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ABSTRACT 
This study was conducted to evaluate and compare the water and nutrient relations of three 

indigenous deciduous tree species, viz., Cordia africana Lam., Croton macrostachyus Del., 

Millettia ferruginea (Hochst.) Baker and two widely planted eucalypts, viz., Eucalyptus 

camaldulensis Dehnh and Eucalyptus globulus Labill from Ethiopia. The study was organized as 

glasshouse and field observations in Ethiopia. Owing to the lack of baseline studies on the water 

and nutrient relations of the deciduous tree species, the glasshouse experiments involved a wide 

range of water and nutrient applications. Seedlings were grown with the supply of various levels of 

water and nutrients during which gas exchange, water potential, relative water content, tissue 

nutrient content and biomass production were measured. The field observations were limited to the 

study of surface root distribution and leaf nutrient composition of mature trees and their effects on 

soil nutrient pool. The observations were made on isolated trees and mixed or pure stands of trees 

in Badessa area, Eastern Ethiopia. The field site was selected because of the availability of the 

study species and suitability of the trees for the study.  

In the glasshouse, increased water deficit significantly reduced predawn leaf water 

potential, relative water content, stomatal conductance, photosynthetic rate, whole plant water use 

efficiency, plant height, diameter, leaf area and biomass production. Both of the eucalypts did not 

grow faster than the deciduous species under well-watered conditions unlike under water stress 

conditions. C. macrostachyus and C. africana had higher transpiration rates and tissue nutrient 

accumulations than the other species. They also demonstrated higher biomass allocation to roots 

than all the other species to support the intensive water and nutrient uptake rate. Due to the ability 

to re-orient its leaves to avoid direct solar irradiance, M. ferruginea maintained higher tissue water 

potential and relative water content than all the other species under water stress regimes.  

The impact of imposed drought was quick and more damaging to the eucalypts compared 

to the deciduous tree species indicating that the eucalypts may not survive extreme drought 

conditions unlike the deciduous species that drop their leaves and may remain dormant for weeks. 

The current study gave new experimental proof that E. globulus was more vulnerable to drought 

than E. camaldulensis.  

Soil N stress resulted in an overall reduction of tissue N concentration, N:P ratio, 

photosynthetic rate, stomatal conductance and photosynthetic water use efficiency in all the species 

studied. Pants with high foliar nitrogen concentration had higher photosynthetic capacities 

indicating that N plays a key role in photosynthesis and growth of all the studied species. The 

current study showed that for all the tree species, more attention has to be given to soil N than to P 

as soil P had minor effects on the photosynthetic activities of plants of all species compared to N. 
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The investigation on tissue nutrient composition confirmed that N:P ratio could be used to detect P-

limitation in plants. However, N:P ratio could not distinguish between N-limitation and combined 

limitations of N and P.  

The study of isolated C. africana and C. macrostachyus trees on soils in Badessa, Eastern 

Ethiopia indicated improved soil N, P and K under tree canopies whereas no effects were observed 

on the other soil nutrients studied. Similar to glasshouse conditions, C. macrostachyus and C. 

africana produced extensive surface roots, interfering with crops grown in association. Due to their 

high nutrient cycling potential the net effect on soil was positive. Comparison of E. camaldulensis 

woodlot and a mixed stand composed of deciduous species indicated that the fine root biomass in 

the surface soil under E. camaldulensis was about three times that under the mixed stand. The fine 

root biomass of E. camaldulensis inside the stand and 10 meters away from the stand were 

comparable in the surface soils showing the presence of root competition with adjacent crops. 

Therefore, planting of E. camaldulensis in association or adjacent to croplands should be avoided. 

Nutrient and carbon pool of soil inside the mixed stand was generally higher than that of E. 

camaldulensis indicating that trees of the mixed stand recycled more nutrients to the soil.  

 



 v 
 
 

UITREKSEL 
Die doel van hierdie studie was om die verskille tussen water- en voedingstofverhoudings van drie 

inheemse blaarwisselemde boomsoorte te vergelyk, viz., Cordia africana Lam., Croton 

macrostachyus Del., Millettia ferruginea (Hochst.) Baker en twee bekende eucalyptus spesies, viz., 

Eucalyptus camaldulensis Dehnh en Eucalyptus globulus Labil van Etiopië.  Die studie het bestaan 

uit kweekhuis- en veldobservasies in Etiopië.  As gevolg van beperkte navorsing ten opsigte van 

water- en voedingstofverhoudings in bladwisselende boomsoorte, het die kweekhuis-eksperimente 

bestaan uit 'n wye verkeidenheid water- en voedingstoftoetse.  Saailinge is gegroei deur 

verskillende vlakke van water- en voedingstowwe by te voeg. Gaswisseling, waterpotensiaal, 

relatiewe hoeveelheid water, hoeveelheid voedingstowwe en produksie van biomassa is gemeet. 

Die veldobservasies was beperk tot oppervlak-wortelverspreiding en blaarvoedingstof hoeveelhede 

van volwasse bome, sowel as die effek op grondvoedingstowwe. Observasies was beperk tot 

geïsoleerde, gemengde en een spesie opstande, in die Badessa area, Oos Etiopië. Die studiearea was 

gekies op grond van die voorkoms van die gekose boomsoorte, sowel as die toepaslikheid van die 

bome vir die studie.   

In die kweekhuis is gevind dat die verhoogte watertekort die pre-sonop 

blaarwaterpotensiaal, relatiewe hoeveelheid water, stomatiese geleiding, fotosintetiese tempo, 

heelplant water-gebruikseffektiwiteit, plant hoogte, diameter, blaararea en biomassa produksie 

beduidend verminder het.  Nie een van die eucalyptus spesies het vinniger as die bladwisselende 

spesies onder voldoende hidrasie gegroei nie.  Dit was egter nie die geval onder die waterbeperkte 

toestande nie. C. macrostachyus en C. africana het ‘n hoër transpirasie tempo sowel as 

weefselvoedingstof waardes gehad as die ander spesies.  Hierdie boomsoorte se wortelbiomassa 

was ook meer as die ander spesies, om vir die tempo van water- en voedingstofopname te 

akkomodeer.  As gevolg van die vermoë om blare te kan oriënteer om direkte sonlig te vookom,  

het M. ferruginea ‘n hoër water-weefselpotensiaal en relatiewe waterinname gehad in vergelyking 

met die ander boomsoorte in beperkte water toestande. 

Die impak van gëinisieerde droogte het vinnig voorgekom en het meer skade aan die 

eucalyptus aangerig in vergelyking met die bladwisselende boomsoorte. Dit dui aan dat die 

eucalyptus-spesie nie ekstreme droogte kan oorleef nie, waar bladwisselende spesies hul blare laat 

afval en vir weke aan een dormant kan bly.  Hierdie studie gee eksperimentele bewyse dat E. 

globulus minder bestand is teen droogte as E. camaldulensis.  

Beperkte N in die grond het veroorsaak dat daar ‘n algemene vermindering van weefsel N- 

konsentrasie, N:P ratio, fotosintetiese tempo, stomatiese geleiding en fotosintetiese watergebruiks 

effektiwiteit in al die bestudeerde spesies was.  Plante wat oor hoër blaar-stikstofkonsentrasies 
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beskik, het hoër fotosintetiese kapasiteite wat aandui dat N ‘n belangrike rol in fotosintese en die 

groei van al die bestudeerde spesies speel. Die oorhoofse bevindings van die studie was, dat daar 

meer aandag gegee moet word aan grond-N as P omdat grond-P net ‘n kleiner rol speel in die 

fotosintetiese aktiwiteite van plante van al die spesies in vergelyking met N. Die ondersoek na 

weefselvoedingstof hoeveelhede het bewys dat die N:P ratio gebruik kan word om P-tekorte in 

plante aan te dui. Die N:P ratio kan egter nie die verskil in N-tekorte en gekombineerde tekorte van 

N en P aandui nie. 

Die studie van die geïsoleerde C. africana en C. macrostachyus bome op grondtipes in 

Badessa, Oos Etiopië het verbeterde grond-N, P en K onder kroondak gebiede getoon, daar was 

egter geen verskille in die ander grondvoedingstowwe wat bestudeer is nie. In toestande 

gelykstaande aan die van die kweekhuis, het C. macrostachyus en C. africana meer 

oppervlaksswortels ontwikkel. Die toename aan oppervlakswortels het ingedring op gewasse wat in 

assosiasie gegroei is, dit het egter ‘n positiewe effek op die grond gehad as gevolg van die hoë 

voedingstof-siklus-potensiaal. Die E. camaldulensis opstand is gevergelyk met ‘n gemengde 

opstand van bladwisselende spesies waar daar gevind is dat die fynwortel biomassa in die 

oppervlak grond onder die E. camaldulensis ongeveer drie keer soveel was as die van onder die 

gemengde opstand.  Kompetisie met aangrensende gewasse is aangeui deurdat die fynwortel 

biomassa van  E. camaldulensis binne die opstand en 10 meter weg van die opstand vergelykbaar 

was in die oppervlakgronde. Dit dui dus aan dat die plant van E. camaldulensis in assosiasie of 

aangrensend aan gewasse vermy moet word. Die teenwoordigheid van voedingstowwe en koolstof 

in die grond van die gemengde opstand was oor die algemeen hoër as die van die E. camaldulensis. 

Dit is ‘n aanduiding dat die bome van die gemengde opstand meer voedingstowwe aan die grond 

verskaf. 
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1. INTRODUCTION 

 

1.1 Plant water and nutrient relations  

 
Water and nutrients are among the major environmental factors that determine the growth 

and distribution of plants on earth. Worldwide, dehydration caused by excessive 

transpiration results in a considerable loss of plants (Kramer and Boyer, 1995). 

Transpiration is the loss of water from plants in the form of vapor and it is the dominant 

process in plant water relations because of the large volume of water involved and its 

controlling influence on plant water status. Rapidly transpiring plants could result in 

depletion of soil moisture, drop of ground water level and reduced stream flow (Florence, 

1996).  

Water and nutrient relations of a plant widely refers to the acquisition, use and 

release/loss of water and nutrients during the growth process of the plant. Because the 

supply of and use of water has a direct influence on plant growth, measurement of water 

status is an important part of understanding plant growth (Beadle et al., 1993). Water 

potential, relative water content (RWC) and gas exchange have commonly been used to 

assess the water status and physiological responses of plants under water stress (Pereira et 

al., 1986; White et al., 2000, Lawlor, 2002). In the majority of plants, water stress results in 

reduced leaf water potential and RWC, which further induce stomatal closure (Pereira et 

al., 1986; Kramer and Boyer, 1995; Nilsen and Orcutt, 1996; Lambers et al., 1998; Lawlor, 

2002; Lawlor and Cornic, 2002). Stomata play a pivotal role in controlling the balance 

between water loss and carbon gain, i.e. biomass production.  
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Leaf RWC, the mass of water held in relation to the mass that can be held at full 

turgor, has been used to estimate plant water status in terms of cellular hydration under the 

possible effect of leaf water potential and osmotic adjustments (Kramer and Boyer, 1995). 

Two plants with the same leaf water potential can have different RWC if they differ in 

osmotic adjustments (Beadle et al, 1993; Lawlor, 2002). Osmotic adjustment is the net 

accumulation of solutes when plants are exposed to water deficit. As a consequence of 

osmotic adjustment and other traits of adaptation to water stress, such as root development 

and reduced transpiration, water content can be maintained in cells and tissues to allow 

metabolic activity (Kramer and Boyer, 1995). At the cellular level, RWC affects the 

physiology of the cell in several ways, including changes in intercellular organelle 

positions, transport channels, enzyme biochemistry, as well as cell wall shrinkage (Hall, 

2001; Lawlor, 2002; Lawlor and Cornic, 2002). Clearly, these changes impact on cellular 

metabolism, including photosynthesis (Lawlor and Cornic, 2002). Photosynthetic studies 

have been used as tools to probe the physiological basis of plant growth under 

environmental limitations including water and nutrient stresses (e.g., Fredeen et al., 1989; 

Sage et al., 1990; Evans, 1996; Lambers et al., 1998; Rao and Terry, 2000). 

Plants differ both in their capacity to acquire nutrients from the soil and in the 

amount of nutrients they need per unit growth and the nutrient concentration in their tissue 

(Lambers et al., 1998). Environment strongly affects plant nutrient concentration by 

changing both allocation among organs and the composition of individual tissues (Aerts 

and Chapin, 2000). The balance of available nutrients in the environment then alters the 

proportions of these nutrients in plant tissues (Koerselman and Meuleman, 1996). When 

nutrient supply declines relative to plant demand, most plants show the following sequence 
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of events: decrease in vacuolar reserves with little effect on growth, continued reduction in 

tissue nutrient concentrations, reduced rates of leaf growth and photosynthesis, increased 

non-structural carbohydrate concentrations, senescence of older leaves, reallocation of 

reserves to compensate for reduced nutrient status, increased root mass ratio and increased 

root absorption capacity, greatly reduced photosynthesis and nutrient absorption and 

dormancy or death of meristems (Chapin, 1991; Reich et al., 1992; Aerts, 1995; 

Marschner, 1995; Evans, 1996; Lambers et al., 1998; Aerts and Chapin, 2000).  

 Nitrogen and phosphorus are the main growth limiting nutrients in plants from 

tropical and subtropical environments (Marschner, 1995). Due to their requirements in the 

major biochemical processes of plant growth including enzymatic activities, energy 

transfer and structural contribution to nucleic acids (Marschner, 1995), N and P play 

pivotal roles not only in carbon fixation but also in the subsequent allocation of carbon and 

related growth processes. Growth is the most sensitive indicator of nutrient deficiency 

(Evans, 1996).  

Because the bulk of the nutrients required for plant growth usually enter the plant 

by means of roots, allocation of biomass to roots is an important determinant of nutrient 

acquisition. Roots of deep rooting trees are capable of pumping nutrients that are otherwise 

unavailable to shallow rooted plants (Van Noordwijk et al., 1996; Young, 1997). This 

pumping of nutrients is crucial in tropical environments because many tropical soils are 

highly leached and depleted of weatherable minerals to great depth (Young 1997). Tree 

roots selectively absorb these nutrients and accumulate them at the surface by way of litter 

fall (Van Noordwijk et al., 1996). 
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Tree species with nutrient rich biomass and faster leaf decomposition rates are 

regarded as having high litter quality in agroforestry systems (Meyers et al., 1994; 

Mafongoya et al., 1998).  The return of the nutrients to the soil affects the nutrient cycling 

potential of the system.  

 

1.2 Water and nutrient relations of eucalypts and deciduous trees of Ethiopia 

 
The water and nutrient relations of the eucalypts have been well documented. Several 

studies (e.g., Ehleringer and Werk, 1986; Pereira et al, 1986; Pereira et al., 1987; Pereira de 

Almeida and Riekerk, 1990; Gibson et al., 1991; Tesfaye, 1994; James and Bell, 1995; 

Battaglia et al., 1996; Florence, 1996; James and Bell, 1996; White et al., 1996; Hatton et 

al., 1998; Osòrio et al., 1998; James and Bell, 2000; White et al., 2000; Burgess et al., 

2001; Pita and Pardos, 2001) conducted on the effects of water stress and related subjects 

on Eucalyptus camaldulensis Dehnh. and Eucalyptus globulus Labill showed that both 

species are tolerant to water stress under various controlled and field conditions. Generally, 

the former is more tolerant to drought than the latter (Florence, 1996; White et al., 2000).  

Although mature E. globulus and E. camaldulensis have various mechanisms of 

drought tolerance (Florence, 1996; James and Bell, 1995; White et al., 1996; James and 

Bell, 2000), seedlings of both species are prone to drought, which causes dieback when 

planted out in drier areas like in many parts of Ethiopia (Pohjonen, 1989; Tesfaye, 1994; 

Jagger and Pender, 2003). To compensate for the loss of eucalyptus seedlings from early 

dieback, farmers and/or plantation agents increase the planting density during the first year, 

followed by refilling in subsequent years (Pohjonen, 1989; Jagger and Pender, 2003).   
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Regarding the indigenous trees of Ethiopia, no organized studies and published 

results have been made available on their growth performances and water and nutrient 

relations both under controlled and field conditions. However, some recent observations 

(Legesse, 1995, 2002a; Tadesse et al., 2000) indicate that some indigenous species of 

Ethiopia including Cordia africana, Erythrina brucei and Millettia ferruginea are fairly 

fast growing and have an additional advantage of soil fertility improvement (Jiregna, 1997; 

Tadesse et al., 2000; Abebe et al., 2001; Legesse, 2002a).  

 
1.3 Opportunities and constraints for tree planting in Ethiopia 

 
Although tree planting in Ethiopia has a long history, remarkable initiatives were taken 

during the 1890s when the then Emperor of the country introduced various exotic species 

including eucalypts to curb the fuel and construction wood shortage around Addis Ababa 

(von Breitenbach, 1961). At that time about 40% of Ethiopia was covered by forest (von 

Breitenbach, 1961, 1962). Currently, FAO (2001) estimated the total forest cover of 

Ethiopia to be about 4.2% of land area and the annual deforestation during the last ten 

years (1990 – 2000) to be about 40, 000ha. The main reasons for the destruction of the 

forest resources were the conversion of forestland to cropland, fire and the cutting of trees 

for fuel wood and timber (von Breitenbach, 1961, 1962; Pohjonen, 1989; EFAP, 1994; 

Legesse, 1995, 2002b; FAO, 2001). Forest destruction is still an ongoing activity today 

(Fig. 1.1).  
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a) 

 
b) 

 
 

Figure 1.1 Forestlands in the process of conversion to agricultural land around Badessa, 

Eastern Ethiopia. a) 5 km west of Badessa, b) 10 km south west of Badessa.   
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Ethiopia, with over 250,000 ha of eucalypts plantation, mainly of E. globulus 

(Tasmanian blue gum) and E. camaldulensis (river red gum) (Davidson, 1989; Turnbull 

1999), ranks 9th in world and 3rd in Africa (Eldridge et al., 1994). Friis (1995) identified 

and described about 55 species of eucalypts in Ethiopia since their first introduction. He 

also noted that E. globulus subsp. globulus, E. camaldulensis, E. saligna, E. tereticirnis, E. 

citriodora, and E. regnans are most widely grown in Ethiopia in areas with over 400 mm 

rainfall. E. camaldulensis and E globulus are among the top performers in tropical and 

subtropical regions of the world (Eldridge et al., 1994; Florence, 1996).  

 Though eucalypts were planted extensively all over Ethiopia, fuel wood shortage 

continued to spread to small towns and even to rural areas, and the requirements grew 

much faster than the plantations could supply (EFAP, 1994). On the other hand, the 

eucalypts which were introduced mainly for fuel wood became more valuable for 

construction wood, pole and post – their use as fuel being limited to litter and small 

branches (Fig. 1.2). The lack of scientific information regarding indigenous tree species of 

Ethiopia and the promotion of planting eucalypts by government departments favored the 

spread of the eucalypts long before the indigenous species of the country were sufficiently 

studied.  

Long after the eucalypts were well accepted by farmers came the issue of their 

negative impact on plants and the environment at large. Lisanework and Michelsen (1993) 

advise not to use Eucalyptus spp. in low rainfall areas and where soil conservation is the 

main purpose of tree planting because of their negative effects including the exhaustion of 

groundwater, excessive depletion of soil nutrient reserves and allelopathic effects, 

suppression of understorey and nearby vegetation and decline in the density of mycorrhizal 
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fungi (Lisanework and Michelsen, 1993; Michelsen et al., 1993, 1996; Jagger and Pender, 

2003). Very recently, regional governments in Ethiopia have sought to discourage 

eucalypts planting through a ban on the planting of eucalypts on farmlands (Hagos et al., 

1999). However, a study by Feyera et al. (2002) indicates that E. globulus can foster the 

regeneration of native flora in areas where seed sources and dispersal agents are available.  

The Ethiopian Forestry Action Program (EFAP, 1994) has proposed a huge tree-

planting program to bridge the gap between wood demand and supply in Ethiopia. Given 

the need to plant trees by farmers for household energy and wood requirements and the 

limited land holdings by farmers (as a result of increasing population and dependence of 

the majority of the population on agriculture), the time has come to look for tree species 

with some desirable qualities for planting in association with crops and/or on degraded 

lands that are no more profitable for growing crops. 

Pohjonen and Pukkala (1988 and 1990); Pohjonen (1989) and Jagger and Pender 

(2003) argue that the afforestation of bare highland sites with eucalypts is positive 

compared to the prior barren state of sites. Davidson (1989) presented the arguments for 

and against eucalypts in the Ethiopian context. Even though the negative impacts of the 

eucalypts on crops were well recognized even by farmers (e.g. Poschen, 1987), planting of 

eucalypts continued in Ethiopia (Fig. 1.2). Although no studies have been conducted to 

compare the performance of the eucalypts with any of the indigenous tree species of 

Ethiopia, eucalypts are widely believed to grow faster than the deciduous species 

(Pohjonen, 1989).  
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a) 

 
b) 

 
c) 

 
 
Figure 1.2 Woodlots of E. camaldulensis established by farmers in Badessa area and its 
use for construction. a) a two-year old woodlot, b) a seven-year old woodlot being cut for 
construction, c) a house under construction using E. camaldulensis. 
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Although some studies are underway on the propagation and domestication of selected 

indigenous species of Ethiopia as reviewed by Legesse (2000b), no attempts have yet been 

made to evaluate the performance of the deciduous trees regarding growth, water 

consumption and nutrient relations against the eucalypts that are widely studied. Because 

of the increasing indications that some of the indigenous tree species of the country are 

fairly fast growing (Legesse, 1995, 2002a, 2002b; Tadesse et al, 2000), the myth that 

eucalypts grow faster than the indigenous tree species of Ethiopia needs to be evaluated.  

 

Table 1.1 Summary of the distribution, occurrences and uses of three deciduous and two 

Eucalyptus tree species considered for the current study 

Species Family Distribution in 
Ethiopia 

Distribution else 
where 

Occurrence in Ethiopia Uses 

Cordia africana Lam. Boraginaceae 1,200-2,200m Tropical Africa and 
Arabia 

Primary and secondary 
forests, woodlands, 
agroforestry, riparian 
vegetation 

Timber, boxes, 
fodder, shade, 
firewood, 
honeybee flora, 
agroforestry 

Millettia ferruginea 
(Hochst.) Baker 

Fabaceae 1000-2500m 
except in 
Wollo and 
Gamo Gofa 

Endemic to 
Ethiopia 

Uplands, rainforests, 
woodlands, ground water 
forests, agroforestry 

Shade, firewood, 
medicine, timber, 
boxes, fodder, 
agroforestry 

Croton 
macrostachyus Del. 

Euphorbiaceae 500-3400 m Tropical Africa and 
Arabia 

Mountain slopes, primary 
and secondary forests, 
savannah, waste ground, 
along rivers, agroforestry  

Timber, boxes, 
shade firewood, 
Medicinal, 
agroforestry 

Eucalyptus 
camaldulensis Dehnh. 

Myrtaceae <2000 m Tropical, sub- 
tropical and 
temperate native to 
Australia.   
 

Plantation, woodlot, 
roadside 

Poles, posts, 
firewood, 
charcoal, 
hardboard, 
particle board, 
paper, 
construction 

Eucalyptus globulus 
Labill. 

Myrtaceae > 1800 m high 
rainfall areas 
> 1000 mm 
annual rainfall. 

Tropical, 
subtropical and 
temperate, native 
to Australia. 

plantation, woodlot 
roadside 

Poles, posts, 
pulpwood, 
firewood mine 
timber, 
construction 

Sources: Poschen, 1987; Pohjonen, 1989; Thulin, 1989; Booth and Pryor, 1991; EFAP, 

1994; Eldridge et al., 1994; Friis, 1995; Gilbert, 1995; Legesse, 1995; WUARC, 1995; 

Florence, 1996; Tadesse et al., 2000; Abebe et al., 2001. 
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Therefore, three deciduous species widely used by farmers mainly in agroforestry systems 

(Fig. 1.3a-c) and two Eucalyptus species widely grown all over Ethiopia were considered 

in the current study. The distribution, occurrence and uses of the species considered for the 

current study are given in Table 1.1.  

The study was composed of glasshouse investigations and field assessments. The 

glasshouse investigations focused on the effects of water and nutrient (nitrogen and 

phosphorus) availability on the growth and biomass allocation of the studied species. The 

field assessment focused on some desirable agroforestry qualities including root 

distribution and foliar nutrient concentrations of the studied tree species and their effects on 

selected soil fertility parameters in Badessa, Eastern Ethiopia. Isolated shade trees of the 

study species in Badessa area are shown in Fig. 1.4. 

 

1.4 Objective 

 

The overall objective of the study was to investigate and compare the use of water and 

nutrients and the growth performance of two Eucalyptus and three deciduous tree species 

indigenous to Ethiopia under limited and sufficient supplies of water and nutrients and to 

identify the mechanisms that these species employ to cope with moisture stresses at the 

seedling stage; and to investigate the effects of isolated trees and stands of these species on 

some soil fertility parameters under field conditions in Ethiopia. 
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a) 

 
b) 

 
c) 

 
 
Figure 1.3 Typical agroforestry system composed of various crops and shade trees in 
Badessa area, Eastern Ethiopia. The tree components are mainly C. africana, C. 
macrostachyus and F. albida. a) Kara area and b) Oda Muda area, c) 3 km before Badessa 
dominated by C. africana. 
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a)                                                                      b) 

   
c)                                                                     d) 

   
  
Figure 1.4 Isolated mature trees retained as shade for crops (maize in this case). a) heavily 
pruned C. africana tree, b) C. macrostachyus, c) M. ferruginea, and d) F. albida. 



 14 
 
 

2. EFFECTS OF SOIL MOISTURE DEFICIT ON GAS EXCHANGE, GROWTH AND 

BIOMASS ALLOCATION OF TWO EUCALYPTUS AND THREE DECIDUOUS TREE 

SPECIES 

 

Abstract 

The effects of water deficit on gas exchange, growth and biomass allocation of C. africana, C. 

macrostachyus, M. ferruginea, E. camaldulensis and E. globulus seedlings were studied under 

glasshouse conditions for 104 days. Plants were subjected to four watering regimes, viz. control 

(well-watered), mild-, moderate- or severe-water-deficit conditions corresponding to 75, 50, or 25% 

of the control moisture level, respectively. Water deficit resulted in reduced stomatal conductance 

in all species, with values ranging from 152 mmol m-2 s-1 for the control, to 16 mmol m-2 s-1 for the 

severely water deficient plants. Similarly, photosynthetic rate declined in all the species studied, 

with values ranging from 13.4 µmol m-2 s-1 for the control to 0.5 µmol m-2 s-1 for plants under severe 

water deficit conditions. Increased water deficit resulted in reduced predawn and midday leaf water 

potentials in all the species studied. The leaf water potentials of the two Eucalyptus spp. showed 

significant (P < 0.05) decline at midday compared to the corresponding predawn measurements on 

the same species. In contrast to the well-watered plants, severely water deficient plants of C. 

africana and C. macrostachyus showed significant (P < 0.001) drop in leaf relative water content 

(RWC). The whole plant water use efficiencies (WUEWL) of the well-watered plants ranged from 

3.8 to 6.1 g dry weight (kg H20)-1. In contrast, WUEWL in the severely water deficient plants ranged 

from 1.2 to 2.5 g dry mass (kg H20)-1. The photosynthetic water use efficiency ranged from 4.7 

mmol CO2 (mol H2O)-1 in the severely water deficient plants to 7.5 mmol CO2 (mol H2O)-1 in the 

well-watered plants. M. ferruginea used considerably less water for good growth compared to the 

other species examined. The eucalypts had significantly (P < 0.05) higher biomass production 

under water deficit than the deciduous species. However, all species had comparable biomass 

production under sufficient water supply. C. africana and C. macrostachyus invested more biomass 
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to root, the eucalypts invested more biomass to leaves while M. ferruginea invested more biomass 

to stems. Seedlings under severe water stress shaded their leaves in order to cope with the limited 

water supply. Increased water supply significantly (P < 0.01) increased biomass allocation to 

leaves in M. ferruginea and the two eucalypts whereas it significantly (P < 0.01) increased biomass 

allocation to roots in C. macrostachyus. Although species showed significant differences (P < 

0.001) in specific leaf area (SLA), water deficit did not affect the SLA of all species.  

 

2.1 Introduction 

 

In light of the increasing population and its dependence on woody biomass for fuel and 

construction, tree planting in Ethiopia has become a question of survival (EFAP, 1994; 

Legesse, 1994, 2000). The establishment of trees that provide biomass for fuel 

and environmental services, including watershed management, soil nutrient 

and water retention, fodder for livestock, and construction material, is a basic 

requirement for sustained livelihood of farmers. 

Although indigenous tree species such as C. africana, C. macrostachyus and M. 

ferruginea are known to have various environmental, economic and social benefits to 

farmers in Ethiopia (Demel and Aseffa, 1991; EFAP, 1994; Legesse, 1995; Jiregna, 1997; 

Tadesse et al., 2000), planting of exotic species, mainly E. camaldulensis and E. 

globulus has been promoted for the provision of fuel wood and construction 

material. The success of E. camaldulensis and E. globulus as exotic species has been 

attributed to their superiority to other species in terms of their biomass production, wide 

adaptation and resistance to various environmental stresses and coppicing abilities 

(Pohjonen, 1989; Florence, 1996).  



 16 
 
 

Growing E. globulus and E. camaldulensis under the Ethiopian conditions has been 

easy (Jagger and Pender, 2003), but the low initial survival of seedlings mainly due to 

severe moisture deficit during the dry season remains a problem (Pohjonen, 1989; Tesfaye, 

1994). Farmers and/or forest technicians compensate for seedling loss during the dry 

season by increasing the planting density during the first year followed by refilling in the 

subsequent years (Pohjonen, 1989). Furthermore, no published information has been made 

available regarding the growth, biomass production and allocation of the indigenous tree 

species of Ethiopia under a range of moisture conditions. Although the eucalypts are 

widely believed to grow well and better than deciduous species of Ethiopia (Pohjonen, 

1989), no comparative studies have been made in this regard to justify the use of the 

eucalypts in preference to the deciduous species. Due to the increasing need for tree 

planting, the Ethiopian Forestry Action Program, (EFAP, 1994), has proposed a huge tree 

planting program. As a result the search for suitable trees species for the aforesaid 

objectives has become the heart of forestry research in Ethiopia. 

Therefore, the assessment of plant growth performance and biomass allocation 

under controlled water stress conditions could furnish information on the performance of 

the plants under field conditions, although plant growth in the field is regulated by several 

biotic and abiotic interactions (Nilsen and Orcutt, 1996). The extent to which water stress 

affects the growth performance is of paramount importance to evaluate whether these 

different species might withstand water stress and grow in drier areas or during the dry 

season in areas receiving enough rainfall.  

The objectives of the study were to investigate and compare the effects of 

prolonged water deficit on the photosynthetic rate, stomatal conductance, water use 
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efficiency, growth parameters and biomass allocation of seedlings of three deciduous and 

two Eucalyptus tree species.  

 

2.2 Materials and Methods 

 
2.2.1 Plant establishment and glasshouse conditions 

 
The glasshouse experiment was carried out at the Tree Nursery, University of Stellenbosch 

(South Africa), from September to December 2002. The Ethiopian National Tree Seed 

Project, Addis Ababa, kindly supplied seeds of C. africana, C. macrostachyus, M. 

ferruginea, E. camaldulensis and E. globulus. Seeds were sown on germination vials filled 

with vermiculite and maintained in a glasshouse at 26 ± 2oC day and 20 ± 2ºC night 

temperatures. The seeds germinated within 5-15 days without pretreatment. The germinants 

were transplanted to 5-litre plastic bags (diameter, 150 mm; length, 300 mm) containing 

sand with 3% stone and having a pH (KCl) of 4.7. The growth medium was supplemented 

with a nutrient powder (COMPEL Chemicult®) at a rate of 385 mg plant-1 week-1 as a top 

dressing. The nutrient powder consisted of 6% N, 2.7% P, 13% K, 7% Ca, 2.2% Mg, 7.5% 

S and micronutrients. Potted seedlings were placed on wooden benches and were watered 

using micro-sprinkler irrigation twice a day during the summer, and once a day during the 

winter. Metasystox R® was sprayed to ward off ants and aphids which were observed on 

leaves of C. macrostachyus and E. globulus seedlings. The average minimum and 

maximum monthly temperatures inside the glasshouse during the growing period were 

11.9º C and 31.5º C, respectively (Fig. 2.1). Owing to light attenuation by the glass, the 

photosynthetic photon flux density (PPFD) inside the glasshouse did not exceed 1200 µmol 
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m-2 s-1 while the PPFD outside the glasshouse was about 1700 µmol m-2 s-1, a value for a 

typical sunny day.  
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Figure 2.1 Average monthly minimum and maximum air temperature inside glasshouse 

prior to and during the study. 

 

2.2.2 Treatments 
 
One-year-old seedlings were used for the experiment. Five seedlings from each of the tree 

species were randomly assigned to four watering regimes as follows: 

1) Well-watered (to meet the daily transpiration); 

2) Mild water deficit (75% of the well-watered treatment); 

3) Moderate water deficit (50% of the well-watered treatment); and, 

4) Severe water deficit (25% of the well-watered treatment). 
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Figure 2.2 Mean daily whole plant water loss of well-watered seedlings of different 

species during 15 weeks of growth in a glasshouse. Bars indicate ± SE, n = 5. 

 

The bases of the seedling pots were covered by plastic bags to avoid water loss 

through holes at the bases of the pots and seedlings from different watering regimes were 

placed on glasshouse benches in a completely randomized design. As water loss from the 

pots occurs through direct evaporation from the soil and transpiration from plant leaves, 

these two were considered as the basis for generating the three water deficit levels. Due to 

differences in initial seedling sizes, species-specific water requirements, and the increase in 

water demand during active growth, treatment of the different species with the same 

volume of water was not considered appropriate. The mass of water needed to meet the 

daily transpiration requirement of control plants was estimated from measurements of pot 

weight (Fig. 2.2) and this mass of water was supplied to the control plants for the 
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subsequent 10 -12 days. The volume of water required to meet the 25, 50 and 75% water 

deficit was then calculated from the values for the well-watered treatment (Table 2.1).  

 

Table 2.1. Total mass of water (kg plant-1) supplied to each species and watering regime 

during the 104 days of study period   

 

Watering regimes (Treatments) 
Species 25% 50% 75% 100% 
C. africana 3.36 6.71 10.07 13.43 
C. macrostachyus 3.23 6.46 9.69 12.91 
E. camaldulensis 4.90 9.79 14.68 19.58 
E. globulus 4.80 9.59 14.38 19.18 
M. ferruginea 2.54 5.08 7.62 10.16 
 
 
2.2.3 Water potential and relative water content  
 
Predawn and midday leaf water potentials and relative water content (RWC) were 

measured on days 22, 43 and 104 of the experiment. Water potential was measured using a 

pressure chamber (ARIMAD-3000, Israel). A well-expanded leaf was selected, cut at the 

base with a sharp blade, and placed in the chamber with the petiole protruding through the 

opening of the chamber. In the case of E. globulus and E. camaldulensis, small branches 

from the top of the plants were used for measurement, as the leaf of E. globulus is sessile 

and the petiole of E. camaldulensis is too short to appear through the opening of the 

chamber. After tight closure of the chamber, pressure was gradually applied until the very 

fist appearance of water was observed at the cut end of the petiole, and the pressure was 

recorded in MPa. RWC was measured on leaf discs collected by driving a circular leaf 

punch of 4.5 cm2 internal diameter into randomly selected leaf blades. Part of the blade 

close to the apex was punched to avoid the large mid-veins close to the base of the leaves. 
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In the case of M. ferruginea, whole leaflets were used. Each leaf disc or leaflet was placed 

in an airtight vial and immediately taken to the laboratory where it was weighed. The 

samples were then hydrated to full turgidity by floating the discs on de-ionized water in a 

closed Petri dish for six hours.  The samples were removed from the water, surface 

moisture blotted off using filter paper, and weighed to get turgid weight. Samples were 

then oven dried at 85ºC for 24 h and dry weights determined. RWC was then calculated 

using the equation: RWC (%) = (Wf - Wd)/(Wt - Wd) x 100, where W(f) is the fresh weight, 

W(d) is the dry weight and W(t) is the turgid weight (Beadle et al., 1993). 

 

2.2.4 Gas exchange measurements 
 
An infrared gas analyzer, (CIRAS-I, PP Systems, Hitchin, UK) was used to measure 

SKRWRV\QWKHWLF� SKRWRQ� IOX[� GHQVLW\� �33)'�� �  � ���–700 nm; µmol m-2 s-1), net CO2 

assimilation (photosynthetic) rate (µmol m-2 s-1), stomatal conductance (mmol m-2 s-1) and 

transpiration rate (mmol m-2 s-1) at a CO2 concentration of 360 ppm and ambient humidity. 

All measurements were performed between 8:00 and 10:00 A.M. every three weeks. 

Measurements were taken on adaxial leaf surfaces of fully expanded leaves in the upper 

crown, fourth to sixth leaf from the top. Because M. ferruginea has pinnately compound 

leaves and the leaflets are smaller than the cuvette area, adjustments were made by 

measuring leaflet area placed in the cuvette. Photosynthetic water use efficiency (WUEGE) 

was calculated as: 

   

WUEGE   =    Photosynthetic rate (µmol CO2 m-2 s-1) 

         Transpiration rate (mmol H2O m-2 s-1)  
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The air temperature, PPFD and water vapor pressure difference (WVPD) during the 

gas exchange measurements are shown in Fig. 2.3. WVPD of the air inside the glasshouse 

was derived from air temperature and humidity measurements. It was calculated to be 

equivalent to saturated water vapor pressure (SWVP) minus ambient water vapor pressure 

of air at the same temperature. The former was calculated according to the formula:  

 
    SWVP (mbar) = 6.13753 x exp[T x (18.564 – T/254.4)/(T + 255.57)]  

where T is the temperature in oC (Buck, 1981). 
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Figure 2.3 The morning (8:00 – 10:00AM) temperature, photosynthetic photon flux 

density (PPFD) and water vapor pressure difference inside the glasshouse during gas 

exchange measurements. 

 

2.2.5 Plant water use efficiency 
 
The rate of WL was calculated as the difference in pot weight over a period of 24 h 

expressed in terms of plant leaf area (kg water m-2 d-1). Three blank pots, the same as the 
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experimental pots but without plants, were incorporated for each treatment to correct for 

direct evaporation from the pots. Differences in water loss from the blank pots were 

checked and their mean weights were used for correction (Glenn and Brown, 1998; Li, 

2000). The plants were harvested on day 104 and total plant dry weights recorded after 

oven drying at 85ºC for 48 h. Plant water use efficiency (WUEWL) was determined as:  

 

WUEWL    =    DW104 (g) – DW0 (g)   

         �:/ (0 –104) (kg H2O d-1), 

 

where DW104 is the total dry weight on day 104; DW0 is the total dry weight on day 0; 

�:/(0 –104) is the sum of daily water loss from day 0 to day 104. This sum of daily water 

loss from each species and treatment was determined from pot measurements carried out 

every 10 – 12 days.  

 

2.2.6 Biomass measurements  
 
Five seedlings per treatment were harvested at the beginning of the experiment and at the 

end for biomass assessment. The harvested plants were separated into stem, root and leaf, 

and dried in an oven at 85oC for 48 hours for dry weight determination. Stem weight ratio 

(SWR), root weight ratio (RWR) and leaf weight ratio (LWR) were determined at the 

beginning and end of the study period as the ratios of stem, root and leaf dry matter to the 

total plant dry matter, respectively. Seedling height and diameter (at the base of the 

seedlings) were measured at the start and end of the experiment. Percentage biomass, 

diameter and height increases were determined as [(final measurement-initial 

measurement)/initial measurement] x 100. 
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2.2.7 Leaf area estimation 
 
Plant leaf area was estimated at the beginning and end of the experiment. The length and 

width of leaves of all plants were measured to estimate leaf area using a model established 

from the relationship between leaf length, leaf width and leaf area as determined from 20 

destructively sampled leaves of each species. Total leaf area was determined using the 

model: A = ��//
/:
&)���ZKHUH�$�LV�WKH�DUHD�LQ�PP2, LL is leaf length in mm, LW is 

leaf width in mm, and CF is the correction factor. The correction factors were 0.73, 0.75, 

0.69, 0.79 and 0.82 for C. africana, C. macrostachyus, E. camaldulensis, E. globulus and 

M. ferruginea, respectively. The correlations between leaf areas measured directly and 

those predicted using the model were 0.96< r2 < 0.99; P < 0.001; n = 20).  

Leaf area ratio (LAR) was calculated as a ratio of total leaf area to total plant dry 

matter. Percentage leaf area expansion was determined as [(final leaf area-initial leaf 

area)/initial leaf area] x 100. Initial and final leaf areas refer to the leaf areas estimated at 

the beginning and end of the experiment, respectively. Specific leaf area (SLA) was 

determined at the end of the experiment using leaf discs, each with an area of 4.5 cm2, 

except for the leaflets of M. ferruginea in which the leaf disc area was 1 cm2. The leaf discs 

were dried at 85 0C for 24 h, and weighed. SLA was then calculated as leaf disc area per 

leaf disc dry weight. 

 

2.2.8 Statistical procedures 
 

Two and one-way ANOVA tests were used to determine differences among species and 

treatments for each of the variables. Tukey’s Honestly Significant Difference test was 
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employed for multiple comparisons when significant differences were found between 

treatments. Because no significant differences in WL, WUEWL and WUEGE within 

treatments were observed across the measurement days, pooled data (n = 25) were 

presented for both parameters. All statistical analyses were carried out using SPSS 11.0 for 

Windows.   

 

2.3 Results 

 
2.3.1 Water potential and relative water content 
 
Increased water deficit resulted in decreased predawn and midday leaf water potentials in 

all the species studied (Fig. 2.4a, b). The mean leaf water potential differences between the 

well-watered and the severely water deficient plants at midday were high for E. globulus 

(1.40 MPa) and E. camaldulensis (1.14 MPa) compared to ca 0.5 MPa for the three 

deciduous tree species examined. The leaf water potentials of the two Eucalyptus spp. 

showed significant (P < 0.05) decline at midday compared to the corresponding predawn 

measurements (Fig. 2.4a, b). In contrast to the well-watered plants, severely water deficient 

plants of C. africana and C. macrostachyus showed significant (P < 0.001) reduction in 

leaf RWC (Fig. 2.4c, d).  
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Figure 2.4 Mean water potential (a) predawn, b) midday) and relative water content (c) 

predawn, d) midday) of seedlings of C. africana (CA), C. macrostachyus (CM), E. 

camaldulensis (EC), E. globulus (EG) and M. ferruginea (MF) during growth with four 

watering regimes (25%, 50%, 75% and 100% of daily transpiration requirements). Bars 

indicate ± SE, n = 15. 
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2.3.2 Stomatal conductance and photosynthetic rate 
 
Increased water deficit resulted in reduced stomatal conductance and photosynthetic rate in 

all the species studied (Fig. 2.5). However, the reduction in stomatal conductance and 

photosynthetic rate followed different patterns for the different species investigated. Much 

of the decline in stomatal conductance and photosynthetic rate occurred during the first 22 

days of the experiment, except in M. ferruginea where the declines were rather gradual. 

After 22 days, C. africana and C. macrostachyus maintained more or less constant 

physiological functions while the two eucalypts showed declining trends throughout the 

experimental period. On day 104, stomatal conductances and photosynthetic rates of all the 

severely water deficient plants were 3–4 and 5–10 times lower than the well-watered 

plants, respectively. 

 

2.3.3 Water use efficiency 

Except for E. globulus and M. ferruginea, water deficit did not affect the WUEGE of the 

species investigated (Table 2.2). WUEGE was significantly (P < 0.01) reduced due to 

severe water deficit in these species. Water loss from C. macrostachyus and C. africana 

was about 2-3 times those of E. camaldulensis and E globulus across all the treatments 

(Table 2.2). Increased water deficit resulted in reduced WUEWL in all the species studied. 

The water use efficiencies of the severely water deficient plants were reduced by factors of 

3.3, 3.2, 2.7, 1.9 and 3.3 for C. africana, C. macrostachyus, E. camaldulensis, E. globulus 

and M. ferruginea, respectively, compared to the well-watered plants (Table 2.2). C. 

africana and C. macrostachyus had lower WUEWL across all the four levels of watering 

regimes. Poor correlations were observed between WUEGE and WUEWL for all species (r2 = 

0.04 – 0.22), except for E. globulus (r2 = 0.42). 
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Figure 2.5 Mean photosynthetic rate (A, left) and stomatal conductance (gs, right) of 

seedlings of five tree species during 104 days of growth with four watering regimes: 25% 

( �������� �������� ��DQG�������[��RI�GDLO\� WUDQVSLUDWLRQ�UHTXLUHPHQWV��%DUV� LQGLFDWH���
SE, n = 5. 
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Table 2.2 Mean (±SE) water loss (WL), plant water use efficiency (WUEWL) and 

photosynthetic water use efficiency (WUEGE) of seedlings of five tree species grown for 

104 days under four watering regimes. Significant P-values of two-way ANOVA are 

shown for variation among species, treatments and their interactions. Mean values within a 

row followed by different letters are significantly different (P<0.05) according to Tukey’s 

test; n = 25 for WL and WUEGE and 5 for WUEWL). 

 
Water supply (% of control) 

Species 25 50 75 100 

WL  (kg m-2 d –1) 

C. africana 0.7 ± 0.06a 0.7 ± 0.06a 0.8 ± 0.07a 0.9 ± 0.05a 
C. macrostachyus 0.9 ± 0.05a 0.9 ± 0.07a 1.0 ± 0.06a 1.1 ± 0.06a 
E. camaldulensis 0.4 ± 0.05a 0.3 ± 0.04a 0.5 ± 0.05a 0.4 ± 0.02a 

E. globulus 0.3 ± 0.07ab 0.2 ± 0.02b 0.3 ± 0.03a 0.4 ± 0.02a 
M. ferruginea 0.4 ± 0.04a 0.5 ± 0.06a 0.5 ± 0.05a 0.4 ± 0.03a 
Species  0.000 
Treatment  0.017 
Species * treatment 0.687 

WUEWL (g dry mass (kg H2O)-1) 

C. africana 1.2 ± 0.26c 2.1 ± 0.31bc 3.3 ± 0.37ab 3.8 ± 0.34a 
C. macrostachyus 1.3 ± 0.14c 2.1 ± 0.29bc 3.0 ± 0.44ab 4.2 ± 0.19a 
E. camaldulensis 1.8 ± 0.20b 4.0 ± 0.38a 4.5 ± 0.36a 4.9 ± 0.42a 
E. globulus 2.5 ± 0.39b 3.6 ± 0.41ab 4.9 ± 0.46a 4.9 ± 0.29a 
M. ferruginea 1.8 ± 0.33c 3.3 ± 0.83cb 4.1 ± 0.10ab 6.1 ± 0.70a 
Species  0.000 
Treatment  0.000 
Species * treatment 0.324 

WUEGE (mmol CO2 (mol H2O)-1) 

C. africana 7.1 ± 0.36a 6.9 ± 0.19a 6.9 ± 0.35a 7.3 ± 0.34a 

C. macrostachyus 6.9 ± 0.21a 6.9 ± 0.25a 7.0 ± 0.31a 6.6 ± 0.22a 
E. camaldulensis 5.7 ± 0.33a 6.7 ± 0.37a 6.8 ± 0.29a 6.3 ± 0.31a 

E. globulus 4.7 ± 0.38b 7.1 ± 0.28a 7.0 ± 0.27a 7.5 ± 0.32a 
M. ferruginea 5.4 ± 0.29b 7.3 ± 0.32a 6.5 ± 0.21ab 6.8 ± 0.31a 
Species  0.003 
Treatment  0.000 
Species * treatment 0.005 
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2.3.4 Growth 
 
Seedlings of the study species had already different growth status and biomass allocation 

patterns before the treatments were made (Table 2.3).  

 

Table 2.3 Mean (± SE) growth parameters of seedlings of five study species before 

treatment of the watering regimes (n = 5). 

 
Growth parameters C. africana C. macrostachyus E. camaldulensis E. globulus M. ferruginea 

Diameter (mm) 
 

11.12 ± 0.37 8.38 ± 0.33 9.07 ± 0.33 7.55 ± 0.24 9.05 ± 0.19 

Height (cm) 
 

28.61 ± 0.86 27.57 ± 0.71 88.38 ± 2.28 88.12 ± 1.76 59.21 ± 2.34 

Leaf area (m2) 
 

0.06 ± 0.01 0.03 ± 0.00 0.17 ± 0.01 0.26 ± 0.02 0.07 ± 0.01 

Total biomass (g) 
 

12.74 ± 0.30 11.02 ± 0.36 30.69 ± 0.93 29.61 ± 0.50 14.58 ± 0.59 

SWR (g g-1) 0.31 ± 0.01 0.30 ± 0.04 0.40 ± 0.01 0.44 ± 0.02 0.69 ± 0.03 

LWR (g g-1) 0.25 ± 0.02 0.23 ± 0.02 0.29 ± 0.02 0.34 ± 0.01 0.11 ± 0.01 

RWR (g g-1) 0.44 ± 0.02 0.46 ± 0.04 0.31 ± 0.02 0.23 ± 0.02 0.20 ± 0.02 

LAR (m2 kg-1) 4.37 ± 0.67 2.87 ± 0.29 5.80 ± 0.88 7.74 ± 1.25 4.66 ± 0.91 

SLA (m2 kg-1) 17.76 ± 1.09 22.92 ± 1.39 13.97 ± 1.56 12.03 ± 2.13 25.51 ± 0.79 

 

Soil water deficit resulted in significant (P<0.001) variations in diameter growth between 

species, treatments and their interactions (Table 2.4). Plants under severe water stress had 

reduced stem diameter (P < 0.05) compared to well-watered plants except for E. globulus. 

The difference in diameter between the well-watered and severely water stressed plants 

was about seven-fold in C. africana.  
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Table 2.4 Mean (±SE) percentage increase in plant diameter, height, leaf area and total dry 

mass of seedlings of five tree species under four watering regimes: 25%, 50%, 75% and 

100% of daily transpiration requirements for 104 days in a glasshouse. The significant P-

values of two-way ANOVA are shown for the variation between species, treatments and 

their interactions. Mean values (row) followed by different letters are significantly different 

(P < 0.05) according to Tukey’s test, n = 5)  

 
Water supply levels (% of daily transpiration requirements) Species 

25 50 75 100 
Plant diameter increase (%) 

C. africana 10.0 ± 2.5c 20.5 ± 2.6c 35.4 ± 1.8b 73.9 ± 4.5a 
C. macrostachyus 26.2 ± 3.3b 34.7 ± 4.9ab 42.5 ± 5.0ab 48.2 ± 7.6a 
E. camaldulensis 24.9 ± 4.7b 41.3 ± 5.1ab 42.1 ± 3.8ab 57.3 ± 8.1a 
E. globulus 37.0 ± 4.6a 36.9 ± 2.3a 29.7 ± 2.1a 41.0 ± 6.2a 
M. ferruginea 12.4 ± 1.8b 24.5 ± 2.7ab 33.3 ± 5.2a 32.5  ± 3.7a 
Species  0.000 
Treatment  0.000 
Species * treatment 0.000 

 

Plant height increase (%) 
C. africana 22.5 ± 3.2d 48.9 ± 2.5c 75.3 ± 1.9b 99.3 ± 3.6a 
C. macrostachyus 12.6 ± 1.7a 16.8 ± 4.0b 27.1 ± 3.0a 34.9 ± 5.8a 
E. camaldulensis 7.1 ± 1.2b 12.9 ± 1.4b 37.8 ± 3.4a 34.2 ± 3.1a 
E. globulus 5.4 ± 0.6c 27.2 ± 1.7b 33.1 ± 1.3b 43.6 ± 3.2a 
M. ferruginea 9.5 ± 0.9c 12.9 ± 0.8c 40.2 ± 5.0b 70.7 ± 4.8a 
Species  0.000 
Treatment  0.000 
Species * treatment 0.000 

 

Leaf area increase (%) 
C. africana -11.6 ± 2.1c 25.2 ± 1.9c 201.5 ± 7.7a 121.6± 11.2b 
C. macrostachyus -15.8 ± 7.9d 80.1 ± 7.9c 161.6 ± 9.5b 258.6 ± 15.4a 
E. camaldulensis -3.9 ± 7.7a 124.8 ± 12.5b 188.9 ± 19.5a 138.6 ± 16.6b 
E. globulus -7.3 ± 5.0a 71.9 ± 5.5b 164.0 ± 16.0a 102.5 ± 21.7b 
M. ferruginea -24.2 ± 2.8b 18.0 ± 2.2b 141.7 ± 8.3a 189.9 ± 13.2a 
Species  0.000 
Treatment  0.000 
Species * treatment 0.000 

 

Total plant mass increase (%) 
C. africana 19.1 ± 1.5d 68.0 ± 5.4c 146.0 ± 8.4b 286.5 ± 8.6a 
C. macrostachyus 23.3 ± 2.1d 70.2 ± 8.2c 142.3 ± 10.6b 334.0 ± 14.0a 
E. camaldulensis 33.6 ± 3.6d 101.1 ± 6.8c 157.2 ± 22.4b 250.5 ± 11.2a 
E. globulus 33.9 ± 3.3d  83.0± 3.0c 187.9 ± 13.6b 245.5 ± 18.7a 
M. ferruginea 20.9 ± 2.5d 70.7 ± 4.7c 127.6 ± 7.7b 241.4 ± 23.7a 
Species  0.009 
Treatment  0.000 
Species * treatment  0.000 
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Soil water deficit resulted in significant (P<0.001) variations in height growth 

between species, treatments and their interactions (Table 2.4). The height growths of the 

severely water stressed plants were reduced by about 3 – 6 fold compared to the well-

watered plants in all species, except in C. macrostachyus (Table 2.4). In all treatments C. 

africana showed significantly higher (P < 0.05) height increment than the other species. 

Soil water deficit resulted in significant (P<0.001) variations in leaf area expansion 

between species, treatments and their interactions (Table 2.4). The deciduous tree species 

showed progressive leaf area increase with increasing water supply (Table 2.4). Well-

watered C. macrostachyus had the maximum leaf area expansion compared to all the other 

species (P < 0.001). Soil water deficit resulted in significant (P<0.001) variations in 

biomass production between species, treatments and their interactions (Table 2.4). Severe 

water deficit reduced the biomass production of C. africana and C. macrostachyus plants 

by about 14 fold and those of both eucalypts and M. ferruginea only by 7 fold compared to 

well-watered plants (Table 2.4). Biomass production significantly increased (P < 0.05) 

with increasing water supply in all species. Species did not show variations in biomass 

production in the mild water deficit and well-watered treatments. Both of the eucalypts 

produced more biomass under severe water deficit condition than the deciduous species (P 

< 0.05) while C. africana and C. macrostachyus produced significantly higher (P<0.05) 

biomass under sufficient water supply compared to all the other species.   

 

2.3.5 Biomass allocation 
 
Significant variations (P<0.001) in SWR were observed both between species and watering 

regimes (Fig. 2.6a and Table 2.5). In most species a declining SWR was observed with 

increasing water supply but treatments did not show significant variations for C. africana 
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and E. camaldulensis. The SWR of M. ferruginea was very significantly higher (P < 0.001) 

than those of all the other species. No significant variations in RWR were observed 

between treatments (Fig. 2.6b and Table 2.5). However, the variations among species and 

the interactions of species and treatments were significant (P<0.001). The RWR of C. 

macrostachyus was about twice that for E. camaldulensis, and about 2.5 times more than 

those for E. globulus and M. ferruginea in all the treatments except under severe water 

deficit in which differences were comparably smaller. C. macrostachyus was the only 

species that had significant variation in RWR among treatments. Its RWR showed 

increasing trend with increasing water supply. Significant variations (P<0.001) in biomass 

allocation to leaves (LWR) were observed between species, watering regimes and their 

interactions (Fig. 2.6c and Table 2.5). Increased water deficit resulted in significantly 

reduced (P < 0.05) LWR in E. camaldulensis, E. globulus and M. ferruginea. Furthermore, 

E. globulus and E. camaldulensis had significantly higher (P < 0.001) LWR than the 

deciduous species in the well watered treatment. 

Significant variations (P<0.001) in LAR were observed between species, watering 

regimes and their interactions. The LAR of E. globulus was about twice those of C. 

africana and C. macrostachyus at the start of the experiment (Table 2.3) and following all 

treatments except the severe water deficit treatment (Fig. 2.6d). The LAR of E. 

camaldulensis was also about twice those of C. macrostachyus in all treatments. 
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Figure 2.6 (a and b). Mean stem weight ratio (a) and root weight ratio (b) of C. africana 

(CA), C. macrostachyus (CM), E. camaldulensis (EC), E. globulus (EG) and M. ferruginea 

(MF) after 104 days of growth under four water regimes (25%, 50%, 75% and 100% of 

daily transpiration requirements) in a glasshouse. (Bars indicate ± SE, n = 5). 
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Figure 2.6 (c and d). Mean leaf weight ratio (c) and leaf area ratio (d) of C. africana (CA), 

C. macrostachyus (CM), E. camaldulensis (EC), E. globulus (EG) and M. ferruginea (MF) 

after 104 days of growth under four water regimes (25%, 50%, 75% and 100% of daily 

transpiration requirements) in a glasshouse. (Bars indicate ± SE, n = 5). 
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Variation in SLA was more distinct between species than between treatments (Fig. 

2.7 and Table 2.5). Water deficit did not affect the SLA in all species. The SLA of M. 

ferruginea was significantly higher (P < 0.001) than all the other species. Both of the 

eucalypts had comparable and significantly (P < 0.01) lower SLA than C. macrostachyus 

and C. africana.  

The ranking of species based on the observed values of growth parameters is 

presented in Table 2.6. Different species showed clear distinction regarding SLA and 

RWR. 
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Figure 2.7 The mean specific leaf area of seedlings of C. africana (CA), C. macrostachyus 

(CM), E. camaldulensis (EC), E. globulus (EG) and M. ferruginea (MF) after 104 days of 

growth under four water regimes (25%, 50%, 75% and 100% of daily transpiration 

requirements) in a glasshouse. (Bars indicate ± SE, n = 5).  
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Table 2.5 Summary of a factorial ANOVA carried out to test significant variations in the 

biomass allocation in seedlings of five tree species (C. africana, C. macrostachyus, E. 

camaldulensis, E. globulus and M. ferruginea) grown with four watering regimes under 

glasshouse conditions for 104 days. Data has been presented in Figs 2.6 and 2.7).  

Source df F-value P-value 
SWR (g g-1) 

Species 4 196.4 0.000 
Treatment 3 19.2 0.000 
Species * treatment 12 2.2 0.021 

RWR (g g-1) 
Species 4 208.8 0.000 
Treatment 3 2.1 0.111 
Species * treatment 12 5.0 0.000 

LWR (g g-1) 
Species 4 73.0 0.000 
Treatment 3 14.0 0.000 
Species * treatment 12 5.3 0.000 

LAR (m2 kg-1) 
Species 4 23.2 0.000 
Treatment 3 21.3 0.000 
Species * treatment 12 3.6 0.000 

SLA (m2 kg-1) 
Species 4 147.8 0.000 
Treatment 3 3.8 0.013 
Species * treatment 12 1.8 0.061 
 
 

Table 2.6 Summary of the rankings of species based on the observed growth parameters 

(Figs. 2.6 and 2.7). Rank values were assigned based on comparison of species made across 

treatments. Rank of 1 is assigned to the highest value.   

Observed 

parameter 

C. 

africana 

C. 

macrostachyus 

E. 

camaldulensis 

E. 

globulus 

M. 

ferruginea 

Stem weight ratio 3 4 2 2 1 

Root weight ratio 2 1 3 4 5 

Leaf weight ratio 3 4 2 1 4 

Leaf area ratio 3 4 2 1 3 

Specific leaf area 3 2 5 4 1 
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2.4 Discussion 

 
2.4.1 Water potential and relative water content 
 

The water potentials of E. globulus and E. camaldulensis were strongly affected by water 

deficit, especially during middays (Fig. 2.4b). The significantly reduced leaf water content 

of C. macrostachyus (Fig. 2.4c, d) could be the result of pronounced water loss (0.9 ± 0.05 

kg m-2 d-1) through transpiration (Table 2.2). At the cellular level, reduced water potential 

and RWC affect the physiology of the cell in several ways, including changes in 

intercellular organelle positions, transport channels, enzyme biochemistry; as well as cell 

wall shrinkage (Nilsen and Orcutt, 1996; Lambers et al., 1998; Hall, 2001; Lawlor and 

Cornic, 2002). Clearly, these changes impact on cellular metabolism, including 

photosynthesis (Lawlor and Cornic, 2002). 

 

2.4.2 Stomatal conductance and photosynthetic rate 
 

E. globulus and E. camaldulensis showed gradual stomatal and photosynthetic responses 

compared to C. africana and C. macrostachyus (Fig. 2.5). In contrast to earlier reports (e.g. 

Pereira et al., 1986; Pereira et al., 1987; Pereira de Almeida and Riekerk, 1990; White et 

al., 2000) E. globulus and E. camaldulensis did not show strong stomatal control when 

confronted with severe water deficit. During the first six weeks, severely water stressed 

plants of E. camaldulensis maintained open stomata and high photosynthetic rate compared 

to C. africana and C. macrostachyus, which showed characteristics of drought tolerant 

plants (Nilsen and Orcutt, 1996). The eucalypts had been characterized as drought tolerant 

because they tend to maintain open stomata and tissue function despite a relatively large 
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depression in water potential (Florence, 1996). However, with the extended severe water 

deficit, the stomatal conductance of the two eucalypts progressively declined to values of 

15-20 mmol m-2 s-1 (Fig. 2.5). Of the species examined in the current study, M. ferruginea 

had higher tissue water content and photosynthetic rate even under severe water deficit 

probably due to the ability to re-orient its leaves, thus avoiding direct solar irradiance 

during midday. It has to be noted that M. ferruginea received less than half the volume of 

water supplied to the control plants of the two Eucalyptus spp. (Fig. 2.2). Hence, although 

the eucalypts had been acclaimed as drought tolerant (e.g., Pohjonen, 1989; Florence, 

1996), M. ferruginea was found to be more tolerant to severe water deficit as evidenced by 

its maintenance of high water potential (Fig. 2.4b), high RWC (Fig. 2.4c), and high 

photosynthetic rate (Fig. 2.5).  

C. africana and C. macrostachyus responded to severe water deficit through 

reduced stomatal conductance and photosynthetic rate (Fig. 2.5). These diminished 

responses appear to be the result of reduced leaf water content with increasing water deficit 

(Fig 2.4c, d). Lawlor (2002) and Lawlor and Cornic (2002) reported that decreased leaf 

RWC progressively reduces stomatal conductance. In a study on stomatal responses of five 

indigenous tree species of Ethiopia to increasing water deficit, Legesse (1992) detected the 

presence of pronounced midday stomatal closure in C. africana.  

Stomatal closure is regarded as the initial impact of water limitation on 

photosynthesis (Nilsen and Orcutt, 1996; Luan, 2002). Although stomata control the flux of 

CO2 into the mesophyll cells for photosynthesis, the deleterious effects of dehydration on 

cellular metabolism suggests the presence of non-stomatal factors that account for reduced 

photosynthetic rates under severe water deficit (Björkman and Powles, 1984; Ogren and 
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Öquist, 1985; Kozlowski et al., 1991; Kramer and Boyer, 1995; Nilsen and Orcutt, 1996; 

Lawlor and Cornic, 2002).  

 
2.4.3 Water use efficiency 
 

Soil water deficit did not affect water use efficiency at the leaf level (WUEGE) except for E. 

camaldulensis, E. globulus and M. ferruginea plants that were subjected to severe water 

deficit conditions (Table 2.2). For the severely water deficient plants of E. camaldulensis 

and E. globulus, photosynthetic rates were affected more than stomatal conductances 

resulting in higher transpiration and hence lower WUEGE compared to the well-watered 

plants. 

Whole plant water use efficiency (WUEWL) of the well-watered plants ranged 

between 3.8 and 6.1 g dry mass (kg H20)-1 (Table 2.2). These values are less than the value 

(6.3 g dry mass (kg H20)-1 reported for Salix viminalis (Lindroth and Cienciala, 1996). At 

the whole plant level, increased soil water deficit resulted in reduced water use efficiencies 

in all the species studied. The low WUEWL observed in plants under severe soil water 

deficit could be due to limited photosynthetic rate and water loss through transpiration. It 

has been argued that, although photosynthesis is limited by water deficit, plants should 

transpire to dissipate excess light energy and regulate leaf temperature (Nilsen and Orcutt, 

1996). 

Compared to the two eucalypts, the deciduous species had lower WUEWL under 

both well-watered and water deficit conditions. This is attributed to their high daily water 

loss (Table 2.2). However, on the annual basis the WUEWL of the deciduous species may 

exceed that of the eucalypts because the deciduous species shade their leaves to avoid 
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water loss during the dry season, while the eucalypts retain their leaves and thrive to grow 

under high temperature and water vapor deficit that may result in excessive transpiration.    

However, evergreen woody plants typically have more conservative water use than 

deciduous woody plants (Hall, 2001). M. ferruginea had lower water loss, higher leaf water 

content and WUEWL than C. africana and C. macrostachyus, possibly due to its efficient 

leaf re-orientation to reduce midday solar irradiance and hence transpiration.  

The poor relationship observed between WUEWL and WUEGE in all species and 

treatment levels was mainly because the mass of plant used to determine the former is 

affected by respiratory losses at night and uptake of nutrients that affect the molecular 

composition of the dry mass, in addition to CO2 uptake. Taken for a short time during the 

day, WUEGE does not detect the diurnal fluctuations unlike WUEWL (Lindroth and 

Cienciala, 1996). In the current study, WUEGE was measured only during the mornings 

before the plants experienced high temperature and WVPD at midday that may result in 

higher transpiration and hence lower water use efficiency. A poor relationship between 

WUEWL and WUEGE has also been reported by Martin and Thorstenson (1988) and 

commented on by Kramer and Boyer (1995). WUEWL is considered as the most appropriate 

method because it shows how dry matter production is affected by water availability 

(Kramer and Boyer, 1995). However, WUEGX could also provide a valuable insight into 

the metabolic processes that might control photosynthesis and transpiration under a given 

set of conditions, especially when measurement of WUEWL is not suitable (Kramer and 

Boyer, 1995).  



 42 
 
 

2.4.4 Growth  
 
The higher biomass production of both the eucalypts in all the water deficit treatments and 

their maximum leaf expansion in the mild water deficit treatment compared to the 

deciduous species (Table 2.4) indicate that the eucalypts were more tolerant to water deficit 

than the deciduous species. The success of E. camaldulensis as an exotic species has been 

attributed to its high biomass production on poor and dry lands, tolerance to drought and 

rapid growth when water is available (Pohjonen, 1989; Florence, 1996). Similar to the 

former report for an irrigated and fertilized E. globulus plantation in Portugal (Fabião et al., 

1995), water deficit did not affect the biomass allocation to roots in E. globulus, E. 

camaldulensis and M. ferruginea. However, severe water deficit caused premature 

senescence and shedding of leaves in all species during the first two to three weeks of the 

induction of the stress. Similar effects have been reported for various tree species 

(Kozlowski et al., 1991). Severely water stressed plants also had the smallest height and 

diameter increment (Table 2.4). 

The effect of drought avoidance in the deciduous species, involving high 

photosynthetic rate and growth under favorable conditions, are offset by the cost of 

producing new leaves in each new growth period (Lambers et al., 1998; Aerts and Chapin, 

2000). The leaf area expansion and biomass production of the deciduous species were 

comparable or higher to those of the eucalypts under sufficient supply of water. Because 

deciduous species are more sensitive to moisture stress (Kozlowski et al., 1991) they 

employ various mechanisms to ensure their water balance. It could be speculated that C. 

macrostachyus and C. africana tend to maintain their water balance through: 1) allocation 

of more biomass to roots to replenish the high water loss through their leaves, 2) maintain 
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low leaf area to reduce the transpiring surface area, 3) efficient stomatal closure during the 

midday that would reduce water loss (Chapter 3).  

 

2.4.5 Biomass allocation 
 

The SLA, SWR, LWR of all the study species (Fig. 2.6) were within the ranges reported 

for tropical tree species (Lambers and Poorter, 1992). The three deciduous species had 

higher SLA than the evergreen eucalypts (Fig. 2.7 and Table 2.6). Poorter and Remkes, 

1990; Lambers and Poorter, 1992) reported that SLA of deciduous species is higher than 

that of evergreen species. Species with low SLA invest more structural compounds to the 

leaves and achieve longer leaf life-span compared to high SLA species (Reich et al, 1997; 

Poorter and de Jong, 1999) which invest less on leaf structural material and thus have rapid 

flush and faster turnover of leaves (Grime, 1994). Higher LAR of the eucalypts compared 

to the deciduous species could be due to the high leaf lifespan of the former. LAR and the 

assimilation rate per leaf area are the leading factors that determine plant growth (Lambers 

and Poorter, 1992). Although both the deciduous and evergreen species had comparable 

photosynthetic rates, the eucalypts did not show superior growth performance due to their 

high LAR possibly because their older leaves had low assimilation rate (not measured). 

Low assimilation rate is often associated with old leaves (Eamus and Prior, 2001). The 

LAR of the deciduous species was not significantly affected by moisture deficit possibly 

due to their rapid leaf area adjustment.  

The RWR of C. macrostachyus was more than three times the upper limit reported 

for tropical trees (Lambers and Poorter, 1992). Furthermore, increased water supply 

enhanced biomass investment to root in C. macrostachyus (Fig. 6b). Thus, C. 



 44 
 
 

macrostachyus could be a species with inherently extensive root systems. Although the 

high root mass and low leaf area of C. macrostachyus and also C. africana may indicate 

their adaptation to resource poor environments, their high biomass production and fairly 

high photosynthetic rate under sufficient water availability would indicate that they have 

wide adaptations. Furthermore, the wide distribution of C. macrostachyus in all kinds of 

habitats (500 – 3400 m above see level) in Ethiopia (Gilbert, 1995) could be due to its 

extensive root system. 

Under field conditions such factors as age of the plant, symbiotic associations with 

microorganisms, competition with other species, nutrient availability, soil structure and the 

absence of restriction to root growth could also play a substantial role in determining the 

degree to which these species may succeed in a water stressed environments. Although 

these biotic and abiotic interactions may have considerable effects on the growth and 

biomass allocation of trees under natural conditions, plants with extensive root systems are 

favored to survive in resource poor environments, because they are more likely to tolerate 

occasional severe droughts and encounter the nutrients that are distributed irregularly in 

many soils. Shallow rooted trees with extensive lateral root systems are, however, more 

competitive and may not be good candidates for instance in agroforestry systems. Based on 

this glasshouse experiment and from the observations (Chapter 6) that C. macrostachyus 

produces extensive root system under natural conditions, it may be a potential candidate for 

planting in areas where land stabilization is a priority.  
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2.5 Conclusion 

 
The current study confirmed that the eucalypts are more tolerant to long-term water stress 

because they produced higher biomass under water deficit condition. The deciduous 

species had higher water loss and lower water use efficiencies at the whole plant level 

compared to E. camaldulensis and E. globulus. Under well-watered conditions, all the tree 

species examined had comparable photosynthetic rate, stomatal conductance, water use 

efficiency and biomass production. However, larger proportions of the biomass produced 

in C. macrostachyus and C. africana were invested to roots. 

Among the deciduous species, M. ferruginea showed high tolerance to water stress 

as evidenced by its high tissue water potential, RWC and photosynthetic rate under severe 

water deficit. Provided that its limited root growth and other site conditions are not 

limiting, the current study shows that M. ferruginea could be a potential candidate for 

planting in drier areas. 

Apart from supporting their long survival in water stressed conditions, the extensive 

root system and smaller leaf area of C. macrostachyus and C. africana may not be 

desirable qualities for production purposes in moisture stressed areas. Owing to its 

extensive root distribution, however, C. macrostachyus could be used for land reclamation 

in areas where stabilization and protection of the soil from erosion is a priority.  
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3. RESPONSE OF SEEDLINGS OF TWO EUCALYPTUS AND THREE DECIDUOUS 

TREE SPECIES TO DROUGHT STRESS 

 

Abstract 

The responses of C. africana, C. macrostachyus, M. ferruginea, E. camaldulensis and E. globulus 

seedlings to drought stress were studied in a glasshouse for a period of 12 days. Drought stress was 

induced by withholding water. The study found that E. globulus and E. camaldulensis were more 

vulnerable to drought stress compared to the three deciduous species examined. Drought stress 

resulted in dehydration and dieback of both E. camaldulensis and E. globulus seedlings within 

seven days. In the deciduous tree species studied, drought stress resulted in leaf abscission and 

significant (P < 0.05) leaf area reduction. Only the youngest leaves were retained by the deciduous 

species throughout the drought stress period. Midday depression in stomatal conductance and 

photosynthetic rate was highest for C. africana followed by C. macrostachyus. Of the 5 tree species 

studied, M. ferruginea had the highest water potential and relative water content, as well as the 

lowest stomatal conductance throughout the water-stress period. In the well-watered group, both E. 

globulus and E. camaldulensis had higher stomatal conductance, photosynthetic rate and increased 

water loss compared to the three deciduous species. Three mechanisms of coping with short term 

drought stress were identified: 1) stomatal control in all species, but more efficient in C. africana 

and C. macrostachyus; 2) reduction of leaf area in the deciduous species; and, 3) change in leaf 

orientation in M. ferruginea. 
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3.1 Introduction 

 
Plants have different mechanisms for withstanding water stress, including various 

physiological and morphological changes (Jones, 1993; McKersie and Leshem, 1994; 

Nilsen and Orcutt, 1996; Lambers et al., 1998). Several studies (e.g. Pook et al., 1966; 

Pereira et al., 1986,1987; Pereira de Almeida and Riekerk, 1990; Tesfaye, 1994; White et 

al., 1996; James and Bell 2000; White et al., 2000; Burgess et al., 2001) have been 

conducted on the effect of drought and related subjects on E. camaldulensis and E. 

globulus under various controlled and natural environments. 

Although mature E. globulus and E. camaldulensis have various mechanisms for 

drought resistance (Florence, 1996; White et al., 1996; James and Bell 2000), their 

seedlings are prone to drought, thus resulting in considerable dieback (Pohjonen, 1989; 

Tesfaye, 1994). Although the cultivation of E. globulus and E. camaldulensis under 

Ethiopian conditions has been easy, the low initial survival of out planted seedlings 

remains a problem (Pohjonen, 1989, Tesfaye, 1994). A practice frequented by farmers 

and/or plantation agents to compensate for seedling losses from early dieback is to increase 

the planting density during the first year, followed by refilling in subsequent years 

(Pohjonen, 1989). Concerning indigenous trees of Ethiopia, no published data have so far 

been made available on their performance under field conditions.  

Plant performance in the field is often controlled more by the interaction of multiple 

factors (e.g. soil, climate, disease, and herbivorous organisms) rather than by a single 

overriding factor (Nilsen and Orcutt, 1996). Although complex interactions are minimal 

under a controlled environment, investigations on the effect of drought stress could provide 

information on how different plant species respond to severe water stress in drought prone 
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areas. Several studies (e.g. Kramer and Boyer, 1995; Lo Gullo et al., 1998; Ameglio et al., 

1999) have indicated that the effect of drought stress on the growth performance of a wide 

variety of plants can be investigated by withholding water for several days. 

Water potential, relative water content (RWC) and gas exchange have commonly 

been used to assess the water status and physiological responses of plants under water 

stress (Pereira et al., 1987; White et al., 2000). In the majority of plants, water stress results 

in reduced predawn leaf water potential, which further induces stomatal closure resulting in 

reduced gas exchange (Pereira et al., 1986, 1987; Kramer and Boyer, 1995; Nilsen and 

Orcutt, 1996; Lambers et al., 1998). Stomatal closure is therefore one of the initial 

responses of plants to the onset of water stress (McKersie and Leshem, 1994; Lambers et 

al., 1998). In addition to water potential, relative water content (RWC) has been used to 

estimate plant water status in terms of cellular hydration under the possible effect of leaf 

water potential and osmotic adjustments (Kramer and Boyer, 1995). 

The study on the effects of prolonged water deficit on gas exchange, growth and 

biomass allocation (Chapter 2) showed that although severe water deficit suppressed most 

of the physiological and growth processes in all the studied species, E. camaldulensis and 

E. globulus showed better performance in terms of biomass under water deficit conditions 

compared to the deciduous species. However, whether the eucalypts are more tolerant to 

drought or not should be studied. Study of the response of the seedlings to drought is vital 

because many places in Ethiopia are prone to drought and seedlings are so vulnerable to 

drought stress. The objectives of the current study were: 1) to investigate the mechanisms 

by which two Eucalyptus spp. and three deciduous tree species respond to drought stress; 
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and, 2) to assess the degree to which the indigenous species tolerate drought stress 

compared to the eucalypts.  

 

3.2 Materials and Methods 

 
3.2.1 Plant establishment and glasshouse conditions 
 
The glasshouse experiment was carried out on seedlings of C. africana, C. macrostachyus, 

M. ferruginea, E. camaldulensis and E. globulus, at the tree nursery at the University of 

Stellenbosch, South Africa. Seedlings were established and grown for one year under 

glasshouse conditions indicated in Chapter (Section 2.2.1). The average morning and 

midday temperatures, water vapor pressure deficit, and photosynthetic photon flux density 

(PPFD) during the drought stress period are shown in Fig. 3.1. Owing to light attenuation 

by the glass, the PPFD inside the glasshouse did not exceed 1200 µmol m-2 s-1 while the 

PPFD outside the glasshouse was about 1700 µmol m-2 s-1, a value for a typical sunny day. 

 
3.2.2 Experimental design 
 

Ten plants having similar size were selected from each of the tree species studied, and were 

randomly assigned to either the control or drought stress treatment induced by withholding 

water. The control plants were supplied with the same amount of water lost over the 

previous 24 h period. The morphological parameters of the plants used for the drought 

stress regime are shown in Table 3.1. All the plants were watered to field capacity, and pots 

were placed in plastic bags that were sealed at the base of the seedlings to avoid direct 

evaporation from the soil.   
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Figure 3.1 Morning and midday photosynthetic photon flux density, temperature and water 

vapor pressure difference inside the glasshouse during the 12-day water stress period. 

WVPD-MOR = Water pressure vapor difference in the morning, WVPD-MID = Water 

vapor pressure difference at midday, PPFD-MOR = Photosynthetic photon flux density in 

the morning, PPFD-MID = Photosynthetic photon flux density at midday, TEMP-MOR = 

Temperature in the morning, TEMP-MID = Temperature at midday. Bars indicate ±SE, n = 

5. 

 

To allow for air exchange between the atmosphere and the root system, pots were 

randomly pierced with a punch of 2 mm internal diameter. Pots without plants were 

included to correct for water loss through other means. All the pots were placed on 

glasshouse benches in a completely randomized design. Every evening, each pot was 

weighed on an electronic balance to determine the daily water loss. Measurements 

continued until the plants died or lost most of their leaves. The plant water loss (WL) was 

calculated in relation to plant biomass and leaf area (Table 3.1), assuming that increment in 
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biomass and leaf area during the 12-day consecutive measurements was negligible 

compared to the water loss. 

 

Table 3.1 Mean (±SD, n=5) diameter, height, leaf area, total biomass and root/shoot ratio 

of plants used for the drought experiment.  

 

Species 
Root collar  

Diameter (cm) 

Leaf area  

(m2) 

Plant height  

(cm) 

Plant biomass 

(g) 

Root/shoot  

ratio 

C. africana 1.14 ± 0.14 0.07 ± 0.02 28.20 ± 2.51 12.14 ± 1.74 1.64 ± 0.35 

C. macrostachyus 0.79 ± 0.12 0.05 ± 0.01 29.40 ± 3.13 11.08 ± 1.13 2.12 ± 0.68 

E. camaldulensis 0.96 ± 0.10 0.19 ± 0.05 87.60 ± 13.37 25.34 ± 6.12 0.76 ± 0.15 

E. globulus 0.79 ± 0.41 0.26 ± 0.10 98.00 ± 13.62 24.28 ± 10.84 0.57 ± 0.12 

M. ferruginea 1.05 ± 0.14 0.13 ± 0.05 85.20 ± 4.66 20.07 ± 1.54 0.31± 0.04 

 

3.2.3 Water potential and relative water content measurements 
 

Predawn and midday leaf water potentials and RWC were measured daily during the 12-

days drought period according to methods described in Chapter 2 (Section 2.2.3) on well-

expanded leaves.   

 
3.2.4 Gas exchange measurements 
 
Photosynthetic rate and stomatal conductance were measured twice daily, between 8:00 

and 10:00 AM and between 12:30 and 14:00 PM, according to descriptions given in 
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Chapter 2 (Section 2.2.4). Water vapor pressure deficit (WVPD) of the air inside the 

glasshouse was derived as described in Chapter 2 (Section 2.2.4).  

 
3.2.5 Statistical procedures 
 

Data were subjected to ANOVA to determine differences among species for each of the 

physiological variables, at each day and time of day. Tukey’s Honestly Significant 

Difference test was employed for multiple comparisons when significant differences were 

found between treatments. The effect of drought stress on each species was determined by 

splitting the data by species and days, and the equality of means of the physiological 

variables was tested for drought stress and control treatments with a two sample t-test. All 

statistical analyses were carried out using SPSS 11.0 for Windows.   

 

3.3 Results 

 
3.3.1 Whole plant water loss 
 

The mean daily water loss (WL) of the control seedlings are presented in terms of the plant 

biomass and the transpiring surface areas (Table 3.2). In both cases significant differences 

(P < 0.001) were observed between species. Eucalypts with higher leaf area (Table 3.1) 

had significantly (P < 0.001) higher whole plant water loss than the deciduous species. M. 

ferruginea had significantly the lowest (P < 0.001) water loss in terms of both leaf area and 

plant biomass.  
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Table 3.2 Mean (± SE) water loss of control seedlings of five tree species during the 12-

day water stress period (n=60). Mean values in each column that are followed by different 

letters are significantly different (P < 0.01) according to Tukey’s test. 

 

Species 

Water loss in terms of 

leaf area (kg H2O m-2 s-1) 

Water loss in terms of total dry 

matter (g H2O (g dry matter)-1d-1) 

C. africana 0.84 ± 0.02b 4.70 ± 0.10c 

C. macrostachyus 0.91 ± 0.02a 4.02 ± 0.08d 

E. camaldulensis 0.73 ± 0.01c 5.32 ± 0.11b 

E. globulus 0.61 ± 0.01d 6.30 ± 0.09a 

M. ferruginea 0.42 ± 0.01e 2.15 ± 0.06e 

 
 
 
3.3.2 Leaf water potential 
 
 
The declining predawn and midday leaf water potentials of drought stressed and control 

plants are shown in Fig 3.2a-d. The eucalypts had rapidly declining predawn and midday 

leaf water potentials, with significantly (P < 0.05) lower values compared to the three 

deciduous tree species studied (Fig. 3.2a,b). 
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Figure 3.2 (a and b) Mean leaf water potential of stressed seedlings of five tree species 

during the 12-day drought stress period: a) predawn and b) midday measurements. Bars 

indicate ± SE, n = 5. 
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Figure 3.2 (c and d) Mean leaf water potential of control seedlings of five tree species 

during the 12-day drought stress period: c) predawn; d) midday measurements. Bars 

indicate ± SE, n = 5.  
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Pooled (12 days) mean predawn and midday leaf water potentials of the control 

plants indicated that M. ferruginea had higher predawn (-0.54 MPa) and midday (-0.71 

MPa) values which were significantly (P < 0.05) higher than the predawn (-0.65 MPa) and 

midday (-1.06 MPa) values for E. camaldulensis, and predawn (-0.64 MPa) and midday (-

0.99 MPa) values for E. globulus. C. africana and C. macrostachyus had predawn leaf 

water potentials of -0.57 and -0.55, and midday leaf water potentials of -0.79 and –0.82 

MPa, respectively. 

 In the two eucalypts, the difference between predawn and midday water potential in 

the control groups was larger compared to the three deciduous species studied. These 

differences were 0.43, 0.35, 0.28, 0.22 and 0.19 MPa for E. globulus, E. camaldulensis, C. 

macrostachyus, C. africana and M. ferruginea, respectively. 

 
3.3.3 Relative water content 
 

A significant (P < 0.01) difference in relative water content (RWC) was observed between 

the drought stressed and the control plants, beginning from day two of the experiments 

(Fig. 3.3a-d). The reduction in both the midday and predawn RWC was sharp in E. 

globulus and E. camaldulensis compared to the deciduous species (Fig. 3.3a,b). During the 

first six days of the experiment, the predawn RWC decreased from 91.9% to 20% in E. 

globulus and from 89.9% to 30.6% in E. camaldulensis (Fig. 3.3a). The decrease in midday 

RWC during the same period in these species was from 80.1% to 13.52% and from 78.2% 

to 20%, respectively (Fig. 3.3b). In contrast, the predawn RWC on the 12th day ranged 

from 49-56% and the midday RWC on the same day ranged from 36-42% for the three 

deciduous tree species studied. 
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Figure 3.3 (a and b) Mean relative water content of stressed seedlings of five tree species 

during 12-day drought stress period: a) predawn b) midday measurements. Bars indicate ± 

SE, n = 5. 
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Figure 3.3 (c and d) Mean relative water content of control seedlings of five tree species 

during 12-day drought stress period: c) predawn and d) midday measurements. Bars 

indicate ± SE, n = 5. 
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3.3.4 Photosynthetic rate 
 

The photosynthetic rates of the species studied during the 12-day water stress period are 

shown in Fig. 3.4a-d. In E. camaldulensis and E. globulus the photosynthetic rates of the 

control and drought stressed plants differed significantly (P < 0.001) starting from day 

three, with the photosynthetic rate of drought stressed plants decreasing steadily. Because 

the drought stressed plants of the two eucalypts wilted on day seven, no further 

measurements were made thereafter (Fig. 3.4a,b). In C. africana and C. macrostachyus, the 

drought stressed plants showed a steady decline in photosynthetic rate from day seven 

onwards (Fig. 3.4a,b). On the other hand, in the stressed plants of M. ferruginea declining 

photosynthetic rate was observed only from day 9 onwards (Fig. 3.4a,b). 

The photosynthetic rates of the control E. globulus and E. camaldulensis plants 

were significantly (P < 0.05, pooled n = 60 (30 for the eucalypts)) higher than those of the 

deciduous tree species. The midday photosynthetic rates of the drought stressed plants (Fig. 

3.4b) were 50, 44, 28, 38 and 25% lower than the corresponding morning measurements 

(Fig. 4c) for C. africana, C. macrostachyus, E. camaldulensis, E. globulus and M. 

ferruginea, respectively (pooled n = 60 (30 for the eucalypts)). Similarly, the midday 

photosynthetic rates of the control plants (Fig. 3.4d) were 53, 50, 32, 34 and 21% less than 

the corresponding morning measurements (Fig. 3.4c) for C. africana, C. macrostachyus, E. 

camaldulensis, E. globulus and M. ferruginea, respectively (pooled n = 60 (30 for the 

eucalypts)). 
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Figure 3.4 (a and b) Mean photosynthetic rate (A) of stressed seedlings of five tree species 

during 12-day drought stress period: a) morning b) midday measurements. Bars indicate ± 

SE, n = 5. 
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Figure 3.4 (c and d) Mean photosynthetic rate (A) of control seedlings of five tree species 

during 12-day drought stress period: c) morning and d) midday measurements. Bars 

indicate ± SE, n = 5. 
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3.3.5 Stomatal conductance 
 

There were considerable fluctuations in stomatal conductances within the same treatment 

and throughout the water stress period in all the species studied (Fig. 3.5a-d). In E. 

camaldulensis and E. globulus, midday stomatal conductances of the drought stressed 

plants declined sharply from over 80 mmol m-2 s-1 on day 2, to less than 30 mmol m-2 s-1 on 

day 3 (Fig. 3.5b). 

Midday stomatal conductances of the drought stressed plants (Fig. 3.5b) were 74, 

43, 44, 45 and 25% lower than the corresponding morning measurements (Fig. 3.5a) for C. 

africana, C. macrostachyus, E. camaldulensis, E. globulus and M. ferruginea, respectively 

(pooled n = 60 (30 for the eucalypts)). On the other hand, midday stomatal conductances of 

the control plants (Fig. 3.5d) were 42, 40, 31, 34 and 24% lower than the corresponding 

morning measurements (Fig. 3.5c) for C. africana, C. macrostachyus, E. camaldulensis, E. 

globulus and M. ferruginea, respectively (pooled n = 60 (30 for the eucalypts)).  
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Figure 3.5 (a and b) Mean stomatal conductance (gs) of stressed seedlings of five tree 

species during 12-day drought stress period: a) morning and b) midday measurements. Bars 

indicate ± SE, n = 5. 
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Figure 3.5 (c and d) Mean stomatal conductance (gs) of control seedlings of five tree 

species during 12-day drought stress period: c) morning and d) midday measurements. Bars 

indicate ± SE, n = 5. 
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3.4 Discussion 

 
Of the five tree species studied, C. africana and C. macrostachyus showed typical midday 

depressions under well-watered conditions both in photosynthetic rates (50-52%) and 

stomatal conductance (40-42%). However, under drought stress conditions, stomatal 

closure in C. africana was about twice, and photosynthetic rate about 10% lower than those 

in C. macrostachyus. Legesse (1992) compared stomatal responses of five indigenous tree 

species of Ethiopia to increasing water stress and detected the presence of pronounced 

midday stomatal closure in C. africana. 

The high photosynthetic rate and high tissue water status (water potential and 

RWC) of M. ferruginea could mainly be due to its ability to re-orient its leaves and leaflets 

during midday, thus avoiding direct solar irradiance. Leaf movement (heliotropism) has 

been reported to occur in plants of the family Fabaceae (e.g. Satter and Galston, 1981; Fu 

and Ehleringer, 1989; McKersie and Leshem, 1994; Lambers et al., 1998). It is a 

mechanism for avoiding dehydration, and excess light stress and is believed to be triggered 

by high temperature and blue light (Satter and Galston, 1981; Fu and Ehleringer, 1989).  

E. globulus has been characterized to have intermediate stomatal control of 

transpiration during drought stress compared to other eucalypts and deciduous species 

(Pook et al., 1966; Pereira et al., 1986; Pereira de Almeida and Riekerk, 1990). E. 

camaldulensis is reported to exhibit strong stomatal resistance under drought conditions 

compared to E. globulus (White et al., 2000). However, this study showed comparable 

stomatal responses to drought stress conditions (Fig. 3.5a,b). Additionally, this study found 

that E. globulus and E. camaldulensis suffered significant water loss (per plant), were more 

vulnerable to drought stress, and displayed rapid decline in leaf water potential, RWC, 
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photosynthetic rate and stomatal conductance compared to the three deciduous tree species 

examined. The high whole plant water losses of the eucalypts compared to C. 

macrostachyus and C. africana were due to their higher leaf areas (Table 3.1). This may be 

why several studies show that eucalypts are water demanding (e.g., Pereira, et al., 1986; 

Florence, 1996). However, the water losses of C. macrostachyus and C. africana 

significantly exceeded that of the eucalypts when viewed in terms of the transpiring surface 

area. Former reports also indicate that deciduous woody plants have higher transpiration 

rate than evergreen woody plants (Kozlowski et al., 1991; Hall, 2001).  

Rapid stomatal closure in C. africana and C. macrostachyus, and leaf movement in 

M. ferruginea, helped these tree species survive drought stress, at least during the first 7 

days of the water stress period. However, as the soil dried, all three species reduced their 

total leaf area by shedding the older leaves but retaining younger leaves. As noted by 

Chaves (1991), tolerance to dehydration by young leaves has the advantage of fast recovery 

after re-hydration. In contrast, tissue re-hydration at night could not be achieved by the two 

eucalypts studied due to the depletion of soil moisture, thus resulting in the early deaths of 

the plants. 

Although the containerized eucalypts failed to maintain their water balance beyond 

the two days of drought stress conditions, their water requirements in the field is fulfilled 

through water absorption from deep soils and ground water (White et al., 2000; Burgess et 

al., 2001). Consequently, eucalypts under field conditions retain their leaves even during 

dry seasons and keep on growing while the deciduous species shed their leaves, thus 

maintaining reduced growth. Although the traditional practice of Ethiopian farmers 

involving the increase of eucalypts planting density is frequented to compensate for early 
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seedling dieback (Pohjonen, 1989), the practice could result in increased competition for 

water, nutrients and light. As the roots are not well established to acquire water from 

deeper soil layers, competition for water may even exacerbate the dieback of seedlings, 

especially during the dry season. For the eucalypt this may pose severe damage because 

eucalypts have higher LAR and do not shed their leaves to regulate plant water loss under 

water deficit compared to the deciduous species.  

C. africana and C. macrostachyus minimized water loss by reducing total leaf area. 

However, reduction in leaf area diminished total photosynthetic output that in turn resulted 

in decreased growth rate. Consequently, although short to medium-term survival of these 

two species in water stressed areas is a possibility, diminished plant productivity remains 

intractable. Provided that essential nutrients and other conditions are not limiting for its 

growth, M. ferruginea could be a good candidate for drier areas as it has the advantage of 

higher photosynthetic rate and less water loss under severe moisture stress conditions. 

Based on their responses to water stress the five tree species studied could be 

categorized into three groups: 1) M. ferruginea showed changes in leaf orientation to 

reduce the surface area of leaves exposed to solar irradiance, and maintained high tissue 

water content and photosynthetic rate; b) C. africana and C. macrostachyus minimized 

stomatal conductance, photosynthetic rate and water loss; and, c) E. camaldulensis and E. 

globulus maintained open stomata and high photosynthetic rate at low tissue water 

potential. Additionally, reduction in leaf area was observed in the deciduous species 7 days 

after the onset of water stress. Pereira and Chaves (1993) viewed stomatal closure as a 

short term, and leaf area reduction as a long-term acclimation mechanism in response to 

soil water deficits in the Mediterranean climate. It has been observed that, under mild and 



 68 
 
 

moderate water stress conditions, plants develop adaptive resistance to moisture stress for 

maintaining vital physiological processes (Chapter 2). However, under drought stress 

conditions plants may not have enough time for making physiological adjustments that 

would help them avoid tissue damage (e.g. Pereira and Chaves, 1993; Kramer and Boyer, 

1995; Nilsen and Orcutt, 1996). Confinement of the roots to the small pot size in the 

current study might restrict the hydraulic conductivity of the seedlings. In the field, plants 

of same species and age may not face such acute moisture shortage because the roots can 

spread through the soil and have more surface area for moisture absorption.  

 
3.5 Conclusions 

 
The impact of drought stress was quick and more damaging to eucalypts compared to the 

other indigenous tree species. Owing to its ability for leaf reorientation, M. ferruginea 

avoided direct solar irradiance, showed higher tissue water status and photosynthetic rate, 

and controlled water loss more efficiently compared to the other tree species. During 

midday, stomatal closure occurred and photosynthetic rates declined in both C. africana 

and C. macrostachyus. The three most important mechanisms of response to mild and 

drought stress were: a) stomatal closure in all species, with C. africana and C. 

macrostachyus closing their stomata more strongly than the other tree species studied; b) 

reduction in leaf areas and photosynthetic rates in the deciduous species; and, c) changes in 

leaf orientation in M. ferruginea. Further work on the performance of these tree species 

under field conditions is recommended. 
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4. EFFECTS OF SOIL NITROGEN AND PHOSPHORUS ON PLANT TISSUE 

NITROGEN, PHOSPHORUS AND N:P RATIO OF TWO EUCALYPTUS AND THREE 

DECIDUOUS TREE SPECIES 

 

Abstract 

The effects of soil nitrogen (N) and phosphorus (P) supply on foliar, stem and leaf N, P and N:P 

ratio of C. africana, C. macrostachyus, M. ferruginea, E. camaldulensis and E. globulus seedlings 

were studied under glasshouse condition. Eight-month-old seedlings were treated with 

combinations of four N levels viz. 0, 5, 25, and 50 mg N week-1 corresponding to N1, N2, N3 and 

N4, and two P levels viz. 0 and 150 mg P (applied twice) corresponding to P1 and P2 over a period 

of six months. The deciduous species i.e., C. macrostachyus, C. africana and M. ferruginea, had 

significantly (P < 0.05) higher stem, root and leaf N and P concentrations than the evergreen 

eucalypts regardless of soil N and P. However, the combined effects of soil N and P stresses 

resulted in 40-60, 56-70 and 63-83% reductions in leaf, root, and stem N concentrations, 

respectively, in all the species studied. Both under P1 and P2, increased soil N significantly (P < 

0.001) increased plant tissue N concentrations in all species. Among all the studied species C. 

macrostachyus and C. africana accumulated more N and P in all plant parts. Increased soil P 

resulted in increased tissue P concentration for all plant species and all parts of the plants. Increased 

soil N increased N:P ratio of all plant parts, while increased soil P decreased the N:P ratio of all 

plant parts for all species. Foliar N:P ratios of 10 to 18 were observed under sufficient N and P 

supplies depending on the species. Although foliar N:P ratio could not distinguish between N-

limitation and N and P limitation, it was proven to serve as a good indicator of P-limitation in the 

studied species. The high accumulation of N and P by C. macrostachyus and C. africana indicates 

their high nutrient recycling abilities. 
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 4.1 Introduction 

 

Although plants tend to maintain a constant tissue N:P ratio of about 8-10 (Ingestad, 1979), 

they may not maintain their optimum N:P ratio due to the limited availability of either one 

or both of these nutrients. Soil nutrient composition strongly affects plant nutrient 

concentration by changing both allocation among organs and the composition of individual 

tissues (Marschner, 1995). Generally, variations in soil N or P availability result in 

nutritional imbalances in plant tissues (Koerselman and Meuleman, 1996).  

When nutrients are in short supply, plants tend to show a compensatory response to 

maximize the inflow rate of the scarce nutrient. For instance, plants exhibit a high capacity 

to absorb phosphate when grown at a very low supply of phosphate and a high potential to 

absorb nitrate and ammonium ions under conditions when N is in short supply (Chapin, 

1991). In addition to enhancing uptake, plants also develop mechanisms for reducing 

nitrogen losses including increased leaf longevity (Reich et al., 1992) and nutrient 

resorption from senescing leaves (Aerts, 1990; Wendler et al., 1995; Aerts, 1996). 

Furthermore, plants cope with limiting nutrients primarily by altering the production of 

leaves such that new leaves contain minimum of the limiting nutrient (Evans, 1996). 

Evergreen plants in nutrient poor environments increase their survival and 

competitive abilities in the environment by having a high nutrient retention through 

maintaining low tissue nutrient concentration and low tissue turnover (Aerts, 1995; Aerts 

and Chapin, 2000). Thus, plants with a long leaf lifespan tend to aggravate the low 

availability of nutrients in their already nutrient poor environment (Aerts, 1995). The rate 

of nutrient accumulation in the plant is a measure of the physiological potential of the plant 

to absorb nutrients under that condition (Pearcy et al., 1989; Lambers et al., 1998).  
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Grime (1979) stated that rapidly growing plants have a high capacity for acquiring 

nutrients. Increased nutrient supply increases nutrient accumulation in all plants. Whereas 

fast growing species utilize the acquired nutrients for growth, slow growing plants have 

less capacity to achieve this, thus resulting in the accumulation of nutrients (Chapin et al., 

1990). Nutrient conserving tree species that do not have rapid turn over of nutrients are not 

desirable for agroforestry (Golley, 1986; Nair, 1993; Young, 1997). Instead, fast growing 

species with high nutrient pumping capacity, high foliar nutrient concentrations, and high 

nutrient turnover rate are desirable for both agroforestry and land rehabilitation purposes 

(Nair, 1993; Young, 1997). Therefore, in addition to indicating the N and P requirements of 

the tree species, the study of plant nutrient concentration and its dynamics with soil nutrient 

status under controlled conditions could show the relative abilities of species to absorb, 

accumulate and recycle nutrients under poor and ample supplies.       

The current study considered two eucalyptus species that are widely grown in 

Ethiopia and three indigenous deciduous tree species of various uses and wide distribution 

in Ethiopia. The nutrient relations of these species were studied to generate information for 

recruiting these species for planting programs including land rehabilitation, large 

plantations and in combination with crops in Ethiopia. The objective of the study was to 

investigate the impact of soil N and P availability on N and P concentrations as well as N:P 

ratios of roots, stems and leaves of five tree species.   
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4.2 Materials and Methods 

 
4.2.1 Plant establishment and glasshouse conditions 
 
The experiment was carried out in a glasshouse at the tree nursery at the University of 

Stellenbosch, South Africa, from May to November 2002. Seedlings of C. africana, C. 

macrostachyus, M. ferruginea, E. camaldulensis and E. globulus, were established and 

grown in the glasshouse under conditions indicated in Chapter 2 (Section 2.2.1).  

 
4.2.2 Nutrient application and measurements 
 

The experiment was installed as a factorial with 5 species and 8 treatment combinations (4 

levels of N and 2 levels of P). Eight-month-old seedlings were used for the experiment. A 

total of two hundred seedlings (40 per species) were selected from the supply stock and 

their soil leached with irrigation water for an hour to minimize pot nutrient reserves. The N 

and P concentration in the pot were determined using three samples per species (Table 4.1). 

The amounts of N and P indicated in the table were available for the control groups of each 

species, i.e., N1P1 treatment.  

 

Table 4.1. The mean (± STD) N and P content of the soil medium after leaching with 

irrigation water. Soil samples were collected from three sample pots for each species at the 

start of the experiment, i.e., before N and P treatment.  

Species N (mg g-1) P (µg g-1) 
C. africana 0.33 ± 0.00 1.9 ± 0.82 

C. macrostachyus 0.30 ± 0.01 2.2 ± 0.18 

E. camaldulensis 0.32 ± 0.01 2.6 ± 1.34 

E. globulus 0.29 ± 0.02 1.9 ± 0.91 

M. ferruginea 0.32 ± 0.02 2.1 ± 1.28 
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Limestone ammonium nitrate, containing 28% N, and calcium carbonate and 

enriched super phosphate, containing 10.5 % water soluble phosphate, 20% calcium and 

11% sulfur were used as sources of N and P, respectively. Two applications of phosphorus 

and a split application of nitrogen was employed. The split application of N involved the 

top dressing of ammonium nitrate on a weekly basis. Phosphorus was applied at four spots 

around the seedling pot at the beginning and after 3 months. The different levels of N and P 

application are shown in Table 4.2. The levels of N and P were selected based on results of 

soil analysis carried out by Michelsen et al., 1996; Jiregna, 1997; Abebe et al., 2001; 

Tadesse et al., 2000 under natural conditions in Ethiopia. The investigations consisted of 

soil samples from parklands, croplands and natural forests, which were found to contain 

2.9-9.5 mg g-1 total N and 1.8-56 µg g-1 available P. The values of N and P concentrations 

in the control pots (low N and P) were comparable with the lower N and P ranges observed 

in the field.  

 
Table 4.2 Levels of N and P applications as top dressing to seedlings of each species 

assigned to each treatment. 

Treatment Levels N application rate P application 

N1P1 0  0  

N1P2 0  150 mg P* 

N2P1 5 mg N week-1 0  

N2P2 5 mg N week-1 150 mg P* 

N3P1 25 mg N week-1 0  

N3P1 25 mg N week-1 150 mg P* 

N4P1 50 mg N week-1 0  

N4P2 50 mg N week-1 150 mg P* 

* applied twice viz at the start and at the middle of the experiment 
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Along with the N, the plants were supplemented with potassium chloride (100 mg 

week-1), magnesium sulfate (85 mg week-1) containing 9.7% Mg and 13.1% S, Compel 

fertilizer G II and iron in the form of chelate (10 mg week-1), LibFer SP fertilizer G II 

containing 6% Fe. Plants were watered using micro-sprinkler irrigation once a day during 

the winter and twice a day during the spring.  

 

4.2.3 Soil and plant chemical analysis 
 

After six months of growth, all the experimental plants were harvested, separated into 

different components, and analyzed for nitrogen and phosphorus. Soil and plant nitrogen 

were determined with a Nitrogen Analyzer (Leco FP-528, USA). Soil phosphorus was 

determined in a Bray II extract (Bray and Kurtz, 1945). The phosphorus concentration in 

the extract was determined with a Varian Vista-MPX ICP-OES (USA). For plant 

phosphorus determination, one gram dried and milled plant material was ashed in a muffle 

furnace for eight hours at 4800C. The resultant ash was wetted with deionized water and 

phosphorus concentration in the solution was determined as for soil.  

 
2.2.4 Statistical procedure 
 

Data were subjected to factorial and one-way ANOVA to determine differences in stem, 

root and foliar N and P concentrations among species and treatments. Tukey’s Honestly 

Significant Difference test was employed for multiple comparisons when significant 

differences were found between treatments. All statistical analyses were carried out using 

SPSS 11.0 for Windows.   
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4.3 Results 

 
4.3.1 Plant nitrogen 
 

Plant tissue N concentrations increased with increased soil N supply in all five species both 

under low and high soil P contents (Figs. 4.1a, b and c). The response of nutrient content to 

soil N supply was similar for the different plant parts and different levels of soil P, 

although the magnitude differed with species.  

Significant soil N and P interactions were observed only for stem N concentration 

(F = 4.518, P = 0.006) (Table 4.3). The combined effects of soil N and P stress resulted in 

40-60% reduction in leaf N (Fig. 4.1a), 63-83% reduction in stem N (Fig. 4.1b) and 56-

70% reduction in root N (Fig. 4.1c) concentrations for all species. Although there were 

slight decreases in plant tissue N concentrations in the high soil P groups, seedling N 

concentrations were not significantly (P < 0.05) affected by soil P level. The effect of soil 

N on tissue N was significantly higher (P < 0.001) for the deciduous species compared to 

the evergreen eucalypts.  

The foliar N concentration for C. macrostachyus was more than twice that of both 

eucalypts regardless of soil N and P levels. C. africana ranked second to C. macrostachyus 

regarding stem and root N concentration, while M. ferruginea ranked second to C. 

macrostachyus regarding foliar N concentration across the various soil N and P supply 

levels. Largely there was not significant difference in stem and root N concentrations 

between the two eucalypts at all levels of N and P supplements. 
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Figure 4.1 The mean (n = 3) foliar (a), stem (b) and root (c) N concentration of five tree 

species: C. africana (CA), C. macrostachyus (CM), E. camaldulensis (EC), E. globulus 

(EG) and M. ferruginea (MF) after six months of growth with four soil N (N1, N2, N3 and 

N4) and two soil P (low P and high P) treatments in a glasshouse. Vertical bar indicates 

standard error of the mean. 
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4.3.2 Plant phosphorus 
 

Except for E. globulus, the leaf P concentrations were reduced by over 20% due to 

increased soil N both in the low and high soil P groups (Fig. 4.2a). Root and stem P 

concentrations were also higher for seedlings grown at low N except for the roots of E. 

camaldulensis and the stems of M. ferruginea, which did not decline due to increased soil 

N (Figs. 4.2b and c).  

At all levels of soil N, increased soil P resulted in increased tissue P concentration 

regardless of plant species and parts of the plant. Significant interactions in soil N and P 

were observed only for foliar P concentration (F = 5.415, P = 0.002) (Table 4.3). Generally, 

increased soil P under N deficiency resulted in 45-65% increase in tissue P concentration in 

all the studied species. However, increased soil P under high N supply had much less 

effects on tissue P concentration except for leaves and stems of C. africana that showed 50 

and 57% increases in P concentrations, respectively.  

Except for leaves of E. globulus, stems of C. macrostachyus and roots of E. 

camaldulensis, N-stressed plants had significantly higher (P < 0.05) tissue P concentrations 

than unstressed plants. Stems of N-stressed C. africana and leaves and roots of N-stressed 

C. macrostachyus had higher (P < 0.05) P concentrations than those of the other species in 

the same treatment.  Both soil N and P did not affect the foliar P concentration of E. 

globulus. Unlike all the other species, C. macrostachyus showed a significantly higher (P < 

0.01) accumulation of P in all plant parts when soil N was supplied at high rate but P was 

low. 
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Figure 4.2 The mean (n = 3) foliar (a), stem (b) and root (c) P concentration of five tree 

species: C. africana (CA), C. macrostachyus (CM), E. camaldulensis (EC), E. globulus 

(EG) and M. ferruginea (MF) after six months of growth with four soil N (N1, N2, N3 and 

N4) and two soil P (low P and high P) treatments in a glasshouse. Vertical bar indicates 

standard error of the mean. 
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4.3.3 Plant N:P ratio 
 

The range of foliar N:P ratio in the current study was from 3.2-25.1 for C. africana, 2.7-

17.5 for C. macrostachyus, 2.5-16.8 for E. camaldulensis, 8.1-24.3 for E. globulus and 6.1-

20.9 for M. ferruginea (Fig. 4.3a). Similar trends were observed for stem and root N:P 

ratios (Figs. 4.3b and c). Both under low and high soil P contents, the tissue N:P ratios 

increased with increasing soil N supply in all the studied species. Significant interactions in 

soil N and P were observed for foliar (F= 3.820, P = 0.013), stem (F = 16.084, P = 0.000), 

and root (F = 4.998, P = 0.003) N:P ratios (Table 4.3). The N- stressed seedlings had 52-

83% decline in N:P ratio of leaves, 71-95% decline in N:P ratio of stems and 63-77% 

decline in N:P ratio of roots both in the low and high soil P for all the study species. High 

soil P availability resulted in a reduced N:P ratio in all species (Figs. 4.2a, b and c). 

However, E. globulus maintained a higher foliar N:P ratios at all levels of soil N and P. C. 

africana had exceptionally high stem N:P ratio in the N4P1 treatment. Except in the N4 

treatment, C. macrostachyus had significantly higher (P < 0.05) stem N:P ratio than all the 

other study species.  

Considering the magnitudes of the differences between treatments, stem N, P and 

N:P ratios were more sensitive to soil N and P supply than leaves and roots for all species 

with some exceptions. The exceptions were: a) foliar P was more sensitive to soil N and P 

than stem and roots for C. macrostachyus, b) root N, P and N:P ratio were more sensitive to 

soil P than those of leaves and stems for M. ferruginea. 

 



 80 
 
 

a)

0

6

12

18

24

30

36

N1 N2 N3 N4 N1 N2 N3 N4
Soil N levels

L
ea

f N
:P

 (r
at

io
)

0

6

12

18

24

30

36

Le
af

 N
:P

 (
ra

tio
)

CA CM EC EG MF

   Low P      High  P  

 

b)

0

6

12

18

24

30

36

N1 N2 N3 N4 N1 N2 N3 N4
Soil N  levels

St
em

 N
:P

 (r
at

io
)

0

6

12

18

24

30

36

St
em

 N
:P

 (r
at

io
)

CA CM EC EG MF

   Low P      High  P  

 

c)

0

6

12

18

24

30

36

N1 N2 N3 N4 N1 N2 N3 N4
Soil N  levels

R
oo

t N
:P

 (r
at

io
)

0

6

12

18

24

30

36

R
oo

t N
:P

 (r
at

io
)

CA CM EC EG MF

   Low P      High  P  

 
Figure 4.3 The mean (n = 3) foliar (a), stem (b) and root (c) N:P ratio of five tree species: 

C. africana (CA), C. macrostachyus (CM), E. camaldulensis (EC), E. globulus (EG) and 

M. ferruginea (MF) after six months of growth with four soil N (N1, N2, N3 and N4) and 

two soil P (low P and high P) treatments in a glasshouse. Vertical bar indicates standard 

error of the mean.  
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Table 4.3 Summary of factorial ANOVA showing the effects of soil N and P on root, stem 

and leaf N and P concentrations and N: P ratio of seedlings of five tree species after six 

months of growth in a glasshouse. 

 

Plant part 
Source Root Stem Leaf 

Nitrogen content (%) 
Species 0.000 0.000 0.000 
Soil N 0.000 0.000 0.000 
Soil P 0.056 0.003 0.015 
Species * Soil N 0.000 0.000 0.000 
Species * Soil P  0.030 0.000 0.001 
Soil N * Soil P  0.181 0.006 0.473 
Species * Soil N * Soil P 0.347 0.001 0.261 

Phosphorus content (%) 
Species 0.000 0.000 0.000 
Soil N 0.000 0.000 0.000 
Soil P 0.000 0.000 0.000 
Species * Soil N 0.041 0.000 0.000 
Species * Soil P  0.809 0.000 0.000 
Soil N * Soil P  0.205 0.414 0.002 
Species * Soil N * Soil P 0.102 0.046 0.000 

N:P ratio 
Species 0.000 0.000 0.000 
Soil N 0.000 0.000 0.000 
Soil P 0.000 0.000 0.000 
Species * Soil N 0.171 0.000 0.015 
Species * Soil P  0.503 0.002 0.311 
Soil N * Soil P  0.003 0.000 0.013 
Species * Soil N * Soil P 0.270 0.000 0.060 
 

 
4.4 Discussion 

 
Similar to earlier reports based on comparisons of several other deciduous and evergreen 

species (Reich et al., 1992; Aerts, 1995; Aerts and Chapin, 2000), the deciduous species in 

the current study had higher tissue nutrient composition than the evergreen eucalypts. 
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Eucalypts utilize readily available nutrients for rapid new growth, which sometimes leads 

to the dilution of tissue nutrient concentration (Olsen and Bell, 1990; Bennett et al., 1997).  

Evergreen species such as the eucalypts are also reported to have long leaf lifespans 

compared to deciduous species (Reich et al., 1992). Under poor soil nutrient conditions, 

longer leaf lifespan in evergreen species may be the major mechanism for nutrient 

conservation. On the contrary, plants with long leaf lifespan may aggravate the low 

availability of nutrients in the already nutrient poor environments (Aerts, 1995), especially 

when combined with other crops or trees. Because of the higher concentration of nutrients 

and lower concentration of secondary compounds in their leaves, the litter of deciduous 

trees decomposes and releases nutrients to the soil faster than the litter of evergreen trees 

(Aerts and Chapin, 2000). This implies that the plant characteristics of deciduous trees not 

only lead to low nutrient use efficiency (productivity per unit nutrient uptake or loss), but 

also keep soil fertility high compared to evergreen trees.   

The range of foliar N and P concentrations observed for E. camaldulensis in the 

current study is within the range reported for those grown in Australia, Philippines and the 

Middle East (Judd et al., 1996). According to the ranges for deficient and adequate foliar 

nutrient concentrations reported for E. globulus under Australian conditions (Dell et al., 

1995), both the foliar N and P concentrations observed in the current study fall in the 

deficiency range. However, the former study considered only the youngest leaves while the 

current study considered all leaves.  

Among all species, the eucalypts showed only slight tissue N and P responses to 

soil N and P supplies although the growth in biomass at higher soil N and P was higher 

compared to the other species (data not presented). Reports from former studies also 
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indicated a weak relationship between growth and nutrient status in the eucalypts (Cromer 

et al., 1975; Olsen and Bell, 1990; Bennett et al., 1997). The leaf P concentration of E. 

globulus was less responsive to both soil N and P unlike the stems and roots. In a study of 

the response of six-year-old E. globulus to N and P fertilizers in Australia, Bennett et al., 

(1997) observed that N and P additions significantly increased the above ground biomass, 

without affecting the plant N concentration. However, stem wood showed the greatest 

relative increase in P concentration due to P additions compared to various plant parts 

including leaves (Bennett et al., 1997). Olsen and Bell (1990) also found that stems and 

petioles are better indicators for P than other plant parts. 

The mean foliar N concentrations of M. ferruginea (3.5%), C. africana (3.4%) and 

C. macrostachyus (4.4%) in the high soil N treatment were comparable or higher than that 

reported for leaves of Erythrina brucei Schweinf., a nitrogen fixing species from Ethiopia 

(Legesse, 2002a). The foliar P concentrations of the three deciduous species in all 

treatments were higher than that reported for leaves of E. brucei (Legesse, 2002a). The 

eucalypts had largely less foliar N and P concentrations compared to E. brucei. Several 

studies indicate that the tissue N concentration of N-fixing species is higher than that of 

non-fixing species. However, C. macrostachyus, a non N-fixing species, had higher tissue 

N concentration than M. ferruginea and E. brucei that are N-fixing species. Similarly, C. 

africana had significantly higher stem and root N concentration than M. ferruginea. 

Although some nodules were observed on roots of the pot grown M. ferruginea seedlings, 

the roots still had lower N concentration compared to the other deciduous species, 

indicating that the N-fixation in M. ferruginea was inefficient at least under the current 

experimental conditions. A former study under natural conditions in Ethiopia (Jiregna, 
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1997) also indicates that green leaves of C. macrostachyus had significantly higher N and P 

concentration compared to M. ferruginea. The same study indicated that soil under the C. 

macrostachyus canopy had significantly lower P concentration compared to that under M. 

ferruginea.                                                                                                                                                                    

Owing to its high N and P accumulation and high decomposition rate (Jiregna, 

1997), C. macrostachyus could be classed among the species with high nutrient recycling 

potential that are regarded as soil improving in agroforestry systems (Young, 1997). 

However, due to its extensive surface roots (Chapter 6) it may be very competitive when 

grown in association with crops or other trees. So far as its nutrient pumping ability is 

concurred, as indicated by the return of litter with high nutrient concentration, its 

competitive effects may not result in overall negative consequences for the soil.  

The use of N:P ratio to determine N and P limitations in plant growth rather than 

absolute concentrations has been suggested (Cromer et al., 1981; Olsen and Bell, 1990; 

Koerselman and Meuleman, 1996) based on the assumption that plant species have 

optimum N:P ratio and this ratio may increase due to high soil N and low soil P and 

decrease due to high soil P and low soil N.  Cromer et al. (1981) proposed a foliar N:P ratio 

of 15 to be optimal for E. globulus after a series of fertilizer experiments in Australia. A 

fertilizer trial on seedlings of E. globulus of Portuguese origin (Ericsson, 1994) indicates 

that an N:P ratio of 9.5 is optimal for growth of the species. Therefore, there may be some 

degree of elasticity in N:P ratio for a given species and different species may have different 

optimal N:P ratios. For instance Olsen and Bell (1990) reported a range between six and 

ten to be optimum for six other eucalyptus species.  
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 Figure 4.4 The foliar N:P ratio of seedlings of five tree species as observed after six 

months of growth in a glasshouse under high and low supplies of N and P. HNHP = high N 

and P supplies, maximum value of the bar = P deficiency, minimum value of the bar = N-

deficiency, arrow =  values for combined N and P deficiency. Figure 4.3a is redrawn to 

indicate the range and optimal N:P ratios for each species. CA = C. africana, CM = C. 

macrostachyus, EC = E. camaldulensis, EG = E. globulus and MF = M. ferruginea. 

 

The foliar N:P ratios of 10, 12, 15, 17 and 18 observed for C. macrostachyus, C. 

africana,  E. camaldulensis, E. globulus and M. ferruginea, respectively, under sufficient 

supplies of N and P (Fig. 4.4) could be considered as ‘optimal’ with the assumption that 

these plants did not preferentially accumulate either of the nutrients. P-deficiency resulted 

in higher foliar N:P ratio while N-deficiency resulted in lower foliar N:P ration. However, 

in addition to N-deficiency, low N:P ratio was also observed for plants under combined 

deficiency of N and P. This could be due to the considerable effect of N on growth 

(Chapter 5) and probably on the absorption of P itself. As a result, unlike the suggestions of 
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Koerselman and Meuleman (1996) on the use of N:P ratio to detect N or P-limitation in 

plants, the parameter could not distinguish between N-limitation and the combined 

limitation of N and  P, both of which resulted in reduced N:P ratio (Fig. 4.4). However, N:P 

ratio could be used to detect P-limitation in the studied species. 

 

4.5 Conclusion 

 
Soil N and P availabilities had considerable effects on the tissue nutrient composition of the 

studied species. However, the deciduous species accumulated more N and P compared to 

the eucalypts under all conditions of soil N and P. Regardless of the soil P status the stem, 

root and foliar N concentrations and N:P ratios increased while foliar P concentrations 

declined with increasing soil N availability in all the studied species.  

Foliar N:P ratios of 10, 12, 15, 17 and 18 were observed for C. macrostachyus, C. 

africana,  E. camaldulensis, E. globulus and M. ferruginea, respectively, under sufficient 

supplies of both N and P. The deficiency of P increased these values while the deficiency 

of N as well as the combined deficiencies of N and P decreased these values. 

The high accumulation of nutrients in leaves coupled with a short leaf life span may 

have a considerably negative impact on the growth rate of the deciduous species, except if 

these species may have efficient nutrient resorption from leaves before they are shed. 

However, from a nutrient cycling point of view, these deciduous species have higher 

nutrient recycling abilities than the eucalypts.



 87 
 
 

5. EFFECTS OF SOIL NITROGEN AND PHOSPHORUS ON GAS EXCHANGE OF 

SEEDLINGS OF TWO EUCALYPTUS AND THREE DECIDUOUS TREE SPECIES 

 

Abstract  

The effects of soil nitrogen (N) and phosphorus (P) on the photosynthetic activities of C. africana, 

C. macrostachyus, M. ferruginea, E. camaldulensis and E. globulus seedlings were studied under 

glasshouse conditions. Twenty eight-month-old seedlings from each species were assigned to 

combinations of four N and P treatments, viz. low N and P, low N and high P, high N and low P, 

and high N and P. N stress reduced photosynthetic rate, stomatal conductance and photosynthetic 

water use efficiency (WUEGE) in all the species examined, except in C. africana where stomatal 

conductance was not affected significantly. Compared to the corresponding high N treatments, N 

stress resulted in 60-73% and 40-62% reduction in photosynthesis in the low and high P treatments, 

respectively. As a result of N stress, the WUEGE of seedlings of all the species was reduced by 25-

60% and 28-56% in the low and high P treatments, respectively. The apparent quantum 

HIILFLHQF\� � �� DQG� light saturated photosynthetic rates (Amax) of all species ranged between 

0.0046 – 0.0185 and 2.3 – 12.9 µmol m-2 s-1, respectively. The �DQG�Amax of all the studied 

species were more sensitive to N than to P stress. Regardless of soil P status, N content of leaves in 

each of the examined species was significantly correlated (r2 = 0.89; P < 0.001) with the 

photosynthetic rate of the leaves, suggesting that leaf N content may govern the capacity of leaves 

to fix CO2. However, no direct effect of soil N on photosynthetic nitrogen use efficiency 

(PNUE) was observed in the current study except in M. ferruginea and C. macrostachyus. 

The observed higher PNUE in M. ferruginea compared to all the other species may a 

genetic trait because it was observed under all treatment conditions. 
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5.1 Introduction 

 

In Ethiopia the re-establishment of trees on the degraded lands has been difficult, especially 

where nutrient stress is superimposed onto moisture stress (EFAP, 1994; Legesse, 1994, 

2000, 2002b). Proper environmental conditions with acceptable soil physical and 

chemical properties and essential biological associations both at species and community 

levels have been destroyed following decades of deforestation (EFAP, 1994; EPA, 1998; 

Legesse 2002b). Furthermore, soil nutrient status has been deteriorating because of poor 

land management practices. Knowledge on the nutrient requirement of a species is pivotal 

to understanding its growth potential under limited supply of nutrients, which in turn 

determines the success of plantation forestry at a larger scale, especially when the 

rehabilitation of degraded lands is the objective of a plantation program.  

Under field conditions, nutrient deficiency ranks probably next to water stress in 

determining the establishment of tree seedlings. In areas with limited soil nutrients, trees 

that could tolerate the nutrient stress and grow to an acceptable size are preferred. Although 

eucalypts are acclaimed to yield higher biomass than most of the indigenous deciduous 

species in areas of both poor and fertile soil conditions in the Ethiopian highlands 

(Pohjonen, 1989), they are reported to suffer from dieback in many instances (Pohjonen, 

1989; Tesfaye, 1994). Furthermore, eucalypts are known for their negative attributes 

including excessive depletion of soil water and nutrients (Florence, 1996). Although there 

could be alternative indigenous species to replace the eucalypts, no published reports have 

been made available on the effects of soil nutrients on the growth performances of 

indigenous tree species of Ethiopia.  
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Growth is the most sensitive indicator of nutrient deficiency (Evans, 1996). 

Because of the primary role of photosynthesis in plant growth and its response to nutrient 

availability (Rao and Terry, 2002), a study of the effects of nitrogen and phosphorus 

nutrition on the photosynthetic performance of different species could provide an insight 

into the growth performance of the species.  

Photosynthetic studies have been used as tools to probe the physiological basis of 

plant growth under environmental limitations including nutrient stresses (e.g., Evans, 1989; 

Fredeen et al., 1989; Sage et al., 1990; Fredeen et al., 1991; Evans, 1996, Lambers et al., 

1998; Lu and Zhang, 2000; Rao and Terry, 2000; Shangguan et al., 2000). Measurement of 

CO2 uptake provides a direct method of measuring carbon exchange with important 

advantages: it is instantaneous and non-destructive.  

The objective of this study was to: 1) investigate the effects of soil nitrogen and 

phosphorus on the photosynthetic rate, stomatal conductance and photosynthetic water use 

efficiency of three deciduous indigenous tree species of Ethiopia and two Eucalyptus 

species, 2) to investigate the relationship between foliar N concentration and its 

photosynthetic rate in these species. Nitrogen and phosphorus were chosen in the study 

because they are the main growth limiting nutrients for plants in tropical and subtropical 

environments (Marschner, 1995, Koerselman and Meuleman, 1996). The indigenous 

species were selected on the basis of their wide use for environmental, economic and social 

benefits in Ethiopia (Demel and Aseffa, 1991, Fichtl and Admasu, 1994; EFAP, 1994; 

Legesse, 1995; Jiregna, 1997; Tadesse et al., 2000). 



 90 
 
 

5.2 Materials and Methods 

 
5.2.1 Plant establishment and glasshouse conditions 
 

Seedlings of C. africana, C. macrostachyus, E. camaldulensis, E. globulus and M. 

ferruginea were established in a glasshouse at the tree nursery in the University of 

Stellenbosch, South Africa under conditions described in Chapter 2 (Section 2.2.1). The 

experiment was carried out from 24 May 2002 to 22 November 2002.  

 
5.2.2 Treatment 
 
 
The experiment was carried out on the same plants used for experiment in Chapter 4. Plants 

that received low N and P, low N and high P, high N and low P, and high N and P 

treatments were used for the current study.    

 
5.2.3 Gas exchange  
 

Gas exchange measurements were carried out every 10 days during the mornings between 

8:00 and 10:00 using an infrared gas analyzer (CIRAS-I, PP Systems, Hitchin, UK) from 

22 August 2002 to 22 November 2002. Details of the measurement procedures are given in 

Chapter 2 (Section 2.2.4). Photosynthetic response curves were obtained by measuring leaf 

net CO2 assimilation (photosynthetic) rate at different PPFD. Measurements were made at a 

CO2 concentration of 360 µmol mol-1 and a leaf temperature of 24 ± 1 0C. Different 

degrees of shading were achieved using shade cloths of different densities. Photosyn 

Assistant Software (Version 1.1, Dundee Scientific) was used to plot and analyze the 

response curve of photosynthesis (A) to light level (Q). The curve was drawn by fitting the 

data to a model of nonrectangular hyperbola (Prioul and Chartier, 1977);  
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where Amax is the light saturated rate of CO2 assimilation described as the upper asymptote, 

�LV�WKH�DSSDUHQW�TXDQWXP�HIILFLHQF\�GHWHUPLQHG�IURP�WKH�LQLWLDO�VORSH�RI�WKH�FXUYH��5d is 

WKH� DSSDUHQW� UHVSLUDWLRQ� GHWHUPLQHG� IURP� WKH� D[LV� LQWHUFHSW� DQG� � � LV� WKH� FRQYH[LW\�
(bending of the curve). To investigate the relationship between foliar N concentration and 

photosynthetic rate, samples of the well-expanded leaves used for gas exchange 

measurements were collected for the determination of leaf N on 22 November 2002. Foliar 

N content was determined with a Nitrogen Analyzer (Leco FP-528, USA). Photosynthetic 

nitrogen use efficiency (PNUE) was determined as a ratio of leaf photosynthetic rate to leaf 

nitrogen concentration. 

 

5.2.4 Statistical procedure 
 
Data were subjected to factorial and one-way ANOVA to determine differences among 

species and treatments for each of the physiological variables. Tukey,s Honestly Significant 

Different test was used for multiple comparison when significant differences were found 

between treatments and species. The effect of N and P supply on each species was 

determined by splitting the data by species and treatment. Apart from the photosynthetic 

response, which was carried out using Photosyn Assistant Software (Version 1.1, Dundee 

Scientific), all statistical analyses were carried out using SPSS 11.0 for Windows.  
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5.3 Results 

 
5.3.1 Stomatal conductance 
 
Phosphorus availability did not affect the stomatal conductance of all three deciduous 

species both at high and low N availability (Table 5.1). Soil N and P had significantly (P < 

0.01) interacting effects on the stomatal conductances of E. camaldulensis and E. globulus. 

Seedlings of E. camaldulensis and E. globulus with low P had significantly (P < 0.05) 

higher stomatal conductance than those with high P at both levels of N. The stomatal 

conductance of C. africana was not affected by N availability. Similarly, the stomatal 

conductance of C. macrostachyus was not affected by N availability in the seedlings treated 

with high P. However, for the two eucalypts and M. ferruginea, N stress resulted in 10 - 

45% reduction in stomatal conductance. The effect of N stress on stomatal conductance of 

C. macrostachyus, E. camaldulensis and E. globulus was two-fold for plants with low P.  

 
5.3.2 Photosynthetic rate 
 
Nitrogen stress caused a 60 - 73% decline in photosynthesis in the low P seedlings and a 40 

- 62% in the high P seedlings in all the studied species (Table 5.1). The photosynthetic 

rates of C. macrostachyus and E. camaldulensis were significantly reduced (P < 0.001) by 

the combined effects of N and P stresses compared to the other species. However, E. 

camaldulensis had a lower photosynthetic rate than all three deciduous species even in the 

high N and high P treatments. In the low N treatment, reduced P resulted in 26 - 50% loss 

of photosynthesis in all the studied species except in E. globulus where reduced P failed to 

significantly affect photosynthesis.  
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Table 5.1 Mean (± SE, n = 50) stomatal conductance, photosynthetic rate and 

photosynthetic water use efficiency of seedlings of four tree species grown with high or 

low soil N and P applications. Significant P-values for variations within species are shown 

in rows (one-way ANOVA) and those for N, P and interactions between N and P (factorial 

ANOVA) are shown in the right hand columns.  

 

Low N High N P-values Species 
Low P High P Low P High P N P NxP 

 Stomatal conductance (mmol m-2 s-1) 

C. africana 104 ± 5.3 104 ± 3.4 102 ± 4.1 106 ± 6.9 0.961 0.713 0.698 

C. macrostachyus 84 ± 4.5 86 ± 4.5 107 ± 5.8 96 ± 8.2 0.005 0.468 0.282 

E. camaldulensis 84 ± 6.6 76 ± 3.0 150 ± 7.2 92 ± 5.9 0.000 0.000 0.000 

E. globulus 89 ± 4.8 72 ± 4.1 155 ± 8.5 97 ± 6.0 0.000 0.000 0.001 

M. ferruginea 85 ± 4.3 80 ± 3.4 95 ± 4.7 97 ± 5.3 0.003 0.641 0.452 

 P (one-way) 0.030 0.000 0.000 0.681  

 Photosynthetic rate (µmol m-2 s-1) 

C. africana 3.2 ± 0.1 4.4 ± 0.2 9.0 ± 0.2 10.1 ± 0.2 0.000 0.000 0.812 

C. macrostachyus 2.4 ± 0.1 4.7 ± 0.2 8.8 ± 0.4 9.8 ± 0.3 0.000 0.000 0.017 

E. camaldulensis 2.4 ± 0.1 4.7 ± 0.2 8.3 ± 0.3 7.6 ± 0.2 0.000 0.000 0.000 

E. globulus 3.4 ± 0.2 3.4 ± 0.1 8.6 ± 0.2 8.9 ± 0.4 0.000 0.610 0.475 

M. ferruginea 3.0 ± 0.1 4.1 ± 0.2 9.0 ± 0.3 9.4 ± 0.3 0.000 0.010 0.189 

P (one-way) 0.000 0.000 0.431 0.000  

 Water use efficiency (mmol CO2 (mol H20)-1) 

C. africana 3.1 ± 0.2 3.5 ± 0.3 6.7 ± 0.3 7.5 ± 0.2 0.000 0.010 0.593 

C. macrostachyus 2.4 ± 0.1 3.9 ± 0.2 7.0 ± 0.4 8.0 ± 0.3 0.000 0.000 0.333 

E. camaldulensis 3.4 ± 0.2 4.5 ± 0.3 4.7 ± 0.3 6.2 ± 0.3 0.000 0.000 0.514 

E. globulus 3.7 ± 0.3 3.3 ± 0.2 4.9 ± 0.2 7.4 ± 0.3 0.000 0.000 0.000 

M. ferruginea 2.5 ± 0.1 3.5 ± 0.2 6.2 ± 0.2 6.2 ± 0.3 0.000 0.031 0.038 

P (one-way) 0.000 0.005 0.000 0.000  

 



 94 
 
 

However, in the high N treatment, reduced P did not significantly affect (P > 0.05) the 

photosynthetic rate of E. globulus and M. ferruginea. For the other species photosynthetic 

rate declined significantly (P < 0.05) with reduced P 

 

5.3.3 Photosynthetic water use efficiency 
 
The WUEGE of all the species was reduced by 25- 66% in the low phosphorus treated and 

28 - 56% in the high phosphorus treated seedlings due to N stress (Table 5.1). Soil N and P 

had significantly interacting effect on the WUEGE of E. globulus (P < 0.001) and M. 

ferruginea (P < 0.05). Increased P availability resulted in a significantly (P < 0.05) higher 

WUEGE at both levels of N for all the studied species except in the low and high N 

treatments of E. globulus and M. ferruginea, respectively. The eucalypts had a significantly 

higher (P < 0.05) WUEGE than the deciduous species in the low N and P treatment. 

 

5.3.4 Light response 
 

Nitrogen stress reduced the photosynthetic activity of all the study species at light 

saturation level (Fig. 5.1a – e). Leaves of all species grown with low soil N supply had 

ORZHU�OLJKW�VDWXUDWLRQ�SRLQW��DSSDUHQW�TXDQWXP�HIILFLHQF\�� ��DQG�$max compared to those 

JURZQ�ZLWK� KLJK� VRLO�1� VXSSO\� �)LJ�� ���� DQG� 7DEOH� ������ 7KH� � DQG�$max of all species 

ranged between 0.0046 – 0.0096 and 2.3 – 4.5 µmol m-2 s-1 in the low N group and 0.0107 - 

0.0185 and 5.3 – 12.9 µmol m-2 s-1 in the high N group, respectively (Table 5.2). The effect 

RI�VRLO�3�RQ� �DQG�$max was slight compared to that of N.   
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Figure 5.1 (a and b) Photosynthetic light-response curves of C. africana (a) and C. 

macrostachyus (b) seedlings treated with four different N and P combinations and 

maintained under glasshouse conditions: LNLP = low N, low P; LNHP = low N, high P; 

HNLP = high N, low P; HNHP = high N, high P. Each point is the mean of five replicates. 
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Figure 5.1 (c and d) Photosynthetic light-response curves of E. camaldulensis (c) and E. 

globulus (d) seedlings treated with four different N and P combinations and maintained 

under glasshouse conditions: LNLP = low N, low P; LNHP = low N, high P; HNLP = high 

N, low P; HNHP = high N, high P. Each point is the mean of five replicates. 
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Figure 5.1(e) Photosynthetic light-response curves of M. ferruginea seedlings treated with 

four different N and P combinations and maintained under glasshouse conditions: LNLP = 

low N, low P; LNHP = low N, high P; HNLP = high N, low P; HNHP = high N, high P. 

Each point is the mean of five replicates. 

 

5.3.5 Leaf N and photosynthetic rate 
 

Regardless of soil P status N content of leaves from each of the examined species had a 

significantly strong correlation (r2 = 0.89; P < 0.001) with the photosynthetic rate of the 

leaves (Fig. 5.2). The correlation was stronger for C. africana than for the other species. In 

contrast, there was no significant correlation between leaf P and the photosynthetic rate for 

all the species studied (data not presented). 
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Table 5.2 Mean estimated (± SE) light saturated photosynthetic rate (Amax) and apparent 

quantum efficinF\�� ��RI�VHHGOLQJV�RI�ILYH�WUHH�VSHFLHV�JURZQ�LQ�D�JODVVKRXVH�XQGHU�IRXU�1�
and P treatments (LNLP = low N, low P; LNHP = low N, high P; HNLP = high N, low P; 

HNHP = high N, high P). Values were estimated by fitting data to a nonrectangular 

hyperbola model (Fig. 5.1).  

 

Species LNLP LNHP HNLP HNHP 

Light saturated photosynthetic rate (µmol m-2 s-1) 

C. africana 2.3 ± 0.21 4.5 ± 0.40 9.1 ± 0.83 11.0 ± 1.01

C. macrostachyus 3.6 ± 0.48 4.6 ± 0.44 8.2 ± 0.73 9.4 ± 0.39

E. camaldulensis 2.8 ± 0.39 4.1 ± 0.31 10.2 ± 0.74 11.0 ± 0.85

E. globulus 2.5 ± 0.28 2.3 ± 0.30 11.7 ± 1.38 12.9 ± 1.51

M. ferruginea 3.0 ± 0.34 3.6 ± 0.75 8.9 ± 0.68 9.1 ± 0.23

Apparent quantum efficiency 

C. africana 0.0056 ± 0.0010 0.0093 ± 0.0019 0.0162 ± 0.0034 0.0136 ± 0.0022

C. macrostachyus 0.0086 ± 0.0067 0.0084 ± 0.0020 0.0107 ± 0.0032 0.0129 ± 0.0011

E. camaldulensis 0.0073 ± 0.0033 0.0081 ± 0.0013 0.0149 ± 0.0019 0.0185 ± 0.0026

E. globulus 0.0047 ± 0.0009 0.0085 ± 0.0045 0.0162 ± 0.0035 0.0185 ± 0.0040

M. ferruginea 0.0096 ± 0.0043 0.0091 ± 0.0176 0.0166 ± 0.0060 0.0149 ± 0.0000
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Figure 5.2 Linear relationship between net assimilation rate (A) and leaf N concentration 

of seedlings of five tree species.  
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Soil N supply did not significantly affect PNUE in C. africana and the eucalypts (Table 

5.3). However the PNUE of M. ferruginea and C. macrostachyus were significantly 

reduced by soil N and P limitation, except in the high P group in the latter. Generally, 

increased soil P increased PNUE except that seedlings of E. camaldulensis grown with 

high N and P had significantly lower (P<0.05) PNUE than those grown with high N and 

low P. M. ferruginea had significantly higher (P<0.01) PNUE compared to all the other 

species under all treatment conditions. The combined effect of soil N and P significantly 

reduced (P<0.01) the PNUE in C. macrostachyus compared to those of all the other 

species.   

 
Table 5.3 Mean (± SE) photosynthetic nitrogen use efficiency (µmol CO2 (mol [N] s-1)) of 

seedlings of four tree species grown with high or low soil N and P applications. Significant 

P-values for variations within species are shown in rows (one-way ANOVA) and those for 

N, P and interactions between N and P (factorial ANOVA) are shown in the right hand 

columns. Mean values within a column followed by different letters are significantly 

different (P<0.05) according to Tukey’s test   

 
 Low N High N P-values 

Species Low P High P Low P High P N P N*P 

C. africana 55.4 ± 1.43b 71.6 ± 2.10b 56.7 ± 1.6bc 71.0 ± 0.87b .820 .000 .540 

C. macrostachyus 26.0 ± 1.49d 64.8 ± 2.45b 50.1  ± 1.70bc 61.9 ± 1.19bc .000 .000 .000 

E. camaldulensis 38.4 ± 1.64c 69.2 ± 1.13b 59.1 ± 4.09b 51.0 ± 0.84c .589 .001 .000 

E. globulus 53.3 ± 2.58b 55.7 ± 1.57c 46.1 ± 2.69c 59.1 ± 3.39bc .529 .022 .087 

M. ferruginea 77.7 ± 3.38a 89.9 ± 0.50a 96.1 ± 2.10a 117.0 ± 5.61a .000 .001 .246 

P-value 0.000 0.000 0.000 0.000  
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5.4 Discussion 

 
The present study showed that the availability of soil N and P has a direct effect on growth 

performance of seedlings of the study species. Both N and P deficiencies resulted in lower 

photosynthetic rate and WUEGE of all the studied species, although P had much less effect 

than N. Several studies have shown that N and P stresses reduce the photosynthetic 

capacity of various plant species (Wong et al., 1985; Fredeen et al., 1991, Evans, 1996; 

Lambers et al., 1998; Lu and Zhang, 2000). The significant effects of N and P on the 

photosynthetic rate of all the species studied were due to the requirement of these nutrients 

in the major biochemical processes of plant growth including enzymatic activities, energy 

transfer and structural contribution to nucleic acids (Marschner, 1995).  

The strong limitation of soil N stress on photosynthesis could be due to the role of 

N in the synthesis of major components of the photosynthetic apparatus. Nitrogen stress is 

reported to reduce the chlorophyll content in maize (Lu and Zhang, 2000). Both N and P 

deficiencies result in the simultaneous reduction of maximum photosynthetic rate and 

Rubisco activities (Fredeen et al., 1989, 1991; Evans, 1996; Lambers et al., 1998).  

Under N stress, stomatal conductance declines synchronously with the 

photosynthetic capacity so that carbon gain per water transpired is relatively stable (Evans, 

1996). In this study, however, the N stressed plants could not maintain their WUEGE at a 

comparable rate with those under sufficient N supply. The main reason may be that 

stomatal conductance and transpiration rate were not as responsive as photosynthetic rate to 

N deficiency. For instance, the stomatal conductance of C. africana was not significantly 

affected by N treatment.  Therefore, for C. africana the effect of N deficiency may be more 

influential on reducing the carboxylation efficiency than reducing the entry of CO2 through 



 102 
 
 

stomata. In fact the internal CO2 concentration in leaves of C. africana under N stress was 

about twice that for unstressed leaves (data not presented). Rao and Terry (2000) indicated 

that although stomata may remain open under nutrient stress, mesophyll conductance might 

be reduced because of a reduced carboxylation efficiency resulting in high internal CO2 

concentration. In the current study, stomatal conductance was probably maintained in the 

low N and P to reduce leaf temperature by dissipating heat through transpiration, although 

the CO2 assimilation capacity of the leaf was restricted due to the N and P deficiency. 

Compared to plants treated with low N, those treated with high N had much higher WUEGE. 

The result of this study concurs with that of Fredeen et al. (1991) who reported a 

decreasing ratio of carbon gain to water loss with N stress for sunflower under dry summer 

day condition in the field. The authors indicated that under limited availability of N, 

stomata might open further, causing high photosynthetic nitrogen use efficiency (PNUE) at 

the expense of WUEGE. This may be the case for C. africana in which the WUEGE of N 

limited plants was significantly reduced because of open stomata directed to maintain high 

PNUE. In this species no significant differences in stomatal conductance (Table 5.1) and 

PNUE (Table 5.3) were observed between N-limited and unlimited plants.  

The reason why the stomatal conductances of the two Eucalyptus spp. were reduced 

by the increased supply of P both in the low and high N groups (Table 5.1) was not clear. 

Perhaps, it may indicate the elasticity of the eucalypts to maintain gas exchange over a 

wide range of soil P without any significant effect on the photosynthetic rate (Table 5.1) 

and light saturated photosynthetic rate (Amax) (Fig. 5.2d).  

A study on the carbon allocation of soybean plants revealed that the effect of low P 

on the photosynthetic rate was moderate (Fredeen et al., 1989). Unlike N, P plays a 
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regulatory role in photosynthesis (Lambers et al., 1998). The low photosynthetic rate of 

plants grown under low P supply may reflect a feedback inhibition due to slow growth and 

low concentration of inorganic phosphate in the cytosol or low concentration of Rubisco 

and other photosynthetic enzymes (Rao and Terry, 2000). Consequently, the partitioning of 

the products of photosynthesis between export to the cytosol versus storage in the 

chloroplasts is largely determined by the availability of phosphorus in the cytosol (Lambers 

et al., 1998). Unlike N deficiency that reduces the amount of thylakoid and Rubisco 

proteins, P deficiency affects specific proteins (Lambers et al., 1998). With P deficiency, 

low photosynthetic rate is matched by a lower activation state and slightly lower Rubisco 

content (Brooks, 1986).  

Photosynthesis responds to irradiance in a curvilinear manner, with the light 

saturated rate depending on the photosynthetic capacity of the leaf (Prioul and Chartier, 

1977; Sage et al., 1990; Lambers et al., 1998). In the current study (Fig. 5.2), because the 

entire photosynthetic process had been suppressed by the deficiencies of N and P and the 

leaves could not utilize the intercepted light. The effect of soil N deficiency was more 

VXSSUHVVLYH� WR� � DQG�Amax than that of soil P deficiency. According to Evans (1996) the 

photosynthetic potential of leaves is determined by the amount of protein (organic N) per 

unit leaf area suggesting that photosynthesis is strongly related to leaf N. However, the 

magnitude of the effect of soil P was higher in the deciduous species compared to the 

eucalyptus.   

Earlier studies also indicated that nitrogen deficiency strongly reduces the Amax of 

sunflower (Ciompi et al., 1996), winter wheat (Shangguan et al., 2000) and maize (Lu and 

Zhang, 2000). The reduced � DQG�Amax of nitrogen deficient seedlings could be due to a 
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decreased concentration and/or activity of Rubisco. The inhibition of Rubisco results in 

photosynthetic energy consumption in the Calvin cycle (Evans, 1996; Lambers et al., 

1998).  

Significantly strong relationships were observed between foliar N concentrations 

and photosynthetic rates of all the studied species (Fig. 5.3). A strong direct relationship 

between foliar N content and photosynthetic rate (Evans and Terashima, 1987) and 

Rubisco activity (Evans, 1983) had also been reported for other species. Although soil N 

supply had significant effect on foliar N concentration, direct effect of soil N on PNUE was 

not observed except in M. ferruginea and C. macrostachyus in the current study (Table 

5.2). The presence of a strong linear relationship between PNUE and SLA has been well 

described by Poorter and Evans (1998) and Eamus and Prior (2001). In the current study as 

well, M. ferruginea with high SLA (Chapter 2) had significantly higher PNUE than all the 

other species. Although increased soil N and P increased the PNUE in M. ferruginea, the 

higher PNUE of the species observed under all treatment conditions compared to all the 

other species may be a genetic capacity of the species. 

 

5.5 Conclusion 

 
Soil N stress resulted in an overall reduction of gas exchange capacities including 

photosynthetic rate, stomatal conductance and WUEGE of all the species studied. Owing to 

the strong relationship between leaf N concentration and its photosynthetic rate, N 

deficiency reduced the maximum photosynthetic capacities of all the studied species. Thus, 

soil N controlled foliar N content, which further governed the capacity of the leaf to fix 

CO2. The effect of soil P on the photosynthetic rate was moderate compared to that of N in 
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all the species examined. It did not affect the photosynthetic rate of E. globulus and the 

stomatal conductance of the deciduous species. No direct effect of soil N on PNUE was 

observed in the current study except in M. ferruginea and C. macrostachyus. The observed 

higher PNUE in M. ferruginea compared to all the other species may a genetic trait because 

it was observed under all treatment conditions. 
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6. ROOT DISTRIBUTION OF ISOLATED TREES AND THEIR EFFECT ON SOIL 

FERTILITY IN THE AGRICULTURAL SETTING IN BADESSA, EASTERN ETHIOPIA 

 

Abstract 

The fine root distribution of isolated C. africana, C. macrostachyus and Faidherbia albida 

(Del.) A. Chev. trees, their foliar nutrient composition and effects on soil fertility 

parameters were investigated in Badessa, Eastern Ethiopia. Surface (0-15 cm) and 

subsurface (30 –45 cm) soil samples were collected from under the canopy, edge of the 

canopy and three times the radius of the canopy away from the sample trees. Roots were 

collected from a trench at the edge of canopies at five vertical distances. Trees of the three 

species improved soil nitrogen (N), available phosphorus (P) and exchangeable potassium 

(K+) under their canopies compared to the corresponding soils away from their canopies. 

Surface soils had significantly higher (P < 0.05) N, P and K+ than the corresponding 

subsurface soils. The P composition of the surface soils under the canopies of F. albida and 

C. macrostachyus was more than double that for C. africana. Furthermore, N was highly 

enriched under F. albida than under C. africana and C. macrostachyus. Species 

comparison for K+ showed no significant differences. The isolated trees of all species had 

no significant influence on the horizontal and vertical abundance or values of soil pH, 

cation exchange capacity and exchangeable calcium and magnesium. The foliar N of C. 

africana and C. macrostachyus was less than half that for F. albida, due to the nitrogen 

fixing ability of the latter. Typically higher fine root biomass was observed in the surface 

samples than the subsurface samples. Fine root biomass of all species showed a steady 

decrease with increasing depth at the edge of the canopies. C. macrostachyus had 

significantly higher (P < 0.05) fine root biomass than F. albida at all vertical and 

horizontal distances. Although the presence of numerous roots in the crop zone entails the 

existence of competition between trees and crops, the three tree species improved the 

under-canopy soil nutrient pool. Owing to its low root biomass in the crop zone, high foliar 

nutrient composition and outstanding contribution to under-canopy soil N and P, F. albida 

is the most beneficial agroforestry species compared to C. africana and C. macrostachyus. 
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6.1 Introduction 

 

In areas like Badessa, Ethiopia, where people depend fully on biomass for household 

energy and construction, the role of trees on the well-being of the people is immense. In an 

effort to get the greatest possible return from their piece of land, farmers of Badessa area 

practice a mixed farming system (Fig. 1.3). Due to the shortage of wood for construction 

and fuel, some farming households established their own eucalyptus woodlots for short 

rotation (Poschen, 1987, Fig. 1.2). However, it has been well documented that short 

rotations of eucalypts are damaging to the site especially when coupled with the removal of 

surface litter for fuel (e.g., Florence, 1996). In addition, eucalypts are not suitable for 

mixed farming/agroforestry systems due to their negative impacts on crops (Lisanework 

and Michensen, 1993). Unlike the eucalypts, several deciduous indigenous tree species 

have been maintained and managed on croplands in Ethiopia because of their services and 

products. 

Among the major agroforestry tree species grown in Badessa area (Eastern 

Ethiopia) C. africana, C. macrostachyus and Faidherbia albida (Del.) A. Chev. are the most 

abundant (Fig. 1.4). Elsewhere in Ethiopia as well, these species were proven to be 

promising agroforestry species (Poschen, 1986 and 1987; Demel and Aseffa, 1991; Kamara 

and Haque, 1992; EFAP, 1993; Jiregna, 1997; Yeshanew et al., 1999; Abebe et al., 2001). 

The distribution of these species in Ethiopia was reported by Thulin (1989); Gilbert (1995) 

and Legesse (1995). The biology, germination, propagation and uses of C. africana and F. 

albida have been discussed by Legesse (1995). In addition, positive effects of C. 

macrostachyus and C. africana on soil physical and chemical properties were reported 

(Jiregna, 1997; Yeshanew et al., 1999; Abebe et al., 2001).  
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In mixed agroforestry systems where trees and crops grow in combination (e.g. Fig. 

1.3), various types of interactions take place between the associates (Nair, 1993; Van 

Noordwijk et al., 1996; Young, 1997) at the tree-crop interface. Several agroforestry trees 

have been reported to improve soil fertility parameters mainly because their leaf and root 

litter contribute to the maintenance and replenishment of soil fertility (Nair, 1993; Mwiinga 

et al., 1994; Young, 1997). However, tree roots are also agents of the competition between 

trees and crops. According to Van Noordwijk et al. (1996), a tree with a deep root system 

having limited lateral extension in the surface soil, hence without much interference with 

the crop root system, is ideal from a nutrient cycling perspective. Root distribution is an 

important parameter to evaluate the suitability of any tree species for agroforestry, 

especially when trees and crops grow on the same land management unit. Therefore, the re-

examination of the existing farming system, especially the role of trees in terms of root 

distribution, and some nutrient cycling potentials is imperative as far as intensified mixed 

agriculture/agroforestry is concerned. Because the contribution of foliar litter to the 

agriculturally important surface layers of soils is higher compared to that of root litter in 

trees, emphasis was given to foliar litter. 

The objectives of the study were 1) to assess the root distribution of C. africana, C. 

macrostachyus and F. albida in the soils under the tree canopies and away from canopies, 

2) to investigate the effects of C. africana, C. macrostachyus and F. albida on soil fertility 

parameters, and 3) to investigate the nutrient content of the leaves of these species in the 

Badessa area. 
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6.2 Material and Methods 

 
6.2.1 Study area 
 
The study was carried out on farmers’ plots in two peasant associations: Oda Muda and 

Kara, in Kuni District, West Harerghe, Ethiopia. Kuni, commonly called Badessa, is 

situated at 80 52' N and 400 40' E (Fig. 6.1). Badessa is situated at an elevation of 1740 m 

above sea level. The minimum and maximum temperature of the area range from 9 - 140C 

and 25 - 300C, respectively. The rainfall is bimodal with small intermittent rain in spring 

and heavy rain in autumn (Fig. 6.2). The average annual rainfall is 1190 mm. In general 

sedimentary rocks were the parent rocks of Badessa area, though igneous rocks contributed 

in some areas (Murphy, 1968). Three major soil types, i.e., chromic and vertic luvisols and 

chromic vertisols occupy the largest proportion of the area (Murphy, 1968; EMA, 1981). 

The soils are generally clay with 55 - 60% clay, 12 – 15% silt and 25 – 30% sand. Soil 

color ranges from reddish brown on hillsides to dark brown at the low-lying areas.  

The mixed farming system (agroforestry system) composed of annual crops, 

perennial crops, trees and livestock is the dominant farming system in the district (Fig 1.3). 

The major agroforestry practices include: shade trees on crop lands (e.g. Fig. 1.4), woodlots 

mainly of eucalypts (e.g. Fig. 1.2), boundary and road side planting of eucalypts and shrubs 

suitable for fencing, home gardens composed of various fruit trees, chat (Catha edulis L.) 

and coffee (Coffea arabica L.), separately or combined with shade trees, and alley cropping 

of chat with various crops.  
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Figure 6.1 Map of Ethiopia showing the field study site in Badessa area.  
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Figure 6.2 Average monthly maximum and minimum air temperatures and rainfall of 

Badessa area (1990 - 2001). 

 

Individual C. africana, C. macrostachyus and F. albida trees were considered as 

replicates. Eighteen isolated trees (six for each species) of about 25 –40 years old were 

selected for the study. All the six F. albida trees were from Kara because those in Oda 

Muda were associated with perennial crops and were not suitable for sampling. For C. 

africana and C. macrostachyus three trees each from Kara and Oda Muda were selected. 

The average diameter at breast height, height and crown diameter were 62.8 cm, 15 m and 

10.2 m for C. africana; 34.8 cm, 9.7 m and 7.4 m for C. macrostachyus and 81.3 cm, 16.9 

m and 17.3 m for F. albida, respectively. No significant differences in soil nutrients were 

observed between Kara and Oda Muda except that soils at Kara had higher (P < 0.05) 

exchangeable K+ and Ca2+ than those at Oda Muda. The plots used for the assessment did 

not have any history of fertilizer amendments. At sampling, the area was covered with four 
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weeks old maize. Isolated trees with similar maize cover both under the canopy and away 

from the canopy were selected.  

 

6.2.2 Soil and root sampling 
 
Sampling transects were laid in three directions from the tree base (at an angle of about 

1200). Soil sampling plots were laid along the transects at three distances: half of the 

canopy radius under the tree, canopy edge or radius of the canopy and at three times 

canopy radius away from the trunk. At each distance soils were sampled from two depths: 

0-15 cm (surface) and 30-45 cm (subsurface). The former depth represented the tillage 

zone and crop roots, while the latter depth represented a zone beyond tillage (or hoeing) 

and less crop roots. At each distance a pit of 30 cm wide and 50 cm deep was dug for soil 

sampling.  

Three sets of soil samples were collected at each sampling spot, i.e., the first set for 

bulk density, the second set for root biomass and the third set for chemical analysis. A 

cylindrical soil corer of 5 cm internal diameter was used for sampling the former two sets. 

For the set of samples used for bulk density, the soil was taken to the laboratory; oven dried 

at 1050C for 24 h and dry weight was taken. Bulk density (g cm-3) was calculated as the 

weight of the corer content divided by the corer volume.    

A 300 cm long and 120 cm deep trench was opened on one side of the canopy to 

investigate the vertical fine root distribution at the edge of the tree canopy. The trench was 

laid perpendicular to the direction of the main lateral root(s) from tree bases. The trench 

profile was divided into five layers: 1) 0-15 cm, 2) 15-30 cm 3) 30-45 cm, 4) 55-70 cm and 

5) 85-100 cm. Two sets of samples (each with three replications) were collected from each 
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layer – one set for bulk density and the other for fine root distribution following the same 

procedure as described above.   

 

6.2.3 Root distribution 
 
The sample collected for root biomass was soaked in 500 ml water in a beaker overnight to 

separate roots from soil. Soil lumps were broken by stirring the soil-water- mixture after 

which the roots tended to float while larger soil particles tended to settle. The suspension 

containing roots was then wet sieved through a 2 mm diameter mesh to remove debris. 

Roots of herbs, crops and dead roots were sorted and removed using hand forceps. Visual 

judgment based on their brittleness, color and resilience was employed to distinguish tree 

roots from others. Dead roots were grayish and break easily when manipulated. Roots of 

diameter less than 2 mm were considered fine roots. Root diameter was sorted using root 

caliper. Fine root length was determined using the intersection method described by 

Anderson and Ingram (1993) and van Noordwijk et al. (1996). Following the determination 

of total fine root length, samples were oven-dried at 105oC for 24 hours to determine fine 

root dry weight. Both fine root length and weight were expressed in terms of the volume of 

soil as fine root length density (RLD, cm. cm-3) and fine root weight density (RWD, g.cm-

3). 

 

6.2.4 Soil analysis 
 
Samples from the same distance and depth under each tree were merged to form a 

composite sample for chemical analysis. All soil samples were analyzed following standard 

procedures described by Anderson and Ingram (1993) and Rowell (1994). Total soil 
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organic carbon (OC) was determined by the dichromate oxidation method; total soil 

nitrogen (N) was determined using the Kjeldahl method. Available phosphorus (P) was 

determined by following the Olson method. The ammonium acetate extraction procedure 

was employed to determine exchangeable basic cations (Ca2+, Mg2+, K+ and Na+) and 

cation exchange capacity (CEC) of the soil. Exchangeable potassium (K+) and sodium 

(Na+) were determined using a flame photometer. Exchangeable calcium (Ca2+) and 

magnesium (Mg2+) were determined using an atomic absorption spectrophotometer. Soil 

pH was determined using a pH meter.  

 
6.2.5 Leaf sampling and analysis  
 
Small branches of the sample trees were removed from both the upper and lower parts of 

the tree crown for leaf collection. Fully expanded leaves were removed from the cut 

branches and evenly mixed to form 2 kg of fresh leaves per sample tree. After sun drying, 

leaf samples were oven dried at 85oC for 48 h. Samples were then ground and analyzed for 

nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sodium 

(Na) following standard methods described by Anderson and Ingram (1993) and Rowell 

(1994). N was determined using the standard Kjeldahl method. After digestion with 

sulfuric acid and hydrogen peroxide, P was determined colorimetrically using a 

spectrophotometer, K and Na were determined using a flame photometer and Ca and Mg 

were determined using an atomic absorption spectrophotometer.  

 
6.2.6 Statistical Analysis 
 
All statistical computations were made using SPSS for Windows Version 11.0. Factorial 

ANOVA was employed to test variations between species, distance and depth for the 
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measured parameters. When significant differences were observed, Tukey’s HSD test was 

used for mean comparison. Pearson’s correlation coefficients were used to determine the 

degree of association between various parameters. 

 

6.3 Results 

 
6.3.1 Foliar nutrient composition 
 
Foliar nitrogen (N) concentration of the three studied species ranged between 1.03 and 

4.82% (Table 6.1). Leaves of F. albida had more than twice N concentration but 

significantly lower (P<0.05) Ca and Na concentrations compared to those of C. africana 

and C. macrostachyus. Leaves of all the studied species had comparable P and K while C. 

macrostachyus leaves had about twice as much Mg as C. africana and F. albida. The foliar 

N:P ratios of C. africana and C. macrostachyus were less than half that for F. albida (data 

not presented).  

 
Table 6.1 Mean (±SE) foliar nutrient concentrations and of three tree species from 

Badessa. Significant P-values (ANOVA) show variations in foliar nutrient concentrations 

among species. Mean values in same column followed by different letters are significantly 

(P < 0.05) different (n = 3).    

Species N (%) P (%) K (%) Ca (%) Mg (%) Na (%) 

C. africana 
1.29 ± 

0.07b 

0.19 ± 

0.01a 

1.15 ± 

0.11a 

0.46 ± 

0.07a 

0.34 ± 

0.03b 

0.24 ± 

0.01a 

C. 

macrostachyus 

1.29 ± 

0.06b 

0.24 ± 

0.02a 

0.87 ± 

0.07a 

0.41 ± 

0.05a 

0.63 ± 

0.04a 

0.25 ± 

0.011a 

F. albida 
4.32 ± 

0.22a 

0.23 ± 

0.02a 

0.96 ± 

0.09a 

0.28 ± 

0.04b 

0.28 ± 

0.00b 

0.16 ± 

0.00b 

P-value 0.000 0.059 0.115 0.084 0.000 0.000 
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6.3.2 Root distribution 
 
6.3.2.1 Horizontal distribution 

Trees of all species extend their fine roots to at least three times their crown radius. The 

RLD in the surface soil was 75% - 200% higher than at the subsurface for all distances 

except under the C. africana canopy (Figs 6.3a, b).  
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Figure 6.3 Mean a) RLD and b) RWD in the surface (0 – 15 cm) and subsurface (30 – 45 

cm) soils from under and away from canopies of isolated C. africana (CA), C. 

macrostachyus (CM) and F. albida (FA) trees on croplands in Badessa. Vertical bars 

indicate standard errors of the means (n = 6). 
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ANOVA (Table 6.2) for mean RWD indicated a significant difference (P < 0.01) between 

the surface and subsurface layers for the three species. Significant (P < 0.001) distance and 

depth interactions were observed for both RLD and RWD only for C. africana. RWD of F. 

albida in the surface soil was higher at the canopy edge compared to under the canopy and 

away from the canopy (P < 0.05). Unlike for C. africana and F. albida, the RLD and RWD 

of C. macrostachyus did not show significant decline (P > 0.05) with increasing distance 

from the tree base to the open area (Table 6.2).  

 
Table 6.2 P-values (ANOVA) showing the variations in RLD and RWD between three 

distances and two depths for isolated trees of C. africana, C. macrostachyus and F. albida 

in Badessa.  

C. africana  C. macrostachyus  F. albida  Source 

RLD RWD RLD RWD RLD RWD 

(1) Distance 0.000 0.001 0.530 0.147 0.000 0.000 

 (2) Depth 0.000 0.000 0.000 0.000 0.000 0.000 

1*2 0.000 0.003 0.895 0.885 0.058 0.156 

 

6.3.2.2 Vertical distribution  

The vertical distributions of roots of the study species were observed at the edges of the 

canopies of the trees to investigate the extent and depth of root extension beyond the 

influence of the tree canopies (Fig. 6.4a). The RLD of the three species varied significantly 

(P < 0.01) between soil layers. Comparison of mean RWD from the five vertical distances 

show that the upper profiles, i.e. 0-15 cm and 15-30 cm had significantly (P < 0.05) higher 

RWD than the deeper profiles layers, i.e. 55-70 cm and 85-100 cm (Fig. 6.4b).  
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Figure 6.4 (a and b) Mean a) RLD and b) RWD of isolated C. africana, C. macrostachyus 

and F. albida trees with increasing soil depth at the edge of tree canopies in Badessa. 

Vertical bars indicate standard errors of the means (n = 18). 
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Figure 6.4 (c) Mean bulk densities of soils with increasing depth at the edges of isolated C. 

africana, C. macrostachyus and F. albida tree canopies in Badessa. Vertical bars indicate 

standard errors of the means (n = 18). 

 

C. macrostachyus had significantly (P < 0.05) higher RWD at all depths compared to C. 

africana and F. albida. Furthermore, roots of C. africana and C. macrostachyus with 

diameter of up to 30 and 70 mm, respectively, were observed in the 30 and 70 cm depth. A 

significant correlation (0.88 < r2 < 0.93, P < 0.001) was observed between RLD and RWD 

for each species. There was no significant variation (P > 0.05) in bulk densities between 

the different profile depths (Fig. 6.4c). 
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6.3.3 Effects of trees on soil 
 
 
The presence of isolated trees on farms in Badessa area had no significant influence on the 

horizontal and vertical abundance or values of soil pH, Ca+2, Mg+2 and CEC and (Figs 6.5d, 

6.6b, 6.6c, 6.7a and Table 6.3). The surface soil OC under the three tree species was 

significantly higher (P < 0.05) than that at the subsurface soils, except for F. albida (Fig. 

6.5a). However, no significant differences in OC were observed between distances both in 

the surface and subsurface profiles for all the studied species.  

In plots under the canopies of all studied species had significantly higher (P < 0.05) 

N, P and K+ than plots away from tree canopies both in the surface and subsurface profiles 

except for F. albida regarding K+ (Figs. 6.5b, c, 6.6a and Table 6.3). The N concentrations 

in the surface soils were significantly higher (P < 0.05) than the immediate subsurface soil 

for C. africana and F. albida at all distances from the trees. Furthermore, surface soils had 

significantly higher (P < 0.05) P and K+ than the corresponding subsurface profiles in all 

three species.  

 
 
 
 



 121 
 
 

a)

0.0

1.5

3.0

4.5

6.0

CA CM FA CA CM FA
Species

 O
rg

an
ic

 C
 (%

)

Under tree canopy
Edge of tree canopy
Away from canopy

Surface soil Subsurface soil

 
 

b)

0.0

0.1

0.2

0.3

0.4

0.5

CA CM FA CA CM FA
Species

 N
 (%

)

Under tree canopy
Edge of tree canopy
Away from canopy

Surface soil Subsurface soil

 
 
Figure 6.5 (a and b) Mean soil a) organic carbon and b) total nitrogen in the surface (0-15 

cm) and subsurface (30-45 cm) soils from under and away from canopies of isolated C. 

africana (CA), C. macrostachyus (CM) and F. albida (FA) trees on croplands in Badessa. 

Vertical bars indicate standard errors of the means (n = 6).  
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Figure 6.5 (c and d) Mean soil c) available phosphorus and d) pH in the surface (0-15 cm) 

and subsurface (30-45 cm) soils from under and away from canopies of isolated C. 

africana (CA), C. macrostachyus (CM) and F. albida (FA) trees on croplands in Badessa. 

Vertical bars indicate standard errors of the means (n = 6).  
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Figure 6.6 (a and b) Mean soil exchangeable a) K+ and b) Ca+2 in the surface (0-15 cm) 

and sub-surface (30-45 cm) soils from under and away from canopies of isolated C. 

africana (CA), C. macrostachyus (CM) and F. albida (FA) trees on croplands in Badessa. 

Vertical bars indicate standard errors of the means (n = 6). 
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Figure 6.6 (c and d) Mean soil exchangeable c) Mg+2 and d) Na+ in the surface (0-15 cm) 

and sub-surface (30-45 cm) soils from under and away from canopies of isolated C. 

africana (CA), C. macrostachyus (CM) and F. albida (FA) trees on croplands in Badessa. 

Vertical bars indicate standard errors of the means (n = 6).  
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Figure 6.7 Mean soil a) CEC and b) bulk density in the surface (0-15 cm) and sub-surface 

(30-45 cm) soils from under and away from canopies of isolated C. africana (CA), C. 

macrostachyus (CM) and F. albida (FA) trees on croplands in Badessa. Vertical bars 

indicate standard errors of the means (n = 6). 
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The P composition of the surface soils under the canopies of F. albida and C. 

macrostachyus was more than double that for C. africana. Furthermore, N was 

significantly (P < 0.05) enriched under F. albida than under C. africana and C. 

macrostachyus. K+ in the surface soils under all the species canopies was almost twice the 

amount in the immediate subsurface. Species comparison for K+ showed no significant 

differences. 

A significantly higher (P < 0.05) Na+ was found in soils under C. africana trees 

compared to the corresponding plots away from trees both in the surface and subsurface 

profiles (Fig. 6.6d). Generally surface soils had lower bulk densities than subsurface soils 

and this was significant (P < 0.05) only at the edge of C. africana canopy and open area 

close to C. macrostachyus (Fig. 6.7). No difference in bulk density was observed between 

distances for all the species. 

 

6.4 Discussion 

 
6.4.1 Foliar and nutrient composition 
 
The high N and N:P ratio observed in F. albida leaves compared to the other species (Table 

6.1) was attributable to its nitrogen fixing ability. The foliar P, Mg and Na concentrations 

of C. macrostachyus found in the present study were higher than those reported by Jiregna 

(1997) from parkland in Wondo Genet area, Southern Ethiopia. Similarly, soil under C. 

macrostachyus had higher P, Mg and Na than those under C. macrostachyus in Wondo 

Genet indicating that soil nutrient status might govern the foliar nutrient concentration of 

the species (Chapter 2).  
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The high N in leaves of F. albida suggests that the species supplies quality litter for 

soil enrichment and animal fodder. Earlier studies support the desirability of F. albida in 

agroforestry systems due to its deep root system and less competitiveness with crops, 

nitrogen fixing ability, improvement of underneath soil and crop yield, provision of fodder 

and shade during the dry season and wide ecological adaptation (Poschen, 1986; 

Vandenbeldt, 1991; Kamara and Haque, 1992; Legesse, 1995; Rhoades, 1995; Young, 

1997). The current investigation shows that P enrichment of F. albida in the underneath 

soil was relatively higher compared to N-enrichment (Figs 6.5b, c). The high litter 

decomposition rate leading to the mineralization of organic nitrogen (due to the high foliar 

N of the legumes (Palm, 1995)), could cause a loss of N from the system via volatilization, 

denitrification and leaching (Browaldh, 1995; Marschner, 1995) thus resulting in a reduced 

N accumulation under F. albida.  

Foliar litter of C. macrostachyus was found to be fast decomposing compared to 

Millettia ferruginea, a leguminous species (Jiregna, 1997). Furthermore, the study reported 

that green and abscised leaves of C. macrostachyus decomposed and released 50% of their 

C, N, P, K within eight weeks of the onset of decomposition. According to Mwiinga et al. 

(1994), tree species with high nitrogen, phosphorous and potassium concentrations and 

high decomposition rates have a great potential as green manure for soil improvement. 
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Table 6.3 Summary of factorial ANOVA for the effects of isolated trees of C. africana, C. 

macrostachyus and F. albida on soil fertility parameters at three horizontal distances from 

the base of the trees and two depths at each distance in a traditional agroforestry system in 

Badessa, Eastern Ethiopia. Asterisks *, **, *** represent significance at P �������������DQG�
0.001; ns = not significant at P ������� 
 

Exchangeable cations  

(cmol(+) kg-1) Species Effect 
OC 

(%) 

Tot. N 

(%) 

Av. P 

(mg kg-1) 

 K+ Ca++ Mg++ Na+ 

CEC 

(cmol 

(+) kg-1) 

PH 

 

 

BD 

(g cm-3) 

 

(1) Distance ns *** *** ** ns ns * ns ns *** 

(2) Depth *** ** *** *** ns ns *** * ns * 
Cordia 

africana 

1*2 ns ns *** ns ns ns ns ns ns * 

(1) Distance ns * *** *** ns ns ns ns ns ns 

(2) Depth *** ns *** ** ns ns ns ns ns ns 
Croton 

macrostachyus 

1*2 ns ns *** * ns ns ns ns ns ns 

(1) Distance ns *** *** ns ns ns ns ns ns ns 

(2) Depth ns *** *** ** ns ns ** ns ns ns 
Faidherbia 

albida 

1*2 ns ** *** ns ns ns ns ns ns ns 

  

6.4.2 Root distribution 
 

Although the presence of tree roots in the crop root zone could contribute to the buildup of 

soil through decomposition, the presence of numerous roots in the crop zone also implies 

the presence of competition between trees and crops for moisture and nutrients during the 

growing season. Soils of Badessa area, like many tropical soils (Szott et al., 1991; Mesfin, 
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1998), have less nutrient reserve in the subsoil making spatial separation of the rooting 

zone of crops and trees virtually impossible.  

Farmers discourage the extension of tree roots in the surface soil whenever they 

come across tree roots during tillage and hoeing. But this is restricted to the visible roots 

and roots with large diameter. Due to root cutting, deep tillage and hoeing, root distribution 

in the cropping zone has been minimal. In the absence of those practices, much higher fine 

root mass and length could have been observed. Furthermore, areas nearby tree canopies 

that do not receive litter-fall but exploited by tree roots may be impoverished. 

It is apparent that competition between trees and crops for soil resources is only 

seasonal and is restricted to the crop root zone. Nevertheless, tree root competitiveness is 

not a fixed characteristic of a species but could be influenced by tree management 

practices. The traditional tree management system in Badessa area involving seasonal shoot 

pruning and pollarding as well as root cutting may influence root development and the 

contribution of the trees to underneath soil. Schroth and Zech (1995) stated that intensive 

shoot pruning of a tree during the growing season would reduce root mass and length 

during crop development. Furthermore, these practices could affect the contributions of 

trees firstly because the woody branches are used for fencing, minor constructions and 

ultimately for fuel. Secondly, the foliar biomass of C. africana and F. albida are good 

sources of fodder for livestock due to which no sufficient leaf litter may be left for soil 

enrichment - only the leaves that fall naturally would return to the soil.  

According to Van Noordwijk et al. (1996) and Young (1997), a tree with a deep 

root system and a limited lateral extension in the surface soil is ideal from a nutrient 

cycling perspective because it poses no interference with crop root system. Trees of the 
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study species produced lateral roots that could extend beyond the canopy zone both in the 

surface and subsurface profiles. Furthermore, less root mass and length was observed at 

deeper profiles (55-70 and 85-100 cm) indicating the occurrence of more root distribution 

in the surface profiles (0-15, 15-30 and 30-45 cm) in all the species (Figs 6.4a, b). Van 

Noordwijk, et al. (1996) summarized that root length densities of most crops, excluding 

deep-rooted trees, decreased with depth and with increasing distance from the plant in the 

horizontal direction. Among the three studied species, C. macrostachyus had higher root 

mass and length in the plots away from the trees (Fig. 6.3).  

 

6.4.3 Effects of trees on soils  
 

The buildup of nutrients under trees has been reported for various leguminous as well as a 

few non-leguminous trees and shrubs (Young, 1997). The result of the present study also 

supports previous findings that scattered trees of C. africana (Nyberg and Hogberg, 1995; 

Abebe et al., 2001), C. macrostachyus (Jiregna, 1997; Yeshanew et al., 1999) and F. albida 

(Kamara and Haque, 1992) improved underneath soil nutrient deposit compared to areas 

outside the influence of the trees. Because areas away from the sample trees (three times 

canopy radius) were exploited by tree roots but did not receive foliar litter input from the 

trees, the contribution of the trees to booting soil nutrients under their canopies compared 

to away from canopies might be exaggerated in the current study.  

Due to the high clay content of the soil and to some extent high organic matter in 

the soil, the concentrations of both the monovalent and divalent cations were maintained at 

a relatively higher level. A similar study conducted in the Debrezeit area, central Ethiopia 

(Kamara and Haque, 1992), demonstrated that F. albida does not influence soil pH and 
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exchangeable Ca2+ and Mg2+. However, investigations in other parts of Ethiopia, e.g Bako, 

central western Ethiopia (Abebe et al., 2001) on C. africana, Wondo Genet, southern 

Ethiopia (Jiregna, 1997) on C. macrostachyus, and Bure-Adet, northwestern Ethiopia 

(Yeshanew et al., 1999) on C. macrostachyus, indicated that these trees improved soil 

exchangeable Ca2+ and Mg2+. However, the exchangeable Ca2+ and Mg2+ in these areas 

were lower than that found during the present study. The increased K+ pool under canopies 

of F. albida is in agreement with the findings of Kamara and Haque (1992). However, 

exchangeable Na+ was also found to be higher under F. albida trees compared to the plots 

away from canopies. The observed higher exchangeable Ca2+ under and away from F. 

albida canopy compared to those of C. africana and C. macrostachyus were due to the 

inherently higher Ca2+ composition of Karra soils compared to Oda Muda soils (Section 

6.2.1). The isolated trees studied did not significantly influence the bulk densities of the 

soils under their canopies, except for the case at the edge of C. africana canopy. Although 

the bulk densities of the surface soils might be more influenced by the cultivation practices 

than by tree root and organic matter inputs, no variations were also observed between the 

surface and subsurface profiles. Lower bulk densities were observed under isolated C. 

macrostachyus (Jiregna, 1997; Yeshanew et al., 1999) and M. ferruginea (Tadesse et al., 

2000) trees elsewhere in Ethiopia.   

The present study confirmed previous findings regarding the contribution of 

dispersed C. africana (Nyberg and Hogberg, 1995; Abebe et al., 2001) and C. 

macrostachyus (Yeshanew et al., 1999) to the improvement of soil nitrogen and 

phosphorus compared to open areas in the immediate vicinity. Similar to earlier study in 

Wondo Genet area (Jiregna, 1997), higher N was recorded under dispersed C. 
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macrostachyus. The increased soil nutrient pool under the scattered trees could mainly be 

due to the foliar and root litter input from the trees. Although root litter production of trees 

could be high, the magnitude of the contribution of root litter to surface and subsurface 

soils may be low in deep rooting trees, like F. albida.  

 

6.5 Conclusions 

 
Due to its low root biomass in the crop zone, nitrogen-fixing ability, high foliar nutrient 

composition and outstanding contribution to underneath soil N and P, F. albida is the most 

beneficial agroforestry species compared to the other two species. Although the roots of C. 

macrostachyus and C. africana may interfere with crops grown under and close to their 

canopies, both species have improved the nutrient pool under their canopies.  

Because of their role in maintaining soil fertility and their various products and 

services, the continued use of these species in the agricultural setting of Badessa and 

possibly other areas in the Ethiopian highlands where these trees grow naturally is 

recommended. For farmers with low cash income and cannot afford the cost of commercial 

fertilizer these trees would allow a significant soil nutrient supplement that could sustain 

the fertility of their land. Furthermore, with the availability of biomass for fuel, 

construction and fodder from the tree components, farmer could use crop residues and 

animal dung to replenish their croplands.   
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7. ROOT DISTRIBUTION AND EFFECTS OF EUCALYPTUS CAMALDULENSIS 

DEHNH. WOODLOT AND MIXED STAND ON SOIL FERTILITY IN BADESSA, 

EASTERN ETHIOPIA 

 

Abstract 

The growth, fine root distribution, and foliar nutrient composition of Eucalyptus camaldulensis 

woodlots and a mixed stand of four tree species and their effects on soil fertility in Badessa area, 

Eastern Ethiopia was studied. The mixed stand consisted of trees of C. africana, Erythrina burana 

Chiov., M. ferruginea and Leucaena leucocephala (Lam.) De Wit established as shade for coffee. 

The latter three species are legumes. Leaves of E. camaldulensis had lower nutrient concentrations 

than those of the other species. The legume species had about twice as much foliar N and N:P ratio 

than C. africana and E. camaldulensis. Both plantations improved the surface soil nutrient pool 

inside the plantations compared to the plots away from plantations. However, the pools of 

phosphorus and calcium inside the mixed plantation were generally higher compared to those of the 

E. camaldulensis plantation. The surface soil fine root weight density (RWD) inside the E. 

camaldulensis plantation was about three times that of the mixed plantation. The fine root 

distribution of E. camaldulensis from inside the stand and the plot (about 10 m away from the 

stand) was comparable indicating that planting E. camaldulensis around agricultural crops may 

pose competition.  

 

 



 134 
 
 

 
7.1 Introduction 

 

The management of deciduous tree species as shade for crops and growing of E. 

camaldulensis as a woodlot are the major tree growing practices at farmers’  level in 

Badessa area (Poschen, 1987; Demel and Aseffa, 1991). C. africana, E. burana and M. 

ferruginea have been reported as the major tree species maintained on farms for their use 

as shade, fodder, soil fertility maintenance, live fencing, fuel wood and pole (Poschen, 

1987; Demel and Aseffa, 1991; Legesse, 1995; Nyberg and Hogberg, 1995; Tadesse et al., 

2000, Abebe et al., 2001). Furthermore, M. ferruginea and E. burana have the additional 

advantage of fixing nitrogen.  

With the depletion of these native species, farmers started planting blocks of 

Eucalyptus spp. mainly for pole and fuel wood (Poschen, 1987). Most tree planting 

programs and subsidies also promote the use of well-known, often exotic species, due to 

the existence of knowledge on their biology, cultivation and uses. As a result, several 

eucalypts and other exotic species have been promoted both for large plantations and 

planting by farmers in Ethiopia (Pohjonen, 1989).  

However, the negative effects of eucalypts on major crops in Ethiopia have been 

well documented (e.g. Lisanework and Michelsen, 1993). Although these authors 

recommended avoiding Eucalyptus spp. in low rainfall areas and where soil conservation is 

the main purpose of tree planting, farmers and forestry projects have not used alternative 

species. Farmers in Hararghe, Eastern Ethiopia keep on planting eucalyptus more than any 

other species, due to its superiority for fuel wood and construction material (Poschen, 

1987; Fig. 1.2). Farmers’  perceptions on the growth performance of the native tree species 
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and their impacts on the soil were reported to be both positive and negative (Poschen, 

1987).  

Consequently, forestry departments and various forestry promoting organizations in 

Ethiopia have been looking for indigenous tree species that could grow rapidly to meet the 

short-term wood requirements of farmers and the long-term environmental rehabilitation 

(e.g. Legesse, 1995, 2002b). Apart from the provision of several services and products, 

indigenous species are believed to be more suitable than exotics because 1) they are better 

adapted to local environmental conditions; 2) seeds and other propagules are locally 

available; 3) farmers are familiar with them and their uses; 4) the use of indigenous tree 

species in productive systems helps preserve genetic diversity of local flora and fauna 

(Montagnini et al., 1993; Legesse, 1995, 2002b).  

The objectives of the current study were to investigate 1) the foliar nutrient 

concentration of four tree species in a mixed stand and trees of E. camaldulensis woodlots 

in Badessa area, Eastern Ethiopia; 2) the fine root distribution of both plantations in the 

surface and subsurface profiles inside and away from the stands; 3) the effects of trees of 

the mixed stand and E. camaldulensis on soil fertility parameters.    

 

7.2 Material and Methods  

 
7.2.1 Study area 
 
The study was carried out in Badessa (80 52’ N and 400 40’ E), Kuni District, eastern 

Ethiopia (Fig. 6.1). The elevation of Badessa area is 1740 m above sea level. The minimum 

and maximum temperatures of the area range from 9 - 14 0C and 25 - 30 0C, respectively 

(Section 6.2.1). Badessa has a bimodal rainfall pattern with low rainfall in spring and heavy 



 136 
 
 

rain in autumn. The average annual rainfall is 1190 mm. In general sedimentary rocks were 

the parent rocks of Badessa area, though igneous rocks contributed in some areas (Murphy, 

1968). Three major soil types, i.e., chromic and vertic luvisols and chromic vertisols 

occupy the largest proportion of the area (Murphy, 1968; EMA, 1981). The soils are clay 

with 55 - 60% clay, 12 – 15% silt and 25 – 30% sand. Soil color ranges from reddish 

brown on hillsides to dark brown at the low-lying areas. Farmers in the district practice a 

mixed farming system consisting of various combinations of annual crops, perennial crops, 

trees and livestock.  

E. camaldulensis woodlots of about 0.5 - 0.6 ha established in 1987/88 by farmers 

and a mixed species stand composed of agroforestry species, i.e., C. africana, E. burana, 

M. ferruginea and L. leucocephala planted on one hectare of trial plot as shade for coffee in 

1984/85 were used for the study. The latter three species in the mixed stand are legumes 

and among them M. ferruginea and E. burana are endemic to the country (Thulin, 1989). 

Trees of the E. camaldulensis woodlots were planted at a spacing of 1.5 m x 1.5 m but few 

trees were cut by the farmers for construction purpose and the stumps were well coppiced. 

Coffee was planted at a 2 m x 2 m spacing (2500 plants ha-1) while the shade trees of 

different species were planted at a 5 m x 5 m spacing (400 trees ha-1). However, due to 

some illegal cuttings, the number of the shade trees was reduced to 165 trees ha-1, i.e. 58 M. 

ferruginea, 53 E. burana, 30 C. africana and 24 L. leucocephala trees. Grasses and herbs 

dominated inside the E. camaldulensis woodlots, whereas only some herbs (weeds) were 

present in the mixed plantation. The two E. camaldulensis woodlots and the mixed stand 

were located within a 5 km radius.    
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7.2.2 Tree measurements 
 
Every third tree of C. africana and L. leucocephala and every sixth tree of E. burana and 

M. ferruginea within a row were used as sample trees. Eight trees per species were 

sampled. For the E. camaldulensis stand eight randomly selected trees of each stand were 

used for measurements. Tree height was measured using a hypsometer, diameter was 

measured at breast height using a caliper and crown diameter was estimated by tracing the 

canopy cover on the ground.  Leaf samples were also collected from these same trees (see 

Section 7.2.5).  

   

7.2.3 Soil and root sampling 
 
Soil samples were collected from the interior and the edge of the stands. For E. 

camaldulensis a plot positioned at three times the canopy radius away from the stand was 

sampled. The plots away from the stand were positioned in about four weeks old maize 

farm. This cropland had no history of fertilizer application and farmers practice deep tillage 

and hoeing during cultivation and weeding. During the tillage practice, they discourage 

lateral roots from the E. camaldulensis stand. No samples were collected away from the 

mixed stand because other trees and shrubs surrounded it. Consequently, the plot away 

from the E. camaldulensis was also used for comparison with plots inside the mixed stand. 

At each location soils were sampled from two depths: 0-15 cm (surface) and 30-45 cm 

(subsurface). Three samples at each distance and depth were taken from the E. 

camaldulensis stand while six samples were taken from the mixed stand at each location 

and depth. Inside the plantations, samples were collected randomly at one meter away from 

trees in the stand. A pit of 30 cm wide and 50 cm deep was dug for soil sampling at each 
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sampling spot. Three sets of soil samples were collected at each spot, i.e., one for bulk 

density and the second set for root biomass and the third for chemical analysis. A 

cylindrical soil corer of 5 cm internal diameter was used for sampling the former two sets. 

For the set of samples used for bulk density, the soil was taken to the laboratory; oven dried 

at 1050C for 24 h and dry weight was taken. Bulk density (g cm-3) was calculated as the 

weight of the corer content divided by the corer volume.    

Samples were processed according to the descriptions given in Section 6.2.3. The 

vertical distribution of fine roots at the edge of the E. camaldulensis stand canopy was 

assessed by opening a 300 cm long and 120 cm deep trench on one side of the canopy. The 

trench profile was divided into five layers: 1) 0-15 cm, 2) 15-30 cm 3) 30-45 cm, 4) 55-70 

cm and 5) 85-100 cm. Three replicate samples were collected from each layer. 

 

7.2.4 Soil analyses 
 
Soil organic carbon (OC), total soil nitrogen (N), available phosphorus (P), pH, 

exchangeable basic cations (Ca2+, Mg2+, K+ and Na+), and cation exchange capacity (CEC) 

were determined following standard methods as indicated in Section 6.2.4.   

 

7.2.5 Leaf sample collection and analyses 
 
 Fully expanded leaves of each of the sampling trees were collected from all positions of 

the canopy and mixed to obtain a composite sample per tree and analyzed for nitrogen (N), 

phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sodium (Na) using 

standard methods indicated in Section 6.2.5.   
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7.2.6 Statistical analyses 
 
All statistical computations were made using SPSS for Windows Version 11.0. Factorial 

ANOVA was employed to test variations between the various parameters measured from 

the inside canopy, edge of the canopy and away from the canopy as well as the vertical 

distribution of E. camaldulensis roots at the edge of the canopy. When significant 

differences were observed, Tukey’ s HSD test was used for mean comparison. Surface and 

subsurface soil parameters and comparisons between species were made using a student t-

test. Reported correlations are Pearson’ s correlation coefficients. 

 

7.3 Results 

 
7.3.1 Tree growth  
 
Among the trees in the mixed stand, the height of M. ferruginea was significantly higher (P 

< 0.05) than all the other species (Table 7.1). L. leucocephala had significantly lower (P < 

0.05) diameter at breast height (DBH) than all the other species (Table 7.1). The rest of the 

species had comparable DBH. The crown diameters of C. africana and M. ferruginea were 

more spreading and wider than those of L. leucocephala and E. burana (Table 7.1).  
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Table 7.1 Mean (±SE) height, diameter at breast height DBH and crown diameter of five 

tree species in a mixed stand or pure plantation in Badessa. Mean values within a column 

followed by different letters are significantly (P < 0.05) different (n = 8).   

 

Species Height 
(m) 

DBH 
(cm) 

Crown 
Diameter (m) 

C. africana 12.0 ± 0.41c 26.0 ± 1.65a 8.7 ± 0.80a 

E. burana 10.2 ± 0.48c 26.2 ± 0.86a 3.6 ± 0.24b 

E. camaldulensis* 17.0 ± 0.40a 15.7 ± 0.35b 3.5 ± 0.13b 

L. leucocephala 10.8 ± 0.58c 16.4 ± 1.02b 4.5 ± 0.47b 

M. ferruginea 14.6 ± 0.50b 27.2 ± 1.49a 7.8 ± 0.37a 

*trees of E. camaldulensis were three years younger than those of the other species 
 

 
7.3.2 Foliar nutrients 
 

L. leucocephala and M. ferruginea had higher foliar N than E. burana and more than twice 

those of C. africana and E. camaldulensis (Table 7.2). E. burana had the highest foliar P 

but the mean P concentration was not significantly different from the other two legumes 

but significantly higher (P < 0.05) than that of C. africana and E. camaldulensis. The N:P 

ratio of  L. leucocephala and M. ferruginea was twice those of C. africana and E. 

camaldulensis. The N:P ratio of the latter two species was not significantly different from 

that of E. burana.  
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Table 7.2 Mean (±SE) nutrient concentration in leaves of five tree species in a mixed stand 

or pure plantation in Badessa. Significant P-values (ANOVA) show variations in foliar 

nutrient concentrations among species. Mean values within a column followed by different 

letters are significantly (P < 0.05) different (n = 3). 

 
Species N 

(%) 

P 

(%) 

N:P 

(ratio) 

K 

(%) 

Ca 

(%) 

Mg 

(%) 

Na 

(%) 

C. africana 1.30 ± 

0.07b 

0.18 ± 

0.01b 

7.45 ± 

0.55c 

1.14 ± 

0.11a 

0.46 ± 

0.07a 

0.33 ± 

0.03ab 

0.22 ± 

0.01b 

E. burana 2.58 ± 

0.35ab 

0.23 ± 

0.01a 

11.24 ± 

1.50bc 

0.87 ± 

0.15a 

0.46± 

0.06a 

0.36 ± 

0.02a 

0.10 ± 

0.01d 

E. camaldulensis 1.40 ± 

0.20b 

0.14 ± 

0.01b 

9.65 ± 

1.07c 

0.40 ± 

0.05b 

0.36 ± 

0.04a 

0.23 ± 

0.02b 

0.29 ± 

0.01a 

L. leucocephala 3.47 ± 

0.56a 

0.19 ± 

0.01ab 

18.74 ± 

3.06a 

0.98± 

0.01a 

0.57 ± 

0.04a 

0.44 ± 

0.05a 

0.16 ± 

0.01bc 

M. ferruginea 3.11 ± 

0.42a 

0.18 ± 

0.01ab 

17.26 ± 

2.27ab 

0.96 ± 

0.05a 

0.37 ± 

0.04a 

0.34 ± 

0.02ab 

0.12± 

0.01cd 

P-values 0.000 0.002 0.000 0.000 0.091 0.002 0.000 

 

All the species had similar foliar K concentration except that E. camaldulensis 

leaves had less than half the values for the other species. No significant differences were 

found among all the five species in foliar Ca concentration. The foliar Mg of L. 

leucocephala was about twice that for E. camaldulensis. All the deciduous species had 
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significantly lower (P < 0.05) foliar Na than E. camaldulensis. Na was significantly (P < 

0.05) higher in C. africana than in the three legume species except for L. leucocephala.   

 

7.3.3 Soil nutrients 
 
The surface and subsurface soil OC, N, P, pH, K+, Ca2+, Mg2+, Na+, CEC and BD from 

three distances from E. camaldulensis and mixed species stands is presented in three 

figures (Figs 7.2a-d, 7.3a-d and 7.4a-b). For both plantations, significant variations in soil 

N, P and K+ were observed between the distances (Table 7.3). Furthermore, significant 

variations in soil OC, Na+ and CEC were observed between distances for E. camaldulensis 

unlike for the mixed stand in which no differences were observed (Table 7.3). However, 

for the mixed stand, Ca2+ showed significant variation across distances. Significant 

differences in all the studied soil parameters were also observed between surface and 

subsurface soil samples except for N and Ca2+ for E. camaldulensis and Ca2+ and Mg2+ for 

the mixed stand (Table 7.3). Significant depth and distance interactions were observed for 

soil P and N in the case of the mixed stand (Table 7.3). The phosphorus content of surface 

soil inside the mixed stand was more than three times that of the immediate subsurface 

(Fig. 7.2c). Surface soil N, K+, Na+, CEC and pH were significantly higher (P < 0.05) than 

in the subsurface soil for the plot away from the stand. 
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Figure 7.2 Mean surface (0-15 cm) and subsurface (30-45 cm) soil a) organic carbon and 

b) total nitrogen from under canopy (UC), edge of canopy (EC) and away from canopy 

(AC) of E. camaldulensis woodlot and mixed stand of four tree species in Badessa. Vertical 

bars indicate standard errors of the means (n = 6). 
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Figure 7.2 (c and d) Mean surface (0-15 cm) and subsurface (30-45 cm) soil c) 

phosphorus and d) pH from under canopy (UC), edge of canopy (EC) and away from 

canopy (AC) of E. camaldulensis woodlot and mixed stand of four tree species in Badessa. 

Vertical bars indicate standard errors of the means (n = 6). 
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Figure 7.3 (a and b) Mean surface (0-15 cm) and subsurface (30-45 cm) soil exchangeable 

K+ (a) and Ca2+ (b) from under canopy (UC), edge of canopy (EC) and away from canopy 

(AC) of E. camaldulensis woodlot and mixed stand of four tree species in Badessa. Vertical 

bars indicate standard errors of the means (n = 6). 
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Figure 7.3 (c and d) Mean surface (0-15 cm) and subsurface (30-45 cm) soil exchangeable 

Mg2+ (c) and Na+ (d) from under canopy (UC), edge of canopy (EC) and away from canopy 

(AC) of E. camaldulensis woodlot and mixed stand of four tree species in Badessa. Vertical 

bars indicate standard errors of the means (n = 6). 
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Figure 7.4 Mean surface (0-15 cm) and subsurface (30-45 cm) soil CEC (a) and bulk 

density (b) from under canopy (UC) edge of canopy (EC) and away from canopy (AC) of 

E. camaldulensis woodlot and mixed stand of four tree species in Badessa. Vertical bars 

indicate standard errors of the means (n = 6). 

 



 148 
 
 

Table 7.3 Summary of factorial ANOVA showing the effects of E. camaldulensis stand 

and mixed stand of four tree species on soil fertility parameters at three horizontal distances 

from the stands and two depths at each distance in Badessa, Eastern Ethiopia. Asterisks *, 

**, *** represent significance at P ������, 0.01 and 0.001; ns = not significant at P ������� 
 

E. camaldulensis Mixed stand Parameter

Distance Depth Distance* 

Depth 

Distance Depth Distance* 

Depth 

OC (%) *** * ns ns ** ns 

Tot N (%) * ns ns ** * ** 

P (mg kg-1) *** ** ns *** ** *** 

K+ (cmol (+) kg-1) * *** ns * ** ns 

Ca2+ (cmol (+) kg-1) ns ns ns ** ns ns 

Mg2+ (cmol (+) kg-1) ns * ns ns ns ns 

Na+ (cmol (+) kg-1) ** *** ns ns * ns 

CEC (cmol (+) kg-1) *** * ns ns * ns 

pH (H2O) ** ** ns ns * ns 

BD (g cm-3) ns ns ns ns ns ns 

RLD (cm cm-3) ns * ns - - - 

RWD (mg cm-3) ns ns ns - - - 

 

At all distances and depths soil pH and Ca2+ were higher under the mixed plantation 

than the E. camaldulensis plantation (Figs 7.2d and 7.3b). Similarly OC and P were also 

higher in the mixed plantation compared to the E. camaldulensis plantation except in the 
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subsurface soil at the edge of plantation. However, in most cases the differences were not 

statistically significant (P > 0.05). 

 
 
7.3.4 Root distribution 
 

The RLD and RWD of surface soil inside the E. camaldulensis stand were significantly 

higher than those inside the mixed stand (Table 7.4). However, both RLD and RWD were 

higher in the surface soils at the edge of the mixed plantation compared to E. 

camaldulensis. The RLD of the former was about twice that of the latter in the surface and 

subsurface soils at the edge of canopies. The surface soil RWD inside the E. camaldulensis 

plantation was about three times that of the mixed plantation. For the E. camaldulensis 

plantation, both RLD and RWD declined with increasing distance from the stand, however, 

the differences were not significant. 

Observation of fine roots of E. camaldulensis crossing the canopy edge to the crop 

zone indicated the presence of fine roots in all the studied layers to the depth of 100 cm 

(Fig. 7.5). However, both the length and mass of the fine roots declined steadily with depth 

of the soil profile with the layers (0 – 30 cm) and (55 – 100 cm) showing significant 

differences (P < 0.05) both in RLD and RWD. Although only fine roots of <2 mm were 

sampled at the edge of E. camaldulensis canopy (about 2 m from the trees at the edge of 

the stand), numerous lateral roots of 2 – 30 mm were also observed from the trench, 

especially in the depths from 15 – 45 cm.    
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Table 7.4 Mean (±SE) surface (0 – 15 cm) and subsurface (30 – 45 cm) soil RLD and 

RWD under canopies (UC), at the edge of canopies (EC) and away from the canopy of E. 

camaldulensis plantation (OC) and mixed stand in Badessa area. (n = 6). 

Mixed stand E. camaldulensis Root 
Parameter 

Depth (cm) UC EC UC EC OC 

0 - 15 0.51 ± 0.10 1.69 ± 0.59 0.94 ± 0.24 0.66 ± 0.16 0.70 ± 0.20 RLD 
(cm cm-3) 

30 - 45 0.62 ± 0.19 0.74 ± 0.28 0.43 ± 0.07 0.33 ± 0.05 0.30 ± 0.19 

0 - 15 0.32 ± 0.06 1.05 ± 0.32 1.00 ± 0.26 0.78 ± 0.27 0.65 ± 0.22 RWD 
(mg cm-3) 

30 - 45 0.62 ± 0.18 0.75 ± 0.23 0.72 ± 0.19 0.47 ± 0.11 0.22 ± 0.01 
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Figure 7.5  Mean RLD and RWD of E. camaldulensis woodlot with increasing soil depth 

at the edge of the stand canopy in Badessa. Vertical bars indicate standard error of the 

mean (n = 6). 
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7.4 Discussion 

 
7.4.1 Tree growth 
 
The height, DBH and crown diameter of M. ferruginea, C. africana were exceedingly 

higher than that of L. leucocephala (Table 7.1). Although L. leucocephala has been 

considered as one of the fast growing agroforestry species all over the tropics (Nair, 1993; 

Young, 1997), the deciduous species of Ethiopia used for the current agroforestry trial 

showed better growth performance than L. leucocephala. Because of the lack of 

information on the growth performance of such native tree species, several exotic tree and 

shrub species including L. leucocephala, Acacia spp. and Eucalyptus spp. had been 

introduced in the past. However, the current study showed that native species such M. 

ferruginea and C. africana compare favorably to both of the exotic species, E. 

camaldulensis and L. leucocephala.  

 
7.4.2 Foliar nutrients 
 
All the three leguminous species had significantly higher foliar N concentration than E. 

camaldulensis and C. africana (Table 7.2) probably due to their nitrogen fixing capacity. 

Earlier studies (e. g., Nair, 1993; Young, 1997) indicated that the tissue N concentration of 

N-fixing species is higher than that of non-fixing species. Within the legumes the variations 

in foliar N, P, K, Ca and Mg were not significant, although all the nutrients, except P, were 

slightly higher in leaves of L. leucocephala. According to Mwiinga et al. (1994), tree 

species with high nitrogen, phosphorous and potassium concentrations and high 

decomposition rates have a great potential as green manure for soil improvement.  

The foliar N concentrations of E. burana (2.58%), M. ferruginea (3.11%) and L. 

leucocephala (3.47%) were high, indicating that these species replenish the soil with high 
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quality litter (Palm, 1995). According to Palm (1995), plant material with more than 2% N 

would result in net mineralization of N that may be readily available for uptake. In addition 

to a low N, leaves of E. camaldulensis had lower P, K, Ca and Mg, indicating that it 

supplied lower quality litter to the underneath soil compared to the deciduous species. 

However, the foliar N and P concentrations observed for E. camaldulensis in the current 

study were within the ranges reported for those grown in Australia, Philippines and the 

Middle East (Judd et al., 1996). Earlier studies involving comparisons of several other 

deciduous and evergreen species (Reich et al., 1992; Aerts and Chapin, 2000, Chapter 4) 

also indicate that leaves of evergreen species have lower nutrient concentrations than 

deciduous species.  

The foliar N concentrations of M. ferruginea and L. leucocephala were similar but 

foliar P and K were higher compared to those reported for the nodulated leaves of 

Erythrina brucei (Schweinf.); N = 3.3%, P = 0.14% and K = 1.1%, a nitrogen fixing 

species from Ethiopia studied by Legesse (2002a). The non-nodulated leaves of E. brucei, 

however, had higher N than all the current species. The foliar N concentration of E. burana 

(2.58%) was much less than those for both nodulated and non-nodulated leaves of E. brucei 

(Legesse, 2002a).     

Due to its high overall growth performance and high foliar nutrient concentration 

(Table 7.2), M. ferruginea could be a leading agroforestry species in the future. Farmers in 

the Gedeo – Sidama areas in southern Ethiopian plant M. ferruginea for its soil improving 

quality, sparse branching that allows light penetration for crops (Fig. 7.6), provision of fuel 

wood and prolific coppicing ability following pruning (Legesse, 1995; Tadesse et al., 

2000).  



 153 
 
 

 
b)  

 
 
Figure 7.6 Agroforestry trees planted as shade for coffee a) young M. ferruginea with a 
spreading crown, b) mixed stand shade trees composed of M. ferruginea, C. africana, E. 
burana, and L. leucocephala. 
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7.4.3 Soil nutrients 
 

The contribution of the mixed stand to the soil nutrients and organic carbon was higher 

compared to the E. camaldulensis stand (Figs 7.2 and 7.3). The increased soil nutrient 

status within both plantations was due to retrival of the nutrients from deeper soil layers 

and deposition at the surface as litter that decomposes and releases the nutrients. The most 

prominent differences between the two plantations regarding soil nutrient composition 

were that: a) surface soil P was much higher inside the mixed plantation compared to both 

the E. camaldulensis and the plots away from the stand, b) Ca2+ was higher both in the 

surface and subsurface soils inside and at the edge of the mixed plantation compared to 

those of E. camaldulensis stand and the plots away from the stand. The improved status of 

soil nutrients inside the plantation could be due to the input of quality litter that contains 

higher concentration of these nutrients. The increased organic matter also serves as both 

storage and supply of the nutrients. Due to the higher proportions of the basic cations inside 

the mixed plantations, the pH of these soils were higher compared to that of E. 

camaldulensis. 

Because the proportion of leguminous shade trees in the mixed stand was over 80%, 

much more accumulation of nitrogen in the stand was expected than what was reported 

here. However, the accumulation of N under the mixed stand could be hindered due to a) 

uptake by the understorey coffee and the non-legume component of the stand, b) the 

expected high decomposition leading to the mineralization of organic nitrogen (due to the 

high foliar N of the legumes (Palm, 1995)) which may be lost from the system via 

volatilization, denitrification and leaching (Browaldh, 1995; Marschner, 1995).   
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The reduced bulk density under both plantations compared to plots at the edge of 

and away from the plantations and the plots could be due to increased organic matter inside 

the plantations. Soil with lower bulk density is characterized by good aeration, higher water 

infiltration, easy root penetration and reduced surface run-off (Killham, 1994).  

 

7.4.4 Root distribution 
 

The higher root biomass in the surface soil inside the E. camaldulensis stand (Table 7.3) 

compared to the mixed plantation showed that E. camaldulensis has extensive shallow 

roots. This high fine root biomass of E. camaldulensis in the surface soil may result in an 

increased competition with plants that may regenerate under its canopy. Apart from the 

under canopy, the RLD and RWD of E. camaldulensis observed in the plots away from the 

stand (Table 7.3) indicated a possibility of root interference with the nearby crops. 

Although root densities at the edge of the mixed stand were higher compared to the 

eucalyptus, it was not possible to distinguish the contribution of each species of the mixed 

stand to the higher densities. Furthermore, because soil samples were not collected from 

areas nearby the mixed stand (section 7.2.3), it was not possible to estimate and compare 

root extension into adjacent plots.  

Species with an extensive root system are considered to be more competitive than 

those with less root extension (Lambers et al., 1998; Marschner, 1995). Although E. 

camaldulensis is reported to be deep rooting (Jonsson et al., 1988; Bacon et al., 1993), 

some studies (Stone and Kalisz, 1991) have demonstrated that the species has roots that 

extend several tens of meters from the trunk horizontally. Later studies by Burgess et al. 

(2001) showed that E. camaldulensis has a dimorphic root system with a single taproot 
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penetrating to a significant depth as well as numerous lateral roots. This concurs with the 

results of the present study in which E. camaldulensis was found to have extensive shallow 

roots.  

In a study on the farming systems of the Harerghe highlands (which included the current 

study area as one sampling site), Poschen (1987) reported that over 70% of farmers in the 

area were aware of the negative impact of the eucalypts on crops. Lisanework and 

Michelsen (1993) also pointed out the importance of considering interactions between E. 

camaldulensis and agricultural crops if the two species are to be planted in the same 

cropping system because of the allelopathic effects of the former on major agricultural 

crops. However, May and Ash (1990) demonstrated that the magnitude of these effects 

may be influenced by rainfall because allelochemicals are highly soluble and rainfall is 

likely to dilute and leach them out. In Badessa area where rainfall is erratic, the 

allelochemicals may accumulate in the soil and exacerbate the growth of understorey plants 

and crops nearby the stand. According to Inderjit and del Moral (1997), allelopathy is 

strongly coupled with other environmental stresses including insects, diseases, herbivory, 

temperature and radiation extremes and nutrient and moisture stresses. As a result Inderjit 

and del Moral (1997) explained the difficulty of differentiating allelopathy from 

competition, especially under field conditions. Although it is difficult to tell the relative 

importance of the effects of competition and that of allelopathy, the current study showed 

that E. camaldulensis could pose root competition in addition to its potential allelopathic 

effects.  

In an effort to avoid the impact of eucalypts, farmers in Badessa area and elsewhere in the 

Hararghe highlands, prefer growing eucalypts as a woodlot (e.g. Fig. 1.2) or as boundary 
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planting without mixing it with crops (Poschen, 1987). Regardless of the farmers’  efforts to 

discourage the spread of roots in the surface soils in the adjacent croplands, the root 

biomass at a distance of 10 m away from the canopy (in the adjacent cropland) was 

comparable to that inside the E. camaldulensis stand. The effect of the eucalyptus stand on 

the nearby crop could easily be observed from the difference in the growth of crops close to 

and away from E. camaldulensis (Fig. 7.7).  

 

 
 

Figure 7.7 Suppressed maize growth adjacent to E. camaldulensis woodlot in Badessa 

area.
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Removal of shallow roots from the surface soil may not significantly reduce fine roots 

biomass possibility because the fine roots emerge from coarse roots in the subsurface layer. 

Therefore, necessary precaution must be taken when growing eucalypts in association with 

or in close proximity to crops. If planting eucalypts is a priority, farmers may practice deep 

root trenching around the woodlot to discourage root expansion into croplands. However, 

planting indigenous tree species such as M. ferruginea may be more beneficial because the 

species is fast growing and has the advantage of improving the soil nutrient pool (Tadesse 

et al., 2000).  

 

7.5 Conclusions 

 
The native agroforestry species of Ethiopia have shown a better growth performance than, 

and similar foliar nutrient composition to L. leucocephala. Both the mixed stand and E. 

camaldulensis stand improved soil nutrient status compared to plots at the edge of the 

stands and away from the stands. However, the magnitude of the contribution was higher 

for the mixed species stand regarding phosphorus and calcium.  

The presence of a block of E. camaldulensis nearby croplands may have negative 

effects on the soils and crops. The negative effects of a block of E. camaldulensis on 

nearby cultivated lands could be substantial in areas like Badessa where the average land 

holding of a household is about 0.7 hectares. If planting E. camaldulensis around field 

crops is unavoidable, or inevitable, farmers have to practice cutting trenches next to the 

eucalypt woodlot, or keep the E. camaldulensis woodlot at a good distance from the crops.  
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8. CONCLUDING REMARKS 
1. Soil water and nitrogen stress resulted in overall reduction of gas exchange parameters 

including photosynthetic rate, stomatal conductance and WUEGE for all the studied species. 

However, different species reacted to stress in various manners and to different degrees in 

their physiological performance. These differences may be used as a basis for selecting the 

tree species for such purposes as agroforestry and land reclamation. The field study in 

Badessa area has strengthened the general hypothesis on agroforestry, viz, apart from 

provision of wood for various purposes, growing trees in combination with crops can foster 

soil fertility. 

 
2. Based on the results presented in this thesis, it can be stated that M. ferruginea has the 

potential to become flagship species of agroforestry in Ethiopia and other tropical and 

subtropical areas prone to droughts and deficits in soil nutrients. Some of the identified 

desirable qualities of the species include:  

i. better growth, high PNUE and WUEWL compared to C. africana and C. 

macrostachyus both under glasshouse (Chapter 2 and 5) and field conditions 

(Chapter 7);  

ii. production of lower RWR in pots (Chapter 2); 

iii. possession of a spreading crown that would allow for light penetration (Fig. 7.6a); 

and,  

iv. ability to fix nitrogen, improve soil fertility, use in animal fattening (flowers), shade 

for coffee trees, use as fuel wood, easy propagation and acceptance by farmers 

(Negash, 1995; Hailu et al., 2000). 
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3. The glasshouse experiment (Chapter 2) found that the studied deciduous species 

indigenous to Ethiopia showed growth rates comparable to the Eucalyptus spp. provided 

that moisture is available. 

 
4. The glasshouse experiments (Chapters 2 and 3) showed that leaves of C. macrostachyus 

and C. africana had significantly higher transpiration rate and plants had less biomass per 

water transpired, showing less water use efficiency compared to the studied eucalypts 

studied. When moisture is limiting, C. macrostachyus and C. africana lose their leaves 

rapidly to reduce water loss, which also results the in the reduction of photosynthetic 

surface area and hence overall growth.  

 
5. After shedding their leaves, the studied deciduous trees can survive long periods of water 

stress by remaining dormant. The two Eucalyptus species were tolerant to water stress but 

not to severe/sudden drought because they do not have requisite 

physiological/morphological mechanisms for of avoiding or mitigating drought like the 

deciduous species, at least at the seedling stage. Of all the studied species, M. ferruginea 

has the most advanced mechanism of avoiding moisture stress and water loss, which 

enables it to utilize water in a very conservative manner. 

 
6. The studied species ranked in a descending order of C. macrostachyus, C. africana, M. 

ferruginea, E. camaldulensis and E. globulus regarding overall tissue N and P 

accumulation. Although the availability of soil N and P had a considerable influence on the 

accumulation of these nutrients in tissues, this ranking of species was not affected by soil N 

or P status. However, only M. ferruginea showed a markedly high photosynthetic rate per 

accumulated nitrogen compared to all the other species. This high PNUE of M. ferruginea 
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might be a genetic trait because it was maintained regardless of the various N and P 

treatments. Soil P had minor effects on the photosynthetic performance of plants of all the 

studied species as opposed to soil N supply, which had a marked effect. Leaves with high 

nitrogen content showed high capacity for fixing CO2. Foliar N:P ratios of 10, 12, 15, 17 

and 18 were observed for C. macrostachyus, C. africana,  E. camaldulensis, E. globulus 

and M. ferruginea, respectively, under sufficient supplies of both N and P. These values 

may serve as benchmarks for interpretation of foliar analysis of the studied species to 

indicate N and P deficiency. 

 
7. Both under field and glasshouse conditions C. macrostachyus and C. africana produced 

intensive roots, indicating the presence of potential competition with crops. The two 

species tend to produce intensive root to meet their high nutrient and water demands. The 

extensive root growth and accumulation of high proportion of the nutrients in the root may 

reduce their potential use in agroforestry, especially that of C. macrostachyus. Although 

the field experiment proves their positive impact on some soil nutrients, some corrective 

domestication practices are required to achieve good results in terms of fostering soil 

fertility. Therefore, the use of these species in association with crops should be 

accompanied by tree management traditionally practiced by Ethiopian farmers:  

i. the amputation of surface roots as practiced by farmers of Badessa area; and, 

ii. management of the tree canopies for light penetration especially in the case of C. 

africana; 

iii. avoiding the removal of litter for other purposes especially in areas of low soil 

fertility. If leaves of the trees are removed either for fuel or fodder, the site may be 

severely depleted due to the removal of the leaves that are rich in nutrients.  
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Both C. macrostachyus and C. africana do not suppress undergrowth and produce intensive 

root systems to hold the soils together, which make both species good candidates for 

planting on hillsides where erosion is a problem. The efficient cycling of nutrients 

contributes to their potential use in rehabilitation of degraded lands. 

 
8. Although, the glasshouse experiments showed that the studied Eucalyptus species can 

perform better than the deciduous species under water deficit conditions, the field 

observations have once again proved the substantially negative impact of eucalypts on the 

site quality and on the adjacent crops. One of the observed ‘disadvantages’  of the eucalypts 

is that they retain their leaves for several seasons including the dry season. This has 

negative implications for the site, because the nutrients retained in the leaves do not return 

to the soil in the short term, which keeps the soil bare and poor in nutrients. The other 

‘disadvantage’  of eucalypts is their extensive lateral root expansion, which was observed as 

far as 10 meters away from their canopy. This causes high levels of competition with crops. 

 
9. The findings in this thesis strongly suggest that the planting of eucalypts in the 

immediate proximity or together with agricultural crops should be avoided. The planting of 

eucalypts in Ethiopia is usually preferred by farmers due to the short term wood 

requirements.  Thus, if planting E. camaldulensis around field crops is essential, or 

unavoidable, farmers should be advised to  

i. keep a maximum possible distance between eucalypts and crops,  

ii. practice cutting trenches between the eucalypt woodlot and cropland to reduce the 

extension of roots to croplands.  
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10. SYMBOLS AND ABBREVIATIONS 
 
 
A    Photosynthetic rate    
Amax  Light saturated photosynthetic rate 
Ca  Calcium 
CA  Cordia africana 
CEC  Cation exchange capacity 
CM  Croton macrostachyus 
DW  Dry weight 
EC  Eucalyptus camaldulensis 
EG  Eucalyptus globulus 
FA  Faidherbia albida 
gs  Stomatal conductance 
K  Potassium 
LAR  Leaf area ratio 
LWR  Leaf weight ratio 
MF   Millettia ferruginea 
Mg  Magnesium 
N  Nitrogen 
N:P  Nitrogen to phosphorus ratio 
Na  Sodium 
OC  Organic carbon 
P  Phosphorus 
PNUE  Photosynthetic nitrogen use efficiency 
PPFD  Photosynthetic photon flux density 
Q  Incident light (PPFD) 
�  Apparent quantum efficiency 
�  Convexity 

Rd   Apparent respiration 
RLD  Root length density 
RWC  Relative water content 
RWD  Root weight density 
RWR  Root weight ratio 
SLA  Specific leaf area 
SWR  Stem weight ratio 
SWVP  Saturated water vapor pressure 
WL  Water loss 
WUEGE Photosynthetic water use efficiency 
WUEWL Whole plant water use efficiency 
WVPD       Water vapor pressure deficit 
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