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Abstract 
 
 
 
The development of a tool kit for the design of superconducting programmable gate 
arrays (SPGAs) is discussed.  A circuit optimizer using genetic algorithms is developed 
and evaluated.  Techniques and a program are also developed for the generation of 
segmentized 3D models with which to calculate inductance in circuit structures through 
FastHenry.  The ability to add random variations to the dimensions of the models is 
included.  These tools are then used to design novel latching elements that allow the 
construction of reprogrammable Rapid Single Flux Quantum (RSFQ) circuits.  A circular 
process is used, whereby layouts are converted back to circuit diagrams through element 
extraction, and reoptimized if necessary.  Two programmable frequency dividers are then 
designed;  one for testing the routing and switch structures and programming architecture 
of an SPGA, and another compact one for testing the latching elements and off-chip 
interface.  The dissertation concludes with an overview of the circuits necessary for the 
implementation of a fully functional SPGA. 
 
 
 

Opsomming 
 
 
 
Die ontwikkeling van ’n gereedskapstel vir die ontwerp van supergeleier FPGA’s 
(SPGA’s) word bespreek.  Eerstens word ’n stroombaanoptimeerder, wat met genetiese 
algoritmes funksioneer, ontwikkel en geëvalueer.  Daarna word tegnieke en ’n program 
ontwikkel om driedimensionele segmentmodelle te genereer waaruit FastHenry die 
induktansie van stroombaanstrukture kan bepaal.  Die vermoë om toevalsveranderinge by 
die dimensies van die modelle te voeg, is ook ingesluit.  Hierdie gereedskap word dan 
gebruik om nuwe grendelelemente te ontwerp waarmee herprogrammeerbare Rapid 
Single Flux Quantum (RSFQ) stroombane gebou kan word.  ’n Sirkulêre proses word 
gevolg, waarvolgens uitlegte na stroombaandiagramme teruggeskakel kan word (deur 
elementonttrekkings) en, indien nodig, heroptimeer kan word.  Twee programmeerbare 
frekwensiedelers word daarna ontwerp;  een om die pulsvervoer- en skakelstrukture, 
asook programmeringsargitektuur van ’n SPGA te toets, en ’n ander, kompakter een om 
die grendelelemente en warmlogika koppelvlakke mee te toets.  Die proefskrif sluit af met 
’n oorsig oor die stroombane benodig vir die implementering van ’n volledig funksionele 
SPGA. 
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CHAPTER  1 – INTRODUCTION  1 

Chapter One - Introduction 
 
 
 
 
 
 
THE design of superconducting programmable gate arrays requires more than just a basic 
understanding of PGA theory.  It also requires a reliable set of tools for the design, 
modelling, optimization, and layout of superconducting circuits.  This dissertation 
attempts to combine the key aspects of such a design process into a coherent whole, and 
to provide the engineer with a tool kit for the realization of SPGAs. 
 
1.1 SUPERCONDUCTING LOGIC FAMILIES 
 
During the last decade the field of superconducting logic circuits has been dominated by 
the Rapid Single Flux Quantum (RSFQ) family.  A review of the theory behind RSFQ, as 
well as an introduction to RSFQ logic gates and design aspects can be found in the 
seminal article on the subject by Likharev and Semenov [1]. 

Several popular RSFQ gates have been available on the Stony Brook University 
web site [2] for years. 

The RSFQ research effort at the University of Stellenbosch has been summarized 
in [3]. 
 The most important difference between RSFQ and other logic families is that the 
former is a pulse logic family.  Data, or digital bits, are represented by the presence or 
absence of picosecond voltage pulses.  When integrated over time, these pulses are 
exactly one fluxon in size. 

Several lesser known families also exist.  One of these, Complementary Output 
Switching Logic (COSL) [4] [5] [6] [7], is used almost exclusively at Berkeley and 
Stellenbosch.  It is a voltage state logic family, and as such ideal for interfacing the 
picosecond pulses of RSFQ logic to voltage state semiconductor families. 

These two logic families, and especially RSFQ, are used to implement all the 
logic circuits for this dissertation. 
 
1.2 ELECTRICAL SIMULATION TOOLS, MODELS AND EQUATIONS 
 
All electrical circuit simulations in this dissertation are performed with WRSpice [8].  The 
Josephson junction is always implemented with the RSJ model, in which the basic 
junction is connected in parallel to a voltage-dependent resistor and a junction 
capacitance.  The implementation of such a Spice model is also treated in [9]. 

When SFQ input pulses are not generated by DC-to-SFQ converters, they are 
simulated by piece-wise linear voltage sources.  Such an SFQ input pulse is constructed 
as a triangular voltage waveform with a base length of 5 ps and a height of 824 µV, so 
that it integrates to one fluxon. 

All circuits developed in this dissertation operate at 4.2 Kelvin.  They are also by 
design reprogrammable, so that bit-error rate is not important at this stage of 
development.  Noise was therefore not modelled in simulations for performance 
evaluation or optimization. 
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 For the damping of all RSFQ junctions (with the exception of single series 
junction in the DCRL), the equation [1] 
 

CRI
e

efCC
22







=
h

β  , (1.1) 

 
with 
 

111 −−− += Snef RRR  (1.2) 
 
was used. 

Here, Rn is the normal resistance of the Josephson junction (16.47 Ω for a 100 
µm2 junction in niobium), and RS is the impedance of the environment connected to the 
junction.  For RSFQ circuits, βC = 1. 
 
1.3 SUMMARY OF DISSERTATION 
 
This dissertation starts in Chapter 2 with a discussion on genetic algorithms as applied to 
the optimization of superconducting logic circuits.  An optimization program was 
developed to implement the genetic algorithms, and algorithmic flow charts and 
screenshots thereof appear in Appendix C.  Results obtained with the genetic optimizer 
are presented in Chapter 2.  The compilation of Monte Carlo simulation models [9] is also 
treated, and the extraction of tolerances from actual layouts is explained. 
 Chapter 3 contains a thorough investigation into the construction, simulation and 
verification of 3D models for inductance extraction.  The effects of segmentation and 
reflection plane placement are also discussed, and some well-known structures are 
analysed.  A program was developed to generate the 3D segment models used for 
inductance calculations, and the construction techniques used therein are detailed in 
Chapter 3.  The chapter ends in an analysis of the true inductance spreads of Hypres 
circuits through the inclusion of actual design tolerances in the dimensional parameters of 
the 3D models. 

After the treatment of design and layout considerations in the first chapters, 
Chapter 4 starts with a discussion on the need for novel components to add 
reprogrammable functionality to RSFQ circuits.  The DC-Resettable latch, Current-Set 
switch, RSFQ-to-COSL converter and HUFFLE are treated – from design, optimization 
and simulation to layout verification. 

In Chapter 5, the novel circuits are used in conjunction with standard RSFQ gates 
to construct a programmable frequency divider based on the architecture of FPGAs.  This 
is the first step towards the development of a full superconducting programmable gate 
array, and allows most of the components, circuit configurations and programming 
structures needed for an SPGA to be tested.  The emphasis in this chapter is mainly on 
developing routing structures and switch blocks, as well as perfecting the access of a low 
clock frequency controller circuit to the programmable switches. 

Since the SPGA-based programmable frequency divider is a large and complex 
circuit, a smaller PFD was developed to allow fast and easily verifiable testing of the 
novel latches developed in Chapter 4.  The design and simulation of the compact PFD is 
detailed in Chapter 6.  A discussion on layout aspects is also included in this chapter. 

In Chapter 7 the remaining considerations for the implementation of a full SPGA 
are discussed.  Using the tools, gates and latches developed in this dissertation, a lookup 
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table programming circuit and an address decoder are designed conceptually.   These 
circuits are also simulated, and some problems regarding their implementation are 
identified and solved. 
 The Appendices contain circuit layout masks, circuit diagrams for some of the 
standard RSFQ logic gates and latches (if they were used in the dissertation), simulation 
files, flow charts and screenshots for the genetic optimization program, and a collection 
of 3D models for inductance calculation. 
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Chapter Two - Circuit optimization 
through genetic algorithms 

 
 
 
This process, no matter how much we intervene in it, is essentially out of our control.  
Genes mutate, creatures evolve:  a new biosphere emerges, and with it a new noosphere.  
And eventually the designer’s minds, along with everything else, have been forever 
changed. 
 Kim Stanley Robinson, Green Mars 
 
 
 
2.1 INTRODUCTION 
 
NOVEL logic devices in superconducting logic families are normally suboptimal, and need 
optimization before they can be entered into cell libraries or circuit layouts.  Even 
existing gates and latches need reoptimization when they are mapped to new fabrication 
technologies, as junction parameters and manufacturing tolerances differ. 

Since an integral part of this project is the development of novel gates for the 
programmable logic circuits, an effective optimizer is needed. 
 The standard approach to optimizing Rapid Single Flux Quantum (RSFQ) circuits 
[1] is to maximize the critical margin [10].  A popular technique involving critical 
margins, and often used for RSFQ circuits, utilizes inscribed hyperspheres [11].  
Complementary Output Switching Logic (COSL) circuits, on the other hand, are normally 
optimized for yield [5] [4] [9], but this merely involves manual tuning of proven sensitive 
elements such as the input Josephson junction, bias resistor and output dc SQUID [12]. 

Theoretical circuit yield is determined through Monte Carlo simulations [9], 
although the classical argument for avoiding yield-based optimization concerns the time 
required to perform such Monte Carlo simulations with acceptable uncertainty values 
[11].  However, faster personal computers and simulation software have eroded this 
barrier, and good results were obtained with yield-based optimization in this project. 
 Genetic algorithms [13], [14] were utilized because they are well suited to the 
optimization of complex problems with many parameters, as well as large solution spaces 
with many local maxima [15]. 

In this chapter, the implementation of a circuit optimizer based on genetic 
algorithms is discussed.  Algorithmic flow charts for the genetic optimization sequence 
are shown in Appendix C.  Screenshots of the optimization program, developed as part of 
this dissertation, are also shown in Appendix C. 

Results with genetic optimization are also compared to those obtained with 
random optimization.  Both techniques use the theoretical yield derived from Monte 
Carlo simulations as a direct measure of circuit performance, so that Monte Carlo 
methods and models are also discussed. 

Lastly, margin analysis as an alternative fitness evaluation technique is also 
explored. 
 
 



CHAPTER  2 – CIRCUIT OPTIMIZATION THROUGH GENETIC ALGORITHMS 5 

2.2 MONTE CARLO PARAMETERS AND PROCEDURES 
 
 
Gott würfelt nicht.  (God does not play dice.) 
 Albert Einstein, Creator and Rebel 
 
God not only plays dice.  He also sometimes throws the dice where they cannot be seen. 
 Stephen W. Hawking, Nature, 1975 
 
Einstein would turn over in his grave.  Not only does God play dice, the dice are loaded. 
 Blurb on the discovery of probability mechanics, Sid Meier’s Alpha Centauri 
 
 
Circuit optimization is dependent on reliable information about circuit quality.  In this 
dissertation, circuit quality is expressed as the theoretical yield. 

The Monte Carlo analysis has become the de facto technique for the determination 
of theoretical circuit yield, thereby superseding the less effective technique of margin 
analysis.  Since it is used for the yield calculations and circuit fitness determination 
discussed here, it needs to be characterized. 

After every Monte Carlo simulation, the time-domain output vectors (normally 
voltage against time, containing digital information as voltage levels or pulses), are 
evaluated according to a set of predefined constraints.  If any output bit is wrong, the 
simulation is flagged as a failure. 

After an entire Monte Carlo analysis is completed, the observed yield is found by 
dividing the number of functioning circuits through the total number of simulations.  The 
uncertainty interval is calculated for a confidence level of 99 %, as described in [5]. 
 If the observed yield for N Monte Carlo cycles is y′, then the uncertainty interval 
is given by 
 

N
yy

L
)1(

6.2
′−′

=  , (2.1) 

 
so that statistical yield y is 
 

y = y′ ± L  . (2.2) 
 
2.2.1 Uniform test setup 
 
The theoretical circuit yield calculated through a Monte Carlo analysis is a very good  
figure of merit.  However, in order to allow us to compare the yield results of different 
circuits, we need to ensure a uniform test setup. 

Additionally, information on the performance of each circuit in relation to another 
is needed in practical circuit optimization and the design of larger systems.  Since RSFQ 
circuits dynamically load each other, they need to be characterized or optimized for all 
possible interconnections. 
 The only practical way of ensuring circuit interconnection compatibility is to 
characterize and optimize circuits for connection to a standard dynamic load.  In RSFQ 
circuits, this standard load is a JTL.  For the 1 kA/cm2 process from Hypres, the standard 
JTL uses 250 µA junctions. 
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 For every Monte Carlo analysis or optimization run, the device under test is 
connected to 250 µA JTLs at every SFQ input and output.  In the event that a larger input 
current is needed (as for the T1 flip-flop and DCRL), or if output currents are above or 
below standard, the appropriate inputs and outputs are connected through current 
matching JTLs.  Each current matching JTL amplifies or attenuates current by a factor of 
1.42 [1]. 

The use of standard loads for every Monte Carlo analysis also ensures a uniform 
test setup, even though these standard loads are also subjected to parameter variations.  It 
can well be asked if it is really important that the load devices in a yield simulation 
should also be varied with manufacturing tolerances.  Here no clear rule exists, but since 
any gate will in practice be connected to dynamic loads that are themselves subject to 
tolerance effects, these variations are included in all simulations for the determination of 
circuit yield. 
 COSL gates use resistive interconnections, and test beds comprised of piece-wise 
linear voltage sources and resistors are sufficient. 
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Figure 2.1:  Standard test setup for Monte Carlo analysis of RSFQ circuits 

 
2.2.2 Monte Carlo models 
 
Monte Carlo models can be divided into two categories.  The first contains the initial 
models.  These are generic in composition, incorporating the known tolerances (global 
and local) for the design process, and are used for optimization and to predict circuit 
yield. 

The second category contains the more accurate models, which are derived 
through parameter extractions from the circuit layouts.  These models incorporate the 
actual layout values of and local tolerances specific to each element, and are used to 
evaluate layout quality. 

The latest Hypres layer process specifications are shown in Table 2.1 (adapted 
from [16]). 
 The initial tolerance values – both global (chip-to-chip) and local (element-to-
element) – for circuits fabricated with the Hypres process are shown in Table 2.2.  Global 
tolerance results from layer thickness variations, and local tolerance from element width 
or junction area variations. 

A Monte Carlo simulation file needs to model both the global and local tolerances.   
Global tolerance parameters are declared only once, and remain constant in a given 
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circuit.  Local tolerance parameters are assigned a new random value every time they are 
called.  Separate models are created for each Josephson junction, so that current density is 
independent of area and can be varied between junctions.  The local variation in junction 
capacitance does not need to be set, since it depends on the area of the junction alone. 
 

Table 2.1:  Hypres layer process specifications 

Layer Bias 
(wafer-mask) 

[µm] 

Tolerance 
[µm] 

Physical properties Thickness 
[nm] 

Deviation 
[nm] 

M0 0.25 ± 0.25 Nb, λL ≅ 112 nm* ± 5 % 100 ± 10 
I0 0.3 ± 0.25 SiO2, C = 0.277 fF/µm2 ± 20 % 150 ± 15 

M1 -0.3 ± 0.25 Nb, λL ≅ 100 nm* ± 5 % 135 ± 10 
I1A ** – – 45 ± 5 
SiO2 – – C = 0.416 fF/µm2 ± 20 % 100 ± 10 
R2 0.2 ± 0.25 Mo, R = 1.0 Ω/square ± 20 % 100 ± 20 

SiO2 – – C = 0.416 fF/µm2 ± 20 % 100 ± 10 
I1B 0.2 ± 0.25 Hole through above two SiO2 

layers 
  

M2 -0.5 ± 0.25 Nb, λL = 90 nm ± 5 % 300 ± 20 
SiO2 –  C = 0.08 fF/µm2 ± 20 % 500 ± 40 

I2 0.2 ± 0.25 Hole through above insulator   
M3 -0.75 ± 0.25 Nb, λL = 90 nm ± 5 % 600 ± 50 
R3 0.0 ± 1.0 Ti/Pd/Au, R < 0.1 Ω/square 350 ± 60 

* Effective penetration depth – thin-film correction factor included 
** Ic = jc(A – Amis), with Amis = 3.0 ± 0.5 µm2 
 

Table 2.2:  Tolerance values for Hypres 1kA/cm2 niobium process 

Parameter Junction critical 
current density (JC) 

Junction 
Area 

Resistance Inductance Junction 
Capacitance 

Global tolerance 10 %* - 20 % 10 % 5 %* 

Local variation 5 %* 5 %** 5 % 15 % *** 

* Tolpygo [17] 
** Layout variations: only certain values are possible due to grid-snap requirements 
*** Coupled to area variation 
 

An example of an initial Monte Carlo simulation file for WRSpice [8] is shown in 
section B.1.2.  Implementation may differ in other programs. 
 The more exact Monte Carlo analysis derived from parameter extraction, and 
referred to here as the layout model, is slightly more complex (see section B.1.3 for a 
WRSpice deck file example). 
 In the layout model, each circuit parameter can be assigned an individual standard 
deviation calculated from known fabrication tolerances or simulated parameter variations 
(see section 3.9 for a discussion on simulated inductance variations).  Global variations 
must be retained, since they are the same for all parameters on a chip. 
 The random variables used to generate the global variations of resistance and 
critical current are kept exactly as in the initial model.  For inductance, global variables 
are declared for each niobium layer, and the normalized standard deviation for each is 
calculated from a hundred or more simulations on at least one representative structure in 
the layer. 
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 For resistance (R), the local variation decreases as line width (W) increases.  The 
well-known equation for resistance is 
 

W
L

R
ρ

=  , (2.3) 

 
where L is the length of the resistor, and ρ the sheet resistance in Ω per square. 

The incremental change in resistance is larger for an absolute decrease in line width 
than for the same increase, so that the value of resistance caused by the worst-case width 
deviation δW,max is 
 

)( max,
max

WW
L

R
δ
ρ

−
=  . (2.4) 

 
The 3σ variation of a particular resistor is then calculated from 
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 . (2.5) 

 
From (2.5) the local variation (3σ) of a resistor with width 5.8 µm is calculated as 4.50 %, 
compared to 5.49 % when the width is 4.8 µm. 
 A similar derivation yields the variation in junction area, except that the largest 
incremental change is for a decrease in junction area, which gives a smaller IC.  Since 
junction area equals critical current (IC) divided by current density (JC), the area variation 
can be expressed as 
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C

C

I
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I
 , (2.6) 

 
where δA,max is the maximum uncertainty in area, as specified in the process design rules. 

Equation (2.6) gives the 3σ local variation of a 100 µA junction in the 1 kA/cm2 
Hypres process, with max,Aδ  = 0.5 µm2, as 5 %.  For a 250 µA junction in the same 

process, the 3σ variation is only 2 %. 
The local variation in inductance is more complicated, and is best estimated from 

observed parameter spreads obtained with computer simulations. 
 If we define a Gaussian random variable with mean µ and variance σ2 as 
 

( )2,~ σµNX  , (2.7) 
 
and model the random global and local variations of inductance as normalized Gaussian 
distributions, we can write 
 

( )2,1~ gg NX ′′ σ  (2.8) 
 
and 
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( )2,1~ ll NX ′′ σ  . (2.9) 
 
In (2.8) and (2.9), σg′ is the standard deviation caused by the layer variations, and σl′ is 
that resulting from line width tolerance. 
 The standard technique for computing the random value of inductance (which is 
the same as that for resistance and junction area), is through a multiplicative model 
whereby it is declared as a function of Xg′ and Xl′, 
 

lg XaXY ′′=  , (2.10) 
 
where a is the mean value of Y. 
 Although (2.10) is a very accurate description of what happens on a real chip, the 
model has a shortcoming. 

When layout extraction is performed, the variation of inductance as a result of 
both global and local tolerances can be determined from numerical simulations (see 3.9, 
p.51).  Since the parameter for global variation – which can be established through similar 
simulations when conductor widths are held constant – has to be the same for all 
inductors in a layer, it is only determined once.  Simulations also show that Y has a 
Gaussian distribution, with observed standard deviation σobs.  For an inductance value in a 
Monte Carlo circuit simulation to have a standard deviation of σobs , we need to calculate 
a σl′ that, together with σg′, will ensure the correct distribution.  Calculation of σl′ does not 
readily follow from (2.10), so that we need a simpler model. 

We can start by redefining the global and local random variables (2.8) and (2.9) to 
have zero means and name them Xg′′ and Xl′′.  Now (2.10) becomes 

 
)1)(1( lg XXaY ′′′′ ++= ,  (2.11) 

 
which expands to 
 

lglg XaXXXaY ′′′′′′′′ +++= )1( .  (2.12) 
 
Equation (2.12) shows that, when zero-mean global and local variables are used, Y can be 
described in terms of the sum of the independent global and local variables.  The last term 
in (2.12) is very small if the standard deviations of Xg′′ and Xl′′ are much smaller than 1, as 
is indeed the case in the Hypres process.  It can therefore be neglected. 
 The proposed alternative is therefore an additive model, in which the random 
variable for inductance (Y) is defined in terms of the sum of statistically independent 
global (Xg) and local (Xl) variations, so that 
 

( )lg XXaY ++= 1  . (2.13) 
 
The mean of Y therefore remains a if Xg and Xl have zero means. 
 

( )2,0~ gg NX σ  (2.14) 
 
and 
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( )2,0~ ll NX σ  . (2.15) 
 
Y is produced by a linear transformation of two Gaussian variables, and is therefore also 
Gaussian.  (The proof appears in almost any text on probability theory.  See for example 
[18, p. 147-149]). 
 

( )2,~ obsaNY σ  (2.16) 
 
For completeness, the mean of Y is calculated from 
 

aXaEXaEaaXEaXEaEY lglg =++=++= ][][][][][  . (2.17) 
 
The variance of Y equals its second central moment, or 
 

])[( 2
2

2 YYEobs −== µσ  , (2.18) 
 
which simplifies to 
 

222 ][ YYEobs −=σ  .  (2.19) 
 
The square of (2.13) yields 
 

)2221( 2222
lgllgg XXXXXXaY +++++=  . (2.20) 

 
The mean of (2.20) is 
 

][2][][2][][2][ 222222222
lgllgg XXEaXEaXEaXEaXEaaYE +++++= . (2.21) 

 
The second and fourth terms on the right hand side of (2.21) are zero, as defined in (2.14) 
and (2.15).  The last term describes the correlation between Xg and Xl.  Since they are 
defined to be statistically independent, we can write 
 

0][][22][2 222 === lgXXlg XEXEaRaXXEa
lg

. (2.22) 

 
With (2.22) and the definitions in (2.14) and (2.15) substituted into (2.21), the latter 
reduces to 
 

][][][ 222222
lg XEaXEaaYE ++=  . (2.23) 

 
The second central moment of Xg can be rearranged in terms of ][ 2

gXE  so that 
 

222 ][ ggg XXE σσ =+=  (2.24) 
 
A similar equation can be obtained for ][ 2

lXE , and if substituted into (2.23) along with 
(2.19) and (2.24), it yields 



CHAPTER  2 – CIRCUIT OPTIMIZATION THROUGH GENETIC ALGORITHMS 11 

 
2222222
lgobs aaaa σσσ ++=+  (2.25) 

 
or 
 

2
2222

g
obsgobs

l aa

a
σ

σσσ
σ −






=

−
=  . (2.26) 

 
With (2.26), the standard deviation of the local variation of each inductor in a circuit 
model can be calculated such that it will, in conjunction with the global variation, give the 
exact distribution of the observed inductance found from layout extraction.  It is 
important to realize that Xg models the global deviations as caused by layer thickness 
variations, but that Xl is a function of local variations in conductor width as well as any 
other variations that, together with the global variations, will produce the observed 
random variable Y. 

More advanced simulation models derived through parameter extraction utilize 
transmission line elements to include the effects of distributed capacitance and 
transmission delays in the Monte Carlo models [19].  The technique is useful for 
detecting the diminished yields caused by bad layouts, or clock period timing violations 
resulting from slow or long signal paths.  Since it is much slower than conventional 
Monte Carlo simulations and depends on information about the layout, it was not 
considered for fitness evaluation in the genetic optimization algorithms. 
 
2.2.3 Trimming 
 
Trimming can improve circuit yield [5] [9] [7].  Though not used during optimization, 
when information on the worst performance of a circuit is required, it is standard to 
include trimming when the best expected yield figures for full system circuits are quoted. 
 The justification for the inclusion of trimmed figures in full circuits is that the bias 
voltage of a non-functional circuit can be varied to try and make it work. 
 In COSL circuits, trimming is performed by adding or subtracting current to an 
input rf SQUID.  The current is supplied by a voltage applied over a 50 Ω resistance.  
Modelling of this trim voltage during Monte Carlo simulations requires the calculation of 
the effective inductance of the rf SQUID at the start of every Monte Carlo run.  The 
inductance of the Josephson junction is included in this calculation, which is discussed in 
detail in [7]. 
 For RSFQ circuits, trim is applied to the dc bias voltage.  The objective is to 
cancel the effect of global tolerances on the current bias of grounded Josephson junctions. 

A global increase in resistance leads to a directly proportional reduction in the 
bias current of each junction.  This can be counteracted if the dc bias voltage is increased 
by the same proportion.  Additionally, a global increase in the current density of 
Josephson junctions results in a directly proportional increase in critical current, and 
reduces the proportion of bias current to critical current.  This can also be negated by a 
proportional increase in the dc bias voltage. 

The resulting dc bias applied to any trimmed RSFQ circuit during Monte Carlo 
simulation, Vbiastrim, is: 

 
toltoldcbiasbiastrim JRVV ××=  (2.27) 
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Where: 
 
 Vdcbias = the nominal dc bias, or 2.6 mV in our circuits 
 
 Rtol = the normalized multiplier for modelling global resistance change 
 
 Jtol = the normalized multiplier for modelling global current density change 

 
The implementation of voltage trimming in a WRSpice circuit file can be seen in section 
B.1.2. 
 
2.2.4 Failure detection 
 
 
In this game that we’re playing, we can’t win.  Some kinds of failure are better than other 
kinds, that’s all. 
 George Orwell, Nineteen Eighty-Four 
 
 
During a Monte Carlo analysis, hundreds or thousands of simulations, each with random 
variations on all the elements, are performed on a circuit.  The statistical or theoretical 
yield is then calculated from the observed number of correct simulations, as given by 
(2.1) and (2.2). 

In RSFQ circuits, the voltage output vector of a simulated circuit is integrated 
over a time window, and only if the integrated value for an expected pulse falls between 
1×10-15 and 3×10-15 V.s (it should be one magnetic fluxon, or 2.07 fWb), is the circuit 
flagged as correct [20].  Higher values indicate double pulses (a failure), and lower values 
indicate the absence of a pulse.  The evaluation windows are shown (not to vertical scale) 
in Figure 2.2 (a), and a high window indicates that a pulse is required, whereas low 
windows indicate that no pulses are allowed.  The width of the time windows are also 
used as constraints, since a logic pulse has to appear within a specified time window in 
order to satisfy clocking requirements.  Slow circuits too are rejected as failures. 
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Figure 2.2:  Evaluation constraints for RSFQ DC-Resettable latch:  (a) nominal voltage 
output vector and (b) nominal flux-loop current 
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When a current vector is evaluated (to determine flux through a loop), it is averaged over 
time windows.  In Figure 2.2 (b), the current average in the first window must be more 
than 180 µA, corresponding to a set state, whereas the average in the second window 
must be less than 100 µA. 

In COSL circuits, the voltage output vector is averaged over time windows.  
These windows correspond to the clock phase on which a gate output stage operates, and 
the average voltage must fall within a high or low voltage range, depending on the logic 
state.  The average value of a high output voltage must fall between 800 µV and 1.25 mV 
for one fifth of a clock cycle (denoting the high voltage state).  The average value of the 
low output voltage must remain below 400 µV over any one-fifth period of the clock 
cycle. 
 
2.2.5 Closed-loop design 
 
Monte Carlo yield analysis and optimization are repeated as many times as is necessary to 
yield a reliable circuit that can be constructed with the chosen fabrication process. 
 Layout, parameter extraction, yield analysis and optimization form a closed-loop 
cycle that is repeated until a layout is realized that has the desired characteristics. 
 Some physical limitations that can often only be determined accurately during 
layout, and can force design changes, include: 

• Minimum attainable parasitic inductance. 
• Minimum realizable junction area. 
• Minimum interconnection distance (affecting inductance). 
• Maximum attainable inductive coupling. 

These limitations are often factored into the affected element values, or added as extra 
parasitic elements to circuit models after they show up during layout extraction. 
 In the entire closed-loop design process, from initial design to final layout, Monte 
Carlo analyses play a prominent role. 
 
2.3 MARGIN ANALYSIS 
 
Margin analysis is an old technique used to obtain qualitative information on the effects 
of parameter variations on circuit operation [10].  It was used extensively when Monte 
Carlo analyses were still too time-consuming to run repeatedly on a given circuit 
optimization problem. 
 Implementation is fairly easy.  In a nominal circuit, one element value at a time is 
changed, a simulation is run, and the output evaluated to determine whether a failure 
occurred.  If not, the element value is adjusted by a larger factor and a new simulation is 
performed.  When a circuit fails, the value of the element under analysis is set exactly 
halfway between the failed value and the last functioning value. 

The process is repeated until the limit value for the given element that denotes the 
transition from a working circuit to a failure is found.  Upper and lower limits are thus 
found for every element value. 

As an example of the use of a margin analysis, compare the results for the 
HUFFLE and Current-Set switch in Figure 2.3(a) and (b). 
 Only elements with margins of around ±50 % and less are shown (the elements 
correspond to the designations in Figure 4.4 and Figure 4.9). 
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(a) (b) 

Figure 2.3:  Margin analysis results for the most critical parameters of (a) the Current-Set 
switch and (b) the HUFFLE 

 
 For the Current-Set switch, the critical margin is determined by B4, and for the 
HUFFLE by B10.  It appears that the Current-Set switch is more stable than the HUFFLE 
(which was confirmed through MC analyses).  The most critical elements can now be 
identified. 
 The critical margin in RSFQ circuits is often found to be the critical current of a 
Josephson junction, as with the OR, XOR and NOT-gates in [10], and the Current-Set 
switch and HUFFLE discussed here.  In virtually all other cases, the bias resistors account 
for the critical margins (all the resistors shown in Figure 2.3(a) and (b) are bias resistors), 
which is probably why the specification of bias current margins as a measure of circuit 
performance has remained popular in publications for so long. 
 Fortunately, global variations account for the largest deviations in resistance, and 
this can easily be compensated for by trimming the global dc supply voltage.  The same 
technique is used to limit the effect of the global variation of JC. 
 It is important to note that the element responsible for the critical margin can 
change during circuit optimization, so that margin analyses under these conditions must 
check all suspect elements. 
 Apart from only giving information on elements in isolation (with a disregard for 
the effects that element variations have on the margins of others), margin analyses are 
also not very fast.  For Monte Carlo simulations, 100 runs already deliver usable fitness 
information for optimization (although 441 – the number of runs when CheckSTP1 = 
CheckSTP2 = 10 (C.1) – was most often used as a minimum).  With a margin analysis, 
between 15 and 20 runs are normally needed to give upper and lower margins to within 
1 % for one element.  When several elements are analysed for critical margins, and 
especially when the simulation engine does not have native margin analysis support, 
much more time is required than for a Monte Carlo analysis – which then is clearly the 
most practical method. 
 
2.4 GENETIC ALGORITHMS 
 
Conventional genetic algorithms operate on problems that have been reduced to binary 
strings [14] through a decoding function that maps the phenotype space (real-world 
parameters) to the genotype space [13].  These strings, called chromosomes or genomes, 
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are able to reproduce, pair for crossover and undergo random bit mutation.  The 
probability of reproduction is determined by circuit fitness.  Pairing and crossover allow 
the exchange of genetic information, whereas mutation provides a way of introducing 
random jitter into solutions to prevent convergence on a single local optimum. 

Real-valued parameters can also be represented by binary substrings in the 
chromosome [14, pp. 52-54] [21], as shown in Figure 2.4(a) [20], but this limits the range 
of the solution.  Since the circuit parameters subject to optimization are the real-valued 
element values (resistance, inductance and critical current), it was opted to map them 
directly to a genome of real values.  This is often differentiated from true genetic 
algorithms, and referred to as an evolution strategy [13].  However, the underlying theory 
is equivalent, and since the strategy parameters (mutation rate, mutation distribution, 
fitness curve, etc.) are not yet subjected to evolutionary change themselves, this technique 
is conventional. 
 Before the genetic algorithms can start operating, a parent generation that is 
distributed throughout the solution space is needed.  This first generation is created 
through random variations of the nominal circuit.  The entire generation is evaluated for 
fitness, where fitness is calculated from a cost function and models the probability of 
survival and reproduction of each individual.  A new generation is then created from its 
ancestors by randomly copying individuals to the new population according to their 
probability of procreation.  Next the resulting individuals are paired.  In the 
implementation discussed in this chapter, all the individuals of a population are paired at 
random (as opposed to strategies where, for example, stronger individuals pair with 
weaker ones, or the strongest individuals pair with each other). 

Elements from the genomes of each individual in a pair are allowed to exchange at 
random, unlike the standard practice of punctuated crossover.  The probability of 
crossover is also chosen at random, but remains constant for all elements in a pair of 
genomes.  After crossover, random mutations are allowed.  The mutated values are 
calculated by multiplying the originals with a unity mean Gaussian distribution.  The 
process is illustrated in Figure 2.4(b) [22].  Only two paired individuals are shown after 
reproduction.  Element values contain no multiplier suffixes, and in the example each 
individual has two resistors, two inductances and two Josephson junction critical current 
values. 
 

  
(a)    (b) 

Figure 2.4:  Graphical representation of the genetic optimization process using (a) binary 
string genomes and punctuated crossover and (b) real-valued genomes and random 

crossover 
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The new generation is then evaluated for fitness, and the reproduction process repeated.  
The cycle is continued until an individual with a prescribed yield is spawned, or until the 
optimizer stalls at some maximum yield. 
 
2.5 FITNESS EVALUATION 
 
Theoretical circuit yield, calculated through a Monte Carlo analysis, is used as an 
indication of circuit fitness [9].  Since the element variations in such a simulation are 
based on the manufacturing tolerances of a particular process, circuits are optimized 
directly for that process.  The Hypres 3-micrometre fabrication process [16], for which 
the tolerances are modelled as Gaussian distributions (see Table 2.2 on p.7 for the list of 
values), was used for all designs. 
 
2.5.1 Summary of evaluation constraints 
 
Apart from the constraints discussed in section 2.2.4, which are used in all Monte Carlo 
simulations, other restrictions are necessary to prevent the optimizer from spawning 
circuits that might seem to work well when they are actually impractical. 

• In RSFQ circuits, static current flow between logic gates should be as small as 
possible.  When a circuit is optimized while connected to a JTL, it can evolve to 
source or sink current from the JTL through the inductive signal interconnection 
(bias current distribution is determined by the inductance of each zero-resistance 
path to ground).  The JTL is an extremely robust circuit, and can withstand large 
static loading currents.  However, when the offending gate is connected to another 
less stable circuit, the resulting loading can cause either or both to malfunction.  In 
simulations, circuits are flagged as failures if the absolute value of any static 
current flowing through a gate interconnection exceeds a chosen value (no clear 
guidelines exist, so 10 % of the smallest junction critical current is used). 

• Junctions that are too small cannot be manufactured, or may be inaccurate.  In the 
Hypres 3-micrometre 1 kA/cm2 process, it is not advisable to use junctions with a 
critical current of less that 100 µA [16]. 

 
2.5.2 Mapping theoretical yield to fitness 
 
Circuit yield is always specified as a percentage, but when used directly as a fitness value 
it can lead to insufficient differentiation when the yield distribution for all circuits in a 
population lies between, for instance, 50 % and 70 %.  Instead, an adapted scale is 
utilized, whereby the circuit with the lowest yield is assigned a fitness of 0, whilst the 
highest yield  is translated to a fitness of 1.  All other yield values are translated to fitness 
values between 0 and 1, according to a linear or quadratic function – a parameter set 
before optimization.  The resulting probability distribution function is then normalized to 
integrate to 1, and used for offspring selection as previously discussed. 

It is clear that the weakest individual in a generation is guaranteed to die off, but 
that the strongest individual does not necessarily survive.  Furthermore, even if the 
strongest individual survives to create offspring, the only way in which an exact replica of 
its genome can enter the offspring population is if it pairs with itself (possible) and 
experiences no mutation during the process.  In general, however, only genetic material of 
the strongest individual, and not an exact copy, is transferred to the next generation. 
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In a technique called elitism [21] the strongest individual is copied into the 
offspring population to ensure its survival, but it was not used here. 

Critical margin analysis is often used as a figure of merit for superconducting 
circuits and their optimization [1] [10] [11], and could also function as a fitness indicator.  
However, this technique does not give a direct measurement of the circuit’s yield, and 
gives a poor resolution when the circuit yield is very low.  Yet it is useful for the 
identification of critical elements (see section 2.3). 
 
2.5.3 Noise in yield-based fitness values 
 
A drawback to fitness values based on yield is the noise inherent to Monte Carlo analyses.  
This can be reduced by increasing the number of simulations per Monte Carlo analysis 
(thereby reducing uncertainty), at the cost of increased computing time.  Results show 
that genetic optimization can fall victim to this noise when yield approaches 100 %, as 
seen in Figure 2.7, or when the yield spread across a generation decreases to the 
uncertainty limits of the Monte Carlo analysis.  The only way to break out of such a local 
optimum is to step up the rate and standard deviation of mutation, or force a large 
evolutionary jolt;  either by generating a new set of circuits at random from the one with 
the highest yield, or by applying a manual tweak to a sensitive parameter.  The results for 
the DC-Resettable latch show that the combination of genetic algorithms with large 
evolutionary shocks (random or manual) increases the effectivity of the optimization 
process. 
 
2.6 RSFQ DC-RESETTABLE LATCH EXAMPLE 
 
The genetic optimizer was first tested on a novel RSFQ DC-Resettable latch (Figure 
2.5(a)), where 32 elements, excluding damping resistors or any parasitics, were optimized 
[22]. 

The first functional circuit model had a theoretical yield of only 22.3 ± 9.8 %. The 
optimization parameters were: population size = 100, mutation probability = 0.03, 
mutation distribution (3σ) = 0.1, fitness evaluation = quadratic, Monte Carlo runs = 225. 

Junction damping resistors were automatically adjusted after every junction area 
alteration in order to set their Stewart-McCumber parameters equal to 1 [1]. 
 

 
Figure 2.5:  Simplified schematic circuit diagrams for (a) RSFQ DC-Resettable latch and (b) 

COSL Set-Reset flip-flop 
 
Figure 2.6 (a) shows the optimization results for the first sequence, which ran for 

more than 2 weeks on an Intel Pentium III.  The gaps at generations 3, 7 and 8 resulted 
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due to data not being checked over weekends.  The best offspring circuit had a yield of 
55.1 ± 8.6 %. 

This best circuit was analysed manually, and observed setup failures were linked 
to the Set input inductor (L1 in Figure 4.1).  With this inductor tuned manually (emulating 
a large mutational jolt), the circuit yield leapt to 75.6 ± 7.5 %. 

A second genetic optimization sequence was applied to the tuned circuit, with the 
parameters similar to those of the first optimization, except for:  mutation probability = 
0.04, mutation spread (3σ) = 0.15, vary parasitics = no. 

After five generations the yield was up to 84.9 ± 6.2 %.  The optimization strategy 
was then changed to allow the optimizer to operate only on the set-reset stage of the latch.  
All the element values in the read section were thus locked.  Within a few generations the 
set-reset stage yield reached 100 %, even with 3σ variations of 30 % and 35 % 
respectively on the global and local inductance parameters. 

The strategy was then reversed by locking the set-reset stage, and allowing the 
genetic algorithms access to the read stage elements only.  Parameters changed from the 
first sequence were:  Population size = 400, mutation probability = 0.05, mutation spread 
(3σ) = 0.3, Monte Carlo runs = 361, global tolerance on inductance = 0.3, local tolerance 
on inductance = 0.35. 

After around 8 generations, maximum yield stabilized and showed no further 
increase.  With the Monte Carlo parameters set back to the generic Hypres values, the 
yield turned out to be 97.71 ± 1.25 %.  This is good enough to justify the use of the 
DCRL in RSFQ circuits, especially since dc bias voltage trimming makes the practical 
yield better than the theoretical figure, even after the detrimental effects of layout 
imperfections are factored in (see Table 4.1, p.67).  If necessary, feedback loops to 
counter accidental reset failures can also be introduced into sensitive circuits (section 
4.2.1.3, p.58). 
 

  
(a) (b) 

Figure 2.6:  Genetic optimization results for RSFQ DCRL:  (a) yield vs generation number 
for first sequence and (b) yield vs sequence for entire process 

 
Figure 2.6(b) shows the results for all the genetic optimization runs, as well as the number 
of generations for each run. The dashed lines represent manual adjustments made to the 
latch between optimization stages. 
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2.7 COMPARISON OF GENETIC AND RANDOM OPTIMIZATION METHODS 
 
Genetic algorithms work for circuit optimization, and the results from section 2.6 confirm 
this.  Yet, in order to know if it is worthwhile to use them, we have to compare their 
results to those obtained from a brute force random search [22]. 

The straightforward technique for random optimization is to vary the element 
values of a nominal circuit according to a chosen distribution.  Yield is evaluated for each 
new circuit, and if it is higher than that of the nominal circuit, the new circuit becomes 
nominal and the process restarts. 

The genetic optimizer was compared with the random technique for the 
optimization of a novel COSL Set-Reset flip-flop, which is shown in Figure 2.5(b).  The 
genetic optimization parameters were:  population size = 100, mutation probability = 
0.05, mutation distribution (3σ) = 0.3, fitness evaluation = linear, Monte Carlo runs = 
441.  The random optimizer also used a population size of 100, and 3σ element variations 
of 0.3. 
 The first implementation of the COSL Set-Reset flip-flop had a yield of 
33.1 ± 5.8 %.  It was then subjected to optimization with the genetic and random 
algorithms.  Both techniques levelled off after the seventh generation, with the genetic 
optimizer delivering a best yield of 86.2 ± 4.3 %.  The random optimizer produced a best 
yield of 80.9 ± 4.9 %.  The comparative results are shown in Figure 2.7.  Note that the 
population average increases during genetic optimization as weak solutions die off, and 
also that the best solution died off (or had its best traits genetically diluted) between 
generations 2 and 3. 
 

 
Figure 2.7:  Comparative results for a genetic algorithm and random optimization sequence 

starting with the same unoptimized COSL Set-Reset flip-flop 
 
 The mutation distribution was then reduced to 0.1 for further optimization.  The 
random optimizer stalled in a local optimum at 83.2 ± 4.6 %, whereas the genetic 
optimizer produced a circuit with a yield of 95.6 ± 3.6 % after 12 generations. 

Margin analyses on the best result from the genetic and random optimizer show 
that the former has a critical margin of 12.2 % and the latter one of 8.4 %.  While the 
circuit with better yield also has a better critical margin, it still does not give any 
indication of the actual yield.  This does not disqualify the use of critical margin analysis 
for optimization, but as discussed in section 2.3, Monte Carlo analyses need fewer 
simulations. 
 A comparison between the element values of the best circuit from each 
optimization process is shown in Figure 2.8, where the elements of the genetic algorithm 
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result are taken as nominal.  The large differences in element values confirm that the 
solution space indeed has multiple local optima. 
 

 
Figure 2.8:  Relative difference between the elements of the best COSL Set-Reset flip-flop 

from the genetic and random optimization processes 
 
 In another test, both techniques were applied to the existing COSL negative output 
OR-gate [7].  With tight evaluation criteria and no voltage trimming the unoptimized 
yield was 58.7 ± 8.5 %.  Optimization parameters were the same as for the COSL Set-
Reset flip-flop optimization. Both techniques achieved a yield of 100 %, as shown in 
Figure 2.9, with the random optimizer defeating genetic algorithms by one generation.  
The resulting circuit needs no voltage trimming. 
 

 
Figure 2.9:  Comparative results for genetic and random optimization sequences starting 

with the same unoptimized COSL negative-output OR-gate 
 
2.8 CONCLUSIONS 
 
Genetic algorithms have been demonstrated to perform well during circuit optimization.  
Although random searches are efficient at finding several different effective solutions 
starting from a very suboptimal circuit (provided that enough random circuits are 
generated), the genetic technique inherits this quality by virtue of the fact that the first 
generation is spawned at random. 

Genetic algorithms have several advantages [22]. 
• They are easy to implement, requiring minimum mathematical effort. 
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• Circuit fitness is based on the yield with real tolerance values, so that none of 
the unknowns of margin analysis remain. 

• They readily scale to any N-parameter circuit, even though the size of the 
search space increases with larger N-values. Circuits with as many as 32 
parameters have been optimized. 

• They can search a solution space with multiple optima. 
• They can optimize themselves if the strategy parameters are coded into the 

genome. 
Genetic algorithms have been used successfully in many research fields [13], but 

still lack a sound mathematical description that allows designers to calculate the best 
optimization parameters.  Consequently, most parameters are selected at random, and 
some selections cause genetic algorithms to perform little better, if not worse than random 
optimization.  However, results obtained with genetic algorithms are definitely promising. 

A Monte Carlo model based on layout extraction, but fast and easy to simulate in 
optimization procedures, was also developed to give a very accurate estimate of the yield 
of an actual circuit. 
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Chapter Three - Inductance extraction 
 
 
 
I keep six honest serving-men 
 (They taught me all I knew); 
Their names are What and Why and When 
And How and Where and Who. 
 Rudyard Kipling, The Elephant’s Child 
 
 
 
3.1 INTRODUCTION 
 
INDUCTANCE is a property that is hard to calculate and even harder to estimate;  yet it is 
very important in RSFQ circuits.  For the layout of sensitive circuits, especially when 
manufacturing tolerances are large, the uncertainty in the inductance of conducting 
structures should be minimal. 
 For the layout of large circuits, inductance is often estimated from a two-
dimensional algorithm [23].  Unfortunately, although fast and easy, this technique is only 
accurate for uniform microstrip lines over an infinite ground plane (Figure 3.2).  The 
algorithm cannot even accommodate corners, so that corner inductance has to be 
approximated.  The traditional approximation is to multiply the diagonal between the 
centres of incoming lines, called the effective path length (Figure 3.1) [24], with the per 
length inductance of the line [12].  However, this is problematic when the corner is not 
square and the per length inductances of the two arms differ. 
 

 
 

Figure 3.1:  Traditional approximation of the effective path length for inductance estimation 
around a corner in a thin-film conductor 

 
Recent results from numerical analyses suggest that the effective length is less than the 
popular approximation, and closer to half the side length of the corner square (see section 
3.4.2 for a more detailed discussion). 

Two-dimensional techniques are also unable to predict the inductance of common 
structures like vias, tees, Josephson junctions and double-cornered lines with short arms.  
Figure 3.3 shows some of these structures, with A and A′ as the current entry and exit 
points, and B the position where the conductor is electrically shorted to B′ on the ground 
plane. 

A scheme for inductance calculation in complex thin-film superconducting 
structures has been discussed [25].  Guan et al. used a modified version of FastHenry 
[26], a program that allows the numerical extraction of the inductance of discretized 
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structures.  Tables were generated that list the per square inductance of several line 
structures with corners, tees and vias.  These tables were then used to calculate the 
inductance of real layout structures.  However, in the tightly packed interiors of logic 
circuits, the close proximity of other conducting structures can influence inductance.  
Conductors may also consist of several closely spaced corners or vias. 

In this chapter, the need for a reliable inductance extraction technique, as well as 
the implementation thereof with an image-method numerical analysis, are discussed. 

 

 
Figure 3.2:  Uniform microstrip over ground plane 

 

  
(a) 

 
(b) 

  
(c) (d) 

Figure 3.3:  Common 3D structures requiring inductance calculations are the (a) cornered 
microstrip, (b) microstrip with tee-in, (c) via-connected microstrips and (d) microstrip 
connecting two Josephson junctions, including damping resistor covers and dc tee-in 

 
3.2 INDUCTANCE TOLERANCE AND THE EFFECT ON RSFQ CIRCUITS 
 
For the Hypres process [16], the nominal values of resistance and Josephson junction 
critical current can be established quite accurately during layout.  However, the 
inductance of an etched structure is much more difficult to predict, as detrimental effects 
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caused by fringing, mutual inductance and irregular three-dimensional shapes are often 
impossible to calculate by analytical means. 

Margin analyses often show large margins for inductors, although they can 
sometimes determine the critical margin, such as in the AND-gate of [10]. 

However, circuits are more sensitive to inductance than margin analyses imply.  
The main reason is that changes in inductance from the nominal design values lead to 
different static current flows in RSFQ gates, thereby affecting junction bias currents.  
This reduces the Josephson junction critical current margins that will result in switching 
failures – an effect that escapes detection in margin analyses but shows up through lower 
yields in Monte Carlo analyses. 

As an example, consider the results in Figure 3.4(a) and (b).  They were generated 
through repeated Monte Carlo simulations on the optimized versions of the HUFFLE and 
DC-Resettable latch (see the circuit diagrams in Figure 4.9 and Figure 4.1), using the 
generic tolerance model and voltage trimming.  The global and local inductance 
tolerances were merged into a single random variable of which the 3σ limit was swept 
from 0 to 80 percent. 
 

  
(a) (b) 

Figure 3.4:  Yield as a function of inductance spread for (a) HUFFLE and (b) RSFQ DCRL 
 
The Monte Carlo yield results for the HUFFLE in Figure 3.4(a) show yield to decline 
nearly linearly above a three sigma inductance variation of about 38 %, whilst the critical 
inductance margin for the same device in Figure 2.3(b) is 50 %.  For the DCRL, the 
critical inductance margin is 42.2 %, although circuit yield starts to decline at a 3σ 
inductance variation of about 25 % (Figure 3.4(b)).  We can thus conclude that margin 
analyses do not give the full picture. 
 

Table 3.1:  Inductance offset of a 3 µm microstrip for worst-case variations in different 
layers of the Hypres niobium process 

Layer Thickness variation 
(Global) 

Width variation 
(Local) 

M1 +5.49%
-4.97%   

+7.74%
-6.69%   

M2 +5.51%
-5.33%   

+6.68%
-5.87%   

M3 +5.15%
-5.11%   

+5.21%
-4.69%   

 
Table 3.1 shows the theoretical worst-case inductance offset, due to manufacturing 
tolerances, of narrow inductors in all the layers of the Hypres process (estimated with 
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Chang’s 2D algorithm [23]).  Although lines in M1 can be as narrow as 2.5 µm, and those 
in M2 and M3 only 2 µm, these widths are rarely used in physical layouts. 

For global variation, the worst case (lowest inductance) was taken as thickest 
ground layer, thinnest dielectric layer and thickest conductor layer.  All parameters were 
reversed for highest inductance.  The worst-case values are conservative – repeated 
simulations on discretized 3D structures show that the 3σ limits of global inductance 
variations (with a Gaussian distribution) are generally about a quarter less than the worst-
case values in Table 3.1.  (The comparison is valid, as line width has no effect on the 
global variations.) 

The inductance variations used in Monte Carlo analyses are shown in Table 2.2.  
The ±10 % global variation more than covers the layer thickness tolerance, whereas the 
±15 % local variation allows for width tolerance as well as an extra ±7 % to ±10 % 
uncertainty in the nominal value of an etched inductor.  These values are larger than the 
actual variations expected for the Hypres process, as was found in an analysis of global 
deviations [27] and will be demonstrated for both global and local deviations in section 
3.9.  This conservative approach (similar to that of [9], although their values are different) 
originates from earlier work [3] when inductance and its variations could not yet be 
established with any certainty, and was retained for consistency between yield results of 
new and established circuits. 

Since Monte Carlo analyses show yield to be sensitive to inductance, reliable 
inductance calculation techniques are necessary. 
 
3.3 INDUCTANCE CALCULATION TECHNIQUES 
3.3.1 Mathematical and 2D approach 
 
The easiest way to calculate the inductance of a two-dimensional superconducting 
microstrip line remains the analytical technique proposed by Chang [23].  However, as 
with other analytical techniques, this one is very limited. 
 If we stay with a 2D problem, but add a second conductor, the problem of 
determining inductance escalates beyond the abilities of analytical mathematics.  A 
numerical calculation becomes necessary, and once again Chang proposes a technique 
[28]. 
 The numerical technique provides a fast and easy way to calculate the mutual 
inductance between multiple superconducting lines, with or without a ground plane.  Yet, 
like the analytical technique, it is unable to handle three-dimensional structures such as 
corners and vias. 
 
3.3.2 Numerical calculations on 3D models 
 
As mentioned before, the analytical and 2D techniques for inductance calculation are only 
accurate for very simple structures.  Even with the addition of tables for corners and tees 
they can still, in general, not deliver good solutions.  Furthermore they are virtually 
useless for any 3D structure of which the designer does not have prior knowledge of the 
inductance characteristics. 
 When the mutual inductance between lines that do not run parallel to each other 
for their full lengths (as is the case in any practical layout) needs to be computed, the 
analytical and 2D techniques fare even worse.  Circuit yield is also sensitive to mutual 
inductance (3.4).  In a simulation experiment on the HUFFLE, margin and yield analyses 
were combined to determine the margins of the mutual inductance coupling coefficient 
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that would result in a noticeable yield reduction for the layout tolerance model.  The 
margin was found to be somewhere between 20 % and 25 %. 

It is evident that the structures in Figure 3.3 require 3D modelling of some sort.  
Several 3D numerical analysis programs are available for the calculation of the 
inductance of superconducting microstrip lines, but not all can handle the sort of complex 
structures shown in Figure 3.3.  After evaluation of several available programs, it was 
decided to use FastHenry with superconductor support [29] for all inductance 
calculations. 
 The generation of segmented 3D structures for FastHenry, as well as the 
evaluation of calculation results are discussed in the rest of this chapter.  Firstly, however, 
it is necessary to show that FastHenry will give results similar to those of the other 3D 
and 2D techniques when applied to a simple problem that all of them can handle. 

As an example, consider the calculation of the inductance of the simplest of 
elements, a straight superconducting microstrip line above a superconducting ground 
plane.  The parameters for the Hypres 3-micrometre Nb process [16] are used (1997 
values, Rev. 017); with the conductor in layer M1, and the ground plane in layer M0.  For 
these calculations, line thickness is 200 nm, dielectric thickness is 150 nm and the GP is 
100 nm thick.  The penetration depth for a niobium thin-film is 90 nm. 

In the 2D programs (with the exception of Induct), the ground plane is infinite.  In 
the 3D programs the ground plane is chosen to be around 20 µm wide.  The conductor has 
a width of 5 µm.  Since the 2D techniques ignore fringe effects at the ends of the line, the 
3D structure is made long (100 µm) to limit the detrimental effects of fringing. 

The calculations and characteristics of six programs are compared in Table 3.2. 
• Matlab [30] was programmed with Chang’s equation [23]. 
• Sline [31] also uses Chang’s equation. 
• Induct [32] uses Chang’s 2D numerical formulation [28]. 
• LL [33] uses a 2D boundary element method to solve the per-length 

inductance of a superconducting structure. 
• FastHenry [26] with superconductor support [29] uses a magnetoquasistatic 

formulation of Maxwell’s equations, from which a mesh analysis is created 
and solved with a multipole-accelerated algorithm. 

• 3D-MLSI [34] utilizes a 3D finite element sheet current method, although 3D 
structures are limited in complexity. 

 

Table 3.2:  Inductance of superconducting microstrip calculated with different programs 

Simulation Tool Engine Type Result 
[pH / µm] 

Comments 

Matlab 2D, Analytical 0.07853 Instantaneous 
Sline 2D, Analytical 0.07867 Instantaneous 
Induct 2D, Numerical 0.07585 Very Fast 
LL 2D, Numerical 0.0742 Fast 

0.07487*  
0.07583** 

FastHenry 3.0wr 3D, Numerical 

0.07478*** 

Slow, memory hungry 

3D-MLSI 3D, Numerical 0.08069 Very slow 
* Single length-element, 175 filaments, small GP. 
**GP segmented as 40×100, line as 7 segments in width, 4×4 filaments.  Large GP overhang. 
***Method of images.  Line segmentation is 7×3×140 in width×height×length. 
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The analytical two-dimensional techniques agree very well with one another, allow very 
fast calculation of inductance, and can be implemented readily in CAD packages.  During 
manual layout of superconducting VLSI circuits, these programs are indispensable to the 
engineer.  The major drawback to the 2D techniques is that, although they account for 
fringe effects at the conductor boundaries, they cannot include fringe effects at the 
terminal edges.  Fortunately, practical inductors in ICs are never open-ended, and always 
terminate in structures that limit fringing, such as Josephson junction cover pads. 
 The 3D techniques agree very well with the 2D methods (no solution in Table 3.2 
is exactly correct), which gives us more confidence for their application to complex 3D 
structures.  The three different techniques used with FastHenry also agree extremely well, 
with the images method coming to within 0.15 % of the solution obtained for a single line 
segment and ground plane.  The primary reason for the FastHenry results being lower 
than the analytical ones is that fringing caused by the finite line length resulted in a lower 
calculated inductance.  The various techniques used with FastHenry are discussed in the 
rest of this chapter. 
 As a final comment, the major drawback to any 3D technique is the time that it 
takes to produce an answer, and the computing resources it ties up while doing so.  
FastHenry gobbles up copious amounts of memory for even modest structures, especially 
when the discretization density is increased, whereas the limited two-conductor student 
version of 3D-MLSI – although less demanding on memory – requires extremely long 
run-times even on powerful workstations. 
 
3.4 SEGMENTED 3D MODELS 
3.4.1 Segments and filaments 
 
As discussed in section 3.3.2, FastHenry yields sufficiently accurate results for simple 
microstrip lines.  The program is therefore used for all further inductance calculations in 
this dissertation.  The rest of this chapter is dedicated to the modelling of 3D structures 
with the explicit goal of feeding the models into FastHenry and ensuring reliable 
calculation results. 

FastHenry input files specify each conductor element as a collection of cylindrical 
segments with rectangular cross section, each of which carries a uniformly distributed 
current along its length [26] [35].  These segments can also be subdivided into parallel 
filaments, each with a uniform cross sectional current density (Figure 3.5).  For 
superconducting elements, a penetration depth is specified.  Normal conductors such as 
resistors are given a conductance value. 

When complex structures require current flow in different directions within the 
same conductor, segments have to be created in each axial direction of interest. 
 

 
Figure 3.5:  FastHenry line segment shown with filaments and connection node 
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Figure 3.6 (a) shows how a line is segmented in the x an y directions.  Each segment can 
be divided further into filaments, as shown in Figure 3.5.  The structure in Figure 3.6 (b) 
is a graphical representation of the same line with all segment widths reduced to one third 
of their actual values.  This is merely a visual aid to help clarify the segment 
interconnection pattern. 
 

  
(a) (b) 

Figure 3.6:  Segmented line (a) as it really looks and (b) graphical representation with 
segment widths shrunk to one third of their actual values 

 
Finer segmentation and filamentation yields more accurate answers, and normally the 
calculated inductance values decrease as segmentation density increases.  If discretization 
is sufficiently fine (Teh et al. suggest a mesh size equal to the penetration depth for a 
similar numerical method [36] ), a further increase in the density does not lead to a more 
accurate answer.  However, such segmentation strategies are extremely expensive on 
computer RAM and CPU time.  In practice it is easier to calculate the inductance for two 
or three segmentation densities and then fit the answers to a curve extracted from that of a 
simple structure in order to estimate the answer for a very fine discretization [37]. 

Figure 3.7 shows the results of several FastHenry simulations on a segmented 
microstrip with various filamentation densities.  The conductor is in layer M2, 5 µm wide 
(7 segments) and 10 µm long (14 segments).  The ground plane has 40×50 segments in 
width and length with no filament subdivisions, and the overhang is 10 µm on all sides. 
 As can be seen from the figure, the calculated inductance is lower when more 
filaments are used, and approaches an asymptote as the number of filaments is increased.  
In this instance, 2×3 filamentation in width and height already yields an answer that is 
within 1 % of the asymptote. 

Simulations with few line filaments, and more height filaments in the GP, have 
shown that the values in Figure 3.7 will not decrease by more than 0.35 % for high GP 
filamentation. 
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Figure 3.7:  Per-square inductance of superconducting microstrip over GP for various 

filamentation densities 
 
3.4.2 Current flow considerations – injection and cornering 
 
When lines are segmented the current entry point cannot be chosen at one node along the 
edge only, as this forces current to concentrate there and gives a higher inductance value.  
In line structures, all the nodes along the input edge are set electrically equivalent (see 
Figure 3.8 [37]).  At the furthest edge of any structure, where a connection is needed 
between a conductor and the current return path, every node along the edge is set 
electrically equivalent to the corresponding node on the image structure or ground plane;  
depending on which is used. 
 

 
Figure 3.8:  Equivalent nodes on segmented line edges (front and rear) for the method of 
images (thick lines show electrical equivalence, arrows show current injection/extraction) 

 
In RSFQ circuits, inductance is most often calculated between connected Josephson 
junctions.  Each junction is modelled as a via connecting a top and bottom pad (see 
Figure 3.16 for construction details).  The current entry point is the bottom pad of one 
junction.  All the bottom nodes of the via itself, where it ties into the bottom pad, are set 
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electrically equivalent (the path labelled C in Figure 3.9 [24], or the lowest rectangle of 
nodes in Figure 3.16(a).) 
 A corresponding set of equivalent nodes on the ground plane or image junction, 
depending on the technique used, is used for current extraction. 
 When a Josephson junction forms the end of an inductance structure, the nodes 
along the path C are not set equivalent, but each connected to the corresponding node on 
the ground plane or the bottom pad of an image junction. 
 

 
Figure 3.9:  Equivalent nodes for current injection into Josephson junction 

 
 In structures containing discontinuities such as corners, current flow across the 
structure is not uniform.  This can be visualized with EM simulation software.  Current 
flow shows a peak at the inside of a corner and a null (for unchamfered bends) at the 
outer vertex [38].  It is therefore important to segmentize sufficiently to allow current to 
concentrate, for example, at the inner edges of sharp discontinuities. 
 

  
(a) (b) 

Figure 3.10:  Corner structure formed with (a) single-segment lines connected together and 
(b) segmented lines sharing all corner segments 

 
The corner structure in Figure 3.10 highlights the necessity for sufficient segmentation.  
When each arm is constructed with only one segment, they are electrically connected at 
the centre of their coincident edges – even if the segments themselves are subdivided into 
filaments.  This forces current to concentrate at the electrical node in FastHenry, whereas 
in practice the current density is highest at the inside of the corner.  The misrepresentation 
in FastHenry leads to a calculated inductance that is too high, especially for structures 
with short arms.  The segmented corner structure in Figure 3.10 (b) supports a varying 
current density, and allows current to concentrate around the inside of the corner. 

Incidentally, it was found through simulations on corner structures such as the one 
depicted in Figure 3.10 (b) that a better approximation for the effective length of a corner 
when the arms are long is about 0.5 times the width.  This is much lower than the 
conventional assumption of 0.707 as shown in Figure 3.1, but agrees with the observation 
made by Teh et al. [36].  For very short arm lengths (down to a length-to-width ratio 
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of 1), the calculated effective length of a corner increases slightly to around 0.535 times 
the width.  Teh et al. [36] predict a larger increase, but they are not quite clear on the 
length-to-width ratio.  Furthermore, at these very short lengths it becomes increasingly 
difficult to compensate for the effects of fringing when the inductance analyses are 
performed.  As a design rule-of-thumb, a corner can therefore be approximated as half a 
square if the arms are longer than about one and a half squares.  For shorter arm lengths, 
numerical calculations would be better. 
 Single-segment lines such as the one in Figure 3.10 (a) give a corner inductance of 
about 0.9 squares – most definitely too high. 
 
3.4.3 Basic structures used to build 3D models 
 
 Routines were developed that compose segmented structures for common 
rectangular objects, such as lines, vias, uniform corner or tee-in pads, pads with nodes 
arranged for connection to vias, and connection strips. 

The most commonly used structures are shown in Figure 3.11 [24].  In order to 
allow current flow in a three-dimensional model, each structure is constructed from many 
small segments.  Horizontal structures such as lines and pads have close-fitting segments 
in the x and y directions, as these are the only axial directions in which current can flow.  
Vias have segments in all three Cartesian directions to allow current flow between layers.  
Connection strips are the only structures allowed to have elements in directions other than 
the Cartesian axes, since they can be used to connect conductors on different levels. 

Vias are made hollow, with their vertical edge segments at least as thick as the 
London penetration depth [25].  Simulations on hollow conductors have shown that the 
loss in accuracy is negligible.  The vertical edge segments of vias can therefore be given 
any width greater than the penetration depth, so that more evenly segmented structures 
can be constructed. 
 

 
Figure 3.11:  Basic structures used to construct complex 3D models are (a) a transmission 

line,  (b) a connection strip (dots show the location of nodes) and (c) a via mounted on a pad 
 
Segments can also be subdivided into filaments for greater accuracy. 

All dimensional parameters, as well as segmentation and filamentation densities, 
are variable. Any combination of these basic structures, with their appropriate edge nodes 
connected through short strips, can now be used to create complex conductor shapes.  A 
library of basic inter-junction configurations has been created in this way, and contains a 
Josephson transmission line (JTL), RSFQ pulse splitter, and several connected junctions 
with line crossings, layer changes, corners and tee-ins (see Appendix D).  When new 
layouts are created, the appropriate form is selected, dimensional parameters supplied, 
and a three-dimensional model created automatically.  Inductance is then extracted, and 
the layout dimensions corrected if necessary. 
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3.4.4 Hollow models for conductors 
 
Hollow models use the fact that most current in superconducting structures flow within 
the London penetration depth if the thickness of the conductor far exceeds the penetration 
depth.  Simulations of structures that were only built up to the penetration depth (and 
therefore hollow) showed little deviation from solid structures, thereby vindicating the 
use of hollow vias. 

As an example, the inductance of a solid M3 line with a thickness of 600 nm and 7 
height filaments was compared to that of a hollow M3 line.  The penetration depth is 
90 nm.  Even when the hollow line had only 1 height filament for each segment, its 
inductance was only 0.5 % higher than that of the solid line.  When both structures had 7 
height filaments, the difference in inductance was a mere 0.28 %.  For solid and hollow 
lines in M2, with a thickness of 300 nm, the difference was four times as large, or 1.1 % 
when both had equal numbers of filaments. 
 The conclusion from these results is that hollow models deliver results very close 
to those of solid models (especially for thicker lines).  However, they are too expensive to 
segmentize properly, and were only used to evaluate the hollow via simplification. 
 

 
Figure 3.12:  Hollow conductor and image 

 
3.5 METHOD OF IMAGES 
 
 
There is nothing more practical than a good theory. 
 Leonid Ilich Breznev 
 
 
Superconducting circuits are normally etched above a large ground plane.  The ground 
plane can be included in simulation models, but has to be finely segmented for accuracy. 
These segments should be similar in size to those on the most critical conductors.  This 
unfortunately means that, unless very complex non-uniform segmentation algorithms are 
used, large parts of the ground plane far from the conducting structures waste segments 
and computing resources. 
 Fortunately the ground plane can be omitted when the method of images is used 
(exactly as for antenna radiation pattern calculations [39]).  The only requirements are 
that the ground plane should be large enough (in relation to the inductor) to be considered 
effectively infinite, and that it should have a high enough conductivity to be considered a 
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perfect conductor.  The superconducting ground plane in the Hypres process satisfies 
both. 

Implementation of the method of images is easy – all structures are mirrored to 
form images.  The original structures and their images are then placed at equal distances 
on both sides of a reflection plane. 
 The equation for the self-inductance of a conducting loop with magnetic flux 
passing through it is given by 

i

d
L S

∫ ⋅
=

aH0µ
, (3.1) 

where µ0 is the permeability of free space, H is the magnetic field intensity, and i is the 
current in the loop [39].  It follows from the surface integral in (3.1) that the inductance 
calculated by the method of images, in which the loop surface area is twice that of a 
conductor above a ground plane, has to be divided by 2 in order to find the real 
inductance. 
 
3.5.1 Reflection plane 
 
The placement of the reflection plane in the method of images has a significant effect on 
the calculated inductance, especially for layers close to the reflection plane.  This makes 
mathematical sense, since these layers leave less area for a loop surface (see equation 
3.1), and are therefore more susceptible to area changes brought on by moving the 
reflection plane. 
 One of the earliest publications on inductance calculations in superconducting 
circuits with the method of images used the upper boundary of the GP as the reflection 
plane [40].  However, this assumes that all the return current flows on the outside of the 
ground plane (that fills an infinite half plane), and can only be accurate for geometries 
that are much larger than the penetration depth of the superconducting ground plane. 

In practical integrated superconducting circuits, the thin-film conductor, ground 
plane and dielectric thicknesses are all in the same order of magnitude as the penetration 
depth.  The current that flows underneath the top of the ground plane can therefore not be 
ignored, as it invalidates the sheet current assumption that underlies the argument of 
placing the reflection plane at the top of the ground plane. 

In a previous paper [25], the reflection plane was set by comparing the results of 
an image method with that of an accurate ground plane calculation.  Unfortunately the 
positional value was not published.  A more recent paper [36] proposes that the reflection 
plane should lie at the effective penetration depth (λeff) of the superconducting ground 
plane. The equation for effective penetration depth is 

 







=

λ
λλ

d
eff coth , (3.2) 

 
where λ is the London penetration depth and d the thickness of the superconducting film. 

A structure from [36] was selected, and their results compared to those of the 
segmented GP method in FastHenry.  The results are shown in Table 3.3, and are also 
compared to the analytical solution from Chang [23].  The microstrip parameters are:  
length = 100 µm, width = 5 µm, line thickness = 220 nm, GP thickness = 300 nm, 
dielectric thickness = 177.5 nm, penetration depth of line = 137 nm, penetration depth of 
GP = 86 nm. 
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Table 3.3:  Microstrip inductance calculated through various techniques 

Method L 
[pH/µm] 

Change from Chang method 
[%] 

Chang (Sline) 0.0903 - 
Teh et al. 0.0882 -2.33 

Segmented line with 
GP in FastHenry* 

0.0885 -2.02 

* Discretization divisions: length×width×height: 140×7×3 
 
The results in Table 3.3 agree well with each other, with both numerical methods yielding 
answers slightly less than the analytical solution as a result of fringe effects at the line 
ends. 
 Figure 3.13 shows a 2D cross section of a superconducting conductor above a 
ground plane (d is the dielectric thickness), as well as the locations of the reflection plane 
and the image.  The effective height of the conductor above the reflection plane is hc-rp . 
 

 
 

Ground Plane 
λ λeff 

hc-rp 

hc-rp 

Conductor 

Image 

d 

 
Figure 3.13:  Position of conductor above and reflection plane below the ground plane 

 
The next step was to implement the method of images in FastHenry, set the reflection 
plane at λeff, and compare the results of a few line structures with different layer 
thicknesses to the analytical solutions with Chang’s method.  The results are shown in 
Table 3.4.  For the microstrip line, width = 5 µm and line length = 50 µm.  The 
FastHenry analyses used discretization divisions (length×width×height) = 70×7×3. 
 

Table 3.4:  Microstrip inductance calculated with FastHenry, using the method of images 
and reflection plane at λeff , compared to Chang’s analytical method 

Structure t1 

[nm] 
t2 

[nm] 
h 

[nm] 
λ1 

[nm] 
λ2 

[nm] 
L 

[pH/µm] 
Change on Chang 

[%] 
Teh et al. 220 300 177.5 137 86 0.08804 -2.51 

M1 200 100 150 90 90 0.07473 -5.00 
M2 300 100 350 90 90 0.10495 -4.34 
M3 600 100 850 90 90 0.16290 -4.01 

 
In Table 3.4, t1 is the conductor thickness, t2 the GP thickness, h the dielectric thickness, 
and λ1 and λ2 the London penetration depths for the conductor and GP respectively. 
 As can be seen from Table 3.4, the result of a FastHenry analysis on the line 
structure from Teh et al. [36] agreed to within 0.2 % of their value. 

However, it is also evident that the difference between the numerical and 
analytical solutions becomes more pronounced for layers that are closer to the GP.  Other 
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reflection plane positions were therefore evaluated, and the results are presented in Table 
3.5. 
 

Table 3.5:  Percentage difference between inductance calculated with the method of images 
in FastHenry and Chang’s analytical method for different positions of the reflection plane 
Line width = 5 µm, line length = 50 µm, segmentation divisions (l×w×h) = 70×7×3;  Chang is nominal 

Reflection plane 
position 

M1 M2 M3 

0 (GP surface) -31.3 % -20.0 % -11.0 % 
λ -9.97 % -7.31 % -5.37 % 

λeff -5.00 % -4.34 % -4.01 % 
1.1λeff -2.52 % -2.85 % -3.34 % 
1.2λeff -0.0586 % -1.35 % -2.67 % 

1.582λeff +9.17 % +4.26 % -0.0847 % 
 
It is clear that the correct position for the reflection plane is either at λeff, or slightly 
further down at 1.1λeff.  At λeff the difference between the numerical and analytical 
solutions becomes more pronounced as dielectric thickness decreases (see Table 2.2, p.7 
for Hypres layer dimensions), whereas at 1.1λeff it is the other way round. 

Theory predicts that inductance is decreased by the fringe field factor [23], and 
that this fringe factor becomes larger when the dielectric thickness, or separation between 
conductor and GP, is decreased.  It is thus expected that structures in M1 should 
experience a larger relative reduction in inductance due to fringing than similar structures 
in M2 or M3.  Hence the conclusion that λeff is indeed the best position for the reflection 
plane [37]. 
 As a further evaluation of the performance of the method of images, the calculated 
per-square inductance of a microstrip was compared with published results for different 
length-to-width ratios. 

Figure 3.14 shows the per-square inductance of an M2 microstrip as a function of 
the length-to-width ratio, calculated with the method of images and with the reflection 
plane at λeff.  The conductor is in layer M2, 5 µm wide, with 7 lateral segments and 6×8 
filaments in width and height.  Results for a FastHenry analysis with a segmented ground 
plane are included, and the GP overhangs the microstrip by 10 µm on all sides.  Published 
results (interpolated) [25] are included as circles. 

The method of images results agree very well with the published results of [25], 
except for large discrepancies below a length-to-width ratio of 1, where fringing effects 
seriously influence the inductance.  The disparity may be caused by a difference in the 
way that line ends are connected (see Figure 3.8), as it is not known which technique they 
employed.  The good agreement between results for a length-to-width ratio larger than 1 
shows that the postulated reflection plane position at λeff yields good results. 
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Figure 3.14:  Microstrip inductance per square as a function of length-to-width ratio 
 

Figure 3.14 also shows that the segmented GP does not perform as well as the 
image method for small structures; most likely because the GP is too small.  Better 
solutions may be found with a non-uniformly discretized GP [35], but since the images 
method is faster and already accurate enough, the former technique was not investigated. 

In RSFQ circuits, conductors are never open-ended as in the models used to 
generate the results in Figure 3.14, but always terminate in other conductors or Josephson 
junction pads (see Figure 3.19)  Consequently the inaccuracies introduced by the fringe 
effects of very short inductors will not influence practical inductance calculations. 
 From the preceding discussions and results, it is evident that the placement of the 
reflection plane at λeff delivers results that are accurate and reproducible.  Henceforth all 
inductance calculations with the method of images in this dissertation employ this 
reflection plane model. 
 
3.5.2 Scaling factors for finer discretization 
 
It is often impractical or even impossible to discretize large structures finely enough to 
yield results that fall within 1 % of the asymptote for sub-penetration depth discretization.  
Once again a thorough analysis was performed on the same structure used for the 
calculation of the per-square inductance graph in Figure 3.7, but this time using the 
method of images.  The results for different filamentation densities are shown in Figure 
3.15. 
 The microstrip parameters are, once again:  width = 5 µm (7 segments), length = 
10 µm (14 segments).  The microstrip is in layer M2. 
 The inductance values for very high filament counts were extrapolated, because 
the large number of effective segments were impossible to handle with available 
computers. 
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Figure 3.15:  Microstrip inductance per square for different numbers of filaments, 

calculated with FastHenry and the method of images 
 
A comparison of the results in Figure 3.7 and Figure 3.15 shows that they agree very 
well, with the inductance calculated for a filamentation of 1×1 about 4.6 % higher than 
the asymptote in both cases.  The only difference between the two is that they were 
calculated for lines with different length-to-width ratios, so that the method of images 
yields an inductance that is consistently about 8 % lower than that calculated with the 
segmented ground plane.  The shorter length-to-width ratio of 2 for the method of images 
calculation was required to limit the number of filaments necessary for calculating 
inductance near the asymptote value.  The gap between the values calculated with the 
segmented ground plane and the method of images can be seen clearly in Figure 3.14. 

From Figure 3.7 and Figure 3.15 it can be seen that an increase in filaments for the 
height of the conductor allows a solution to converge to a good value faster than would a 
similar increase in width filaments.  For large structures, a filamentation of 6×8 for 
width×height is impractical, as this often requires many gigabytes of RAM and very long 
solution times.  In practice the limit that a FastHenry simulation can accommodate is 
about 15 000 elements (segments and filaments).  We used filamentation of 1×3 
(width×height) for large structures, and 2×3 whenever possible.  For 2×3 filamentation, 
the results are already within 1 % of those for 6×8, and thus good enough for all practical 
purposes. 

The above results were also compared to those for 3D models of complex 
structures such as the Josephson transmission line (see section 3.6.1), and no discernible 
differences were detected. 

For all further inductance calculations, FastHenry results were adjusted by 
multiplication factors calculated from the data in Figure 3.15 to the expected values for 
6×8 filamentation.  For example, the inductance of a superconductor microstrip is 
calculated with the method of images, and the inductance for 6×8 filamentation is then 
determined by extrapolation (as shown in (B.2) in section B.2.2). 
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3.6 COMPLEX STRUCTURES 
 
With the basic building blocks defined, and the position of the reflection plane 
determined, any three-dimensional circuit object can be modelled for inductance 
extraction. 
 It is important to note that the calculated inductance through Josephson junctions 
only accounts for the inductance of the superconducting structures, and does not include 
the time-dependent junction inductance LJ [41, p. 470] [42, p. 210], defined as 
 

)(cos2 tI
L

C

O
J ϕπ

Φ
=  . (3.3) 

 
However, during circuit simulations LJ is accounted for by the junction model, and we are 
only interested in the inductance caused by the superconducting structures, as modelled 
by the 3D structures in this chapter. 

Once again, all the layout examples and layer definitions discussed here are for 
the Hypres 3-micrometre process [16].  However, the techniques are universal and readily 
extend to other fabrication processes. 

The damping resistor covers in layer M2 in are included in all models (see Figure 
3.19 (b) for an example), since simulations have shown that these structures can reduce 
the inductance of a junction pad significantly.  A reduction of as much as 8 % has been 
observed.  Omitting these covers can lead to an overestimation of the actual inductance in 
short intra-gate lines. 

Inductance extraction simulations for full three-dimensional models have also 
revealed that pad inductance is actually higher than what we have always estimated from 
analytical methods.  The inductance of each junction pad in Figure 3.19, for example, is 
0.42 pH when calculated from the bottom of the junction via to the start of the adjacent 
microstrip line (L1 or L2). An earlier analytical estimate placed the inductance at 
approximately 0.2 pH [3]. 

When only part of the inductance of a complex structure needs to be calculated, 
such as the inductance between J1 and J2 in Figure 3.23 (p.45), the current flow path is 
limited by shorting nodes from the 3D structure to their image counterparts so as to 
include only the structure of interest. 

Complex 3D structures were created for every inductance of interest in the layouts 
created for this project.  Examples of most of them are shown in Figure D.1, and the rest 
are discussed in the remainder of this section. 
 An example of how complex structures are formed is represented here as a series 
of figures.  The model represented here contains a Josephson junction, and therefore starts 
with the definition of a via.  Josephson junctions are always defined with the via first to 
make the assignment of node numbers easier.  The vertical dimensions and penetration 
depth (and therefore the side wall thickness of vias) are stretched for clarity. 
 Figure 3.16(a) shows the three rectangularly ordered sets of nodes created for the 
definition of a via.  In this case the via forms the I1B connection of a Josephson junction 
in the Hypres process [16].  Axes are shown to clarify directions.  The nodes in the lowest 
ring will all eventually be set electrically equivalent, and used as the current entry point 
by FastHenry. 
 After the nodes are declared, the x- and y-directed segments are added, as shown 
in Figure 3.16(b).  Segments are defined between nodes as shown in Figure 3.5. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
(g) 

Figure 3.16:  Detailed construction of via and bottom pad for a Josephson junction 
inductance model 
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The height of the x- and y-directed segments is calculated so that their upper edges just 
touch the lower edges of segments in the top cover pad (to be added later), and their lower 
edges just touch the upper edges of the bottom cover pad segments. 

Figure 3.16(c) shows the z-directed segments of the via.  The middle set of nodes 
and hidden lines are shown in grey.  In Figure 3.16(d), the entire via is shown with solid 
segments.  The next step in the construction of the inductance model is to create the nodes 
for the bottom pad.  These nodes are also shown in Figure 3.16(d).  The bottom nodes of 
the via form part of the set of nodes for the pad, and are shown in grey. 
 In Figure 3.16(e) and Figure 3.16(f), the bottom pad segments in the x and y 
directions are shown.  Hidden lines and the via segments are shown in grey.  In Figure 
3.16(g) the via and bottom pad are shown as they would appear in 3D diagrams in the rest 
of this dissertation, with hidden lines removed and segments intertwined.  The upper 
nodes through which the via will be connected to a top pad are also shown. 
 Next, extra nodes are defined to allow the implementation of a top cover pad.  The 
new nodes are shown in black in Figure 3.17(a), whereas the existing upper nodes of the 
via are shown in grey.  Figure 3.17(b) shows the addition of x-directed segments (with 
hidden lines and other segments in light grey).  The full Josephson junction model, 
consisting of a via and two cover pads, is shown in Figure 3.17(c).  The nodes between 
which the top pad is built are shown in grey to indicate their relation to the x and y 
segments.  Seven nodes are shown in black, as these constitute the coupling position to a 
transmission line that will be added to the inductance model next.  Such a transmission 
line can connect to the top or bottom pad from any direction. 
 

  
(a) (b) 

 
(c) 

Figure 3.17:  Detail on the addition of a top cover pad to complete the Josephson junction 
inductance model 

 
When a transmission line is connected to the Josephson junction constructed in Figure 
3.16 and Figure 3.17, it has to have lateral node spacings equal to that of the Josephson 
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junction top pad (a restriction arising from the rectangular shape of FastHenry segments).  
It is for the purpose of adding a transmission line that the node spacing of the cover pads 
differ in the x and y directions. 
 In Figure 3.18(a), the nodes of a section of transmission line are shown along with 
the Josephson junction and the 7 nodes through which the line will connect to the top 
cover pad. 
 Figure 3.18(b) shows the x-directed segments of the transmission line, with hidden 
lines and the Josephson junction drawn in grey. 
 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 3.18:  Detailed construction of a segmented transmission line and the connection 
thereof to a Josephson junction for a 3D inductance calculation model 
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In Figure 3.18(c) the transmission line is shown with both x and y segments, and hidden 
lines removed.  The black nodes on the top cover pad and transmission line still have to 
be connected.  This is done with a strip of segments as illustrated in Figure 3.18(d). 
 The completed structure appears in Figure 3.18(e).  More transmission line 
sections can now be added, and each section connected to another by connecting their 
nearest nodes with segments like those highlighted in Figure 3.18(d).  All the models 
discussed in the rest of this chapter, as well as those in Appendix D, were created like 
this. 
 A computer program was developed to handle node and segment placement for 
the generation of structures as detailed here.  Scaling, direction and element numbering 
are all handled through parameter passing to the subroutines that generate the basic 
structures (see Figure 3.11), although the parameters are still calculated and controlled by 
the user who constructs the models. 
 
3.6.1 Josephson transmission line 
 
The first full 3D structure investigated was the standard Josephson transmission line 
(JTL) shown in Figure 3.19. 

The layout structure was designed (through analytical estimations) to have an 
inter-junction inductance of 3.96 pH.  With the full three-dimensional model, inductance 
was calculated as 4.30 pH, or 8.6 % higher than the design value. 
 

 
Figure 3.19:  (a) Circuit diagram of a JTL and (b) segmented 3D model (with vertical 

dimensions doubled and image omitted for clarity) 
 
 The full three-dimensional model of a JTL without the dc bias tee-in was also 
used to establish the effect of a small length-to-width ratio on the per square inductance 
of a microstrip line.  It is shown in [25] that per square inductance decreases sharply as a 
result of fringing when the length-to-width ratio is reduced to less than 2 (as shown in 
Figure 3.14 for a 5 µm wide line in M2).  Similar results were obtained for a 4 µm wide 
line in M2 (the standard width for short JTLs in this dissertation), as shown in Figure 
3.20.  However, Figure 3.20 also shows the per square inductance of the same line when 
its endpoints are connected to junction pads (as virtually all inductors in RSFQ circuits 
are).  The pads prevent fringing, so that a much flatter curve is obtained. 
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Figure 3.20:  A comparison of the effect of small length-to-width ratios on the inductance of 

both an open-ended and a junction pad-ended microstrip line 
 
The JTL was also used to gauge the effect of the tee and resistor cover pads on 
inductance.  The inductance of each junction pad, from ground right up to where the 
microstrip lines start was calculated as 0.42 pH.  This shows that the pads account for just 
over 20 % of the total inductance between J1 and J2. 
 When the tee structure is omitted, the total inductance between J1 and J2 rises by 
0.047 pH, or about 1.2 %.  Inductance rises another 0.5 % when the damping resistor 
covers are removed.  These figures may seem small, even though the percentage change 
increases as inter-junction inductance is decreased.  Still, omitting the tee and resistor 
cover pads from the 3D model introduces an error that is comparable in size to the 
standard deviation of inductance when all manufacturing tolerances are taken into 
account (see section 3.9, p.51). 
 For consistency and increased accuracy, dc tee-ins and resistor cover pads were 
included in every inductance structure analysed for this project. 

A discussion on an inductance spread calculation for the JTL, as well as results 
thereof, are presented in section 3.9. 
 
3.6.2 RSFQ pulse splitter 
 
Another problematic structure is the RSFQ pulse splitter, as shown in Figure 3.21.  The 
design values for inductance are:  L1 = 1.16 pH, and L2 = L3 = 1.64 pH. 

A first layout was attempted with inductance values approximated from the Chang 
analytical model.  A full three-dimensional model was then created.  With the 3D model, 
L1 was calculated as 1.275 pH, L2 as 1.667 pH and L3 as 1.666 pH.  The simulations 
showed that L1 was actually 10 % over the design value, and that the inductor had to be 
shortened. 

The power of the full three-dimensional model is even more evident when the 
inductance of L1 is calculated for a three-dimensional structure that omits the dc input and 
inductors L2 and L3.  Without these nearby structures, L1 is calculated as 1.361 pH, or 
6.8 % higher than with the full model. 
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Figure 3.21:  (a) Circuit diagram of an RSFQ pulse splitter and (b) segmented 3D model 

(with vertical dimensions doubled and image omitted for clarity) 
 
3.6.3 Series junctions 
 
Series junctions in RSFQ circuits are always placed between two grounded junctions.  In 
circuit diagrams, the series junction is drawn in series with an inductor. 
 During layout, the series junction is placed as close as possible to one of the 
grounded junctions.  It is then tempting to use only the remaining line structure between 
the series junction and the other grounded junction as the inductor, but this neglects the 
structural inductance of the series junction (caused by the via and pads) and the short 
connection to the closest grounded junction.   

With series junctions, the inductance is calculated through the series junction right 
up to the junction that goes to ground.  In RSFQ circuits, only the series inductance is 
important, and not how much is located at either end of a series junction.  Consequently, 
parasitic inductance in such a loop can be added to the main inductance to have only one 
element in a simulation model. 

In Figure 3.22 (b), the inductance L1 has to be calculated from junction J1, through 
the M2 connection to J2, down through the J2 via, and along the M1 line right up to the 
via where Ib1 tees in.  (The line in M1 labelled R2 provides – in the physical circuit – the 
return path for current flowing from J2 through the damping resistor R2.  It was included 
because it could lower inductance L1.) 

The 3D model for the calculation of the inductance of L1 is shown in Figure 3.23.  
The current entry and exit points are located on the bottom pads of J1 and its image 
respectively, and the bottom nodes of the Ib1 tee-in via are shorted to their image nodes. 
 

 
Figure 3.22:  (a) Schematic excerpt from HUFFLE circuit showing a series junction (J2) and 

(b) the 3D layout view 
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Figure 3.23:  3D inductance model of the series junction in Figure 3.22 with image included 

(vertical dimensions stretched for clarity) 
 
In the HUFFLE, the series junction J2 used for this example is placed in series with a 
2 pH inductance (excluding the time-variant junction inductance).  With the 3D model, 
the inductance between J1 and J2 is calculated as 0.76 pH, which accounts for 38 % of the 
required series inductance.  Therefore, if the inductance between J1 and J2 is neglected 
during layout, and the series inductance taken as the structure between J2 and the Ib2 tee-
in, the resulting total inductance of 2.76 pH would also be 38 % high. 
 Naturally, this effect is worse for cases where the series inductance should be even 
lower. 
 
3.6.4 Damping resistors 
 
As far as can be established from publications by RSFQ research groups, the finite 
inductance of a damping resistor is largely ignored during simulations.  However, layouts 
are consciously adapted to attempt to keep the inductance as low as possible [2] [3]. 
 As an example of both the effect of careful layout and the usefulness of the 3D 
inductance calculation strategy, the inductance of the damping resistor of a standard 
250 µA Josephson junction was calculated. 
 The damping resistance is 1.21 Ω.  Two distinctly different layout possibilities 
exist – one keeping absolutely within the strict design rules, and one using a tried and 
tested technique of etching an M2-to-M1 short circuit right over the edge of the resistor 
[43]. 
 

 

 

 

Figure 3.24:  (a) 2D cross section of physical layout for a damping resistor created by 
keeping to conservative design rules, (b) 2D cross section of the inductance calculation 

model and (c) 3D view of the inductance calculation model (vertical dimensions stretched 
for clarity) 
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Figure 3.25:  (a) 2D cross section of minimum inductance layout for a damping resistor, (b) 
2D cross section of the inductance calculation model and (c) 3D view of the inductance 

calculation model (vertical dimensions stretched for clarity) 
 
Figure 3.24 details the layout of a damping resistor according to the standard design rules.  
In (b) the simplifications for the inductance calculation model are shown, as well as the 
current entry point A and the point B where the inductance loop is shorted to the image.  
The image itself is omitted in (b) to reduce clutter, but can be seen in (c).  The 3D view in 
(c) also shows the current exit point A′ and the loop short point B′ on the image. 

Figure 3.25 shows the layout of a damping resistor for minimum inductance.  In 
(b) the simplifications for the inductance calculation model are shown together with the 
current entry point A and the point B where the inductance loop is shorted to the image.  
Once again the image is omitted in (b).  The 3D view in (c) shows the image, as well as 
the current exit point A′ and the loop short point B′ on the image. 

A few concepts should become clear when Figure 3.25 is studied.  For the low-
inductance damping resistor layout, the SiO2 layer I0 is etched away beneath the damping 
resistor, and a layer of metal (M1) is deposited in this hole [3].  This increases the ground 
plane thickness underneath the resistor to 235 nm, drops the resistor closer to the ground 
plane, and allows a direct short to ground at the edge of the resistor – all of which reduce 
inductance. 

The vertical location of the resistor structure is modelled as being 100 nm (the 
thickness of the first SiO2 layer on top of M1) above the ground plane.  The thicker 
ground plane underneath the resistor is incorporated in the position of the reflection plane, 
since λeff is reduced to 90.98 nm for all structures above the I0 hole (compared to a λeff of 
111.9 nm for the M0 ground plane).  Since the reflection plane is flat, the change in λeff is 
modelled by shifting all the structures above the I0 hole closer to the reflection plane.  
The dimensional stretch is absorbed by the M2 connection between the pads that cover 
the junction and resistor vias. 

The conductivity of molybdenium (the metal used as to implement resistors in 
Hypres circuits) is 18.7 S.µm-1.  The thin-film resistors actually have a conductivity of 
about one half the value for bulk molybdenium (10 S.µm-1 for the 1 Ω per square 
resistance specified by Hypres [16]), but since the effect on inductance is negligible the 
bulk value was used for all calculations. 

The minimum inductance layout yields an inductance of 0.895 pH, whereas the 
damping resistor in the strict layout has an inductance of 1.88 pH;  or 110 % higher than 
the minimum inductance layout. 

The damping resistor model was also used to calculate the impedance of the large 
damping resistors in the HUFFLE, all of which were laid out for minimum inductance.  
The 10 Ω resistor R3 was calculated to have an inductance of 2.85 pH, and the 5 Ω 



CHAPTER  3 – INDUCTANCE EXTRACTION  47 

damping resistor R9 to have an inductance of 1.66 pH, as opposed to 5.44 pH and 3.45 pH 
respectively when standard resistor layouts are used. 
 With normal damping resistors, the increased inductance of the conservative 
layout does not have any noticeable effect on circuit yield.  However, the minimum 
inductance layout is more space effective when resistance values are small. 
 For resistor values a little larger than standard damping resistors, as in the case for 
the HUFFLE discussed above, the addition of a finite inductance in series with the 
resistor to the simulation model has been observed to decrease yield in generic MC 
models, as will be mentioned in section 4.5.  However, for optimized circuits with voltage 
trimming, no discernible change in circuit yield could be found between circuits utilizing 
minimum inductance or conservative layouts for damping resistors.  This suggests that 
good RSFQ circuits can tolerate the inductance of such resistors even up to values equal 
to the interconnection inductances. 
 Since the resistive elements do not have the penetration depth of superconductors, 
little change is observed for more filaments.  The inductance solutions for long resistors 
(where the overwhelming contribution to inductance is by the resistor itself, and not by 
the junction structure and superconducting connections) are not scaled down to the 
asymptote value discussed in section 3.5.2. 
 
3.6.5 Simplifying models 
 
When a model is constructed for, say, a JTL with a U-shaped inductor, the inductance 
calculated between one junction and a line of nodes in the centre of the U-shape will be 
exactly half that of the inductance between the two junctions.  Complex structures can 
therefore be broken into smaller sections, as long as a reasonable amount of segments are 
added beyond the loop termination point in order to avoid fringing. 
 

 

 

 

(a) (b) 

Figure 3.26:  (a) 3D inductance model for U-bended JTL with both junctions and (b) smaller 
model for partial inductance calculation 

 
The U-bended JTL depicted in Figure 3.26 illustrates this principle.  The calculated 
inductance between junctions J1 and J2 in (a) is within a fraction of a percentage of twice 
the inductance between J1 and the string of nodes lying on the line labelled B in (b).  The 
microstrip in (b) is continued beyond line B to limit fringing. 
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3.7 MUTUAL INDUCTANCE 
 
The design methodology for mutual inductance in superconducting circuits is not very 
well documented. 
 The standard technique of representing the coupling between inductors in 
superconducting circuits is to specify the coupling coefficient, k, along with the 
inductance values of each inductor.  This simple representation is easy to read and 
simulate. 
 In practical layouts, however, inductors seldom share their entire lengths.  This 
means that coupling is only achieved for a part of each inductor, resulting in a lowered 
effective coupling coefficient.  Furthermore, inductance extraction is mostly performed 
on complete conductors – irrespective of what percentages of their geometries are 
magnetically coupled. 
 

 

 
 

 

(a) (b) 

Figure 3.27:  (a) 3D model of SQUID loop and control line (vertical dimensions stretched 
and image omitted for clarity) and (b) lumped element model 

 
Thus, when layout extracted values are compared to those specified in circuit schematics, 
it is not the effective coupling coefficients that are important, but the ratio of the induced 
SQUID loop current to the control current. 

Figure 3.27(a) shows the 3D model of a control line coupled to a dc SQUID loop.  
This specific configuration is discussed because it is the most common use for mutually 
coupled inductors in superconducting logic circuits. 

In superconducting electronic circuits, all the materials on a chip are non-magnetic 
and have permeabilities very close to that of free space.  As a result, coupled inductors 
form linear transformers.  Hence the mutual inductance between two conductors (or the 
coefficient of induced voltage in one loop by a time-varying current in the other) is 
independent of direction, so that [44] 
 

211221 LLkMMM ===  , (3.4) 
 
where L1 and L2 are the coupled sections of the control line and SQUID loop respectively, 
and k is the coupling coefficient. 
 Figure 3.27(b) shows a symbolic representation of the inductive structures in (a).   
We shall continue to denote the coupled sections of the control line and SQUID loop as 
L1 and L2. 

The 3D model (and real layout structure) may also contain (as is the case here) 
inductive sections that are not coupled.  They are designated L1φ and L2φ here. 
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Finally, each current path may contain inductive components not reflected in the 
FastHenry output, and which do not affect the calculated mutual inductance value.  Such 
hidden inductances in the control line have no effect on the induced current in the SQUID 
loop, and can therefore be ignored.  However, the Josephson junction inductances in the 
SQUID loop itself decreases the induced current and must be included in inductance 
equations.  For the general case, and from (3.3), the sum of the time-varying inductances 
of junctions J1 and J2 can be written as 
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where the phase difference ϕ is approximated as small enough to make cosϕ near unity 
[7]. 

From the inductance matrix calculated with FastHenry we find 
 

φ111 LLL +=′  ,  (3.6) 
 

φ222 LLL +=′  ,  (3.7) 
 
and 
 

21LLkM ′′′=′  (3.8) 
 

From Figure 3.27(b), and the relationship of voltage in a loop to the time-varying 
currents in both loops [44], we can write: 
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In a superconductor, the loop in which i2 circulates is a perfect short circuit, so that v2 = 0.  
If we substitute this value into (3.9), the result is 
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which can also be written as 
 

1
2

2 di
LL

M
di

J′+′
′

=  .  (3.11) 

 
Integration of (3.11) yields 
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The gradient of (3.12),  
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describes the ratio of induced current to control current, and must approach the design 
value of a circuit.  It is also evident from (3.13) that, since the inductances 1L′  and 2L′  can 
be larger than L1 and L2, the desired induced current ratio can still be obtained – even 
though the calculated coupling factor k′ can be significantly lower than the design value k. 
 If the ratio calculated with (3.13) is too small, it can be improved by reducing the 
L2φ component of 2L′ .  Other tweaks tend to cause only small alterations in the ratio.  For 
example, when the per-length inductance of 2L′  is increased, the effective coupling factor 
k′ decreases so that (3.13) remains roughly the same. 
 Now that we can relate extracted parameters to circuit design values for inductive 
coupling, reliable FastHenry models for layout extraction are needed. 

The method of images and the placement of the reflection plane are as valid for 
mutual inductance calculations as they are for self-inductance, so that the same approach 
to modelling self-inductance structures can be used for mutual inductance calculations in 
FastHenry. 
 Published results on superconducting coupled inductors are limited to near-unity 
coupling coefficient spiral inductors and washers – either for impedance calculations [45] 
or S-parameter modelling [46] – and straight line microstrip results against which to 
gauge the FastHenry 3D models were not available.  Thus, in order to verify the 
FastHenry results for coupled microstrips, they were compared to the 2D numerical 
results obtained with Induct. 
 

Table 3.6:  Relative differences between inductance values for coupled microstrip lines 
calculated with FastHenry and Induct, where the Induct results are taken as nominal 

Dimensions:  L1 is 6 µm × 40 µm, L2 is 5.25 µm × 40 µm.  Both lines have 5 width segments, each of which 
has a filamentation of 1×3 in width and height 

Layers L1 
[% difference] 

L2 
[% difference] 

M12 
[% difference] 

k 
[% difference] 

M3 (L2) over M2 (L1) -4.81 -4.96 -5.60 -2.40 
M2 (L2) over M1 (L1) -6.56 -3.74 -5.95 -2.48 
 
Table 3.6 shows the difference between calculated inductance results for microstrip lines 
in the Hypres process.  The FastHenry results (obtained through the method of images) 
are always lower than those of Induct, primarily because of the fringe effects in the 3D 
structures of the former, but also because the latter uses a finite ground plane.  Once again 
the fringe effects are worse for levels closer to ground. 
 The differences between the 3D and 2D solutions in Table 3.6 agree very well 
with those observed for self-inductance (which are shown in Table 3.4).  The conclusion 
is that the method of images with a reflection plane at λeff for 3D models in FastHenry is 
equally effective for self- and mutual inductance calculations. 
 The technique discussed above was used to calculate all k values listed in this 
dissertation.  Two other results also deserve mention. 

In practical circuits, the maximum attainable coupling coefficient is limited by the 
construction process.  With the Hypres process, a dc SQUID is almost always created 
with the loop inductance in layer M2, so that control lines are either in M3 or M1. 
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The maximum coupling coefficient between an M3 control line and an M2 
SQUID loop obtained in this dissertation is 0.58, and requires the control line to intersect 
the M2 loop very close to, or even right above the Josephson junctions. 
 The design rule limitation on the proximity of a control line in M1 to the bottom 
pad of a Josephson junction (also in M1) leads to a lower attainable coupling coefficient.  
Here the maximum value obtained was 0.35. 
 Lastly, a 3D model was used to verify the assumed absence of coupling between 
perpendicularly crossing lines.  A model containing an M3 line that perpendicularly 
crosses the transmission line of the JTL shown in Figure 3.19(b) was analysed, and the 
ratio of induced to control current (3.13) calculated as smaller than one in ten thousand – 
even for very wide M3 lines.  This shows that the only parasitic component introduced by 
a perpendicular line crossing is a coupling capacitance [47]. 
 
3.8 UTILIZATION OF 3D INDUCTANCE MODELS IN DESIGN PROCESS 
 
Currently, the inductance of every inductor in a layout is verified with the 3D method.  
This even applies to the sub-picohenry inductances of connections between neighbouring 
junctions such as a series junction connected to a grounded junction. 
 Layout is speeded by the reuse of common inductance structures, especially the 
4 pH connection inductance between JTLs and other devices with matched 250 µA 
junctions. 

If design shortcuts and inductance estimations are used, it is only because 3D 
simulations have shown them to be very good approximations in certain special cases, 
such as for straight or single-cornered microstrip lines with length-to-width ratios larger 
than 2, or connections to universal junction pads. 
 
3.9 SIMULATED INDUCTANCE SPREADS 
 
The development of full 3D models for inductance calculation enables us to study the true 
effects of manufacturing tolerances on inductance.  The validity of the inductance spreads 
used in Monte Carlo circuit simulations can therefore be verified.  A program was 
developed to automatically generate 3D inductance models with random variations on all 
the dimensional parameters from a single nominal structure. 
 Most intergate inductances are in the order of 4 pH, as is the total inductance 
between junctions J1 and J2 in the standard JTL (see Figure 3.19).  This model of the 
inductance between junctions J1 and J2, including the effects of the resistor covers and the 
dc tee-in, was therefore used to calculate a representative figure of inductance spread. 

The width of lines L1 and L2 was taken as 4 µm – the thinnest conductors used for 
inductive interconnections in any layout for this dissertation.  This ensures that the 
inductance spreads reflect the worst-case possibility. 
 For the calculation of inductance spread, random variations according to a 
Gaussian normal distribution are applied to every layer thickness and conductor width in 
the specific structure.  The penetration depth of a niobium thin-film, as well as the 
effective penetration depth of the ground plane, are also varied, and the results used to set 
the reflection plane.  The new penetration depth is then also used for all the 
superconducting elements in the FastHenry input file. 
 Table 3.7 shows a generic model for the initialization of the appropriate 
dimensional parameters (actual implementation depends on the programming language 
used to generate the FastHenry input file).  All values are for the 1 kA/cm2 niobium 
process from Hypres [16]. 
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 The Gaussian function is represented here as gauss(mean value, standard 
deviation). 
 

Table 3.7:  Parameter declarations for the generation of 3D inductance models with random 
dimensional variations 

Parameter Initialization value 
[µm] 

Lambda_niobium Gauss(1,0.05/3)*0.09 
M0_thickness Gauss(0.1,0.01/3) 
M1_thickness Gauss(0.135,0.01/3) 
M2_thickness Gauss(0.3,0.02/3) 
M3_thickness Gauss(0.6,0.05/3) 
I0_thickness Gauss(0.15,0.015/3) 
I1_thickness Gauss(0.1,0.01/3) + gauss(0.1,0.01/3) 
I2_thickness Gauss(0.5,0.04/3) 
R_thickness Gauss(0.1,0.02/3) 
Lambda_effective_GP coth(M0_thickness/Lambda_niobium)*Lambda_niobium 
M2_line_width Gauss(0,0.25/3) + Nominal_width* 
* Where Nominal_width is the nominal width of the conductor;  4 µm in this case. 
 
The standard deviation (σ) of each Gaussian function is obtained by dividing the worst-
case variation specified in the Hypres design rules, often referred to as the 3σ values [9], 
through 3.  For a Gaussian random distribution, 99.74 % of all values lie within ±3σ of 
the mean [18]. 
 When conductors in layers other than M2 are used, appropriate variables similar 
to M2_line_width are declared and used. 
 The results of simulations on the inductance of the JTL, using the random 
variations of Table 3.7, are shown as histograms in Figure 3.28.  The histogram in Figure 
3.28(a) represents the full process variations, and was compiled from the calculated 
inductances of 115 JTL structures, each generated with random variations on every layer 
thickness and line width, as well as on penetration depth.  The histogram in Figure 
3.28(b) shows the inductance calculation results for 100 JTL structures of which only the 
layer thicknesses and penetration depth were randomly varied, so that it represents the 
global variations on inductance. 
 

 
(a) (b) 

Figure 3.28:  (a) Histogram of inductance spread about mean for JTL with full process 
variations and (b) with global (layer) variations only 
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From the data presented in Figure 3.28(a), the standard deviation of inductance is 
calculated as 1.38 %, and the 3σ limit as 4.14 %.  This includes the effects of global 
(layer) and local tolerances. 

Figure 3.28(b) shows the inductance spread for global (layer) variations only.  The 
distribution appears to be Gaussian, as is expected.  The standard deviation is calculated 
as 1.13 %, yielding a 3σ limit of 3.39 %. 

From (2.26), the standard deviation caused by local variations for this JTL is 
calculated as 0.784 %.  The 3σ limit is 2.35 %. 

These results are well within the worst-case values predicted in Table 3.1, and 
show that the simulation values in Table 2.2 are more than adequate. 
 
3.10 CONCLUSIONS 
 
Some inductance calculation techniques [25] use tables generated from several 
calculation runs to establish relationships between line dimensions and inductance.  In 
real RSFQ structures, all important inductances will always terminate in Josephson 
junctions.  The large pads associated with the JJ structures will inevitably cause large 
deviations from the expected inductance values of especially short lines, and can 
therefore not be ignored.  It is proposed that all calculations for small inductances, 
especially intra-gate transmission lines, be performed on structures that are terminated at 
their ends in Josephson junction structures.  Furthermore, since it is supported, all 
structures such as tee-ins and line crossings that directly affect (by proximity) the 
inductance of an intra-gate line should be included in the FastHenry models used for 
inductance extraction.  This lowers the uncertainty in the inductance values, and can 
allow highest-yield layouts to be realized. 
 Exhaustive simulations and the comparison of results calculated with different 
techniques have showed that segmentized 3D structures using the method of images yield 
reliable inductance results in FastHenry. 

Yet, even for sufficient discretization, FastHenry is bound to produce 
inaccuracies.  For structures of similar size and segmentation, however, very good 
relative answers (such as percentage change) can be obtained. 

Other numerical inductance calculation techniques have been devised or tried by 
several researchers.  Some reduce computing time and memory requirements through 
simplifications of the MOM model.  Others, like an FDTD technique, require more time 
and memory as a result of the need to discretize the space between conductors too.  In the 
end, all these techniques are approximations to a problem that is not unique to 
superconductors, but extends to all fields of VLSI design.  The inductance of complex 
structures cannot be solved analytically, and eventually the design engineer still needs to 
select a numerical technique that will give a fairly accurate answer in an acceptable time, 
given the processing power at his disposal. 
 Since there is no clear advantage regarding accuracy in any of the numerical 
techniques mentioned above, selection merely depends on calculation speed and the ease 
of implementation. 

3D analyses are time-consuming, both when the 3D models are constructed and 
when FastHenry performs calculations.  It is therefore a good design principle to reuse 
inductors in layouts.  When certain inductance values occur very often, such as 2 pH and 
4 pH in the RSFQ circuits in this dissertation, a set of interconnection geometries can be 
created beforehand, and an appropriate geometry selected whenever the specific 
inductance value is needed. 
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In this chapter, the use of FastHenry and newly developed segmentation routines 
to model any 3D structure for the extraction of inductance was discussed.  Segmentation, 
filamentation and the placement of the reflection plane for the method of images were all 
treated in detail, and comparative results used to measure and validate the effectiveness of 
each.  The results presented in this chapter also give an indication of the power of the 3D 
models, especially when structures contain unconventional discontinuities or are partially 
coupled to other structures. 
 Once the accuracy of the models were sufficient, full gate structures were 
investigated.  3D structures of a complexity not previously attempted for superconducting 
circuit elements can now be analysed, and mutual and self-inductance values extracted.  
Eventually, models with dimensional variations according to process tolerances were 
analysed to establish the real effects that these tolerances have on inductance.  It is now 
possible to calculate the true inductance variations, brought on by manufacturing 
tolerances, in any integrated circuit structure. 
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Chapter Four - Novel component 
design 

 
 
 
“Here’s just the thing: just before we’re sent back into the world, the Goddess Meng 
administers to us a vial of forgetting.” 
“I don’t remember that,” Keeper said. 
 Kim Stanley Robinson, The Years of Rice and Salt 
 
 
 
4.1 INTRODUCTION 
 
ALTHOUGH the RSFQ logic family is by now well established, new gates and latches 
continue to be added to the collection of known cells.  Many of these are created through 
changes to existing cells.  An example is the T2 flip-flop [48] – designed for multiplexing 
– that is based on the B flip-flop [2] with joint inputs (which is also used for multiplexing 
[49]). 
 In this project, a few latches with specialized properties were needed to implement 
memory functions that would otherwise require combinations of several other standard 
gates and latches. 
 These novel latches are also derived from changes to the structures of existing 
latches, but always with a specific function in mind. 
 Josephson junctions in circuit diagrams are always indicated by the symbol B, 
after the symbols used in Steve Whiteley’s WRSpice [8]. 
 
4.2 RSFQ ELEMENTS 
 
4.2.1 DC-Resettable Latch 
 
4.2.1.1 RAISON D'ÊTRE 
 
The first and foremost requirement when reprogrammable logic circuits are designed is 
the availability of a memory element that can withstand (theoretically, at least) an infinite 
number of read cycles without data loss. 
 The secondary requirement is non-volatility.  The memory element should be able 
to retain stored data if dc power is lost either momentarily or for a prolonged period. 
 A third requirement is obtained from an engineering perspective on the design of 
large scale reprogrammable circuits.  Apart from heating a circuit beyond the critical 
temperature to destroy stored flux loop currents, a way is needed to electronically erase 
all elements on a chip or in a memory block.  The circuit complexity and die space 
occupation of RSFQ pulse distribution circuitry dedicated to the reset of programmable 
elements would make such a technique impractical.  A more effective strategy is to bias a 
single dc line that threads every memory element to induce switching currents and reset 
all the elements in a single operation. 
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 The first requirement already ruled out the popular and robust Destructive 
Readout register (DRO) [1] [2], leaving only the Non-Destructive Readout register 
(NDRO) [2] as a viable candidate.  However, the NDRO is not dc resettable, and a new 
logic circuit, the DC-Resettable latch (DCRL) was designed using the basic structure of 
the Likharev NDRO [1] as a starting point.  Once a functional nominal circuit was 
obtained, genetic optimization was used to improve the yield and storage stability of the 
latch. 
 
4.2.1.2 FUNCTIONAL DESCRIPTION 
 
The circuit diagram of the DCRL is shown in Figure 4.1.  The element values shown here 
were derived through a genetic optimization process, except for L13 and the coupling 
coefficient between L13 and L2, which were both extracted from the final circuit layout. 
 The DCRL consists of a set-reset stage built around a dc SQUID (B2 and B3), and 
a read stage of cascaded JTLs (B5, B6, B8 and B9). 
 

 
Figure 4.1:  Circuit diagram of RSFQ DC-Resettable latch 

 
In the unset state, junction B2 sinks most of the bias current supplied through R10, while 
current path B4-L5 pumps bias current away from B8 and into B3.  A Read input pulse – 
amplified by B5 and B6 – finds B8 unbiased and switches series junction B7 instead, so that 
no output pulse is produced at F. 
 When an SFQ pulse is applied at Set, B2 switches and current is forced to circulate 
clockwise through L2, L3 and B3.  A sufficient fraction of the current is diverted through 
B4 and B8, adding to the bias current from R12, so that B8 is properly biased at 0.84IC.  The 
latch is now set.  Further set pulses find B2 unbiased and switch series junction B1 instead. 
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 In the set state, a Read input pulse proceeds to B8, which is sufficiently biased to 
allow switching and pass an SFQ pulse to the output at F.  Series junction B4 prevents the 
switching of B8 from affecting the current in L2 and L3, and the set state persists. 
 The DCRL is reset by applying a dc control current to Reset In.  The control 
current couples to L2, and the polarity is chosen so that an increase in the control current 
induces an increase in the current circulating clockwise through L2.  This eventually 
causes B3 to switch, and returns the DCRL to the unset state.  The SFQ pulse generated 
by the switching of B3 is dissipated in R3 and R13. 
 Simulation results for the DCRL are shown in Figure 4.2.  The dc reset current is 
720 µA, which is sufficient to reset the latch when no Read input pulses are present.  If 
Read input pulses are present during the reset operation, the dc reset current can be 
lowered to 350 µA without causing reset failures. 
 In the simulation results, three Read input pulses are applied from about 100 ps to 
300 ps.  The DCRL is only set after 250 ps, so that only the third Read pulse yields an 
output at F.  A second Set pulse just before 500 ps tests for a possible state change error.  
Another Read pulse at 900 ps is also passed, before the DCRL is reset between 1 ns and 
1.5 ns.  A Read pulse at 2.1 ns then yields no output at F.  After 2.2 ns, another set-reset 
cycle is simulated. 
 

 
Positive terminal for L2 is next to B2.  Positive terminal for L5 is at L2-L3 tee-junction. 

Figure 4.2:  Simulated transient response of RSFQ DCRL 
 
Although not shown in Figure 4.2, the dc bias voltage of the DCRL can be removed 
without destroying the flux in the dc SQUID loop B2-L2-L3-B3.  When the dc bias voltage 
is restored, all currents return to their correct values with the set state remaining intact.  
The DCRL is thus a non-volatile memory element. 

The first implementation of the DCRL had a yield of only 22 %.  It was the first 
circuit to be optimized with the genetic algorithms discussed in Chapter 2, and a very 
good example of how powerful the optimizer can be.  The optimized circuit has a yield of 
100 % with layout extracted values and tolerances, and with voltage trimming.  This and 
other final yield results of all the novel circuits are shown in Table 4.1 on page 67.  
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4.2.1.3 ADVANCED ADD-ON:  FALSE RESET PROTECTION 
 
Monte Carlo simulations on the unoptimized DCRL have shown that it may erroneously 
reset when an input read pulse leaks through B4 to the main flux loop.  The reset action 
always requires B3 to switch, and the resulting output pulse can be used as an alarm signal 
to off-chip logic, or to set the DCRL again, or both. 
 A loop reset protection circuit is shown in Figure 4.3, and element designations 
correspond to those in Figure 4.1.  The output of the junction B3 of the DCRL is 
connected to a Current-Set switch (see section 4.2.2) that only allows the pulse to pass 
when a feedback activation control current flows.  From there, the pulse proceeds through 
a pulse splitter.  One path leads to fault reporting logic, and the other feeds back to merge 
with the standard set input of the DCRL. 
 If the Current-Set switch, pulse splitter and merger circuits (all of which are 
extremely stable) do not fail, any false reset will feed back to set the DCRL again.  Before 
a programmed reset occurs, the feedback activation current is removed so that the 
Current-Set switch can suppress the pulse generated by B3. 
 

 
Figure 4.3:  Schematic diagram of fault feedback for DCRL loop reset protection 

 
This pulse feedback technique was not added to the design of the PFD discussed in 
Chapter 6, as the final DCRL has a theoretical yield of 100 %.  It was decided to test a 
physical circuit first and determine if false resets do occur. 
 
4.2.2 Current-Set switch 
 
In reprogrammable circuits, every memory element must be uniquely addressable.  
Normally, such elements are used as cells in a matrix of row and column programming 
lines.  The use of dc lines and write currents to induce current in memory elements – 
usually dc SQUIDS or three-junction interferometers – simplifies the design of large 
circuits.  Such dc write currents have been used successfully in the construction of 
superconducting memory cells and arrays [50] [51] [52]. 
 In this dissertation the programming grid for a programmable circuit is composed 
of dc current lines for column selection, and SFQ lines for row selection (a clear 
demonstration of which is shown in Figure 5.10, p. 75).  An element is therefore needed 
that will only allow a received SFQ pulse to pass if it is activated by a control current. 
 The Current-Set switch shown in Figure 4.4 was designed specifically for this 
task.  The read stage is a cascade of JTLs.  The input JTL is stripped down to a single 
junction (B5) and the output JTL (B6 and B7) performs pulse shaping and matching. 
 The set stage is formed with a modified dc SQUID (B1 and B2) of which the bias 
current injection point is next to B2.  The SQUID loop (L1 and L2) is inductively coupled 
to a control line (L3 and L4). 
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 In the unset state (when no current flows through the control loop L3 and L4), 
junction B5 is unbiased.  An input pulse at Read switches the series junction B4, and no 
output pulse appears at F.  The input pulse is thus suppressed or stopped. 
 When sufficient current is applied at Set In (the design specification is for 200 µA 
or more), the clockwise current induced in the loop L1-L2 adds to the bias current flowing 
through B2 and causes it to switch.  This diverts a constant current of about 200 µA 
through L5, B3 and B5.  The switch is now set. 
 In the set state, a Read input pulse switches the biased junction B5, and the SFQ 
pulse propagates to the output F.  The switch is closed, and any amount of input pulses 
can pass through. 
 Switching hysteresis requires the control current at Set In to go negative before the 
SQUID loop will reset, so that the Current-Set switch requires a bipolar control current. 
 

 
Figure 4.4:  Circuit diagram of RSFQ Current-Set switch 

 
Simulation results for the RSFQ Current-Set switch are shown in Figure 4.5.  The 
simulation results clearly show how input pulses are stopped or passed when the Current-
Set switch is in the set or unset conditions.  The bipolar control current at Set in swings 
between +330 µA and –330 µA, and was generated by a HUFFLE (section 4.4.1).  Read 
input pulses were applied in pairs, with the pulses in a pair 100 ps apart, to test for false 
state changes or sluggish pulse repetition. 
 The first event, at 150 ps, is when the HUFFLE is preset at start-up (see section 
4.4.1).  After that, the Current-Set switch is unset, and Read pulses are stopped.  The 
switch is set at 1.6 ns, after which two Read pulses are passed to F.  The switch is then 
reset, and set again right between two Read pulses at 4.25 ns.  The first pulse is stopped, 
while the second is passed, and the Current-Set switch therefore functions correctly even 
at 10 GHz. 
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Figure 4.5:  Simulated transient response of RSFQ Current-Set switch 

 
4.3 COSL ELEMENTS 
 
4.3.1 Set-Reset flip-flop 
 
The COSL Set-Reset flip-flop is included in this discussion because it was developed as a 
novel circuit, formed part of the initial set of test circuits used to evaluate the success of 
the genetic optimization strategy, and forms the basis of a proposed new circuit for the 
conversion of SFQ pulses to clock-synchronized voltage state logic. 
 The schematic circuit diagram is shown in Figure 4.6.  It is modelled on the 
standard COSL OR-gate, but there are some important differences. 
 When the flip-flop is set, it must remain so until a reset signal arrives.  In standard 
COSL gates, two clock signals, 120° out of phase, are used.  A COSL input arrives at the 
peak of the input clock signal, switches the input one-junction SQUID, and diverts 
control current through an inductor that couples with a dc SQUID.  The negative cycle of 
the input clock resets the input one-junction SQUID. 
 In the SR flip-flop, the one-junction SQUID is replaced with a two-junction 
SQUID (B1-L1-L2-B4).  The input clock is replaced with a dc bias voltage that supplies 
about 220 µA through R7, of which around 200 µA flows into B1 to bias it at 0.8IC. 

When a COSL input signal is applied through R3, junction B1 switches, and the 
two-junction SQUID is set with current circulating clockwise.  Since there is no negative 
clock cycle to reset the two-junction SQUID, the flip-flop can retain the set state 
indefinitely.  An added advantage to the continuous input bias is that the SR flip-flop can 
be set asynchronously – unlike ordinary COSL gates. 

When the SR flip-flop is set, current flowing through L1 and L2 couple into the 
readout two-junction SQUID formed by B2-L3-L4-B3.  This stage of the SR flip-flop is 
identical to that of other COSL gates, except for resistor value changes to allow more 
current into the output two-junction SQUID.  When the flip-flop is set, a clock signal at 
Clock causes the output two-junction SQUID to switch and produce a high output at Q. 

If the SR flip-flop is in the set state, the circulating current through B4 biases the 
junction sufficiently for a reset signal applied through R10 to cause it to switch.  This 
resets the input two-junction SQUID, and returns the bias current to B1.  The Reset signal 
can also be applied asynchronously. 
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Figure 4.6:  Circuit diagram of COSL Set-Reset flip-flop 

 
Simulation results for the COSL SR flip-flop are shown in Figure 4.7.  After a Set input, 
an output signal at Q appears at every clock cycle.  The second Set input is used to test for 
erroneous state changes.  After the Reset input, no more outputs appear at Q until the flip-
flop is set again. 
 

 
Figure 4.7:  Simulated transient response of COSL SRFF 

 
4.3.2 Toggle flip-flop 
 
Although better implementations can probably be found, a basic Toggle flip-flop is 
formed when the Set and Reset terminals of the COSL SR flip-flop in Figure 4.6 are 
connected together, and the clock current reduced by around 30 %. 
 When an input signal is applied, the state of the T flip-flop is inverted.  The only 
practical difficulty is that the combined Set and Reset inputs require more current than the 
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200 µA that can be delivered with a single COSL output, so that parallel COSL OR-gates 
are needed to drive the T flip-flop. 
 The circuit was optimized as an SR flip-flop, and does not really have a good 
yield as a T flip-flop.  However, since it does not form part of the tool kit required for 
reprogrammable RSFQ circuitry, the T flip-flop was not investigated or optimized 
further. 

Simulation results for the COSL T flip-flop are shown in Figure 4.8.  The Toggle 
input feeds both the Set and Reset pins of the standard COSL SR flip-flop.  One clock 
cycle after a Toggle input, the output at Q is inverted. 
 

 
Figure 4.8:  Simulated transient response of COSL Toggle flip-flop 

 
4.4 HYBRID LOGIC ELEMENTS 
 
4.4.1 HUFFLE bipolar current switch 
 
When many current lines are required to handle switch addressing, it is impractical to 
drive each from an off-chip current source.  An element is therefore needed that can 
translate an SFQ address pulse into a dc current. 
 The most practical element is the Hybrid Unlatching Flip-Flop Logic Element 
(HUFFLE) [53] [54] [55] [56] [57]. 
 The HUFFLE is ideal for implementing a bipolar current switch.  Unfortunately, 
only the HUFFLE described in [57] uses RSFQ control circuits.  However, their 
implementation uses three-junction flux loops, and it was decided to redesign the standard 
HUFFLE for RSFQ compatibility – effectively creating a new circuit. 
 
4.4.1.1 FUNCTIONAL DESCRIPTION 
 
Figure 4.9 shows the final circuit diagram of the HUFFLE as it was implemented in the 
PFD (see Chapter 6).  Element values for the set and reset input sections were derived 
from standard RSFQ gates.  The coupling inductances, coupling coefficients and damping 
resistor inductances LS3, LS4 and LS9 in Figure 4.9 were obtained through layout 
extraction, and differ slightly from the values found through genetic optimization (which 
are not shown here). 
 The HUFFLE is a bipolar current device, and the positive and negative terminals 
of I out are connected together through a superconducting line that may have a high 
inductance. 
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Figure 4.9:  Circuit diagram of HUFFLE 

 
Bias current entering through R6 flows to ground in one of two ways:  either through the 
top dc SQUID (B5 and B6), L23, Lloop and via I out (negative to positive terminals), L27 and 
R17, or through R16, L26, via I out (positive to negative terminals), Lloop, L22 and the bottom 
dc SQUID.  The former corresponds to the unset state, and the latter to the set state. 

Current applied to Preset bias flows through L20 and L21, and is used to initialize 
the HUFFLE into the unset state.  After the initialization pulse, the current is lowered to 
an idle value (not zero) that assists with further reset actions. 

The HUFFLE is set through the application of an SFQ pulse to Set.  The pulse 
passes through the buffer junction B2 and is split into two separate SFQ pulses by 
junctions B3 and B4.  Both pulses induce current into L6 and L7, and the combined 
induction current switches the dc SQUID (B5 and B6), and causes I out to reverse 
direction and flow through the bottom dc SQUID. 

Reset occurs when an SFQ pulse enters Reset, passes through the buffer junction 
B8 and the amplifier junction B9, and induces a switching current in L18 and L19. 
 The control current driver junctions B3, B4 and B9 may appear to be underdamped 
because of the large values of their damping resistors.  This is merely a way of diverting 
more current through the inductive paths to their loads, and each load is designed to 
facilitate damping.  The larger control currents increase the circuit’s theoretical yield. 
 Simulation results for the HUFFLE are shown in Figure 4.10.  The Set and Reset 
pulses precede state changes, where a positive output current represents the set state, and 
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a negative current the unset state.  The preset bias current is ramped up to 950 µA at 
initialization to force the HUFFLE into the unset state, after which it is kept at an idle 
143 µA.  It can also be seen at 5 ns that the preset bias current can be used to reset the 
HUFFLE during normal operation. 
 

 
Figure 4.10:  Simulated transient response of HUFFLE 

 
4.4.1.2 OTHER USES FOR HUFFLES 
 
Although the HUFFLE was originally developed as a memory element, its primary 
implementation here is as a bipolar current driver for memory element selection.  It will 
therefore be used at the back end of address decoding logic. 
 The HUFFLE can be put to other use too.  It can for instance be used as an 
interface to off-chip hot logic [57].  It was used in this way in the compact PFD to be 
discussed in Chapter 6.  For such an implementation, one end of the loop inductance Lloop 
is connected to a cascade of transmission lines and matching resistors that eventually feed 
the voltage developed across R16 and R17 into a hot 50 Ω load (see Figure 6.7 on page 90). 
 Since this voltage signal is in the order of a 1 mVpeak-peak, (Figure 6.8) the 50 Ω 
load should ideally be the input port of a low-noise amplifier.  Matching is also important, 
as simulations showed that reflections off a mismatched load could spontaneously flip the 
state of the HUFFLE. 
 The HUFFLE can also be configured as a T flip-flop.  For this operation, the Set 
and Reset inputs can be driven simultaneously (through a pulse splitter).  This setup is 
also illustrated in Figure 6.7, and was used in conjunction with the hot logic interface 
technique discussed above to provide a secondary rf output port for a compact PFD.  The 
T flip-flop dynamics are shown in Figure 6.8. 
 
4.4.2 RSFQ-to-COSL converter 
 
SFQ pulses are virtually invisible to hot logic circuits, so that several techniques have 
been devised to translate these pulses into voltage state signals.  One such a technique 
was discussed in the previous section, and in [57]. 
 Since COSL is a voltage state logic family, it is a prime candidate for RSFQ to hot 
logic interfacing.  A promising circuit that has previously been studied is the DRO-to-
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COSL gate [3].  Unfortunately, this circuit requires a full balanced three-phase clock 
signal, and requires the RSFQ DRO to supply its SFQ pulse in a very tight time window. 
 As part of this project, a new RSFQ-to-COSL converter was designed.  The 
schematic circuit diagram is shown in Figure 4.11. 
 

 
Figure 4.11:  Circuit diagram of RSFQ-to-COSL converter 

 
The design is very similar to that of the COSL SR flip-flop discussed in section 4.3.1, 
except that the input two-junction SQUID is replaced with that of the standard RSFQ 
DRO (B2-L2-L3-L4-B5).  So, instead of interfacing a DRO to a COSL OR-gate, the DRO is 
integrated into a COSL gate. 
 The input two-junction SQUID retains the functionality of the RSFQ DRO, 
including asynchronous operation and double-set protection via buffer junction B1.  The 
only limitation is that a Set input pulse may not arrive during most of the positive half 
cycle of the sinusoidal Clock input. 
 Once the DRO is set, control current circulating through the inductive loop 
formed by L2, L3 and L4 couples into the output two-junction SQUID formed by B3, L5, L6 
and B4.  Read-out is performed with a sinusoidal clock as in all other COSL gates. 
 For use as output buffer, the RSFQ-to-COSL converter must reset itself after a 
read operation.  Since the SFQ input pulses can arrive asynchronously, circuit overhead is 
reduced if the sinusoidal clock signal doubles as a reset signal.  Resistors R9 and R10 feed 
current from the clock signal to junction B5, while B8 acts as a clock shaper.  If the DRO 
stage is in the set state, the current through R10 causes B5 to switch and the gate to reset. 
 Simulation results for an RSFQ-to-COSL converter driven by a JTL and loaded by 
a 5 Ω resistor are shown in Figure 4.12.  The first two Set pulses arrive at the same time 
during their respective clock cycles.  The third Set pulse is shifted forwards and the fourth 
pulse backwards to show the time range over which SFQ input pulses can be accepted 
and correctly converted to COSL signals. 

The RSFQ-to-COSL converter was not used in the compact PFD discussed in 
Chapter 6, and is therefore not included in the symbol key in Figure 5.1.  However, it is 
used twice in the chip layout shown in Figure A.17, where it can be tested as an 
individual element before being included in future superconducting circuits. 
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Figure 4.12:  Simulated transient response of RSFQ-to-COSL converter 

 
4.5 CONCLUSION – REVIEW OF THE RECURSIVE DESIGN PROCESS 
 
This section concludes the first half of this dissertation, where the low-level design of  
RSFQ circuits was explored and characterized.  The rest of this dissertation builds on the 
design foundations laid up to here when the design of complex systems is investigated. 
 In this chapter, latches with non-destructive read functionality and asynchronous 
reset ability were developed and optimized.  These latches perform very well, and will 
form the basis of reprogrammable systems developed in Chapters 5 to 7. 

As an overview of the recursive low-level design process, the development of the 
HUFFLE is reviewed. 
 The first implementation of the HUFFLE had an undesirable yield which could 
not be optimized beyond 55 %.  The yield limit was overcome through the use of a new 
design that utilizes dual-line current feeds on each arm.  One of these lines is used for 
biasing the HUFFLE and presetting it to the default reset value after switch-on.  The new 
architecture was eventually optimized to a yield of 95 %. 
 However, neither the parasitic effects nor the achievable coupling factors for the 
mutual inductances were yet known. 
 For layout, the HUFFLE was structured in order to reduce parasitic inductances.  
For reasons of practicality, the main inductance loops had to be in M2.  This left M1 and 
M3 for the dual-arm control lines.  A 2D analysis showed that the coupling factors could 
be achieved, but layout according to design rules yielded problems.  The best achievable 
layout was modelled for inductance extraction with FastHenry, and it was found that the 
induced current ratios fell far below the design values.  (See section 3.7 for a discussion 
on the calculation of the induced current to control current ratio.)  It also showed finite 
(and significant) values for the parasitic coupling between the M1 and M3 inductors. 
 All the extracted values were fed back into the Spice simulations, and the actual 
yield calculated as a dismal 38 %.  Analyses showed that not enough current was induced 
in the set loop of the HUFFLE to allow the control SFQ pulses to switch the HUFFLE. 
 Several improvements were considered, but most had to be rejected on grounds of 
layout impracticalities.  The eventual solution was to move the damping resistors of the 
junctions that drive the control currents to the other end of the inductive control lines, so 
that the junctions would be forced to damp themselves through the control lines, thereby 
increasing the control currents.  For stability, large resistors were added next to each 
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driver junction – 10 Ω for the 250 µA junctions and 5 Ω for the 355 µA junction.  This 
increased the current diverted through the control lines, but led to flux trapping in the 
input JTLs of the set and reset stages.  The net effect was to decrease the yield, but this 
was negated when reverse buffering junctions were added to prevent flux trapping. 

These changes pushed yield up to 96 %, but another round of layout extractions 
showed that the large resistors also had large inductances.  For the 10 Ω resistor the 
inductance was calculated as 2.85 pH, compared to 1.66pH for the 5 Ω resistor.  
Substituted back into the Monte Carlo simulation model, these inductances decreased 
yield to about 88 %.  With voltage trimming and layout extracted tolerances, this 
increased to 98.5 % – high enough to make the HUFFLE a practical circuit. 
 

Table 4.1:  Simulated theoretical yield of new circuits with various MC models 

Circuit name Generic MC model (on 
layout extracted elements) 

[%] 

Generic MC model 
with voltage trimming 

[%] 

Layout MC model 
with voltage trimming 

[%] 
RSFQ DCRL 87.83 +2.74

-2.74   99.94 +0.06
-0.15   100 

Current-Set 
switch 

100 100 100 

COSL SRFF 76.09 +2.71
-2.71   90.12 +1.89

-1.89   95.54 +1.31
-1.31   

HUFFLE 87.93 +2.73
-2.73   97.61 +1.28

-1.28   98.54 +1.00
-1.00   

RSFQ-to-COSL 
converter* 

82.51 +2.41
-2.41   91.91 +1.73

-1.73   94.65 +1.43
-1.43   

* The RSFQ-COSL converter was reoptimized after the extracted model of the final layout in Figure A.6 
delivered yields of 68.0 ± 2.96 %, 80.67 ± 2.50 % and 85.78 ± 2.22 % respectively (as a result of a low 
coupling coefficient). 
 
The generic MC models in Table 4.1 already incorporate the layout extracted values for 
inductance and mutual coupling.  This, in conjunction with the change in design rules 
(and tolerance specifications) that occurred after the genetic optimization sequences were 
completed, accounts for the differences between the results reported here and those given 
for the genetic optimization routines in Chapter 2. 

The last column in Table 4.1 lists the results for MC analyses containing not only 
layout extracted inductance and coupling values, but also extracted tolerances. 
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Chapter Five - Implementation of 
Programmable Frequency Divider 

 
 
 
Divide et impera.  (Divide and rule.) 

Attributed to Philip of Macedonia, Julius Caesar, Niccolò Machiavelli and 
Louis XI of France 

 
Divide and rule, a sound motto.  Unite and lead, a better one. 

Johann Wolfgang von Goethe 
 
 
 
5.1 INTRODUCTION 
 
THE design and construction of a programmable frequency divider, or PFD (not to be 
confused with phase/frequency detector used in some rf texts) serves quite a few useful 
purposes.  Primarily, however, it is a component used widely for frequency synthesis in 
communication electronics [58] [59]. 
 Frequency dividers in frequency synthesizers are used to divide the high 
frequency output of a voltage controlled oscillator by a programmed number for 
comparison to that of a stable reference oscillator.  With prescalers (high frequency 
dividers forming the first stage of a cascaded divider) able to operate at up to 50 GHz, 
such as current RSFQ logic circuits, frequency synthesis well into the millimetre band 
becomes easy. 

The development of a PFD would also allow the use and verification of all the 
elements and routing structures needed for a more ambitious superconducting 
programmable gate array.  It is thus a circuit that will fit (albeit tightly) onto a 25 square 
millimetre die (3 micrometre process), and, most importantly, can be programmed and 
tested at any convenient frequency without the need for scarce and expensive 
measurement equipment. 

This chapter deals with the design of such a PFD as a precursor to a 
superconducting programmable gate array (SPGA), and introduces the switch blocks and 
programming structures needed for reprogrammable logic ICs.  The remaining 
considerations for the design of full SPGAs are discussed in Chapter 7. 

It must be stressed that the PFD treated here is not designed for compactness or 
simplicity, but specifically with the verification of SPGA concepts in mind.  It is therefore 
primarily a programmable gate array (PGA), with frequency division only of secondary 
importance. 
 Circuit diagrams are kept clear from unnecessary clutter by the use of simple 
symbols, as defined in Figure 5.1.  Dc bias connections, with the exception of preset and 
reset lines, are omitted. 
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Figure 5.1:  Symbol key for schematic circuit diagrams 

 
5.2 THE FPGA AS FOUNDATION TO REPROGRAMMABLE CIRCUITRY 
 
The field-programmable gate array [60] has become the most versatile and popular low-
cost integrated circuit for low-volume niche digital applications, and is indispensable in 
systems that may need rapid reconfiguration or frequent architectural updating. 
 The composition of an FPGA is simple, yet highly effective, and can therefore 
serve as the foundation of a superconducting programmable gate array. 
 The basic structure of an FPGA consists of input and output ports, configurable 
logic blocks (CLBs) and interconnection resources.  A schematic diagram for a general 
FPGA is shown in Figure 5.2 (modified from [60] and [61]).  Crosses indicate 
programmable switches. 

The ports facilitate off-chip interfacing while the logic blocks contain the 
architecture of the FPGA [60]. 

Implementation of an FPGA in RSFQ is has been considered before [61], but only 
as a high-level simulation and without addressing low-level design problems.  
Complications are introduced by the demand for clock signals and synchronization in 
RSFQ, as well as by the nature of JTLs, and some inventive concepts and designs are 
necessary to implement a practical SPGA. 

The biggest difference between semiconductor and superconductor PGAs lies in 
the interconnection resources, since the bidirectional wires and MOSFET switches used 
in semiconductor FPGAs are not available in superconductor architectures. 

One way to handle the unidirectional lines inherent to RSFQ circuits is to dedicate 
entire routing channels (containing many data lines) to a single direction, and alternating 
these channels between successive rows or columns of CLBs (the technique favoured by 
[61]).  However, this may cause long pulse transit times as data are routed around blocks 
to access tracks in the other direction – much as traffic in a city built around one-way 
streets. 

The technique implemented here is to alternate the direction of data tracks after 
every line.  It is then possible to turn signals around at every switch box, provided that 
enough tracks are free to do so. 
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Figure 5.2:  Schematic diagram of a general architecture for an FPGA 

 
The critical advantage of reprogrammable circuits based on the interconnection strategy 
of FPGAs above hard-wired circuits is their heightened tolerance to low-yield gates and 
random malfunctions.  Generally, the more routing paths [62] and possibilities there are, 
the more fault-tolerant a circuit will be. 
 Lastly, FPGAs and redundant logic cells also form the basis of techniques 
proposed to introduce self-healing properties into integrated circuits [63], or allow circuits 
to evolve their own functions [64].  One day, SPGAs might overcome the obstacles posed 
by low-yield superconducting logic circuits through self-healing at the expense of circuit 
space. 
 
5.3 INTERCONNECTION SWITCHES 
 
The interconnection lines in RSFQ circuits are constructed from JTLs, and although the 
JTL is a bidirectional device, it is always used to transmit pulses in one direction only. 
 For programmable connections, RSFQ switch blocks are needed.  The Crossbar 
and Inline switches discussed here implement functionality similar to that of 
semiconductor switches, except for the unidirectional nature of the SFQ data tracks.  The 
T- and Y-switches are RSFQ-specific, and were designed to handle the start or 
termination points of unidirectional SFQ tracks. 
 Only the circuit diagrams for each switch are depicted and discussed in this 
section.  The simulation results for all switches are only shown in section 5.7, where these 
switches form part of the simulation model for the entire PFD. 
 
5.3.1 Crossbar switch 
 
The unidirectional nature of JTLs makes it possible to construct a Crossbar switch that 
can connect one data line to another so that data can flow from the one line to the other, 
but not in the opposite direction.  When Inline switch elements are integrated into the 
Crossbar switch, it is even possible to route data so that signals entering on one line will 
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only leave on the other, and vice versa, thereby increasing the routing possibilities of a 
PGA circuit.  However, this requires 4 DCRLs and as many pairs of programming lines – 
an excessive amount when the space it occupies is taken into account. 
 Figure 5.3 shows a simplified schematic diagram of such a Crossbar switch, as 
well as some routing options.  Large circles represent switch elements (DCRLs).  White 
switches are unset;  black switches are set.  Data (SFQ pulse) flow is represented by thick 
grey lines. 
 

 
Figure 5.3:  Simplified schematic diagram of 4-element Crossbar switch and some data flow 

possibilities 
 
A more compact implementation with the available circuits requires two DCRLs and only 
one pair of programming lines.  The DCRLs are set simultaneously, so that only two 
switch states are possible:  one in which the horizontal and vertical data tracks are 
isolated, and one in which a pulse entering on any track leaves on both.  The schematic 
circuit diagram is shown in Figure 5.4.  Simulation results for Crossbar switches can be 
seen in Figure 5.16. 

 

 

 
 
 
 

 

(a) (b) 

Figure 5.4:  (a) Circuit schematic and (b) data flow schematic symbol of Crossbar switch 
 
Another implementation of an SFQ Crossbar switch was published by [65].  Their switch 
is designed for network switching, and only connects one way (horizontal to vertical, or 
vertical to horizontal – not both).  It is also fully SFQ, and lacks the global reset 
capability desired for SPGA circuits. 
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5.3.2 Inline switch 
 
Since data tracks occupy a lot of die space, they need to be kept to a minimum in 
superconducting PGAs.  One way to reduce the number of tracks without compromising 
routing possibilities is to subdivide each track into isolated segments.  In this way, 
different segments of one track can be used to route different signals. 
 The individual stretches are connected together by Inline switches, which can be 
closed to allow signal transfer.  Figure 5.5 shows schematic circuit diagrams for such 
switches.  Simulation results for these switches are not shown, as they are implicit in 
those of the Crossbar switch. 

Inline switches can also be placed next to Crossbar switches such as the one in  
Figure 5.4 to regain some of the functionality of the 4-element Crossbar switch in Figure 
5.3. 

 

 

 

 
(a) (b) 

 
 

 

 
 

(c) (d) 

Figure 5.5:  Inline switch circuit schematics for (a) vertical and (b) horizontal data tracks, 
and Inline switch schematic symbols for (c) vertical and (d) horizontal data flow 

 
5.3.3 Special Crossbar switches – the T-switch and Y-switch 
 
At the boundaries of a PGA, Crossbar switches can be replaced by more compact 
switches.  These switches are basically Crossbar switches with some data paths removed. 
 Figure 5.6(a) shows the schematic circuit diagram of a T-switch;  in this case one 
which is used at the terminal point of a left-right horizontal data track. 
 Figure 5.7(a) shows the schematic circuit diagram of a Y-switch.  This one is used 
in the topmost horizontal data track, where the up-down vertical tracks start. 

Simulation results for the T-switch are shown in Figure 5.17, and those for the Y-
switch in Figure 5.18. 
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(a) (b) 

Figure 5.6:  (a) Circuit schematic and (b) data flow schematic symbol of T-switch 
 

 

 
 

 

 

(a) (b) 

Figure 5.7:  (a) Circuit schematic and (b) data flow schematic symbol of Y-switch 
 
5.4 ARCHITECTURE, ROUTING CHANNELS AND SWITCH BLOCKS 
 
The PFD is, conceptually, a very simple circuit.  It contains a number of Toggle flip-
flops, interconnection lines and programmable switches. 
 Each T flip-flop divides its input by two, so that division of up to 2n, where n is 
the number of T flip-flops, can be achieved by programming the switches to route an 
incoming signal through the desired number of the T flip-flops. 
 The flip-flops are flanked on all sides by interconnection lines, much as the 
standard structure for FPGAs [60]. 

The Toggle flip-flop used is the T1 flip-flop [2], which differs from other RSFQ T 
flip-flop implementations in that it also has a destructive read input, and only a 
complemented asynchronous output (so that from the start-up state it gives an output 
pulse when the first input pulse is applied, and then only again after the third pulse, the 
fifth pulse, and so forth).  The T1 flip-flop also has a high yield (provided that it is driven 
with a 250-to-355 µA JTL [3]), and only needs a positive bias voltage, as opposed to the 
bipolar bias requirement of the standard T flip-flop [2]. 
 In order to keep the physical circuit within the boundaries of realizability (with 
regard to layout), as well as limit the number of off-chip connections, the PFD is limited 
to four T flip-flops. 
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The initial design allowed for six horizontal and six vertical interconnection lines, 
and 144 programmable switches.  A schematic representation of the initial PFD design is 
shown in Figure 5.8. 

Switch symbols are simplified, so that Y-, T- and Crossbar switches are indicated 
by circles, and Inline switches by short perpendicularly crossing lines.  The column 
programming lines are numbered  to show that lines 2 and 12 are used to access the 
switches on the input and output lines.  The four switches within the hatched areas also do 
not lie in line with column programming lines, and are programmed by lines 4, 5, 9 and 
10. 

This design still uses the initial assumption that the two DCRLs in a Crossbar 
switch would be accessed and programmed individually. 
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Figure 5.8:  Schematic representation of PFD 
 
The initial PFD shown in Figure 5.8 has sufficient redundancy in terms of routing 
possibilities and for dead switch bypassing.  Unfortunately, first  experimental layouts 
showed that it might just not fit onto the 0.25 cm2, 3-micrometre resolution die from 
Hypres.  The chief culprits are the programming lines, each of which needs a large AND-
gate for write selection.  A forced redesign thus necessitates a two-pronged optimization 
scheme:  reduce the number of tracks, and hook both switches on a crossbar connection to 
the same programming lines.  The former cuts back the number of switches, thereby 
reducing programming lines.  The latter allows line reuse, and also reduces the number of 
programming lines needed. 
 A redesigned, slimmer PFD is shown in Figure 5.9.  It has fewer interconnection 
lines (reducing the number of switches), and also uses the Crossbar switches shown in 
Figure 5.4(a) of which the DCRLs share the same programming address. 
 This PFD design has only 66 switches, and the programming grid is composed of 
9 bipolar current column lines (driven by HUFFLEs) and 8 SFQ pulse row tracks.  Since 
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each column line can only decode 8 unique addresses (one for each SFQ row), lines 3 and 
7 cannot address all the switches in their paths.  The solution is to use the spare capacity 
of columns 1 and 2, and 8 and 9 to address the excess switches.  This addressing system is 
shown in Figure 5.10. 
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Figure 5.9:  Schematic diagram of PFD with reduced number of programming lines 
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Figure 5.10:  Schematic diagram of PFD showing programming line access to switches (lines 

4 down to 1 mirror lines 6 to 9, and are omitted for clarity) 
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The smaller PFD in Figure 5.9 meets all our design criteria and interfacing specifications, 
and the implementation thereof is discussed in the rest of this chapter.  All further 
instances of the term PFD in this chapter refer to this circuit. 
 
5.5 SWITCH PROGRAMMING ARCHITECTURE 
 
Individual switch access requires either a lot of programming lines, or fewer lines with a 
lot of decoding logic.  The die size and probe construction limits the number of off-chip 
connections, so that the only available option entails efficient decoding structures. 

One way would be to use a 7-bit serial input word with three bits for the 
horizontal lines (000 to 111), four bits for the vertical lines (0000 to 1000), and then 
decoding it on-chip for individual switch access.  However, this is a mundane action that 
requires large decoding circuits in the already limited space on the superconducting die, 
and raises the error probability for switch programming. 

Since programming is a low frequency activity that can be managed by 
semiconductor circuits, it is more practical to move as many as possible of the 
programming tasks to off-chip logic.  The technique employed here is to use a 17-bit 
input word in which each line and column has its own bit.  Such a word requires no on-
chip decoding, thus saving valuable chip space. 

The full switch programming architecture of the PFD requires 9 column drivers 
and 8 row drivers, as well as shift registers and clock and write signal distribution 
circuitry.  Instead of showing the large schematic diagram of this entire circuit, a diagram 
of the programming architecture for a 4×4 switch matrix is shown in Figure 5.11 in order 
to make the logic flow easier to comprehend.  The signal entry points, lag cells in the shift 
registers, clock and write signal distribution paths and column driver reset circuitry are all 
exactly the same as for the full switch programming circuit.  It can easily be seen in 
Figure 5.11 how the gates and latches of the column and row drivers are repeated, and the 
full programming circuit can be deduced from this schematic diagram. 

The switch programming sequences for both the full circuit and the smaller 16-
switch programmer are shown in Figure 5.12.  The operation of the programming circuit 
can now be explained in terms of the circuit diagram in Figure 5.11, the programming 
signals in Figure 5.12, and the row and column numbers defined in Figure 5.9 and Figure 
5.10. 

The programming data word consists of as many bits as there are rows and 
columns together, or 17 for the full programmer and 8 for the 16-switch programmer. 

Let us now only consider the full programmer.  The row bits are entered into Data 
first, starting with the highest row bit (denoted R8 in Figure 5.12(a)).  A set bit selects the 
corresponding row.  After the lowest row bit (R1), the column bits are entered from 
highest to lowest (C9 to C1). 

Write must be pulsed high in the same clock cycle as the seventeenth or last 
column bit.  The first 16 Clock pulses merely shift the data word into a serial shift 
register.  The seventeenth Clock shifts the last Data bit in, and also moves the column bits 
into AND-gates that all have one input set by Write.  After a short internal delay, this 
Clock reads the column driver AND-gates into the Set inputs of HUFFLEs.  Only one 
column bit may be set, so that one column of switches is active after the seventeenth 
Clock pulse.  The seventeenth Clock pulse also releases an internally delayed Write pulse 
to propagate to the inputs of the row driver AND-gates. 

The eighteenth Clock pulse ANDs the row bits with the delayed Write pulse, and 
releases the row SFQ pulses into the switch matrix.  The nineteenth Clock pulse resets 
any set HUFFLEs. 
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Figure 5.11 Component level representation of 4×4 switch matrix programmer 

 

 
(a) 

 
(b) 

Figure 5.12:  Switch programming sequence of PFD with grid of (a) 9 columns and 8 rows 
and (b) 4 columns and 4 rows 
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Since the switch matrix is programmed one column at a time, any or all of the row bits 
but only one columns bit can be set in a programming word.  The entire PFD can 
therefore be programmed with 9 17-bit words in 171 clock cycles. 

The programming waveforms shown in Figure 5.12 do not have setup and hold 
time indications.  The programming circuit was designed (through the use of internal 
delays where necessary) to accept a Clock pulses that are exactly coincident in time with 
Data or Write pulses.  Due to the nature of SFQ pulses and the speed of conversion of a 
DC-to-SFQ converter, input voltage pulses need only stay high for a few picoseconds.  
The only timing restriction is the minimum clock cycle, which is limited by the time it 
takes a pulse to shift through the clock distribution circuitry and the time that the 
HUFFLEs need to undergo a state change. 
 Simulation results for the 16-switch programmer (Figure 5.13) show that it can be 
clocked at 2.5 GHz.  The full PFD will therefore function correctly with a programming 
clock of up to 1 GHz – much faster than the low MHz data rates of commercial 
microcontrollers such as the Atmel AT89C2051 intended for use as the hot logic 
controller. 
 
5.6 SIMULATION RESULTS FOR SWITCH PROGRAMMING 
 
Simulation results for the 16-switch programming circuit are shown in Figure 5.13.  The 
input signals are SFQ pulses (the hot logic interface was not simulated).  Note that the 
Clock pulses in the simulation are temporally coincident with the Data and Write pulses.  
This is not necessary, but shows that no setup time is required between Data and Clock 
pulses. 

Each switch block consists of a pulse splitter and a Current-Set switch.  The pulse 
splitter allows pulse continuation along the row of switches, and the output of the 
Current-Set switch is used to set a DCRL memory element.  The Spice model consists of 
2530 elements, 486 of which are Josephson junctions. 
 The Data word is 10110100, so that switches 4, 2 and 1 of column 2 will be set.  
The Clock, Write and delayed Write signals are also shown, where Vwritedelay is measured 
at the F output of the DRO closest to the Write input in Figure 5.11.  The simulation 
results show how the eight bits of the Data word are entered during the first eight Clock 
cycles, and how the Write pulse is also entered during the eighth Clock cycle.  The eighth 
Clock pulse also releases the delayed Write signal, which is fed to the row select AND-
gates. 
 All four Column Select currents are shown (Vcolselect1 to Vcolselect4), and it is clear 
that only the second column is activated after the eighth Clock.  It is reset after Clock 10. 
 The row SFQ pulses are shown as Vrowprgrm1 to Vrowprgrm4.  The selected row pulses, 
namely 1, 2 and 4, are released into the switch matrix after the ninth Clock.  The three 
switches in rows 1, 2 and 4 of column 2 are then programmed, or set. 
 Outputs of the Current-Set switches in the switch blocks of rows 1, 2 and 3 are 
also shown.  As an example, Vswitch11 is the output of the Current-Set switch in row 1 and 
column 1, whereas Vswitch34 is the output of the Current-Set switch in row 3 and column 4.  
As expected, the Current-Set switches of rows 1 and 2 in column 2 pass their input pulses.  
The Current-Set switch outputs for row 4 are not shown, as they are identical to those of 
rows 1 and 2.  Since the simulations show that the correct switches are set, it is clear that 
the programming function is realized correctly. 
 Observe that the bipolar current Icolselect2 is reset after the tenth Clock. 
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Figure 5.13:  Simulated programming of 4×4 switch matrix of a PFD 

 
5.7 SIMULATION RESULTS FOR A PFD CONFIGURED FOR DIVIDE-BY-16 

OPERATION 
 
For simulations on the PFD, a Spice model was constructed that contains all the Crossbar, 
Inline, T- and Y-switches as well as T1 flip-flops, pulse splitters and pulse mergers 
necessary to implement the full PFD.  The circuit schematic is shown in Figure 5.14(a).  
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Figure 5.14(b) shows the set switches and data path when the PFD is configured for 
divide-by-16 operation.  All paths along which data will flow are shown to give an idea of 
how many track segments are occupied.  The simulation model consists of 24147 
elements, of which 4623 are Josephson junctions. 
 

 
(a) 

 

 
(b) 

Figure 5.14:  (a) Schematic diagram of simulation model for PFD and (b) schematic 
diagram showing set switches, signal paths and probe positions for programmed divide-by-

16 operation of the PFD 
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Table 5.1 shows the full set of words needed to program the PFD for the divide-by-16 
operation detailed in Figure 5.14(b).  For each column, the row bits needed to set the 
correct switches are also given.  Data words are subdivided into groups of four bits for 
readability. 
 

Table 5.1:  Full programming sequence to configure PFD in divide-by-16 mode 

Column Row bits set Data word (R8-R1,C9-C1) 

9 1,8 1000 0001 1000 0000 0 

8 6 0010 0000 0100 0000 0 

7 1,5,6,7 0111 0001 0010 0000 0 

6 – 0000 0000 0001 0000 0 

5 7,8 1100 0000 0000 1000 0 

4 1,4,7 0100 1001 0000 0100 0 

3 1,5,6,8 1011 0001 0000 0010 0 

2 6 0010 0000 0000 0001 0 

1 – 0000 0000 0000 0000 1 
 
The simulation results of the PFD with switches set as shown in Figure 5.14 are shown in 
Figure 5.15.  Since the circuit model already contains more than 24000 elements, the 
programming circuitry is not included.  Switch programming is thus effected by using 
piece-wise linear current and voltage sources to set all the required switches during the 
first 150 ps of the simulation.  The programming current and voltage pulse for one such a 
switch are shown as the top two traces in Figure 5.15 to Figure 5.18. 

The simulation results in Figure 5.15 show the progression from input to output, 
as well as the output voltages of each T flip-flop.  The 850 ps delay between Vt1ff 2 and 
Vt1ff 3 is a result of the long signal path between the bottom left and top right corners of the 
PFD. 
 

 
Figure 5.15:  Simulated transient response of 4-cell PFD configured for divide-by-16 

operation 
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The total signal delay from input to output is 1.2 ns.  When the distance it travels is taken 
into account, this can rise to 1.3 ns.  Extra JTLs for pulse routing over larger distances 
may push this to 1.4 ns or 1.5 ns. 

The programmed divide-by-16 functionality of the PFD is easy to verify.  Firstly, 
there is the simulated programming currents and voltage pulses, shown here by Iwrite enable 
and Vprogram.  The next trace in Figure 5.15 is the high frequency input at In, which has a 
repetition frequency of 10 GHz.  The input signal is then routed to the first T flip-flop, of 
which the output at 5 GHz is shown in Vt1ff 1.  After the second T flip-flop (Vt1ff 2), the 
pulse repetition rate is only 2.5 GHz.  The signal is then routed to the third and fourth T 
flip-flops, of which the outputs are shown as Vt1ff 3 and Vt1ff 4.  It is clear that the output of 
the fourth T flip-flop has a repetition rate that is 16 times lower than that of the input at 
Vin.  This signal is routed to Vout, where it appears as a pulse train with a frequency of 
625 MHz. 

The correct operation of the PFD shows that all the switches and routing 
structures perform as designed.  For the sake of completeness, the simulated response of 
Crossbar, T- and Y-switches in both the set and unset states are shown here.  Voltage and 
current vectors in Figure 5.16 to Figure 5.18 correspond to the labels in Figure 5.14(b). 
 The simulated response of the Crossbar switch (Figure 5.4) is shown in Figure 
5.16.  In (a) the switch is set (observe the programming pulse at 50 ps), so that data 
entering from any input must leave at both outputs.  The simulation shows that data 
entering on the vertical data track leave on both the vertical and horizontal data tracks. 

In Figure 5.16(b) the switch is not set, and the data tracks must be isolated from 
each other.  The simulation results show this to be the case, as pulses on the horizontal 
data track have no influence on the vertical data track, and vice versa.  The Crossbar 
switch therefore simulates correctly. 
 

  
(a) (b) 

Figure 5.16:  Simulated transient response of Crossbar switch when (a) set and (b) not set 
 
Figure 5.17 shows the simulation results for two T-switches (Figure 5.6) in the PFD.  In 
(a) the switch is set, and data entering from the vertical direction (Vts_vin) leave in the 
horizontal direction (Vts_hout), which shows that the vertical track is correctly connected to 
the horizontal one.  In (b), another T-switch is in the unset state.  Here data entering from 
the horizontal direction (Vtn_hin) pass unhindered to the horizontal output (Vtn_hout), 
whereas data entering from the vertical input never leave the switch.  This is also correct, 
and verifies track isolation when the switch is not set. 
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(a) (b) 

Figure 5.17:  Simulated transient response of T-switch when (a) set and (b) not set 
 
The simulation results for two Y-switches (Figure 5.7) in the PFD are shown in Figure 
5.18.  In (a) the Y-switch is set and the input track connected to both outputs, so that data 
entering from the horizontal direction (Vys_hin) leave in both directions (Vys_hout and 
Vys_vout).  The switch in (b) is in the unset state, so that the vertical data track is isolated 
from the horizontal one.  Data entering from the horizontal direction therefore only leave 
in the same direction.  The Y-switch therefore functions correctly in simulations. 
 

  
(a) (b) 

Figure 5.18:  Simulated transient response of Y-switch when (a) set and (b) not set 
 
One of the characteristics of programmable circuits based on the interconnection strategy 
employed in FPGAs is that there are almost always more than way to route a signal for 
the same function. 
 As an example, consider the diagrams in Figure 5.19, which show four alternative 
ways to configure the PFD so that it still performs a divide-by-16 operation between the 
same input and output ports as with the setup in Figure 5.14(b).  Blackened circles 
indicate set switches. 
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Figure 5.19:  Four examples of switch settings and data flow for divide-by-16 operation 

using the same input and output 
 
5.8 CONCLUSIONS 
 
A complex reprogrammable circuit, the programmable frequency divider, was developed 
from the basic structure of an FPGA, and implemented using existing and novel RSFQ 
gates and latches.  Simulations show that this circuit indeed performs the operations that 
it is programmed to do.  Although the PFD treated here is the largest circuit of its kind 
that can be manufactured with the 3-micrometre Nb process from Hypres, it paves the 
way for the development of a full SPGA as soon as the manufacturing capability becomes 
available. 

The shift register input of the programmable frequency divider also makes it easy 
to interface with command words originating off-chip, and therefore allows easy 
programming through slow semiconductor microcontrollers.  However, the rf inputs 
(routed to the array of Toggle flip-flops) run completely asynchronously and can 
subsequently be clocked from dc to well past 10 GHz.  The output should merely be 
periodic at a frequency that is lower than that of the input by the pre-programmed 
division factor.  The maximum operating frequency of the PGA can therefore be 
established with ease. 
 This circuit also provides a platform for easy testing of RSFQ circuits and 
elements, and the T flip-flop can be exchanged for any other logic block when etching 
technology allows it. 
 In short, it has been proved through the designs in this chapter that RSFQ circuits 
can be designed to have all the flexibility and programmability of conventional 
semiconductor FPGAs, and that the construction of an SPGA is therefore indeed possible. 
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Chapter Six - Compact PFD 
 
 
 
 
 
 
6.1 INTRODUCTION 
 
AS a first test for the design process, a circuit that is simpler and smaller than the full 
SPGA-oriented PFD is designed.  This circuit allows testing of all the new components, 
as well as probe characterization. 
 The primary requirement of this circuit is, however, that it should be 
programmable by slow semiconducting electronics, and produce outputs that can be 
measured with basic rf laboratory equipment. 
 
6.2 FUNCTIONAL DESIGN 
 
The compact PFD consists of two Toggle flip-flops connected in cascade.  As with the 
PFD in Chapter 5, the Toggle flip-flop used is the T1 flip-flop [2]. 

The schematic circuit diagram is shown in Figure 6.1.  Operation of the compact 
PFD is easy to comprehend.  An rf input signal at Rf in is converted to SFQ pulses.  This 
pulse train is then split, with one arm feeding directly into a programmable switch.  The 
other arm feeds a cascade of T1 flip-flops, of which the outputs are also connected to 
switches.  The desired division factor is obtained by setting one of the three switches, 
thereby allowing it to pass its input pulse train to the output stage.  Here the pulse paths 
are merged before the output pulses are converted to voltage state signals. 
 

 
Figure 6.1:  Circuit schematic of compact programmable frequency divider 

 
Although there are only two Toggle flip-flops after the RF input, the compact PFD 
divides this input by 2, 4 or 8.  This is because each output converter (thus the SFQ-to-
DC converter and the HUFFLE) also operates as a T flip-flop that divides the SFQ output 
pulse train by a further factor of 2. 
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The HUFFLE used in this dissertation is a novel circuit that has not been tested 
physically before, and has a theoretical yield of less than 100 %.  It was thus decided to 
design another compact PFD in which the HUFFLE used for write selection is replaced 
by a bipolar current line driven by an off-chip source.  This circuit is shown in Figure 6.2. 
 The use of an externally driven write line allows a more reliable verification of the 
programmable switch circuit. 
 Both compact PFDs were added to an experimental chip layout (see Figure A.16 
and Figure A.17). 
 

 
Figure 6.2:  Circuit schematic of compact PFD without HUFFLEs 

 
6.3 PROGRAMMING SPECIFICATIONS AND TIMING 
 
The compact PFD does not need a high frequency clock, and can be programmed with 
low frequency electronics of, for example, the TTL or CMOS semiconductor logic 
families. 

The programming action requires only a 3-bit data word, one write bit (for the 
compact PFD with HUFFLEs), and a clock signal.  Timing diagrams are not shown here, 
since two clear examples of the programming sequence are shown in the top three traces 
of Figure 6.4. 
 It must be noted that the write bit must arrive during the same clock cycle as the 
third (least significant) bit of the data word, and that correct programming requires that 
only one bit in the data word is set.  There are therefore only four programming 
possibilities, as listed in Table 6.1. 
 

Table 6.1:  Full set of data words and programmable operations for compact PFD 

Data word (MSB to 
LSB) 

PFD operation 

000 No output 

001 Divide by 2 

010 Divide by 4 

100 Divide by 8 
 
For programming, data words are entered starting with the MSB. 
 Reset is accomplished by applying a dc voltage (or a voltage pulse) at Reset. 
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6.4 SYSTEM SIMULATIONS 
 
All simulations in the rest of this chapter are on the compact PFD with HUFFLEs, as the 
version without HUFFLEs is a simplification that functions exactly the same, with the 
exception of the write signal. 

A complete circuit schematic for system simulations is shown in Figure 6.3.  This 
circuit schematic contains more JTLs than that shown in Figure 6.1, since it was found 
during layout that more JTLs were needed to route SFQ pulses over the required 
distances.  This circuit schematic can be compared to the layout mask in Figure A.16. 

The simulation model includes the resistive dividers used to reduce the 5 Volt 
logic levels of off-chip electronics to the required levels for conversion to SFQ pulses.  
Since all lines on the probe that connects to the chip are 50 Ω transmission lines, high 
frequency connections are matched to 50 Ω. 
 

 
Figure 6.3:  Complete circuit diagram for simulation of the compact PFD 

 
The simulation results for the PFD in Figure 6.3 are shown in Figure 6.4.  All trace names 
in Figure 6.4 correspond to the labels in Figure 6.3, except for Vrf out 1 and Vrf out 2 which 
are measured at the terminals marked RF Out 1 and RF Out 2.  The simulation spans two 
programming and reset cycles.  The simulated hot logic input signals have a very high 
frequency, but this is merely to limit the simulation time.  In practice, these input signals 
can go down to dc. 
 The Huffle Preset input is shown as Ihuffle preset.  Observe the start-up preset pulse, 
followed by a continuous bias.  The start-up transient can be seen in Iwrite activate. 
 In the first programming sequence (from 300 ps to 1200 ps), the Data input is 
010.  The selected operation is divide-by-4 (see Table 6.1).  Three clock pulses (Vclock) are 
needed to shift the programming data in.  The Write input pulse during the third clock 
cycle activates the write sequence by setting a HUFFLE, and allows the third Clock input 
pulse to set the selected DCRLs.  The HUFFLE output current, Iwrite activate, is also 
displayed in Figure 6.4.  It is clear that the bipolar current is set to its positive value after 
the Write input pulse, and returned to the unset negative value by the third and final Clock 
input pulse. 
 A 10.25 GHz rf input signal (a popular intermediate frequency for millimetre 
wavelength systems) is then applied at RF In, starting at around 1.5 ns.  This signal is 
converted to an SFQ pulse train with a repetition rate of 10.25 GHz, which is shown as 
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Vch1.  The outputs of the T1 flip-flops are shown as Vch2 and Vch3.  Since the output of a T1 
flip-flop has half the frequency of its input, the repetition rates of Vch2 and Vch3 are 
5.125 GHz and 2.563 GHz respectively. 

The three switch outputs are shown in Vsw1, Vsw2 and Vsw3.  Since the second 
switch is set in the first programming sequence, it lets pulses through (visible in Vsw2 
between 1.75 ns and 3.1 ns). 

Vmerged sfq is measured after all three switch outputs are merged together, and 
represents the SFQ output of the PFD.  Between 1.8 ns and 3.2 ns it contains a pulse train 
with a repetition rate of 5.125 GHz (the same as the output of the second switch). 

The output SFQ pulses are converted to voltage state signals by both an SFQ-to-
DC converter (Vrf out 1) and a HUFFLE (Vrf out 2).  In Vrf out 1, the desired output signal is the 
envelope of the high frequency carrier.  Both output signals have a frequency of 
2.563 GHz, and it is clear from the simulation results that the divide-by-4 operation is 
therefore successful. 

 

 
Figure 6.4:  Simulated response of compact PFD to programming and reset signals and 

10.25 GHz rf input 
 



CHAPTER  6 – COMPACT PFD  89 

A reset signal (Vreset) is applied after 3 ns.  The rf outputs stop soon thereafter, even 
though an rf input is still applied.  A second programming sequence using Data input 001 
(divide-by-2) is then commenced (between 3.6 ns and 4.5 ns), and the first switch is 
consequently set.  The rf output signals then only have half the frequency of the rf input, 
or 5.125 GHz.  These output signals appear between 4.8 ns and 5.8 ns, after which the 
PFD is reset once more. 
 The simulation results clearly show that the compact PFD functions correctly – 
even with simulated CMOS programming input signals entering through transmission 
lines. 
 

 
Figure 6.5:  CMOS logic level to SFQ pulse interface 

 
Figure 6.5 shows an enlargement of the interface for CMOS logic levels to SFQ pulses.  
If the CMOS high logic level is lower than 5 V, the 7 kΩ resistor can be adjusted to trim 
the input voltage so that the DC-to-SFQ converter receives a maximum input current of 
360 µA.  The on-chip 50 Ω matching elements are generic, although only the high 
frequency Rf in line is matched to 50 Ω off-chip. 

In order to keep simulation times short, all off-chip 50 Ω transmission lines are 
modelled to have a delay time of 100 ps, and on-chip transmission lines only 10 ps.  
Simulation results for the logic conversion circuit in Figure 6.5 are shown in Figure 6.6. 
 

 
Figure 6.6:  Simulated progression from CMOS logic level to SFQ pulse 

 
The compact PFD in Figure 6.3 uses a HUFFLE configured for T flip-flop operation as a 
hot logic interface (see the discussion in section 4.4.1.2).  An extract portraying only the 
T flip-flop HUFFLE and the voltage state output is shown in Figure 6.7.  The impedance 
of the 20 Ω transmission line was chosen (after simulations on several values) to be small 
enough to make it practically realizable on chip, but large enough not to load the 
HUFFLE and cause erroneous state changes. 
 The output is matched to 50 Ω at the chip edge because it is an rf signal. 
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Figure 6.7:  Schematic diagram showing HUFFLE connected as T flip-flop with voltage 

output 
 
Simulation results for the HUFFLE configured as a T flip-flop, and with a voltage output, 
are shown in Figure 6.8.  The results were generated for the same programming 
sequences as used for those in Figure 6.4.  The synchronized Set and Reset inputs can be 
seen, as well as the progression from output current to voltage.  Once again the 
transmission line between the circuit border and chip edge has a delay of 10 ps, whereas 
that of the line between the chip edge and 50 Ω load is 100 ps. 
 The amplitude of the output voltage (Vout 3) is roughly 300 µVpeak, or about 
-60 dBm into a 50 Ω load.  Although low noise amplification is clearly needed, the signal 
is large enough to be detected by a spectrum analyzer. 
 

 
Figure 6.8:  Simulated transient response of HUFFLE connected as a T flip-flop with 

voltage output 
 
6.5 LAYOUT 
 
The University of Stellenbosch does not have an automated layout generator, so that all 
layouts discussed here and in Appendix A were created manually. 
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6.5.1 Change of layer process specifications 
 
 
The old order changeth, yielding place to the new. 
 Tennyson, The Idylls of the King 
 
 
In March of 2003, Hypres updated their layer process specifications [16] for the first time 
in six years.  This resulted in a new definition of junction capacitance (up to 50 fF/µm2 
for the 1 kA/cm2 junction, compared to the 38 fF/µm2 used until then in simulation 
models).  The mask-to-wafer junction area bias was also changed, as were several design 
rules and tolerances.  The most important of these is the thickness of layer M1, which is 
now defined as 135 nm instead of the 200 nm used earlier. 
 The design rule change necessitated Monte Carlo yield checks on all the circuits 
developed for this project, as well as changes to all layouts.  Fortunately, the effect on 
inductance was small, with inductors between M2 and ground, and M3 and ground 
remaining unchanged.  Inductance between M1 and ground increased on average by 
2.5 %, although the reduction the mask-to-wafer bias from –0.9 µm to  
–0.3 µm caused the inductance of some existing layouts to be as much as 10 % high. 
 The final layouts and circuit diagrams all incorporate the latest design rules.  Only 
some results in Chapters 2 and 3 that were calculated before the design rule change still 
use the old rules, but conclusions drawn from these results are still valid. 
 
6.5.2 Microstrip discontinuities and matching 
 
In high frequency microstrip lines above a ground plane, such as for the rf inputs in the 
PFD, reflections off right-angle bends can be reduced if they are chamfered.  Such a 
compensated right-angle bend, with the dielectric and ground plane omitted, is shown in 
Figure 6.9.  The microstrip line has width w, and the dielectric has a thickness h (the 
height of the microstrip line above the ground plane).  The chamfer makes an angle of 45 
degrees with the arms of the microstrip line. 
 

 
Figure 6.9:  Chamfered bend in microstrip line 

 
For optimal compensation when 25.0≥hw , 251 ≤≤ rε  and mmGHz 10 ⋅<⋅ hf  [66], 
the relation 
 

( )hwds /35.1exp65.052.0/ −+=  (6.1) 
 
holds true [66] [67]. 
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 The Hypres design rules limit the metallic layer masks to a snapped grid of 
0.5 µm, so that the optimally compensated chamfer can never quite be attained.  The 
mask-to-wafer bias also needs to be accounted for. 
 Examples of chamfered bends in used in this dissertation can be seen in the layout 
diagrams in Figure A.16 and Figure A.17.  Bends in low frequency (digital input) and dc 
lines were not compensated. 
 
6.5.3 Discussion on the size of Josephson junction top pads. 
 
Josephson junctions are used here with very large top cover pads (in M2), typically 
matching the size of the M1 bottom pads.  It is common to find that other RSFQ research 
groups use smaller structures in M2 (see for example the 3D representation in [25]). 
 The larger top covers are used here to reduce the overall inductance of the 
connection above the mandatory M1 bottom pad, thereby allowing greater distances 
between neighbouring junctions. 
 Furthermore, and as far as is possible, junction top pads are made square.  Such 
pads add the same inductance to any incoming inductor, independent of the direction 
from which the inductor connects.  The standard value for the inductance that a 10 µm × 
10 µm junction cover pad in M2 adds to the inductance between an incoming line and the 
normal 250 µA Josephson junction, has been found from repeated simulations on various 
structures to vary between 0.3 pH and 0.42 pH, depending on the size of the pad and the 
width of the transmission line.  For fast layout, 0.3 pH is used as a design rule of thumb.  
Then, once the inductance layout is complete, a FastHenry analysis is performed to 
determine the real inductance. 
 
6.5.4 Moats 
 
 
Res dura, et regni novitas me talia cogunt molire, et late fines custode tueri. 
(Harsh necessity and newness of my kingdom force me to do such things, and to guard all 
the frontiers.) 
 Virgil, Aeneid 
 
 
In order to avoid flux trapping in Josephson junctions when a circuit is cooled to beneath 
TC, moats are etched in the ground plane near junctions [68] [69].  These holes trap 
magnetic flux, and protect the junctions. 
 The preferred technique here is to use long rectangular moats, for which good 
results have been obtained [69]. 
 The layout masks in Appendix A clearly show that all the Josephson junctions in 
the layouts are surrounded by moats.  Unlike the moats used by some other researchers, 
those in the layout of the compact PFD do not surround entire circuit blocks.  Moats were 
kept to between 10 and 20 micrometres in length in order to surround and protect only the 
Josephson junctions, and limit the possible detrimental effects on the inductance of lines 
near the moats. 
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6.6 CONCLUSIONS 
 
A compact PFD has been developed that allows easy testing of the novel latches as well 
as the concept of reprogrammability.  A circuit layout of the compact PFD has been 
completed, and this layout was then used to create a simulation model that describes the 
PFD along with its hot logic interfaces. 
 Simulations were performed to show that the PFD will function correctly, and can 
be addressed with semiconductor microcontrollers, thus paving the way for the 
implementation of larger, more complex reprogrammable circuits. 
 Some layout considerations were also discussed. 
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Chapter Seven - Towards a full SPGA 
 
 
 
And there was something else, the instinct that propelled him out of bed into each 
unwelcoming day, and that was the desire to know. 
 Robert Harris, Fatherland 
 
 
 
7.1 INTRODUCTION 
 
THERE is considerable interest at the University of Stellenbosch in the design and 
manufacture of a superconducting programmable gate array (SPGA), and a conceptual 
discussion on the SPGA has already been done [61].  However, the construction of an 
SPGA has not been addressed adequately at circuit level before, and address decoding 
and programming architectures for an SPGA have never before been investigated. 
 The SPGA requires a considerable amount of logic and routing structures, and 
cannot yet be implemented in integrated circuits.  However, this does not prevent us from 
exploring the design of an SPGA in expectation of the day when deep submicrometre 
etching resolutions and self-damped Josephson junctions make the construction and 
testing thereof possible. 
 The generic FPGA (see Figure 5.2) as a starting point for the design of an SPGA 
has already been discussed in section 5.2.  Data input, output and routing structures, as 
well as switches, have also been covered in detail in Chapters 5 and 6.  The optimum 
strategy as far as the number of interconnect resources and switch boxes required to 
implement a practical SPGA is a research project in itself, and extends beyond the scope 
of this dissertation.  The designs detailed here are therefore first-generation, and merely 
serve to demonstrate the component level design of SPGAs. 

Apart from a short note on switch boxes, this chapter is therefore dedicated to an 
overview of the building blocks and programming architecture needed to implement a 
configurable logic block. 
 
7.2 SWITCH BOXES 
 
Switch boxes (see Figure 5.2) occur where routing channels consisting of several data 
tracks cross each other. 

[61] shows a simple switch box implementation, wherein the crossing between 
two channels – each with four tracks – has only four Crossbar switches.  This allows each 
track in a channel access to only one of those in the other channel, and limits the amount 
of routing possibilities. 

The opposite extreme is to place a Crossbar switch at the crossing of every data 
track.  This will require 16 Crossbar switches for a switch box at a four-track channel 
crossing.  However, it is possible to reduce this number in practice while retaining good 
routing flexibility [62].  A switch box can be implemented using only the Crossbar and 
Inline switches developed in Chapter 5, but the optimization thereof for maximum 
interconnection flexibility goes beyond the scope of this dissertation. 
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7.3 SUBSYSTEMS OF A CONFIGURABLE LOGIC BLOCK 
 
The CLB performs all logic functions in an FPGA.  Each manufacturer of semiconductor 
FPGAs has a different approach to creating a CLB [60], and the design of a full CLB for 
an SPGA is a project in itself.  The discussion in this chapter will thus be limited to the 
most important subsystems of a generic CLB, namely the lookup table with its address 
decoder and programming interface (because they can be constructed with the novel 
latches developed in Chapter 4). 

Any remaining logic functions in a CLB can be realized with the standard set of 
RSFQ gates and latches [2] [3] and some clever clock-shifting. 

 
7.3.1 Lookup table with 4-to-16 address decoder 
 
The central component of the CLB of a generic FPGA is a lookup table.  In such a CLB, 
four data inputs (labelled A to D) are decoded by a global chip clock to an address in a 
16-element lookup table.  The corresponding cell in the lookup table is then read out for 
further processing within the CLB.  Since we are for now only interested in the lookup 
table and address decoder, these components are shown as a simplified schematic circuit 
diagram in Figure 7.1.  Note that reset and preset lines are omitted for clarity. 

The lookup table consists of 16 DCRLs, each of which stores one bit and is 
uniquely addressable.  In order to limit the number of components needed to create the 
address decoder, and also to reduce the decoding operation to a single-clock event, 
standard RSFQ logic gates such as AND- or OR-gates can be avoided in favour of current 
coupling. 

The technique preferred here is to convert each of the four input bits to a bipolar 
current through the use of a HUFFLE.  The current lines then couple to the SQUID loops 
of 16 Current-Set switches;  each of which is read by the global clock signal.  After every 
switch, one current line changes direction so that each switch is coupled to a unique 
combination of current lines going up or down.  This means that, for any combination of 
data inputs at A, B, C and D in Figure 7.1, only one Current-Set switch will be coupled to 
four currents in the correct direction to induce switching.  This switch then lets the clock 
pulse through, which reads out the corresponding DCRL in the LUT.  The cell addresses 
are listed in Table 7.2. 

Despite the apparent occupation of a lot of die space by the circuit in Figure 7.1, 
the lines carrying the address decoder currents are very narrow (in the order of 3 
micrometres), and 4 of each can pass underneath either side of the dc tee-in of the inter-
junction inductance in a long JTL.  Pulse routing from the rippled clock line to the DCRL 
elements in the LUT is therefore not obstructed.  Since these lines cross the clock input 
lines perpendicularly, there are also no stray induced currents that can inhibit the 
switching action of either the pulse splitters or the switch read inputs. 

HUFFLEs are quite useful in small decoders such as this one, where large currents 
are needed to couple into reading elements.  For larger decoders, with more coupling 
lines, the cumulative uncertainty in the induced current may be too large. 

HUFFLEs are also slow elements, with switching speed derating inversely 
proportional to loop inductance, so that switching speeds for circuits based on the 3 
micrometre process may be between 1 GHz and 5 GHz, depending on the inductance of 
the control current lines. 
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Figure 7.1:  Simplified schematic circuit diagram of 4-to-16 address decoder connected to 

16-element LUT 
 
A 3D inductance model for the calculation of the self- and mutual inductances of the dc 
SQUID loop of a Current-Set switch and the four control lines is shown in Figure 7.2. 

Calculations on the U-bended model in Figure 7.2 showed that the coupling 
coefficients between control lines and the SQUID loop A-B are smaller for control lines 
that are further from the junctions.  In this instance, k between A-B and I-J is less than 
half that between A-B and C-D.  This is a result of current density in the SQUID loop 
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being higher on the inside of the U-bend, and means that currents flowing through the 
different control lines will each induce a different amount of current in A-B. 

 

 
Figure 7.2:  3D inductance calculation model for U-bended dc SQUID loop and 4 control 

lines, with images included (vertical dimensions stretched for clarity) 
 
 A better way to structure the dc SQUID loop is to use symmetry to create nearly 
equal coupling coefficients.  An example of such a structure is shown in Figure 7.3.  
FastHenry indeed shows that the coupling coefficients between each control line and A-B 
are nearly equal. 
 

 
Figure 7.3:  3D inductance calculation model for chicaned dc SQUID loop and 4 control 

lines, with images included (vertical dimensions stretched for clarity) 
 
Preliminary simulations on an address decoder such as the one in Figure 7.1, with the 
coupling factors between the SQUID loop and each control line selected to be one quarter 
of the k between a single control line and the loop of a standard Current-Set switch, show 
that the Current-Set switches select properly.  The only problem is that switches for 
which two or less control currents differ in direction from those of the base (or zero) input 
state for the CLB do not reset properly when the clock resets the input HUFFLEs.  The 
reason is that the dc SQUID switching curve demands that the total control current must 
go negative (or close to zero) for the SQUID to reset.  This only happens when two or 
more control currents are reversed. 

Several solutions to the reset problem can be implemented.  One such solution 
would be to use pulsed control currents in a fifth control line to reset each switch after 
every clock cycle.  However, this will increase circuit overhead, so that a better solution 
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is simply to deform the SQUID switching curve by the application of a constant control 
current in a fifth control line.  With this bias control technique, the Current-Set switch 
resets whenever one or more of the control currents flow in the direction opposite to that 
required for switch selection. 

The 3D inductance model for such a SQUID loop is shown in Figure 7.4, with the 
bias control line clearly visible in the top metal layer. 

A discrete logic gate address decoder can also be implemented, but at the cost of 
added clock cycles and large space occupation. 

 

 
Figure 7.4:  3D inductance calculation model for chicaned dc SQUID loop with 5 control 

lines (vertical dimensions stretched and images omitted for clarity) 
 

 
Figure 7.5:  Circuit diagram of Current-Set switch altered to interface 4 select control lines 

and 1 bias control line 
 
A circuit diagram of the Current-Set switch with 5 control lines is shown in Figure 7.5.  
The coupling coefficients between the SQUID loop and control line inductances are listed 
in Table 7.1. 
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Table 7.1:  Coupling coefficients of coupled lines in Current-Set switch with 5 control lines 

 SQUID 
loop  

Control 
line 1 

Control 
line 2 

Control 
line 3 

Control 
line 4 

Bias 
control 

SQUID loop – 0.0963 0.11 0.11 0.0963 0.4364 
Control line 1 0.0963 – 0.0639 0.0458 0.037 0.0551 
Control line 2 0.11 0.0639 – 0.0593 0.0458 0.0450 
Control line 3 0.11 0.0458 0.0593 – 0.0639 0.0450 
Control line 4 0.0963 0.037 0.0458 0.0639 – 0.0551 
Bias control 0.4364 0.0551 0.0450 0.0450 0.0551 – 

 

Table 7.2:  Cell addresses for the 16-element lookup table 

LUT cell 
number 

Address 
[I4 I3 I2 I1] 

0 1111 
1 1110 
2 1100 
3 1101 
4 1001 
5 1011 
6 1010 
7 1000 
8 0000 
9 0001 

10 0011 
11 0010 
12 0110 
13 0100 
14 0101 
15 0111 

 
Simulation results for the LUT address decoder in Figure 7.1 are shown in Figure 7.6.  
The four addresses decoded in Figure 7.6(a) are for cell 0, 1, 2 and 3.  In Figure 7.6(b), 
the addresses for cells 4, 8, 7 and 4 are decoded.  The simulated clock frequency is 
1.25 GHz.  The pulse splitters of the clock distribution section in Figure 7.1 were replaced 
with concurrent piece-wise linear voltage sources to simplify and shorten the simulation. 
 

  
(a) (b) 

Figure 7.6:  Simulated response of 4-to-16 address decoder 
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The clock signal is not shown in Figure 7.6;  only the bipolar address currents and a few 
Current-Set switch outputs. 
 The bit values of the bipolar address currents I1, I2, I3 and I4 in Figure 7.6 
correspond to the addresses listed in Table 7.2.  Although not shown here, clock pulses 
are applied to the read input of every Current-Set switch in the address decoder every 
800 ps, starting at 1 ns.  Only one switch at a time is read out, for instance switch (LUT 
cell number) 0 at 1 ns, when the address is 1111.  The simulations show that the address 
decoder functions correctly, so that it can be used in an SPGA. 
 
7.3.2 LUT programming architecture 
 
A conceptual design for the LUT programming architecture is shown as a schematic 
circuit diagram in Figure 7.7.  The LUT shown here has only 4 elements, but the pattern 
for extension to 16 elements is obvious.  As usual, all the DCRLs share a global reset line, 
and the HUFFLEs a global preset line.  These reset and preset lines are omitted from 
Figure 7.7 because their connections are obvious. 

Outputs are provided for the LUT data and configuration clock signals, so that it is 
also possible to hook all the CLBs in a column (of an SPGA) to the same long serial 
register and program an entire CLB column with a single long data word.  Such a data 
word would then be converted to SFQ pulses only once, right before it enters the first 
CLB. 

Alternatively, the LUT data input and configuration clock can be distributed as 
voltage state signals to every CLB, where a DC-to-SFQ converter can change it to SFQ 
pulses.  In this case all CLBs will receive every data word, but only one will be set to the 
write mode when the data word has been shifted in. 
 

 
Figure 7.7:  Simplified schematic circuit diagram of 4-element LUT programming 

architecture 
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Circuit operation is easy to comprehend.  The sole purpose of the programming 
architecture is to route a programming data word to the Set inputs of the DCRLs that form 
the lookup table. 
 Programming data are entered at Lutdata In, and shifted in by Configure Clock.  A 
pulse at Program In during the last cycle of the configuration clock is used to set the 
HUFFLE that opens the DCRL Set inputs to the programming data.  If a switch 
programming architecture such as that in Figure 5.11 is used, the Program In signal will 
be fed by the SFQ row programming track.  In order to let the Program In pulse into the 
CLB, a positive current must be applied to Write Select In during the time frame in which 
the Program In pulse is expected.  This Write Select In current is driven by a bipolar 
column program line as shown in Figure 5.11.  Setting the CLB to the programming 
mode is therefore equivalent to programming a switch in a switch matrix, as discussed in 
section 5.5. 

The programming sequence for a 16-element LUT, configured in the same way as 
the 4-element version in Figure 7.7, is shown in Figure 7.8.  LUT data are read in starting 
with that of the last element.  Sixteen clock cycles are needed to complete the 
programming of one LUT.  The sixteenth clock also resets the write sequence, which 
must be started a finite time (tD1) after the application of the fifteenth clock pulse.  This 
time delay is necessary to allow the clock signal to propagate to the Reset input of the 
HUFFLE in the LUT (see Figure 7.7) before the Program In pulse arrives at the Set input 
of the same HUFFLE.  The time delay depends on layout factors, and a precise value 
cannot yet be supplied. 
 

 
Figure 7.8:  Programming sequence of 16-element LUT 

 
Simulation results for the circuit model in Figure 7.7 are shown in Figure 7.9.  Trace 
names correspond to the labels in Figure 7.7.  The data input (Vdata) is 1001. 
 The other inputs, namely the configuration clock (Vcfg clk), column programming 
current (Iselect) and row programming SFQ voltage (Vprgrm) are also shown. 
 The HUFFLE set input (Vset) receives an SFQ pulse when Iselect is positive and an 
input pulse at Program In (Vprgrm) is passed through the upper left Current-Set switch in 
Figure 7.7.  This pulse sets the HUFFLE, and Ibias flips to its positive value.  Vreset shows 
the delayed configuration clock, which serves to reset the HUFFLE and return Iread to its 
negative value.  While Iread is positive, programming data shifting through the DRO shift 
register also pass through to the DCRL Set inputs in the lookup table.  The decoded 
programming word is visible in VLUT1, VLUT2, VLUT3 and VLUT4.  The pulse on VLUT4 is 
released earlier than the one on VLUT1, since the configuration clock reaches the last DRO 
first. 
 These simulations show that a simple and effective programming circuit for the 
lookup table of an SPGA does indeed function correctly. 
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Figure 7.9:  Simulated programming of 4-cell LUT 

 
7.4 CONCLUSIONS 
 
The SPGA is still a conceptual circuit, and will remain so until the etching resolution for 
superconducting circuits improves to sub-micrometre distances.  The super tile suggested 
by [61] can thus not yet be constructed. 
 However, elementary circuits for constructing lookup tables, address decoders and 
programming logic for a configurable logic block in an SPGA have been designed and 
simulated in this dissertation.  These circuits utilize the latches introduced in Chapter 4, 
and build on simulation and layout results obtained from the less complicated 
programmable devices developed in Chapters 5 and 6.  Together with the routing and 
switching structures discussed in Chapter 5, these circuits form a basis from which 
SPGAs can be designed when technology finally progresses far enough. 
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Chapter Eight - Conclusions 
 
 
 
This lukewarmness arises… partly from the sceptical temper of men, who do not really 
believe in new things unless they have been seen to work well. 
 Niccolò Machiavelli, The Prince 
 
 
 
THIS dissertation describes a systematic approach to the design, optimization, layout and 
verification of superconducting logic circuits based on the RSFQ family. 
 For circuit optimization, genetic algorithms were implemented from first 
principles.  A program was also developed to handle the entire optimization process, from 
changing the raw Spice circuit file to a Monte Carlo simulation file right through to 
performing genetic operations and simulations on the circuit files and evaluating the 
results.  Very good results were obtained with these algorithms, even when circuits with 
very low yields were optimized.  The genetic optimizer was also compared to a random 
optimization technique (which was also programmed into the optimization software), and 
found to be better.  Monte Carlo models based on actual layout tolerances were also 
developed and implemented. 
 For the verification of layout quality, with specific emphasis on inductance, 
routines for the construction of 3D models for use in FastHenry were implemented and 
verified.  These routines performed so well that all inductance calculations for actual 
layout problems were conducted in this way.  The program with which the inductance 
models are generated was also adapted to allow the inclusion of random variations, based 
on manufacturing tolerances, in the dimensional parameters of the models.  In this way it 
is now possible to establish the true effect of process tolerances on the inductance of a 
specific layout structure. 
 With the problems of optimization and layout verification successfully addressed, 
novel latches for the RSFQ and COSL families, often with non-destructive read 
capability, were designed and simulated.  These latches were then used as the primary 
building blocks of reprogrammable circuits.  The first of these reprogrammable circuits 
was a programmable frequency divider based on the routing infrastructure of an FPGA.  
In this way, the first elements needed for a more ambitious SPGA were developed and 
analysed.  A more compact PFD was then developed to ease layout and implementation, 
and also to provide a test platform for the novel latches. 
 Finally an overview of the remaining considerations for the design of a full SPGA 
were treated, and some design problems were identified and solved. 

The work in this dissertation proves that fully functional SPGAs can be 
implemented with RSFQ logic and some hybrid memory elements.  A tool kit with clear 
design examples has also for the first time been assembled for the development of such 
SPGAs. 
 
 



REFERENCES  104 

References 
 
 
 
 
 
 
[1] K. K. Likharev, V. K. Semenov, “RSFQ logic/memory family: A new Josephson-

junction technology for sub-terahertz-clock-frequency digital systems,” IEEE 
Transactions on Applied Superconductivity, vol. 1, no. 1, pp. 3-28, March 1991. 

 
[2] Stony Brook University Homepage:  

http://pavel.physics.sunysb.edu/RSFQ/RSFQ.html. 
 
[3] C. J. Fourie, A 10 GHz Oversampling Delta Modulating Analogue-to-Digital 

Converter Implemented with Hybrid Superconducting Digital Logic, MScEng 
thesis, Department of Electronic Engineering, University of Stellenbosch, South 
Africa, March 2001. 

 
[4] M. Jeffery, W. Perold, T. Van Duzer, “Superconducting complementary output 

switching logic operating at 5-10 Gb/s,” Applied Physics Letters, vol. 69, no. 18, 
pp. 2746-2748, 28 October 1996. 

 
[5] W. J. Perold, M. Jeffery, Z. Wang, T. Van Duzer, “Complementary output 

switching logic - A new superconducting voltage-state logic family,” IEEE 
Transactions on Applied Superconductivity, vol. 6, no. 3, pp. 125-131, 
3 September 1996. 

 
[6] W. J. Perold, “Complementary Output Switching Logic:  a superconducting 

voltage-state logic family operating at microwave frequencies,” in Proceedings of 
the 1998 South African Symposium on Communications and Signal Processing:  
COMSIG ’98, pp. 435-440, 1998. 

 
[7] F.J. Rabie, “Superconducting COSL building blocks for ultra-high speed logic 

circuits,” MScEng Thesis, Department of Electronic Engineering, University of 
Stellenbosch, South Africa, 1999. 

 
[8] Whiteley Research Inc., 456 Flora Vista Avenue, Sunnyvale, CA 94086. 

Homepage: http://www.srware.com/. 
 
[9] M. Jeffery, W. J. Perold, Z. Wang, T. Van Duzer, “Monte Carlo optimization of 

complementary output switching logic circuits,” IEEE Transactions on Applied 
Superconductivity, vol. 8, no. 3, pp. 104-119, September 1998. 

 
[10] C. A. Hamilton, K. C. Gilbert, “Margins and yield in single flux quantum logic,” 

IEEE Transactions on Applied Superconductivity, vol. 1, no. 4, pp. 157-163, 
December 1991. 

 



REFERENCES  105 

[11] Q. P. Herr, M. J. Feldman, “Multiparameter optimization of RSFQ circuits using 
the method of inscribed hyperspheres,” IEEE Transactions on Applied 
Superconductivity, vol. 5, no. 2, pp. 3337-3340, June 1995. 

 
[12] W. J. Perold, private communication. 
 
[13] T. Bäck, U. Hammel, H-P. Schwefel, “Evolutionary computation:  comments on 

the history and current state,” IEEE transactions on Evolutionary Computation, 
vol. 1, no. 1, pp. 3-17, April 1997. 

 
[14] J. R. Koza, Genetic Programming:  On the programming of computers by means 

of natural selection, The MIT Press, 1992. 
 
[15] K. A. De Jong, “An analysis of the behaviour of a class of genetic adaptive 

systems,” PhD thesis, Dept. Computer and Communication Sciences, University 
of Michigan, Ann Arbor, MI, 1975. 

 
[16] Hypres, 175 Clearbrook Road, Elmsford, New York 10523, Niobium Design 

Rules, rev. 019, March 2003. 
 
[17] Sergey K. Tolpygo, Director of Fabrication, Hypres Inc., private communication. 
 
[18] P. Z. Peebles,  Probability, Random Variables, and Random Signal Principles, 

Third Edition, McGraw-Hill, Inc., 1993. 
 
[19] W. J. Perold, C. J. Fourie, “Modeling superconducting components based on the 

fabrication process and layout dimensions,” IEEE Transactions on Applied 
Superconductivity, vol. 11, no. 1, pp. 345-348, March 2001. 

 
[20] C. J. Fourie, W. J. Perold, “Yield optimization of high frequency superconducting 

digital circuits with genetic algorithms,” SAIEE Transactions, vol. 94, no. 2, 
pp. 11-17, July 2003. 

 
[21] J. M. Johnson, Y. Rahmat-Samii, “Genetic algorithms in engineering 

electromagnetics,” IEEE Antennas and Propagation Magazine, vol. 39, no. 4, pp. 
7-21, August 1997. 

 
[22] C. J. Fourie, W. J. Perold, “Comparison of genetic algorithms to other 

optimization techniques for raising circuit yield in superconducting digital 
circuits,” IEEE Transactions on Applied Superconductivity, vol. 13, no. 2, pp. 
511-514, June 2003. 

 
[23] W. H. Chang, “The inductance of a superconducting strip transmission line,” 

Journal of Applied Physics, vol. 50, no. 12, pp. 8129-8134, December 1979. 
 
[24] C. J. Fourie, W. J. Perold, “On using finite segment methods and images to 

establish the effect of gate structures on inter-junction inductances in RSFQ 
circuits,” IEEE Transactions on Applied Superconductivity, vol. 13, no. 2, pp. 
539-542, June 2003. 

 



REFERENCES  106 

[25] B. Guan, M. J. Wengler, P. Rott, M. J. Feldman, “Inductance estimation for 
complicated superconducting thin film structures with a finite segment method,” 
IEEE Transactions on Applied Superconductivity, vol. 7, no. 2, pp. 2776-2779, 
June 1997. 

 
[26] M. Kamon, M. J. Tsuk, J. K. White, “FastHenry:  A multipole-accelerated 3-D 

inductance extraction program,” IEEE Transactions on Microwave Theory and 
Techniques, vol. 42, no. 9, pp. 1750 – 1758, September 1994. 

 
[27] K. Gaj, Q. P. Herr, M. J. Feldman, “Parameter variations and synchronization of 

RSFQ circuits,” Applied Superconductivity, D. Dew-Hughes, Ed.  Bristol, U.K.: 
Inst. Physics, pp. 1733-1736, 1995. 

 
[28] W. H. Chang, “Numerical calculation of the inductances of a multi-

superconductor transmission line system”, IEEE Transactions on Magnetics, vol. 
MAG-17, no. 1, pp. 764-766, January 1981. 

 
[29] S. R. Whiteley, FastHenry Version 3.0wr, February 2001.  Available via the 

Whiteley Research homepage:  http://www.srware.com. 
 
[30] The MathWorks, Inc., 24 Prime Park Way, Natick, Massachusetts 01760, Matlab 

Version 4 for Windows, Homepage:  http://www.mathworks.com. 
 
[31] S. R. Whiteley, Sline Version 1.0, June 1996.  Available via the Whiteley 

Research homepage:  http://www.srware.com. 
 
[32] J. Fleischman, Induct.  Available via the Whiteley Research homepage:  

http://www.srware.com. 
 
[33] M. M. Khapaev, LL.  Available from the Moscow state university website:  

http://www.cmc.msu.ru/vm/sotr/vmhap/ . 
 
[34] M. M. Khapaev, 3D-MLSI.  Available from the Moscow state university website:  

http://www.cmc.msu.ru/vm/sotr/vmhap/ . 
 
[35] M. Kamon, L. M. Silveira, C. Smithhisler, J. White, FastHenry User’s Guide, 

Massachusetts Institute of Technology, 1996. 
 
[36] C. K. Teh, M. Kitagawa, Y. Okabe, “Inductance calculation of 3D 

superconducting structures with ground plane,” Supercond. Sci. Technol., vol. 12, 
pp. 921-924, 1999. 

 
[37] C. J. Fourie, W. J. Perold, “Reflection plane placement in numerical inductance 

calculations using the method of images for thin-film superconducting structures,” 
SAIEE Transactions, vol. 94, no. 2, pp. 18-24, July 2003. 

 
[38] K. D. Palmer, private communication. 
 
[39] S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and waves in communication 

electronics, Third edition, John Wiley & Sons, Inc., 1994. 



REFERENCES  107 

 
[40] L. E. Alsop, A. S. Goodman, F. G. Gustavson, W. L. Miranker, “A numerical 

solution of a model for a superconductor field problem,” Journal of 
Computational Physics, vol. 31, p. 216-239, 1979. 

 
[41] T. P. Orlando, K. A. Delin, Foundations of applied superconductivity, Addison-

Wesley Publishing Company, 1991. 
 
[42] T. Van Duzer, C.W. Turner, Principles of superconductive devices and circuits, 

Second Edition, Prentice-Hall, Inc., 1999. 
 
[43] M. Radparvar, Hypres Inc., private communication. 
 
[44] J. W. Nilsson, Electric Circuits, Fourth Edition, Addison-Wesley Publishing 

Company, pp. 506-526, 1993.  
 
[45] G. Hildebrandt, F. H. Uhlmann, G. M. Daalmans, F. R. Bömmel, “A novel 

approach in calculating V-I curves of a dc-SQUID coupled to a planar input coil,” 
IEEE Transactions on Applied Superconductivity, vol. 6, no. 1, pp. 19-23, March 
1996. 

 
[46] A. H. Miklich, J. X. Przybysz, T. J. Smith, “Superconducting thin-film 

transformers at microwave frequencies,” IEEE Transactions on Applied 
Superconductivity, vol. 9, no. 2, pp. 3062-3065, June 1999. 

 
[47] B. Dimov, H. Toepfer, H. F. Uhlmann, “Analysis of electromagnetic coupling 

effects in integrated Josephson junction logic devices by the FDTD technique,” 
IEEE Transactions on Applied Superconductivity, vol. 11, no. 1, pp. 1002-1005, 
March 2001. 

 
[48] A. F. Kirichenko, “High-speed asynchronous data multiplexing/demultiplexing,” 

IEEE Transactions on Applied Superconductivity, vol. 9, no. 2, pp. 4046-4048, 
June 1999. 

 
[49] L. Zheng, N. Yoshikawa, J. Deng, X. Meng, S. Whiteley, T. Van Duzer, “RSFQ 

multiplexer and demultiplexer,” IEEE Transactions on Applied Superconductivity, 
vol. 9, no. 2, pp. 3310-3313, June 1999. 

 
[50] I. Kurosawa, A. Yagi, H. Nakagawa, H. Hayakawa, “Single flux-quantum 

Josephson memory cell using a new threshold characteristic,” Applied Physics 
Letters, vol. 43, no. 11, pp. 1067-1069, 1 December 1983. 

 
[51] A. F. Kirichenko, S. Sarwana, D. K. Brock, M. Radparvar, “Pipelined dc-powered 

SFQ RAM,” IEEE Transactions on Applied Superconductivity, Vol. 11, no. 1, pp. 
537-540, March 2001. 

 
[52] M. Morisue, M. Kaneko, H. Hosoya, “A content addressable memory using 

Josephson Junctions,” IEEE Transactions on Applied Superconductivity, vol. 1, 
no. 1, pp. 48-53, March 1991. 

 



REFERENCES  108 

[53] A. F. Hebard, S. S Pei, L.N. Dunkleberger, T.A. Fulton, “A dc-powered 
Josephson flip-flop,” IEEE Transactions on Magnetics, vol. 15, pp. 408-411, 
1979. 

 
[54] Y. Hatano, H. Nagaishi, S. Yano, K. Nakahara, H. Yamada, S. Kominami, M. 

Hirano, “An all dc-powered Josephson logic circuit,” IEEE Journal of Solid-State 
Circuits, vol. 26, no. 8, pp. 1123-1132, August 1991. 

 
[55] Y. Hatano, H. Nagaishi, K. Nakahara, U. Kawabe, “Performance analysis of the 

Josephson dc flip-flop,” IEEE Transactions on Applied Superconductivity, vol. 2, 
no. 3, pp. 148-155, September 1992. 

 
[56] H. Hasegawa, H. Nagaishi, S. Kominami, H. Yamada, T. Nishino, “A dc-powered 

Josephson logic family that uses hybrid unlatching flip-flop logic elements 
(Huffles),” IEEE Transactions on Applied Superconductivity, vol. 5, no. 4, pp. 
3504-3510, December 1995. 

 
[57] D. F. Schneider, J. C. Lin, S. V. Polonsky, V. K. Semenov, “Broadband 

interfacing of superconducting digital systems to room temperature electronics,” 
IEEE Transactions on Applied Superconductivity, vol. 5, no. 2, pp. 3152-3155, 
June 1995. 

 
[58] D. M. Pozar, Microwave and rf design of wireless systems, John Wiley & Sons, 

2001. 
 
[59] B. Razavi, Design of analog CMOS integrated circuits, McGraw Hill, pp.572-574, 

2001. 
 
[60] S. D. Brown, R. J. Francis, J. Rose, Z. G. Vranesic, Field-programmable gate 

arrays, Kluwer Academic Publishers, 1992. 
 
[61] P. Gross, Development of a rapid single flux quantum field programmable gate 

array, BEng thesis, Department of Electronic Engineering, University of 
Stellenbosch, South Africa, 2000. 

 
[62] S. Brown, J. Rose, Z. G. Vranesic, “A detailed router for field-programmable gate 

arrays,” IEEE Transactions on Computer-Aided Design, vol. 11, no. 5, pp. 620-
627, May 1992. 

 
[63] D. Mange, E. Sanchez, A. Stauffer, G. Tempesti, P. Marchal, C. Piguet, 

“Embryonics:  a new methodology for designing field-programmable gate arrays 
with self-repair and self-replicating properties,” IEEE transactions on Very Large 
Scale Integration (VLSI) Systems, vol. 6, no. 3, pp. 387-399, September 1998. 

 
[64] A. Thompson, P. Layzell, R. S. Zebulum, “Explorations in design space:  

unconventional electronics design through artificial evolution,” IEEE transactions 
on Evolutionary Computation, vol. 3, no. 3, pp. 167-196, September 1999. 

 



REFERENCES  109 

[65] Q. Ke, B. J. Dalrymple, D. J. Durand, J. W. Spargo, “Single flux quantum 
crossbar switch,” IEEE Transactions on Applied Superconductivity, vol. 7, no. 2, 
pp. 2968-2971, June 1997. 

 
[66] R. K. Hoffmann, Handbook of microwave integrated circuits, Artech House, Inc., 

pp. 293-294, 1987. 
 
[67] F. Gardiol, Microstrip Circuits, John Wiley & Sons, Inc., p. 88, 1994. 
 
[68] S. Bermon, T. Gheewala, “Moat-guarded Josephson junctions,” IEEE 

Transactions on Magnetics, vol. MAG-19, no. 3, pp. 1160-1164, May 1983 
 
[69] M. Jeffery, T. Van Duzer, J. R. Kirtley, M. B. Ketchen, “Magnetic imaging of 

moat-guarded superconducting electronic circuits,” Applied Physics Letters, vol. 
67, no. 12, pp. 1769-1771, 18 September 1995. 

 



APPENDIX A – SELECTED CIRCUIT SCHEMATICS AND LAYOUT MASKS 110 

Appendix A - Selected circuit 
schematics and layout masks 

 
 
 
 
 
 
THE layout masks shown in this appendix have a visible spot grid of 10 micrometres.  The 
layer key is shown in Figure A.1.  All layouts are taken from the compact PFD circuit, so 
as to include input and output connections. 
 

 
Figure A.1:  Layer key for layout masks 

 
A.1 NEW CIRCUITS 
 
A.1.1  RSFQ DCRL 
 

 
Figure A.2:  Layout mask of RSFQ DCRL 
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A.1.2  Current-Set switch 
 

 
Figure A.3:  Layout mask of Current-Set switch 

 
 
A.1.3  COSL SR flip-flop 
 

 
Figure A.4:  Layout mask of COSL SRFF 
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A.1.4  HUFFLE 
 

 
Figure A.5:  Layout mask of HUFFLE 

 
A.1.5  RSFQ-to-COSL converter 
 

 
Figure A.6:  Layout mask of RSFQ-to-COSL converter 
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A.2 EXISTING CIRCUITS 
 
A.2.1  250 µA JTL 
 

  
(a) (b) 

Figure A.7:  (a) Circuit schematic and (b) layout mask of 250 µA JTL 
 
A.2.2  250-355 µA JTL 
 

  
(a) (b) 

Figure A.8:  (a) Circuit schematic and (b) layout mask of 250-355 µA JTL 
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A.2.3  RSFQ pulse splitter 
 

 
 

(a) (b) 

Figure A.9:  (a) Circuit schematic and (b) layout mask of RSFQ pulse splitter 
 
 
A.2.4  RSFQ pulse merger 
 

 
 

(a) (b) 

Figure A.10:  (a) Circuit schematic and (b) layout mask of RSFQ pulse merger 
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A.2.5  RSFQ T1 flip-flop 
 
 
 

 
 

(a) (b) 

Figure A.11:  (a) Circuit schematic and (b) layout mask of RSFQ T1 flip-flop 
 
A.2.6  RSFQ DRO 
 

 
 

(a) (b) 

Figure A.12:  (a) Circuit schematic and (b) layout mask of RSFQ DRO 
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A.2.7  DC-to-SFQ converter 
 

 
(a) 

 
(b) 

Figure A.13:  (a) Circuit schematic and (b) layout mask of DC-to-SFQ converter 
 
A.2.8  SFQ-to-DC converter 
 

  
(a) (b) 

Figure A.14:  (a) Circuit schematic and (b) layout mask of SFQ-to-DC converter 
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A.3 PFD AND SUBSYSTEMS 
 
A.3.1  Inline switch 
 
Note that the layout of the inline switch differs slightly from the circuit schematic in 
Figure 5.5(a), in that the pulse splitter for the SFQ program line is moved outside the 
switch so that the programming pulse does not need to be routed out again.  The layout 
corresponds to the switches in Figure 6.3. 
 

 
Figure A.15:  Layout mask of inline switch for vertical data track 

 
A.3.2  PFD layout 
 
The layout of the compact PFD – with and without HUFFLES – is shown in Figure A.16.  
Text features etched into the ground plane appear mirrored, since the chip fabrication 
process mirrors the layout mask to the actual wafer. 
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Figure A.16:  Layout mask of PFD with HUFFLEs (left) and without HUFFLEs (right) 
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A.3.3  Complete integrated circuit 
 
The full chip, incorporating both compact PFDs as well as test circuits for the COSL 
SRFF and RSFQ-to-COSL converter, is shown in Figure A.17. 
 An SFQ pulse transmission scheme using an existing transmission line driver and 
receiver [2] is also included for testing. 

The remaining structures that do not connect to the standard probe pads are well-
defined short circuits, open circuits, 50 Ω loads and through-connected transmission lines, 
and are to be used for TRL measurements and probe calibrations. 
 

 
Figure A.17:  Layout mask of complete chip for novel components and reprogrammable 

circuitry test 
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Appendix B - Selected source code and 
simulation files 

 
 
 
The spice must flow. 
 Frank Herbert, Dune 
 
 
 
B.1 WRSPICE 
 
B.1.1  SFQ source 
 
WHEN an SFQ source is desired, a DC-SFQ converter at the input can be replaced by a 
piece-wise linear voltage source that delivers fluxon-sized input pulses.  An example of a 
10 GHz pulse train starting at 50 ps is: 
 Vinput 1 0 pulse 0 824u 50p 2p 3p 0 100p 
 
B.1.2  Simulation input file for generic Monte Carlo analysis 
 
The WRSpice input file shown in this section is for a single JTL, and demonstrates the 
setup of a Monte Carlo analysis.  The tolerance parameters are derived from Table 2.2, 
and are implemented as discussed in section 2.2.2. 

The total number of simulations equals 441.  For this example, the dc bias voltage 
is trimmed, whereas parasitic inductances are not varied. 

Note that a unity area for the Josephson junction model (B-element) corresponds 
to a critical current of 1000 µA (as defined by the icrit parameter). 
 
* WRSpice Monte Carlo circuit file - single JTL / generic model 
.monte 
.exec 
checkSTP1=10 
checkSTP2=10 
* global variations 
let Jtol = gauss(0.10/3,1) 
let Ctol = gauss(0.05/3,1) 
let Rtol = gauss(0.20/3,1) 
let Ltol = gauss(0.10/3,1) 
.endc 
.control 
if (tsfqpls1*40e-12) < 1.5f or (tsfqpls1*40e-12) > 2.5f 
  let checkFAIL=1 
end 
.endc 
.tran 1p 150p 0 0.25p UIC 
* local variations 
.param Jvar = Jtol*gauss(0.05/3,1) 
.param Avar = gauss(0.05/3,1) 
.param Rvar = Rtol*gauss(0.05/3,1) 
.param Lvar = Ltol*gauss(0.15/3,1) 
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.measure tran tsfqpls1 from=50p to=90p avg v(9) 
* dc bias voltage is trimmed 
V1 4 0 dc $&(2.6m*Rtol*Jtol) 
V2 8 0 pulse 0 824u 50p 2p 3p 0 100p 
B1 2 0 10 jjhypres1 area=$&(0.25*Avar) 
B2 1 0 11 jjhypres2 area=$&(0.25*Avar) 
L0 6 5 $&(1.98p*Lvar) 
L1 6 2 0.132p 
L2 7 1 0.132p 
L3 8 6 $&(1.98p*Lvar) 
L4 3 5 1p 
L5 5 7 $&(1.98p*Lvar) 
L6 7 9 $&(1.98p*Lvar) 
R0 4 3 $&(7.4*Rvar) 
R1 2 0 $&(1.21*Rvar) 
R2 1 0 $&(1.21*Rvar) 
R3 9 0 5 
.model jjhypres1 jj(rtype=1, cct=1, icon=10m, vg=2.8m, delv=0.08m, 
+  icrit=$&(1m*Jvar), r0=30, rn=1.64706, cap=$&(5.0p*Ctol)) 
*Nb 1000 A/cm2   area = 100 square microns 
.model jjhypres2 jj(rtype=1, cct=1, icon=10m, vg=2.8m, delv=0.08m, 
+  icrit=$&(1m*Jvar), r0=30, rn=1.64706, cap=$&(5.0p*Ctol)) 
*Nb 1000 A/cm2   area = 100 square microns 
 
B.1.3  Simulation input file for Monte Carlo analysis on layout  

model 
 
The WRSpice input file in this section features layout extracted tolerances. 
 
* WRSpice Monte Carlo circuit file - single JTL / layout model 
.monte 
.exec 
checkSTP1=10 
checkSTP2=10 
* global variations 
let Jtol = gauss(0.10/3,1) 
let Ctol = gauss(0.05/3,1) 
let Rtol = gauss(0.20/3,1) 
let LtolM2 = gauss(0.0339/3,0) 
.endc 
.control 
if (tsfqpls1*40e-12) < 1.5f or (tsfqpls1*40e-12) > 2.5f 
  let checkFAIL=1 
end 
.endc 
.tran 1p 150p 0 0.25p UIC 
* local variations 
.param Jvar = Jtol*gauss(0.05/3,1) 
.param Avar250 = gauss(0.05/(2.5*3),1) 
.param Rvar5thick = Rtol*gauss(0.055/3,1) 
.param Rvar6thick = Rtol*gauss(0.045/3,1) 
.param Lvar1 = gauss(0.0235/3,0) 
.measure tran tsfqpls1 from=50p to=90p avg v(9) 
* dc bias voltage is trimmed 
V1 4 0 dc $&(2.6m*Rtol*Jtol) 
V2 8 0 pulse 0 824u 50p 2p 3p 0 100p 
B1 2 0 10 jjhypres1 area=$&(0.25*Avar250) 
B2 1 0 11 jjhypres2 area=$&(0.25*Avar250) 
L0 6 5 $&(1.98p*(1 + LtolM2 + Lvar1)) 
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L1 6 2 0.132p 
L2 7 1 0.132p 
L3 8 6 $&(1.98p*(1 + LtolM2 + Lvar1)) 
L4 3 5 1p 
L5 5 7 $&(1.98p*(1 + LtolM2 + Lvar1)) 
L6 7 9 $&(1.98p*(1 + LtolM2 + Lvar1)) 
R0 4 3 $&(7.4*Rvar5thick) 
R1 2 0 $&(1.21*Rvar6thick) 
R2 1 0 $&(1.21*Rvar6thick) 
R3 9 0 5 
.model jjhypres1 jj(rtype=1, cct=1, icon=10m, vg=2.8m, delv=0.08m, 
+  icrit=$&(1m*Jvar), r0=30, rn=1.64706, cap=$&(5.0p*Ctol)) 
*Nb 1000 A/cm2   area = 100 square microns 
.model jjhypres2 jj(rtype=1, cct=1, icon=10m, vg=2.8m, delv=0.08m, 
+  icrit=$&(1m*Jvar), r0=30, rn=1.64706, cap=$&(5.0p*Ctol)) 
*Nb 1000 A/cm2   area = 100 square microns 
 
 
B.2 FASTHENRY 3.0WR 
 
B.2.1  Example  for microstrip over ground plane 
 
B.2.1.1   INPUT FILE 
 
* #1 CJF - superconducting microstripline, low impedance 
.Units um 
.freq fmin=10e9 fmax=10e9 ndec=1 
 
* conductor 
N1 x=0 y=0 z=.25 
N2 x=0 y=100 z=.25 
E1 N1 N2 w=5 h=.2 nwinc=15 nhinc=10 lambda=.09 
 
* "ground plane"         
N3 x=0 y=0 z=-0.05 
N4 x=0 y=100 z=-0.05 
N5 x=-7.5 y=0 z=-0.05 
N6 x=-7.5 y=100 z=-0.05 
N7 x=7.5 y=0 z=-0.05 
N8 x=7.5 y=100 z=-0.05 
E2 N3 N4 w=5 h=.1 nwinc=10 nhinc=5 lambda=.09 
E3 N5 N6 w=10 h=.1 nwinc=10 nhinc=5 lambda=.09 
E4 N7 N8 w=10 h=.1 nwinc=10 nhinc=5 lambda=.09 
.equiv N3 N5 N7 
.equiv N4 N6 N8 
* short one end 
.equiv N2 N4 
* input port 
.external N1 N3 
.end 
 
B.2.1.2   FASTHENRY OUTPUT 
 
Row 1:  n1  to  n3 
Impedance matrix for frequency = 1e+010 1 x 1 
             0     +0.468281j 
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B.2.1.3   IMPEDANCE MATRIX TO INDUCTANCE CONVERSION 
 
The impedance matrix contains numbers in real (resistive) and imaginary (reactive) 
components.  In B.2.1.2, the resistance is zero, and the reactance is 0.468281j.  Frequency 
equals 10 GHz.  Impedance relates to inductance through 
 

fLjZ L π2=  , (B.1) 
 
so that L = 7.45 pH. 
 This is a simple, non-segmented structure with sufficient filaments, so that no 
scaling is necessary. 
 When the method of images is used, the inductance calculated with FastHenry is 
double that of the same structure over ground, and must be divided by 2 to get the actual 
value. 
 
B.2.2  Sample output for two-conductor mutual inductance 

calculation with the method of images 
 
A simulation on the structure shown in Figure D.1(l), with 1×3 filamentation in width and 
height, yields the following output: 
 
Row 2:  n756  to  n2001 
Row 1:  n17  to  n1262 
Impedance matrix for frequency = 1e+010 2 x 2 
             0     +0.812285j             0     +0.521652j  
            0     +0.522156j             0      +1.78438j 
 
The self-inductance of the conductor in layer M2 can be found from the first impedance 
value as 

 

9834.0
1022

812285.0
10 ×

×××
=

πABL = 6.357 pH . (B.2) 

 
The extra factor two in the denominator of (B.2) accounts for the image area, whereas the 
scaling factor (0.9834) is used to convert the inductance value for 1×3 (width and height) 
segment filamentation to the asymptote value as described in section 3.5.2. 
 
B.3 INDUCT 
 
B.3.1  Example for two microstrips over ground plane 
 
B.3.1.1   INPUT FILE 
 
Filename:  “m2m1” (No extension.)  Structure:  M2 and M1 lines over ground plane. 
 
100 -10.0 -0.1  10.0 0.0 0.09 20  6 2 2 3 1 
1   -3 0.15 3 0.285 0.09 10 10 2 2 0 2 
2   -2.5 0.485 2.5 0.785 0.09 10 10 2 2 0 2 
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B.3.1.2   COMMAND LINE 
 
induct < m2m1 
 
B.3.1.3   SIMULATION OUTPUT (ONSCREEN) 
 
All results are in pH/µm. 
 
c:\usr\local\bin>induct < m2m1 
Input is of the form: 
Conductor number, (x,y) lower left, (x,y) upper right,penetration depth, x divis 
ions, y divisioins, x ratio, y ratio,x type, and y type 
 
The input file is from standard input, so use redirection to use a file. 
Output is to standard output. 
100 -10.0 -0.1  10.0 0.0 0.09 20  6 2 2 3 1 
1   -3 0.15 3 0.285 0.09 10 10 2 2 0 2 
2   -2.5 0.485 2.5 0.785 0.09 10 10 2 2 0 2 
finished subdivide 
finished evaluating q matrix 
inverted q matrix 
reduced q matrix into s matrix 
inverted s matrix 
===***********Inductance matrix***********=== 
0.069300        0.054713 
0.054713        0.122839 
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Appendix C – Genetic optimization 
program overview 

 
 
 
 
 
 
C.1 ALGORITHMIC FLOW CHARTS 
 
IN this section, the algorithmic flow charts that describe the genetic optimization routine 
are shown.  The flow charts are slightly simplified, as the real program uses a computer 
network to access a remote Spice server, and is therefore event driven. 
 Figure C.1 shows the start-up routine, which determines whether or not the 
previous optimization sequence was merely suspended, and, if so, whether the current 
circuit file is the same as the one previously optimized.  This routine then decides whether 
or not to allow a continued optimization. 

Figure C.2 shows how the genetic optimization sequence starts, and how a first 
generation of children are spawned from random variations on the nominal parent, Eve. 

Figure C.3 shows how the optimization loop is handled, child for child and 
generation for generation. 

Figure C.4 to Figure C.7 show the most important subroutines.  These handle 
fitness calculation, procreation, pairing and crossover, and mutation. 
 

 
Figure C.1:  Algorithmic flow chart of genetic optimization program activation 
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Figure C.2:  Algorithmic flow chart of genetic optimization sequence initiation 
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Figure C.3:  Algorithmic flow chart showing operation of optimization handler 
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Figure C.4:  Algorithmic flow chart of procedure “CalculateFitness” 

 

 
Figure C.5:  Algorithmic flow chart of procedure “Breed” 
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Figure C.6:  Algorithmic flow chart of procedure “MixMatchMutate” 
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Figure C.7:  Algorithmic flow chart of procedure “Mutate” 

 
C.2 SCREENSHOTS AND OPERATING OVERVIEW 
 
Before an optimization sequence can be performed, the Spice circuit file (with .cir 
extension) of the circuit under investigation is loaded into the optimization program, 
which has provisionally been named SuperTool.  When WRSpice is used, the circuit file 
can be dumped from the schematic circuit diagram through a single command. 
 

 
Figure C.8:  Loading a new circuit into SuperTool 
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Figure C.8 shows the menu functions of SuperTool’s project editor, into which new 
circuits are loaded.  In Figure C.9, the circuit file is loaded and ready for editing.  The 
.plot statement lists all the output variables to be used for evaluating circuit performance.  
In this case, only the output voltage V6 will be evaluated. 
 Some of the information and functions available to the user are also visible in 
Figure C.9. 

The circuit information block on the left side contains the total number of 
elements in the Spice simulation file, with all subcircuit instances included, as well as the 
number of elements in the main circuit alone.  This function was used to count the 2530 
elements in the simulation model of the PFD programming circuit, as well as the 24147 
elements in simulation model of the PFD core. 

The other functions include one that automatically seeks out and links damping 
resistors to their respective Josephson junctions, as well as another that calculates and 
automatically sets the value of each damping resistor to obtain a required damping factor.  
The user can also convert the nominal circuit file to a Monte Carlo simulation file, 
perform a nominal or Monte Carlo simulation, and save the circuit as either a nominal or 
a Monte Carlo simulation file.  Since project save files always include optimization 
settings and parameters, the last two functions are useful for creating pure Spice circuit 
files that can be used by other Spice-based simulation programs. 
 

 
Figure C.9:  SuperTool project editor with new circuit file loaded and ready for editing 

 
SuperTool runs under Microsoft Windows, while WRSpice runs on a Unix platform.  
Interfacing is handled through Telnet and FTP routines.  Figure C.10 and Figure C.11 
show how the FTP and Telnet settings are configured. 
 The “Additional commands” box under the Telnet settings allows the user to 
specify extra commands that need to be executed every time that SuperTool connects to 
the Spice server via Telnet.  These commands are most often used to force directory 
changes. 
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Figure C.10:  Configuring the FTP settings for SuperTool 

 

 
Figure C.11:  Configuring the Telnet settings for SuperTool 

 
Before optimization can commence, the optimization parameters need to be set.  Figure 
C.12 shows a screenshot of the genetic algorithm setup window. 
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Figure C.12:  Genetic algorithm setup window 

 
SuperTool also needs to know what parameter values to use when a nominal circuit file is 
converted to a Monte Carlo simulation file.  Figure C.13 shows the Monte Carlo setup 
window.  The transient analysis parameters are extracted from the active circuit file, but 
can be edited manually.  In that case the new parameters are written over those in the 
active circuit file.  When the active circuit file already is a Monte Carlo simulation file, all 
other parameters with the exception of “Optionals” are also extracted;  else a predefined 
set of default values are loaded from SuperTool’s configuration files. 
 WRSpice calculates the total number of MC runs from 
 

Total runs = (CheckSTP1 × 2 + 1) × (CheckSTP2 × 2 + 1) . (C.1) 
 
 

 
Figure C.13:  Monte Carlo simulation setup window 

 



APPENDIX C – GENETIC OPTIMIZATION PROGRAM OVERVIEW 134 

 
Figure C.14:  SuperTool running a remote simulation on the nominal circuit 

 
Monte Carlo circuit analyses require evaluation criteria to determine whether or not a 
simulation was successful.  Instead of defining these criteria by hand, a nominal 
simulation run can be used to allow SuperTool to propose the criteria.  Figure C.14 shows 
the output when a nominal run was selected, with Telnet and FTP information scrolling in 
a window above the circuit file body.  SuperTool automatically generates a nominal Spice 
input file containing a command that requests WRSpice to print the simulation output to a 
file, sends it via FTP to the remote WRSpice server, and initiates the simulation via a 
Telnet command.  Upon completion of the simulation, the output file is downloaded via 
FTP to the local host, and automatically read into the graphic window shown in Figure 
C.15. 
 

 
Figure C.15:  Nominal simulation output used to configure circuit evaluation criteria 
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Figure C.15 shows a graph of the output of a nominal simulation.  The window can 
accommodate up to nine graphs.  SuperTool can then automatically fit evaluation criteria 
to the data, and can do so for RSFQ, COSL or negative-output COSL voltage traces.  It 
cannot yet handle current traces automatically, as they are not as well defined as the 
voltages. 

In this example, only one output voltage trace is evaluated.  The user sets the logic 
type (RSFQ) and clock frequency (10 GHz).  The other parameters can also be changed, 
but are automatically loaded from configuration files when the graph window is opened.  
SuperTool then searches for every RSFQ pulse by way of numerical integration of the 
voltage trace with respect to time, and places an evaluation window around the peak of 
each.  Evaluation windows for absent pulses are placed in every empty clock cycle, of 
which SuperTool calculates the temporal positions from the specified clock frequency and 
the location of known pulses. 
 When the graph window is closed, SuperTool prompts the user for permission 
(Figure C.16) to create a new Monte Carlo simulation file with the evaluation criteria it 
calculated from the nominal simulation data.  If the project file is already in Monte Carlo 
format, the old evaluation commands are replaced with new ones. 
 

 
Figure C.16:  Prompt for automatic conversion of current file to a new Monte Carlo 

simulation file upon termination of nominal output graph window 
 
Figure C.17 shows the project editor window containing an automatically created Monte 
Carlo version of the original nominal circuit file.  The user can still edit all the commands 
and parameters. 
 

 
Figure C.17:  SuperTool project editor window containing newly created Monte Carlo 

simulation file 
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Once the Monte Carlo parameters are added, the circuit can be subjected to optimization.  
If a previous optimization sequence was left unfinished, SuperTool will automatically 
compare the stored checksum file on the Spice server with one generated for the current 
project, and allow continued optimization if they are the same. 
 When an optimization sequence is started, random circuit files are generated in 
accordance with the optimization strategy, and these files sent via FTP to the Spice server.  
Telnet commands are used to command WRSpice.  A screenshot of the feedback provided 
during the optimization process (which can run for weeks) is shown in Figure C.18. 
 

 
Figure C.18:  Detail of information feedback during genetic optimization process 

 
The optimization process will repeat for as many generations as specified in the 
optimization parameters, or will terminate when a circuit with a yield of 100 % is created.  
Figure C.19 shows the output when the latter event occurs (the example used for 
generating the screenshot operated on a previously optimized gate).  After the completion 
of every generation, the simulation output files are retrieved from the Spice server via an 
FTP connection.  The output files are then processed, and the yield for each child 
calculated automatically.  If any child circuit has a yield that is better than any before it, it 
is copied to a file named “bestyet.cir”, which remains saved until a better circuit is found.  
This file also contains, in its text header, the numbers of the generation and child it 
originates from, as well as the yield percentage and uncertainty interval obtained from its 
Monte Carlo simulation. 
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Figure C.19:  Detail of output after termination of genetic optimization process 

 
SuperTool also supports margin analyses.  It is stilled referred to as a sensitivity analysis 
in the optimizer window.  Figure C.20 shows the parameter configuration window thrown 
up by SuperTool when the margin analysis routine is selected. 
 

 
Figure C.20:  Parameter setup prompt upon selection of margin analysis routine 

 
A screenshot of the feedback provided by SuperTool while a margin analysis is running, 
is shown in Figure C.21.  Results are written into a text file that contains a matrix of 
element numbers and normalized upper and lower boundaries, and can easily be read into 
Matlab. 
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Figure C.21:  Detail of information feedback during margin analysis 

 
C.3 PROJECT SAVE FILE HEADER 
 
The project save file (with a .mcg extension) created by SuperTool is an ASCII text file 
that contains all the parameters used for optimization, as well as the entire circuit file in 
Monte Carlo simulation format. 
 The header of such a file is shown in this section.  The main circuit body is 
excluded from this text body because a similar instance has already been shown in section 
B.1.3. 
 The data file referenced in the second line of the header contains all the elements, 
their values, suffixes and type designators (normal, parasitic, damping, etc.) for every 
child circuit in an optimization population.  This data file is used by the optimizer, and 
updated every time a new generation is formed. 
 The breeding model is still stored as –1, since no specific model (such as elitism) 
is yet supported.  Six fitness models (full or adapted scale, each linear, quadratic or cubic) 
are defined, and numbered from 0 to 5. 
 The other parameters are obvious, and Boolean values are stored as 0 (false) or 1 
(true). 
 
Coenrad J. Fourie - Optimization Project 
DataFile=D:\phd programs\sup met tel toets\mcd\huffle_and_switch_mc.dat 
# Genetic Algorithm Variables 
Offspring=100 
Generations=12 
Mutation Probability=0.020 
Mutation Spread=0.100 
Breeding Model=-1 
Fitness Model=4 
Mutation Distribution=0 
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Minimum Cross-over Probability=0.100 
Parameter Variance=0 
Ignore Damping=1 
# Junction Parameters 
Unit Current[uA]=100.000 
Unit Capacitance[fF]=500.000 
Stewart-McCumber parameter=1.0000 
# Monte Carlo Variables 
CheckStop1=10 
CheckStop2=10 
Global Junction Area Tolerance=0.100 
Global Resistance Tolerance=0.200 
Global Inductance Tolerance=0.100 
Local Junction Area Tolerance=0.100 
Local Resistance Tolerance=0.050 
Local Inductance Tolerance=0.150 
COSL Voltage Trim=0 
Subcircuit Tolerance=0 
Add Evaluation Code=1 
Deadzone Checking=0 
Lock Damping Resistors=1 
Main Circuit File Lines=189 
# Main Circuit 
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Appendix D – Full set of 3D inter-
junction inductance models 

 
 
 
 
 
 
ALL the 3D models used for inductance calculation or verification during the layout of the 
masks shown in Appendix A, with the exception of those already shown in Chapter 3 and 
Chapter 7, are depicted here.  For display purposes all the vertical dimensions are 
stretched. 
 All models can be adapted by having their dimensions altered. 
 We shall first discuss the models used in Chapter 3.  The straight interconnection 
shown in Figure 3.19(b) was built for simulating JTLs.  It was also used for all other 
straight connections in M2, and when shortened (and the dc tee-in omitted) was used for 
calculating the inductance in one arm of connections containing a series junction. 

The model in Figure 3.21(b) was developed for the pulse splitter.  With some parts 
of the geometry cut away, it can also model double-cornered interconnection lines 
(although none were used in the layout of the PFD). 

The series junction model in Figure 3.23 was developed to model the reset input 
section of the HUFFLE. 

Figure 3.25(c) shows the damping resistor model.  It was first used in the 250 µA 
JTL, and later (with increased length) for modelling the large damping resistors in the 
HUFFLE. 

The U-bended JTL was modelled with the structure shown in Figure 3.26(a). 
 Figure 3.27(a) shows the model used for calculating self- and mutual inductance 
in dc SQUID loops and control lines in the COSL SRFF and RSFQ-to-COSL converter. 
 The other 3D models used in this dissertation are shown in Figure D.1.  Of these, 
(a), (f) and (i) were first used in the T1 flip-flop, (b), (c) and (e) in the SFQ-to-DC 
converter, (d) and (l) in the DCRL, (g) for PFD interconnects, (h) in the pulse merger, (j) 
in the DC-to-SFQ converter, (k) in the Current-Set switch and (m) and (n) in the 
HUFFLE. 
 The structures in Figure D.1(a) to (j) were developed to model self-inductance 
between nodes A and B.  Those in Figure D.1(k) and (l) model self-inductance for the 
conductors between nodes A-B and C-D, and also mutual inductance between the two 
conductors.  The three-conductor structures in Figure D.1(m) and (n) model self-
inductance for the conductors A-B, C-D and E-F, and the mutual inductance between 
every pair of conductors. 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
(e) 

 

 
(f) 

 
 

(g)  
(h) 

 

 
(i)  

(j) 

 
(k) 

 
(l)  

 
(m) 

 
(n) 

Figure D.1:  Array of 3D structures used for inductance calculation 
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