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Abstract

Two procedures to compute the output distribution φS of certain stack filters S (so
called erosion-dilation cascades) are given. One rests on the disjunctive normal form of S
and also yields the rank selection probabilities. The other is based on inclusion-exclusion
and e.g. yields φS for some important LULU -operators S. Properties of φS can be used to
characterize smoothing properties.

1 Introduction

The LULU operators are well known in the nonlinear multiresolution analysis of sequences.
The notation for the basic operators Ln and Un, where n ∈ N is a parameter related to the
window size, has given rise to the name LULU for the theory of these operators and their
compositions. Since the time they were introduced nearly thirty year ago, while also being used
in practical problems, they slowly led to the development of a new framework for characterizing,
evaluating, comparing and designing nonlinear smoothers. This framework is based on concepts
like idempotency, co-idempotency, trend preservation, total variation preservation, consistent
decomposition.

As opposed to the deterministic nature of the above properties, the focus of this paper is on
properties of the LULU operators in the setting of random sequences. More precisely, this setting
can be described as follows: Suppose that X is a bi-infinite sequence of random variables Xi

(i ∈ Z) which are independent and with a common (cumulative) distribution function FX(t)
from L1([0, 1], [0, 1]). Let S be a smoother. Then we consider the following two questions:

1. Find a map φS : [0, 1] → [0, 1] such that the common output distribution FSX(t) of (SX)i

(i ∈ Z) equals FSX = φS ◦ FX . The function φS is also called distribution transfer.

2. Characterize the smoothing effect an operator S has on a random sequence X in terms of
the properties of the common distribution of (SX)i (i ∈ Z).
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With regard to the first question we present a new technique which one may call ”expansion
calculus” which uses a shorthand notation for the probability of composite events and a set of
rules for manipulation. Using this technique we provide new elegant proofs of the earlier results
in [1] for the distribution transfer of the operators LnUn and (dually) UnLn. The power of this
approach is further demonstrated by deriving the distribution transfer maps for the alternating
sequential filters Cn = LnUnLn−1Un−1...L1U1 and Fn = UnLnUn−1Ln−1...U1L1.

With regard to the second question, we may note that it is reasonable to expect that a smoother
should reduce the standard deviation of a random sequence. Indeed, for simple distributions
(e.g. uniform) and filters with small window size (three point average, M1, L1U1, U1L1) when
the computations can be carried out a significant reduction of the standard deviation is observed
(for the uniform distribution the mentioned filters reduce the standard deviation respectively
by factors of 3, 5/3, 1.293, 1.293). However, in general, obtaining such results is to a large
extent practically impossible due to the technical complexity particularly when nonlinear filters
are concerned. In this paper we propose a new concept which characterizes the probability of
the occurrence of outliers rather then considering the standard deviation. We call it robustness.
Upper robustness characterizes the probability of positive outliers while the lower robustness
characterizes the probability of negative outliers. In general, the higher the order of robustness
of a smoother the lower the probability of occurrence of outliers in the output sequence. In terms
of this concept it is easy to characterize a smoother given its distribution transfer function.

The paper is structured as follows. In the next section we give the definitions of the LULU
operators with some fundamental properties. The concept of robustness is defined and studied
Section 3. In Section 4 we demonstrate the application of inclusion-exclusion principle for deriv-
ing the distribution transfer function of erosion-dilation cascades, a kind of operator frequently
used in Mathematical Morphology. This method is considerably refined in Section 5 where it is
applied to LULU-operators which are in fact particular cases of such cascades. Formulas for the
major LULU-operators are obtained explicitly or recursively. Using these results the robustness
of these operators is also analyzed. Section 6 proposes to substitute inclusion-exclusion by some
principle of exclusion which is better suited for erosion-dilation cascades that don’t allow the
refinements of inclusion-exclusion possible for LULU -operators.

2 The basics of the LULU theory

Given a bi-infinite sequence x = (xi)i∈Z and n ∈ N the basic LULU operators Ln and Un are
defined as follows

(Lnx)i := (xi−n ∧ xi−n+1 ∧ · · · ∧ xi) ∨ (xi−n+1 ∧ · · · ∧ xi+1) ∨ · · · ∨ (xi ∧ · · · ∧ xi+n) (1)
(Unx)i := (xi−n ∨ xi−n+1 ∨ · · · ∨ xi) ∧ (xi−n+1 ∨ · · · ∨ xi+1) ∧ · · · ∧ (xi ∨ · · · ∨ xi+n) (2)

where α ∧ β := min(α, β), and α ∨ β := max(α, β) for all α, β ∈ R. Central to the theory is
the concept of separator, which we define below. For every a ∈ Z the operator Ea : RZ → RZ

given by
(Eax)i = xi+a, i ∈ Z,

is called a shift operator.

Definition 1 An operator S : RZ → RZ is called a separator if
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(i) S ◦ Ea = Ea ◦ S, a ∈ Z ; (horizontal shift invariance)

(ii) P (f + c) = P (f) + c, f, c ∈ RZ; c- constant function (vertical shift invariance);

(iii) P (αf) = αP (f), α ∈ R, α ≥ 0, f ∈ RZ; (scale invariance)

(iv) P ◦ P = P ; (Idempotence)

(v) (id− P ) ◦ (id− P ) = id− P . (Co-idempotence)

The first two axioms in Definition 1 and partially the third one were first introduced as required
properties of nonlinear smoothers by Mallows, [4]. Rohwer further made the concept of a
smoother more precise by using the properties (i)–(iii) as a definition of this concept. The axiom
(iv) is an essential requirement for what is called a morphological filter, [11], [12], [13]. In fact, a
morphological filter is exactly an increasing operator which satisfies (iv). The co-idempotence
axiom (v) in Definition 1 was introduced by Rohwer in [8], where it is also shown that it is an
essential requirement for operators extracting signal from a sequence. More precisely, axioms
(iv) and (v) provide for consistent separation of noise from signal in the following sense: Having
extracted a signal Sx from a sequence x, the additive residual (I−S)x, the noise, should contain
no signal left, that is S ◦ (I − S) = 0. Similarly, the signal Sx should contain no noise, that
is (I − S) ◦ S = 0. It was shown in [8] that Ln, Un and their compositions LnUn, UnLn are
separators.

The smoothing effect of Ln on an input sequence is the removal of picks, while the smoothing
effect of Un is the removal of pits. The composite effect of the two LU -operators LnUn and UnLn

is that the output sequence contains neither picks nor pits which will fit in the window of the
operators. These are the so called n-monotone sequences, [8]. Let us recall that a sequence x is
n-monotone if any subsequence of n+1 consecutive elements is monotone. For various technical
reasons the analysis is typically restricted to the set M1 of absolutely summable sequences. Let
Mn denote the set of all sequences x ∈M1 which are n-monotone. Then

Mn = Range(LnUn) = Range(UnLn)

is the set of signals.

The power of the LU -operators as separators is further demonstrated by their trend preservation
properties. Let us recall, see [8], that an operator is called neighbor trend preserving if
(Sx)i ≤ (Sx)i+1 whenever xi ≤ xi+1, i ∈ N. An operator S is fully trend preserving if both
S and I−S are neighbor trend preserving. The operators Ln, Un and all their compositions are
fully trend preserving. With the total variation of a sequence,

TV (x) =
∑
i∈N

|xi − xi+1|, x ∈M1

a generally accepted measure for the amount of contrast present, since it is a semi-norm on
M1, any separation may only increase the total variation. More precisely, for any operator
S : M1 →M1 we have

TV (x) ≤ TV (Sx) + TV ((I − S)x). (3)

All operators S that are fully trend preserving have variation preservation, in that

TV (x) = TV (Sx) + TV ((I − S)x). (4)
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We mention these properties because they provide but few of the motivation for studying the
robustness of operators, when the popular medians are optimal in that respect. We intend to
show that some LULU -composition are nearly as good as the medians, but have superiority
most important aspects.

An operator S satisfying property (4) is called total variation preserving, [6]. As mentioned
already, the LU -operators are total variation preserving.

3 Distribution transfer and degree of robustness of a smoother

Suppose that X is a bi-infinite sequence of random variables Xi (i ∈ Z) which are independent
and with a common (cumulative) distribution function FX . Let S be a smoother. As stated in
the introduction we seek a function φS : [0, 1] → [0, 1], called a distribution transfer function
such that

FSX = φS ◦ FX (5)

is the common distribution of (SX)i (i ∈ Z). We should note that for an arbitrary smoother
the existence of such a distribution transfer function is not obvious. However, for the smoothers
typically considered in nonlinear signal processing (i.e. stack filters of which the LULU operators
are particular cases) such a function does not only exist but it is a polynomial. For example, it
is shown in [5] that the distribution transfer function of the ranked order operators

(Rnkx)i = the kth smallest value of {xi−n, ..., xi+n}

is given by

φRnk
(p) =

2n+1∑
j=k

(
2n + 1

j

)
pj(1− p)2n+1−j . (6)

The popular median smoothers Mn, n ∈ N, are particular cases of the ranked order operators,
namely Mn = Rn,n+1. Hence we have

φMn(p) =
2n+1∑

j=n+1

(
2n + 1

j

)
pj(1− p)2n+1−j . (7)

Note that in terms of (5) the common distribution function of (MnX)i, i ∈ Z, is

FMnX(t) =
2n+1∑

j=n+1

(
2n + 1

j

)
F j

X(t)(1− FX(t))2n+1−j , t ∈ R.

Using that
d

dz
φMn(p) = (2n + 1)

(
2n

n

)
pn(1− p)n (8)

its density is

fMnX(t) =
d

dz
φMn(FX(t))fX(t) = (2n + 1)

(
2n

n

)
Fn

X(t)(1− FX(t))nfX(t)
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where fX(t) = d
dtFX(t), t ∈ R, is the common density of Xi, i ∈ Z. The distribution of the

output sequence of the basic smoothers Ln and Un is derived in [8]. Equivalently these results
can be formulated in terms of distribution transfer. More precisely we have

φLn(p) = 1− (n + 1)(1− p)n+1 + n(1− p)n+2 (9)
φUn(p) = (n + 1)pn+1 − npn+2 (10)

A primary aim of the processing of signals through nonlinear smoothers is the removal of im-
pulsive noise. Therefore, the power of such a smoother can be characterized by how well it
eliminates outliers in a random sequence. The concepts of robustness of a smoother introduced
below are aimed at such characterization.

Definition 2 A smoother S : RZ → RZ is called lower robust of order r if there exists a
constant α > 0 such that for every bi-infinite sequence X of identically distributed random
variables Xi (i ∈ Z) there exists t0 ∈ R such that P (Xi < t) < ε implies P ((SX)i < t) < αεk

for all t < t0 and ε > 0.

Similarly, a smoother S : RZ → RZ is called upper robust of order r if there exists a constant
α > 0 such that for every bi-infinity sequence X of identically distributed random variables Xi

(i ∈ Z) there exists t0 ∈ R such that P (Xi > t) < ε implies P ((SX)i > t) < αεk for all t > t0
and ε > 0.

A smoother which is both lower robust of order r and upper robust of order r is called robust
of order k.

The reasoning behind these concepts is simple: If a distribution density is heavy tailed, there is
a probability ε that the size of a random variable is excessively large (larger than t) in absolute
value. Using a non-linear smoother we would aim to restrict this to an acceptable probability
αεk that such an excessive value can appear in SX, by choosing a smoother with the order of
robustness k.

Clearly there is a general problem of smoothing: a trade-off to be made between making a
smoother more robust, and the (inevitable) damage to the underlying signal preservation. (A
smoother clearly cannot create information, but only selectively discard it.) This is fundamental.
There are two main reasons for using one-sided robustness: Firstly, the unreasonable pulses often
are only in one direction, as in the case of ”glint” in signals reflected from objects with pieces
of perfect reflectors, and there clearly are no reflections of negative intensity possible. Secondly,
we may chose smoothers that are not symmetric, as are the LU -operators, for reasons that are
of primary importance. In this case the robustness is determined from the sign of the impulse.

The robustness of a smoother can be characterized through its distribution transfer function as
stated in the theorem below.

Theorem 3 Let the smoother S have a distribution transfer function φS. Then

a) S is lower robust of order r if and only if φS(p) = O(pr) as p → 0.
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b) S is upper robust of order r if and only if φS(1− p)− 1 = O(pr) as p → 0.

Proof. Points a) and b) are proved using similar arguments. Hence we prove only a). Let
φS(p) = O(pr) as p → 0. This means that there exists α > 0 and δ > 0 such that φS(p) < αpk

for all p ∈ [0, δ). Let X be a sequence of identically distributed random variables with common
distribution function FX . Since limt→−∞ FX(t) = 0, there exists t0 such that FX(t0) < δ. Let
t < t0 and ε > 0 be such that P (Xi < t) < ε. The monotonicity of FX implies that FX(t) ∈ [0, δ).
Then

P ((SX)i < t) = FSX(t) = φS(FX(t)) < α(FX(t))k < αεk,

which proves that S is lower robust of order k. It is easy to see that the argument can be
reversed so that the stated condition is also necessary.

In the common case when the distribution transfer function is a polynomial, conditions a) and
b) can be formulated in a much simpler way as given in the next corollary.

Corollary 4 Let the distribution transfer function of a smoother S be a polynomial φS . Then

a) S is lower robust of order r if and only if p = 0 is a root of order r of φS.

b) S is upper robust of order r if and only if p = 1 is a root of order r of φS − 1.

Using the distribution transfer functions given in (9) and (10) it follows from Corollary 4 that
Un is lower robust of order n + 1 and that Ln is upper robust of order n + 1.

The robustness of the median filter Mn can be obtained from (7). Obviously p = 0 is a root of
order n+1. Furthermore, φMn(1) = 1. Then using also that p = 1 is a root of order n of d

dzφMn ,
see (8), we obtain that p = 1 is a root of order n + 1 of φMn − 1. Therefore, Mn is robust of
order n + 1.

Clearly with symmetric smoothers, in that S(−x) = −S(x), the concepts of lower and upper
robustness are not needed, as is the case for example with Mn. However, we have to recall in
this regard that the operators Ln, Un and their compositions, which are the primary subject of
our investigation, are not symmetric. A useful feature of the lower and upper robustness is that
it can be induced through the point-wise defined partial order between the operators. Let us
recall that given the maps A,B : RZ → RZ, the relation A ≤ B means that Ax ≤ Bx for all
x ∈ RZ.

Theorem 5 Let A,B : RZ → RZ be smoothers. If A ≤ B then φB ≤ φA.

Proof. Let X be a sequence of independent random variables Xi (i ∈ Z) uniformly distributed
on [0, 1] . Let p ∈ [0, 1]. If t is such that p = FX(t) then

φB(p) = φB(FX(t)) = FBX(t) = P ((BX)i ≤ t)
≤ P ((AX)i ≤ t) = FAX(t) = φA(FX(t)) = φA(p).
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As a direct consequence of Theorem 5 and Theorem 3 we obtain the following theorem.

Theorem 6 Let A,B : RZ → RZ be smoothers such that A ≤ B. Then

a) If A is lower robust to the order k, then so is B.

b) If B is upper robust to the order k, then so is A.

Using Theorem 6 one can derive statements about the lower robustness and the upper robustness
of the LU -operators:

UnLn ≤ Mn ≤ LnUn (11)

Therefore, UnLn inherits the upper-robustness of Mn, while LnUn inherits the lower-robustness
of Mn. More precisely

• UnLn is upper robust of order n + 1; (12)
• LnUn is lower robust of order n + 1

One may expect that, since Ln is upper robust of order n + 1 and Un is lower robust of order
n + 1, their compositions should be both lower and upper robust of order n + 1. However, as
we will see later, this is not the case. The problem is the following. The definition of robustness
requires that the random variables in the sequence X are identically distributed but they are not
necessarily independent. However, the distribution transfer functions φLn and φUn are derived
under the assumption of such independence. Noting that entries in the sequences LnX are not
independent, it becomes clear that the common distribution of UnLnX cannot be obtained by
applying φUn to FLnX . More generally, since the distribution transfer functions are derived for
sequences of independent identically distributed random variables the equality φAB = φA ◦ φB

does not hold for arbitrary operators A and B. Therefore the order of robustness of B is not
necessarily preserved by the composition AB.

Observe that another concept of robustness is introduced in [10]. Other than Definition 2 it
only applies to stack filters. The concept is similar in that it also based on certain probabilities
(in this case “selection probabilities”).

4 The output distribution of arbitrary erosion-dilation cascades

Here we present a method for obtaining output distributions of so called erosion-dilation cas-
cades (defined below). It essentially uses the inclusion-exclusion principle for the probability of
simultaneous events. For convenience we recall this principle below. For n = 2 the easy proof is
given later on along the way.

Lemma 7 For any random variables Z1, Z2 · · ·Zn it holds that
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P (Z1, · · · , Zn ≤ t) = 1−
n∑

i=1

P (Zi > t) +
∑

1≤i<j≤n

P (Zi, Zj > t)

−
∑

1≤i<j<k≤n

P (Zi, Zj , Zk > t) + · · · + (−1)nP (Z1, · · · , Zn > t)

Let us recall that in the general setting of Mathematical Morphology [12] the basic operators
Ln and Un are morphological opening and closing respectively. As such they are compositions
of an erosion and a dilation. More precisely, for a sequence x = (xi)i∈Z we have

(Lnx)i := (
∨n (

∧n x))i

(Unx)i := (
∧n (

∨n x))i

where (
∧n x)i := xi−n ∧ xi−n+1 ∧ · · · ∧ xi

is an erosion with structural element W = {−n,−n− 1, ..., 1, 0} and

(
∨n x)i := xi ∨ xi+1 ∨ · · · ∨ xi+n

is a dilation with structural element W ′ = {0, 1, ..., n}. Generalizing the LU -operators LnUn

and UnLn, call a LULU -operator any composition of the basic smoothers Ln and Un, such as
L3U4L2U1U5. In particular, each LULU -operator is a composition of dilations and erosions,
that is, an cascade of dilations and erosions (CDE). More generally, each alternating sequential
filter (ASF), which by definition is a composition of morphological openings and closings with
structural elements of increasing size, is a CDE with the extra property of featuring the same
number of erosions and dilations. See also [3].

We will demonstrate our method on two examples of cascades - the first in one dimension, the
second in two dimensions. This method is considerably refined in the next section.

Example 1. Consider S :=
∨1∧2∨3. It is a a cascade of an erosion

∧2 and dilations
∨1,

∨3.
It is not an ASF. To compute the distribution transfer of S, let X be a bi-infinite sequence of
independent identically distributed random variables Xi. Put

Yi =

(
3∨

X

)
i

, Zi :=

(
2∧

Y

)
i

, Ai :=

(
1∨

Z

)
i

. (13)

Thus Y, Z, A are again bi-infinite sequences of identically distributed (though dependent) random
variables. Let t ∈ R and p = FX(t). Then

φS(p) = FSX(t) = FA(t) = P (A0 ≤ t)

= P (Z0 ∨ Z1 ≤ t) = P (Z0 ≤ t and Z1 ≤ t)

In order to reduce the Zi’s to the Yi’s we switch all ≤ t to > t by using exclusion-inclusion (the
case n = 2 in Lemma 7):

P (Z0, Z1 ≤ t) = P (Z0 ≤ t)− P (Z0 ≤ t, Z1 > t)
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= P (Z0 ≤ t)− ( P (Z1 > t)− P (Z1, Z0 > t) )

= 1− P (Z0 > t)− P (Z1 > t) + P (Z1, Z0 > t)

Since our Zi’s are identically distributed we have P (Z0 > t) = P (Z1 > t) and hence

φS(p) = 1− 2P (Z0 > t) + P (Z1, Z0 > t)

= 1− 2P (Y−2 ∧ Y−1 ∧ Y0 > t) + P (Y−1 ∧ Y0 ∧ Y1, Y−2 ∧ Y−1 ∧ Y0 > t)

= 1− 2P (Y−2, Y−1, Y0 > t) + P (Y−2, Y−1, Y0, Y1 > t)

= 1− 2P (Y0, Y1, Y2 > t) + P (Y0, Y1, Y2, Y3 > t)

By the dual of Lemma 7 and because e.g. P (Y0, Y1 ≤ t) = P (Y1, Y2 ≤ t) = P (Y2, Y3 ≤ t) we get

φS(p) = 1− 2 ( 1− 3P (Y0 ≤ t) + 2P (Y0, Y1 ≤ t) + P (Y0, Y2 ≤ t)− P (Y0, Y1, Y2 ≤ t) )

+ ( 1− 4P (Y0 ≤ t) + 3P (Y0, Y1 ≤ t) + 2P (Y0, Y2 ≤ t) + P (Y0, Y3 ≤ t)− 2P (Y0, Y1, Y2 ≤ t)

−2P (Y0, Y1, Y3 ≤ t) + P (Y0, Y1, Y2, Y3 ≤ t) )

= 2P (Y0 ≤ t)− P (Y0, Y1 ≤ t) + P (Y0, Y3 ≤ t)− 2P (Y0, Y1, Y3 ≤ t) + P (Y0, Y1, Y2, Y3 ≤ t)

= 2P (X0, X1, X2, X3 ≤ t)− P (X0, X1, X2, X3, X4 ≤ t) + P (X0, X1, · · · , X6 ≤ t)

−2P (X0, X1, · · ·X6 ≤ t) + P (X0, X1, · · · , X6 ≤ t)

= 2p4 − p5 + p7 − 2p7 + p7

= 2p4 − p5

Example 2. Let S be an opening on RZ×Z with defining structural element a 2 × 2 square.
Let now X be an infinite 2-dimensional array of independent identically distributed random
variables X(i,j) where (i, j) ranges over Z × Z. In order to derive the output distribution of S
we put
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Y(i,j) := X(i,j) ∧X(i−1,j) ∧X(i,j+1) ∧X(i−1,j+1)

Z(i,j) := Y(i,j) ∨ Y(i+1,,j) ∨ Y(i,j−1) ∨ Y(i+1,j−1)

Let t ∈ R and p = FX(t). The output distribution of S is

φS(p) = P (Z(0,0) ≤ t)

= P (Y(0,0), Y(1,0), Y(0,−1), Y(1,−1) ≤ t)

Following [1], which introduced that handy notation in the 1-dimensional case, we abbreviate
the latter as

((0, 0), (1, 0), (0,−1), (1,−1))Y

If say (((0, 0), (1, 0), (0,−1))Y means

P (Y(1,0) ≤ t, Y(0,0), Y(0,−1) > t),

then it follows from Lemma 7 and from translation invariance (e.g. ((0, 0), (1, 0)) = ((0,−1), (1,−1))
that

φL(p) = ((0, 0), (1, 0), (0,−1), (1,−1))Y

= 1− 4(0, 0)Y + 2((0, 0), (1, 0))Y + 2((0, 0), (0,−1))Y + ((1, 0), (0,−1))Y

+((0, 0), (1,−1))Y − ((0, 0), (0,−1), (1,−1))Y − ((0, 0), (1, 0), (1,−1))Y

−((0, 0), (0,−1), (1, 0))Y − ((1, 0), (0,−1), (1,−1))Y + ((0, 0), (1, 0), (0,−1), (1,−1))Y

According to the definition of Y(i,j) we e.g. have

((0, 0), (0,−1))Y = ( (0, 0), (−1, 0), (0, 1), (−1, 1), (0,−1), (−1,−1), (0, 0), (−1, 0) )X

= ((0, 0), (−1, 0), (0, 1), (−1, 1), (0,−1), (−1,−1))X

Putting q = 1− p = P (X(0,0) > t) the latter contributes a term q6 to

φL(p) = 1− 4q4 + 2q6 + 2q6 + q7 + q7 − q8 − q8 − q8 − q8 + q9

= 1− 4q4 + 4q6 + 2q7 − 4q8 + q9
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5 Formulas for the distribution transfer of the major LULU-
operators

As it was already done in the preceding section it is often convenient to use the notation q = 1−p.
For example the output distribution of Mn, Ln and Un given in (7), (9) and (10) respectively
can be written in the following shorter form:

φMn(p) =
2n+1∑

j=n+1

(
2n + 1

j

)
pjq2n+1−j , (14)

φLn(p) = 1− (n + 1)qn+1 + nqn+2, (15)
φUn(p) = (n + 1)pn+1 − npn+2. (16)

Theorem 11 below deals with the output distribution of LnUn and UnLn. They were first derived
in [2], but the statement of the theorem was also independently proved by Butler [1]. In 5.1
we present a proof using Butler’s ”expansion calculus”. In 5.2 this method is applied to more
complicated situations.

5.1 The output distribution of the LU-operators

First, observe that instead of winding up with full blown inclusion-exclusion when switching
all inequalities > t to ≤ t (dual of Lemma 7), one can be economic and only switch some
inequalities:

(0, 1, · · · , n)X = (0, · · ·n− 1)X − (0, · · · , n− 1, n)X (17)

= (0, · · · , n− 2)X − (0, · · · , n− 2, n− 1)X − (0, · · · , n− 1, n)X

...
= (0)X − (0, 1)X − (0, 1, 2)X − · · · − (0, · · · , n− 1, n)X

= 1− (0)X −
n−1∑
i=0

(0, · · · , i, i + 1)X

Lemma 8 [1, Corollary 4]: Let X be a bi-infinite sequence of random variables. Then

(0, 1, · · · , n)X = 1− [n + 1](0)X +
n−1∑
i=0

[n− i](0, 1, · · · , i, i + 1)X

Note that for i = 0 we get the summand n(0, 1)X .
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Proof: From

(k + 1)X = (k + 1, k)X + (k + 1, k)X

= (k + 1, k)X + (k + 1, k, k − 1)X + (k + 1, k, k − 1)X = · · ·

= (k + 1, k)X + (k + 1, k, k − 1)X + · · ·+ (k + 1, k, · · · , 1, 0)X + (k + 1, k, · · · , 0)X

follows, by translation invariance, that

(0, · · · , k, k + 1)X = (k + 1)X − (k, k + 1)X −
k−1∑
i=0

(k − i− 1, k − i, · · · , k, k + 1)X

= (0)X − (0, 1)X −
k−1∑
i=0

(0, 1, · · · , i + 1, i + 2)X

Using (17) one derives for (say) n = 4 that

(0, 1, 2, 3, 4)X = 1− (0)X −
3∑

k=0

(0, · · · , k, k + 1)X

= 1− (0)X −
3∑

k=0

[
(0)X − (0, 1)X −

k−1∑
i=0

(0, 1, · · · , i + 1, i + 2)X

]

= 1− 5(0)X + 4(0, 1)X

+(0, 1, 2)X

+(0, 1, 2)X + (0, 1, 2, 3)X

+(0, 1, 2)X + (0, 1, 2, 3)X + (0, 1, 2, 3, 4)X

= 1− 5(0)X +
3∑

i=0

[4− i](0, 1, · · · , i, i + 1)X

�

Unsurprisingly, for dependently distributed random variables Bi certain combinations of Bi’s
being ≤ t and simultaneously other Bj ’s being > t, are impossible, i.e. have probability 0. More
specifically:

Lemma 9 [1, Theorem 10]: Let A be a bi-infinite identically distributed sequence of random
variables and let B =

∨r A. Then

(0, 1, · · · , n− 1, n)B =


0 , n ≤ r + 1

(0, · · · , r, r + 1, n− 1, n, · · · , n + r)A , r + 1 < n < 2r + 4

12



For instance, for n = 5, r = 1 we have r + 1 < n < 2r + 4, and so

(0, 1, 2, 3, 4, 5)B = (0, 1, 2, 4, 5, 6)A

Let us give an ad hoc argument which conveys the spirit of the proof. In view of Bi = Ai∨Ai+1

one e.g. has that B5 ≤ t ⇔ A5, A6 ≤ t. Using inclusion-exclusion we get

(0, 5, 2, 4, 1, 3)B = (0, 5, 2, 4)B − (0, 5, 2, 4, 1)B − (0, 5, 2, 4, 3)B + (0, 5, 2, 4, 1, 3)B

= P (A0, A1, A5, A6 ≤ t, B2, B4 > t)− P (A0, A1, A2, A5, A6 ≤ t, B2, B4 > t)

−P (A0, A1, A3, A4, A5, A6 ≤ t, B2, B4 > t) + P (A0, A1, · · ·A6 ≤ t, B2, B4 > t)

Since A4, A5 ≤ t is incompatible with B4 = A4 ∨A5 > t, the last two terms are 0. Furthermore,
given that A5 ≤ t, the statement B4 > t amounts to A4 > t. Ditto, given that A2 ≤ t, the
statement B2 > t amounts to A3 > t. Hence

(0, 5, 2, 4, 1, 3)B

= P (A0, A1, A5, A6 ≤ t, A4 > t,B2 > t)− P (A0, A1, A2, A5, A6 ≤ t, A4 > t,A3 > t)

= ( P (A0, A1, A5, A6 ≤ t, A4 > t)− P (A0, A1, A5, A6 ≤ t, A4 > t,A2 ≤ t, A3 ≤t) )

−P (A0, A1, A5, A6 ≤ t, A4 > t,A2 ≤ t, A3>t)

= P (A0, A1, A5, A6 ≤ t, A4 > t)− P (A0, A1, A5, A6 ≤ t, A4 > t,A2 ≤ t)

= (0, 1, 2, 4, 5, 6)A

Dualizing Lemma 9 yields:

Lemma 10 [1, Corollary 11]: Let B =
∧r A. Then

(0, 1 · · · , n− 1, n)B =


0 , n ≤ r + 1

(0, · · · , r, r + 1, n− 1, n, · · · , n + r)A , r + 1 < n < 2r + 4

Theorem 11 The distribution transfer functions of LnUn and UnLn are:

φLnUn(p) = pn+1 + npn+1q + p2n+2q +
1
2
(n− 1)(n + 2)p2n+2q2, (18)

φUnLn(p) = 1− φLnUn(q) = 1− qn+1 − npqn+1 − pq2n+2 − 1
2
(n− 1)(n + 2)p2q2n+2. (19)

13



Proof: Since LnUn = (
∨n∧n)(

∧n∨n) =
∨n∧2n∨n we put

A =
n∨

X, B =
2n∧

A, C =
n∨

B

and calculate

φLnUn(p) = P (C0 ≤ t) = (0)C = (0, · · · , n)B

= 1− [n + 1](0)B +
n−1∑
i=0

[n− i](0, 1, · · · , i, i + 1)B (dual of Lemma 8)

= 1− [n + 1](0, · · · , 2n)A + n(0, · · · , 2n + 1)A +
n−1∑
i=1

0 (Lemma 10, r = 2n)

= 1− [n + 1]

[
1− [2n + 1](0)A +

2n−1∑
i=0

[2n− i](0, 1, · · · , i, i + 1)A

]

+n

[
1− [2n + 2](0)A +

2n∑
i=0

[2n + 1− i](0, 1, · · · , i, i + 1)A

]
(Lemma 8)

= [n + 1](0)A +
2n∑
i=0

[i− n](0, 1, · · · , i, i + 1)A

= [n + 1](0)A − n(0, 1)A +
n∑

i=1

[i− n](0, 1, · · · , i, i + 1)A

+(0, 1, · · · , n + 1, n + 2)A +
2n∑

i=n+2

[i− n](0, 1, · · · , i, i + 1)A

= [n + 1](0, · · · , n)X − n(0, · · · , n + 1)X + 0 + (0, · · · , n, n + 1, n + 2, · · · , 2n + 2)X

+
2n∑

i=n+2

[i− n](0, · · · , n, n + 1, i, i + 1, · · · , i + 1 + n)X (Lemma 9)

= (n + 1)pn+1 − npn+2 + p2n+2q +
2n∑

i=n+2

(i− n)p2n+2q2

= pn+1 + npn+1 − npn+1p + p2n+2q + (2 + 3 + · · ·+ n)p2n+2q2

= pn+1 + npn+1q + p2n+2q +
1
2
(n− 1)(n + 2)p2n+2q2

�

From (18) it is clear that pn+1 is the highest power of p dividing φLnUn . An easy calculation
confirms that, as a polynomial in p, the right hand side of (19) is (2n + 3)p2 + (· · ·)p3 + · · ·.
From Corollary 4 hence follows that LnUn is lower robust of order n + 1, but upper robust only
of order 2.
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5.2 The output distributions of the LULU-operators Cn and Fn

We consider next the specific, mutually dual LULU-operators

Cn = LnUnLn−1Un−1 · · ·L1U1,

Fn = UnLnUn−1Ln−1 · · ·U1L1.

In view of

Cn−1 =
∨n−1∧2n−2∨n−1

Cn−2

Cn =
∨n∧2n∨n

Cn−1

=
∨n∧2n∨2n−1∧2n−2∨n−1

Cn−2

we define the following doubly infinite sequences of identically distributed random variables.
Starting with a sequence X of i.i.d. random variables, put

A :=
∨n−1

Cn−2 X

B :=
∧2n−2

A

C ′ :=
∨n−1

B

C :=
∨2n−1

B

D :=
∧2n

C

E :=
∨n

D

Theorem 12 [1, Theorem 14] With A,B as defined above the output distribution φCn of Cn

can be computed recursively as follows:

φCn = φCn−1 + n(G2n −G2n−1),

where

G2n := (0, · · · , 2n− 1, 2n, 2n + 1, · · · , 4n)B

G2n−1 := (0, · · · , 2n− 2, 2n− 1, 2n, · · · , 4n− 2)A

Proof: First, one calculates

φCn−1 = (0)C′ = (0, · · · , n− 1)B
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= 1− n(0)B +
n−2∑
i=0

[n− 1− i](0, 1, · · · , i, i + 1)B (dual of Lemma 8)

= 1− n(0, · · · , 2n− 2)A + [n− 1](0, · · · , 2n− 1)A +
n−2∑
i=1

0 (Lemma 10, r = 2n− 2)

= 1− n(0, · · · , 2n− 2)A + [n− 1](0, · · · , 2n− 1)A (20)

The expansion of φCn is driven a bit further:

φCn = (0)E = (0, · · · , n)D

= 1− [n + 1](0)D +
n−1∑
i=0

[n− i](0, 1, · · · , i, i + 1)D (dual of Lemma 8)

= 1− [n + 1](0, · · · , 2n)C + n(0, · · · , 2n + 1)C +
n−1∑
i=1

0 (Lemma 10, r = 2n)

= 1− [n + 1]

[
1− [2n + 1](0)C +

2n−1∑
i=0

[2n− i](0, 1, · · · , i, i + 1)C

]

+n

[
1− [2n + 2](0)C +

2n∑
i=0

[2n + 1− i](0, 1, · · · , i, i + 1)C

]
(Lemma 8)

= [n + 1](0)C −
2n∑
i=0

[n− i](0, 1, · · · , i, i + 1)C (easy arithmetic)

= [n + 1](0, · · · , 2n− 1)B − n(0, · · · , 2n)B −
2n−1∑
i=1

0

+n(0, · · · , 2n− 1, 2n, 2n + 1, · · · , 4n)B (Lemma 9, r = 2n− 1)

= [n + 1](0, · · · , 2n− 1)B − n(0, · · · , 2n)B + nG2n (21)

This yields

φCn − nG2n = [n + 1](0, · · · , 2n− 1)B − n(0, · · · , 2n)B (by (21))

= [n + 1]

[
1− 2n(0)B +

2n−2∑
i=0

[2n− 1− i](0, 1, · · · , i, i + 1)B

]

−n

[
1− [2n + 1](0)B +

2n−1∑
i=0

[2n− i](0, 1, · · · , i, i + 1)B

]
(dual of Lemma 8)

= 1− n(0)B +
2n−1∑
i=0

[n− 1− i](0, 1, · · · , i, i + 1)B (easy arithmetic)
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= 1− n(0, · · · , 2n− 2)A + [n− 1](0, · · · , 2n− 1)A +
2n−2∑
i=1

0

−n(0, · · · , 2n− 2, 2n− 1, 2n, · · · , 4n− 2)A (Lemma 10, r = 2n− 2)

= φCn−1 − nG2n−1 (by (20))

which, upon adding nG2n on both sides, gives the claimed formula for φCn . �

As an example, let us compute the output distribution of C2. From A =
∨1 C0X =

∨1 X follows
B =

∧2 A =
∧2∨X. Using expansion calculus the reader may verify that

G2n = G4 = (0, 1, 2, 3, 4, 5, 6, 7, 8)B = p4q2[p + p2q]2

Similarly one gets
G2n−1 = G3 = p2q2(1− p2)2.

Therefore

φC2 = φC1 + 2(G4 −G3)

= 3p3 + 3p4 − 9p5 + 4p6 + 4p7 − 10p8 + 4p9 + 8p10 − 8p11 + 2p12

As to robustness, from the above representation of φC2 and by using Corollary 4 we obtain that
C2 is lower robust of order 3 like U2. Similar to L2U2 discussed in 5.1, the upper robustness of
C2 is not inherited from L2. Indeed, we have

φC2 − 1 = q2(2p10 − 4p9 − 2p8 + 4p7 + 4p4 − p3 − 3p2 − 2p− 1)

which implies that C2 is upper robust only of order 2. However, upper robustness is not con-
stantly 2; these results were obtained from Theorem 12:

n 1 2 3 4 5 6

lower robustness 2 3 4 4 5 6

upper robustness 2 2 3 3 4 4

We mention that some handy closed formula for G2n and G2n−1 is conjectured in [1, section
4.5.6].
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6 Using some principle of exclusion as opposed to inclusion-
exclusion

As witnessed by 5.2, one can sometimes exploit symmetry to tame the inherent exponential
complexity of inclusion-exclusion. However, without the possibility to clump together many
identical terms, the number of summands in Lemma 7 is 2n, which is infeasible already for
n = 20 or so.

In [14] on the other hand, some multi-purpose principle of exclusion (POE) is employed. When
POE is aimed at calculating the output distribution of a stack filter S, a prerequisite is that
the stack filter∗ S be given as a disjunction of conjunctions Ki, i.e. in disjunctive normal form
(DNF). The POE then starts off with the set Mod1 of all 0, 1-strings that satisfy K1, then from
Mod1 one excludes all 0, 1-strings that violate K2. This yields Mod2 ⊆ Mod1, from which all
0, 1-strings are excluded that violate K3, and so on. The feasibility of the POE hinges on the
compact representation of the sets Modi.

The details being given in [14], here we address the question of how one gets the DNF in the
first place. Specifically we consider the frequent case that our stack filter S is a CDE (section
4) whose structural elements are provided. Let us go in medias res by reworking S =

∨1∧2∨2

of Example 1:

(SX)0 = A0 = Z0 ∨ Z1 (DNF)

= (Y−2 ∧ Y−1 ∧ Y0) ∨ (Y−1 ∧ Y0 ∧ Y1) (blowup)

= Y0 ∧ Y−1 ∧ (Y−2 ∨ Y1) (get CNF)

= (X0 ∨X1 ∨X2 ∨X3) ∧ (X−1 ∨X0 ∨X1 ∨X2) (blowup)

∧ ((X−2 ∨X−1 ∨X0 ∨X1) ∨ (X1 ∨X2 ∨X3 ∨X4))

= (X0 ∨X1 ∨X2 ∨X3) ∧ (X−1 ∨X0 ∨X1 ∨X2) (condense)

∧ (X−2 ∨X−1 ∨X0 ∨X1 ∨X2 ∨X3 ∨X4)

= (X0 ∨X1 ∨X2 ∨X3) ∧ (X−1 ∨X0 ∨X1 ∨X2) (condense further)

= X0 ∨X1 ∨X2 ∨ (X3 ∧X−1) (get DNF)

The last line is the sought DNF of S. It is obtained by starting with the DNF Z0∨Z1. This gets
“blown up” to a DNF in terms of Yi’s (using definition (13) of Z0 and Z1). This DNF needs to be
switched† to CNF (= conjunctive normal form). This in turn is blown up to a CNF in terms of
Xi’s. Usually the result can and must be condensed in obvious ways (“condense further” meant
that only the inclusion-minimal index sets carry over). Like this one takes turns switching DNF’s

∗More precisely, the positive Boolean function that underlies the stack filters must be given in DNF.
†How one switches between DNF and CNF of a positive Boolean function (i.e. one without negated variables

like here) is a well researched topic which we don’t touch upon here.

18



with CNF’s, and blowing up expressions. This is done as often as there are structural elements.
As a bonus the so called rank selection probabilities rsp[i] are calculated. This is defined as the
probability that the filter selects the i-th smallest pixel in the w-element sliding window. For
instance here w = 5 and rsp[1] = rsp[2] = rsp[3] = 0, rsp[4] = 0.4, rsp[5] = 0.6.

There exists a Mathematica Demonstration Project whereby the user provides the structural
elements of any desired CDE S (also 2-dimensional). From this the program first calculates the
DNF, which then serves to calculate the output polynomial φS(p). Alternatively the DNF of
any stack filter (CDE or not) can be fed directly by the user. Albeit Wild’s algorithm is multi-
purpose, it managed to calculate φCn(p) up to n = 5 (and the result agreed with Butler’s).
Written out as CDE we have C5 =

∨5∧10∨9 · · ·
∧2∨. The corresponding structural elements

{0, 1, 2, 3, 4, 5}, {0,−1, · · · ,−10}, {0, 1, · · · , 9} and so forth triggered the calculation of a DNF
comprising a plentiful 12018 conjunctions (time: 168224 sec). From this φC5(p) was calculated
in 45069 sec. Here it is:

12x5 + 7x6 − 23x7 + 19x8 − 130x9 + 194x10 − 59x11 − 142x12

+460x13 − 787x14 + 715x15 − 7x16 − 1030x17

+1959x18 − 2216x19 + 208x20 + 3711x21 − 6748x22

+8412x23 − 7587x24 + 2023x25 + 4680x26

−7903x27 + 8839x28 − 13540x29 + 30009x30

−51715x31 + 50159x32 − 7686x33 − 51417x34

+78198x35 − 50589x36 + 6900x37 − 7680x38

+56330x39 − 86905x40 + 43710x41 + 49540x42

−114680x43 + 103390x44 − 40555x45 − 15370x46

+33955x47 − 25460x48 + 11790x49 − 3645x50

+740x51 − 90x52 + 5x53

7 Conclusion

The main result of this paper is the calculation of the output distribution of the LULU -operators
Cn and Fn. The basic technique for obtaining the output distribution in closed or recursive form
may also apply to other highly symmetric erosion-dilation cascades; otherwise the algorithm of
[14] does the job. Further we introduced the concept of robustness which is useful in character-
izing the properties of a smoother in terms of its output distribution.
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