
BamHI        Promega 
BanII        Promega 
β-galactose       Southern Cross 
BseRI        New England Biolabs 
BsrI        New England Biolabs 
Bis-acrylamide       Merck 
Boric acid       Merck 
Bromophenol blue      Merck 
Calf intestinal alkaline phosphatase    Promega 
Chloroform/octanol      Sigma 
dATP        Boerhinger Mannheim 
dCTP        Boerhinger Mannheim 
DdeI        Promega 
dGTP        Boerhinger Mannheim 
DMEM        Highveld biological 
dNTP mix       TaKaRa 
DTT        Roche 
dTTP        Boerhinger Mannheim 
EcoRI        Promega 
EcoRV        Promega 
EarI        Promega 
EDTA        Boerhinger Mannheim 
Ethanol        Boerhinger Mannheim 
Ex TaqTM polymerase      TaKaRa 
Ex TaqTM polymerase Mg2+-containing reaction buffer  TaKaRa 
FACS Lysing Solution      Beckton Dickenson 
Foetal calf serum      Delta Bioproducts 
Formamide       Merck 
Formaldeyde       Merck 
Gelbond       Merck 
GFX® DNA purification kit     Amersham Pharmacia 
Glucose       Kimix 
Glycerol       FMC Promega 
Great EScAPeTM chemiluminescence detection kit  BD Biosciences 
HA monoclonal antibody     Roche 
HaeIII        Promega 
Ham’s H12       Highveld Biological 
Herring sperm DNA      Promega 
Hsp92II       Promega 
Isopropanol       Merck 
K-acetate       Sigma 
Kanamycin       Roche 
KCl        Merck 
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Lambda DNA       Promega 
LiAc        Sigma 
MatchmakerTM Mammalian Assay Kit 2    BD Biosciences 
MatchmakerTM Two-hybrid system 3    BD Biosciences 
Mineral oil       BDH Chemicals 
MnlI        Fermentas 
MgCl2        Bioline 
Myc monoclonal antibody     Roche 
NaAc        Merck 
NaCl        BDH Chemicals 
Na2HPO4.7H2O       Merck 
Na2HPO4.H2O       Merck 
NaOH        Sigma 
NdeI        Promega 
NlaIII        New England Biolabs 
NruI        Promega 
Oligonucleotide primers Department of Molecular and Cell Biology, 

University of Cape Town (UCT), Cape 
Town, South Africa. 

pACT2 BD Biosciences 
PBS Sigma 
PEG4000 Merck 
Penicillin/streptomycin Highveld Biological 
Peptone Difco 
pG5SEAP BD Biosciences 
pGBKT7 BD Biosciences 
pM BD Biosciences 
PMSF Roche 
Phenol Merck 
Phenol/choloform Sigma 
Phenol/choroform/isoamyl Sigma 
Proteinase K Sigma 
pVP16 BD Biosciences 
QDO BD Biosciences 
Qiagen Kit Stratagene 
RNAse wipes Ambion 
SDS Sigma 
SD-L BD Biosciences 
SD-w BD Biosciences 
SD-L-w BD Biosciences 
T4 Ligase Promega 
Taq polymerase Bioline 
TDO BD Biosciences 
TEMED Sigma 
TNT® Quick Coupled transcription/translation system BD Biosciences 
Tris Merck 
Tris-OH Merck 
Tris-HCl Merck 
Trypsin Highveld Biological 
Tryptone Fluka 
Urea BDH Chemicals 
Whatman 3M paper Whatman international 
Wizard® Purefection plasmid purification kit BD Bioscences 
X-α-galactsoe Southern Cross 
Yeast extract Difco 
Yeast nitrogen base (without amino acids) BD Biosciences 
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APPENDIX IV 

 

BACTERIAL STRAIN PHENOTYPE 

E.coli strain DH5α 

Φ 80d lacZ∆M15 recA1, endA1, Gry A96 thi-1, hsdR17 supE44, relA1, deoR ∆(lacZYA argF)u169 

 

YEAST STRAIN PHENOTYPEs 

Yeast strain AH109 

MATa, trp1-901, leu2-3, ura3-5, his3-200, gal4∆, gal80∆, LYS2::GAL1uas-GAL1TATA-HIS3, GAL2UAS-

GAL2TATA-ADE2, URA3::MEL1UAS-MEL1TATA-lacZ (James et al.,  1996) 

 

Yeast strain Y187 

MATα, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4∆, met
-, gal80∆, URA3::GAL1UAS-GAL1TATA-

lacZ (Harper et al.,  1993) 
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APPENDIX V: 

Heamocytrometric cell count protocol 

 
Haemocytometric cell count using a Neubauer haemocytometer (Superior, Berlin, Germany) was performed to 

determine the titre of bait culture used in the library mating experiment. Prior to aliquoting the sample onto the 

haemocytometer, a glass coverslip was placed over the counting surface (Fig 2.7). Approximately 50µl of a 1 

in 10 dilution of bait culture was then pippeted into one of the V-shaped wells (Fig A). This allowed for the 

area under the coverslip to be filled with the sample through capillary action. The counting chamber was 

subsequently placed on a microscope (Nikon TMS, Nikon Instruments inc., New York U.S.A) stage and the 

counting area was brought into focus under low magnification. The organisation of the counting area is shown 

in Figure B and Figure C. The number of cells per millilitre was determined using the following formula: 

 

number of cells/ml = number of cells x dilution factor x 10
4 
(a constant used because the depth of the 

haemocytometer is 0.1mm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1 mm depth Cover slip 

Ruled area 

A 

B 

V-shaped well 
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Neubauer heamocytometer, side and top view. The central platforms contain the ruled counting areas and are 0.1 
mm under the cover slip, which is suspended on the raised ridges (taken from McNeel and Brown, 1992). b) Magnified 

view of the ruled counting area (taken from McNeel and Brown, 1992).. c) View of the central quadrant of the 

haemocyometer that was used to determine the number of cells per milliliter. The number of cells per milliliter was 
determined as follows: The number of cells in each of the blue squares within the 4 outer larger squares (in the diagram) 
were counted and added together. This amount was multiplied by 4 to give an approximate number of cells each of the 4 
large outer squares. The amount of cells in each of the 4 larger outer squares was then added together and divided by 4 to 
give an average number of cells for each of the 25 large squares of the central quadrant of the haemocytometer. This 
average number was then multiplied by 25 to yield a average number of cells within the large central quadrant. Number 
of cells per milliliter was then determined using the formula: 
Cells/ml=number of cells x dilution factor x 10

4
 

 
 

C 

Comment [IT76]: McNeely J. C. and Brown D. 
1992. Laboratory evaluation of leukocytes. (In 
Stiene-Martin, E. A., Lotspeich-Steininger, C.A.,  and 
Koepke, J. A. (eds.) Clinical Hematology: Principles, 

Procedures, Correlations. 2nd Edition.  Copyright © 
1998 by Lippencott-Raven Pubishers 
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APPENDIX VI 

 

Restriction maps of Yeast two-hybrid and Mammalian two-hybrid vectors 
 

 

Restriction map and multiple cloning site of pGBKT7 Y2H bait vector.  
A) The positions of the kanamycin resistance gene (kan), TRP1 and GAL4-BD coding sequences, f1 bacteriophage and 
pUC plasmid origins of replication, the truncated S.cerivisiae ADH1 promotor sequence (PADH1), the T7 RNA polymerase 
promoter, the T7 and c- Myc epitope tag are indicated on the map. B) Nucleotide sequence of the pGBKT7 MCS. The 
positions of all unique restriction enzyme recognition sequences, stop codons in the T7 terminator sequence, the  GAL4-
BD coding sequence, the T7 promoter sequence, c-Myc epitope tag and the positions of pGBKT7-F and pGBKT7-R 
screening primers and sequencing primers are indicated on the sequence (taken from Clontech MATCHMAKER vectors 
handbook). 

pGBK7T-F 

pGBKT7-R 

pGBKT7-F 

A 

B 
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Restriction map and multiple cloning site of pACT2 Y2H prey vector. A) The positions of unique restriction 
sites are indicated in bold. The position of the ampicillin resistance gene (Amp

r), LEU2 and GAL4-AD coding sequences, 
and pBR322 plasmid origins, the S.cerevisiae ADH1 promoter, S.cerevisiae ADH1 termination sequence, Lox sites (Lox 
1 and Lox 2), the heamagglutinin (HA) epitope tag and the MCS are indicated on the map. B) Nucleotide sequence of the 
pACT2 MCS. The positions of all unique restriction sites, stop codons, the position of the final codon (881) of GAL4-AD 
coding sequence, the positions of the pACT2-F and pACT2-R primers and the HA epitope tags are all indicated in the 
map (taken from Clontech MATCHMAKER vectors handbook). 
 

 

pACT2-R 

pACT2-F 

A 

B 
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Restriction map and multiple cloning site of pM M2H GAL4 DNA binding vector. A)The positions of 
unique restriction sites are indicated in bold. The position of the ampicillin resistance gene (Amp

r), GAL4-BD coding 
sequences, the SV40 promoter and SV40 polyA transcription termination sequence and the MCS are indicated on the 
map. B) Nucleotide sequence of the pM MCS. The positions of all unique restriction sites, stop codons, the position of the 
GAL4-BD coding sequence and the position of the pM sequencing primer are all indicated in the map (taken from 
Clontech MATCHMAKER Two-Hybrid Assay Kit User Manual). 
 

 

 

A 

B 
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Restriction map and multiple cloning site of pVP M2H VP16 activation domain vector. A) The positions of 
unique restriction sites are indicated in bold. The position of the ampicillin resistance gene (Amp

r), GAL4-AD coding 
sequences, the SV40 promoter and SV40 poly A transcription termination sequence and the MCS are indicated on the 
map. A) Nucleotide sequence of the pM MCS. The positions of all unique restriction sites, stop codons, the position 
GAL4-AD coding sequence and the position of the pVP16-F and pVP16-R primers are indicated on the map (taken from 
Clontech MATCHMAKER Two-Hybrid Assay Kit User Manual). 

A 

B 
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Map of pG5SEAP reporter vector. This vector contains 5 GAL4 binding sites and an adenovirus E1b minimal 
promoter sequence upstream of the secreted alkaline phosphatase (SEAP), as indicated on the map. 
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APPENDIX VII 

 

Bonferroni matrices and box plots for Mammalian two-hybrid assays 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 

Appendix VII 
 
 
 
 

Bonferroni test; variable Normalised Lum/E (Experiment 1) 

Probabilities for Post Hoc Tests

Error: Between MS = 1.7216, df = 24.000

Cell No.

Identity {1}

3.8759

{2}

7.6861

{3}

2.0365

{4}

4.9197

{5}

2.5620

{6}

4.1953

{7}

1.0000

{8}

13.591

1

2

3

4

5

6

7

8

Basal control 0.011260 1.000000 1.000000 1.000000 1.000000 0.136928 0.000000

WDR 47xReeler 0.011260 0.000077 0.181453 0.000312 0.026819 0.000005 0.000039

WDR 47 control 1.000000 0.000077 0.134367 1.000000 0.804749 1.000000 0.000000

ATG16L2xReeler 1.000000 0.181453 0.134367 0.501967 1.000000 0.008348 0.000000

ATG16L2 control 1.000000 0.000312 1.000000 0.501967 1.000000 1.000000 0.000000

Reeler control 1.000000 0.026819 0.804749 1.000000 1.000000 0.059242 0.000000

Mock transfected control 0.136928 0.000005 1.000000 0.008348 1.000000 0.059242 0.000000

Positive control 0.000000 0.000039 0.000000 0.000000 0.000000 0.000000 0.000000

Bonferroni test; variable Normalised Lum/E (Experiment 2) 

Probabilities for Post Hoc Tests

Error: Between MS = 6.8892, df = 24.000

Cell No.

Identity {1}

7.3958

{2}

19.007

{3}

1.9375

{4}

11.410

{5}

6.1736

{6}

10.222

{7}

1.0000

{8}

18.868

1

2

3

4

5

6

7

8

Basal control 0.000051 0.199832 1.000000 1.000000 1.000000 0.058930 0.000061

WDR 47xReeler 0.000051 0.000000 0.011648 0.000011 0.002291 0.000000 1.000000

WDR 47 control 0.199832 0.000000 0.000895 0.885343 0.004547 1.000000 0.000000

ATG16L2xReeler 1.000000 0.011648 0.000895 0.264615 1.000000 0.000251 0.014076

ATG16L2 control 1.000000 0.000011 0.885343 0.264615 1.000000 0.286155 0.000013

Reeler control 1.000000 0.002291 0.004547 1.000000 1.000000 0.001259 0.002771

Mock transfected control 0.058930 0.000000 1.000000 0.000251 0.286155 0.001259 0.000000

Positive control 0.000061 1.000000 0.000000 0.014076 0.000013 0.002771 0.000000

Bonferroni test; variable Norm combined (Combined Experiments)

Probabilities for Post Hoc Tests

Error: Between MS = 3.5275, df = 24.000

Cell No.

Identity {1}

5.6797

{2}

13.488

{3}

1.9858

{4}

8.2456

{5}

4.4128

{6}

5.7776

{7}

1.0000

{8}

16.295

1

2

3

4

5

6

7

8

Basal control 0.000129 0.290233 1.000000 1.000000 1.000000 0.048644 0.000001

WDR 47xReeler 0.000129 0.000000 0.016861 0.000013 0.000154 0.000000 1.000000

WDR 47 control 0.290233 0.000000 0.002409 1.000000 0.244483 1.000000 0.000000

ATG16L2xReeler 1.000000 0.016861 0.002409 0.227457 1.000000 0.000369 0.000082

ATG16L2 control 1.000000 0.000013 1.000000 0.227457 1.000000 0.470747 0.000000

Reeler control 1.000000 0.000154 0.244483 1.000000 1.000000 0.040513 0.000001

Mock transfected control 0.048644 0.000000 1.000000 0.000369 0.470747 0.040513 0.000000

Positive control 0.000001 1.000000 0.000000 0.000082 0.000000 0.000001 0.000000
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WDR47 SEAP assays combined 
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Appendix VIII 

 
PATIENT INFORMATION AND INFORMED CONSENT 

Genetics of Anxiety Disorders 
 

PURPOSE: 
 
This study is part of a research project we are conducting to learn more about the genetic causes 
and symptoms of anxiety disorders (including obsessive-compulsive and spectrum disorders, panic 
disorder or social phobia).  We would like to discuss your life experiences and those of your other 
family members with you.  Doctors and scientists at the MRC Unit on Anxiety and Stress Disorders 
and the University of Stellenbosch, in collaboration with qualified researchers from other research 
institutions worldwide, hope to identify the genes that may increase susceptibility to these disorders. 
This is not a treatment study.  Information is being collected for research purposes only. 
 
STUDY PROCEDURE: 
 
If you decide to participate, we shall ask you to attend an interview (which may be videotaped) with 
a researcher.  This interview will include neuropsychological tasks and a number of questions 
related to your current illness, your prior history of treatment for psychiatric conditions, and particular 
symptoms you may have experienced as part of your illness.  In addition, we may ask to take 
photographs of your face and hands.  This whole procedure will last about 4-5 hours (two 2-hour 
sessions with a break in-between).   

 

You will also be asked to have your blood drawn.  Approximately 48 ml (3 Tablespoons) of blood will 
be drawn from your arm.  We may need to contact you again to get another blood sample should we 
fail to get a DNA sample from your blood.  The blood sample you give may be used to create a cell 
line.  This is done by changing some of your blood cells so that they can grow forever.  The cell line 
is living tissue and it can be used to make more of your DNA at any time in the future.  This process 
will take place at the MRC Centre for Molecular and Cellular Biology and the Division of Medical 
Biochemistry, Faculty of Health Sciences, at the University of Stellenbosch.  The DNA will then be 
taken from the cell line and saved for scientific analyses which will be performed now, and possibly 
in the future.   
 
We may contact you later for further information, or request you to complete another interview at a 
later date, in order to obtain follow-up information that may be of use in our genetic analyses.  This 
may involve an assessment similar to the current assessment, including a series of interviews 
and/or another blood sample.  Your current participation is in no way binding to your future 
participation. 
 
We would like your permission to contact your relatives in order to get more information about any 
family history of mental illness.  You can still participate in the study even if your relatives do not. 
 
Personal information that could be used to identify you (such as your name, contact information, etc) 
will not be given out.  Your data and DNA is likely to be made available to qualified scientists around 
the world to study your particular anxiety disorder.  Your cell line and DNA will be maintained 
permanently, unless you request to have it removed.  If at any time in the future you wish to have 
your DNA, cell lines or clinical data removed from the storage site, you may do so by contacting the 
researchers conducting this study (Christine Lochner at 021 - 938 9179). 
 
The researchers who will have access to your DNA include those who work with private and/or for 
profit companies.  These researchers may be interested in eventually developing commercial 
medical products using the DNA from you and other participants.  They may sell or patent 
discoveries based on this research and thus benefit financially.  Please note that you or your heirs 
will not receive any compensation if this occurs.    
 
We do not expect to discover any information of direct benefit to your condition, or your treatment, 
during the next few years.  If later on, diagnostic tests or new ways to treat your condition are 
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discovered, this information will have to be obtained from properly licensed clinical labs, clinics, or 
your physician, and will not be available from the research team. 
 
If you are hospitalized at a psychiatry facility or have received any treatment from a mental health 
professional, we would like your permission to review your treatment records, which will be obtained 
from your doctor. 
 
RISKS:     
 
There are no more than minimal medical or psychological risks associated with this study.  If you 
feel fatigued, tired, uncomforTable, or in any way upset during any part of the session(s), you may 
ask to stop for a rest break or have the interview discontinued.  The research interview does not 
take the place of a full psychiatric evaluation.  You may experience some emotional discomfort when 
answering some questions.  If any particular question makes you feel uncomforTable, you may 
discuss its importance with the specially trained interviewer.  You may choose not to answer any 
question which you are still uncomforTable with. 
 
You may feel some pain associated with having blood withdrawn from a vein.  You may experience 
discomfort, bruising and/or other bleeding at the site where the needle is inserted.  Occasionally, 
some people experience fleeting dizziness or feel faint when their blood is drawn. 
 
Some insurance companies may mistakenly assume that your participation in this study is an 
indication that you are at higher risk of a genetic disease, and this could hurt your access to health 
or other insurance.  We will not share any information about you, or your family, with an insurance 
company.  However, if you discuss your participation in this study with your doctor, and he or she 
records it in your medical record, it is possible that an insurance company may access the 
information as part of a medical record review.  It is the opinion of the investigators that participation 
in this study does not constitute genetic testing.  Although one long-term goal of this research is the 
development of a genetic test for the anxiety disorders, at the current time, no information from your 
DNA sample that would be useful in the treatment of your disorder will be obtained.  Therefore, 
participation in this study should not be reported as genetic testing.   
 
Your unidentified DNA and cell line will be available to qualified researchers permanently.  
 
BENEFITS:   
 
There are no direct benefits to you.  However, individuals who might develop one or more of these 
anxiety disorders in the future, their family members, and future generations may benefit if we can 
locate the genes that lead to such disorders.  That knowledge could then lead to the development of 
methods for prevention and new treatments for curing these diseases.   
 
CONFIDENTIALITY:    
 
If you consent to participate in this study, your identity will be kept confidential.  Your answers will 
not be shared with other family members or anyone else except for staff members involved in this 
study.  All data will be kept in locked file cabinets accessible only to the research staff.  All research 
information obtained will not be associated with your name; research staff will use only a coded 
number and/or your initials.  Blood samples will be safely stored and identified by code number and 
access will be limited to authorized scientific investigators.  Copies of treatment records from 
hospitals or mental health professionals are kept in locked files and are reviewed by members of the 
research team only.  Any publications resulting from this study will not identify you by name.   
 
 
VOLUNTARY PARTICIPATION: 
 
Your participation in this study is voluntary and you may refuse to participate or withdraw from the 
study at any time without any loss of benefits to which you are otherwise entitled.  Some members 
of the team of investigators conducting this study may be responsible for your clinical care.  Refusal 
to participate in this study will not change your clinical care. 
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RESEARCH QUESTIONS AND CONTACTS: 
 
If you are interested in genetic counseling, you will be given information about where you can 
receive such counseling and a new blood sample may be required at that time.  DNA information 
about a relative will be released only if the genetic counsellor confirms that the relative in question is 
deceased or cannot be found and that the information is essential for clinical counseling. 
 
The researchers will answer any questions you might have about the procedures described above, 
or about the results of the study.  If you have any questions, you may call Christine Lochner at (021) 
938 9179.   
 
The University of Stellenbosch Research Subcommittee C has approved recruitment and 
participation of individuals for this study. 
 
You have been given a copy of this consent form to keep.   
 
 
 
 
 
 
INFORMED CONSENT: 
 
I have read the above patient information, my questions have been answered, and I consent 
voluntarily to participate in this study. 
 
 
Print name:  _____________________________      Signature:  ____________________________ 
 
Date: ________________________________ 
 
 
I have discussed the proposed research with this subject and, in my opinion, this patient 
understands the benefits, risks, and alternatives (including non-participation) and is capable of 
consenting to voluntary participation. 
 
Print name:  ______________________________      Signature:  
____________________________ 
  Study Investigator or Designee 
 
Date: ________________________________ 
 
 
Print name:  _______________________________     Signature:  
____________________________ 
  Witness (if applicable) 
 
Date: ________________________________ 
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PASIëNTINLIGTING EN INGELIGTE TOESTEMMING 

Genetika van Angssteurings 
 
 

DOELWIT: 
 
Hierdie projek is deel van 'n navorsingsprojek wat tans onderneem word om meer uit te vind oor die 
genetiese oorsake en simptome van angssteurings (insluitend obsessief-kompulsiewe- en 
spektrumversteurings, paniek-, of sosiale angssteuring).  Ons wil graag oor u lewenservarings en 
dié van u gesinslede met u gesels.  Dokters en wetenskaplikes by die MNR Eenheid vir Angs- en 
Stressteurings en die Universiteit van Stellenbosch, in samewerking met gekwalifiseerde navorsers 
van ander navorsingsinstellings wêreldwyd, hoop om die gene wat vatbaarheid vir hierdie 
angssteurings laat toeneem, te identifiseer. 
Dit is nie 'n behandelingstudie nie.  Inligting word alleenlik vir navorsingsdoeleindes versamel. 
 
PROJEKPROSEDURE: 
 
Indien u besluit om deel te neem, sal ons u vra om 'n onderhoud (wat moontlik op videoband 
vasgelê kan word,) met 'n navorser te voer.  Hierdie onderhoud sluit neurosielkundige take en 'n 
aantal vrae in wat met die volgende aspekte verband kan hou: u huidige siekte, u geskiedenis van 
behandeling vir psigiatriese steurings, en spesifieke simptome wat u dalk kon ervaar as deel van u 
siekte.  Daarmee saam, kan ons u vra om foto's van u hande en gesig te neem.  Hierdie hele 
prosedure sal ongeveer 4-5 ure duur (twee 2-uur sessies met 'n pouse tussen-in). 
 
U sal ook gevra word om toe te laat dat u bloed getrek word.  Ons kan dalk weer met u in verbinding 
moet tree om nog 'n bloedmonster te trek in geval ons nie daarin kon slaag om 'n DNA monster van 
u bloed te verkry nie.  Die bloedmonster wat u gee, kan gebruik word om 'n sellyn te skep.  Dit word 
gedoen deur sommige van u bloedselle te verander sodat dit vir altyd kan groei.  Die sellyn is 
lewende weefsel en dit kan gebruik word om meer van u DNA in die toekoms te maak.  Hierdie 
proses sal plaasvind by die MNR Sentrum vir Molekulêre en Sellulêre Biologie en die Afdeling 
Geneeskundige Biochemie, Fakulteit Gesondheidswetenskappe, Universiteit van Stellenbosch.  Die 
DNA sal dan van die sellyn geneem en gehou word vir wetenskaplike analise wat nou, en moontlik 
in die toekoms gedoen sal word.  
 
Ons kan met u in aanraking kom vir verdere inligting, of u vra om nog 'n onderhoud te voltooi op 'n 
latere stadium, ten einde opvolg-inligting te bekom wat gebruik kan word in ons genetika-analise.  
Dit kan 'n soortgelyke assessering as die huidige wees, insluitend 'n reeks van onderhoude en/of 
ander bloedmonsters behels.  U huidige deelname verbind u onder geen omstandighede tot 
toekomstige deelname nie. 
 
Ons wil graag u toestemming hê om met u familielede in aanraking te kom ten einde meer inligting 
oor enige familiegeskiedenis van geestessiekte te bekom.  U kan steeds deelneem aan die projek 
selfs al is u familielede nie betrokke nie. 
 
Persoonlike inligting wat gebruik kan word om u te identifiseer (soos u naam, kontakbesonderhede, 
ens.), sal nie uitgegee word nie.  U data en DNA sal moontlik aan gekwalifiseerde wetenskaplikes 
regoor die wêreld beskikbaar gestel word om u betrokke angssteuring te bestudeer.  U sellyn en 
DNA sal permanent gehou word, behalwe wanneer u vereis dat dit verwyder word.  Indien u op 
enige stadium in die toekoms besluit om u DNA, sellyne of kliniese inligting uit die bergingsplek te 
laat verwyder, kan u dit doen deur die navorsers wat hierdie projek behartig, te vra om dit te doen 
(Christine Lochner by 021 - 938 9179). 
 
Die navorsers wat tot u DNA toegang het, sluit diegene in wat werk met private en/of 
winsgeoriënteerde maatskappye.  Hierdie navorsers kan ook daarin geïnteresseerd wees om 
uiteindelik kommersiële mediese produkte te ontwikkel deur van u en die ander deelnemers se DNA 
gebruik te maak.  Hulle kan hierdie uitvindings, wat op hierdie navorsing gebaseer is, verkoop of 
patenteer en sodoende finansieel daaruit voordeel trek.  Let asseblief daarop dat u of u erfgename 
nie enige kompensasie hiervoor sal ontvang indien dit wel gebeur nie. 
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Ons verwag nie om enige inligting te bekom wat van direkte nut vir u toestand of u behandeling 
gedurende die volgende paar jare sal wees nie.  Indien daar in die toekoms diagnostiese toetse of 
nuwe wyses om u toestand te behandel, ontdek word, sal hierdie inligting van behoorlik 
gelisensieërde kliniese laboratoria, klinieke, of u mediese dokter verkry moet word, en dus nie van 
die navorsingspan nie. 
 
Indien u by 'n psigiatrie fasiliteit gehospitaliseer word, of behandeling van 'n 
geestesgesondheidswerker ontvang, wil ons graag u toestemming hê om u behandelingsrekords, 
wat van u dokter verkry sal word, na te gaan. 
 
RISIKO'S: 
 
Daar is nie meer as die minimum mediese en sielkudige risiko's geassosieer met hierdie projek nie.  
Indien u uitgeput, ongemaklik, of ontsteld raak tydens enige gedeelte van die sessie(-s), kan u vra 
om te onderbreek vir 'n ruskansie of om die onderhoud te beëindig.  Die onderhoud wat met u 
gevoer word, neem nie die plek van 'n deeglike psigiatriese evaluasie nie.  U kan dalk 'n mate van 
emosionele ongemak verduur wanneer u sommige van die vrae beantwoord.  Indien enige vraag u 
ongemaklik laat voel, kan u die belang daarvan met die spesiaal opgeleide onderhoudvoerder 
bespreek.  U kan verkies om enige vraag waarmee u steeds ongemaklik voel, nie te beantwoord 
nie. 
 
U kan moontlik 'n mate van pyn ervaar wanneer die bloed getrek word.  U kan ongemak, kneusing 
en/of bloeding by die plek waar die naald ingesteek word, ervaar.  Soms ervaar sommige persone 
verbygaande duiseligheid of 'n flou gevoel wanneer hulle bloed getrek word. 
 
Sommige versekeringsmaatskappye kan verkeerdelik aanneem dat u deelname aan hierdie projek 
'n aanduiding is dat u 'n verhoogde risiko het vir 'n genetiese siekte, en dit kan u toegang tot 
gesondheid- of ander versekering skaad.  Ons sal nie enige inligting oor u, of u familie aan 'n 
versekeringsmaatskappy bekendmaak nie.  Indien u egter u deelname met u dokter bepreek, en 
hy/sy maak 'n nota daarvan in u mediese rekord, is dit moontlik dat 'n versekeringsmaatskappy 
hierdie inligting as deel van 'n hersiening van mediese rekords kan bekom.  Dit is die mening van die 
navorsers dat deelname aan hierdie studie nie genetiese toetsing is nie.  Alhoewel een langtermyn-
doelwit van hierdie navorsing die ontwikkeling van 'n genetiese toets vir die angssteurings is, sal 
geen inligting van u DNA-monster wat nuttig kan wees in die behandeling van u toestand, tans 
verkry word nie.  Daarom behoort deelname aan hierdie studie nie as genetiese toetsing beskryf te 
word nie. 
 
U ongeïdentifiseerde DNA en sellyn sal permanent aan gekwalifiseerde navorsers beskikbaar wees.    
 
VOORDELE: 
 
Daar is geen direkte voordele vir u nie.  Individue wat egter in die toekoms een of meer van hierdie 
angssteurings ontwikkel, hulle familielede, en toekomstige generasies, kan voordeel daaruit put as 
ons die gene wat tot sulke versteurings aanleiding kan gee, kan identifiseer.  Hierdie kennis kan dan 
lei tot die ontwikkeling van metodes vir voorkoming en nuwe behandelingswyses vir genesing van 
die siektes. 
 
VERTROULIKHEID: 
 
Indien u toestem tot deelname aan die projek, sal u identiteit vertroulik gehou word.  U antwoorde 
sal nie met u familielede of enige iemand anders behalwe die personeellede wat gemoeid is met 
hierdie projek, gedeel word nie.  Alle inligting sal in geslote liasseringskabinette wat slegs vir 
navorsingspersoneel toeganklik is, gehou word.  Alle navorsingsinligting wat verkry word, sal nie 
met u naam verbind kan word nie; navorsingspersoneel sal bloot 'n kodenommer en/of u voorletters 
gebruik.  Bloedmonsters sal veilig gestoor en geïdentifiseer word deur die kodenommer, en toegang 
sal tot die gemagtigde wetenskaplike navorsers beperk wees.  Kopieë van behandelingsrekords van 
hospitale of geestesgesondheidswerkers word in geslote lêers gehou en word slegs deur lede van 
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die navorsingspan deurgegaan.  Enige publikasie wat uit hierdie projek voorspruit, sal u nie by name 
identifiseer nie. 
 
VRYWILLIGE DEELNAME: 
 
U deelname aan hierdie projek is vrywillig en u kan deelname weier of u op enige stadium van die 
projek onttrek sonder verlies van enige voordele waartoe u andersins geregtig is.  Sommige lede 
van die span navorsers wat hierdie projek uitvoer, kan moontlik verantwoordelik wees vir u kliniese 
versorging.  Weiering om deel te neem aan hierdie studie sal nie u kliniese versorging verander nie. 
 
VRAE OOR DIE NAVORSING EN KONTAKBESONDERHEDE: 
 
Indien u wel in genetiese berading geïnteresseerd is, sal u inligting oor waar sodanige berading 
beskikbaar is, ontvang en 'n nuwe bloedmonster kan op daardie stadium vereis word.  DNA-inligting 
van 'n familielid sal slegs beskikbaar gestel word indien die genetiese berader bevestig dat die 
familielid oorlede is of nie opgespoor kan word nie en dat die inligting noodsaaklik is vir kliniese 
berading. 
 
Die navorsers sal enige vrae wat u mag hê oor bogenoemde prosedures of oor die resultate van die 
projek, beantwoord.  Indien u enige navrae het, kan u Christine Lochner by 021 - 938 9179 skakel. 
 
Die Navorsingsubkomitee C van die Universiteit van Stellenbosch het die werwing en deelname van 
individue aan hierdie projek goedgekeur. 
 
U het 'n afskrif van hierdie toestemmingsvorm ontvang om te bewaar. 
 
INGELIGTE TOESTEMMING: 
 
Ek het die bostaande pasiëntinligting gelees, my vrae is beantwoord, en ek stem vrywillig in om aan 
hierdie projek deel te neem. 
 
 
Naam: _____________________________  Handtekening:
 _____________________________ 
 
Datum: _____________________________ 
 
 
Ek het die voorgestelde projek met die deelnemer bespreek en, na my mening, verstaan die 
deelnemer die voordele, risiko's, en alternatiewe (inlsuitend nie-deelname) en is in staat om 
toestemming te gee vir vrywillige deelname. 
 
Naam: ______________________________      Handtekening:
 ___________________________ 
 Navorser of Gemagtigde 
 
Datum: ______________________________ 
 
 
Naam: ______________________________      Handtekening:
 ___________________________ 
 Getuie (indien van toepassing) 
 
Datum: ______________________________ 
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APPENDIX IX 

Articles submitted to peer reviewed journals using data generated in the present study 

 

Identification and assessment of novel obsessive-compulsive disorder candidate genes residing 

in schizophrenia susceptibility loci (Under review in World Journal of Biological Psychiatry) 

Regular Research Article 

Craig J. Kinnear (1,2), Lize van der Merwe (3) Sîan M. J. Hemmings (1,2), Christine Lochner (2), 

Robin A Emsley (4), Dan J. Stein (2,5) Valerie A. Corfield (1), Johanna C. Moolman-Smook (1) 

 

(1) MRC/US Centre for Molecular and Cellular Biology, (2) MRC Unit on Anxiety and Stress 

Disorders, University of Stellenbosch, PO Box 19063, Tygerberg 7505, South Africa; (3) 

Biostatistics Unit, Medical Research Council, Tygerberg 7505, (4) Department of Psychiatry 

University of Stellenbosch, PO Box 19063, Tygerberg 7505, South Africa (5) Department of 

Psychiatry, University of Cape Town, Observatory ,Cape Town, 7925;  
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ABSTRACT 

 

Obsessive-compulsive disorder (OCD) is a debilitating psychiatric disorder that is caused by a 

complex interplay of uncertain environmental and genetic factors. The majority of genetic OCD 

studies have focussed on a limited set of genes; hence a need to identify novel OCD candidate genes. 

One way to achieve this is by utilising knowledge of diseases more amenable to genetic dissection 

through linkage analysis, and with phenomenological overlap with OCD, such as schizophrenia. 

Schizophrenia linkage and chromosomal aberration studies have implicated numerous chromosomal 

regions that may contain genes involved in both schizophrenia and OCD pathogenesis. As proof -of-

principle, we analysed genes residing in schizophrenia susceptibility loci using bioinformatic 

techniques to assess their candidature for OCD susceptibility. Nine credible OCD candidate genes 

were assessed for their potential role in the aetiology of OCD by case-control association studies in a 

cohort of Afrikaner OCD and control subjects. The C-allele of the SYN3 -631C>G polymorphism 

increased susceptibility to OCD in both an original and extended sample. The heterozygote of the 

DLX6 IVS1C>T polymorphism decreased susceptibility to OCD in both an original and an extended 

sample, while interaction between these two polymorphisms significantly influenced susceptibility. 

These associations may point to novel mechanisms involved in OCD development.  

Keywords: Obsessive-compulsive disorder, schizophrenia, genetic loci, DLX6, SYN3 
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Introduction 

Obsessive-compulsive disorder (OCD) is a common, disabling psychiatric condition (Murray and 

Lopez., 1996) for which the underlying molecular pathophysiology remains unclear. Currently, it is 

proposed that this disorder is caused by the complex interplay of various environmental and genetic 

factors, the identity of which remain uncertain.  

 

A number of segregation analyses of OCD have provided evidence for the existence of a major gene 

locus (Alsobrook et al., 1999; Cavallini et al., 1999; Nestadt et al., 2000) although, to date, no major 

susceptibility gene has been identified. Nonetheless, a number of plausible candidates have been 

investigated in several population- and family-based association studies, although divergent results 

have generally confounded interpretation of such studies.  

 

A possible explanation for inconsistencies is that genes found to be associated with OCD in some 

populations may only contribute very minor effects to disease susceptibility within those populations, 

while having no effect in others. This could have serious implications for the identification of genetic 

factors involved in OCD, given that the current focus of many investigations is to replicate 

previously reported associations in different populations. A consequence of such replication attempts 

is that the same genes are habitually analysed, with less effort expended in identifying novel 

candidate genes that may play larger contributory roles to the pathogenesis of OCD phenomenology 

in more general populations.  

 

One possible approach to identifying novel candidate genes is to utilise existing knowledge of 

diseases that possess phenomenological overlap with OCD, but which are more amenable to genetic 

dissection. Genetic loci for such disorders, identified through linkage analysis, could potentially 

harbour novel OCD candidate genes.  

 

One such disorder is schizophrenia, where case-control association study data, linkage data and 

studies of chromosomal aberrations have led to the identification of many chromosomal regions that 

may contain genes involved in the aetiology of the disorder (reviewed by Owen et al., 2004).  

 

The notion of pathophysiological overlap between OCD and schizophrenia stems from observations 

of increased comorbidity between these two disorders (Fenton and McGlashan, 1986; Nechmad et 

al., 2003;Poyurovsky et al.,1998; Dominquez et al., 1999; Tibbo et al., 2000; Lysaker et al., 2000; 

Bermanzohn et al., 2000; Poyurovsky et al., 1999; Fabisch et al.,2001; Craig et al., 2002; Ohta et al., 

2003; Eisen et al.,1997). It has been suggested that the co-expression of these symptoms may reflect 

an overlap of the structural and functional brain abnormalities associated with schizophrenia and 
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OCD. Indeed, based on structural and functional neuroimaging studies, abnormalities in the frontal 

striatal circuits (Cummings et al.,1993), thalamus, basal ganglia and the amygdala complex have 

been identified in both disorders (Kwon et al.,2003), although the noted abnormalities are often at 

opposite ends of the functional spectrum. For example, in OCD, hyper-functionality of the frontal-

striatal system has been implicated (Baxter et al.,1988), whereas in schizophrenia, hypo-functionality 

of this system has been implicated (Kim et al.,2000). In addition, studies have shown that, in OCD, 

the thalamus is enlarged (Kim et al.,2001), while in schizophrenia, a decrease in thalamic volume has 

been reported (Andreasen et al.,1994). 

 

Further evidence for a pathological overlap between schizophrenia and OCD stems from 

retrospective pharmacological studies and case reports. On the one hand, antipsychotic 

pharmacotherapy has been reported to induce obsessive-compulsive symptoms (OCS) or exacerbate 

existing OCS in schizophrenic patients (Eales and Layeni, 1994; Morrison et al.,1998; de Haan et 

al.,1999; Mottard and De la Sablonniere, 1999; Tibbo and Warneke, 1999). On the other hand, 

antipsychotics are effective augmentatory agents in treating refractory OCD (Bloch et al. 2006). 

 

Thus, the OCD/schizophrenia co-morbidity data, the overlap of implicated brain regions from 

structural and functional studies and the possible role that antipsychotic medication may play in 

mediating OCS, suggests that these two disorders may share neurophysiological aspects, driven at 

least in part by genetics, of a common pathological pathway (Insel and Asikal, 1986; Gross-Isseroff 

et al., 2003). It may be further hypothesised that, although some susceptibility genes may be shared, 

the functional characteristics of the actual susceptibility variants may be opposed. Since several 

linkage studies have identified numerous schizophrenia susceptibility loci, we hypothesised that these 

loci may also harbour genes increasing susceptibility to OCD. Hence, to test this hypothesis, we 

bioinformatically searched selected schizophrenia susceptibility loci for credible OCD candidate 

genes and explored their involvement in OCD susceptibility in a case-control association study. 

 

Materials and Methods 

 

Study subjects 

The protocol was approved by the Ethics Committee of the University of Stellenbosch,  (protocol 

number 99013) and all subjects provided written informed consent, after being presented with a 

complete description of the study. All case and control subjects participating in the present study 

were of Afrikaner descent. The South African Afrikaner population has frequently been used, as a 

homogeneous population, in case-control association studies: the Afrikaner population is of Dutch, 

German and French origin and their history and population dynamics over the past 350 years have 
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led to a relatively small gene pool with an above-average frequency of rare genetic illnesses, due to 

founder effects (Starfield et al., 1997; Moolman-Smook et al., 1999; de Jager et al., 1999). For the 

purpose of this investigation, subjects were classified as Afrikaners if at least three of their four 

grandparents were of Afrikaner descent.  

 

Unrelated control subjects were recruited throughout South Africa by trained clinical psychologists 

and via media advertisements. All controls were required to complete a questionnaire pertaining to 

his/her personal demographic data and present state of physical health. Unrelated OCD patients, 

between nine and 65 years of age, were recruited through physician referral, media advertisements, 

the Mental Health Information Centre (MHIC) and the OCD Association of South Africa (OCDSA). 

To be eligible for inclusion in the study, patients had to meet the DSM-IV criteria (APA, 1994) for a 

primary diagnosis of OCD on the Structured Clinical Interview for Axis I disorders – Patient Version 

(SCID-I/P) (First et al., 1998). All diagnoses were made by trained clinicians at the MRC Unit on 

Anxiety and Stress Disorders. 

 

Identification of schizophrenia susceptibility loci 

Literature searches were conducted using the publicly available PUBMED database 

(http://www.ncbi.nlm.nih.gov/PubMed), in order to identify previously reported schizophrenia 

susceptibility loci. The PUBMED database was searched by the terms “schizophrenia linkage”, 

“schizophrenia genetic linkage” and “schizophrenia genetics”.  

 

Prioritising genes within each locus as OCD candidate genes. 

The Ensembl (http://www.ensembl.org), the University of California Santa Cruz 

(http://www.genome.ucsc.edu) and the NCBI databases were scanned to derive in silico catalogues of 

all annotated and predicted genes within each of the identified loci. Once all the genes within the 

selected loci were catalogued, they were prioritised as plausible OCD candidate genes based on 

function (http://harvester.embl.de/), expression profile and known pathogenic role 

(http://www.ncbi.nlm.nih.gov/OMIM). Brain tissue expression was a prerequisite in the selection of 

plausible candidate genes; the expression profiles for all genes within the loci were determined using 

the Unigene EST database (http://www.ncbi.nlm.nih.gov/unigene). 

 

Genes that encode proteins with unknown function were analysed by homology searches to predict a 

possible function based on their protein domain composition using the pfam 

(http://www.sanger.ac.uk/Software/Pfam) and prosite (http://www.expasy.org/prosite/) algorithms. 
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Previously reported polymorphisms within randomly selected candidate genes that had been targeted 

in past psychiatric case-control association studies were selected for investigation in the current 

analysis. Where no investigations of a candidate gene had been reported in the literature, target 

polymorphisms were selected from a publicly available single nucleotide polymorphism databases 

(http://www.ncbi.nlm.nih.gov/SNP; http://www.hapmap.org) based on a minor allele frequency of 

greater than 0.3. 

 

Candidate gene association analyses 

The target genomic fragment containing a selected polymorphism was amplified by means of the 

polymerase chain reaction (PCR) and genotyped using allele-specific restriction enzyme analysis 

(ASREA) according to previously published data for the following polymorphisms: synaptosomal-

associated protein of 25 kDa (SNAP-25) MnlI (Barr et al., 2000); synaptosomal-associated protein of 

29 kDa (SNAP-29) C56T (Saito et al., 2001); AMPA receptor subunit GluR4 (GRIA4) rs609239 

(Makino et al., 2003); N-methyl-D-aspartate receptor NR1 subunit (GRIN1) rs11146020 (Martucci et 

al., 2003); distal-less like homeobox 6 (DLX6) IVS1C>T (Nabi et al., 2003); peripheral 

benzodiazepine receptor (BZRP) Ala147Thr (Kurumaji et al., 2001); dopamine beta hydroxylase 

(DBH) I/D (Yamamoto et al., 2003) and synapsin III (SYN3) -631C>G (Tsai et al., 2002). Primers 

amplifying the rs10887523 polymorphism in the glutamate receptor, ionotropic delta 1 (GRID1) gene 

were created using Primer 3 (Rozen and Skaletsky, 2000) (primer sequences available on request 

from first author). 

 

Statistical analysis 

Logistic regression was used to model case-control status as a function each genotype. Each genotype 

factor was modelled as two variables, one counting the number of  SNAP25/MnlI G, SNAP29 C56T 

T, GRIA4 rs630567 T, GRIN1/1 G, DLX6 IVS1C>T T, BZRP Thr, DBH I and SYN3 -631C>G G 

alleles (0, 1 or 2) (the additive effect) and another taking the value 0 for any homozygote and 1 for 

the heterozygotes (the heterozygous effect) as described by Cordell and Clayton, 2005. The resulting 

models are described and summarised in the results.  

 

Functions from base R and R packages (R Development Core Team, 2007) were used for all 

statistical analyses. 

 

Results 

Bioinformatic searches of schizophrenia susceptibility loci for plausible OCD candidate genes. 

Twenty-one schizophrenia susceptibility loci were searched for plausible OCD candidate genes, 

based on function and expression. For the purpose of this proof-of-principle investigation, only one 
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polymorphism in nine candidate genes from nine randomly selected schizophrenia loci were assessed 

for their potential role in OCD pathogenesis. 

 

Association analysis of selected candidate genes 

All control groups were in Hardy-Weinberg equilibrium for each of the polymorphisms tested. 

Genotype and allele frequencies for each of the analysed polymorphisms are shown in Table 1. Table 

2 summarises the logistic regression models for case-control status for the polymorphisms showing 

significant effects and Table 3 summarises the logistic regression models for the remaining 

polymorphisms 

. 

The G allele of the SYN3 -631C>G polymorphism was found to be protective, with the presence of 

each G-allele effectively halving the odds of presenting with OCD (OR = 0.51 [95% CI: 0.30-0.83]) 

(Table 2). The TC heterozygote of the DLX6 IVS1C>T polymorphism was also found to be protective 

(OR = 0.38 [95% CI: 0.18-0.81])(Table 2). No significant associations were observed for any of the 

other polymorphisms investigated (Table 3).  

 

In order to improve the power of the two significant findings, the sample size of the case and control 

groups was increased, and a joint analysis of the original and new subjects performed (Table 3). Once 

again, the additive, protective effect of the G allele of the SYN3 -631C>G polymorphism (OR = 0.62 

[95% CI: 0.42-0.89]) and the  protective effect of the TC heterozygote of DLX6 IVS1C>T 

polymorphism (OR = 0.54 [95% CI: 0.30-0.96]) was observed.  

 

We also tested for, and observed, a significant interactive effect between the SYN3  

-631C>G and DLX6 IVS1C/T polymorphisms and OCD (p = 0.039), where individuals who were 

heterozygous CG for the SYN3 -631C>G polymorphism, as well as homozygous CC for the DLX6 

IVS1C/T polymorphism, had increased susceptibility to developing OCD, while individuals who were 

heterozygous at both these loci were protected against OCD (Figure 1).  

 

Discussion 

In the present investigation, one sequence variant in each of nine candidate genes from as many 

schizophrenia-implicated chromosomal regions was assessed as OCD candidate genes in a 

population-based case-control association study. Logistic regression analysis implicated DLX6 

IVS1C/T and SYN3 -631C>G variants in the development of OCD (Table 2).  

 

The CT heterozygote of DLX6 IVS1C/T polymorphism was found to confer protection against the 

development of OCD. A protective effect of the T allele was also observed, but this was not 
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statistically significant. Here, the odds of developing OCD was significantly reduced in heterozygous 

individuals (Table 2). Whether the DLX6 IVS1C/T intronic polymorphism has any functional 

significance is yet to be determined; hence explanations for the described association are currently 

speculative.  

 

One possible explanation is that the DLX6 IVSC/T polymorphism is in linkage disequilibrium (LD) 

with a functional polymorphism, either within DLX6 itself or an adjacent gene that is associated with 

OCD pathogenesis. In fact, DLX6 forms a bigene cluster with another DLX gene, DLX5, which is a 

gene that, like DLX6, has been shown to be involved in basal ganglia development (Liu et al., 1997; 

Zerucha et al., 2000).  

 

SYN3, encoding synapsin III, a protein involved in synaptogenesis of hippocampal neurons (Ferreira 

et al., 2000) and regulation of neurotransmitter release (Kao et al., 1998), has been the focus of many 

association studies in schizophrenia (Ohmori et al., 2000; Ohtsuki et al., 2000; Imai et al 2001; Tsai 

et al., 2002; Porton et al.,2004; Lachman et al., 2005; 2006). Three of these studies (Ohmori et al., 

2000; Ohtsuki et al., 2000; Tsai et al., 2002) specifically investigated the role of the SYN3 -631C>G 

polymorphism in this disorder, but failed to show any statistically significant association.  

 

In the present study, the G-allele of the SYN3 -631C>G polymorphism was found to confer 

protection against OCD, under an additive model (Table 2). The functional significance of the SYN3 -

631C>G polymorphism remains undetermined. Since this polymorphism resides in the promoter 

region of the gene, it is tempting to speculate that it may disrupt binding of transcription factors, 

thereby altering SYN3 gene expression. Ohmori et al. (2000) previously scanned the SYN3 promoter 

sequence for known transcription factor recognition sites using the TRANSFAC database 

(http://www.gene-regulation.com/pub/databases.html; Fogel et al., 2005), but found that SYN3 -

631G>C was not located in any known transcription factor binding site, thereby concluding that the 

variant has no effect on gene expression. However, care should be taken when interpreting data 

generated by transcription binding site recognition programs, since such programs rely on pre-

existing knowledge of experimentally determined recognition sequences for known transcription 

factors. Therefore, one cannot exclude the possibility that SYN3 -631C>G may disrupt a recognition 

sequence for an unidentified transcription factor. 

 

Another possible explanation for the observed association between SYN3 and OCD in the present 

study is that the SYN3 -631C>G polymorphism is in LD with a functional polymorphism, either 

within SYN3 or an adjacent gene. Interestingly, the SYN3 -631C>G polymorphism was found to be in 

almost complete linkage disequilibrium with another polymorphism, -196G>A, in the promoter 
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region of SYN3 in a Japanese schizophrenia cohort (Ohmori et al., 2000) and in an Italian multiple 

sclerosis cohort (Liguori et al., 2004). The A allele of the latter polymorphism results in a 6bp base 

match to the core recognition octamer sequence of the Oct-1 transcription factor (Lachman et al., 

2006). The level of LD between these two polymorphisms in the Afrikaner population has not been 

determined; however, based on the aforementioned observations, one could speculate that the 

association of SYN3 -631C>G polymorphism with OCD observed in the present study may reflect an 

association with the SYN3 -196G>A polymorphism.  

 

Another interesting observation was the interaction between the  DLX6 IVS1C>T and SYN3 -

631C>G polymorphisms (Figure 1). One could speculate that, since DLX6 is a transcription factor, 

the interactive effect reported here may be a consequence of DLX6 regulating the transcription of 

SYN3. However, in silico analysis of the SYN3 promoter region using the Gene2Promoter program 

(http://www.genomatix.de/products/Gene2Promoter/index.html) did not reveal any DLX6 binding 

sites. Therefore, explanations for the interactive effect between SYN3 and DLX6 remain unclear and 

warrant further investigation. 

 

The identification of genetic susceptibility factors to psychiatric disorders such as OCD and 

schizophrenia remains a daunting task. Nonetheless, recent advances in technologies and statistical 

methodologies have provided researchers with valuable tools and novel approaches to identify, and 

assess, potential candidate genes for these disorders. With the availability of resources such as gene 

and protein micro-arrays, the increasing amount of information on the human genome sequence and 

whole genome association analysis, much of the “guess-work” in identifying potential candidate 

genes for the psychiatric disorders may be a thing of the past. These technologies, however, are 

costly and researchers therefore need to continue to develop innovative approaches to identify 

candidate genes for psychiatric disorders.  

 

The preliminary data presented in the current study warrants further investigation in larger sample 

sets, and ideally, Hapmap tagSNPs and haplotypes should be examined across all genes in order to 

increase the power of case-control association studies (Akey et al., 2001, Daly et al., 2001). 

Furthermore, in this study multiple-testing correction has not been used as there is currently no 

international consensus on what constitutes generally applicable and appropriate multiple testing 

correction. The Bonferroni correction is known to lead to over-conservative p-values, risking the 

rejection of important findings, while Bayesian methods rely on knowledge of prior probability of 

involvement, which is currently unknown for most variants (Campbell and Rudan, 2002). 

Nonetheless, this proof-of-principle study illustrates how unconventional approaches can be used to 

identify plausible candidate genes for a complex psychiatric disorder such as OCD.  
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Table 1: Genotype and allele counts of polymorphisms investigated. 

 

SNAP25/MnlI TT TG GG Total T G Total 

OCD 31 (32.2) 42 (51.9) 8 (9.9) 81 104 (64.2) 58 (35.8) 162 

Control 30 (46.9) 29 (45.3) 5 (7.8) 64 87 (69.5) 39 (30.5) 128 

SNAP29 C56T CC CT TT  C T  

OCD 14 (24.1) 29 (50.0) 15 (25.9) 58 57 (49.1) 59 (50.9) 116 

Control 9 (14.1) 40 (62.5) 15 (23.4) 64 58 (45.3) 70 (54.7) 128 

GRIA4 rs630567 AA AT TT  A T  

OCD 23 (33.8) 41 (60.3) 4 (5.9) 68 87 (63.9) 49 (36.1) 136 

Control 31 (34.8) 48 (53.9) 10 (11.3) 89 110 (618) 68 (38.2) 178 

GRIN1 rs11146020 CC CG GG  C G  

OCD 12 (15.4) 21 (26.9) 45 (57.7) 78 45 (28.8) 111 (71.2) 156 

Control 10 (16.4) 21 (34.4) 30 (49.2) 61 41 (33.6) 81 (66.4) 122 

BZRP Ala147Thr Ala/Ala Ala/Thr Thr/Thr  Ala Thr  

OCD 10 (14.9) 25 (37.3) 32 (47.8) 67 45 (33.6) 89 (66.4) 134 

Control 9 (9.9) 36 (39.6) 46 (50.5) 91 54 (29.7) 128 (70.3) 182 

DBH I/D II ID DD  I D  

OCD 20 (26.6) 40 (53.4) 15 (20) 75 80 (53.3) 70 (46.6) 150 

Control 17 (28.4) 34 (56.6) 9 (15) 60 68 (56.6) 52 (43.3) 120 

GRID1 rs10887523 CC CA AA  C A  

OCD 21 (42) 23 (46) 6 (12) 50 65 (65.0) 35 (35.0) 100 

Control 20 (31.3) 33 (55.1) 11 (17.2) 64 73 (57.0) 55 (43.0) 128 
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Genotype and allele percentages in brackets. 

*numbers of OCD and control subjects after additional samples genotyped. 

Abbreviations: BZRP, peripheral benzodiazepine receptor; DBH, dopamine beta hydroxylase; DLX6, distal-less like homeobox 6; GRID1, glutamate 

receptor, ionotropic, delta 1; GRIA4, AMPA receptor subunit GluR4;  GRIN1, N-methyl-D-aspartate receptor NR1 subunit; SNAP25 Synaptosomal-

associated protein of 25kDa: SNAP29, Synaptosomal-associated protein of 29kDa; SYN3, synapsin III 

DLX6 IVS1C>T CC CT TT  C T  

OCD 14 (33.3) 16 (38.1) 12 (28.6) 42 44 (52.4) 40 (47.6) 84 

Control 10 (13.3) 47 (58.1) 24 (34.6) 81 67 (41.4) 95 (58.6) 162 

OCD* 15 (16.9) 39 (43.8) 35 (39.3) 89 69 (38.8) 109 (61.2) 178 

Control* 13 (9.7) 76 (56.7) 45 (33.6) 135 102 (31.1) 166 (61.9) 268 

SYN3 -631 C>G CC CG GG  C G  

OCD 37 (43.1) 42 (48.8) 7 (8.1) 86 116 (67.4) 88 (54.3) 172 

Control 24 (29.6) 40 (49.3) 17 (21.1) 81 56 (32.6) 74 (45.7) 240 

OCD* 47 (37.1) 65 (50) 17 (12.9) 127 164 (62.1) 100 (37.9) 264 

Controls* 33 (23.2) 77 (54.2) 32 (22.6) 142 143 (50.4) 141 (49.6) 284 
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Table 2: Summary of logistic regression models for case-control status for the polymorphisms 

showing significant effects. Odds ratios (ORs), 95% confidence intervals (CIs) for the ORs and p-

values are given for the original as well as the combined cohort. 

 Combined cohort Original cohort  

DLX6 IVS1 C>T OR 95% CI p-value OR 95% CI p-value 

CC homozygote 1      

Each T allele 0.82 0.53-1.27 0.371 0.69 0.41-1.15 0.158 
Heterozygote 0.54 0.30-0.96 0.038 0.38 0.18-0.81 0.013 

SYN3 -631C>G Combined cohort Original cohort  

CC homozygote 1      

Each G allele 0.62 0.42-0.89 0.011 0.51 0.30-0.83 0.009 
Heterozygote 0.97 0.59-1.59 0.891 1.36 0.71-2.69 0.362 

Abbreviations: DLX6, distal-less like homeobox 6;  SYN3, synapsin III; OR, odds ratio; CI, confidence interval 

 

Table 3: Summary of logistic regression models for case-control status for each of the other 

polymorphisms investigated. 

SNAP2 5MnlI OR 95% CI p-value 

TT homozygote 1   
For each G allele 1.24 0.68-2.37 0.484 
Heterozygote 1.13 0.51-2.43 0.763 
SNAP29 C56T OR 95% CI p-value 
CC homozygote 1   
For each T allele 0.802 0.457-1.39 0.432 
Heterozygote. 0.581 0.278-1.2 0.145 
GRIA4.1 OR 95% CI p-value 
AA homozygote 1   
For each T allele 0.73 0.73-1.39 0.344 
Heterozygote 1.57 1.57-1.48 0.248 
GRIN 1 OR 95% CI p-value 
CC homozygote 1   
For each G allele 1.118 0.687-1.81 0.648 
Heterozygote 0.745 0.343-1.61 0.455 
BZRP OR 95% CI p-value 
Ala/Ala homozygote 1   
For each Thr allele 0.79 0.47-1.31 0.362 
Heterozygote 0.81 0.39-1.66 0.571 
GRID1 rs1088532 OR 95% CI p-value 

CC homozygote 1   
For each A allele 0.721 0.392-1.28 0.272 
Heterozygote 0.921 0.419-2.05 0.838 
DBH (I/D) OR 95% CI p-value 

DD homozygote 1   
For each I allele 1.26 0.74-2.19 0.395 
Heterozygote 0.79 0.39-1.60 0.517 

 

Abbreviations: BZRP, peripheral benzodiazepine receptor; DBH, dopamine beta hydroxylase; GRID1, glutamate receptor, ionotropic, delta 1; GRIA4, 

AMPA receptor subunit GluR4;  GRIN1, N-methyl-D-aspartate receptor NR1 subunit; SNAP25 synaptosomal-associated protein of 25kDa: SNAP29, 

synaptosomal-associated protein of 29kDa 

OR: odds ratio; CI: confidence interval for odds ratio. 
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Fig 1. Bar graphs representing joint DLX6IVS1C>T and SYN3-631C>G genotype frequencies A Genotype 

frequencies for the control panel, B Genotype frequencies for the OCD patients. 
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ABSTRACT 

Although evidence from family studies suggest that genetic factors play an important role in 

mediating obsessive-compulsive disorder (OCD), results from genetic case-control association 

analyses have been inconsistent. Discrepant findings may be attributed to the lack of phenotypic 

resolution, and population stratification. The aim of the present study was to investigate the role that 

the val66met variant within the gene encoding brain-derived neurotrophic factor (BDNF) may play in 

mediating the development of selected OCD subtypes accounting for the aforementioned 

confounding factors. One hundred and twelve OCD subjects and 140 controls were selected from the 

South African Afrikaner population. A significant association was observed in the male subgroup, 

with the met66 allele implicated as the risk allele in the development of OCD. This allele was also 

found to be associated with an earlier age at onset of OCD in males. On the other hand, the val66val 

genotype was associated with more severe OCD in the female population. No evidence of population 

stratification was observed in Afrikaner control subjects. These preliminary results point towards 

genetically distinct characteristics of OCD mediated by dysfunctions in BDNF. The present 

investigation forms part of ongoing research to elucidate the genetic components involved in the 

aetiology of OCD and OCD-related characteristics.  

 

Keywords: Obsessive-compulsive disorder; Brain-derived neurotrophic factor; BDNF; population 

structure 
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INTRODUCTION 

Obsessive-compulsive disorder (OCD), a disorder which affects a sizeable portion of the general 

population, has a complex aetiology. Although a large number of association studies have examined 

genetic components possibly involved in OCD (see review by Hemmings and Stein, 2006), very few 

have yielded consistent results, due to potential confounders. One such confounder may be 

insufficient resolution of research subjects, which increases heterogeneic noise, to identify genetic 

risk factors; this resolution can pertain to two levels within a sample set: clinical phenotypic 

resolution and population stratification. 

 

Firstly, present data indicate that OCD is a clinically and genetically heterogeneous disorder - the 

disease phenotype characterised as OCD may represent a final common pathway of multiple 

aetiologies. Although genes encoding serotonergic (5-HT) and dopaminergic components are most 

commonly investigated, it is likely that the behavioural manifestations of OCD are mediated by a 

large network of interconnected neurotransmitter and signalling pathways, of which different 

combinations of functional genetic variants underlie particular traits. Thus, classifying OCD 

according to clinically-defined characteristics should be more informative and statistically powerful 

(Silverman and Palmer, 2000), since such traits are probably controlled by fewer loci and 

environmental factors, while targeting candidate genes which pertain temporally or functionally more 

strongly to the particular phenotypic subtype may yield more meaningful results.  

 

Secondly, population stratification arises when the genetic background of the source populations 

differ between cases and controls (Cardon and Palmer, 2003). The South African Afrikaner 

population has often been used in case-control association studies: the Afrikaner population is of 

Dutch, German and French origin, and their history and population dynamics over the past 350 years 

have led to a relatively small gene pool, and above-average frequency of rare genetic illnesses, due to 

founder effects (Starfield et al., 1997; Moolman-Smook et al., 1999; de Jager et al., 1999). However, 

no formal analysis has been conducted into whether the Afrikaner population represents a unified, 

genetically homogeneous population, or whether certain “sub-populations” exist, which may 

confound genetic association studies. As recent investigations in the Icelandic populations 

demonstrated, substructure may exist in populations originally thought to be genetically 

homogeneous (Helgason et al., 2005). 

 

One intriguing OCD candidate gene from both a developmental and neurotransmitter etiological 

perspective is the brain-derived neurotrophic factor (BDNF) gene. It encodes an activity-dependent 

endogenous neurotrophin involved in neurodevelopment, neuronal survival, morphology and 

differentiation (Hoglinger et al., 1998), which may promote the function and growth of 5-HT neurons 
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in the brain (Mamounas et al., 1995; 2000), and modulate the synaptic plasticity of DRD3-secreting 

neurons in the striatum (Guillin et al., 2003). Recently, a common SNP occurring at nucleotide 196 

(196G/A; rs6265) in the terminal exon of the proBDNF sequence, resulting in an amino acid 

substitution (val66met), was found to be associated with early-onset (EO) OCD in a family-based 

case-control association study (Hall et al., 2003). On the other hand, in a more recent family-based 

association study on a group of EO OCD patients, no significant association was noted between this 

variant and EO OCD (Mossner et al., 2005). The met66-allele has previously been found to affect the 

intracellular processing of the pro-BDNF polypeptide, thereby inhibiting the release of BDNF from 

activated neurons (Egan et al., 2003). This allele has also been implicated as the risk allele in a 

restrictive subtype of anorexia nervosa (Ribases et al., 2003; 2004; 2005), which has features in 

common with OCD. Moreover, it has also been found that the met66-allele may act as a risk factor in 

the development of anxiety disorders (Jiang et al., 2005).  

 

In the present, preliminary study, the role that the BDNF val66met polymorphism may play in the 

development of particular subtypes of OCD was investigated in the Afrikaner population. 

Furthermore, to determine whether any population stratification exists within the Afrikaner 

population, the sample set used in the present study was investigated using a Bayesian model-based 

algorithm, Structure (Pritchard et al., 2000).   

 

METHODS AND MATERIALS 

The protocol was approved by the Ethics Committee of the University of Stellenbosch, and all 

subjects provided written informed consent, after being presented with a complete description of the 

study. All case and control subjects participating in the present study were of Afrikaner descent. For 

the purpose of this investigation, subjects were classified as Afrikaners if at least three of their four 

grandparents were of Afrikaner descent.  

 

Unrelated control subjects were recruited throughout South Africa by trained clinical psychologists 

and via media advertisements. All controls were required to complete a questionnaire pertaining to 

his/her personal demographic data and present state of physical health. Unrelated OCD patients, 

between 9 and 65 years of age, were recruited through physician referral, media advertisements, the 

Mental Health Information Centre (MHIC) and the OCD Association of South Africa (OCDSA). To 

be eligible for inclusion in the study, patients had to meet the DSM-IV criteria (APA, 1994) for a 

primary diagnosis of OCD on the Structured Clinical Interview for Axis I disorders – Patient Version 

(SCID-I/P) (First et al., 1998). All diagnoses were made by trained clinicians at the MRC Unit on 

Anxiety and Stress Disorders. 
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The Yale-Brown Obsessive-Compulsive Symptom Checklist (YBOCS-CL) and severity scale 

(YBOCS-SS) (Goodman et al., 1989) were used for the assessment of the typology and severity of 

obsessive-compulsive symptoms, respectively. The dimensional YBOCS (DY-BOCS) interview 

(Rosario-Campos et al., 2006) was conducted to allow for assessment of the typology and severity of 

OCD symptoms. In the genetic analyses, both the categorical phenotype of OCD diagnosis and the 

quantitative phenotype of total YBOCS score were considered. The presence/absence of tics (current 

and past) and the nature thereof (e.g. motor and/or vocal) was assessed with the SCID-OCSD and the 

Yale Global Tic Severity Scale (YGTSS), respectively (Leckman et al., 1989).  

 

Questions pertaining to head injury, current medication, medical screening, developmental history, 

the presence of tics (current or past) and family history was also administered. OCD patients with a 

significant history of neurological disease, schizophrenia, schizo-affective disorder, other psychotic 

conditions or a history of substance dependence, as determined from the interviews or previous 

medical records, were excluded from the study. 

 

Candidate gene association analyses 

The target genomic fragment in BDNF (val66met, or rs6265) containing the selected polymorphism, 

was amplified by means of the polymerase chain reaction (PCR) and genotyped using published 

primer sequences (Sen et al., 2003). Allele specific restriction endonuclease analysis (ASREA) was 

employed to genotype the BDNF val66met polymorphism.  The 274bp amplimer was digested with 

0.5U NlaIII (New England Biolabs, Beverly, MA., USA) for 3 hours. Two NlaIII restriction enzyme 

sites were present, one constitutive site producing fragment sizes of 57bp and 217bp, and the other 

polymorphic. If the val66-allele was present, the NlaIII enzyme did not recognise the second 

polymorphic site. If, however, the met66-allele was present, the restriction enzyme recognised the 

polymorphic site within the PCR product, generating fragments of 140bp, 77bp and 57bp in size.  

 

Statistical analyses 

Initial demographic analyses were conducted to determine whether between-group differences 

existed in gender (Fisher test for equality of proportions) and age (Wilcoxon test for equality between 

medians). Categorical variables were represented as counts, with their associated frequencies. 

Confidence intervals (CI) for medians of groups stratified by gender and BDNF genotype were set at 

95% CIs simultaneous for all groups. 

 

Logistic regression was used to model case-control status, and linear regression was used to model 

YBOCS score (severity) and age at onset.  (There was no need to analyse age at onset with survival 

analysis techniques, because there were no censored ages at onset.)  Each of the three response 
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variables: case-control status, YBOCS and age at onset, was initially modelled as a function of 

gender and BDNF genotype (the main effects), including the interaction between gender and BDNF 

genotype. The BDNF genotype factor was modelled as two variables, one counting the number of 

met66-alleles (0, 1 or 2: the additive effect [add]) and  the other taking the value 0 for any 

homozygote and 1 for the heterozygotes (the dominance [dom] effect) as described by Cordell and 

Clayton (2005). For each of the three models, a stepwise procedure was employed to discard those 

terms that did not contribute significantly to the model.  The resulting optimal models are described 

and summarised in the results.   

 

Functions from base R and R packages (R Development Core Team, 2006) were used for all 

statistical analyses. 

 

Structure 

The possibility of population substructure was investigated by employing a Bayesian clustering 

method, Structure (version 2.0) (Pritchard, 2000; http://pritch.bsd.uchicago.edu/). Structure assigns 

individuals probabilistically to one or more sub-populations based on allelic frequencies at each 

locus. The procedure places individuals into ‘K’ number of clusters, where ‘K’ is chosen in advance, 

but can be varied across independent runs of the Structure algorithm. The value of K that maximised 

the posterior probability of the data was selected as representing the true number of clusters 

(genetically determined sub-populations) within the Afrikaner population. K was varied between one 

and five, and each analysis was repeated 10 times to assess convergence. Default values were used 

for all other parameter settings. Thirty-one polymorphisms were included in Structure analysis (Table 

6; primer sequences and PCR protocols available upon request). 

 

RESULTS 

Analysis of clinical data 

One hundred and twelve Afrikaner OCD subjects (57 [50.9%] male; 55 [49.1%] female) and 140 

Afrikaner control subjects (33 [23.6%] male; 107 [76.4%] female) were investigated in the study 

(Table 1). The proportion of each gender was found to differ significantly between the OCD and 

control subgroups (p < 0.001).  The median age for males in the control group (43 years [95% CI: 39-

47]) was significantly higher than for any of the other three groups (p < 0.001). The median ages of 

the females in the OCD and control groups differed by 3.5 years, and were not significantly different. 

 

Total YBOCS scores were recorded in 110 (98%) of the OCD patients; the median YBOCS score 

was 21.5 (95% CI: 20.0-23.0). No statistically significant differences in YBOCS scores were 
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observed between male and female subjects (p = 0.46) (Table 2). Age at onset of OCD was recorded 

for 102 (91.7%) of the OCD subjects, with the median age at onset of OCD 14.5 years (95% CI: 

12.8-16.2). Although the median age at onset of OCD was lower in males compared to females (14 

[95% CI: 12.3-15.7] and 16.0 [95% CI: 12.8-19.2] years, respectively), the difference was not 

significant (p = 0.55) (Table 2).  

 

Analysis of genetic data 

The final logistic regression model for case-control status is summarised in Table 3a. In it, both 

dominance terms (main effect and interaction) were discarded, indicating that the variant has a 

different additive effect for each gender, but no dominance effect. This final model fitted the data 

well, with a deviance difference of χ2 = 346.2-320.6 = 25.6 at 3 df, p-value = 0.001.  The additive 

term for males was independently statistically significant (p-value = 0.047), but not for females.  This 

means that for males, the odds of having OCD increases significantly with each additional met66-

allele.  The modelled odds ratio of a female OCD subject versus a male OCD subject was 0.447 (95% 

CI: 0.234-0.845).  The modelled odds ratios of OCD with the given genotype versus the val66val 

genotype are presented separately for each gender in Table 3b.  The significant increase in the odds 

of OCD with increasing number of met66-alleles in males is apparent, as is the absence of a 

significant effect in females. 

 

For analysis of the impact of gender and genotype on YBOCS score, there were only six individuals 

(one female) who possessed the met66met genotype (Table 2). The YBOCS scores of these six 

individuals were similar to those of the heterozygote individuals; thus these individuals were grouped 

together, creating a dichotomous genotype: val66val and “not val66val”; no dominance effect could 

therefore be estimated.  No terms were removed from the linear model during stepwise selection.  

The optimal model for YBOCS analysis is summarised in Table 4a. Modelled YBOCS scores are 

shown in Table 4b. From these tables, it can be seen that, for males, those homozygous for the val66-

allele do not possess significantly different YBOCS scores from those who are heterozygous or 

homozygous for the met66-allele. However, females homozygous for the val66-allele had 

significantly higher YBOCS scores compared to those who possess at least one met66-allele. 

 

For analysis of the impact of gender and genotype on age at onset, only six individuals (five males) 

were found to possess the met66met genotype (Table 2).  The single met66met female was grouped 

with heterozygous females for the modelling.  All terms, including the dominance terms, were 

retained in the model. The model indicates that the genotype effect differed between genders, and 

also included a dominance effect.  The final model fitted the data well (F5,96 = 3.029; p = 0.0139) and 
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is summarised in Table 5a.  The modelled age at onset for males and females for each genotype is 

provided in Table 5b.  The significant heterozygote effects in Table 5a denotes that males and 

females have similar age at onset for heterozygotes and those homozygous for the val66-allele, 

whereas males possessing the met66met genotype present with significantly earlier age at onset of 

OCD.  The fact that only a single female carrying the met66met genotype was included in the group 

means that any association between this genotype and age at onset in females could not be resolved.  

 

Analysis of Afrikaner control population structure 

A total of 40 Afrikaner controls were selected for genotyping for inclusion in the determination of 

population substructure in the present study. These individuals were genotyped for 31 unlinked 

autosomal polymorphisms, selected on the basis of location. The polymorphisms, their exact HWE 

values and heterozygosities are portrayed in Table 6. The mean heterozygosity for all 31 

polymorphisms was 0.514. All of the polymorphisms were found to obey HWE. 

 

The posterior probability values of K, assuming a uniform prior on K between 1 and 5, are provided 

in Table 7. The posterior probabilities favoured a K of 1. This is indicative of an absence of 

population structure within the Afrikaner population utilised in the present study. This result was 

corroborated by the examining the membership coefficients (Q) for each individual for each value of 

K: the proportion of the population assigned to each cluster was roughly symmetric for K = 2 to K = 

5. 

 

DISCUSSION 

The BDNF val66met variant was found to be associated with EO OCD in the male population, with 

the met66-allele increasing the risk for developing EO OCD. It has been suggested that EO OCD 

represents a developmental subtype of OCD (Rosenberg and Keshavan, 1998; Geller et al.,2001). EO 

OCD has been found to exhibit distinct patterns of neuropathology (Busatto et al., 2001) and 

phenotypic expression compared to LO OCD: it has been associated with male preponderance (Geller 

et al., 1998; Millet et al., 2004; Fontenelle et al., 2003) and a higher rate of Tourette Syndrome and 

comorbid tic and disruptive disorders (Geller et al., 1996; Millet et al., 2004; Rosario-Campos et al., 

2001).  

 

There is a large body of evidence supporting the involvement of the 5-HT and dopaminergic systems 

in the aetiology of OCD (Zohar et al., 1987; Greist et al., 1995; Hollander et al., 1992; Marazzitti et 

al., 1992). Interestingly, both 5-HT and dopamine (specifically, DRD3) [Goggi et al., 2003; Guillin et 

al., 2003]) have been found to interact closely with BDNF in the brain. Infusions of BDNF have been 

found to upregulate 5-HT metabolites in the brain (Siuciak et al., 1996; 1998), and BDNF has been 
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reported to promote and augment the function and growth of 5-HT neurons in the brain (Mamounas 

et al., 1995; 2000). The interaction between BDNF and dopamine in general may also be particularly 

relevant, given an association between a polymorphism in the gene encoding the dopamine receptor 4 

(DRD4) and EO OCD has previously been observed in the South African Caucasian population 

(Hemmings et al., 2004). This possible interaction does, however, require further investigation. 

 

In a recent investigation by Hall et al. (2003), it was found that the val66-allele, rather than the 

met66-allele, was overtransmitted to EO OCD probands (although their sample was not stratified 

according to gender). One reason for the contradictory results may be population-based differences in 

allele frequencies of polymorphisms: although the alleles associated with age at onset differ between 

the studies, it may be that the val66met variant is not itself the causal variant, but that either of these 

alleles are in LD with the disease-susceptibility variant depending on the population involved.  

 

Interestingly, in the present study, females carrying the val66val genotype were found to be possess 

higher YBOCS scores than those carrying at least one met66-allele. This finding is intriguing, given 

present observations where the met66-allele was found to increase susceptibility to EO OCD in 

males, but not in females. These findings may indicate differences in the mechanism whereby BDNF 

contributes to the respective OCD subtypes, and/or female-specific epistatic or epigenetic 

interaction(s), which increase the risk for a more severe form of OCD in females, but not in males.  

 

No evidence for cryptic population substructure in the Afrikaner control population was observed in 

the current genetic analyses: classification of the Afrikaner individuals into clusters demonstrated 

symmetry, with roughly the same proportion of each individual’s genome assigned to each cluster. 

The number of clusters, chosen to vary from K = 1 to K = 5, was based on the reported ancestry of 

the Afrikaners (the population has been proposed to originate from five Northern European 

populations: Dutch, German, French, Belgian and British [Botha and Beighton, 1983]). The evidence 

thus suggested that no cryptic substructure exists within the Afrikaner population, supporting the use 

of the population in genetic case-control association studies. 

 

A limiting factor to detecting population substructure in the present investigation is that, if 

substructure within the Afrikaner population does exist, it is likely to be very subtle, given their past 

geographical and cultural isolation, and derivation from geographically closely-related Northern 

European groups. Detection of such subtle substructure may require the use of many more markers, 

increasing the amount and cost of genotyping to a great extent. It should also be noted that the most 

informative marker to use when investigating whether population stratification exists would be those 

that possess large frequency differences between the proposed subpopulations (Campbell et al., 
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2005). It is thought that the so-called ancestry-informative markers that are currently available will 

not be sufficient to detect structure in closely related populations; identification of such markers in 

the Afrikaner population will entail assessing the frequencies of a large number of variants across the 

proposed contributing sub-populations.  

 

In conclusion, the cumulative, preliminary results suggest that the BDNF met66-allele increases the 

risk for developing EO OCD in males, and that the val66val genotype increases the severity of OCD 

in females.  The hypothesis that BDNF may be regulated, at least in part, by estrogen makes for an 

intriguing result, in that one could thus hypothesise that sex-specific estrogen-mediated effects, 

perhaps acting at certain stages of neurodevelopment, may underlie the aetiology of some aspects 

(particularly the age at onset and development of co-morbid tics) of the disorder.  

 

The small sample size remains the most important limitation of the present study and efforts are 

underway to increase the Afrikaner OCD and control sample size, in order to improve the power of 

the study. In addition, given the close relationships between BDNF and serotonin, and BDNF and 

dopamine, it is important to assess the epistatic interactions between these genes, as it is likely that 

susceptibility alleles will act in unison with one another to bring about the clinical phenotype.   
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Table 1. Genotype and allele distributions in OCD and control individuals.   
 

Abbreviations: OCD: obsessive-compulsive disorder.  

 
 
 

Table 2. Summary statistics for YBOCS scores and age at onset of OCD in the total OCD 
sample, and stratified by gender. 

 

Genotype 

Total OCD samplea Male Female 

n median 95% CI n median 95% CI n median 95% CI 

YBOCS 110 21.5 20.0-23.0 56 21.0 18.7-23.3 54 22.0 20.1-23.9 

met66met 6 18.5 13.3-23.7 5 18.0 12.3-23.7 1 19.0 - 

val66met 32 18.0 14.9-21.1 18 20.5 16.8-24.2 14 16.0 10.9-21.1 

val66val 72 22.5 20.9-24.1 33 21.0 17.7-24.3 39 23.0 21.0-25.0 

met66met + val66met 38 18 15.2-20.8 23 18 14.9-21.1 15 16 11.7-21.0 

AGE AT ONSET 102 14.5 12.8-16.2 53 14.0 12.3-15.7 49 16.0 12.8-19.2 

met66met 6 9.5 2.7-16.3 5 5.0 0-11.7 1 45.0 - 

val66met 31 14 10.9-17.1 17 13.0 9.2-16.8 14 16.0 8.8-23.2 

val66val 65 15 13.2-16.8 31 15.0 13.2-16.8 34 15.5 12.2-18.8 

met66met + val66met 37 14 11.1-16.9 22 13.0 8.3-17.7 15 18.0 11.1-24.9 
*:Total OCD sample for whom total YBOCS or age at onset was recorded.  

Abbreviations: OCD: Obsessive-compulsive disorder; CI: confidence interval; BDNF: brain-derived neurotrophic factor. 
 

 

 

  Genotype (%) 

Total 

Allele (%) 

  

nval66val 

(%) 

nval66met 

(%) 

nmet66met 

(%) 

nval66 

(%) 

nmet66 

(%) 

OCD  
73 (65.2) 

33 
(29.5) 

6 
(5.3) 

112 
179 

(79.9) 
45 

(20.1) 

Control 

95 
(67.9) 

43 
(30.7) 

2 
(1.4) 

140 
233 

(83.2) 
47 

(16.8) 

Male OCD 

33 
(57.9) 

19 
(33.3) 

5 
(8.8) 

57 
85 

(74.6) 
29 

(25.4) 

Male control 

25 
(75.8) 

8 
(24.2) 

0 
(0.0) 

33 
58 

(87.9) 
8 

(12.1) 

Female OCD 

40 
(72.2) 

14 
(25.5) 

1 
(1.8) 

55 
94 

(85.5) 
16 

(14.5) 

Female control 

70 
(65.4) 

35 
(32.7) 

2 
(1.9) 

107 
175 

(81.8) 
39 

(18.2) 
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Table 3a. Summary of optimal logistic regression model for case-control status. (χ2

3
 = 6 = 25.6, p = 

0.001). 
 
 

 

 

 

 

 
add = number of met66- alleles in genotype (0, 1 or 2). 

 
 
Table 3b. Modelled simultaneous odds ratios (ORs) for males and female subjects separately. Each 
OR represents the odds of an individual with the given genotype having OCD versus not having it 
relative to the same odds for someone with the val66val genotype. 

.Genotype 
OR 

male female 

val66val 1.000 1.000 
val66met 2.367 0.779 
met66met 5.605 0.606 

 
 
Table 4a. Summary of optimal YBOCS linear regression model.  (F3,106 = 3.746; p = 0.013).   
 
 

 
 
 
 
 
Table 4b. Modelled YBOCS scores for male and female OCD subjects. 

Genotype 

Modelled YBOCS 

score 

Male Female 

val66val 20.49 23.54 
not val66val 19.83 16.07 

 
Table 5a.  Summary of optimal linear regression model of age at onset.  (F5,96 = 3.029; p = 0.0139). 

 Effect SE t-value p-value 

(Intercept) 17.13 1.62 10.58 <0.001 
Female -0.31 2.24 -0.14 0.892 
add -4.57 2.17 -2.11 0.038 
dom 3.33 3.08 1.08 0.283 
Female:add 32.75 9.40 3.49 0.001 
Female:dom -30.11 9.82 -3.07 0.003 

add = number of met66-alleles in genotype (0, 1 or 2); dom = 1 if val66met heterozygote, 0 otherwise. 
 

Table 5b. Modelled ages at onset for male and female OCD subjects. 

Genotype 

Modelled age at 

onset of OCD 

Male Female 

val66val 17.13 16.82 
val66met 15.88 18.21 
met66met 7.98 - 

The single met66met female was grouped with heterozygous females for the modelling, therefore we did not estimate age 
at onset for the met66met female group. 
 

 Effect SE z-value p-value 

(Intercept) 1.10 0.37 2.93 0.003 
Female -2.00 0.48 -4.14 <0.001 
add 0.86 0.43 1.99 0.047 
Female:add -1.21 0.57 -2.13 0.033 

 Effect SE t-value p-value 

(Intercept) 19.83 1.59 12.47 <0.001 
Female -3.76 2.53 -1.49 0.140 
val66val 0.66 2.07 0.32 0.751 
Female:val66val 6.81 3.11 2.19 0.031 

Stellenbosch University  http://scholar.sun.ac.za



 279
 

Table 6. Genetic markers used in “Structure” analysis, indicating the chromosomal location, major 
allele frequency and p-value for HWE test and heterozygosity values for each variant 

 
 

 

 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 

 
 

 
 

 

 
Abbreviations: HWE: Hardy-Weinberg equilibrium; FXIIIB: Factor 13B; TPOX: thyroid peroxidase; DRD3: dopamine receptor 3; DRD1: dopamine receptor 1; 

DAT: dopamine transporter; 5-HT1Dβ: serotonin receptor type 1D beta; ESRα: estrogen receptor alpha; MOG: myelin oligodendrocyte; DLX-6: Distal-less like 
homeobox 6; TPA25: Tissue plasminogen activator Alu insertion;  ADRA1C: Adrenergic receptor α1C; GRIN1: glutamate receptor type 1; BDNF: brain-derived 
neurotrophic factor;  DRD2: dopamine receptor type 2; GRIN2B: glutamate receptor , ionotropic, N-methyl D-aspartate 2B; 5-HT2A: serotonin receptor 2A; 
CHGA: chromogranin A (parathyroid secretory protein 1); GABRA5: gamma-aminobutyric acid (GABA) A receptor, alpha 5; FES: feline sarcomere oncogene; 

PV92: : predicted variant Alu insertion repeat; GRIN2A: Glutamate receptor, ionotropic, N-methyl D-aspartate 2A; ACE: angiotensin-converting enzyme; 5-HTT: 
serotonin transporter; PLCG1: phospholipase-gamma 1; GNAS: guanine nucleotide-binding α subunit of G;;; ABCG1: ATP-binding cassette, sub-family G 
(WHITE), member 1; VNTR: variable number of tandem repeats; SNP: single nucleotide polymorphism. 
 

Marker 

Name 
Location Variant type 

Genbank 

Identifier 

HWE 

 p-value 
Heterozygosity 

FXIIIB 1q31-32 Alu ins/del AY69222.3 0.260 0.343 

TPOX 2p23-2pter VNTR (AATG)n M68651 0.815 0.827 

D2S441 2p VNTR (ATAG)n G08191.1 0.402 0.871 

DRD3 3p21 SNP rs6280 1.000 0.379 

D3S1766 3p21 VNTR (GATA)n G08269 0.337 0.719 

DRD1 5p35.1 SNP (A-48G) X58987 0.143 0.333 

DAT 5q15.3 40bp VNTR M95167 0.608 0.230 

5-HT1Dβ 6q13 SNP rs6296 0.176 0.282 

ESRα 6q25.1 SNP rs9340799 1.000 0.454 

MOG 6p21 VNTR (CA)n BX120002 0.135 0.731 

DLX-6 7q21-22 SNP (intron 1 C-T) AC004774.1 0.316 0.418 

D7S820 7q VNTR (GATA)n AC004848 0.851 0.742 

TPA25 8p12 Alu ins/del AY291060.1 0.073 0.323 

ADRA1C 8p21 SNP cys492arg 0.463 0.419 

GRIN1 9q34 SNP rs10870198 1.000 0.515 

BDNF 11p15.5 SNP rs6265 0.595 0.275 

DRD2 11p23.2 SNP rs1800497 0.590 0.286 

GRIN2B 12p13.3 SNP rs1806201 1.000 0.446 

5-HT2A 13q14-21 SNP rs6311 0.543 0.550 

CHGA 14q32.12 SNP rs735726 0.169 0.264 

GABRA5 15q11 VNTR (CA)n AC131310.3 0.160 0.741 

FES 15q25 VNTR (GATA)n X06292 0.133 0.742 

PV92 16q24 Alu ins/del AF302689.1 0.575 0.237 

GRIN2A 16p32 VNTR (GT)n AF443855 0.923 0.828 

D16S539 16q22 VNTR (GATA)n G07925 0.584 0.839 

ACE 17q11 Alu ins/del AF118569.1 0.729 0.541 

5-HTT 17q11 VNTR AF126506.1 1.000 0.482 

D18S51 18q21.3 VNTR (GAAA)n X91254 0.224 0.856 

PLCG1 20q12 SNP rs8192707 1.000 0.389 

GNAS 20q13.2 SNP rs7121 0.744 0.487 

ABCG1 21q22.3 SNP G2457A 0.499 0.425 
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Table 7. Estimated posterior probabilities of K for the combined control and OCD samples.  
 

 

 

 

 

 

 

 

 

 

 
aThe probability that an individual will occupy a particular cluster (sub-population), given the observed genotype data 
Abbreviation: OCD: Obsessive-compulsive disorder. 

 

K 

Total Sample 

ln P (X|K)
a 

Posterior 

Probability 

(P[K|X])
 a
 

1 -1972.96 0.90 

2 -1977.64 0.01 

3 -1976.12 0.04 

4 -1981.42 0.00 

5 -1975.72 0.06 
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