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Abstract 

Slipped Capital Femoral Epiphysis (SCFE) is a common hip disorder of adolescents 
in which the femoral head is posteroinferiorly displaced from the neck of the 
femur. Several treatments have been described in the literature to treat the 
deformity, where an intertrochanteric osteotomy is usually performed to correct 
the slip of more severe cases. Pre-operative planning is a critical requirement for 
the success of any orthopaedic procedure. Traditionally the planning relies on 2D 
radiographs and although this method has proven to be sufficient for a subset of 
procedures, factors such as overlapping anatomical structures,  lack of 3D 
information and variability of film quality could lead to inaccuracies of the 
preoperative estimations. Thus, to improve the accuracy and reliability in the 
treatment of SCFE, 3D models of bony structures have been used more extensively 
for pre-operative surgical planning. CT scans are the preferred 3D image modality 
but still have some limitations. These limitations include subjecting the patient to 
a high radiation dose, being expensive and time-consuming. 3D Reconstruction of 
a patient-specific model from 2D images has been considered to be a suitable 
alternative. Therefore this study aimed to develop a 2D/3D reconstruction 
algorithm that reconstructs a 3D patient-specific model of the proximal femur 
from a 2D x-ray image. The algorithm compensates for the lack of information 
provided by the x-ray images by using prior knowledge of the shape. The prior 
knowledge can be obtained through the use of a Statistical Shape Model (SSM) 
which aims to capture all possible variations within a population. Thus, as a part 
of the study, an SSM was constructed using a training dataset containing 27 
proximal femurs. The constructed shape model along with a digitally 
reconstructed x-ray was used to reconstruct a 3D model from 2D images. The 
resulting patient-specific model was obtained by projecting the contour of the 
SSM to the corresponding x-ray and measuring the point-to-point distance 
between the projected contour and the contour extracted from the x-ray. The 
accuracy of the resulting model was determined by comparing the reconstructed 
model to a ground truth model segmented from image data. The models were 
generated with an average reconstruction error of 2.13 mm, a Hausdorff distance 
of 5.49 mm and a Dice coefficient of 0.88. An average difference of 3.05° was 
measured between the NSAs of the ground truth and reconstructed meshes. The 
average NSA difference indicated that the reconstruction algorithm could be 
adapted to include SCFE data.  Although the results corresponded well with those 
of similar studies available in the literature, the accuracy of the model needs to be 
improved before being applied to clinical applications. 
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Uittreksel 

Geglyde Proksimale Femorale Epifises (GPFE) is a algemene heupversteuring van 
adolessente waar die femorale kop in ‘n postero-inferior wyse van die femorale 
nek verplaas word. Verskeie metodes word in literatuur beskryf vir die 
behandeling van die versteuring, waar ‘n intertrokanteriese osteotomie 
gewoontlik gebruik word om die gly van die femorale kop in meer ernstige gevalle 
te herstel. Vir enige ortopediese prosedure om ‘n sukses te wees, is die chirurgiese 
beplanning voor die prosedure ‘n noodsaaklike vereiste. Beplanning deur middel 
van 2D radiografieë word gesien as die konvensionele metode vir chirurgiese 
beplanning. Alhoewel hierdie metode bewys is as voldoende vir ‘n versameling van 
prosedures, kan faktore soos anatomiese strukture wat oorvleuel, tekort aan 3D 
informasie en die wisselvalligheid van filmkwaliteit die akuraatheid van 
preoperatiewe benaderings beïnvloed. Dus, om die betroubaarheid en  
akkuraatheid in die behandeling van GPFE te verbeter word drie dimensionele 
been struktuur modelle meer gereeld gebruik vir die beplanning voor die 
prosedure. CT skandering is die 3D beeld modaliteit wat verkies word, maar dit het 
steeds beperkings. Die beperkings sluit ‘n hoë bestraling dosis, hoë kostes en 
tydrowendheid in. 3D rekonstruksie van ‘n patiënt-spesifieke model vanaf ‘n 2D 
beeld word as ‘n gepaste alternatief oorweeg. Daarom was die onwikkeling van ‘n 
2D/3D rekonstruksie algoritme wat ‘n patient-spesifieke model van die proksimale 
femur vanaf ‘n 2D beeld rekonstrueer, ‘n mikpunt van die studie. So ‘n algoritme 
kompenseer vir die gebrek aan inligting wat deur die x-straal verskaf word deur 
vorige kennis van die vorm te gebruik. Die vorige kennis kan vekry word met die 
gebruik van ‘n Statistiese Vormmodel (SV) wat die moontlike variasies in ‘n 
populasie vas vang. Dus was daar, as deel van die studie, ‘n SV geskep vanuit ‘n 
opleidingsdatastel wat 27 proksimale femurs bevat. Die SV wat geskep is saam met 
‘n digitale gerekonstrueerde x-straal was gebruik om ‘n 3D model van ‘n 2D beeld 
te rekonstrueer. Die resulterende patiënt-spesifieke model was verkry deur die 
kontoer van die SV te projekteer na die ooreenstemmende x-straal en die punt-
tot-punt afstand tussen die geprojekteerde kontoer en die kontoer wat uit die x-
straal onttrek is te meet. Die akkuraatheid van die resulterende  model was bepaal 
deur die gerekonstrueerde model met die ware data, wat vanuit die CT data 
gesegmenteer is, te vergelyk. Die modelle was gegenereer met ‘n gemiddelde 
rekonstruksie fout van 2.13 mm, ‘n Hausdorff afstand van 5.49 mm en ‘n Dice se 
koëffisiënt van 0.88. ‘n Gemiddelde verskil van 3.05° was tussen die nek-skag hoek 
van die rekonstrueerde en die ware model gemeet. Hierdie verskil dui aan dat die 
algoritme angepas kan word om data van GPFE pasiente in te sluit. Alhoewel die 
resultate in die studie verkry ooreenstem met data wat in literatuur beskikbaar is, 
moet die akkuraatheid van die model verbeter word voordat dit oorweeg kan 
word vir kliniese toepassings.  
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Chapter 1  

Introduction 

1.1 Background 

Slipped Capital Femoral Epiphysis (SCFE) is a common hip disorder affecting 
adolescents between the ages of nine and sixteen (Loder and Skopelja, 2011). The 
condition is defined by the posteroinferior displacement of the femoral head, also 
known as the epiphysis, from the neck of the femur at the level of the growth plate 
(Gholve et al., 2009). Loder et al. (2000) stated that the prevalence of SCFE is not 
fully determined as it varies depending on the population being studied. The 
prevalence of SCFE in the South African population is unknown, but Nortje (2009) 
estimated the prevalence to be approximately 2.3 to 4.1 per 100,000 based on the 
number of patients treated between 1999 and 2004. 

Various suggestions have been made regarding the aetiology of SCFE, but none 
have been proven in all instances, thus the cause has been assumed to be 
multifactorial and most likely a result of biochemical and biomechanical factors 
(Weiner, 1996). A diagnosis of SCFE is made based on the information obtained 
during a physical examination and confirmed through radiographic imaging. The 
severity of the slip is determined through the acquired radiographs which are used 
to determine the treatment needed to manage the condition (Aronsson et al., 
2006). 

The aim of treating SCFE is to avoid additional displacement of the epiphysis while 
avoiding possible complications such as avascular necrosis and chondrolysis (Loder 
et al., 2000). A variety of treatments have been described in the literature to treat 
the disorder. The most common approach used to increase the range of motion 
and contain the femoral head and acetabulum is the intertrochanteric osteotomy 
(Richolt et al., 1998). Irrespective of the treatment used, the correction could be 
difficult due to the 3D deformity present (Cherkasskiy et al., 2017). 

1.2 Motivation 

According to Hak and Rose (2010), for any orthopaedic surgery to be a success, 
pre-operative surgical planning is essential. The pre-operative planning of an 
intertrochanteric osteotomy is traditionally performed on the anteroposterior and 
frog-lateral radiographs. Although the conventional way of pre-operative planning 
based on 2D radiographs has proven to be adequate for a large number of 
procedures, the approach does have certain drawbacks. These drawbacks include 
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poor reproducibility of positioning for radiographs, being time-consuming and 
cumbersome, and being subject to low film quality that affects the accuracy of the 
provided information (Atesok et al., 2015). Since the x-ray images provide 2D 
projections of 3D anatomical structures, the accuracy of the pre-operative 
estimations relies on the experience and knowledge of the surgeon planning and 
performing the surgery (Drapikowski et al., 2008). Thus, in order to increase the 
precision and reliability of the diagnosis and treatment of SCFE, 3D patient-specific 
models of bony structures are being used extensively for pre-operative planning 
(Hosseinian and Arefi, 2015). 

CT scanning is the conventional medical imaging technique for obtaining 3D data 
as it generates an accurate and detailed set of cross-sectional images (Hosseinian 
and Arefi, 2015). These images can then be used to provide 3D models for pre-
operative surgical planning. Various methods in literature have applied these 3D 
images in pre-operative planning using CT images rather than x-rays or by 
segmenting the region of interest from the data and using it as a 3D printed model 
or in computer-aided reconstruction (Cherkasskiy et al., 2017; Drapikowski et al., 
2008; Kamegaya et al., 2005). Although these methods presented improved 
results, there are certain restrictions with the CT imaging modalities for SCFE. 
These limitations include exposing patients to a high radiation dose, where 
patients diagnosed with SCFE are typically younger individuals who, according to 
Brenner (2010), are more sensitive to radiation. Furthermore, in a resource-
limited setting, the cost of CT scans can become prohibitive (Hesper et al., 2017). 
Therefore, further research has been done to introduce alternative methods 
which still provide detailed and accurate 3D information but reduce the limitations 
associated with a CT scan. 

Currently, a reliable alternative is considered to be the reconstruction of a 
patient’s 3D anatomy from a set of 2D images. This technique includes prior 
information about the shape to compensate for the shortage of information on 
the 2D radiograph (Dakhakhni, 2013). Several techniques used for reconstructing 
a 3D model from 2D data have been described in the literature. These methods 
include those based on points, contours, statistical models, and parametric 
models (Hosseinian and Arefi, 2015). 

According to Sarkalkan et al. (2014), statistical shape modelling is a commonly 
used technique in the orthopaedic field. A shape model aims to capture all possible 
variations within a population and can thus be used as the prior knowledge during 
the reconstruction algorithm. This method has been applied to various studies 
throughout the literature. Fleute et al. (1999) proposed a method where a 3D 
model of the distal femur is constructed by deforming the shape model to match 
the 2D contours segmented from x-ray images. Benameur et al. (2003) used a 
shape model-based method to reconstruct vertebrae whereas other researchers 
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such as Zheng et al. (2009) proposed using the reconstruction method to 
reconstruct the proximal femur. 

There are currently no studies, to the author's knowledge, that use 2D/3D 
reconstruction for pre-operative surgical planning for the correction osteotomy of 
SCFE. Based on the promising results of shape-model-based 2D/3D reconstruction 
shown in the available literature, similar methods will be used to reconstruct a 
proximal femur from an x-ray image to eventually be used in pre-operative surgical 
planning.  

1.3 Objectives 

This study aims to develop a method that reconstructs a 3D patient-specific model 
from a 2D x-ray image. The goal of the model is to provide the level of accuracy 
usually obtained through 3D imaging without the limitations associated with it. To 
fulfil the aim of the study, the study objectives are defined as: 

1. Construct a Statistical Shape Model (SSM) of the study population’s 
proximal femur based on a CT dataset. 

2. Develop a 2D/3D reconstruction algorithm that reconstructs a 3D patient-
specific model of the proximal femur from a 2D x-ray image. 

3. Validate the statistical shape model and resulting patient-specific 3D 
model. 

1.4 Scope 

Since the traditional imaging modality used for SCFE diagnosis is 2D radiographs, 
CT scans of these patients were not available. However, to construct a statistical 
shape model, a dataset of CT scans is required. Unfortunately, we were unable to 
compile an SCFE dataset due to the limited number of cases available 
retrospectivey. Therefore, the scope of this study was limited to using a publicly 
available dataset, containing CT images of healthy femurs from an adult USA-
based population as a proxy. If the findings of this study are encouraging, it may 
serve as motivation for future prospective studies to collect CT scans of adolescent 
patients diagnosed with SCFE from a specific population. 

1.5 Overview 

Chapter 2 provides a  detailed literature review regarding the femur, SCFE and pre-
operative planning techniques used for an SCFE corrective surgery, whereas 
Chapter 3 describes how the variations within the study population have been 
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captured by an SSM and how the model has been validated. Then the methods 
used to generate a digitally reconstructed radiograph (DRR) and to reconstruct a 
3D patient-specific model from the 2D DRR are described in Chapter 4 and Chapter 
5, respectively. Lastly, the final remarks are discussed in Chapter 6. 
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Chapter 2   

Literature review 

This chapter offers a comprehensive summary of the literature reviewed to 
provide a better understanding of the study objectives stated in Section 1.3. The 
chapter starts with a description of the femur’s anatomy followed by the literature 
regarding Slipped Capital Femoral Epiphysis. Thereafter information regarding the 
traditional methods of pre-operative surgical planning is provided and lastly, the 
current methods for 2D/3D reconstruction of patient-specific models, along with 
their limitations, are discussed. 

2.1 Anatomy of the femur 

According to Moore et al. (2013), the femur, also known as the thigh bone, is the 
longest, heaviest, and strongest bone in the human body as it accounts for 
approximately one-quarter of a person’s total height. When standing, the upper 
body weight rests on the two femoral heads, therefore the main functions of the 
femur are weight bearing and gait stability. The robust shape of the femur 
provides many origin or attachment points for ligaments or muscles which 
contribute to walking and other movements (Moore et al., 2013). The femur 
consists of three main parts namely a shaft, a proximal end, and a distal end. Figure 
2.1  illustrates these three regions along with the anatomy of the femur. 

The proximal end of the femur consists of a head, neck, and two trochanters, the 
lesser and greater trochanter. The femoral head, forming about two-thirds of a 
sphere, articulates with the acetabulum of the pelvis to form the hip joint (Snell, 
2011). The femoral head is held within the acetabulum by the capsular ligament, 
consisting of thick, strong, distinct bands that are wrapped around the proximal 
femur and the acetabulum periosteum (Wagner et al. 2012). The femoral head is 
covered with articular cartilage, which is a thin layer of cartilage that serves as a 
shock absorber and reduces friction,  except for a small depression called the fovea 
capitis (Snell, 2011). The fovea acts as a site of attachment for the ligament of the 
femoral head and although providing the hip joint with little support, it does 
convey the obturator artery which supplies the femoral head with blood (Betts et 
al. 2013). 

The region below the femoral head is identified as the neck of the femur. The neck 
has the shape of a trapezium with the narrow apex attached to the spherical head 
and the wider base being continuous with the femur shaft (Betts et al., 2013). The 
long axis of the head and neck creates an angle of approximately 125° with the 
long axis of the shaft (Snell, 2011). According to Fetto et al. (2002), this angle of 
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the neck shaft is greater than 160° at birth and gradually decreases until a steady 
angle is reached. This angle allows for an increased range of motion of the femur 
at the hip joint as it places the femoral head and neck at a more perpendicular 
angle to the acetabulum (Moore et al., 2013). 

 

Figure 2.1: Anatomy of the femur from the anterior and posterior view 

Located at the junction of the neck and the shaft are two prominent bony 
protrusions called trochanters. The greater trochanter, also known as the major 
trochanter, is identified as the large, laterally placed bone mass projecting 
superiorly and posteriorly at the point where the neck meets the shaft (Moore et 
al., 2013). The greater trochanter acts as an attachment site for multiple muscles 
acting across the hip joint. The lesser trochanter is a smaller, abrupt bony 
protrusion, which projects medially from the posteromedial part of the femur, just 
below the neck (Betts et al., 2013). A powerful muscle called the iliopsoas, which 
can create forceful contractions attaches to the lesser trochanter.  

A roughened ridge of bone which spans between the lesser and greater trochanter 
and runs in the inferomedial direction on the anterior side of the femur is called 
the intertrochanteric line (Snell, 2011). This line acts as a site of attachment for 
the iliofemoral ligament which is the strongest ligament of the hip. As the 
intertrochanteric line runs past the lesser trochanter on the posterior side it is 
referred to as the pectineal line (Moore et al., 2013). On the posterior side of the 
femur, the two trochanters are connected by a similar but smoother bony ridge 
called the intertrochanteric crest. The rounded elevation present on the crest is 
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called the quadrate tubercle and is the attachment site for the quadratus femoris 
(Moore et al., 2013). 

On the anterior surface of the elongated femoral shaft, the femur is smooth and 
rounded, but on the posterior side, the femur has a ridge, called the linea aspera 
(Snell, 2011). Various hip and thigh muscles use the linea aspera to make long, thin 
attachments to the femur.  Moore et al. (2013) stated that the linea aspera has 
lateral and medial margins which continue below the lateral and medial 
supracondylar ridge. Superiorly, the lateral margin becomes continuous with the 
rough gluteal tuberosity which extends inferiorly from the greater trochanter, 
whereas the medial margin becomes the pectineal line. The shaft is anteriorly 
slightly convexed and becomes broader towards the distal end of the shaft where 
it forms a triangular area on the posterior surface called the popliteal surface 
(Moore et al., 2013). 

The distal end of the femur consists of the medial and lateral femoral condyle 
which is posteriorly separated by the intercondylar notch. Anteriorly the condyles 
merge to form a longitudinal depression called the patellar surface (Moore et al., 
2013). The condyles are the smooth, rounded areas of the distal femur where the 
inferior and posterior surfaces articulate with the tibia and menisci of the knee to 
form the knee joint. Above the condyles, bony evaluations referred to as the 
medial and lateral epicondyles are located where the medial and lateral collateral 
ligaments originate from (Betts et al., 2013). 

2.2 Anatomical landmarks of the proximal femur 

Depending on the location and function of bones, surface features vary 
considerably (Betts et al., 2013). The prominent surface features can then be used 
as landmarks. The anatomical landmarks used throughout this study are listed in 
Table 1 and indicated in Figure 2.2. Since the landmarks provided in the table are 
descriptive of the surrounding region, the most prominent feature in the area was 
chosen as the landmark.  

2.3 Slipped capital femoral epiphysis 

SCFE is a disorder affecting the hip of adolescents. The disorder is characterized 
by the posteroinferior slippage of the capital femoral epiphysis, also known as the 
femoral head, from the neck of the femur through the growth plate (Loder et al. 
2000). The term SCFE is a misnomer since the epiphysis remains in the acetabulum 
while it is actually the femoral neck metaphysis that moves anterosuperior as 
indicated in Figure 2.3 (Aronsson et al. 2006). In the majority of the patients, the 
femoral head is located in a more varus position in relation to the neck, meaning 
the head displaces downward and inward on the femoral neck. Occasionally the 
head moves superiorly, putting the slip into a valgus position and creating valgus 
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Table 1: Description of anatomical landmarks used throughout this study 

Landmark Description 

Fovea 
Minor indentation on the medial side of the femoral 

head 

Lesser Trochanter 
An abrupt, conical eminence just below the neck, shaft 

junction 

Top point of the 
greater trochanter 

The proximal point of the greater trochanter when 
viewed from the anterior/posterior view 

Trochanteric fossa 
Depression at the base of the internal surface on the 

proximal femur 

Lateral point of the 
greater trochanter 

The most lateral point located on the greater trochanter 
when viewed from the anterior/posterior view 

 

SCFE (Aronsson et al., 2006). The aetiology is unknown for a vast majority of the 
cases as it can be caused by a variety of factors, but when left untreated the 
disorder can lead to pain and restriction to movement in the short term or hip 
joint arthritis in the long term (Peck et al. 2017). The different aspects of SCFE are 
described in the following sections. 

Figure 2.2: Landmarks of the proximal femur 
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Figure 2.3: Illustration of a normal hip (left) versus an SCFE-affected hip (right). 

2.3.1  Epidemiology 

SCFE is the most common hip disorder diagnosed in adolescents (Peck et al., 2017; 
Gholve et al., 2009). According to Loder et al. (2000), the prevalence of SCFE is not 
completely known as it depends on the population being examined. It has been 
reported that the prevalence can range from 0.2 per 100,000 in eastern Japan to 
as high as 10.08 per 100,000 in the northeastern United States (Aronsson et al., 
2006). The prevalence of SCFE in South Africa is not known, but Nortje (2009) 
estimated the prevalence to be 2.3 – 4.1 per 100,000 based on the number of 
patients treated from 1999 to 2004. Although there is no conclusive explanation 
for the differential in the SCFE prevalence, Aronsson et al. (2006) and Lehmann et 
al. (2006) speculate that it may be due to differences in genetic background, and 
cultural traditions and behaviours. 

SCFE typically occurs between the ages of nine and sixteen with the mean age of 
onset being 12 years in girls and 13.5 years in boys (Loder and Skopelja, 2011). The 
SCFE cases that occur outside of the common age range are assumed to be atypical 
due to endocrine or systemic abnormalities or disorders (Lehmann et al. 2006). 
According to Loder et al. (2000), approximately 60% of the patients diagnosed with 
SCFE were boys. This assumption is based on a general population. This conclusion 
was reached during a worldwide seasonal variation study in which a dataset that 
included patients from various populations was used (Loder, 1996).  

The bilateral prevalence reports vary considerably and depend on many factors 
such as the study, type of treatment and method of radiographic measurement 
(Aronsson et al., 2006). The prevalence of bilateral involvement has been reported 
as approximately 63% of patients (Jerre et al., 1996). Of these patients presenting 
with bilateral SCFE, 50% – 60% of patients initially present with bilateral 
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involvement. Those who first present with unilateral involvement which later 
developed into bilateral SCFE, develop a second slip within the first 18 months of 
the first slip (Loder et al., 2000). 

2.3.2 Aetiology 

The cause of SCFE is mostly idiopathic. Many suggestions have been made 
regarding the aetiology of SCFE, but none have been present in all cases. It has 
been assumed that the aetiology is most likely multifactorial and is the result of 
biomechanical and biochemical factors. The combination of these factors could 
lead to a weakened physis and ultimately cause a slip  (Weiner, 1996). A slip occurs 
when the femoral head slips off the neck of the proximal femur at the growth plate 
and stays within the acetabulum while the femoral neck moves upwards and 
outwards (Kandzierski et al. 2012). Some of the mechanical factors associated with 
SCFE are an increased Body Mass Index (BMI), the increased slope of the physis 
and increased femoral retroversion (Gholve et al. 2009).  

An increased BMI is a factor strongly associated with SCFE and is also associated 
with an increased femoral retroversion, which is a condition in which the neck of 
the femur is rotated backwards relative to the shaft. Adolescents with normal 
body weight have an average anteversion of approximately 10.6° whereas 
adolescents with increased body weight have an anteversion of approximately 
0.4° (Loder et al., 2000). Since the forces transmitted to the physis are proportional 
to a person's body weight, an increased BMI and an increased retroversion lead to 
increased shear stress across the physis (Balasubramanian 2019). Patients 
presenting with SCFE have an increased slope, 11°, of the femoral physis compared 
to a normal slope of 8°. The increased slope along with the mechanical forces 
resulting from the body weight and femoral retroversion is enough to cause a slip 
of the physis (Aronsson et al. 2006). 

SCFE occurs during puberty which leads to many hormonal changes. Therefore it 
is likely that biochemical factors are associated with SCFE. Although most SCFE 
patients do not have an apparent endocrine disorder, a subtle, but not yet 
diagnosable endocrinopathy may be present (Aronsson et al., 2006).  The surge in 
hormonal changes and the increased prevalence of SCFE in patients who receive 
growth hormone supplements for hypothyroidism or hypogonadism suggest the 
association between SCFE and endocrine dysfunction (Weiner, 1996). During 
puberty, the physeal strength decreases and although a clear cause has not been 
identified, Loder et al. (2000) suggest that it might be due to provisional 
calcification and the increase of cartilage width of hypertrophy zones. The male 
predominance in the prevalence of SCFE can be explained by the effects of 
gonadotropins on the physis. Testosterone reduces physeal strength, whereas 
estrogen increases physeal strength and decreases physeal width (Gholve et al., 
2009). 
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Any combination of the factors mentioned above could lead to an abnormal 
increase in shear stress enforced on the physis and thus resulting in a slip. 

2.3.3 Classification 

Many methods to classify SCFE have been used over the years. Traditionally the 
classification of SCFE is based on the duration of the presented symptoms. 
According to Balasubramanian et al. (2019), this method classifies SCFE into four 
categories namely:  

1. Pre-slip SCFE: These patients might present with a slight limp or complain 
about groin or knee pain on exertion or weakness in the affected leg, but 
has no evident displacement of the physis on examination. 

2. Acute SCFE: When there is an abrupt displacement of the physis and 
presents with a deformity of external rotation and limited motion 
secondary to pain on physical examination. The duration of these 
symptoms and signs are less than three weeks. 

3. Chronic SCFE: The most common type, accounting for approximately 85% 
of all cases. These patients present with pain in the thigh, groin and knee 
and a physical examination would demonstrate discrepancy in the limb 
length and loss of internal rotation, flexion and abduction of the hip.  The 
SCFE is classified as chronic when these symptoms gradually developed 
over a longer period, more than 3 weeks. 

4. Acute-on-chronic SCFE: When a patient with initial chronic SCFE 
symptoms, subsequently develops acute symptoms as well as a sudden 
increase in the degree of the slip. 

The problem however with this traditional method of classification is that it 
depends on the memory of the patient, which can be inaccurate. The method also 
does not provide a prognosis regarding the potential for avascular necrosis (Loder 
et al., 2000). Therefore, more recently clinical classification is based on the physeal 
stability and can be classified with a clinical and/or radiographic method.  

The preferred clinical classification, proposed by Loder et al. (1993), is based on 
the patient's ability to bear weight on the affected leg. This method classifies the 
SCFE as being stable or unstable. The SCFE is considered stable when the patient 
is able to walk, with or without support whereas the SCFE is unstable when the 
patient can not walk on the affected leg, with or without support (Gholve et al., 
2009). 

Two radiographic methods are used for the classification of SCFE (Kallio et al., 
1995; Sinha et al., 2021). These methods are the Wilson classification system, 
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which measures the percentage of the slip and the classification described by 
Southwick (1967) which measures the epiphyseal shaft angle. The method 
described by Southwick’s classification is a more accurate representation of the 
true magnitude of the slip and is thus used more in practice (Gholve et al., 2009). 
Southwick (1967) classifies the slip as mild (<30°), moderate (30° - 60°) or severe 
(>60°). Southwick’s classification is illustrated in Figure 2.4  

 
Figure 2.4: Severity of the slip. (a) Mild slip with an epiphysis displacement of <30° 
(b) Moderate displacement of 30 - 60° (c) Displacement is severe when > 60° 
(Illustration adapted with permission from Lasanianos and Giannoudis (2014)) 

2.3.4 Diagnosis 

The presentation of SCFE may vary as it depends on the severity and the stability 
of the slip. However, the most common symptoms presented with SCFE are 
limping and pain in the hip, thigh, groin or knee (Peck et al., 2017). Due to the pain 
being poorly localized, it could lead to a delay in diagnosis or even a missed 
diagnosis. History of trauma to the area is rarely presented. A severe slip would 
present with more dramatic symptoms such as sudden severe pain and/or inability 
to bear weight (Balasubramanian et al., 2019). 

During a physical examination, the gait of the patient is observed and the range of 
motion of the affected hip is examined. When a patient has SCFE, they might 
present with a slight limp, abnormal gait or might not be able to bear weight with 
a severe slip. Lying on their back, the patient’s affected leg could appear shorter 
and externally rotated and obligatory external rotation of the affected leg would 
be visible when the hip is passively flexed to 90° (Gholve et al., 2009). The patient 
may also present with limited internal rotation of the hip, which is usually the most 
telling sign of SCFE (Peck et al., 2017). When the patient does not have bilateral 
SCFE, the affected hip’s range of motion is compared to the uninvolved hip. 

To confirm a diagnosis, imaging of the patient is ordered to visualise the position 
of the femoral head relative to the neck of the femur. For the diagnosis of SCFE, 
plain radiographs are usually sufficient. Since approximately 63% of the patients 
may have bilateral SCFE, both hips should be visualized on the x-ray (Gholve et al., 
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2009). Antero-posterior (AP) and frog-leg lateral radiographs are the standard x-
rays taken, although the frog-leg lateral is not recommended in patients with an 
unstable slip as it may further displace the slip (Balasubramanian et al., 2019). 

The radiographs are obtained to display the posteroinferior slip of the femoral 
epiphysis relative to the metaphysis. In early slip SCFE, the slip is often only seen 
on the frog-leg lateral view as the slip is usually posterior (Aronsson et al., 2006). 
In stable SCFE, radiographic signs of anterior and superior remodelling of the 
femoral neck are seen with periosteal new bone formation developing at the 
junction between the neck and head which creates a retroversion deformity of the 
femoral neck (Loder et al., 2000). 

Other signs that aid in the diagnosis of SCFE is Klein’s line and Steel’s blanch sign. 
Klein’s line is a technique where a line is drawn along the superior aspect of the 
femoral neck in the AP radiograph. Normally the line would intersect the femoral 
head but in patients with SCFE, the line passes over the head (Balasubramanian et 
al., 2019). Steel’s metaphyseal blanch sign is a crescent-shaped double density 
observed on the AP radiograph which is caused by the posteriorly displaced 
femoral head overlapping the medial femoral neck (Aronsson et al., 2006). 

The severity of SCFE can be assessed on the AP and frog-leg radiographs, but more 
typically it is evaluated on the lateral view as proposed by Southwick (1967). This 
method determines the degree of the slip by measuring the epiphyseal-shaft angle 
of both legs and subtracting the uninvolved shaft angle from the SCFE shaft angle 
(Aronsson et al., 2006). If the patient has bilateral SCFE, 12° can be used as the 
control value. 

2.4 Treatment 

Once SCFE has been diagnosed, the top priority in treating patients with SCFE is to 
prevent further progression of the slip while avoiding complications (Loder et al., 
2000). Since the severity of the slip relates directly to the duration of the 
symptoms, early treatment is suggested (Aronsson et al., 2006). Many treatment 
methods for SCFE are available, each with its advantages and disadvantages 
Aronsson et al. (2006) and Loder et al. (2000) described some of the treatment 
methods available in the literature and are listed below.  

2.4.1 Hip-spica cast 

Hip-spica cast is a cast that immobilizes the hip and aims to improve the 
displacement of the metaphysis. Immobilization in a bilateral cast avoids the 
complications related to operational procedures (Loder et al., 2000). Betz et al. 
(1990) treated 32 patients, 37 hips, with acute or chronic SCFE. The patients were 
treated with traction for symptom relief and immobilized using a hip-spica cast. 
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The cast was worn until the metaphyseal juxtaphyseal radiolucency disappeared 
from the radiographs (Betz et al., 1990). The patients were immobilized for an 
average duration of approximately 12 weeks.  Unfortunately, this method has a 
high rate of complications. In addition to the complications, the cast is 
uncomfortable and cumbersome for both the patient and the family (Loder et al., 
2000). 

2.4.2 Single-screw fixation 

This technique is seen as the gold standard treatment method when treating 
patients with acute SCFE (Balasubramanian et al., 2019). In situ single-screw 
fixation involves placing a screw in the centre of the epiphysis to maintain the 
position of the femoral head and prevent further slippage. The screw is placed 
perpendicular to the physis to stabilize the slip without forceful reduction and 
eventually the growth plate will close or fuse (Loder, 1998). Since the method is 
highly image-dependent, clear visualizations of the femoral head and neck are 
essential before the procedure starts. This method is the most commonly 
preferred treatment due to its high success rate and the low prevalence of 
additional slippage and complications (Loder et al., 2000). This method is 
illustrated in Figure 2.5. 

 

Figure 2.5: Illustration of the single-screw fixation method 

2.4.3 Bone graft epiphysiodesis 

By using bone graft epiphysiodesis to treat SCFE, complications associated with 
internal fixations such as damage to the lateral epiphyseal vessel and 
unrecognized pin protrusion are avoided (Aronsson et al., 2006). This surgical 
technique involves harvesting bone grafts from the iliac crest and placing it in the 
femoral neck. The procedure is approached with anterior iliofemoral exposure of 
the hip joint where a rectangular window of bone is removed from the anterior 
neck of the femur as shown in Figure 2.6 (Ferguson and Howorth, 1931). A 
cylindrical tunnel across the physis is created using a hollow mill. Corticocancellous 
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strips of iliac crest bone graft used as bone pegs are then driven across the physis 
into the epiphysis (Aronsson et al., 2006). According to Loder et al. (2000), the 
advantage of this technique is that it reduces the risk of damage to the blood 
supply of the femoral head as the graft is inserted at the correct angle at the centre 
of the femoral head. However, the fixation is not as stable as the fixation achieved 
through in situ fixation and the procedure leads to a longer duration of 
anaesthesia, increased blood loss and a larger scar (Loder et al., 2000). 

  

Figure 2.6: Illustration of the bone graft epiphysiodesis method 

2.4.4 Compensating base-of-neck osteotomy 

An anterosuperior-based wedge osteotomy, described by Kramer et al. (1976), is 
a surgical technique where multiple pins are used to stabilize the osteotomy site 
and SCFE, however, some of the patients in this study did develop some 
complications. Barmada et al. (1978) described a technique, the extracapsular 
basilar neck osteotomy, which is used to repair the SCFE while avoiding avascular 
necrosis. The occurrence of avascular necrosis is lower than that of cuneiform 
osteotomy, but the technique has a correction limited to 35-55 degrees of the slip 
angle. An advantage of the basilar neck osteotomy is that it improves hip motion, 
but it shortens the neck of the femur. During hip abduction, this could lead to 
impingement of the greater trochanter against the lateral of the acetabulum 
(Loder et al., 2000). 

2.4.5 Cuneiform osteotomy 

Cuneiform osteotomy is a surgical technique that involves an anterolateral or 
anterior Smith-Peterson view of the hip (De Rosa et al., 1996). A bone wedge is 
removed from the femoral neck metaphysis which allows anatomical 
repositioning of the epiphysis on the metaphysis without adding tension to the 
epiphyseal vasculature. Once the femoral neck is adequately shortened, the 
epiphysis is reduced, and three pins are used to fixate the head internally (Fish, 
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1984). This technique, however, has shown subsequently poor results and has a 
high risk of avascular necrosis (Loder et al., 2000). 

 

Figure 2.7: Different osteotomies used for the correction of SCFE  

2.4.6 Intertrochanteric osteotomy 

An intertrochanteric osteotomy through the lesser trochanter as described by 
Southwick (1967), improves hip motion without being associated with avascular 
necrosis. It involves an intertrochanteric osteotomy with abduction, flexion and 
internal rotation of the distal fragment where the osteotomy site and the SCFE are 
fixed with a compression hip screw (Loder et al., 2000). However, if the slip is 
unstable it is fixed with a percutaneous cannulated screw. Similar to the base-of-
neck osteotomy, the intertrochanteric osteotomy is also compensating with a 
correction limit of 45 degrees on the anteroposterior view and 60 degrees on the 
lateral view as measured by the Southwick method (Southwick, 1973). A 
correction larger than 60° could result in excessive femoral shortening. Although 
this technique has the advantage of being safe since it has a very low risk of 
avascular necrosis, according to Aronsson et al. (2006), this technique is 
technically demanding and therefore should only be considered for patients with 
an SCFE slip larger than 40 degrees. 

2.4.7 Unstable SCFE 

Compared to stable SCFE, unstable SCFE is a more severe disorder. The risk of 
complications, especially osteonecrosis, in patients with unstable SCFE is 
considerably higher (Peck et al., 2017). The treatment options for unstable SCFE 
are similar to the options described for stable SCFE but there are controversies 
regarding some of the factors regarding the treatment such as the timing of the 
surgery, reductions of the SCFE, aspiration of the hip joint and single- vs double-
screw fixation (Aronsson et al., 2006). A technique currently recommended is the 
Dunn procedure which restores the alignment of the proximal femur through a 

( a ) Base-of-neck ( b ) Cuneiform ( c ) Intertrochanteric 
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surgical hip dislocation and reduces the prevalence of femoroacetabular 
impingement (Abu Amara et al. 2014). Postoperatively the patients are non-
weight-bearing for approximately 6-8 weeks (Gholve et al., 2009). 

2.5 Pre-operative planning 

In most cases, the single-screw fixation technique is a sufficient method for 
stabilizing the SCFE, but to improve the hip joint's range of motion or to eliminate 
impingement in more severe SCFE cases a correction osteotomy is considered 
(Richolt et al. 1999). From the possible osteotomies implemented at various 
positions on the proximal femur, an intertrochanteric osteotomy is a preferred 
technique as it is safer due to its low risk of avascular necrosis (Kamegaya et al. 
2005). The pre-operative planning methods for this technique are described 
below. 

2.5.1 Traditional method 

Pre-operative surgical planning is an indispensable requirement for the success of 
any orthopaedic surgery (Hak and Rose, 2010). Traditionally pre-operative 
planning for intertrochanteric osteotomy relies on two radiographs namely the 
anteroposterior and frog-lateral radiographs (Merchán et al. 1992). These 
radiographs allow for the extraction and evaluation of the femur geometry. The 
extracted geometry, such as the neck-shaft angle (NSA), is used to determine the 
severity of the SCFE and therefore the amount of correction applied in the 
osteotomy (Kordelle et al. 2000). According to Graham et al. (2018), the procedure 
consists of the following steps: 

1. Using the method described by Southwick (1967), the head-shaft angle is 
measured on both the AP and the frog-leg lateral radiographs. The 
obtained measurements of the affected hip are compared to the 
contralateral hip when unilateral pathology is present. If the patient is 
diagnosed with bilateral SCFE,  measurements of 145° on the AP view and 
10° on the lateral view are used. The difference between the two hip 
measurements is used to determine the varus and extension deformity as 
shown in Figure 2.8. The severity of the deformities determines the 
amount of surgical correction used in the osteotomy. 

2. The proposed osteotomy line is marked on the two radiographs. The line 
is indicated just above the lesser trochanter.  
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Figure 2.8: Measurement of the head-shaft angle on the (a) AP view and the (b) 
frog-leg lateral view 

3. On the AP radiograph, a line is drawn from the medial extent of the 
proposed osteotomy at an angle “𝜃𝑣” which equates to the proposed 
valgus correction. A guidewire and thereafter a seating chisel will be 
inserted superior and parallel to this line. This can be seen in Figure 2.9. 

4. On the lateral radiograph, a line is drawn from the posterior extent of the 
proposed osteotomy at an angle “𝜃𝑓” which equates to the proposed 

flexion correction. The seating chisel’s blade will be superior and parallel 
to this line and aimed at the midpoint of the femoral neck. 

5. To determine the length of the blade and the size of the implant required 
a template of the blade plate can be traced onto the radiographs.  

6. A mock trial can be performed on tracing paper to confirm the 
preoperative measurements. 

( b ) ( a ) 

Figure 2.9: The proposed osteotomy line, along with the flexion and valgus 
correction angles indicated on the radiographs during preoperative planning 
(Illustration obtained with permission from Graham et al. (2018)) *Angles x and y 
in the figure represent 𝜃𝑣 and 𝜃𝑓 respectively. 
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2.5.2 Other methods 

Although the traditional method of pre-operative planning based on 2D 
radiographs has proven sufficient for a subset of procedures, the method does 
have some disadvantages such as it being cumbersome and time-consuming. 
Another problem of x-ray imaging is trying to establish the proper positioning of 
the examined body part, especially in children (Drapikowski et al., 2008). Incorrect 
positioning, overlapping anatomical structures, lack of information, and quality of 
radiographs can cause errors in measurements made which decreases the 
accuracy of the correction surgery (Kordelle et al., 2000). Since the 3D anatomy 
can not be completely viewed from the 2D radiographs, the accuracy, efficiency, 
and duration of the surgery depend on the knowledge and experience of the 
surgeon planning and performing the surgery (Drapikowski et al., 2008).  

The deformity correction of the SCFE can be complicated, regardless of the 
osteotomy chosen, due to the complicated 3D pathological structure and the 
inability to visualize the femoral head-neck junction using the standard approach 
(Cherkasskiy et al. 2017).  Various studies have proposed using a 3D patient-
specific model for pre-operative planning which would provide exceptional 
information on the bone shape and accurate measurements that could not be 
achieved with traditional x-ray imaging (Yu et al. 2016).  

In a study done by Kamegaya et al. (2005), the degree of correction to perform the 
osteotomy was measured using traditional radiographs, but the direction of the 
correction was determined using computed tomography. CT scans provide more 
three-dimensional information which is used to determine the plane of the 
osteotomy. Different CT slices in the axial plane were used to determine an axis 
along the lateral aspect of the femur and the provisional axis. The alpha angle was 
determined by measuring the angle between these two axes on a superimposed 
image. 

Cherkasskiy et al. (2017), proposed a study that used 3D-printed patient-specific 
models to perform pre-operative planning. To construct a 3D model, the patient 
underwent a pelvic CT scan to obtain a 3D image consisting of several image slices 
of the patient's anatomy. The CT scan was then used to segment the proximal 
femur from the image and convert the segmented femur to a 3D printable format. 
These models were then 3D printed and used for pre-operative planning and mock 
surgeries to allow the surgeon to visualize the femoral head-neck junction and 
optimize the correction surgery. 

Drapikowski et al. (2008) described how a simulation-based approach could be 
used for surgical planning. CT scans were used to obtain the 3D images of the 
patients whereafter 3D reconstruction was performed on the CT images to obtain 
surface models of the bony structures. The surface model was then calibrated to 
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define a standardized, repeatable position of the model. The software developed 
by Drapikowski et al. (2008), SCFE analyzer, allows for spatial analysis and could 
be used to calculate the range of motion of the hip joint as well as be used for 
surgical planning. The computer can determine the severity of the slip and 
simulate the osteotomy.  

Unfortunately, these methods have limitations which are largely due to the use of 
a 3D volumetric imaging technique such as a CT scan or MRI to obtain the 3D 
models. The use of these modalities is expensive and time-consuming and the 
method subjects the patient to a high radiation dose (Hosseinian and Arefi, 2015). 

2.6 2D/3D reconstruction 

Extensive research had been done to introduce alternative methods in creating 3D 
patient-specific bony models which eliminate the limitations of the CT imaging 
modality, but would still provide detailed and accurate 3D information. Currently, 
computer-aided reconstruction of a patient’s 3D anatomy from 2D radiographic 
images has been considered a reliable alternative (Hosseinian and Arefi, 2015). 
When using the 3D reconstruction technique, prior information about the shape 
is included to compensate for the lack of image information provided by the 2D 
image radiographs (Dakhakhni, 2013). By using the information obtained from the 
2D images along with the provided prior information, 3D patient anatomy can be 
constructed. Hosseinian and Arefi (2015) classifies and describe some of the 
existing 3D reconstruction methods available in the literature. Different measures 
are used to classify 3D reconstruction methods. These measures include the level 
of automation, applications, primitives and models used etc. The existing methods 
have been classified as methods based on points, contours, statistical models, and 
parametric models (Hosseinian and Arefi, 2015). 

2.6.1 Point-based methods 

This reconstruction method is one of the first presented methods for 
reconstructing 3D models from x-ray images. This method relies on identifying 
points and matching them on multi-view x-ray images. This method can further be 
classified as stereo-corresponding point (SCP) and non-stereo corresponding point 
techniques (NSCP) (Hosseinian and Arefi, 2015). 

The stereo-corresponding point-based technique is based on an expert operator 
manually identifying corresponding points on multi-view radiographs. For this 
technique to work at least 6 corresponding landmarks needs to be identified 
(Hosseinian and Arefi, 2015). Prior knowledge is taken into consideration by 
constructing a generic model from a 3D scanner (Aubin et al., 1997). The patient-
specific model is obtained by Kriging the generic model by using the identified SCPs 
and using a reconstruction algorithm such as Direct Linear Transform (DLT). Kriging 

Stellenbosch University https://scholar.sun.ac.za



 
 

21 

involves the deformation of a generic object through interpolation and 
extrapolation algorithms to approximate a 3D personalized model consistent with 
the desired shape (Mitulescu et al, 2002). Aubin et al. (1997) later suggested using 
additional points to generate more accurate models in a study where 21 SCP were 
used to reconstruct the 3D model. The problem with this method is that an 
anatomical structure has a limited number of corresponding landmarks and when 
increasing the number of identified SCPs, the method becomes time-consuming. 

To improve the limitations of the previous technique, a non stereo-corresponding 
point based technique was proposed. Unlike the SCP technique where 
corresponding points on multi-view radiographs are needed to perform 
reconstruction, the NSCP technique can perform reconstruction by using points 
that are only visible on one radiograph. The principle of this technique is to deform 
an elastic object while taking the stereo corresponding and nonstereo 
corresponding observations available in the various projections into account 
(Mitton et al., 2000). These methods are based on the idea that any non stereo-
corresponding point (NSCP) belongs to a line that extends from the x-ray source 
to the point’s projection in one view (Hosseinian and Arefi, 2015). Using these 
NSCPs along with other SCPs allows for a more detailed and refined reconstruction 
by using epipolar geometry to deform generic models. 

Mitton et al. (2000) and Mitulescu et al., (2001) used this technique in the 
reconstruction of cervical and lumbar vertebrae respectively. The reconstruction 
of the SCPs was done by using the DLT algorithm. The NSCPs on the other hand 
were reconstructed by defining a generic object and the projection line from the 
x-ray source to the projected point on the radiograph. The points' positions were 
initialized on the projection lines whereafter an optimization strategy is used to 
determine the point’s position on the line by taking the generic object’s shape into 
account. Lastly, the generic object was Kriged using the reconstructed points as 
control points.  

These NSCP-based techniques are extremely dependent on the ability of the 
expert operator to identify the anatomical landmarks on the radiographs. 
Therefore, the method is not very reproducible and can be time-consuming during 
the landmark identification process (Hosseinian and Arefi, 2015). 

2.6.2 Contour-based methods 

Another disadvantage to point-based methods is that they cannot be applied to 
bony structures that have a continuous shape due to the scarcity of specific 
anatomical landmarks points (Laporte et al., 2003). An improvement to the point-
based reconstruction method was proposed by Laporte et al. (2003), which can be 
applied to continuous shapes by applying non-stereo corresponding contours 
instead of points. This technique aims to manually identify 2D contours from the 
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x-ray images and associate them with the 3D lines established on the reference 
shape while deforming a 3D elastic model onto the radiographs with regard to the 
2D contours (Hosseinian and Arefi, 2015). The 2D contours are associated to the 
3D lines by using contour deviation and point-to-point distances.  The projected 
contours of the initial 3D object surface are optimized and then deformed using 
the Kriging algorithm. This step is repeated until the distance between the two 
contours reached a precision value (Laporte et al., 2003). Figure 2.10 shows how 
Mitton et al. (2006) implemented a contour-based reconstruction algorithm to 
reconstruct the pelvis from 2D images. 

 

Figure 2.10: Identified 2D contours on the lateral and frontal radiographs (Figure 
obtained with permission from Mitton et al. 2006) 

2.6.3 Statistical shape model based methods 

This technique is seen as a more automated reconstruction algorithm as it reduces 
user interaction by considering more information regarding pathological 
structures and utilising statistical knowledge of possible deformations of the 
shapes (Hosseinian and Arefi, 2015). A shape model aims to capture all possible 
variations within a population and thus requires a large training dataset which 
includes normal and pathological shapes. The model containing the prior 
information is projected to the radiographs and compared using a similarity 
measure. The similarity measure uses a set of features or a statistic to compare 
the projected shape to the radiograph and produces a numerical value which 
quantifies the similarity of shared information (Reyneke et al., 2018). The shape 
model is deformed until the projection of the model is consistent with the 
information on the corresponding radiograph.  

2.6.4 Parametric methods 

This method uses parametric modelling and takes clinical and anatomical features 
into account. Rather than using the entire collection of points as suggested by 
Statistical Shape Modelling, the statistics are conducted on anatomical descriptive 
parameters (DP) which are extracted from the surface of interest (Quijano et al., 
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2013). A simplified parametric model is specified to depict the target objects. This 
simplified model is constructed according to the observed bony structure by using 
different geometric primitives such as circles, lines, points and spheres (Lebailly et 
al., 2012).   

A database of parameters is established from the training 3D models for statistical 
inference through the use of simplified parametric models. Based on the digitized 
anatomical landmarks on the calibrated radiographic images, the main descriptors 
are determined and used to estimate a full set of DPs according to the statistical 
model.  The full set of DPs is used to obtain a simplified personalized parametric 
model (SPPM) and according to Quijano et al. (2013) deforming a morpho-realistic 
generic mesh into the SPPM results in a  morpho-realistic personalized parametric 
model (MPPM). The resulting model is then projected onto the corresponding 
radiographs to compare the information of the images to the model and to make 
possible adjustments. Humbert et al. (2009), used a parametric model for 
vertebrae of the spine, as indicated in Figure 2.11. 

 

Figure 2.11: Parametric model of the spine  (a) consisting of L4 and L5 and the (b) 
L4 vertebra (Figure obtained with permission from Humbert et al. 2009) 

2.6.5 Discussion 

According to Hosseinian and Arefi (2015), none of these methods described above 
can be chosen as the superior method as all of these methods have their 
advantages and disadvantages that should be taken into account when considered 
for usage. Due to the simplicity of point-based processes, the method is still 
implemented for 3D reconstruction and is usually used as an initial estimation for 
other methods. However, the drawbacks of point-based reconstruction include 
low reproducibility, limited accuracy, being time-consuming and being highly 
dependent on the skill and experience of the operator. This is due to the difficulty 
associated with accurately identifying and matching points on multiview 
radiographs and the limited number of corresponding landmarks visible on the 
radiographs. Point-based reconstruction cannot be implemented on bony 
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structures with a continuous shape due to the limited number of anatomical 
landmarks present (Hosseinian and Arefi, 2015).  

In contour-based methods, the user intervention required is less than in point-
based methods since the method uses contours instead of points for 3D 
reconstruction. The accuracy of this method is acceptable and closely resembles 
the result of CT scans, but this is still seen as a time-consuming method when 
applied to clinical applications according to Hosseinian and Arefi (2015). 
Reconstruction based on statistical shape models is more automated than the 
previous methods as it reduces user intervention by including prior information 
about pathologic objects. The reconstruction time of this method varies, but the 
method is limited by the large training dataset required to construct a statistical 
shape model. Lastly, the parametric-based reconstruction approach has improved 
convergence and robustness and is suitable for providing a quick and reliable initial 
3D reconstruction. This method is also known to have acceptable reproducibility. 

According to Sarkalkan et al. (2014), statistical shape modelling is used extensively 
throughout the orthopaedic field. Chan et al. (2013) stated that an SSM could offer 
useful metrics regarding the characteristic macroscopic shape patterns that are 
present in a case of SCFE. Since a shape model aims to capture all possible 
variations within a population it can be used as prior knowledge during the 
reconstruction algorithm. Various studies throughout the literature have applied 
this method to the reconstruction method. Fleute et al. (1999) proposed a method 
where a 3D model of the distal femur is constructed by deforming the shape model 
to match the 2D contours segmented from x-ray images. This proposed method 
resulted in a reconstruction with an average error of 0.99 mm. Benameur et al. 
(2003) used a shape model-based method to reconstruct vertebrae where the 
mean error of the reconstructed models was 0.71 mm for the lumbar and 1.48 mm 
for the thoracic vertebra. Other researchers such as Zheng et al. (2009), proposed 
using the reconstruction method to reconstruct the proximal femur and achieved 
an average reconstruction error of 1.2 mm. Based on the information provided in 
the literature review, a shape model based reconstruction technique will be 
implemented within this study.  
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Chapter 3  

Statistical shape models 

This chapter will focus on explaining what Statistical Shape Models are and how 
they are constructed. Section 3.1 explains how the data, used to build the shape 
model, have been acquired and how it has been processed to be used in shape 
modelling. Section 3.2 gives an overview of shape models followed by Section 3.3 
which details how the SSM has been constructed. Lastly, Sections 3.4 to Section 
3.6 explains how the model has been validated and the results are discussed.  

3.1 Processing and segmentation 

The SSM was constructed using CT data of the proximal femur that were analysed 
retrospectively, but in order to do so, an ethical exemption was required. Since 
this study was executed retrospectively with a dataset that is publically available 
and the study required no patient contact it was considered that the study poses 
a minimum risk and that ethical exemption could be obtained. After ethical 
exemption was received (Reference: X21/03/007) the existing collection of CT 
images was retrieved from the Shapeworks Data Portal, which is available for 
public access at https://girder.shapeworks-cloud.org/. 

This specific dataset was the femur-v0 dataset under the use-case-data-v2 
collection on the portal. The collection and processing of the data were originally 
supported by the National Institutes of Health (NIH), grant numbers U24-
EB029011, R01-AR076120, R01-EB016701, R01-GM083925, R21-AR063844, and 
completed within the Orthopaedic Research Laboratory of the University of Utah. 
The dataset is composed of CT scans of the hip obtained from 33 study volunteer 
participants, with an average age of 29 years old, ranging from 15 to 55 years old, 
who had no history of hip pain and no signs of osteoarthritis or bony 
abnormalities. The study participants had been imaged as part of previous 
unrelated studies with approval from an institutional review board (University of 
Utah IRB numbers 11755 and 56086; Intermountain Healthcare IRB number 
1024270) and were originally collected for research purposes, specifically for the 
evaluation of hip biomechanics (Atkins et al., 2019). 

The raw data was in a nearly raw raster data (.nrrd) file format and the slices had 
a resolution of 512 x 512 pixels with a thickness of 1 mm in the axial plane with 
pixel sizes ranging from 0.61 to 0.85 mm with an average spacing of 0.7 mm. The 
software program used for the segmentation process was 3D Slicer, Version 4.11, 
which can be obtained from https://www.slicer.org/. 3D Slicer is a free, open-
source software application that is used for the visualization and analysis of 
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Figure 3.1: Mask of the proximal femur (yellow) visible in the different planes of 
the CT scan. 

medical image computing datasets. The proximal femur was segmented from each 
CT scan in the dataset by following the protocol below. 

1. Use the Crop Volume module to reduce the image volume to the region of 
interest, which is the left proximal femur. 

2. The proximal femur was isolated by manually adjusting the threshold. This 
resulted in a mask that describes all the geometries within the thresholding 
range. 

3. By stepping through all the slices, the mask was cleaned and edited 
manually by using the tools available in the Segment Editor module of 3D 
Slicer. The cleaning process consisted of closing irregular gaps and areas of 
poor contrast, erasing unwanted artefacts, removing islands whose 
anatomy does not represent those of the proximal femur, and smoothing 
the mask. 

4. Once the editing phase has been completed the mask was used to generate 
a surface mesh of the femur. 

5. By using the decimation tool in the 3D Slicer Surface Toolbox module, the 
mesh was simplified by reducing the number of surface points to about 
10 000 points. 

6. A mask was generated from the reduced mesh and compared to the CT 
scans for visual inspection. Figure 3.1 shows an instance of this step, where 
a mask of the proximal femur is visible in the different planes of a CT scan. 

 

  

 

( a ) Coronal plane ( b ) Axial plane ( c ) Sagittal plane 
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7. Once the mask was validated, the final mesh was exported to a 
stereolithography (.stl) file as face-vertex data. 

3.2 Overview of a shape model 

Statistical shape models are the result of a combination of the analysis of training 
data and the understanding of a population and aim to capture possible variations 
within a population (Bryan et al. 2009). Sarkalkan et al. (2014) stated that these 
models are usually based on the analysis of a set of training data which provides 
the model with prior knowledge about the expected shape distribution of the 
object. Based on the definition, a shape model can be used to explain the 
anatomical variation within a  population of bony shapes, where the population 
can vary from patients with a skeletal disease to a group of healthy individuals 
with a shared ethnic background (Sarkalkan et al., 2014).  

Being able to fit these models to new unseen data within the same population, 
creates the opportunity to construct a three-dimensional patient-specific bone 
model of the shape. These 3D patient-specific models can then be used in a variety 
of medical applications such as bone motion tracking, or, in the case of this study, 
for pre-operative surgical planning for SCFE (Sarkalkan et al., 2014). 

According to Heimann and Meinzer (2009), the methods employed to construct 
an SSM strongly depend on the chosen shape representation. Among the various 
shape features available, the most common descriptor for bone are landmarks 
which are manually placed on bone shape features, with the number of points 
usually in the tens. However, most modern attempts rather use a dense set of 
landmark points, which number in the order of thousands (Reyneke et al., 2018). 
Figure 3.2 illustrates how a dense set of landmarks along with the connectivity 
information could be used to represent the femur as a face-vertex surface mesh. 
Lüthi et al. (2017) stated that Point Distribution Models (PDMs) are an important 
class of statistical shape models. PDMs are linear, parametric models that use the 
point positions of an object's boundary to represent the shape as a set of labelled 
points. A PDM is typically trained using a set of example shapes {Γ1, … , Γ𝑛}, where 

each shape is represented by a set of discrete points: i.e Γ𝑖 = {𝑥𝑖
𝑗|𝑥𝑗  𝜖 ℝ

3, 𝑗 =

1, … , 𝑁} with 𝑁 denoting the number of points (Lüthi et al., 2017). 

When constructing a PDM there are three main steps to consider, namely 
correspondence, data alignment and variance extraction. Correspondence is one 
of the largest factors that can influence model quality (Heimann and Meinzer, 
2009).  A shape model requires that the points from the shapes in the training 
dataset are all in correspondence to ensure that the anatomical variance of a set 
of data is correctly interpreted. 
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Figure 3.2: A dense surface mesh 

 

 

 

 

 

 

 

 

 

 

Correspondence means that the landmarks should be defined in such a way that 
the 𝑗th landmark point would represent the same anatomical location on all of the 
shape instances in the dataset (Lüthi et al., 2017; Sarkalkan et al., 2014). This is 
usually achieved through manual identification of the landmarks or by using 
algorithms that automatically compute correspondence by performing 
registration between all involved shapes (Heimann and Meinzer, 2009). 

Commonly, an anatomical shape is described as the geometrical information that 
remains when the effects of rotation and location are filtered out from an object, 
but not the size. This is due to shape and size often being correlated in biology 
(Stegmann et al., 2000). Thus, once correspondence has been established 
between the shapes in a set of training data the next step would be to align all the 
training shapes to the same coordinate frame to reduce variations between 
shapes resulting from factors other than variation in shape. Shape alignment can 
be achieved through the alignment of manually placed landmarks or through 
algorithms that automatically align the shapes like the General Procrustes Analysis 
(GPA) (Heimann and Meinzer, 2009; Sarkalkan et al., 2014). 

Lastly, a set of modes that best describe the observed shape variations is extracted 
by using statistical analysis. According to Lüthi et al. (2017), the usual assumption 
is that shape variations can be modelled using a normal distribution 𝑠 ~ 𝒩(𝜇 , Σ), 
where the mean, 𝜇, and the covariance matrix, Σ, can be calculated as: 
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𝜇 = �̅� ≔
1

𝑛
 ∑𝑠𝑖⃗⃗ 

𝑛

𝑖=1

 
( 1 ) 

Σ = 𝑆 ≔ 
1

𝑛 − 1
 ∑(𝑠𝑖⃗⃗ −  �̅� )(𝑠𝑖⃗⃗ −  �̅� )𝑇

𝑛

𝑖=1

 ( 2 ) 

The covariance matrix, Σ, measures the variance in the different training shapes 
from the mean shape �̅� (Sarkalkan et al., 2014). Once the covariance matrix is 
obtained, Principal Component Analysis (PCA) is performed on the matrix Σ to 
calculate the eigenvectors (main modes of variation) Φ𝑖 along with the 
corresponding eigenvalue (variance) λ𝑖 (Reyneke et al., 2018). The resulting 
eigenvectors are then sorted in descending order with regard to the percentage 
shape variation explained by that eigenvector. This is done so that the modes of 
variation with the most variance would be able to describe most of the possible 
shape distributions within the population (Cootes and Taylor, 2004; Heimann and 
Meinzer, 2009). A shape instance in the population can therefore be described as: 

𝒔 = �̅� + ∑𝑏𝑖Φ𝑖

𝑀

𝑖=1

 ( 3 ) 

where 𝑏𝑖 describes the contribution of the first M modes of variation. The number 
of modes retained affects the accuracy and the compactness of the model. A larger 
number of retained modes would mean that the model would describe the bone 
shape more accurately but the model would be less compact (Stegmann et al., 
2000). A common approach used for determining the number of modes required 
is to determine the ratio, γ, between the accumulated variance and the total 
variance of the model.  

The ratio is generally acceptable when 0.9 ≤ γ ≤ 0.98, anything outside the ratio 
could lead to overfitting (Heimann and Meinzer, 2009; Sarkalkan et al., 2014). 

3.3 Constructing a shape model 

The previous section mentioned that PDMs are the technique most frequently 
used for representing bone shapes. These models that make use of PCA to 
determine the shape variations can only represent shapes within the linear span 

γ =  
∑ 𝜆𝑖

𝑀
𝑖=1

∑ 𝜆𝑖
𝑛−1
𝑖=1

 ( 4 ) 
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of the training shapes. This means that in order for the model to represent all 
possible target shapes in a population a lot of training data is needed (Thusini et 
al., 2020). It could be difficult to obtain sufficient training data due to privacy 
issues, the lack of substantial benefit for recruiting volunteers to undergo CT scans 
or a lack of already available cases in a database (Muschelli, 2019). 

To overcome this problem, a method described by Lüthi et al. (2017), which 
generalizes the PDMs to define Gaussian Process Morphable Models (GPMM), was 
employed in this study. These models do not restrict the covariance matrix to the 
covariance matrix obtained from the training shapes but instead, allows for any 
valid positive definite covariance matrix to be used (Reyneke et al., 2018). 

The approach to constructing a GPMM consists of two important steps. Firstly 
correspondence needs to be established between all the shapes in the training 
dataset and secondly, the deformations are modelled using a Gaussian Process 
𝒢𝒫(𝜇𝐺𝑃, 𝑘𝐺𝑃) where 𝜇𝐺𝑃 is the mean function and 𝑘𝐺𝑃 the covariance function 
(Lüthi et al., 2017). The process of constructing a GPMM is illustrated in Figure 3.3. 

The shape model was constructed using Scalismo. Scalismo is an open-source 
library for statistical shape modelling and model-based image analysis in Scala and 
was developed by the University of Basel, Switzerland. A development 
environment namely, Intellij IDEA (https://www.jetbrains.com/idea/) was used to 
program in Scala.  

3.3.1 Identify reference shape 

In order to construct a GPMM, a reference shape, Γ𝑅, needs to be identified from 
the training data set {Γ1, … , Γ𝑛}.  As mentioned above, the deformations are 
modelled using a GP and consist of a mean and a covariance function. As 
deformation fields are being modelled, that means that the mean function also 
consists of a deformation field and when considering shape models, the mean 
function can be thought of as the field that deforms the reference into the mean 
shape (Lüthi and Bouabene, 2020). When the reference shape closely resembles 
the mean shape of the population and no further knowledge regarding the dataset 
is available, a zero mean deformation can be used in the GP. Thus, when selecting 
a reference shape, the reference should approximate the mean shape as closely 
as possible to justify the use of a zero-mean GP (Lüthi and Bouabene, 2020). 

It was decided to determine the reference shape by analysing the volume of each 
of the training shapes. 3D Slicer offers a module called Models, which provides 
information regarding a surface model including the volume, in cubic millimetres.  

Thus, when the shapes were extracted from the CT scans, the volume of each of 
the surface meshes could also be found. The average volume was determined and 
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the training shape with a volume closest to the average volume, V𝑎𝑣𝑔 ≈ VΓ𝑖
 was 

selected as the reference mesh Γ𝑅 ≈ Γ𝑖.  

 

Figure 3.3: Flowchart of SSM construction 

3.3.2 Landmark placement 

One of the tasks that need to be performed is to rigidly align all the training meshes 
to the reference shape i.e. normalizing the pose of the shapes. To be able to align 
these shapes, anatomical landmarks were placed manually on each one of the 
face-vertex surface meshes. Anatomical landmarks are a set of points that are 
located at the salient features across the surface of a bony structure (Heimann and 
Meinzer, 2009). Five landmarks (𝑁𝑙𝑚𝑠 = 5) were placed on each of the training 

𝑁𝑙𝑚𝑠  = 5 

𝜇𝑏𝑙 = 0 

𝑘𝑏𝑙 = 𝑘(𝑥, 𝑦) 

𝑘𝐺𝑃 =
1

𝑛 − 1
∑(𝑢𝑖 − 𝜇𝐺𝑃)(𝑢𝑖 − 𝜇𝐺𝑃)

𝑇

𝑛−1

𝑖=1

 

𝜇𝐺𝑃 =  
1

𝑛
 ∑𝑢𝑖

𝑛

𝑖=1
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shapes. These landmarks are the landmarks discussed in Section 2.2. The identified 
landmarks can be seen in Figure 3.4.  

 

Figure 3.4: Manual landmarks of proximal femur 

The landmarks were identified and placed on the mesh using the landmark tool in 
the Scalismo graphical user interface. The landmarks were placed consistently, in 
the same order and saved under corresponding labels, to establish some 
correspondence between the landmarks. It was assumed that the landmarks were 
placed with a radial uncertainty of 5 mm. This error was accommodated by 
introducing a noise variable into the fitting algorithm. 

3.3.3 Align shapes to the reference shape 

To establish correspondence it is necessary to align the training samples in such a 
way that variations resulting from rotational and translational effects are 
removed. This ensures that the deformation fields between the reference and 
training shapes are pure shape changes. The most popular alignment method is 
the Procrustes Analysis (PA) (Sarkalkan et al., 2014). The main idea behind PA is to 
align the shapes in such a way that the mean squared distances are minimized.  

The landmarks identified in Section 3.3.2 were used to align the training meshes 
to the reference mesh. Using the method rigid3DLandmarkRegistraition 

from the Scalismo library along with the list of landmarks, the rigid transformation 
matrix which best aligns the training mesh with the coordinate frame of the 
reference mesh is determined. The rigid transformation matrix uses translational 
and rotational functions to accomplish the alignment of the shapes (Lüthi and 
Bouabene, 2020). The alignment process was visually inspected to ensure all the 
meshes fall within the same coordinate frame as seen in Figure 3.6.  
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Figure 3.5: Rigid alignment of two surface meshes 

 

 

Figure 3.6: Training shapes aligned to the reference mesh 

3.3.4 Establish correspondence 

Once all the training meshes have been aligned with the reference shape, 
correspondence needed to be established among these shapes. The process of 
establishing correspondence is often referred to as registration. For registration, 
possible deformations are usually modelled using a GP, 𝑢 ∈ 𝒢𝒫(𝜇𝐺𝑃, 𝑘𝐺𝑃), with a 
mean function 𝜇𝐺𝑃 ∶  Ω →  ℝ3  and a covariance function 𝑘𝐺𝑃 ∶  Ω x Ω →  ℝ3𝑥3. 
Sampling a deformation �̂� from this GP, generates a new shape, Γ, by warping the 
reference shape Γ𝑅: 

Γ = {𝑥 + �̂�(𝑥)|𝑥 ∈  Γ𝑅} ( 5 ) 

Because the reference shape closely approximates the mean shape, a simple GP 
can be constructed by using a zero mean function and a Gaussian kernel as a 
covariance matrix kernel. The scalar-valued Gaussian kernel that enforces 
covariance between the value of any pair of points 𝑥, 𝑦 is defined by: 
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𝑘𝑔(𝑥, 𝑦) = exp (−‖𝑥 −  𝑦‖2/σ2) ( 6 ) 

where σ2 defines the smoothness of the deformation as it is the distance over 
which the deformations are correlated. This means that choosing a large σ, will 
lead to smooth deformations over the specified region, whereas a small σ will lead 
to more local deformations (Lüthi & Bouabene, 2020). To obtain the 
corresponding matrix-valued kernel that is used  for the registration process, the 
scalar-valued kernel is multiplied with an identity matrix and defined as: 

𝑘(𝑥, 𝑦) = 𝑠𝑣 ∙ 𝐼3𝑥3𝑘𝑔(𝑥, 𝑦) ( 7 ) 

Where the identity matrix, 𝐼3𝑥3, implies that each space dimension  component 
(x,y,z) of the vector field is treated independently and 𝑠𝑣  indicates how much 
variance is being modelled as it is used to scale the variance. 

An advantage of modelling with GPs is that simple kernels, like the kernel in 
Equation 7, can be combined to define a new kernel which allows the construction 
of models that combine deformations on multiple scales with varying smoothness 
(Lüthi et al., 2017). In this study, deformations were modelled on multiple scale 
levels by summing kernels that model smooth deformations with a kernel that 
models more local deformations. This kernel is defined as: 

𝑘𝑠𝑢𝑚(𝑥, 𝑦) = 𝑘1(𝑥, 𝑦) + 𝑘2(𝑥, 𝑦) ( 8 ) 

where each kernel is modelled with a decreasing bandwidth and scale. This 
multiscale kernel increases the flexibility of the model. Once the mean and 
covariance function has been established the simple GP can be constructed. Now 
deformations can be sampled from any desired set of points, which in this case is 
the points of the reference shape, Γ𝑅.  

Whenever deformations are sampled from the GP using the sampleAtPoints 

method, a matrix of dimensionality 𝑁𝑑𝑜𝑢𝑡 x 𝑁𝑑𝑜𝑢𝑡 is created internally, with 𝑁 
being the number of points and 𝑑𝑜𝑢𝑡 being the output dimension. If it is needed 
to sample from a large number of points, the memory will run out quickly. To 
overcome this problem, a low-rank approximation of the GP is obtained resulting 
in a parametric representation of the GP. This is achieved using a Pivoted Cholesky 
approximation to compute a finite-rank approximation of the GP. The rank 
(number of basis functions) is automatically chosen in such a way that a given 
relative error is achieved. The relative error is approximated on the points on the 
reference mesh and measured in terms of the variance of the GP. This low-rank 
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GP is once again applied to the reference shape, Γ𝑅, which results in a  smooth 
GPMM which is used as the baseline SSM for the registration process. 

In the next step, registration to the training meshes is performed. During this 
study, non-rigid registration is used and the registration problem was formulated 
as an optimization problem as proposed by Lüthi & Bouabene (2020). To define 
the registration process four parameters need to be defined, namely: 

1. A transformation space in which samples from the baseline SSM can be 
modelled. 

2. A metric is used to measure the distance between the baseline SSM 
(reference mesh) and a training mesh (target mesh). The metric is 
evaluated at some uniformly sampled points on the reference mesh. 

3. A regularizer which penalizes unlikely transformations. 

4. An optimizer to perform the minimization of the cost function. 

Once these parameters were obtained, the registration object can be defined. 
Registration is an iterative process which determines the transformation needed 
to warp the reference mesh into the target mesh (Lüthi & Bouabene, 2020). Thus, 
the registration is driven by an iterator initialized with a set of parameters, which 
in this case is a zero-vector the size of the number of basis functions. The 
parameters of the last iteration are then used to transform the reference mesh 
into a surface mesh which approximates the target shape. To ensure that the 
transformed mesh approximates an exact representation of the target mesh all 
the points on the transformed mesh were projected normally to the closest point 
on the target shape. This resulted in a fitted mesh which is in correspondence with 
the target mesh as each point on the fitted mesh closely corresponds with a point 
on the target mesh.  

The regularization weight plays a significant role in the registration process as a 
large regularization weight leads to a smooth mesh, but fails to closely fit the 
mesh, whereas if you choose a small regularization weight it could lead to a folded 
mesh with poor correspondence (Lüthi & Bouabene, 2020). Thus, to ensure that 
the correct regularization weight is chosen, the registration process is iterated 
with decreasing regularization weights and with an increasing number of sampled 
points. This increasing number of sampled points is justified as a model with a 
larger regularization weight will not be able to fit finer details and thus it is not 
needed to have a very accurate sample of the mesh.  
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3.3.5 Build shape model 

Now that correspondence has been established between the reference shape and 
the fitted target meshes, the shape variation of the population is extracted. The 
shape variations can be stored within a GP by constructing a GPMM using the 
reference shape and a dataset of fitted target meshes. The dataset of surface 
meshes is turned into a sequence of deformation vector fields, 𝐮 = {𝑢1, . . . , 𝑢𝑁},  
from which the model is built. The deformation fields are computed by taking the 
difference between a point on the reference mesh and a corresponding point on 
the target mesh. Note that the deformation is interpolated to ensure that the 
vector fields are defined on all points of the reference mesh. 

The deformations can be stored by defining a GP 𝑢 ∈ 𝒢𝒫(𝜇𝐺𝑃 , 𝑘𝐺𝑃) with a mean 
function 𝜇𝐺𝑃 ∶  Ω →  ℝ3  and a covariance function 𝑘𝐺𝑃 ∶  Ω x Ω →  ℝ3𝑥3 where 
the mean and covariance function can be determined through: 

𝜇𝐺𝑃 = 
1

𝑛
 ∑𝑢𝑖

𝑛

𝑖=1

 
( 9 ) 

𝑘𝐺𝑃 = 
1

𝑛 − 1
 ∑(𝑢𝑖 − 𝜇𝐺𝑃)(𝑢𝑖 − 𝜇𝐺𝑃)

𝑇

𝑛−1

𝑖=1

 ( 10 ) 

The resultant covariance matrix has a dimension of 𝑁 x 𝑁, where 𝑁 is the number 
of points used to describe the boundary reference shape. Because this number of 
points is usually in the thousands, the resulting covariance matrices can become 
quite large. To solve this problem the PCA is used to represent the GP in terms of 
an orthogonal set of basis functions (Lüthi et al., 2017). The low-rank 
approximation can then be used to represent the process as: 

�̃�(𝑥) ~ 𝜇𝐺𝑃(𝑥) + ∑𝛼𝑖√𝜆𝑖𝜙𝑖(𝑥)

𝑟

𝑖=1

 ( 11 ) 

where 𝛼𝑖 is a random coefficient which determines the contribution of the 
eigenvalue/eigenvector pair (𝜆𝑖, 𝜙𝑖). Samples from the constructed GPMM can be 
seen in Figure 3.7, where variation has been learned from 27 training shapes. 

3.3.6 Increasing the model flexibility 

Due to the limited availability of training shapes, it is often not possible for the 
SSM to accurately describe the full transformation space which introduces a bias 
towards the training shapes in the model-based methods. One way of solving this  
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Figure 3.7: Samples from the SSM 

problem is to introduce an explicit bias model which is added to the GPMM to 
slightly increase the flexibility of the model (Lüthi et al., 2017). 

The additional variance is modelled by adding a Gaussian kernel, with bandwidth 
parameter 𝜎, denoted 𝑘𝑔(𝑥, 𝑦), to the covariance kernel sampled from the model, 

denoted as 𝑘𝑃𝐷𝑀(𝑥, 𝑦). A simple model used to reduce the bias of the model 
would make use of a Gaussian kernel with large bandwidth and define the new 
kernel as:  

𝑘𝑏(𝑥, 𝑦) = 𝑘𝑃𝐷𝑀(𝑥, 𝑦) + 𝑠𝑣 ∙ 𝐼3𝑥3𝑘𝑔(𝑥, 𝑦) ( 12 ) 

A GP is built with the new augmented kernel, after which a low-rank 
approximation of the GP is calculated. A new GPMM is then constructed using this 
augmented low-rank GP. 

3.4 Validation of SSM 

Before the constructed SSM could be used for reconstruction purposes, the quality 
of the model was investigated. According to Davies (2002), three measures could 
be used to assess the quality of the model, namely compactness, specificity and 
generality. 

Compactness measures the model’s ability to capture variance within a shape 
population by using as few principal components as possible (Styner et al., 2003). 
The compactness ability is determined by measuring the accumulative variance of 
the model and is defined by: 

𝐶(𝑀) =  ∑𝜆𝑖

𝑀

𝑖=1

 ( 13 ) 
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where 𝜆𝑖 is the 𝑖𝑡ℎ eigenvalue and 𝑀 are the number of principal components 
included in the model. The fewer principal components used to model a certain 
amount of variance, the more compact the model is. 

Specificity describes the ability of the model to produce shape instances similar to 
the shapes within the training dataset. This characteristic is determined by 
randomly sampling uniformly distributed shape instances from the model and 
measuring the average distance or root-mean-square error between the sampled 
shapes and their closest match in the training dataset (Reyneke et al., 2018). The 
distance between the generated shape and the best-matched training shape is 
then averaged over a large number of iterations. This measure is determined as a 
function of the number of principal components included in the model to produce 
random shapes and is denoted by: 

𝑆(𝑀) =
1

𝑛𝑠
 ∑𝑅𝑀𝑆𝐸(𝑅𝑖(𝑀), 𝑡𝑅𝑖)

𝑛𝑠

𝑖=1

 
( 14 ) 

where 𝑅𝑖 represents the randomly sampled shape, 𝑡𝑅𝑖 describes the training shape 
that resembles the random sample the best and 𝑛𝑠 is the number of iterations. 
The smaller the result of specificity the more specific the model (Davies, 2002). 
The standard error of 𝑆(𝑀) is defined as: 

𝜎𝑆(𝑀) = 
𝜎𝑠𝑠

√𝑛𝑠 − 1
 ( 15 ) 

where 𝜎𝑠𝑠 is the sample standard deviation of 𝑆(𝑀). 

Generality quantifies the model's ability to produce new shape instances of the 
class of the object modelled (Heimann and Meinzer, 2009). This characteristic is 
estimated by using a leave-one-out cross-validation test where all but one of the 
training shapes is used to construct a model which is then fitted to the excluded 
shape. The distance between the model estimation and the excluded mesh is then 
used to determine the accuracy to which the reduced model can describe the 
excluded mesh. This process is repeated for each shape within the training 
dataset. Eventually, the average approximation error is obtained as a function of 
the number of principal components used to approximate the excluded mesh. The 
generality is defined as: 

𝐺(𝑀) =
1

𝑛𝑔
 ∑𝑅𝑀𝑆𝐸(𝑆𝑖(𝑀), 𝑡𝐸𝑖)

𝑛𝑔

𝑖=1

 
( 16 ) 
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where 𝑆𝑖 represents the shape estimated by the model, 𝑡𝐸𝑖  is the excluded shape 
and 𝑛𝑔 is the number of shapes within the training dataset. As with specificity, the 

smaller the result of the generality measure the more general the model. The 
standard error of 𝐺(𝑀) is given by: 

𝜎𝐺(𝑀) = 
𝜎𝑠𝑔

√𝑛𝑔 − 1
 ( 17 ) 

where 𝜎𝑠𝑔 is the sample standard deviation of 𝐺(𝑀). 

3.5 Results 

Heimann and Meinzer (2009) suggested an 80:20 distribution between the 
training and the testing dataset. Thus, the SSM were constructed using 27 
proximal femurs from the dataset, which leaves 6 proximal femurs to be used as 
the testing dataset. As mentioned in Section 3.4, three characteristic measures 
could be used to assess the quality of an SSM. The results of these measurements 
are shown in the following section. 

3.5.1 Compactness 

With compactness describing the cumulative variance of a model, Figure 3.8 
describes the percentage of cumulative variance as a function of the number of 
modes (principal components) used. As seen in the figure, the first mode accounts 
for approximately 57.07% of the total shape variation and reaches a cumulative 
variance of just over 95% after 10 modes. Table 2 shows the variance captured by 
the first three principal components when the parameters have been set to 

±3√𝜆𝑖  along with the percentage of variance these modes represent. 

3.5.2 Specificity 

Shapes sampled from the SMM should be similar to the shapes in the training 
dataset. The specificity measure along with the standard error was determined as 
a function of the model’s number of modes and was computed over 100 iterations. 
Furthermore, the measure was determined by using the  Root Mean Square (RMS) 
between the sampled shape and the model approximated shape. The results of 
the specificity measure can be seen in Figure 3.9. The specificity ranges from 1.38 
to 2.02 mm. 
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Figure 3.8: Compactness of the model 

Table 2: First three modes of SMM 

M −𝟑√𝝀𝒊 Mean +𝟑√𝝀𝒊 % 
Variance 

1 

   

57.07 

 
2 
 

   

 
14.42 

 

3 

   

7.45 
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Figure 3.9: Specificity of the model 

3.5.3 Generality  

As mentioned in Section 3.4, the generality measure indicates how well an SSM 
can represent new instances of the same class. By using the leave-one-out cross-
validation method the generalty was determined for each of the training shapes. 
The result displayed in Figure 3.10 is the generality and the standard error as a 
function of the number of modes in the model. The generality of this study ranges 
from 0.87 to 1.86 mm 

 

Figure 3.10: Generality of the model  
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3.6 Discussion 

As seen in Table 2, a large amount of variation is captured by the first three modes 
of the model. Despite the large variation obtained in these modes, the shape 
instances obtained are still valid as the topology of the femur remains unchanged. 
Section 3.4 describes a model as being compact when it captures a large amount 
of variation with the minimum number of modes. Keeping this in mind, Figure 3.8 
indicates that the model can describe approximately 90% of the shape variation 
with the first 6 modes which indicates that the models can be considered compact 
as relatively few modes were needed. Compared to the findings of other studies 
in the literature (Cerveri et al. (2019), Mutsvangwa et al. (2015), Salhi et al. (2020), 
etc), the compactness of this study seems coherent. Although approximately 95% 
of the variation could be explained by 10 modes, 15 modes will be utilised for the 
rest of the study which describes approximately 97% of the shape variations which 
is in the acceptable range and will still mitigate overfitting as described in 
(Heimann and Meinzer, 2009; Sarkalkan et al., 2014). 

Cerveri et al. (2019) constructed an SSM of the proximal femur from 30 training 
samples to compare registration methods. Similar to the current study, one of the 
methods that Cerveri et al. (2019) used to determine correspondence between 
training shapes was the non-rigid registration method. The specificity results from 
that study ranged from 1.38 to 2.36 mm. Table 3 shows the specificity obtained 
from other studies that used non-rigid registration methods to determine 
correspondence. 

Table 3: Specificity measures of SSMs build from various structures 

 
Current 
Study 

Cerveri et 
al. 

(2019) 
van der Merwe (2018) 

Cerveri et 
al. 

(2019) 

Mutsvang
wa  et al. 

(2015) 

Salhi et 
al., (2020) 

Bone 
Structure 

Proximal 
Femur 

Proximal 
femur 

Distal Femur 
Distal 
Femur 

Scapula Scapula 

Gender 
Neutral 
(n = 26) 

Neutral 
(n = 30) 

Male 
(n=32) 

Female 
(n = 32) 

Neutral 
(n = 28) 

Neutral 
(n = 99) 

Neutral 

Specificity 
(mm) 

1.38 to 
2.02 

1.38 to 
2.36 

0.92 to 
1.75 

0.71 to 
1.38 

1.20 to 
2.43 

1.40 to 
1.60 

1.22 to 
1.74 

As mentioned in Section 3.5.2, the specificity of the model in this study ranges 
from 1.38 to 2.02 mm with an average specificity of 1.85 mm. According to the 
studies listed in Table 3, the reported range for specificity is about 0.71 to 
2.43 mm. Although it is difficult to compare the findings of the different studies in 
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the literature due to different sized datasets, anatomical structures and methods 
used, the specificity obtained from this study fall within the range of literature and 
the model produces instances that can be represented by the training data. 

The generality obtained in this study ranges from 0.87 to 1.86 mm with an average 
generality of 1.08 mm, whereas the generality of Cerveri et al. (2019)’s model has 
a generality that ranges from 0.80 to 2.53 mm. Table 4 displays the generality of 
various other studies that used non-rigid registration to determine 
correspondence. Similar to the specificity, although difficult, the generability is 
compared to findings in the literature. These findings, as seen in Table 4, roughly 
range from 0.55 to 2.53 mm. Taking this into account, the generability of the 
model falls well within the range and can thus be considered a general model. 

Table 4: Generality measures of SSMs build from various structures 

 
Current 
Study 

Cerveri et 
al. 

(2019) 
van der Merwe (2018) 

Cerveri et 
al. 

(2019) 

Mutsvang
wa  et al. 

(2015) 

Salhi et 
al., (2020) 

Bone 
Structure 

Proximal 
Femur 

Proximal 
femur 

Distal Femur 
Distal 
Femur 

Scapula Scapula 

Gender 
Neutral 
(n = 26) 

Neutral 
(n = 30) 

Male 
(n=32) 

Female 
(n = 32) 

Neutral 
(n = 28) 

Neutral 
(n = 99) 

Neutral 

Generality 
(mm) 

0.87 to 
1.86 

0.80 to 
2.53 

0.67 to 
1.09 

0.55 to 
0.87 

1.16 to 
1.75 

1.10 to 
1.90 

0.79 to 
1.64 

As mentioned in Section 3.3.4, an advantage to modelling with Gaussian Processes 
is that kernels can be combined to define new kernels which allows for models to 
be constructed using deformations of multiple scales and varying smoothness. The 
constructed kernel, therefore, has an impact on the specificity and generality of 
the model. Thus by adjusting the kernels, the variation represented by the model 
could increase and will allow the shape model to be able to fit more unseen 
shapes. This means that the generality of the models would improve but it will 
decrease the specificity of the model proportionally. If the distance over which the 
deformations are correlated is chosen as too small or too large, it could lead to 
unrealistic deformations of the shape model and will lead to very high specificity. 

Another factor that could have an impact on the specificity and generality of the 
model is the size of the training dataset. There is little literature available that 
indicates the amount of data needed to construct a shape model, but increasing 
the number of training shapes will increase the amount of variance that the model 
captures and ultimately improve the generality of the model (van der Merwe et 
al., 2018). 
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Unfortunately, there is little literature available that specifies the clinical 
performance requirements needed to perform 2D/3D registration with an SSM. 
The model’s quality was thus based on the comparison of the validation results to 
other similar studies in the literature. Based on these results, the results seem 
promising and could be used for the reconstruction of 3D models from 2D images. 
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Chapter 4  

Digitally reconstructed radiograph 

To perform 2D/3D registration between a shape model and patient data, 2D 
radiographs of the patient are needed. However, from the dataset obtained, the 
only data available were the 3D CT scans of each patient.  Therefore, a 2D x-ray 
needs to be generated to be used as the input image into the algorithm explained 
in Chapter 5. This section will explain how the 2D image is projected from 3D  
volumetric data. 

4.1 Overview 

According to Kim et al. (2015), Computed Tomography (CT) is an essential tool for 
directly visualizing human anatomy in medical imaging. In many research studies, 
such as the design of a scanner or in this case the development of a 2D/3D 
reconstruction algorithm, the ability to obtain simulated x-ray images that is 
realistic and accurate is highly desired. This provides a cost-effective way to obtain 
data without performing real experiments (Jia et al., 2012). 

The projection of Digitally Reconstructed Radiographs (DRR) is a rendering 
technique which produces a synthetic x-ray image created from a 3D volumetric 
model or CT volume by simulating the x-ray imaging process (Reyneke et al., 2018). 
A DRR involves ray tracing through a 3D volume based on projection geometries 
as well as the numeric integration of the image data along the ray paths.  

Generally, there are two types of volume projection used for DRR generation, 
namely ray casting and voxel projection (Mu, 2016). Ray casting is a technique that 
computes the line integral along a beam, which emerges from the centre-of-
projection (COP), for each pixel. The line integral consists of the CT values on the 
path of the beam. The voxel projection method iterates over the voxel volume 
accumulating each voxel projection in such a way that the DRR can be considered 
as a sum of all the voxel projections (Birkfellner et al. 2005). 

In voxel projection, the voxels are processed in storage order, which allows for 
faster traversal of the dataset and the resolution of the resulting DRR is better 
than that of the ray casting method since no interpolation is required (Wang et al. 
2002). On the other hand, ray casting has two significant advantages. The first one 
is that the method is trivially parallelizable, meaning it is not necessary to manage 
concurrent write accesses to the detector plane. The second advantage is that the 
normalization of the line integrals with respect to the corresponding distance 
“travelled” of the ray through the volume is significantly simpler than that of the 
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voxel projection method (Graetz, 2016). A limitation of ray-casting is that this 
approach can lead to a high computational cost when a large sampling rate is used 
along the rays. 

An essential component of simulating an x-ray imaging process is a sufficient 
sampling and accumulation strategy for integrating and evaluating the values from 
the CT voxels (Graetz, 2016). Therefore, ray casting will be the method used to 
produce a DRR. An example of the ray-casting method is illustrated in Figure 4.1 

 

Figure 4.1: Illustration of the ray-casting process 

4.2 Siddon-Jacobs algorithm 

Ray casting, the method most commonly used to fulfil DRR generation, is derived 
from the Beer-Lambert Law. This law states that, given a monochromatic x-ray 
beam, the intensity of a ray drops exponentially as the ray travels through a 
volume (Baur et al., 2019). To determine the intensity of a pixel on the detector 
plane, each CT voxel encountered on the ray path between the source and the 
detector pixel is evaluated. When evaluating a voxel, the “travelled” distance of 
the ray as well as the corresponding linear attenuation coefficient (LAC) is 
considered. Therefore, the x-ray signal intensity captured by the detector plane 
can be written as: 

𝐼 =  ∫ 𝐼0(𝐸) ∗ exp (−∫𝜇𝐿𝐴𝐶(𝐸, 𝑟) 𝑑𝑙
 

𝐿

)𝑑𝐸 ( 18 ) 
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where 𝐼0(𝐸) is the incident x-ray intensity and energy spectrum, 𝐿 is the path from 
the x-ray source to the detector plane pixel and 𝜇𝐿𝐴𝐶(𝐸, 𝑟) is the position and 
energy-dependent LAC of the volume the ray passed through (Folkerts, 2015). The 
main objective of a DRR algorithm is to evaluate the integral described in Equation 
18 over the ray paths existing between the detector plane and the x-ray source. 

4.2.1 Integration problem 

The formulation in Equation 18 can be simplified by modelling the x-ray source as 
monoenergetic (Folkerts, 2015). This can be accomplished by using a spectrum 
with a constant intensity value 𝐼0(𝐸) =  𝐼0 and by replacing the energy-dependant 

LAC with coefficients at effective energy 𝜇𝐿𝐴𝐶(𝐸, 𝑟) =  𝜇𝐿𝐴𝐶(𝐸𝑒𝑓𝑓, 𝑟) =  𝜇𝐿𝐴𝐶(𝑟). 

A simpler integral can be seen in Equation 19. 

𝐼 = 𝐼0 ∗ exp(−∫𝜇𝐿𝐴𝐶(𝑟)𝑑𝑙
 

𝐿

) 
( 19 ) 

 

Lastly the integral is discretized along the ray paths between the source and the 
detector plane to produce a voxelized representation: 

𝐼 = 𝐼0 ∗ exp(−∑𝜇𝐿𝐴𝐶𝑎𝑙𝑎,𝑏

𝑛

) 
( 20 ) 

 

where 𝑎 represents a specific voxel, 𝑏 represents a ray beam, 𝑙 represents the 
intersection length and 𝜇𝐿𝐴𝐶  is the LAC. The corresponding attenuation coefficient 
for the Hounsfield unit relative to the attenuation coefficient of water at a specific 
CT energy of a voxel is determined by: 

ℎ𝑎 = 
(𝜇𝐿𝐴𝐶𝑎 − 𝜇𝐿𝐴𝐶𝑤)  × 103

𝜇𝐿𝐴𝐶𝑤
 

( 21 ) 

 

where ℎ𝑎 is the Hounsfield unit of the CT voxel, 𝜇𝐿𝐴𝐶𝑤 is the attenuation 
coefficient of water and 𝜇𝐿𝐴𝐶𝑎 is the current voxel’s attenuation coefficient (LAC). 

4.2.2 Sampling technique 

A commonly used technique for generating DRRs in medical physics is the method 
proposed by Siddon (1985), known as the Siddon algorithm. This algorithm 
performs volume ray casting by describing the radiological path through a 3D 
volume as: 

𝑑 =  ∑∑∑𝑙(𝑖, 𝑗, 𝑘)𝜌(𝑖, 𝑗, 𝑘)

𝑘𝑗𝑖

 ( 22 ) 
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by denoting the voxel intensity value as 𝜌(𝑖, 𝑗, 𝑘) and the length contained by that 
voxel as 𝑙(𝑖, 𝑗, 𝑘). Prior to the reconstruction, the Siddon algorithm computes an 
array of parametric values which correspond to the intersections of the ray with 
the planes for each axis. Each element within the array represents an intersection 
of the ray with the corresponding plane (Siddon, 1985). These arrays are then 
merged into a combined array and arranged in ascending order of distances 
between the source and the intersected plane. Therefore, during dose calculation, 
the radiological path of a ray through a 3D volume can just be extracted from the 
merged array (Xiao et al. 2012).  

The problem with this algorithm is that it requires a large amount of memory space 
to be able to store a merged array for each ray moving through the volume. Jacobs 
et al. (1998) proposed to improve the Siddon algorithm by significantly reducing 
the time spent computing the array of parametric values. This improved algorithm 
is known as the Siddon-Jacobs algorithm. This algorithm aims to calculate the 
intersections of the ray with the CT volume by using a set of geometrical 
relationships with the entry and exit points of the ray with the volume (Alvarez-
Gomez et al. 2021). 

In this algorithm, the CT data is modelled as voxels with equally spaced distances 
along each axis (Folkerts, 2015). According to Siddon (1985), rather than the voxels 
being considered independent elements, they are considered as intersections 
between the orthogonal sets of equally spaced planes. Figure 4.2 illustrated this 
concept in a two-dimensional case. 

 

Figure 4.2: Pixels considered as intersections between orthogonal sets of equally 
spaced, parallel  lines 
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The study implemented the Siddon-Jacobs algorithm to render a DRR from a CT 
voxel volume. Equation 22 is evaluated by following the ray through the voxel 
volume.  Thus, the parametrical representation of the ray from point 1 to point 2 
is written as: 

𝑝12 = {

𝑋(𝛼) = 𝑋𝑝𝑡1 +  𝛼(𝑋𝑝𝑡2 − 𝑋𝑝𝑡1)

𝑌(𝛼) = 𝑌𝑝𝑡1 +  𝛼(𝑌𝑝𝑡2 − 𝑌𝑝𝑡1)

𝑍(𝛼) = 𝑍𝑝𝑡1 +  𝛼(𝑍𝑝𝑡2 − 𝑍𝑝𝑡1)

 ( 23 ) 
 

where 𝛼 is the parametric value which ranges between 0 and 1, with point one 
being 0 and point two being 1 (Siddon, 1985). Throughout the rest of the section, 
it is assumed that 𝑝1 ≠ 𝑝2. Considering a CT array of (𝑁𝑥 − 1,𝑁𝑦 − 1,𝑁𝑧 − 1) 

voxels, the orthogonal sets of equally spaced, parallel planes displayed in Figure 
4.2 can be written as: 

𝑋𝑝(𝑖) =  𝑋𝑝(1) + (𝑖 − 1)𝑑𝑥            (𝑖 = 1, … , 𝑁𝑥)

𝑌𝑝(𝑗) =  𝑌𝑝(1) + (𝑗 − 1)𝑑𝑦            (𝑗 = 1,… ,𝑁𝑦)

𝑍𝑝(𝑘) =  𝑍𝑝(1) + (𝑘 − 1)𝑑𝑧           (𝑘 = 1,… ,𝑁𝑧)

 

( 24 ) 

( 25 ) 

( 26 ) 

where 𝑑𝑥 , 𝑑𝑦 , 𝑑𝑧 represents the distance between the planes in the x, y and z axis 

respectively. To determine the path of the ray, the entry, 𝛼 =  𝛼𝑚𝑖𝑛, and exit 
point, 𝛼 = 𝛼𝑚𝑎𝑥, of the ray with the volume needs to be determined (Jacobs et 
al., 1998). The parametric values for each plane are determined by: 

𝛼𝑥(𝑖) =  
[𝑋𝑝(𝑖)  − 𝑋𝑝𝑡1]

𝑋𝑝𝑡2 − 𝑋𝑝𝑡1
 

𝛼𝑦(𝑗) =  
[𝑌𝑝(𝑗)  −  𝑌𝑝𝑡1]

𝑌𝑝𝑡2 − 𝑌𝑝𝑡1
 

𝛼𝑍(𝑘) =  
[𝑍𝑝(𝑗)  −  𝑍𝑝𝑡1]

𝑍𝑝𝑡2 − 𝑍𝑝𝑡1
 

( 27 ) 

( 28 ) 

( 29 ) 

The entry and exit points are determined when the ray intersects the sides of the 
volume. Equations 24 to 29 can now be used to determine the parametric values 
at the entry and exit points of the ray: 

𝛼𝑚𝑖𝑛 = 𝑚𝑎𝑥{0,𝑚𝑎𝑥[𝛼𝑥(1), 𝛼𝑥(𝑁𝑥)], 

    𝑚𝑖𝑛[𝛼𝑦(1), 𝛼𝑦(𝑁𝑦)],𝑚𝑖𝑛[𝛼𝑧(1), 𝛼𝑧(𝑁𝑧)]} 

𝛼𝑚𝑎𝑥 = 𝑚𝑖𝑛{1,𝑚𝑎𝑥[𝛼𝑥(1), 𝛼𝑥(𝑁𝑥)], 

    𝑚𝑖𝑛[𝛼𝑦(1), 𝛼𝑦(𝑁𝑦)],𝑚𝑖𝑛[𝛼𝑧(1), 𝛼𝑧(𝑁𝑧)]}  

( 30 ) 

( 31 ) 
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From all the planes the ray intersects, only certain planes have parametric values 
that fall within the range (𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥). The range of the indices which correspond 
to these certain planes is determined by: 
 

if (𝑋𝑝𝑡2 − 𝑋𝑝𝑡1)  ≥ 0, 

𝑖𝑚𝑖𝑛 = 𝑁𝑥 −
[𝑋𝑝(𝑁𝑥) − 𝛼𝑚𝑖𝑛(𝑋𝑝𝑡2 − 𝑋𝑝𝑡1) − 𝑋𝑝𝑡1]

𝑑𝑥
 

𝑖𝑚𝑎𝑥 =  1 +
[𝑋𝑝𝑡1 + 𝛼𝑚𝑎𝑥(𝑋𝑝𝑡2 − 𝑋𝑝𝑡1) − 𝑋𝑝(1)]

𝑑𝑥
 

( 32 ) 

( 33 ) 

if (𝑋𝑝𝑡2 − 𝑋𝑝𝑡1) ≤ 0, 

𝑖𝑚𝑖𝑛 = 𝑁𝑥 −
[𝑋𝑝(𝑁𝑥) − 𝛼𝑚𝑎𝑥(𝑋𝑝𝑡2 − 𝑋𝑝𝑡1) − 𝑋𝑝𝑡1]

𝑑𝑥
 

𝑖𝑚𝑎𝑥 =  1 +
[𝑋𝑝𝑡1 + 𝛼𝑚𝑖𝑛(𝑋𝑝𝑡2 − 𝑋𝑝𝑡1) − 𝑋𝑝(1)]

𝑑𝑥
 

( 34 ) 

( 35 ) 

Similar expressions are used to determine 𝑗𝑚𝑖𝑛, 𝑗𝑚𝑎𝑥, 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥. These 
indices can then be used to determine how many planes were intersected by the 
ray while moving through the voxel volume (Siddon, 1985). As the ray moves 
through the volume, the index incremental values need to be updated, this is 
achieved using Equations 36 to 38: 

𝑖𝑠𝑡𝑒𝑝 = {
1 if 𝑋𝑝𝑡1 < 𝑋𝑝𝑡2

−1 else
 

𝑗𝑠𝑡𝑒𝑝 = {
1 if 𝑌𝑝𝑡1 < 𝑌𝑝𝑡2

−1 else
 

𝑘𝑠𝑡𝑒𝑝 = {
1 if 𝑍𝑝𝑡1 < 𝑍𝑝𝑡2

−1 else
 

( 36 ) 

( 37 ) 

( 38 ) 

 

As the ray moves through the voxel volume, the parametric values along with the 
indices need to be updated according to which plane is crossed. After initializing 𝑑 
to 0, and the current parametric value αcurr to αmin,  the radiological path can be 
calculated. The ray is iterated until  αcurr = αmax. The pseudocode of the 
algorithm calculating the radiological path is shown in Figure 4.3. 
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/* Initialization                                                                                                                 */ 
𝑑 = 0                                                                      /*Initialized radiological path*/ 
𝛼𝑐𝑢𝑟𝑟 = 𝛼𝑚𝑖𝑛                                     /*Parametric value of the ray entry point*/                                

/* Radiological path                                                                                                        */ 
while 𝛼𝑐𝑢𝑟𝑟 < 𝛼𝑚𝑎𝑥 do 

if (𝑚𝑖𝑛(αx, αy, αz) =  αx) then 

    𝑙(𝑖, 𝑗, 𝑘) = (𝛼𝑥 − 𝛼𝑐𝑢𝑟𝑟)                 /*Determine ray length inside voxel*/          
    𝑖 = 𝑖 +  𝑖𝑠𝑡𝑒𝑝                                          /*Increment index in x-direction*/ 

    𝛼𝑐𝑢𝑟𝑟 = 𝛼𝑥                                    /*Update the current parametric value*/ 

    𝛼𝑥  = 𝛼𝑥  +  
𝑑𝑥

|𝑋𝑝𝑡2−𝑋𝑝𝑡1 |
          /*Update parametric value of x-direction*/ 

else if (𝑚𝑖𝑛(αx, αy, αz) =  α𝑦) then 

    𝑙(𝑖, 𝑗, 𝑘) = (𝛼𝑦 − 𝛼𝑐𝑢𝑟𝑟)                  /*Determine ray length inside voxel*/ 

    𝑗 = 𝑗 + 𝑗𝑠𝑡𝑒𝑝                                          /*Increment index in y-direction*/ 

    𝛼𝑐𝑢𝑟𝑟 = 𝛼𝑦                                 /*Update the current parametric value*/ 

    𝛼𝑦  = 𝛼𝑦  +  
𝑑𝑦

|𝑌𝑝𝑡2−𝑌𝑝𝑡1 |
          /*Update parametric value of y-direction*/ 

else  
    𝑙(𝑖, 𝑗, 𝑘) = (𝛼𝑧 − 𝛼𝑐𝑢𝑟𝑟)                 /*Determine ray length inside voxel*/          
    𝑘 = 𝑘 + 𝑘𝑠𝑡𝑒𝑝                                       /*Increment index in z-direction*/ 

    𝛼𝑐𝑢𝑟𝑟 = 𝛼𝑧                                   /*Update the current parametric value*/ 

    𝛼𝑧  = 𝛼𝑧  +  
𝑑𝑧

|𝑍𝑝𝑡2−𝑍𝑝𝑡1 |
           /*Update parametric value of z-direction*/ 

end if 
 𝑑 = 𝑑 + 𝑙(𝑖, 𝑗, 𝑘)𝜌(𝑖, 𝑗, 𝑘)                     /*Calculate the radiological path*/ 

      end while 

Figure 4.3: Radiological path calculation 

 

Figure 4.4: Resulting DRR  
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4.3 Results 

The resulting DRR images generated in this study consist of 512x512 pixels with a 
grayscale range of {0-255}. An example of a DRR generated in this study is shown 
in Figure 4.4, whereas Figure 4.5 shows an example of the CT scans used to 
generate the DRR. 

 

Figure 4.5: Example of the CT image used for DRR rendering 

4.4 Discussion 

Usually, to verify a DRR it is compared to a ground truth x-ray image of a patient 
and the pixel-wise absolute difference between the two images is computed 
(Alvarez-Gomez et al., 2021; Moore et al. 2011; Staub & Murphy, 2013). 
Unfortunately, no x-ray images were available in the obtained dataset, so the DRR 
could not be validated traditionally. Thus to validate the results, the resulting DRR 
were visually compared to a clinical x-ray image obtained from Valera et al. (2016) 
and a DRR generated by Bizdikian et al. (2018). These comparisons are displayed 
in Figure 4.6 and Figure 4.7 respectively.  

( c ) Coronal plane 

( a ) Axial plane ( a ) 3D view of CT scan 

( d ) Sagittal plane 
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Figure 4.6: Resulting DRR compared to a clinical x-ray. X-ray image obtained with 
permission from Valera et al. (2016) 

Upon visual inspection of the images in Figure 4.6, it can be seen that the 
generated DRR closely resembles the clinical AP x-ray, as the most apparent 
features have been reproduced clearly. Important anatomical landmarks such as 
the greater and lesser trochanter can easily be identified on both images, but the 
DRR has a lower contrast of bony structures which could lead to a loss of finer 
detail displayed in a clinical x-ray image. According to Killoran et al. (2001)  this is 
due to CT acquisition and radiographic exposure using different amounts of x-ray 
energy which significantly affects the relationship between the observed contrast 
of various density structures. Another difference between the two images is that 
the oval-shaped ends on the femoral shaft make it appear to be cut off in the DRR. 
This is due to the clipping of the CT scan volume during the perspective projection 
which is why it does not appear on the x-ray.  

 
Figure 4.7: Resulting DRR compared to a DRR from literature ((b) obtained with 
permission from Bizdikian et al. (2018)) 

( a ) Resulting DRR ( b ) AP pelvis x-ray 

Oval-shaped 
ends 

Lesser 
trochanter 

Greater 
trochanter 

( a ) DRR from current study ( b ) DRR generated by Bizdikian et al 
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In a study by Bizdikian et al. (2018) where digitally reconstructed radiographs were 
produced to determine a valid and reliable method for measuring the neck-shaft 
angle, the DRR in Figure 4.7(b) was generated. The only clear difference between 
the two generated DRR’s are the femur shafts which do not appear cut off in the 
DRR generated by Bizdikian et al. (2018). This could be due to the different 
rendering techniques used since Bizdikian et al. (2018) used cylindrical projection 
and the current study used perspective projection. Another possibility would be 
that the authors cropped the reconstructed radiograph to remove the oval-shaped 
ends from the image. The generated DRR from the literature was deemed 
sufficient to be used for neck-shaft measurements and 3D reconstruction. Since 
the DRR generated obtained in the current study are similar to the DRR 
constructed in literature, the resulting DRR seems promising and sufficient to be 
used as an input image to the reconstruction algorithm. 
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Chapter 5  

2D to 3D reconstruction using a statistical 

shape model 

Considering the Statistical Shape Model obtained in Chapter 3, this chapter will 
describe how the model is fitted to unseen image data and investigate how 
accurately the model can reconstruct a patient-specific shape from 2D images 
through 2D/3D registration. In Section 5.1 an overview of the process is given and 
Section 5.2 explains how the contour from the patient x-ray and the synthesized 
image are extracted to be compared in the registration algorithm. The 
implementation of the registration process is discussed in Section 5.3 and lastly, 
Sections 5.4 to Section 5.6 will evaluate the reconstructed model and discuss the 
results.  

5.1 Overview  

Three-dimensional reconstructed patient-specific anatomical structures have 
become a valuable instrument within the orthopaedic field. These reconstructions 
can be used for many applications such as the detection of pathologies of the bone 
structure or using the measurements obtained from the bone geometry for 
implant design, post-operative evaluation or in surgical planning (Reyneke et al., 
2018). 

As mentioned in Section 1.2, 3D patient-specific shape models can be obtained 
from two-dimensional images by using two-dimensional-to-three-dimensional 
(2D/3D) registration. Through the use of deformable models, the registration 
process can be accomplished, as the models contain assumptions and prior 
knowledge regarding the anatomical structure. The registration algorithm is an 
iterative process where the parameters of the models are adjusted with each 
observation according to information gathered from the 2D images. The updated 
parameters are then used to manipulate the model to match the target structure 
(Thusini et al., 2020).  

In this study, the reconstruction problem is framed as model fitting based on 
Bayesian Inference, which is an approach to parameter estimation and data 
analysis based on Bayes' theorem. According to Van de Schoot et al. (2021), the 
Bayesian inference typically consists of three main steps, namely: 

1. Use a prior distribution to capture the available information about given 
parameters in an SSM. 
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2. Determine a likelihood function which measures the compatibility of a 
shape model instance with the observed data. 

3. Combine the likelihood function and prior distribution using Bayes’ 
theorem in the form of the posterior distribution.  

The posterior distribution displays the updated knowledge regarding the model 
parameters which balances the observed data with prior knowledge (Schönborn 
et al. 2020). Applying Bayesian inference to the posterior distribution is quite 
difficult to do in practice as the algorithm requires a normalization step that 
renders most problems intractable. The normalization process requires that the 
prior and the likelihood be integrated over the model space. This results in a 
marginal likelihood that provides valuable information regarding the suitability of 
the model but is very expensive to calculate and only a few models result in a 
closed-form solution (Schönborn et al., 2020).   

A strategy to deal with the missing closed-form solution is to use a Markov Chain 
Monte Carlo (MCMC) based approach where an approximation to the posterior 
distribution is calculated rather than solving the posterior distribution. All MCMC-
type algorithms draw samples from the Markov Chain, where the target 
distribution is the equilibrium distribution (Schönborn et al., 2020). This study 
makes use of a Metropolis-Hastings algorithm where samples are drawn from a 
proposal distribution. These samples are then accepted or rejected based on their 
probability under the posterior distribution to build its Markov Chain.  

By using the Metropolis-Hastings algorithm along with a shape prior model 
obtained in Chapter 3, the reconstruction problem is approached through analysis 
by synthesis similar to Schönborn et al. (2017). The reconstruction is accomplished 
by synthesizing contours from the model and comparing the synthesized contours 
to the annotated contours from the input x-ray image. Figure 5.1 gives an overview 
of the 2D/3D reconstruction algorithm used throughout the study. 

5.2 Contour extraction 

As previously mentioned, the 2D/3D registration is accomplished by comparing 
the x-ray contours with the synthesized contours of the shape model. Therefore, 
the registration algorithm requires two things, namely 

1. An extracted contour from the input x-ray image obtained in Section 4 

2. A synthetic contour generated by projecting the SSM obtained in Section 3 

According to Tariq and Burney (2012), contour extraction generally follows the 
process of edge detection, where the pixels in an image that experience a sharp 
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Figure 5.1: Analysis by synthesis approach for 2D/3D Reconstruction 

change in intensity are identified. A popular edge detection technique is the Canny 
Edge Detection algorithm developed by Canny (1986). Compared to other edge 

𝐶𝑡 

𝐶𝑠 
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detection algorithms like the Sobel and Prewitt algorithms, the Canny edge 
detection produces finer and smoother edges even though the computational 
complexity is a bit higher (Katiyar and Arun, 2014). Thus, the Canny edge algorithm 
will be used to identify the contours in the x-ray image and the projected shape 
image. 

5.2.1 Canny-edge detection algorithm 

According to Xu et al. (2017), the Canny Edge Detection Algorithm consists of 4 
steps: 

1. Noise reduction – The edge detection algorithm is highly sensitive to noise, 
thus an image convolution technique using a Gaussian kernel is used to 
remove the noise from an image. The Gaussian kernel is given by: 

𝐺𝜎 = 
1

2𝜋𝜎2
 × ℯ

−
(𝑥2+ 𝑦2)

2𝜎2  
( 39 ) 

2. Gradient calculation – This step detects the image gradient and direction 
across the smoothened image by applying a Sobel operator in the 
horizontal and vertical directions to determine the first derivatives in each 
direction. The magnitude, 𝐺𝑀, and the slope, 𝜃𝐺 , of the gradient, can then 
be calculated using: 

𝐺𝑀 = √𝐺𝑥
2 + 𝐺𝑦

2 

𝜃𝐺 = tan−1(
𝐺𝑦

𝐺𝑥
) 

( 40 ) 

( 41 ) 

3. Non-maximum suppression – After the gradient magnitude and slope have 
been calculated, the image is examined to remove any pixels that do not 
constitute the edge. This is accomplished by finding the pixels with a 
maximum value in the edge directions. 

4. Hysteresis thresholding – This step determines which of the edges 
obtained in the non-maximum suppression stage are indeed edges and 
which is considered noise. Two threshold values, namely an upper and a 
lower threshold, are needed to determine this. The edges with a gradient 
above the upper threshold are immediately considered as edges, while the 
edges with gradients lower than the lower threshold are disregarded. The 
edges which lie between the upper and the lower threshold are classified 
based on their connectivity. The edges connected to the “strong-edged” 
pixels are kept as edges, otherwise, the edges are disregarded. 
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Due to the popularity of the Canny-Edge-Detection algorithm,  OpenCV has 
already implemented the algorithm in the cv2.Canny function.  OpenCV (Open 
Source Computer Vision Library) is an open-source library that includes a variety 
of computer vision algorithms. 

5.2.2 X-ray contour identification and extraction 

The algorithm that extracts the femur contour from the input x-ray image is 
executed in the Python environment and uses algorithms from the OpenCV library 
to process, identify and extract the contour. The input image is a synthetic 
anteroposterior hip radiograph, but this study only focuses on the left proximal 
femur. Thus, the image can be resized to the region of interest. Next, the image 
needs to be processed to enhance the contour of the femur. A combination of 
adaptive threshold and morphological transformation techniques was used for 
image preprocessing.  

Adaptive thresholding is a segmentation technique that determines the threshold 
of a pixel based on a small set of neighbouring pixels. Once the threshold of the 
image pixels has been determined the segmentation is performed. The output of 
the adaptive thresholding method is a binary image where the foreground is 
represented by white pixels. The morphological transformations are simple 
operations applied to binary or grayscale images. More precisely, these operations 
are applied to the shapes and structures within the image. These operations are 
used to close gaps between objects and remove the noise from the image.  

The Canny Edge Detection function described in Section 5.2.1 can now be applied 
to the processed image. This function, which takes the processed image, upper 
threshold and lower threshold as inputs, is used to identify all possible contours 
within the image. In this case, the upper and lower threshold were chosen as 30 
and 180, respectively. Once the contours are identified, the function returns a 
binary image where the contours are indicated with white pixels. These identified 
contours are extracted by using the cv2.findContours function with input 
parameters cv2.RETR_EXTERNAL and CHAIN_APPROX_NONE from the OpenCV 
library. The extracted contour points are stored according to the contour 
approximation methods. In this case, all the boundary points detected are stored 
to ensure that the contour of the femur remains accurate. 

Because the proximal femur is specified as the region of interest, the contour of 
the femur will be the largest contour extracted from the image. Thus, to isolate 
the contour points of the femur, the contour with the largest area is extracted. 
Lastly, these contour points are imported into scalismo to be compared to the 
synthetic contour points. The output of the cv2.Canny and the 

cv2.findContours functions can be seen in Figure 5.2 
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Figure 5.2: Canny-edge detection  

5.2.3 Synthetic contour generation and extraction 

Since 2D and 3D images cannot be registered directly, a synthetic 2D image of the 
SSM contour needs to be generated (Mu, 2016). These synthetic 2D images will 
then be registered to the x-ray images. The algorithm for extracting synthetic 
contours consists of three steps, where the first two steps are executed in a 
scalismo environment and the last step in python. First, the current 3D shape 
instance of the femur is converted to a binary image. This binary image is a 
continuous 3D scalar image defined on 3D real space. Since the mesh is a closed 
surface, the points inside the mesh surface will have a value of one and points 
outside the surface will have a value of zero. 
 
The second step consists of rendering a 2D image from the 3D mesh. A technique 
similar to the one described in Chapter 4 is used in the rendering process. During 
this process, a ray is cast from a source point to each pixel on the 2D detector 
plane. Following the ray through the 3D space, a value of 1 is assigned to the pixel 
if the object is visible at that point, otherwise, a value of zero is assigned. The 
resultant rendered image will be a silhouette of the current femur shape. An 
example of the rendering process is displayed in Figure 5.3. 

Lastly, the contour of the silhouette needs to be extracted. Since the image is a 
binary image with a silhouette of the shape, a Sobel operator is applied to the 
image to identify the contour and then the cv2.findContours function is 

used to extract the contour points. The points array is then imported to scalismo.  
 

( a ) Region of interest ( b ) Result of Canny Edge ( c ) Extracted contour 
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Figure 5.3: Synthetic DRR rendering 

5.3 Implementation of the fitting algorithm 

Section 5.2.3 explains how to generate a contour from a proximal femur shape 
model. This allows for model fitting by using sampling methods. The proposed 
algorithm is based on Bayesian inference. This is accomplished by using the SSM 
shape model as a prior and by using MCMC sampling methods for inference. 
Chapter 3 showed that low-rank decompositions allowed a GP to be treated as a 
parametric model, where an instance of the model is described by a set of 
parameters (𝜃). In the case of model fitting, the model instance is a deformation 
field.  

In the Bayesian setting, the focus is on the posterior distribution which is denoted 
by: 

𝑃(𝜃|𝐷) =  
𝑃(𝐷|𝜃)𝑃(𝜃)

𝑃(𝐷)
 

( 42 ) 

where 𝐷 is the data observed, 𝑃(𝐷|𝜃) is the data likelihood and 𝑃(𝜃) is the prior 
distribution. This leads to a distribution that is defined over the model parameters, 
which is adapted according to the observed data as mentioned in Section 5.1. 
 
The normalizing factor, 𝑃(𝐷), is the distribution over the observed data, which is 
not specified. Thus, the normalizing factor can be replaced with a factorized joint 
distribution and by marginalizing the parameters (Lüthi, 2020). The posterior 
distribution can then be written as: 
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𝑃(𝜃|𝐷) =  
𝑃(𝐷|𝜃)𝑃(𝜃)

∫𝑃(𝜃|𝐷)𝑃(𝐷)𝑑𝜃
 

( 43 ) 

 
While likelihood and prior are relatively easy to handle, the normalization constant 
requires integration over the entire model space for the shape parameters, which 
leads to a posterior distribution that is computationally expensive (Schönborn et 
al., 2020). MCMC is a popular technique used to perform approximate inference 
on posterior models that are deemed intractable (Schönborn et al., 2017). The 
MCMC approach draws samples from the Markov Chain and uses an acceptance 
probability to determine whether to continue with a new proposed sample or 
rather use the current sample. The acceptance probability provides a solution to 
the integration problem. This is illustrated by computing the acceptance ratio over 
the normalized posterior: 

𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 =  
𝑃(𝜃′|𝐷)

𝑃(𝜃|𝐷)
=  

𝑃(𝐷|𝜃′)𝑃(𝜃′)
𝑃(𝐷)

𝑃(𝐷|𝜃)𝑃(𝜃)
𝑃(𝐷)

=  
𝑃(𝐷|𝜃′)𝑃(𝜃′)

𝑃(𝐷|𝜃)𝑃(𝜃)
 

( 44 ) 

 
As seen in Equation 44, the normalizing factor gets eliminated. This means that 
the acceptance ratio of the normalized posterior is equivalent to that of the 
unnormalized posterior. Since the normalizing factor is eliminated, the inference 
can be limited to evaluations of the unnormalized posterior distribution: 

𝑃(𝜃|𝐷) ∝  𝑃(𝐷|𝜃)𝑃(𝜃) ( 45 ) 

The inference problem is approached by using the Metropolis-Hatings algorithm. 
The MH algorithm aims to draw samples from a proposal distribution 𝑄(𝜃′|𝜃), to 
ultimately be able to draw samples from the posterior distribution. 

Considering the information given above, a proposal generator, likelihood 
function and a prior distribution need to be determined in order to build the 
Markov chain. The following sections will explain how these functions are defined. 

5.3.1 Metropolis-Hastings algorithm 

Given that unnormalized distributions can be evaluated in a point-wise manner, 
this algorithm allows sampling from any distribution. It follows a propose-and-
verify architecture, where each iteration is divided into proposal and verification 
stages (Thusini et al., 2020). Given the current state, the proposal stage uses a 
proposal generator to update the parameters of the current sample, 𝜃, to obtain 
a new sample 𝜃′. The newly obtained proposal is then passed through the 
verification stage to evaluate the likelihood of the proposal. The verification stage 
will then accept the newly proposed sample as the new state with a probability of: 
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𝑎𝑡 = 𝑚𝑖𝑛 {
𝑃(𝜃′|𝐷)

𝑃(𝜃|𝐷)
 
𝑄(𝜃|𝜃′)

𝑄(𝜃′|𝜃)
, 1} 

( 46 ) 

 
If the sample 𝜃′ is rejected, the iteration will continue with the current sample 𝜃 
(Schönborn et al., 2020). The pseudocode of the Metropolis-Hastings algorithm 
can be found in Figure 5.4 
 

Function 𝜃𝑛𝑒𝑤 = MetropolisHastings(𝑄(𝜃′|𝜃), 𝑃(𝜃|𝐷) )  
Input: 
𝑄(𝜃′|𝜃)                              Proposal Generator 
𝑃(𝜃|𝐷)                               Posterior Distribution 
Output: 
𝜃′                                         Updated sample                                
/* Initialization */ 
𝜃 = current 𝜃                                     /*Sample from the current model instance*/                                
/* Verification */ 
𝜃′ ← sample from 𝑄(𝜃′|𝜃)                   /*Sample from proposal distribution*/ 
compute 𝑃(𝜃′|𝐷)                        /*Posterior distribution with new proposal*/ 
compute 𝑃(𝜃|𝐷)                         /*Posterior distribution with current sample*/ 

𝑎𝑡 ← 𝑚𝑖𝑛 {
𝑃(𝜃′|𝐷)

𝑃(𝜃|𝐷)
 
𝑄(𝜃|𝜃′)

𝑄(𝜃′|𝜃)
, 1}                                      /*acceptance threshold*/ 

If 𝑎𝑡 = 1 then 
    𝜃𝑛𝑒𝑤 ←  𝜃’                                                                       /*Proposal accepted*/ 
else 
    𝜃𝑛𝑒𝑤 ←  𝜃                                   /*Proposal rejected, keep current sample*/ 
return 𝜃𝑛𝑒𝑤 

end 

Figure 5.4: Metropolis-Hastings algorithm 

5.3.2 Prior distribution 

In the Bayesian setting, the Statistical Shape Model constructed in Chapter 3 is 
used as the prior distribution, 𝑃(𝜃). The entire set of parameters consists of the 
model coefficients, 𝛼𝑝 = (𝛼𝑝1, … , 𝛼𝑝𝑛), the translation parameters 𝑡𝑝 =

(𝑡𝑝𝑥, 𝑡𝑝𝑦, 𝑡𝑝𝑧) and the rotation angles 𝑟𝑝 = (𝜙𝑝, 𝜓𝑝, 𝜔𝑝) which are represented as 

Euler angles (Schönborn et al., 2020). Any assignment of the parameter set will 
lead to a surface denoted as  Γ(𝜃) and to describe a contour of the proximal femur, 
a full set of 𝜃 is sufficient (Schönborn et al., 2017). Thus, to produce a synthesized 
contour of the model, the SSM is set up in a 3D scene where a translation matrix 
has been used in Scalismo to align the model’s centre of mass with the origin. The 
scene setup can be seen in Figure 5.5 
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Figure 5.5: SSM scene setup  

5.3.3 Proposal generator 

For the proposed MH inference to be able to suggest updates for the parameter 
values in the current state, a proposal distribution is required. Random 
perturbations are the simplest method for updating parameters which can lead to 
a random walk in the parameter space when unbiased (Schönborn et al., 2017). 
The random walk proposal provides the largest source of randomness in the MH 
algorithm. Two simple strategies have been employed in order to optimize the 
random walk proposal.  

The first method is the block-wise mixture proposal where the main idea behind 
these proposals is that for a number of different proposals 𝑄1(𝜃

′|𝜃),… , 𝑄𝑛(𝜃
′|𝜃) 

where each one maps a state 𝜃 to a new state 𝜃′ the proposal can be defined by: 

𝑄𝑀(𝜃′|𝜃) = ∑𝑐𝑖

𝑛

𝑖=1

𝑄𝑖(𝜃
′|𝜃) , ∑𝑐𝑖

𝑛

𝑖=1

= 1 ( 47 ) 

where the mixture coefficient, 𝑐𝑖, represents the probability of drawing a proposal 
from 𝑄𝑖. By using these different proposals, a mixture of different behaviours is 
achieved and thus variety is entered into the proposals. The mixture can lead to 
the exploration of the parameter space, which can not be achieved by a single 
proposal (Lüthi, 2020). 

When working with shape model fitting algorithms, the parameter space can be 
high-dimensional and altering all the parameters at once could lead to the 
rejection of the proposed sample. Through block-wise proposals, only a part of the 
parameter space is updated at once (Schönborn et al., 2017). Therefore the 
parameter updates were split into blocks and a separate proposal is defined for 
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rotation, translation and shape, namely  𝑄𝑅, 𝑄𝑇 and 𝑄𝛼. The final proposal would 
then be the mixture proposal: 

𝑄𝑀(𝜃′|𝜃) = 𝑐𝑅𝑄𝑅(𝜃′|𝜃) + 𝑐𝑇𝑄𝑇(𝜃
′|𝜃) + 𝑐𝛼𝑄𝛼(𝜃′|𝜃) ( 48 ) 

The second method used to optimize the random walk proposal is running several 
chains in sequence. As previously mentioned, when working with shape model 
fitting, the posterior distribution could be a complicated, multi-modal distribution. 
This could lead to the sampler getting stuck in a local mode when the sampler is 
initiated too far away from the real mode. To mitigate this problem, sampling 
chains could be run in sequence. 

With this method, the first chain would only adjust a section of the parameter 
space. Once the chain has converged and the samples are concentrated in the 
mode containing the global maximum, the next chain could start. The initial 
parameters of the next chain would then be the best sample parameters from the 
previous chain. In this study the first sampling chain focuses on the rough pose, 
the second chain focuses on a model consisting of 7 modes of variation and the 
last chain focuses on the full model.  

5.3.4 Likelihood 

As seen in Equation 44, in order to perform Bayesian inference on the posterior 
distribution 𝑃(𝜃|𝐷), given observed data 𝐷, a contour likelihood 𝑃(𝐷|𝜃) is 
needed. Likelihoods are essential in the verification stage of the Metropolis-
Hastings algorithm as it measures the compatibility of an explanation of the 
observed data (Thusini et al., 2020). The explanation compatibility is determined 
by comparing the observed contour data with the synthesized contour from the 
current model instance 𝜃. The likelihood is a function of the model parameters: 

ℓ(𝜃; 𝐷) = 𝑃(𝐷|𝜃) ( 49 ) 

The synthesized contour of the current model instance is rendered into the image 
domain using the method described in Section 5.2.3. The synthesized contour is 
denoted as:  

𝐶𝑠 = {𝑝𝑠1, 𝑝𝑠2, … , 𝑝𝑠𝑛} ( 50 ) 

where 𝑝𝑠 represents the points of the synthesized contour. The likelihood in this 
study relies on soft correspondence, which means that for each point on the 
synthesized contour, the algorithm searches for the closest point on the 
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corresponding target contour (Thusini et al., 2020). The target contour is extracted 
from the x-ray image using the method described in Section 5.2.2 and is denoted 
as:  

𝐶𝑡 = {𝑝𝑡1, 𝑝𝑡2, … , 𝑝𝑡𝑛} ( 51 ) 

where 𝑝𝑡 represents the points of the target contour. As the focus of this study is 
not to investigate the suitable likelihood function, the assumption is made that 
the points on the contours are independent and each point experiences Gaussian 
noise. Therefore, a Gaussian noise model is used to rate the distance between the 
synthesized points and the target points. The model likelihood is defined as:  

ℓ(𝜃; 𝐶𝑡, 𝜎𝐶𝑡
) =  ∏𝒩(𝐶𝑠(𝑝𝑠𝑖) − 𝐶𝑡(𝑝𝑡𝑖)|0, 𝜎𝐶𝑡

)

𝑖

 ( 52 ) 

5.4 Validation of reconstructed surface mesh 

After the 3D patient-specific model instance has been reconstructed, the morphed 
mesh is compared to the corresponding ground-truth proximal femur mesh. The 
ground-truth mesh has been segmented from the CT scans in the testing dataset 
mentioned in Chapter 3. The quality of the reconstruction was evaluated by 
calculating the Hausdorff distance error, the average reconstruction error and the 
dice coefficient between the morphed surface and the ground-truth surface. 
Lastly, to determine if the algorithm could be applied to an SCFE dataset, the neck-
shaft angle on the ground truth and reconstructed models is measured.  

The Hausdorff distance measures the maximum distance between two meshes. 
Since anatomical landmarks are usually located at prominent surface features and 
are used for surgical measurements, the Hausdorff distance is a necessary metric 
to determine whether the worst-case scenario is located at a landmark feature. 
The Hausdorff distance error determines the similarity between two point sets by 
computing the one-sided distances (Bulbul et al. 2011). The one-sided differences 
between surface A and surface B can be calculated as follows: 

𝐷𝑖𝑠𝑡(𝐴, 𝐵) = 𝑚𝑎𝑥(|𝑎 − 𝑏|) 
 

( 53 ) 

𝐷𝑖𝑠𝑡(𝐵, 𝐴) = 𝑚𝑎𝑥(|𝑏 − 𝑎|) 
 

( 54 ) 

where a and b refer to a point on mesh A and a point on mesh B. Because the 
distance is non-symmetric, the two-sided Hausdorff distances can then be 
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calculated as the maximum between the two one-sided distances determined in 
Equations 53 and 54. The Hausdorff distance is then denoted as: 

𝐻(𝐴, 𝐵) = 𝑚𝑎𝑥(𝐷𝑖𝑠𝑡(𝐴, 𝐵), 𝐷𝑖𝑠𝑡(𝐵, 𝐴)) ( 55 ) 

The average reconstruction error is a commonly used metric in literature used to 
measure the average error across the entire surface of the mesh. This metric 
defines the average distances between the vertices of the reconstructed surface 
and the ground-truth surface (Yu et al., 2016). The average distance is determined 
by computing the shortest distance between each point of the first mesh and the 
surface of the second mesh and returning the average across all the points. The 
average reconstruction error is denoted as: 

𝐴𝑅𝐸 =
∑ |𝑎𝑖 − 𝑏𝑖|

𝑛
𝑖=1

𝑛
 ( 56 ) 

where n is the total number of points located on the mesh. The dice coefficient is 
a metric that can be used to determine the pixel-wise agreement between the 
reconstructed mesh and the ground-truth mesh by computing a binary image for 
each of the meshes. This is accomplished using the diceCoefficient function 
in scalismo. The dice coefficient is determined as two times the number of voxels 
in which an overlap occurs divided by the sum of the number of voxels in mesh A 
and mesh B (Taha and Hanbury, 2015). The following equation is used to 
determine the dice coefficient: 

𝐷𝐶 =  
2 × |𝐴 ∩ 𝐵|

|𝐴|  +  |𝐵|
 ( 57 ) 

Lastly, the neck-shaft angle is known as the angle formed when a line through the 
femoral shaft intersects with a line through the femoral head and neck. Since the 
NSA measured during preoperative planning determines the amount of correction 
needed in the osteotomy, the measurement is used to determine if this algorithm 
could be applied to an SCFE dataset. The NSA is determined by identifying the neck 
axis and shaft axis on the model and measuring the angle between the axes as 
illustrated in Figure 5.6. 
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Figure 5.6: Neck-shaft angle measurement 

5.5 Results 

As mentioned in Section 3.5, 6 CT scans from the obtained dataset were set aside 
to be used for testing. These 6 CT scans were used to generate a DRR of the hip 
using the method described in Chapter 4. Once the DRR was generated, it was 
used as the target image in the reconstruction algorithm. Each of the 
reconstructed 3D models was compared against the ground truth using the 
measurements listed in Section 5.4. Table 5 contains the results of these measures 
whereas Tables 7 to 9 compare these results to other studies in the literature that 
reconstructed a 3D model from 2D images. Figure 5.7 and Figure 5.8 display the fit 
of some of the reconstructed models to the ground truth. The neck-shaft angle 
measurements are displayed in Table 6. 

Table 5: Reconstruction results 

Test Mesh 
Average 

Reconstruction 
Error (mm) 

Hausdorff 
Distance (mm) 

Dice Coefficient 

Mesh_01 1.95 4.83 0.90 

Mesh_02 2.65 7.21 0.81 

Mesh_03 1.98 5.06 0.91 

Mesh_04 2.17 5.40 0.87 

Mesh_05 2.00 5.14 0.88 

Mesh_06 2.05 5.27 0.89 

Average 
(mm, mm, -) 

2.13 5.49 0.88 

Standard 
Deviation 

(mm, mm, -) 
0.26 0.87 0.04 
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Evaluating each reconstruction led to an average reconstruction error of 2.13 mm 
with an average Hausdorff Distance, which measures the maximum distance 
between two meshes, of  5.49 mm. The reconstructed along with the ground-truth  
meshes were converted to binary images and the overlap also known as the dice 
coefficient between the two meshes was measured. The average dice coefficient 
of the reconstructed meshes was measured to be 0.88. Lastly, the difference 
between the NSA measurements of the ground truth and reconstructed meshes 
ranges from 2.30° to 4.80° with an average difference of 3.05°. 

 
Figure 5.7: The reconstructed model (white) compared to the ground truth model 
(green) of Mesh_01  

By interpreting the results in Tabel 5, it can be seen that Mesh_01 is the mesh with 
the least amount of error measured after validating the reconstructed mesh, 
whereas Mesh_02 has measured larger errors than the rest of the meshes in the 
testing dataset. The reconstructed model along with the ground truth surface 
mesh for the best and worst cases is displayed in Figure 5.7 and Figure 5.8 
respectively. 

( a ) 3D view ( b ) Sagittal plane 

( c ) Coronal plane ( d ) Axial plane 
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Table 6: Neck-shaft angle measurements 

Test Mesh 
NSA of the 

reconstructed 
model (°) 

NSA of the 
ground truth 

model (°) 

Difference 
between the NSA 

angles (°) 

Mesh_01 130.40 127.80 2.60 

Mesh_02 131.50 126.70 4.80 

Mesh_03 133.90 131.60 2.30 

Mesh_04 126.40 123.40 3.00 

Mesh_05 124.50 127.70 3.20 

Mesh_06 123.50 121.10 2.40 

Average (°) 128.37 126.38 3.05 

Standard 
Deviation (°) 

4.17 3.68 0.92 

 

( a ) 3D view ( b ) Sagittal plane 

( c ) Coronal plane ( d ) Axial plane 

Figure 5.8: The reconstructed model (white) compared to the ground truth model 
(green) of Mesh_02 
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5.6 Discussion 

Table 7: Average reconstruction error of studies in literature 

 Current Study Zheng (2011) 
Steininger et 

al. (2008) 
Ehlke et al. 

(2013) 
Sadowsky et 

al. (2007) 

Bone 
Structure 

Proximal 
Femur 

Proximal 
Femur 

Proximal 
Femur 

Pelvis Pelvis 

Number of x-
ray views used 

1 2 2 1 2 

Average 
reconstruction 

error (mm) 
2.13 1.40 2.78 2.00 2.00 

The average reconstruction error, Equation 56, in this study ranges from 1.95 to 
2.65 mm with an average of 2.13 mm as seen in Table 5. The reconstruction of 3D 
models from 2D images has been widely used in literature. The average 
reconstruction error obtained through a reconstruction algorithm by other studies 
in the literature can be seen in Table 7. Compared to the reconstruction errors 
found in Table 7 (Ehlke et al., 2013; Steininger et al., 2008; Zheng, 2011) which 
range from 1.40 to 2.78 mm it seems that the findings regarding the 
reconstruction error are coherent and that the average reconstruction error 
obtained fall within the ranges in the available literature.  

Table 8: Hausdorff distance of studies in the literature 

 Current Study Thusini et al. (2020) 
Steininger et al. 

(2008) 

Bone Structure Proximal Femur Femur Proximal Femur 

Number of x-ray 
views used 

1 1 2 2 

Hausdorff 
distance (mm) 

5.49 4.20 to 5.70 4.18 to 4.73 5.84 

The Hausdorff distance is the measure that determines the maximum distance 
between two surface meshes. In this study an average Hausdorff distance of 
approximately 5.49 mm is obtained. Some of the Hausdorff distances obtained in 
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the literature are listed in Table 8. Thusini et al. (2020) performed a similar study 
where the femur was reconstructed from a single x-ray image and bi-planar x-rays. 
The average Hausdorff distance ranged from approximately 4.20 to 5.70 mm for a 
single x-ray image where the target shape was within reach of the model. For 
shapes that were out of the model’s reach, the Hausdorff varied from 
approximately 22 to 25 mm. Steininger et al. (2008) reported a Hausdorff distance 
ranging from 4.24 to 10.06 mm, with an average Hausdorff distance of 5.84 mm 
for the reconstruction of a femur from radiographic images. Thus the average 
Hausdorff distance of this study falls within the range of available literature.  

The dice coefficient is used to determine the overlap of the two meshes which 
indicates how well the reconstructed model resembles the target shape. The dice 
coefficient ranges from 0 which indicates no spatial overlap, to 1 which indicates 
a complete overlap between two shapes. The average dice coefficient obtained in 
this study was 0.88. Table 9 displays the dice coefficient of studies available in the 
literature. Steininger et al. (2008) reported an average dice coefficient of 0.90, 
ranging from 0.84 to 0.93, for using two or more x-rays for reconstruction. 
Whereas Yao and Taylor (2003), reported a dice coefficient of 0.64 and 0.86 for 
reconstructing a model from single and bi-planar x-rays respectively. The dice 
coefficient of this study ranges from 0.81 to 0.91 with an average dice coefficient 
of 0.88, which corresponds to the values obtained in the available literature. 

Table 9: Dice coefficient of studies in literature 

 Current Study 
Steininger et al. 

(2008) 
Yao & Taylor (2003) 

Bone Structure Proximal Femur Proximal Femur Pelvis 

Number of x-ray 
views used 

1 2 1 2 

Dice coefficient 0.88 0.90 0.64 0.86 

When observing the results in Tables 7 to 9, it can be seen that the findings of this 
study concur with the results available in the literature. However, the Hausdorff 
distances are mainly located at the femoral head in the sagittal plane. When using 
the reconstructed model for preoperative planning this could lead to inaccuracies 
in the measurements made since the neck-shaft angle is dependent on the axis 
passing through the femoral head and neck. Thus, the Hausdorff distance can be 
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improved to improve the accuracy of the model and thus reduce the differences 
between the ground truth and reconstructed NSAs. 

Livyatan et al. (2003) recommended that an acceptable average 2D/3D 
reconstruction error should range from 1 to 1.50 mm, or 2 to 3 mm in the worst 
scenario, based on the analysis of common orthopaedic procedures. The average 
reconstruction error obtained in this study is 2.13 mm which meets the 
specification of Livyatan et al. (2003) but can be improved to fall within the 1 to 
1.50 mm range. Yao and Taylor (2003) stated that there are a variety of factors 
that can influence the accuracy of the reconstruction algorithm. The factors can 
include the number of input images used, the sample size of the SSM and the 
quality of the target image.  

The number of x-ray views used to reconstruct the model may have a large impact 
on the accuracy of the reconstructed model. According to Reyneke et al. (2018), 
adding a radiographic image to the reconstruction algorithm significantly improves 
the resulting reconstruction. By observing the reconstructions in Figures 5.7 and 
5.8, it can be seen that the reconstruction is more precise in the coronal plane 
than in the sagittal plane. This is due to the target x-ray image being in the coronal 
plane and thus the reconstruction algorithm does not have enough information 
about the sagittal plane. Thus, the resulting model shows more inconsistencies in 
the area of the femoral head and shaft where the width is modelled. Therefore 
adding a radiograph of the sagittal plane could increase the accuracy of the model. 

However, using this approach could lead to difficulties in automatically identifying 
the femur during edge detection as a sagittal radiograph would have an overlap of 
the target femur, the pelvis and the contralateral femur. Thus, when adding target 
images to the algorithm, the edge detection algorithm might require user 
interaction to ensure the correct contour has been identified. 

The prior knowledge of the algorithm, which is the SSM in this case, could also 
have an impact on the accuracy. The generality of the model determines how well 
the model can represent shapes that are not within the training dataset. It is 
believed that increasing the size of the training dataset, will increase the model’s 
ability to fit unseen data. 

Since the target x-ray used within the reconstruction algorithm was a synthesized 
image and not the ground-truth image, it could affect the accuracy of the 
reconstructed model. Thus, the validation dataset should be enlarged to include 
the CT scans as well as the clinical x-rays of the patients in the population to 
increase the accuracy of the model. 

Finally, to determine whether the algorithm can sufficiently reconstruct the 3D 
NSA from a 2D x-ray, the NSA of the reconstructed model was measured and 
compared to that of the ground truth model. As seen in Table 6, the difference 
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between the measurements range from 2.30° to 4.80° with an average difference 
of 3.05°. To the author's knowledge, there are currently no studies that apply 
2D/3D reconstruction to SCFE cases. However, in a study by Cherkasskiy et al. 
(2017), 3D models were reconstructed from CT scans of patients diagnosed with 
SCFE and NSA measurements were performed. The NSAs of these reconstructed 
models were compared to the NSA measured on 2D radiographs and found that 
the average reconstructed NSA differs from the 2D NSA by approximately 5°. 
According to Schlégl et al. (2022), an acceptable normal range for neck-shaft 
angles in children is approximately 10°. All of the measured NSAs fall within this 
range with a maximum measured difference of 4.80° and the results correspond 
to the results of  Cherkasskiy et al. (2017). 

The difference between the measured angles could be due to the factors listed 
above which affect the accuracy of the reconstructed model. As previously 
mentioned, the Hausdorff distance is mainly located at the femoral head in the 
sagittal plane, which has an impact on the head-neck axis and ultimately affects 
the NSA measurement. Improving the Hausdorff distance of the model could 
reduce the differences between the reconstructed and ground truth NSAs. With 
the NSA differences all within the acceptable range and comparing well to the 
measurements made by Cherkasskiy et al. (2017), the results indicate that the 
reconstruction algorithm can adequately reconstruct the NSA from 2D 
radiographs and thus the dataset can be enlarged to include SCFE data.  
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Chapter 6  

Conclusions 

An indispensable requirement for the success of any orthopaedic procedure is pre-
operative planning. The traditional method relies on 2D radiographs, but the lack 
of 3D information, overlapping anatomical structures and the quality of the 
radiograph could affect the accuracy of the measurements made (Kordelle et al., 
2000). The accuracy and reliability in the treatment of SCFE can be improved by 
utilizing 3D models more extensively in the preoperative planning process. 
Although CT scans are the preferred 3D imaging modality, it has certain limitations 
in the case of SCFE which include high radiation exposure to younger individuals 
and being expensive. Therefore a reconstruction of 3D models from 2D images is 
considered an attractive alternative to obtaining 3D models (Dakhakhni, 2013). 
These reconstruction algorithms produce detailed 3D patient data without the 
cost and radiation associated with CT scans. Thus, the focus of this study was then 
to develop an algorithm that could reconstruct a 3D patient-specific model from a 
2D x-ray image. To achieve the aim of the study, the objectives involved 
developing an SSM along with a 2D/3D reconstruction algorithm, and validating 
the results. This chapter offers conclusions on the main findings and contributions, 
recommendations on possible improvements to the study and suggestions for 
future work are given. 

6.1 Main findings and contribution  

A dataset, containing 33 CT scans of the hip, which was available for public access 
was obtained to use throughout this study. Since the region of interest in this study 
is identified as the femur, the left proximal femur in each image was segmented 
and saved as a surface mesh. Out of the 33 proximal femurs available, 27 femurs 
were used to construct the SSM, which leaves 6 proximal femurs to be used as a 
testing dataset to achieve an 80:20 data distribution as proposed by Heimann and 
Meinzer (2009). The GPMM construction method described by Lüthi et al. (2017) 
was used to construct the SMM. The GPMM method models the variation within 
the population as deformations from the reference mesh. Once the dataset was 
aligned and correspondence was established, PCA was performed on the 
covariance matrix to obtain the main modes of variation. The modes of variation 
are ordered in descending order according to the amount of variance explained by 
the mode of variation. 

The quality of the statistical shape model was assessed using three measures, 
namely compactness, specificity and generality. The model showed promising 
results in all of the evaluation measures. Although it is difficult to compare the 
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results to other studies available in the literature due to different sample sizes, 
different regions of interest and methods used, the results obtained from this 
study fall within the ranges of literature and thus the results were deemed 
acceptable. 

The reconstruction algorithm was accomplished by using the constructed SSM as 
prior knowledge and MCMC sampling methods for inference. Using a Metropolis 
Hasting algorithm allowed for an analysis-by-synthesis approach where contours 
were synthesized from the SSM and compared to contours extracted from the x-
ray image. The contours were compared by measuring the point-to-point distance 
between the synthesized and target contour. Since the dataset only contained CT 
images, an x-ray image was generated using a DRR rendering technique. The 
generated x-ray image was used as the target image in the reconstruction 
algorithm.  

The Metropolis-Hastings algorithm was used to generate sample contours from a 
proposal distribution, which were then accepted or rejected based on their 
likelihood under the posterior distribution. The algorithm is an iterative process 
where the SSM parameters were adjusted with each observation based on the 
information obtained from the 2D image. The resulting model was the sampled 
contour with the best likelihood after the iterative process have been completed. 

After the patient-specific model was reconstructed, the model was compared 
against the ground-truth model to determine the accuracy of the reconstruction. 
The measurements used to evaluate the model were the average reconstruction 
error, the Hausdorff distance and the dice coefficient. The results obtained were 
consistent with the results found in available literature, but the average error and 
Hausdorff distance could still be improved. Therefore, some alterations need to 
be made to the reconstruction algorithm to improve the accuracy of the model. 
The comparison of the neck-shaft angle of the reconstructed model to that of the 
ground truth model indicated that the reconstruction algorithm could be adapted 
to include an SCFE dataset. 

6.2 Future work 

The motivation behind this study was to reconstruct a 3D patient-specific model 
from 2D data with the intention to be used during the preoperative planning of 
SCFE correction osteotomies. However, one of the limitations of this study was 
that the dataset used to train the SSM included CT scans from an adult USA-based 
population instead of an SCFE dataset from an adolescent South African 
population. Due to the limited available cases and lack of time, this dataset was 
used as a proxy as it was already publically available and ready for use. The biggest 
difference between an adult and adolescent dataset is that the size and shape of 
the femur will differ since the femur of adolescents still develops until the growth 
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plate close. A femur from a USA population may also differ from a femur of a South 
African population due to Aronsson et al. (2006) and Lehmann et al. (2006) 
assumption that factors such as genetic background and cultural traditions affect 
the prevalence of SCFE. This study was used to develop the techniques which could 
eventually be applied to an SCFE dataset. Since this study was only proof-of-
concept, future studies would first have to train an SSM on SCFE CT scans of a 
younger age group from a specific population after the shortcomings of the 
current approach have been addressed.  

Since the accuracy of the model needs to be improved in order to apply the 
method to clinical applications, the following recommendations could be applied 
to improve the reconstruction algorithm: 

1. Increase the sample size: There is limited literature available on the 
required sample size needed to construct a statistical shape model and 
according to Mei et al. (2008) this is because the issue of sufficiency is not 
considered. Mei et al. (2008) stated that the sample size requirement 
should depend on two factors, namely the level of noise and the number 
of structural modes since these are the characteristics that affect the 
sufficiency of the sample size. The process of shape model construction 
was limited by a training dataset containing only 27 proximal femurs. 
Although the shape model used in the study showed promising results, a 
larger training dataset would improve the generality of the model. 
Increasing the generality allows the model’s ability to represent shape 
instances which are not included in the training data to improve and could 
lead to better results. 

2. Improve the contour generation technique: The reconstruction algorithm 
is very time-consuming as it takes about 30 seconds just to run one 
iteration. The main reason for the long computation time is that, within the 
likelihood function, the shape sample is projected to the corresponding x-
ray image through a rendering technique where the algorithm steps 
through each pixel of the projection plane. If this method is improved, the 
computation time could be reduced and the algorithm would be more 
cost-effective. 

3. Include more radiographic images: Since only a single 2D image has been 
used to reconstruct a 3D model, some of the information needed to 
accurately reconstruct the model could not be provided. During this study, 
the contours from the coronal plane were used for the reconstruction 
algorithm, which means that the shape could not obtain information such 
as the shaft width from the sagittal plane. Thus the resulting shape showed 
inconsistencies in the shaft and femoral head area in the sagittal plane. Yao 
and Taylor (2003) stated that adding additional x-ray images to the 
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reconstruction algorithm has diminished returns regarding the accuracy of 
the model. However, it has been proven in the literature that using 
multiple radiographic images shows a significant improvement in the 
accuracy of the reconstructed model (Reyneke et al., 2018; Thusini et al., 
2020). Therefore, by including more x-rays the reconstruction algorithm 
could show improved results. Although it could lead to an improvement in 
reconstruction accuracy, a lateral image would display an overlap of the 
target femur, the pelvis and the contralateral femur which could 
complicate the automatic identification of the target femur contour in the 
edge detection algorithm. Thus, when adding additional target images to 
the reconstruction algorithm, user interaction might be required to 
determine if the correct contour has been identified. Future studies might 
overcome this problem by using a 2D active shape model or a method 
developed by Peng (2002), where a modified Canny Edge detection 
algorithm in combination with an active contour algorithm is used to 
automatically detect contours.  

4. Use a ground-truth x-ray: Since the DRR could not be verified, we could 
not be sure that the information provided to the reconstruction algorithm 
is correct. This could lead to inconsistencies between the ground truth 
mesh extracted from the CT data and the synthesized x-ray. Running the 
algorithm with ground-truth data might increase the accuracy of the 
reconstructed model. To validate whether the accuracy of the model 
improved a 3D model would be reconstructed from both a DRR and the 
ground-truth x-ray image and the results would be compared.  

6.3 Final remarks 

The objective of this study was to develop a reconstruction algorithm that 
reconstructs a 3D patient-specific model from a 2D radiographic image. An SSM 
was reconstructed and an x-ray was synthesized to be used as the prior knowledge 
and the observed data in the reconstruction algorithm respectively. The resulting 
reconstructed mesh was compared to the corresponding ground truth mesh 
segmented from CT data. Although the results obtained within this study 
correspond with the available literature on the reconstruction of 3D from 2D 
images, the Hausdorf distances and average reconstruction error could still be 
improved. Comparing the neck-shaft angle of the reconstructed model to that of 
the ground truth model indicated that the reconstruction algorithm can 
sufficiently reconstruct the NSA from 2D x-rays and thus can be adapted to include 
a dataset with SCFE-diagnosed patients. Thus although the algorithm is able to 
reconstruct a patient-specific model from a radiographic image, the accuracy of 
the model needs to be improved to be used in pre-operative planning. 
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