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Abstract

The F1/10th racing problem is to use the onboard LiDAR scan to calculate speed and
steering references to move a 1/10th scale car around the track as quickly as possible.
While planning has typically used perception, planning and control pipelines, recently,
deep reinforcement learning (DRL) has grown in popularity due to its advantages of not
requiring explicit state representation and environmental flexibility. Current approaches
have suffered from poor performance at low speeds, safety concerns exacerbated by sim-to-
real transfer, and few approaches have considered obstacle avoidance.

The first contribution of this work is the development of high-speed learning formulations
for autonomous racing. A comprehensive evaluation of previous approaches concludes
that current learning formulations train agents to select infeasible speed profiles, resulting
in the agents being unable to race using the vehicle’s full speed profile. This problem is
overcome by using analytical vehicle models to develop learning formulations for improved
speed selection. The performance evaluation shows that the novel formulations enable the
vehicle to learn a feasible speed profile using the vehicle’s full speed range and achieve
lower lap times than previous methods in the literature. This result indicates that using
vehicle models improves high-performance racing behaviour.

The second contribution of this work is to enable online learning by using a supervisory
safety system (SSS). A safety system is designed that uses viability theory to ensure
vehicle safety, irrespective of the planner used. The SSS is incorporated into the learning
formulation and used to train DRL agents to race without them ever crashing. The novel
learning formulation is extensively evaluated in simulation, demonstrating that online
training can train agents to race without ever crashing, achieve a 10× improvement in
sample efficiency and that the trained agents select conservative speed profiles. The
proposed method is validated at constant speed on a physical vehicle, demonstrating that
an agent can be trained from random to drive around a track without ever crashing.

The final contribution of this work is to explore how DRL agents can be used to
expand the ability of current classical planners to avoid unmapped obstacles. Three
hybrid architectures that combine classical and learning components are presented and
evaluated. The modification planner, which combines a path follower and DRL agent
in parallel, demonstrates the ability to track a reference path while avoiding unmapped
obstacles. The results indicate that combining classical and DRL components can improve
the performance of DRL agents while enabling classical solutions to avoid obstacles.

iii

Stellenbosch University https://scholar.sun.ac.za



Abstract iv

Lay Summary

F1/10th autonomous racing has been approached using classical methods that use vehicle
models to generate and follow a plan, resulting in high-performance racing. While deep
reinforcement learning (DRL) agents, which learn from experience, have been used for
racing, approaches have suffered from poor performance and safety concerns due to training
the agent in a simulator before transferring it to a physical vehicle. This work combines
classical vehicle models and machine learning techniques to accelerate DRL methods for
autonomous racing by making the three contributions of, (1) novel learning formulations
resulting in feasible, high-speed racing behaviour, (2) a method for safely training agents
to race onboard physical vehicles, with them never crashing, and (3) investigating hybrid
architectures for obstacle avoidance. The novel learning formulations enable the agent to
learn an appropriate speed profile of slowing down and speeding up, resulting in lower lap
times, using higher top speeds than in previous work. The online learning method can
train agents to race without ever crashing, which enables agents to be trained onboard
physical vehicles, resulting in better driving performance. Finally, the hybrid architectures
for obstacle avoidance demonstrate that DRL agents can expand the capability of classical
planners to avoid obstacles.
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Chapter 1

Introduction

1.1. Background
Autonomous robots are gaining popularity due to their advantages; self-driving cars
could promise to reduce road fatalities while not requiring humans to drive, factory
robots can improve efficiency, and mining robots can perform dangerous tasks. Robotic
systems comprise of computer programs (software) that are used to control mechanical
systems (hardware). For robotic systems to be beneficial, they must be able to perform
complex tasks, operate at a high level of performance, guarantee safety, and be robust to
environmental uncertainty [1].

Figure 1.1: Left: 1:43 scale autonomous racing experiment [2]. Middle: an F1/10th racing
car (f1tenth.org). Right: an autonomous race car at the Indy Autonomous Challenge
(IAC), from Getty Images.

Racing cars are a popular testbed for high-performance autonomous algorithms due
to the high-performance nature of the competition, and easy-to-measure performance
metrics, such as lap time and completion rate [3]. Scaled autonomous racing, such as
1:10 [4], 1:18 [5], 1:20 [6], 1:43 [2], provides a simple, safe platform for the development
of autonomous racing planners [7]. F1/10th racing cars, shown in Figure 1.1 (middle),
are ideal for high-performance control research due to fixed hardware requirements1,
well-developed-simulators [4, 8], and extensive comparative research [9].

1f1tenth.org/build

1
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1.1. Background 2

1.1.1. Problem Identification

The aim of racing is simple; move the vehicle around the track as quickly as possible.
Autonomous racing planners must use onboard sensor measurements to generate steering
and speed references that operate the vehicle on the edge of their performance limits
to move around the track in the minimum time. In F1/10th racing, the primary input
sensor is a light detection and ranging (LiDAR) scanner with 1080 range finder beams,
giving the planner a two-dimensional scan of the surrounding environment. Figure 1.2
illustrates the planning problem of using a LiDAR scan of the track to select speed and
steering references for the vehicle to follow. The image shows the planning loop of selecting
commands, that move the vehicle, which leads to new sensor readings for the planner.

 LiDAR 
Scan

Race
Track

Velocity

Steering

Speed

LiDAR Scan 
1080 beams

Vehicle Speed 

Planner

Vehicle OuputsVehicle Inputs

Figure 1.2: The racing problem is to design a planner that uses the LiDAR scan and
speed to determine speed and steering references to move the vehicle around the track.

The two central challenges to racing are (1) performance, operating the vehicle at the
limits of handling, and (2) safety, ensuring that the vehicle does not crash. An inherent
tension exists between high-performance and safe systems. Inherent to high-performance
racing is operating the vehicle at the physical limits, which is the boundary of safety.
Conversely, the safest behaviour is to go slowly, which is a terrible racing strategy. The
challenge of racing is to drive as fast as possible while ensuring that the vehicle remains
safe. These challenges are complicated by the vehicle’s momentum, meaning it takes time
for the car to change its velocity; i.e. a vehicle driving fast must slow down before turning
a sharp corner. An extension of the problem is to race while avoiding unmapped obstacles
on the track.

This dissertation approaches the problem of high-performance, safe autonomous racing
using DRL agents to race using LiDAR scans as input to generate speed and steering
references.

1.1.2. Motivation

The classical method for autonomous racing is to model the world (perception), generate
and optimise a plan (planning) and then execute the plan (control) [3]. Generally, a
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1.2. Contributions 3

track map is built before the race to be used for particle filter localisation [10]. Classical
approaches have demonstrated exceptionally good performance [11], yet are limited to
contexts with large amounts of processing [12] and cannot operate on unmapped tracks [13].

In recent years, deep reinforcement learning (DRL) has led to excellent performance in
many games such as Atari [14, 15], Go [16], Starcraft [17], and Dota [18]. In racing games,
super-human performance has been demonstrated in Grand Turismo Sport (GTS) [19],
where DRL agents have outperformed the world’s best gamers [20]. These approaches to
racing games have shown the power of DRL agents to learn high-performance, computa-
tionally efficient policies that map raw data to fine-grained control commands. However,
games make many assumptions, such as being allowed to slide along the walls and having
access to all the vehicle state variables, that do not transfer to real-world racing.

While DRL algorithms have many advantages, it is difficult to use them for high-
performance, real-world systems [21]. Current approaches have used only part of the
vehicle’s speed range [9], and even at low speeds still crashed [22, 23]. While classical
F1/10th planners can race up to 8 m/s, the fastest learning approach uses a maximum speed
of 5 m/s, indicating the need for work to develop high-performance learning formulations.
In addition to low-performance solutions, current racing approaches have not yet considered
the problem of unmapped obstacle avoidance.

A key problem in developing DRL agents for real-world problems, including racing,
is safety; the agent might crash the vehicle. The general method of using a DRL agent
is to train it in simulation and then transfer the policy to the physical vehicle [5, 24].
This transfer, known as the sim-to-real problem, exacerbates the safety problem by the
agent performing differently on the physical robot than the simulation, resulting from
the difference in dynamics. Unsafe policies are a restrictive problem because deep-neural
networks (DNNs) are inherently uninterpretable; therefore, the policy cannot be evaluated
for safety without testing it on the physical platform.

1.2. Contributions
In light of the lack of feasible approaches to high-speed autonomous racing, this disser-
tation aims to accelerate DRL methods for F1/10th racing through the following novel
contributions:

1. High-speed Learning Formulations: The development of learning formulations
for high-speed racing through a comprehensive evaluation of current methods, iden-
tification of current limitations, and development of new learning formulations that
harness vehicle models to aid the training.

2. Safe Online Training: The development of a supervisor that can ensure vehicle
safety and be used to train DRL agents without them ever crashing, enabling agents
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to be trained online physical vehicles, thus bypassing the sim-to-real gap.

3. Obstacle Avoidance: The extension of the racing problem to include avoiding
un-mapped obstacles on the track and investigating how the flexibility of DRL agents
can be combined with classical solutions for high-performance obstacle avoidance.

1.2.1. Design Methodology

The approach in designing solutions integrates classical, vehicle-model-based solutions
with DRL agents to overcome the shortcomings of pure machine learning (ML) methods.
Classical approaches are limited in their flexibility and computation requirements, and ML
approaches are limited in their performance and safety. Combining these two techniques
enables improved solutions that operate safely at high performance while not requiring
explicit state representation.

1.2.2. Objectives

The contributions described above are achieved through the following objectives:

1. Provide an extensive analysis of current DRL methods of autonomous racing, in-
cluding a comparison of reward signals, and detailed performance evaluation using
comprehensive metrics to understand the limitations of current approaches.

2. The development of DRL learning formulations to enable agents to learn high-
performance, variable speed F1/10th racing behaviour using the vehicle’s full speed
range of up to 8 m/s.

3. The design of a supervisory safety system (SSS) that guarantees vehicle safety by
allowing safe actions to be implemented and preventing unsafe actions from being
implemented for the vehicle’s full speed range.

4. The integration of the supervisory safety system (SSS) into the learning formulation
to train DRL agents without ever crashing, with extensive tests comparing reward
signals and maximum speeds in simulation and constant speed validation on a
physical vehicle.

5. Expand the racing problem to include obstacle avoidance, by designing hybrid
planners that combine classical and learning components to enable a vehicle to track
a reference trajectory while avoiding obstacles.

1.2.3. Publications

Part of this work has been published in the following articles:
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1. “Reward Signal Design for Autonomous Racing.” In 2021 20th International Confer-
ence on Advanced Robotics (ICAR), pp. 455-460. IEEE, 2021 [25].

2. “Learning the Subsystem of Local Planning for Autonomous Racing.” In 2021
20th International Conference on Advanced Robotics (ICAR), pp. 601-606. IEEE,
2021 [26].

1.3. Dissertation Overview
In light of the lack of feasible approaches to high-speed autonomous racing, this dis-
sertation aims to accelerate DRL methods for F1/10th racing through the following chapters.

Literature Study: Chapter 2 explores current techniques for classical racing, DRL ad-
vances in racing games and DRL methods for real-world racing. Classical racing, in §2.2, is
studied in the categories of full-scale and miniature-vehicle racing. DRL advances in racing
games, presented in §2.3, are analysed according to their input modality, performance and
feasibility for real-world robotics. An extensive analysis of learning methods for real-world
racing considers end-to-end approaches in §2.4.1, partial end-to-end in architectures in
§2.4.2, and an in-depth analysis of the taxonomies of performance, safety, evaluation
metrics, reward signals and sample efficiency in §2.4.3. In §2.4.4 safe learning for racing and
control systems is examined and in §2.4.5 the problem of obstacle avoidance is investigated.

The F1/10th Platform: Chapter 3 presents preliminary information regarding the
F1/10th vehicle setup and simulation configuration. The kinematic and single-track vehicle
models are described and compared in §3.2. The evaluation methodology that is used for
the remainder of the dissertation is described in §3.3.

Evaluation of DRL for F1/10th Racing: Chapter 4 provides an extensive evaluation
of current methods of DRL for F1/10th autonomous racing. The overview of reinforcement
learning (RL) presented in §4.2 is used to explain the baseline F1/10th formulation in
§4.3. The baseline is evaluated at constant speed in §4.4 and variable speed in §4.5.
The extensive evaluation compares reward signals, comments on the agents’ training,
performance, and repeatability, and uses comprehensive metrics of distance, curvature,
deviation from the centre line, and action profile analysis.

High-speed Learning Formulations using Vehicle Models: Chapter 5 uses vehicle
models to design high-speed learning formulations that address the problem of speed
profile selection. The optimal trajectory (racing line) is used to develop improved reward
signals that train the agent to select the optimal speed in §5.2. The link architecture,
presented in §5.3, uses the agent to select a steering angle and a friction model to
calculate the speed reference. The racing reward signals and link architecture methods are
compared with a classical planner and previous approaches in the literature in §4.5.1.
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Supervisory Safety System: Chapter 6 addresses the problem of ML safety on physical
vehicles by developing a vehicle-model-based supervisory safety system that ensures that
the actions implemented on vehicles are safe. §6.2 provides an overview of the supervisory
system, §6.3 explains what Viability Theory is, and §6.4 describes how the racing kernels
are formulated. The evaluation in §6.5 validates the system’s ability to keep a vehicle safe,
while not affecting safe planner performance.

Online Learning using a Supervisor: Chapter 7 uses the supervisory safety
system that was developed in Chapter 6 to train agents online without them ever
crashing during the training process. The modifications to the learning formulation
(architecture, episodes configuration and reward signal) are explained in §7.2. The
simulation evaluation in §7.3 measures how the supervisor trains agents at constant
speeds in §7.3.1 and variable speeds in §7.3.2, compares different reward signals in
§7.3.3 and compares end-to-end and online learning in §7.3.4. The formulation is vali-
dated on a physical vehicle by training agents from random to drive around a track in §7.4.

Avoiding Un-mapped Obstacles: Chapter 8 expands the problem from racing from
moving around the track to additionally avoiding unmapped obstacles. The end-to-
end, serial and modification architectures for obstacle avoidance are presented in §8.2.
The architecture design aims to build hybrid solutions that combine the advantages of
classical and learning-based components. The obstacle avoidance evaluation methodology
is described in §8.3 and the results are presented in §8.4.
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Chapter 2

Literature Study

Approaches to autonomous racing are studied in the categories of classical methods,
learning advances in racing games, and real-world racing approaches. Classical methods,
using a perception, planning and control pipeline, demonstrate excellent performance with
speeds of up to 8 m/s for F1/10th racing but are limited by requiring localisation, being
inflexible to map changes and being unable to avoid obstacles. While deep learning has
achieved super-human performance in games, these methods are infeasible for physical
vehicles due to the lack of safety considerations and the assumption of accurate, explicit
state representation. End-to-end and partial end-to-end approaches to real-world racing
are studied, and LiDAR is shown to be the best input sensor for DRL agents. An in-depth
study on racing taxonomies shows that current methods have focused on low (and often
constant) speeds, that safety is a significant concern, and that there is a lack of evaluation
and comparison of current approaches. Safe online learning and obstacle avoidance are
poorly studied fields with few approaches to either problem existing.

2.1. Introduction
The autonomous racing problem is to use onboard sensor readings and computation to
generate control inputs for the actuators to move the vehicle safely around the track as
quickly as possible, subject to the physical constraints [3]. There are many challenges in
this process, the sensor readings are usually large and difficult to use, the vehicle must
be accurately modelled, the limits must be identified and defined, and a plan must be
generated and executed quickly while ensuring vehicle safety.

Figure 2.1 shows the different planning approaches with classical planning blocks in
red and learning components in green. The classical, optimisation-based approach splits
the racing problem into perception, planning and control [27]. Perception is the task
of interpreting the sensor data into a format that can be used for planning; generally,
a method of sensor fusion that produces localisation data. Planners use the map and
location data to generate a plan using a vehicle model, subject to the vehicle operating
limits. The controller implements this plan on the hardware.

In contrast to classical planning, end-to-end learning approaches focus on replacing

7
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Sensors

Sensors

Vehicle

Vehicle

Perception Planning Control

Classic Pipeline

End-to-end Learning

Figure 2.1: The classical racing pipeline using perception, planning and control modules,
compared to end-to-end learning that replaces the whole process with a DNN.

the entire planning pipeline with a neural network that can fulfil all three roles. Neural
networks have shown an impressive ability to map complex state readings to fine control
inputs and can learn policies to control vehicles [20]. End-to-end learning uses input
directly from the sensors and partial end-to-end approaches modify the input or output
from the agent.

2.2. Optimisation-based Racing
A common approach to autonomous driving and racing is to use a vehicle model to plan
a route and then follow it [13,28]. This process is split into the well-studied perception,
planning and control framework [27]. Figure 2.2 shows a detailed view of the generic
framework highlighting the role of each block in the pipeline. Classical approaches to
autonomous racing are studied in the groups of full-sized vehicles [12, 13, 29, 30] and
miniature (scale) vehicles [31–34].

ControlPlanningPerception Vehicle AcutatorsVehicle Sensors

Figure 2.2: The classical pipeline illustrating the role of perception in generating a map,
planning to generate a trajectory and control to follow the trajectory.

2.2.1. Full-stack Racing

Full-stack racing refers to full-sized vehicles that drive at the performance limits au-
tonomously. There are several racing competitions for full-sized autonomous vehicles,
such as Roborace [13], Formula Student Driverless [30], and the IAC [29]. The full-sized

Stellenbosch University https://scholar.sun.ac.za



2.2. Optimisation-based Racing 9

race cars are generally equipped with a collection of LiDAR, camera and radar sensors
for perception, and drive motors to control the vehicle. The teams compete by writing
software stacks to process the raw data and output control commands to the motors to
make the vehicles drive. Methods for perception and planning are studied, while control
systems are neglected due to being outside the scope of this project.

Perception

Perception refers to converting the raw data from multiple sensors into intelligible informa-
tion that can be used to plan. In the Formula Student Driverless (FSD) competition, the
teams had to race on an unknown track [30]. The winning team, from ETH Zurich [30],
used two perception modes, a SLAM-based mode for the first lap that generated a map of
the track and then a localisation mode for the rest of the laps. This system is motivated
by their remark that it is not computationally possible to build a map in real-time that
is suitable for planning. To increase robustness, camera and LiDAR pipelines that can
function independently are used and merged to identify the track boundaries defined by
specific traffic cones. The computing is split over two computers, namely a PIP39 rugged
computer and a Jetson TX2, both of which are high-performance computers.

Another method of perception was implemented by the TUM (Technical University of
Munich) team in the Indy Autonomous challenge to combine LiDAR, camera and radar
data for object detection [12]. Their method uses a mixture of detection, clustering and
deep learning processing steps before fusing the data to create a list of tracked objects.
A separate global navigation satellite system (GNSS) system with inertial measurement
units (IMUs) provides localisation. Despite having large rugged onboard computers, the
authors still highlight a larger requirement for onboard computing power.

While [12,30] and other full-stack approaches [35] have the space for large computers
that can process immense amounts of data, small vehicles are unable to manage the
computational burden required.

Planning

Once a map of the track and the vehicle’s current location is available, possibly supple-
mented by a list of objects, then the autonomous stack must plan a trajectory that it will
follow. Heilmeier et al. [13], developed a method of planning a minimum curvature or
time-optimal trajectory before the race begins and then using a straightforward control
system to follow the plan during the race. An advantage of their method is that they can
shift the computational burden of optimisation to offline before the race begins. The TUM
team plans online in a receding horizon approach using a tube-model predictive control
(MPC) algorithm [12]. MPC has been widely used as a planning approach in software
stacks for autonomous racing and has seen much success [3, 30].
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Full stack racing with model predictive controllers shows the value of planning with
accurate state estimation and that it is possible to push the vehicle to high levels of perfor-
mance. The AMZ driverless vehicle drove at 85% of the vehicle limits, with accelerations
of 1.5g [30]. In Roborace, Heilmeier et al.’s approach drove at 150 km/h and 80% of
the acceleration limit [13]. The TUM team’s vehicle drove at speeds of 270 km/h and
accelerations of 28 m/s2 in the IAC [12]. These results demonstrate that given enough
computation, accurate modelling and optimisation can produce incredibly fast racing
performance at the edge of the physical limits.

2.2.2. Miniature Vehicle Racing

In contrast to full-stack racing, where all the variables are easily available, miniature vehicle
racing uses smaller vehicles with smaller computers and fewer sensors. The advantage of
these vehicles is that they allow for easy and cheap testing of high-performance algorithms.
A challenge in miniature vehicle racing is that they have fewer sensors and smaller
computers and thus require more efficient solutions.

In work on 1:43 scale autonomous racing cars, Liniger et al. presented an MPC
formulation for driving the vehicle at the performance limits [31]. An optimisation routine
maximises the distance travelled by the car along the track centreline. The experimental
setup used an external motion capture system to provide the locations of the vehicles,
and all the optimisation for the planner was done on an external computer. The motion
capture system can detect the ego vehicle’s location and speed along the x and y axes
and the location and speeds of obstacles or opposing vehicles. The control commands for
the actuators were sent to the vehicle via Bluetooth. The miniature cars drove at speeds
of 3 m/s with saturated rear tyre forces (drifting), showing that their control strategy
can operate the vehicles at the performance limits. However, this attempt does not run
onboard the vehicle and requires external sensing and computation. Despite later work
to speed up the optimisation formulation [11,32], these algorithms are still not feasible
without additional external sensors and computers.

Classical F1/10th Racing

Classical approaches to F1/10th racing have studied methods of optimal trajectory genera-
tion and path following. Pure pursuit, model predictive control, and lattice planners have
been used to follow the optimal trajectories generated. Localisation is often performed
using a particle filter designed for F1/10th racing in [10].

Pure pursuit, originally presented in [36], uses a geometric model with a lookahead
distance to calculate a steering angle for the vehicle to take to track a path. Adaptive pure
pursuit, which adjusts the lookahead according to the vehicle’s speed, has been successfully
used for F1/10th racing [33]. The latest iteration of a pure pursuit controller for F1/10th
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racing has incorporated a model of the vehicle to limit the lateral acceleration to within
the friction limit and has achieved the highest level of F1/10th racing performance, winning
the German Grand Prix and travelling at speeds of up to 8 m/s on a physical vehicle [37].

MPC has been widely applied as a control strategy that uses a model to prepare an
optimal trajectory before executing the first step of the plan [38, 39]. A problem identified
within MPC solutions is the computation requirements to run the optimisation [40]. In
recent work, a MPC approach using a non-linear vehicle dynamics model has been used for
F1/10th racing [41]. However, while the onboard requirements can be improved, the fact
remains that requiring localisation and onboard optimisation is computationally expensive.

Another problem noted in model-based solutions is the requirement for accurate vehicle
models [42]. Approaches focused on overcoming the modelling challenges have generally
focused on integrating learning components to estimate model parameters accurately. A
method for using RL to learn tyre parameters for a vehicle has been successfully applied
to F1/10th racing [43]. The most successful approach has used a data-driven framework to
learn latent dynamics that has enabled a 1/12th scale car to travel at up to 7 m/s [44,45].

Method Localisation Max Speed Physical
Vehicle

MPC [39] Motion capture,
position and velocity 3 m/s Yes

Non-linear MPC [41] - 5 m/s No

Pure pursuit following optimised
trajectory [33,34] Particle filter 7 m/s Yes

Model-based pure pursuit [37] Particle filter 8 m/s Yes

Data-driven MPC [44,45] Particle filter 7 m/s Yes

Table 2.1: Summary of classical methods for F1/10th racing with inputs required and
maximum speeds in evaluation.

Table 2.1 summarises the classical methods for F1/10th racing with the inputs required,
maximum speeds and an indication of physical results. The table indicates that classical
solutions are required by running either online [37, 44] or offline [39] localisation. A
significant advantage of classical methods is they demonstrate high-performance racing,
operating the car at the physical limits.

Optimisation-based racing offers high-performance solutions that have demonstrated
pushing cars to high speeds. However, these algorithms either require excessive compu-
tational power or are not flexible to changes in the map, both of which are significant
limitations. An additional challenge is model identification, which requires a learning
component to estimate accurately.
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2.3. Deep Reinforcement Learning in Racing Games
Deep reinforcement learning has been developed mainly in games such as Go [16], Starcraft
[17], and Dota [18]. Approaches to racing games are studied in the categories of input
modalities, and performance and realism.

Deep learning is a method of solving control problems that uses an agent, comprising a
deep neural network, to learn a policy that maps a state vector to a control action. Deep
learning is a method of learning a mapping of inputs to outputs using deep (multi-layered)
neural networks. Deep learning has often been used to learn a mapping of sensor data to
control actions to solve engineering problems, such as quad-rotor flight [46,47], controlling
a quadruped [48], autonomous navigation [49], and autonomous racing [20]. Reinforcement
learning is a method of training the agent from experience using a reward signal that
indicates how good or bad the action is [50]. The training aims to learn neural network
weights and biases to values, such that the mapping from input to output through the
agent results in the desired behaviour.

2.3.1. Input Modalities

Video games are an ideal context for DRL methods because they use simulations that give
the agent access to the full state of the simulator. The input modalities are grouped into
image-based solutions and methods using hybrid state vectors of multiple simulated sensor
readings.

Camera Images

The most popular environment for advances in DRL has been the Atari environments [51],
which are commonly accepted as the benchmark tests for how well algorithms perform
[14,15]. Solutions to Atari games use the game images as input to the agent, which must
return actions to the game engine. Included in the Atari suit is a racing game, “car racing”,
where the agent must learn to control the steering, accelerating and breaking. These Atari
environments are designed as games to promote research and lack many forms of realism,
such as representing physical systems.

In the game World Rally Championship 6, an approach using DRL to learn to race,
using the video game image feed as input, was presented [52,53]. Their method uses an
actor-critic algorithm with a convolutional neural network (CNN) and long-short-term
memory (LSTM) layers to train an agent to control the steering and speed actions. Actor-
critic algorithms use an actor-network to select actions and a critic network to estimate the
value of a state and train the actor. After training their agent for 190 million steps, they
show that it learns to race and take many corners. The paper demonstrates a significant
advantage of DRL; agents can learn from experience to perform highly complex tasks
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using raw input data without any explicit state estimation.
However, the authors note in [53] that their algorithm still crashes regularly, thus not

being able to achieve any level of feasibility. In their follow-up paper [52], they mention that
the agents cannot learn any optimal trajectory. An interesting point that they demonstrate
is that adding speed limits results in significant performance improvements. The agents’
lack of ability to select an optimal trajectory and the improvement in speed limits show
that high-speed racing, even in unrealistic simulators, is a complex task, especially due to
the agents’ inability to plan. A further challenge when using images is that parameters
such as lighting conditions that are constant in a game can easily change in the real world,
making it specifically difficult to transfer image-based work to reality [24].

Hybrid State Vectors

Another approach to game-based racing is to use the hybrid state vectors consisting of
the game state variables that are used in the simulator. State variables are the quantities
used by the simulator to record the current game context. For example, the most basic
state variable is the vehicle’s position, and more complicated variables are the speed,
acceleration, orientation distance from walls etc. In contrast to single source state vectors
that have a single input, hybrid state vectors include multiple different values such as
range finders, velocity and acceleration.

DRL agents have been used to learn the complex dynamics of high-speed drifting, which
are difficult to model using classical methods due to a high degree of non-linearity [54].
Their method is developed and evaluated in the Speed Dreams racing simulator. While
the simulator uses realistic dynamics to represent a vehicle, their method relies on many
detailed measurements, such as the derivative of slip angle, which are nearly impossible to
measure accurately on a physical vehicle. Their work demonstrates that DRL agents can
learn to control vehicles with highly non-linear tyre dynamics from experience without
human domain knowledge. However, their approach is far from feasible since the state
estimation that they require is not currently possible.

The popular racing game GTS has been the subject of several DRL research projects
[19, 20, 55]. While some finer details differ between approaches, the general method uses a
state vector containing range finders, upcoming waypoints, and the vehicle’s velocity and
acceleration in three dimensions. This forms a hybrid state vector rich with information
for how the agent should perform. In addition to complex, hybrid state vectors, multiple
hand-crafted rewards that rely on having full access to the simulator are used. While their
work demonstrates excellent racing results in outperforming humans, it is impractical to
measure or estimate all the state variables used, thus rendering these solutions infeasible.
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2.3.2. Performance

The approaches considered in racing games are analysed for their behaviour across the two
key challenges in racing performance and safety. Racing games lend themselves towards
developing high-performance solutions that outperform humans. However, due to the
nature of games, safety restrictions present in the real world are neglected to improve
the user experience. Table 2.2 presents a list of the methods studied, with their safety
considerations and performance levels.

Methods Safety Performance

End-to-end learning for WRC6
[52,53] Crashes every 0.8 km Travel 1.2 km without

crashing

Autonomous drifting in Speed
Dreams [54] No consideration Drifts smoothly on complex

tracks

Super-human performance in
GTS [19]

Allowed to crash into
barriers and other cars Outperforms humans drivers

Outracing champions in GTS
[20]

Allowed to crash and slide
along barriers

Outperforms
world-champion gamers

Table 2.2: A study of the approaches to games with their safety considerations and
performance levels.

Table 2.2 shows the safety considerations and performance levels of DRL approaches
in popular racing games. The end-to-end learning from images in [52] performs badly,
regularly crashing, even when fully trained. Using a DRL agent for autonomous drifting
in [54] demonstrates good results, drifting smoothly on all their test tracks. Their study
also shows that the method highly depends on the vehicle’s slip angle (angle between
orientation and velocity). The work in GTS has demonstrated excellent performance
in exceeding human capability in various competitions and outperforming the world
champions. A key limitation in all these studies is the lack of any safety considerations;
either safety is completely neglected, or the vehicle is explicitly allowed to be in contact
with the boundaries as a part of its strategy.

The study of DRL approaches to racing games demonstrates the power of learning
agents to master complex domains and outperform humans. However, the methods applied
to games require much work before they can be used for physical robotic systems. The
two most significant hindrances to robotic use are the lack of safety considerations and
the extensive state variables required by high-performance methods.
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2.4. Learning Real-world Racing
Real-world racing approaches include all those that are designed specifically for a hardware
platform and thus are physically feasible. While approaches with physical experimental
results are the basis, papers with studies in realistic simulators, such as the official F1/10th

simulator, are also included. End-to-end approaches that map sensor readings directly to
control actions are studied, followed by partial end-to-end solutions that combine classical
components with learning agents. The study then analyses the taxonomies of racing
performance, safety, the evaluation metrics used, reward functions and sample efficiency.
A further study on safety considers methods focused on training agents without them
crashing and consults the literature on safe learning. Finally, the problem of obstacle
avoidance is considered.

2.4.1. End-to-end Learning

End-to-end learning focuses on using raw sensor data as input to a learning agent that
outputs control actions. As the name implies, the agent connects to the output and input
ends of the vehicle system. End-to-end methods are categorised according to the input
modalities of camera vision and LiDAR scans.

Camera Vision

Research into the problem of using camera vision as an input into a deep learning controller
for autonomous racing is focused on replicating how humans drive by looking at what is
approaching and making decisions [56]. Classical methods require perception algorithms to
convert images to a location on a map before planning can take place. Therefore, mapping
an image directly to a control action represents a significant advantage over previous
methods.

The DeepRacer platform, which features 1/18th scale vehicles with a corresponding
simulator, was developed by researchers at Amazon to encourage deep-learning research [5].
The general focus is to develop and train DRL algorithms using simulated images and then
transfer them to the physical vehicles where a single camera is used. Their original work
uses a five-layer convolutional neural network to map the images to the steering angle
references. The results demonstrate that it can learn a policy to control a vehicle in reality
by training on simulated images. However, their results demonstrate many shortcomings,
firstly, the vehicles are evaluated at slow, constant speeds of 1.33 and 2 m/s, far from the
performance limits. Secondly, their models are sensitive to changes in lighting conditions,
and many of their results require a human to reset the vehicle regularly. This research
demonstrates that the reality gap is significant even for a simple autonomous driving setup,
and current approaches cannot guarantee safe behaviour.
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Cai et al. [6] present one of the best studies in vision-based control of a racing vehicle
to date. They present a hybrid training method that uses imitation learning (IL) to learn
from an initial driving data set and then RL to improve the policy. The imitation learning
algorithm trains the agent to imitate the actions selected in the data set. Their algorithm,
called deep imitative reinforcement learning (DIRL), has improved sample efficiency due to
the IL and is robust due to the RL improvement. They train their algorithm in simulation,
where it can achieve a 100% completion rate and then transfer it to a physical vehicle and
test it on a track with obstacles. They use a 1/20th scale vehicle and run it at speeds of
less than 2 m/s, which is relatively slow. While they show that it is possible to overcome
the sim-to-real gap, it is reported that they require an average of between 1.3 and 32
interventions per lap. They conclude that their method, despite all the improvements,
cannot match the performance of human experts.

Another paper called “Sim-To-Real Transfer for Miniature Autonomous Car Racing”
studied the sim-to-real problem in simulation by investigating how perturbing different
variables such as lighting affects the transferability of agents [57]. The paper does
not transfer their policies to a physical vehicle but only measures simulation results.
The author’s work starts with the acknowledgement that transferring agents trained on
simulated images to real vehicles with real images is difficult because small changes such
as different colours or lighting conditions can greatly affect neural network performance.
Their method involves training a teacher policy in simulation combined with domain
randomisation [58] and is used to train a student policy in different conditions. While
they demonstrate an improvement in overcoming the reality gap, their best result has
a completion rate of 52%, which is far from safe. This work indicates that the agents
that learn from images do not transfer well from simulation to reality, and even advanced
methods present poor results.

All these results in using vision as input to DRL agents make a clear point, vision is
not yet a viable solution for autonomous racing in simulation or reality. While vision-based
systems have displayed mediocre performance, they are not currently a viable solution for
high-performance behaviour that is safe and robust to different environments.

LiDAR Scans

LiDAR scanners, known as range finders that use beams of light to determine how far away
the boundaries of an environment are, have become an increasingly popular sensor for
autonomous racing algorithms. Classical systems use LiDAR scans for localisation [10], and
reactive algorithms like follow the gap (FGM) use the geometric information from LiDAR
scans [59]. Autonomous navigation pioneered the use of range finders for navigation [49].
Deep learning agents use LiDAR scans as input to a neural network [19,22,60,61]. LiDAR
scans are less dependent on lighting conditions than cameras, and several approaches have
been successfully implemented on physical vehicles [22, 60].
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Several approaches have successfully demonstrated that LiDAR scanners on physical
vehicles can be used for autonomous racing. One of the first successful approaches trained
an agent to complete a single racing corner using LiDAR [62]. While the experiment was
focused on validating a network using formal methods, it demonstrated that agents using
LiDAR scans could transfer from simulation to reality.

Brunnbauer et al. [22] used a model-based algorithm (Dreamer [63]) for F1/10th racing
using LiDAR as input. Their work was focused on comparing model-free and model-based
algorithms for autonomous racing. They claimed that model-based RL was required for
racing and showed that their policy generalises well between tracks and that they can
transfer the model trained in simulation to a physical vehicle. The authors note that a
limitation of their method is slaloming, which they improve upon with action regularisation
and reward hacking but do not completely overcome. The evaluation of the sim-to-real
transfer is limited, with no data on the lap times or success rates of the physical vehicle.
This result demonstrates the advantages of using LiDAR scans as DRL input, namely, the
ability to transfer between different maps and the ability to transfer the policy trained
in simulation to a physical vehicle with no further training required. However, further
investigation into how trained policies transfer to the real vehicle and a solution to the
problem of slaloming are still required.

Another paper positioned itself in competition to [22] by claiming that it is possible to
use model-free learning to race autonomously using LiDAR [60]. They use a similar learning
configuration, with the model-free DQN DRL algorithm that takes LiDAR beams as input
and outputs steering angles. The DQN algorithm uses a deep neural network to implement
Q-learning using a value function. They use a fixed speed for their experiments, which
is a proportion of the vehicle’s maximum speed. They present two methods of training
an agent, either on the vehicles, using a simplistic safety mechanism or in simulation and
then transferring the policy to the physical vehicle. In simulation, they claim they can
outperform the work in [22] by producing faster lap times on two common maps. The
results in [60] do not indicate the sim-to-real gap apart from saying it worked to transfer a
policy to a physical vehicle.

Imitation learning trains a neural network from demonstrations to learn a mapping
between observations and actions that replicates human behaviour [64]. The most basic IL
algorithm is behavioural cloning (BC) which aims to copy the behaviour shown in a data
set. One of the key challenges in IL is the robustness of the trained policies to states that
were not well represented in the data set. The data-aggregation (DAgger) algorithm tried
to overcome this by expanding the data set by using the oracle policy to label actions
selected by the agent trained with behaviour cloning [65]. Human-gated approaches [66]
and expert intervention learning (EIL) [67] have tried to use a human or other policy to
further train the agents in a safe manner.

A study to benchmark imitation learning methods for F1/10th racing compared popular
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methods, such as behavioural cloning [68], DAgger [65], human-gated-DAgger [66], and
EIL [67] for their ability to learn to race using LiDAR as input [23]. Their results show
that IL cannot train agents to complete a lap of their track, even at a constant speed.
Their paper has useful metrics, but the only algorithm to complete a lap of the track
is human-gated DAgger that is improved with proximal policy optimisation (PPO) [69].
Another study compared IL to DRL through evaluation in simulation and on physical
vehicles travelling at 1 m/s [9]. They concluded that DRL was more robust than IL and
should be preferred.

Using LiDAR beams as input to a DRL agent has been shown to produce high-
performance racing behaviour [19] that adapts to different maps [22] and can be transferred
to physical F1/10th vehicles [60]. Current limitations in LiDAR-based DRL racing are
the problem of slaloming [3, 22, 61], the lack of safety guarantees [19, 61], and a lack of
evaluation as to the sim-to-real gap.

2.4.2. Partial End-to-end Learning

Partial end-to-end methods use classical components in conjunction with DRL agents.
Partial end-to-end approaches are split into those that use classical components to condition
the input into the agent and those that use classical components on the agent’s output.
Methods that condition the inputs typically combine a classical localisation method with a
DRL agent that replaces the planner. Approaches that use control outputs have harnessed
the power of neural networks for perception and tried to reduce the learning complexity
by using control components after the agent. Figure 2.3 shows the difference between
conditioned input and control output architectures.

Sensors

Sensors

Vehicle

Vehicle

Perception

Control

Conditioned Input

Control Output

Figure 2.3: Partial end-to-end architectures comparing conditioned input to the network
and using a control system to follow the neural network output.

Conditioned Inputs

The typical method of conditioning inputs for a DRL agent uses a classical perception
algorithm, such as a particle filter for localisation, to generate a hybrid state vector for
the agent. The aim of replacing the classical planner with a DRL agent is to reduce
computation times, since MPC algorithms are expensive and neural networks execute
quickly [39].
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Chisari et al. [70] use a state that comprises the vehicle’s location relative to the track
centre line, velocities in the lateral and longitudinal directions and the vehicle’s yaw and
steering angles, which are obtained using an external camera-based motion capture system.
They train the policy in simulation and further refine it on the physical vehicle. Their
high-speed results and improvement through policy refinement on the physical vehicle
show the value of training online on the physical vehicle. Their work is limited by requiring
a high-frequency, external motion capture system and by indicating that for a portion
of the driving time, the vehicle operates outside the constraint bounds, causing a safety
concern. Other similar methods have used a particle filter for localisation [38,39].

Zhang et al. [71] claimed that using LiDAR as a sole input did not perform well enough
and proposed that a modified artificial potential field (MAPF) controller should be used in
conjunction with a DRL agent. They aim to simplify the problem to one of local planning
where the MAPF controller can identify a target that the agent must navigate towards.
Their results showed that their method could outperform the Dreamer algorithm [22,63]
and human drivers. While they show the paths taken by the vehicle, they do not show
the vehicle’s speed or make any remarks as to how close to the operating limits they are.
Their work demonstrates that aiding the learning formulation for additional information
improves the quality of the learning.

While replacing the planner with a neural network has improved calculation speed, it
has the critical disadvantage of requiring localisation. One of the main advantages of DRL
algorithms is that they are flexible to unmapped contexts and do not require localisation.
Therefore, methods requiring localisation remove the advantages that neural networks
bring.

Control Output

The most in-depth study that has been done into different architectures for autonomous
racing is by Weiss and Behl in [72, 73]. The authors note that replacing the entire
perception, planning and control problem can exacerbate problems like over-fitting and
make solutions difficult to debug. Therefore, they propose methods for learning a smaller
part of the navigation pipeline, namely to generate trajectories that a path follower can
track. Their results show that learning trajectories defined by Bezier curves produces the
best performance. The authors state that future work should investigate the application
of their work to using reinforcement learning and the ability to avoid obstacles. This work
demonstrates that it is possible to improve racing performance by learning a more abstract
representation of racing and then using a classical system to implement it.

Another approach to using a controller after the agent output was proposed in [74].
This method uses an encoder-decoder network to convert raw image input into a cost
map for the road that can be used by an MPC planner for planning. This method allows
the network to maintain the optimality of an optimisation-based planning approach. The
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success of this approach demonstrates that using networks in the pipeline to handle the
areas with large variance (i.e. images), and an optimiser to plan and maintain optimality
is a good strategy.

2.4.3. Racing Taxonomies

The study now shifts from considering different approaches to racing to analysing the
racing behaviour generated by each method. End-to-end methods using LiDAR scans as
input are the focus since they are the widest body of research. The behaviour is studied
according to the two challenges in racing; performance and safety. Thereafter, the study
looks at the evaluation metrics, reward functions and sample efficiency of learning-based
approaches.

Racing Performance

Racing performance is the simple metric of how fast the vehicle can move around the
track. Since autonomous racing is a new research domain that has gained popularity in
the last five years, much of the work is focused on proving that DRL is a viable solution,
as opposed to generating high performance.

While it is difficult to compare lap times since most papers use different maps, top
speed is easy to compare since all the F1/10th methods use the same hardware platform
and similar simulators. Constant speed solutions operate the vehicle at a constant speed
for the entire lap, and variable speed solutions allow the planner to vary the speed. The
methods studied are categorised according to the speeds used in simulation and on physical
vehicles.

Approach Simulation Physical Vehicle

RL vs IL [9] 1.5 m/s (constant) 1 m/s (constant)
IL benchmarks [23] 8.24 m/s (variable) 3 m/s (constant)
DQN for F1/10th racing [60] 5 m/s (variable) 1.7 m/s (constant)
Model-based DRL [22,75] 4 m/s (variable) Not presented
ResRace [71] 5 m/s (variable) -

Table 2.3: Maximum speeds used by DRL approaches in simulation and on physical
vehicles. All speeds are in m/s.

Table 2.3 reports the maximum speeds in m/s used in simulation and reality by the
methods studied. The work in comparing RL and IL in [9] used slow constant speeds
of 1 and 1.5 m/s. While the study on benchmarking IL algorithms claims the highest
speed of 8.24 m/s, only the EIL algorithm was able to complete a lap at this speed [23].
Additionally, for their physical experiments, only the HG-DAgger agent improved with
PPO could complete a single lap of their test track, with all the other algorithms crashing.

Stellenbosch University https://scholar.sun.ac.za



2.4. Learning Real-world Racing 21

Using the Dreamer algorithm showed good performance with the agent learning a valid
speed profile of speeding up and slowing down up to 4 m/s [75]. Using a DQN outperformed
Dreamer in terms of lap time, but this might be simply due to using a higher top speed of
5 m/s1.

Many classical solutions used top speeds of up to 7 or 8 m/s [44]. Therefore, the
speeds used in DRL racing are far below what classical methods can achieve. One of the
challenges is that there is very little study in the literature on the speed profiles selected
by the agents. Another difficulty is that many solutions only operate at a constant speed,
and the agent does not select a speed profile which is required for the vehicle to be able to
reach higher speeds. While the preprint [75] shows trajectories and speed profiles of the
agent, Bosello et al. [60] make no mention of how the vehicle learns to speed up or slow
down. Zhang et al. [71] do not mention the speeds used in their work. Future work should
study the profiles selected by the vehicle and use the information to enable high-speed
racing that can compete with classical solutions.

Safety

The second key challenge for racing agents is that they perform safely. Safety in DRL
is a significant concern that has resulted in many methods not being feasible for use
on physical vehicles [24]. From their own experience and surveying the current state of
training agents for robotics tasks, Ibarz et al. report that safety is a “bottleneck” for
real-world implementation of learning systems [21]. They point out that real systems are
significantly more complicated than simulations and that there is a lack of methods for
guaranteeing safety. Another paper on the challenges and opportunities of applying RL
to autonomous racing notes that the sim-to-real gap for racing is large as small model
differences can cause big changes in the results [76].

Method Vehicle Safety

Model-based DRL [75] Complete 1.4-2.1 laps before crashing

ResRace [71] Complete up to 3.5 laps before crashing

IL benchmarks [23] All algorithms except EIL crashed

DQN for F1/10th racing [60] No information given

RL vs IL [9] Safety score between 0-100%

Table 2.4: Safety levels of DRL agents used for F1/10th racing.

Table 2.4 shows the safety level for work studied on DRL methods for autonomous
racing. Brunnbauer et al. [22] report that the best performance achieved is 2.1 laps of two
tracks and only 1.5 laps on Austria. Bosello et al. [60] make no mention of the safety or

1Found in associated repository: https://github.com/MichaelBosello/f1tenth-RL
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repeatability of their approach. The study on bench-marking IL algorithms shows that
many of their algorithms crash; there is no consideration of how repeatable this result is
or what the crash rate of the algorithms is. Hamilton et al. [9] report a safety percentage
which is the number of completed laps, which is a useful metric. In their results, the
agents achieve a safety score that is often below 100% indicating that their agents crash a
lot. A key problem is that all these methods report multiple crashes. While an F1/10th

vehicle crashing does not pose a big safety risk to humans, for as long as these algorithms
are unsafe, they are unsuitable for use on any performance critical system as they might
crash.

There is a significant lack of investigation into how safe and repeatable DRL methods
are for autonomous racing. As long as methods do not produce safe solutions, or the
safety is unknown, they cannot be implemented on physical vehicles. Future work should
investigate how safe current methods are and develop solutions to prevent DRL agents
from crashing.

Evaluation Metrics

A significant problem in the racing literature is the lack of evaluation of DRL agent’s
racing performance. This problem is particularly acute in understanding how the learning
formulation affects the trained agent’s behaviour. As an example in [13], Heilmeier et al.,
in calculating a minimum curvature trajectory, use the metrics of path curvature, lateral
and longitudinal acceleration, speed profile, and lateral deviation from the racing line to
evaluate their method. In contrast, the learning literature lacks many of these metrics,
making it difficult to understand the problems.

The problem of slaloming, also known as warbling, of swerving rapidly from left to right,
has been identified in many works [22, 23, 61]. However, little measurement to understand
the problem, such as plotting the curvature, has been conducted. Another problem is
that many DRL solutions crash and have poor completion rates. An investigation should
analyse why agents display poor completion rates so that the problem can be addressed.

Another open challenge in robotics is the sim-to-real problem of transferring policies
trained in simulation to reality. While many papers have overcome the sim-to-real
problem [9, 22, 60], there has been little study comparing how the methods compare
differently in simulation to reality.

Reward Functions

One of the largest areas where there is a lack of comparison is the learning formulation
used by the agent. Reinforcement learning uses a reward function to teach the agent how
good a certain action was. Reward signals encode the desired behaviour in an equation
that can be easily calculated at each timestep. While many reward functions have been
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used, there has been little comparison between reward methodologies. This is especially
surprising when studies have noted that it is a challenging task to design an accurate
reward signal [60, 77].

Progress rewards are adapted from the navigation literature [49] and reward the agent
for the vehicle’s progress made in the direction of the centre line. In the racing literature,
progress rewards have produced high-performance racing [5, 19, 22]. While using the
progress indirectly takes the vehicle’s velocity into account, there is no explicit reward for
velocity. Considering that autonomous racing is aimed at high-speed driving, this is an
obvious weakness.

Velocity-based rewards have been widely used in DRL solutions to autonomous racing
[52, 60, 61, 77]. Velocity rewards are referred to as intrinsic rewards since the ultimate aim
of racing is fast lap times which is the sum of the integral of velocity along the track centre
line. The classic formulation is to reward the velocity in the direction of the centre line and
punish lateral deviation from the centre line [53]. While several other methods for using
the velocity have been tested, none of them have outperformed the classic formulation [52].

Other interesting reward signals that have been used include hand-crafted [78], kinetic
energy-based (when crashing) [19], overtaking [55], and steering rewards [62]. In the
world-class agent Sophy, eight reward terms were used to encourage different behaviours,
from good sportsmanship to overtaking [20]. Yet none of these approaches have been used
by more than a single study or shown to outperform other reward functions, so they are
not considered important.

There is a significant lack of study in reward signals in three areas, firstly in how
different signals compare to each other, secondly, on the training performance created by
the reward (especially with regards to speed), and thirdly in the development of custom
reward signals for the task of autonomous racing.

Sample Efficiency

An analysis of the sample efficiency is presented in a table showing how many training
steps were used by each method. Table 2.5 shows a list of different methods and the
number of training steps used.

Method Input Algorithm Training
Steps (×106)

End-to-end racing in WR6 [52] Images SAC 140
Learning in simulation [70] State variables SAC 18
TORCS autonomous racing [61] LiDAR SAC & DQN 6
Model-based learning [22] LiDAR Dreamer 2
Generalised F1/10th RL [60] LiDAR DQN 0.55

Table 2.5: Number of training steps used in the end-to-end RL literature.
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In Table 2.5, the number of training steps for methods with different inputs is presented.
Methods using images are trained for the largest number of training steps (140 million
in [52]). Using LiDAR scans presents a significant improvement by using less than 6 million
training steps. The most sample-efficient result found in the literature is Bosello et al. [60]
that train their agents for 550,000 steps. The continuous soft-actor-critic (SAC) algorithm
and the discrete deep-Q network (DQN) algorithm have been the most popular choice for
racing. It is difficult to compare the number of training steps since every configuration
has a different frequency used in the planner, algorithm, and input vector. However, these
DRL algorithms require many samples to learn how to race.

2.4.4. Safe Autonomous Racing

The literature study in end-to-end learning for autonomous racing showed that the problem
of safety, and thus agent implementation on physical vehicles, remains. In response to
these problems, methods for safe autonomous racing are studied. Approaches using formal
methods of neural network verification [62, 79], and probabilistic methods [80, 81] are
briefly mentioned. A study on supervisory learning approaches [82–85], safe learning for
autonomous racing [60, 86, 87], and methods to improve safe learning through Viability
Theory [32,88] are presented.

Supervisory Autonomous Racing

Only three papers have been found that contain approaches for safe learning for autonomous
racing, one in simulation published in 2020 [86], and two using physical vehicles published
in 2022 [60, 87]. The first approach [86] uses a two-stage supervision approach process,
with the first stage using a simplified dynamics model and low speeds, while a learned
model is trained. The second stage uses the trained model as a supervisor to ensure that
the vehicle does not crash, even at the handling limits. This approach is demonstrated in
the TORCS simulator but lacks physical data to validate it. While the results show that
it can keep their agent safe, conceptually using a neural network for safety is dangerous
because there are no guarantees that it performs in a certain way.

Bosello et al. noted the problem of transferring agents from simulation to reality and
thus used a safety mechanism to enable training onboard an F1/10th vehicle [60]. The
safety mechanism is simple and reverses the vehicle if it is near a boundary. The results
show that this approach can successfully train a DRL agent to drive at a constant speed
onboard a vehicle and bypass the sim-to-real gap.

Another approach by Musau et al. [87] implements the simplex control structure [89]
on an F1/10th vehicle. Reachability theory is used to ensure that the vehicle remains
on the track. This is done by calculating future trajectories for the vehicle and ensuring
that there exists a sequence of control commands that lead the vehicle to remain on the
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track. This work also runs the vehicle slowly on a simple track. They conclude that
the idea of supervisory learning for online RL is a good idea, but that Viability Theory
would be a better approach instead of Reachability Theory. This is a true statement since
Reachability Theory does not guarantee recursive feasibility, and it requires a planning
run-time of how far the algorithm looks ahead, which is resource intensive and limited by
onboard computation. Recursive feasibility means that for every safe state, there exists an
action that leads to another safe state. Thus, if you are in a recursively feasible state, you
can select control actions that keep you in the set of feasible states.

Viability Theory, which is concerned with finding sets of states that remain within a
constraint while evolving according to a set of dynamics, has been used to ensure the safety
of driving controllers [88]. Liniger et al. [32] developed a formulation for a viability kernel
for autonomous racing to speed up the search of an MPC algorithm. Liniger calculated
a set of safe states offline, before a race, and then used the kernel during the race to
look-up if a specific state was safe or not. Viability Theory shows promise as a method for
guaranteeing the safety of a racing vehicle, but this has yet to be evaluated.

Safe Learning Methodologies

Since there have been few approaches to safe autonomous racing, an exposition of work
in safety and safe learning in other fields is presented. Safe learning methodologies are
grouped into formal verification methods, probabilistic methods and supervisory methods.

Formal verification methods that aim to guarantee that a network will act in a certain
manner for a set of possible states, have been used to verify the safe performance of a DRL
autonomous racing agent [62,79]. In [62], the authors train a DRL agent to race an F1/10th

vehicle around a single corner, then validate the network for safety before transferring the
policy to a physical vehicle. Their results show that the verification method is successful,
and the agent can drive the physical vehicle safely. However, verification approaches
are limited by (1) validating the policy using the simulation model (i.e. the sim-to-real
problem remains), (2) taking a long time to validate simple networks, (3) not scaling well
to large networks, (4) not providing any way to fix a policy if it is not validated.

Probabilistic methods have been used to estimate the probability of an action being
unsafe and if the probability is above a certain threshold, then using a safe policy [80, 81].
This solution is limited to ensuring safety because probabilities inherently do not provide
guarantees. Conceptually, this is a poor solution to the problem of safety. This is
demonstrated by the work in [81] still achieving a success rate of less than 100%, i.e. their
vehicle still crashes. Any chance of crashing means the system cannot ensure safety in all
circumstances.

Using a supervisor has been widely proposed to ensure safety in validating experimental
vehicle planners [82], safety-critical learning [90], and cruise-control systems [83]. The role
of a supervisor is to monitor a potentially unsafe planner and ensure that safe actions
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are taken. In 1998, the simplex architecture for safe online control system upgrades was
proposed with the three components of an experimental policy, a safe policy, and a decision
module [89]. The safe policy was a fall-back option if the decision module decided that
the experimental policy had selected an unsafe control. Since this paper, the idea of
using a supervisor to ensure that controllers and planners operate according to a set of
specifications has grown.

Safety in Control Systems

The problem of safe reinforcement learning has been widely approached in control systems.
The general approach has been to use a supervisor with access to a safe set to ensure that
the control system performs in a certain region.

Dalal et al. introduced a method for using a supervisor during the training of an RL
agent to ensure that it remains within a safe set [84]. Their method adds a safety layer
after the agent that ensures that the agent remains within a predefined region. They
pre-train a dynamics model on random actions taken in the environment and then use it
in the safety layer to ensure that an action will result in a state within the constraints.
Their evaluation shows that they can solve the classic RL problems, like moving a ball
to a goal location while keeping it within a constraint set during training. This idea of
training within a safe region (or a shield [91]) presents a great opportunity for learning to
race safely. An additional advantage of this method is more efficient exploration, leading
to greater sample efficiency.

Many approaches to safe reinforcement learning have been developed in control systems
[83,85,92,93]. Control barrier functions (CBFs) ensure that a control system remains within
a constraint set [94]. Several approaches have used control barrier functions with dynamics
models to create a safe region for an agent to learn in [85,90]. Other approaches to safe
learning in control systems have used constraint-admissible sets for linear systems [83],
Hamilton-Jacobi methods for uncertain systems [92], and reachability theory [93].

These approaches are applicable to control systems where a control input must be
chosen in such a way that the state variables remain within a certain limit. CBFs contribute
the valuable idea of recursive feasibility or forward in-variance, the quality of all states
within a set to contain an action that leads to another state within the set. However, in
the racing setup, the constraints are not a static limit on a variable but rather a map
of the track boundaries, and thus, these methods are not directly applicable. For these
methods to be useful in autonomous racing, a definition of a recursively feasible safe set of
states is required.
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2.4.5. Obstacle Avoidance

In their paper on the F1/10th simulator, O’kelly et al. [4] cite the three benchmark tests
for autonomous racing performance, (1) racing around a known track, (2) avoiding static
obstacles, and (3) head-to-head racing. The first challenge of racing around a track has
been widely studied, and the third problem of head-to-head racing has been occasionally
studied, but little work has been done on static obstacle avoidance. The problem of static
obstacle avoidance is defined as having obstacles (such as blocks or cones) placed on the
track at random, un-mapped locations that must be avoided. The few approaches related
to obstacle avoidance in F1/10th racing are studied, followed by the literature on hybrid
navigation architectures.

Obstacles in F1/10th Racing

Several F1/10th approaches have evaluated their methods by adding several static obstacles
on the track and showing that their solution still works [6]. Even these simplistic tests
have presented poor results; for example, Cai et al. report the average number of human
interventions required per lap between 4.3 and 32.7 for a track with 8 obstacles [6].

In studying the safety of planners for overtaking in simulation, Bak et al. [95] conclude
that overtaking other vehicles is a surprisingly difficult problem, producing many more
crashes than anticipated. In their evaluation of the several popular algorithms, such as
the follow the gap algorithm [59], disparity extender and graph planner, they found that
vehicles crash on average between 33.5 and 83.4 times during their experiments. Another
study targeting head-to-head racing using game theory also noted that they cannot achieve
a 0% crash rate [96]. The conclusion from the literature is that few approaches have
studied obstacle avoidance and preliminary studies indicate that it is a difficult problem.

Hybrid Navigation Architectures

DRL agents have been a popular method of low-speed obstacle avoidance for holonomic
vehicles [49, 97, 98]. The navigation problem is to move from one point to another in
an unknown environment while avoiding any obstacles. Obstacle avoidance is a difficult
problem for any planning-based approach because obstacles must be detected (perceived),
and the plan must be updated to avoid them in real time. Obstacle detection, perception
and re-planning is a computationally intensive task that is difficult to do onboard. The
difficulty in obstacle avoidance in navigation is demonstrated in Tai et al.’s robot requiring
human intervention [49], and de Villiers et al. concluding that high-level planners should
be used to guide the low-level DRL agents [98].

In a survey paper on autonomous navigation, Xiao et al. [99] recommend using learning
techniques at a subsystem level due to their analysis showing improved performance.
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Another survey on end-to-end learning notes that it has limitations in safety and perfor-
mance, and further research into subsystem architectures should continue [100]. While
DRL agents have the advantage of being flexible to unstructured environments, they are
limited by their lack of ability to plan at any level. Therefore, a common approach has
been to combine a classical high-level path planning module with a lower-level DRL agent
that learns the subsystem of obstacle avoidance [101–103]. Table 2.6 shows a study of
long-range navigation techniques that have combined classical high-level planners with
lower-level learning-based planners.

Method High-level Low-level

Deployment of RL-based ob-
stacle avoidance in conven-
tional systems [101]

A* planner generates
waypoints

DRL agent trained for path
following obstacle avoidance

Long-range Navigation using
sampling planning and DRL
[104]

Probabilistic road map
generates sub-goals

DRL agent trained to plan
according to vehicle dynamics

Delivery robots [102]
Hybrid A* to generate

“intentions”, such as go
forward or turn left

DRL agent to enact
intentions around obstacles

Navigation combining visual
SLAM and DRL [103]

A* planner supplies local
sub-targets

RL planner takes map detail
into account

Table 2.6: Hybrid planners that combine high-level classical planning with low-level DRL
flexibility.

High-level path search algorithms, such as A* [103], can find paths for long missions.
The decision to use RL for local planning and obstacle avoidance is motivated by agents’
flexibility and computational efficiency [101]. The general trend is to use learning agents
to respond to the uncertainty in the environment, usually in the form of obstacles [102].
The ability of hybrid architectures to combine the performance advantage of classical
solutions and the flexibility of learning-based planners show promise for obstacle avoidance
in autonomous racing.

2.5. Summary
The literature review started by studying optimisation-based approaches to full-scale
and miniature autonomous racing [2, 29]. Optimisation-based approaches bring high-
performance racing [30], with speeds of up to 8 m/s on F1/10th vehicles [37, 45]. However,
classical methods are limited by being unable to avoid obstacles or react to map uncertainty
and requiring computationally expensive localisation [13,41].
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Racing games have pioneered much DRL research with methods using camera images
and hybrid state vectors as input. While DRL agents have demonstrated super-human
performance in games [19], the methods used are not physically feasible. The two significant
limitations are the lack of safety considerations, as the cars can crash into barriers in many
games [20], and the assumption of accurate, explicit state variable estimation [54].

Real-world racing approaches have used fully end-to-end DRL architectures with camera
images and LiDAR scanners and partial end-to-end configurations that have replaced part
of the planning pipeline with a neural network. Using LiDAR scans as input to the DRL
agent has produced better results than camera images and policies have been shown to
transfer to other tracks [60]. Studying the performance of learning approaches showed that
current methods have only been evaluated at low speeds of up to 5 m/s [9,71], and even at
these speeds, many approaches are unsafe [22, 23]. A significant problem identified in the
learning literature was the lack of comprehensive metrics to analyse current behaviour; for
example, while multiple reward signals have been used, there has been no quantification
of the effect of the reward signal.

A study on safe methods for autonomous racing showed that while some recent
approaches have recommended safety supervisors so that DRL agents can be trained online
vehicles, there is little work in this direction [87]. While the safe learning literature in
control systems was consulted, current methods have focused on learning linear systems
with affine dynamics where a safe set is easily identifiable [83]. Viability Theory has been
proposed as a feasible method to ensure vehicle safety on a race track and should be
further investigated [2, 88]. The problem of obstacle avoidance has been poorly studied in
the literature with few approaches considering it. Current approaches have noted that it
is a difficult problem [6]. Investigation into hybrid navigation architectures showed that
combining high-level classical planners with low-level DRL agents is a promising direction
for obstacle avoidance in racing [99].
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Chapter 3

Preliminaries: The F1/10th Platform

This chapter describes the preliminary information used as a basis for the rest of the
work in this dissertation. The F1/10th platform is introduced with a description of the
hardware and the simulation platforms. The Gym simulator that is used for a majority of
the testing is described, and the ROS communication bridge is explained. The bicycle and
single-track vehicle dynamics models are presented, along with the equations governing
them. Aspects of the evaluation methodology that are general throughout the dissertation
are described. The test maps are presented, and notes on their characteristics are given.
The evaluation metrics are defined, and the classical baseline planner is explained. The
classical methods for map preparation, optimal race line generation and pure pursuit path
following are explained.

3.1. The F1/10th Platform

The F1/10th racing platform has been developed to promote research into autonomous
control algorithms at the edge of performance. The platform consists of vehicles that are
1/10th the size of normal F1 cars (shown in Figure 3.1), and an accompanying, open-source,1

high-fidelity simulator that allows for rapid algorithm development and deployment.

Figure 3.1: An F1/10th vehicle equipped with hardware for autonomous navigation.

The aim of designing a racing planner is to use the incoming data to generate a
sequential set of drive messages that cause the vehicle to move around the race track as

1Available at: https://github.com/f1tenth/f1tenth_gym
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quickly as possible without crashing. Planning is done in the velocity space of selecting a
speed and steering angle and implemented using a control system that implements the
references on the hardware.

Development Simulator

Most of the algorithms were developed in a sandbox simulator that used the kinematic
bicycle model. The simulator was built in-house and kept simple to facilitate easy
prototyping of planners. The sandbox simulator is simple and used in prototyping and
not described in detail. This is the simulator that is used in the papers [25, 26] that were
published.

3.1.1. Physical Vehicle Description

The cars use standard remote-control car chassis, with a drive motor to power the rear
wheels and a servo to control the steering. The car is equipped with a light detection
and ranging (LiDAR) sensor to sense the environment, and an inertial measurement unit
(IMU), to detect its own movement. A Jetson TX2 computer runs the perception and
planning algorithms, and an electronic speed controller (ESC) runs the low-level control
system.

F1/10th cars use the Robot-Operating-System (ROS) software stack [105]. ROS is a
communication platform that uses nodes (independent parts of code) that communicate
with each other over topics. ROS provides the planner access to the incoming data from
all of the sensors. The planner controls the vehicle by sending a message containing a
reference steering angle (for the front wheels) and longitudinal speed.

3.1.2. Gym Simulator

The testing platform is an open-source Gym-style simulator. The simulator was originally
built by a research group at the University of Pennsylvania [4, 34] and used in other
research [9, 22, 60]. The simulator is built on the Gym-style environments [106]. The
Gym environments are commonly used to develop and compare different DRL algorithms
and feature a standard format of step, reset and render methods. At each timestep, the
simulator takes an action containing steering angle and speed references and returns a
state containing a LiDAR scan, position, orientation, velocity and steering angle.

This simulator uses a 7-dimensional state with the single-track bicycle model described
in §3.2.2. The simulator includes a control system, similar to the one used on the physical
vehicles, that transforms the steering angle and speed references into accelerations that
the model can use as inputs. Planning happens at a frequency of 10 Hz, and the dynamics
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model is updated at a frequency of 100 Hz, meaning that for each planning step, 10 model
updates are run. This simulator is the most widely used in this dissertation due to it
being easy to use and providing a high degree of realism.

All of the simulator results are seeded so that the exact numerical results can be
reproduced by running the code. For the results where the experiment is repeated, the
random seed is updated to a new value for each test. The random seeds start at 1000 and
are incremented by 10 for each consecutive experiment.

3.1.3. ROS Simulator

A robot-operating-system (ROS) simulator is used to bridge the Gym simulations and the
physical vehicle. The ROS simulator runs the Gym simulation inside a Docker container
and uses the ROS topic system to interact with the agent. The simulator uses the ROS
topic system in exactly the same configuration as the car to make the simulation-to-reality
transfer seamless. The ROS simulation allows for the particle filter that is used on the
vehicle for localisation to be run in real-time to provide an accurate simulation of the
localisation quality available on the vehicle.

Topic Name Publisher Type Description

/drive Planner AckermannDrive Steering and speed reference for
the car to follow

/scan LiDAR LaserScan 1080 range beams from LiDAR

/odom Particle filter Odometry
Pose and Twist messages describ-
ing vehicle’s position and move-
ment

Table 3.1: List of ROS nodes used by the vehicle for planning.

Table 3.1 lists the main topics that are used for controlling the vehicle. The vehicle
is controlled by publishing AckermannDrive messages to the /drive topic. The LiDAR
scanner publishes a LaserScan message, that contains a 1080 beam scan. A particle filter
is used for localisation that uses the LiDAR scans to estimate the vehicle’s location. The
particle filter publishes an Odometry message with the estimated pose and twist of the
vehicle. The planner has access to the odometry and the laser scan.

3.2. Vehicle Modelling

This section presents two models used for F1/10th vehicles. The models are presented to
help the reader understand the dynamics of racing and to lay the mathematical foundation
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for the solutions that are later developed. The single-track model is used in the simulator
and is used to develop the safety system in §6.3. First, the kinematic bicycle model is
presented to provide an intuitive understanding of the parameters used. The equations
are then expanded to take the vehicle slip angle into account in the single-track model.
This work is adapted from the models presented in [107] and described in detail in their
online repository documentation.2

3.2.1. Kinematic Bicycle Model

The kinematic bicycle model has been used in previous autonomous racing literature [2],
and is favoured due to its simplicity. The kinematic model is highly accurate at low speeds,
but since tyre slip is neglected, loses some of its accuracy as the vehicle tends towards the
tyre saturation point [2].

θ

δ

β

v

X

Y

Llr

lf

Figure 3.2: Kinematic Bicycle Model: lr,f are the rear and front axle to centre distances
respectively, L is the wheelbase length, X and Y are the coordinate frame, v is the
velocity, β is the slip angle, δ is the steering angle and θ is the orientation angle (yaw).

Figure 3.2 shows a schematic of the model with the parameters used. The wheelbase L
is the sum of distances from the centre of gravity (CoG) to the front and rear axles, lr, lf .
The inputs into the bicycle model are velocity v, and steering angle δ. The state of the
vehicle consists of position in the X and Y directions and the orientation angle θ. The
slip angle β is an intermediate quantity that describes the direction of the velocity at the
CoG, relative to the orientation of the vehicle. In the kinematic bicycle model, β does not
form part of the state and is assumed to be geometrically related to the vehicle and the
steering angle; an assumption which is removed in the single-track model. The equations

2https://gitlab.lrz.de/tum-cps/commonroad-vehicle-models/-/blob/master/
vehicleModels_commonRoad.pdf
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describing the vehicle’s dynamics are given by

β = arctan(lr tan(δ)/L),
Ẋ = v cos(β + θ),
Ẏ = v sin(β + θ),

θ̇ = v

L
tan(δ)× cos(β).

(3.1)

The X and Y positions are updated based on the velocity in the appropriate direction.
The yaw rate is calculated using the steering angle and current velocity.

3.2.2. Single-track Model

The single-track (ST) model provides a more realistic approximation of the vehicle dynamics,
specifically accounting for the acceleration and steering velocity and tyre slip. The ST
model adds the four state variables of yaw-rate θ̈, slip angle β, and steering velocity vδ.
The ST dynamic equations are

Ẋ = v cos(β + θ),
Ẏ = v sin(β + θ),
v̇ = along,

δ̇ = vδ,

θ̇ = θ̇,

θ̈ = µm

Iz(lf + lr)

(
lfCf (glr − alonghcg)δ

+ (lrCr(glf + alonghcg − lfCf (glr − alonghcg))β

− (l2rCr(glf + alonghcg) + l2fCf (glr − alonghcg)) θ̇
v

)
,

β = µ

v(lf + lr)

(
Cf (glr − alonghcg)δ

.− (Cr(glf + alonghcg) + Cf (glr − alonghcg))β

+ (Cr(glf + alonghcg)lr − Cf (glr − alonghcg)lf ) θ̇
v

)
−θ̇.

(3.2)

In the equations above, hcg is the vehicle’s height to the centre of gravity, Cf,r is the front
and rear cornering stiffness, µ is the coefficient of friction, m is the mass and Iz is the
moment of inertia. The standard parameters from the simulator that have been identified
for F1/10th vehicles are used.
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3.2.3. Model Comparison

The kinematic (KS) and single-rack (ST) models are now compared to each other. While
being more complicated, the single-track model is known to result in more accurate
behaviour [2].
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Figure 3.3: A comparison of the kinematic and single-track models at the speeds of 2, 4,
6, and 8 m/s for steering actions ranging from -0.4 to 0.4 radians.

Figure 3.3 shows the trajectories that the kinematics and single-track models produce,
simulated for 0.5 seconds. The trajectories are generated by setting the initial state to
have the speed used and the steering angle to 0. For the single-track model, the initial
yaw rate and slip angle are set to 0. Actions of 5 different equally spaced steering angles
are then fed into the model, and the resulting vehicle positions are plotted.

Figure 3.3 shows that at slow speeds, the kinematic model matches the single-track
model accurately, but as the speed increases, the models deviate further. This means that
to represent the dynamics at high speeds accurately, the single-track model must be used.
The main source of deviation is the update of the vehicle orientation angle, which is why
the positions differ so radically between the models.

3.3. Evaluation Methodology
The bulk of the evaluations presented in this work uses the Gym simulator. Therefore,
the Gym simulator is described in detail. The general pattern that is followed is to run a
training loop where the agent selects an action, the action is implemented in the simulator
and the simulator returns a new state. The state transition storing, reward calculation
and record keeping are all done by an intermediate class that controls both the vehicle
and the simulator. All the code used in this work is available online and all the simulation
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results are repeatable. The results from Chapter 4 and 5 are in a single repository.3

The supervisory safety system has its own repository,4 as do the planners for obstacle
avoidance.5

3.3.1. Map Data

Throughout the dissertation, a total of 7 different maps are used. Four of the maps are
scaled versions of Formula 1 circuits, called AUT (Spielberg in Austria), GBR (Silverstone
in Great Britain), MCO (Monaco), and ESP (Spain). The physical vehicle evaluation in
§7.4 uses two maps that were used in the experiments, Levine (environment 1) and Lobby
(environment 2). Chapter 8 focuses on obstacle avoidance and thus uses a more simple
map called Columbia. The information about the four F1 maps is listed in Table 3.2.

Metric AUT GBR MCO ESP
Length 93.7 m 202.2 m 178.3 m 236.8 m
Mean Curvature 0.16 0.14 0.16 0.12
Total Curvature 19.03 36.52 34.85 36.80
Max Curvature 0.76 0.87 0.98 0.90

Image

Table 3.2: Length, curvature and image of the AUT, GBR, MCO and ESP maps used in
testing.

Table 3.2 shows a table of each map used in training. The maps have been used in
previous research [22,60] and are repeated here for comparability. The table shows that
the AUT map is the shortest at only 93.7m and the ESP map is the longest at 236.8m.
The MCO map has the highest mean curvature, meaning that the map has the most turns
relative to straight sections. The GBR and ESP maps have the highest total curvatures,
indicating the greatest number of sharp corners. The MCO track has the most difficult
corner with the highest curvature.

3.3.2. Evaluation Metrics

Throughout the dissertation, several important metrics are used to measure the performance
of the vehicles. Here is a list of the important metrics, how they are measured and what
they indicate:

3https://github.com/BDEvan5/RacingRewards
4https://github.com/BDEvan5/SuperSafety
5https://github.com/BDEvan5/hybrid_planners
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• Lap-time (seconds): The time taken to complete a lap of a race track. This is the
ultimate performance metric of racing.

• Distance (meters): The difference between the positions at each timestep. Useful
to evaluate how far the vehicle drove compared to the track length to evaluate the
path efficiency.

• Curvature (radians per meter): The difference between the vehicle’s direction
of motion at each timestep. The direction of motion is calculated from the gradient
in between consecutive positions. In racing, lower curvatures allow for higher lateral
accelerations and thus good racing performance will have low curvature.

• Completion rate (percentage): The number of successful (finished without
crashing) laps as a percentage of the total number of test laps.

• Average progress (percentage): The mean of the vehicle progress when the
vehicle either crashed or completed the lap. This is a useful metric for analysing how
quickly a learning agent is training.

• Average speed (meters per second): The mean of the velocities at each planning
step. This metric measures what the average was relative to the vehicle’s maximum
to show the vehicle’s speed selection behaviour.

• Average steering (radians): The average of the absolute steering values. This
metric indicates the normal behaviour of the planner in selecting steering actions.

3.3.3. Classical Planner

This section describes the classical planner that is used as a baseline for the work in this
dissertation. The classical planner uses an offline global planner to calculate a globally
optimal trajectory and a pure pursuit path follower to follow the trajectory as closely
as possible. The results from the classical planner are treated as the theoretically best
possible results.

Map Preparation

The first step of the optimisation planner is to prepare the map for optimisation. The
map comes in the form of a binary file indicating free space or a boundary and a .yaml
file indicating resolution and start location.

The first step of map preparation starts with finding the centre line. The centre line is
found by taking the Euclidean distance transformation of the map. A manual gradient
search algorithm is used to find the line of the lowest points on the map from the starting
point. Once the centre line is found as a set of points, the normal vector direction is
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calculated by taking the line perpendicular to that joining the centre points. The normal
vector is stored as a unit vector indicating the direction. Finally, the track widths are found
by searching at set intervals along the normal direction until the boundary is reached.

After this, the map is stored as a 6D set of points as x, y of the centre line, normal
vectors and track widths at each point. The left image in Figure 3.4 shows what a track
that has undergone this procedure looks like.

Trajectory Optimisation

Once the map has been formulated as a set of points, then the optimisation routine is set
up. The optimisation routine is performed in two steps to ensure a time-efficient solution.
The routine described here was presented in [13] and consists of generating a minimum
curvature path and then calculating a speed profile for the path. In the experiments, the
original code version is used with minor modifications.
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Figure 3.4: Left: Race track model comparing the centre line (black) and minimum
curvature line (red). Right: An optimal trajectory for the GBR map with the speed
represented by the colour bar in m/s.

The minimum curvature optimisation finds the path with the lowest curvature by
selecting a distance along each normal vector for each track point. The centre line is
represented as a set of third-order splines, and a quadratic program is formulated to find
the path with the lowest total curvature. An approximate formulation of the optimisation
is presented as,

min
x

: f(x) = Σi(θi+1 − θi)2

s.t. : wleft,i ≤ ni ≤ wright,i

θi = arctan
(
yi+1 − yi

xi+1 − xi

)
.

(3.3)

Once a minimum curvature path has been found, the next step is to generate a velocity
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path using a model of vehicle kinematics. A forward-backwards solver is used to generate
a velocity profile subject to the vehicle’s acceleration limits and the physical friction limit.

The result of these two steps is an ordered set of way points consisting of an x and y

position in the global coordinate frame and the velocity at each point. This trajectory is
referred to as the racing line. The trajectory is visualised for the GBR map in Figure 3.4,
showing the minimum curvature line, with the speeds calculated by the optimiser shown
using different colours.

Pure Pursuit Path Following

A pure pursuit path follower, which navigates towards a waypoint situated at a fixed
look-ahead distance in front of the vehicle, is used as a simple means of following a
precalculated trajectory [36]. Figure 3.5 shows how the vehicle and waypoints are modelled
so that the steering angle can be calculated.

Path

L

R

2α

α

ld

R

Figure 3.5: Pure Pursuit Path Follower: R is the turning radius, g is the goal point, α is
the angle to the goal and δ is the steering angle which is calculated.

Using the notation from Figure 3.5, the desired steering angle is calculated according
to,

δpp = arctan
(

2L sin(α)
ld

)
, (3.4)

where L is the length of the vehicle body, ld is the look-ahead distance to the waypoint
being pursued, and α is the angle between the vehicle’s current heading and the heading
to the waypoint. The pure pursuit planner uses the speed at the upcoming waypoint as
the speed reference to control the vehicle.

3.4. Summary
This chapter presented the preliminary information used to build the solutions developed in
later chapters. An overview of the F1/10th platform was presented, detailing the hardware
on the vehicle and simulation platforms. The Gym simulator provides fast development
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and the ROS simulator provides a useful bridge between development and physical testing.
The kinematic and single-track vehicle dynamics models were presented. General aspects
of the evaluation methodology were described. The maps used in testing were presented
and their attributes recorded, the evaluation metrics were defined and the classical baseline
was detailed. The classical methods for map preparation, optimal race line generation and
pure pursuit path following were explained.
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Chapter 4

Evaluation of DRL for F1/10th Racing

This chapter evaluates current reinforcement learning formulations for F1/10th racing. The
evaluation fulfils three roles; (1) explaining how DRL is formulated for F1/10th racing, (2)
investigating how well current learning formulations perform, thus providing a baseline for
future results, and (3) providing novel insights into how DRL agents perform for racing,
such as comparing reward signals. The constant speed evaluation shows that the cross-track
and heading reward outperforms the progress and standard reward regarding training
consistency and accuracy in tracking the centre line, while the progress reward selects
shorter smoother paths. The variable speed investigation shows that current learning
formulations are unsuitable for racing at speeds above 5 m/s due to the high crash rate.
The specific problem identified is that the agent does not learn to select an appropriate
speed profile but only selects the maximum speed and thus drifts around the track with a
high slip angle.

4.1. Introduction
Reinforcement learning is the task of training an agent to perform a task from experience.
Deep reinforcement learning using neural networks has shown to be an effective method
for controlling racing games and physical vehicles at low speeds. The challenge of training
an agent is to transfer knowledge, via a reward signal, to the agent so that it can map an
input state vector to an output action that results in fast, safe racing behaviour.

Currently, there is a lack of in-depth studies on the behaviour learned by the agent.
While different studies have rewarded the agent for progress [19] or proportionally to the
cross-track and heading error [52], there has been no direct comparative study. DRL
agents for F1/10th racing have not been evaluated at speeds above 5 m/s, and there has
been little work studying the effect of the maximum speed or the velocity profiles.

This chapter presents and evaluates current learning formulations for F1/10th racing.
An introduction to reinforcement learning is presented, followed by an explanation of how
it is applied to the task of racing. Most of the chapter contains an in-depth evaluation of
end-to-end DRL for autonomous racing and constant and variable speed. The evaluation
compares the progress and cross-track and heading reward signals, measures the curvature

41
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of the trajectories taken, considers the effect of maximum vehicle speed on performance,
and plots the speed profiles. The study concludes by highlighting the limitations of current
learning formulations.

4.2. Reinforcement Learning
Reinforcement learning (RL) is a convenient method for training agents because it can
generate its own samples (learn from experience), and the only knowledge it requires is
a reward signal [50]. RL uses the agent’s policy to collect experience to train the agent
to produce the desired behaviour. The work in this section is presented as preliminary
information and is adapted from recent developments in the field, such as [98,108].

4.2.1. Definitions

A reinforcement learning problem is modelled as having an agent that receives a state
and selects an action in an environment. After each action has been implemented, the
environment returns a reward indicating how good or bad the action was. The agent is
trained to select actions that maximise the amount of reward received.

Agent 

Environment 

Action, 

State, 

Reward,

Figure 4.1: RL agents select an action that is implemented in the environment, and a
new state and reward are returned to the agent.

Figure 4.1 shows the generic layout of the components used for training an RL agent.
At each timestep, t the agent observes the state of its environment st from the state space
S, which the agent uses to select an action. The agent uses its policy π(s,a), to select
an action at from the action space A. The agent’s policy is the probability of selecting
an action, based on being in a certain state, written as π(s,a) = Pr(at = a|st = s).
Environments are used with stationary transition dynamics (a fixed probability density)
of a next state and reward based on a current state and action combination. After each
step, the agent receives a reward to encourage or punish the selected action in the current
state according to a reward function r : S ×A → R.

The RL problem is finding the policy that maximises the expected discounted sum
of future rewards when followed. The agent’s policy is written as πθ, with θ referring
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to the policy parameters. The expected discounted sum of future rewards is written as
Gt = rt+1 +γrt+2 +γ2rt+2 +γ3rt+4 + .... The return can be rewritten in terms of the reward
and return of the next timestep as, Gt = rt+1 + γGt+1. The discount factor γ ∈ [0, 1)
determines how much the agent favours immediate reward (γ = 0) as opposed to future
reward (as γ approaches 1).

An action-value function qπ(s,a) is defined as the expected value of the discounted
return, by taking an action a from state s under the policy πθ. The action-value of the
state-action pair is used to improve the policy via policy improvement.

Deep reinforcement learning uses a deep neural network to represent the policy. Deep
neural networks use sets of neurons (layers) to calculate an output for a given input. For
input to a given layer x ∈ Rn, the output of the layer is calculated as y = σ(W × x + b),
where σ is the activation function W are the layer weights, and b are the layer biases.
Deep neural networks using multiple layers connect the outputs of one layer to the inputs
of the following layer. The parameters of the network are the weights and biases of each
layer that determine how the inputs map to the outputs.

4.2.2. Policy Based Reinforcement Learning

In this work, policy-based methods are described since they can select outputs for continu-
ous control [109]. Specifically, deep deterministic policy gradient (DDPG) methods are
described [110].

Deterministic policy gradient algorithms are part of the actor-critic algorithm family
that uses two networks, an actor and a critic. The critic network, Q(s,a|θQ) is used to
approximate the action-value function qπ (the Q-value of a given state-action pair). The
actor-network, µ(s|θµ), is the policy network that maps a state to an action.

A standard method to improve the stability of neural networks during training of using
separate model (or online) and target networks is employed. The model network is used to
select actions and is updated during training. The target networks, denoted by parameters
θQ′ and θµ′ , are changed using a soft update to slowly track the model networks during
training, written as,

θQ′ ← τθQ + (1− τ)θQ′ and θµ′ ← τθµ + (1− τ)θµ′
.

The updates use a temperature parameter where 0 < τ ≪ 1.
Experience is collected by allowing the agent to interact with the environment and

storing the collected state transitions in a replay memory. During the sample collection
phase, random policy noise is added to the action selected by the network to ensure
adequate exploration. After every step, the networks are trained by sampling mini-batches
of N transitions from the buffer. For each transition, i, the improved estimate of the
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action-value function is calculated using the target networks by

yi = ri + γQ′(si+1, µ
′(si+1|θµ′)|θQ′). (4.1)

The online critic network is updated by minimising the mean squared error (loss, L)
between the target estimate of the action-value function and the current estimate of the
Q-value:

L(θQ) = 1
N

∑
i

(yi −Q(si, ai|θQ))2. (4.2)

The policy network (actor) is trained to maximise the expected return estimated by
the critic network, J(θ) = E[Q(st, a)|a=µ(st)]. The gradient of the policy’s performance is
obtained by applying the chain rule to calculate the derivative of the objective function
with respect to the policy parameter as proven in [109]:

∇θµJ(θ) ≈ ∇aQ(st, a|θQ)|a=µ(st)∇θµµ(st|θµ). (4.3)

The policy network is updated by calculating the mean of the policy gradients in the
mini-batch:

∇θµJ(θ) ≈ 1
N

∑
i

∇aQ(si, a|θQ)|a=µ(si)∇θµµ(st|θµ), (4.4)

to perform stochastic gradient ascent (to maximise the expected return).
The twin-delayed deterministic policy gradient algorithm (TD3), an improved version

of DDPG, is used in this work [108]. As the name implies, the TD3 algorithm uses twin
value networks, of which the smallest value is used in training the policy gradient. Selecting
the smallest of two networks helps to prevent over-approximation bias. An additional
improvement is that they delay policy updates compared to value updates. Thus, the
actor-network is trained half as much as the critic network, meaning that for every training
step, two mini-batches are sampled to train the critic, while only one mini-batch is used
to train the actor.

The experiments all use neural networks with two hidden layers of 100 neurons each.
The ReLU activation function is used after each hidden layer and the tanh function for
the output layer to scale the output to the range [-1, 1].

4.3. Racing Learning Formulation
This section describes how the learning is formulated for the problem of autonomous
racing. The state and action vectors are defined and motivated, followed by an extended
presentation on reward signals for racing.
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4.3.1. State and Action Vectors

End-to-end learning involves replacing the entire processing pipeline with a learning agent.
Therefore, the sensors and actuators on the vehicle define the state and action spaces.
The sensor readings are used as input to the agent (the state), and the agent must output
actions that can be implemented on the vehicle.

State Space

The agent uses raw LiDAR scans as input into the neural network. F1/10th vehicles are
fitted with Hokuyo or Sick LiDAR scanners that provide a 1080 beam scan with a field
of view of 3/2 π radians. For the state vector, a slice of 20 evenly spaced beams with
a field of view of π radians is used, similar to other work [61]. A tuning test was done
on the number of beams and showed that using less than 15-20 beams results in poorer
performance while using more than 20 beams increases the time required to train the
network but does not change the performance.

Several LiDAR scans are stacked together so that the agent can determine its motion.
This is done because no explicit vehicle quantities (i.e. position, speed, etc.) are calculated
or given to the agent. This is in contrast to many approaches in racing games where
detailed vehicle measurements and upcoming track waypoints are given to the agent [19].
A tuning test showed that stacking two state vectors together is enough for the agent to
learn effective policies. Stacking more states together did not show any differences.

st = [lt−1
1 , lt−1

2 , lt−1
3 , ..., lt−1

20 , lt1, l
t
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20]
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Figure 4.2: Illustration of two consecutive states with the LiDAR vectors stacked together.

Figure 4.2 shows graphically how the LiDAR scans are stacked together. Each beam
has a maximum range of 10m, which is why some stop when not touching a wall. Each
beam is scaled according to the maximum, resulting in a value between 0 and 1 used as
input into the neural network. The state used by the agent is written as s ∈ [0, 1]40.
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Action Space

Two forms of racing are considered; constant speed and variable speed racing. Constant
speed racing uses the agent to output the steering angle and a constant speed for the vehicle.
Variable speed racing uses two control variables of steering angle and longitudinal speed.
All outputs from the neural network are in the range [−1, 1] and are scaled before use.
The steering action is scaled according to the maximum steering angle as δ = a[0]× δmax.
The speed action is scaled to the range [0, vmax] using the formula v = (a[1] + 1)/2× vmax.
In the above formulas, a represents the output value from the neural network and δ and v
are the action quantities that are executed to control the vehicle.

4.3.2. Reward Signal

As explained in §4.2, RL algorithms train the agent to maximise the reward signal.
Therefore, the reward signal must accurately convey the desired behaviour to the agent.
Many approaches to DRL observe that it is difficult to define an appropriate reward
signal [53, 60].

The primary desired behaviour that must be communicated to the agent is not to crash
but complete laps of the race track. This behaviour is encoded in an equation called the
standard reward, as a positive reward for completing a lap rcomplete and punishment for
crashing rcrash, written as,

rstandard =

rcrash = −1 if crash

rcomplete = 1 if lap complete.
(4.5)

Due to the sparsity of the standard reward, shaped intermediate rewards are used
to aid the learning process. In the literature, the progress and cross-track and heading
rewards have been widely used, but no comparison has been done.

Progress Reward Signal

The first racing reward considered is to use an equation relative to the progress the vehicle
has made along the track, as used in [19, 22]. The progress reward uses the progress made
by the vehicle along the track centre line at each timestep. The difference in progress
between the current and previous timesteps is scaled according to the track length and
used as a reward.

The progress is measured by projecting the vehicle’s position onto the centreline. We
write the progress reward as,

rprogress = βdistance
(pt+1 − pt)
Ltrack

(4.6)
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where pt is the progress along the track at time t, and Ltrack is the total length of the
track. The hyperparameter βdistance is the amount that the progress reward is scaled by.
In this work, βdistance is set to a value of 100. Figure 4.3, shows the progress using colours,
starting with blue to represent the start, and moving through the spectrum until the lap
is complete.

Figure 4.3: Left: Illustration of how the progress is measured. Right: The cumulative
centre line track progress is shown by colours ranging from 0-100%.

The progress reward is a good measure of the progress made through the race track,
with explicit encouragement for the agent to make as much progress as possible at each
timestep. However, a limitation of the progress reward is that the total reward is always 1
(or βprogress) for a completed lap. The fact that the total reward always sums to 1 means
that the progress reward does not quantify how well the agent drove the lap.

Cross-track and Heading Rewards

The second reward that is considered uses the vehicle’s velocity in the direction of the
race track and the vehicle’s lateral deviation from the centre line to reward the agent,
as used in [52, 61]. The vehicle’s velocity is a good variable to use since velocity is the
derivative of position and thus contains information about where the vehicle will be at the
next timestep.

Heading Error Cross-track Error

Figure 4.4: Illustration of how cross-track distance, dc, and heading error, ψ, are
measured.

Figure 4.4 shows how the cross-track distance, dc, and heading error, ψ, are measured.
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The velocity along the line is calculated according to the cosine of the difference in angle
between the vehicle and the track centre line. The distance from the centre line is measured
perpendicular to the centre line heading. The cross-track and heading reward is written
as,

rcth = vt

vmax
cosψ − dc, (4.7)

where vt is the speed of the vehicle, ψ is the heading error and dc is the cross-track error.
The velocity is scaled according to the vehicle’s maximum velocity.

This reward has the advantage of directly encouraging the agent to select the maximum
speed possible. It also encourages the agent to follow the centre line closely by penalising
the agent for moving away. It is expected that this reward will cause the agent to follow
the reference path at the highest velocity possible.

4.4. Constant Speed Reward Comparison
The learning formulation is evaluated at a constant speed to highlight the effect of the path
selected by the reward signals, detached from the speed considerations. The study consists
of studying the training behaviour shown by the different reward signals, comparing the
performance of the trained agents and measuring how well the agents generalise to other
tracks. For the constant-speed evaluation, the speed is kept at 2 m/s since the friction is
negligible at this speed.

4.4.1. Training

An investigation into the training considers how effectively the agents learn. The constant
speed agents are trained for 30,000 training steps, during which policy noise is added to the
action to encourage exploration. To understand the training behaviour, the total reward
earned by the agent per episode is plotted against the training steps and the episodes.
The episode begins with the agent at the starting position on the track and ends when the
vehicle crashes or completes a lap.
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Figure 4.5: The rewards from the progress reward signal, trained on the MCO map, are
plotted against the training steps (left) and the episode number (right).
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Figure 4.5 shows the rewards earned by the progress agent on the MCO map. The
agent starts by crashing quickly and earning little reward. Over time, the agent learns to
complete more of the race track and, after several thousand steps, can drive around the
entire track successfully. The rewards plotted against the number of episodes (right-hand
graph) shows that the agent crashes many times before learning how to drive without
crashing.

The effect of the reward signal on the training is studied by training agents with the
standard, progress and cross-track and heading reward signals on four maps. Since the
quantity of reward earned by the different agents is difficult to compare, the average
progress made by the agents is used to compare the different reward signals. The agent’s
progress before crashing is the best indicator of how well it performs during training
because it can be directly compared across various reward signals and provides a reliable
assessment of the agent’s performance. Experiments that converge to less than 35% average
progress are neglected from the analysis. The reason for doing this is that some of the
experiments did not converge and thus had extremely poor values. Including these outliers
greatly skews the results, leading them to be inaccurate.
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Figure 4.6: Training progress using the standard (Std), progress and cross-track and
heading error (Cth) rewards on the ESP, AUT, GBR, and MCO tracks. The lines are the
average from 5 runs, with the shaded area representing the minimum and maximum from
all the experiments.

Figure 4.6 shows the progress made by the standard, progress and cross-track and
heading reward signals on the ESP, AUT, GBR, and MCO tracks. The graph shows that
for some of the simpler tracks, such as AUT, all the reward signals effectively train agents
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to complete most of the laps, achieving average progress of near 100%. For the ESP and
MCO maps, which are more complicated, with many sharp corners, the progress and
standard reward signals do not converge well, taking many dips and never rising to 100%.
In contrast, the cross-track and heading reward results in the agents reaching near 100%
average progress on all four test maps.

The standard and progress rewards are considered to be highly dependent on the map
that they are trained on. This reliance on map structure makes them poorly suited to
learning general racing policies because they only work in certain settings. The cross-track
and heading reward demonstrates the ability to train agents to race on all maps to almost
always complete the laps. Therefore the cross-track and heading reward is the most suited
to the racing problem.

4.4.2. Performance

The performance of agents trained with each reward signal is evaluated by testing the
agents on the track they were trained on. The metrics of path distance, curvature and
deviation from the centre line are used to analyse the behaviour. The results are compared
to a pure pursuit planner following the centre line and driving at the same speed. The
results are the average of 10 test laps run on each track.

Metric Std Progress Cth PP

Total Distance (m) 94.51 91.98 94.50 93.57
Mean Curvature (m−1) 0.39 0.36 0.42 0.17
Total Curvature (m−1) 184.72 167.33 200.77 80.62
Mean Deviation (m) 0.38 0.16 0.07 0.04
Total Deviation (m) 178.55 74.54 34.63 18.86

Table 4.1: Distance travelled, curvature and deviation from the centre line of agents
trained with the standard (Std), progress and cross-track and heading error (Cth) reward
signals on the AUT map, compared to the pure pursuit (PP) planner following the centre
line.

Table 4.1 compares the metrics of distance travelled, curvature and deviation from the
centre line of the pure pursuit planner and agents trained with the standard, progress and
cross-track and heading rewards. The standard and cross-track and heading agents took a
longer path around the track of 94.5 m in comparison to the pure pursuit planner of 93.57
m. The progress agent took a shorter path, even than the pure pursuit planner, of 91.98
m, suggesting that the progress reward trains agents to select shorter paths.

Figure 4.7 shows a section of the MCO track with several corners and the paths taken
by each agent. This figure confirms that the progress reward travels less distance in
completing a lap because it learns to cut corners consistently. The standard agent does not
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Std Progress Cth

Figure 4.7: A segment from the paths taken by agents trained with the standard (Std),
progress and cross-track and heading error (Cth) reward signals on the MCO track.

follow any specific pattern between staying on the centre line, cutting the corner narrow
or driving outside the corner. The cross-track and heading agent normally drives on the
centre line, as demonstrated by the orange trajectory covering most of the black centre
line.

The deviation from the centre line is calculated by measuring the perpendicular distance
from the centre line to the vehicle at each timestep. The deviation metric assesses where
the vehicle is driving on the track. The cross-track and heading agent’s driving behaviour
on the centre line is demonstrated in Table 4.1, by the cross-track and heading planner
having the smallest total deviation of 34.6m. The cross-track and heading planner performs
slightly worse than the pure pursuit planner, suggesting that the cross-track and heading
reward signal can train agents to follow the centre line accurately. The progress agent has
a deviation of 74.54, and the standard agent has a massive deviation of 178.55. Figure 4.7
shows that the progress agent has a larger deviation because it learns to cut corners and
maximise progress on the track without reference to the deviation. The standard agent
follows no distinct pattern apart from not crashing.

The curvature is the difference in the heading angle of the vehicle at consecutive
timesteps, divided by the distance travelled during the interval. The total curvature
measures how much the vehicle turned during the lap. The DRL agents all have significantly
higher mean curvatures of 0.39, 0.36, and 0.45 between planning steps, compared to the
pure pursuit planner’s average of 0.17. Of the DRL planners, the progress agent has the
lowest mean curvature and the lowest total curvature of 167, which is 7% smaller than
the standard agent. This problem of high-curvature paths, known as slaloming, can be
visually seen in the path in Figure 4.7, and has been noted by other studies [22].

The performance study concludes that both the progress and cross-track and heading
rewards improve upon the standard reward signal. The cross-track and heading reward
showed to train agents to convergence with the greatest sample efficiency and demonstrated
the best ability to track the centre line used as a reference. The standard and cross-track
and heading agents had higher curvature due to the problem of slaloming, swerving from
side to side. The progress reward selected more moderate actions, slaloming less and
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cutting corners, resulting in finding a short path around the race track.

4.4.3. Generality

The robustness of the planners to different tracks is measured by training agents on the
ESP track and then evaluating them on all of the tracks. A reduced set of metrics is used
and averaged across 10 test laps on each track. Table 4.2 presents the results from the
evaluation for standard, progress and cross-track and heading reward signals.

Map Metric Std Progress Cth PP

AUT

Distance m NAN 90.21 93.87 92.74
Curvature rad/m NAN 143.06 213.13 103.89
Deviation m NAN 123.99 31.16 28.63
Progress % 32.03 100.00 100.00 100.00

MCO

Distance m 175.43 172.25 178.73 176.07
Curvature rad/m 392.39 296.92 475.89 181.16
Deviation m 224.58 231.67 69.85 47.88
Progress % 100.00 100.00 100.00 100.00

GBR

Distance m 198.59 200.95 203.64 200.48
Curvature rad/m 462.38 374.56 505.09 190.29
Deviation m 264.06 206.53 71.42 44.90
Progress % 100.00 100.00 100.00 100.00

ESP

Distance m 235.88 230.58 238.55 235.51
Curvature rad/m 550.85 279.45 525.43 192.54
Deviation m 309.40 303.94 67.93 44.17
Progress % 91.38 100.00 100.00 100.00

Table 4.2: Distance travelled, curvature and distance from the centre line of agents
trained on the ESP map and tested on the AUT, GBR, MCO and ESP maps.

Table 4.2 show that DRL agents trained on one map can transfer to a different map
and complete laps. The agent trained with the standard reward signal could not complete
the sharp turn on the AUT map, but the agents trained with the progress and CTH
rewards could complete all the test laps on the test maps. The “NAN” values in the table
mean that these values could not be calculated. This shows that the standard reward
signal is unsuitable for training agents that can transfer to other tracks.

The same patterns identified in the agent’s performance on the training map are seen
on different maps. The progress reward signal leads to the agent taking a shorter path
around the track. For all of the maps considered, the progress agent takes a shorter path
than the CTH agent and often than the pure pursuit agent. Figure 4.8 shows an example
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trajectory of the progress agent on the different maps.

Figure 4.8: Path segments from agents trained with the progress reward cutting corners
on the ESP, AUT, GBR and MCO tracks.

The cross-track and heading agent can track the centre line of the other tracks tested.
This is shown by the cross-track and heading agent having a significantly smaller deviation
than the progress agent. The cross-track and heading agent deviation is still higher than
the pure pursuit, but it is much closer than the other reward signals. Figure 4.9 shows the
cross-track and heading agent’s path overlaid on top of the center line. It can be seen that
the agent tracks the centre line closely.

Figure 4.9: Agents trained with the cross-track and heading reward signal tracking the
centre line accurately and showing slaloming behaviour on segments of the AUT, ESP,
GBR, and MCO tracks.

The problem of slaloming shown by the standard and cross-track and heading reward
signals is also present on other tracks. The total curvature measurements are significantly
higher for the cross-track and heading reward signal than the progress reward signal for
all tracks. Figure 4.9 demonstrates this behaviour by showing track segments from the
different tracks with the agent swerving from side to side.

The study on reward signals at constant speed concludes that the cross-track and
heading reward trains agents to drive with better sample efficiency, more consistently, and
to higher average progress than the standard and progress rewards. The performance
evaluation showed that agents trained with the progress reward signal select shorter paths,
often cutting the corners and slaloming less. Agents trained with the cross-track and
heading reward track the centre line accurately, but have a higher curvature, often swerving
side to side. The standard reward signal produces unpredictable behaviour, with the
agent sometimes swerving, cutting the corners or driving straight. Their behaviours were
validated to transfer to different maps other than the training map.
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4.5. Variable Speed Evaluation
Previously, the rewards were compared at a single speed to demonstrate the different paths
taken. The dimension of speed is now added, making the racing problem more difficult
since the agent must select two control signals. The evaluation compares the progress
and cross-track and heading reward signals before investigating how the maximum speed
affects the training. Since selecting speed and steering is a more complicated task, agents
are now trained for 100,000 steps.

4.5.1. Reward Signal Comparison

Standard Reward Signal

The standard reward signal is only briefly considered since it demonstrates terrible racing
performance. The training graph and an example trajectory are shown in Figure 4.10.
The training graph shows that the agent learns to complete laps of the track early in the
training process. The trajectory shows that the policy learned is to select slow speeds that
are overly conservative, and thus the agent does not crash.
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Figure 4.10: The vehicles progress around the track during training (left) and an example
trajectory (right) from training an agent using the standard reward signal. The colour
bar represents the vehicle speed.

The example trajectory in Figure 4.10 shows that the agent typically selects low speeds
of around 2 m/s to 3 m/s and unsystematically selects high speeds. As a result, the agent
can finish many laps but with an incredibly slow lap time of around 60 seconds (compared
to the pure pursuit of around 20 seconds). Further, there is no definite pattern in the
behaviour displayed by the agent, resulting in this reward signal being unsuitable for
racing.
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Progress and Cross-track Reward Comparison

The progress and cross-track and heading reward signals are now compared with each
other. While a detailed analysis of the effect of maximum speed is provided in §4.5.2, in
this analysis maximum speeds of 5 m/s and 8 m/s are considered. The average progress
during training of five agents with the progress and cross-track and heading rewards on
the ESP and MCO maps, with a maximum speed of 5 m/s is recorded.
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Figure 4.11: Plot showing progress during training five agents using the progress and
cross-track and heading error (Cth) reward signals on the ESP (left) and MCO (right)
maps with a maximum speed of 5 m/s.

In Figure 4.11, the training graph on the ESP map (left) shows that the cross-track
and heading reward trains the agent to around 75% average progress while the progress
reward trains the agents to around 50%. The training graph on the MCO map shows
that the cross-track and heading reward trains the agents to an average above 75%, while
the progress reward trains the agents to around 60%. The first observation is that the
average progress of both reward signals is significantly lower than for the constant speed
driving with none of the runs reaching near 100% completion. The cross-track and heading
reward outperforms the progress reward during training to reach a higher level of average
completion. The reward signals are compared using the vehicle’s full speed range of up to
8 m/s.
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Figure 4.12: Plot showing progress during training five agents using the progress and
cross-track and heading error (Cth) reward signals on the ESP (left) and MCO (right)
maps with a maximum speed of 8 m/s.

In Figure 4.12, the training graph on the ESP map (left) shows that the cross-track
and heading and progress rewards train the agent to a similar level of around 20% average

Stellenbosch University https://scholar.sun.ac.za



4.5. Variable Speed Evaluation 56

completion. The training graph on MCO shows a similar pattern, with both agents
reaching around 25%. This indicates that neither reward is adequate for training agents to
race using the vehicle’s full speed range. The training behaviour of the rewards is further
investigated by analysing the total reward earned by each agent per episode.
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Figure 4.13: Training graphs showing the total reward per episode achieved by the
progress (left) and cross-track and heading (right) reward signals on the ESP map. Green
dots are crashes, blue dots are completed laps, and the red line is a moving average of
the reward.

Figure 4.13 shows the rewards earned by the progress and cross-track and heading
agents trained on the ESP map. Comparing the two graphs shows that the cross-track
and heading agent crashes a lot less during training, explaining why the average reward
is higher from earlier in the training process. The progress agent reward graph (left)
shows that when the agent completes a lap, then the total reward of 100 (the βprogress

hyperparameter) is obtained. It is interesting to see that the progress reward training
performance comprises numerous completed and unfinished laps throughout the training
process. This is why the average progress made by the progress agent is lower than the
cross-track and heading agent.

The cross-track and heading reward receives different rewards for each complete lap,
though they are grouped around 220. There is a slight increase in the reward received by
the cross-track and heading agent for complete laps from the first laps that are completed
until the last laps. It is suggested that this is due to the cross-track and heading reward
encouraging the agent not just to complete laps, but to select high velocities that keep the
agent on the centre line. Further analysis is done on the lap times generated by the agents
to understand this better.

Figure 4.14 shows the lap times recorded during training for completed and crashed
laps. In the beginning, many of the laps end with a crash, and as the training progresses,
the agent can complete more laps. The cross-track and heading reward signal demonstrates
a slight improvement in lap times as the training progresses. The progress reward shows a
constant lap time (shown by the straight red line) throughout the training. Both agents
achieve similar lap times during training and there is no significant change in the lap time
between the initial and final laps. It is concluded that neither reward trains the agents to
complete all the laps with the trained agents still crashing regularly.
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Figure 4.14: Lap times of agents trained on the ESP map for the progress (left) and
cross-track and heading (right) reward signals. Green dots are crashes, blue dots are
completed laps, and the red line is a moving average of the lap time.

Reward Signal Performance Comparison

The performance of agents trained with each reward signal is measured by training and
testing agents on the ESP track. The progress and cross-track and heading reward signals
are considered and compared to the pure pursuit planner. The pure pursuit planner is
set to follow the optimal race line and is thus treated as the theoretical best. The pure
pursuit planner is run with a maximum speed of 5 m/s (PP5) and the normal 8 m/s (PP8)
to show the effect of limiting the maximum speed.

Metric Progress Cth PP5 PP8

Lap Time (s) 50.60 50.36 52.10 46.80
Total Distance (m) 238.07 240.67 228.51 228.73
Total Curvature (m−1) 127.86 123.26 71.38 70.68
Avg. Velocity (m/s) 4.72 4.80 4.40 4.92

Table 4.3: Lap-time, Distance travelled, curvature and average velocity of agents trained
with progress and cross-track and heading error (Cth) reward signals on the ESP map.
The results are compared to the pure pursuit planner following the racing line with a
maximum speed of 5 m/s (PP5) and 8 m/s (PP8).

Table 4.3 presents the results from measuring the performance of the trained agents
on the ESP track. The metrics are averaged across 10 test laps, but only completed laps
are used to calculate the averages. The progress agent completes laps in 50.60 s and
the cross-track and heading agent in 50.36 s. The first observation is that the progress
and cross-track and heading agents perform similarly on the laps they complete, which is
interesting given the difference in training results.

The surprising result in Table 4.3 is that both the DRL agents achieve a faster lap time
than the pure pursuit planner, which is limited to 5 m/s. What makes the result more
surprising is that the planners travel 10-12m further within this time. The DRL agents
have much higher total curvatures and a higher average speed, meaning that the agents
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swerve a lot while keeping a high speed. This result is further investigated by analysing
the speed and slip angles selected by the agents.

The first conclusion about the cross-track and heading and progress reward signals
is that they both produce poor racing performance. This was shown by the agents only
training to 75% average progress, with them continuing to crash throughout the training.
Further, the performance investigation showed that the trained agents have high curvatures
and select speeds near to the maximum for the entire lap. Therefore, the speed profiles
are further investigated in the following section.

4.5.2. Maximum Vehicle Speed

Training

The agents take more training steps to converge now that they have to select two control
actions. The agents are thus trained for 100,000 steps. The effect of the maximum
speed on training and performance is now considered. Agents are trained at maximum
speeds ranging from 4-8 m/s on the GBR map, and the average progress during training
is recorded. The experiments are repeated 10 times, and the average, minimum and
maximum from the 10 runs are presented. The minimum and maximum are used to show
the variance between different random seeds.
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Figure 4.15: The progress of agents trained with maximum speeds of 4, 5, 6, 7, and 8
m/s using the cross-track and heading reward signal on the GBR map.

Figure 4.15 shows the progress made by the agent after training it for 100,000 steps
at 5 maximum speeds using the cross-track and heading reward. The graph shows that
for higher maximum speeds, the agent can complete little of the race track. The prime
example of poor performance is when the vehicle has the true maximum speed of 8 m/s
and averages around 15 completion after the training. As the maximum speed is decreased,
the portion of the track that the agent can complete increases. The agent with a maximum
of 7 m/s can complete around 30%, and the agent with a maximum of 6 m/s can complete
around 55%. Both the agents with maximum speeds of 4 and 5 m/s can learn to complete
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an average of 95% of the track. The progress reward demonstrates similar behaviour;
therefore, the results are not shown.

It is concluded that end-to-end DRL agents can only be trained to race F1/10th vehicle
with maximum speeds of 4 m/s. Selecting high maximum speeds leads to the training
converging to a solution that cannot complete laps of the race track. This limitation
resonates with the results by Brunnbauer et al., who claimed that it was impossible to race
autonomously using model-free DRL [22]. In their work, they presented graphs similar to
Figure 4.15, where they trained agents for 8 million steps, with the agents never being
able to complete a single lap.

Maximum Vehicle Speed

The performance of the agents with varying maximum speeds is measured. While many of
the training runs were unsuccessful (the agents did not converge to useful racing behaviour),
the performance is nonetheless recorded as a baseline to be improved upon. Table 4.4 shows
the success rates and average progresses achieved by the agents trained with maximum
speeds ranging from 4 to 8 m/s. The success rate is the number of completed laps out of
50 test laps. The average progress is a useful metric for measuring where in the lap the
agent crashes, even if the lap was not completed.

Metric 4 m/s 5 m/s 6 m/s 7 m/s 8 m/s

Success Rate (%) 92 66 38 4 2
Avg. Progress (%) 98.59 87.47 77.65 36.49 40.93

Table 4.4: Success rate and average progress percentage for agents trained with maximum
speeds of 4, 5, 6, 7 and 8 m/s on the ESP map.

The results in Table 4.4 show decreasing success rates and average progress as the
maximum speed increases. The best average progress is at 4 m/s with 98.53 and a 92%
success rate, meaning that many of the laps are completed, or at least mostly completed.
The agents with a maximum speed of 7 and 8 m/s completed only 4% and 2% of the
test laps, respectively, with terrible average progresses of 36.49% and 40.93%. This result
indicates that the agent completion rate gets worse with increasing maximum speeds.
There is a significant drop in performance after 6 m/s, with the agents able to complete
few laps.

Table 4.5 shows the lap time, distance, curvature and average velocity for the agents
with maximum speeds of 4, 5, and 6 m/s. The 4 m/s agent achieves a lap time of 63.30
seconds, the 5 m/s of 50.00 seconds and he 6 m/s of 41.85 seconds. Unsurprisingly, the
agents that have faster maximum speeds complete laps faster. The 4 m/s agent completes
laps with an average distance of 239.1 m, the 5 m/s agents with 240.92 m and the 6
m/s with 241.93. This shows agents with faster maximum speeds travel a slightly longer
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Metric 4 m/s 5 m/s 6 m/s

Lap Time (s) 63.30 50.00 41.85
Total Distance (m) 239.41 240.92 241.93
Avg. Velocity (m/s) 3.79 4.84 5.80

Table 4.5: Lap time, distance travelled and average velocity for completed laps on the
ESP track by agents with maximum speeds of 4, 5 and 6 m/s.

distance. The average velocity selected by all agents is near the maximum velocity; for
example, the 5 m/s agent has an average velocity of 4.86 m/s, and the 6 m/s agent has an
average velocity of 5.80 m/s. This indicates that the agents always select velocities near
the maximum.

The study on maximum speed concludes that the higher the maximum speed, the
worse DRL agents perform. At maximum speeds of 4 m/s, the agents exhibit feasible
behaviour of completing many laps, but as the speed increases, the behaviour worsens,
as shown by the success rate decreases. Using the vehicle’s maximum speed of 8 m/s
results in infeasible behaviour, with the agents having a lap completion rate of less than
5%. Studying the average velocity indicated that a potential problem is that the average
velocity is close to the maximum speed. The speed profiles are further investigated in the
next section to understand better why high-speed agents perform so poorly.

4.5.3. Speed Profile Investigation

An investigation is done into the speed profiles selected by the agents to understand the
behaviour learned by the agents, specifically why the average velocity is so high and the
lap times are lower than the pure pursuit planner. All the analysis in this section is on
agents trained using the cross-track and heading reward since it produced better results in
§4.5.1. Trajectories recorded by agents with different maximum speeds are presented with
the colour bars indicating the speed the vehicle is travelling at.
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Figure 4.16: Trajectory segments on the ESP map taken by agents with top speeds of 6,
7, and 8 m/s using the colour bars to represent the vehicle speed.

Figure 4.16 shows example trajectory segments taken by agents trained with the
cross-track and heading reward signal on the ESP map with maximum speeds of 6, 7,
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and 8 m/s. The plots show that the vehicle remains at a similar speed for most of the
trajectory, showing that the agent cannot learn to select an appropriate speed profile of
speeding up and slowing down. The 6 m/s agent (shown in the left image) has a mainly
yellow trajectory, showing that the speed is almost always 6 m/s. Occasionally, the agent
slows down when near to the boundaries. All of the agents demonstrate high-curvature
behaviour of swerving a lot. This is due to the vehicle drifting since turning at high-speeds
causes large lateral forces on the tyres. This is further investigated by plotting the speed
profiles of an agent trained with the cross-track and heading reward compared to the pure
pursuit planner following the racing line.
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Figure 4.17: Speed profile graph of the DRL agent and the pure pursuit (PP) planners
plotted against the planning steps on the ESP map.

Figure 4.17 shows the speed profiles selected by an agent trained with the cross-track
and heading reward signal compared to the profile of a pure pursuit planner following the
racing line. The graph shows that the pure pursuit planner smoothly speeds up and slows
down during the lap. In contrast, the agent maintains the maximum speed for nearly the
entire lap, occasionally sharply slowing down. This behaviour is visually seen in Figure
4.16 by the lines having a constant colour. The effect of the vehicle travelling at a high
speed for the entire lap is investigated by plotting the slip angle profile of the agent and
the pure pursuit planner. The slip angle is the angle between the direction of the vehicle
body and the velocity of the vehicle. If the vehicle is turning a corner, then the slip is
non-zero since the vehicle’s velocity is measured at the centre of mass.
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Figure 4.18: A comparison of the slip angle profiles for the pure pursuit (PP) and DRL
agent planners on the ESP track.

Figure 4.18 shows the slip angles (recorded as part of the simulator state) for the
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cross-track and heading agent and pure pursuit planner trajectories. The trajectories
shown here are the same as in Figure 4.17. The pure pursuit planner has a normal slip of
around 0.05. The agent planner has an average slip of 0.1, reaching 0.3. This shows that
the vehicle is drifting a lot and that this is not a feasible method for racing a physical
vehicle. While from a cursory glance, the DRL agent may outperform the classical planners,
that view would be misguided since the trajectories taken by the agent are not feasible in
reality. The vehicle agent learns a policy that depends on the vehicle sliding across the
track. This style of driving, where the agent learns to exploit the simulator, has been seen
in other learning literature [111], and is problematic since it is practically infeasible.

The investigation into speed profile selection concludes that the leading problem with
agents trained with the cross-track and heading reward is that they do not learn to select
an appropriate speed profile. Rather, they mainly select the maximum speed for the
entire lap. This leads to high slip angles, making the learned policies infeasible. This is a
significant problem that must be addressed.

4.5.4. Discussion of Results

The results in the section provide many interesting insights into how DRL agents learn
to control F1/10th cars in simulation. The constant velocity tests showed that agents
can be trained to select a steering angle repeatably with excellent sample efficiency. The
cross-track and heading reward signal converges the fastest, followed by the progress
and then standard rewards. The progress reward signal learns to cut the track corners,
achieving a shorter, smooth path. While the cross-track and heading reward track the
centre line well, it has a significant problem of slaloming. It was shown that the agents can
be transferred to different tracks where they display similar performance to the training
track.

The high-speed evaluation showed that training agents to select speed and steering
constraints is much more difficult than just steering. The standard reward signal was shown
to be ineffective for training agents to race because it generates poor, erratic performance.
A study on the maximum speed that the agent may select showed that end-to-end DRL
agents are unable to learn to race at speeds above 5 m/s, which is significantly lower than
the vehicle’s true maximum speed of 8 m/s. In comparing reward signals, the cross-track
and heading reward signal demonstrated significantly better training performance. While
neither of the reward signals were able to generate perfect, repeatable success, the progress
reward signal was plagued explicitly with the problem of crashing.

The trained agents also demonstrated many issues. The most significant problem was
that the agents learned to drive at exclusively high speeds, not slowing down for the
corners. The result is that they drift for a significant part of the race track. The problem
of learning a policy that drifts and the imperfect success rate render current advances in
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DRL impractical for physical systems.
These results show that current learning formulations do not perform well in the

challenge of realistic variable speed racing. The key problem is that the agent cannot select
an appropriate speed to stay within the friction limits. This problem has been seen in the
literature with the authors of [111] noting that maximising a single objective can lead to
undesirable behaviour, such as high-slip angles and infeasible trajectories. The authors of
the world-class racing agent Sophy noted that their agent could not act strategically [20],
and the problem of slaloming is persistent in DRL solutions as experienced by [22,61].

Limitations

The limitations of this study were the consideration of only one RL algorithm. While future
work could consider other algorithms, previous approaches using a variety of algorithms,
DQN, SAC, DDPG, and PPO have all produced similar results. While only one algorithm
was used, the TD3 algorithm is a state-of-the-art algorithm for continuous control, and it
is expected that other algorithms will produce similar results.

4.6. Summary

This chapter introduced the learning formulation used in F1/10th autonomous racing.
The approach to designing the reinforcement learning formulation was discussed, and
the standard, progress and cross-track and heading reward signals were presented. The
constant speed evaluation demonstrated that DRL agents could be trained in 30,000 steps
to drive at a constant speed and follow a reference line. The cross-track and heading reward
outperformed the progress and standard rewards regarding vehicle performance during
training and consistency between maps. The progress reward selected shorter paths and
swerving less than the standard and cross-track and heading rewards. The variable speed
evaluation demonstrated that current learning formulations are unsuitable for high-speed
racing using the vehicle’s full speed profile. The maximum speed comparison showed that
while agents can complete all the laps with a maximum speed of 4 m/s, as the maximum
speed increases, the performance worsens. The specific problem identified is that the agent
does not learn to select an appropriate speed profile and thus drifts around the track with
a high slip angle. This problem should be rectified by designing learning formulations for
high-speed racing that train the agent to select an appropriate speed profile.
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Chapter 5

High-speed Learning Formulations using
Vehicle Models

Chapter 4 concluded that current learning formulations obtain low completion rates for
variable speed F1/10th racing due to poor speed selection resulting in high-slip paths.
This chapter presents two methods to overcome these problems using analytical vehicle
modelling. The optimal trajectory, with velocity profile, is used to design improved reward
signals that train the agent to select an appropriate speed. Secondly, the link architecture
is presented, which uses the agent to calculate a steering angle and a friction model to
calculate the speed. The evaluation shows that both methods select appropriate speed
profiles with low-slip trajectories, overcoming the problem of low-completion rates. The
racing reward signals achieve faster racing performance, the link architecture achieves a
100% completion rate, and both methods achieve faster lap times on four maps compared
to the two leading methods in the literature.

5.1. Introduction

5.1.1. Problems in High-speed Racing

While learning policies have many advantages for autonomous racing, such as not requiring
localisation, current variable speed methods are limited in their ability to select appropriate
speed profiles. A vehicle’s speed profile refers to the speeds the vehicle travelled at while
driving around the track. An appropriate speed profile is one where the vehicle remains
within the friction limits for the entire trajectory, i.e. not drifting. Visually, an appropriate
speed profile looks like the optimal trajectory that speeds up in the straights and slows
down around the corners.

The evaluation in §4.5 showed that variable speed solutions for autonomous racing
perform very poorly at high speeds, achieving low completion rates (Table 4.4). The root
cause of the low completion rate is the poor speed profile selection (Figure 4.17), where it
was seen that the agent selects a speed near the maximum for most of the track. Selecting
a high speed causes the vehicle to drift (as seen in Figure 4.18) with a high slip angle.
When a vehicle is drifting it is difficult to control due to small actions having a big effect

64
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on the vehicle’s motion. Therefore, solutions to the problem of speed selection should
enable the vehicle to speed up and slow down to keep the vehicle within the friction limits.

5.1.2. Design Methodology

This chapter addresses the problem of poor learned performance by end-to-end agents for
the task of autonomous racing by using analytical vehicle models. The design methodology
for overcoming these problems is to use additional information about the vehicle dynamics
to aid the learning. Vehicle dynamics are well studied, and this information can be useful
to build better learning formulations for training DRL agents.

The first application of this methodology, in §5.2, is to redesign the reward signal using
the optimal racing line. Current reward signals have assumed that the track is available
but have simply used the centre line to reward the agent. While the centre line is only a
set of waypoints going around the map, the racing line is a set of the optimal waypoints
to follow and includes the optimal velocity reference at each point.

The second application, in §5.3, is to design a new architecture that uses a friction
model to calculate a speed reference for the vehicle. The link architecture uses a DRL
agent to select a steering angle and then analytically calculates how fast the vehicle should
go. This is motivated by the constant speed evaluation in §4.4 showing that agents are
good at selecting only steering references but struggle with also selecting speed profiles.

In this chapter, the focus is on improving the learning formulation and therefore, many
details in the training are kept constant from the previous chapter and not redescribed.
Components like the neural network, training algorithm, etc., are not explained here so
that the focus can fall on the learning formulation.

5.2. Racing Line Reward Signals
In the context of racing, the best solution is available using a pure pursuit controller
following the optimal racing line. However, this requires the vehicle to localise itself and is
not flexible to new environments. The advantage of neural network-based agents is that
they do not require localisation, are flexible to new environments, and can select control
commands directly from the LiDAR scan. Therefore, this approach aims to train the DRL
agent to replicate the behaviour of a pure pursuit planner with a DRL agent that maps
LiDAR scans to control commands.

5.2.1. Design Considerations

In RL, the only method of information transfer from the designer to the agent is through
the reward signal. Therefore, the reward used is critical since it is the only means of
changing the agent’s behaviour. Further, RL algorithms will always maximise the reward
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function, and while this sounds good, it can cause unexpected results, such as falling into
poor local minima.

Designing a reward signal for tasks with the binary outcomes of winning or losing, such
as chess, is straightforward. However, when there are multiple, continuous, competing
metrics, such as in racing, selecting a reward signal that accurately encompasses them is
more difficult.

In racing, the first aim is that the vehicle learns not to crash, and the secondary aim is
that the vehicle achieves good lap time performance. These metrics are opposed to each
other; if the vehicle is travelling fast, then it is achieving good performance but might
crash. If the vehicle travels slowly, it is less likely to crash but performs badly.

Current Reward Analysis

In Chapter 4, an extensive comparison of the cross-track and heading and progress reward
signals at constant and variable speed was performed. The cross-track and heading error
reward encourages large velocities in the direction of the centre line. While this appears
to be a good reward signal, the result is that the selected velocities are too large. The
expected mitigating factor is that if the vehicle travels too fast, it will crash. But the
reality is that these conflicting reward terms do not produce good behaviour; namely, the
agents always select speeds that are too high.

The progress reward does not provide any measure of how good a path is compared
to another path. Any behaviour that results in a lap being completed receives the same
reward. It is worth noting that due to the discounting of future rewards (γ) inherent in
RL algorithms, there is a motivation to complete laps quickly. An additional limitation
is that for small differences in heading angle, the difference in progress made along the
centre line is small.

Neither of these reward signals communicates useful information to the agents, explain-
ing the poor performance.

Rewarding States Vs Actions

The progress and cross-track and heading reward signals are based on the vehicle’s state,
i.e. position and speed. The primary reason is that it is easier to quantify how good or
bad a state is, and it is difficult to assess the value of an action. While rewarding states is
simple, this method is limited by the lack of direct information to the agent. The agent is
left to discover the link between states and actions for itself.

Another method called guided policy search (GPS) uses an optimal policy to guide the
policy search by calculating a reward based on the difference between the optimal policy’s
actions and the agent’s actions [46]. This method is useful in contexts where an optimal
policy is available. GPS has not yet been applied to F1/10th racing but appears to have a
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possible benefit.
While imitation learning has been used for F1/10th racing [9], it has demonstrated

poor results with the specific problem of crashing [23]. Reinforcement learning is better
suited to racing than imitation learning since there are a large number of possible states
and it is difficult to represent enough states to result in a robust policy in a data set.

Simulator Exploitation

One of the problems with training DRL agents in simulation is that they learn infeasible
policies due to exploiting the simulator dynamics. A prime example of this was identified
by Zheng et al. [111], who use several gradient-free optimisation algorithms to jointly
optimise a trajectory and controller parameters. They show that while their solution
learns incredibly fast racing performance, its final strategy is to drift around the outside
of the corner with slip angles of up to 80◦. The key problem with this strategy is that
the vehicle only completes 60-70% of the laps. The authors identify in their discussion
that the behaviour of learning algorithms to exploit the simulator dynamics is an ongoing
problem.

In Chapter 4, the same exploitation was seen in the agent learning to race at high
speeds and drift around the corners. Methods that do this are practically infeasible because
the dynamics in the real world are not constant, and drifting is not as repeatable.

Preventing learning agents from exploiting the simulator is a difficult problem because
exploitation is inherently high-performance. A possible solution is to add additional noise
to the simulation during training, also known as domain randomisation [112], but this is a
poor solution to this problem since the noise in the real world, such as a change in friction
coefficients is difficult to model. The authors of [111] propose using additional objectives
(rewards) for the learning algorithm to maximise.

Racing Line Description

The racing line is the fastest trajectory, set of waypoints and velocities around the race
track. The calculation of the racing line was explained in the preliminaries chapter on
F1/10th racing, §3.3.3.

Figure 5.1 shows a segment of the racing line for the MCO on the left and the speed
profile for the entire track on the right. The racing line typically slows down around
the corners and speeds up along the straighter sections. This slowing down is shown by
the blue on the trajectory, and the higher speeds are shown in red. The racing line can
go faster around the track than the centre line since the waypoints represent the line of
minimum curvature, as shown by the racing line coming close to the apexes of the corners.

This racing line is used as the basis for the novel reward signals.
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Figure 5.1: Left: Dotted centre line compared with the racing line for a section of the
MCO track with the colours indicating the speed at each point. Right: The speed profile
for the MCO track.

5.2.2. Reward Candidates

The previous section focused on improving the path selected by the agent. This section
concentrates on the agent’s speed selection. It is proposed to use the speed at each
waypoint in the optimal racing line in the learning process to help guide the agent to select
an appropriate speed. This method aims to train the agent to select an intelligent velocity
profile, unlike the behaviour in the end-to-end agent.

Velocity Line Rewards

The first approach followed in integrating the racing line into the reward signal is to modify
the cross-track and heading reward. Where the cross-track and heading reward trains
the vehicle to go as fast as possible, the velocity line rewards aim to train the vehicle to
select the racing line speed. A new term is introduced as the difference in speed between
the vehicle and the racing line at a position along the track. The speed difference dV is
calculated as,

dV = |vvehicle − vraceline|
vmax

, (5.1)

using the subscripts to represent the vehicle’s speed, the speed of the racing line at the
vehicle’s location and the vehicle’s maximum speed. The speed of the racing line is found
by projecting the vehicle’s current location onto the racing line and using the speed at the
closest waypoint. The speed difference is a value between 0 and 1, representing how far
away the vehicle’s speed is from the racing line speed. Three candidate rewards that use
the speed difference are proposed.

The first reward changes the velocity term that is multiplied by the heading angle from
being the vehicle’s speed, to be proportional to the difference between the vehicle’s speed
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and the racing line speed. The first velocity line reward, called v1 is written as,

rv1 = (1− dV ) · cos(ψ)− dc, (5.2)

with ψ being the heading error, and dc being cross-track distance. The reward aims to
minimise the speed difference in the direction of the racing line. The reward gradient
increases as the speed difference, heading error and cross-track distance all decrease.

The second reward uses the speed difference as an additional penalty to the agent. The
reward v2, is written as,

rv2 = vvehicle · cos(ψ)− dc − dV. (5.3)

The reward aims to minimise the speed difference in the same way that the cross-track
distance should be minimised.

The third reward is a combination reward that only gives the reward for velocity in
the direction of the track (first term of the cross-track and heading reward) if the vehicle’s
speed is below the racing line speed. This reward is specifically targeted at overcoming
the problem of the agent selecting speeds that are too high. The reward v3, is written as,

rv3 =

vvehicle · cos(ψ)− dc if vvehicle < vraceline

−dc otherwise
(5.4)

Pure Pursuit Policy Search

A different approach to training the vehicle is to guide the policy search by comparing the
actions to a pure pursuit planner. The pure pursuit policy search (PPPS) reward uses the
difference between the actions selected by a pure pursuit planner and the agent as the
reward. This reward aims to train the agent to select the same actions as the pure pursuit
planner. The reward for this reward signal is written as

rPPPS = βc − |vpp − vagent| · βv − |δpp − δagent| · βsteering. (5.5)

In the equation, vpp and δpp are the pure pursuit planners speed and steering angle, vagent

and δagent are the agent’s speed and steering angle, and β refers to a hyperparameter. The
parameters used are: βc = 0.5, βv = 0.4, βsteering = 0.4. It is noted that the steering and
velocity values used here refer to the action selected and not the vehicle’s state.

5.2.3. Racing Line Reward Evaluation

The novel learning formulations aim to train an agent to replicate the behaviour of a
pure pursuit planner in following the racing line and selecting speeds similar to the racing
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line speed. Therefore an evaluation is constructed to measure the effect of the racing
line reward signals on the learning formulation in terms of the path taken, the training
behaviour and the speed profiles generated. The focus on the evaluation in this section is
a comparison between agents trained with the racing reward signals and the pure pursuit
planner. In §5.4 a comparison with conventional learning is presented.

Constant Speed Path Evaluation

The first investigation compares the effect of using the centre line (as used in Chapter 4) as
opposed to the racing line for constant-speed driving. To show the effect, the cross-track
and heading reward signal is used to train agents with the centre line and racing line as
the reference. Constant-speed driving is used to highlight the difference in the path taken
by using the different reference lines. The paths taken by the agents are compared to each
other numerically in Table 5.1 and visually in Figure 5.2. The centre line label refers to
the agent trained with the cross-track and heading reward signal using the centre line as
the reference line, and the racing line label refers to the agent trained using the racing
line as the reference. Both agents are trained and tested at a constant speed of 2 m/s.
The results are compared to the pure pursuit planner (abbreviated as PP) that follows
the racing line at a constant speed of 2 m/s.

Centre line Racing line PP

Figure 5.2: A comparison of the paths taken by agents trained to follow the centre (left)
and racing (middle) lines using the cross-track and heading reward on the MCO map.
The path taken by the pure pursuit (PP) planner (right) is shown for reference.

In Figure 5.2, it can be seen that both agents learn to track the reference lines. Therefore,
using the minimum curvature line as the reference results in the vehicle following the
racing line, which is the desired behaviour. The difference in the path taken by using the
centre line and minimum curvature line is explored numerically in Table 5.1. The agents
are referred to as the centre and racing agents, and the pure pursuit planner is provided
for comparison.

Table 5.1 shows that the racing line agent completes laps of the track with a total
distance of 168.44 m, which is 8.53 m shorter than the centre agent. The centre agent
has a considerably larger total curvature of 239.76 m−1, compared to the racing agent’s
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DRL Agents Classical

Metric Centre Line Racing Line PP

Total Distance (m) 176.97 168.44 167.63
Total Curvature (m−1) 239.76 186.77 119.22
Centre L. Deviation (m) 51.17 173.76 175.63
Racing L. Deviation (m) 198.95 68.23 21.62
Mean Steering (rad) 0.13 0.11 0.05

Table 5.1: The total distance, curvature, centre and racing line deviation, and mean
steering angles for agents trained with the cross-track and heading reward signal using
the centre and racing lines on the MCO track. The pure pursuit planner following the
racing line is shown for comparison.

curvature of 186.77 m−1. While using the racing line improves the total curvature from
the centre line, the classical pure pursuit planner still outperforms both DRL agents with
a total curvature of 119.22 m−1.

The deviation of the agents from the centre line and the racing line is provided to
illustrate the agents’ ability to follow the reference. The centre agent tracks the centre
line accurately with a deviation of 51.17 m. The centre agent’s learned policy is far from
the racing line, with a deviation of 173.76 m. The racing agent tracks the racing line with
a deviation of 68.23 m and the centre line with a deviation of 198.95 m. The pure pursuit
planner tracks the racing line more accurately than the DRL agents, with a total deviation
of 21.62 m.

These results indicate that using the racing line as the reference line for constant speed
driving leads to the agent taking shorter paths with lower curvatures that result in a
smaller mean steering angle. The differences are due to the racing line having less curvature
than the centre line, thus requiring the vehicle to steer less. While the cross-track and
heading reward trains agents to accurately track the reference line used, the pure pursuit
planner still outperforms agents trained with the racing line as a reference by achieving a
shorter distance, lower curvature, and smaller mean steering angle.

Candidate Reward Comparison

After establishing that the racing line improves the path taken by constant speed agents,
the reward signals presented in §5.2.2 are compared against each other for variable speed
racing. Variable speed racing requires the agents to select a speed between 2 m/s and
8 m/s that results in the vehicle moving around the track as quickly as possible while
not crashing. The velocity line rewards v1, v2, and v3 are considered and compared to
the pure pursuit policy search (PPPS) reward. This evaluation aims to determine which
reward signal trains DRL agents to select the speed profile most similar to the racing line.
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The evaluation starts by analysing the training performance of agents trained with the
different rewards before considering the behaviour of the trained agents. The v1, v2, v3
and PPPS rewards are each trained for 100,000 steps, and the average progress during
training is recorded.
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Figure 5.3: The average progress during training of the v1, v2, v3 and PPPS rewards
trained on the ESP map for 100,000 steps.

Figure 5.3 shows the training progress for each reward signal being trained on the ESP
map. The graph shows that the v1 and PPPS rewards both produce average performance
above 60%. The v2 and v3 rewards achieve under 20% throughout training. This indicates
that these rewards are poorly suited to racing since the agent cannot learn to complete
any laps. An investigation into the reason for the average progress being low showed that
the agents still select the maximum possible speed and quickly drift, losing control of the
vehicle and crashing.

v1

2

3

4

5

6

7

8

PPPS

2

3

4

5

6

7

8

Figure 5.4: Comparing the v1 and PPPS rewards for a portion of the ESP track.

Since the v1 and PPPS rewards achieve over 60% average progress during training, the
trajectories selected by the agents are further investigated. Figure 5.4 shows trajectory
segments for the v1 and PPPS reward on a portion of the ESP track. The v1 reward
mainly selects a speed of 2 m/s, which is near the slowest possible speed. In contrast, the
PPPS reward shows the ability to select a valid speed profile, speeding up in the straights
and slowing down in the corners.
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Therefore, it is concluded that none of the velocity line reward signals can be used to
train agents because they either result in agents that complete few laps or the agents learn
a policy of selecting low speeds to complete laps. This result demonstrates that designing
reward signals for racing is a difficult problem, and solutions that appear to promote
good behaviour are often unsuccessful. In contrast, the PPPS reward was shown to train
agents to complete many laps and select a speed profile of speeding up and slowing down.
Therefore, the PPPS reward signal is further studied to measure its training performance
on different maps and investigate the speed profile selected by the agents.

Training Investigation

The training behaviour of agents trained using the PPPS reward signals is done to
understand the effect of the map and the random seed used during training. The random
seed affects the initial values in the neural network and the samples that are selected for
training the agent. Ten agents are trained to race by selecting speed and steering actions
on the AUT, MCO, ESP and GBR maps and the progress made by the agents during
training is recorded. The average progress along the track is plotted for the ten runs with
the shaded regions indicating the minimum and maximum for each map.
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Figure 5.5: The average progress during training of ten agents trained with the pure
pursuit policy search algorithm on the AUT, MCO, ESP and GBR maps.

Figure 5.5 shows the average progress during training using the pure pursuit policy
search reward signal. On the AUT map, the agent learns faster and to a higher average
progress of around 85%. On the MCO, GBR and ESP maps the agents achieve an average
track progress of between 70% and 80%. While the agents were trained for 100,000 steps,
there is little change in the average progress after 60,000 steps, indicating that the agents
could possibly be trained for fewer training steps. On the graph, there is a wide shaded
region, showing that there is a large difference between the minimum and maximum
training runs. The discrepancy between training runs is further investigated by plotting
all the different runs for the MCO map in Figure 5.6.

Figure 5.6 shows the average progress during training using different random seeds.
Most of the runs reach above 75% by 60,000 steps, with two of them reaching around 95%.
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Figure 5.6: Ten repetitions of the training on the MCO map with different random seeds
are plotted for comparison.

However, one of the runs only reaches around 25% for the entirety of the training. The
single run that achieved only 25% explains why the shaded region for the MCO map in
Figure 5.5 is so large. In addition to resulting in a large difference between the minimum
and maximum, the single negative run also decreases the average in Figure 5.5.

The discrepancy between training runs indicates that the random seed used plays a
significant role in how well the agents perform, with certain seeds resulting in excellent
behaviour and others not converging. The conclusion from the training investigation is
that while the random seed plays a significant role in the performance, for most seeds, the
pure pursuit policy search reward signal trains agents to complete most of the laps. The
difference between the maps is significant with the PPPS reward being the most effective
on the AUT map.

Speed Profile Analysis

The next evaluation investigates the similarity between the pure pursuit planner following
the racing line and the agent trained with the pure pursuit policy search (PPPS) reward
signal. The analysis consists of visually comparing the trajectories in Figure 5.7, comparing
the actions select by the planners in Figure 5.8 and the vehicle’s speed and steering states
in Figure 5.9. The actions shown in Figure 5.8 are the actions selected by the planner,
while the states shown in Figure 5.9 are the vehicle states of speed and steering.

Figure 5.7 shows the trajectories taken by the pure pursuit planner (left) and an
agent trained with the PPPS reward signal (right). The first observation is that the
trajectory taken by the pure pursuit planner is a lot smoother than the trajectory taken
by the PPPS agent in terms of the path taken and the speeds selected. The pure pursuit
planner smoothly follows the racing line, slowing down and speeding up in proportion
to the curvature. While the PPPS agent’s trajectory is not as smooth, it does select an
appropriate speed profile, as shown by the darker red line in the straighter section of the
track and the blue and green line segments around the corners. Visually it appears that
the PPPS agent has more red and less blue regions than the pure planner, indicating that
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Figure 5.7: The trajectory from the pure pursuit planner (left) compared to the PPPS
agent (right) on the MCO map. The colour bar represents the vehicle speed in m/s.

the PPPS agent selects higher speeds. This is further investigated by considering the
actions selected by the two planners.
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Figure 5.8: A comparison of the actions selected by the trained PPPS agent (blue) and
the pure pursuit planner (red) on the GBR track.

In Figure 5.8, the steering and speed actions for the pure pursuit planner and PPPS
agent are compared. As seen in Figure 5.7, the pure pursuit planner smoothly selects
steering and velocity actions that gradually change. The PPPS agent tracks the steering
angle (top graph) accurately, often selecting similar steering angles. This pattern is
specifically seen around the 40% mark, where the vehicles steer negatively, positively, then
negatively again, and the agent tracks the pure pursuit planner’s steering angle.

The bottom graph in Figure 5.8 shows the speed actions selected by the PPPS agent
and pure pursuit planner. The PPPS agent shows many fluctuations in speed selection,
where speeds higher and lower than the pure pursuit planner’s speed are regularly selected.
While the PPPS agent’s speed selection is not smooth, it roughly tracks the pure pursuit
planner’s speed selection. For example, around 20%, both planners select the top speed of
8 m/s, and around 40%, both planners select a speed of around 3 m/s. The differences
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between the two speed profiles often result from the PPPS agent selecting a higher speed
than the pure pursuit planner, such as around the 70% mark, where the PPPS agent
selects 8 m/s, while the pure pursuit planner selects around 6 m/s. While the actions
selected by the planners are important, the states experienced by the vehicle are more
important, because the states determine the vehicle’s racing performance.
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Figure 5.9: Steering and speed profile comparisons for the pure pursuit (PP) and pure
pursuit policy search (PPPS) agent on the MCO track.

Figure 5.9 shows the steering and speed profile comparison between the pure pursuit
planner and the agent trained with the PPPS reward signal. As with the action graph,
the PPPS agent tracks the steering angle of the pure pursuit planner accurately. The only
difference between the pure pursuit planner and PPPS agent’s steering graphs is the PPPS
agent’s steering angle occasionally fluctuates around the pure pursuit reference. The speed
graphs for the states in Figure 5.9 are more similar than the action graphs in Figure 5.8.
This is because the high-frequency fluctuations in speed selection are partially filtered out
by the vehicle’s momentum, meaning that the vehicle required time to speed up or slow
down. This result indicates that the PPPS reward is effective for training an agent to
speed up and slow down, roughly tracking the pure pursuit planner.

The investigation into the trajectories selected by the pure pursuit planner and PPPS
agent shows that the PPPS reward signal is effective for training an agent to replicate the
behaviour of the pure pursuit planner. While the actions selected by the agent fluctuate
around the pure pursuit planner’s actions, the vehicle states of speed and steering accurately
track the pure pursuit planner. The accurate tracking of the pure pursuit planner’s vehicle
speed indicates that the PPPS reward signal is effective in training agents to produce
similar behaviour as the racing line. This result indicates that the racing line can be used
to train agents to select an appropriate speed profile of speeding up and slowing down.
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5.3. Linked Action Architecture
In §5.2, methods of training the agent to select a better speed profile were considered using
an optimal trajectory. This section takes a different approach to overcome the problem
of speed selection for DRL agents by aiming to simplify the learning formulation. The
approach followed uses the agent to select the steering angle and a friction model to select
a speed reference. The section starts by explaining the problem of action complexity before
describing architecture design.

5.3.1. Architecture Design

Action Complexity Problem Discussion

In §4.4, the constant speed DRL agents demonstrated good performance, tracking the
reference line well, not crashing, and selecting good paths. They could be trained in fewer
than 30,000 steps, were highly repeatable and could follow the reference line closely. In
contrast, the variable speed agents performed very poorly, with high crash rates. The key
problem was poor speed selection; the agent could not select an appropriate speed profile
for speeding up and slowing down, resulting in high-slip trajectories. This result indicates
that DRL agents demonstrate good performance in selecting a single action, but they
perform less well when having to select two actions. Therefore, the design methodology
followed is to use the agent to select only the steering angle to reduce the complexity of
the learning problem.

Linked Action Architecture Overview

In response to the problem of speed profile selection, the linked action architecture is
presented. A method is presented for calculating the agent’s speed based on the steering
angle selected by the agent. The link architecture aims to retain the sample efficiency and
training stability of the constant-speed agents while achieving good racing performance by
selecting appropriate speeds. This approach is partially inspired by optimal trajectory
generators that often use a two-step process of calculating a minimum curvature path and
subsequently calculating a minimum speed profile. In optimal trajectory generators, the
velocity is selected as the highest speed that remains within the friction limit.

Figure 5.10 shows a schematic of the linked action architecture. The agent (shown in
green) receives the LiDAR scan and selects a steering angle using the same setup as the
constant-speed agents. The calculate speed function uses the steering angle as input into
a friction model that calculates a speed reference. The speed and steering references are
combined and used to control the vehicle.

The learning formulation for the link architecture uses the cross-track and heading
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Figure 5.10: Schematic of the linked action architecture showing how the calculate speed
function is located after the agent and uses the steering angle to select a speed reference
for the vehicle.

reward signal since it demonstrated the best performance in Chapter 4. The state vector
uses two consecutive LiDAR scans of twenty beams each, and the agent generates an
action that is scaled to be the steering angle. While the same reward signal is used as
in Chapter 4, the values received by the agent are now different since the vehicle speed
changes depending on the steering angle. The agent is trained using the TD3 algorithm
for 100,000 steps so that the results can be compared to the other high-speed approaches.

Friction Model

The main physical limit experienced by racing vehicles is that lateral force Fy must not
exceed the tyre friction limits Fmax. The total tyre friction limit can be calculated using
linear friction as Fmax = bmg, where b is the friction coefficient, and g is the acceleration
due to gravity. The lateral force is directly related to the vehicle’s mass m and lateral
acceleration ay as Fy = m·ay. The lateral acceleration can be calculated from the kinematic
equation for curved motion as ay = vx · ω, with ω being the angular speed. The equations
for the kinematic bicycle model calculate the yaw rate as ω = vx tan(δ)/L, where L is
the vehicle’s wheelbase and δ is the steering angle. Therefore, the limit of friction can be
described through the inequality,

bmg >
v2

x

L
tan(|δ|)m. (5.6)

This equation can be rearranged to calculate the maximum speed for given steering
input δref as

vx(δref) =
√

bg

tan(|δref|)/L
. (5.7)

This equation is subject to the velocity being smaller than the maximum linear velocity.
The speed that is calculated, vx, is used as the speed reference that controls the vehicle.
The vehicle parameters used are b = 0.523 and L = 0.33 m. Using this equation to
calculate the vehicle’s speed is called the calculate speed function.
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Tuning

Racing at a vehicle’s performance limits inherently requires planning because the vehicle
has momentum and takes time to change its speed. This is illustrated by a vehicle slowing
down before starting to turn a corner. A shortcoming of using a friction model to calculate
speed is that it is reactive and does not plan for the future. While the model presented
above represents the friction limit, the vehicle must remain inside the limit, even when
changing state. The steering angle can change much faster than the vehicle’s speed, and
this can cause the vehicle to exceed the friction limit and drift. For example, using the
friction model limit with the pure pursuit planner results in the planner drifting and
crashing since when the vehicle starts to turn a corner, the vehicle has not yet had time
to slow down enough.

To overcome this problem, a reduced friction limit is used that incorporates a buffer
region so that the vehicle does not breach the friction limit. This approximation uses a
safety factor to reduce the calculated speed and a cap to clip the maximum allowed speed.
The function is implemented by reducing the maximum vehicle speed and using a safety
factory, fs ∈[0, 1]. The speed is multiplied by the safety factor and clipped according to
the maximum as v = min(vtuned max, fs · vx). While this reduces the performance from the
true friction limit, the approximation is essential for this method to be feasible.
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Figure 5.11: Speed at the friction limit (Limit) and at the tuned friction limit (Tuned)
for an F1/10th vehicle. The shaded areas represent the velocity-steering space that keeps
the vehicle from drifting.

The safety factor and the maximum speed allowed were tuned using the calculate speed
method with a pure pursuit controller. The pure pursuit planner was set to follow the
racing line and the parameters that allowed the vehicle to not crash with the fastest lap
time were fs = 0.8 and to cap the speed at vmax = 7 m/s. Figure 5.11 shows the speed
at the friction limit (labelled Limit) and the speed at the tuned friction limit (labelled
Tuned). The figure shows the steering-velocity graph with the shaded area indicating the
regions which keep the vehicle within the friction limit.
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5.3.2. Architecture Evaluation

The linked action architecture, abbreviated as the link agent, is evaluated for its ability
to train agents for F1/10th racing. The learning is evaluated by measuring the training
performance on four maps. The performance is evaluated by comparing the trained agents
to a pure pursuit planner that follows the racing line and uses the tuned calculate speed
function to select a speed.

Training

The link architecture training performance is evaluated by training ten agents to race on
each of the MCO, GBR, ESP and AUT maps. The agents all use the cross-track and
heading reward and the tuned friction model to calculate a speed reference. The agents
are trained for 100,000 steps on each map and the average track progress during training
is recorded.
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Figure 5.12: The average progress made by link agent on the MCO, GBR, ESP and
AUT maps during training for 100,000 steps. The shaded regions show the minimums
and maximums from 10 repetitions.

Figure 5.12 presents the progress during training for the link agent on four test maps.
The graph shows that the average progress rises quickly on all of the maps, starting near
zero and reaching around 95% by around 50,000 steps. The shaded regions are relatively
small for each map, indicating that the training is stable and the random seed does not
have a big effect. All of the maps show similar behaviour, with the agent trained on AUT
(red line) slightly outperforming the other maps. This result indicates that the learning
formulation is not dependent on the map used. While the agents were trained for 100,000
steps, the lack of change in the graph after 50,000 indicates that the link agent may require
less training. Therefore, it is concluded that training agents using the link architecture is
highly stable, and independent of the map used or random seed, with all training runs
achieving a high average progress of over 90%.
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Performance Evaluation

The behaviour of the link agent is now compared to the pure pursuit planner that follows
the racing line and uses the same tuned friction model to calculate the speed reference.
Figure 5.13 shows an example trajectory taken by the pure pursuit planner (left) compared
to the link agent (right).
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Figure 5.13: Example trajectories taken by the pure pursuit planner (left) and link agent
(right) on the MCO track, both using the same method to calculate speed.

In Figure 5.13, the link agent trajectory (right) shows the agent selects faster speeds
(orange and red) for the straights and slower speeds (green and blue) around the corners.
Comparing the link agent performance with the pure pursuit planner shows that the agents
select similar paths with similar speed profiles. Both trajectories have sudden changes in
the line colour, showing that the vehicles change speed quickly. Visually it appears that
the pure pursuit planner has a slightly smoother speed profile, and selects slightly lower
speeds due to the increased dark blue regions. The link agent trajectory demonstrates
that the design is successful because the agent slows down around the corners and speeds
up for the straight sections, in a similar manner to the pure pursuit agent.

Further analysis is done by plotting the velocity profile of the two agents for the laps
shown above. Figure 5.14 presents the velocity profiles with the link agent shown in red
and the pure pursuit planner in blue.

The steering profile in Figure 5.14 shows that the link agent selects similar steering
actions to the pure pursuit planner. The link agent occasionally shows spikes of large
steering angles in the graph. This means that for most of the lap, the link agent follows a
similar pattern to the pure pursuit planner. The speed profiles also show that the link
agent selects similar speeds to the pure pursuit planner. This confirms that the link agent
can select an appropriate speed profile, slowing down in similar places to the pure pursuit
planner. The evaluation has demonstrated that the link architecture can be trained stably
to achieve a high average progress and can select an appropriate speed profile of slowing
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Figure 5.14: The steering and speed profiles selected by the pure pursuit (PP) planner
and the link agent on the ESP track.

down around the corners and speeding up in the straights.

5.4. Comparative Evaluation
This section compares conventional end-to-end training (called the conventional agent),
agents trained with the pure pursuit policy search (PPPS) reward and the linked action
architecture. The conventional agent uses the cross-track and heading reward because it
showed better results. The pure pursuit planner is used as a reference to compare the
trajectories. The evaluation in §4.5 showed that conventional learning formulations were
highly dependent on the vehicle’s maximum speed. Since agents using maximum speeds of
7 or 8 m/s could not complete any test laps, conventional agents with a maximum speed
of 6 m/s are used as the baseline for comparison.

5.4.1. Training Comparison

The ability of the different learning formulations to train the agents for the task of
autonomous racing is considered by training agents on the ESP map. The training of the
different agents is considered by training 10 agents from each group for 100,000 steps. The
average progress during training is used to evaluate their performance.

Figure 5.15 shows the average progress during training for the conventional end-to-end
agent with a maximum speed of 6 m/s (E2e6), the PPPS agent and the link agent on the
ESP map. The link agent trains the fastest and most stably, as shown by the red line
that quickly rises to achieve near 100% average progress. The PPPS agent reaches an
average progress of around 70%, outperforming the conventional agent with a maximum
speed of 6 m/s, which only reaches around 60%. Both the link and PPPS agents train to
a higher average progress level than the conventional agent with a maximum speed of 6
m/s. The link agent has a maximum speed of 7 m/s and the PPPS agent has a maximum
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Figure 5.15: Training graph for the conventional end-to-end with a maximum speed of 6
m/s (labelled E2e6), PPPS and Link agents on the ESP map.

speed of 8 m/s. Therefore, both the link architecture and agents trained with the PPPS
reward signal train to a higher level of average progress, using higher maximum speeds
than conventional learning formulations.

5.4.2. Performance Comparison

The performance of the conventional agent, link architecture and agents trained with the
PPPS reward is evaluated and compared to a pure pursuit planner following the racing line.
The pure pursuit planner in this evaluation uses the speed references from the optimal
trajectory. The metrics of lap time, total curvature, average velocity, success rate and
average progress are used to represent the results. The results are the average from 20
test laps.

Metric Link PPPS E2e6 PP

Lap Time (s) 44.62 42.53 42.03 46.70
Curvature (m−1) 70.23 72.43 86.21 70.94
Avg. Velocity (m/s) 5.35 5.54 5.80 4.92
Success Rate (%) 100 70 30 100
Avg. Progress (%) 100 90 75 100

Table 5.2: The lap-time, total curvature, average velocity, success rate and average
progress for the link architecture, PPPS agent, a conventional agent with a maximum
speed of 6 m/s (E2e6) and the pure pursuit (PP) planners on the ESP track.

Table 5.2 presents a comparison of how well each of the methods performs for the task
of high-speed autonomous racing. All the learning agents achieved faster lap times than
the pure pursuit planner of 46.7 s. While the conventional agent performed the fastest
with a time of 42.03 s, only 30% of the laps were completed with an average progress of
75%. This low completion rate indicates that the trajectories being taken are near to
infeasible, since the lap time is not repeatable.

The PPPS agent has a lower lap time of 42.53 seconds compared to the link agent of
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44.62 seconds. This is explained by the higher average velocity of 5.54 m/s for the PPPS
agent, compared to 5.35 m/s for the link agent. The PPPS uses the full speed range of up
to 8 m/s, compared to the link agent, which only reaches 7 m/s. While the link agent
completed all the test laps with a 100% success rate, the PPPS agent only completed
70% of the laps without crashing. The high average progress of 90% indicates that the
PPPS agent only crashes towards the end of the lap, still achieving good performance.
The link and PPPS agents both have significantly lower curvatures of 70.23 and 72.43,
respectively, compared to the conventional agent of 86.21. The link agent achieves a
comparable curvature to the pure pursuit planner.

These results demonstrate that the link architecture and PPPS agent outperform the
conventional planner by achieving an improved success rate. The link agent completed all
test laps while achieving a lower curvature than the pure pursuit planner. Critically, the
link and PPPS agents could outperform conventional learning while using higher maximum
speeds of 7 m/s and 8 m/s, respectively. The ability of the link and PPPS agents to
outperform conventional learning by using higher maximum speeds is further explored by
analysing the trajectories taken, actions selection, speed profiles and slip angles.

Trajectory Comparison

The trajectories are analysed to compare the different planner’s abilities to select appropri-
ate speed profiles of speeding up in the straights and slowing down in the corners. Baseline
agents using the conventional learning formulation with the cross-track and heading reward
are used for comparison. Trajectory segments from conventional agents using a maximum
speed of 6 m/s and 8 m/s are used.
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Figure 5.16: Comparing example trajectories from the conventional agent with a maxi-
mum speed of 6 m/s (left) and the PPPS agent (right) on a section of the ESP track.

Figure 5.16 compares the trajectories taken by the conventional agent with a maximum
speed of 6 m/s and the PPPS agent on the ESP track. The conventional agent trajectory
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is mainly yellow, showing that the vehicle almost always travels at 6 m/s, slowing down
slightly in the hairpin corner, as indicated by the blue region. The path taken by the
conventional agent is squiggly due to the vehicle drifting with high-slip angles. In contrast,
the PPPS agent speeds up and slows down, as shown by the dark red lines in the straight
sections and dark blue sections around the corners. The PPPS agent travels smoothly
around the track; it cuts the corners and takes a low curvature route, allowing for high-speed
selection without losing traction. This trajectory shows that the PPPS agent outperforms
the conventional agent by speeding up and slowing down and selecting a smoother path.
Critically, the PPPS agent is able to use the full speed range of up to 8 m/s, while the
conventional agent is limited to 6 m/s.
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Figure 5.17: Comparing example trajectories from the conventional agent with a maxi-
mum speed of 8 m/s (left) and the link agent (right) on a section of the ESP track.

Figure 5.17 shows example trajectories from the conventional agent with a maximum
speed of 8 m/s (left) and the link agent (right) on a section of the ESP track. The
conventional agent selects almost always the highest speed, as shown by the dark red line.
This results in the vehicle swerving around the track and ultimately crashing, as shown by
the line stopping. The link agent drives mainly in the centre of the track while speeding
up (shown by the orange line) and slowing down (shown by the green and blue lines). This
change in the colour profile demonstrates that the link agent has good racing behaviour
of selecting a smooth path, speeding up and slowing down. The link agent’s ability to
speed up and slow down without crashing demonstrates an improvement over conventional
learning.

The trajectory analysis concludes that the PPPS and link agents overcome the problem
of poor speed selection and high curvature that the conventional agents experienced. The
ability to select higher speeds in the straights and lower speeds in the corners enables
them to use higher maximum speeds of 7 m/s with the link agent and 8 m/s with the
PPPS agent.
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Action Analysis

The actions selected by the trained conventional and PPPS agents are compared to
demonstrate the difference caused by the change in learning formulation. Figure 5.18
shows the comparison of the actions selected by the conventional and PPPS agents. The
steering graph shows that the conventional agent selects many extreme steering actions,
a problem noted in the literature [22]. The PPPS agent selects many smaller steering
actions showing that it has learned a more moderate racing behaviour. Selecting smaller
steering actions causes the forces on the tyres to be smaller. While the PPPS agent selects
more moderate steering actions on average, there are still regions, such as between 15%
and 20% progress, where the PPPS agent’s steering angle still fluctuates.
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Figure 5.18: Comparison of the steering and speed actions selected by the conventional
agent with a maximum speed of 6 m/s (E2e6) and PPPS agent on the ESP map.

The speed graph confirms what was seen in the trajectories in Figure 5.16; the
conventional planner almost always selects the same speed (the maximum), and the PPPS
agent learns an appropriate speed profile of speeding up and slowing down. The PPPS
agent’s speed increases to the maximum in some regions and slows down to between 3 m/s
and 4 m/s in some regions. While both use the same architecture of the agent selecting
two actions, the PPPS agent learns to select much more moderate actions, with fewer
spikes in the steering angle and more variation in the speed profile selection. This result
demonstrates that the PPPS reward results in more moderate action selection while using
a higher maximum speed.

Speed Profile Analysis

The speed profiles selected by the PPPS and link agents are now compared in detail to
understand how each planner speeds up and slows down. The speed profiles of the PPPS
and link agents are plotted for a section of the ESP track so that the agents’ behaviour can
be analysed. The conventional planner is neglected from this study since it has already
been seen that it is unable to select a feasible speed profile.
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Figure 5.19: The speed profile of vehicles controlled with the pure pursuit (PP), PPPS
and link planners on a portion of the ESP track.

The graph in Figure 5.18 shows the speed profiles of vehicles controlled with the pure
pursuit, PPPS and link planners on a portion of the ESP track. The pure pursuit planner
(green line) selects a speed smoothly moving through the track, and the agents both have
less smooth speed profiles. The PPPS and link agents generally select speeds slightly
higher than the pure pursuit planner; for example, around the 40% progress mark, the
pure pursuit planner has a speed of 4 m/s, the link agent 6 m/s and the PPPS agent 7.5
m/s. The link agent shows a jerky speed selection, with many sharp corners in the speed
profile; for example between 50 % and 55%, the link agent fluctuates below and above the
pure pursuit speed four times. The PPPS agent selects a smoother speed profile but often
neglects to slow down enough for the corners. This is seen at the 65% mark, where the
pure pursuit planner slows down and the PPPS agent tracks the gradient of the line while
being on average 1.5 m/s faster. The fluctuations from the PPPS agent are smaller than
the link agent with their magnitude mainly being within 1 m/s.

The investigation into the speed profiles concludes that the link agent selects more
conservative speed profiles than the PPPS agent. The PPPS agent is more aggressive,
often selecting a higher speed than the pure pursuit planner. Both agents show some
fluctuations with the link agent having bigger fluctuations than the PPPS agent. In
general, both agents show a similar pattern in speed profile to the pure pursuit planner.

Slip Angle Analysis

The slip angles of the pure pursuit, conventional, PPPS and link agents are studied to
understand the frictional forces on the tyres caused by each agent. The slip angle is
recorded directly from the simulator and plotted for a lap of the ESP track. The absolute
slip angle is used since the magnitude is significant and the sign is irrelevant.

Figure 5.20 shows the slip angles for the pure pursuit planner, conventional 6 m/s,
PPPS and link planners on the ESP track. The pure pursuit planner has the lowest
slip angle with the highest value of 0.2 radians, and an average of less than 0.1 rad.
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Figure 5.20: The absolute slip angle from the pure pursuit (PP) planner, conventional 6
m/s (E2e6), PPPS and link planners on the ESP track.

The conventional planner with a maximum speed of 6 m/s (E2e6) has a large slip angle,
frequently beaching the 0.2-radian line and having an average above 0.1 radians. The
PPPS improves on the conventional planner, having a smaller slip angle of around 0.05
radians, with occasional spikes above 0.2 radians. The link planner generally has a small
slip angle below 0.05 radians with occasional large spikes.

The first comparative observation is that both the PPPS and link agents improve on
the conventional planner by having lower slip angles on the ESP track. Critically, the
PPPS and link agents have smaller slip angles while using higher maximum speeds of
7 m/s and 8 m/s, compared to the conventional planner with a top speed of 6 m/s. A
limitation of the link and PPPS agents is that they both show occasional spikes in the slip
angle which should be addressed in future work. The conservative nature of the link agent,
compared to the PPPS agent is reiterated here with the link agent having a generally
smaller slip angle.

5.4.3. Literature Comparison

The methods presented here are compared with the results from the literature. Many
methods use uncommon maps that cannot always be easily obtained. Bosello et al. [60]
and Brunnbauer et al. [22] both use the same simulator and the maps are available in the
associated GitHub repository1. They use a simulator that employs PyBullet dynamics
engine to represent the vehicle dynamics. While the simulator used by these authors differs
from the simulator used in this work, it aims to model the same vehicles.

1https://github.com/MichaelBosello/f1tenth-RL
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Figure 5.21: Lap time comparison of the PPPS and Link planners to Bosselo et al. [60]
and Brunnbauer et al. [22].

Figure 5.21 shows the lap times of the PPPS and link agents compared to Bosello
and Brunnbauer. The graph shows that the link architecture and agents trained with the
PPPS reward outperform the results presented by Bosello and Brunnbauer in terms of lap
time. For example, on the ESP map, Brunnbauer achieved a time of 73 seconds, which
Bosello beat with a time of 56 seconds. The link agent has a time of 45 seconds, and the
PPPS agent performs the fastest with a time of 43 seconds. On all the maps, the PPPS
agent performs the fastest of all the methods considered.

Therefore, this study concludes that the novel link architecture and PPPS reward are
effective for training agents to select appropriate speed profiles, outperforming similar
studies in the literature in terms of lap time. It is proposed that the key reason that the
methods presented in this dissertation achieve faster lap times is that they use the full
speed range of up to 8 m/s. While the other authors do not directly report the speeds
used, the GitHub repositories indicate that the maximum speed used was 5 m/s. While
further analysis of the speed profile selection would be indicative of the reasons for the
lower lap times, neither work provided such information.

5.4.4. Discussion

Chapter 4 showed that a key problem in using DRL agents for high-speed racing is poor
speed selection, specifically, not slowing down around corners and thus often crashing.
In response, this chapter presents improved learning formulations for high-speed F1/10th

racing. The key design methodology uses analytical vehicle models in the learning
formulation design to aid the learning. New reward signals using the speed profile from the
racing line were used to guide the learning, and the link architecture that used a friction
model to select a speed based on the agent’s steering angle was presented.

The results showed that using the waypoints from the racing line decreased the distance
travelled, total curvature and mean steering angle compared to using the centre line. Of
the four reward candidates presented, the only one to achieve good racing performance
was the pure pursuit policy search reward, which could train an agent to select a speed
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profile similar to the optimal trajectory. The PPPS agent still selected slightly higher
speeds than the racing line, especially on the exit of corners.

The link architecture achieved its goal of simplifying the learning formulation by
producing a policy that trains repeatably and converges in a smaller number of training
steps. The link agent selects a similar profile to the pure pursuit planner, with the
difference of not slowing down as far before corners. Critically, the link agent achieved
a success rate of 100%, confirming that it selects safe, high-performance trajectories. A
slight limitation of the link architecture is that it only selects speeds up to 7 m/s, thus
not using the complete speed profile of the vehicle.

The comparative evaluation showed that both methods improved the speed profile
selection of the baseline greatly, speeding up and slowing down appropriately. The link
agent selects slightly lower speeds than the PPPS and, being more conservative, achieves
a 100% completion rate, which is higher than the PPPS of 70%. The slip angles of the
PPPS and link agents are significantly better than the end-to-end agent, making these
solutions physically feasible. The comparison with lap times from the literature showed
that both the link and PPPS agents achieved lower lap times than Bosello et al. [60] and
Brunnbauer et al. [22].

A key part of the design and evaluation process was measuring a large set of variables,
such as speed profile through the track, slip angle, completion rate and average velocity,
mean steering and speed, curvature and action profile analysis. The in-depth evaluation
aided in identifying the problem and validating the effectiveness of the proposed approach.

This chapter concludes that the PPPS and link architectures outperform previous
methods regarding lap times, completion rates and slip angles. These improvements are
due to incorporating knowledge from vehicle models into the learning formulation. Future
methods should continue to consider ways to improve DRL formulations by using analytical
models.

Limitations

A significant limitation in all of the methods presented is the lack of ability for the agent
to plan. This is because the agent does not know where it is on the map and, therefore,
cannot harness the power of the map to consider what is coming in the future. Ultimately,
the agent requires a method of perceiving the future like a human who has driven on a
track does. This could be addressed in the future by training agents with localisation or
perception networks [113] that can learn the track’s structure so that the agent can plan
for the future. An alternative approach is to learn a dynamics model that could be used
for planning [22].

While the learning formulations presented in this chapter greatly improved the problem
of jerky steering actions (and thus high-curvature paths), the paths selected by the agent
can still be improved. The link agent has occasional spikes in the steering angle, and the
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PPPS agent selects a jerky speed profile. Future work could consider action-conditioned
learning, where additional reward penalties are used to encourage agents to select spatially
and temporally smooth actions [114].

5.5. Summary
This chapter addressed the problem of speed selection in DRL agents, which caused poor
completion rates and high-slip trajectories. Analytical vehicle models were employed to
improve the learning formulations. Racing line reward signals used the optimal trajectory
to provide more specific rewards to the agent, training it to copy the behaviour of a
pure pursuit planner. This approach has been shown to produce fast lap times due to
appropriate speed selection but suffered from only achieving a 90% average progress. The
link architecture uses a DRL agent to select a steering angle and a friction model to select
a speed reference. The link architecture trains repeatably and quickly, and the trained
agents achieve a 100% completion rate. A comparative evaluation demonstrated that the
PPPS and link agents could achieve faster lap times of four popular tracks than other
methods in the literature due to driving at faster top speeds. An in-depth analysis of the
action’s selection, speed profiles and slip angles were used to better understand the results
and validate that the proposed approaches select an appropriate speed profile.
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Chapter 6

Supervisory Safety System

It is difficult to evaluate DRL algorithms at high speeds, on physical vehicles. Three
reasons that contribute to this are (1) the sim-to-real problem caused by the difference
between simulation and real-world dynamics, (2) the black-box nature of DNNs, and (3)
the safety challenges present in high-performance control tasks, demonstrated by poor
completion rates, even in simulation. In response to these problems, this chapter presents
an supervisory safety system (SSS) that enables unsafe planners to be safely tested. The
SSS uses a viability kernel (list of safe states) and a vehicle dynamics model to ensure that
the actions selected by the agent are safe. The general racing vehicle kernel formulation
is explained, and the specifics of how the kernel is implemented for F1/10th racing are
described. The evaluation measures the kernels for different maps, validates the kernel by
using a worst-case scenario planner, tests the kernel’s robustness to noise in localisation,
and analyses how the kernels can be adapted for physical implementation. The results
demonstrate that the supervisor is effective in ensuring safety while having a small impact
on the vehicle’s performance due to over-conservative safety guarantees. The SSS that is
presented here is used in Chapter 7 to train agents online.

6.1. Introduction
Machine learning (ML) offers many advantages to autonomous racing, such as high-
performance control without localisation and flexibility in new environments. However, it
is difficult to harness these advantages due to current challenges in applying ML algorithms
to real-world platforms. The current method for applying many ML algorithms to physical
robots is to train the agent in simulation and then transfer the trained policy to the
physical robots [24]. Transferring trained policies struggle to overcome the sim-to-real
problem, which is the performance drop caused by the difference between simulation and
real dynamics.

The sim-to-real problem is further complicated by the black-box nature of DNNs. Xiao
et al. [99] point out that interpretability and explainability are major challenges in using
machine learning algorithms on real-world systems. The black-box nature of DNNs is
that it is a collection of numbers (weights and biases) that can be trained to represent a
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complex mapping of input to output vectors but have no understandable meaning. The
problem arising from the lack of interpretability is that the network’s behaviour cannot be
known or guaranteed to meet any requirements apart from experimentation.

If a system is known to work and can be easily evaluated for safety, then there is no
need to understand what the numbers inside the black box mean. However, in the case of
sim-to-real transfer, it is essential to know that the vehicle will not crash. High-performance
racing is a difficult problem, as demonstrated by the fact that some simulation-based
solutions still crash [19,52], and it has even been claimed that model-free algorithms are
incapable of high-speed F1/10th racing [22].

For as long as DRL agents do not have safety guarantees, they are not a practical
solution to any real-world robotics problem. While it might be tolerable if a small robot
crashes during an experiment, it is unacceptable for any large robot to fail during operation,
possibly causing damage to itself, its environment or humans. For DRL algorithms to be
scalable, methods for ensuring their safety must be evaluated.

This chapter addresses the problem of safety in autonomous racing by designing an
SSS that ensures that a vehicle does not crash. The supervisory architecture and process
of ensuring that only safe actions are implemented is described in §6.2 In §6.3, an overview
of Viability Theory is presented and used to derive the viability kernel for a racing car.
The viability kernel is evaluated in §6.5 to show that it can keep vehicles safe, and an
ablation study evaluates how the system responds to noise in the state and action space.

6.2. Safety Supervisor Design
A safety system is proposed that uses a supervisor to monitor the actions selected by an
experimental planner that may be unsafe. Figure 6.1 shows a schematic of the architecture
with the supervisor using the vehicle pose to guarantee that the action that is implemented
is safe. The supervisor is placed in series after the planner and uses the vehicle pose xt to
evaluate if the planner’s action u0 is safe. If the planner’s action is unsafe, then a safe
action must be selected.

Supervisor
Planner Action, 

Vehicle Pose, 

LiDAR Scan Safe Action

Experimental
Planner

Figure 6.1: The supervisor is placed after an experimental planner with learning compo-
nents to ensure that only safe actions are implemented on the vehicle.
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The supervisor ensures safety through a three-step process of (1) propagating the next
state, (2) checking if the next state is safe, and (3) if unsafe, selecting a safe action. Figure
6.2 shows a schematic of the safety process. The process starts with calculating where the
vehicle will be after a planning timestep. The single track dynamics model (explained in
§3.2.2) is used to calculate the next vehicle pose xt+1 = fST(xt,u0), using the planner’s
action.

Simulate Next State

Pure Pursuit Planner

Agent  
Action

Vehicle  
State

Kernel of  
Safe States

Centre line

Unsafe 
Select Pure Pursuit

Safe 
Select Agent Action

1

2

3

Figure 6.2: The supervisor checks if an action is safe by seeing if the next state is in the
kernel of safe states. If the action results in an unsafe state, then a pure pursuit planner
is used to select a safe action.

The decision module receives the next vehicle state xt+1 and must return a binary
answer for if the agent’s action is safe or unsafe. Safe means that after taking an action,
the vehicle will not crash, be within the friction limit, and be able to select another safe
action. Viability Theory is used to create a list of states, called a kernel, that meets the
definition of safe (explained in §6.3).

The next state is converted into a discrete state. The decision module checks to see if
this discrete state is in the kernel of safe states or not. The kernel is a list of discrete states
made up of position, orientation, speed and steering angle. The kernel can be implemented
using a hash table that can be efficiently queried to check if a state is safe. The decision
module then uses this binary value (safe or unsafe) to either return the planner’s original
action or select a safe action.

If the state is unsafe, a pure pursuit controller, following the centre line, is used to
select an action. The speed is selected using the formula in §5.3 to calculate a speed
relative to the current steering angle. This ensures that the supervisor always moves the
vehicle towards the middle of the track at a slow speed, which is the safest that it can be.

6.3. Viability Kernel Definition
The supervisor uses the viability kernel to check if the vehicle state is within a set of safe
states. It is recalled that safety means that a state does not lead to a crash, remains within
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the friction limit and is recursively feasible. Viability Theory has been previously used
in racing problems to improve the efficiency of MPC algorithms by generating a set of
recursively feasible states for autonomous race cars [32, 115]. Viability Theory is focused
on calculating viable solutions that remain within a complex constraint set and thus is a
good fit for this problem.

This section provides an overview of Viability Theory and then explains how the theory
is applied to the context of racing. A general planning model is considered and transformed
into a discrete difference inclusion before the viability algorithm is explained. This general
formulation is then applied to the problem of a racing car by presenting the model,
transforming the model and formulating the kernel. The work in this section originates in
the mathematical theories presented by Saint-Pierre [116], and the applications to racing
developed by Liniger et al. [2, 32, 115]. Since Liniger’s aim was to speed up the search
for MPC solutions, and the focus of this work is to ensure safety, Liniger’s application is
modified to be more conservative.

6.3.1. Viability Theory

Viability Theory is concerned with generating a set of states that remain within a constraint
set forever while evolving according to a set of dynamics. The basic problem of Viability
Theory is to find the viability kernel, which is the set of states that remain within the
constraints. In presenting the method of calculating the kernel, the general planning model
is described, then the discretisation of the model is explained, and finally, the viability
kernel algorithm is presented.

General Planning Model

We define a general control problem used for discrete-time planning in a robotic system.
Consider a system that has a state, x ∈ Rn, and control inputs, u ∈ U ⊂ Rm. Transitions
between states are given by the continuous function f : Rn × U 7→ Rn, such that
xk+1 = f(xk, uk, Tp), where the subscript k is the timestep. The discrete transitions occur
with the planning timestep Tp.

To calculate the viability kernel, it is useful to write the dynamic system as a differential
inclusion. A differential inclusion is a generalised form of writing ordinary differential
equations as a set-valued map. In the case of the general planning model, the differential
dynamics equations f(x, u, Tp) are converted to a set-valued map F (x), which is the set of
all possible next states for a given initial state. The general model can be formulated as a
difference inclusion as,

xk+1 ∈F (xk), with
F (xk) = {f(xk, u, Tp) | u ∈ U}.

(6.1)
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In Equation 6.1, F (xk) is a set of the possible states that the system could be in after
any action in the control space is selected and implemented for the planning timestep, Tp.
For this problem to be tractable, the set of states and control actions must be a finite
number. For there to be a finite number of states and actions, the state and control spaces
must be discretised.

Model Discretisation

The state space is discretised along each variable by applying each variable to a uniform
grid. This transforms the space from x ∈ Rn to xh ∈ Xh, where Xh is a countable list of
discrete states parameterised by h ∈ R.

The control space is also discretised by using a uniform grid across all the control
dimensions. Further, the control space is split into a finite number of countable modes
nq. Each mode, qj with j ∈ [0, nq], represents a control action, such that q : R 7→ Rm,
where m is the number of dimensions in the control space. Splitting the control space
into a countable number of modes allows for all the dimensions of the control space to be
represented using a single real number.

Viability Kernel Algorithm

Formally, the viability kernel is the set of states for which the system can remain within a
constraint set forever while evolving according to a set of dynamics. Given a constraint
set K ⊂ Rn, solutions to the difference inclusion in Equation 6.1, which stay in K forever,
are known as viable solutions. The task of generating the viability kernel is to find the set
of all viable solutions.

Definition 1 [116]: A set D ⊂ Rn is a discrete viability domain of F , if for all x ∈ D,
we have that F (x) ∩ D ̸= ∅. The discrete viability kernel of a set K ⊂ Rn under F ,
denoted by DF (K), is the largest closed discrete viability domain contained in K.

The definition implies that a discrete viability domain is defined by the states for which
the intersection of the differential inclusion and the domain is not equal to the empty set.
The viability kernel is defined as the largest discrete viability domain.

The viability kernel is built by recursively calculating the set of states that fit within
the constraint set, K. This process is known as the viability kernel algorithm [116],

K0 = K

Ki+1 = {x ∈ Ki | ∀ F (x) ∩Ki ̸= ∅}.
(6.2)

The viability kernel algorithm is initialised with a given constraint set, which is the
zeroth iteration viability kernel. The algorithm recursively builds further iterations of the
viability kernel, by selecting all the states within the previous kernel where the difference
inclusion for that state intersects with the previous iteration of the kernel. For the
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difference inclusion of a state F (x) to intersect with the kernel means that at least one of
the control actions results in a next state that remains within the kernel. This process is
repeated until all the states within the kernel are viable.

6.3.2. Racing Kernel Formulation

A vehicle model is used to formulate a viability kernel for racing applications. The model
is transformed to formulate the system as a differential inclusion so that Viability Theory
can be used. The transformation consists of discretising the control and state spaces and
converting the dynamics into a set-valued map.

Kernel State Formulation

The first step in formulating the kernel is to select the variables that comprise a kernel
state. The size of the kernel expands exponentially with each additional dimension, and
therefore, the fewest number of state variables should be used that can accurately represent
the state. The kernel is formulated using the state variables for the position, the vehicle
orientation, and the dynamics mode. Therefore, the kernel is a 4-dimensional vector, which
keeps the size reasonable while capturing the vehicle state.

The state is written as xh = [X, Y, θ, q], which includes the position, orientation and
mode number. The mode is the two control quantities of steering and speed, represented
as q = [δ, vx]. The position is discretised by splitting the track into uniform blocks with
a resolution of ndx blocks per metre. The orientation angle is discretised by dividing a
revolution into nθ angle segments.

Mode Definition

In racing, the control modes consist of steering and speed. Recalling the requirement of a
safe system, the vehicle must remain within the friction limit. Therefore, the friction limit
must be modelled and only control action combinations that are within the limit can be
used.

The maximum lateral friction is reached when the lateral force is equal to the vehicle’s
total frictional force. Using this definition, for the vehicle to be within the friction limit,
the following inequality must hold,

bmg >
v2

x

L
tan(|δ|)m. (6.3)

This inequality can be rewritten to find the maximum velocity within the friction limit for
a given steering angle as,

vx(δ) <
√

bg

tan(|δ|)/L. (6.4)
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Generally speaking, this limits the speed for extreme steering actions. This makes
intuitive sense that a vehicle travelling fast cannot turn sharply. Now that the friction
limit has been established, the modes can be selected by gridding the speed and steering
dimensions and numbering the modes.

State Update Model

A model is required to calculate the next state, given a current kernel state and mode
action. The vehicle model comparison in §3.2.3 showed that at high speed, the single-track
model deviates significantly from the kinematic model. Therefore, the single-track model
is used to calculate the transitions between states with several modifications.

The two additional variables that form part of the single-track model (yaw rate and
slip) are set to 0 for each next state calculation. The model takes velocity and steering
angle as inputs to a simple proportional control system (as used on the vehicle) to calculate
acceleration and steering velocity. The calculated acceleration and velocity are used as
inputs in the single-track bicycle model. The model uses a small timestep of 0.01 seconds
and is repeatedly updated until the simulation time is reached.

Mode Transition Calculation

Racing vehicles have dynamic limits that limit the rate at which the velocity and steering
can change. The steering angle is typically able to change faster than the speed. This
means that to keep within the friction limits, only certain mode transitions are allowed.
For example, a vehicle must slow down before turning sharply and may not start to turn
while still moving at high speed.
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Figure 6.3: A schematic demonstrating valid mode transitions. For initial modes 5 (left)
and 9 (right), arrows show the allowed transitions to valid modes of the state at the next
timestep (shown by purple arrows). The red nodes are not reachable within the current
planning timestep.

Figure 6.3 schematically shows the allowed transitions between modes. The allowed
transitions are calculated by evaluating how much the velocity and speed can change
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within the planning step and then considering which other nodes are reachable. It is
important when considering the mode and timestep discretization to ensure that all modes
are reachable. For example, if the timestep is very small and there are few speed modes,
then the vehicle speed will not be able to change enough during the timestep to reach the
next mode.

Formulation Summary

The viability kernel has been formulated for car racing, and the states, modes, dynamics
equations, and mode transitions have been defined. The definitions given above are now
summarised as

xk+1 ∈ F (xk), with
F (xk) = {fST(xk, qi, Tp) | i ∈ [0, 1, ..., qn]}
xk = [Xk, Yk, θk, qk]
qi = [δ, vx].

(6.5)

Recalling the viability kernel algorithm in Equation 6.2, the only remaining definition
required is K0, the initial constraint set. For racing on a track, K0 is defined as all the
states where the vehicle is on the map and not in contact with the boundaries.

6.4. F1/10th Kernel Generation
This section shows how the kernel that was formulated in §6.3 is now implemented for
F1/10th racing. After describing the implementation and generation process, an evaluation
of the kernels for F1/10th racing is conducted, including an ablation study to show how
the kernels react to noise in the vehicle location.

6.4.1. Implementation

Mode Selection

The modes for the task of F1/10th race are identified using the friction formula in Equation
6.4. Figure 6.4 shows how the friction limit is determined for F1/10th vehicles and how
the modes are positioned within the limit. The speed is discretised by splitting the speed
range into a fixed number of modes. For each speed level, three steering modes are selected
by calculating the steering angle on the friction limit on each side and a steering angle of
zero.

The decision to use only three steering modes on the edge of the limits is because the
kernel gets exponentially larger with each additional mode, so the list should be as small
as possible while still enabling fine control of the vehicle.
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Figure 6.4: Illustration of the modes used with evenly spaced velocity points and steering
modes on the friction limits. For the initial mode shown in blue, the green modes represent
the allowed transitions, and the red modes are not reachable within the current planning
timestep.

Discretisation

The states and actions must be discretised along each dimension for the kernel to be
generated. Table 6.1 shows the parameters used in the kernel generation process. The
race track is gridded into ndx points per metre using a uniform grid. The angle range of
[−π, π] is gridded into nθ equal angle segments.

Parameter Value

Number of X, Y discretisation points, ndx 40 per metre

Number of θ segments, nθ 41

Number of speed modes, nq 9

Number of steering modes per speed, nq 5

Kernel discretisation timestep, Tp 0.2 s

Number of edge shrink pixels 8

Table 6.1: Standard discretisation parameters used in the kernel generation process.

A discretisation timestep of 0.2 seconds allows enough time for the vehicle to move into
a new state. Therefore, the look-ahead timestep used by the supervisor is set to the same
value. While this is longer than the actual planning timestep of 0.1 seconds, using this
value results in the kernels being too big to compute and use. This approximation results
in the supervisor being more conservative, which is useful to absorb model uncertainties
in the model and discretisation.
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Before being used for kernel generation, the race track boundary is shrunk by several
pixels to take the size of the vehicle into account. A buffer of 20 cm (slightly bigger than
the centre to the rear measurement of 17 cm) shrinks the track by 8 pixels (0.2× 40 = 8)
from each boundary. The shrinking is done using a flood-fill algorithm.

6.4.2. Generation Process

After the dynamics table has been calculated, the kernel is recursively generated according
to Equation 6.2. The kernel is an array that has the shape [nx, ny, nθ, nq] with nx =
ndx ×Wtrack, and ny = ndy × Ltrack, where Wtrack, Ltrack are the width and length of the
track in metres. The result of the kernel generation is a 4D array with a Boolean value for
each state, indicating if the state is safe or unsafe.

There are many graphics presented to help the reader visualise the viability kernel. For
the visualisation, a modified version of the AUT map is used called WAUT. The AUT map
is scaled to be smaller and the track is widened so that the vehicle can turn the corners.

Generation Visualisation

The track image with the boundaries is used as the input to the kernel generation process
as the first iteration of constraints, K0. All orientation angles and modes that are in
contact with the boundary are marked unsafe. The kernel algorithm then runs recursively,
updating the kernel by looping through the states and for each state checking to see if
there is a valid action. If a safe action exists, then the state is marked safe, and if no safe
action is found, then it is marked unsafe. The algorithm terminates when the kernel has
not changed while looping over all the states.

Figure 6.5: AUT map section used as input to the kernel algorithm, and the kernel after
1, 5 and 12, and 31 steps. Grey is the track boundary, green is the viable region, and red
is the unsafe region.

Figure 6.5 shows the process of a kernel being generated at different steps for a corner
of a racetrack for a specific orientation and mode. The image shows how, as the kernel
generates, more and more states are declared to be unsafe until all the remaining states
are safe. In the kernel images, the grey represents the shrunk racetrack boundaries which
are the input to the kernel generator. The green represents the viable area, and the red
represents the unsafe region.
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The kernel is visualised for a specific angle meaning that the shape changes according
to the vehicle orientation. While the final kernel (right-most image labelled 31), appears
to have no safe path around the corner, this is not the case. The path around the corner
exists for a different orientation angle, i.e. as the vehicle starts to turn the corner, the
path for that orientation angle will appear. According to the Viability Kernel definition,
there must always exist a safe path around the entire track.

Slow Kernel Visualisation

We present two sets of images of the kernels to communicate what the 4D vectors look
like. Figure 6.6 shows an image of the kernel that was built using the standard parameters
listed in Table 6.1. The kernel is sliced to show four different angles and indicate how the
kernel shape depends on the vehicle orientation. One can see how the safe and unsafe
regions are related to the orientation angle of the vehicle and rotate as the vehicle rotates.

Figure 6.6: Illustration of viability kernel viewed at different angles (105, 11, 132 degrees)
with the steering angle being 0 rad (straight).

Figure 6.7 shows the kernel for a fixed orientation but different modes. In the left
image, the mode represents steering the maximum amount to the left and in the right
image, steering the maximum amount to the right. One can see how the safe and unsafe
region shifts slightly up as the mode changes.

Figure 6.7: Illustration of viability kernel viewed at different modes with steering angles,
-0.4, 0.2, 0, 0.2, 0.4 (from left to right) radians. The vehicle is facing to the left.

Fast Kernel Visualisation

Now the effect of speed is added and the kernel is shown with different colours representing
different speeds permissible in different regions.
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Figure 6.8: The kernel is shown with different speeds representing the speeds that are
allowed in different regions.

In Figure 6.8, it is clear that the slower the vehicle is moving, the more of the track is
safe. The red areas are unsafe for vehicles of any speed and as the colour fades to yellow,
the area is safe for higher speeds. The green areas are safe for all speeds. The image
shows that the lower the vehicle speed, the larger the size of the safe region. There are
few regions where the vehicle is safe if it is moving at high speed.

6.4.3. Algorithm Implementation

A brief description of the algorithmic implementation is presented. The algorithms are
programmed in Python 3.8 and extensively use the NumPy and Numba libraries. The
Numba library enables code to be compiled to machine language and cached, which greatly
speeds up the execution time, especially of loops and mathematical operations.

Kernel Storage

In Liniger et al.’s implementation [2], the kernels were around 4.5 GB each and included
all of the states on a map. Racing track maps contain mainly the boundaries and only
15-30% of the map contains positions on the track. The kernel is a 4D vector, meaning
that an increase in each dimension results in an exponential growth in kernel size. For
example, using the parameters in Table 6.1, the MCO map of 54 m by 57 m, discretised
with 40 points per metre, with 25 modes and 41 angle segments, results in 5.05 billion
states. However, considering that only 15% of these are on the track, this can be reduced
to 760 million states.

This reduction is done by using two tables, a position table and a kernel list. The
position table is a grid of all the map positions that is stored with the integer data type.
For each position, if the location is not on the track, the value -1 is stored. If the position
is on the track, then the integer to locate that state in the kernel list is stored. The
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kernel list is a list of all the states on the track. For each location state, the number of
angle segments and the number of modes is stored. Therefore, the kernel list has the
shape (ntrack, nθ, nq) and Boolean data values. The ntrack is the number of states with
a position on the driveable area of the track. The process for checking if a state is safe
requires checking its position in the position table, finding the kernel state number and
then identifying the angle and mode. Using this method allows for a reduction in kernel
size to around 100 MB for single-speed kernels and 500 MB for high-speed kernels (see
§6.5.1).

Dynamics Table Calculation

A dynamics table is built that represents the difference inclusion in Equation 6.5. The
change in X and Y position (Ẋ and Ẏ ) is independent of the current position and dependent
only on the orientation, θ, and mode, q. Therefore, we build a table that references each
state by the discrete orientation and mode, and then for each state, evaluates the next state
for each possible mode action. The next state is discretised and the 4 state dimensions
(Ẋ, Ẏ , θk+1, qk+1) are stored in the table. For each planning timestep, Tp, there are ns

points that are calculated at equal time intervals. These points are later used to ensure
that there is a clear path between the state and the next state. This results in a dynamics
table with the shape (nθ, nq, nq, ns, 4).

Kernel Generation

The kernel is generated by looping through all the states in the kernel list and for each
state using the dynamics table to calculate the next state for each action. If a next state
is found that is within the safe set, then the state remains safe. If no safe next state is
found, then that state is marked unsafe. This process of cycling through all the states and
checking them is performed iteratively until no more changes are made to the kernel.

6.5. Kernel Safety Evaluation
The safety of our supervisory system is evaluated by using a random planner in conjunction
with the SSS. The random planner selects random steering actions within the vehicle
limits, which are checked by the SSS and modified to be safe. The safety system then
outputs safe actions to the vehicle.

The kernels generated are analysed and validated using a random planner at low and
high speeds. The kernel generation process shows how the kernels for the different maps are
generated, noting important facts about the generation. The random planner validation
demonstrates that for a worst-case scenario planner that selects completely random actions,
the SSS can prevent the vehicle from crashing. Finally, a study is done where noise is
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added to the measurements, and the optimal planner and random planner results are
shown as an ablation study.

6.5.1. Kernel Generation

Kernels are generated for the MCO and WAUT maps for vehicles for low and high-speed
vehicles. The low-speed, slow, kernels are for vehicles travelling at a constant speed of 2
m/s. The high-speed, fast, kernels are for vehicles within the speed range of 2-8 m/s, with
modes distributed as shown in Figure 6.7.

The number of positions refers to the map’s total number of discretised x, y locations.
The number of track states is the number of states (position, orientation, mode) that lie
on the track and are considered for calculation. The iterations required are the number of
loops of the viability kernel algorithm (Equation 6.2) required for the kernel to converge.
The size of the kernel is the size of the NumPy array that is stored as a .npy file. The
percentage of the track that is safe is the percentage of states that are safe as a fraction of
the total number of track states.

Map No. of
Positions

No. Track
States

Iterations
Required

Kernel
Size (MB)

% Track
Safe

WAUT - slow 1,160,000 70,223,160 31 70.22 72.14

ESP - slow 3,465,600 93,195,460 32 93.2 52.75

MCO - slow 4,968,000 70,087,040 35 70.09 51.19

WAUT - fast 1,160,000 632,008,440 29 632.01 58.18

ESP - fast 3,465,600 838,759,140 29 838.76 39.03

MCO - fast 4,968,000 630,783,360 33 630.78 37.64

Table 6.2: Number of discrete positions, states on the track, iterations required for
generation, the kernel size and the % of the track that is safe for the WAUT, MCO, and
ESP maps.

Table 6.2 shows the metrics for the generation of the kernels for the WAUT, ESP and
MCO maps. The WAUT map has a much higher percentage of the square map size that
is part of the race track. Despite having less than a quarter of the number of positions
than the MCO map (1e6 vs 5e6), it has almost the same number of states on the track of
around 70e6. The high percentage of the safe kernel is because wider tracks have more
area relative to the boundaries and, therefore, more safe space.

The slow kernels take slightly more iterations to converge. For the ESP map, the slow
kernel requires 35 iterations, while the fast kernel requires 29. While the reason for this is
not certain, it is suggested that the fast kernels may require fewer iterations due to more
states being marked unsafe earlier in the process, due to the further distance moved by a
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vehicle travelling at a higher speed.
Using the implementation that only stores states for positions on the track, the kernel

size is kept to a reasonable size. The slow kernels are all smaller than 100 MB, with the
ESP kernel being the smallest at 70.09 MB. Of the fast kernels, the WAUT kernel is the
largest at 838.76 MB, with the other two being around 630 MB. These efficient kernels are
small enough to be loaded into the computer’s RAM and used for real-time look-up.

6.5.2. Planner Validation

The supervisor should display two kinds of behaviour, letting safe actions be executed
while ensuring that unsafe actions are identified and modified. The safety of the system is
evaluated using a worst-case scenario random planner and observing if the vehicle crashes.
The safety system’s ability to allow safe actions is evaluated by using a pure pursuit
planner following the racing line. The effect of the SSS is measured by comparing the lap
times with and without the supervisor.

Random Planner Safety

The kernels are now validated for safety by running 50 test laps using a random planner.
For the constant speed tests, the random planner samples a steering angle from the steering
range using a uniform distribution. For the high-speed tests, the random planner samples
a steering angle from the steering range and a speed from the speed range using a uniform
distribution.

Slow Fast

Metric
No. of

Interventions
per Lap

Intervention
Rate (%)

No. of
Interventions

per Lap

Intervention
Rate (%)

WAUT 78.5 ± 9.4 13.8 ± 1.4 227.5 ± 7.9 79.0 ± 2.7

MCO 186.2 ± 13.9 19.8 ± 1.4 414.7 ± 10.7 80.9 ± 1.6

ESP 221.2 ± 14.4 17.7 ± 1.1 518.1 ± 11.2 81.2 ± 1.7

Table 6.3: The number of interventions per lap and the intervention rate for a worst-
case-scenario, random planner being used with the safety system on the WAUT, MCO
and ESP maps. Slow kernels use a fixed speed of 2 m/s and fast kernels have a speed
range from 2 m/s to 8 m/s.

Table 6.3 records the average times and interventions per lap. The results show that
the vehicle’s number of interventions varies significantly between laps which is what is
expected for a random planner. The supervisor intervenes a lot more for the fast tests
than the slow tests. For the slow tests, the intervention rate is between 10-20%, but for
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the fast tests, it is between 75-85%. This significant increase is due to many of the actions
selected by the fast random planner breaching the friction limit and are thus marked as
unsafe. For all of the test laps, the vehicle does not crash once, demonstrating that the
SSS can guarantee the vehicle’s safety.

Figure 6.9 shows an example trajectory from the random planner. The green lines are
where the original action (selected by the random action generator) is implemented. The
red lines are where the original action was modified to prevent the vehicle from crashing.

Figure 6.9: Random planner safely driving around WAUT - slow (left) and MCO - fast
(right) racetrack. Green is where the random action was safe, and red is where the
supervisor intervened.

The trajectories shown in Figure 6.9 show that the supervisor regularly intervenes
(shown by the red marks) to prevent the agent from crashing. When driving slowly, the
supervisor intervenes less than might be expected due to implementing a pure pursuit
action when intervening and thus moving the vehicle towards a safe region. When driving
at higher speeds, the supervisor intervenes a lot more, as seen in the image on the right,
where most of the path is red, indicating intervention. This is to be expected because
actions are higher speeds can more easily exceed the friction limits and also lead to the
boundaries faster.

Optimal Behaviour Impact

The kernel’s ability to allow safe actions to be executed is now evaluated using a pure
pursuit planner. The planner is set to follow the racing line and tested with and without
the SSS. Note that the SSS internally uses the pure pursuit planner following the centre
line (see §6.2), which is in contrast to the pure pursuit planner following the racing line.
Additionally, the SSS uses a friction model to select a conservative speed while the pure
pursuit planner following the racing line uses the speed from the optimal trajectory. Table
6.4 shows the metrics of the number of interventions, lap time, average velocity, and
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distance travelled for the planner with different maximum speeds. The speed selection of
the pure pursuit planner is limited at the maximum speeds of 4, 6 and 8 m/s to show how
the effect of the safety system varies for different speeds.

Pure Pursuit Pure Pursuit with SSS

Max
Speed

Lap Time
(s)

Avg.
Velocity
(m/s)

No. Inter-
ventions

Lap Time
(s)

Avg.
Velocity
(m/s)

4 46.4 3.8 183.0 54.4 3.3

6 37.7 4.6 337.0 52.1 3.5

8 35.7 4.9 355.0 50.0 3.6

Table 6.4: The lap times and average velocities for vehicles using the pure pursuit planner
following the racing line with maximum speeds of 4, 6 and 8 m/s on the MCO map.

In Table 6.4, the clearest result is that the lap times for the pure pursuit planner using
the safety system are longer than those without the safety system. For the planner with
the full maximum speed of 8 m/s, the lap time without the supervisor is 35.7 seconds,
and with the supervisor, it is 50.0 seconds, 14.3 seconds slower. This is confirmed by
the average velocity of 3.6 m/s, 1.3 m/s slower than the original pure pursuit planner.
When using speed limits, the performance difference becomes smaller. The vehicle with
a 4 m/s speed limit is only 8.0 seconds slower with the safety system. This tendency is
explained by the decreasing number of interventions by the supervisor. The supervisor
intervened 355 times for the vehicle travelling at 8 m/s while only intervening 183 times
for the vehicle with a speed limit of 4.
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Figure 6.10: Trajectories with the velocity profiles of the pure pursuit planner driving on
the MCO map without (left) and with (right) the safety system.

Figure 6.10 shows the trajectories of the pure pursuit planner with and without the
SSS. The trajectory on the right is evidently slower, as shown by the lighter (more blue)
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colours. The SSS specifically slows the vehicle down around the corners, shown by the
darker blue on the right-hand-side trajectory.

This test shows that using the supervisor comes at the cost of performance, as the
lap times using the safety system are slower. While this is a limitation, it still enables
fast driving throughout the track. It is suggested that this problem could be improved by
using a variable lookahead timestep depending on the vehicle speed.

6.5.3. Ablation Study

In real life, noise is constantly present, arising from many factors, including errors in the
particle filter used for localisation, the friction coefficients being slightly different, any
aerodynamic forces, delay in the system or modelling errors. For the WAUT kernel, noise
is now added to the measurement to evaluate its sensitivity to noise in the observed vehicle
position, which is the largest contributor of uncertainty in the system. For the noise in
the position, after each update, noise sampled from a normal distribution is added to the
x, y variables that are given to the safety system. Random and pure pursuit planners are
used for the experiments, and the lap success rate is recorded out of 20 test laps.
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Figure 6.11: The success rate for the pure pursuit and random planners on the WAUT
map for position noise with increasing standard deviations of noise added to the location
used by the safety sysem.

The graph in Figure 6.11 shows that the safety system can prevent the vehicle from
crashing with noise sampled from a normal distribution with a standard deviation of up
to 0.4 m. As is expected, the random planner shows slightly worse performance than the
pure pursuit planner. This result demonstrates that the safety system is robust to noise in
the localisation with a standard deviation of up to 0.4 m.

6.5.4. Filtered Kernels

In reality, it is often impossible to accurately estimate the vehicle’s steering angle. This is
due to the servo not providing feedback, noisy IMU data and the particle filter data being
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too slow and inaccurate to estimate the steering angle accurately. Therefore, the kernels
are filtered to include only states that are safe for any initial steering angle. The results of
filtering the slow kernel are presented below. This method is physically validated by its
use in the online training of a DRL agent in §7.4.

Filtered Kernel Generation

At low speeds, the filtered kernels appear similar to the full kernels. Table 6.5 shows the
metrics of the number of states and the percentage of safe states in the kernel before and
after the filtering. The results show that the size of the kernel is decreased by a factor
of five, since the mode dimension of five is reduced to a single unit. The percentage of
the states that are safe drops from 72.14% to 57.08% for the WAUT map. This is to be
expected since for a state to be safe, it must now be safe for all steering angles.

Original Filtered

Map No. Track
States

% Track
Safe

No. Track
States

% Track
Safe

WAUT - slow 70,223,160 72.14 14,044,632 57.08

ESP - slow 93,195,460 52.75 18,639,092 30.31

Table 6.5: The number of states and percentage filled for the WAUT, and ESP kernels
at a constant speed of 2 m/s.

Figure 6.12 shows the WAUT with the original and filtered perspectives. The difference
graph shows that there is relatively little difference between the two. It is clear that the
filtered kernel is more restrictive. The right hand image shows the additional states that
were permitted in the original kernel but declared unsafe in the filtered kernel. However,
despite being more restrictive, the filtered kernel does provide a path around the entire
track.

Filtered Kernel Vehicle Performance

The random and pure pursuit planners are evaluated on the filtered kernels and compared
to the performance with the original kernels.

The results in Table 6.6 show the effect of the filtering on performance of the random
planner. The intervention rate for the MCO map increases from 23.0 to 54.1%. This
increase is seen across all the maps, indicating that fewer states are safe. It is concluded
that the filtered kernels can be used to guarantee a vehicle’s safety at low speed, even if
the steering angle is unattainable.
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Figure 6.12: The original (left) and filtered (right) kernels. The difference between the
kernels (right) is shown in blue.

Original Filtered

Metric No. of
Interventions

Intervention
Rate (%)

No. of
Interventions

Intervention
Rate (%)

WAUT - slow 72.7 13.4 189.2 41.7

MCO - slow 225.9 23.0 392.2 54.1

ESP - slow 270.3 20.7 486.6 50.8

Table 6.6: The number of interventions and intervention rate using the original and
filtered kernels on the WAUT, MCO and ESO maps.

6.5.5. Discussion

Other supervisory systems have used humans to take over if the operator deemed it
unsafe [49, 117], using Reachability Theory [87], or reversing if near a wall [60]. Using
a human to intervene is inherently a poor solution to algorithms aiming to promote
autonomy since they inherently require intervention. Calculating the time-to-collision
(TTC) and reversing if below a threshold enables autonomous safety yet has only been
implemented at low speeds. This method will not scale well to higher speeds since it takes
a significant amount of time for the vehicle to stop and reverse before it keeps driving.
Using Reachability Theory involves calculating the future states the vehicle will enter
due to its current pose and ensuring that these states are always inside the track region.
While reachability concerns important control aspects, such as recursive feasibility and
the vehicle’s speed, these methods do not scale well to higher speeds due to the heavy
real-time requirement of calculating many states into the future. Additionally, reachability
methods always have a finite lookahead, meaning they are not guaranteed to be recursively
feasible.

In contrast to previous methods that were limited by low speeds, or not requiring
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intervention, this chapter presented a supervisory safety system that can ensure the safety
of a planner at high speeds, while having minimal effect of the vehicle performance. To
the author’s best knowledge, this work is the first safety system capable of ensuring the
safety of high-speed agents.

The SSS uses a viability kernel of all the safe states that exist on the map that
can be computed before the race begins. This has the advantage over methods using
Reachability Theory, that no further computation is required during the race. The kernel
is accessed by conducting a single-step lookahead and then using the kernel as a look-up
table. Additionally, the system does not require the system to stop if it is in a dangerous
place, but rather includes a pure pursuit planner that steers the vehicle towards the centre
line.

The SSS presented in this chapter enables the use and evaluation of ML planners on
physical robots with the assurance of safety. It is expected that technologies like this will
accelerate the evaluation of planners onboard physical vehicles. The sim-to-real gap, which
previously was a hindrance to evaluating ML planners on physical vehicles, is no longer
a problem. Another exciting avenue that is explored in Chapter 7 is to build integrated
online learning formulations that use the SSS to train agents onboard physical vehicles.

Limitations

A limitation of this work is that only the single-track bicycle model was used to build the
kernel. In the future, this should be addressed by comparing different models, specifically
the full kinematic model with the Pajecka model to represent the forces.

A second limitation is the modelling of the error due to discretisation. Liniger et al. [2]
use the discriminating kernel to model the error due to discretisation. This approach
would lead to the system being able to identify the boundary of safety better.

A third limitation of this work is the requirement for localisation to ensure safety.
Future work could approach this by using the full 1080-beam LiDAR scan to analytically
calculate what actions the planner can select.

6.6. Summary
This chapter presented an SSS that can guarantee the safety of an unsafe planner. The
system uses a three-step process of (1) simulating the planner’s action, (2) checking to see
if the next state is in the viability kernel of safe states, and (3) if the next state is unsafe,
implementing a safe (pure pursuit) action. The viability kernel for autonomous racing was
presented, and the formulation for the safety system was explained. The implementation for
F1/10th racing was described in detail with notes about the mode selection, discretisation,
generation process and algorithmic implementation. The evaluation analysed the kernel
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generation process, validated the system’s safety, measured its sensitivity to noise and
tested a filtered kernel that doesn’t require the steering action. The results show that the
system can ensure the safety of a planner while allowing safe actions to be implemented. At
high speeds, the planner has a negative impact on the performance due to the conservative
safety guarantees used. The discussion concluded that this kernel is superior to previous
approaches due to its ability to ensure safety at high speed while not requiring human
intervention.
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Chapter 7

Online Learning using a Supervisor

The SSS that was developed in Chapter 6 is now used to train DRL agents online, while
never crashing. The learning formulation is modified to take the new supervisor into
account by redefining episodes and penalising the agent if the supervisor intervenes. The
new learning formulation allows for novel reward signals to be considered since the agent
is guaranteed to complete laps while never crashing. The evaluation considers constant
and variable speed racing, analyses the supervisor’s role in learning, investigates different
reward signals, and provides a quantitative and qualitative comparison with conventional
learning. The evaluation shows that online training can train agents to race with a 10×
improvement in sample efficiency and that the trained agents drive conservatively within
the performance limits. The SSS is validated on a physical vehicle, demonstrating that the
SSS can train an agent that takes random actions to drive around a race track without
ever crashing. The main advantage of the SSS is that it enables DRL agents to be trained
onboard, bypassing the sim-to-real gap.

7.1. Introduction
The sim-to-real problem, the difference in the performance of DNN controllers in simulation
and reality, is an open research challenge requiring further research [24]. For as long as DRL
agents are trained in simulation, the sim-to-real problem will always exist. Additionally,
due to the lack of interpretability of DNNs, it is impossible to know how controllers will
perform with small dynamics changes.

Online DRL has been presented as a solution to the safety problems in training a
policy in simulation and then transferring it to a physical robot [118]. Training an agent
online involves building a framework that allows the agent to explore the state-action
space while ensuring that the vehicle will never crash. Previous methods have studied how
their supervisors are used to train vehicles [86].

This chapter presents the online learning formulation using the supervisor described
in Chapter 6, explains how the architecture is set up in §7.2.1, and how the learning
is formulated in §7.2.2. A variable speed evaluation in simulation is presented in §7.3,
showing how online training with the supervisor compares to conventional training. Finally,

114
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the SSS is validated on a physical vehicle and shown to train an agent from random to
drive around a track in §7.4.

7.2. Online Reinforcement Learning
In response to the sim-to-real problem, it is proposed to train the DRL agent online on
the vehicle. This is done using the supervisory safety system to ensure that the vehicle
does not crash during training.

7.2.1. Online Training Architecture

The SSS that was developed in Chapter 6 is positioned after the agent to ensure that the
vehicle does not crash. The supervisor is specifically needed during the initial stages of
training when the agent is randomly initialised and thus selects random actions. Figure
7.1 shows a schematic of the architecture with the supervisor using the vehicle pose to
guarantee that the action that is implemented is safe.

SupervisorSupervision Penalty

Agent Action, 

Vehicle Pose, 

Agent State (LiDAR scan),  

Safe Action
Agent

Training Configuration

Reward Signal 
Calculation

Replay Buffer

Figure 7.1: The supervisor is placed after the agent, which ensures that only safe actions
are implemented and penalises the agent for unsafe actions.

In Figure 7.1, the supervisor provides a penalty that is added to the reward signal if
the supervisor intervenes. This encourages the agent to select safe actions without the
supervisor intervening. The agent state consists of the LiDAR scan, and the agent’s actions
are speed and steering. After each step, the agent state, action and summed reward are
stored in the replay buffer and used to train the agent.

7.2.2. Supervisory Learning Formulation

Reinforcement learning trains agents to perform a task by building up experience that is
used to improve their policy. Agents build up experience by receiving a state, selecting an
action and then being given a reward.
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In Chapters 4 and 5, conventional end-to-end DRL agents that receive a LiDAR scan
as a state and return an action consisting of a steering angle and velocity were considered.
Conventionally, episodes run from the vehicle starting at an initial position and driving
until it reaches a terminal state of crashing or completing a lap. At the start of training, the
agents crash quickly, and as the training progresses, they learn to select more appropriate
actions, resulting in them crashing less and completing more laps.

Using a supervisor results in the agent never crashing and always completing laps.
Therefore, the learning formulation can be modified to take this into account. This section
explains how the aspects of the learning are reformulated to enable online training.

Episode Configuration

In conventional RL, episodes are terminated when the agent achieves the goal, fails
catastrophically or reaches a maximum number of steps. Introducing a supervisor results
in the agent never failing catastrophically (crashing) and always completing the goal.
Additionally, the action selected by the agent is not implemented, so the next state does
not correspond to the result of the state-action pair. Therefore, the concept of an episode
needs to be modified.

Original 
Episode Format

Reformulated 
Episode Number

1

Ep. 1

Ep. 2

2 3 4 5 6 7 8

Ep. 3

Start

Vehicle Path

Crash

Supervisor
Intervention

Figure 7.2: The top line shows the conventional learning formulation crashing and
requiring a reset, compared to the bottom line of the reformulated learning with the
supervisor intervening.

We reformulate the definition of an episode to run from an initial state until the
supervisor intervenes, as shown in Figure 7.2. When intervention occurs, this is treated by
the agent as a terminal state in which a terminal penalty is given. The agent does not
use the transition between the two states, since it would not be correct. Instead, the next
state is treated as an initial state in a new episode.

A significant advantage of this method is that an agent can experience many episodes
(with terminal rewards) within a single lap of safe driving. This increases sample efficiency
since the agent can collect many terminal samples in relatively few steps.
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Supervisory Penalty

In previous end-to-end approaches in this dissertation, the reward signal has been in the
form of sparse terminal rewards and dense smaller rewards that encourage fast racing
behaviour. In changing the terminal conditions (definition of an episode), the rewards
that are given must also be updated. The reward signal must train the agent to take safe
actions without relying on the supervisor.

The main change is that the punishment for crashing is replaced with punishment if
the supervisor intervenes. The new base reward signal is now written as

r =


rcomplete = 1 if complete

rpenalty = −1 if intervention

rracing otherwise,

(7.1)

where rracing is a reward that encourages fast racing behaviour.

Shaped Reward Signal Candidates

Since the agent is guaranteed to complete laps, different reward signals that were previously
impractical may now be considered. The baseline reward signal has no racing reward to
evaluate how well the agent can learn to select safe actions, free from any performance
requirements. This baseline is labelled as the zero reward, since there is zero racing reward
after each step. The previously presented progress, cross-track and heading error rewards
from §4.3.2 are also considered.

For the variable speed racing, a new reward is introduced called the velocity reward.
The velocity reward simply uses the scaled velocity as the reward. Since the SSS prevents
the vehicle from going too fast, the vehicle should learn to travel at the highest safe speed.
The reward is calculated as

rvelocity = vagent

vmax
. (7.2)

Since the supervisor takes the vehicle’s velocity into account when determining the safe
speed, this reward automatically trains the vehicle to select paths where the vehicle can
drive the fastest.

7.3. Evaluation of Online Learning
The supervisory safety system is evaluated in simulation to demonstrate the ability to
train agents without crashing. The focus of the simulation evaluation is the measurement
of the performance since all of the vehicle state variables are available for measurement.
The evaluation consists of four sections wherein we test constant speed online learning in
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§7.3.1, variable speed online learning in §7.3.2, compare reward signals for variable speed
online learning in §7.3.3, and compare conventional and online learning in §7.3.4.

7.3.1. Constant Speed Evaluation

The online learning formulation is evaluated at constant speed to understand how the
learning formulation performs on different maps, with different random seeds and how the
reward signal affects the vehicle performance.

Since the agents complete all the laps, the average progress during training can no
longer be used as a performance metric. Therefore, the metrics of reward, interventions
by the supervisor and lap time are used to assess the training. The agents should aim to
maximise reward, minimise interventions and achieve the lowest lap times.

Training Investigation

The training is investigated to evaluate how the agent learns using the supervisor. The
training performance is evaluated by training five agents with different random seeds on
the AUT, ESP, MCO and GBR maps for 6,000 steps. The zero reward is used during
the investigation to highlight the effect of the supervision penalty, apart from the shaped
reward.
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Figure 7.3: The average reward per lap earned by the agents trained using the supervisor
for the AUT, MOC, GBR and ESP maps. The shaded regions are the minimum and
maximum for five repetitions.

Figure 7.3 shows the reward earned by agents trained onling on the AUT, ESP, MCO
and GBR maps. At the beginning of training, the agents all receive large negative rewards
between −300 and −140 depending on the length of the tracks. At the end of the training,
all the agents receive zero rewards per lap, indicating that the supervisor no longer has
to intervene and the agent does not receive any penalties. The agents on the AUT track,
the shortest track, receive a reward of around −150. The agents on the ESP track, the
longest track, receive an initial reward of around −300. The agents take a varying number
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of steps to train, with the AUT agents converging in less than 2,000 steps and the ESP
agents requiring up to 4,000.

The main observation from Figure 7.3 is that the agents train quickly in less than
4,000 steps. While the conventional agents require 30,000 steps to train, the online agents
require only 6,000 steps. The second takeaway is that the training is highly repeatable.
The shaded regions are small, indicating that this result is achieved if the tests are run
using any of five random seeds. The supervisors role is further analysed by plotting the
interventions by the supervisor on different laps of the training.

Lap 0 Lap 1 Lap 10

Figure 7.4: The online learning progression on the AUT map: at the beginning (left),
the agent intervenes regularly, and as training progresses (moving right), the supervisor
intervenes less and less. The red is where the supervisor intervenes, and the green is
where the agent’s action is implemented.

In Figure 7.4, the progression of the agent training can be seen. At the beginning (left),
the agent intervenes regularly, as shown by the many red dots. The specific places where
the agent intervenes are around the corners, especially the bottom right corner, which is
very sharp. As training progresses from lap 0 to lap 1, there are fewer red dots, indicating
that the supervisor intervenes less. By lap 10, near the end of the training, there are very
few interventions. The occasional dots of intervention in the 3rd image (right) are always
present due to the policy noise added during training.
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Figure 7.5: Graph of the interventions made by the supervisor per 100 training steps on
the AUT map.

Figure 7.5 shows a histogram of the interventions made by the supervisor as the training
progresses. In the first 1000 steps, the supervisor intervenes more than 20 times per 100
steps. Between 1000 and 3000 steps, the supervisor intervenes less and less. The times
when the supervisor intervenes are usually when going around a corner. The interventions
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during the first 1,500 training steps are further studied by considering the steering angles
where the supervisor intervenes and the deviation of the vehicle from the centre line.
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Figure 7.6: Top: A plot of the steering actions selected by the agent (blue) with crosses
(red) showing the actions where the supervisor intervenes during training on the AUT
map. Bottom: The deviation from the centre line (yellow) and moving average (green)
for the agent during training on the AUT map.

The top graph in Figure 7.6 shows the steering actions selected by the agent plotted
against those implemented by the safety system. At the beginning of training, there are a
lot of red x’s on the graph, indicating that the agent’s actions are extreme and seldom
implemented. As the training progresses, the actions become more moderate, and the
supervisor intervenes less.

The bottom graph in Figure 7.6 shows the deviation during the training of the agent
on the AUT map. In the beginning, the vehicle is far from the centre of the track, with an
average deviation of up to 0.55 m. As the training progresses, the average moves down to
around 0.15 m. This demonstrates that the agent learns to stay in the middle of the track,
even without any explicit reward.

Reward Signal Performance Study

Different reward signals are now considered for their effectiveness in autonomous racing.
Figure 7.7 shows a graph of the lap times of agents trained with progress, cross-track and
heading error, and PPPS rewards compared with no racing reward (zero).

Figure 7.7 shows all of the agents start with lap times of around 122 seconds, and
during the training, the lap times improve to around 116 seconds. There is little difference
between the reward signals, except for the PPPS and cross-track and heading error reward
signals performing around 1 second faster than the zero reward. Therefore, it is concluded
that this new learning formulation does not require a shaped reward signal to train the
agent to race at a constant speed.

The numerical results of distance travelled, deviation from the centre line, total
curvature and mean steering angle of the zero reward, progress and PPPS reward signals
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Figure 7.7: The lap times during training of constant speed agents trained with the zero,
the progress, the cross-track and heading error (Cth), and PPPS rewards. The lines are
the average of 3 repetitions.

are recorded.

Metric Zero Progress PPPS

Distance (m) 232.50 233.20 231.75
Deviation (m) 311.75 245.52 166.52
Curvature (m−1) 154.49 187.29 141.62
Mean Steering (rad) 0.049 0.062 0.040

Table 7.1: The performance metrics of distance travelled, deviation from the centre line,
total curvature and mean steering for the zero, progress and PPPS rewards on the ESP
map.

Table 7.1 shows the performance results for the agents trained online. The agents all
travel similar distances around the map of around 232 m. Using zero reward results in
the agent having a large total deviation from the centre line of 311.75 m. The progress
reward has a lower deviation of 245.52 m and the PPPS reward has the lowest deviation
of 166.52 m. Considering that the zero reward has such a large deviation, it is surprising
that the zero reward has a low curvature of 154 m compared to the progress reward of 187
m. The PPPS reward has the lowest curvature of 141 m, which is expected since it follows
the racing line. Using zero racing reward leads to a mean steering angle of 0.049 radians,
which is larger than the PPPS reward and smaller than the progress reward.

Figure 7.8 shows example paths of agents trained with different reward signals on the
ESP track. The path from zero reward is squiggly, sometimes tracking the centre line and
sometimes not. The progress reward demonstrates similar behaviour to the conventional
training, with the agent cutting the corners to take the shortest path. The PPPS reward
tracks the racing line, cutting the corners and hitting the corner apexes.

This result shows that the zero, progress, cross-track and heading and PPPS rewards
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Zero Progress PPPS

Figure 7.8: Segments of the path selected by the zero, progress and PPPS reward signals
on the ESP map.

are all effective for training agents to drive at a constant speed. This result demonstrates
that no shaped reward is required to train an agent to drive around the track. Using the
racing line in the reward signal leads to improved results for online learning, with the
vehicle selecting smoother paths.

7.3.2. Variable Speed Evaluation

The online learning formulation is now evaluated for the task of variable-speed autonomous
racing. The evaluation uses DRL agents that select speed and steering actions. The
evaluation starts by analysing the agent’s ability not to require the supervisor and then
considers the effect of maximum speed.

Training to Safety

The first investigation into online training is to evaluate the agent’s ability to no longer
require supervision. Agents are trained on the AUT, ESP and MCO maps for 5,000 steps,
each using the velocity reward signal with a maximum speed of 5 m/s. During all these
training runs, the vehicle never crashes once. Figure 7.9 shows the average interventions
by the supervisor per 100 training steps for agents trained on the AUT, ESP and MCO
maps.
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Figure 7.9: Average interventions per 100 steps during online training on the ESP, MCO
and AUT maps. Average from repeating the experiment five times.
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Figure 7.9 shows the training for a full 5,000 steps for the ESP, MCO and AUT maps.
The graph shows that in the beginning, there are many interventions, but these reduce to
fewer than 5, around 3,000 steps. For the remainder of the training, there are still several
regular interventions. This result shows that the agents learn to not require supervision
within 3,000 steps. Since most of the changes in the graphs appear in the first 3,000 steps,
a zoomed-in graph of the first 3,000 steps with each of the individual repetitions is shown
in Figure 7.10.
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Figure 7.10: The interventions from the safety system per 100 steps for the velocity
reward on the AUT, ESP and MCO maps.

Figure 7.10 shows that the agents on each map follow a similar pattern with spikes
in similar places. This indicates that the interventions in the initial stages of training
are dominated by the shape of the map since agents with different random seeds require
interventions in similar places. As the training progresses past 1,200 steps, the interventions
become fewer and more random, and the individual runs diverge. It is suggested that this
is due to the vehicle being able to drive around the track and the interventions being due
to the random policy noise added during training.
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Figure 7.11: The online learning progression of the high-speed agent on the AUT map:
at the beginning (left), the agent intervenes regularly, and as training progresses (moving
right), the supervisor intervenes less and less. The red dots show where the superivsor
intervenes.

The trajectories selected by the vehicles during training are now considered. The
0th, 1st and 12th trajectories during training on the AUT are shown in Figure 7.11 with
red dots to indicate where the supervisor intervened. The trajectories show how at the
beginning of training, the agent drives at slow speeds and the supervisor intervenes a lot.
As the training progresses, the supervisor intervenes less, and the agent learns to select a
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feasible speed profile, speeding up in the straights and slowing down for the corners. The
trajectories explain the shape in the graphs in Figure 7.9 since it is clear that from the
beginning of training, the supervisor mainly intervenes around the corners.

The training investigation concludes that the agents can be trained to race around a
map in 10,000 steps. At the beginning of training, there are many interventions, especially
around the corners, but as training progresses past the 1,500 steps, the intervention rate
decreases rapidly.

Maximum Vehicle Speed Training

The speeds considered in the evaluation thus far have been up to 5 m/s. Now agents with
maximum speeds of 5, 6, 7 and 8 m/s are considered. The analysis starts with the lap
times and rewards earned during training and then presents a numerical analysis of the
performance and success rates. Figure 7.12 shows the training graph of the agents with
maximum speeds ranging from 4-8 m/s trained using the velocity reward signal.
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Figure 7.12: Graph showing the rewards earned per lap and lap times from agents trained
with maximum speeds of 4, 5, 6, 7, and 8 m/s on the ESP map. Results are from an
average of five repetitions, trained for 10,000 steps.

The graph in Figure 7.12 shows a clear pattern that as the maximum speed increases,
the lap time decreases. The 4 m/s agent starts with lap times of around 120 seconds and
learns to race with lap times of under 90 seconds. The 8 m/s agent maintains near-constant
lap times of around 75 seconds throughout training. While the 8 m/s agent’s lap times
do not change during training, the reward graph shows that the agent earns significantly
more reward, indicating that as the training progresses, it learns to select actions that
maximise the reward. The 4 m/s agent earns the most reward because the reward is
scaled according to the maximum speed. For the 4 m/s agents, the maximum speed is 4,
so the agents will receive more reward for a speed than if the maximum is 8 m/s. This
result shows that by the time training is complete, the lap times range from 75 seconds
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to 95 seconds. It is surprising to see a small difference in lap time, considering the large
difference in maximum speed from 4 m/s to 8 m/s. The training is further investigated by
plotting the interventions per 100 training steps for the 4, 6 and 8 m/s agents.
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Figure 7.13: The interventions per 100 steps during training agents with maximum
speeds of 4, 6 and 8 m/s on the ESP map.

Figure 7.13 shows the graph for the number of interventions by the supervisor for
the 4, 6 and 8 m/s agents. At the beginning of training, all the agents require a lot of
interventions, roughly 0 per 100 steps, with all the agents having a spike of around 70
interventions in the first 1,500 steps. By 2,000 steps, all the agents have roughly converged,
requiring only a few interventions. The 4 m/s (red line) agent converges, requiring the least
interventions. The 8 m/s agent requires many more interventions, maintaining an average
of around 5 per 50 steps. The 6 m/s agent is in the middle, requiring fewer interventions
than the 8 m/s agent. This result indicates that the 8 m/s converges to requiring some
interventions during training, meaning that it does not learn to select only safe actions.

The training study concludes that agents with maximum speeds ranging from 4 m/s to
8 m/s can be trained to converge in 10,000 steps using the velocity reward signal. Agents
with higher maximum speeds achieve similar lap times from the beginning of training,
while agents with lower maximum speeds show a significant improvement in lap time
during training. While all the agents tested converge to requiring few interventions, agents
with higher maximum speeds require more interventions during training.

Maximum Vehicle Speed Performance

The performance of the trained agents is measured by running 20 test laps with the 4 m/s,
6 m/s and 8 m/s agents on the ESP track. Table 7.2 shows the performance metrics of
lap time, average speed, and distance travelled for the agents using maximum speeds of
4 m/s, 6 m/s and 8 m/s. The results show that the distance travelled by the agents is
similar, around 235 m, indicating that the distance travelled by the agents is not related
to the maximum speed.

In Table 7.2, the 8 m/s agent achieves a much faster lap time of 63.89 seconds compared
to the 4 m/s agents of 99.62 seconds. This is explained by the higher average velocity of
3.7 m/s compared to the 4 m/s agent’s average velocity of 2.38 m/s. The average velocity
is surprisingly low compared to the maximum speed, being less than half of the maximum
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Metric 4 m/s 6 m/s 8 m/s

Lap time (s) 99.62 71.92 63.89
Avg. Speed (m/s) 2.38 3.30 3.70
Distance (m) 235.48 236.88 235.70

Table 7.2: The performance metrics of lap time, average speed, distance and for agents
with maximum speeds of 4 m/s, 6 m/s, and 8 m/s tested on the ESP track.

for each agent. For example, the agent with a maximum speed of 6 m/s has an average
speed of 3.3 m/s, which is just 55% of the maximum. The trajectories selected by the
agents are further analysed by plotting trajectory segments and speed profiles from the
tests on the ESP map.
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Figure 7.14: Trajectories segments on the ESP map from agents trained with maximum
speeds of 4 m/s, 6 m/s and 8 m/s.

Figure 7.14 shows trajectory segments from agents trained with maximum speeds of 4
m/s, 6 m/s and 8 m/s on the ESP map. The paths taken in all the segments are similar,
confirming that the maximum speed does not influence the path selected by the agent.
The 4 m/s trajectory is mainly dark blue with lighter blue sections on the straights. The
6 m/s trajectory starts to have some yellow regions in the straights, indicating that it
selects higher speeds. The 8 m/s trajectory has many yellow regions, with dark blue only
on the hairpin corner. While these trajectories show that increasing the maximum speed
leads to the agent selecting higher speeds, the agents still select relatively low speeds, as
shown by the lack of red on the graph. The speed profiles of the three different agents are
plotted for the first half of the ESP track.

Figure 7.15 shows the speed profiles for the 4, 6 and 8 m/s agents on the ESP track.
The 4 m/s agent (red line) selects average speeds of 3 m/s, and the 6 m/s agent selects
slightly faster speeds, occasionally above 4 m/s. The 8 m/s agent selects speeds up to
around 5.5 m/s, but not above that. Surprisingly, the agents do not learn to select speeds
up to the limits of what they can.

This result shows that while the agents learn valid speed profiles of speeding up and
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Figure 7.15: Speed profiles for the 4, 6 and 8 m/s agents on the ESP track.

slowing down, they are conservative and select low speeds. This conservatism explains
why the average speeds in Table 7.2 are so low. The reason for this behaviour is unknown
and should be further investigated in future work. A possible explanation is that the
supervisor is inherently over-conservative to ensure safety and thus would penalise the
agent for exceeding a safe speed at any point on the track.
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Figure 7.16: The average progress made by each of five repetitions from training agents
with maximum speeds ranging from 4-8 m/s on the ESP map.

Figure 7.16 presents the average progresses of the five agents trained at each speed.
The coloured bar represents the mean of the five training runs, and the error bar represents
the minimum and maximum between the five runs. The results show that the 4 m/s, 5
m/s and 6 m/s agents all achieve high average progresses, with means above 95%. The 7
m/s agent has a mean of around 75%, and the 8 m/s agent has a mean of 50%. The 7 m/s
and 8 m/s agents have large error bars indicating that some of the training runs performed
poorly. Therefore, it is concluded that the training is repeatable up to a maximum speed
of 6 m/s. While higher maximum speeds lead to better lap times, the training becomes
less repeatable, with some random seeds producing poor performance with low completion.

It is concluded that agents can be trained online to learn a conservative speed profile of
speeding up and slowing down. The online agents complete most laps when the maximum
speed is 6 m/s. While online training can sometimes train agents up to a high speed, the
training becomes less stable, and sometimes the agents achieve low average progress. The
advantages of online training are that the agent never crashes during training and the
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training requires only 10,000 steps.

7.3.3. Reward Signal Comparison

The supervisor’s ability to train an agent to select actions to race the vehicle around the
track has been demonstrated using the velocity reward signal. The previous evaluations
used the velocity reward signal so that the effect of the supervisor could be studied. This
evaluation considers using different reward signals to encourage high-performance racing
behaviour. The zero, progress and cross-track and heading rewards are considered and
compared to the velocity reward and the PPPS reward from §5.2.2. For this study, the
maximum vehicle speed is set to 5 m/s.

Training Comparison

The training performance generated by each reward signal is investigated by training five
agents using each reward for 10,000 steps, recording the lap times, the reward earned per
lap and interventions during training. The ESP map is used for the training investigation.
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Figure 7.17: The lap times and reward earned per lap during training of the zero,
progress, cross-track and heading error (Cth), PPPS, and velocity rewards on the ESP
map. The average of 5 repeats.

Figure 7.17 presents the lap times during training using the zero, progress, cross-track
and heading error, PPPS, and velocity rewards on the ESP map. The results in the
figure are averaged over five runs, but the minimums and maximums are not shown. The
graph shows a significant difference between the reward signals. The zero progress rewards
produce the worst results in terms of lap times, with the lap times getting worse as training
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progresses. This is due to the lack of direct motivation for the vehicles to select high-speed
actions.

All the lap times start at around 105 seconds and diverge from around 1,000 train-
ing steps. The cross-track and heading error, velocity and PPPS rewards improve the
vehicle’s lap times. The velocity and cross-track and heading reward demonstrate similar
performance with the lap times moving to around 80 seconds within 4,000 steps. The
improvement in these rewards is due to them both explicitly rewarding velocity. The
PPPS reward outperforms the conventional reward signals by reaching lap times of less
than 70 seconds. This indicates that the advantage of using the racing line in the reward
also improves the performance of online learning.

While the lap time graphs vary greatly between rewards, the reward graph shows a
similar pattern for all the rewards. All the rewards start at a value and, within 4,000 steps,
rise about 200 and then settle there for the rest of the training. Online learning using the
SSS enables the agents to complete laps from the beginning of training, meaning that the
lap times can be measured and evaluated. The lap times of the velocity and PPPS rewards
are further investigated by plotting all the individual runs from the five repetitions.
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Figure 7.18: The lap times for the pure pursuit policy search (PPPS), and velocity
reward signals with each repetition of five experiments plotted with the average. The
graphs use the same y-axis for comparison.

Figure 7.18 shows the lap times during training for agents trained with the PPPS
and velocity rewards. While there is a significant variation between different random
seeds using the PPPS reward, by around 5,000 steps, all the repetitions have converged
to within 75 seconds per lap. The velocity reward repetitions are more closely grouped
together, with them all following the same pattern of moving from 105 seconds at the
start to around the average of 80 seconds.

The performance of the rewards is further investigated by considering the supervisor’s
interventions during training. The focus of the rest of the evaluation is on the velocity,
cross-track and heading and PPPS rewards since the improve they demonstrate improved
lap times during training.

Figure 7.19 shows the interventions during the first 2,000 training steps for the cross-
track and heading error, PPPS and velocity reward functions. The graphs show that for
the first 500 steps, the pattern of interventions looks similar for all the graphs. As the
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Figure 7.19: The interventions per 100 training steps during the first 2,000 steps of
training for the cross-track and heading error (Cth), PPPS and velocity rewards.

training progresses, the patterns diverge according to the reward signal. By 2,000 training
steps, the number of interventions has significantly decreased to around 10 per 100 training
steps.

The training comparison concludes that the velocity, cross-track and heading and PPPS
rewards all effective for the online training of DRL agents. The velocity and cross-track
and heading reward show similar behaviour in terms of training speed and lap times. The
PPPS reward using the racing line, produces the lowest lap times during training. Within
2,000 steps, the agents learn not to require interventions from the supervisor.

Performance Comparison

The performances of the different reward signals are compared with each other. The
ESP track is used for comparison, and the metrics of lap time, average speed, distance
travelled, and curvature are recorded. The zero agent is excluded due to generating poor
performance.

Metric Progress Cth PPPS Velocity

Lap time (s) 137.37 80.26 58.88 74.31
Avg. Speed (m/s) 1.75 2.90 3.98 3.18
Distance (m) 239.17 232.43 233.18 235.48
Curvature (m−1) 295.66 137.32 85.52 129.18

Table 7.3: The metrics of lap time, average speed, distance and curvature for the progress,
cross-track and heading error (Cth), PPPS and velocity reward signals on the ESP track.

The results in Table 7.3 show a similar pattern of lap times to the training graph in
Figure 7.17. Reading the table left to right, using the same ordering as the training graphs,
the lap times steadily decrease. The progress reward achieves the slowest average lap time
of 137.37 seconds, with the lowest average speed of 1.75 m/s. The cross-track and heading
error agent achieves a lap time of 80.26 seconds. The velocity reward achieves a faster lap
time of 74.31 seconds, and the PPPS agent achieves the fastest lap time of 58.88 seconds.

The PPPS agent has the lowest curvature of 85.52 m−1. The curvatures increase in the
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same order as the lap times of PPPS, velocity, cross-track and heading error and progress,
with the highest curvature of 239.17 m−1. In contrast to end-to-end learning, where the
progress reward results in a shorter distance travelled, the progress reward now results in
the longest distance travelled of 239.17 m. The cross-track and heading and PPPS agents
take similar distances of around 233 m, and the velocity agent takes a slightly longer path
of 235.48 m.

The average progress of the training is investigated by plotting the mean the average
progress out of the five runs with the minimum and maximum.
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Figure 7.20: Comparison of the average progress achieved by the zero, progress, cross-
track and heading error (Cth), PPPS and velocity rewards on the ESP map.

Figure 7.20 shows the average progress made by agents trained with the zero, progress,
cross-track and heading error, PPPS and velocity rewards on the ESP map. The mean
of the average progresses increases from left to right. The zero reward performs poorly
with a mean of around 75%, and the progress and cross-track and heading reward have
similar performance of around 90%. The PPPS and velocity reward perform excellently,
with average progress of almost 100% in all the repetitions.

The performance study showed that the PPPS reward outperforms the conventional
rewards in online learning. This is expected since it uses the racing line to train the agent.
Of the conventional reward signals, the velocity reward performs the best with the lowest
lap times and highest average progress. The velocity reward is simple, using only the
vehicle’s speed, but produces good behaviour. The cross-track and heading reward is
slightly slower, and some repetitions do not complete all the laps. The progress and zero
rewards produce poor results with slow lap times and thus are not suitable for training
variable speed agents. These results show similar patterns to conventional learning, with
the cross-track and heading reward outperforming the progress reward and the racing line
reward outperforming the conventional rewards.

Speed Profile Analysis

The final reward signal analysis compares the speed profiles selected by different reward
signals. The speeds selected by the cross-track and heading, velocity and PPPS reward
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are compared on the ESP track by considering a trajectory segment and the speed profile
graph.
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Figure 7.21: Trajectories selected by agents trained with the PPPS, cross-track and
heading error (Cth), and velocity reward signals.

Figure 7.21 shows a trajectory segment from the cross-track and heading error, velocity
and PPPS agents on the ESP track. The cross-track and heading agent selects an
appropriate speed profile of speeding up and slowing down around the corners. The
velocity agent slows down more around the corners, as shown by the dark blue, but also
appears to speed up more in the straighter sections. The PPPS agent reaches the highest
speeds (as shown by the green and yellow) in the straights while slowing down for the
corners. The speed profile graphs of the PPPS and velocity agents are compared to the
pure pursuit planner.
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Figure 7.22: Speed profiles comparing velocity and PPPS rewards with the pure pursuit
(PP) planner speed profile for a section of the ESP track.

Figure 7.22 compares the speed profiles of the velocity and PPPS agents with the pure
pursuit planner. The pure pursuit planner selects a smooth speed profile, often at the
vehicle’s maximum speed used in the experiments of 5 m/s. The PPPS agent tracks the
shape of the pure pursuit speed profile while being around 0.5 m/s slower. The velocity
agent is even slower than the PPPS agent, often selecting speeds 1-2 m/s slower than the
pure pursuit planner. This result shows that agents trained using online learning with the

Stellenbosch University https://scholar.sun.ac.za



7.3. Evaluation of Online Learning 133

supervisor select more conservative speed profiles that are lower than the pure pursuit
planner.

It is surprising that where the conventional agents always selected speeds that were
too high and towards the maximum of the speed range, online learning selects speeds that
are lower than the allowed speed range. The conclusion is that the speed profile selection
in autonomous racing is by no means a solved problem, and further work is required to
understand how to select a more moderate speed profile.

The study on reward signals concludes that the PPPS reward achieves the best racing
performance in terms of the lowest lap times, highest average performance, and best speed
profile selection. The second best reward is the velocity reward, due to fast lap times and
high average progress, followed by the cross-track and heading reward. While the zero
and progress rewards occasionally work to train agents, they are not recommended for
online training.

7.3.4. End-to-end vs Online Learning

The method of online learning presented here is evaluated against conventional learning, as
presented in Chapter 4. The evaluation starts with a constant speed evaluation, followed
by a variable speed evaluation and qualitative comparison of the methods.

Constant Speed Performance

The constant speed evaluation compares conventional end-to-end learning with an agent
trained online using the safety system. The pure pursuit planner is given for comparison
and treated as the optimal racing planner. The conventional agent is trained with the
cross-track and heading error reward signal, and the online agent is trained with zero
racing reward.

Metric E2e Online PP

Total Distance (m) 236.87 233.86 231.14
Total Curvature (m−1) 326.64 193.05 147.65
Mean Steering (rad) 0.13 0.06 0.04
Success Rate (%) 100.00 100.00 100.00

Table 7.4: Performance metrics of distance travelled, curvature, centre line and race line
deviation for the conventional end-to-end (E2e), and online agents compared against the
pure pursuit (PP) planner following the racing line on the ESP map.

Table 7.4 shows the performance metrics of distance travelled, curvature, centre line
and race line deviation for the conventional end-to-end agent (E2e) and online agents
compared to the pure pursuit (PP) planner following the racing line on the ESP map. The
online agent achieves a shorter average distance of 233.86 m compared to the conventional
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agent’s distance of 236.87 m. The total curvature of the path selected by the online agent
of 193.05 m−1 is significantly smaller than the conventional agent’s total curvature of
326.64 m−1. The mean steering angle of the online planner (0.06 rad) is less than half of
the conventional agent (0.13 rad), suggesting that the online planner selects much more
moderate steering actions. All of the planners complete all of the test laps, resulting in
a 100% success rate. While the online agent improves on the conventional agent with
a shorter distance travelled, less curvature and a smaller mean steering angle, the pure
pursuit planner still outperforms the online trained agent with a total distance of 231.14
m, a curvature of 147.65 m−1 and mean steering of 0.04 radians.

While the online planner significantly improves over the conventional planner, it does
not perform as well as the pure pursuit planner in any of the metrics considered. The
pure pursuit planner has a shorter distance of 231.14 m, smaller curvature of 147.65 m,
and a lower mean steering angle of 0.04 rad. The paths selected by the three planners are
compared for a portion of the ESP track in Figure 7.23.

E2e Online PP
Figure 7.23: Trajectories by the conventional end-to-end (E2e) agent, online agent and
pure pursuit (PP) planner on a section of the ESP map.

The paths selected by the conventional end-to-end agent (E2e), online agent and pure
pursuit (PP) planner on a section of the ESP map are compared in Figure 7.23. The
slaloming problem present in conventional learning is no longer present using the online
learning formulation. While online learning does not exactly match the pure pursuit
planner, it learns a good racing policy of driving smoothly around the corners, roughly
tracking the centre line. The behaviour is now analysed by considering the steering actions
selected by the planners.

The steering actions selected by the conventional, online and pure pursuit planners on
a portion of the ESP track are plotted in Figure 7.24. The graph shows the fluctuating,
extreme steering angles selected by the convention planner. The online agent significantly
improves over the conventional planner selecting more moderate steering actions. The
online planner still has occasional spikes in the steering angle, compared to the smooth
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Figure 7.24: Steering actions selected by the conventional (E2e), online and pure pursuit
(PP) planners on a portion of the ESP track.

pure pursuit planner.
The constant speed evaluation concludes that online learning using zero reward signal

results in smoother, shorter paths than end-to-end learning. A specific performance
improvement is that the steering actions that are selected are smoother and do not
fluctuate between the extremes.

Variable Speed Performance

The variable speed of the online training is compared between the conventional, online
and pure pursuit planners. For all the evaluations in this section, the maximum speed is
limited to 5 m/s.

Metric E2e Online PP

Lap time (s) 48.43 74.31 52.30
Avg. Speed (m/s) 4.96 3.18 4.40
Distance (m) 239.62 235.48 229.53
Avg. Progress (%) 91 100 100
Completion Rate (%) 75 100 100

Table 7.5: Performance metrics of lap-time, average speed, the success rate for the
conventional (E2e), online and pure pursuit (PP) planners on the ESP map with a
maximum speed of 5 m/s.

Table 7.5 presents the metrics of lap time, average speed, distance travelled, average
progress and completion rate for the conventional planners on the ESP map. The online
agent has the longest lap time of 74.31 seconds, compared to the conventional planner’s
time of 48.43 seconds and the pure pursuit planner’s 52.3 seconds. This difference is
explained by the significantly lower average speed of 3.18 m/s compared to the conventional
agent’s speed of 4.96 m/s. The conventional agent does not complete all the test laps,
achieving only a 91% average progress and 75% completion rate. This shortcoming is not
experienced by the online planner that completes all the test laps. The online planner takes
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a slightly shorter path around the track. The trajectories selected by the conventional and
online agents are further analysed by comparing them to the pure pursuit planner.
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Figure 7.25: Trajectories by the conventional (E2e), online and pure pursuit (PP)
planners on a section of the ESP map.

Figure 7.25 shows the trajectories for the conventional, online and pure pursuit planners
on a section of the ESP track. The conventional planner selects only the maximum speed
for the whole way around the track. The pure pursuit planner selects an optimal speed
profile and path. The online planner selects an appropriate speed profile that speeds up
on the straights and slows down around corners. The online planner selects much lower
speeds than the pure pursuit planner for the entire trajectory, explaining why the lap
times in Table 7.5 are longer.
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Figure 7.26: Speed profile comparison for the conventional (E2e), pure pursuit (PP) and
online planners on a portion of the ESP track.

Figure 7.26 provides further analysis on the speed profiles selected by the different
planners. The conventional planner (E2e) selects the maximum speed of 5 m/s for the
entire trajectory. The pure pursuit planner (PP) is capped at 5 m/s and selects the
maximum speed for a significant part of the lap. The online agent (shown in purple)
selects speeds significantly lower than the pure pursuit planner. The lower speeds selected
by the online planner make the planner more conservative and safer while achieving slower
lap times.
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Figure 7.27: Slip angle comparison for the conventional (E2e), pure pursuit (PP) and
online planners on a portion of the ESP track.

The slip angles for the conventional, pure pursuit and online planners on a portion of
the ESP track are plotted in Figure 7.27. The conventional planner (E2e) has a high slip
angle with many spikes above the 0.1-radian line. The online planner has a low slip angle,
mainly staying within 0.05 radians and only breaching the 0.1-radian line twice. The pure
pursuit planner has a smooth slip profile with no spikes above the 0.1-radian line. This
result indicates that the conservative speed selection shown by the online agent results in
the vehicle maintaining a small slip angle comparable to the pure pursuit planner.

The variable speed comparison concludes that agents trained online learn to select a
speed profile that speeds up in the straights and slows down in the corners. The online
agent selects a conservative speed profile resulting in significantly lower lap times than
the pure pursuit and conventional planners. The conservative behaviour leads to agents
trained online completing all the test laps and racing with a low-slip angle. While in
racing, slow speed selection leads to undesirable longer lap times, a significant advantage
of over-cautious systems is that they are further from the safety boundaries and thus
remain safe.

Qualitative

Conventional and online learning are compared by analysing the quality of training steps
required, the average number of crashes during training, and the feasibility of online
training.

Table 7.6 shows the differences between end-to-end and online learning across the
factors of the number of training steps required, the average crashes during training and
the feasibility to train on physical vehicles. The comparison shows a training step reduction
of 5× for constant speed and 10× for variable speed. This significant reduction in sample
efficiency enables this method to be trained on a physical vehicle in a feasible amount
of time. A limitation of online learning is that it requires localisation during training.
However, this limitation is not significant since localisation can be provided by a particle
filter for a track where the map is available.
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Constant Speed Variable Speed

Metric E2e Online E2e Online

Training steps required 30,000 6,000 100,000 10,000
Avg. crashes during training 48 0 350 0
Avg. Success Rate 100% 100% 75% 100%

Table 7.6: Qualitative comparison of the training steps required, average crashes during
training and average success rate for conventional (E2e) and online learning.

The major advantage of online learning is safety during training. While conventional
training requires crashing to learn safe behaviour, online learning can learn not to crash
without ever crashing. For training on a physical vehicle to be possible, crash-free behaviour
must be guaranteed. The safety of the online trained agent is a further improvement on
conventional learning. The agent trained online achieves a success rate of 100% compared
to the conventional agent, that even after being trained for 100,000 steps still crashes 25%
of the time.

7.4. Physical Vehicle Validation
The method of online learning using the supervisory safety system is validated by training
an agent to drive onboard a physical vehicle. The focus of the evaluation using the physical
vehicle is to compare the simulated performance against that in reality and to demonstrate
the advantages of onboard training.

7.4.1. Evaluation Methodology

Online Agent Configuration

The safety system is used to train an agent, with no a priori knowledge or training, onboard
a vehicle to drive around a track autonomously. The vehicles drive at a constant speed of
2 m/s in environment 1 and 1.5 m/s in environment 2. The filtered kernels, described in
§6.5, are used since the steering angle is not available on the practical vehicle. The online
agent is trained with zero reward signal to demonstrate that online training removes the
need for reward shaping.

In the simulation, the training can occur in real time, with episode roll-outs happening
faster than in real time. However, during training onboard the physical vehicle, there is
significantly less computational power due to the smaller computer, and online localisation
already uses several resources. The solution was that the vehicle would drive and collect
20 samples (takes 2 seconds) and then stop and train on the data for 20 batches of 40
random samples from memory. The vehicle would then continue driving and collecting
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more samples before stopping to train. The online agent is trained for two laps (around 800
steps), stopping to train the networks at intervals of 20 steps. Since the vehicle travels at
a constant speed, the stopping to train does not affect the action taken. If this experiment
were expanded to variable speed racing, the stopping may affect the training and should
be studied.

After the online agents are trained, the supervisor is removed and the tests are carried
out using only the agent to select actions.

Baseline Agent Configuration

The results are compared to a baseline agent that is trained offline, in simulation and then
transferred to the vehicle. The baseline agent is trained in simulation using the progress
reward signal for 30,000 steps.
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Figure 7.28: Rewards per episode (blue dots) earned by the baseline agent during offline
training, with moving average (red line).

Figure 7.28 shows the rewards achieved per episode by the baseline planner, which is
trained offline in the simulator, using the progress reward signal. The graph shows that
at the beginning of training, the agent receives many negative rewards; as the training
progresses, the average reward the agent achieves increases. By the end of the training,
the agent can consistently complete laps without crashing.

7.4.2. Onboard Training

The supervisor’s ability to train an agent is evaluated by validating that it keeps the
vehicle safe, even when random actions are selected, and by measuring the effect of the
supervisor on the training.

Supervisory Safety

The safety of the supervisor is shown by initialising a random agent and training it from
scratch (random initialisation) on the physical vehicle. Figure 7.29 shows the first training
lap of a random agent loaded on the vehicle, run in conjunction with the supervisor.
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The lap starts at a red dot before the line break, and the vehicle then drives toward the
left. The green points show where the agent stopped to train on the data that had been
collected. The trajectory shows the squiggles that the agent takes as it veers to one side
and then to the other.

Figure 7.29: A random agent loaded on the vehicle run with the supervisory system.
The green dots indicate the locations where the vehicle stops to train the agent.

This trajectory demonstrates that the safety system can keep a randomly initialised
vehicle from crashing into the track boundaries.

Learning Analysis

The speed with which the agent learns online, using the supervisor, is measured. Since
the episodes have been reformulated (see §7.2.2), they always end with a terminal reward
of −1 when the supervisor intervenes. Therefore, the sum of the reward achieved every 20
steps (the interval of data collection between the agent stopping to train) is used as the
metric to measure the online training performance. Using this metric, the worst reward
is −20 if the supervisor intervenes at every step, and the maximum reward is 0 if the
supervisor never intervenes.
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Figure 7.30: Training rewards per 20 steps for safety agent trained on the physical vehicle
(blue dots) with moving average (red).
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Figure 7.30 shows a graph of the sum of rewards achieved every 20 steps by the agent
trained onboard the physical vehicle. The graph shows that in the beginning, the agent
receives low rewards; as time progresses, the agent receives higher rewards. After around
only 400 steps, the agent displays a significant improvement. The improvement after 400
steps corresponds to the graph of safe steering actions in Figure 7.31, showing that the
agent requires less intervention between 300-400 training steps.

This result shows that our method of training a DRL agent onboard a vehicle signifi-
cantly improved sample efficiency over the baseline method by requiring only 800 training
steps, whereas the baseline method required 30,000 to converge.
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Figure 7.31: Comparison of steering actions implemented on the vehicle (blue) with
unsafe actions selected by the agent (red) during training in environment 1.

A graph comparing the steering angles implemented on the vehicle (blue) with unsafe
actions selected by the agent (red) during training is shown in Figure 7.31. At the beginning
of the training, the agent rarely selects safe actions. As the training progresses, the agent
selects more safe actions, and towards the end, the agent rarely selects an unsafe action.

This result shows the essential job of the supervisor to prevent the agent from taking
unsafe actions during the initial stages of training, and how, as the agent is trained, it
learns to select safe actions without requiring the supervisor. An additional benefit to this
training regime is that the agent learns to select moderate actions and does not swerve
excessively.

7.4.3. Performance Evaluation

Qualitative Analysis

Trajectories of the trained agents are provided for comparison. Figure 7.32 shows two
real-world trajectories of one agent trained in simulation and then transferred to the
vehicle and one agent trained online on the vehicle with the SSS.

Figure 7.32 shows that the agent trained in simulation has a extremely wavy path. It
regularly comes close to the track boundaries and almost crashes several times. The agent
trained on the vehicle using the SSS has a much smoother trajectory. The vehicle drives
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Figure 7.32: A comparison of real-world trajectories driven by the baseline agent trained
in simulation (red) and the online trained agent with the SSS (blue) in environment 1.

in a straight line through the environment, smoothly turning the corners and not coming
too close to the walls.

Quantitative Analysis

The metrics of distance, lap time, mean steering and total curvature are used to evaluate
the agents’ performance.

Simulation Reality

Baseline Online Baseline Online

Distance (m) 65.0 59.8 65.68 61.6

Lap-time (s) 32.8 31.1 35.5 32.5

Mean Steering (rad) 0.30 0.03 0.22 0.06

Curvature (m−1) 274.6 34.2 207.5 86.3

Table 7.7: Quantitative comparison of online and offline trained agents in environment 1.

Table 7.7 presents the quantitative results of the offline (baseline), and online (SSS)
trained agents in environment 1, with the metrics of distance travelled, lap time, absolute
mean steering and curvature. The SSS generally leads to a lower mean steering angle and
lower total curvature of the trajectories, resulting in lower distance travelled and lower
corresponding lap times than the baseline agents. For example, on the physical vehicle
driving in environment 1 (shown in Figure 7.32), the baseline agent travelled 65.0 m, while
the SSS agent travelled only 59.8 m, which is 5.2 m shorter. The average steering angle
for the SSS agent was 0.03 radians, compared to the mean steering angle for the baseline
of 0.3 radians. The baseline total curvature was significantly more (207.5) than the SSS
agent’s (86.3).

The online trained agent outperforms conventional training with smoother steering
actions in both simulation and real-world tests. Although the SSS also performs worse
in reality compared to simulation, training the agent on the real car shows a definite
improvement in the performance of the physical vehicle compared to the baseline.
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Robustness

A crucial aspect of agents is their ability to learn general policies that can be transferred
to other environments. Both the agents trained in simulation and on the physical vehicle
are tested on the track they were trained on (environment 1) and a different test track
(environment 2, shown in Figure 7.33). The first observation is that both the baseline
and SSS agents can complete laps on a different track from the one they were trained on,
highlighting the advantage of the flexibility and adequate generalization of agents.

Figure 7.33: A comparison of real-world trajectories driven by the baseline agent trained
in simulation (red) and the online trained agent with the SSS (blue) on environment 2.

Figure 7.33 shows that the trajectories followed in environment 2 display a similar
pattern to that of environment 1. The SSS agent takes a smoother path and swerves less
than the baseline.

Simulation Reality

Baseline Online Baseline Online

Distance (m) 17.0 15.6 18.8 17.3

Lap-time (s) 12.9 11.1 12.8 10.1

Mean Steering (rad) 0.36 0.11 0.31 0.09

Curvature (m−1) 119.1 44.9 86.6 49.3

Table 7.8: Quantitative comparison of online and offline trained agents tested in environ-
ment 2.

Table 7.8 reinforces the result that the online trained agent selects a smoother path
than the baseline agent. The results show that the SSS achieves a shorter lap time (1.5 s
different), with a lower mean steering angle (0.09 versus 0.31) and less total curvature
(49.3 versus 86.6) than the baseline planner. Therefore, it is concluded that the SSS agent
learns more general behaviour, as demonstrated by improving performance on a different
track.
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7.4.4. Discussion of Real-world Online Learning

The results of the high-speed online learning evaluation showed that using the supervisor
enables agents to be trained without ever crashing. Additionally, the performance of the
trained agents is higher than those trained by crashing, providing a 10× improvement in
sample efficiency.

As shown in the literature review, there has been a major lack of approaches to using
physical robots, mainly due to the lack of safety. The main contribution of this work is to
enable the application of methods on physical robotic systems. This ability was studied in
demonstration and then validated on a physical racing vehicle. The results showed that
training onboard the physical vehicle produced faster lap times and transferred better to
unseen tracks.

Previous work in autonomous racing has shown extreme action selection to be a
problem that has been overcome by reward hacking [60], and action regularisation through
loss function amendments [22]. The proposed method offers the surprising advantage
of producing policies that create smooth trajectories. It is suggested this is because
extreme steering actions are more likely to be unsafe and thus removed by the supervisor.
Additionally, using a supervisor leads to the agent being penalised sooner than it would
have, thus improving the action trace.

7.5. Summary
This chapter used the safety system developed in Chapter 6 to train agents online without
them ever crashing. §7.2 presented the architecture and learning formulation that incor-
porates the supervisor to train an agent safely. An in-depth evaluation of this method
in simulation was presented in §7.3 and validated on a physical vehicle in §7.4. In the
simulation investigation, the vehicle demonstrated the ability to train constant and variable
speed agents to race without ever crashing, with a 5× improvement in sample efficiency.
The constant speed evaluation did not require any reward shaping to train the agent, and
the variable speed evaluation uses a simple reward proportional to the vehicle’s speed.
A current limitation in variable speed racing is that online learning trains the agent
to be overly conservative, selecting speeds below the optimal speed. The comparison
with conventional learning showed the main advantages of online learning to be sample
efficiency, guaranteed safety during training, and safe racing behaviour after training, all
characteristics that conventional learning did not display. The method was validated on a
physical F1/10th vehicle, where it demonstrated improved performance over conventional
learning in the metrics of distance travelled, mean steering angle and total curvature.
Further, the online agent transferred better to a different race track not seen during
training. The major advantage of training agents onboard physical vehicles is that the
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sim-to-real gap is bypassed since the training and testing happen on the same vehicle with
the same dynamics.
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Chapter 8

Avoiding Un-mapped Obstacles

This chapter expands on the problem of autonomous racing by adding the challenge of
avoiding un-mapped obstacles. Obstacle avoidance is considered an intermediate problem
on the path toward developing solutions for competitive head-to-head racing. While
classical solutions are good at calculating and tracking high-performance trajectories,
methods that rely on maps fail when obstacles are added to the track. End-to-end
DRL methods are effective for flexible robot navigation in low-performance contexts but
struggle to compete with classical methods. Therefore, hybrid planning architectures
that combine path following and DRL components are considered for the task of local
planning and obstacle avoidance. The three architectures, called the end-to-end, serial
and modification planners, are presented. An evaluation of the three planners concludes
that the modification planner can track a reference trajectory the most accurately and
with the least curvature while achieving comparable performance with the end-to-end and
serial planners on the metrics of completion rate and average performance.

8.1. Introduction
Classical solutions to autonomous racing, namely using a trajectory generator and path
following algorithm, have been highly successful at racing around known tracks. However,
these solutions rely on computing an optimal trajectory offline before the race begins, and
thus they are inflexible to changes on the map - such as the addition of unmapped obstacles.
Figure 8.1 shows the average progress of a pure pursuit path follower plotted against the
number of randomly located obstacles on the Columbia and AUT tracks. Figure 8.1 shows
that as the number of obstacles increases, the pure pursuit planner makes less and less
progress. With zero obstacles, the planner achieve 100% completion and when 8 obstacles
are added the planner achieves less than 40% completion on both maps.

The problem of autonomous racing with obstacle avoidance is addressed with the aim
of designing a planner that can track a reference path while avoiding unmapped obstacles.
Obstacle avoidance is a difficult problem because it must be handled in real-time and the
only information about the obstacle’s location is the LiDAR scan. Additionally, the state
space is significantly larger. In racing on a fixed map, there are a fixed number of different
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Figure 8.1: The percentage average progress from 100 test laps using the pure pursuit
planner, following the centre line on the Columbia and AUT tracks. The vertical error
bar shows the 1st and 3rd quartiles.

positions that the vehicle can be in. However, when obstacles are randomly added to the
track, the possible situations and required actions grow significantly.

Three approaches are presented in this work, the end-to-end, serial and modification
architectures. The end-to-end architecture is the simplest initial design that replaces the
planner with a DRL agent. The end-to-end is treated as the baseline DRL method that
simply replaces the planning pipeline with a DRL agent. The serial architecture includes
the action selected by the pure pursuit planner in the agent’s state vector to encourage
the agent to follow the optimal path if no obstacles are present. The final design is the
modification architecture that uses the DRL agent to learn only the subsystem of obstacle
avoidance by adding the pure pursuit action and the DRL action together.

8.2. Candidate Architectures
A planning architecture is a method for connecting different planning components to
enable the system to perform a task. This section focuses on how to connect the classical
components of a path follower with the DRL components of a DRL agent for the task of
obstacle avoidance. The aim of designing these architectures is to enable a vehicle to track
a reference path while avoiding unmapped obstacles. The advantage of doing this is to
retain the benefit brought by optimal trajectories, generated with classical systems.

8.2.1. End-to-end Learning

The first proposed DRL solution is to evaluate how well an agent trained end-to-end,
similar to Chapter 4, can avoid obstacles. The end-to-end agent receives the state vector of
beams sliced from the LiDAR scan. The agent calculates a steering action for the vehicle
to follow. Figure 8.2 presents the architecture with the state vectors as input and the
“calculate speed” function being used to calculate the vehicle’s velocity.
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Calculate Speed
  

+

Figure 8.2: The end-to-end (E2e) architecture uses two stacked LiDAR scans as input
to the neural network to generate a steering angle and the calculate speed function to
calculate a velocity reference.

State Vector

The state vector is what provides the agent with the relevant information for selecting an
action. For the task of obstacle avoidance with small obstacles, the density of the LiDAR
scan is increased to 60 beams. This was after preliminary tests showed that fewer beams
led the agents to miss obstacles. To communicate the speed and direction of the vehicle’s
velocity, two consecutive state vectors are stacked together and used as input into the
agent.

Calculate Speed

For consistency between methods, the speed is calculated using the formula for the
maximum speed to keep the vehicle inside the friction circle as

v = fs

√
bg

tan(|δref|)/L
. (8.1)

In the equation, fs is a safety factor, b and g are the coefficients of friction and acceleration
due to gravity, respectively, and L is the vehicle’s wheelbase. This is the same formula as
was used by the link architecture in Chapter 5.

The safety factor and the maximum speed to allow were tuned by using the pure pursuit
controller. The pure pursuit planner was set to follow the raceline and the parameters
that allowed the vehicle to not crash with the fastest lap time were fs = 0.8 and to limit
the speed at vmax = 7 m/s. The vehicle parameters used are b = 0.523 and L = 0.33 m.

Reward Signal

The reward signal that is used to train the agents is designed to encourage the agents to
follow the centre line. This incorporates the findings from Chapter 5, that rewarding the
agent’s actions produces good performance. The reward is a positive constant βc with a
negative gradient slope that is proportional to the difference between the pure pursuit
action and the agent’s action. The pure pursuit planner is set to follow the centre line.
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The positive reward is used because otherwise, the sum of the rewards for more track
progress is a larger negative value which results in the agent crashing too soon. It is
important that the reward is a measure of the agent’s progress through the track.

The reward is written as

r = βc −
|δpp − δnn|
δmax

× βweight, (8.2)

with the hyperparameter βweight representing the effect of the steering difference. In the
experiments presented here, a βc of 0.2 and βweight of 0.5 are used.

8.2.2. Serial Planner

One of the aims of the planning architecture is to track the reference path. The serial
planner aims to help the DRL agent to do this by including the action that the PP agent
would have taken in the state vector. The aim of doing this is that the agent can track
the pure pursuit trajectory when no obstacles are present. Figure 8.3 shows the serial
architecture with the DRL agent located after the pure pursuit path follower. The serial
architecture uses the DRL agent’s action directly as the steering command and calculates
the speed using the calculate speed function.

Pure Pursuit
Path Follower DRL  

Agent

Global plan

LiDAR Scan

Vehicle Pose Reference  
Steering Angle

Figure 8.3: The serial architecture using the steering angle from the path follower is as
input to the learning agent.

8.2.3. Modification Planner

The modification planner is a hybrid local planner that features a pure pursuit path
follower in parallel with a DRL agent. Figure 8.4 shows how the path DRL agent is located
in parallel with the path follower such that the agent can modify the path follower. The
motivation for the design is for the path follower to track the reference path when there
are no upcoming obstacles and for the agent to add the ability to avoid obstacles as they
arise.

We train the agent to modify the pure pursuit steering reference δpp to prevent collisions.
The state that the network receives consists of a vector containing the steering angle
calculated by the path follower δpp and the current range finder scan. The network outputs
an action quantity used to modify the steering reference calculated by the path follower.
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Figure 8.4: The modification planner uses a path follower to track the reference path
combined with a DRL agent in parallel that modifies the path follower references.

The path follower (pp) and neural network (nn) steering commands are combined using
simple addition as, δref = δpp + δnn. The reference steering value is limited to being within
the steering range before calculating the speed.

8.3. Evaluation Methodology

8.3.1. Experiment Description

The focus of the evaluation is to assess the suitability of the architectures to track a
reference trajectory while avoiding obstacles. Therefore, a single evaluation is performed
with agents that select a steering angle and all use the same method of calculating a speed
based on the friction circle. The Columbia map is used since there is enough space to place
obstacles while ensuring that a path exists and the wide track is useful for demonstrating
the performance.

The experiments consist of training agents in the three architectures (end-to-end, serial
and modification) 10 times using different seeds each time. For each training repetition,
the agent is tested by running 100 test laps. The averages from the 100 test laps are
recorded and then used to represent the training repetition. The repeatability study, in
§8.4.3, analyses how the data is spread between training with different seeds and testing
with different seeds. Of the 10 experiments, the worst one is removed from each data set
because the end-to-end and serial planners had a single run that did not converge.

8.3.2. Obstacle Generation

In this section, an important consideration is the location of the obstacles on the map.
Square obstacles with a distance of 0.3 m are randomly spawned on the track. The method
of random spawning is to use the centre line points and randomly select one of the points.
Then a radius of 1 m is used around each point for where the obstacle can be placed. All
the random numbers are generated using the NumPy random number generated, and the
experiments are seeded so that they can be reproduced.
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Figure 8.5: Road segment with centre line points in orange and green circles to show
where an obstacle may be placed.

Figure 8.5 shows how a random centre line point is used as an anchor with all the
possible obstacle placement locations around the centre line considered. The point selected
on the map is used for the centre of the box around which the obstacle is created.
Additionally, the first and last 10% of the track are obstacle-free zones. This was done to
ensure that the vehicle always has a fair chance to avoid obstacles and that the obstacles
do not interfere with the start and finish lines. In all the experiments, both training and
testing, 8 obstacles are placed on the track.

8.3.3. Random Number Seeding

In the experiments concerning obstacles, the random number seeding is critical. All
the experiments are seeded for repeatability. Three sources of random numbers are
used and individually seeded. The simulator uses a random number generator for the
obstacle placement, which is the most critical generator. The simulator uses a separate
random number generator for the noise that is added to the range finders. The LiDAR
noise generator is seeded to the same value every time, as per in the original simulator
implementation.

The learning algorithms use the random number generator in the PyTorch library to
initialise the weights in the neural network. The NumPy built-in random number generator
is used to select the samples used to train the networks.

For each training episode, all three of the architectures use the same seeds so that the
comparison is against how they perform when training with the same obstacles and the
same noise on the LiDAR scans. Arbitrary seeds are calculated using the formula, seed
= 10000 + 10× n, where n is the repetition number of the experiment.

8.4. Results
This section uses simpler maps to analyse the architecture’s behaviour without being
concerned about the map. Agents are trained for 50,000 steps.
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8.4.1. Training

The agents are trained with randomly spawning obstacles in each episode. Figure 8.6
shows the training graphs for the end-to-end, serial and modification planners on the
Columbia map.
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Figure 8.6: Progress during training of the end-to-end (E2e), serial and modification
(Mod) planners on the Columbia map.

In Figure 8.6, the progress during the training of the end-to-end, serial and modification
planners on the Columbia map is shown. All the planners train to a similar level of success
between 80-85%. This means that the planners can all avoid a significantly large number
of obstacles, and thus the learning formulation is suitable. However, it also shows that the
problem of obstacle avoidance is significantly more difficult than racing on a fixed track.

The graph shows that the modification planner (green line) starts at around 20% when
the learning commences. This represents the intended behaviour of not having to start
with no knowledge of how to drive but rather improving on what is already possible. This
advantage is due to the structure of the modification planner

8.4.2. Performance

Table 8.1 presents the mean numerical results from the planners performance. Since
the results vary over training runs, the experiments are all averaged ten times, and the
mean and standard deviation are presented. As previously mentioned, the worst result is
removed for each agent due to the end-to-end and serial agents not converging for one of
the experiments.

The results in Table 8.1 show that the distance travelled by agents trained with the
different architectures varies within 0.2 m. The modification planner has the shortest
distance of 77.77 m and the serial planner the longest distance of 77.94 m. The end-to-
end planner has a significantly larger standard deviation of the distance travelled than
the serial and modification planners, suggesting that the path taken is less consistent
between different obstacle locations. While all the planners travel a similar distance, the
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Metric E2e Serial Mod

Time s 23.62 ± 1.19 24.28 ± 1.17 22.48 ± 1.20
Total Distance m 77.87 ± 1.35 77.94 ± 0.75 77.77 ± 0.81
Total Curvature m−1 67.54 ± 6.62 76.27 ± 9.27 59.13 ± 8.75
Total Deviation m 64.25 ± 6.88 64.06 ± 7.80 56.28 ± 8.26
Avg. Progress % 88.45 ± 5.38 87.27 ± 5.29 87.99 ± 3.54
Completion Rate % 78.89 ± 8.23 76.44 ± 9.15 76.33 ± 6.39

Table 8.1: Mean and standard deviation of the distance, curvature, deviation, average
progress and completion rate for tests on Columbia map for the end-to-end (E2e), serial
and modification (Mod) architectures for tests with eight obstacles.

modification planner has the fastest time of 22.48 s. This is 1.24 and 1.8 s faster than the
end-to-end and serial planners.

The end-to-end planner has a total curvature of 67.54. The serial planner has worse
curvature of 76.27, with a larger standard deviation of 9.27. The modification planner has
the lowest curvature of 59.13, suggesting that the modification planner takes the smoothest
path. The end-to-end and serial planners achieve similar scores of total deviation around
64 m. The modification planner outperforms the other planners by 8 m with a total of
56.28.

All the planners have similar average progresses (88.45, 87.27, 87.99) and completion
rates (78.89, 76.44, 76.33). On both of these metrics, the modification planner has smaller
standard deviations, suggesting that the results are more repeatable. The serial planner
has the largest standard deviation for both rates, indicating that the behaviour of the
serial planner is more dependent on the random number seeding.

To study the behaviour of each planner in avoiding obstacles, trajectories from each
planner avoiding an obstacle are shown in Figures 8.7.

E2e Serial Mod

Figure 8.7: The end-to-end (E2e), serial and modification (Mod) planners avoiding
obstacles.

Figure 8.7 shows a trajectory from each of the planners where they all successfully
avoid the same obstacles. The end-to-end planner (left) and serial planner (middle) take
the most wavy path, sometimes turning for no apparent reason. It is also clear that the
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planners sometimes change the direction of planned avoidance late before missing the
obstacle. The modification planner has a smooth path when driving in the sections with no
obstacles. Specifically, the modification planner avoids obstacles smoothly before returning
to the original path.

E2e Serial Mod

Figure 8.8: The end-to-end (E2e), serial and modification (Mod) planners on a segment
with only a single obstacle to show their ability to track the centre line.

Figure 8.8 shows a different test lap where only a single obstacle is placed in that track
region. The images show the ability of the end-to-end architecture to follow the centre line
(dashed orange line). The end-to-end planner roughly tracks the centre line but is often
just inside or outside it. The serial planner takes a smoother path, tracking the centerline
more closely. The modification planner tracks the centerline the best, swerving slightly to
avoid the obstacle.

The trajectory results in Figure 8.7 and Figure 8.8 confirm what was seen in the
quantitative results in Table 8.1. The curvature and deviation from the end-to-end planner
are clearly higher than the serial and modification planner. Additionally, the modification
planner tracks the centre line closely.

Modification Planner

An in-depth study of the performance of the modification planner is performed to better
understand how the modification planner components interact with each other. The
actions generated by the agent and the pure pursuit controller work together to formulate
obstacle avoidance.

Figure 8.9 shows the output from the modification planner during a test lap. The top
graph compares the steering angles from the pure pursuit planner and the neural network.
The graph shows that for much of the trajectory, the agent has a small output around
zero, indicating that the planner follows the steering angle selected by the pure pursuit
planner. At sporadic intervals, the neural network intervenes greatly and dominates the
action. The bottom graph shows the steering angle that is implemented on the vehicle
(the sum of the two lines in the top graph). The green segments show where the neural
network dominates the steering angle by highlighting it in green.

Further investigation into where the neural network changes the pure pursuit action
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Figure 8.9: The pure pursuit and agent steering angles (top) and the steering angle
implemented (bottom) for the modification planner during a test lap of avoiding eight
obstacles. The green segments represent the agent dominating the steering angle (δnn >
0.15), and the blue segments are where the pure pursuit planner is dominant.

is done by plotting an example trajectory taken by the modification planner in Figure
8.10. The green and blue segments correspond to the graphs in Figure 8.9. The trajectory
shows that around obstacles, the planner deviates from following the centre line and avoids
the obstacles. For much of the trajectory where no obstacles are present, the planner
follows the centre line. This shows that the modification planner performs as designed, in
following a reference path while avoiding obstacles.

8.4.3. Repeatability

For every lap, random obstacle locations are generated. Therefore, the effect of the random
numbers that are used in the obstacle placement are important. The effects are studied
individually in the categories of training and testing.

Training

The training repeatability is measured by training ten agents using the same parameters.
Box plots for the metrics of distance travelled, deviation from centre line, average progress
and completion rate are shown in Figure 8.11.

In Figure 8.11, box plots are used to show how the data for each metric is distributed.
The top left plot shows the distance travelled by each of the agents. The serial planner has
a close grouping of distances across different training seeds, followed by the modification
planner. The end-to-end planner has a larger difference between the shortest and longest
average lap distance.

The total curvature and total deviation measurements show that the modification
planner outperforms the serial and end-to-end planners. Interestingly, the end-to-end
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Mod

Figure 8.10: Trajectory taken by the modification planner corresponding to the graphs
in Figure 8.9. The orange dashed line is the centre line, the red blocks are the obstacles,
the green segments are where the neural network steering angle δnn is greater than 0.15,
and the blue lines are the rest.
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Figure 8.11: Box and whisker plots of the distance travelled, total curvature, total
deviation and completion rate with the mean (red dot) for the end-to-end (E2e), serial
and modification (Mod) planners.

planner has a small distribution of results for the total curvature. The serial planner has
a long upper tail for the total curvature, which means that while for some test runs the
planner performed poorly, this is not the general behaviour.

The planners all achieve similar mean completion rates. The mean of the serial planner
is lowered, by an outlier (just below 60%). The modification planner has a smaller spread
than the end-to-end planner on both the upper and lower ends showing that the behaviour
is more constant between runs.

Testing

The repeatability of the testing is now evaluated to understand the effect of the random
seed. An agent is trained with each of the architectures presented, and then 100 test laps
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are run. The distributions of lap time are plotted for each of the architectures. Histograms
of 100 test laps for each of the three architectures are shown in Figure 8.12.
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Figure 8.12: Histogram for the lap times achieved by the end-to-end (E2e), serial and
modification (Mod) planners on the Columbia map with eight obstacles.

Figure 8.12 shows that the modification planner has the most consistent test result,
with over 100 results falling into the central bin. The modification planner achieves
repeatable lap times, as shown by the large central columns (note the y-scale). The serial
and end-to-end planners have a larger distribution and shorter central column, indicating
that the time to complete a lap is more dependent on the location of the obstacles.

8.4.4. Discussion

The results show that the modification planner can learn a policy that produces faster
performance than the end-to-end planner. Specifically, the modification planner avoids
obstacles more smoothly, which results in the vehicle being able to travel at higher speeds.
This shows that the modification planner achieves the behaviour that it was designed for,
allowing non-holonomic vehicles to avoid obstacles smoothly at high speeds. The success
rate which the planners achieve shows that all the planners perform similarly, achieving
around a 76% completion rate.

This problem of guaranteeing vehicle safety is a current research topic and could be
solved in future work by exploring different training methods such as imitation learning.
Another possible solution is to combine the RL agent with a safety system to stop the
vehicle before it crashes.

The advantage of end-to-end solutions is that the agent has a lot of freedom and thus
can achieve a high completion rate. This is further improved because the end-to-end agent
does not require localisation, which the serial and modification planners do. That is not a
big restriction since localisation is possible; however, it remains a requirement.
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8.5. Summary
This chapter looked at the problem of obstacle avoidance. DRL methods for autonomous
racing were extended to avoid unmapped obstacles placed on the race track. Three different
architectures, called the end-to-end, serial and modification planners, were presented. The
end-to-end planner used two stacked state vectors of 60 beams as the input to a neural
network that generated a steering command, and a calculate speed method to calculate
a speed based on the friction circle model. The serial planner included the pure pursuit
steering angle in the state vector. The modification architecture uses the DRL agent to
modify the pure pursuit action. The evaluation found that the modification architecture
selects the fastest, smoothest paths that deviate the least from the centre line. All three of
the planners achieved a similar success rate of around 76%, indicating that further work
should address the problem of safety in learned obstacle avoidance. Future work should
look at methods of guaranteeing safety in obstacle avoidance that ensure that all the laps
are completed.
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Chapter 9

Conclusion

9.1. Dissertation Summary

This dissertation worked to accelerate the use of DRL methods for F1/10th autonomous
racing by studying current methods with their limitations and presenting novel approaches
to improve agent speed selection, bypass the sim-to-real gap and avoid obstacles.

Literature Study: Chapter 2 explored current techniques for classical racing in §2.2,
DRL advances in racing games in §2.3 and DRL methods for real-world racing in §2.4.
While classical methods have demonstrated excellent high-speed racing performance,
learning-based approaches have been severely limited to low speeds. The study on racing
games showed that while games have shown the potential performance advantages of DRL
for racing, current methods are infeasible due to the lack of safety considerations and the
requirement of real-time, accurate, explicit state representation. Limitations in current
real-world racing methods were identified as the inadequate evaluation of current learning
methods, the poor safety of solutions exacerbated by sim-to-real transfer, and the lack of
consideration of the obstacle avoidance problem.

Evaluation of DRL for F1/10th Racing: Chapter 4 provided an extensive evaluation
of current methods of DRL for F1/10th autonomous racing. The baseline F1/10th racing
formulation presented in §4.3 was evaluated at constant speed in §4.4 where the cross-track
and heading reward showed good performance of converging consistently and driving
safely, tracking the centre line. The variable speed evaluation in §4.5 demonstrated poor
results at high speeds of over 5 m/s, resulting in low completion rates and high slip paths.
The key cause of the flawed high-speed performance was identified as poor speed selection,
with the agent attempting to select the maximum speed for the entire lap.

High-speed Learning Formulations using Vehicle Models: Chapter 5 addressed the
problem of poor speed selection in DRL agents for autonomous racing by using analytical
vehicle models to aid the learning. Racing reward signals presented in §5.2 used the
optimal trajectory to guide the learning, and the link architecture presented in §5.3 used
the agent to select a steering angle and a friction model to calculate a speed reference.
The evaluation demonstrated that racing rewards and the link architecture enabled DRL

159
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agents to learn an appropriate speed profile of speeding up and slowing down, resulting in
trajectories with smaller slip angles. In the comparative evaluation in §5.4, both methods
achieved higher success rates than conventional formulations and outperformed similar
studies in the literature in terms of lap times [22, 60]. Critically the learning formulations
presented enabled agents to use the vehicle’s full speed range of up to 8 m/s.

Supervisory Safety System: Chapter 6 addressed the problem of ML safety on
physical vehicles by developing a vehicle-model-based supervisor that ensures that only
safe actions are implemented on vehicles. The system described in §6.2 uses Viability
Theory to generate a list of safe states that are used to keep the vehicle from crashing.
The evaluation in §6.5 showed that the system could keep a worst-case-scenario (random)
planner from crashing using the vehicle’s full speed range while only marginally impacting
the performance of a classical planner.

Online Learning using a Supervisor: Chapter 7 uses the SSS that was developed
in Chapter 6 to train agents online without them ever crashing during the training
process. The modifications to the learning formulation were explained in §7.2, evaluated
in simulation in §7.3 and validated at constant speed on a physical vehicle in §7.4.
The results from the variable-speed evaluation showed that the system could train
an agent to select speed and steering actions, without ever crashing, in just 10,000
steps, demonstrating a 10× improvement in sample efficiency. The comparison of
reward signals showed that the PPPS reward achieves the fastest lap times, followed
by the velocity reward. The investigation into the maximum speed showed that
the agents trained with the velocity reward achieve faster lap times with increased
maximum speeds, however, the average progress decreases significantly for maximum
speeds higher than 6 m/s. The agents trained online are more conservative than
conventionally trained agents, selecting lower, more moderate speeds and thus achieving
slower lap times. The physical validation demonstrated that the method could train an
agent to drive around a track on a physical vehicle, thus bypassing the sim-to-real problem.

Avoiding Un-mapped Obstacles: Chapter 8 approached the problem of racing while
avoiding unmapped obstacles. In §8.2 three planners were presented; the end-to-end
planner in §8.2.1, the serial planner in §8.2.2 and the modification planner in §8.2.3. The
evaluation in §8.4 showed that all the planners avoided over 75% of the obstacles. The
modification architecture was shown to select the fastest, smoothest paths that deviate
the least from the centre line. This result demonstrates that hybrid architectures are able
to add flexibility to classical approaches, and performance to learning approaches.
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9.2. Significance of Contribution
While autonomous robotics problems have classically been solved using optimisation and
control systems approaches, there has been a rise in using learning components in the
planning pipeline. DRL agents have major advantages for racing systems; specifically,
they do not require a track map or real-time localisation, are flexible to different tracks,
and show promise for head-to-head racing. Using raw LiDAR scans and not requiring
explicit state representation is a general advantage in robotics since state estimation is
computationally expensive.

High-speed Learning Formulations

The first contribution of this work is to develop learning formulations that enable agents
to use LiDAR scans as the only input to select appropriate speed and steering actions
for high-performance racing. This accomplishment enables DRL agents to compete with
classical solutions in terms of feasibility and performance, which is essential for learning
to be a competitive strategy for high-performance tasks. The aim of racing as a testbed
for robotics is the development of high-performance algorithms that operate autonomous
systems at the limits of handling. For as long as learning agents cannot use the vehicle’s
full speed range, the aim of racing is defeated, and further work is required. Therefore, this
work has enabled DRL agents to be a competitor for high-performance F1/10th racing.

A key in the problem identification and design of the solutions was incorporating
knowledge from classical methods. Evaluation metrics found in the trajectory optimisation
literature of plotting the speed profiles, curvature, and slip angle, indicated where the
problems with the current learning formulation were. Racing lines, built using vehicle
models, demonstrated their use in aiding the learning, indicating that, where possible,
optimal trajectories should be used to improve agent performance. The key solution
methodology combines the knowledge available through analytical models with black-box
learning components to create flexible, high-performance systems.

Safe Online Training

The second contribution of this work is developing a safe learning framework for autonomous
racing that can train agents to race without them ever crashing. Safety is a persistent
problem in ML approaches to robotics, exacerbated by the sim-to-real gap. In response,
supervisory systems enable the advancement of ML on real-world robotic systems due to
removing the concern of failure (crashing). The supervisory safety system presented in
this work achieves what previous control methods could not by ensuring the safety of a
non-linear vehicle on a racing track at high speeds. The SSS is superior to naive approaches
of reversing [60] since it can continue driving, is superior to human intervention [119]
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since it operates autonomously, and is superior to reachability methods [87] since it can
guarantee recursive feasibility and does not require online computation.

The safety system was applied to the problem of training a DRL agent online, with the
vehicle never crashing. This is a significant advancement in DRL for real-world robotics
since training on a physical vehicle allows for the sim-to-real gap to be bypassed. The
agent can be trained and tested on the same platform, meaning the safety can be evaluated
before removing the supervisor. An additional benefit to this method is a significant
increase in sample efficiency.

Obstacle Avoidance

The third contribution of this work is the development and evaluation of hybrid architec-
tures for obstacle avoidance. Being the first study on static obstacle avoidance in F1/10th

racing, this work expands the problem from previous formulations. Obstacle avoidance is a
key sub-problem on the road to developing solutions for head-to-head racing. The methods
presented here lay a basis for approaching the problem of high-performance flexible systems
and should be expanded to consider dynamic obstacles and opposing vehicles.

The key question asked in this work is how to combine classical and learning components
to enable high-performance systems that are flexible to unmodelled disturbances. The
world has many uncertainties that are not mapped, and DRL offers the unique advantage
of being highly flexible to new situations. This work demonstrated how hybrid systems
could harness the advantages of classical control and machine learning by developing and
evaluating different architectures.

9.3. Future Work
Based on the findings of this dissertation, the following recommendations for future work
are proposed:

Online Verification: A critical limitation of the supervisory system in this work is that
localisation is required to ensure safety. Future work should address this by using the
dense LiDAR scan to verify the safety of actions. This work would enable verifiably safe
systems that are not dependent on a map of the environment, and thus could be used
during training and once retained once training is complete.

Physical Experimentation: A detailed study of how the methods presented transfer
from simulation to reality should be performed. The literature study noted the lack
of physical experiments, which was supposed to be due to safety concerns. Now that
a method for overcoming the safety concern has been developed, algorithms can be
evaluated on physical platforms without the risk of crashing. Firstly, the safe online
learning formulations from Chapter 7 should be validated on a physical vehicle, and then
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the high-speed formulations from Chapter 5 should be evaluated.

Head-to-head Racing: The work in obstacle avoidance should be expanded to
high-speed head-to-head racing. This will involve developing custom learning formulations,
incorporating strategy and safety. DRL is an ideal method for head-to-head racing since it
can learn large general state spaces, doesn’t require localisation and can react quickly
to raw inputs. A promising direction is to develop a head-to-head racing safety super-
visor that could be used to train DRL agents to race online while racing against opponents.

Expansion of Domains: The design methodology of combining classical and learning
components for high-performance, flexible systems should be expanded to other domains.
Supervisory learning architectures for other safety-critical domains, such as drones, could
enable the use of learning agents to perform tasks that are currently not feasible. Using
analytical system models could improve the use of DRL agents in the control of any
process, from navigation to autonomous control systems.
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M. Spranger, and H. Kitano, “Outracing champion Gran Turismo drivers with deep
reinforcement learning,” Nature 2022 602:7896, vol. 602, no. 7896, pp. 223–228, 2
2022. [Online]. Available: https://www.nature.com/articles/s41586-021-04357-7

[21] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine, “How to train
your robot with deep reinforcement learning: lessons we have learned,” International
Journal of Robotics Research, vol. 40, no. 4-5, pp. 698–721, 2021.

[22] A. Brunnbauer, L. Berducci, A. Brandstatter, M. Lechner, R. Hasani, D. Rus, and
R. Grosu, “Latent Imagination Facilitates Zero-Shot Transfer in Autonomous Racing,”
2022 International Conference on Robotics and Automation (ICRA), pp. 7513–7520,
5 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9811650/

[23] X. Sun, M. Zhou, Z. Zhuang, S. Yang, J. Betz, and R. Mangharam, “A benchmark
comparison of imitation learning-based control policies for autonomous racing,” arXiv
preprint arXiv:2209.15073, 2022.

[24] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-Real Transfer in Deep Re-
inforcement Learning for Robotics: A Survey,” 2020 IEEE Symposium Series on
Computational Intelligence, SSCI 2020, pp. 737–744, 2020.

[25] B. Evans, H. A. Engelbrecht, and H. W. Jordaan, “Reward signal design for au-
tonomous racing,” in 2021 20th International Conference on Advanced Robotics
(ICAR). IEEE, 2021, pp. 455–460.

[26] ——, “Learning the subsystem of local planning for autonomous racing,” in 2021
20th International Conference on Advanced Robotics (ICAR). IEEE, 2021, pp.
601–606.

[27] S. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. Eng,
D. Rus, and M. Ang, “Perception, Planning, Control, and Coordination for
Autonomous Vehicles,” Machines, vol. 5, no. 1, p. 6, 2 2017. [Online]. Available:
http://www.mdpi.com/2075-1702/5/1/6

[28] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based autonomous racing
of 1: 43 scale rc cars,” Optimal Control Applications and Methods, vol. 36, no. 5, pp.
628–647, 2015.

Stellenbosch University https://scholar.sun.ac.za

https://www.nature.com/articles/s41586-021-04357-7
https://ieeexplore.ieee.org/document/9811650/
http://www.mdpi.com/2075-1702/5/1/6


Bibliography 167

[29] A. Wischnewski, M. Geisslinger, J. Betz, T. Betz, F. Fent, A. Heilmeier, L. Her-
mansdorfer, T. Herrmann, S. Huch, P. Karle et al., “Indy autonomous challenge-
autonomous race cars at the handling limits,” in 12th International Munich Chassis
Symposium 2021. Springer, 2022, pp. 163–182.

[30] J. Kabzan, M. I. Valls, V. J. Reijgwart, H. F. Hendrikx, C. Ehmke, M. Prajapat,
A. Bühler, N. Gosala, M. Gupta, R. Sivanesan, A. Dhall, E. Chisari, N. Karn-
chanachari, S. Brits, M. Dangel, I. Sa, R. Dubé, A. Gawel, M. Pfeiffer, A. Liniger,
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[38] A. Tătulea-Codrean, T. Mariani, and S. Engell, “Design and simulation of a machine-
learning and model predictive control approach to autonomous race driving for the
f1/10 platform,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6031–6036, 2020.

Stellenbosch University https://scholar.sun.ac.za

https://onlinelibrary.wiley.com/doi/full/10.1002/oca.2123 https://onlinelibrary.wiley.com/doi/abs/10.1002/oca.2123 https://onlinelibrary.wiley.com/doi/10.1002/oca.2123
https://onlinelibrary.wiley.com/doi/full/10.1002/oca.2123 https://onlinelibrary.wiley.com/doi/abs/10.1002/oca.2123 https://onlinelibrary.wiley.com/doi/10.1002/oca.2123
https://onlinelibrary.wiley.com/doi/full/10.1002/oca.2123 https://onlinelibrary.wiley.com/doi/abs/10.1002/oca.2123 https://onlinelibrary.wiley.com/doi/10.1002/oca.2123


Bibliography 168

[39] M. Luiza Costa Vianna, E. Goubault, and S. Putot, “Neural Network Based Model
Predictive Control for an Autonomous Vehicle,” arXiv e-prints, p. arXiv:2107.14573,
Jul. 2021.
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