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1) Introduction 

Let V be a vectorspace and let 5p ~ V (p E P) be finitely many subspaces. How 
big is the modular lattice £(5p I pEP) generated by these subspaces, ie. how many 
subspaces does one obtain by taking arbitrary intersections and sums of 5p's such as 
[(52 (1 (51 + $..3)) + 54] n (51 + 55)? The question is ego relevant in connection with Gross's 
lattice method [G], [KKW] whereby V is a quadratic space, but no further reference to 
quadratic spaces will be made in this article. The answer is as follows. Consider the 
partially ordered set (poset) P = (P, ~) defined by p ~ q :{:} 5p ~ 5q• Then 
1£(5p I p E P)I ~ IM(P)I where M(P) is the so called modular lattice freely generated by 
the poset P. One usually has IM(P)I = 00 but those P with IM(P)I < 00 can be neatly 
characterized (Thm.5). If M(P) happens to be finite then it is a subdirect product of 
2-element lattices V 2 and 5-element lattices M 3 , which ego implies that the upper bound 
IM(P)I (finite or infinite) can always be realized by 1£(5p I p E P)I for appropriate spaces 
V and 5p ~ V. We shall exhibit in detail an algorithm for computing 1M (P) I for any 
fini te poset P (section 6 and 7). 

Before that we look at the related but simpler problem of gescribing the distributive 
lattice V(P) freely generated by P (section 5). Its cardinality is an upper bound to the 
number of sets one can obtain by taking arbitrary intersections and unions of fixed subsets 
5p of a set V (whereby 5p ~ 5q {:} p ~ q). The even easier problems concerning the freely 
generated semilattice S(P), respectively the freely generated Boolean lattice B(P) are 
dealt with in sections 3 and 4. All of these lattices can be viewed as closure systems given 
by a family E of implications. In section 2 we outline an algorithm for calculating the 
cardinality of any closure system given by such a E. 

2) An enumerative principle of exclusion 

For a finite set Co and a "property" P applying to elements of Co denote by N(P) the 
number of x E Co with P(x) (ie. sharing property P). If Pl , ... , Pn are several properties, 
then the well known principle of "inclusion-exclusion" [S, p.65] states that 

(1) N(Pl i\ ... i\ Pn ) = L N(Pi ) - L N(Pi V Pj) + ... ± N(Pl V·· · ~ Pn ) 

l~i~n l~i<j~n 

Unfortunately 2n - 1 many terms N(Pi V Pj V ... V Pk ) need to be added and subtracted 
on the righthand side of (1). Moreover, sometimes there is no easy way to compute the 
terms themselves. We propose a principle of "exclusion" whose basic idea is very simple. 
Namely, starting with Co, exclude iteratively all elements which fail to have property 
Pl , P2 ,. · ·, Pn : 
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Obviously the searched for value N(PI 1\ ... 1\ Pn ) is just ICnl. Observe that this is a 
n step procedure as opposed to 2n ! This sounds too good to be true. Indeed there are 
-some tradeoffs that will be discussed elsewhere (essentially an exponential time problem 
is converted in an exponential space problem, but in a more benign one). Suffice it to say 
that the principle of exclusion outperformed the principle of inclusion-exclusion on many 
occasions. So far I have developed the approach under the restriction that the groundset 
Co is a powerset, ie. Co = P(M). Of particular interest-) is the case where each Pi is the 
property of an associated "implication" A -+ Bi being satisfied. Hereby an implication 
on a set M is a pair of subsets (A, B), written as A -+ B. Let 

--
(3) L := {AI -+ B I , A2 -+ B2,···, An -+ Bn} 

be a family of implications. A subset X ~ M is E-closed if 

In other words, for each i one must have either A 1;. X or Bi ~ X (or both). It is easy 
to see that the family C(E) of all E-closed sets X is closed under intersections, ie. is 
a closure system. The connection between C(E) and Cn in (2) is straightforward. Let 
E := {AI -+ B I ,· .. , An -+ Bn} be a family of implications on M. Put Co := P(M) 
and say that X E Co has property Pi if either A 1;. X or Bi ~ X. Then IC(E)I = 
N(PI 1\ ... 1\ Pn ) = ICnl. 

Before we discuss in more detail how IC(E) I can be computed efficiently, let us indicate 
that this framework fits a lot of applications [W3], [VV 4]. For instance, let !v! be a universal 
algebra, say a semigroup with multiplication (x, y) H x 0 y. Then E := {{x, y} -+ 
{x 0 y, y 0 x} : x, y E .1\If} yields the closure system C(E) of all subsemigroups. Or, let !v! 
be a matroid with family of circuits F ~ P(lv!). Then the family E of all implications 
(A - {a}) -+ {a} (A E F,a E A) yields the closure system C(E) of all flats of .1\1[. Or, 
let E be a family of implications Ai -+ Bi where A ~ M is a set of "attributes" which 
implies .... ) another set of attributes Bi ~ j\1. The resulting lattice C(E) of E-closed sets 
is the so called formal concept lattice [GW]. In section 3, 5 and 6 of this article we shall 
see that also finitely presented semilattices, distributive lattices, or modular lattices, can 
advantageously be conceived and computed as closure systems C(E). 

Now let us point out some computational details of our principle of exclusion (some 
more follow in section 7). vVe shall fix a linear order on our groundset !v!, say iv! := 
{PI, P2, ... ,pd with PI < ... < Pt · Subsets X ~ /v! will be identified with their charact-

*) Yet I am also experimenting with other types of properties Pi, ego yielding an enumeration of all 

linear extensions of a poset, or an enumeration of other sorts of combinatorial objects. How well 

the principle of exclusion competes with existing algorithms in these cases remaill~ to be seen. 

**) More precisely, this means the following. Given a context (G, M, I) with object set, G, attribnte set 

M, and relation I ~ G x AI, a subset A ~ M is said to imply a subset B ~ M if 
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{g E GI(Vm E A)gIm} ~ {g E GI(Vm E B)gI m}. 

eristic functions. Namely, X corresponds to a 2-valued 1"OW r = (1"1"'" 1"t) with 1"i = 

1 (pi E X) and 1"i = ° (pi rt X). More generally, consider rows with entries from {O, 1, 2}. 
By definition, such a 3.:.valued 1"OW r = (1"1,"" 1"t) represents the family of all subsets 
X ~ iVf which satisfy 

(Vl:::;i:::;t) ((1"i=O=>PirtX) and (1"i=I=>PiEX)) 

When 1"i = 2 then both Pi E X or Pi rt X is allowed. For k E {O, 1, 2} define the k-set 
of r as r{k} := {Pi EM: 1"i = k}. Identifying r with the family of X's it represents, we 
see that r is the Boolean interval sublattice {X E P(iVf) : r{l} ~ X ~ r{l} U r{2}} of 
P(lvI). 

Example 1: Let 1vf := {v, w, x, y, z} and 

~:= {{v,w,x} -+ {y,z}, {v,z} -+ {x,y},{w} -+ {x,y}}. 

What is the cardinality of the closure system C = C(~)? We iteratively compute 
Co, C l , C 2, C 3 = C. The closure system determined by ~o = (/) is Co = P(iVf), ie. the 
3-valued row (2,2,2,2,2). The implication {v, w, x} -+ {V, z} holds in X E (2,2,2,2,2) 
iff either {v,w,x} ~ X and (whence) {y,z} ~ X or {v,w,x} 1;. X. The latter case splits 
into the sub cases v rt X, Or w rt X, or x rt X. Therefore C 1 is the union of the four 
3-valued row shown in Figure 1. Note that ego the intersection of the second and the 
third 3-valued row is (0,0,2,2,2). But in order to get the cardinalities ICkl more easily, 
it will be necessary to have disjoint 3-valued rows. This can be achieved as in Figure 2, 
which represents C 1 as a disjoint union of 3-valued row (check that). Generally 3-valued 
rows rand s are disjoint iff there is an i with (ri = ° and Si = 1) or (ri = 1 and Si = 0). 
By "inforcing" the implication A2 -+ B2 , ie. {v,z} -+ {x,y}, upon the 3-valued rows of 
Figure 2, we shall now derive a decomposition of C 2 as disjoint union of 3-valued rows 
(Figure 3). The implication {v, z} -+ {x, y} clearly holds in the set M represented by the 
first row of Figure 2. It also holds in all X E (0,2,2,2,2) since v rt X for all these X. 
Therefore the first two rows of Figure 2 carryover to Figure 3. The third row of Fig. 2 is 
more cumbersome, because {v, z} -+ {x, y} only holds for some X E (1,0,2,2,2). In order 
to resolve that problem we split (1,0,2,2,2) "with respect to" the elements z E A2 : Thus 
(1,0,2,2,2) is the disjoint union of (1,0,2,2,0) and (1,0,2,2,1). Now {v,z} -+ {x,y} 
holds in all of (1,0,2,2,0) (why?), and (1,0,2,2,1) can be dealt with easily. Namely, 
because {v,z} ~ X for all X E (1,0,2,2,1), only those X with {x,y} ~ X will survive. 
So (1,0,2,2,1) becomes (1,0,1,1,1). Summarizing, the third row of Fig. 2 is replaced 
by the third and fourth row of Fig.3. Finally, look at the fourth row of Fig. 2. Because 
{x,y} 1;. X for all X E (1,1,0,2,2), the implication {v,z} -+ {x,y} can only hold for 
the X's with {v,z} 1;. X. Hence (1,1,0,2,2) becomes (1,1,0,2,0) in Fig. 3. We leave 
it to the reader to verify that enforcing the last implication {w} -+ {x,y} results in the 
3-valued rows shown in Fig.4. The cardinality of a 3-valued row r is obviously 2m where 
m := Ir{2}1. Hence ICI = 2° + 21 + 23 + 22 + 2° = 16. .-
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(1,1,1,1,1) 
(0,2,2,2,2) 
(2,0,2,2,2) 
(2,2,0,2,2) 

Figure 1 

(1,1,1,1,1) 
(0,2,2,2,2) 
(1,0,2,2,2) 
(1,1,0,2,2) 

Figure 2 

(1,1,1,1,1) 
(0,2,2,2,2) 
(1,0,2,2,0) 
(1,0, I, 1, 1) 
(1,1,0,2,0) 

Figure 3 

A diagram of this closure system C = C(E) of E-closed sets is given below. 

{11', W'»(', Y ) to} 

~ \tI,,c, y, 1.} 

Fig. 5 

3) Semilattices and lattices freely generated by posets 

(1,1, I, I, 1) 
(0,1,1,1,2) 
(0,0,2,2,2) 
(1,0,2,2,0) 
(1,0, I, 1, 1) 

Figure 4 

All of section 3, 4 and 5 is folklore, yet may not readily be found in the form presented 
here . Let us first consider semilattices, say join semilattices 5 = (5, v). If 5 is generated 
by m elements SI, ... , Sm then trivially 

5 = {V Si I r;; {l, .. ·,m}, Ii 0}, 
iET 

whence 151 ::; 2m 
- 1 is finite. Thus the "word problem" for finitely presented semilattices 

5 is trivial. It is however still interesting to see how to compute 151 efficiently. Assume 
that E is a family of join semilattice relations V Ai 2 V Bi on a seE" j\;J of symbols 
(Ai, Bi r;; lvJ, 1 ::; i ::; n) . Thinking of E as a set of implications Ai ---7 Bi the following 
holds. 
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Theorem 1: The join semilattice S(2:) freely generated by M under the set of relations 
2: is up to isomorphism given by (C(2:) - {0}, v). 

As always for closure systems, the supremum of Xl, X2 E C(2:) is given by Xl v X2 = 
Xl U X 2. Thus finitely presented semi lattices can conveniently be computed with the 
algorithm of section 2. The precise definition of S(2:) (as an algebra finitely presented by 
generators and relations), the easy proof of Theorem 1, and how Theorem 1 ties in with 
the more general finitely presented commutative semi-groups is discussed in [W5, 1.4.4]. 
See also [WI, Thm.5]. 

- --
Example 2: How big is the V-semilattice S(2:) freely generated by v, W, x, y, z subject 
to the relations v V W V x ~ y V z and v V z ~ x V y and W ~ x V y? According to Example 
1 and Theorem 1 one has IS(2:)1 = IC(2:)I- 1 = 15. One obtains a diagram of S(2:) by 
dropping ¢ in Fig.5 and by ego writing v V x V y V z for {v, x, y, z}, etc. Of course ego 
v V x V y V z = v V z because of v V z ~ x V y. Generally we chose a minimal representation 
for all elements of S(2:) in Fig.6 below. 

Fig. 6 

It is well known that each join semilattice S is isomorphic to a subsemilattice of (P(M), U) 
where P(M) is the powerset of some appropriate set M (set representation of S). In the 
finite case, taking i\lJ as the set of meet·) irreducibles of S, an injective homomorphism 
S -t (P(X) , U) is given by a H {m E Mlm f.. a}: 

*) Meaning "meet irreducible" in the lattice S U {a}. 
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For instance, the sets corresponding to v, Z, and v V z are {3, 4, 6, 8}, {I, 2, 5, 6}, anci ­
{I, 2, 3, 4, 5, 6, 8} (their union). Existing infima need not correspond to intersections of 
sets (example 7). One can show [WI, Thm.g] that the above !vI has smallest possible 
cardinality. 0 -~=~ 

The definition of S(I;) is similar to the definition of the (join) semilattice S(P) freely 
generated by the poset P. The latter is the unique (up to isomorphism) semilattice S witli-~-t­
the following properties. 

(i) There is a generating set P' ~ S of S such that pI endowed with the induced order 
of (S, ~) is isomorphic to (P, ~). 

(ii) Assume So is a semilattice generated by Q' ~ So and 1> : p' -t Q' is a surjective 
order preserving map, ie. x ~ Y => 1>(x) ~ 1>(Y) for all x, y E pI . Then 1> extends ==:--+ 

to a surjective homomorphism <I> : S -t So of semilattices (ie. <I> r pI = 1». 

Example 3: 'What is the join semilattice S(P) freely generated by the poset 

tNd 

(P,~) := (), b 7 

Setting I; := { {c} -t {a, b}, {d} -t {b}} it comes as no surprise that 

S(P) (C(I;) - {0}, V) 
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Let us say a few words about the lattice £(P) freely generated by the poset P. It is also 
defined by (i) and (ii) (substitute everywhere "semilattice" by "lattice"). One can show 
[Wi3] that £(P) is finite iff P does not contain a subposet*) Q which is isomorphic to 

either 1 + 1 + 1 ( ... ) or 2 + 2 (I I ) or 1 + 4 (. I) 
It is an exercise to show that there are exactly? posets P satisfying these conditions. For 

Q. I ~ instance P := 1 + 2 =. p is one of them and 

£(P) = a. 

4) Boolean lattices freely generated by posets 

The Boolean lattice B(P) freely generated by the poset P is defined analogous to S(P) and 
£(P). Recall that each finite Boolean lattice B is isomorphic to a powerset lattice P(X). 
If IX I = t, then B has t atoms and cardinality 2t. In order to describe B(P) for finite 
P first observe that the Boolean sublattice B(AI' ... , As) of P(X) which is generated by 
the subsets AI,' .. , As E P(X) by distributivity and De Morgan's laws equals 

(5) B(AI' ... ,As) = {u A~l n ... n A~' I ~ {O, 1 }s} 
~E[ 

*) Analogous to (i), any subset Q ~ P of a poset P = (P,:::;) yields a subposet (Q, :::;') by just restricting 

the order (ie. :::;' = :::; n(Q x Q)). 
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Hereby 6 = (61, •. " 6s) is a 0, I-vector and AI := Ai, A? := Ai' From (5) follows at once 
that the t ::; 2S many atoms of B(Al, ... ,As) are exactly the nonempty subsets of type 
Afl n .. · n A~'. 

Example 4: Let X := {a, b, ", i}.How many atoms has the Boolean lattice B(Al, A2, A3, A4) 
~ P(X) generated by Al .- {a,c,d,j}, A2 := {b,e,j,i}, A3:= {a,b,c,d,e,g,i} and 
A4 : = {e, g, h} ? 

a b c d e j 9 h ~ 

A l = 1 0 1 1 0 1 0 0 0 
A2 = 0 1 0 0 1 1 0 0 1 
A3= 1 1 1 1 1 0 1 0 1 
A4 = 0 0 0 0 1 0 1 1 0 

Here the characteristic vectors of the subsets Ai ~ S are listed as the rows of a 4 x 9 
matrix. Then the number t of equivalence classes of equal columns obviously is the number 
of (61,", 6s ) with Afl n .. nA8

1 i= 0. For instance, the three equal columns labelled by 
a, c, d yield (61,62 ,63 ,64) = (1,0,1,0) and A~ nAg n Aj n A~ = {a, c, d} i= 0. In our case 
t = 6 whence IB(A l ,A2,A3,A4)1 = 26 = 64.0 

From the above one immediately derives 

Corollary 2: Let IXI = r be fixed. Pick s (not necessarily distinct) sets Ai E P(X). 
2s-12s-2 2S -(r-l) 

The probability that B(A l ,", As) = P(X) equals -- . .. . . 
2s 2s 2S 

For instance, the probability that s = 5 random subsets Ai ~ X := {l, 2, 3,4, 5} generate 
the whole powerset is 0.72. When all Ai ~ {I, 2,,,, 10}, the probability is 0.21. vVhen 
r = 2s, the probability for IB(A l ," , As)1 = IP(X)I = 2(2') is still> O. Thus the inequality 
t ::; 2S mentioned after (5) is sharp. The case t = 2S can also be considered as the special 
case "(P,::;) = antichain" in the Theorem below. Recall that an order ideal of a poset 
(P, ::;) is a set I ~ P such that x E I implies y E I for all y ::; x. Dually an order filter is 
a set F ~ P such that x E F implies y E F for all y ~ x. 

Theorem 3: Let (P,::;) be a finite poset. Then the Boolean lattice B(P) freely generated 
by (P,::;) has exactly t atoms, where t is the number of order filters (/) ~ F ~ P. 

Proof: Assume w.l.o.g. (P,::;) is ({I, 2,"" s},::;) and that ({AI,"', As},~) is any fixed 
set system such that i ::; j ¢:> Ai ~ Aj for all i, j E P. Obviously Afl n .. nA~' can be 
nonempty only if "Oi = 1 => 6j = I" whenever i ::; j. Hence the number of 6 = (61,"', 6s ) 

with Afl n· .. n A~' i= (/) is at most the number t of order filters of P. On the other hand, 
choosing ({AI,' . " As },~) appropriately (as in Example 5 below), one can indeed obtain 
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t nonempty sets Aft n .. nAO' .• 

Example 5: What is the size of the Boolean lattice B(P) freely generated by 

1~ 
(P, ;:;):= ~ ~ \ 5 ? 

As opposed to Example 4 here the 0, I-matrix is generated by concatenating the columns. 
Namely, if we list the characteristic vectors of the t = 13 order filters of (P,;:;) as the 
columns of a 5 x 13 matrix, then the sets AI, A2 , A3, A4 , As ~ {a, b,"', m} corresponding 
to the rows yield a set system isomorphic to (P,;:;) (check) and all intersections Afl n 
A~2 (l A~3 n A~4 n A~5, where b is a column of the matrix, are nonempty (as in Example 
4). Thus IB(P) I = 213 = 8192. 

a b c d e f g h 2 j k l m 
A 1 = 0 1 0 1 1 1 1 1 0 1 1 1 1 
A2 = 0 0 1 1 0 1 1 1 1 1 1 1 1 
A3 = 0 0 0 1 0 0 0 1 0 1 0 0 1 

o 

A4 = 0 0 0 0 1 0 1 1 0 0 0 1 1 

As = 0 0 0 0 0 0 0 0 1 1 1 1 1 

5) Distributive lattices freely generated by posets 

Let (P,;:;) be a poset. The distributive lattice freely generated by P is the unique dis­
tributive lattice V(P) with the two obvious properties analogous to (i) and (ii) in section 
3. The distributive lattice of all order ideals I of (P,;:;) (with h V 12 = II U hand 
h !\ 12 = II n 12) is denoted by I d(P, ;:;). Let J = J(V) be the set of nonzero join irre­
ducibles of the finite distributive lattice V. Then (J,;:;) with the partial order inherited 
from V is a poset and V ~ Id(J,;:;) (Birkhoff's Theorem) . The isomorphism is given by 
a H J(a) := {p E Jlp ;:; a}. Dually the family of all order filters F of (P,;:;) is denoted 
by Fil(P). The family Fil*(P) := Fil(P) - {0, P} of proper order filters, ordered by 
inclusion, is generally not a lattice, just a poset. Compare the role of the order filters in 
Theorem 3 with the role in Theorem 4 below. This gives a feeling of why B(P) is much 
bigger than V(P). 

Theorem 4: Let (P, ;:;) be a finite poset. Then the distributive lattice V(P) freely 
generated by P is isomorphic to Id(Fil*(P), 2). 

Sketch of proof: 'liVe omit to verify the (by the freeness of V(P) plausible) fact that 
1\ S E V(P) is join irreducible for each proper nonempty subset S C P (note that 
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/\ S = 0 and /\ 0 = 1). By distributivity each x E V(P) is a finite join of such /\ S. 
So J := {/\ s: S ~ P anti chain, 0 i= S i= P} ~ V(P) is the poset of nonzero join 
irreducibles, whence V(P) ~ Jd(J, ~). Consider the partial order on J' := 

{S: S ~ P antichain, 0 =I S =I P} defined by S ~' T : {:} (\I t E T)(3s E S) s ~ t. 
Obviously J' --+ J: S t-t /\ S is order preserving. Assume that S i' T in J'. Then 
there is a to E T with s i to for all s E S. Let V 2 := {O, I} be the two element 
lattice. The surjective order preserving map 1> : P --+ V 2 , ¢(x) := 1 (x ~ s for 
some s E S), ¢(x) := 0 otherwise, has by (ii) in section 3 a homomorphic extension 
<1> : V(P) --+V2 with <1>(/\ S) = I, <1>(/\ T) = O. Hence /\ S i /\ T in (J, ~). So (J,~) is 
order isomorphic to (J', ~'). But (J', ~') is ' clearly order isomorphic to (Fil·(P), 2) .• 

'NJ 
Example 6: Let (P, ~) := Q ". How does V(P) look like? One has 

(Fil· (P), 2) 

Therefore V(P) Jd(Fil·(P), ;2) 

The join irreducibles (0 included) of V(P) are exactly the infima of the generators a, b, c, d, 
the generators themselves being doubly irreducible. Observe that ego (a A d) V b can also 
be written as (a V b) A d = (a A d) V (b A d) = (a A d) V b because b < d. Not surprisingly 
the freely generated semilattice S(P) of Example 3 is a join subsemilattice of V(P). Like 
every finite distributive lattice V(P) allows for a set representation which is obtained by 
labelling the nonzero join irreducibles p with say 1,2", and mapping each x E VCP) to 
J(x) (rightmost diagram). As in Example 2 this is a minimal set representation. 0 

Let V be any finite distributive lattice. Recall that L(l) := V 2 = {a, l} is the only sub­
directly irreducible factor of V. More precisely, the meet irreducible cOllgruence relations 
Oi ~ V x 'V , (i ' ~ s) all have a factor lattice V/Oi ~ V 2 . These Oi = Op.J'ue in bijection 
with the join irrcducibles p E J(V) . The two congruence classes of Op are {x E VI x ~ p} 
which is mapped to 1 under the canonical epimorphism <"Pi: V -> V 2 , anel {x E Vlx i p} 

" -
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which is mapped to 0 under <Pi. Because V ~ '018 1 X ... x V 18s the structure of V is 
determined as soon as we know the <Pi-images of some generators of 'O. 

Example 7: Consider V = 'O(P) of Example 6 with generators a, b, c, d. The canonical 

epimorphisms <Pi := (I>~l) : 'O(P) --+ M~l) (corresponding to p = a, b, c, d, a /\ d, c /\ d) map 

the generators as follow's (eg. a on top in M~f) means <p~l)(a) = 1, and b below means 

<P~l)(b) = 0): 

(6) 
b,(, ~ C. J <\,(,,,( c.~ CI"c. 

J. 1 1 1 I 1 
q q,b,J 4II,~,C. b q,b 

I 

M~l) vt(l) 
) 2 M~l) vt(l) 

) 4 
vt(l) 

) 5 M~l) 

Suppose only the (I>~l)-images (6) of the generators a, b, c, d of the (unknown) distributive· 

lattice V were known. Because V ~ Mt1
) X M~l) x .. XM~I) is a subdirect product it 

follows that 

1 2 3 4 5 6 

a H (1, 0, 0, 0, 1, 0) 

(7) 
b H (0, 1, 0, 0, 0, 0) 
c H (1, 1, 1, 0, 1, 1) 
d H (0, 1, 0, 1, 1, 1) 

a/\d H (0, 0, 0, 0, 1, 0) 
c/\d H (0, 1, 0, 0, 1, 1) 

Check that the order among the 0, I-vectors is isomorphic to the order of the poset 
{a, b, c, d, a/\ d, c/\d} given in Example 6. In fact the 0, I-vectors are just the characteristic 
vectors of some sets in the set representation of 'O. Generally, the set K of 0, I-vectors 
corresponding to the generators, and all infima of the latter comprises the set J('O) ~ 
)vt~l) x·. XM~I), whence allows to compute V as the ideal lattice Id(K, ~). 

If V = 'O(P) is freely generated by a poset (P,~) then anothEr method works which will 

be generalized in section 6. For 1 ~ k, h ~ s let f3k,h : M~l) --+ M~l) be the biggest among 

the order preserving maps which "map labels below labels". For instance f3 : Mil) --+ 
)vt~l) : 1 H 0, 0 H 0 maps labels below labels: f3(a) = f3(I) = 0 ~ a, f3(b) ~ b, f3(c) ~ 
c, f3(d) ~ d. However f3 is (componentwise) smaller than f31,5 : M~l) --+ )vt~l) : 1 H 1, 
o H 0, which obviously is the biggest such map . Consider 
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PI '- ( ,81,1(1), ,81,2 (1), ,,81,6(1) ) (1,0,0,0,1,0) 

P2 '- ( ,82,1(1), ,82,2 (1), ,,82,6(1) ) (0,1,0,0,0,0) 

P3 .- ( ,83,1(1), ,83,2(1), , ,83,6 (1) ) (1,1,1,0,0,1) 

P4 '- ( ,84,1 (1), ,84,2(1), , ,84,6(1) ) (0,1,0,1,1,1) 

P5 .- ( ,85,1 (1), ,85,2(1), , ,85,6 (1) ) (0,0,0,0,1,0) 

P6 .- ( ,86,1 (1), ,86,2 (1), ,,86,6(1) ) (0,1,0,0,1,1) 

Thus one obtains the same result as in (7). 0 

6) Modular lattices freely generated by posets 

All of the fo-Ilowing can be found in [HvVJ, [Wi1], [Wi2] but proofs being replaced by 
telling examples our section 6 may better serve as a first introduction into the topic. Let 
(P, ~) be a poset. The modular lattice freely generated by P is the unique modular lattice 
M (P) with the two obvious properties analogous to (i) and (ii) in section 3. Usually 
M(P) is infinite even for finite P, but at least one can say precisely when it is finite: 

Theorem 5 [Wi2]: The modular lattice M (P) freely generated by the finite poset (P,~) 
is finite iff P does not contain a subposet isomorphic to either 1 + 1 + 1 + 1 or 1 + 2 + 2. 
In the latter case all subdirectly irreducible factors of M (P) are isomorphic to 

1), = I or Nh = <!> . 
Example 8: For (P,~):= J i >''-If the poset induced by {a, b, c, d, f} is 

£\V b. " c 

isomorphic to 1 + 2 + 2. Hence M (P) is infinite. On the other hand, 

J~f (PI <) := ,- a c. does neither contain a subposet 1 + 1 + 1 + 1 nor 1 + 2 + 2. 

Hence M(P I
) must be finite. 0 

Our aim is to describe the structure and the computation of M(P) in case IM(P)I < 00. 

This will be done in two steps. 

First step. Let V be a fixed variety [BS] of modular lattices and let (P, ~) be a finite poset. 
The modular lattice freely generated by P within V is the unique modular lattice M (P, V) 
with the obvious properties (the modular lattices Mo in (ii) are restricted to come from 
V). For instance, if V is the variety of all modular lattices then M (P, V) = M (P), and 
if V is the variety of all distributive lattices then M(P, V) = 1J(P). A variety V is locally 
finite [8S, p.69] iff IM(P, V)I < 00 for all finite posets (P, ~). This ego happens, and we 
shall only consider that case, whcn V contains only finitely many subdiiectly irreducible 
members £(i)(i S t) which all are finite. In particular, denote by V3 the variety generated 
by £(1) := 1J2 and £(2) := )\;{3, ic. V3 is the class of all subdirect products with factors 
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isomorphic to £(1) or £(2). By Theorem 5 one has M (P) ~ M (P, V3 ) whenever M (P) 
is finite. Hence we know the structure of all finite M(P) if we know the structure of all 
M(P, V3). 

Example 9: Let P:= ~ ~ 1: . How big is M (P) and what are vector spaces A, B ~ 

v, c ~ D ~ V such that £(VIA, B, C, D) ~ M(P)? ByThm.5 M(P) is a finite subdirect 
product of factors 1)2 and M 3 . Applying the algorithm discussed below one obtains the 
following 13 subdirectly irreducible factors (the images of the generators a, b, c, dE M(P) 
under the canonical epimorphisms are indicated): 

a 

, A(I) 
jV1 1 

c. 

, A (I) 
jVI2 

a. J 

From this one can compute Ij\lt(P)1 = 138 (as discussed later). Furthermore, let k be any 
field and let V be a k-vectorspace with basis el, e2, ", e16. Say (el), (e2), (CI + e2), (el' e2) 
correspond to a, b, c, d in Ml l

), and (C3), (e4), (e3 + e4) correspond to a, b, c = d in M~), 
etc. Setting 

it is clear that £(VIA, B, C, D) ~ j\lt(P), ie. £(VIA, B, C, D) is a linear l'epr'esentation 
of M(P). In fact V = (el' e2) El1 (e3, e4) El1 (es, e6) El1 (e7) El1 .. El1(CI6) is a decomposition 
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of V which "induces" a subdirect decomposition of £(VIA, B, G, D) in the sense that ego 

{X n (el, e2)IX E £(VIA, B, G, D)} ~ M3 (more precisely ~ M~l»). 

More challenging than the above is the converse problem. Namely say V' := (el, e2, .. , e7), 
A':= (el,e2,eS,e7),B' := (e3,e4,e6), G/ := (el+e3,e2+e4,eS+e6,e7),D':= (el,e2,e3,e4, 
eS+e6, e7)' Because {A', B', G' , D/} ordered by ~ is isomorphic to 1+1+2, the lattice £ := 

£(V'IA', B', G' , D') must be an epimorphic image of the 138-element lattice J\..1(l + 1 + 2). 
Because each of the subdirectly irreducible factors of £ is thus acyclic (namely ~ 'D2 or 
~ M3 in our case) it follows from [HvV, Thm.7.3] that the subdirect decomposition of £ 
must be linearly induced by some decomposition V = Vl EB V2 EB .. EB Va. If the whole lattice 
£ is given, the subspaces Vi can be found according to [HvV]. It would be interesting 
to know how to proceed if only the generators (partially ordered by ~) of some finite 
lattice of subspaces are known! For instance, in our case it is impossible that any nonzero 
Vi ~ V induces a subdirectly irreducible factor ~ Mi~) because A' n B' = {O} implies 
that Vi n A' = Vi n B' = Vi cannot occur. vVhether or not any nonzero Vi ~ V can induce 
a subdirectly irreducible. factor ~ M~l) is a priori not so clear. The reader may verify 
that V = (el,e2,e3,e4) EB (eS,e6) EB (e7) does in fact induce the subdirect decomposition 
of £ into its factors Mil), M~l), and M~2). 0 

Second step. More generally than needed in the first step we shall clarify the structure of 
M (P, V) for all locally fini te varieties V (of the mentioned type). To do so we first need 
to review some structure theory [HvV], [W2] of arbitrary finite mod ular lattices J\..1. 

Other than in the distributive case the poset (J(M),:::;) does no longer determine M 
uniquely. Generalizing M3 in Theorem 5 we denote by Mn the length two modular 
lattice with n atoms. An element x E M is a Mn-element if there is a length two interval 
[xo, x] ~ J\..1 n (n 2: 3) which contains all lower covers Xi -< x (1 :::; i :::; n). A line 
corresponding to a fixed Mn-elemcnt x E M is a n-element subset I! = I!x = {Pl: ··,Pn} ~ 
J(M) such that I! n (J(xJ - J(xo)) = {PJ for all 1 :::; i :::; n. A base of lines of a 
finite modular lattice M is a family A of lines I!x with exactly one line corresponding to 
each Mn-element x E M. Note that A is empty iff M = 'D is distributive. Generally 
)\..1 admits several bases of lines A but each fixed A, together with the partial order on 
J(M), determines M uniquely in the following way. An order ideal I of (J(M),:::;) is 
called A-closed if for aliI! E A one either has II! n J(J\..1) I :::; 1 or I! ~ J(M). It follows at 
once that the family C(J(M, A) of all A-closed order ideal of J(M) is a closure system. 
According to [HW, Thm.2.5] C(J(M, A) as a lattice is isomorphic to M. Let us illustrate 
this and further general facts by way of a concrete example. 
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Example 10: Consider the modular lattice below. 

Sk 9M 

2E 

There are six jVb-elements, namely IG, 2[(, 7G, 11L, 7 N, 13N, and one jvLt-element 4M. 
One possible base of lines /\ consists of the seven lines 
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fiG '- {IB, IC, ID} 

f2K '- {2E, 2F, ID} 

f7G '- {2B,3C,4D} 

(8) fllL '- {8L, 6L, 4D} 

f7N .- {2E,3L,4J} 

f l3N '- {5K, 8L, gAl!} 

f 4tl;{ 
--

'- {IB, 4H, 4I, 4J} 

For instance for x := 7N the interval [xo, xl = {xo, XI, X2, X3, x} ~ M3 is {7G, 7 K, 7 L, 7lvI, 
7N}. One has 2E :::; 7K but 2E i 7G, 3L :::; 7L but 3L i 7G, 4J :::; 7M but 4J i 7G. 
Another admissible line corresponding to 7N would have been f~N := {2F, 3L, 4H}. The 
partial linear space produced by 1\ is 

(9) (J(M), 1\) = 

Let I be an order ideal of (J(M),:::;) of the special type I = J(a) = {p E J(M)lp :::; a} for 
some a E M (instead of M one may as well imagine any finite modular lattice). It is clear 
that such an order ideal is I\-closed: Suppose f = {PI, P2, ", Pi .. } is a line from 1\, say 
corresponding to the Mn-element x. If IfnII ~ 2, say PI,P2 E I, then trivially PI VP2 :::; a 
but also') PI VP2 = x. Hence Pi :::; X :::; a and f ~ I. The nontrivial part of [HvV, Thm.2.5l 
consists in showing that every I\-closed ideal I ~ J(M) must be of type I = J(a) for 
some a E M. According to [HvV, p.20j the s subdirectly irreducible factors M(i) of any 
finite modular M correspond bijectively to the connected components (definition clear) 
of any base of lines 1\. Our M happens to have s = 2 subdirectly irreducible factors 

( 10) J 

*) This is an easy exercise. Moreover from P I V P2 = x follows that 1£ n e'l :s 1 for all £ f. £'. Indeed, if e 
corresponds to x anel e' to y then PI, P2 E en e' would yield the contradiction x ='IJI V P2 = y. 

Structures (J, /\) consisting of a set J of "points" and a set /\ of "lines" e <; J such that 

e f. e' => Ie n e'l :s 1 are sometimes called partial lineal' spaces [MI · 
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For instance 3 V 9 = 12 in M(l), L V iV/ = N in M(2), and indeed 3L V 9M = 12N in 
M. Consider the canonical epimorphisms <I>(l) : M -t M(1) : 1A H 1, .. , 13N H 13, and 
<I>(2) : M -t A1(2) : 1A H A, ", 13N H N. Fix x E M(l). The preimage of x under <I>(l) 

is a sublattice of M, in particular {y E MI<I>(1)(y) = x} has a smallest element </>(l)(x). 
For instance {y E MI<I>(1)(y) = 3} = {3C,3G,3L} and </>(1)(3) = 3C. One can show 
that generally </>(i) : M(i) -t M (1 :::; i :S s) is a V-homomorphism and that J(M) is 
partitioned as 

(11) J(M) = ~ </J(i)(J(M(i))) 
l::;i::;s 

Furthermore, let /\(i) be a base of lines for M(i) (1 :S i :::; s). Then a base of lines /\ for 
M ca-n be buIlt as 

(12) /\:= {</J(i) (e) I 1 :S i :S s, e E /\(i)} 

Hereeg. /\(1):= {{2,3,4},{4,6,8},{5,8,9}}and/\(2):= {{B,C,D},{D,E,F},{B,H,I,J}, 
{E, J, L}} are bases of lines of M(l) respectively M(2) (see (10)) and the via (12) derived 
/\ happens to coincide with the base of lines in (9). 

There is more to subdirect products M ~. M(1) X .. X)\;f(s) than meets the eye (Wi1]. 
For all 1 :S i,j :S s set {3(i;j) := <I>(j) 0 </>(i) : M(i) -t M(j). Trivially all {3(i;j) are 
V-homomorphisms and it is an exercise to verify that 

(13) (\I 1:::; i,j,k:S s) {3(i;k)? {3(j;k) o {3(i;j) 

(and that {3(i; i) is the identity map on M(i) for all 1 :S i :::; s). Conversely, given any 
family {3(i;j) : )\II(i) -t M(j) (1 :::; i,j :S s) which satisfies (13), one can construct·) a 
subdirect product M ~ M(1) x .. xM(s) such that <I>(j) 0 </>(i) = {3(i;j). For our M one 
has 

(14) 

] 

Thus ego {3(1; 2)(5) = {3(1; 2)(10) = J(. In the other direction 

*) A V-generating set of )Vf is given by the tuples (,B(ij l)(a), .. , ,B(i; i)(a),··· ,,B(i; s)(a)) where 1 ::; i ::; s 
and a E )V/(il. 
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5 

(15) 

For example ({3(2; 1) 0 (3(1; 2))(11) = (3(2; I)(L) = 3 ~ 11. Generally (3(2; 1) 0 (3(1; 2) ~ 
(3(1; 1) = id and (3(1; 2) 0 (3(2; 1) ~ (3(2; 2). 0 

Let 1\ be a base of lines of a finite modular lattice M. One can immediately write 
down a family L: = L:(M) of implications such that the I\-closed order ideals of J(M) 
coincide with the I:-closed subsets of J(M). Just take L: as the fami.\y of all implications 
{p} --t J(p) (p E J(A1)) and {p,q} --t € (e E 1\, p -=J:. q E e) . Then trivially C(L:) = 
C(J(M,I\) ~ M, whence IMI = IC(L:)I can be computed with the algorithm of section - ----,f:-

2. (As to an "optimal" family E see section 7.) 

Suppose now M := M (P, V) but only (P,~) and the subdirectly irreducible members 
.c(1), ... ,.c(t) of V are known! How can one from this information obtain a family E = 
L:(P, .c(I), .. , .c(t)) with C(E) ~ M? The recipe consists of the following four steps. 

1. A labelling of .cO) with the elements of P is an order preserving map). : P --t .c(i) 

such that ).(P) ~ .c(i) generates .cO). Two labellings ). and X of .c(i) are equivalent ~ 
if there is a lattice automorphism Q : .c(i) --t .c(i) such that X = Q 0 A. Now for each 
1 ~ i ~ t determine a maximal family _ _ 

(16) M (i) '= (r(i) \ (i)) M(i).= (r(i) d i)) 
l' J..." /\ l' 2' J..." /\2 , M (i) '= (r(i) \ (i)) 

, s.' L, As, 

of non-equivalent labellings of .cO) . The s := SI + .. +St lattices underlying the M~i) 
will turn out to be the subdirectly irreducible factors of M(P, V). It remains to find 
the maps (3(-.) in (13) which determine the fine stru'cture of M(P, V). 

2. Call (3 a morphism between M~i) and M~) if it is a V-homomorphism (3 : .c(i) --t .c(j) 
such that 

(17) (Va E P) (3().~i\a)) ~ A;()(a) 

One verifies easily that there is a biggest morphism (3( i, k; j, h) between M~i) and 

M;() (meaning that (3(i, k; j, h)(x) 2 (3(x) for all morphisms (3 : M~i) --t M~) and 
all x E £0)). Determine (3(i, k;j, h) for all 1 ~ i,j ~ t and all 1 ~ k ~ Sj, 1 ~ h ~ 
sJ. 

3. For each fixed i E {I, 2,' . t} and k E {I, 2,' . sJ let p, q . .. be the nonzero join 

irreducibles of the lattice underlying )vt~i) and write down 
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<p~i)(p) = (j3(i, k; I, 1)(p), ... , j3(i, k; 1, Sl)(P),"" j3(i, k; t, St)(p)) 

(18) <p~i)(q) = (j3(i, k; 1, 1)(q),···, j3(i, k; 1, Sl)(q),···, j3(i, k; t, St)(q)) 

One can show that the s-tuples (s = S1 + .. +St) in (18) are indeed the images under 

<p~i) : M~i) 4 M (P, V) of P, q . '. Recall that <Pki) yields the smallest preimages of 

the canonical epimorphism <Pki ) : M(P, V) 4 Mki
). In view of (11) the s-tuples in 

(18) constitute the set J(Jvt(P, V)). 

4. Because of (18) and because the partial order of each £(i) is known, we know the 

partial order of J(Jvt(P, V)). Assume Mki
) has a base of lines /\ki

) (1 S; i S; t). We 
. know 'see (12)) that a base of lines /\ for M (P, V) is then given by 

/\ := {<p~i)(e)ll S; i S t, 1 S; k S; Si, e E /\~i)} 

As explained before, the knowledge of /\ and the partial order on J (M (P, V)) yields 
immediately a family E of implications such that C(E) ~ M(P, V). 

If V is the variety of all distributive lattices then M(V, P) = V(P). The only subdirectly 
irreducible member of V is £(1) = V 2 which via the labelling process 1 yields the copies 
M~1), ... , Jvt~1) (see (6) of Example 7). As to step 3, we wrote j3h,k for 13(1, h; lk) at the 
end of Example 7. The following example illustrates the steps 1,2,3,4 for more general 
locally fini te varieties V. 

Example 11: Let V be the variety generated by 

1'(1) '- M .- ~'\ (. ~ 
L . - 33.-

, ~ It 
't 

o 

The two further subdirectly irreducible members of V are 

1 

[pi:=.M, = ,~, and 

Consider the poset 

a. • 

How does the modular lattice Jvt(P, V) look like? As to step 1, cOllsider the fom functions 
'\k: P 4 £(l) below (eg. A1(a) = 3, A1(b) = 5) : 
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l 

(19) 
e b b 

Because of b ~ e and Al(b) i Al (e) the function Al is not order preserving. The A2 is order 
preserving but A2(P) 75 7 does not generate .e(l) (generally the doubly i1Teducibles must 
always be contained in A(P)). The A3 is both order preserving and A3(P) generates .e(1). 

Hence A3, and similarly A4, qualify as labellings of .e(l) . The function a : £(1) ~ .e(1) 

which switches 2 and 3, switches 6 and 7, and leaves the other elements fixed, is an 
automorphism of £(1) and A4 = a 0 A3' Hence A3 and A4 are equivalent. The reader may 
verify that the two labellings Mil), M~l) of £(1) exhibited in (20) are non-equivalent, and 
that each labelling of .e(l) is equivalent to one of them. The same holds for the 7 labellings 
Mk2

) of .e(2) and the 16 labellings Mk3
) of £(3) shown in (20). 

(20) 

b 

Mil) M~t) 

b c. J ~ 4d b~J ~ c;t b c. J'~C ~- ~c 
M~2) M~2) M~2) M(2) 

4 
M~2) 

;) 

vt(2) 
) 6 M~2) 

0\ e G\,'€. b.e. (,~ J.e ~.b.e a,c,e 

J~,e I I 1 1 1 I 1 
~11..,<..ol bc.J ",c.oI ", b/~ ", b, c c./_ b) , , , , 

Ml3) M~3) M~3) M(3) 

" 
M~3) 

;) 

vt(3) 
) G 

vt(3) 
) 7 

'vt(3) 
) 8 
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~,J,t. 

T bf l ·'r ~'r ~'r bT,e 
1 b, c- 01,"( '\,l:. ",b ~ c. 0. 

\11(3) 
j 9 

\11(3) 
j 10 

M(3) 
II 

M(3) 
12 

\11(3) 
j 13 

M(3) 
14 

M(3) 
15 

\11(3) 
) 16 

As to step 2, what is the biggest morphism ~ := .8(1,1; 1,2) between Mil) and j\l1~I) ? 
vVe claim that ~(O) = 0, ~(2) = 4, ~(3) = 2, ~(4) = ~(6) = 3, ~(1) = ~(5) = ~(7) = 5 : 

(21) 

Indeed, no morphism.8 can do better·) than ~(b) = b, and ~(c) = c, and ~(4) = c. Also 
no .8 can do better than ~(e) = 5 (since .8(e) = .8(b V c) = .8(b) V.8(c) :::; b V c = 5), 
than ~(5) = ~(7) = 5 (since ego 7 :::; e :::} .8(7) :::; .8(e) :::; 5), than ~(a) =,= 4 (since 
.8(a) :::; a/\.8(e) ~ a/\5 = 4), and than ~(O) = 0 (since .8(0) ~ .8(a) /\.8(b) :::; 4/\b = 0). It 
remains to check that the map ~ itself is a V-homomorphism. This amounts to check that 
the ~-preimages (the five "bubbles" in (21)) are the congruence classes of a V-congruence 
relation; in particular each bubble must be a V-subsemilattice. In similar fashion one 
easily verifies that ego .8(2,2; 2, 4) is the map shown in (22), and .8(3,6; 1,2) is the map 
shown in (23): 

(22) 

c. -

*) We write 7J(b) = b rather than the correct but clumsy 7J(,\~I)(b)) = ,\~l)(b) of (17). Because every 

morphism j3 must satisfy j3(b) :::; b there can be no j3 with j3(b) > 7J(b). 
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(23) 

As to step 3, let PI, P2, P3, P4, Ps be the join irreducibles 2,3,4,6,7 of )vt~I), let P6, P7, Ps, P9, PIO 
be the join irreducibles 2,3,4,6,7 of M~I), let Pu, P12, PI3 be the join irreducibles 2,3,4 

of Ml2), and so forth. Finally P46 is the join irreducible 1 of )vtl~) and P47 is the join 

irreducible 1 of ;v1~~ . . In our case t = 3 and s = SI + S2 + S3 = 2 + 7 + 16 = 25. Fix ego 

i := 2 E {I, 2, t} and k := 2 E {I, 2, .. , S2}. Then Mii) = M~2) has the join irreducibles 

P14, PIS, PI6 and one can show that (18) consists of the following s-tuples: 

<p~2) (PI4) = (0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0) 

<p~2) (PIS) = (4,0,3,3,0,4,0,4,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1) 

(2) ( ) _ ( . ) <P2 Pl6 - 4,0,4,4,0,4,0,4,0,0,0,0,0,0,0,0,0,0,0,0,1,0, I, 1,1 

For instance the boldface 6th components are the values (3(2,2; 2, 4)(PI4) = 0, 
(3(2,2,; 2, 4) (PIS) = 4, (3(2,2; 2, 4)(PI6) = 4 according to (22). If we ego take i := 3 E 

{I, 2, t} and k := 6 E {I, 2, ", S3} then Mii) = M~3) has only one join irreducible P37 and 

<p ~ 3) (P37) = (7, 6, 4, 4, 4, 1, 2, 4, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1) 

For instance the boldface second component is the value (3(3,6;1, 2)(P37) = 6 according 
to (23). 

As to step 4, the elements <p~I)(pI),r/>il)(p2),··,<pi~)(p47) are exactly the join irreducibles 

( 
(I) (1) (3) (2)() (3)() of M P, V) ~ MI X M2 x·· XM I6 . Note that ego <P2 PI6 < <P6 P37 by com-

ponentwise comparison. Possible bases of lines for Mil) respectively M~l) are /\~I) := 

{{PI,P2,P3}, {PI,P",PS}} and /\~I) := {{P6,P7,PS}, {P6,P!J,PlO}}, and (unique) bases of 
. (2) (2) /\(2)._ {{ }} /\(2)._ {{ }} LI lmes for MI , .. , JVi 7 are I .- PII, PI2, PI3 , ... , 7 .- P2!J, P30, P31 . 1 ence 
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is a base of lines for M (P, V) with 11 lines and 9 connected components. 0 

In [HPR] an inherent characterisation of those partial linear spaces (J, /\) that occur as 
bases of lines of modular lattices is given. Generating these (J, /\) systematically, and 
applying the principle of exclusion to the corresponding "f,(/\), this opens the possibility 
of generating all modular lattices of small cardinality. 

7) Some computational details 

Let M be a finite modular lattice with a base of lines /\. Let "f, = {A --t Bd 1 :::; i :::; n} 
be th-e familY of all implications 

(24) {p} --t J(p) (p E J(M)), {p,q} ---7 e (e E /\,p,q E f., P =I- q) 

We know that lvi is isomorphic to the closure system C("f,) of al "f,-closed subsets X ~ 
J(M). Are there "smaller" "f,' such that still C("f,') ~ M? The answer is "yes" and "no". 
No, the number n of implications in "f, essentially cannot be reduced. Merely those m 
implications {p} --t J(p) wherep is minimal in (J(M),:::;) boil down to {p} --t {p} and can 
thus be dropped from "f,. Let "f,l be the new family of implications with I"f,d = n' := n-m. 
One can show [W6] that there is no "f,' with I "f,' I < n' that still satisfies C("f,') ~ M. But 
yes, the size IAil + IBd of each individual implication in "f,l can be reduced substantially. 
Namely, instead of {p} --t J(p) it obviously suffices to take {p} --t {q,q', .. } where q,q', .. 
are the lower covers of p in (J (M), :::;). Furthermore, each implication {p, q} --t f. can be 
replaced by a suitable implication {p, q} --t {r}. Let "f,2 be this new family of implications. 
One can show [VV6] that for no "f,' with C("f,') ~ M is the sum s("f,') of the cardinalities 
of all premises and conclusions smaller than S("f,2)' 

Let us look in particular at lattices M = M (P, V3 ) where V3 is the variety generated by 
Nb. They are of special interest because they are exactly the finite ones among the lattices 
M(P). Let "f,2 as above be such that C("f,2) ~ M. Rather than applying the principle 
of exclusion in the manner of Example 1 upon "f,2 in order to obtain IC("f,2) I = 1M I, one 
can add a couple of tricks that reduce the number of 3-valued rows r. 

First, say J(M) = {Pl,P2,"',pd and e = {Pi,Pj,Pk} is a line of a base of lines /\ of 
lvi. It gives rise to the three implications {Pi,Pj} --t {Pk}, {pi,pd ---7 {Pj}, {pj,pd --t 

{PJ of "f,2' Obviously the subsets of {Pi, Pj, pd which satisfy all three implications are 
<p, {pd, {Pj}, {pd, and {pi,pj,pd· Instead of rows r with components 0,1, or 2, we now 
consider "many-valued" rows r of length t. Namely, for e = {pi,pj,pd we shall write the 
"minor" (3,3,3) in the i-th, j-th and k-th component of r to indicate that the 0, I-vectors 
(subsets of J(A;f.)) represented by r when projected to the i-th, j-th and k-th component 
must be one of (0,0,0), (1,0,0), (0, 1, 0), (0,0,1), (1, 1, 1). For all other lines of /\ we use 
minors (3',3',3'), etc. As will be clear in a moment, it is convenient to use-two other types 
of minors (4,4) and (5,5). Hereby (4,4) (or (4',4') etc.) stands for {(0,0),(1,0),(0,1)} 
and (5,5) (or (5',5') etc.) stands for {(0,0),(1,1)}. 
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Example 12: Suppose M is a modular lattice-) with partial order 

(J(M), ::;) = 

and a base of lines /\ = {{PI,P2,P3}, {P4,P5,pd}. In order to compute the cardinality of 
M we start out with the many-valued line in Fig. 8.1 which takes care of /\. (Generally 
the implications arising from /\ are advantageously handled at the beginning by using just 
one many-valued row.) Next we have to enforce the implications {pd --1 {P7,Pa}, {P3} --1 

{P4},-and {P7-} --1 {PI,P2} which take care of (J(M), ::;). (Generally all these implications 
have singleton premises which, as will be seen, entails that enforcing one such implication 
to a many- valued row can produce at most one new many-valued row.) To prepare 
the enforcement of {pd --1 {P7, Pa} write the row in Fig. 8.1 as a disjoint union of a 
row with "P6 = 0" and a row with "P6 = I" (see Fig. 8.2). For instance, forcing the 
last component of (3',3',3') = {(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,1)} to be ° yields 
{(a, 0, 0), (1,0,0), (0, 1, O)} = (4,4,0). It is clear that enforcing {pd --1 {P7,Ps} upon the 
two rows in Fig. 8.2 yields the two rows in Fig. 8.3. To prepare the enforcement of 
{P3} --1 {P4} each row in Fig. 8.3 is split in a row with P3 = ° and a row with P3 = 1 (see 
Fig. 8.4). Enforcing {P3} --1 {P4} upon the rows in Fig. 8.4 yields the rows in Fig. 8.5. 
By "preparing rows" in one's head the enforcement of {P7} --1 {PI, P2} upon the rows in 
Fig. 8.5 yields the rmvl in Fig. 8.6 (the first and fourth row locally change, the second 
splits, the third is cancelled). The first row in Fig. 8.6 represents 3·3·2 = 18 subsets of 
{PI, ",Pa}. Taking into account all rows of Fig. 8.6. we derive IMI = 18 +4+2 + 1 = 25. 

PI P2 P3 P'l P5 P6 P7 Pa 
3 3 3 3' 3' 3' 2 2 

Fig. 8.1 Fig. 8.2 

4' 4' ° 4 4 ° 2 2 
5 5 1 4 4 ° 2 2 
4 4 ° 5 5 1 1 1 
5' 5' 1 5 5 1 1 1 

Fig. 8.3 Fig. 8.4 

*) For the purpose of illustrating the enhanced prinicpJe of exclusion we ignore whether such a J"1 can 

actually exist. 
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4' 4' 0 4 4 0 2 2 4' 4' 0 4 4 0 0 2 
5 5 1 1 0 0 2 2 5 5 1 1 0 0 0 2 
4 4 0 5 5 1 1 1 1 1 1 1 0 0 1 2 
5' 5' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Fig. 8.5 Fig. 8.6 · 0 

Let us mention that other types of minors further reduce the number of many-valued 
rows. For instance, let the m-tuple (6,6, ",6) represent the subsets of {Pl, .. , Pm} which 
satisfy all of the implications {pd -* {P2}, {P2} -* {PJ},"" {Pm-d --t {Pm}. One ego 
verifes at once that the set system represented by the first row below is the disjoint union 
of the set systems represented by the other two rows: 

(6,6,6,6,6,6,6,6) 
(0,0,0,0,6,6,6,6) 
(6,6,6,1,1,1,1,1) 

More generally, tree-like conglomerations of the implications (with singleton premises but 
not necessarily singleton conclusions) can be abbreviated in a similar fashion. 

So much about the computation of C(2:2) once 2:2 is known. But how to get 2:2 or, what 
amounts to the same, how to compute the poset (J(M),::;) and a base of lines /\ of M? 
Recall from step 1 in section 6 that first one has to generate all non-equivalent labellings 
of £(1) = 1)2 and £(2) = MJ with the elements a E P. The labellings of 1)2 are easily 
obtained (corresponding to the proper order filters), but more interesting is it to write a 
programme for labelling MJ in all possible ways with the elements of an arbitrary finite 
poset. We omit the details. Let us rather investigate more closely step 2 where all biggest 
morphisms f3(i, k; j, h) between two labellings of 1)2, or a labelling of 1)2 and M 3 , or two 
labellings of MJ have to be generated. The third case is the most interesting one and can 
be mechanised as follows: 
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If the v-homomorphism 13 in 1) happens to be a morphism (ie. maps labels below labels) 
then f3( i, k; j , h) = 13· Otherwise check whether one the 9 (there are 3 . 3 choices for x and 
y) V-homomorphisms in 2) happens to be a morphism. If yes, there can be only one such 
13 (why?) and f3(i, k; j, h) = 13. Otherwise check the 3 V-homomorphisms 13 in 3), the 
3 f3's in 4), the 3·3·2 = 1813's in 5), the 6 f3's in 6), the 9 f3's in 7) in that order. If none 
of these f3's maps labels below labels than f3(i, k; j, h) must be the constant map x H 0 
in 8). We leave it to the reader to verify that this algorithm yields the correct morphism 
f3(i, h;), h). For instance, why isn't it possible to come across some 13 in 6) and some 13' 
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in 7) which both map labels below labels? As an exercise one may apply the algorithm 
to come up with the morphism [3(2,2; 2, 4) in (22). 

The author plans to use the algorithms discussed in this article to compute the car­
dinalities of all M(P) for say IPI :::; 5. Of course, for bigger posets P or varieties 
V with higher number t of subdirectly irreducibles, the family of implications ~2 with 
C(~2) ::: M(P, V) will be too big to be handled by the principle of exclusion. But it is 
clear that at least J(M (P, V)) and its partial order, the number s of sudirectly irreducible 
factors of M(P, V), and the length of M(P, V) (which is just the sum of the lengths of . 
these factors) can be determined for much bigger P and t. 
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