
Learning Decentralized Policies with Incremental
Reinforcement Learning, Reward Shaping and Self-Play

Learning

Jérémie Ngumba Bakambana

Thesis presented in partial fulfilment of the requirements for the degree of Master of
Engineering (Electrical and Eletronic) in the Faculty of Engineering at Stellenbosch

University.

Supervisor: Prof. H. A. Engelbrecht

March 2023

Acknowledgements

For the completion of this modest work, I would like to express my deep gratitude to the
following people:

• To my Supervisor Prof. H.A. Engelbrecht for the guidance and assistance throughout
the whole project. For the time investigated in weekly meetings to discuss the
evolution of the project. And for the opportunity to collaborate in this research.

• To my family who has always been supportive, and motivation brought through the
whole time spent far from each other.

• To friends who have been encouraging, and helpful to distress throughout hectic
times during the research.

• To anyone who has contributed directly or indirectly to the completion of this project.

i

Stellenbosch University https://scholar.sun.ac.za

Plagiaatverklaring / Plagiarism Declaration

1. Plagiaat is die oorneem en gebruik van die idees, materiaal en ander intellektuele
eiendom van ander persone asof dit jou eie werk is.
Plagiarism is the use of ideas, material and other intellectual property of another’s
work and to present is as my own.

2. Ek erken dat die pleeg van plagiaat ’n strafbare oortreding is aangesien dit ’n vorm
van diefstal is.
I agree that plagiarism is a punishable offence because it constitutes theft.

3. Ek verstaan ook dat direkte vertalings plagiaat is.
I also understand that direct translations are plagiarism.

4. Dienooreenkomstig is alle aanhalings en bydraes vanuit enige bron (ingesluit die
internet) volledig verwys (erken). Ek erken dat die woordelikse aanhaal van teks
sonder aanhalingstekens (selfs al word die bron volledig erken) plagiaat is.
Accordingly all quotations and contributions from any source whatsoever (including
the internet) have been cited fully. I understand that the reproduction of text without
quotation marks (even when the source is cited) is plagiarism

5. Ek verklaar dat die werk in hierdie skryfstuk vervat, behalwe waar anders aange-
dui, my eie oorspronklike werk is en dat ek dit nie vantevore in die geheel of
gedeeltelik ingehandig het vir bepunting in hierdie module/werkstuk of ’n ander
module/werkstuk nie.
I declare that the work contained in this assignment, except where otherwise stated, is
my original work and that I have not previously (in its entirety or in part) submitted
it for grading in this module/assignment or another module/assignment.

Voorletters en van / Initials and surname Datum / Date
J.N. Bakambana March 6, 2023

ii

Stellenbosch University https://scholar.sun.ac.za

Abstract

English

Humans have the interesting ability to adapt to complex tasks by leveraging knowledge
acquired on simpler tasks. In addition, humans can coordinate behaviors to reach a
common objective. The recent progress in the field of Reinforcement Learning (RL) has
demonstrated that an agent can acclimate to a complex task after being introduced to a
simpler variant of the same task.

In this study, we investigate the ability of RL agents to solve a complex task, while
collaborating with another learning agent. The given task is a cooperative volleyball game
in 3 dimensions. We used the Proximal Policy Optimization (PPO) algorithm as the
training agent because it was successful in solving, in a single-agent scenario, a simple
variant of the game, which is the same volleyball game in 2 dimensions. We applied
Incremental RL as a training paradigm to address the sparsity due to the large state
space of the experimental environment. We first started by investigating the problem in a
single-agent scenario. We broke down the main task MDP into a sequence of incremental
MDPs, which generated a sequence of different variants of the same task ranging from
the simplest to the most complex. Then we trained the agent to solve each task in the
sequence starting with the simplest. The investigation demonstrated that: (1) the agent
can adapt to an incremental sequence of MDPs; (2) Reaching the optimal level of expertise
in a simple variant of a task is not a requirement to adapt to a more complex variant of the
same task, the agent can still adapt in a complex task after a partial mastering of a simpler
variant; (3) the optimal policy generated by the agent at the final task generalizes over all
previous MDPs generated by simpler variants of the final task; (4) A successful incremental
learning can be influenced by two parameters: one controlling when the training agent can
transit to a more complex variant of the given task, and another controlling how complex
the new variant of the task must be.

Based on the experiment result in the single-agent scenario, we investigated the paradigm
in cooperative multi-agent scenarios. Toward the investigation, we demonstrated that with
appropriate Reward Shaping, decentralized learning can be effective to solve cooperative
scenarios without necessarily tuning hyperparameters. We also showed that Incremental
Learning is an effective and promising approach to address issues such as the sparsity of

iii

Stellenbosch University https://scholar.sun.ac.za

Abstract iv

tasks with large state space in the multi-agent scenario. We finally proved in our work the
ability of RL agents to adapt to a dynamic environment and maintain collaboration with
other agents.

Afrikaans

Mense het die interessante vermoë om by komplekse take aan te pas deur kennis wat op
eenvoudiger take opgedoen is, te benut. Daarbenewens kan mense gedrag koördineer om
’n gemeenskaplike doelwit te bereik. Onlangse vooruitgang in versterkingsleer (VL) het
bewys dat agente by komplekse taak kan aanpas deur met ’n eenvoudige taak te begin en
die kompleksiteit van die taak geleidelik te verhoog.

In hierdie studie ondersoek ons die vermoë van versterkingsleeragente om by ’n komplekse
taak aan te pas, terwyl hulle saamwerk met ’n ander agent. Die gegewe taak is ’n
vlugbalbalspel in 3 dimensies (3D) waar ’n span moet saamwerk. Ons het die Proksimale
Beleidsoptimalisering (PPO) algoritme gebruik om die taak op te los omdat die toestands-
en aksieruimte van die taak kontinu is. Ons het ook PPO gebruik omdat dit suksesvol
was in die basislynstaak, wat dieselfde vlugbalspel is wat in ’n 2-dimensionele omgewing
gespeel word. Ons pas Inkrementele Versterkingsleer toe om die ylheid aan te spreek wat
’n gevolg is van die groot toestandsruimte van die eksperimentele omgewing. Ons het
begin deur die probleem as ’n enkelagent-scenario te ondersoek. Ons het die hoofomgewing
se Markov Besluitnemingsproses (MBP) opgebreek in ’n reeks inkrementele MBP’s en
die agent sekwensieël opgelei om elke MBP in die reeks op te los. Die studie het getoon
dat: (1) die agent kan aanpas by ’n inkrementele reeks van MBP’s; (2) om ’n subtaak
perfek te bemeester is nie ’n vereiste vir ’n suksesvolle aanpassing by die taak van ’n
volgende inkrement nie, die agent kan aanpas by die volgende inkrement na ’n gedeeltelike
bemeestering van die huidige taak; (3) die optimale beleid wat deur die agent by die finale
taak genereer word, veralgemeen oor alle vorige MBP’s in die reeks.

Ons het ons studie voortgesit deur Inkrementele Leer in ’n koöperatiewe-kompeterende
multi-agent scenario te ondersoek. Ons het getoon dat desentraliseerde leer met behoorlike
Beloningsvorming die samewerkende scenario’s suksesvol kan oplos sonder om spesifieke
hiperparameter-instelling te vereis. Ons het ook gewys dat Inkrementele Leer ’n effektiewe
en belowende benadering is om kwessies soos die ylheid van take met groot toestandsruimtes
in die multi-agent scenario aan te spreek. Ons demonstreer met hierdie studie die vermoë
van VL-agente om by ’n dinamiese omgewing aan te pas en om samewerking met ander
agente te handhaaf.

Stellenbosch University https://scholar.sun.ac.za

Contents

Declaration ii

Abstract iii

List of Figures vii

List of Tables x

1. Introduction 3
1.1. Motivation . 3
1.2. Problem Statement . 4
1.3. Objective . 5
1.4. Contributions . 6
1.5. Project Outline . 6

2. Related Work 8
2.1. Transfer Learning . 8
2.2. Multi-Agent Reinforcement Learning (MARL) 12
2.3. Reward Shaping . 15
2.4. Self-Play Learning . 16
2.5. Summary . 18

3. Reinforcement Learning 20
3.1. Markov Decision Processes . 20
3.2. Policy . 21
3.3. Return . 22
3.4. Value Function . 23
3.5. Action Value Estimation . 24
3.6. Optimality . 25
3.7. Methods . 26
3.8. Multi-Agent RL Framework . 31
3.9. Summary . 32

4. Deep Learning 34

v

Stellenbosch University https://scholar.sun.ac.za

Contents vi

4.1. Artificial Neural Networks . 34
4.2. Deep Neural Networks . 36
4.3. Loss Functions . 37
4.4. Backpropagation . 39
4.5. Gradient Descent Methods . 41
4.6. Optimizers . 43
4.7. Summary . 45

5. Deep Reinforcement Learning 46
5.1. Value Based algorithms . 46
5.2. Policy Gradient Algorithms . 49
5.3. Summary . 54

6. Incremental Reinforcement Learning 55
6.1. Definition . 55
6.2. Previous work . 55
6.3. Problem Formalization . 56
6.4. Threshold Policy . 58
6.5. Training Process . 61
6.6. Summary . 61

7. Experimental Environment 63
7.1. Gym Environment . 63
7.2. Slimevolleygym . 65
7.3. Webots . 67
7.4. Slimebot Volleyball . 68
7.5. Summary . 73

8. Experimental Evaluation 74
8.1. Single Agent Evaluation . 74
8.2. Multi-Agent Experiment . 92
8.3. Summery . 101

9. Conclusion 102
9.1. Summary . 102
9.2. Future Work . 103

Bibliography 105

A. Links to Videos of Agents Trained during the Experiments 116

B. Additional Results 117

Stellenbosch University https://scholar.sun.ac.za

List of Figures

3.1. agent-environment interaction loop in RL 21
3.2. Multi-Agent system illustration . 31

4.1. Illustration of an Artificial Neuron . 35

5.1. Illustration of Dueling Networks architecture 49

6.1. Incremental RL . 57

7.1. SlimeVolleyGym Environment . 66
7.2. Webots Robotics . 67
7.3. Slimebot Volleyball game illustration . 68
7.4. Slimebot Volleyball game scenarios . 72

8.1. Self-Play training progress of PPO algorithm in the slimevolleygym game . 75
8.2. Training from scratch of a PPO algorithm in the Slimebot Volleyball envi-

ronment. 76
8.3. Top view illustration of the environment with a depth z = 0 77
8.4. Training of a PPO agent in a 2D projection of the slimebot volleyball

environment space . 78
8.5. Top view illustration of a shrunk environment with a depth z = 12 79
8.6. Training of a PPO agent in the slimebot volleyball environment with different

depths . 80
8.7. Two different experiments of Incremental Learning with an performance

threshold of δ = 500 and an incremental step of η = 1. 83
8.8. Average incremental training progress of 10 random initialization with

δ = 500 and different incremental steps . 84
8.9. Comparison between three different incremental step and with the same

threshold δ = 500. 85
8.10. Average incremental training progress of 10 random initialization with

δ = 800 and different incremental steps . 86
8.11. Comparison between three different incremental step and with the same

threshold δ = 800. 87

vii

Stellenbosch University https://scholar.sun.ac.za

List of Figures viii

8.12. Average incremental training progress of 10 random initialization with
δ = 1500 and different incremental steps 88

8.13. Comparison between three different incremental step and with the same
threshold δ = 1500. 89

8.14. Average incremental training progress of 10 random initialization with
δ = 2500 and different incremental steps 90

8.15. Comparison between three different incremental step and with the same
threshold δ = 2500. 91

8.16. Training progress of a team of two Independent PPO in 2D 93
8.17. Training progress of a team of two Independent PPO in 2D 94
8.18. Reward shaping illustration in multi-agent scenario 94
8.19. Training progress of a team of two Independent PPO in 2D with a shaped

reward signal . 95
8.20. Training progress of a team of two Independent PPO in 2D with a shaped

reward signal . 96
8.21. Incremental training progress of a team of two Independent PPO in 3D . . 97
8.22. Incremental Training progress of a team of two Independent PPOs in 3D

according to the average number of times they collide with the ball per
episode. 98

8.23. Top view illustrating a subdivision of the 3D environment applicable to
reward shaping. 98

8.24. Incremental Training progress of the average episode length and reward of
two Independent PPOs in 3D with δ = 1200, η = 1 and using reward shaping. 99

8.25. Incremental Training progress of two Independent PPOs in 3D with δ = 1200,
η = 1 and using reward shaping. Performance according to the average
times they hit the ball and the average time they move to the teammate’s
area. 100

B.1. Training progress of 10 different initialization with δ = 500 and η = 1 within
20 million timesteps . 117

B.2. Training progress of 10 different initialization with δ = 500 and η = 4 within
20 million timesteps . 118

B.3. Training progress of 10 different initialization with δ = 500 and η = 12
within 20 million timesteps . 118

B.4. Training progress of 10 different initialization with δ = 800 and η = 1 within
20 million timesteps . 119

B.5. Training progress of 10 different initialization with δ = 800 and η = 4 within
20 million timesteps . 119

Stellenbosch University https://scholar.sun.ac.za

List of Figures ix

B.6. Training progress of 10 different initialization with δ = 800 and η = 12
within 20 million timesteps . 120

B.7. Training progress of 10 different initialization with δ = 1500 and η = 1
within 20 million timesteps . 120

B.8. Training progress of 10 different initialization with δ = 1500 and η = 4
within 20 million timesteps . 121

B.9. Training progress of 10 different initialization with δ = 1500 and η = 12
within 20 million timesteps . 121

B.10.Training progress of 10 different initialization with δ = 2500 and η = 1
within 20 million timesteps . 122

B.11.Training progress of 10 different initialization with δ = 2500 and η = 4
within 20 million timesteps . 122

B.12.Training progress of 10 different initialization with δ = 2500 and η = 12
within 20 million timesteps . 123

Stellenbosch University https://scholar.sun.ac.za

List of Tables

5.1. Key differences between Value-Based and Policy-Based RL Methods 50

7.1. Comparison between Slimevolleygym and Slimebot Volleyball Environments 70

x

Stellenbosch University https://scholar.sun.ac.za

Nomenclature

Variables and functions

A Action space

a Action

α Learning rate

b bias of a neural network layer

δ Performance threshold

η incremental step

E Expected value

φ Artificial neurone activation function

Gt Return at time t

γ Discount factor

h Artificial neuron output

J Objective function

L Huber loss

LCE Cross-Entropy loss

µ Deterministic policy

P State transition probability

∇ Gradient operator

p(x) Probability density function with respect to variable x.

∂ Partial derivative operator

π Stochastic policy

π∗ Optimal

q State-action value

q∗ optimal state-action value

Q Estimate of the state-action value

r Reward

r′ Shaped reward

xi

Stellenbosch University https://scholar.sun.ac.za

Nomenclature xii

R Reward Function

R2 R-squared loss

R2
adj Agjusted R-squared loss

S State space

s State

T Reinforcement Learning Task

θ Neural network parameter matrix

v State value

v∗ Optimalstate value

V Estimate of the state value

w vector weight of a neural network layer

Stellenbosch University https://scholar.sun.ac.za

Nomenclature 1

Acronyms and abbreviations

2D 2 Dimensions

3D 3 Dimensions

Adagrad Adaptive Gradient Algorithm

Adam Adaptive moment estimation

ANN Artificial Neural Networks

CNN Convolutional Neural Networks

CTDE Centralized Training and Decentralized Execution

DDPG Deep Deterministic Policy Gradient

D-DQN Double Q-network

DISTRAL DIStill & TRAnsfer Learning

DQN Deep Q-Network

ELU Exponential Linear Unit

IMPALA Importance Weighted Actor-Learner Architecture

IQL Independent Q-learning

KL Kullback–Leibler

MADDPG Mutli-Agent Deep Detrministic Policy Gradient

MADQN Multi-Agent Deep Q-network

MAE Mean Absolute Error

MAPPO Multi-Agent Proximal Policy Optimization

MARL Multi-Agent Reiforcement Learning

MSE Mean Squared Error

MDP Markov Decision Process

MTRL Multi-Tasks Reinforcement Learning

NN Neural Networks

POMDP Partially-Observable Markov Decison Process

PPO Proximal Policy Optimization

ReLU Rectified Linear Unit

RL Reinforcement Learning

RMSProp Root Mean Squared Propagation

Stellenbosch University https://scholar.sun.ac.za

Nomenclature 2

SELU Scaled Exponential Linear Unit

SMAC StarCraft Multi-Agent Challenge

SGD Stochastic Gradient Descent

TD Temporal Difference

TPRO Trust Region Policy Optimization

VDN Value-Decomposition Networks

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

Deep RL became the state-of-the-art method to solve RL problems [1, 2]. From games
to real-life scenarios, Deep RL methods took precedence over other machine learning
methods in solving human-like tasks up to the point of surpassing the human level in
many scenarios [3]. However, many challenges in the field need to be addressed. Among
these, we can mention the ability of a Deep RL agent to adapt to a difficult task after
being introduced to a simpler one [4]. Many solutions have been proposed to address the
adaptation issue, but in some situations where agents successfully manage to adapt to new
tasks, they end up forgetting skills acquired on previous tasks. Another challenge of Deep
RL in Multi-Agent systems is the coordination of behaviors between two or more agents to
train together and reach a common goal. Many approaches have been proposed to address
the problem. However, most of them investigated value-based algorithms. This project
aims to investigate the ability of Deep RL policy gradient methods to learn and maintain
coordination of behaviors when the training environment gradually becomes more difficult.

1.1. Motivation
Policy gradient algorithms have the particularity to directly learn the optimal policy,
which makes them suitable for tasks with continuous spaces. However, in Multi-Agent
systems, value-based methods have been the most used paradigms to solve cooperative
tasks [5]. But value-based methods are not suitable for tasks with large spaces. Recent
experiments have shown that policy gradient methods also can perform very well in
cooperative scenarios if provided the appropriate state representation and hyperparameter
tuning [6]. But still, most proposed approaches rely on the idea of centralized training
and decentralized execution (CTDE) with parameter sharing. [7] has been able to apply
Independent Learning on policy gradient algorithms to obtain effective results in The
StarCraft Multi-Agent Challenge (SMAC) [8], which is one of the benchmark multi-agent
tasks.

Except for environments of benchmark tasks, MARL suffers from a lack of test-bed

3

Stellenbosch University https://scholar.sun.ac.za

1.2. Problem Statement 4

environments to compare algorithms, especially for continuous cases. And among the
provided frameworks, implementations usually are not flexible to allow easy customization
for research purposes. We developed a 3D environment [9] with a continuous state space
on top of the implementation of a 2D in [10]. Motivated by the success of policy gradient
algorithms shown in [6, 8] we studied the ability of the Independent PPO algorithms
to cooperate in the 3D environment using Self-Play Learning because of the lack of
expert models in the environment, and Incremental Learning because the experimental
environment has been challenging even in the single agent setting.

1.2. Problem Statement
RL agents have shown impressive results in solving many human-like tasks. However,
in some scenarios, the tabularasa1 perspective fails when agents deal with complicated
tasks. Agents struggle to adapt to complicated tasks when starting from scratch. Transfer
Learning [11] has been applied in Reinforcement Learning to address this issue in many
approaches: Curriculum Learning [12], Meta-Learning [13], Incremental Learning [14, 15],
and many others. with the idea of leveraging knowledge acquired in given source domains
to help adapt quickly to given target domains. Incremental Learning in particular uses
the paradigm of decomposing the main task into a sequence of sub-tasks starting from the
simplest to the most difficult. Then an agent will learn in order all tasks in the sequence
until it reaches the final task, which is the main task. This approach requires similarities
between tasks in the sequence to ensure successful knowledge transfer, otherwise, the
sequential learning process can suffer from many issues such as mismatches between
tasks [16], negative knowledge transfer [17], catastrophic forgetting [18], etc. that we are
discussing more in Section 2.1. One of the ways to ensure similarities between tasks in the
sequence is to subdivide the MDP of the main task into smaller MPDs [19] in such a way
that the environment MDP will grow incrementally between successive tasks. In addition
to addressing issues mentioned previously, this approach has the advantage of skipping
the storage in memory of copies of prior policies and task parameters during sequential
learning.

Coordination of behaviors to achieve a common goal is one of the challenges of Multi-Agent
Reinforcement Learning (MARL). Unlike humans who have the ability to coordinate
their behaviors to achieve a common goal, RL agents show difficulties adapting to each
other during the training [20]. Nonstationarity, lazy and selfish agents phenomenon,
scalability, and partial observability are examples of situations that make multi-agent
learning a challenging field in RL. We discuss these issues in Section 2.2. Techniques such

1Theory assumes that individuals are born without built-in mental content, and therefore all knowledge
comes from experience or perception.

Stellenbosch University https://scholar.sun.ac.za

1.3. Objective 5

as centralized training and decentralized execution (CTDE) address the nonstationarity
issue but still suffer from scalability. Reward Shaping[21, 22, 23, 24] addresses issues such
as sparsity of the environment, credit assignment, and the lazy agent phenomena in the
multi-agent system.

Despite that, the tabula rasa paradigm works well with humans, in many situations,
humans rely on experts’ assistance for knowledge acquisition and skill improvement.
This situation also applies to AI algorithms, especially in competitive environments. By
repetitively facing an expert, RL agents can progressively adapt to the expert’s behavior
and learn how to tie or defeat the expert. However, the experts’ existence is not always
guaranteed, especially for handcrafted tasks. In many situations, handcrafted environments
lack benchmark experts as baselines to train RL agents. Imitation Learning [25, 26, 27, 28],
especially from human experts, has been applied as an alternative to address the lack of
real-time interaction with an expert. But still, it requires a lot of data collection from
experts’ moves, which can be expensive or nonexistent. This approach also does not
motivate the discovery of new strategies. Self-Play Learning [29], where the agent uses
itself as a training coach, has been introduced as a training paradigm to address the lack
of experts issue. The technique has shown impressive results in strategic games such as
Go, Shogi, and Chess [30]. Furthermore, the technique has been effective in cooperative
multi-agent games such as Dota2 [31]. Self-Play became a promising training method for
competitive tasks.

This work investigates the coordination of behaviors of a team of two Independent PPO
agents to solve a 3D volleyball game [9] by altering the original reward function provided
by the game environment. As the 3D environment is more complex compared to the
original 2D environment [10], we use Incremental Learning along with multi-agent training
to explore the ability of the team to solve the 3D game. The lack of an expert baseline for
this specific task motivated us to use Self-Play Learning along with Incremental Learning
during the training.

1.3. Objective
The main objective of this work is to train a team of two independent policy gradient
agents to solve a cooperative task in a virtual 3D space. Due to the failure of the single
policy gradient agent to solve the 3D environment from scratch in a single agent scenario,
we decided to start simply and incrementally progress toward our goal as follows:

1. Break down the environment MDP into a sequence of smaller MDPs and train a
single PPO agent to solve tasks generated by each MDP in the sequence;

Stellenbosch University https://scholar.sun.ac.za

1.4. Contributions 6

2. Investigate experimentally on the incremental setting that allows efficient learning
and optimizes the training time to solve the full environment;

3. In the case of good results with the single agent, we apply the same paradigm in a
cooperative multi-agent scenario to teach a team of two independent PPOs to solve
the full 3D environment.

1.4. Contributions
This project shows that RL agents can solve a task in a complex environment after solving
the same task in a similar and simpler environment. It shows that the optimal policy of
the final task generalizes over all previously solved sub-tasks. It demonstrates that with
appropriate reward shaping, independent policy gradient algorithms can learn cooperation
without the necessity of tuning hyperparameters [6, 8]. It also shows the ability of policy
gradient algorithms to handle Incremental Learning, Self-Play Learning, and Collaboration
using the same policy network at the same time.

The project comes with an implementation of a 3D open-source environment [9] which
can be used for multiple research purposes for both single and multi-agent scenarios. It
also provides an implementation of a decentralized multi-agent PPO (MAPPO) built on
top of the OpenAI Stablebaselines [32] PPO2 implementation and which can be used for
different scenarios involving decentralized learning.

1.5. Project Outline
In Chapter 2 we discuss topics related to our project. We give an overview of Transfer
Learning and subsequent methods as effective approaches to solving complex RL tasks.
We discuss the notion of Multi-Agent RL and mention the challenges faced in the field,
different propositions to address these challenges, and the limitation of these propositions.
We discuss the notion of Reward Shaping as an effective approach to address issues such
as sparse reward and cooperation in decentralized learning. We mention challenges faced
in the field and discuss different solutions. Finally, we discuss the notion of Self-Play
Learning, an effective approach that addresses the lack of experts issue in situations such
as competitive scenarios.

In Chapter 3 we give an overview of RL. We discuss topics such as policy which is a
probability function that RL agents rely on to perform decisions. We discuss the notion of
value functions that help agents to build an optimal policy based on the reward received
from the environment. We also discuss the different standard methods used in RL such as
Q-leaning which uses an off-policy paradigm to learn an optimal policy. We finally give

Stellenbosch University https://scholar.sun.ac.za

1.5. Project Outline 7

an overview of the mathematical formalization of Multi-Agent RL, and different training
approaches.

In Chapter 4 we discuss the notion of Deep Learning which is a field that investigates the
structure and performance of Deep Neural Networks (DNN). We discuss techniques that
NNs use to optimize parameters to generate the optimal approximation of the real data
distribution.

In Chapter 5 we discuss the application of Deep Learning in RL. We discuss how Deep RL
has been used as a paradigm to empower RL algorithms. We discuss the advantage policy
gradient algorithms have on value-based algorithms. We introduced the Proximal Policy
Optimization (PPO) algorithm that we use in the experimental chapter of this project.

In Chapter 6 we emphasize the notion of Incremental RL and how the paradigm has been
applied in our project. We discuss the ability to solve a large MDP by breaking it down
into a sequence of incremental MDPs. The MDP of the first task in the sequence is set to
be simple enough to motivate the agent to adapt quickly. We introduced the notion of
performance threshold that helps decide when during the training the agent can migrate
to a bigger MDP. We also introduced the incremental step, which controls how big the
next task MDP should be.

In chapter 7 we present the Slimebot Volleyball game, the environment we developed for
the experiments. We start with an overview of the Gym environment, which is one of the
standard paradigms to develop RL environments and helps researchers easily collaborate
and compare results. We give an overview of the Slimevolleygym which is a gym-like
environment to train RL agents to play the Slime Volleyball game in 2D. We then introduce
Slimebot Volleyball which is the transposition of the Slimevolleygym environment to 3D.
We discuss additional features we added in the 3D environment to make it appropriate for
Incremental Learning.

In Chapter 8 we evaluate the experiments we did to solve the Slimebot Volleyball environ-
ment in both single and multi-agent scenarios. We start by investigating the single-agent
scenario to evaluate the possible confluence the performance threshold and the incremental
step have on the incremental training. After that, we investigate the ability to apply
Incremental Learning in a decentralized training of two PPO algorithms to solve the 3D
environment. We then discuss the experimental results.

Finally, in Chapter 9 we summarize the project. We discuss the success and failure of the
experiments and provide directions for further investigation into similar problems with the
3D volleyball game environment.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Related Work

In this chapter, we present an overview of research done in the fields of Incremental Learning,
Reward Shaping, and Self-Play Learning in RL. We discuss generalities about Transfer
Learning and its application in RL. After that, we give an overview of subsequent methods
derived from Transfer Learning such as Curriculum Learning, Incremental Learning, Meta-
Learning, Life-Long Learning, and Multi-Task Learning. We then introduce Reward
Shaping, a technique that addresses many issues in RL such as sparse reward, and credit
assignment in a multi-agent environment. We finally discuss Self-Play learning, a technique
popularized in competitive RL research, where the learning agent uses itself as a training
coach.

2.1. Transfer Learning
Transfer learning [11] is motivated by the human ability to adapt quickly to new tasks by
leveraging experiences acquired on similar tasks. For example, in some cases, a person can
shift to the non-dominant hand to accomplish a given task when the dominant hand is
unavailable, although this may require a little bit of adaptation from the non-dominant
hand to perform similarly to the dominant one. Since the popularization of transfer
learning in the NIPS-95 workshop1, the paradigm has been applied in RL to accelerate
learning and improve the convergence rate [33]. Let πs represent the knowledge acquired
by the RL agent after being trained in a source task Ts, the basic idea of Transfer Learning
is to use πs as an initial knowledge that can help the agent to quickly master a target task
Tt and acquired a new knowledge πt. However, this raises many fundamental questions [11]:
which knowledge to transfer?2 Where is the suitable place to operate with the transfer?3

When should the transfer occur? And how to proceed with knowledge transfer?

From the 1995 workshop, Transfer Learning is investigated and generated different fields
1http : //socrates.acadiau.ca/courses/comp/dsilver/NIPS95LTL/transfer.workshop.1995.html
2In RL this can be policies, value functions, etc.
3The source domain and target domain might share some common properties to make the knowledge

transfer possible

8

Stellenbosch University https://scholar.sun.ac.za

2.1. Transfer Learning 9

that sometimes bring confusion on how they differ from one to another. In this section,
we are aiming to discuss explicitly subsequent fields of Transfer Learning.

2.1.1. Curriculum Learning

We can see Curriculum Learning[12] as an extension of Transfer Learning. It addresses
the problem of generalization over a sequence of many tasks by leveraging knowledge
acquired from previously solved tasks to adapt quickly to unseen tasks. Given a set of
tasks, the agent has to learn all tasks sequentially following a given order and proceed
with knowledge transfer from previously solved tasks to the current one. We can consider
the first task to learn as the source task and the last task to learn as the target task. The
agent has to start with the source task and sequentially go through all intermediate tasks
in the sequence until it reaches the target task.

In addition to Transfer Learning’s fundamental issues, the sequencing of tasks is another
challenge for Curriculum Learning. Most of the time the task sequencing is handcrafted,
this means that the programmer decides how to subdivide tasks and how to align them in
sequence. While sequencing tasks, the programmer should ensure that they share common
structures such as the same state or action space, same objective function, etc. otherwise
the Curriculum Learning could be unsuccessful due to the mismatch between domains,
which we discuss in section 2.1.

2.1.2. Incremental Learning

Incremental Learning[14, 15] is a particular case of Curriculum Learning, where the main
task Tt is subdivided into a set of sub-tasks. The sequence of sub-tasks is set in a way that
the previous task is easier than the current one. During the sequential training, the agent
migrates sequentially to difficult tasks until it reaches the final task. Incremental Learning
is motivated by the failure of the tabula rasa perspective while aiming to solve complex
tasks. The complexity of a task can be noticed when RL agents fail to master the task or
adapt slowly to the task. Incremental Learning addresses these issues by decreasing the
training time and making trainable tasks that could not be solved from scratch. Despite
the successful results of the method, there is still the challenge of how to split the main
task into a sequence of sub-tasks and how to proceed with the increment.

2.1.3. Meta Learning

Unlike Curriculum Learning methods that generalize over multiple tasks in a predefined
sequence, Meta-Learning[13] uses the paradigm of training tasks and testing tasks to
address the issue of generalization over multiple tasks. The set of tasks is split into two
subsets: a training set composed of tasks used to train the agent and a testing set composed

Stellenbosch University https://scholar.sun.ac.za

2.1. Transfer Learning 10

of tasks used to test the performance of the agent. Similar to Curriculum Learning, tasks
in the Meta-RL settings are not disjoints. Different tasks can share the same state space,
or they can have the same objective function with different state spaces. Adaptability
to previously unseen tasks is only possible if these tasks share common structures with
experienced tasks [34]. For example, a model trained to walk in a given environment has
a high potential to adapt to a running task in the same environment. The meta-training
is divided into two steps: meta-training and meta-testing. In the meta-training step, a set
of tasks is given to the agent to train and generate a baseline policy, in the meta-test step,
another set of tasks is given to evaluate the agent’s performance. Both sets are drawn
from the same task distribution and may differ one from another. The process is to train
the baseline policy on the training set to maximize the expected rewards on the testing
set [34].

2.1.4. Life-Long Learning

Learning has always been a continual process for human beings during their life [35]. In
addition to their ability to leverage previous skills to acquire new ones, human beings
have the remarkable potential to carry learned skills during their all lives as a continual
process. However, this perspective is challenging in RL, especially for Deep RL algorithms.
In most cases, by leveraging a previously acquired skill to get a new one, Deep RL agents
usually suffer from catastrophic forgetting of prior knowledge while trying to adapt to a
new task[18]. Life-long learning has been applied in RL to make the sequential learning a
lifetime process for Deep RL agents [36, 37, 38], which means the agent will be carrying in
memory prior knowledge of previously solved tasks during the continual learning process.
Despite the approach working well, it can become memory intensive when the number of
tasks grows big. We discuss more in Chapter 6.

2.1.5. Multi-Tasks Reinforcement Learning (MTRL)

Humans can combine different skills to solve a complex task and keep the solution as
a new skill that can be used to solve a future complex problem. This motivates the
idea behind Multi-task RL [39] which aims to solve multiple tasks at the same. The
transfer of knowledge during the training is done by leveraging similarities across tasks
to learn efficiently every single task. This requires tasks to have strong similarities in
their structures. The RL algorithm A3C (asynchronous advantage actor-critic) [40] is
an example of multi-task learning. During the training, different actors are deployed in
parallel on different tasks4 and report their gradient updates to a global network. The
global network combines all learned parameters to generate a better set of parameters
that all actors might refer to before continuing the training.

4This could be the same task duplicated in different environments

Stellenbosch University https://scholar.sun.ac.za

2.1. Transfer Learning 11

Learning across different tasks raises some challenges such as partial observability; scal-
ability: a single task by itself requires long training interaction within the environment.
Now with many tasks, the need for interaction grows and the learning can be very slow or
impossible because the agent will struggle to transfer knowledge correctly across tasks.
In the next section, we give an overview of some challenges faced in the field of Transfer
Learning.

2.1.6. Challenges

Transferring knowledge across tasks is a field with many challenges, especially for RL agents
using parameterized functions such as Neural Networks. Many algorithms such as DIS-
TRAL (DIStill & TRAnsfer Learning) [41], IMPALA(Importance Weighted Actor-Learner
Architecture) [42], PopArt [43], etc. have been proposed to address issues of Transfer
Learning methods varying from scalability, distraction dilemma, partial observability,
negative knowledge transfer, and catastrophic forgetting [44]. In this section, we discuss
some of the challenges of Transfer Learning we mentioned earlier in this chapter.

1. Mismatch between domains

A mismatch of domains between the source task and the target task generates unsuccessful
Transfer Learning [16]. This is when the structures of environments are different enough to
not allow the proper knowledge transfer. We can see a mismatch between domains in many
different ways. Let’s consider a model trained using state observation in a multi-agent
environment. Knowledge transfer becomes problematic if more agents are added to the
environment. The agent observation should include signals (position, velocity, etc.) of the
additional agents, this means the state observation becomes wider and cannot fit the input
shape of the model received from the source task. For a model using pixels, the mismatch
can be seen when the size of the input images from the source task is different from the
size of the input images of the target task. Techniques like rescaling images can be an
approach to address the problem. However, this can affect the training performance.

2. Negative Transfer

Incorrect state representation and the mismatch between domains can generate Negative
Knowledge Transfer. Despite having that same input structure, if the environment
structures or the objective functions are not similar, this can negatively affect the transfer
learning process. An example could be the Atari 2600 games suits [45], teaching an agent
to master the game suits in a Transfer Learning fashion can be problematic as each game
differs in its structures, objectives, and visual representations. Transfer learning requires
that both sources and target tasks be as similar as possible. An example can be the
Meta-World[34] which is a set of 50 distinct robotic manipulation tasks sharing the same

Stellenbosch University https://scholar.sun.ac.za

2.2. Multi-Agent Reinforcement Learning (MARL) 12

state space and action space. Without appropriate similarities, the knowledge acquired in
the source task can be useless in the target task. Hence, the training in the target task
will have no difference as if the agent was trained from scratch in the target task.

3. Catastrophic Forgetting

Training agents with the ability to maintain previous skills while acquiring new ones is
among the dream achievements in RL. However, differences between source and target
domains and Negative Transfer bring another major challenge in the field of Transfer
Learning. To master a given environment, Deep RL agents optimize their policy parameters
to learn the training environment features in detail 5. The gradient update will generate
a model that optimizes the specific objective function. When asked to solve a new task,
the gradient update will aim to optimize the new objective function which might lead to
a considerable change in the model parameters. Hence, the new parameters may not be
able to perform as well as before if the agent gets evaluated on the previously solved tasks.
This issue is referred to as Catastrophic Forgetting [18].

A solution to this problem can be to slow down the learning of important model weights
during the gradient update [18]. This can be done by using a small learning rate or
reducing the reward signal in the new task. This could lead to a slow adaptation which,
in contrast, is an issue that Transfer Learning tries to solve. Another approach to address
this problem is to incorporate the idea of Life-Long learning[36, 37, 38], which aims to
carry all the prior knowledge during the curriculum learning. At each transfer, a copy of
the model representing the acquired skill is saved before starting the training in the target
task. However, this approach shows weakness when the number of tasks increases and the
memory allocation becomes problematic. In situations of successful Life-Long Learning,
the agent should be provided with the ability to recognize the structure of a test task
during an evaluation and the ability to associate with the appropriate model stored in
memory to solve the test task. This also brings the challenge of task parameterization
which can be problematic, especially in real-world environments.

2.2. Multi-Agent Reinforcement Learning (MARL)
MARL is a sub-field of RL that studies the interactions between many agents within the
same environment. In recent years RL has shown considerable success in many scenarios
such as games, robot manipulation, real-world, etc. However, most of these investigated
single-agent systems. Many real-life situations require cooperation with other agents to
successfully achieve a common goal or competition where individuals aim to maximize

5This depends also on their perception of the state space.

Stellenbosch University https://scholar.sun.ac.za

2.2. Multi-Agent Reinforcement Learning (MARL) 13

their gains at the expense of others. Hence, the interest in investigating the ability of
multiple agents to learn to interact in the same environment [46].

2.2.1. Centralized Training Decentralized Execution

MARL was introduced with Independent Q-learning (IQL) [47] where each agent in the
system optimizes a policy function using the Q-Learning algorithm[48] in a single agent
fashion regardless of other agent improvements. Hence, the convergence to the optimal
behaviors is not guaranteed as with Q-learning. The optimal behavior of an agent depends
not only on the environment but also on the policies of other agents present in the system
[49]. MADQN [50] is the transposition of IQL in deep learning where each agent optimizes
its behavior using the DQN algorithm [51]. Due to the weakness of decentralized training,
Value Decomposition Networks(VDN) [52] addresses the issue by introducing the notion of
centralized training and decentralized execution (CTDE), where agents in the system learn
a joint action-value function with centralized Q-learning while assuring a decentralized
policy learning for each agent. QMix [53] follows the same logic of learning decentralized
policies in a centralized fashion by adding a constraint between the joint action-value
function and individual action-value functions. Despite the significant results in multi-agent
tasks such as StartCraft II[53], IQL, VDN, and QMix are value-based algorithms, which
means they are not suitable for environments with continuous state spaces. To address the
issue, the notion of CTDE has been extended to policy gradient algorithms. MADDPG
[54], and subsequent algorithms, are probably the most successful multi-agent policy-based
algorithms published in the literature. MADDPG extends the notion of DDPG [55] in
the multi-agent system, with DDPG a particular policy gradient algorithm that directly
computes a deterministic policy. MADDPG uses the paradigm of Actor-Critic where
different actors share the same critic network which takes into consideration all actors’
moves and computes the best individual criticism for respective actors. Independent PPO,
also called MAPPO performs similarly to IQL, where both learning and execution are
decentralized among agents, this makes it less efficient compared to MADDPG. To bring
the high performance of PPO [56] to the multi-agent setting, some tips such as reward
shaping, and NN hyperparameter tuning can be applied to make the cooperative training
successful [6].

Libraries such as Mava [57], PyMARL [58], RLlib [59] and others provide benchmark
implementations of most of the algorithms mentioned above and many others.

2.2.2. Challenges of MARL

Despite the impressive success, single-agent RL has still many open challenges that need
to be addressed. MARL does not escape RL issues and brings additional ones. We provide

Stellenbosch University https://scholar.sun.ac.za

2.2. Multi-Agent Reinforcement Learning (MARL) 14

an overview of some issues investigated in the field of MARL.

1. Nonstationarity

Constant changes in the MDP structure bring instability during training. In dynamic
environments we can see scenarios where the state space constantly changes its structure;
the action space may get additional actions or be amputated of some actions; the objective
function can be altered, changing the reward signal. All those reasons can bring confusion
to a learning agent. In the multi-agent setting, each training agent keeps changing behavior
and makes the environment looks no stationary to other agents’ perspectives [60].

2. Scalability

Deep RL agents refer to a memory allocation called a buffer where they store previous
experience and proceed with the experience replay technique to improve the policy param-
eters. When the number of agents in the environment increases, the state space grows
exponentially [61] such that storing experiences becomes memory intensive. An alternative
can be sharing the same observation space such that only one buffer can be used to store
states. However, this is unrealistic in real-world situations. There is also the problem of
joint-action space which requires high computational resources and memory allocation as
well [62].

3. Partial Observability

Full observability of the state space is unrealistic for many problems. Agents can only rely
on their partial perception of the environment and local information received from other
agents [63]. This requires a mechanism of information sharing to allow each agent to be
aware of each other’s information such as intention, location, action history, etc., and the
ability of each agent to process that information for efficient policy improvement. This is
one of the reasons that centralized learning of decentralized policies was introduced such
that in addition to the observation each agent can receive extra information related to the
environment from a supervisor network [62].

4. Lazy and Selfish Agents

Cooperative MARL consists of training a team of agents to optimize a common objective
function. The aim is to incentivize all agents in the team to contribute to achieving the
given goal. Depending on the scenario and the interaction settings, it can happen that,
during the training, one of the agents quickly finds a way to generate good reward signals
for the whole team. This has the consequence of demotivating other agents’ contributions
to the given objective. As the reward signal will be positive for everyone, their gradient
update will lead other agents to non-optimal policies. Reward Shaping which we discuss

Stellenbosch University https://scholar.sun.ac.za

2.3. Reward Shaping 15

in the next section is one of the effective ways to address this situation by incentivizing
equitable contribution of all agents in the common objective [64].

2.3. Reward Shaping
Reward Shaping [21, 22, 23, 24] is a method that encourages domain knowledge during the
training by generating extra reward signals in addition to the original reward signal provided
by the environment. The method is effective in addressing issues such as sparse-reward
[65], and task sharing in cooperative multi-agent systems [66].

In the simplest form, we can see reward shaping as a signal r′ = r + F where r is the
original signal and F is the shaped signal. In the situation where r is sparse6, F will
ensure that the agent receives feedback very often on the quality of its actions selection to
motivate early domain knowledge. However, using F to decrease the sparsity can have
consequences such as deviating the agent from the original objective, which can lead the
agent to train and optimize an unexpected policy[67].

2.3.1. Reward Shaping in Single Agent Systems

A sparse reward task refers to an episodic task7 where the agent receives the reward at the
end of the task or rarely during the episode. Thus, the agent might struggle to differentiate
between good and bad actions selected during an episode. In a dense reward task, where
the agent receives a reward signal in the majority of timesteps, the agent quickly acquires
domain knowledge to differentiate good and bad actions selected during the episode [65].
Designing a dense reward function correctly requires a good understanding of the RL
problem and flexibility from the programmer. In addition, in some scenarios such as the
board game tic-tac-toe, a dense reward function would not make sense at all. The success
of training relies on the designed reward function. Algorithms using gradient descent
optimization can get stuck in a sub-optimal solution and deviate totally from the expected
behavior. Rewards shaping and subsequent methods [68, 69, 70, 71] address the sparse
reward issue by modifying the original reward signal such that the agent will receive reward
feedback more frequently.

2.3.2. Reward Shaping in Multi-Agent Systems

In a single-agent setting, reward shaping is applied as an alternative method to deal with
sparse rewards. However, the paradigm has an additional utility in the multi-agent setting.
In a multi-agent system where agents share the same objective function, reward shaping

6This means that the environment doesn’t provide a non-0 reward signal in most timesteps.
7A task in which environment MDP has at least one conditioned terminal state.

Stellenbosch University https://scholar.sun.ac.za

2.4. Self-Play Learning 16

is used to assign behavior credit to each agent in the system. When a team of agents
receives a negative reward signal, agents will consider their respective last decision as a
bad one regardless of the contribution of other agents’ decisions. With a shaped reward
signal, only the faulty agent receives the negative reward signal.

In a situation of a joint-reward function, redesigning the reward function can be useful to
avoid the selfish and lazy agents phenomenon [64]. During training, the original reward
function assigns the same credit to all agents regardless of their respective contributions.
After many iterations with positive rewards, the agent generating the positive reward will
be acting selfishly and the other agents will not progress as the reward function keeps
informing them that they are doing well. This discourages cooperation and generates bad
cooperative training.

Reward shaping has shown successful results in multi-agent systems such as the OpenAI
Five[31] where each agent receives its particular reward as a linear combination of separate
signals coming from the environment.

2.4. Self-Play Learning
From the iconic story of Deep Blue [72] the first computer program that defeated the
world chess champion in 1996, machines have shown high potential to learn and defeat an
expert opponent in competitive scenarios [30, 31, 73]. Competitive scenarios are particular
cases of multi-agent learning where agents interact with one another with opposite goals.
Competitive scenarios are one of the most successful research applications of RL. However,
in adversarial games, an RL agent refers to an expert8 as a training coach and will aim to
generate the policy that reaches or surpasses the expert’s level. From repetitive interactions
with an expert in a given environment, RL agents can progressively generate the optimal
behavior that reaches the expert’s level or, in some cases they can surpass the expert’s
level. This requires the existence of an expert in the domain, a situation not always
guaranteed in many scenarios, especially with handcrafted tasks for research purposes.
An alternative to the real-time interaction is Supervised Learning, where the agent is fed
with trajectory examples from one or more experts and will aim to generate the same
behavior by proceeding with Imitation Learning [25, 26, 27, 28]. However, this requires
data collection from the experts, if they exist, which can be tedious.

2.4.1. Self-Play Methods

Self-Play Learning [29] has been introduced as a novel approach to address the lack of an
expert as a trainer in competitive and non-competitive scenarios. In competitive scenarios,

8This can be a human or another computer program

Stellenbosch University https://scholar.sun.ac.za

2.4. Self-Play Learning 17

the agent learns from scratch how to defeat a clone of itself. The clone can be the real-time
version of the learning agent or the best agent’s copy stored in memory. Every time the
agent defeats its last best copy, it generates a new best copy that will be the new opponent.
By storing the last best copy, the agent will see its opponent getting stronger through the
training. This requires the agent to adapt continually to a stronger opponent. Hence, we
can see Self-Play Learning as a particular case of Incremental Learning. The paradigm
can be applied in different fashions:

1. Asymmetric Self-Play

Asymmetric Self-Play Learning is a case of a non-competitive Self-Play Learning scenario.
It is a situation where two sides are not pursuing the same goal. An example could be
the non-adversarial scenario where two agents, named Alice and Bob, are interacting in
the following way: Alice generates a trajectory by performing a task and then challenges
Bob to do or to undo the same task[74]. Another example can be the famous Hide and
Seek[75] where the hiders learn how to hide and seekers how to find the hiders.

2. Symmetric Self-Play

Symmetric adversarial games are situations where all sides have the same objective. An
example could be Capture the Flag[76] where each team aims to capture the flag of the
opposite team while protecting their own flag. In this work, we are applying the paradigm
in a Symmetric scenario.

2.4.2. Turn-Based Games

Turn-based games are scenarios where at least two sides play in turn following a given
order. Only one side is allowed to make a move in a given timestep, meanwhile, the other
side stays still. The situation is reversed in the next timestep or depending on the game
rules. Board games such as tic-tac-toe, Chess, Go, etc. are examples of turn-based games.

RL algorithms have shown many successes in Turn-based board games, surpassing expert
human level. One of the greatest breakthroughs was in 2015 when the DeepMind RL
program AlphaGo[77] defeated the Go world champion. The algorithm mixed Imitation
Learning from human experts’ examples and Self-Play Learning. Furthermore, a more
interesting breakthrough showed up when AlphaGo was in its turn dethroned in 2017 by
its successor AlphaZero[30] who learned from scratch, only with Self-Play Learning, how
to play games such as Chess, Go and Shogi.

Stellenbosch University https://scholar.sun.ac.za

2.5. Summary 18

2.4.3. Simultaneous Games

In turn-based games, one side has often more privilege than the other, in tic-tac-toe, for
example, the first player has an advantage over the second player. In case both players
are experts, the first player tries always to win the game, while the second play will only
target a tie. Simultaneous games bring more fairness to the competition. All sides are
allowed to act independently and simultaneously as long as they follow the competition
rules.

OpenAi Five[31] is probably the biggest breakthrough of Self-Play Learning in simultaneous
zero-sum games. The multi-agent AI system has been able to defeat a team of human
experts in the challenging game [31]. OpenAI stated that OpenAI Five learned to play
Dota2 through Self-Play Learning for an equivalent of 10000 years of gameplay.

2.5. Summary
In this chapter, we have seen an overview of research done in different fields applied to
the present project. We started by discussing the notion of Transfer Learning, which is a
learning paradigm that focuses on leveraging knowledge among different tasks. We kept
our attention on Incremental Learning which is a subsequent method of Transfer Learning
that consists of breaking down a given task into a sequence of sub-tasks and where a
learning agent will learn incrementally all tasks in the sequence from the easiest to the
most difficult, and by leveraging knowledge across successful tasks. We mentioned that
learning tasks in sequence bring different issues such as Negative Transfer and Catastrophic
Forgetting. Methods such as Life-Long Incremental RL allow addressing these issues but
have a disadvantage in terms of memory allocation, task parametrization, etc. In Chapter
6 we will see that including the full MDP of the previously solved task in the next task
can be an effective approach to address the memory allocation issue of Life-Long Learning
and the Catastrophic Forgetting or prior knowledge while adapting to new tasks. We will
also see that optimal behavior in a source task is not a requirement before migrating to a
more difficult task as long as the gap of difficulties is reasonable.

We also discussed the notion of MARL, its successes, and challenges. We saw that the notion
of CTDE often brings better outcomes compared to Independent Learning in cooperative
scenarios. But we mentioned also that most of the benchmark results are centered on
value-based algorithms, which are not suitable for continuous environments. We mentioned
that some empirical results demonstrated that techniques such as hyperparameter tuning,
can bring good results in cooperative MARL using independent policy gradient algorithms.
In our empirical experiment we demonstrate that with only proper reward shaping,
independent policy gradient algorithms can perform well in cooperative scenarios using

Stellenbosch University https://scholar.sun.ac.za

2.5. Summary 19

the same hyperparameter initialization as with single-agent scenarios.

We finally discussed the notion of Self-Play learning, which is a technique of training
an algorithm against copies of itself. The technique shows its advantage when the
experimental environment lacks an expert benchmark to compare other algorithms. We
applied the technique in our experimental environment to study the ability of policy
gradient algorithms to solve an incremental competitive task in the single agent setting
and to maintain coordination of behaviors in an incremental cooperative-competitive task.

The task we use is based on a famous 2D volleyball game played by 2 slimes [10], the game
has been successfully solved by a PPO algorithm. We extended the game in 3D [9] and
explored the ability of the PPO algorithm to solve the game in both single and multi-agent
scenarios with Incremental Learning. Further details will be discussed in Chapter 8.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Reinforcement Learning

Reinforcement Learning (RL) is a set of methods that aim to train agents deployed in a
given environment to solve specific tasks by progressively improving their behaviors using
a function called a policy. The policy improvement occurs through repetitive sequences of
trial and error. After selecting an action, the environment generates feedback indicating
to the agent how good or bad was the selected action. Based on the feedback received,
the agent will aim to adjust its policy function to avoid negative feedback and maximize
positive ones in the future.

RL is a wide topic covering many theories that address different types of problems. In this
chapter, we are reviewing general concepts to introduce readers to the framework. For
more details in fundamental RL, we recommend the main book from Sutton and Barto
[78].

3.1. Markov Decision Processes
An RL problem can be mathematically formalized with the notion of the Markov Decision
Process (MDP) [78]. An MDP is a sequence of states in an environment dynamic that
assumes the Markov property given in equation 3.1. In other words, the future state
depends only on the current state. In RL we can describe an MDP as a four-tuple [79]:
〈S, A, P , R〉 where:

• S represents the set of all possible states of the environment;

• A is the action space or the set of all possible actions;

• P the state transition probability to migrate from a given state to another;

• R the reward feedback received from the environment after taking a particular action
in a given state.

20

Stellenbosch University https://scholar.sun.ac.za

3.2. Policy 21

P [St+1|St, St−1, · · · , S0] = P [St+1|St] (3.1)

At time t the agent is in the state St and will select an action At with a probability pt,
from which it will receive a reward Rt and will migrate to another state St+1 at time t+ 1.
As shown in Figure 3.1, the trajectory of the agent can be described as a sequence of:

S0, A0, R1, S1, A1, R2, S2, A2, R3, · · · (3.2)

Figure 3.1: agent-environment interaction loop in RL [78]

Hence, if we consider T as the time horizon, we can describe an RL problem as a family
{(St, At, Pt, Rt)}t∈T where the transition between states is controlled by a probability
distribution of random variables Rt+1 and St+1 constrained by the actual state St and the
selected action At. Sutton and Barto [78] defines the transition probability as:

p(s′, r|s, a) = P [St+1 = s′, Rt+1 = r|St = s, At = a] (3.3)

In other words, we are measuring the probability that the agent transits to the state s′ and
receives the reward r knowing that the agent selected the action a while being in state s.

3.2. Policy
Equation 3.3 tells us that the next state depends on the current state and the selected
action. This means at the current state the agent has to decide which action to select
among all possible actions. To know the best action to select in different states, the agent
relies on its decision-making function called a Policy, which is a map from the set of states
to the set of probabilities of selecting an action. Let πt denote the policy at time t, πt is
represented as the conditional probability :

πt(a|s) = P [At = a|St = s] (3.4)

Stellenbosch University https://scholar.sun.ac.za

3.3. Return 22

π is denoted as a stochastic policy because it assigns a probability distribution over the
action space. In other words, each action of the action space has a chance to be randomly
selected according to a probability distribution using equation 3.4. A deterministic policy
µ on the other hand computes directly the action a given the current state s, as shown
in equation 3.5. This is can be done by assigning different numerical values to actions
according to the current state, the n-armed bandits’ problem can be an example [78]. It is
logical to think that the agent will aim to select the action with the highest value at the
current state.

A greedy policy is a policy that selects the action with the highest value.

µ(s) = a (3.5)

To build the policy function, the agent refers to cumulative numerical values, called
rewards, received from the environment as feedback of previously selected actions. Those
cumulative rewards are referred to in the literature as returns and are the key ingredient
for policy improvement in RL.

3.3. Return
The main objective of an RL agent is to generate a policy that maximizes the expected
return. The return Gt at time t is defined as the summation of all future rewards from
time t:

Gt =
T∑
k=1

Rt+k (3.6)

With T the final step of the MDP history. The notion of Return is suitable for episodic
tasks1. However, it is not appropriate for problems with continuous tasks2. Because, if
the number of timesteps increases (T → ∞), as a summation function, the return will
increase as well (Gt →∞) and will not be appropriate for the policy improvement, also
the summation over a long list of future reward can be computationally expensive. To
address the problem, the discounted return [78] is used in place of the original one. Hence,
the equation 3.6 can be written as:

Gt =
∞∑
k=0

γkRt+k+1 (3.7)

where 0 ≤ γ ≤ 1 is the discount factor that helps to value the future rewards compared to
the present ones.

1Tasks with at least one conditioned terminal state ST
2Tasks without terminal state or very long episodic tasks

Stellenbosch University https://scholar.sun.ac.za

3.4. Value Function 23

NOTE: By return Gt we will be referring to equation 3.7 in the rest of the report.

Gt can be expressed recursively by using incremental computing of successive returns as
follows:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · (3.8)
= Rt+1 + γ (Rt+2 + γRt+3 + · · ·) (3.9)
= Rt+1 + γGt+1 (3.10)

with GT = 0 in a situation of an episodic task.

We can see the return Gt as a measure of the preference to be at state st at time t or,
in situations where the chosen action is considered, the importance measure of selecting
action at in state st.

3.4. Value Function
We mentioned earlier that deterministic policies rely on values attributed to states or
state-action pairs to perform action selections. As said in the previous section, the value
of a state s under a policy π is denoted as vπ(s), and is the expected return of following π
from state s [78]:

vπ(s) = Eπ[Gt|St = s] (3.11)

Algorithms that compute the value of different states of an environment MDP are denoted
as state-value algorithms. For some cases, the action selected in a given state is considered
and a value is attributed to the state-action pair. Those algorithms are referred to as
action-value algorithms. We denotes by qπ(s, a) the expected value of the state-action pair
(s, a) and it is given as follows :

qπ(s, a) = Eπ[Gt|St = s, At = a] (3.12)

Sutton and Barto [78] proposed a recursive representation of the state-value function as:

Stellenbosch University https://scholar.sun.ac.za

3.5. Action Value Estimation 24

vπ(s) = Eπ[Gt|St = s] (3.13)
= Eπ[Rt+1 + γGt|St = s] (3.14)
=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)[r + γEπ[Gt+1|St+1 = s′]] (3.15)

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + vπ(s′)], ∀s ∈ S (3.16)

Similarly, with the action-value function, we have:

qπ(s, a) = Eπ[Gt|St = s, At = a] (3.17)
= Eπ[Rt+1 + γGt|St = s, At = a] (3.18)
=
∑
s′,r

p(s′, r|s, a)[r + γEπ[Gt+1|St+1 = s′]] (3.19)

=
∑
s′,r

p(s′, r|s, a)
[
r + γ

∑
a′

Eπ[Gt+1|St+1 = s′, At+1 = a′]
]

(3.20)

=
∑
s′,r

p(s′, r|s, a)
[
r + γ

∑
a′
π(a′|s′)qπ(s′, a′)

]
, ∀s ∈ S (3.21)

Equations 3.16 and 3.21 are the foundation of multiple value-based methods in RL. They
are known, respectively, as the Bellman equations for the state-value function vπ and for
the action-value function qπ under the policy π.

As the real value function is unknown to the agent, the agent relies on an estimate Vπ
of the sate-value function vπ, or an estimate Qπ the action-value function of qπ. In the
following section, we are giving one of the multiple ways an estimate of the real value
function can be computed.

3.5. Action Value Estimation
Let q be the real value of action a while in state s. Most of the time q is unknown to the
agent. Hence, the agent can rely on an estimate Qk of q at time t, with k < t the number
of times the action a has been selected up to time t.

Given r1, · · · , rl−1, successive rewards received by selecting action a up to time t. Qk can
be computed by using the sample-average method [78] :

Qk = r1 + · · ·+ rl−1

k − 1 (3.22)

As mentioned in section 3.3, this can be memory expensive when k →∞ as it requires

Stellenbosch University https://scholar.sun.ac.za

3.6. Optimality 25

the storage of all past rewards, and it can be computationally expensive as a summation
should be performed over the list of past rewards.

Using incremental computation equation 3.22 can be written as [78]:

Qk+1 = Qk + 1
k

[Rk −Qk] (3.23)

Equation 3.23 can be explained as:

NewEstimate← OldEstimate + StepSize[Target−OldEstimate] (3.24)

In practice, the StepSize in 3.24 is a default constant value α with 0 < α < 1 . There are
many other ways an action value can be estimated.

3.6. Optimality
Let’s consider Π = {π|π is a policy } the set of all policies for a given MDP. Let ≤ be a
partial order defined in Π as follows:

π ≤ π′ ⇐⇒ vπ(s) ≤ vπ′(s),∀s ∈ S, π, π′ ∈ Π (3.25)

In the assumption that Π is finite, ∃ π∗ ∈ Π, ∀π ∈ Π s.t. π ≤ π∗. Hence, π∗ is the
optimal policy that maximizes the return. During the training, the agent will proceed
with sequences of policy improvements until it reaches π∗. This introduces the notion of
optimal state-value function and optimal action-value function for deterministic policies
as:

v∗(s) = max
π

vπ(s) (3.26)

q∗(s, a) = max
π

qπ(s, a) (3.27)

Sutton and Barto [78] showed that q∗ can be expressed with the optimal state-value
function v∗ as follow:

q∗(s, a) = E [Rt+1 + γv∗(St+1)|St = s, At = a] (3.28)

The Bellman optimal equation 3.16 expresses the optimal value v∗ of a given state s under

Stellenbosch University https://scholar.sun.ac.za

3.7. Methods 26

the optimal policy π∗ as the expected return of the best action in s:

v∗(s) = max
a∈A(s)

qπ∗(s, a) (3.29)

= max
a

Eπ∗ [Gt|St = s, At = a] (3.30)

= max
a

Eπ∗ [Rt+1 + γGt+1|St = s, At = a] (3.31)

= max
a

Eπ∗ [Rt+1 + γb∗(St+1)|St = s, At = a] (3.32)

= max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s′)] (3.33)

Equations 3.32 and 3.33 are the principal forms of the Bellman optimal equations for the
optimal state-value v∗. The Bellman optimal action-value forms are given as follows:

q∗(s, a) = E[Rt+1 + γmax
a′

q∗(St+1, a
′)|St = s, At = a] (3.34)

=
∑
s′,r

p(s′, r|s, a)[r + γq∗(s′, a′)] (3.35)

In practice, the agent doesn’t usually reach the optimal policy or optimal value function.
Hence, the objective is to approximate them the closer as possible. As the estimated
values of actions change and get more accurate through the training, the policy function
will also keep improving.

We mentioned earlier that, ignoring the true value of an action, the agent relies on
estimation based on previous experience. However, the estimation can be wrong. To
ensure training efficiency, the Exploration3 and Exploitation4 trade-off [80] has been
introduced as a paradigm where the agent selects the action with the highest estimated
value according to a given probability, otherwise, it will select randomly a non-optimal
action. The paradigm is also referred to as the ε-greedy action selection strategy, where
the agent decides to take a greedy action with probability 1− ε and a non-greedy action
with probability ε. This approach has the benefit of discovering rewards associated with
different actions.

3.7. Methods
RL is a universe full of different methods, and preference among RL methods depends on the
problem to solve. In general, algorithms are separated into classes such as meta-heuristics,
policy gradient, value-based, and model-based methods [81].

3When the agent is always choosing the greedy action.
4When the agent decides to select a non-greedy action.

Stellenbosch University https://scholar.sun.ac.za

3.7. Methods 27

3.7.1. Value-Based Algorithms

An RL agent using a value-based algorithm learns a state-value/action-value function that
refers to select actions. We can extract 3 categories of value-based algorithms:

• Dynamic programming: also referred to as model-based methods, they required a
complete knowledge of the environment MDP;

• Monte Carlo: Referred to as model-free methods, they do not require full or partial
knowledge of the environment dynamic, they use samples of previous experiences to
generate an optimal policy;

• Temporal-Difference methods: Methods that make a bridge between the two previous
methods, by taking the model-free property of Monte Carlo methods and the
incremental property of Dynamic programming.

Depending on the nature of the problem to solve, each of these methods has weaknesses
and strengths compared to the others [78].

3.7.2. Dynamic Programming

Dynamic programming (DP) is a set of methods that compute optimal policies given
perfect knowledge of the environment structure [78]. To build the optimal policy, DP
proceeds with iterative sequences of policy evaluation and policy improvement following
the Bellman equations 3.16 and 3.21.

1. Policy Evaluation

Policy evaluation is the process that consists of computing the estimate of the state-value
vπ knowing π [82]:

vk+1(s) = E [Rt+1 + γvk(St+1)|St = s] (3.36)
=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvk(s′)] (3.37)

Stellenbosch University https://scholar.sun.ac.za

3.7. Methods 28

2. Policy Improvement

Based on the estimated value functions, policy improvement consists of generating a policy
π′ better than π (π ≤ π′) by acting greedily:

qπ(s, a) = Eπ [Rt+1 + γvπ(St+1)|St = s, At = a] (3.38)
=
∑
s′,r

p(s′, r|s, a) [r + γvπ(s′)] (3.39)

3. Policy Iteration

π has been improved using vπ and generated π′, π′ helps to compute vπ′ which will generate
π′′. Hence, we have an iterative sequence of policy evaluation and improvement:

π0
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ π2
E−→ · · · I−→ π∗

E−→ v∗

with E−→ and I−→ representing respectively policy evaluation and policy improvement.
And for i < j, πj is guaranteed to be a strict improvement of πi.

3.7.3. Monte-Carlo

The Monte Carlo (MC) method is based on the idea of learning from previous experiences.
MC methods don’t require knowledge of the environment structure. The learning process
relies on the collection of historical experiences, which are used to compute the mean
return as an approximation of the expected return. This implies that MC methods are
suitable for episodic tasks (tasks with terminal state sT) to compute the empirical return.

3.7.4. Temporal-Difference

There are two categories of value-based methods: On-policy methods that consider the
existence of an optimal policy and will aim to approximate it by doing iterative sequences
of policy evaluation and improvement, TD method SARSA[78] is an example. There are
also Off-policy methods where the update of the current value function doesn’t rely on a
particular policy, the TD algorithm Q-learning[48] is an example.

1. Formalism of TD Learning

As with Monte Carlo methods, prediction of the value function in TD Learning relies on
the experience of following a particular policy π. The major difference is that MC methods
need a full episode history to compute the return Gt at time t ∈ {1, · · · , T}, then use it as

Stellenbosch University https://scholar.sun.ac.za

3.7. Methods 29

a target to update the actual value function V (St) as follows:

V (St)← V (St) + α[Gt − V (St)] (3.40)

with α ∈ [0, 1] the step size parameter, with the role of controlling how big the update
should affect the current value [78].

TD methods on the other hand don’t need a collection of a full episode history, the update
is applied directly after moving to the next step. The simplest update is known as the
TD(0) algorithm and is expressed as:

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)] (3.41)

This means that the new estimate old estimate of V (St+1) is used to update the estimate
of V (St). The quantity δt = Rt+1 + γV (St+1) − V (St) measures the difference between
the V (St) and the best estimate of Rt+1 + γV (St+1), it represents the difference between
successive predictions and is called the TD error. This is the reason for the expression
Temporal difference learning, it represents the error between successive predictions.

3.7.5. Q-learning: Off-Policy TD Control

Q-learning is an off-policy model-free algorithm introduced by [48] in 1989. It is one
of the most imported breakthroughs in RL. The algorithm computes the Q function
Q : S × A → R, which estimates the action-value of a given state-action pair [79] and
stores them in a table called a Q-table. The simplest form of the algorithm is given as a
one-step TD update:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (3.42)

Where St and At are respectively the current state and action, St+1 the next state after
selecting At, α the learning rate, γ the discount factor, and max

a
Q(St+1, a) − Q(St, At)

is the TD error, or the difference between the maximum Q value that can result from
St+1 and the Q value of the current state-action pair (St, At). [83] demonstrated that
Q-learning guarantees convergence to the optimal action-value function Q∗.

The Q value of all state-action pairs is updated following equation 3.42 except for the
terminal state ST in which the Q value is considered as the state-value V and set to be
the last reward of being at ST : Q(ST , a) = RT . The Q-learning process can be represented
by the following algorithm 3.1:

Stellenbosch University https://scholar.sun.ac.za

3.7. Methods 30

Algorithm 3.1: Q-learning
1: Initialize Q(s, a), ∀s ∈ S,∀a ∈ A arbitrarily and Q(sT , a) = 0
2: Repeat(for each episode):
3: Initiaize S
4: Repeat(for each step of episode)
5: Choose A from S using policy derived from Q (e.g.: ε−greedy)
6: Take action A, observe R, S ′
7: Q(S,A)← Q(S,A) + α[R + γmax

a
Q(S ′, a)−Q(S,A)]

8: S ← S ′

9: until S is terminal

1. Advantages

• Model-free: The optimal strategy is constructed just based on delayed rewards
without complete or even partial knowledge of the environment dynamic.

• Off-policy: The convergence to the optimal policy is independent of the current
policy. The agent can learn from experience generated by different policies than the
current one.

2. Desavantages

• Slow convergence: To converge the algorithm needs to explore the state space
sufficiently. In the situation of large state space, the convergence can be very slow
due to the number of state-action pairs [84]. Thus, it takes a long to reach the
optimal value function.

• Memory inefficient: The algorithm stores values of state-action pairs in memory.
In situations of large state environments such as the game chess in which the number
of states is estimated above 10120 [85], memory allocation becomes problematic.
The reason why the standard Q-learning algorithm is suitable for environments with
small state space and action space such as the board game Tic-tac-toe. To address
the problem of large state space environments, some variants of Q-learning, such as
Deep Q-Network (DQN) [51] which uses Deep Neural Networks, and does not store
the Q-values but approximate the Q function using function approximators.

• Stationarity: The algorithm assumes that the environment structure is stationary,
this means the transition probability between states is fixed. Changes, due to factors
such as the influence of other agents, in the structure of the environment during the
training can affect the learning and the Q-value. That is the reason why Q-learning
works better using the exploitation and exploration trade-off. Also, the problem of
non-stationary can be addressed by making adjustments to the Q-learning algorithm
[86].

Stellenbosch University https://scholar.sun.ac.za

3.8. Multi-Agent RL Framework 31

3.8. Multi-Agent RL Framework
As seen in section 2.2, MARL is a set of methods that explore the interactions between 2
or more agents in the same environment. It is a field with many challenges due to the
complexity of having many agents interacting with one another in the same environment.
In this short section, we discuss the paradigm of MARL.

Figure 3.2: multi-agent interaction in a given environment [49]

3.8.1. MARL Formalization

While MDPs are used to formalize single-agent RL tasks, the paradigm is not suitable in
multi-agent settings due to the nonstationarity agents bring to the environment structure.
Partially-Observable Markov Decision Process (POMDP) brings a generalization of MDP
by taking into consideration uncertainty regarding the state of a given MDP and permits
state information acquisition [87]. The MDP is seen as a Markov game [88] and can be
expressed as a 5-tuple: 〈N,S, A, P , Ri

i∈[1,N]〉 where:

• N ≥ 2 represents the number of agents in the environment;

• S represents the state space observed by all agents in the system;

• A =
N∏
i=1
Ai represents the joint action space with Ai the action space of the agent i.

• P the transition probability to migrate from a given state to another

• R depending on the scenario this can be a family of reward functions {Ri}i∈[1,N]

with Ri the reward signal of agent i, or a single joint-reward function, especially in
cooperative scenarios.

Stellenbosch University https://scholar.sun.ac.za

3.9. Summary 32

3.8.2. Objective Function in MARL

The objective function in MARL is defined according to the given scenario. In situations of
a shared objective function, the goal of each agent will be to maximize the same expected
return define in equation 3.6. We have seen in section 2.2 this usually lead to the selfish
and lazy phenomena if one of the agents start playing optimally meanwhile other are still
weak. In situations of individual objective functions, we can consider 2 cases:

1. Identical Interests

In scenarios where agents receive different reward signals from the environment but have
the same goal, the overall reward r can be defined as a summation of all individual rewards:

r =
n∑
i=1

ri, With n the number of agents (3.43)

Hence, the multi-agent training goal will be to maximize equation 3.6 using r defined in
equation 3.43 as reward [89].

2. Individual Interests

Individual interest scenarios are situations where each agent has a specific goal while
interacting with other agents. It can be a completely separate goal situation such as Hide
and Seek, or a shared reward function scenario where the original reward function has
been altered via Reward Shaping [21, 22, 23, 24], and thus generated individual objectives
for each agent. In those situations, the objective function will be a family of objective
functions: J(t) = {Ji(t), i = 1, · · · , n}, where each agent i will aim to maximize the
objective function Ji(t) define as:

Ji(t) = Gi
t (3.44)

with Gi
t the expected return define in equation 3.6, of respective agents.

3.9. Summary
This chapter aimed to introduce readers to foundations that built the field of RL. We
discussed the notion of MDPs that allows a mathematical formalization of RL problems
which permits applications of a range of solution techniques. We viewed the goal of RL
agents is to generate a decision function called a policy that maximizes the expected return
while interacting with a given environment. We discussed that stochastic policies attribute
a probability distribution over the action space such that each action will have a given
chance to be selected. However, value-based algorithms compute a deterministic policy
that decides the best action to select in a given state. We also mentioned that mixing

Stellenbosch University https://scholar.sun.ac.za

3.9. Summary 33

exploration and policy exploitation encourages the discovery of an accurate estimate of
the value function.

We gave an overview of the tabular Q-learning algorithm, an off-policy algorithm that uses
the temporal difference paradigm to build a value function represented in a table. We said
that Q-learning converges to the optimal policy, but requires long interactions with the
environment because of its slow adaptation. We also mention its weakness to generate the
Q-table in a situation of large state space. And we mentioned that variants such as DQN
address the large state space issue but use function approximators instead of a Q-table.

We also introduced a general formalization of MARL. We have seen that MARL is
formalized using the notion of Partially-Observable Markov Decision Process (POMDP)
instead of MDP because at a given timestep each agent has its private observation of
the state. We also viewed that the optimization of a MARL problem depends on the
context: shared objective function, identical interest with a separate reward function, and
individual interest with a separate reward function.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Deep Learning

Deep Learning [90, 91] is a class of methods that learn to model complex and large data.
Deep Learning techniques outperform classical machine learning techniques. Deep Learning
consists of the implementation of deep neural networks, which are artificial neural networks
(ANN) with multiple layers. Deep learning has become the most popular breakthrough
in Artificial Intelligence due to its ability to learn a larger number of features from raw
unstructured data by passing them through several layers from an input layer to an output
layer. The term Deep stands for the presence of many hidden layers between the input
layer and the output layer. The more layers we have, the deeper the neural network. Deep
Learning architectures have been applied in various fields such as object recognition [92],
speech recognition [93], Natural Language Processing (NLP) [94], and RL [77].

In this chapter, we give a general overview of the field to familiarize readers with the
techniques involved in our project. For a deep understanding of the subject, we recommend
the book [91] from Ian Goodfellow and Yoshua Bengio, and Aaron Courville.

4.1. Artificial Neural Networks
Based on animal brain models, an Artificial Neural Network (ANN), or just Neural Network
(NN), is a collection of connected artificial neurons. Following the biological structure
of animal neurons, each connection between neurons can transmit information from one
neuron to another. The expression Feedforward NN is used when information transcends
from an input layer to an output layer. The inputs of a neuron are the dot product of a
given feature vector and the weight vector of the neuron’s input connections. The output
of a neuron is a nonlinear transformation of the summation of all of its inputs.

34

Stellenbosch University https://scholar.sun.ac.za

4.1. Artificial Neural Networks 35

4.1.1. Mathematical Formulation

Mathematically a neuron is defined as a function:

h(x) = φ (〈w, x〉+ b) (4.1)

With x = (x1, · · · , xn) the input feature vector, w = (w1, · · · , wn) the weight vector and
b ∈ R is the bias. The function 〈, 〉 represents the dot product. The function φ is the
nonlinear activation function. Figure 4.1 shows a representation of an artificial neuron.
The simplest form of NN is the single-layer perceptron, which consists of a single layer of
output nodes.

hInput

Bias

Output

Non linear
transformation

Figure 4.1: Illustration of an artificial neuron

4.1.2. Activation Functions

Different activation functions can be considered depending on their performance and the
nature of the problem to solve.

1. Rectified Linear Unit (ReLU): Relu [95] takes a real number as input and
outputs the same number if it is positive otherwise it outputs 0;

φ(x) = max(0, x) (4.2)

It is the most used activation function for many types of NNs because of its simplicity
to train NNs and often brings high performance. It generated many variants such as
ELU [96], Leaky ReLU [97], and SELU [98], just to mention a few.

2. Sigmoid: Also called Logistic or Soft Step, the sigmoid activation is given by the
following formula:

φ(x) = 1
1 + exp(−x) (4.3)

Stellenbosch University https://scholar.sun.ac.za

4.2. Deep Neural Networks 36

Sigmoid is effective with binary classification problems. It can be used in the output
layer to produce values between 0 and 1, which can be interpreted as probabilities of
each class.

3. Hyperbolic tangent (tanh) :

tanh(x) = exp(x− exp(−x
exp(x) + exp(−x) (4.4)

tanh outputs values between -1 and 1, which can suitable for problems where the
output needs to be bounded in this range. It is also suitable for problems where the
input data is averaged at zero.

4. Binary: 0 if x < 0

1 if x ≥ 0
(4.5)

Suitable for two-class classification problems, the binary activation function produces
binary outputs of 0 or 1 for each class.

5. Identity: The input layer activation functions are also identities:

φ(x) = x (4.6)

Useful when using a pre-trained network for transfer learning, the identity activation
function helps preserve the original output range of the pre-trained network.

4.2. Deep Neural Networks
Deep Neural Networks (Deep NN) are extensions of the notion of Artificial Neurons. With
Deep NNs multiple neurons are connected sequentially to process different levels of feature
extraction of a given input data.

4.2.1. Multi-Layer Perceptron

The fundamental component of a Deep NN is the multi-layer perceptron, which consists of
feedforward NNs with at least one hidden layer. The basic idea is that the output of a
neuron in a given layer becomes the input of a neuron in the next layer until the output
layer is reached. There are particular cases where the output of a neuron can be the input
of a neuron in the same layer or a previous layer.

Stellenbosch University https://scholar.sun.ac.za

4.3. Loss Functions 37

Thus, we can write recursively the output of layer i as :

h[i](x) = φ[i]
(
〈w[i], h[i−1](x)〉+ b[i]

)
, i ∈ [K + 1] (4.7)

where:

• wi =
(
w

[i]
1 , · · · , w

[i]
d

)
: the connection weights vector of layer i

• h[i](x) =
(
h

[i]
1 (x), · · · , h[i]

d (x)
)
: The output vector of nodes of the previous layer, the

value of d can be different for different layers and h[0](x) = x

• φ[i] is the activation function at layer i, different layers can have different activation
functions.

• b[i] is a real number, which represents the bias at layer i

4.2.2. Learning

From raw input data, the NN first performs a series of mathematical operations that
transform the input into a form that can be useful for the NN to make predictions or
perform some other tasks. For prediction problems, the NN is given real examples, also
called targets, and will process comparisons between its outputs and the real examples.
To improve its prediction, the NN optimizes its weights matrix parameters using some
optimization processes. Depending on the nature of the output, which can be a real
number or a vector, comparison with reality is performed using some metrics known as
Loss Functions. NNs refer to Loss Functions to update their weight matrices by following a
given optimization algorithm, which minimizes as much as possible the difference between
prediction and reality.

4.3. Loss Functions
A loss function also referred to as Cost Function or Error Function is a differentiable
metric function that measures the margin between two sets of variables. Different loss
functions are used in Deep Learning depending on the NNs architecture and the problem
to solve.

4.3.1. Mean Squared Error (MSE)

MSE, mostly used for regression problems, computes the mean squared difference between
two vectors. Let Y = (Y1, · · · , Yn) be the target vector and Ŷ = (Ŷ1, · · · , Ŷn) be the

Stellenbosch University https://scholar.sun.ac.za

4.3. Loss Functions 38

predicted vector. The MSE is given by :

MSE = 1
n

n∑
i=1

(
Y − Ŷi

)2
(4.8)

A perfect prediction leads to an MSE equal to 0. An optimization algorithm aims to
gradually decrease the MSE function towards its global minima. In practice, the RMSE
(Root Mean Squared Error) is more used than the MSE to evaluate the performance
of NN. One of the reasons is that RMSE is measured in the same units as variables in
the compared dataset. This makes it easier to interpret the results and measure the
performance of the model.

4.3.2. Mean Absolute Error (MAE)

As with the MSE, the MAE computes the mean of the absolute difference between two
data sets:

MAE = 1
n

∣∣∣Yi − Ŷi∣∣∣ (4.9)

Compared to MSE, MAE is less biased by outliers. As the MAE decreases, the NNs output
gets closer to the target. However, it is less used as a cost function than the MSE because
it is not differentiable at 0 which makes the gradient not smooth.

4.3.3. R-squared

R2 is considered the standardized version of MSE. It computes the proportion between
the sum squares regression (SSR) and the sum of squares total (SST).

R2 = SSR

SST
(4.10)

=
∑n
i=1

(
Ŷi − Ȳ

)2

∑n
i=1

(
Yi − Ȳ

)2 (4.11)

Where Ȳ is the mean of the target variables. It can also be written in terms of MSE:

R2 = 1− MSE

V ar(Y) (4.12)

= 1−
∑n
i=1

(
Yi − Ŷi

)2

∑n
i=1

(
Yi − Ȳ

)2 (4.13)

Stellenbosch University https://scholar.sun.ac.za

4.4. Backpropagation 39

4.3.4. Adjusted R-squared

Adjusted R-squared is a slight modification of the R-squared error, it identifies the number
of independent variables in a model and it is always less than or equal to the R-squared
error.

R2
adj = 1−

[
(1−R2)(n− 1)

n− k − 1

]
(4.14)

With n as the number of observations in the data and k as the number of independent
variables.

4.3.5. Huber Loss

Mostly used in robust regression. Similarly to MAE, Huber loss is less sensitive to outliers
than MSE but has the same convergence benefit as MSE.

L(Y, Ŷ) =


1
2
(
Y − Ŷ

)2
, if |Y − Ŷ | < δ

δ
(
|Y − Ŷ | − 1

2δ
)

otherwise
(4.15)

With δ the threshold controlling the point at which the function switches from a quadratic
loss to a linear loss.

4.3.6. Cross-Entropy

Based on the idea of entropy, the cross-entropy loss measures the difference between two
probability distributions. It is mostly used in Machine Learning for classification tasks,
not to be confused with the KL divergence which computes the relative entropy between
two probability distributions. An optimization algorithm using the Cross-Entropy loss
function will aim to minimize the likelihood of incorrect predictions while increasing the
likelihood of correct predictions.

LCE(x, y) = −
N∑
k=1

yk log(xk) (4.16)

4.4. Backpropagation
Three phases of training of NNs can be identified. (1) After receiving the input data, the
NN uses forward propagation to extract features from the input data, layer by layer, until
it produces an output. (2) From the output, a loss value is computed to measure the
difference between the target and predictions. The resulting loss value is then propagated
back to the network using a gradient descent [99] algorithm to improve the weight matrix

Stellenbosch University https://scholar.sun.ac.za

4.4. Backpropagation 40

and bias vector.

Recall Equation 4.7, for a given layer weight matrix W and a bias vector b we can write
the forward pass as:

h[1] = W [1]x+ b[1] (4.17)
a[1] = φ[1](h[1]) (4.18)
h[2] = W [2]a[1] + b[2] (4.19)
a[2] = φ[2](h[2]) (4.20)
h[3] = W [3]a[2] + b[3] (4.21)

... (4.22)
h[`−1] = W [`−1]a[`−2] + b[`−1] (4.23)
a[`−1] = φ[`−1](h[`−1]) (4.24)
h[`] = a[`−1] (4.25)

After computing the loss L, the update at layer k with 1 ≤ k < ` is given as [100]:

W [k] = W [k] − α ∂L
∂W [k] (4.26)

b[k] = b[k] − α ∂L
∂b[k] (4.27)

k < ` because h[`] represents the output of the NN and there is no W [`] . The learning
rate α controls how far to move in the direction of the gradient1. Given a loss function L,
the gradient is an indicator showing in which direction (positive or negative) a parameter
needs to be changed.

We use the chain rule to compute the gradient:

∂L]
∂W [k] = ∂L

∂h[k]
∂h[k]

∂W [k] (4.28)

Using the differentiation the second fraction of the right hand in equation 4.28can be
written as:

∂h[k]

∂W [k] = a[k−1] (4.29)

Hence we have:
∂L
∂W [k] = ∂L

∂h[k]a
[k−1] (4.30)

1The direction of the steepest increase of the loss function.

Stellenbosch University https://scholar.sun.ac.za

4.5. Gradient Descent Methods 41

We proceed similarly for the bias:

∂L

∂b[k] = ∂L

∂h[k]
∂h[k]

∂b[k] (4.31)

∂h[k]

∂b[k] = 1 (4.32)
∂L

∂b[k] = ∂L

∂h[k] (4.33)

Although easy to compute, the true gradient becomes computationally expensive when
dealing with large data sets, this slows down the NNs training, especially with a large
number of epochs2. An estimate of the gradient is thus used in the backpropagation
process. Different methods referred to as Optimisers have been developed to estimate the
gradient.

4.5. Gradient Descent Methods
There are three types of gradient descent methods.

4.5.1. Batch Gradient Descent

Let J(θ) = E
[
L(Yi, Ŷi, θ)

]
be the risk function associate with the parameter θ. J(θ) cannot

be minimized directly as the distribution generating the data is unknown. By taking
a finite training set of independent observations, an approximation Ĵ(θ), known as the
empirical risk function, can be computed and used as an alternative in the gradient descent
process [101]:

J(θ) ≈ ĴL(θ) , 1
L

N∑
i=1
L(Yi, Ŷi, θ) (4.34)

with {Yi}, i ∈ {1, · · · , N} a finite set of independent variables. Given a large training data
set [102] showed the minimum of ĴL(θ) provides a good estimate of the minimum of J(θ).

To compute the minimum of the empirical risk Ĵ(θ) the batch gradient algorithm,(also
referred as the vanilla gradient) proceed by computing successive estimates θt of the
optimal parameter using the following update rule:

θt+1 = θt − αt∇θĴL(θt) (4.35)

= θt − αt
1
L

N∑
i=1
∇θL(Yi, Ŷi, θt) (4.36)

2epochs: One-time sequence of forward pass and backpropagation in an NNs training. To reach optimal
parameters NNs train in many epochs.

Stellenbosch University https://scholar.sun.ac.za

4.5. Gradient Descent Methods 42

While providing efficiency, it can become computationally expensive as it goes through the
entire training data set to compute the average. It requires enough memory allocation to
store the data set and can become intractable if the stored data does not fit the memory
space.

4.5.2. Stochastic Gradient Descent (SGD)

To address the memory allocation and computation issues of batch gradient descent, SGD,
also referred to as Online Gradient Descent [101], drops the idea of averaging. At each
iteration t a random example Yt is picked from the training set, and the parameters update
is done according to the following rule:

θt+1 = θt − αt∇θL(Yt, Ŷt, θt) (4.37)

While reducing the computation, the convergence to the minimum can be noisy resulting
in high variance. The noisy convergence helps sometimes to avoid being stuck in a local
minimum and finding a global one.

4.5.3. Mini-batch Gradient Descent

It is a mixture of batch gradient descent and SGD. At each training epoch, t the data set
is split into mini-batches of size B. Hence, for each mini-batch, a parameters update is
performed. This approach has the benefit of combining the advantage of both previous
methods.

4.5.4. Challenges with gradient descent methods

Gradient descent methods are among the most effective approaches used to solve optimiza-
tion problems. However, these are some challenges that need to be addressed:

1. Local Minima and Saddle points

Especially for non-convex problems, gradient descent methods can struggle to find the
global minimum. It can instead get stuck in a local minimum or a saddle point.

2. Vanishing gradients

Vanishing gradients is a situation where the gradient gets smaller during backpropagation.
This has the effect of making layers far from the output layer learn slower compared to
layers close to the output layer.

Stellenbosch University https://scholar.sun.ac.za

4.6. Optimizers 43

3. Exploding gradient

A large gradient implies a large update on the NN weights, this leads to unstable training.
Techniques such as dimensionality reduction can help to address this problem.

4.6. Optimizers
In backpropagation, optimizers are in charge of updating the model parameters (weights
and biases) in a way that minimizes the loss function during training. We provide an
overview of commonly used optimizers in Deep Learning.

4.6.1. Momentum

Momentum [103] is a method that speeds up SGD in the relevant direction [104]. The
update rule is defined as:

vt = γvt−1 + α∇θJ(θ) (4.38)
θ = θ − vt (4.39)

where θ represents the model parameters, ∇θJ(θ) is the gradient of the loss function with
respect to the parameters, α is the learning rate, γ is the momentum parameter, and vt is
the velocity at time step t. Equation 4.38 computes the velocity as a combination of the
previous velocity and the current gradient, and equation 4.39 updates the parameters by
subtracting the computed velocity.

4.6.2. Adaptive Gradient Algorithm (Adagrad)

Differently to SGD which needs a supervised adjustment of the learning rate (or step
size parameter), Adagrad [105] has the special property of automatically adjusting the
learning rate by dynamically incorporating knowledge of the geometry of the observed
data in earlier training phases. Frequently updated parameters receive small updates
and infrequently updated parameters receive large updates [104]. It computes the SGD
gradient update for a particular parameter θi as follows:

θt+1,i = θt,i −
α√

Gt,ii + ε
∇θtJ(θt,i) (4.40)

With Gt ∈ Rd×d a diagonal matrix where each element (i, i) is the sum of the squares of
the gradients w.r.t. θ up to time t and ε is a security parameter that avoids the division by
zero error. One of the disadvantages of Adagrad is that over time the cumulative gradients

Stellenbosch University https://scholar.sun.ac.za

4.6. Optimizers 44

grow large making the learning term small. Hence, the gradient has less effect in the
update.

4.6.3. Root mean squared propagation (RMSProp)

The idea behind RSMProp [106] is to address the vanishing learning rates problem of
Adagrad. Let g(t) = ∇θtJ(θ), the update rule is than given as follow:

E[g2]t = αE[g2]t−1 + (1− α)g2
t (4.41)

θt+1 = θt −
α√

E[g2]t + ε
gt (4.42)

Equation 4.41 computes the exponentially weighted moving average (EWMA) of the
squared gradient up to the current time step t, denoted as E[g2]t. α is the smoothing factor
controlling the rate at which the EWMA is updated, typically set to a value between 0.9
and 0.99. Equation 4.42 updates the weightθt at time step t based on the EWMA of the
squared gradients up to time step t and the gradient at time step t. ε is a small positive
constant added for numerical stability.

4..6.4. Adaptive moment estimation (Adam)

Introduced by Kingma and Ba [107], Adam is a combination of previous improvements.
Similarly to RMSProp, it keeps in memory an exponentially decaying average of past
squared gradients vt, and similarly to Momentum, it keeps an exponentially decaying
average of past gradients mt [104].

mt = β1mt−1 + (1− β1)gt (4.43)
vt = β2vt−1 + (1− β2)g2

t (4.44)

Equation 4.43 computes the first moment mt which is the EWMA of the gradient up
to the time step t. β1 represents the smoothing factor controlling the rate at which the
EWMA is updated, typically set to a value of 0.9. Equation 4.44 computes the second
moment vt which is an EWMA of the squared gradient up to the time step t. β2 is the
smoothing factor controlling the rate at which the EWMA is updated, typically set to a
value of 0.999. To avoid biases in estimations of the two moments, the author suggested
computations of the bias-corrected version of the first and second moment estimates as

Stellenbosch University https://scholar.sun.ac.za

4.7. Summary 45

follows:

m̂t = mt

1− βt1
(4.45)

v̂t = vt
1− βt2

(4.46)

Then the update becomes is given as follow:

θt+1 = θt −
α√
v̂t + ε

m̂t (4.47)

ε is a small positive constant added for numerical stability. In practice, Adam is the most
used optimizer among adaptive learning methods. It converges faster and can be less
sensitive to hyperparameter choices, such as the learning rate.

4.7. Summary
In this chapter, we discussed Deep Learning, a field that uses the notion of artificial
neural networks to solve different machine learning tasks. We have seen that DNNs are
architectures that process given input data from an input layer of artificial neurons to an
output layer. We mentioned that DNNs use the forward pass technique across sequential
layers to proceed with feature extraction of input data and use the backpropagation
technique to optimize the parameter weight matrices for better feature extraction in future
forward passes.

We saw that backpropagation refers to the computation of the gradient of the output
layer. And we mentioned that SGD is the most used gradient-based algorithm in the
DNNs parameters optimization process. The SGD has been applied in many forms called
Optimizers such as the Adam algorithm.

In the next chapter, we discuss how Deep Learning has been applied as a powerful technique
to improve classical RL algorithms.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Deep Reinforcement Learning

Deep Reinforcement Learning (Deep RL) is a combination of Reinforcement Learning and
Deep Learning. Tabular methods require the storage of states and actions to compute the
value function. Their weakness arises quickly when dealing with large or continuous action
and/or state spaces. This is where Deep RL comes to the rescue. Deep NNs structures
are incorporated into RL algorithms to approximate value functions or policies using
function approximations. Let θ be the parameter of the weight of the NNs. Given a state
s and an action a, let V (s; θ), Q(s, a; θ) and π(a|s; θ) be respectively approximations of
the state-value v(s), action value q(a, s) and policy π(s, a) according to θ. A Deep RL
algorithm will perform optimization over θ to generate θ∗ that will bring the best estimate
of v∗(s), q∗(s, a) or θ∗(s, a).

From the success of DQN [51], A lot of DRL methods have been developed in the literature,
each bringing powerful results in solving complex tasks [108, 109]. Deep RL methods
can be split into 2 main categories: value-based methods which aim to approximate the
value function; and policy gradient methods which aim to approximate the policy directly.
In this chapter, we discuss general concepts of Deep RL to familiarize readers with our
project.

5.1. Value Based algorithms
In value-based methods the NNs receive a state s as input, learn features through sequential
layers, and output the value function (action-value most of the time) of all possible actions
paired with s.

5.1.1. Deep Q-Networks

One of the most important breakthroughs in RL arose when Mnih et al [51] presented a
Convolutional Neural Network (CNN) [110] based algorithm that learned to play Atari
games [45] at a human level of performance using the Q-learning framework. They referred

46

Stellenbosch University https://scholar.sun.ac.za

5.1. Value Based algorithms 47

to the algorithm as Deep Q Networks (DQN)1. DQN is considered the foundation of
Value-Based and Off-policy D RL algorithms. It was the first successful application of
deep learning to DRL, and it demonstrated the potential of using deep neural networks to
approximate Q-functions in complex environments.

The DQN was introduced to address the Q-learning weakness of dealing with large state
spaces and still benefits from the feature of being model-free. As it follows the Q-learning
framework, DQN trains a model to approximate the optimal action-value function Q∗(s, a)
by performing a gradient descent on the objective function defined as:

J(θi) = E
s,a∼ρ(.)

[
(Yi −Q(s, a; θi))2

]
(5.1)

Yi = E
s,a∼ρ(.)
s′∼E

[
r + γmax

a′
Q(s′, a′; θi−1)

]
(5.2)

Where Yi is the target at iteration i and ρ(s, a) is a probability distribution over states
and actions, referred to as behavior distribution [51]. Hence, the gradient of the objective
function can be written as:

∇θiJ(θi) = E
s,a∼ρ(.)
s′∼E

[(
r + γmax

a′
Q(s′, a′; θi−1)−Q(s, a; θi)

)
∇θiQ(s, a; θi)

]
(5.3)

where E2 is an emulator that serves for experience sampling. We should also point out that
the behavior distribution follows the ε−greedy strategy as with Q-learning to encourage
sufficient exploration.

[111] stated that mixing off-policy, function approximations (NNs), and bootstrapping
have some disadvantages. Instability and divergence may occur during the training due to
correlations between successive observations; correlations between the Q value and the
target; small updates of the value function can deviate from the optimal policy and modify
the data distribution. To improve stability during training DQN uses two techniques:

1. Experience Replay

During the episode, a tuple et = (St, At, Rt, St+1) of the current experience is stored in a
memory space, referred to as a replay buffer. During the policy update, random samples
are taken from the buffer to perform parameter updates as an experience replay. As the
buffer keeps storing experience through episodes a given sample can be used more than
once. Random sampling solves the correlation issue in sequential observations and smooths
data distribution changes.

1We should emphasize that the CNN used by the authors is not a part of the DQN algorithm.
2The emulator serves as a simulator of the environment in which the agent operates, allowing the agent

to interact with the environment and learn from its experiences.

Stellenbosch University https://scholar.sun.ac.za

5.1. Value Based algorithms 48

2. Off-Policy Training

A DQN uses a separate target network which is a copy of the main network to sample TD
targets. Parameters of the target network are kept separately and are updated periodically
3. This has the benefit to reduce the correlation between the Q value and the target of
the TD update. Hence, the Q-learning loss function can be written as:

L(θ) =
(
r + γmax

a′
Q(s′, a′; θ−i)−Q(s, a; θi)

)2
(5.4)

with θ−i the parameter of the target network at iteration i.

5.1.2. Double Q-learning

Introduced by Van Hasselt et al [112]. The Double deep Q-network(D-DQN) aims to
address the issue of over-optimistic estimation of the Q value in both Q-learning and
DQN [111] due to the max operator in the TD target. Van Hasselt et al [112] proposed to
replace the formal TD target in equation 5.2 by:

Y D−DQN
t = r + γ Q

(
s′, arg max

a′
Q(s′, a′; θt); θ−

)
(5.5)

That the online network is used to greedily evaluate the policy while the target network is
used to evaluate its value function.

5.1.3. Prioritized Experience Replay

The vanilla DQN with experience replay samples random experiences regardless of their
importance. In prioritized experience replay [113] important transitions are replayed more
frequently, which leads to more efficient learning. Important transitions are those with
high expected learning progress measured by the TD error.

5.1.4. Dueling Networks

Figure 5.1 illustrates a Dueling Networks, where two architectures are set up to generate
the value V (s) of a given state s and the associated advantage function A(s, a). Where the
advantage function measures how much selecting the action a was a good or bad decision
in state s. Both architectures are combined to generate the action-value Q(s, a) [114].

Q(s, a; θ, α, β) = V (s; θ, β) +
(
A(s, a; θ, α)−max

a′
A(s, a′; θ, α)

)
(5.6)

3The target network parameters are kept fixed during the training. They only get updated after every
C iteration, with C a constant value.

Stellenbosch University https://scholar.sun.ac.za

5.2. Policy Gradient Algorithms 49

Where α and β are parameters used to control the behavior of the two fully connected
layers4 that compute the advantage and value function in the dueling network. The author
suggested the following update:

Q(s, a; θ, α, β) = V (s; θ, β) +
(
A(s, a; θ, α)− 1

|A|
A(s, a′; θ, α

)
(5.7)

where the max operator in equation 5.6 is replaced by the average. The author states that
the Dueling architecture mixed with prioritized experience replay brought improvements
in both DQN and D-DQN.

Figure 5.1: Dueling Networks architecture. Illustration of Dueling Networks [115]

5.2. Policy Gradient Algorithms
So far we have focused on algorithms that approximate the action-value functions and
perform action selections based on those estimations. In this section, we discuss methods
that directly learn the policy and select actions by doing sampling according to the learned
policy, regardless of the value function.

Deep RL value-based methods have addressed the memory allocation issue of standard
value-based algorithms when dealing with environments with large state space. However,
to select the right action, Deep RL value-based algorithms perform a full scan over the
value function to pick the action with the maximum value, this becomes computationally
expensive while dealing with large action spaces. Policy gradient methods [116], in contrast,
are faster by just doing a quick random selection over the action space. Table 5.1 gives a
comparison between the two approaches.

5.2.1. Policy Gradient

Let π(a|s; θ) = P [At = a|St = s, θt = θ] be the policy parameterized by θ [78]. The policy
gradient methods optimize θ to maximize the objective function. Different from value-based

4In the Dueling Network, the CNN is followed by two streams of FC layers computing the advantage
and value functions

Stellenbosch University https://scholar.sun.ac.za

5.2. Policy Gradient Algorithms 50

Table 5.1: Key differences between Value-Based and Policy-Based RL Methods

RL Methods

Value-Based Policy Based

Learn the state or state-action value function Learn the stochastic probability distribution
that maps state to action

Select action greedily Sample an action in the action space
Exploration is not mandatory Exploration is induced due to the random

selection of actions
Slow to compute the greedy action in large
action spaces

Fast action selection in large action spaces

methods which aim to minimize the loss via gradient descent, policy gradient methods
perform gradient ascent to reach the maximum reward.

Let J(θ) be the objective function representing the expected return. We have the following
expression [117]:

J(θ) =
∑
s∈S

dπ(s)Vπ(s) (5.8)

=
∑
s∈S

dπ(s)
∑
a∈A

π(a|s; θ)Qπ(s, a) (5.9)

With dπ(s) = lim
t→∞

P [st = s|s0, πθ] is the probability of being in state s when starting from
s0 and following πθ for t steps.

According to the policy gradient theorem [116], the gradient of J(θ) can be expressed as:

∇J(θ) ∝
∑
s

dπ(s)
∑
a

Qπ(s, a)∇θπ(a|s; θ) (5.10)

Equation 5.10 is the foundation of most policy gradient algorithms. We give an overview
of some in the following section.

5.2.2. REINFORCE

Referred as Monte-Carlo policy gradient, REINFORCE [118] is the vanilla policy gradient
algorithm using function approximation. It uses episodic historical transitions to compute
an estimate of the return following the Monte-Carlo technique. Recall the stochastic
gradient algorithm 4.5, the gradient of the expected objective function is expressed as

Stellenbosch University https://scholar.sun.ac.za

5.2. Policy Gradient Algorithms 51

follows [78]:

∇J(θ) = Eπ

[∑
a

qπ(St, a)∇θπ(a|St; θ)
]

(5.11)

= Eπ

[∑
a

π(a|St; θ)qπ(St, a)∇θπ(a|St; θ)
π(a|St; θ)

]
(5.12)

= Eπ [qπ(St, At)∇θ ln π(At|St; θ)] (replacing a by the sampleAt ∼ π) (5.13)
= Eπ [Gt∇θ ln π(At|St; θ)] , because qπ(St, At) = E [Gt|St, At] (5.14)

Hence we have the following update as gradient ascent algorithm:

θt+1
.= θt + αGt∇θ ln π(At|St; θ) (5.15)

The convergence of the algorithm depends on several factors, including the choice of the
learning rate, the variance of the gradient estimates, and the properties of the objective
function being optimized. After REINFORCE many variants have been developed in the
literature to improve the efficiency of learning.

5.2.3. Actor-Critic

Although standard policy gradient methods refer to the policy for actions selection, they
still rely on the value function to learn the policy parameter [78]. In Actor-Critic based
algorithms [119] the value function plays a more important role than just being a baseline
for the policy parameters update. The Actor-Critic consists of two NN models:

• Actor: The actor is the model in charge of performing action selection according
to the current policy π and updating the policy parameter θ based on the critic
feedback.

• Critic: The Critic is in charge of computing the value function Q(s, a) or V (s)
and performing the update of the model parameters ω by using bootstrapping to
reduce variance and speed up the learning.

In the One-Step actor-critic the full return in REINFORCE is replaced by 1 step return
[78]:

θt+1
.= θt + α δt∇θ ln π(At|St; θ) (5.16)

δt = Rt+1 + γv̂(St+1, ω)︸ ︷︷ ︸
Gt:t+1

−v̂(St, ω) (5.17)

Stellenbosch University https://scholar.sun.ac.za

5.2. Policy Gradient Algorithms 52

The logic behind the actor-critic method is that the actor performs an action and the critic
will tell it how good or bad was the selected action, then the actor will aim to optimize
his behavior based on the critic’s feedback.

Since its introduction, successive policy gradient methods are mostly actor-critic based.

5.2.4. Trust Region Policy Optimization (TRPO)

Introduced in [120], TPRO is a REINFORCE-based algorithm that aims to improve
training stability by avoiding updates that move the new policy too far from the previous
policy in one iteration. For example, if the learning rate is too large, a small gradient
can considerably affect the policy update. To address this problem, the policy update
is subjected to a KL divergence [121] constraint at each iteration. Hence, the gradient
problem becomes:

max
θ

Es∼ρθold , a∼q

[
πθ(a|s)
q(s, a) Qold(s, a)

]
s.t. Es∼ρθold [KL (πθold(.|s)||πθ(.|s))] ≤ δ

(5.18)

where q is denoting the sampling distribution and δ is a parameter defining the bounds
of the trust region. In some case q(a|s) is replaced by πold(a|s). Despite how clever the
approach is, the max operator implies solving a maximization problem at each iteration
which can be problematic [122].

5.2.5. Proximal Policy Optimization (PPO)

[56] introduced the PPO algorithm, which can alternate between data sampling and
optimization of a surrogate objective function using SGD. PPO is the successor of TRPO,
it follows the same logic of avoiding updates that deviate too much from the current policy.
However, PPO is more flexible to implement compared to TRPO. To the best of our
knowledge, the Actor-Critic PPO is the state-of-the-art policy gradient algorithm at the
moment.

[56] proposed changing the constrained optimization problem of TRPO with an uncon-
strained one, using a penalty in place of the TRPO constraint.

max
θ

Êt
[
rt(θ)Ât(s, a)− βKL [πθold(.|st)||πθ(.|st)]

]
(5.19)

where rt(θ) represents the probability ration:

rt(θ) = πθ(at|st)
πold(at|st)

(5.20)

Stellenbosch University https://scholar.sun.ac.za

5.2. Policy Gradient Algorithms 53

The choice of β can be challenging as the same value might perform differently in different
problems. To apply the SGD additional techniques have been proposed:

Clipped Surrogate Objective

The surrogate objective function in TRPO is defined as [56]:

JCPI = Êt
[
rt(θ)Ât(s, a)

]
(5.21)

To avoid update explosion, a penalty is set to move rt(θ) away from 1. Hence the objective
function is written as follows:

JCLIP = Êt
[
min

(
rt(θ)Ât(s, a), clip(rt(θ), 1− ε, 1 + ε)Ât(s, a)

)]
(5.22)

Where the function clip(rt(θ), 1− ε, 1 + ε) make sure that the ratio stays in [1− ε, 1 + ε].
This removes the motivation of changing considerably the policy for one update.

Adaptive KL Penalty Coefficient

The second technique is the Kullback–Leibler(KL) Penalty where a penalty factorized by
an adaptive coefficient is added to the KL divergence.

JKLPEN(θ) = Êt
[
rt(θ)Ât(s, a)− βKL [πθold(.|st), πθ(.|st)]

]
(5.23)

Where the coefficient β is updated as following this procedure:

Algorithm 5.2: KL

1: Compute d = Êt [KL [πθold(.|st), πθ(.|st)]]
2: if d < dtarg/1.5:
3: β ← β/2
4: if d > dtarg × 1.5:
5: β ← β × 2

According to the PPO, paper [56], the clipped version of PPO performs better than the
KL Penalty version.

Despite being the state-of-the-art policy gradient algorithm in tasks involving continuous
state space and/or continuous action space, there are still some challenges that need to be
addressed [123]:

• Instability on training when the reward vanishes outside bounded support

• Getting stuck in suboptimal policy on discrete action spaces.

Stellenbosch University https://scholar.sun.ac.za

5.3. Summary 54

• Sensitivity to initialization: Every time a model is initialized for training, it receives
a random matrix of parameters. Different randomizations don’t necessarily provide
the same training performance on the same task.

5.3. Summary
This chapter aimed to introduce readers to the paradigm of Deep RL, a novel approach
that uses the power of Deep NNs to solve RL problems. We have seen that Deep RL
has been first introduced to address the memory allocation issue of Tabular Methods
when dealing with environments with large state space. We discussed that techniques
of a random sampling of historical experience are one of the central keys that guarantee
convergence.

Furthermore, we discussed the difference between value-based methods and policy gradient
methods in Deep RL. Despite the amazing successes in many benchmark tasks, value-based
methods show weakness when the action space is large or continuous. Policy gradient
methods benefit from the feature of computing directly the policy regardless of the structure
of the action space. This makes them suitable for tasks with large action spaces.

We also introduced some policy gradient algorithms, specifically the PPO algorithm, which
is an algorithm that addresses the divergence issue, by constraining the gradient update
such that it doesn’t move the new policy too far from the current policy. However, the
approach generates a slow convergence due to the small update at each iteration.

We mentioned that, despite being the state-of-the-art policy gradient algorithm, the PPO
has some weaknesses such as the sensitivity to the initialization of the training model. We
used the PPO as the benchmark algorithm in our project, because of its high performance
on the testbed task used in the project, and in Chapter 8, it will be demonstrated that
the algorithm can achieve remarkable performance on a specific task. However, it can also
fail to perform well on the same task when utilizing different model initializations.

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Incremental Reinforcement Learning

This chapter aims to discuss in more detail the notion of Incremental RL [14, 15] we
introduced earlier in section 2.1. Specifically, the discussion focuses on solving a target task
using incremental MDPs. Furthermore, we discuss the notion of initial task, performance
threshold, and incremental step, which influence the incremental learning process.

Humans can incrementally master difficult levels of a given task by starting simple. An
individual who doesn’t train in weight lifting has a higher probability to fail to lift 180 kg
compared to another one who can already lift 150 kg with ease. We aimed to apply the
same paradigm with the PPO algorithm to incrementally solve an environment that the
algorithm failed to solve from scratch in both single and multi-agent scenarios.

6.1. Definition
Let {Ti}2≤i≤n

1 be a family of tasks where each task Ti = 〈Si, Ai, Pi, Ri〉 is an MDP
representing a classical RL problem with a given objective function. The basic idea of
a Transfer Learning [11] method is to train an agent that can learn a family of optimal
policies {π∗i }2≤i≤n for each respective tasks in {Ti}2≤i≤n by leveraging knowledge across
tasks to learn faster and efficiently.

6.2. Previous work
Meta-RL [13, 34] formalises the transfer learning problem as a distribution p(T) over a
family of MDPs {Ti}2≤i≤n where the objective function is defined as the average of tasks
objective functions under the task distribution p(T):

J(θ) = ET ∼p [JT (θ)] (6.1)
1To perform transfer learning, we need at least two tasks

55

Stellenbosch University https://scholar.sun.ac.za

6.3. Problem Formalization 56

with JT the objective function of a particular task. The agent in Meta-RL will learn
parameters θ∗ of the optimal policy π∗ that maximize J(θ). [34] define π(a|s, z) as a task
conditioned policy, with z an ID denoting the current task. The policy π∗ would quickly
adapt to new test tasks that were previously unseen.

While Meta-RL learns a distribution policy that aims to maximize the average expected
returns over the distribution of tasks, Incremental RL learns a set of sequential optimal
policies of a given set of tasks. The environment dynamic D is split into a set of tasks
D = [T1, · · · , Tn], where each task Ti represents a stationary MDP. The idea is to make
the agent sequentially learns the optimal policy parameters θ∗1, · · · , θ∗i−1 of respective tasks
T1, · · · , Ti−1 and leverage them as baselines to facilitate the learning of the optimal policy
parameter θ∗i of the task Ti. Despite the potential success, this is at risk of forgetting
knowledge acquired on prior solved tasks during sequential learning. Life-Long Incremental
RL [36] addresses the catastrophic forgetting issue [18] by making sequential learning a
lifetime learning process. In other words, the agents will generate sequences of optimal
parameters (θ∗1, · · · , θ∗n) and a library of pairwise parameters

(
θ(∞), ϑ(∞)

)
is set to store

all pairs composed of the policy θ of the current task and a parameterization ϑ of the
current environment.

As in Life-Long Incremental RL, we used a training paradigm that helps agents to maintain
prior knowledge as lifetime learning. However, the structure of the task we are aiming to
solve doesn’t require storage in memory of prior policies or sub-task parametrization. We
give further details in the following section.

6.3. Problem Formalization
Let T represent the MDP of a challenging task to solve from scratch. And let us define
D = [T1, · · · , Tn] a subset of the power set of T such that:

Ti−1 ⊂ Ti
Tn = T

(6.2)

where each Ti represents a stationary MDP. As shown in Figure 6.1, this simply means
that the MDP of a previous task is included in the MDP of the next one. The goal is then
to train the agent to generate a sequence {θ∗1, · · · , θ∗n} of optimal parameters for respective
tasks in D. We use the expression increment every time the training agent shift from a
task Ti to a task Ti+1.

Recall section 3.6 where we discussed optimality. Following equation 3.25, the sequence of
optimal policies generated over D follows the structure ∀i < j:

Stellenbosch University https://scholar.sun.ac.za

6.3. Problem Formalization 57

π
∗
θi
≈ π∗θj in Ti

π∗θi ≤ π∗θj in Tj
(6.3)

This means that a policy that performs optimally in a larger MDP can perform optimally
in a smaller MDP of the same task.

Figure 6.1: (a) Simple Incremental RL diagram. D represents the subdivision of tasks in a
sequential manner. Successive tasks share common similarity structures. (b) Incremental
RL with Incremental MDP. Each task different from the initial task contains copies of all
previous task MDPs.

The illustration in Figure 6.1 (b) shows that when the agent moves to a new task, it will
still experience MDPs of previously solved tasks. This approach has the benefit to allow
adaptation on previously unseen transitions while preventing catastrophic forgetting [18]

Stellenbosch University https://scholar.sun.ac.za

6.4. Threshold Policy 58

by securing skills acquired on the previous experience. Differently to [36], there is no need
for a library to store previously learned policy parameters and task structures. The new
optimal policy generalizes over all previous MDPs as shown in equation 6.3. If the agent
gets evaluated in a previously solved sub-task, it will still be able to perform optimally
even though the policy parameters have changed.

In simple words, the process consists of training an agent in a small portion of the main
task MDP until it generates an initial optimal policy π∗init. Then, make the task more
complex by adding another small portion of the main MDP such that the agent will be
experiencing new transitions along with previously experienced transitions.

The knowledge to transfer in our project is the policy function. However, there is still the
need to clarify, in our context, some of the fundamental questions [11] of Transfer Learning
that we mentioned earlier in section 2.1 such as: When should the transfer occur, and how
to operate with the transfer? The answer to those questions is discussed in the following
section, where we introduce the notion of performance threshold to know when to transfer,
and incremental step to control the number of transitions we aim to add to the current
MDP.

6.4. Threshold Policy
In a situation such as academic training, Humans use incremental learning to gradually
master a given domain of interest. But to migrate to an upper level of training is subject to
success in the current level of training. The required success is measured by an evaluation
score that the learner must reach to be allowed to migrate to an upper level of training.
However, Humans don’t always reach 100% of the evaluation score. Hence, often in
practice, a threshold value is set to help decide if a learner is ready to migrate to another
training level. For example, in academic training, a threshold score of 50% can be enough
to allow a learner to move to an upper level of training. Referring to this, we defined our
incremental problem as a threshold learning problem, where perfection on the current task
is not a requirement before migrating the learner to a more complex task.

Let δ be a threshold parameter. The process consists of training the agent to generate a
policy πδi on the task Ti<n, with πδi ≤ π∗i , from which it can reach a score of δ on average
during a test on Ti<n. Then, the threshold policy πδi is used as an initialization to generate
πδi+1 on the task Ti+1. As shown in the incremental algorithm 6.3, once in the final task
Tn the agent will aim to directly generate the optimal policy π∗n. In other words, using
a threshold parameter δ, the incremental learning process on D consists of generating a
sequence of policies

{
πδ1, · · · , πδn−1, π

∗
n

}
. As the optimal policy of the final and main task,

π∗n represents an optimal policy for all sub-tasks in D.

Stellenbosch University https://scholar.sun.ac.za

6.4. Threshold Policy 59

Despite using a threshold parameter on the sequence of tasks seems clever, there is still
the fact that to select the appropriate parameter to use as the performance indicator.
The return G could be the appropriate parameter to use as the threshold indicator 2.
By tracking the progress of G during the training, the training environment gets larger
every time G > δ. However, in our particular situation with the Self-Play Learning [29],
referring to the reward as a performance indicator might not be appropriate. During
Self-Play Learning in a zero-sum game, both opponents’ expertise can be similar, and the
average return for both sides will be fluctuating around 0 as they are supposed to tie
most of the time. In episodic task scenarios, the average episode length can be used as an
alternative performance indicator if the reward is not an appropriate choice. During the
Self-Play training, if the average episode length starts growing, the learning agent has
started understanding the task. Hence, it is more appropriate to track the average episode
length per episode than the average return to proceed with the increment. This is only
possible in scenarios with a conditional terminal state. For example, an episode may end
when the agent loses its life, even if it is before the maximum length an episode can have
during the task.

Algorithm 6.3: Incremental Learning with Threshold Score
1: Input D = [T1, · · · , Tn], n ≥ 0: Task sequences
2: Input Model: The training agent
3: Input δ : Performance Threshold
4: Input t > 0 : Training Horizon
5: For i ∈ [1, · · · , n− 1]:
6: T = Ti: The current task
7: score = 0
8: While score ≤ δ:
9: - Train agent on T for t timesteps

10: - Compute the evaluation score
11: End while
12: End for
13: Continue with the formal training on Tn
14: Save Model

Assuming that we have been able to choose an appropriate performance indicator, we
also need to assign the appropriate threshold value. The illustration of the Human
learning process, tells us that perfection during training is not always a requirement before
advancing to the next level of training. However, it does not indicate how humans decide
on the threshold of tolerance because before proceeding with the increment, the algorithm
must ensure that the agent has enough experience to deal with the next task. Also, there is

2Recall that the main goal of RL agents is to maximize the expected return

Stellenbosch University https://scholar.sun.ac.za

6.4. Threshold Policy 60

a need to control how difficult the new task should be compared to the previous one. This
tells us that the success of Incremental Learning relies on 3 major elements: the initial
task Tinit from where the training is initiated, the threshold score δ that controls when to
increment, and the incremental step η which controls how difficult the new training task
should be.

6.4.1. The Initial Task

Let T0 be the smallest possible MDP extracted from the main task MDP from which
the agent can initiate the training. T0 is set such that the agent might receive a positive
reward frequently to adapt quickly. A practical example could be to select the portion of
the main task MDP where the sparsity of the main task is reduced as much as possible.
Even though the ideal would be to start the training on T0, it is not always mandatory.
Let us consider a task T`, with 0 < ` < n. The agent can still initiate its training in T`
which includes the T0 MDP and be able to generate the initial policy for the incremental
learning process. This is possible if there is not a big gap between T` and T0, otherwise,
the agent might not be able to adapt and generate the first initial policy. Starting the
training with T` may improve the training time.

6.4.2. Performance Threshold

We discussed earlier the performance threshold parameter δ which helps control when to
increment. After selecting the appropriate initial task and the appropriate performance
indicator parameter, a threshold value should be assigned to δ such that the algorithm
will know when to increment. We assume that a low value will generate early migrations
which might lead to a slow adaptation or a non-adaptation. We also assume that a high
threshold value will generate late migration, as the agent will spend too much time in each
task to reach the threshold before the increment. We assume this does not optimize the
overall training time. We proceed by empirical experiments to determine what could be
the right performance threshold in our particular case. We discuss more this in chapter 8.

6.4.3. Incremental Step

The incremental step η is a parameter representing how difficult we would like to make
the next task compared to the previous one. A large increment might result in a slow
adaptation or non-adaptation as the new task MDP will decrease the opportunity of
experiencing solved transitions. This can also lead to catastrophic forgetting [18] of prior
skills on previously solved transitions.

Adding η to the increment training raises the question of whether there is an influence
between the threshold and the increment step. What could be the effect on the training

Stellenbosch University https://scholar.sun.ac.za

6.5. Training Process 61

when using a high threshold and a low step, or the reverse? How to measure the adaptability
rate of the agent using the provided threshold and increment step? We discuss in the next
section one of the ways these questions can be answered.

6.5. Training Process
In this project, we proceed with empirical experiments to study the influence between the
performance threshold and the incremental step. The approach consists of freezing one of
the two parameters, by assigning a constant value, and running different training with
different values of the other parameter. Then Repeating the same process with a different
other value of the frozen parameter. This helps to know in general how both parameters
influence each other.

We measure the performance of a given couple (δ, η) by the average training time it takes
to increment up to the final task and start playing optimally on the final task.

Let f be the average training time to training completely the agent in the environment. f
can be expressed as:

f = E [T = t|∆ = δ,H = η] (6.4)

Notice that we refer to the average because the training time is also influenced by the
initial randomization. The challenge is to find the combination (δ∗, η∗) that optimizes f
in average. Intuitively we may think of the average of both parameters as the appropriate
combination. However, We cannot tell until we observe the outcome of experiments for
our particular case.

6.6. Summary
In this chapter, we discussed in more detail the notion of Incremental RL [14, 15]. We
have seen that Incremental RL is an application of Curriculum Learning [12] in RL where
the sequence of tasks are different levels of the same task from the simplest to the most
difficult. We focused on the particular case where MDPs of sequential tasks are drawn
from the power set of the main task MDP, and where each task MDP contains MDPs of
its predecessors. We mentioned that this case has the benefits of skipping the storage of
prior policies and task parametrization used in Life-Long Incremental RL [36, 37, 38]. We
assumed that the optimal policy of the final task will generalize over all possible sub-task
in the sequence.

We discussed the notion of threshold-based learning in an incremental learning process.
Instead of training optimally, an agent on a given task before an increment, an appropriate

Stellenbosch University https://scholar.sun.ac.za

6.6. Summary 62

threshold value can be useful to optimize the training time. We also mentioned that this
implies a wise selection of the training parameter to use as a performance indicator and a
choice of the threshold score to use as a reference for the increment. We also indicated
that identifying the appropriate parameter and value for the threshold is just one step. An
appropriate incremental step must be defined to allow proper knowledge transfer and fast
adaptation to previously unseen transitions after the increment, otherwise, the training
process can be unsuccessful. We pointed out that an initial task must be defined properly
to motivate early adaptation on the first task and generate the first threshold policy. This
can be done by choosing a portion of the main task MDP where the sparsity is minimized.

In chapter 8 we test these theories by training a PPO [56] algorithm in a competitive
multi-agent 3D environment using Self-Play Learning [29] in both single and cooperative
scenarios.

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Experimental Environment

In this chapter, we introduce our experimental environment. We first introduce Gym
which is a benchmark class to generate RL environments. We give an overview of the
slimevolleygym[10] the Gym-based environment to train RL agents to play the slime
volleyball game in 2D. After that, we introduce the slimebot volleyball[9] game, a 3D
version of the slimevolleygym that we use as the experimental environment. Slimebot
volleyball uses 3D graphic robotic software Webots for visualization and is more challenging
compared to the slimevolleygym due to the additional dimension, and it is more appropriate
for cooperative experiments.

7.1. Gym Environment
Gym [124] is a Python library from OpenAI used to create RL environments. It comes
with baseline functions and attributes to create RL environments. The goal of Gym is to
create a standard paradigm that will allow RL researchers to easily collaborate and share
their works. Gym also has a wide community of independent researchers, academics, and
professionals who discuss their results, and issues related to RL or the library itself.

7.1.1. Functions

The toolkit is a simple class, referred to as gym.Env composed of four basic functions:

1. reset: a function that generates the initial state s0 of the environment. The
function is mainly called at the beginning of each episode before agents perform
their first actions. It returns initial observations of respective agents present in the
environment. An observation can be a Python list of locations, velocities, etc., or
any other information received from a sensor such as a camera, radars, etc.

2. step: is the transition function of the environment MDP from the current state to
the next state. The function takes as arguments actions of different agents in the
environment and will perform the environment dynamic based on these actions. It

63

Stellenbosch University https://scholar.sun.ac.za

7.1. Gym Environment 64

returns a list of the following elements: the next observation for respective agents,
the rewards for respective agents, a boolean variable stating if the episode is over or
should continue, and a dictionary containing any other relevant information about
the environment such as the current state, the current timestep, among others.

3. render: This function is in charge of displaying the current state of the environment
in pixels. An example could be Atari 2600 games suits [45], which are pixel-based
games. To optimize computation speed, it is advisable to avoid using the function
during training.

4. close: This function closes the current render in a pop-up window. If not called,
the current render will only be closed when the device is turned off.

These functions are just the basics for a gym-like environment. The freedom is given to
customize them and to create additional functions depending on the problem to solve.

7.1.2. Variables

While using gym.ENV as a parent class of a customized environment, we need to define
the following variables that will allow interactions with the gym.ENV class attributes and
functions:

1. observation space: An instance of the gym.spaces class, this defines the structure
of the observation the agent receives from the environments. This can be a Python
list in the case of a state-observation problem or a matrix array in the case of pixel
observations. It is important to correctly define the observation space because the
success of training relies also on the agent’s perception of the environment.

2. action space: Also an instance of the gym.spaces class, it defines the structure of
all possible actions. There are many ways of structuring it such as binary, discrete,
among others.

3. render: Not to be confused with the function env.render(), this is a Boolean variable
that indicates whether the function env.render() should be called or not. For an
image-based environment, the training loop is faster when render is set to False.

As stated previously, while customizing a gym-like environment, additional attributes of
the environment depend on the purpose and the problem to solve.

The Gym library comes with a variety of environment scenarios1 which use the gym-loop
paradigm such as cartepole, lunar landing, mountain car, pendulum, etc. These are mostly

1https://github.com/openai/gym/tree/master/gym/envs

Stellenbosch University https://scholar.sun.ac.za

7.2. Slimevolleygym 65

used as baselines to introduce beginners to RL. In the next section, we introduce an
advanced environment that requires a certain level of expertise to customize.

7.2. Slimevolleygym
A zero-sum game is an adversarial situation where 2 sides face each other and where
profits are anti-symmetric. For instance, if player X made a profit of value b then player
Y gets a profit (which will be the loss) of value −b, such that the summation of both sides’
profits will always be zero. We introduce in this section a zero-sum game that we used as
a testbed environment for our experiment.

Slime Volleyball is a simple but interesting volleyball game developed by an unknown
author. It is a zero-sum game where two agents (named slimes in the game) face each
other and try to win the game by performing two main tasks (1) defending their respective
territory by stopping the ball to hit the ground on their respective side; (2) throwing the
ball at the opponent’s side aiming that it hits the ground. If the ball hits the ground on a
player’s side, the player loses a life and gets a score of −1. The other player gets a score of
1. If the game timer expires before either of the two players loses all their lives (maximum
of 5 lives), the player left with the most lives wins the game, or if both players have equal
remaining lives, the game is a tie and both agents get a score of 0 at the final step. The
slimevolleygym [10] is a gym environment of the game, suitable for training RL agents
and other AI algorithms2 to solve the game by learning how to defeat the built-in expert
player provided with the game, which masters the game almost perfectly. In this section,
we provide an overview of the functionalities of the slimevolleygym environment before
discussing the 3D version we customized in the following section [10].

7.2.1. Game structure

The game is structured as follows:

1. Observation: The observation can be pixels that can be rendered through a pop-up
window. The agent uses a convolutional network to detect relevant features in the
image. The observation can also be a state-observation, where the agent receives
real-time (x, y) coordinate of both position and the velocity of mobile objects in the
environment: the opponent, the ball and itself.

2. Actions: There are 3 basic actions: forward and backward following the x−axis,
jump following the y−axis. Those actions can be combined to produce extra actions

2The author trained agents using genetic algorithms and the covariance matrix adaptation evolution
strategy (CMA-ES).

Stellenbosch University https://scholar.sun.ac.za

7.2. Slimevolleygym 66

Figure 7.1: An illustration of the slimevolleygym game. The blue agent is the opponent,
the game built-in expert. The yellow agent is the learner that aims to solve the game by
learning how to defeat the expert. In the above scenario, the Yellow player has lost as
there is no remaining life left.

such as forward-jump, backward-jump, stay still3. Which gives a total of 6 possible
actions for the action space.

3. Timeline: An episode can last a maximum of 3000 timesteps maximum. This means
an episode can reach the termination condition before reaching the maximum number
of timesteps. It is a terminal state-conditioned game.

4. Reward: Each agent has 5 lives at most. Once an agent loses a life, it receives a
reward of −1 while the opponent gets a reward of +1. For each agent, the overall
reward at the end of an episode is the number of lives lost by the opponent subtracted
by the number of lives they lost during the game. If one of the agents loses all of its
5 lives before 3000 timesteps, it loses the game terminates, as illustrated in Figure
7.1.

7.2.2. Pre-trained agents

Except for the built-in expert that comes with the game, the slimevolleygym library comes
with some pre-trained agents that learned to play the game at a level close to the built-in
expert:

• Agent trained with a covariance matrix adaptation evolution strategy (CMA-ES).

• Genetic Algorithm: The Genetic algorithm is trained with Self-Play Learning.

• PPO: Two pre-trained PPO algorithms come with the game (1) One is trained directly
by facing the game expert; (2) The second is trained with Self-Play Learning.

3When no action is performed by the agent.

Stellenbosch University https://scholar.sun.ac.za

7.3. Webots 67

7.3. Webots
Webots4 is an open-source multi-platform simulator application for mobile robotics ma-
nipulation. Webots is well suited for both academic and industrial research. It provides
many environments and robot models suitable to simulate control problems such as RL
problems.

Figure 7.2: Webots robotics a real-time graphic simulator for robot manipulation in 3D
dimensions

In addition to default models and environments, the software is easy to customize. It is
possible to modify existing scenes and objects or to create new ones. The software supports
the user to import objects from other graphics software such as Blender5, Autodesk Maya,
or any other 3D graphics software that can export 3D objects.

To control robots within the software, Webots uses the supervisor and controller platforms
which help to command robots in the scene and manage all sensors such as distance
sensors, cameras, radars, etc. The command platforms are independent of the programming
language used. Webots offers APIs for many different programming languages such as C,
C++, Java, Python, and MatLab, along with a built-in IDE that allows users to develop
controllers directly in the software.

The built-in Python API makes Webots suitable for Machine Learning and RL problems
in 3D environments. The Python API allows customization of gym-like environments that
can use Webots as a visualizer. The motivation for using 3D software is to bring a physical
representation of the real world in 3D simulation which makes the RL problem closer to
reality.

We selected Webots in our project for its flexibility in customization and easy communica-
4https://cyberbotics.com/
5A complete open source 3D software, https://www.blender.org/

Stellenbosch University https://scholar.sun.ac.za

7.4. Slimebot Volleyball 68

tion with the programming language Python.

7.4. Slimebot Volleyball
Slimebot Volleyball [9] is a 3D version of the slime volleyball game. The game is imple-
mented on top of the slimevolleygym environment and uses the robotic software Webots
for visualization. Compared to the original game Slimebot Volleyball has an additional
axis (z-axis) adding depth to the game area, such that players can move in all directions
as in the real physical world. The motivation for creating the 3D environment is the
ability to study cooperative scenarios involving two or more teammates per side in a more
complex environment. Table 7.1 shows a short comparison between the slimevolleygym
and Slimebot Volleyball environments.

Figure 7.3: Slimebot Volleyball environment with a single agent per side. The same
timestep is shown in different views in Webots.

As in the 2D version, the 3D environment is a gym-like environment provided with
controller instances of the Webots Supervisor and Robot classes to manage the interaction
between the game environment and Webots. The physical objects in the game scene were
created with Blender and imported into Webots. Despite the built-in physical system
(collision, gravity, etc.) of Webots, we referred to the handcrafted physical system of the
slimevolleygym game and brought additional features for compatibility in 3D.

Stellenbosch University https://scholar.sun.ac.za

7.4. Slimebot Volleyball 69

7.4.1. Environment structure

The game has the same logical structures as the slimevolleygym game. Players defend
their regions while throwing the ball on the opponent’s side hoping that the ball hits the
floor. However, the additional axis brings new features to the physical structure of the
game.

1. Observation space

Using Webots, there are many ways to represent a player’s observations:

1. Camera: Each slimebot has a camera that returns real-time pixels of the camera view.
A camera is an object that can be paired with a mobile robot, when the robot moves
the camera perspective moves as well. This approach is more realistic as it makes the
environment state partially observable for each agent. Another option could be to
set the camera unpaired with the robot and keep it in a static position somewhere in
the 3D scene. The Camera uses the Emitter Receiver scheme to transfer information
to the scene’s global supervisor. This means that the camera must be provided with
an Emitter device to send data to the global supervisor Receiver device to decode
the message received from the Camera. However, this requires a bit more software
engineering.

2. State observation: The state observation keeps track of the (x, y, z) coordinates of
both position and velocity of all mobile objects present in the 3D scene. The length
of the list will be n× 6 with n the number of mobile objects in the 3D scene. In a
single trainer scenario the observation will be a list of size 18 and In a collaborative
scenario of 2 agents, each agent’s observation will be a list of size 30 because we will
have a total of 4 agents and 1 ball in the environment.

3. Distance sensors: The distance sensor detects objects near the sensors given a radius
of sensitivity. We did not use it in our experiment, but we believe that it may be a
realistic method of observation as real robots can have distance sensors.

In this project, we use state observation to train agents. Because of its simplicity to set
up and low expense in computation. It also does not require running the training with the
simulator. The training can be run with a command line, and it also offers the possibility
to run training in parallel.

2. Action space

The additional axis brought two more basic actions in the action space. The game has
now 5 basic actions: forward (x-axis), backward (x-axis), left(z-axis), right(z-axis), and

Stellenbosch University https://scholar.sun.ac.za

7.4. Slimebot Volleyball 70

Table 7.1: Comparison between Slimevolleygym and Slimebot Volleyball Environments

Slimevolleygym Slimebot Volleyball

Continuous space Continuous space
2D 3D
Stationary Can be stationary or non-stationary
6 actions 18 actions
Single competitive Multi-agent competitive scenarios
Lasts maximum 3000 timesteps Lasts maximum 3000 timesteps

jump(y-axis). In this scenario, 3 actions at most can be combined as long as there is no
contradiction between actions6. We used a one-hot encoding representation to encode each
action as a list of 5 elements, where 1 means that the action is active and 0 means that
the action is nonactive. We have the following one-hot encoding for the basics actions:

• forward : [1, 0, 0, 0, 0]

• backward : [0, 1, 0, 0, 0]

• jump : [0, 0, 1, 0, 0]

• right : [0, 0, 0, 1, 0]

• left: [0, 0, 0, 0, 1]

The additional actions can be set by doing an element-wise addition of lists of combined
actions. For example:

forward-jump-right = [1, 0, 0, 0, 0] + [0, 0, 1, 0, 0] + [0, 0, 0, 1, 0]
= [1, 0, 1, 1, 0]

The overall number of possible actions is 18, which means the size of the action space is
18.

7.4.2. Environment key attributes

In this section, we give an overview of functionalities of relevant functions and variables of
the environment. The environment is by default dynamic along the z−axis that we refer
to as the depth of the game scene. In other words, the depth of the game area can vary
values in the range [0, 24] during the training. The length (x−axis) and height (y−axis)

6Combining left and right doesn’t make sense because they will cancel each other out, same for as
combining forward and backward.

Stellenbosch University https://scholar.sun.ac.za

7.4. Slimebot Volleyball 71

are static and have both maximum values of 48. The default incremental learning process
in the environment consists of starting the training with a small depth and incrementing
it progressively until it reaches the maximum value.

The structure of the environment dynamics is mainly managed by a given class WORLD,
whose instance can be accessed with the command env.world. This class has special
attributes and functions such as:

1. setup: Function that initializes the game environment structure, especially the depth
(z−axis) at the beginning of the training or an evaluation. It receives a special
parameter init depth which is the depth of the environment at the beginning of the
training.

2. increment world: Function that performs the increment of the environment MDP
during training. This means the size of the game space will increase according to the
z−axis. In addition to making the environment wider, it also increases the speed of
the ball along the z−axis7.

3. step: Represents the incremental step discussed in section 6.4. It is a parameter
that decides how many units of the current depth should be incremented. It is a
floating point and every time the function increment world is called, the depth of
the environment grows for step units:

world.depth← world.depth+ world.step (7.1)

as long as the following conditions are respected:

world.depth+ world.step ≤ world.max depth (7.2)

4. increment: a Boolean variable that indicates if the training will be normal or
incremental. It has the value Fasle by default, which means the training starts
directly with the maximum depth of the environment.

5. stuck: a Boolean variable that freezes the increment option during the training. If
set to True, the selected initial depth will stay constant even if the agent surpasses
the default performance threshold.

6. depth: Represents the game area along the z−axis direction, it is the only dynamic
parameter of the environment structure. No mobile object can go beyond the area
bounded by the current depth.

7The ball speed along the z−axis moves proportionally to the current depth.

Stellenbosch University https://scholar.sun.ac.za

7.4. Slimebot Volleyball 72

There are other variables, functions, and classes in the game implementation such as
INCREMENT THRESHOLD which indicates the average performance score from which
the depth can be incremented. We provide a link in [9], for more details about the
implementation.

7.4.3. Scenarios

The game comes with two scenarios:

Figure 7.4: Illustration of two different scenarios of the slimebot volleyball game. (a)
competitive scenario, where a single agent learns to defend its area; (b) cooperative-
competitive scenario, where 2 agents collaborate to defend the same area.

• Single agent: The first scenario is similar to the slimevolleygym scenario, there are
just two players in the game: The yellow player represents the training agent that
aims to learn the game. The blue player represents the opponent that the yellow

Stellenbosch University https://scholar.sun.ac.za

7.5. Summary 73

player learns to defeat. In the Self-Play training mode, the blue player can be the
real-time version of the Yellow player or the best recent copy of the yellow player.

• Cooperative agents: The second scenario is similar to the first scenario, except for
the fact that each side is a team of two players who have to collaborate to defeat
the other team. This scenario is more challenging because agents must avoid the
ball touching the ground on their side while avoiding bumping into each other at
the same time.

The structure of the game area allows the implementation of more than two agents per
team. But this would have higher computational requirements.

7.4.4. Pre-trained agents

The game comes with a trained PPO algorithm that solved the game with Incremental
Learning. We selected the PPO algorithm because it is suitable for an environment
with continuous state or/and action spaces. In addition, it has been successful in the
slimevolleygym environment [10]. The game comes also with pretrained MAPPO agents,
which is a team of two independent PPO algorithms that are trained to collaborate
incrementally to play the game.

7.5. Summary
In this chapter we gave an overview of the environment we used for our experimental
evaluation. We discussed the OpenAI Gym library, which is a toolkit that brings a
standard paradigm to develop RL environments for experiments. We also mentioned
that the environment we used is built on top of the slimevolleygym environment [10],
which is a single competitive volleyball game in a 2D environment, and we specified
that even if the experimental environment allows pixel observation, we used the state
observation technique because of implementation flexibility and the possibility of running
the environment without the simulator Webots.

We also gave an overview of the functionalities of the experimental environment that
permit incremental learning. We mentioned that the environment comes with a single
agent and cooperative multi-agent scenario. However, unlike the slimevolleygym game,
the environment does not have experts that can be used as baselines in both single and
cooperative scenarios. We used Self-Play Learning in both situations to train agents. We
also associated Reward Shaping in the Multi-Agent scenario. We discuss more of this in
Chapter 8.

Stellenbosch University https://scholar.sun.ac.za

Chapter 8

Experimental Evaluation

Recall the objective of this work. We attempt to train a team of two independent PPOs
to solve a complex task in a volleyball game in a 3D environment. Before diving into
it, we first start by addressing the challenge we had to train a single PPO agent to
solve the game in a single competitive scenario. We used the PPO2 implementation of
OpenAI stable-baselines [32] in our experiment. We tried training the PPO agent in the
environment from scratch, but it failed because the environment was too challenging. We
tried tuning some hyperparameters such as the learning rate, the discount factor, the
experience replay batch size per update, the number of epochs per update, and others. But
the agent failed to train. In the first section of this chapter, we discuss how we managed to
train a PPO agent in the environment by incrementing gradually the environment MDP.
After that, we discuss, in the second section, how we applied the paradigm of Reward
Shaping [68, 69, 70, 71] to train the team of 2 independent PPOs to collaborate and
incrementally solve the environment.

8.1. Single Agent Evaluation
As mentioned in section 7.4, our experimental environment is a transposition of the
slimevolleygym environment from 2D space into 3D space. Experiments in [10] have shown
that the PPO agent has successfully solved the slimevolleygym game from scratch by
reading a 2D coordinate system in both supervised training1 and Self-Play [29] training.
We can see in Figure 8.1 (a) that the agent solved the game before 3 million timesteps of
training horizon2 in Self-Play training. As shown in Figure 8.1 (b) the average reward
per episode was not suitable to measure the training progress. This can be explained by
the fact that slimevolleygym is a zero-sum game and with the Self-Play learning both
opponents’ expertise are almost in equilibrium at every timestep. Hence, the average
return will keep fluctuating around 0 during the training.

1The slimevolleygym game has a built-in expert that helps to teach other agents to solve the game
2The agent was training in a loop of repeating games.

74

Stellenbosch University https://scholar.sun.ac.za

8.1. Single Agent Evaluation 75

(a)

(b)

Figure 8.1: Training progress of a PPO algorithm in the 2D environment slimevolleygym
using Self-Play training: (a) Training progress of average episode length. (b) Training
progress of average episode reward

We used the experiment in Figure 8.1 as a reference to train the PPO agent to solve the
3D version of the game. However, the slimebot volleyball environment was too challenging
for the PPO agent. We assumed that the additional dimension increased the state space
size, which made the transition between states a more complex problem. In this section,
we discuss how we successfully train the PPO agent to solve the environment despite the
increasing complexity. Recall the result in Figure 8.1, we use the average episode length
as the performance indicator during the training.

8.1.1. Training in a Stationary Environment

In this series of experiments, the depth of the environment stays static during the whole
training horizon. We tried different settings: 3D space (the full game environment), 2D
space (a mapping of the 3D environment in 2D), shrunk 3D space (The depth of the
environment is a positive number less than 24), and trained the agent for a maximum

Stellenbosch University https://scholar.sun.ac.za

8.1. Single Agent Evaluation 76

training horizon of 20 million timesteps.

1. Training in the full Environment

We kept the default environment size and trained the agent for 20 million timesteps. As
shown in Figure 8.2, after more than 20 million timesteps the agent was not showing
progress. We tried some hyperparameter tuning such as the learning rate, the discount
factor, and the replay buffer size. But the agent did not show any particular progress. We
assumed that the following reasons were challenging the agent to solve the 3D environment:

Figure 8.2: Training from scratch of a PPO algorithm in the Slimebot Volleyball environ-
ment. We can notice that after more than 20 million timesteps the agent is not showing
particular progress.

• Sparsity: Both 2D and 3D versions are sparse reward problems. However, the size
of the state space in the 2D version gives a higher probability of the agent hitting
the ball and generating a positive reward during an episode. In the 3D version, the
state space is larger than in the 2D version such that the probability of generating a
positive reward is low.

• Randomization: To improve its policy the agent needs to notice that hitting the ball
and returning it to the other side is good. This starts when the agent occasionally
collides with the ball. However, at each initialization of a match, the ball is launched
randomly on the learning agent’s side. With the large state space, the probability
that the ball hits the agent and gets back to the other side is low.

• The z-axis: In the 2D version when the ball collides with the agent it can only move
forward or backward, depending on the collision direction. With the full structure,
the ball can also move to the left or right, which brings more complexity to the
possible orientation the ball can take after a collision.

Stellenbosch University https://scholar.sun.ac.za

8.1. Single Agent Evaluation 77

We thought maybe this is an unsolvable problem by transposing the same rule and structure
from 2D into 3D. Thus, we decided to limit the 3D version to a 2D projection in an attempt
to simplify the environment sufficiently. This means that we did a projection of the 3D
coordinate onto a 2D coordinate and investigated if the agent could solve the game.

Training in a 2D Projected Space

We did a mapping of the XY Z-coordinates system into the XY -coordinate system by
freezing the z-axis. In other words, the agent observes 3 coordinates but the z coordinate
is set to 0 at every timestep for both location and speed of all objects in the game scene.
As shown in Figure 8.3, mobile objects can only move along x(the length) le and y(the
height) axes.

Figure 8.3: Top view illustration of the environment with a depth z = 0. Agents can
only move inline and cannot access blurred areas in the figure.

The following command is given to the environment before the training starts:

• env.stuck = True: To ensure that the depth will stay stationary during the training
and evaluations.

• env.world.setup(*,init depth = 0)3: Setting the initial depth to 0, with the previous
parameter set to True ensures that the third coordinate will stay at 0 at every
timestep for all mobile objects in the game scene.

This setup responded as expected. The 3D version with a frozen z−axis responded similarly
to the 2D version. As shown in Figure 8.4, the PPO agent started playing the game
optimally before the 3 million timesteps of the training horizon. This confirms that the
full environment space is too large for the agent to adapt.

3The * means that there are other parameters passed to the function.

Stellenbosch University https://scholar.sun.ac.za

8.1. Single Agent Evaluation 78

Figure 8.4: Training of a PPO agent in a 2D projection of the slimebot volleyball
environment space. The agent reads 3 coordinate systems but in the form of (x, y, 0). We
can notice that before 4 million timesteps the agent was already playing optimally the
game.

To confirm that the state space size of the 3D version is the problem, we investigated
training the agent with a shrunk 3D environment, by making the depth (z−axis) of the
game area small enough to allow the agent to move in all directions4. We discuss the
result of this new experiment in the next section.

2. Training in a Shrunk 3D Space

Experiments in previous sections gave us the assumption that the large MDP of the 3D
environment is the reason why the agent fails to solve the game. We tried a different
experiment by shrinking the depth of the original environment. The agent has a diameter
of size 3 units, we made the 3D area small enough to allow the agent to move in all
directions and be able to experiment with the full action space. We experimented with a
depth of 4 units5. This means that the z coordinate for both location and speed can be
different from zero and mobile objects are not allowed to go beyond the area bounded by
the depth. Figure 8.5 illustrates a shrunken 3D environment with a depth z = 12

In this setup, the agent moves along the z−axis with the same speed as with the x−axis.
However, the ball speed along the z−axis is constrained to be proportional to the current
size of the depth of the game space. The speed of the ball along z−axis, noted ball.vz in

4In 2D the agent can only move forward, backward and up. In 3D the agent can also move left and
right.

5recall that the maximum depth is 24 units.

Stellenbosch University https://scholar.sun.ac.za

8.1. Single Agent Evaluation 79

Figure 8.5: Top view illustration of a shrunk environment with a depth z = 12. Agents
can move in the 3D space but can not access blurred areas in the figure.

the implementation is given shown in equation 8.1.

ball.vz ← ball.vz × world.depth

world.max depth
(8.1)

In the case of depth = 4 ball.vz will be computed as follows:

ball.vz = ball.vz × 4
24

= ball.vz

6

This means that every time a vector speed (vx, vy, vz) is computed by the game dynamics,
vz is divided by 6 before updating the ball position. For example, in the full game
environment, the ball can move along z with a maximum speed of 22.5 units per timestep,
proportionally to an environment of depth 4 the ball can only move along z with a
maximum speed of 3.75 units. This trick made the ball move correctly along the z−axis
according to the given depth.

After experiments, the agent was able to solve the environment with a depth of 4. This
confirms that the state space with a depth of 24 is too wide to be solved. We also
tried different values of depth such as 6, 8, etc., and noticed that the agent solved those
environments. However, Figure 8.6 shows that the larger the depth the longer it takes the
agent to solve the game. We can see in Figure 8.6 that z = 4 took longer to be solved
than z = 0, and the same for z = 6 compared to the two former depths. This shows that
solving the game becomes more challenging as we select a wider depth until it could not
be solved by the agent. As shown in Figure 8.6, after 20 million timesteps, with z = 8 the
agent seems to make a very small amount of progress.

Stellenbosch University https://scholar.sun.ac.za

8.1. Single Agent Evaluation 80

Figure 8.6: Training evolution of a PPO agent with different depths. We can notice that
the higher the depth is the longer it takes to solve the task.

3. Experiment Summary

Based on the result of the experiments we concluded that:

• The Slimebot Volleyball is an environment with large state space, and according to
the game rule and randomness, the game MDP is hard to solve even if the state is
not partially observable6.

• Reducing the size of the environment dynamic makes the game solvable.

• It is imperative that the reduced environment be sufficiently uncomplicated to
optimize the likelihood of adaptation. If this condition is not met, the agent may
continue to encounter difficulties in resolving the game.

Now we can confirm that the size of the slimebot volleyball environment is the obstacle
blocking successful training, it became necessary to identify an alternative approach to
overcome this obstacle. Fortunately, Chapter 6 introduced the concept of Incremental RL
which has the perspective of addressing situations where target tasks are difficult to solve
from scratch. We broke down the problem into a sequence of sub-problems and instruct
the agent to learn progressively how to solve increasingly complex MDPs with the same
objective function. We provide details about this experiment in the following section.

6The agent has all relevant information of states using state observation.

Stellenbosch University https://scholar.sun.ac.za

8.1. Single Agent Evaluation 81

8.1.2. Training with Incremental MDPs

Experiments in the previous section have shown promising avenues for further investigation.
The PPO agent can play the game using 3D coordinates as long as the game space is not
too large. In this section we discuss the experiments performed to allow the agent to solve
the full environment MDP using Incremental Learning.

As discussed in Chapter 6 we decided to use Incremental Learning to break down the main
task into a sequence of sub-tasks where the first task in the sequence is the simpler and the
last task is the most difficult. We initialize the training with a shrunken 3D space and set
up a performance threshold. Once the agent reaches the threshold score in an evaluation,
the depth increments according to a given incremental step. hence, the agent will have
a new problem to solve where it will start experiencing unseen transition and will have
to control a ball moving faster along the z-axis than previously(as the ball speed is in
proportion with the current depth along the z−axis). The expectation is to see the agent
adapting to the new transitions by leveraging the skill acquired before the increment. We
notice the following phenomena:

• If the agent can adapt to the new states that it did not experience initially, we add
another portion of the environment and repeat the process until the full environment
is mastered or until the agent could not adapt anymore.

• If the agent can not adapt to the additional states, this could mean that the increment
was too wide to encourage adaptation and we would decrease the incremental step.
Otherwise, it would mean that Incremental Learning is not a solution for this
particular problem.

We customized the OpenAI stablebaselines [32] implementation of PPO2 by adding some
features to track the agent performance during the training. We followed the same training
logic as in the previous section; the agent can move in all axes without any constraint, but
the ball speed is limited as in equation 8.1.

In section 6.4 we have seen that the success of the incremental learning relies on three
parameters: the initial task T0, the performance threshold δ and the incremental step η.
Before discussing the detail of the experiment, we start by giving an overview of how those
parameters are defined in our specific case.

• Initial Task T0: The previous experiment showed that training can be initiated
with a shrunk 3D environment. Even though using the Projected 2D space as the
initial task has the likelihood to quickly initiate the knowledge acquisition. In the
implementation, T0 is determined by a parameter called initial depth. The highest

Stellenbosch University https://scholar.sun.ac.za

8.1. Single Agent Evaluation 82

successful initial depth we tested is 6. However, we would not determine if it is the
maximum that the agent can start training with. For simplicity, we considered the
z = 0 as the initial task in the experiment.

• The Incremental Threshold δ: At the beginning of the training the average episode
length fluctuates around 450. During the experiment, we observed that once the
average episode length reaches 480, the agent starts adapting to the game. Hence,
we can choose δ ∈ [480, 3000] as a performance threshold value for the increment.

We used the training-evaluation paradigm, this means that the increment occurs
only if the agent beats the threshold during the evaluation.

• Incremental Step η: As we are starting with a depth of 0, the incremental step can
take a float value in a range of (0, 24]. We used a static incremental step in our
experiment. This means at each increment, the same quantity is added to the current
depth. In the implementation, the incremental step is computed by the environment
once it receives the number of times it should increment.

1. Experiment overview

We chose T0 to be the simplest possible environment with z = 0. As discussed in Section
6.4, we investigated the two other parameters δ and η to see if they influence one another.
We fixed the step size and tried 4 different threshold values: 500, 800, 1500, 2500, to observe
the evolution of the incremental training. For each combination of step size and threshold,
we tried experiments with 10 different seeds to have an overview of how both parameters
influence each other on average.

2. Performance Threshold δ = 500

We started our investigation by using a small incremental step of η = 1 as an initial
experiment. This means that the environment must be incremented 24 times to reach the
full environment space.

Figure 8.7 (a) shows that incrementing the environment MDP gradually is a viable approach
to solve the entire game. The 24 red diamonds on the graph tell us that the PPO agent
was able to adapt at each increment from depth 0 to depth 24 by adding 1 unit to the
current depth each increment. However, Figure 8.7 (b) shows us that incremental learning
is sensitive to the initialization of the agent’s parameters. We notice in (b) that the agent
was able to increment only 10 times in 20 million timesteps of training.

In both experiments, we notice that after the fourth increment, the average training length
drops down. This can be explained by the fact that the agent has a diameter of 3 so from

Stellenbosch University https://scholar.sun.ac.za

8.1. Single Agent Evaluation 83

(a)

(b)

Figure 8.7: Incremental training progress with two different seeds. (a) successful adapta-
tion within 20 million timesteps. (b) slow adaptation within 20 million timesteps.

z = 0 to z = 3 the agent can only move along a line. The exploration of the full action
space starts with depth values greater than the agent’s diameter (z = 4).

Based on the two results in Figure 8.7 we saw the importance of using random initialization
to have an overview of the agent average adaptability with the given threshold and
incremental step. We used 10 different seeds and plotted the average performance along
with the standard deviation. We repeated the same experiment with bigger incremental
steps to see if the agent will still be able to adapt to solve the full environment.

We observe some interesting results in Figure 8.8.

• (a): For step size η = 1, we notice that on average the agent can adapt incrementally
to the full environment. However, the standard deviation is very wide in almost every
timestep. This means that for some randomization the agent can increment quickly
and solve the environment MDP, and for others, adaptations to the increment are

Stellenbosch University https://scholar.sun.ac.za

8.1. Single Agent Evaluation 84

(a)

(c)

(b)

Figure 8.8: Incremental training progression of 10 different seeds with δ = 500. (a)
incremental step η = 1; (b) incremental step η = 4; (c) incremental step η = 12

very slow or not effective in 20 million timesteps.

• (b): For step size η = 4 the environment has to be incremented 6 times. We notice

Stellenbosch University https://scholar.sun.ac.za

8.1. Single Agent Evaluation 85

in the plot that with a bigger step, the beginning of the adaptation occurs very late
for all the different initializations. However, the agents still adapt on average. We
still notice a bigger standard deviation compared to 8.8 (a). This means adaptation
is slower on average for η = 4 than η = 1.

• (c): For step η = 12, the experiment confirmed the assumption made in section 6.4
that a big incremental step can have a negative influence on the incremental learning
process. on average, 20 million timesteps were not enough for the agent to adapt
after the first increment. However, we point out the small average change after 16
million timesteps, this means that at least one of the trained agents started at a
very late stage to adapt after the first increment.

Figure 8.9: Comparison between three different incremental step sizes, and with the
same threshold δ = 500.

In Figure 8.9 we plotted the three average performances of Figure 8.8 in the same plot to
have a better view of the performance among the 10 different initialization. It is evident
from this instance that the incremental step of η = 1 exhibits a superior rate of adaptation
relative to the other two incremental steps.

To investigate more, we repeat the same experiment with three different threshold perfor-
mance thresholds.

3. Performance Threshold δ = 800

We did another experiment by increasing the performance threshold. We used the same
initialization to investigate the average adaptation of a larger threshold with the same
step sizes. The results were similar to the previous experiment with δ = 500. We notice in
Figure 8.10 that:

• (a): For step η = 1 the adaptation on average is faster and has a small standard

Stellenbosch University https://scholar.sun.ac.za

8.1. Single Agent Evaluation 86

(a)

(c)

(b)

Figure 8.10: Incremental training progression of 10 different seeds with δ = 800. (a)
incremental step η = 1; (b) incremental step η = 4; (c) incremental step η = 12.

deviation compared to Figure 8.8 (a). We notice how the magnitude of the standard
deviation reduces over an extended duration. this means all initialization has
been able to increment 24 times and started performing similarly before 20 million

Stellenbosch University https://scholar.sun.ac.za

8.1. Single Agent Evaluation 87

timesteps.

• (b): For step η = 4 the progress is almost the same as (a) but the standard deviation
is bigger in early training timesteps. This means there was a slow adaptation for
some initialization. However, agents performed much better than in Figure 8.8 (b).

• (c): For step η = 12 the shape of the average curve and standard deviation show
that despite a very big increment, some agents can adapt. We show in the appendix
that some agents can reach z = 24 before 20 million timesteps.

Figure 8.11: Comparison between three different incremental steps and with the same
threshold δ = 800.

In Figure 8.11 we also plotted the three averages performance of Figure 8.10 in the same
plot. We notice η = 1 has early adaption on average. However, the performance of η = 4
starts overlapping with η = 1 after some training steps.

4. Performance Threshold δ = 1500

In 8.12 the results of the experiment with a threshold of 1500 is shown:

• (a): For η = 1 the incremental adaptation is fast on average with a small magnitude
of standard deviation. There are no major differences with Figure 8.10 (a), except
that here the standard deviation stays small from the outset.

• (b): With step η = 4 the adaptation is faster with small standard deviation comparing
to 8.10 (b).

• (c): For η = 12 we notice that there is better performance on average compared to
Figure 8.8 (c) and Figure 8.10 (c). However, the standard deviation is large, which
means some initializations struggled.

Stellenbosch University https://scholar.sun.ac.za

8.1. Single Agent Evaluation 88

(a)

(c)

(b)

Figure 8.12: Incremental training progression of 10 different seeds with δ = 1500. (a)
incremental step η = 1; (b) incremental step η = 4; (c) incremental step η = 12.

For δ = 500 and δ = 800 we see that step η = 1 performed better than η = 4 on average.
However, in Figure 8.13, they overlap on average. We also see how the average performance
with η = 12 is almost the same as the two other incremental steps.

Stellenbosch University https://scholar.sun.ac.za

8.1. Single Agent Evaluation 89

Figure 8.13: Comparison between three different incremental step sizes and with the
same threshold δ = 1500.

5. Performance Threshold δ = 2500

2500 is a high threshold for the game, close to the optimal episode length of 3000. Figure
8.14 show the results of experiment:

• (a) For δ = 1 the result is similar to the results shown in Figure 8.12 (a).

• (b) For η = 4 we notice the way the mean episode length drops down after the first
increment. However, the result is similar to the results shown in Figure 8.12 (b)

• (c) For η = 12 the average performance is also similar to the results in Figure 8.12
(c).

In Figure 8.15 we can see how the three incremental steps overlap especially in early
training. Although η = 12 underperformed a little bit under an extended duration
comparing the two others.

There is a large gap between the threshold of 1500 and 2500 but the experiment results are
fairly similar on average. In the following section, we summarize the overall incremental
experiments.

6. Experiment summary

We observed both expected and unexpected results during the experiments. We observed
that Incremental Learning allowed the PPO agent to solve the full environment. Based on
the results of the experiments we made the following conclusions:

• The experiment results showed the effectiveness of Incremental Learning as discussed
in Chapter 6.3. Environments with large state spaces can be solved by gradually

Stellenbosch University https://scholar.sun.ac.za

8.1. Single Agent Evaluation 90

(a)

(c)

(b)

Figure 8.14: Incremental training progression of 10 different seeds with δ = 2500. (a)
incremental step η = 1; (b) incremental step η = 4; (c) incremental step η = 12.

increasing the size of the environment space MDP.

• The results shown in Figure 8.7 (a) confirm the discussion in Section 6.4 regarding

Stellenbosch University https://scholar.sun.ac.za

8.1. Single Agent Evaluation 91

Figure 8.15: Comparison between three different incremental steps and with the same
threshold δ = 2500.

the effectiveness of using a threshold score in the incremental process. For a fast
learning experience, agents can target a sub-optimal policy to perform an increment.

• Results in Figure 8.8 (c) confirms the discussion in Sections 6.4 and 6.4 regarding
the negative transfer effect of using a small threshold and a wide incremental step.
However, Figure 8.12 (c) and Figure 8.14 (c) show that with a high-performance
threshold, the training is less sensitive to big incremental steps.

• Figure 8.15 shows that with a high-performance threshold, big incremental steps
have slow adaptation on average. However, selecting the smallest as possible does
not guarantee the best training experience. For example, we can see in the plot that
steps 1 with 24 increments and step 4 with just 6 increments have similar average
performances such that we can not conclude which of the two is optimal.

We have been able to apply Incremental Learning to our problem. The agent had two
incremental problems to solve, the opponent was getting stronger each time a new best
model was saved, and the environment was getting more complex each time a performance
threshold was reached. The overall training has shown that there is no optimal combination
of (δ, η) that results in the best training experience because the model initialization has
a role to play in the adaptation ability of the agent. But we can conclude that a high-
performance threshold may lead on average to more efficient training regardless of the
initialization.

We have shown the success of Incremental RL when training a single agent. However, the
main objective is to train a team of Independent PPO agents to solve the 3D environment
in a cooperative scenario. In the next section, we present experiments using Incremental
Learning and Self-Play in a challenging Multi-Agent setting.

Stellenbosch University https://scholar.sun.ac.za

8.2. Multi-Agent Experiment 92

8.2. Multi-Agent Experiment
Recall the objective of the project was to explore the training of two independent agents
collaborating as a team in a dynamic environment. Referring to Chapter 2.2, we customized
a team of two independent PPO agents to collaborate in the slimebot volleyball game
environment. As an initial experiment, we start by training the team in 2D similarly with
the single agent in section 8.1.

8.2.1. Training in a 2D Projected Space

Similarly to the experiment Section 8.1, agents can only move inline, and the z−axis is
frozen. We performed two different experiments; (1) teammates optimize the same objective
function; (2) The reward function is altered generating individual reward functions.

1. Common Objective Function

In this scenario, the game keeps its standard structure similarly to the single-agent version.
The two agents share the same reward function and the same lives, and they are playing
in a Self-Play mode. This means each team member has an equivalent in the adversarial
team.

The result in Figure 8.16 (a) showed that In fewer than 20 million timesteps, the PPO
team working independently successfully achieved an optimal episode length solution for
the 2D game. However, in Figure 8.17 (a) we notice a big difference between the number
of times both agents hit the ball on average. The number of times the blue agent collides
with the ball decreases significantly while increasing for the orange agent. This means the
orange agent is the one generating progress for the team, and the blue agent is probably
stuck in a corner of the game scene as illustrated in the section A. Figure 8.17 (b) shows
that, how many times on average each agent was leaving its initial corner to visit the
teammate’s corner during the training. We can notice that the graph of the blue agent
vanishes to zero over time. This means the blue agent has stopped visiting the orange
agent’s corner and stayed stuck in its corner. However, the orange agent was still visiting
the blue agent’s corner to follow the ball. This means the team has fallen into the situation
of selfish and lazy agents that we discussed in Chapter 2.2, where the blue agent is lazy
and the orange agent is selfish.

We can not say that this is a failure because in real-life scenarios members of the same
team do not always have the same level of expertise. There is often at least one member
whose entire team will feel the impact of their absence. However, this does not fulfill our
objective of having cooperative training. We introduce in the next section an alternative
to address the problem and motivate equity of training within the team.

Stellenbosch University https://scholar.sun.ac.za

8.2. Multi-Agent Experiment 93

(a)

(b)

Figure 8.16: Training progress of a team of two Independent PPOs in 2D. (a) The mean
episode length. (b) The reward function is the same for both agents as they are sharing
the same objective function. Both agents’ graphs are overlapping in the plot.

2. Shaped Reward Function

In Section 2.3 we discussed that Reward Shaping is a good approach in a multi-agent
system to ensure credit assignment for individual behavior. We used a simple additive
version of Reward Shaping that assigned a particular objective function for each team
member. Figure 8.18 gives an illustration of how the environment reward can be altered
to ensure credit assignment, where the team area in the game scene is split into 2 regions,
and each region is the responsibility of one team member.

We tried a weak reward shaping7 in the experiments. In addition to the main environment
reward, each agent receives a bonus of 0.001 if it stays in its region of the game scene, or a
penalty of 0.01 if it goes into the teammate’s region. Additionally, an agent receives a
penalty of 0.05 if they collide with their teammate while being in the teammate’s region.

7Weak because it barely changes the main environment reward.

Stellenbosch University https://scholar.sun.ac.za

8.2. Multi-Agent Experiment 94

(a)

(b)

Figure 8.17: Training progress of a team of two Independent PPOs in 2D. (a) The
average number of times they collide with the ball during an episode. (b) As agents are
placed in line, one in the front and the other one at the back, the plot shows how many
times on average they follow the ball up to the teammate’s side.

1 -1 0 1 0 -1

(a) (b)

agent 1 agent 2 agent 1 agent 2

Figure 8.18: Reward shaping illustration, the numbers below the game area indicate the
agents’ reward when the ball hits the ground:(a) Reward of Agent 1 if the ball hits the
ground. (b) The reward of Agent 2 when the ball hits the ground.

The experiment results in Figure 8.19 (a) show that the team has been able to solve the
game close to the optimal episode length within 20 million timesteps, and in Figure 8.19

Stellenbosch University https://scholar.sun.ac.za

8.2. Multi-Agent Experiment 95

(b) observable dissimilarities in the shapes of the average rewards of the two agents can be
attributed to differences in their respective reward functions. We notice the effectiveness
of the approach in Figure 8.20 (a) where both agents are equitably hitting the ball, this
means that they are equivalently contributing to the team’s performance. Furthermore,
8.20 (b) shows that both agents lose interest in spending too much time on the teammate’s
region. This shows that the altered reward functions helped demotivate the lazy and
selfish phenomena.

(a)

(b)

Figure 8.19: Training progress of a team of two Independent PPOs in 2D with a shaped
reward function. (a) The mean episode length. (b) The average reward for the respective
agent.

3. Experiment summary

The are many forms of reward shaping that we did not investigate to make the team
collaborate better. We just illustrated one among multiple possibilities. We have shown
that the team of independent PPOs can collaborate to play the game in 2D almost perfectly.
We thus decided to take the problem further by training them in 3D using Incremental

Stellenbosch University https://scholar.sun.ac.za

8.2. Multi-Agent Experiment 96

(a)

(b)

Figure 8.20: Training progress of a team of two Independent PPOs in 2D with a shaped
reward function. (a) The mean number of timesteps agents collide with the ball during
an episode. (b) The plot shows how many timesteps on average each agent follows the
ball up to the teammate’s region.

Learning (as in the single agent experiment). The experiment results are discussed in the
next session.

8.2.2. Training in Incremental Environment

Recall the result of the experiments in Section 8.1 which showed that the PPO algorithm
can incrementally learn to solve environments with increasing MDP. Referring also to
the previous section result, where Independent PPOs solved the 2D version of the game.
We discuss in this section the results of experiments using Incremental Learning in a
multi-agent setting.

In this series of experiments, the challenge is more difficult than it has been in all previous
experiments. Each team member has to collaborate with a non-stationary teammate in a

Stellenbosch University https://scholar.sun.ac.za

8.2. Multi-Agent Experiment 97

non-stationary environment with a non-stationary opponent team. We present results of
mixing Multi-Agent RL, Reward Shaping, Incremental RL, and Self-Play Learning in the
same experiment.

1. Common Objective Function in 3D

Recall the experiment in Section 8.2 which generated the lazy and selfish agents in 2D.
We repeat the same experiment of a shared objective function along with Incremental
Learning to investigate each team member’s behavior in an incremental scenario. For this
experiment, we used a threshold of δ = 1200 and an incremental step η = 1.

(a)

(b)

Figure 8.21: Incremental Training progress of a team of two Independent PPOs in 3D.
(a) The mean episode length with indications of increment. (b) The average reward signal
is the same for both agents.

As expected, Figure 8.21 shows a similar result as Section 8.2. Although the team managed
to reach the depth of 24, we can see in 8.21 (a) that the team didn’t manage to approximate
the maximum average episode length. The team performance fluctuates between 1500 and
2000 after 40 million timesteps. In (b) the fluctuation of the reward was expected to be

Stellenbosch University https://scholar.sun.ac.za

8.2. Multi-Agent Experiment 98

Figure 8.22: Incremental Training progress of a team of two Independent PPOs in 3D
according to the average number of times they collide with the ball per episode.

centered around 0, as we are in a Self-Play training mode. However, it stayed lower and
barely got close to zero. In Figure 8.22 we notice that the blue agent was lazy and the
orange agent was selfish during the training. The orange agent was the one generating the
increment.

As the results were not unexpected, we proceeded to examine the efficacy of incorporating
reward shaping into the training process.

2. Reward Shaping in 3D

We used the same reward shaping setting of the experiment in Section 8.2.

Z > 0

Z < 0

z = 12

z = -12

0 x = 24x = -24

Figure 8.23: Top view illustrating a subdivision of the 3D environment applicable to
reward shaping.

However, the team area is divided into two regions The agents are split into two regions
according to the z−axis8, as shown in Figure 8.23 of the team member is responsible for

8In Webots the y−axis is the height.

Stellenbosch University https://scholar.sun.ac.za

8.2. Multi-Agent Experiment 99

the area with z < 0 and the other is responsible for the area with z ≥ 0. Both agents
receive an additional reward of 0.01 if they stay on their respective sides, and a penalty of
0.001 if they step on the teammate’s area. They also get an additional penalty of 0.05 if a
collision occurs in the teammate’s region.

(a)

(b)

Figure 8.24: Incremental Training progress of the average episode length and reward of
two Independent PPOs in 3D with δ = 1200, η = 1 and using reward shaping. (a) The
mean episode length with the indication of increment. (b) The average reward signal is
the same for both agents.

Let’s start with Figure 8.25 (b) which shows how quickly both agents stopped moving to
the prohibited areas. And Figure 8.25 (a) shows that on average both agents kept the
same performance in terms of collisions with the ball. Figure 8.24 (b) shows that their
reward was similar throughout the training horizon. However, in Figure 8.24 (a) we notice
that although the team managed to increment up to the depth of 24, after reaching the
full environment space, the average lifetime in the game didn’t progress up to the optimum
with a training horizon close to 200 million timesteps. It stayed below the average. We
assume that agents needed a longer training horizon according to the progress of the

Stellenbosch University https://scholar.sun.ac.za

8.2. Multi-Agent Experiment 100

(a)

(b)

Figure 8.25: Incremental Training progress of two Independent PPOs in 3D with δ = 1200,
η = 1 and using reward shaping (a) The average number of times they collide with the
ball per episode. (b) Shows how on average they move along the x-axis depending on
their initial position.

average episode length.

3. Experiment Summary

This series of experiments brought similar results to the experiments of the previous section.
We have seen that the team of PPO agents managed to play the game in the full 3D
environment. However, they could not make it to the optimal lifetime of the game. The
subplot (a) and (b) of both Figure 8.21 and Figure 8.24 show how unstable and noisy the
progress of the average episode length and average reward were along the training. This
can be explained by the non-stationary nature of the problem we mentioned in Chapter
2.2. Especially in the incremental experiment with Reward Shaping, it was challenging for
agents to adapt to the teammate’s behavior after each increment. The non-stationary was
not a problem in Chapter 8.2 because the environment dynamic was not as complex as it
was in the 3D case.

Stellenbosch University https://scholar.sun.ac.za

8.3. Summery 101

8.3. Summery
This chapter discussed the evaluation of experiments we did to achieve the project objective.
We experimented with cooperative training of independent PPO agents in a 3D volleyball
game. As an initial experiment, we investigated the ability of a single PPO agent to solve
the game environment in a single competitive scenario. However, the result in Section
8.1 showed that the task was complex to solve from scratch by the PPO agent. The
investigation in Section 8.1 showed that Incremental Learning is an effective approach to
solving the problem by gradually increasing the state space of the game while starting with
a small portion of the state space. Facing a lack of benchmark models in the environment,
we used Self-Play Leaning as a training paradigm with Incremental Learning. Furthermore,
we investigated the combined effects the performance threshold and the incremental step
have on the training. The results showed that their combined effects depend on the
initialization of the agent model. But we saw that the success of training is less sensitive
to a combination of a high threshold with a large incremental step brings.

Based on the result in 8.1 with the single agent scenario, we investigated in Section 8.2
on the training in a multi-agent setting. We investigated the 2D training as a testbed
experiment to observe collaboration in a simple scenario. The results showed that sharing
the same objective function generates a lazy and a selfish agent. However, altering the
original reward function permits improvement for each team member. Based on the
testbed result, we investigated the team’s ability to solve the task incrementally. The
results showed that with a shared objective function, the team managed to increment
to the full environment. However, it also generates a lazy and selfish agent, where the
selfish agent is the one generating the increment. It also showed that with appropriate
reward shaping both team members managed to increment to the full environment with
similar improvements. We should point out that in both incremental scenarios, the team
performance did not get close to the optimal average episode length after a very long
training horizon.

Stellenbosch University https://scholar.sun.ac.za

Chapter 9

Conclusion

In this thesis, we investigated the ability of Reinforcement Learning (RL) algorithms
to learn collaboration in a dynamic environment with continuous state space. The task
we aimed to solve is a cooperative volleyball game in 3D [9]. However, after observing
the failure of the Proximal Policy Optimization (PPO) algorithm to solve the game in
a single-agent scenario, we investigated applying Incremental RL [14, 15] as a learning
paradigm to solve the task in both single and multi-agent scenarios. We also refer to
additional techniques such as Self-Play Learning [29] because the experimental environment
lacks a benchmark expert to train agents with, and Reward Shaping [21, 22, 23, 24] which
is an effective approach to address issues such as the lazy and selfish agent phenomenon,
and sparse rewards of episodic tasks.

9.1. Summary
This project focused on the effectiveness of Incremental RL in solving problems with large
MDPs. We started by investigating the application of Incremental RL in a competitive
single-agent scenario. Our investigation showed that agents can learn a complex task by
starting simply and gradually increasing the difficulty of the task. Particularly, as discussed
in Section 6.3, the investigation showed agents can solve a large MDP, by breaking down
the MDP into a sequence of small MDPs where each previously solved MDP is included
in the next MDP in the sequence. This approach confirmed the discussion in 6.4, that
agents can learn sub-optimal policies on sub-task by referring to a performance threshold,
and still benefit from an optimal policy at the final and main task that generalizes over all
previous sub-tasks in the sequence.

Using a threshold to move between tasks in the sequence led us to investigate the influence
the selected threshold and the incremental step may have on the training. We assumed
that the confluence of the two parameters could potentially engender significant effects
on the training process. We investigated to see if there is an optimal combination that
expedites incremental learning. The experimental evaluation investigated in Section 8.1

102

Stellenbosch University https://scholar.sun.ac.za

9.2. Future Work 103

showed that there is no optimal combination between the threshold and incremental step
because each model initialization brings a particular training experience for the same
combination. However, we have concluded that a combination of a high threshold and a
large incremental step has a high potentiality of adapting to an increment.

We finally investigated the ability of a team of two PPOs to solve the environment using
Incremental RL. Agents in the team learned decentralized policies while sharing the same
objective function. The investigation in Section 8.2 showed that the team managed to
increment to the full environment. However, it generated a lazy agent stuck in a corner
and a selfish agent that quickly found the optimal behavior to generate positive feedback
for the team. Further investigation done in Section 8.2 showed that Reward Shaping is an
effective approach that permits efficient decentralized training. The experiments showed
that altering the original reward function can effectively motivate equitable improvement
among teammates.

9.2. Future Work
We were expecting optimal behaviors in the cooperative scenario. However, the team
just reached a sub-optimal performance in the game. We assume that the task was
more complex for each teammate, as the training process involved Incremental Learning
which requires each agent to adapt to a non-stationary environment and a non-stationary
teammate. We believe that employing a more rigorous experimental design can yield
superior outcomes in contrast to the ones that were observed. If time permitted we could
have tried the following methods:

• Turn-Based learning: We assume that keeping one team member stationary while
the other is training, and reversing the role according to a given condition, may
effectively encourage adaptation between teammates’ behavior.

• Prioritized experience replay: In our experiments, agents used the same historical
experience for their respective gradient updates. We assume that by including
individual Prioritized Experience Replay [113], discussed in Section 5.1, each agent
can benefit from relevant experience for individual efficient learning.

• Parallel Training: We limited our investigation of cooperative Incremental Leaning
with a single initialization training. As discussed in Section 2.1, with Multi-task RL
[39], parallel training can be an effective approach if multiple environments run at
the same time, and similar to the A3C (asynchronous advantage actor-critic) [40],
after each iteration, the best model of each team member is used as initialization for
the next iteration.

Stellenbosch University https://scholar.sun.ac.za

9.2. Future Work 104

We investigated the problem using state observation, where each agent receives relevant
information regarding the states of the environment. However, the simulator used in the
project permits image processing from a camera placed on each agent. Using a camera
for state observation makes the problem more realistic as the state space will be partially
observable from each agent’s perspective. This will imply additional techniques such as
communication between teammates for effective learning.

Many scenarios can be developed in the experimental environment, such as having more
than 2 members per team. Due to time, we limit our project to the scenarios presented in
the experimental chapter.

Stellenbosch University https://scholar.sun.ac.za

Bibliography

[1] Y. Fenjiro and H. Benbrahim, “Deep reinforcement learning overview of the state of
the art,” Journal of Automation Mobile Robotics and Intelligent Systems, vol. 12,
no. 3, pp. 20–39, 2018.

[2] A. Lazaridis, A. Fachantidis, and I. Vlahavas, “Deep reinforcement learning: A
state-of-the-art walkthrough,” Journal of Artificial Intelligence Research, vol. 69, pp.
1421–1471, 2020.

[3] J. Markovska and D. Šoberl, “Deep reinforcement learning compared to human
performance in playing video games,” 2022.

[4] G. Joshi and G. Chowdhary, “Adaptive policy transfer in reinforcement learning,”
arXiv preprint arXiv:2105.04699, 2021.

[5] W. Fu, C. Yu, Z. Xu, J. Yang, and Y. Wu, “Revisiting some common practices in
cooperative multi-agent reinforcement learning,” arXiv preprint arXiv:2206.07505,
2022.

[6] C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. Bayen, and Y. Wu, “The surprising effec-
tiveness of ppo in cooperative, multi-agent games,” arXiv preprint arXiv:2103.01955,
2021.

[7] C. S. de Witt, T. Gupta, D. Makoviichuk, V. Makoviychuk, P. H. Torr, M. Sun,
and S. Whiteson, “Is independent learning all you need in the starcraft multi-agent
challenge?” arXiv preprint arXiv:2011.09533, 2020.

[8] M. Samvelyan, T. Rashid, C. S. De Witt, G. Farquhar, N. Nardelli, T. G. Rudner,
C.-M. Hung, P. H. Torr, J. Foerster, and S. Whiteson, “The starcraft multi-agent
challenge,” arXiv preprint arXiv:1902.04043, 2019.

[9] J. Bakambana, “Slimebot volleyball: A multi-agents 3d gym environment for slime
volleyball game,” https://github.com/jbakams/slimebot-volleyball, 2022.

[10] D. Ha, “Slime volleyball gym environment,” https://github.com/hardmaru/
slimevolleygym, 2020.

105

Stellenbosch University https://scholar.sun.ac.za

https://github.com/jbakams/slimebot-volleyball
https://github.com/hardmaru/slimevolleygym
https://github.com/hardmaru/slimevolleygym

Bibliography 106

[11] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on
knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

[12] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone, “Curricu-
lum learning for reinforcement learning domains: A framework and survey,” arXiv
preprint arXiv:2003.04960, 2020.

[13] Z. Bing, D. Lerch, K. Huang, and A. Knoll, “Meta-reinforcement learning in non-
stationary and dynamic environments,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

[14] Z. Wang, C. Chen, H.-X. Li, D. Dong, and T.-J. Tarn, “Incremental reinforce-
ment learning with prioritized sweeping for dynamic environments,” IEEE/ASME
Transactions on Mechatronics, vol. 24, no. 2, pp. 621–632, 2019.

[15] Z. Wang, H.-X. Li, and C. Chen, “Incremental reinforcement learning in continuous
spaces via policy relaxation and importance weighting,” IEEE transactions on neural
networks and learning systems, vol. 31, no. 6, pp. 1870–1883, 2019.

[16] K. Kim, Y. Gu, J. Song, S. Zhao, and S. Ermon, “Domain adaptive imitation
learning,” in International Conference on Machine Learning. PMLR, 2020, pp.
5286–5295.

[17] W. Zhang, L. Deng, L. Zhang, and D. Wu, “A survey on negative transfer,”
IEEE/CAA Journal of Automatica Sinica, 2022.

[18] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska et al., “Overcoming catas-
trophic forgetting in neural networks,” Proceedings of the national academy of
sciences, vol. 114, no. 13, pp. 3521–3526, 2017.

[19] T. G. Dietterich, “Hierarchical reinforcement learning with the maxq value function
decomposition,” Journal of artificial intelligence research, vol. 13, pp. 227–303, 2000.

[20] S. Kapetanakis and D. Kudenko, “Reinforcement learning of coordination in cooper-
ative multi-agent systems,” AAAI/IAAI, vol. 2002, pp. 326–331, 2002.

[21] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward transformations:
Theory and application to reward shaping,” in Icml, vol. 99, 1999, pp. 278–287.

[22] Y. Hu, W. Wang, H. Jia, Y. Wang, Y. Chen, J. Hao, F. Wu, and C. Fan, “Learning
to utilize shaping rewards: A new approach of reward shaping,” Advances in Neural
Information Processing Systems, vol. 33, pp. 15 931–15 941, 2020.

Stellenbosch University https://scholar.sun.ac.za

Bibliography 107

[23] E. Wiewiora, G. W. Cottrell, and C. Elkan, “Principled methods for advising
reinforcement learning agents,” in Proceedings of the 20th international conference
on machine learning (ICML-03), 2003, pp. 792–799.

[24] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor, and A. Nowé,
“Reinforcement learning from demonstration through shaping,” in Twenty-fourth
international joint conference on artificial intelligence, 2015.

[25] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learning,”
in Proceedings of the twenty-first international conference on Machine learning, 2004,
p. 1.

[26] B. Price and C. Boutilier, “Accelerating reinforcement learning through implicit
imitation,” Journal of Artificial Intelligence Research, vol. 19, pp. 569–629, 2003.

[27] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey et al., “Maximum entropy inverse
reinforcement learning.” in Aaai, vol. 8. Chicago, IL, USA, 2008, pp. 1433–1438.

[28] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and structured
prediction to no-regret online learning,” in Proceedings of the fourteenth international
conference on artificial intelligence and statistics. JMLR Workshop and Conference
Proceedings, 2011, pp. 627–635.

[29] A. DiGiovanni and E. C. Zell, “Survey of self-play in reinforcement learning,” arXiv
preprint arXiv:2107.02850, 2021.

[30] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel et al., “Mastering chess and shogi by self-play with
a general reinforcement learning algorithm,” arXiv preprint arXiv:1712.01815, 2017.

[31] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison, D. Farhi,
Q. Fischer, S. Hashme, C. Hesse et al., “Dota 2 with large scale deep reinforcement
learning,” arXiv preprint arXiv:1912.06680, 2019.

[32] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal,
C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,
and Y. Wu, “Stable baselines,” https://github.com/hill-a/stable-baselines, 2018.

[33] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning domains:
A survey.” Journal of Machine Learning Research, vol. 10, no. 7, 2009.

[34] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine, “Meta-
world: A benchmark and evaluation for multi-task and meta reinforcement learning,”

Stellenbosch University https://scholar.sun.ac.za

https://github.com/hill-a/stable-baselines

Bibliography 108

in Conference on robot learning. PMLR, 2020, pp. 1094–1100.

[35] A. Kaplan, “Lifelong learning: conclusions from a literature review,” International
Online Journal of Primary Education, vol. 5, no. 2, pp. 43–50, 2016.

[36] Z. Wang, C. Chen, and D. Dong, “Lifelong incremental reinforcement learning with
online bayesian inference,” IEEE Transactions on Neural Networks and Learning
Systems, 2021.

[37] X. Zheng, C. Yu, and M. Zhang, “Lifelong reinforcement learning with temporal
logic formulas and reward machines,” Knowledge-Based Systems, vol. 257, p. 109650,
2022.

[38] E. C. Johnson, E. Q. Nguyen, B. Schreurs, C. S. Ewulum, C. Ashcraft, N. M. Fendley,
M. M. Baker, A. New, and G. K. Vallabha, “L2explorer: A lifelong reinforcement
learning assessment environment,” arXiv preprint arXiv:2203.07454, 2022.

[39] S. Sodhani, A. Zhang, and J. Pineau, “Multi-task reinforcement learning with
context-based representations,” in International Conference on Machine Learning.
PMLR, 2021, pp. 9767–9779.

[40] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in
International conference on machine learning. PMLR, 2016, pp. 1928–1937.

[41] Y. Teh, V. Bapst, W. M. Czarnecki, J. Quan, J. Kirkpatrick, R. Hadsell, N. Heess,
and R. Pascanu, “Distral: Robust multitask reinforcement learning,” Advances in
neural information processing systems, vol. 30, 2017.

[42] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron,
V. Firoiu, T. Harley, I. Dunning et al., “Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures,” in International conference on
machine learning. PMLR, 2018, pp. 1407–1416.

[43] M. Hessel, H. Soyer, L. Espeholt, W. Czarnecki, S. Schmitt, and H. van Hasselt,
“Multi-task deep reinforcement learning with popart,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 3796–3803.

[44] N. Vithayathil Varghese and Q. H. Mahmoud, “A survey of multi-task deep rein-
forcement learning,” Electronics, vol. 9, no. 9, p. 1363, 2020.

[45] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. Hausknecht, and
M. Bowling, “Revisiting the arcade learning environment: Evaluation protocols and

Stellenbosch University https://scholar.sun.ac.za

Bibliography 109

open problems for general agents,” Journal of Artificial Intelligence Research, vol. 61,
pp. 523–562, 2018.

[46] P. Stone and M. Veloso, “Multiagent systems: A survey from a machine learning
perspective,” Autonomous Robots, vol. 8, no. 3, pp. 345–383, 2000.

[47] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative agents,”
in Proceedings of the tenth international conference on machine learning, 1993, pp.
330–337.

[48] C. J. C. H. Watkins, “Learning from delayed rewards,” 1989.

[49] A. Nowé, P. Vrancx, and Y.-M. D. Hauwere, “Game theory and multi-agent rein-
forcement learning,” in Reinforcement Learning. Springer, 2012, pp. 441–470.

[50] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru,
and R. Vicente, “Multiagent cooperation and competition with deep reinforcement
learning,” PloS one, vol. 12, no. 4, p. e0172395, 2017.

[51] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[52] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg,
M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls et al., “Value-decomposition networks
for cooperative multi-agent learning,” arXiv preprint arXiv:1706.05296, 2017.

[53] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S. Whiteson,
“Qmix: Monotonic value function factorisation for deep multi-agent reinforcement
learning,” in International conference on machine learning. PMLR, 2018, pp.
4295–4304.

[54] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” Advances in
neural information processing systems, vol. 30, 2017.

[55] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[56] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

Stellenbosch University https://scholar.sun.ac.za

Bibliography 110

[57] A. Pretorius, K.-a. Tessera, A. P. Smit, C. Formanek, S. J. Grimbly, K. Eloff,
S. Danisa, L. Francis, J. Shock, H. Kamper et al., “Mava: a research framework for
distributed multi-agent reinforcement learning,” arXiv preprint arXiv:2107.01460,
2021.

[58] M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli, T. G. J. Rudner,
C.-M. Hung, P. H. S. Torr, J. Foerster, and S. Whiteson, “The StarCraft Multi-Agent
Challenge,” CoRR, vol. abs/1902.04043, 2019.

[59] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. E. Gonzalez, M. I.
Jordan, and I. Stoica, “RLlib: Abstractions for distributed reinforcement learning,”
in International Conference on Machine Learning (ICML), 2018.

[60] W. Li, X. Wang, B. Jin, J. Sheng, and H. Zha, “Dealing with non-stationarity
in marl via trust-region decomposition,” in International Conference on Learning
Representations, 2021.

[61] Y. Zhuang, Y. Hu, and H. Wang, “Scalability of multiagent reinforcement learning,”
in Interactions in Multiagent Systems. World Scientific, 2019, pp. 1–17.

[62] L. Canese, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino, M. Re,
and S. Spanò, “Multi-agent reinforcement learning: A review of challenges and
applications,” Applied Sciences, vol. 11, no. 11, p. 4948, 2021.

[63] W. Mao, K. Zhang, E. Miehling, and T. Başar, “Information state embedding in
partially observable cooperative multi-agent reinforcement learning,” in 2020 59th
IEEE Conference on Decision and Control (CDC). IEEE, 2020, pp. 6124–6131.

[64] H. Mao, Z. Gong, and Z. Xiao, “Reward design in cooperative multi-agent reinforce-
ment learning for packet routing,” arXiv preprint arXiv:2003.03433, 2020.

[65] F. Memarian, W. Goo, R. Lioutikov, S. Niekum, and U. Topcu, “Self-supervised
online reward shaping in sparse-reward environments,” in 2021 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE, 2021, pp.
2369–2375.

[66] I. ElSayed-Aly and L. Feng, “Logic-based reward shaping for multi-agent reinforce-
ment learning,” arXiv preprint arXiv:2206.08881, 2022.

[67] B. Xiao, B. Ramasubramanian, and R. Poovendran, “Shaping advice in deep rein-
forcement learning,” arXiv preprint arXiv:2202.09489, 2022.

[68] D. Hadfield-Menell, S. Milli, P. Abbeel, S. J. Russell, and A. Dragan, “Inverse reward

Stellenbosch University https://scholar.sun.ac.za

Bibliography 111

design,” Advances in neural information processing systems, vol. 30, 2017.

[69] S. Singh, R. L. Lewis, and A. G. Barto, “Where do rewards come from,” in Proceedings
of the annual conference of the cognitive science society. Cognitive Science Society,
2009, pp. 2601–2606.

[70] J. Sorg, R. L. Lewis, and S. Singh, “Reward design via online gradient ascent,”
Advances in Neural Information Processing Systems, vol. 23, 2010.

[71] A. Y. Ng, S. Russell et al., “Algorithms for inverse reinforcement learning.” in Icml,
vol. 1, 2000, p. 2.

[72] F.-H. Hsu, Behind Deep Blue: Building the computer that defeated the world chess
champion. Princeton University Press, 2002.

[73] M. Campbell, A. J. Hoane Jr, and F.-h. Hsu, “Deep blue,” Artificial intelligence,
vol. 134, no. 1-2, pp. 57–83, 2002.

[74] S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam, and R. Fergus, “Intrin-
sic motivation and automatic curricula via asymmetric self-play,” arXiv preprint
arXiv:1703.05407, 2017.

[75] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew, and
I. Mordatch, “Emergent tool use from multi-agent autocurricula,” arXiv preprint
arXiv:1909.07528, 2019.

[76] M. Jaderberg, W. Czarnecki, I. Dunning, L. Marris, G. Lever, A. Castaneda et al.,
“Human-level performance in first-person multiplayer games with population-based
deep reinforcement learning. arxiv,” arXiv preprint arXiv:1807.01281, 2018.

[77] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering
the game of go with deep neural networks and tree search,” nature, vol. 529, no.
7587, pp. 484–489, 2016.

[78] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[79] M. Szubert and W. Jaśkowski, “Temporal difference learning of n-tuple networks
for the game 2048,” in 2014 IEEE Conference on Computational Intelligence and
Games. IEEE, 2014, pp. 1–8.

[80] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A

Stellenbosch University https://scholar.sun.ac.za

Bibliography 112

survey,” Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

[81] S. Ivanov and A. D’yakonov, “Modern deep reinforcement learning algorithms,”
arXiv preprint arXiv:1906.10025, 2019.

[82] L. Weng, “A (long) peek into reinforcement learning,” lilianweng.github.io, 2018.
[Online]. Available: https://lilianweng.github.io/posts/2018-02-19-rl-overview/

[83] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3, pp.
279–292, 1992.

[84] S. Manju and M. Punithavalli, “An analysis of q-learning algorithms with strategies
of reward function,” International Journal on Computer Science and Engineering,
vol. 3, no. 2, pp. 814–820, 2011.

[85] C. E. Shannon, “Xxii. programming a computer for playing chess,” The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 41, no.
314, pp. 256–275, 1950.

[86] S. Padakandla, P. KJ, and S. Bhatnagar, “Reinforcement learning algorithm for
non-stationary environments,” Applied Intelligence, vol. 50, no. 11, pp. 3590–3606,
2020.

[87] G. E. Monahan, “State of the art—a survey of partially observable markov decision
processes: theory, models, and algorithms,” Management science, vol. 28, no. 1, pp.
1–16, 1982.

[88] M. L. Littman, “Markov games as a framework for multi-agent reinforcement learning,”
in Machine learning proceedings 1994. Elsevier, 1994, pp. 157–163.

[89] Z. Zhang, Y.-S. Ong, D. Wang, and B. Xue, “A collaborative multiagent reinforce-
ment learning method based on policy gradient potential,” IEEE transactions on
cybernetics, vol. 51, no. 2, pp. 1015–1027, 2019.

[90] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[91] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[92] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp.
84–90, 2017.

Stellenbosch University https://scholar.sun.ac.za

https://lilianweng.github.io/posts/2018-02-19-rl-overview/
http://www.deeplearningbook.org

Bibliography 113

[93] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent
neural networks,” in 2013 IEEE international conference on acoustics, speech and
signal processing. Ieee, 2013, pp. 6645–6649.

[94] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” Advances in neural
information processing systems, vol. 26, 2013.

[95] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Icml, 2010.

[96] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network
learning by exponential linear units (elus),” arXiv preprint arXiv:1511.07289, 2015.

[97] A. L. Maas, A. Y. Hannun, A. Y. Ng et al., “Rectifier nonlinearities improve neural
network acoustic models,” in Proc. icml, vol. 30, no. 1. Atlanta, Georgia, USA,
2013, p. 3.

[98] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-normalizing neural
networks,” Advances in neural information processing systems, vol. 30, 2017.

[99] H. B. Curry, “The method of steepest descent for non-linear minimization problems,”
Quarterly of Applied Mathematics, vol. 2, no. 3, pp. 258–261, 1944.

[100] A. Ng and K. Katanforoosh, “Cs229 lecture notes deep learning,” 2018.

[101] L. Bottou et al., “Online learning and stochastic approximations,” On-line learning
in neural networks, vol. 17, no. 9, p. 142, 1998.

[102] V. Vapnik, Estimation of dependences based on empirical data. Springer Science &
Business Media, 2006.

[103] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization
and momentum in deep learning,” in International conference on machine learning.
PMLR, 2013, pp. 1139–1147.

[104] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[105] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization.” Journal of machine learning research, vol. 12, no. 7,
2011.

Stellenbosch University https://scholar.sun.ac.za

Bibliography 114

[106] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent,” Cited on, vol. 14, no. 8, p. 2,
2012.

[107] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[108] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep
reinforcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34,
no. 6, pp. 26–38, 2017.

[109] X. Wang, S. Wang, X. Liang, D. Zhao, J. Huang, X. Xu, B. Dai, and Q. Miao,
“Deep reinforcement learning: a survey,” IEEE Transactions on Neural Networks and
Learning Systems, 2022.

[110] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” arXiv
preprint arXiv:1511.08458, 2015.

[111] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint arXiv:1701.07274,
2017.

[112] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
q-learning,” in Proceedings of the AAAI conference on artificial intelligence, vol. 30,
no. 1, 2016.

[113] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,”
arXiv preprint arXiv:1511.05952, 2015.

[114] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Dueling
network architectures for deep reinforcement learning,” in International conference
on machine learning. PMLR, 2016, pp. 1995–2003.

[115] T. Simonini, “Improvements in deep q learning: Dueling double dqn, prioritized
experience replay, and fixed...” freeCodeCamp.org, Apr 2018.

[116] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for
reinforcement learning with function approximation,” Advances in neural information
processing systems, vol. 12, 1999.

[117] L. Weng, “Policy gradient algorithms,” lilianweng.github.io, 2018. [Online]. Available:
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/

[118] R. Willianms, “Toward a theory of reinforcement-learning connectionist systems,”

Stellenbosch University https://scholar.sun.ac.za

https://lilianweng.github.io/posts/2018-04-08-policy-gradient/

Bibliography 115

Technical Report NU-CCS-88-3, Northeastern University, 1988.

[119] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in neural information
processing systems, vol. 12, 1999.

[120] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy
optimization,” in International conference on machine learning. PMLR, 2015, pp.
1889–1897.

[121] J. M. Joyce, “Kullback-leibler divergence,” in International encyclopedia of statistical
science. Springer, 2011, pp. 720–722.

[122] A. Kwiatkowski, E. Alvarado, V. Kalogeiton, C. K. Liu, J. Pettré, M. van de
Panne, and M.-P. Cani, “A survey on reinforcement learning methods in character
animation,” in Computer Graphics Forum, vol. 41, no. 2. Wiley Online Library,
2022, pp. 613–639.

[123] C. C.-Y. Hsu, C. Mendler-Dünner, and M. Hardt, “Revisiting design choices in
proximal policy optimization,” arXiv preprint arXiv:2009.10897, 2020.

[124] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” 2016.

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Links to Videos of Agents Trained
during the Experiments

We provide links to videos that evaluate agents we trained during the experiment from
the inline single agent training to the cooperative training in 3D:

• Evaluation of agents trained in the 2D projection of the full environment, discussed
in Section 8.1.

• Illustration of Incrmental Learning with a incremental step η = 4.

• Evaluation of 2 PPO agents trained with different combination of (δ, η). The yellow
agent was trained with the combination (500, 1), the blue agent with the combination
(2500, 12).

• Illustration of the lazy and selfish agent phenomena in 2D generated by decentralized
training of shared objective function discussed in Section 8.2.

• Illustration of the same situation as previously after successful increment in 3D.

• Illustration of effectiveness of Reward Shaping to motivate cooperation in 2D.

• Illustration of effectiveness of Reward Shaping to motivate cooperation after a
successful incremental training.

116

Stellenbosch University https://scholar.sun.ac.za

Appendix B

Additional Results

Here we show graphs of different experiments we referred to on average the influence the
threshold δ and the incremental step η have one another in Section 8.1.

Figure B.1: Training progress of 10 different initialization with δ = 500 and η = 1 within
20 million timesteps. That have been averaged in Figure 8.8 (a)

117

Stellenbosch University https://scholar.sun.ac.za

Appendix 118

Figure B.2: Training progress of 10 different initialization with δ = 500 and η = 4 within
20 million timesteps. That have been averaged in Figure 8.8 (b)

Figure B.3: Training progress of 10 different initialization with δ = 500 and η = 12
within 20 million timesteps. That have been averaged in Figure 8.8 (c)

Stellenbosch University https://scholar.sun.ac.za

Appendix 119

Figure B.4: Training progress of 10 different initialization with δ = 800 and η = 1 within
20 million timesteps. That have been averaged in Figure 8.10 (a)

Figure B.5: Training progress of 10 different initialization with δ = 800 and η = 4 within
20 million timesteps. That have been averaged in Figure 8.10 (b)

Stellenbosch University https://scholar.sun.ac.za

Appendix 120

Figure B.6: Training progress of 10 different initialization with δ = 800 and η = 12
within 20 million timesteps. That have been averaged in Figure 8.10 (c)

Figure B.7: Training progress of 10 different initialization with δ = 1500 and η = 1
within 20 million timesteps. That have been averaged in Figure 8.12 (a)

Stellenbosch University https://scholar.sun.ac.za

Appendix 121

Figure B.8: Training progress of 10 different initialization with δ = 1500 and η = 4
within 20 million timesteps. That have been averaged in Figure 8.12 (b)

Figure B.9: Training progress of 10 different initialization with δ = 1500 and η = 12
within 20 million timesteps. That have been averaged in Figure 8.12 (c)

Stellenbosch University https://scholar.sun.ac.za

Appendix 122

Figure B.10: Training progress of 10 different initialization with δ = 2500 and η = 1
within 20 million timesteps. That have been averaged in Figure 8.14 (a)

Figure B.11: Training progress of 10 different initialization with δ = 2500 and η = 4
within 20 million timesteps. That have been averaged in Figure 8.14 (b)

Stellenbosch University https://scholar.sun.ac.za

Appendix 123

Figure B.12: Training progress of 10 different initialization with δ = 2500 and η = 12
within 20 million timesteps. That have been averaged in Figure 8.14 (c)

Stellenbosch University https://scholar.sun.ac.za

	Declaration
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Objective
	Contributions
	Project Outline

	Related Work
	Transfer Learning
	Multi-Agent Reinforcement Learning (MARL)
	Reward Shaping
	Self-Play Learning
	Summary

	Reinforcement Learning
	Markov Decision Processes
	Policy
	Return
	Value Function
	Action Value Estimation
	Optimality
	Methods
	Multi-Agent RL Framework
	Summary

	Deep Learning
	Artificial Neural Networks
	Deep Neural Networks
	Loss Functions
	Backpropagation
	Gradient Descent Methods
	Optimizers
	Summary

	Deep Reinforcement Learning
	Value Based algorithms
	Policy Gradient Algorithms
	Summary

	Incremental Reinforcement Learning
	Definition
	Previous work
	Problem Formalization
	Threshold Policy
	Training Process
	Summary

	Experimental Environment
	Gym Environment
	Slimevolleygym
	Webots
	Slimebot Volleyball
	Summary

	Experimental Evaluation
	Single Agent Evaluation
	Multi-Agent Experiment
	Summery

	Conclusion
	Summary
	Future Work

	Bibliography
	Links to Videos of Agents Trained during the Experiments
	Additional Results

