
Automated Landing of a Fixed-Wing
Unmanned Aircraft onto a Moving

Platform

Mohamed Zahier Parker

Thesis presented in partial fulfilment of the requirements for the degree of
Master of Engineering (Electronic) in the Faculty of Engineering at

Stellenbosch University.

Supervisor: Prof. J.A.A. Engelbrecht
Department of Electrical and Electronic Engineering

March 2023

Acknowledgements

I would like to send my thanks and appreciation to the following people and organisations:

• My mother, father, grandparents and siblings for supporting me during my master’s
while I was at home. Thank you for helping me deal with my stress levels and
assisting me in more ways than I can imagine.

• My supervisor Prof Japie Engelbrecht for guiding and assisting me during my project.
Thank you for going out of your way to fulfil my requests and being available for
the flight tests.

• The Department of Science and Innovation (DSI) and the Council for Scientific and
Industrial Research (CSIR) for providing me with a bursary for my master’s and
also having excellent programs to assist me during my project.

• My flight test crew Andrew Murdoch, Clayton Pheiffer and Merrick Hughes for
always being available and willing to wake up early for the flight tests.

• Dr Willem Jordaan and Dr Callen Fisher for your advice on ROS, PX4 autopilot
software, 3D printing and mini PCs.

• The ESL students who help me with parking lot tests and provided me with advice
regarding mechanical work and software.

• Mr Wessel Kroukamp, Mr Johan Arendse and Mr PH Petzer for assisting me with
my airframe, electronics soldering and mass moment of inertia experiment.

• Michael Basson for being an excellent safety pilot and being available for my practical
flight tests.

• Daniel for providing me with the thrust jig to test my motor.

• Dr Willie Smit for providing me with a Raspberry Pi 4.

• Prof Herman Kamper for this master’s thesis template.

i

Stellenbosch University https://scholar.sun.ac.za

DECLARATION

By submitting this thesis electronically, I declare that the entirety of the work contained
therein is my own, original work, that I am the sole author thereof (save to the extent
explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch
University will not infringe any third party rights and that I have not previously in its
entirety or in part submitted it for obtaining any qualification.

Date: March 2023

Copyright © 2023 Stellenbosch University
All rights reserved

Stellenbosch University https://scholar.sun.ac.za

UNIVERS ITE IT •STELLENBOSCH •UNIVERS ITY

j ou kenn i s v ennoo t • you r know ledge pa r tne r

Plagiaatverklaring / Plagiarism Declaration

1. Plagiaat is die oorneem en gebruik van die idees, materiaal en ander intellektuele
eiendom van ander persone asof dit jou eie werk is.
Plagiarism is the use of ideas, material and other intellectual property of another’s
work and to present is as my own.

2. Ek erken dat die pleeg van plagiaat ’n strafbare oortreding is aangesien dit ’n vorm
van diefstal is.
I agree that plagiarism is a punishable offence because it constitutes theft.

3. Ek verstaan ook dat direkte vertalings plagiaat is.
I also understand that direct translations are plagiarism.

4. Dienooreenkomstig is alle aanhalings en bydraes vanuit enige bron (ingesluit die
internet) volledig verwys (erken). Ek erken dat die woordelikse aanhaal van teks
sonder aanhalingstekens (selfs al word die bron volledig erken) plagiaat is.
Accordingly all quotations and contributions from any source whatsoever (including
the internet) have been cited fully. I understand that the reproduction of text without
quotation marks (even when the source is cited) is plagiarism

5. Ek verklaar dat die werk in hierdie skryfstuk vervat, behalwe waar anders aange-
dui, my eie oorspronklike werk is en dat ek dit nie vantevore in die geheel of
gedeeltelik ingehandig het vir bepunting in hierdie module/werkstuk of ’n ander
module/werkstuk nie.
I declare that the work contained in this assignment, except where otherwise stated, is
my original work and that I have not previously (in its entirety or in part) submitted
it for grading in this module/assignment or another module/assignment.

ii

Stellenbosch University https://scholar.sun.ac.za

Abstract

This thesis presents the development, implementation and practical testing of a control
system that can automatically land a fixed-wing unmanned aerial vehicle (UAV) onto a
moving platform. The control system consists of the flight control system and guidance
control system. A landing strategy is proposed that is inspired by a real aircraft carrier
landing, but is scaled down to the size of the fixed-wing UAV used in this research project.
A prediction method is suggested to predict the touchdown point between the aircraft and
the moving platform. A mathematical model of the fixed-wing aircraft was established to
capture the aircraft’s flight dynamics. The model was used to design the flight control
system. The flight control system architecture combines classical control with model
predictive control to control the local states of the aircraft. The model predictive controller
was added to improve the landing accuracy of the aircraft, by having improved airspeed and
altitude control compared to classical controllers. The guidance control system contains a
guidance algorithm, waypoint scheduler, landing position predictor, and state machine to
allow the aircraft to navigate around the airfield and land on the moving platform. The
control systems were then implemented in PX4 autopilot software, which together with
the Gazebo simulator, was used to perform software-in-the-loop simulations to verify the
control systems’ performance using a representative simulation model.

A new avionics stack was developed for the physical fixed-wing UAV using commercially
available hardware and open-source software. A new fixed-wing UAV was assembled by
mounting the newly developed avionics stack into an existing airframe. A new moving
platform was also assembled by mounting commercially available hardware onto an RC
car chassis. Practical flight tests were performed using the physical UAV to validate
the control system’s performance in practice. The developed control system was able to
accurately land the physical fixed-wing UAV within a 3 m x 3 m static bounding box on a
runway, and also on a virtual moving platform with the same dimensions travelling at 3
m/s (or 10 km/h).

iii

Stellenbosch University https://scholar.sun.ac.za

Uittreksel

Hierdie tesis beskryf die ontwikkeling, implementering en praktiese toetsing van ’n beheer-
stelsel aan wat ’n vastevlerk onbemande vliegtuig outomaties op ’n bewegende platform
kan land. Die beheerstelsel bestaan uit die vlugbeheerstelsel en leidingbeheerstelsel. ’n
Landingstrategie word voorgestel wat gëınspireer is deur ’n regte vliegdekskip landing, maar
is afgeskaal tot die grootte van die vastevlerk-UAV wat in hierdie navorsingsprojek gebruik
word. ’n Voorspellingsmetode word voorgestel om die raakvalpunt tussen die vliegtuig
en die bewegende platform te voorspel. ’n Wiskundige model van die vastevlerkvliegtuig
is ontwikkel om die vliegtuig se vlugdinamika te beskryf. Die model is gebruik om die
vlugbeheerstelsel te ontwerp. Die argitektuur van die vlugbeheerstelsel kombineer klassieke
beheer met modelvoorspellingsbeheer om die vliegtuig se eie toestande te beheer. Die
model voorspellende beheerder is bygevoeg om die landingsakkuraatheid van die vliegtuig
te verbeter, deur verbeterde lugspoed- en hoogtebeheer in vergelyking met klassieke be-
heerders te hê. Die leidingbeheerstelsel bevat ’n leidingalgoritme, wegpuntskeduleerder,
landingsposisievoorspeller en toestandmasjien om die vliegtuig in staat te stel om om die
vliegveld te navigeer en op die bewegende platform te land. Die beheerstelsels is toe in
PX4 Autopilot sagteware gëımplementeer, wat saam met die Gazebo-simulator gebruik is
om sagteware-in-die-lus-simulasies uit te voer om die beheerstelsels se werkverrigting met
’n meer verteenwoordigende simulasiemodel te verifieer.

’n Nuwe avionika stelsel is ontwikkel vir die fisiese vastevlerkvliegtuie met behulp van
kommersieel beskikbare hardeware en oopbronsagteware. ’n Nuwe vastevlerkvliegtuig
is opgebou deur die nuutontwikkelde avionika stelsel in ’n bestaande vliegtuigraam te
monteer. ’n Nuwe bewegende platform is ook opgebou deur kommersieel beskikbare
hardeware op ’n RC-motoronderstel te monteer. Praktiese vlugtoetse is uitgevoer met
behulp van die fisiese vliegtuig om die beheerstelsel se werkverrigting in die praktyk te
valideer. Die ontwikkelde beheerstelsel kon die fisiese vastevlerkvliegtuig land binne ’n 3
m x 3 m teiken area op ’n aanloopbaan, en ook op ’n virtuele bewegende platform met
dieselfde afmetings wat teen 3 m/s (of 10 km/h) beweeg.

iv

Stellenbosch University https://scholar.sun.ac.za

Publications

The following paper has been published from the work done for this thesis:

• M. Z. Parker and J.A.A. Engelbrecht, “Precise automated landing of a fixed-wing
aircraft onto a moving platform,” MATEC Web Conf., vol. 370, p. 05007, 2022.
[Online]. Available: https://doi.org/10.1051/matecconf/202237005007

v

Stellenbosch University https://scholar.sun.ac.za

Contents

Declaration ii

Abstract iii

Uittreksel iv

List of Figures xii

List of Tables xvi

Nomenclature xvii

1. Introduction 1
1.1. Background . 1
1.2. Project Goals and Objectives . 2
1.3. Project History . 3
1.4. Research Approach . 4
1.5. Scope and Limitations . 5
1.6. Thesis Outline . 5

2. Literature Review 7
2.1. Aircraft Carrier Landing . 7
2.2. Previous Research . 9

2.2.1. Internal ESL Research Projects . 9
2.2.2. External Research . 13
2.2.3. Findings and Design Decisions . 15

3. System Overview 18
3.1. Physical System for Moving Platform Landing 18

3.1.1. Fixed-Wing UAV Setup . 20
3.1.1.1. Avionics Hardware . 20
3.1.1.2. Avionics Software . 24

3.1.2. Moving Platform . 25
3.1.3. Stationary Ground Station . 29
3.1.4. UAV Safety Pilot and Moving Platform Driver 31

3.2. Simulation Software . 31

vi

Stellenbosch University https://scholar.sun.ac.za

Contents vii

3.3. Landing Strategy . 32
3.3.1. Moving Platform Specifications . 32
3.3.2. Landing Scenarios . 33

3.3.2.1. Stationary Runway Landing 33
3.3.2.2. Moving Platform Landing 34

3.3.3. Landing Procedure . 34
3.3.3.1. Stationary Runway Landing Procedure 34
3.3.3.2. Moving Platform Landing Procedure 36

3.4. Summary . 38

4. Aircraft Dynamic Model 39
4.1. Reference Frames . 39

4.1.1. Inertial Frame . 39
4.1.2. Body Frame and Aircraft Notation 40
4.1.3. Wind Frame . 41
4.1.4. Guidance Frame and Runway Frame 43

4.2. Equation of Motion Development . 43
4.2.1. Kinetics . 43
4.2.2. Kinematics . 44

4.3. Force and Moment Models . 47
4.3.1. Aerodynamic Model . 48
4.3.2. Thrust Model . 50
4.3.3. Gravitational Model . 52

4.4. Wind Model . 52
4.4.1. Discrete Gust Model . 53
4.4.2. Turbulence Model . 54
4.4.3. Wind Shear Model . 55
4.4.4. Ground Effect . 56

4.5. Moving Platform Model . 57
4.6. Linearisation of Aircraft Model . 59

4.6.1. Obtaining the Trim Variables . 59
4.6.2. Linearising Equations of Motion around Trim 60

4.7. Natural Modes of Motion . 64
4.7.1. Longitudinal Modes of Motion . 64

4.7.1.1. Short Period Mode . 65
4.7.1.2. Phugoid Mode . 65

4.7.2. Lateral Modes of Motion . 66
4.7.2.1. Roll Mode . 66
4.7.2.2. Dutch Roll Mode . 67

Stellenbosch University https://scholar.sun.ac.za

Contents viii

4.7.2.3. Spiral Mode . 67
4.8. Summary . 68

5. Flight Control System Development 69
5.1. Flight Control System Overview . 69

5.1.1. Classical Control Overview . 70
5.1.2. Model Predictive Control Overview 72

5.2. Classical Controller Design . 72
5.2.1. Longitudinal Controllers Design . 72

5.2.1.1. Airspeed Controller . 72
5.2.1.2. Normal Specific Acceleration Direct Lift Control Controller 77
5.2.1.3. Climb Rate Controller . 86
5.2.1.4. Altitude Controller . 89

5.2.2. Lateral Controllers Design . 93
5.2.2.1. Lateral Specific Acceleration(LSA) Controller 93
5.2.2.2. Roll Rate Controller . 98
5.2.2.3. Roll Angle Controller . 101
5.2.2.4. First Cross-Track Controller 103
5.2.2.5. Crab Angle Controller . 106
5.2.2.6. Transition Multiplexer . 109
5.2.2.7. Heading Controller . 111
5.2.2.8. Second Cross-Track Controller 114

5.3. Model Predictive Control Design . 117
5.3.1. MPC Theory . 117

5.3.1.1. State Matrix Augmentation 119
5.3.1.2. Output Predictions . 120
5.3.1.3. Constraints . 121
5.3.1.4. Cost Function . 123
5.3.1.5. Optimiser . 123

5.3.2. Fixed-Wing UAV MPC Design . 124
5.3.2.1. MPC Parameters . 125
5.3.2.2. MPC Plant Model . 126
5.3.2.3. Constraints . 128
5.3.2.4. Cost Function and Optimiser 128
5.3.2.5. MPC Tuning . 129
5.3.2.6. MPC Limited integrator 132

5.4. Summary . 133

Stellenbosch University https://scholar.sun.ac.za

Contents ix

6. Guidance Control System Development 134
6.1. Guidance Algorithm . 134
6.2. Waypoint Scheduler . 136
6.3. Landing Position Predictor . 137
6.4. State Machine . 142

6.4.1. Aircraft Landing Stabilisation . 142
6.4.1.1. Stationary Runway Landing Limits 142
6.4.1.2. Moving Platform Landing Limits 144

6.4.2. Stationary Runway Landing State Machine 145
6.4.3. Moving Platform Landing State Machine 148
6.4.4. Additional Function of State Machine 150

6.5. Summary . 150

7. Non-Linear Simulation 151
7.1. Simulink Non-Linear Model . 151
7.2. Software in the Loop Implementation . 152

7.2.1. Robot Operating System . 153
7.2.2. PX4 Autopilot Software . 153
7.2.3. Gazebo Simulator . 154

7.3. Non-Linear Simulation Results . 155
7.3.1. Controller Step Responses . 156

7.3.1.1. Airspeed Controller . 156
7.3.1.2. Climb Rate Controller . 158
7.3.1.3. Altitude Controller . 158
7.3.1.4. Roll Angle Controller . 160
7.3.1.5. First Cross-Track Controller 161
7.3.1.6. Crab Angle Controller . 161

7.3.2. Stationary Runway and Moving Platform Landing 162
7.3.2.1. Waypoint Navigation . 162
7.3.2.2. Runway Landing . 163
7.3.2.3. Moving Platform Landing 165

7.3.3. Runway and Moving Platform Landings with Wind 167
7.3.3.1. Runway Landing . 168
7.3.3.2. Moving Platform Landing 169

7.4. Summary . 171

8. Practical Tests Overview and Results 172
8.1. Practical Flight Test Logistics . 172

8.1.1. Practical Flight Test Environment 172
8.1.2. Practical Flight Test Procedure . 173

Stellenbosch University https://scholar.sun.ac.za

Contents x

8.2. Flight Test Campaign . 174
8.3. Practical Flight Test Results . 174

8.3.1. Flight Controller Responses . 174
8.3.1.1. Airspeed Controller . 175
8.3.1.2. Climb Rate Controller . 176
8.3.1.3. Altitude Controller . 177
8.3.1.4. Roll Angle Controller . 178
8.3.1.5. First Cross-Track Controller 179
8.3.1.6. Crab Angle Controller . 180

8.3.2. Airfield Waypoint Navigation . 181
8.3.3. Runway Landing . 182
8.3.4. Moving Platform Landing . 185
8.3.5. Virtual Moving Platform Landing 186

8.4. Summary . 190

9. Conclusion and Recommendations 191
9.1. Conclusion . 191
9.2. Research Contributions . 193
9.3. Recommendations for Future Work . 194

Bibliography 197

A. Aircraft Specifications 203
A.1. General Specifications . 203
A.2. Motor Thrust Specifications . 204
A.3. Airframe Aerodynamic Specifications . 206

A.3.1. Airframe Geometry . 206
A.3.2. Aerodynamic Coefficients . 206
A.3.3. Stability and Control Derivatives 207

B. Additional Development and Derivations 208
B.1. Software Safety Layers . 208
B.2. RTK GPS Operation . 209

B.2.1. RTK GPS Configuration . 209
B.2.2. Ublox RTK GPS PX4 Driver Modification 210

B.3. Practical Mixer and Aircraft Weight Distribution 211
B.4. Trim Variables Equation Derivation . 211
B.5. MPC controller . 212

B.5.1. MPC Thrust Model Constants . 212
B.5.2. MPC implementation Process . 214

Stellenbosch University https://scholar.sun.ac.za

Contents xi

C. Checklist Development 216

Stellenbosch University https://scholar.sun.ac.za

List of Figures

2.1. Fresnel-lens based optical landing system 7
2.2. Arrestor System Onboard an Aircraft Carrier 8

3.1. Moving Platform Landing Practical Implementation Overview 19
3.2. Fully Assembled UAV Image . 20
3.3. Diagram of fixed-wing UAV avionics . 21
3.4. Avionics Hardware Components . 22
3.5. Avionics Shelf Image . 24
3.6. Logos of the avionics software . 25
3.7. Fully Assembled Moving Platform Image 26
3.8. Diagram of moving platform electronics . 27
3.9. STM32G431KB Nucleo-32 microcontroller 27
3.10. Raspberry Pi 4 . 28
3.11. Diagram of stationary ground station hardware 29
3.12. QGroundControl User Interface . 30
3.13. Gazebo Simulator Logo . 31
3.14. Standard Airfield Circuit Diagram . 35
3.15. Stationary Runway Landing profile . 35
3.16. Moving Platform Landing Circuit Diagram 36
3.17. Moving Platform Landing profile . 37

4.1. Inertial Axis System Illustration . 40
4.2. Notation diagram of aircraft in body frame 40
4.3. Body frame to wind frame rotation . 41
4.4. Aircraft velocity coordinates in spherical form 42
4.5. Visual Representation of Euler Angles . 45
4.6. 6DOF block diagram . 47
4.7. Aerodynamic model block diagram . 48
4.8. Thrust model block diagram . 51
4.9. Gravity model block diagram . 52
4.10. Discrete Gust Wind Profile . 54
4.11. Wind Shear Profile . 56
4.12. Runway Frame Illustration . 58
4.13. Trim Force and Moment Diagram . 59

xii

Stellenbosch University https://scholar.sun.ac.za

List of Figures xiii

4.14. Linear Longitudinal Model Pole Plot . 64
4.15. Linear Lateral Model Pole Plot . 66

5.1. Flight Control System Overview . 70
5.2. Classical Airspeed Controller Block Diagram 73
5.3. Classical Airspeed Controller Plots . 76
5.4. Normal Specific Acceleration Direct Lift Control Block Diagram 77
5.5. Direct Lift Control Block Diagram . 78
5.6. DLC Controller Plots . 80
5.7. Normal Specific Acceleration Controller Block Diagram 81
5.8. NSA Controller Plots . 83
5.9. NSADLC Closed-loop step response . 86
5.10. Climb Rate Controller Block Diagram . 86
5.11. Climb Rate Controller Plots . 88
5.12. Altitude Controller Block Diagram . 90
5.13. Altitude Controller Plots . 92
5.14. LSA Controller Block Diagram . 94
5.15. LSA Controller Plots . 97
5.16. Roll Rate Controller Block Diagram . 98
5.17. Roll Rate Controller Plots . 100
5.18. Roll Angle Controller Block Diagram . 101
5.19. Roll Angle Controller Plots . 102
5.20. Cross-track illustration Diagram . 103
5.21. First Cross-Track Controller Block Diagram 104
5.22. First Cross-Track Controller Plots . 105
5.23. Crab Angle Controller Block Diagram . 107
5.24. Crab Angle Controller Plots . 108
5.25. Transition Multiplexer Graph . 110
5.26. Heading Controller Block Diagram . 111
5.27. Heading Error Explanation Diagram . 112
5.28. Heading Controller Plots . 113
5.29. Second Cross-Track Controller Block Diagram 114
5.30. Second Cross-Track Controller Plots . 116
5.31. Structural Overview of MPC . 118
5.32. MPC Receding Horizon Illustration . 118
5.33. MPC Controller Block Diagram . 125
5.34. MPC Altitude Step Responses . 130
5.35. MPC Airspeed Step Responses . 131
5.36. MPC Commands for Airspeed Step . 132

Stellenbosch University https://scholar.sun.ac.za

List of Figures xiv

5.37. Altitude Controller Block Diagram . 132

6.1. Guidance Frame Diagram . 135
6.2. Waypoint Switching Method Illustrations 137
6.3. Prediction of touchdown point diagram . 138
6.4. Predicted touchdown point oscillation diagram 140
6.5. Runway frame diagram . 141
6.6. Runway landing state machine diagram . 146
6.7. State transition runway landing profile diagram 147
6.8. Moving Platform landing state machine diagram 148
6.9. State transition runway landing profile diagram 149

7.1. SITL implementation diagram . 152
7.2. PX4 architectural diagram . 153
7.3. Simulated Fixed-Wing UAV in Gazebo . 154
7.4. Gazebo Simulation Overview Diagram . 155
7.5. Airspeed step response and corresponding thrust command for non-linear

simulation . 156
7.6. Climb Rate step response and corresponding NSA command for non-linear

simulation . 158
7.7. Altitude step response and corresponding climb rate command for non-linear

simulation . 159
7.8. Roll Angle step response and corresponding roll rate command for non-linear

simulation . 160
7.9. Cross-Track step response and corresponding roll angle command for non-

linear simulation . 161
7.10. Crab angle step response and corresponding LSA command for non-linear

simulation . 162
7.11. Aircraft Navigation Plot in SITL . 163
7.12. SITL Simulation Runway Landing Plots 164
7.13. SITL Simulation Moving Platform Landing Plots 166
7.14. SITL Simulation Moving Platform Landing Lateral Tracking Plots 167
7.15. Runway Landing Touchdown Locations with Different Wind Conditions . . 168
7.16. Moving Platform Landing Touchdown Locations with Different Wind Con-

ditions . 169
7.17. SITL Simulation Moving Platform Landing De-Crab Manoeuvre Plots . . . 170

8.1. HRF Satellite view . 173
8.2. Airspeed step response and corresponding thrust command for physical UAV175
8.3. Climb Rate step response and corresponding NSA command for physical UAV176

Stellenbosch University https://scholar.sun.ac.za

List of Figures xv

8.4. Altitude step response and corresponding climb rate command for physical
UAV . 177

8.5. Roll Angle Step Response for Practical UAV 179
8.6. Cross-track step response and corresponding roll angle command for physical

UAV . 179
8.7. Crab angle step response and corresponding LSA command for physical UAV180
8.8. Navigation Plot for the Practical UAV . 181
8.9. Practical Runway Landing Plots for the physical UAV 182
8.10. Practical Runway Landing De-crabbing Plots for the physical UAV 184
8.11. Physical UAV Runway Landing Image . 185
8.12. Virtual Moving Platform Landing Configuration 187
8.13. Practical Virtual Moving Platform Landing Plots for the physical UAV . . 188
8.14. Practical Virtual Moving Platform Landing Lateral Tracking Plots 189

A.1. Moment of Inertia Experiment . 204
A.2. Thrust Jig Setup . 205
A.3. Thrust Measured Plot . 205

B.1. MPC ROS Implementation Diagram . 215

Stellenbosch University https://scholar.sun.ac.za

List of Tables

4.1. Notation used for aircraft model . 41
4.2. Dryden turbulence filter form . 55

6.1. Stationary Runway Landing Limits . 144
6.2. Moving Platform Landing Limits . 145
6.3. Stationary runway landing state machine decisions 146
6.4. Stationary runway landing profile values 147
6.5. Moving Platform landing state machine decisions 149
6.6. Moving platform landing profile values . 149

A.1. Airframe geometry values . 206
A.2. Aerodynamic Coefficients of airframe . 207
A.3. Stability and Control Derivatives for the longitudinal dynamics 207
A.4. Stability and Control Derivatives for the lateral dynamics 207

xvi

Stellenbosch University https://scholar.sun.ac.za

Nomenclature

Greek letters

α Angle of attack

β Angle of sideslip

δa, δe, δf , δr Deflection angles from trim for the aileron, elevator, flaps and rudder
respectively

δA, δE, δF , δR Deflection angles for the aileron, elevator, flaps and rudder respectively

∆ḣref Rate of climb rate reference

∆T Thrust magnitude from trim

∆Tc Thrust command from trim

∆∆Tc Rate of thrust command from trim

γ Glide slope angle

ϕ, θ, ψ Roll, pitch and yaw angles from trim respectively

Φ,Θ,Ψ Roll, pitch and yaw angles respectively

ψcrab Crab angle

Ψr Runway heading from true north

ρ Air density

τc Filter time constant

τcrab Crab angle controller’s rise time

τct First cross-track controller’s rise time

τe Motor time delay

ωc Filter centre frequency

ωn Natural frequency

ζ Damping ratio

xvii

Stellenbosch University https://scholar.sun.ac.za

Nomenclature xviii

Small letters

b Wing span

c̄ Mean chord

e Oswald efficiency factor

g Gravitational acceleration

h Altitude

ḣ Climb rate

m Mass

nu Control horizon

ny Prediction horizon

p, q, r Roll, pitch and yaw rates from trim

u, v, w Axial, lateral and normal velocity deviations from trim

v̄ Airspeed from trim

x In-track distance

y Cross-track error

Capital letters

A Aspect ratio

CL, CD Lift and drag coefficients respectively

Cl, Cm, Cn Roll, pitch and yaw moment coefficients respectively

Cx, Cy, Cz Axial, lateral and normal force coefficients respectively

I Moment of inertia

L,M,N Roll, pitch and yaw moments respectively

P,Q,R Roll, pitch and yaw rates respectively

S Wing area

⊺ Transpose

T Thrust magnitude

Tc Thrust command

Ts MPC sample time

U, V,W Axial, lateral and normal velocities respectively

X, Y, Z Axial, lateral and normal forces respectively

Stellenbosch University https://scholar.sun.ac.za

Nomenclature xix

Acronyms and abbreviations

3D Three dimensional

ABC Acceleration-Based Control

ATOL Automatic Take-off and Landing

AVL Athena Vortex Lattice

CG Centre of Gravity

CV Computer Vision

DC Direct Current

DCM Direction Cosine Matrix

DGPS Differential Global Positioning System

DLC Direct Lift Control

EKF Extended Kalman Filter

ESC Electronic Speed Controller

ESL Electronic Systems Laboratory

FCS Flight Control System

GCS Guidance Control System

GCSN Ground Control Station

GPS Global Positioning System

HITL Hardware-in-the-Loop

IMU Inertial Measurement Unit

LiPo Lithium-Polymer

LSA Lateral Specific Acceleration

LQR Linear Quadratic Regulator

MIMO Multiple-Input-Multiple-Output

MPC Model Predictive Control

NED North-East-Down

NMP Non-Minimum Phase

NSA Normal Specific Acceleration

NSADLC Normal Specific Acceleration Direct Lift Control

PC Personal Computer

PD Proportional Derivative

PI Proportional Integral

Stellenbosch University https://scholar.sun.ac.za

Nomenclature xx

PID Proportional Integral Derivative

PM Power Management

PWM Pulse-width modulation

QGC QGroundControl

RC Radio-control

RTK Real-Time Kinematic

SITL Software-in-the-Loop

TBS Team BlackSheep

TECS Total Energy Control System

UART Universal asynchronous receiver-transmitter

UAV Unmanned Aerial Vehicle

UI User Interface

USB Universal Serial Bus

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

1.1. Background
Unmanned Aerial Vehicles (UAVs) have been utilised for many years in both the military
and civilian sectors. The first recorded use case of a UAV was in 1849 when Austrians tried
to bomb Venice with balloons containing explosives [1]. The first pilotless aircraft were
created during World War I by the British Army Royal Flying Corps and the Royal Navy.
These aircraft were remote-controlled and were used to assist the war efforts [2]. As radio,
sensing, and electronic technology developed, more advanced UAVs were created with
increased capabilities. Modern military drones, such as the General Atomics MQ-9 UAV,
have improved flight performance compared to earlier drones, as they have longer flight
times and increased payload capacity, that allow them to be used in a variety of complex
applications. These applications include both military and civil use cases. Examples of
military use cases include surveillance and anti-warfare, while examples of civil use cases
include law enforcement and search and rescue [3].

The increased number of applications for UAVs have generated a demand for safe and
robust automatic systems to control them. According to Airbus, the most dangerous phase
of flight, when the most accidents occur, is the landing phase [4]. Some of the factors
leading to these accidents are severe weather conditions, aircraft component failure, and
pilot fatigue. The use of an automated landing system can reduce these incidents as they
can be designed with these factors in mind. Currently, automatic landing systems are
commonly used in commercial airliners for landing in low visibility weather conditions [5].
Automatic landing systems are also used to land military jets onto aircraft carriers. The
development of automatic landing systems enable even more applications for UAVs, such as
fixed-wing UAV delivery systems using a moving home station, or the delivery of medical
supplies to rural areas [6].

The problem to be solved for this research project is the creation of a system that
can automatically land a fixed-wing UAV onto a moving platform. This scenario imitates
the real-life landing of a jet aircraft onto an aircraft carrier in the ocean. The aircraft is
normally manually piloted for the landing with the pilot using aids to align the aircraft
with the aircraft carrier. This places excessive stress on the pilot which makes them prone

1

Stellenbosch University https://scholar.sun.ac.za

1.2. Project Goals and Objectives 2

to errors. The US navy statistics [7] show that there have been a number of mishaps every
year, however it has been on a downwards trend. These mishaps are quite costly, therefore
it is desired to reduce the chances of them occurring. Landing on a platform in the ocean
also provides its own challenges such as unpredictable movement of the platform and
decreased visibility due to weather conditions. The use of an automated landing system
can take these challenges into account and also provide consistent performance, no matter
the pilot’s fatigue level.

1.2. Project Goals and Objectives
The primary goal of this research project is to design, implement, and practically test a
control system that can automatically land a fixed-wing UAV onto a moving platform. A
secondary goal is to develop new avionics hardware and software for the fixed-wing UAV
projects at the Electronic Systems Laboratory, by procuring, modifying, and integrating
off-the-shelf hardware and open-source software, to replace the in-house developed avionics
that have become obsolete. The project goals are broken down into the following objectives:

• Create a mathematical model that captures the flight dynamics of the fixed-wing
aircraft so that it can be used to design and simulate the control systems.

• Design the low-level flight control system (FCS) to control the local states of the
aircraft.

• Design the guidance control system (GCS) to provide commands to the FCS to allow
the aircraft to follow a trajectory and land onto a moving platform.

• Implement the flight and guidance control systems in the autopilot software and test
them in software-in-the-loop (SITL) simulations.

• Develop new avionics hardware and software for a fixed-wing UAV, as well as the
associated ground station and communications systems.

• Assemble the fixed-wing aircraft and integrate the new avionics hardware.

• Design and build a moving platform capable of moving at a speed of 3 m/s to be
used for the practical moving platform landing flight tests.

• Perform flight tests to practically demonstrate automatic landing of the physical
UAV onto a moving platform.

By completing these objectives the goals of the project will be fulfilled. This will be
evaluated in the conclusion to determine the project’s success.

Stellenbosch University https://scholar.sun.ac.za

1.3. Project History 3

1.3. Project History
The Electronic Systems Laboratory (ESL), where this masters project is conducted, is a
research group at Stellenbosch University that has a history of developing flight control
systems for unmanned aerial vehicles. UAV projects at the ESL have involved both
hardware and software development, starting as early as 2001. Flight control systems
have been developed for various types of UAVs, including fixed-wing, rotary-wing, and
multi-rotor vehicles. The major UAV research activity at the ESL was catalysed in 2005
when Peddle developed, implemented, and practically flight-tested a flight control system
that enabled a fixed-wing UAV to automatically navigate a set of waypoints [8]. Peddle [9]
subsequently improved his control system design by creating an acceleration-based control
(ABC) architecture for the control of fixed-wing aircraft. This ABC architecture served as
the basis for many subsequent projects.

One of the main research focus areas at the ESL has been the automatic landing of
UAVs. The research was kicked off by Roos who developed a flight control system for
autonomous take-off and landing of a fixed-wing UAV using normal GPS [10]. This was
followed by several other projects on automatic landing of fixed-wing aircraft, including
De Hart [11], Alberts [12], Smit [13], Le Roux [14], Hugo [15], and De Bruin [16].

Automatic landing systems have also been developed for rotary-wing UAVs. The
research was kicked off by De Jager who developed a flight control system for automatic
vision-based landing of a rotary-wing UAV [17]. This was followed by several other
projects on automatic landing of rotary-wing and multi-rotor UAVs, including Swart [18],
Möller [19], Fourie [20], Ioppo [21], Mfiri [22], and Grobler [23].

Three previous ESL projects investigated the automatic landing of UAVs onto moving
platforms. However, only one of these projects was for a fixed-wing UAV. Möller practically
demonstrated the automatic landing of a quadcopter UAV onto a moving platform [19].
Fourie practically demonstrated the automatic landing of a helicopter UAV onto a moving
platform [20]. Le Roux attempted the automatic landing of a fixed-wing UAV onto a
moving platform [14], but he was only able to demonstrate the moving platform landing
in simulation. A hardware malfunction during one of his flight tests resulted in the loss of
the physical UAV, and he was unfortunately not able to demonstrate the practical landing
of the fixed-wing UAV onto the moving platform.

The hardware used in the previous ESL fixed-wing automation projects was developed
in-house and has undergone various iterations. Some software components such as the
ground station were also designed in-house. Even though this was a remarkable feat, it
had its fair share of issues including no community support and reliability concerns. There
were a few instances of aircraft crashing due to bugs or hardware issues that were not
related to the control system design. Le Roux is a prime example of this as his UAV
crashed due to an unknown bug. To increase the reliability of the system used, it is decided

Stellenbosch University https://scholar.sun.ac.za

1.4. Research Approach 4

to move to hardware and software that are commercially available with a proven track
record and community support. This will provide increased confidence in the system’s
success in real-life.

1.4. Research Approach
The approach taken for some of the aspects of the research project are as follows:

• The new avionics hardware was developed using commercially available hardware that
has been successfully used in many applications in the industry. The new avionics
software is built on open-source software that has been successfully implemented on
many different UAVs and has community support.

• DGPS is used to obtain the relative position and velocity of the aircraft and the
moving platform instead of a vision-based approach. DGPS has recently become
more affordable and can be used in this project. DGPS also does not have any major
drawbacks in the environment where the practical flights will be performed.

• The flight control system uses a hybrid architecture combining classical control
with model predictive control (MPC). The classical controllers were selected as they
have been successfully used by many previous ESL students for fixed-wing UAV
automated landing scenarios. The MPC was added to obtain improved landing
accuracies compared to the classical controllers.

• For the practical flight tests, the new avionics hardware, individual flight controllers
and aircraft waypoint navigation were first incrementally tested. Thereafter, the
runway landing test with the fixed-wing UAV was performed. Finally, the moving
platform landing test was executed, concluding the practical flight tests.

• For the practical moving platform landing, the fixed-wing UAV touches down on a
virtual platform a few metres above the physical moving platform. This is because
the physical moving platform is too small for the fixed-wing UAV to physically land
on.

• No arrestor system was developed for the moving platform. This means that for the
moving platform landing, the fixed-wing UAV is not captured on touchdown. The
fixed-wing UAV will instead perform a go-around manoeuvre to land back on the
runway.

Stellenbosch University https://scholar.sun.ac.za

1.5. Scope and Limitations 5

1.5. Scope and Limitations
The scope of the research project includes:

• A DGPS-based moving platform landing. A vision-based moving platform landing is
outside the scope of the project.

• The moving platform landing only considers the translational motion of the platform
and is not designed for heaving, rolling or pitching motion.

• The flight tests only demonstrate an accurate “touchdown” on a moving platform.
The fixed-wing UAV will not come to a complete stop on the platform, as the
development of an arrestor system is outside the scope of the project.

• The moving platform will be manually controlled by a human driver, who will be
alerted when to move the platform. An automated system for the platform is outside
the scope of the project.

The limitations of the research project include:

• The DGPS system is dependent on GPS signal availability. Therefore, it cannot be
used in environments with GPS jamming.

• The model predictive controller used in the flight control system is model-dependent.
This means that the model used to capture the aircraft’s flight dynamics needs to
be as accurate as possible.

• No arrestor system is used. Therefore, the aircraft cannot be captured on the moving
platform.

• The fixed-wing UAV will not be able to land in high crosswind weather conditions
(more than 6 knots) as the UAV will be too crabbed to land. The UAV will also not
be able to land in high wind conditions in general, as the control systems would not
be able to maintain the glide slope for an accurate landing.

1.6. Thesis Outline
This thesis is split into nine chapters that presents different aspects of the research project.
The layout of the thesis is as follows:

1. Chapter 1 provides a background of UAV development, the project’s goals and
objectives, the history of this project, the research approach, the project’s scope and
limitations, and the thesis outline.

Stellenbosch University https://scholar.sun.ac.za

1.6. Thesis Outline 6

2. Chapter 2 investigates aircraft carrier landing techniques and reviews the literature
available for fixed-wing UAV control.

3. Chapter 3 presents the physical system used to practically test the moving platform
landing, the simulator used for control system testing and the landing strategies
considered in this project.

4. Chapter 4 presents the fixed-wing UAV non-linear and linear models which are used
for simulation and control design respectively.

5. Chapter 5 describes the design of the flight control system which is used to control
the local states of the aircraft. The linear models developed in chapter 4 are used
for designing the controllers.

6. Chapter 6 presents the guidance control system which is used to navigate the aircraft
around the airfield and land it onto the moving platform.

7. Chapter 7 discusses the implementation of the non-linear simulation and tests the
designed flight and guidance control systems using this simulation.

8. Chapter 8 discusses the practical flight test logistics and flight test campaign used
to test the developed control systems on the physical system introduced in chapter
3. The results from the practical flight tests are then analysed.

9. Chapter 9 provides a conclusion to the thesis and determines if the goals of the
project have been accomplished. The research contributions that have been made by
this research project are then highlighted. Finally, the recommendations for future
research work are presented.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Literature Review

This chapter first investigates the techniques used by manned aircraft to land on aircraft
carriers so that the important characteristics of landing on a moving platform can be
identified. Thereafter, a review is performed of previous literature both internal and
external to the ESL. The review will first focus on systems used to land the fixed-wing
UAV on a runway and then move to systems used to perform the moving platform landing.
The key findings that were observed during the review will then be highlighted. This will
be followed by a discussion on the design decisions taken for this research project.

2.1. Aircraft Carrier Landing
The systems used to perform the real-life scenario of landing a fixed-wing jet fighter
aircraft onto an aircraft carrier are analysed in this section. This scenario is the main
inspiration for creating the automated moving platform landing system. Therefore, the
real-life systems should be investigated to understand what aspects of the landing should
be considered.

For the real-life scenario, the pilot manually lands the jet onto the aircraft carrier
runway with the aid of the Fresnel-lens optical landing system [24]. The pilot aims to
keep the aircraft on a glide slope to intersect the carrier. The optical system will visually
indicate to the pilot their location with respect to the glide slope using a series of lights as
shown in Figure 2.1.

Figure 2.1: Image showing the Fresnel-lens optical landing system onboard an aircraft
carrier [24].

7

Stellenbosch University https://scholar.sun.ac.za

2.1. Aircraft Carrier Landing 8

The optical system is ineffective in low visual weather conditions such as dense fog.
Pilots are often diverted to a land-based airfield if there were no improvements in weather
conditions [25]. A GPS-based system would not suffer from this issue as it operates in all
weather conditions. The jet fighter does have additional systems that can function in low
visibility conditions. However, for safety purposes, the jet can only land on the carrier if
visual contact is maintained.

The aircraft carrier runway is only around 150 m long, which is shorter than the length
required to land the jet aircraft. This problem is solved by using an arrestor system with
four arresting wires to slow the aircraft down [26]. The pilot aims to touch down the jet
on one of these wires so that the jet’s tailhook attaches and slows the aircraft down, as
shown in Figure 2.2. The aim can only be achieved if the aircraft lands with high accuracy.
The automated landing system designed for this research project will also need a high
landing accuracy to land the UAV onto a moving platform.

Figure 2.2: Image showing the arrestor system on an aircraft carrier slowing the fighter
jet down [24].

For the aircraft carrier landing, the carrier generally moves at around 30 knots in the
direction of the wind to allow the jet to have a lower ground speed for the landing [27].
This makes it easier for the pilot to aim for the touchdown point, as the relative speed
between the jet and aircraft carrier is lower. For this research project, the moving platform
will only be able to move at a certain heading due to environmental factors. This means
the headwind’s effect cannot be exploited to help the UAV land. Instead, the designed
control systems would have to account for the wind’s effect.

The automated landing system developed in this research project could be applied to
land fixed-wing UAVs onto aircraft carriers. This requires high in-track landing accuracy,
but is more relaxed in terms of cross-track landing accuracy. An example commercial
application would be to have a moving, ground-based delivery vehicle with multiple fixed-

Stellenbosch University https://scholar.sun.ac.za

2.2. Previous Research 9

wing UAVs that take off and land to perform local deliveries. This application would
require both high in-track landing accuracy and high cross-track landing accuracy. For
this reason, the system will be developed so that it is able to land on a small moving
platform with a landing zone of 3m x 3m.

Literature regarding the landing of military drones onto aircraft carriers is scarce due to
the high-level secrecy of the research. The focus will therefore be shifted to the literature
available in the public domain.

2.2. Previous Research
Published literature regarding fixed-wing UAV control systems was consulted to determine
the state of the art and to identify any research gaps that exist for systems that can
automatically land fixed-wing UAVs onto moving platforms. This will provide insight into
the different solutions that exist and if they are successful. As previously mentioned, the
ESL has a long history of developing control systems for fixed-wing UAVs. The automated
landing of a fixed-wing UAV onto a moving platform is the next step in the ESL’s research
on the automated landing of UAVs. Therefore, an overview is first provided of previous
ESL research projects on flight control for fixed-wing UAVs and automated landing of
UAVs. This is then followed by a general literature review of external research on the
automated landing of UAVs.

2.2.1 Internal ESL Research Projects

Peddle was one of the first pioneers in the ESL to develop a control system for a fixed-wing
UAV as represented by his master’s and PhD research projects. For Peddle’s master’s [8],
he developed a classical control system to navigate around an airfield using waypoints.
His control system performed well as he was able to practically verify its performance.
For Peddle’s PhD [9], he developed an acceleration-based control (ABC) architecture
that further improved the fixed-wing UAV’s control. In 2007, Roos [10] built on Peddle’s
master’s work to design a system that could perform automatic take-off and landing
(ATOL) for a fixed-wing UAV. Roos’s control system structure used sequences for take-off
and landing. These sequences would be an early interpretation of a state machine. This
design method would be used by many research projects from then onward. An accurate
landing was not a primary focus for Roos as his system could not achieve the accurate
altitude control required for such a landing. Nonetheless, Roos’s system was able to land
his UAV on the runway both in simulation and in practice.

In 2008, Visser [28] used Peddle’s ABC architecture combined with a vision-based
controller to create an accurate landing system. While his system provided adequate
lateral tracking performance, the altitude tracking was insufficient to perform a precise

Stellenbosch University https://scholar.sun.ac.za

2.2. Previous Research 10

landing. Unfortunately, during one of the flight tests his UAV became unresponsive and
crashed, creating irreparable damage which halted his practical testing.

In 2012, Alberts [12] used Peddle’s ABC architecture, but augmented a direct lift control
(DLC) component to the normal specific acceleration (NSA) controller. DLC uses the flaps
to generate lift without significantly changing the aircraft’s incidence angle [12]. The newly
formed NSA controller commanded both the elevator and flaps so that longitudinal control
could be achieved from both pitch moment based and direct lift based actuation. The
NSA controller splits the NSA reference and state into high-frequency and low-frequency
components using high pass and low pass filters. The high-frequency components are sent
to the direct-lift portion of the NSA controller, while the low-frequency components are
sent to the moment-based portion of the NSA controller. Alberts’s design significantly
improved the wind disturbance rejection capabilities of the UAV, which is necessary when
landing in adverse wind conditions. A deficiency in Alberts’s design was the inability of
the altitude controller to track a ramp reference, and hence the glide slope, with zero
steady-state error. The altitude response had an offset from the glide slope, which caused
a large longitudinal error on touchdown. Alberts addressed this issue by offsetting the
glide slope reference by the steady-state error so that the aircraft would land at the desired
touchdown point. With the solution applied, Alberts’s aircraft managed to land within 3
m of the intended touchdown point. While this accuracy would be sufficient for a runway,
it would not be acceptable for landing on a moving platform. It is imperative that the
control system landing accuracy is precise (less than 1 m) for a moving platform landing,
as the platform is a small target for the UAV.

In 2013 Smit [13] designed a control system to perform an accurate landing on a
stationary platform using a Differential Global Positioning System (DGPS). Smit’s control
system utilised Peddle’s ABC architecture with the addition of passive flap selection,
where the flaps were set to a predetermined deflection angle allowing the aircraft to land
at a slower speed. Smit also used a new airframe which he modelled using the Athena
Vortex Lattice (AVL) method for his control system development. For the practical flight
tests, Smit’s UAV landed within 7.5 m of the intended touchdown point. This accuracy is
unsatisfactory for a moving platform landing.

In 2017 De Bruin [16] developed a control system that could accurately land a fixed-
wing UAV on a runway in crosswind conditions. De Bruin’s control system also utilised
Peddle’s ABC architecture with Alberts’s DLC component to the NSA controller. De
Bruin modified Alberts’s NSA controller architecture by removing the low-pass filter to
simplify the controller design. De Bruin solved Alberts’s issue of the altitude controller
not tracking the glide slope by feed-forwarding the desired climb rate as a reference to
the climb rate controller. The altitude controller would then reject disturbances as the
aircraft descended on the glide slope. De Bruin also added a limited integrator to the
altitude controller to account for climb rate biases. For the lateral controllers, De Bruin

Stellenbosch University https://scholar.sun.ac.za

2.2. Previous Research 11

used Peddle’s design as a base and then added his own components to allow the UAV to
execute the different crosswind landing techniques he was testing. The landing techniques
he considered were crabbed, de-crab, and low-wing. De Bruin found that the de-crab
manoeuvre produced the best result for a crosswind landing. De Bruin’s UAV landed
on the runway within 0.5 m of the intended touchdown point both in simulation and in
practice. This accuracy is very high, especially considering that the UAV is around 2
m long. This landing accuracy would be sufficient for a moving platform landing as the
platform would, at minimum, be the size of the UAV.

Peddle’s ABC architecure was also used in ESL projects that focused on the control of
the fixed-wing UAVs in different configurations, for example Hugo [15] and Goosen [29].
Hugo’s system was designed to land a UAV with partial stabiliser and wing losses. Goosen
constructed a system to recover a fixed-wing UAV from upset conditions.

Only three previous research projects in the ESL considered landing a UAV onto a
moving platform, with only one using a fixed-wing UAV. The first project performed by
Möller [19] considered landing a quad-copter onto the platform. Even though the control
system used by Möller is not directly applicable to this research project, the decisions he
made for his practical implementation should be considered. Möller utilised a Novatel
DGPS to obtain a centimetre level relative position accuracy between the UAV and moving
platform. He altered his DGPS operation to place it in ALIGN mode so that he could
use it for his practical tests. Möller used a 2 m by 2 m trailer as the moving platform for
the practical flight tests. The trailer was towed by a tow vehicle during the tests. His
control system landed the quad-copter onto the moving platform both in simulation and
in practice.

The second research project, performed by Fourie [20], consisted of autonomously
landing an unmanned helicopter (rotary-wing UAV) onto a moving platform. Fourie’s
system was split into two sub-systems, namely the navigation and control sub-system and
the safe-landing sub-system. Similar to Möller, the design of Fourie’s system is not directly
applicable to this research project, due to the helicopter’s dynamics being different to
those of a fixed-wing UAV. However, his implementation decisions are worth considering.
Fourie used the same Novatel DGPS as Möller in ALIGN mode to obtain the relative
position between the UAV and the moving platform. Fourie also used a trailer as the
moving platform for his practical flight tests. However, unlike Möller, Fourie’s platform
had a size of 3 m by 3 m. Fourie’s helicopter landed successfully on the moving platform
in hardware-in-the-loop simulation and in practical tests. The physical helicopter could
land on a platform that moved up to 3 m/s, with a land accuracy within 27 cm, which is
remarkable.

The third project, performed by Le Roux [14], focused on landing a fixed-wing UAV
onto a moving platform. Le Roux’s longitudinal control system contained a combination
of a total energy control system (TECS) for the outer loop and an NSA controller for

Stellenbosch University https://scholar.sun.ac.za

2.2. Previous Research 12

the inner loop. His lateral control system used a standard architecture implemented by
many previous students. However, he, added a hybrid cross-track controller design that
functioned based on the aircraft’s distance to its trajectory. This new design solved a
major problem of the autopilot being unable to be activated far from its reference circuit.
To land on the moving platform, Le Roux devised an algorithm that would predict the
touchdown point between the UAV and the moving platform. The algorithm worked for
his scenario due to the simplistic motion of the platform. In the simulation, Leroux’s
altitude controller had a fast response with minimal oscillation, which is desired for an
accurate landing. As a result, his system could accurately track the glide slope and, on
average, land within 13 cm of the touchdown point, which is impressive. Unfortunately,
he could not verify his system’s landing performance with the physical UAV due to a
malfunction in the hardware. The few controllers that were practically tested contained
excessive oscillation. Therefore he would have had to retune them to practically test his
landing scenarios. Le Roux planned to use a 3 m by 3 m trailer for his moving platform,
similar to Fourie. However, Le Roux could not perform his practical moving platform
landing test as his UAV crashed.

The hardware and software used in previous ESL fixed-wing projects were developed
during the early stages of ESL research in fixed-wing UAVs by a group of ESL students.
The hardware and software went through many iterations to bring improvements. This
system, however, was no longer maintainable due to the in-house developed hardware and
software becoming obsolete with limited availability and support. The in-house developed
hardware was also not as reliable as commercial-off-the-shelf hardware, and hardware
malfunctions during flight tests caused a number of UAVs to crash over the years. The
crashes abruptly ended the students’ practical flight testing, even though the fault was in
no manner caused by their control systems. ESL students who experienced crashes were
Visser [28], Le Roux [14], and Hugo [15], who all lost their UAVs due to malfunctions
during flight tests, which ended their respective flight test campaigns. De Bruin [16] also
lost his UAV due to a malfunction during a flight test, but then built a second aircraft and
completed his practical flight testing. The most common cause of the crashes was a servo
board failure resulting in the UAV becoming unresponsive. The servo board was used to
switch between the autopilot and safety pilot (manual control) commands. Conventional
manned aircraft have redundant systems when switching between manual and autopilot
control; however, such a system is too complex and expensive for a low-cost fixed-wing
UAV. Alternatively, switching control via software would be more reliable than the servo
board and still be inexpensive enough to be within the realm of possibility for the UAV.

An ESL multi-rotor research program was developed concurrently with the ESL fixed-
wing research program. During the multi-rotor program, it was decided to standardise the
hardware and software so that the students would not waste unnecessary time developing
components that were not vital for their projects. Ultimately, they chose to go with PX4

Stellenbosch University https://scholar.sun.ac.za

2.2. Previous Research 13

autopilot software and Pixhawk 4 autopilot hardware, as they have been proven to work
on a commercial level and are widely adopted by multi-rotor UAV developers. PX4 has
built-in redundancies with failure modes and a proven safety record.

For this research project, it was decided to follow in their footsteps by standardising
the hardware and software for the fixed-wing UAV. This will allow future fixed-wing UAV
students to only use development time on their applications. The exact software and
hardware that will be used for the fixed-wing UAV will be discussed in chapter 3; however,
PX4 supports fixed-wing UAVs which makes it a prime candidate for consideration.

2.2.2 External Research

There is very limited research on performing a moving platform landing with a fixed-wing
aircraft. This literature review will therefore first cover previous research on automated
landing of fixed-wing UAVs on normal runways. This will then be followed by previous
research on automated landing of fixed-wing UAVs onto moving platforms.

Jantawong et al. [30] designed a system to land a fixed-wing UAV on a runway using
GPS and relative barometric pressure. The exact control system used was not specified;
however, the landing scheme included a flare manoeuvre to help reduce shock forces on
the aircraft, and a final leg offset from the runway to compensate for crosswind. Their
landing system achieved a landing accuracy of 4.3 m, which is adequate for landing on a
runway, but not accurate enough to land on a moving platform.

Dharmawan et al. [31] developed an auto-landing system for a fixed-wing UAV to land
on a runway. The control system utilised the linear quadratic regulator (LQR) method.
The UAV used both a barometer and an ultrasonic range finder as altitude sensors for the
UAV. The LQR regulated the UAV’s roll, pitch, and yaw angles by commanding the roll,
pitch, and yaw moments respectively. These moments are converted to the appropriate
control surface deflection angles to produce the change in attitude. The LQR is commanded
by an external landing controller which controls the UAV’s altitude. The LQR was able
to maintain the UAV’s commanded attitude during the landing. The landing controller
initially struggled to maintain the glide slope but was able to catch it towards the end of
the response.

Brukarczyk et al. [32] presented a vision-based system that identifies ground signs
to determine a glide path used for landing. The vision system provides inputs to the
control system, which imitates a human pilot’s control for landing the aircraft. The control
algorithms used a fuzzy logic expert system approach. The vision system kept the ground
target centred within its line of sight by adjusting the aircraft’s altitude, hence maintaining
a constant glide path. The entire system was tested both in software-in-the-loop (SITL)
and hardware-in-the-loop (HITL) with fairly promising results. A drawback of using this
system is that it requires clear weather with no obstructions between the UAV and the
target. This cannot be guaranteed in a practical scenario due to mist and obstacles such

Stellenbosch University https://scholar.sun.ac.za

2.2. Previous Research 14

as trees. If this system were to be used for a moving platform scenario, the aircraft would
struggle to keep the moving target in the centre of its line of sight, due to it not being
agile enough. The aircraft would therefore not be sufficiently stabilised for landing on a
moving platform.

Laiacker et al. [33] designed a vision-aided automatic landing system for a fixed-wing
UAV to land on a runway. The vision system was used to detect and track runways.
The landing system used a combination of vision data, DGPS data, and other sensor
measurements to obtain the states of the UAV. The control system used cascaded PID
methods with gain scheduling and non-linear elements. Three separate controllers were
designed to control the altitude, course, and airspeed of the UAV independently of
each other. In the flight practical tests, the system was able to land the UAV at the
specified location on the runway. Laiacker et al. [33] planned to implement this system
to automatically land the UAV on a mobile ground vehicle in the future. The advantage
of using both the DGPS and vision-based system is that it increases the functionality of
the overall system; because if one of the position acquisition methods were to become
unreliable, then the other method could take over. The disadvantage of using both the
DGPS and vision-based system is that it is more costly, complex, and time-consuming to
implement. Using both position acquisition methods would also add additional weight to
the UAV, which is not ideal.

A paper submitted by Santos et al. [34] highlighted a system to land a fixed-wing UAV
onto a moving patrol boat. The system consisted of using computer vision (CV) to obtain
the position of the UAV relative to the landing zone on the patrol boat. The CV method
was chosen due to the possibility of jamming being present in the environment, rendering
conventional GPS modules unusable. Two different approaches for CV were considered,
namely, airborne and ground-based. The airborne approach consisted of obtaining the
relative position of the UAV itself using an onboard camera and external markers. The
UAV’s computer would then calculate the landing trajectory. The ground-based approach
used a monocular vision system at the landing area to obtain the relative position. The
landing trajectory was calculated on the ground station and was then transmitted to
the UAV. The airborne approach did not function correctly due to the simple image
processing algorithms used, which were required because of the UAV’s low processing
power. The ground-based approach provided more accurate results and was suitable for
the landing. The ground-based CV system is a good alternative for a DGPS system in
jamming environments. However, it is more complex than the DGPS and requires good
visibility between the landing area and the UAV.

Wang et al. [35] investigated the use of differential games to land a fixed-wing UAV
onto a moving platform. The method essentially treats the UAV and platform as a
pursuit-evasion problem. The UAV aims to reach the platform while the platform tries
to evade the UAV. This is regarded as the worst-case scenario for the UAV landing on

Stellenbosch University https://scholar.sun.ac.za

2.2. Previous Research 15

the platform. In the linear simulation, the UAV was able to land on the platform with
fairly good accuracy; however, non-linear simulation and practical flight tests were not
performed to verify the results.

Feng et al. [36] created a model predictive control (MPC) based system to land a
multi-rotor UAV onto a moving platform. As the UAV is a multi-rotor type, the design of
the MPC is not directly applicable to fixed-wing UAVs. However, the general architecture
of the MPC could be adapted for a fixed-wing UAV. Feng et al. used a linear MPC
architecture to control the position of the quad-copter. The MPC performs extraordinarily
well as it has a fast and minimal oscillation in its response. The MPC’s good performance
consequently results in the UAV having a landing accuracy of 37cm when landing on a
moving platform with wind disturbances, which is impressive.

Persson [37] developed an MPC-based control system to land a fixed-wing UAV onto a
moving ground vehicle. Two different types of MPC control schemes were tested. The
first scheme is a linear MPC that controls the relative position between the UAV and the
ground vehicle. The MPC achieves its control by commanding the UAV’s and ground
vehicle’s acceleration and heading angle as well as the UAV’s flight path angle. The second
MPC scheme consists of two smaller MPCs that control the UAV’s horizontal and vertical
dynamics separately from each other. The horizontal MPC drives the relative horizontal
position and heading between the UAV and ground vehicle to zero. The vertical MPC
controls the UAV’s altitude. When simulating both MPCs with a non-linear model, the
second MPC with the separated control was found to be superior. This MPC’s performance
was then verified using the FlightGear simulator, and on touchdown, its landing accuracy
was at the centimetre level, which is remarkable. The MPC was then compared to a PD
controller for the same landing scenario and it was found that the MPC was superior with
a faster response. A drawback of using the MPC is that it requires a lot of computational
power. This was noted by Persson as she used a powerful desktop computer to execute
her controller.

2.2.3 Findings and Design Decisions

After consulting the literature, the following key findings were made:

• There has been substantial research done on designing different control systems for
the automated landing of a fixed-wing UAV; however, only a limited few considered
landing the fixed-wing UAV onto a moving platform. An even smaller group made a
physically viable system to test the moving platform landing in the real world.

• A diverse set of control system architectures were used to control the fixed-wing
UAV, such as the ABC architecture, LQR, and MPC. The ABC architecture was
the most popular in the ESL, seeing that it was used by many students for different
applications.

Stellenbosch University https://scholar.sun.ac.za

2.2. Previous Research 16

• DGPS and vision-based systems were the two most common approaches to accurately
sense the UAV’s position relative to the runway or moving platform.

• The hardware and software used for the previous ESL fixed-wing UAVs are no longer
maintainable and need to be replaced for this research project.

• Previous ESL moving platform landing projects used a trailer towed by a vehicle
as the moving platform. For this project, the same full-size trailer cannot be used,
as it is too large to fit on the runway where the practical flight tests are performed.
Therefore, an alternative solution for the moving platform is required.

Based on the literature review and the key findings, the following decisions were made for
this project:

1. The flight control system will consist of a hybrid architecture combining classical
control with model predictive control (MPC).

(a) The classical controllers are based on those used by De Bruin [16] and Le
Roux [14]. De Bruin’s design was chosen as his system could land the UAV on
the runway with high accuracy in non-optimal windy weather. Peddle’s ABC
architecture, used by De Bruin, was proven to be robust as it was successfully
implemented for many ESL projects testing different applications. The de-crab
manoeuvre implemented by De Bruin will also be included into the control
design so that the UAV can land on the platform in crosswind conditions. The
de-crab manoeuvre ensures that the UAV is aligned with the moving platform
on touchdown so that it does not experience excessive lateral forces, which can
cause the UAV to tip over and experience a wing strike. Le Roux’s hybrid
guidance controllers are implemented to allow the aircraft to join the circuit
when far from the ground track.

(b) The MPC was added to the system to obtain an improved landing accuracy,
as Persson [37] showed that their MPC achieved superior landing performance
compared to a standard PD controller. The MPC can replace the slower classical
outer-loop controllers, improving the UAV’s altitude tracking performance and
hence the landing accuracy. The MPC architecture is derived from Amadi [38]
as his design was lightweight enough to run on a Pixhawk, which is a low
computational power device. Amadi’s MPC design has to be modified to work
for a fixed-wing UAV, as his design was for a multi-copter UAV. For this project,
it is planned to run the MPC algorithm on a companion computer mounted on
the fixed-wing UAV. For it to successfully perform this task, the MPC needs to
be efficient, hence the decision to use Amadi’s architecture.

Stellenbosch University https://scholar.sun.ac.za

2.2. Previous Research 17

2. The landing algorithm will be similar to the approach used by Le Roux, but will
need to be improved to make it capable of operating on a physical vehicle. Le Roux’s
guidance system worked well in simulation, but is untested on a physical vehicle.

3. A real-time kinematic (RTK) positioning DGPS will be used as the sensor to obtain
the position of the UAV. This sensor was chosen as both Möller [19] and Fourie [20]
performed their moving platform landings with a DGPS. Le Roux was also planning
to use a DGPS for his system. These successful implementations indicate that the
DGPS would also be suitable for landing a fixed-wing UAV onto a moving platform.
The DGPS operates in all weather conditions compared to a vision-based system.
DGPS systems have also become less expensive over the years and are now affordable
to use for this research project.

4. The new fixed-wing UAV hardware and software will be developed using commercially
available hardware and open-source software to increase the system reliability and
maintainability from the previous ESL fixed-UAV hardware and software. The new
hardware and software will be standardised with available support, so that it would
be maintainable for future ESL fixed-wing UAV projects.

5. An RC car will be used as the moving platform, as it can easily fit on the runway at
the airfield where the practical flights are performed. The RC car is too small for
the physical fixed-wing UAV to land on therefore a virtual platform a few meters
above the RC car is used as the target for the UAV during the landing. The RC
car is limited to travel at a speed of 3 m/s to ensure that it does not overshoot the
runway during the practical moving platform landing test.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

System Overview

This chapter provides an overview of the physical system that was developed to demonstrate
the automated landing of a fixed-wing UAV on a moving platform. First, the fixed-wing
UAV, the moving platform, and the stationary ground station are presented. Next, the
simulation environment that was used for development and testing by performing software-
in-the-loop simulation, is described. Finally, the proposed landing strategy that was
followed, is introduced.

3.1. Physical System for Moving Platform Landing
A block diagram of the physical system that was developed to demonstrate the landing of
a fixed-wing aircraft onto a moving platform is shown in Figure 3.1. The system consists of
three main components: the Fixed-Wing UAV, the Moving Platform, and the Stationary
Ground Station.

The aircraft is represented by a fixed-wing UAV and it contains a control system to
automatically manoeuvre the UAV. The moving platform is represented by an RC car
which contains all the components to move as desired and provide the UAV with its states.
The ground station is used to view the states of the UAV as it flies and to remotely
change the operating mode of the UAV. Communication links are used to transmit and
receive data wirelessly between the elements in Figure 3.1. The functionalities of the
communication links are as follows:

• The mobile ground station communicates with the UAV using a set of telemetry
modules.

• The safety pilot controls the UAV via radio control using the UAV RC transmitter
that is linked to the RC receiver on the UAV.

• The moving platform driver controls the motion of the moving platform via radio
control using the moving platform RC transmitter that is linked to the RC receiver
on the moving platform.

• The stationary ground station laptop connects to the mobile ground station computer

18

Stellenbosch University https://scholar.sun.ac.za

3.1. Physical System for Moving Platform Landing 19

via wifi. The ground station operator uses remote desktop to access the ground
control software running on the mobile ground station.

• The DGPS modules on the mobile ground station and the fixed-wing UAV receive the
GPS signals from the GPS satellites. When operating in RTK GPS mode, the RTK
packets from the DGPS base module are transmitted to the DGPS rover module on
the fixed-wing UAV via the telemetry modules.

433 MHz

868 MHz

868 MHz

2.4 GHz

Pixhawk 4

Jetson Nano

D-GPS
Module

Airspeed
Sensor

Magnetometer

RC
Receiver

External Sensors

UAV RC
Transmitter

PM
Board

Servos ESC Motor

Actuators

Telemetry
Module

Fixed-Wing UAV

Moving
Platform RC
Transmitter

Raspberry
Pi 4

D-GPS
Module

Telemetry
Module

STM32RC
Receiver

Servo

ESC

Motor

Moving Platform

Platform Control

Mobile Ground Station

Stationary Ground Station

Laptop WiFi
Router

Figure 3.1: Overview of the physical system used to demonstrate the moving platform
landing.

The individual components of the physical system are discussed in the following
sections.

Stellenbosch University https://scholar.sun.ac.za

3.1. Physical System for Moving Platform Landing 20

3.1.1 Fixed-Wing UAV Setup

The fully-assembled fixed-wing UAV is shown in Figure 3.2.

Figure 3.2: Fully assembled UAV used for practical flight tests.

The fixed-wing UAV consists of an airframe and an avionics system. The airframe
is a Phoenix 0.60 size trainer that was constructed by De Bruin, in a previous Master’s
project [16]. The airframe required some maintenance and repairs. The motor and
servos were kept, but the electronic speed controller (ESC) for the motor was replaced
as there were too many uncertainties regarding the previous ESC. The new ESC is a
Hobbywing FLYFUN-120A-6S-V5. The avionics system developed by De Bruin was no
longer maintainable, and was completely replaced by the new avionics system developed
in this project. The new avionics system consists of both hardware and software elements,
which will be discussed separately on the following subsections.

3.1.1.1 Avionics Hardware

A block diagram of the avionics hardware components and their associated communication
protocols is shown in Figure 3.3.

The new avionics hardware was designed to use the following off-the-shelf hardware
components:

• a Pixhawk 4 autopilot to run the normal flight control software,

• an NVIDIA Jetson Nano single board computer to run the more computationally
expensive Model Predictive Control (MPC) algorithm,

• a Power Management (PM) board to provide power to the Pixhawk and to transmit
the PWM signals from the Pixhawk to the electronic speed controller that controls
the motor, and to the servos that actuate the aircraft’s control surfaces,

Stellenbosch University https://scholar.sun.ac.za

3.1. Physical System for Moving Platform Landing 21

Pixhawk 4

Jetson Nano

D-GPS
Module

Airspeed
Sensor

Magnetometer

RC
Receiver

External Sensors

PM
Board

Servos ESC Motor

Actuators

Telemetry
Module

Fixed-Wing UAV

MAVLink

PWMPWM

UART

I2C

I2C

SBUS

MAVLink

Figure 3.3: Block diagram of the avionics hardware and their associated communication
protocols.

• various sensors to obtain the state measurements of the UAV including:

– a Drotek DP0601 RTK differential GPS sensor,

– a Holybro digital airspeed sensor,

– a Drotek RM3100 magnetometer,

• a TBS Crossfire Nano receiver to receive the remote control commands from the RC
transmitter operated by the human safety pilot,

• a Drotek 433 MHz telemetry module and antenna for communicating with the ground
control station.

Images of the individual avionics hardware components are shown in Figure 3.4.
The Pixhawk 4, shown in Figure 3.4a, was chosen as it was decided to develop new flight

control software using the PX4 Autopilot software stack, as will be mentioned later in this
section. The Pixhawk 4 hardware supports the PX4 Autopilot software, and has also been
successfully used in recent ESL projects and in industry. Since it is commercially produced
and widely used, the Pixhawk 4 hardware is very reliable, which is very important for
the aircraft’s safety due to the high risk nature of flight testing. If the avionics were to
fail, the aircraft would almost certainly crash, resulting in the loss of both the airframe
and the avionics hardware. The Pixhawk 4 also supports many commercially available
sensors which would be required to perform the precise automated landing attempted in
this research project. An unused Pixhawk 4 was already available in the laboratory, which
saved on costs and further encouraged its usage. The Pixhawk 4 contains an internal
inertial measurement unit (IMU), barometer, and magnetometer which provide sensor

Stellenbosch University https://scholar.sun.ac.za

3.1. Physical System for Moving Platform Landing 22

(a) Pixhawk 4 [39] (b) Jetson Nano [40] (c) PM board [41] (d) RTK GPS module [42]

(e) Airspeed sensor [43] (f) Drotek magnetometer [44] (g) Crossfire receiver [45] (h) Telemetry modules [46]

Figure 3.4: Individual hardware components forming the avionics.

measurements that can be used together with those provided by the external sensors to
estimate the states of the aircraft.

The MPC is too computationally expensive to run on the Pixhawk, which was proven
by Amadi [38], as he had to disable a significant amount of features to get it to work. A
companion computer can instead be used to run the MPC algorithm and the Nvidia Jetson
Nano, shown in Figure 3.4b, is chosen to fulfil this role. The Jetson Nano is connected to
the Pixhawk via MAVLink to send and receive data.

The fixed-wing UAV is powered by one 6S 5000 mAh LiPo battery whose voltage is too
high to power the avionics directly. Instead, the PM board, shown in Figure 3.4c, contains
two voltage regulators to convert the voltage to a usable level for the Pixhawk. The second
regulator is added as a redundancy to increase system reliability. The PM board also
measures the battery voltage and sends it to ground station software to be monitored.
The software alerts the operator if the battery is too low and in response, the operator
will command the pilot to land the UAV immediately. A 5V 5A voltage regulator is also
used to power the Jetson Nano from the LiPo. The ESC contains a Battery Elimination
Circuit (BEC) to power the servos.

It was decided to only use one Lipo battery for the UAV for weight savings and
hardware simplicity. Debruin [16] used three batteries on his UAV one of which served as
a backup. Adding an additional battery would be more detrimental to the UAV due to the
added weight and increased system complexity than any benefits it would provide. If any

Stellenbosch University https://scholar.sun.ac.za

3.1. Physical System for Moving Platform Landing 23

battery were to fail in flight due to combustion, the UAV would be irrecoverable in any
case. The 6S battery in this research project was operated between 50% - 100 % battery
life range, so that thrust produced by the motor was approximately constant and the UAV
would not be in a position to run out of battery life. For the specified battery range the
UAV flew for approximately 7 minutes. Three 6S batteries were available for a flight test
day and could be swapped out between flight sessions. This extended the flight test time
to 21 minutes which was sufficient to perform all the tasks delegated to a flight test day.

The Drotek RTK DGPS, shown in Figure 3.4d, is used to obtain the position of the
UAV at the centimeter level which is important for a high precision landing. A DGPS was
chosen as it has been successfully used by previous ESL research projects. This specific
Drotek GPS was chosen as it is supported by the Pixhawk 4 and autopilot software. The
RTK GPS works by using a rover module connected to the UAV and a base module
connected to the ground station. The RTK GPS operation will be discussed in more detail
in section B.2.1. The GPS module is connected to the Pixhawk 4 via UART.

The Holybro airspeed sensor, shown in Figure 3.4e, measures the differential pressure
in a pitot tube to determine the airspeed of the aircraft. This airspeed sensor was chosen
as it is supported ”out of the box” by the Pixhawk. The airspeed sensor is connected to
the Pixhawk via an I2C interface.

The Pixhawk’s magnetometer was found to be too susceptible to interference, as it
produced incorrect measurements due to noise and a large bias error. An external Drotek
magnetometer, shown in Figure 3.4f, was therefore added to the avionics to be used instead
of the Pixhawk magnetometer, as the Drotek magnetometer had less noisy measurements.
The Drotek magnetometer is also connected to the Pixhawk via an I2C interface.

The TBS RC receiver, shown in Figure 3.4g, receives remote control commands from
the RC transmitter operated by the human safety pilot and transmits them to the Pixhawk
autopilot. The TBS crossfire transmitter and receiver package were chosen as it has a
very long range which is more than what is required for the flight tests with the physical
UAV. It also has many safety protocols to protect against signal loss. The RC receiver is
connected to the Pixhawk via an SBUS interface. The RC crossfire package operates at
868 MHz which is a different frequency from the telemetry module, preventing interference
between the two communication channels.

The Drotek 433 MHz telemetry module, shown in Figure 3.4h, is used for communication
between the UAV and the ground control station. . The UAV receives commands from
and transmits telemetry to the ground control station via this communications link. The
telemetry is monitored by the ground control station operator. The 433MHz band is a
legal frequency band to use in South Africa, which is where the flight tests are performed.
Large antennas were placed on both the UAV and the ground control station / moving
platform telemetry modules to increase the signal coverage. The telemetry module is
connected to the Pixhawk 4 via a MAVLink connection.

Stellenbosch University https://scholar.sun.ac.za

3.1. Physical System for Moving Platform Landing 24

A custom shelf was designed and 3D printed to mount the avionics in the airframe. The
shelf was designed to compact, strong, stable and easily removable. The fully assembled
avionics shelf is shown in Figure 3.5.

Figure 3.5: 3D printed shelf containing avionics.

A custom airspeed sensor mount was 3D printed to attach the pitot tube onto the UAV
wing. A platform was also 3D printed to mount the RTK GPS module and magnetometer
in the airframe. An anti-vibration pad was created using rubber, silicone and polystyrene
which was used to mount the Pixhawk to the avionics shelf. This pad would absorb the
vibrations from the motor and propeller to prevent them from contaminating the Pixhawk
sensor measurements.

3.1.1.2 Avionics Software

Open source autopilot software is ideal for developing custom autopilot systems as they
have community support and are often tested in various scenarios which increases their
reliability. New features are also continuously added which improves their functionality.
There are many open source autopilot software packages to consider and these include:
PX4, ArduPilot, LibrePilot and Betaflight [47].

LibrePilot is mainly used for multi-rotor drones while Betaflight is more of a hobbyist
software and does not facilitate more complex autopilot system development. PX4 and
ArduPilot are the two main options that are considered as they both have the proper tools
required for the implementation of the flight and guidance control systems. The Pixhawk
4 runs the NuttX Real Time Operating System (RTOS) and both the PX4 and ArduPilot
software stacks can be compiled and built to run on NuttX, which further cements their
usage.

Stellenbosch University https://scholar.sun.ac.za

3.1. Physical System for Moving Platform Landing 25

(a) Logo of PX4 Autopilot (b) Logo of ROS

Figure 3.6: Logos of the avionics software

PX4 Autopilot was chosen for the development of the new avionics software as it has
two key advantages over ArduPilot. These advantages are that it supports hardware-in-
the-loop (HITL) simulation and that it has an asynchronous software architecture which
automatically deals with time scheduling [23]. The PX4 software was also successfully
used in several previous ESL research projects (including: [23], [48], [49]) and this further
provides confidence in using PX4. None of the previous projects used the PX4 software to
control a fixed-wing UAV, since they were all focused on multi-rotor UAVs. This research
project will therefore be the first in the ESL to develop the flight control software for a
fixed-wing UAV using the PX4 open source software stack.

Because the MPC algorithm will be executed on the Jetson Nano, a software library is
required to facilitate communication between the Jetson Nano and the Pixhawk. Robot
Operating System (ROS) is such a library and is supported by PX4. PX4 supports both
ROS1 and ROS2, with the latter being recommended. However, at the time that the
MPC algorithm was implemented, only the ROS1 method was well documented and it
was therefore used. The ROS1 method consists of using MAVROS with MAVLink to
transmit data between the Jetson Nano and the Pixhawk. MAVLink is a messaging
protocol for connecting isolated components [50] while MAVROS is a communication
driver for connecting MAVLink to ROS [51].

3.1.2 Moving Platform

Previous research projects in the ESL that developed systems for landing on a moving
platform used a full-size trailer with a large platform towed by full size motor vehicle.
However, these previous projects focussed on landing quadrotor UAVs or helicopter UAVs
that are able to travel at slow speeds or hover, and do not require an arrestor system
after touchdown. Since this research project focusses on landing a fixed-wing UAV, it
was decided to use a radio-control (RC) car as the moving platform and to perform a
touch-and-go landing on a virtual platform located a few meters above the physical car.
This solution avoids the use of the arrestor system to slow the UAV down which mitigates
the high possibility of the UAV crashing on touchdown. The UAV’s propeller would most
likely get caught by the arresting wires causing damage to it. For this research project, it
was decided to focus on the performance of the developed control system in performing
the moving platform landing rather than the development of a platform to capture the

Stellenbosch University https://scholar.sun.ac.za

3.1. Physical System for Moving Platform Landing 26

fixed-wing UAV. Another reason the RC car was chosen was its small size, as the airfield
where the practical test would be performed only had a small runway. The trailer was too
large to be used on the airfield runway. The RC car is limited to travel at a speed of 3
m/s to ensure that it does not overshoot the runway during the practical moving platform
landing tests, as will be explained in Section 3.3.1.

The moving platform for this project therefore consists of a radio-controlled car carrying
a mobile ground station, as shown in 3.7.

Figure 3.7: The fully assembled moving platform used for the practical flight tests.

The RC car consists of the car chassis, the platform electronics, a servo that actuates
the steering angle, and a motor with an electronic speed controller to control the forward
speed. The car chassis is a Traxxas Rustler XL-5. The servo, ESC and brushed motor that
came with the car chassis are kept the same for the platform. The plan for the flight tests
was to have the platform’s motion be moving at a constant velocity in a straight line. A
control system for the RC car was outside the scope of the project and was not required for
the simple motion desired. As the RC car motor is brushed, applying a constant voltage
on it would cause the car to move approximately at a constant speed, especially since the
car moves on a flat surface. To obtain this constant voltage the ESC has to be supplied
with a constant PWM signal. The value of this PWM signal was experimentally derived
from trial and error. The speed that the platform is aimed to travel at is 3 m/s. The
platform should approximately meet this speed and a high speed control accuracy is not
required.

The moving platform electronics consists of two groups of hardware that operate
independently of each other, namely the Platform Control electronics and the Mobile
Ground Station electronics. An overview of the moving platform electronic groups with
their associated communication protocols is shown in Figure 3.8.

Stellenbosch University https://scholar.sun.ac.za

3.1. Physical System for Moving Platform Landing 27

D-GPS
Module

Telemetry
Module

STM32RC
Receiver

Servo

ESC

Motor

Moving Platform

Platform Control

Mobile Ground Station

Raspberry
Pi 4

USB USB

PWM OUT

PWM OUT

PWM IN

Figure 3.8: Block diagram of the moving platform electronics and their associated
communication protocols.

The function of the Platform Control electronics, as the name suggests, is to control
the motion of the platform by using the following hardware:

• a TBS Crossfire Nano receiver to receive the radio-control commands from the RC
transmitter operated by the human driving the moving platform,

• an STM32G431KB Nucleo-32 microcontroller development board to transmit the
commands from the RC receiver to the servo and the ESC. The STM32 also controls
the mode of the platform,

• an MCP602 operational amplifier to act as a buffer between the STM32 and the
Traxxas servo and ESC.

The STM32 microcontroller, shown in Figure 3.9, was chosen as it has a small footprint,
allowing it to easily fit on the RC car. The STM32 was also available to be used in the
ESL. The Traxxas ESC and servo operate at 100Hz which is not the norm as standard
RC ESCs and servos operate at 50Hz. The RC receiver outputs its PMW signals at 50Hz,
therefore the microcontroller must convert them to 100 Hz PWM signals to be compliant
with the Traxxas components.

Figure 3.9: Image of the STM32G431KB Nucleo-32 microcontroller [52].

Stellenbosch University https://scholar.sun.ac.za

3.1. Physical System for Moving Platform Landing 28

The TBS Crossfire receiver is excessive for the RC car as the car will be fairly close
to the driver. A spare Crossfire receiver and transmitter were available in the ESL and
therefore to save on cost and time they were adapted to be used on the RC car. The UAV
and RC car Crossfire receivers are linked to their respective transmitters and therefore
there is no interference between them. The datasheets and schematics of the Traxxas ESC
and servo were not available, and therefore an operational amplifier was added as a buffer
between the STM32 and the Traxxas components, to protect the STM32 from possible
negative voltages.

The Mobile Ground Station electronics contain all the hardware required to run the
ground station on the moving platform. The ground station hardware is placed on the
moving platform because the accurate relative position between the UAV and the moving
platform is required for the landing. The GPS receivers must be operated in RTK GPS
mode, where the base GPS receiver on the moving platform transmits information about
the GPS carrier signal it receives to the rover unit GPS receiver on the UAV. The mobile
ground control station must therefore be located on the moving platform, so that it can
receive the RTK packets from the base station DGPS module and transmit them to
the rover unit DGPS module on the UAV via the telemetry module. The RTK GPS
configuration is discussed in more detail in Appendix B.2.1. The hardware for the Mobile
Ground Station electronics consists of:

• a Raspberry Pi 4 single board computer to run the Ground Control Station (GCSN)
software,

• a Drotek 433 MHz telemetry module and antenna for communicating with the UAV.

• a Drotek DP0601 RTK DGPS module and antenna.

Figure 3.10: Image of the Raspberry Pi 4 [53].

The Raspberry Pi 4, shown in Figure 3.10, was chosen as it supports the GCSN software
while still being small enough to fit on the RC car. The Raspberry Pi 4 contains a WiFi
module that allows it to connect to the router of the stationary ground station. The
telemetry module receives the data from the UAV to display in the GCSN software. The
telemetry also sends the GCSN operator’s commands to the UAV. The RTK GPS module

Stellenbosch University https://scholar.sun.ac.za

3.1. Physical System for Moving Platform Landing 29

on the RC car is the base module and its data is sent to the UAV via the telemetry so
that the rover module can obtain the UAV’s position to the centimeter level. Both the
telemetry and RTK GPS module are connected to the Raspberry Pi 4 via USB.

The RC car also contained some additional components that were required for it to
function. These components will now be mentioned. A 3D-printed platform was created to
mount all the electronics on the RC car. The moving platform’s electronics, ESC and servo
were powered by one 2S 5300 mAh LiPo battery. This battery’s capacity was sufficient to
last a whole flight test day without being replaced. A 5V 5A voltage regulator was used
to convert the LiPo voltage to a safe level to power the Raspberry Pi 4, STM32 and other
minor electronic components. An Olfi One.Five action camera was mounted on the RC
car to capture the UAV chasing the car and landing on the virtual platform.

3.1.3 Stationary Ground Station

The GCSN software needs to be accessed by the GCSN operator to view the UAV data
and send commands. Since the RC car is small and mobile, the ground station hardware
cannot be physically accessed by the GCSN operator therefore the GCSN software needs
to be accessed remotely. The remote connection was achieved by using WiFi to remote
desktop from a laptop into the Raspberry Pi 4. A block diagram of the stationary ground
control station hardware and the associated communication protocols is shown in Figure
3.11.

Stationary Ground Station

Laptop WiFi
Router

Ethernet

Figure 3.11: Block diagram of the stationary ground station hardware and their associated
communication protocols.

The hardware used for the stationary ground station consists of:

• a laptop to allow the GCSN operator to interface with the GCSN software,

• a WiFi router to create a wireless local area network for the laptop and Raspberry
Pi 4.

The laptop connects to the router with an Ethernet cable and uses remote desktop software
to wirelessly access the Raspberry Pi’s desktop and hence the GCSN software. The GCSN
software used is QGroundControl (QGC) as it is the recommended software to use by the
PX4 developers. QGC is mainly used to calibrate the UAV sensors as well as monitor the

Stellenbosch University https://scholar.sun.ac.za

3.1. Physical System for Moving Platform Landing 30

aircraft states and sensors during a flight session. Figure 3.12 shows the user interface
(UI) of QGC as the aircraft is performing a flight session.

Aircraft
Location

Flight
Path

Sensor
Status

Aircraft
States

Figure 3.12: User interface of QGroundControl

The QGC UI shows the current aircraft location as well as the flight path the aircraft
has flown. QGC displays warnings from issues that might occur during the flight test and
this is used as an indicator to determine if the pilot should perform an emergency landing.
QGC also contains a MAVLink console that is connected to the Pixhawk. This console
is used to change the operating sub-mode of the control system for testing the different
controllers or automated landings.

Before the moving platform landing is performed, the UAV’s individual controllers
are tested and a runway landing with the UAV is executed. The physical setup used
to practically test the individual controllers and perform the runway landing is similar
to the moving platform landing setup, with the exception that it excludes the moving
platform. The setup for flight controller testing and runway landings runs the ground
control station software (QGC) directly on the laptop with the telemetry and DGPS base
modules connected to it via USB. The laptop will directly connect to the UAV via the
telemetry module and the GCSN operator will have physical access to the ground control
station. The RTK DGPS base module antenna is mounted on a tripod to give it an open
view of the sky so that it can capture multiple satellites.

Stellenbosch University https://scholar.sun.ac.za

3.2. Simulation Software 31

3.1.4 UAV Safety Pilot and Moving Platform Driver

The UAV pilot has an RC transmitter which links to the RC receiver on the UAV. The
RC transmitter is a RadioMaster TX16S equipped with a TBS Crossfire Micro TX V2
transmitter module. The UAV pilot uses the transmitter to switch the modes of the UAV
and control the UAV when in Manual mode. The UAV has two modes of operation which
are Manual mode and Autopilot mode. In Manual mode, the pilot has full control of the
UAV and it operates as a standard RC model aircraft. In Autopilot mode, the control
system controls the UAV and the pilot does not have control. At any time the pilot can
retake control of the aircraft by switching back to Manual mode. There are sub-modes in
the control system depending on what controller is being tested or what landing scenario
is being executed. The sub-modes become active when the UAV is in Autopilot mode.
The pilot can also arm or disarm the UAV on the ground to make it safe to handle.

The Moving Platform driver also has an RC transmitter which links with the RC
receiver on the moving platform. This RC transmitter is a TBS Tango 2 which has a
built-in transmitter module to connect to the receiver. The Moving Platform has two
modes of operation which are Manual mode and Cruise Control Mode. In Manual mode
the driver has full control of the platform and it behaves as a standard RC car. In Cruise
Control mode the driver can only steer the platform as the throttle is set to a fixed PWM
value to move the platform at a constant speed. The driver can arm or disarm the platform.
When the platform is disarmed, the ESC applies a breaking effect on the motor allowing
the platform to be quickly brought to a halt.

3.2. Simulation Software
The PX4 Autopilot software supports software-in-the-loop (SITL) simulations and this
will be exploited to test the developed control systems in a more realistic environment.
To perform SITL simulations, a physics simulator is required to produce the sensor
measurements that would be received by the PX4 flight control software, and to simulate
the response of the aircraft to the commanded throttle settings and control surface
deflections. Although PX4 supports numerous simulators, only three of them can be used
with a fixed-wing UAV, namely Gazebo, FlightGear, and JSBSim.

Figure 3.13: Logo of Gazebo Simulator.

Gazebo is a light-weight simulator that is used for various models such as robots,

Stellenbosch University https://scholar.sun.ac.za

3.3. Landing Strategy 32

rovers, multi-rotor UAVs, and fixed-wing UAVs. Gazebo therefore has a large community
which can be consulted when troubleshooting is required. Gazebo also uses an architecture
similar to ROS which simplifies development. FlightGear and JSBSim are more graphically
intensive and have a steeper learning curve then Gazebo. They also do not have the same
amount of support as Gazebo. Gazebo was therefore chosen as the simulator for the SITL
implementation.

3.3. Landing Strategy
This section first discusses the moving platform specifications, then the landing scenarios
and finally, the landing procedure.

3.3.1 Moving Platform Specifications

The moving platform needs its size and speed to be determined to allow it to imitate an
aircraft carrier in terms of the model aircraft scale. Le Roux [14] compared a real aircraft
and aircraft carrier to the model aircraft and platform to derive these values. Le Roux’s
method consists of determining scale factors based on the ratio of the aircraft carrier
runway dimensions and the wingspan of the landing real aircraft. These scale factors
would then be multiplied by the wingspan of Le Roux’s fixed-wing UAV to derive the ideal
platform’s dimensions. Le Roux found that the ideal platform should have a length of
3.24m and a width of 0.77m. Unfortunately, Le Roux only had a 3 m by 3 m platform to
do the test and therefore that became his platform size.

Le Roux’s method is deemed acceptable as scaling the aircraft carrier’s runway down
to the size of the fixed-wing UAV is the best approach usable with the resources available.
This project uses the same size airframe as Le Roux, therefore the same ideal platform
dimensions can be used. It is planned for a future ESL project to physically land the
fixed-wing UAV onto the 3 m by 3 m trailer. Therefore similar to Le Roux, 3 m by 3 m is
chosen to be the size of the moving platform. The moving platform, however is represented
by the RC car, which has a fixed dimension. Therefore the 3 m by 3 m size is set to
the virtual platform located directly above the moving platform. The virtual platform
size results in both the maximum allowable longitudinal and lateral errors for aircraft on
touchdown being ±1.5 m.

Le Roux chose a platform speed of 10 m/s due to his GPS providing noisy measurements
at low speeds. This speed however is too high for the RC car to maintain. This speed is
also too high for the length of the runway where the practical flight tests are performed,
as the platform would overshoot the runway before the aircraft would land on it.

A US Navy Nimitz-Class aircraft carrier can cruise at 56 km/h [54] while an aircraft
can land on the carrier at 241 km/h [26]. The fixed-wing UAV is set to land on the virtual

Stellenbosch University https://scholar.sun.ac.za

3.3. Landing Strategy 33

platform at 18 m/s. The moving platform speed can therefore be calculated by multiplying
the UAV speed by a scale factor formed by the ratio of the carrier speed over the aircraft
speed. The moving platform speed is therefore,

V̄vp = 18 56
241 = 4.18 m/s (3.1)

The length of the runway at the airfield is 150 m long. However, to have a margin of safety
and a runoff area for the UAV and the moving platform, the runway is instead assumed to
be 120 m long. When the moving platform moves at 4.18 m/s, it uses a distance of 128.55
m before the UAV touches down on the virtual platform. This distance is larger than the
assumed runway length, and therefore the speed of the platform has to be reduced. The
platform’s speed is therefore set to 3 m/s, which is mathematically represented as,

V̄vp = 3 m/s (3.2)

At this speed, the platform covers a distance of 85 m before touchdown, which is well
within the assumed runway length. 3 m/s is also an easily attainable speed for the RC car.

3.3.2 Landing Scenarios

There are two main landing scenarios that the aircraft should be able to execute to
successfully achieve the aim of this project. The fixed-wing UAV should be able to
accurately land on both a stationary runway and a moving platform. For the moving
platform landing, it is assumed that the platform is performing a horizontal translational
motion at a constant velocity (i.e. not changing its direction), and is not performing any
rotational motion.

3.3.2.1 Stationary Runway Landing

This scenario represents a landing where the aircraft is aiming to land accurately within
a designated bounding box demarcated on the runway. The runway landing essentially
represents a stationary platform landing, therefore, it is vital that this landing be accurate.
It is important for the aircraft to able to successfully execute this scenario as the moving
platform landing will be even more challenging. This scenario will allow the flight and
guidance control systems to be verified to ensure that they work correctly. This landing
scenario will be performed first on the practical vehicle before the moving platform test is
performed.

Stellenbosch University https://scholar.sun.ac.za

3.3. Landing Strategy 34

3.3.2.2 Moving Platform Landing

This landing scenario represents a landing on a moving platform which is translating
horizontally at a constant velocity. The translational motion consists of linear horizontal
movements which are the most dominant motion of the moving platform. The moving
platform does not change its altitude and attitude during this motion as it only changes
its position in the horizontal plane. The moving platform’s translational motion will be
constrained so that it generally moves at a constant speed in a straight line with slight
deviations due to environmental factors. This is to simulate an aircraft carrier which
generally moves in one direction for landing procedures. For the moving platform flight
tests, the platform will move along the runway in the same direction as the aircraft would
land for a normal runway landing. The aircraft lands at a much higher speed than what
the platform moves and this allows the aircraft to catch up to the platform and land on it.
Since the practical moving platform vehicle is an RC car that is quite agile, the aircraft
must be able to compensate for any longitudinal or lateral offsets that may occur due to
the RC car deviating from its intended trajectory. The practical moving platform landing
test is the final test that will be performed after the flight and guidance controllers have
been tested and verified to behave correctly.

There are various other motions that the moving platform can exhibit such as heaving
and rotational motion. However, these motions are considered to be outside the scope of
this project.

3.3.3 Landing Procedure

The landing procedure for the two landing scenarios are generally the same with only
minor differences existing between them which will be highlighted. First, the landing
procedure for the stationary runway landing will be introduced, and thereafter the moving
platform landing procedure will be discussed.

3.3.3.1 Stationary Runway Landing Procedure

The aircraft needs to first align itself with the runway from its current position before it
can land. The aircraft can do this by following a standard circuit around the airfield. This
circuit is inspired by the actual circuit flown by real, full-sized aircraft used to perform a
runway landing. Figure 3.14 shows the circuit flown for a runway landing.

The circuit is flown in an anti-clockwise direction due to physical constraints of the
airfield that was used for the flight testing. The entry point to the circuit can be at any
position and not just the location shown in the figure. The crosswind and downwind legs
are used to get the aircraft on the circuit. The base leg is the last perpendicular leg before
getting in line with the runway. It is required that the aircraft be at the appropriate
altitude and airspeed on this leg so that the aircraft can descend at a constant rate for

Stellenbosch University https://scholar.sun.ac.za

3.3. Landing Strategy 35

Crosswind leg

Downwind leg

Entrance

Base leg

Final Approach

Descent

Ground Roll

Figure 3.14: Diagram showing the circuit followed for a stationary runway landing.
Adapted from Le Roux [14].

landing. On the final approach, the aircraft should be aligned with the runway and start
slowing down so that it can safely land. The landing airspeed should be near the stall
speed but not low enough to stall the aircraft. The aircraft then descends and touches
down at the start of the runway. After touchdown, the aircraft enters the ground roll state
where it slows down on the runway while maintaining the centre line until it comes to a
complete stop. If the aircraft is not stabilised for landing, then it can abort the landing
attempt by returning to the circuit and go around to try again. For the runway landing
scenario, it is expected that the aircraft should be able to touch down accurately on a
predetermined point on the runway. To do this a glide slope needs to be used which would
allow the aircraft to regulate its airspeed and pitch angle when descending. The glide
slope is the altitude ramp reference shown in Figure 3.15 which guides the aircraft to the
touchdown point. The glide slope is defined by the glide slope angle γ and this angle
has to be selected to ensure that the aircraft can track the glide slope while maintaining
its airspeed. The glide slope angle is selected to be 4◦ as this value was chosen by De
Bruin [16] to minimise landing inaccuracies from glide slope tracking offsets.

Final ApproachWaypoint Navigation

Ground Roll

Decent

Figure 3.15: Landing profile for a stationary runway landing.

The glide slope ground distance dg is selected as 250 m and was chosen based on the

Stellenbosch University https://scholar.sun.ac.za

3.3. Landing Strategy 36

distance available at the airfield. The required altitude at the start of the descent hg is
then calculated as,

hg = dg tan(γ) = 17.4817 m (3.3)

The aircraft should be at this altitude by the latest in the base leg, so that it can focus
on preparing for landing during the final approach. The aircraft is flown around the
circuit at an airspeed of 18 m/s however, this airspeed is too high to land with. De Bruin
experienced landing gear flexing on touchdown at 16 m/s, therefore it is safe to assume
that at 18 m/s the aircraft will be damaged. The aircraft is therefore slowed down during
the final approach to 16 m/s which is significantly above the stall speed. During the
descent phase the aircraft executes the de-crab manoeuvre to align itself with the runway
before touchdown. This manoeuvre needs to be executed to ensure that the lateral forces
acting on the aircraft are minimal. A large lateral force can damage the landing gear
and also cause the aircraft to tip over causing a wing strike. The de-crab manoeuvre will
cause a slight error in lateral position however this is acceptable to ensure the safety of
the aircraft.

3.3.3.2 Moving Platform Landing Procedure

The circuit that the aircraft flies around the airfield for the moving platform landing is
similar to the one used for the stationary runway landing. The circuit differs slightly for
the final approach and descent phases as shown in Figure 3.16.

Crosswind leg

Downwind leg

Entrance

Base leg

Final Approach

Descent

Go-Around

Figure 3.16: Diagram showing the circuit followed for a moving platform landing.

The touchdown point for the moving platform landing is further along the runway
compared to the stationary runway landing as the aircraft is not required to come to
a complete stop on the runway. Instead the aircraft will simply perform a go-around
manoeuvre when it detects that it has landed on the virtual platform and will rejoin the
circuit. Figure 3.17 shows the landing profile followed for the moving platform landing.
This profile is similar to the runway landing in that a glide slope is used to land on the
touchdown point. The glide slope angle for this profile is also set to 4◦.

Stellenbosch University https://scholar.sun.ac.za

3.3. Landing Strategy 37

The touchdown point between the aircraft and moving platform is predicted by the

Final ApproachWaypoint Navigation Decent Go-Around

Predicted
Touchdown

Point

Figure 3.17: Landing profile for a moving platform landing.

guidance control system, and this point is then used to create the glide slope reference for
the aircraft to follow. The predicted touchdown is continuously updated by the guidance
control system based on the instantaneous speed of the moving platform and aircraft. In
response, the glide slope reference for the aircraft to follow is also continuously updated.
The glide slope ground distance dg and altitude hg for the moving platform landing profile
is the same values as the stationary runway landing. The RC car that is used as the moving
platform is too small for the UAV to physically land on, therefore it is decided to instead
use a virtual platform that the aircraft can target for a landing. The virtual platform
is a few meters above the RC car and a ”touchdown” on this platform occurs when the
aircraft’s altitude is less than the virtual platform altitude. The virtual platform’s altitude
above the RC car is given by hvp which is set to 3 m for this project. This value was
chosen as it allows the aircraft to get quite close to the RC car while still being able to
perform the go-around manoeuvre. The moving platform landing circuit’s altitude is the
sum of of the glide slope (hg), virtual platform (hvp) and RC car altitudes. As the moving
platform moves in the same direction as the aircraft, the relative speed between them is
less than the aircraft’s ground speed. The aircraft’s airspeed for landing is therefore kept
at 18 m/s as it does not actually touch the platform on landing, which mitigates the risk
of damaging the aircraft.

Stellenbosch University https://scholar.sun.ac.za

3.4. Summary 38

3.4. Summary
This chapter first presented the physical system used to perform the moving platform
landing. The simulation software used to test the control system in software-in-the-loop
simulations was then selected. Finally, the landing strategies that were followed, both in
simulation and practical tests, were discussed. Now that a better understanding of the
systems used and strategies followed has been obtained, the fixed-wing UAV model will
now be presented in the next chapter.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Aircraft Dynamic Model

This chapter presents the mathematical model that was used to describes the flight
mechanics of the fixed-wing UAV. First, the nonlinear model of the aircraft dynamics
is presented. Next, a linear, decoupled model of the aircraft dynamics is obtained by
linearising the nonlinear aircraft dynamics about an equilibrium state. The linear aircraft
model is used for the flight control system design, and the nonlinear aircraft model is used
for simulations. Finally, the natural modes of motion of both the longitudinal and lateral
dynamics are calculated and analysed for the specific UAV used in this project.

The background theory in this chapter was sourced from the unpublished Advanced
Automation 833 course notes that were compiled by Peddle and Engelbrecht. (These
course notes were compiled from several sources, including Cook [55], Etkin and Reid [56],
and Blakelock [57].) The mathematical model uses standard reference frames, equations of
motion, and force and moment models that are commonly used for modelling and control
of a fixed-wing aircraft.

4.1. Reference Frames
This section presents all the reference frames that are used in this research project.

4.1.1 Inertial Frame

Newton’s equations of motion can be used to model a UAV’s behaviour, however, this
requires an inertial frame or inertial axis system to be defined. For UAVs that have a small
range, the North-East-Down (NED) axis system is often used to represent the inertial
frame. This system assumes that the Earth is flat and non-rotating which is sufficient for
this project as the UAV will only be operated within a few hundred meters of the runway.
The origin of the inertial axis can be placed anywhere in the environment however, for this
project it was chosen to be start of the runway. As shown in Figure 4.1, the X-axis points
in the true North direction, the Y-axis points in the East direction, and the Z-axis points
downwards, normal to the local horizontal plane. The direction of the Z-axis is downwards
to ensure that the right-hand orthogonal rule is satisfied. The runway’s heading is offset
by an angle Ψr from true North. Using this axis system allows the UAV’s states, such as

39

Stellenbosch University https://scholar.sun.ac.za

4.1. Reference Frames 40

XE(axis)

YE(axis)

ZE(axis)

N

S

E

W

Figure 4.1: Illustration of the inertial axis system.

position and velocity, to be referenced with respect to the ground. This is required when
wanting to place the UAV at a certain location, which itself is referenced with respect to
the ground, as will be necessary for the moving platform landing.

4.1.2 Body Frame and Aircraft Notation

The body frame, also known as the body axis system, is an axis system that moves and
rotates with the UAV. The origin of this frame is chosen to be positioned at the UAV’s
centre of mass. A fixed-wing UAV is bilaterally symmetrical, therefore, it has a plane of
symmetry that divides it evenly. The body frame’s X-axis (XB) lies in this plane and
points towards the front (nose) of the plane as shown in Figure 4.2. The Y-axis (YB) is
perpendicular to the X-axis and points outward through the right wing of the aircraft. The
Z-axis (ZB) is also in the plane of symmetry and points towards the landing the gear to
satisfy the right-hand orthogonal rule. The variables shown in figure 4.2 use the standard
notation for aircraft modeling. Table 4.1 explains the meanings of the variables.

XB(axis)

ZB(axis)

YB(axis)

X : Force
U : Velocity

Z : Force
W : Velocity

Y : Force
V : Velocity

L : Roll Moment
P : Roll Rate

N : Yaw Moment
R : Yaw Rate

M : Pitch Moment
Q : Pitch Rate

CM

Figure 4.2: Body frame illustration with all the variables representing the forces, moments,
velocities and angular rates. [adapted from AA833 course notes], [Aircraft model adapted
from [58]]

Stellenbosch University https://scholar.sun.ac.za

4.1. Reference Frames 41

Table 4.1: Notation used for aircraft model

Aircraft Notation
Variable Definition

X, Y, Z Force vector coordinates defined in the body frame. The forces
are the axial, lateral, and normal forces respectively.

L, M, N Moment vector coordinates defined in the body frame. The
moments are roll, pitch, and yaw respectively.

U, V, W
Linear velocity vector coordinates defined in the body frame.
The velocities are the axial, lateral, and normal velocities
respectively.

P, Q, R
Angular velocity vector coordinates defined in the body frame.
The angular velocities are roll, pitch, and yaw rates respec-
tively.

δA, δE, δF , δR

Aileron, elevator, flap and rudder deflection angles. The posi-
tive direction for the deflection angles is defined to produce a
negative moment on the aircraft in the body axis. The positive
deflection angle direction also moves counter clockwise(curl
right hand rule) to the axis in which it rotates.

4.1.3 Wind Frame

The wind frame, also known as the stability frame or wind axis system, is similar to
the body frame as it also moves with the aircraft and its origin also coincides with the
aircraft’s centre of mass. The wind frame’s X-axis points in the direction of the aircraft’s
velocity vector. Its Y-axis points out through the right (starboard) wing and the Z-axis,
which completes the right hand orthogonal rule, points downwards towards the landing
gear. The body and wind frames are related to each other by two variables which are the
angle of attack (α) and the angle of sideslip (β), as shown in Figure 4.3.

XB (axis)

XW (axis)

(a) Wind axis relation by α

XB (axis)

XW (axis)

(b) Wind axis relation by β

Figure 4.3: Diagrams showing the body frame to wind frame rotation. Adapted from De
Bruin [16].

Equations 4.1 and 4.2 show the conversion from the body axes to the wind axes using
the rotation matrices comprised of the angle of attack (Rα) and angle of sideslip (Rβ).
The vector Xb is in the body frame and the vector Xw is in the wind frame.

Stellenbosch University https://scholar.sun.ac.za

4.1. Reference Frames 42

Xw =

cos(β) sin(β) 0

− sin(β) cos(β) 0
0 0 1

cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)

Xb (4.1)

Xw = RβRαXb (4.2)

It is convenient to have the velocity in spherical/polar form because it allows for easier
modeling of the aircraft, as will be shown later in this chapter. The velocity spherical
form is shown in Figure 4.4.

XB axisYB axis

ZB axis

U

W

V

Figure 4.4: Spherical form of the aircraft velocity coordinates [adapted from AA833
course notes].

In this form, the velocity is expressed in terms of its magnitude V̄ and two angles
which are the angle of attack α and the angle of sideslip β. The equations below relate
the velocity vector in Cartesian form to spherical form.

V̄ =
√
U2 + V 2 +W 2 (4.3)

α = tan−1
(
W

U

)
(4.4)

β = sin−1
(
V

V̄

)
(4.5)

The inverse of relation is given by

U = V̄ cos(α) cos(β) (4.6)

V = V̄ sin(β) (4.7)

Stellenbosch University https://scholar.sun.ac.za

4.2. Equation of Motion Development 43

W = V̄ sin(α) cos(β) (4.8)

4.1.4 Guidance Frame and Runway Frame

Two additional reference frames, namely the guidance frame and the runway frame, are
also used in this project. The guidance frame will be defined in Section 6.1 when the
guidance algorithm is introduced. The runway frame will be defined when the moving
platform model is introduced in Section 4.5.

4.2. Equation of Motion Development
A dynamic model that encapsulates all the significant characteristics of the aircraft must
first be derived before the flight control system can be designed. A six-degrees-of-freedom
model is used to represent the aircraft, as it is assumed that the aircraft is a rigid body.
The six-degrees-of-freedom include three translational and three rotational degrees of
freedom in the axial, lateral, and normal axes. This model is commonly used for small
UAVs as their mass and structure do not change during flight, as is the case for the UAV
used in this project. The equations of motion can be split into two categories, namely the
kinetics and kinematics.

4.2.1 Kinetics

The kinetic equations of motion relate the forces and moments that act on the aircraft to
the translational and rotational motion of the aircraft.

The kinetic equations of motion are shown below, with all vectors coordinated in the
body frame. The complete derivation can be found in [57].

X = m(U̇ − V R +WQ) (4.9)
Y = m(V̇ + UR −WP) (4.10)
Z = m(Ẇ − UQ+ V P) (4.11)
L = Ṗ Ixx +QR(Izz − Iyy) (4.12)
M = Q̇Iyy + PR(Ixx − Izz) (4.13)
N = ṘIzz + PQ(Iyy − Ixx) (4.14)

The first three equations relate the body forces (X, Y, Z) of the aircraft to its transla-
tional velocity (U, V and W). The last three equations relate the body moments (L,M,N)
to the aircraft’s angular rates (P,Q and R). The m variable in the first three equations is
the mass of the aircraft, while Ixx, Iyy, and Izz variables are the moment of inertia in the

Stellenbosch University https://scholar.sun.ac.za

4.2. Equation of Motion Development 44

body frame.
Two important assumptions are made in these equations to simplify the derivation:

• It is assumed that the aircraft is symmetrical about the XZ-plane, and hence, the
cross product of Ixy and Iyz is zero. This is valid for this aircraft as was discussed in
section 4.1.2.

• The cross product of the moment of inertia Ixz is small, which is true for conventional
aircraft.

With the kinetic equations now defined, the kinematic equations are presented next.

4.2.2 Kinematics

The kinematic equations relate the motion variables to each other over time. These
variables include linear velocity, angular velocity, linear position and attitude (angular
position). The kinematics do not consider the forces and moments that cause the motion,
and is also called the ”geometry of motion”. The linear and angular velocities were
introduced in the kinetic equations, and now the position and attitude are added for the
kinematic equations. The aircraft position and attitude are parameterised as follows,

• N,E,D are the position coordinates of the aircraft in the inertial frame. N is the
north coordinate along the inertial X axis, E is the east coordinate along the inertial
Y axis, and D is the down coordinate along the inertial Z axis.

• Φ, Θ, Ψ are the Euler 3-2-1 attitude coordinates roll, pitch, and yaw, of the body
frame relative to the inertial frame.

The reason for using Euler 3-2-1 to represent the angular position is because it is fairly
easy to visualise and work with. The disadvantage of using them is that they contain
a singularity in pitch (Θ) at ± 90°. A solution to this problem is to use quaternions as
they do not suffer from this issue, however, they are not as easy for humans to interpret.
For this project, the fixed-wing UAV will not operate at or close to the 90° pitch angle.
Therefore, it was decided to use the Euler angles to express attitude. The meaning of the
Euler angles is explained below with a visual representation shown in Figure 4.5.

• Φ: Roll angle represents the rotation of the wings with respect to the horizon.

• Θ: Pitch angle represents the rotation of the aircraft’s nose with respect to the
horizon.

• Ψ: Heading angle represents the rotation of the aircraft with respect to true North.

Stellenbosch University https://scholar.sun.ac.za

4.2. Equation of Motion Development 45

Horizon

Horizon

True North

Figure 4.5: Euler angles visual representation [adapted from AA833 course notes]

Since the Euler angles (attitude) are now defined, the relationship between the time
rate of change of the Euler angles and other kinematic states must now be considered.
The relationship between the Euler angle rates and the body angular rates (P, Q, R) is a
function of the current attitude. This relationship was derived by Ektin and Reid [56],
and is given as,

Φ̇
Θ̇
Ψ̇

 =

1 sin(Φ) tan(Θ) cos(Φ) tan(Θ)
0 cos(Φ) − sin(Φ)
0 sin(Φ) sec(Θ) cos(Φ) sec(Θ)

P

Q

R

 |Θ| ̸= π

2 (4.15)

The formula is not valid when the pitch angle is ±90◦ due to the singularity created at
this point.

Now that we have the relationship for the rotational variables, the next step is to relate
the translational variables. In the inertial axes, the following relationship exists between
translational position and velocity,

Ṅ

Ė

Ḋ

 =

VN

VE

VD

 (4.16)

where VN , VE and VD are the velocities in the north, east, and down axes respectively. The
kinetic equations express the aircraft’s translational velocity in the body frame, which
means that they must be transformed to the inertial frame before they are integrated
to obtain the position in the inertial frame. A rotation matrix formed from the current
attitude of the aircraft is used to perform this transformation.

The Euler angles represent an ordered sequence of rotations through which the inertial
frame must be rotated to align it with the body frame. For an Euler 3-2-1 sequence, the
inertial frame is rotated by the yaw angle Ψ about its z-axis, then the first immediate
frame is rotated by the pitch angle Θ about its y-axis, and finally the second intermediate

Stellenbosch University https://scholar.sun.ac.za

4.2. Equation of Motion Development 46

frame is rotated by the roll angle Φ about its x-axis. The transformation matrix that
transforms a coordinate vector VI in the inertial frame to the corresponding coordinate
vector VB in the body frame, is given by,

VB =
[
RΦ RΘ RΨ

]
VI (4.17)

where RΨ is the rotation through yaw angle, RΘ is the rotation through pitch angle, RΦ

is the rotation through roll angle, VI is the vector in the inertial frame and VB is the
vector in the body frame. This formula can be expanded to,

xB

yB

zB

 =

1 0 0
0 cos(Φ) sin(Φ)
0 − sin(Φ) cos(Φ)

cos(Θ) 0 − sin(Θ)
0 1 0

sin(Θ) 0 cos(Θ)

cos(Ψ) sin(Ψ) 0
− sin(Ψ) cos(Ψ) 0

0 0 1

xI

yI

zI

(4.18)

where xB, yB and zB are the coordinates in the body frame and xI , yI and zI are the
corresponding coordinates in the inertial frame. This formula can then be simplified to,

xB

yB

zB

 =

cos Ψ cos Θ sin Ψ cos Θ − sin Θ

cos Ψ sin Θ sin Φ − sin Ψ cos Φ sin Ψ sin Θ sin Φ + cos Ψ cos Φ cos Θ sin Φ
cos Ψ sin Θ cos Φ + sin Ψ sin Φ sin Ψ sin Θ cos Φ − cos Ψ sin Φ cos Θ cos Φ

xI

yI

zI

(4.19)

and then written in compact form as,

VB = (DCMI→B)VI (4.20)

The DCM is the direction cosine matrix which transforms a vector from one axis system to
another. In this case, it transforms a vector from the inertial frame to the body frame. To
transform a vector from the body frame to the inertial frame the inverse of this transform
can be taken and since the DCM is orthogonal its inverse is its transpose. This is shown
by,

DCMB→I = (DCMI→B)−1

= (DCMI→B)⊺
(4.21)

For the translational dynamics, it is required to convert the body velocity coordinates to
the inertial velocity coordinates, and therefore the DCMB→I matrix is used. This results
in the following equations that relate the rate of change of the aircraft’s position to its
velocity in body coordinates.

Ṅ

Ė

Ḋ

 = DCMB→I

U

V

W

 (4.22)

Stellenbosch University https://scholar.sun.ac.za

4.3. Force and Moment Models 47

Ṅ

Ė

Ḋ

 =

cos Ψ cos Θ cos Ψ sin Θ sin Φ − sin Ψ cos Φ cos Ψ sin Θ cos Φ + sin Ψ sin Φ
sin Ψ cos Θ sin Ψ sin Θ sin Φ + cos Ψ cos Φ sin Ψ sin Θ cos Φ − cos Ψ sin Φ

− sin Θ cos Θ sin Φ cos Θ cos Φ

U

V

W

(4.23)

The complete six-degrees-of-freedom model is shown in Figure 4.6.

Kinetic
Equations

Kinematic
Equations

FB = [X,Y,Z]

MB = [L,M,N]

VB = [U,V,W] PI = [N,E,D]

m IB

Figure 4.6: Block diagram showing the complete six degrees of freedom equations of
motion.

The forces and moments in the body axis, as well as the mass and moment of inertia of
the aircraft, are inputs to the model. Equations 4.9 to 4.14, which are the kinetic equations,
relate these inputs to the rate of change in translational and rotational velocities in the
body frame. The rate of change in velocity coordinates can then be integrated to get the
velocities themselves. The velocities are then used by the kinematic Equations 4.15 and
4.23 to obtain the rates of change in attitude and position in the inertial frame.

4.3. Force and Moment Models
The inputs to the equations of motion model are the forces and moments experienced by
the aircraft coordinated in its body axis system. These forces and moments are generated
by three sources, which are aerodynamics, thrust and gravity. The total forces (X, Y, Z)
and moments (L,M,N) acting on the aircraft is the sum of these aerodynamic, thrust
and gravitational components, as shown below.

X = XA +XT +XG (4.24)
Y = Y A + Y T + Y G (4.25)
Z = ZA + ZT + ZG (4.26)
L = LA + LT + LG (4.27)
M = MA +MT +MG (4.28)
N = NA +NT +NG (4.29)

Stellenbosch University https://scholar.sun.ac.za

4.3. Force and Moment Models 48

The A, T , and G superscripts indicate the aerodynamic, thrust, and gravitational compo-
nents, respectively.

The forces and moments from these sources must now be modelled individually so their
affect on the aircraft can be captured. This will be performed in the remainder of this
section.

4.3.1 Aerodynamic Model

The aerodynamic model captures the effect of the atmosphere on the aircraft. Figure 4.7
shows the inputs and outputs of the aerodynamic model.

Aerodynamic Model

VB-polar XA,YA,ZA

LA,MA,NA

Figure 4.7: Block diagram showing the aerodynamic model.

The inputs are VB−polar which is the body frame velocity in polar form, ωB which is
the angular rates, and δ□ which is the control surface deflection angles (δA, δE, δR, δF).

Bernoulli’s equation and the continuity principle for incompressible fluids can be used
to show that the aerodynamic forces and moments in subsonic flight are proportional to
the dynamic pressure. This pressure (q) is defined as,

q = 1
2ρV

2 (4.30)

where ρ is the air density and V is the aircraft airspeed magnitude. This allows the
following equations to used to express the aerodynamic forces and moments.

XA = qSCXB (4.31)
Y A = qSCYB (4.32)
ZA = qSCZB (4.33)
LA = qSbClB (4.34)
MA = qSc̄CmB (4.35)
NA = qSbCnB (4.36)

Stellenbosch University https://scholar.sun.ac.za

4.3. Force and Moment Models 49

which in vector form is,

FA =
[
XA Y A ZA

]⊺
=
[
qSCXB qSCYB qSCZB

]⊺ (4.37)

MA =
[
LA MA NA

]⊺
=
[
qSbClB qSc̄CmB qSbCnB

]⊺ (4.38)

where S is the area of the aircraft’s wing, b is the aircraft’s wing span, c̄ is the mean
aerodynamic chord and C□B are the non-dimensional coefficients for the aerodynamic
forces and moments in the body frame. These coefficients represent specific aerodynamic
properties of an airframe and they are independent of the aircraft size and flight speed.
These coefficients are normally modelled in the wind frame with sideslip angle (β) set to
zero, therefore, a conversion is required to obtain their values in the body axes. This is
done with the following equations,

CXB = −CD cos(α) + CL sin(α) (4.39)
CYB = CY (4.40)
CZB = −CL cos(α) − CD sin(α) (4.41)
ClB = Cl cos(α) − Cn sin(α) (4.42)
CmB = Cm (4.43)
CnB = Cn cos(α) + Cl sin(α) (4.44)

where CL is the lift coefficient, CD is the drag coefficient, CY is the lateral force coefficient,
Cl is the rolling moment coefficient, Cm is the pitching moment coefficient and Cn is the
yawing moment coefficient, all defined in the wind frame. α is the angle of attack of the
aircraft. Since the β is equal to zero, the lateral force and moment coefficients do not
change from the wind axes to the body axes. Expanding these wind axes coefficients

Stellenbosch University https://scholar.sun.ac.za

4.3. Force and Moment Models 50

results in,

CD = CD0 + C2
L

πAe
(4.45)

Cy = Cy
β
β + Cy

P

b

2V
PS + Cy

R

b

2V
RS + Cy

δA
δA + Cy

δR
δR (4.46)

CL = CL0 + CLα α + CLQ
c̄

2V
QS + CL

δE
δE + CL

δF
δF (4.47)

Cl = Cl
β
β + Cl

P

b

2V
PS + Cl

R

b

2V
RS + Cl

δA
δA + Cl

δR
δR (4.48)

Cm = Cm0 + Cmα α + CmQ
c̄

2V
QS + Cm

δE
δE + Cm

δF
δF (4.49)

Cn = Cn
β
β + Cn

P

b

2V
PS + Cn

R

b

2V
RS + Cn

δA
δA + Cn

δR
δR (4.50)

where CD0 is the parasitic drag coefficient, CL0 is the static lift coefficient, Cm0 is the
static pitching moment coefficient, A is the aspect ratio(length

breadth) of the wing, and e is the
Oswald efficiency factor. To use the angular rates in these equations, they first have be
transformed to the wind axes which is done with,

PS = P cos(α) +R sin(α) (4.51)
QS = Q (4.52)
RS = −P sin(α) +R cos(α) (4.53)

The remaining coefficients from equations 4.45 to 4.50 are non-dimensional stability and
control derivatives of the form,

CAB = ∂CA
∂B′ (B′ = fB) (4.54)

where A represents a force or moment in the wind axes, B is an aircraft state or deflection
angle and f is an appropriate normalising coefficient. The value of f is 1 for the angle of
attack, sideslip and control surface deflections. For the pitch rate, the f value is c̄

2V , and
for the roll and yaw rates, it is b

2V . These coefficients describe the forces and moments
applied to the aircraft as a function of the aircraft states and control surface deflections.
Explanations regarding the meaning of the coefficients can be found in Cook [55]. Appendix
A contains the values used for the constants in equations 4.45 to 4.50 for the aircraft used
in this project.

4.3.2 Thrust Model

The thrust model is used to capture the effect of the motor producing thrust on the aircraft.
Figure 4.8 shows the input (thrust command) and outputs of the thrust model.

The motor used on the UAV for this project is an electric brushless motor which is

Stellenbosch University https://scholar.sun.ac.za

4.3. Force and Moment Models 51

Thrust ModelTc

XT, YT, ZT

LT, MT, NT

Figure 4.8: Block diagram showing the thrust model.

attached to the nose of the airframe and therefore it is operated in a puller configuration.
Many complex propulsion models exist that are used for thrust modeling. However, due
to the simple configuration of the motor used, this not required. A first-order lag model is
sufficient to capture the band-limited nature of the propulsion source [AA833 document],
and it is modelled with the following equation.

Ṫ = −KT

τe
T + KTc

τe
Tc (4.55)

where T is the thrust magnitude, Tc is the thrust command, τe is the lag time constant of
the motor, KT is the thrust magnitude constant and KTc is the thrust command constant.
It is normally assumed that the thrust command is equal to thrust produced and hence
KT = KTc = 1. This will be assumed for the classical controllers but will not be assumed
for the MPC. This will be discussed further when the MPC design is described in section
5.3.2.

There is a maximum thrust that can be produced by the motor and this is used to
limit the thrust commanded to the model. The maximum thrust that the motor can
produce was experimentally determined. The experiment that was performed is described
in Appendix A.2, and the maximum thrust was determined to be 40 N.

The thrust vector is assumed to be aligned with the X-axis of the body axis system
and therefore its effect is only producing a force in the axial direction. The thrust vector
is assumed to act through the centre of mass, and therefore does not produce any thrust
moments. This is represented by the following,

FT =
[
XT Y T ZT

]⊺
=
[
T 0 0

]⊺ (4.56)

MT =
[
LT MT NT

]⊺
=
[
0 0 0

]⊺ (4.57)

On an aircraft with a single propeller there is a yaw and roll moment generated due to the
propeller rotation. This effect is negligible for this project’s UAV and therefore the flight
control system can treat this as disturbance and compensate appropriately.

Stellenbosch University https://scholar.sun.ac.za

4.4. Wind Model 52

4.3.3 Gravitational Model

The gravitational model captures the effect of gravity on the aircraft. Figure 4.9 shows
the input and outputs of the model.

Gravitational ModelDCM

XG, YG, ZG

LG, MG, NG

Figure 4.9: Block diagram showing the gravitational model.

Since the earth is modeled as a flat surface, it assumed that the effect of gravity is
a constant force acting at the aircraft’s centre of mass in the down (D) direction in the
inertial frame. This corresponds to the following force vector defined in the inertial frame,

FG
I =

[
0 0 mg

]⊺
(4.58)

where m is the mass of the aircraft and g is the gravitational acceleration. These values
can be found in appendix A.

The gravitational force must be coordinated in the body axes, which can be done by
transforming the inertial vector using the DCM from Equation 4.19. This yields,

FG =
[
XG Y G ZG

]⊺
= DCMI→BFG

I

=

− sin(Θ)

cos(Θ) sin(Φ)
cos(Θ) cos(Φ)

mg
(4.59)

As the UAV is assumed to be a rigid body with a fixed mass in a uniform gravitational
field, the gravitational force at the centre of mass produces no moments on the aircraft.
Therefore,

MG =
[
LG MG NG

]⊺
=
[
0 0 0

]⊺ (4.60)

4.4. Wind Model
One of the major factors that causes an aircraft’s flight performance to vary is wind. A
tail wind can cause an aircraft to stall and crash during landing if the wind speed is too
high. Since the UAV airframe used in this project is smaller and lighter then a manned

Stellenbosch University https://scholar.sun.ac.za

4.4. Wind Model 53

fixed-wing aircraft, it is much more susceptible to the wind. It is therefore important to
model the effect of wind on the UAV.

The aerodynamic force and moments acting on the aircraft are a function of the
airspeed, which is the speed of the aircraft relative to the air. The aerodynamic model
should therefore use the velocity magnitude V̄ , the angle of attack α, and the sideslip
angle β, that are calculated using the airspeed vector, and not the ground speed vector.
The dynamic pressure should also be calculated using the airspeed, and not the ground
speed. However, the equations of motion describe the motion of the vehicle relative to
the ground, and not relative to the air. Given the ground speed vector provided by the
equations of motion, the airspeed vector must first be calculated before it is provided as
an input to the aerodynamic model. The airspeed vector is the ground speed vector minus
the wind speed vector, which is expressed mathematically as,

VAIR = VGND − VWND (4.61)

where VGND is the ground speed vector, VAIR is the airspeed vector and VWND is the
wind speed vector.

The wind is treated as an unknown force and moment disturbance, with the control
system designed to reject these disturbances. The effect of wind is therefore not added
to the aircraft model. The airspeed is assumed to be equal to the ground speed when
the linearised model of the aircraft dynamics is derived. The effect of wind is still of
interest when testing the control system’s performance in non-linear simulation. The full
wind model will therefore be implemented during the non-linear simulation. There are
four wind effects that will be modelled in the preceding subsections, namely discrete gust,
turbulence, wind shear and ground effect.

4.4.1 Discrete Gust Model

A discrete wind gust is described as airflow that gradually increases in speed until it
reaches a certain maximum magnitude. The gust model achieves this gradual build-up
using a “1-cosine” profile and for gust fade-out it uses an inverted “1-cosine” profile as
shown in figure 4.10.

Stellenbosch University https://scholar.sun.ac.za

4.4. Wind Model 54

Distance (m) / Time (s)

M
ag

ni
tu

de
 (m

/s
)

Figure 4.10: Illustration of the discrete gust wind profile.

The mathematical representation which is derived from the MIL-F-8785C military
specification [59] with an addition of gust fading is given as,

Vgust =

0 t < ts

Vm
2 (1 − cos(πx

dm
)) 0 ≤ x ≤ dm

Vm x > dm , x < (dm + ds)
Vm
2 (1 + cos(πx

dm
)) (dm + ds) ≤ x ≤ (2dm + ds)

0 x > (2dm + ds)

(4.62)

where Vgust is the gust model output, Vm is the gust amplitude, t is the simulation time, ts
is the gust start time, x is the distanced the aircraft travelled since the gust activation at
ts, dm is the gust build and fade distance, and ds is the distance for maximum gust before
it fades out.

4.4.2 Turbulence Model

Turbulence can be described as random forces and moments applied to an aircraft due to
various factors which results in a disturbance in the linear and angular rates on the aircraft.
Turbulence is modelled by passing white noise through shaping filters. Many forms of
these filters exist, however for this project the Dryden spectral form is used, since it gives
a good approximation of turbulence while not being too computationally expensive.

The Dryden filter equations obtained from the MIL-HDBK-1797 document [60] is
shown in table 4.2. In the table, b is the aircraft wing span, V is current aircraft airspeed,
σ is the turbulence intensities, and L is the turbulence scale lengths. For altitudes under
1000ft (304.8m), the scale lengths are defined as,

2Lw = h (4.63)

Lu = 2Lv = h

(0.177 + 0.000823h)1.2 (4.64)

Stellenbosch University https://scholar.sun.ac.za

4.4. Wind Model 55

and the turbulence intensities are defined as,

σw = 0.1V20 (4.65)
σu
σw

= σv
σw

= 1
(0.177 + 0.000823h)0.4 (4.66)

where h is the aircraft altitude, and V20 is the average wind speed at an altitude of 20ft.
The altitude lower limit is set to 20ft to prevent overaggressive non-linear scaling. For
higher altitudes, the method for obtaining the turbulence scale lengths and intensities
change. This is not of concern for this project as the UAV flies well under the maximum
limit of 1000ft.

Table 4.2: Dryden turbulence filter form

Dryden Filter Functions
Direction Filter Transfer Function

Longitudinal

Linear : Hu(s) σu

√
2Lu
πV

.
1

1 + Lu
V
s

Angular : Hp(s) σw

√
0.8
V

.
(π4b)

1
6

(2Lw) 1
3 (1 + (4b

πV
)s)

Lateral

Linear : Hv(s) σv

√
2Lv
πV

.
1 + 2

√
3Lv
V

s

(1 + 2Lv
V
s)2

Angular : Hr(s)
∓ s

V

(1 + (3b
πV

)s)
. Hv(s)

Vertical

Linear : Hw(s) σw

√
2Lw
πV

.
1 + 2

√
3Lw
V

s

(1 + 2Lw
V
s)2

Angular : Hq(s)
± s

V

(1 + (4b
πV

)s)
. Hw(s)

4.4.3 Wind Shear Model

Wind shear describes the change in wind speed as a function of altitude and the surrounding
terrain. Wind shear magnitude significantly increases during extreme weather conditions
such as in storms. Figure 4.11 shows how the wind speed increases significantly with
altitude until it reaches a plateau. Since the UAV will be flown at a low altitude, close
to the ground, it will therefore be operating in the steep gradient section of the graph.

Stellenbosch University https://scholar.sun.ac.za

4.4. Wind Model 56

This means that the UAV is significantly affected by shear which is why it is important to
model it.

Altitude (ft)

M
ag

ni
tu

de
 (m

/s
)

Figure 4.11: Illustration of the wind shear profile.

The mathematical representation of wind shear, which was obtained from the MIL-
HDBK-1797 specification [60], is as follows,

vshear = V20
ln(h

z0
)

ln(20
z0

) 3 ft < h < 1000 ft (4.67)

where vshear is the average wind speed, V20 is the wind speed at an altitude of 20ft, h
is the aircraft’s current altitude, and z0 is a constant which depends on the phase of flight.
z0 is 0.15 for flight phases labeled as Category C (takeoff, approach and landing) and is
2.0 for all the other phases. Since the UAV will be prominently tested during the landing
phase, z0 is set to 0.15. This formula is sufficient to model shear since the aircraft will be
flown within the given altitude limits in equation 4.67.

4.4.4 Ground Effect

The ground effect describes the reduced wing tip vortices produced by an aircraft when
it is close to the earth’s surface. This results in an increase in lift for the same angle of
attack and a reduction in drag on a aircraft. This disturbance in the aerodynamics can
significantly affect the aircraft’s landing accuracy as the aircraft would stay aloft longer
than the autopilot expects. It is therefore important to model this effect to determine if
the controllers adequately reject this disturbance and produce an accurate landing. The
implementation of the ground effect consists of modifying the aerodynamic model by
adding a multiplier to the lift (CL) and drag (CD) coefficients. When the aircraft is in the

Stellenbosch University https://scholar.sun.ac.za

4.5. Moving Platform Model 57

ground effect these coefficients are adjusted to become,

CL = GL(h)CL (4.68)

CD = CD0 +GD(h)
(
C2
L

πAe

)
(4.69)

where GL(h) and GD(h) are altitude varying gains describe by Hull [61] as,

GL(h) = 1.0 + (0.00211 − 0.0003(A− 3.0))e5.2(1−h/b) (4.70)

GD(h) = 1.111 + 5.55
(
h

b

)
−

√√√√√29.8
(
h

b
+ 0.02

)2

+ 0.817 (4.71)

where h is the aircraft’s altitude, A is the wing aspect ratio, and b is the wing span. The
GD(h) equation is only used when h < 0.9b, else GD(h) = 1.

4.5. Moving Platform Model
The moving platform is modelled as a point mass moving nominally in a straight line at a
constant velocity, but with small in-track and cross-track velocity disturbances. This may
represent, for example, an aircraft carrier keeping a constant speed and heading while
a fixed-wing UAV comes in for a landing. For this project, the moving platform will be
an RC car which will be manually controlled by a human driver. The RC car will be
given a constant throttle setting, which should result in a constant speed (3 m/s) on level
ground. The human driver will manually steer the vehicle to follow the centre line of the
runway. This should be adequately modelled by the point mass model mentioned above.
The in-track and cross-track velocity disturbances represent variations in the RC car speed
and deviations from the centre line of the runway.

No control system is developed for the RC car as it is manually controlled. Therefore,
a complex model capturing the full dynamics of the RC car is not required. The point
mass model is used to simulate the moving platform in non-linear simulations when testing
the control systems.

To describe the motion of the moving platform, it is helpful to introduce the runway
frame or runway axis system, shown in Figure 4.12. The runway frame is the same as the
inertial frame, except that it is rotated about the Z-axis by an angle Ψr to align the its
X-axis with the centre line of the runway. Ψr is the heading of the runway’s centre line
relative to true North. The position coordinates of the moving platform in the runway
frame represents its position along the centre line, its lateral deviation from the centre line,
and its vertical position relative to the runway surface. The application of the runway
axis system is discussed in more detail when the landing position predictor is introduced

Stellenbosch University https://scholar.sun.ac.za

4.5. Moving Platform Model 58

XE(axis)

YE(axis)

ZE(axis) / ZR(axis)

N

S

E

W

YR(axis)

XR(axis)

Figure 4.12: Illustration of the runway frame.

in Section 6.3.
As the moving platform moves at constant velocity in a straight line, its velocity coordinated
in the runway frame can be expressed as,

ẋmp = Vmp + ηvx (4.72)
ẏmp = ηvy (4.73)
żmp = 0 (4.74)

where Vmp is the nominal speed of the platform, and ηvx and ηvy are in-track and cross-track
velocity disturbances, respectively. ηvx and ηvy are modelled as zero-mean, Gaussian noise
with standard deviations of σvx and σvy, respectively.

The platform velocity can be transformed from the runway frame to the inertial frame
using the following equation

Ṅmp

Ėmp

Ḋmp

 =

cos Ψr − sin Ψr 0
sin Ψr + cos Ψr 0

0 0 1

ẋmp

ẏmp

żmp

 (4.75)

where Ψr is the heading of the runway’s center line relative to true north. Finally, the
instantaneous position of the moving platform can be obtained by integrating the platform
velocity with respect to time, starting at its initial position, using

pmp(t) =
∫ t

0
Vmp(τ) dτ + pmp(0) (4.76)

where pmp(t) and Vmp(t) are the instantaneous position and velocity of the moving
platform at time t, and pmp(0) is the initial position of the moving platform at time t = 0.

Stellenbosch University https://scholar.sun.ac.za

4.6. Linearisation of Aircraft Model 59

4.6. Linearisation of Aircraft Model
A linear model is required to analyse the aircraft model dynamics and to design the
control system. The non-linear aircraft model, which comprises of the equation of motion
combined with the force and moment models, can be linearised around an equilibrium
point to achieve this linear model.

4.6.1 Obtaining the Trim Variables

The equilibrium point chosen is the state when the aircraft is in straight and level flight.
At this point the sum of all the forces and moments acting on the aircraft equals to zero.
To maintain its equilibrium point, the aircraft will have trim values for its states. Since
the aircraft is symmetrical around its XZ-plane, and the equilibrium point is level flight,
all the trim lateral motion and control parameters are zero. This means that the aircraft
only needs to be considered for the longitudinal and normal axes (XZ-plane). The trim
variables that need to be calculated are (V , α,Q,Θ, δE, T)T . For trimmed flight, the flap
deflection angle (δFT) will be assumed to be zero. The (Ψ, D)T variables are omitted from
the trim variables as the aircraft can be at any altitude and heading for level flight. The
(N,E) variables are also not included, because they do not remain constant for forward
flight, and are the kinematic result of the equilibrium state. Figure 4.13 shows the trim
force and moment diagram in XZ-plane for an aircraft in level flight.

Horizon

Figure 4.13: Diagram showing the trim forces and moments in the XZ-plane.

It is common to specify the desired trim airspeed V T and trim altitude, and then
to calculate the required trim angle of attack, trim elevator deflection, and trim thrust
(α, δE, T)T to achieve the straight and level equilibrium condition. The trim altitude must
be specified, because it determines the trim air density ρT , and thus the trim dynamic
pressure qT . The desired trim airspeed must be chosen between the stall speed and the

Stellenbosch University https://scholar.sun.ac.za

4.6. Linearisation of Aircraft Model 60

maximum airspeed. De Bruin [16] obtained these values with practical experiments, and
since he used the same airframe and motor as the UAV in this project, his values can be
used. His values were Vstall = 10.8 m/s and Vmax = 25 m/s and therefore V T is chosen to
be 18 m/s. This speed was chosen as it is significantly above the stall speed while not
being so high that it will strain the motor.
The trim dynamic pressure qT is calculated as,

qT = 1
2ρTV

2
T (4.77)

The trim air density is approximated as ρT = 1.225 kg/m3 which the air density at sea
level at 15◦C. The aircraft will be flown at airfield close to sea level and therefore this air
density is safe to assume. Given, the trim airspeed and trim dynamic pressure, the trim
angle of attack and trim elevator setting are calculated using the following equations,

αT
δET

 =
CLα CL

δE

Cmα Cm
δE

−1

mg

qTS
− CL0

−Cm0

 (4.78)

The trim thrust setting is then calculated using the following equation,

TT = qTSCDT cos(αT) − qTSCLT sin(αT) +mg sin(αT) (4.79)

where,

CDT = CD0 +
C2
LT

πAe
(4.80)

The derivation of these equations are provided in Appendix B.4.
Using the specifications of the UAV used in this project (see appendix A), the trim

values are calculated as,

αT = 0.0649 rad (4.81)

δET = −0.0558 rad (4.82)

TT = 26.5513 N (4.83)

4.6.2 Linearising Equations of Motion around Trim

The nonlinear aircraft model can now be linearised around the calculated trim state and
trim control inputs. The assumptions made during the linearisation process are:

• The products of small perturbations are small and are therefore ignored

• The cosine of a small angle is one

Stellenbosch University https://scholar.sun.ac.za

4.6. Linearisation of Aircraft Model 61

• The sine of a small angle is the angle itself in radians

The nonlinear aircraft flight dynamics consists of the kinetic equations, the kinematic
equations, and the force and moment models for the aerodynamics, gravity, and thrust.

The kinetic and kinematic equations are rearranged so that the state derivatives are
the subject of the equations, as follows,

U̇ = X

m
+ V R −WQ (4.84)

V̇ = Y

m
− UR +WP (4.85)

Ẇ = Z

m
+ UQ− V P (4.86)

Ṗ = L

Ixx
−QR

Izz − Iyy
Ixx

(4.87)

Q̇ = M

Iyy
− PR

Ixx − Izz
Iyy

(4.88)

Ṙ = N

Izz
− PQ

Iyy − Ixx
Izz

(4.89)

Φ̇ = P +Q sin Φ tan Θ +R cos Φ tan Θ (4.90)
Θ̇ = Q cos Φ −R sin Φ (4.91)

This forms a coupled set of differential equations which capture the primary dynamics of
the aircraft. The dynamic states Ψ, N,E and D are not used for linearisation as they not
part of the primary flight dynamics and are instead the kinematic results of them. The
primary dynamic equations can be written in a nonlinear state space form as,

ẋ = f(x,u) (4.92)

where,

x =
[
U V W P Q R Φ Θ

]⊺
(4.93)

u =
[
δE δF δA δR T

]⊺
(4.94)

and f is the vector function of the corresponding dynamic equation. Each state and control
variable can be written as a sum of the trim value and perturbation around trim which
gives,

x = xT + ∆x (4.95)
u = uT + ∆u (4.96)

Stellenbosch University https://scholar.sun.ac.za

4.6. Linearisation of Aircraft Model 62

where,

∆x =
[
u v w p q r ϕ θ

]⊺
(4.97)

∆u =
[
δe δf δa δr ∆T

]⊺
(4.98)

The linearised aircraft model is obtained by taking the partial derivatives of the nonlinear
differential equations with respect to the states and the control inputs. The following
linear state space model for the aircraft dynamics is then obtained,

∆ẋ ≈
∂f
∂x

∣∣∣∣∣
T

∆x +
∂f
∂u

∣∣∣∣∣
T

∆u (4.99)

Solving equation 4.99 while grouping the longitudinal and lateral dynamic states together
and then expanding yields,

u̇

ẇ

q̇

θ̇

v̇

ṗ

ṙ

ϕ̇

=

∂U̇
∂U

∂U̇
∂W

∂U̇
∂Q

∂U̇
∂Θ

∂U̇
∂V

∂U̇
∂P

∂U̇
∂R

∂U̇
∂Φ

∂Ẇ
∂U

∂Ẇ
∂W

∂Ẇ
∂Q

∂Ẇ
∂Θ

∂Ẇ
∂V

∂Ẇ
∂P

∂Ẇ
∂R

∂Ẇ
∂Φ

∂Q̇
∂U

∂Q̇
∂W

∂Q̇
∂Q

∂Q̇
∂Θ

∂Q̇
∂V

∂Q̇
∂P

∂Q̇
∂R

∂Q̇
∂Φ

∂Θ̇
∂U

∂Θ̇
∂W

∂Θ̇
∂Q

∂Θ̇
∂Θ

∂Θ̇
∂V

∂Θ̇
∂P

∂Θ̇
∂R

∂Θ̇
∂Φ

∂V̇
∂U

∂V̇
∂W

∂V̇
∂Q

∂V̇
∂Θ

∂V̇
∂V

∂V̇
∂P

∂V̇
∂R

∂V̇
∂Φ

∂Ṗ
∂U

∂Ṗ
∂W

∂Ṗ
∂Q

∂Ṗ
∂Θ

∂Ṗ
∂V

∂Ṗ
∂P

∂Ṗ
∂R

∂Ṗ
∂Φ

∂Ṙ
∂U

∂Ṙ
∂W

∂Ṙ
∂Q

∂Ṙ
∂Θ

∂Ṙ
∂V

∂Ṙ
∂P

∂Ṙ
∂R

∂Ṙ
∂Φ

∂Φ̇
∂U

∂Φ̇
∂W

∂Φ̇
∂Q

∂Φ̇
∂Θ

∂Φ̇
∂V

∂Φ̇
∂P

∂Φ̇
∂R

∂Φ̇
∂Φ

u

w

q

θ

v

p

r

ϕ

+

∂U̇
∂δE

∂U̇
∂δF

∂U̇
∂T

∂U̇
∂δA

∂U̇
∂δR

∂Ẇ
∂δE

∂Ẇ
∂δF

∂Ẇ
∂T

∂Ẇ
∂δA

∂Ẇ
∂δR

∂Q̇
∂δE

∂Q̇
∂δF

∂Q̇
∂T

∂Q̇
∂δA

∂Q̇
∂δR

∂Θ̇
∂δE

∂Θ̇
∂δF

∂Θ̇
∂T

∂Θ̇
∂δA

∂Θ̇
∂δR

∂V̇
∂δE

∂V̇
∂δF

∂V̇
∂T

∂V̇
∂δA

∂V̇
∂δR

∂Ṗ
∂δE

∂Ṗ
∂δF

∂Ṗ
∂T

∂Ṗ
∂δA

∂Ṗ
∂δR

∂Ṙ
∂δE

∂Ṙ
∂δF

∂Ṙ
∂T

∂Ṙ
∂δA

∂Ṙ
∂δR

∂Φ̇
∂δE

∂Φ̇
∂δF

∂Φ̇
∂T

∂Φ̇
∂δA

∂Φ̇
∂δR

δe

δf

∆T
δa

δr

(4.100)
This equation represents the entire linear model with the longitudinal and lateral

components coupled together. It is more convenient to work with the velocity magnitude,
angle of attack and sideslip angle deviations from trim (v̄, α, β) in the state vector instead
of the axial, lateral and normal velocity deviations (u, v, w) currently in the vector. To
replace these states, equations 4.6 to 4.8 are simplified for straight and level flight using
the assumptions mentioned at the beginning of this subsection. Assuming the angle of
attack and sideslip angle are small, the simplifications are,

U = V T cos(α) cos(β) ≈ V T (4.101)
V = V T sin(β) ≈ V T β (4.102)
W = V T sin(α) cos(β) ≈ V T α (4.103)

where V T is the trim velocity magnitude. As the aircraft is symmetrical, the linear aircraft
model can be simplified by decoupling the longitudinal and lateral dynamics. The coupled

Stellenbosch University https://scholar.sun.ac.za

4.6. Linearisation of Aircraft Model 63

linear model in equation 4.100 can be written as,∆ẋ
Long

∆ẋ
Lat

 =
AT11 AT12

AT21 AT22

∆x

Long

∆x
Lat

+
BT11 BT12

BT21 BT22

∆u

Long

∆u
Lat

 (4.104)

where T12 and T21 are the matrices that couple the longitudinal and lateral dynamics. As
the aircraft is symmetrical in the XZ-plane, the AT21 and BT21 terms are equal to zero.
Since the deviations from trim are required to be small for the linearisation assumption, it
can therefore be approximated that AT12 and BT12 are equal zero. Using these assumptions,
the full linearised model is decoupled into the longitudinal and lateral dynamic models
which are given as,

∆ẋ
Long

= AT11∆x
Long

+ BT11∆u
Long

(4.105)

∆ẋ
Lat

= AT22∆x
Lat

+ BT22∆u
Lat

(4.106)

Expanding these equations while also using the simplifications in equations 4.101 to 4.103;
the longitudinal linear dynamic model is given as,

˙̄v
α̇

q̇

θ̇

 =

∂U̇
∂U

V T
∂U̇
∂W

∂U̇
∂Q

∂U̇
∂Θ

1
V T

∂Ẇ
∂U

∂Ẇ
∂W

1
V T

∂Ẇ
∂Q

1
V T

∂Ẇ
∂Θ

∂Q̇
∂U

V T
∂Q̇
∂W

∂Q̇
∂Q

∂Q̇
∂Θ

∂Θ̇
∂U

V T
∂Θ̇
∂W

∂Θ̇
∂Q

∂Θ̇
∂Θ

v̄

α

q

θ

+

∂U̇
∂δE

∂U̇
∂δF

∂U̇
∂T

1
V T

∂Ẇ
∂δE

1
V T

∂Ẇ
∂δF

1
V T

∂Ẇ
∂T

∂Q̇
∂δE

∂Q̇
∂δF

∂Q̇
∂T

∂Θ̇
∂δE

∂Θ̇
∂δF

∂Θ̇
∂T

δe

δf

∆T

 (4.107)

and the lateral linear dynamic model is given as,

β̇

ṗ

ṙ

ϕ̇

 =

∂V̇
∂V

1
V T

∂V̇
∂P

1
V T

∂V̇
∂R

1
V T

∂V̇
∂Φ

V T
∂Ṗ
∂V

∂Ṗ
∂P

∂Ṗ
∂R

∂Ṗ
∂Φ

V T
∂Ṙ
∂V

∂Ṙ
∂P

∂Ṙ
∂R

∂Ṙ
∂Φ

V T
∂Φ̇
∂V

∂Φ̇
∂P

∂Φ̇
∂R

∂Φ̇
∂Φ

β

p

r

ϕ

+

1
V T

∂V̇
∂δA

1
V T

∂V̇
∂δR

∂Ṗ
∂δA

∂Ṗ
∂δR

∂Ṙ
∂δA

∂Ṙ
∂δR

∂Φ̇
∂δA

∂Φ̇
∂δR

δa
δr

 (4.108)

The MATLAB Symbolic Toolbox is used to evaluate these equations and solve the partial
derivatives. The resulting longitudinal and lateral linear models are compared to Etkin
and Reid’s [56] approximation of these models and it is found that the results are almost
identical. This gives confidence that the derived linear models are indeed correct. The

Stellenbosch University https://scholar.sun.ac.za

4.7. Natural Modes of Motion 64

longitudinal linear model derived after using the Symbolic toolbox is,

˙̄v
α̇

q̇

θ̇

 =

−0.4306 10.5352 −1.1570 −9.7894
−0.0622 −4.1956 0.9070 −0.0353

0 −40.2578 −6.6282 0
0 0 1.0000 0

v̄

α

q

θ

+

0.0624 0.1394 0.1699

−0.5485 −1.2256 0
−97.4349 11.8157 0

0 0 0

δe

δf

∆T

(4.109)

and the lateral linear model is,

β̇

ṗ

ṙ

ϕ̇

 =

−0.2757 0.0717 −0.9891 0.5439
−32.1681 −12.2162 3.0505 0
10.5809 −0.8892 −1.0324 0

0 1.0000 0.0650 0

β

p

r

ϕ

+

0.0010 0.1513

−140.5221 2.2681
−2.9175 −15.2938

0 0

δa
δr

(4.110)

4.7. Natural Modes of Motion
To design an effective flight control system, the linear aircraft models need to be analysed
to identify the natural modes of motion. The modes of motion are obtained by calculating
the poles of the linearised models.

4.7.1 Longitudinal Modes of Motion

The poles of the longitudinal dynamics are obtained by calculating the eigenvalues of the
longitudinal system matrix in Equation 4.109. The pole plot of the longitudinal dynamics
is shown in Figure 4.14.

Figure 4.14: Pole Plot for the Linear Longitudinal Model.

The pole plot shows two complex pole pairs which define the longitudinal modes of

Stellenbosch University https://scholar.sun.ac.za

4.7. Natural Modes of Motion 65

motion. The high frequency pair represents the Short Period Mode, and the low frequency
pair represents the Phugoid Mode.

4.7.1.1 Short Period Mode

The Short Period Mode poles for the UAV are calculated as,

psp = −5.3978 ± 5.9312i (4.111)
ζ = 0.6731 (4.112)
ωn = 8.0197 rad/s (4.113)

The pole locations indicate that the short period mode is stable, well damped, and
has a high natural frequency. This mode describes the aircraft’s ability to realign itself
with its velocity vector when disturbed. A stable aircraft that experiences a disturbance
in trimmed level flight will exhibit a restoring pitching moment produced by Cmα due to
it having a change in angle of attack. The pitch rate motion induces damping, produced
by Cm

Q
, which removes energy from the system, causing stable oscillatory behaviour. For

short period motions, the aircraft can be modeled as only rotating about the YB axis, with
an aerodynamic spring and damping torques that cause the aircraft to realign itself with
incident airflow.

4.7.1.2 Phugoid Mode

The Phugoid Mode poles for the UAV are calculated as,

pph = −0.2294 ± 0.5650i (4.114)
ζ = 0.3762 (4.115)
ωn = 0.6098 rad/s (4.116)

The pole locations indicate that the phugoid mode is stable, underdamped, and has a
low natural frequency. This mode describes the aircraft’s tendency to exchange potential
and kinetic energy when it is disturbed from trimmed level flight. For example, if an
aircraft in level flight experiences a sudden increase in velocity, it will have an increase
in lift. This will cause it to pitch up increasing its altitude and thus gaining in potential
energy. At the same time, it loses kinetic energy, causing its airspeed to decrease which
results in a decrease in lift. This causes the aircraft to pitch down and lose altitude. This
sinusoidal behaviour repeats itself continuously and is governed by this mode’s damping
which removes energy via aerodynamic drag.

Stellenbosch University https://scholar.sun.ac.za

4.7. Natural Modes of Motion 66

4.7.2 Lateral Modes of Motion

The poles of the lateral dynamics are obtained by calculating the eigenvalues of the lateral
system matrix in Equation 4.110. The pole plot of the longitudinal dynamics is shown in
Figure 4.15.

Figure 4.15: Pole Plot for the Linear Lateral Model.

The pole plot shows two real poles and one complex pole pair which define the lateral
modes of motion. The high frequency real pole represents the Roll Mode, the complex
pole pair represents the Dutch Roll Mode, and the unstable real pole represents the Spiral
Mode.

4.7.2.1 Roll Mode

The Roll Mode pole for the UAV is calculated as,

prl = −12.1163 (4.117)

The pole has a high frequency and is critically damped with a first order exponential
response. This mode describes the aircraft’s roll rate dynamics when deviating from trim.
When a roll moment disturbance is applied to an aircraft, its roll rate will grow quickly.
A counter moment, which acts as damping, is then generated by the wings due to the
differential lift it experiences as it rolls. The differential lift is caused by the angle of
incidence being greater on the lower wing then the higher wing. This form of damping is
governed by the Cl

P
stability derivative. Due to the pole’s high frequency, the roll dynamic

response is very fast, which results in the aircraft appearing to operate at a constant roll
rate when a control moment is applied.

Stellenbosch University https://scholar.sun.ac.za

4.7. Natural Modes of Motion 67

4.7.2.2 Dutch Roll Mode

The Dutch Roll Mode poles for the UAV are calculated as,

pdr = −0.7183 ± 3.7701i (4.118)
ζ = 0.1872 (4.119)
ωn = 3.8379 rad/s (4.120)

The pole pair is stable, fast, and poorly damped. The Dutch Roll Mode describes the
aircraft’s tendency to laterally realign itself with incident airflow due to changes in sideslip
angle. This mode is the lateral direction equivalent of Short Period Mode, but with worse
natural damping. When an aircraft under trim experiences a deviation in sideslip, the
vertical stabiliser will produce a restoring yaw moment defined by Cnβ to align the nose
back into oncoming airflow. The yaw rate associated with this motion provides damping
and is defined by Cn

R
. During this yaw motion, the wings experience different velocities

which causes differential lift and drag on wings defined by Cl
R

and Cn
R

. This differential
lift causes deviations in roll rate which causes further deviations in lift and drag through
the Cl

P
and Cn

P
stability derivatives. The deviations in drag help dampen the yaw rate

motions. The net effect of this is oscillation in both the yaw and roll axes which causes
the wingtips to translate in an elliptical pattern as the aircraft flies.

4.7.2.3 Spiral Mode

The Spiral Mode pole for the UAV is calculated as,

psp = 0.0284 (4.121)

This pole is unstable and extremely slow. This mode describes the aircraft’s tendency to
restore itself to or diverge away from wings level flight, when experiencing a disturbance
in sideslip which causes a deviation in roll angle. When a trimmed aircraft experiences a
disturbance in sideslip a yaw moment, defined by Cnβ , is produced which turns the aircraft
in the direction of the sideslip. This results in differential lift producing a rolling moment,
defined by Cl

R
, which causes the wing in the direction of the turn to drop even further.

This effect can be unstable if the restoring moment, defined by Clβ , which is dependent
on the wing dihedral, causes the aircraft to diverge from level flight. The UAV used for
this project has an unstable Spiral Mode, as calculated using the airframe properties
summaries in Appendix A, and will therefore naturally tend to diverge from level flight.
This means that the flight control system must be designed to stablise the spiral mode, by
using feedback to make the corresponding closed-loop pole stable.

Stellenbosch University https://scholar.sun.ac.za

4.8. Summary 68

4.8. Summary
A non-linear model of the fixed-wing UAV was presented by using the aircraft’s equation of
motion, and force and moment models. The wind and moving platform models used in non-
linear simulations were then described. The non-linear model was then linearised around
an equilibrium point to produce a linear model that is used to design the control systems.
The UAV’s natural modes of motion were also analysed to identify key characteristics of
the aircraft’s motion so that an effective flight control system could be designed. Now that
the linearised fixed-wing UAV model has been developed, the flight control system can be
designed using this model, which is presented in the next chapter.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Flight Control System Development

Now that the linear model for the fixed-wing UAV has been developed, the flight control
system (FCS) design can be presented. First, an overview of the entire flight control system
architecture will be discussed, to provide an understanding of the FCS and highlight the
interactions between the different controllers. Thereafter, the classical controller design
procedure will be described, for both the longitudinal and lateral controller groups. The
MPC design procedure will then be described, by first discussing the MPC’s theory in
general and then detailing the design of the MPC used for this research project.

5.1. Flight Control System Overview
The flight control system (FCS) combines two distinct forms of control which are classical
control and model predictive control (MPC). The reason for using this hybrid approach is
so that FCS can have the predictability of the classical control while also having the high
accurate landing performance of the MPC. The classical controllers are adapted from De
Bruin [16] and Le Roux [14] who themselves iterated on the controllers of previous students.
This was one of the main reasons why this classical control architecture was chosen as it
had a proven track record in successfully controlling the UAV in different scenarios. The
aircraft specifications for the fixed-wing UAV in this project are different from De Bruin’s
and Le Roux’s UAVs. Therefore, the entire design process for the classical controllers
had followed to ensure that the controllers were within their design requirements. The
design process will be thoroughly discussed in this chapter. The MPC architecture is
base on those described by Wang [62] and Amadi [38] however, it was altered to control a
fixed-wing aircraft. Figure 5.1 shows the layout of the complete FCS.

The references for the FCS are provided by the guidance control system (GCS) which
consists of a state machine and a guidance algorithm. The GCS will be discussed in
chapter 6.

69

Stellenbosch University https://scholar.sun.ac.za

5.1. Flight Control System Overview 70

Aircraft Plant
Model

NSA
Reference NSADLC

Controller
Climb Rate
Controller

Airspeed
Controller

Altitude
Controller Selector

Selector

Climb Rate
Reference

MPC
Controller

Altitude
Reference

Airspeed
Reference

LSA
Controller

Roll Rate
Controller

Crab Angle
Controller

Roll Angle
Controller

Transition
Multiplexer

First
Cross-Track
Controller

Second
Cross-Track

Controller

Heading
Controller

Ground Track
Heading Angle

Guidance
Control
System

Crab Angle
Reference

Cross-track error
State and
Reference

Roll Rate
Reference

Roll Angle
Reference

Heading Angle
Reference

LSA
Reference

Classical Longitudinal

MPC

Classical Lateral

Figure 5.1: Block diagram showing the overview of the FCS.

5.1.1 Classical Control Overview

The classical controllers use a successive loop closure design where the outer loops feed the
inner loops. The inner-loop controllers are used to command the aircraft control inputs,
and are mainly used for stability augmentation. The stability of the inner-loop controllers
are passed on to the outer-loop controllers. The outer-loop controllers are used to control
the aircraft’s translational motion and attitude in the inertial frame. The inner loops use
acceleration-based control as it has numerous advantages, such as attitude independence,
disturbance rejection, and practical feasibility due to computational efficiency.

The classical controllers are split into two groups, namely the longitudinal controllers
and the lateral controllers. These control groups were formed because the aircraft’s
longitudinal and lateral dynamics are uncoupled, or at least weakly coupled. This allows the
two classical controller groups to be designed independently. The longitudinal controllers
consist of:

• The airspeed controller which controls the aircraft’s calibrated airspeed by providing
the thrust command to the brushless DC motor.

• The normal specific acceleration direct lift control (NSADLC) controller which
controls the normal specific acceleration (NSA) by commanding the aircraft’s elevator
and flap control surface deflections. The NSA reference for this controller comes
from the outer climb rate controller.

• The climb rate controller which controls the climb rate by providing NSA references
to the NSADLC controller. The climb rate reference comes from the outer altitude

Stellenbosch University https://scholar.sun.ac.za

5.1. Flight Control System Overview 71

controller.

• The altitude controller which controls the aircraft’s altitude by commanding the
climb rate reference.

The lateral controllers consist of:

• The lateral specific acceleration (LSA) controller which controls the lateral accel-
eration as well provides dutch roll damping. This controller’s reference is usually
set to zero for conventional flight (waypoint navigation) to allow for coordinated
turns. The LSA reference only changes during the landing phase, when the de-crab
manoeuvre is executed by the crab angle controller, which provides this reference.

• The crab angle controller is only activated during the landing phase of flight to
execute the de-crab manoeuvre so that the aircraft lands with its landing gear aligned
with the runway or moving platform. During this stage, the crab angle controller
controls the aircraft’s crab angle. The crab angle is the yaw angle with respect to
the waypoint track (which, for the landing phase, is the centre line of the runway).
The controller uses the LSA controller, by providing references to it, to obtain its
desired crab angle.

• The roll rate controller controls the roll rate by actuating the aileron deflection angle.

• The roll angle controller controls the roll angle by providing commands to the roll
rate controller.

• The transition multiplexer chooses which roll angle reference to give to the roll angle
controller based on the aircraft’s distance from the ground track. The roll angle
references are generated by the either the first cross-track controller or the heading
controller.

• The first cross-track controller generates the roll angle command based on the
aircraft’s cross-track error from the ground track. The algorithm used to obtain the
cross-track error will be described in section 6.1.

• The heading controller regulates the aircraft heading by providing roll angle com-
mands.

• The second cross-track controller also regulates the cross-track error. However, it
generates heading references to achieve this goal.

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 72

5.1.2 Model Predictive Control Overview

The model predictive control (MPC) controller uses Hildreth’s Quadatric Programming as
the optimiser to obtain the optimal control actions to apply to the aircraft. The MPC
is operated in a multiple-input-multiple-output (MIMO) configuration to control both
the airspeed and altitude simultaneously. The MPC does this by providing the climb
rate reference to the climb rate controller and the thrust command to the motor. The
advantage of this is that, since airspeed is coupled to climb rate and hence effects altitude,
the MPC can generate the optimal control actions to minimise both state errors. The
classical airspeed and climb rate controllers are designed independently of each other, and
the effect of this is that any actions performed by one of the controllers will treated as
a disturbance in the other. This decoupled design method would work as long as the
airspeed is maintained. However, during the descent phase for landing, the airspeed tends
to increase, which causes an oscillation in altitude when tracking the glideslope. The MPC
would be able to reduce this oscillation as it would be able keep the airspeed in check
while tracking the glideslope altitude references.

The MPC replaces the classical airspeed and altitude controllers to obtain a more
precise landing. This is executed by selecting the appropriate sub-mode in the ground
control station, which will then prompt the PX4 autopilot software to forward the MPC
commands to the climb rate controller and the motor. The classical airspeed and altitude
controllers will be designed and tested for the runway and moving platform landing
scenarios, so that their results can serve as a baseline for the MPC. The baseline will
determine if there is an improvement when using the MPC for the the landing scenarios.
Besides serving as a baseline, the classical airspeed and altitude controllers will also take
over control if the MPC on the Jetson Nano fails.

It was initially considered to let the MPC regulate the climb rate as well. However,
this idea was rejected due to the MPC being too model dependent. It was instead decided
to keep the classical climb rate controller so that uncertainties in the aircraft model can be
abstracted from the MPC. This allows any deficiencies in the aircraft model in capturing
the practical UAV’s dynamics to be encapsulated by the lower level controllers. This gives
the MPC the best chance of working in a real world environment where uncertainties exist.

5.2. Classical Controller Design

5.2.1 Longitudinal Controllers Design

5.2.1.1 Airspeed Controller

The airspeed controller controls the calibrated airspeed to follow the airspeed references
received from the guidance system, by actuating the thrust command using feedback from

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 73

an airspeed sensor. The calibrated airspeed feedback on the practical vehicle is provided
by the PX4 autopilot software which obtains this value by reading the differential pressure
in the pitot tube. Figure 5.2 shows the airspeed controller architectural diagram,

Figure 5.2: Block diagram of the airspeed controller.

where v̄ref is the airspeed reference from trim, v̄ is the airspeed from trim, ∆Tc is the
thrust command deviation from trim, Kp

AS
is the proportional airspeed controller gain,

Ki
AS

is the integral airspeed controller gain, s is the Laplace transform variable, A and B
are the plant matrices, and C is the airspeed output matrix.

The longitudinal model in Equation 4.107 should ideally be used as the plant for the
control design. However, since the airspeed controller can only regulate the airspeed
deviation state (v̄) in this model, the other longitudinal state variables would not be
controlled, and would disturb the airspeed. To address this issue, a reduced-order model
can be used that only considers the states that are relevant to the airspeed controller.

The motor trust has been previously modelled with equation 4.55, and assuming that
the actual thrust follows the commanded thrust, this equation can be written as,

Ṫ = − 1
τe
T + 1

τe
Tc (5.1)

where Tc is the thrust command, T is the thrust magnitude and τe is the lag time constant
of the motor. De Bruin [16] used a simplification from Peddle [9] to derived the linearised
simplified velocity dynamics as,∆Ṫ

˙̄v

 =
− 1

τe
0

1
m

0

∆T
v̄

+
 1
τe

0

∆Tc (5.2)

where m is the mass of the UAV, and the states are deviations from trim including ∆T ,
which is the thrust magnitude from trim. This model represents the plant block in Figure
5.2.

A PI control architecture was chosen for the airspeed controller as shown in Figure
5.2. This was chosen due to the integrator being able to compensate for uncertainty in

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 74

steady-state drag and motor thrust offsets [9]. This is an important feature as the drag
on the aircraft and the thrust produced by the motor both depend on the atmospheric
conditions, which can vary due to numerous factors. The thrust test performed in appendix
A.2 was done in the ESL laboratory where the conditions are ideal with no wind. The
maximum thrust value was also conservatively chosen as the thrust produced by the motor
also depends on battery voltage. The integrator compensates for these deviations, which
makes it suitable for practical controller implementations. The disadvantage of using the
integrator is that it does make the controller slower. However, this not a major issue as
the primary function of the airspeed controller is to maintain a constant trim airspeed (18
m/s), which does not require a fast response.

The PI control law in figure 5.2 is defined as,

∆Tc = −Kp
AS
ėa −Ki

AS
ea (5.3)

with,
ėa = v̄ − v̄ref (5.4)

where ėa is the airspeed error and ea is the time integral of the airspeed error. The
integrator term can be augmented into the dynamic model in equation 5.2 which results
in,

∆Ṫ
˙̄v
ėa

 =

− 1
τe

0 0
1
m

0 0
0 1 0

∆T
v̄

ea

+

1
τe

0
0

∆Tc +

0
0

−1

 v̄ref (5.5)

Performing the substitution of equation 5.3 and simplifying results in,

∆Ṫ
˙̄v
ėa

 =

− 1
τe

−Kp
AS

τe
−Ki

AS

τe
1
m

0 0
0 1 0

∆T
v̄

ea

+

Kp
AS

τe

0
−1

 v̄ref (5.6)

The close-loop characteristic equation can be obtained as,

p(s) = s3 + 1
τe
s2 +

Kp
AS

mτe
s +

Ki
AS

mτe
(5.7)

The desired close-loop poles can then be placed using,

αc(s) = (s + a)(s2 + 2ζωns + ω2
n) (5.8)

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 75

Coefficient matching is used with two equations to give the airspeed controller gains as,

Ki
AS

= mτeω
2
na (5.9)

Kp
AS

= mτe(2ζωna + ω2
n) (5.10)

where the natural frequency is,

ωn =
1
τe

− a

2ζ (5.11)

To obtain the gains, the damping ratio ζ and the close-loop integrator pole a must
be chosen. The values chosen for these parameters will effect the step response of the
controller. This step response has to meet the requirements obtained from Peddle [8] and
De Bruin [16] which are,

• Rise time of less than 3s

• Overshoot of less than 20%

• Zero steady state error

The damping ratio and integrator pole location were manually altered until a desirable
step response was obtained that satisfied these requirements. The resulting values were
found to be,

ζcl = 0.85 (5.12)
a = 0.65rad/s (5.13)

Substituting these values into the gain equations (Equations 5.9 and 5.10) with this
project’s aircraft specifications (from Appendix A), and calculating the gains results in,

Ki
AS

= 3.7136 (5.14)
Kp

AS
= 8.9168 (5.15)

Figure 5.3 shows the pole zero plot and step response of the airspeed controller when using
these gains.

The airspeed controller introduces a zero near the dominant pole, as shown in figure
5.3a, which causes an overshoot in the step response, therefore ζ and a had to be chosen
carefully to ensure the requirements were met. The airspeed controller step response in
figure 5.3b is well within the requirements for the controller. The response has a rise time
of 1.26s, an overshoot of 0.7%, zero steady state error tracking and a 2% settling time of
1.63s.

The airspeed controller was designed with a reduced-order model. However, it needs
to be added to the full longitudinal linear model in equation 4.107 so that the remaining

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 76

(a) Pole-Zero Plot (b) Step Response

Figure 5.3: Airspeed controller pole-zero plot and step response using the reduced-order
model

longitudinal controllers can be designed taking into account the effect of the airspeed
controller. The full longitudinal linear model does not include the thrust command needed
by airspeed controller therefore the thrust dynamics from equation 5.1 is augmented into
the model which results in,

˙̄v
α̇

q̇

θ̇

∆Ṫ

=

∂U̇
∂U

V T
∂U̇
∂W

∂U̇
∂Q

∂U̇
∂Θ

∂U̇
∂T

1
V T

∂Ẇ
∂U

∂Ẇ
∂W

1
V T

∂Ẇ
∂Q

1
V T

∂Ẇ
∂Θ

1
V T

∂Ẇ
∂T

∂Q̇
∂U

V T
∂Q̇
∂W

∂Q̇
∂Q

∂Q̇
∂Θ

∂Q̇
∂T

∂Θ̇
∂U

V T
∂Θ̇
∂W

∂Θ̇
∂Q

∂Θ̇
∂Θ

∂Θ̇
∂T

0 0 0 0 − 1
τe

v̄

α

q

θ

∆T

+

∂U̇
∂δE

∂U̇
∂δF

0
1
V T

∂Ẇ
∂δE

1
V T

∂Ẇ
∂δF

0
∂Q̇
∂δE

∂Q̇
∂δF

0
∂Θ̇
∂δE

∂Θ̇
∂δF

0
0 0 1

τe

δe

δf

∆Tc

(5.16)
Writing this equation in a compact state space form results in,

ẋ
Long2 = A

Long2xLong2 + B
Long2uLong2 (5.17)

where A
Long2 and B

Long2 are the augmented system and input matrices respectively. The
controller integrator state is augmented into this matrix and then the control law from
equation 5.3 is substituted in to give the closed-loop system as,

ẋ
AS

= A
AS

x
AS

+ B
AS

u
AS

(5.18)

with,
v̄ = C

AS
x
AS

(5.19)

where A
AS

and B
AS

are the system and input matrices augmented with the airspeed
controller. The full derivation of the closed-loop system was performed by De Bruin [16].
The closed-loop transfer function which relates the airspeed reference to airspeed is given

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 77

as,
v̄(s)
v̄ref (s) = C

AS
(sI − A

AS
)−1B

v̄ref
(5.20)

where,
C
AS

=
[
1 0 0 0 0 0

]
; B

v̄ref
= B

AS

[
0 0 1

]⊺
(5.21)

5.2.1.2 Normal Specific Acceleration Direct Lift Control Controller

The normal specific acceleration direct lift (NSADLC) controller controls the normal
acceleration by commanding the elevator and flap deflections based on references it receives
from the climb rate controller. The NSADLC controller is based on the design by De
Bruin [16] who achieved high precision runway landing performance using this controller.
De Bruin added the direct lift control (DLC) component to the standard normal specific
acceleration (NSA) controller, which improved the step response performance. The normal
acceleration feedback on the practical vehicle is obtained from a 3-axis accelerator which
gives the acceleration in the body axes. As shown in Figure 5.4, the NSADLC controller
is formed using two separate controllers, which are the NSA controller and the DLC
controller.

NSADLC Plant

DLC
Controller

NSA
ControllerLPF

HPF

Figure 5.4: Block diagram of entire NSADLC controller.

This architecture constrains the NSA controller to only operate on the low frequency
components of the error signal, while the DLC controller only operates on the high
frequency components. The filter centre frequency ωc is chosen to be close to the closed-
loop bandwidth of the NSA controller. This provides two advantages which are: the
removal of the low pass filter (LPF) for the NSA controller, and being able to design the
NSA and DLC controllers independently of each other. The Km gain is used to allow the
elevator to cancel out undesired pitching moments produced by the flap deflections.

DLC Controller Design

Figure 5.5 shows the block diagram of the DLC controller.
A reduced-order model, obtained from De Bruin [16], is used to represent the DLC

plant, which describes the effect of the flaps (δf) on the angle of attack (α) and pitch rate

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 78

Figure 5.5: Block diagram of DLC controller.

deviations from trim (q). This model is given as,
α̇
q̇

 =
− Lα

mV T
1

Mα

Iyy

MQ

Iyy

α
q

+
− Lδ

F

mV T

0

 δf (5.22)

Cdf
w =

[
−Lα

m
0
] α
q

+
[
−Lδ

F

m

]
δf (5.23)

where Cdf
w is the normal specific acceleration produced by the DLC controller in the wind

axis system, Iyy is the principle moment of inertia about the y-axis, and V T is the trim
airspeed. The Lα, LQ, Lδ

F
,Mα and MQ are stability and control derivatives which depend

on the aircraft’s characteristics. The equations for these derivatives can be found in
appendix A.3.3.
The DLC controller uses an integral control law as shown in figure 5.5 and the equations
that define this law are written as,

δf = −Kif ef (5.24)

ėf =
τcs

τcs+ 1 ew (5.25)

ew = Cdf
w − Cdf

wref
(5.26)

where ew is the NSA error, ėf is the high-pass-filtered NSA error, ef is the time integral
of the high-pass-filtered NSA error, Tc is the HPF time constant and Cdf

wref
is the normal

specific acceleration reference to the DLC controller. The reduced-order model in equation
5.22 is augmented with the DLC controller integrator state and the control law. Thereafter,
the closed-loop characteristic equation is obtained to perform coefficient matching with
the desired close-loop pole equation, so that the integrator gain equation can be calculated.
The gain equation is calculated to be,

Kif = −
m

Lδ
F

2ζωn + a−
Lα

V Tm
+
MQ

Iyy
−

1
τc

 (5.27)

where ζ is the closed-loop damping ratio, wn is closed-loop natural frequency, and a is the
closed-loop integrator pole location.

To calculate the filter time constant, the NSA controller’s natural frequency needs to

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 79

be determined. The natural frequency is chosen to be close to the non-minimum phase
(NMP) upper bound which is calculated using the formula,

ωn <
1
3

∣∣∣∣∣
√
Lα
Iyy

(lT − lN)
∣∣∣∣∣ (5.28)

where lT and lN are the effective lengths from the CG location to the tailplane and neutral
point respectively. These lengths are calculated using,

lT ≡ −
Mδ

E

Lδ
E

(5.29)

lN ≡ −Mα

Lα
(5.30)

where Lα, Lδ
E
,Mα and Mδ

E
are stability and control derivatives whose equations can be

found in appendix A.3.3. Substituting the aircraft constants into these equations produces
the NMP upper bound as,

ωnmax < 8.6073 rad/s (5.31)

The NSA closed-loop natural frequency is therefore chosen as,

ωnpmb = 8.5 rad/s (5.32)

The filter centre frequency is chosen to be equal to the closed-loop bandwidth of the NSA
controller, as previously discussed, which results in,

ωc = ωnpmb = 8.5 rad/s (5.33)

and therefore the filter time constant is calculated as,

τc = 1
ωc

= 0.1176 (5.34)

The DLC controller damping ratio and natural frequency were set equal to those of the
aircraft’s natural short period mode, and then the DLC controller closed-loop integrator
pole location was calculated as,

ζcl = ζsp = 0.6731 (5.35)
ωncl = ωnsp = 8.0197 rad/s (5.36)
a = 2ζcl ωncl = 10.7961 rad/s (5.37)

These values can then be substituted into equation 5.27 to calculate the DLC controller

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 80

gain as,
Kif = −0.1131 (5.38)

The Km gain can be calculated using the ratio between the pitching moment flap deflection
coefficient and the pitching moment elevator deflection coefficient which is written as,

Km = −
Cm

δF

Cm
δE

(5.39)

giving,
Km = 0.1213 (5.40)

Figure 5.6 shows the pole-zero plot and step response of the DLC controller for
the calculated gains. The step response’s magnitude is the normal specific acceleration
produced by the flap deflection caused by the DLC controller. The step response reference
has a magnitude of 1.0. In Figure 5.6a, the closed-loop integrator pole was chosen to

(a) Pole-Zero Plot (b) Step Response

Figure 5.6: DLC controller pole-zero plot and step response using the reduced order
model

be about double the real component of the short period mode poles for high bandwidth.
The short period mode poles are kept close to their open-loop location as they will be
manipulated by the NSA controller. The DLC step response in Figure 5.6b has a large
steady state error due to the close-loop system not containing a free integrator. However,
this is not of concern since the NSA controller will handle the low frequency components
of the NSA error signal. The DLC controller is mainly used to increase the initial response
time of the NSA state.

NSA Controller Design

The NSA Controller block diagram is shown in Figure 5.7.
The NSA controller also uses a reduced-order dynamic model, obtained from Peddle [9],

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 81

q

Figure 5.7: Block diagram of NSA controller.

which relates the effect of the elevator deflection (δe) on the angle of attack (α) and pitch
rate deviations from trim (q). The model is derived as,

α̇
q̇

 =
− Lα

mV T
1

Mα

Iyy

MQ

Iyy

α
q

+
 0
Mδ

E

Iyy

 δe (5.41)

Cde
w =

[
−Lα

m
0
] α
q

+
[
0
]
δe (5.42)

where Cde
w is the normal specific acceleration produced by the NSA controller in the

wind axis system. Mδ
E

and Lδ
E

(used in closed-loop derivation) are stability and control
derivatives which depend on the aircraft’s characteristics. The formula for these derivatives
can be found in appendix A.3.3.
The PI control law, shown in figure 5.7, was derived by Peddle [9] as,

δe = −Kq q −KcC
de
w −Kie ec +NcC

de
wref

(5.43)

ėc = Cde
w − Cde

wref
(5.44)

where ėc is the NSA error, ec is the time integral of the NSA error, and Cde
wref

is the normal
specific acceleration reference for the NSA controller. The flap mixing component with the
Km gain is ignored for the NSA control law design to allow for the independent controller
design, and it is instead treated as a disturbance. The feedforward gain Nc is included in
the control law by placing a zero at,

s = −Kie

Nc

(5.45)

which is placed close to the closed-loop integrator pole to minimise its transient effects.
The reduced-order model in equation 5.41 is augmented with the NSA integrator state
and control law, and thereafter the closed-loop characteristic equation is obtained. This
equation is then used for coefficient matching with the desired close-loop pole equation so

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 82

that the NSA controller gains can be calculated resulting in,

Kq = Iyy
MδE

2ζωn + a+ MQ

Iyy
− Lα
mV T

 (5.46)

Kc = − mIyy
LαMδE

2ζωna+ ω2
n + Mα

Iyy
− Lα
mV T

(
2ζωn + a− Lα

mV T

) (5.47)

Kie = − mIyy
LαMδE

(
ω2
na) (5.48)

To obtain these gains, the closed-loop integrator pole location a, as well as the short period
mode poles’ damping ratio ζ and natural frequency ωn must be selected. The feedforward
zero zf also needs to be selected to calculate the feedforward gain Nc. The closed-loop
damping ratio is chosen for optimal damping and is therefore selected as,

ζcl = 0.707 (5.49)

The NSA closed-loop natural frequency was previously selected in equation 5.32 and is
restated as,

ωncl = 8.5 rad/s (5.50)

The closed-loop integrator location is obtained as,

a = ζcl ωncl = 6.0095 rad/s (5.51)

The feedforward zero is selected to be at the closed-loop integrator pole location,

zf = a = 6.0095 rad/s (5.52)

The NSA gains are then calculated by using these values, resulting in

Kq = −0.0762 (5.53)
Kc = 0.0069 (5.54)
Kie = 0.0623 (5.55)

The feedforward gain is calculated using equation 5.45 which yields,

Nc = −Kie

−zf
= 0.0104 (5.56)

The pole-zero plot and step response for these gains are shown in figure 5.8.
As shown in the pole-zero plot, the short period mode poles are adequately damped

and are placed close to the NMP upper bound (8.6073 rad/s). The integrator pole location

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 83

(a) Pole-Zero Plot (b) Step Response

Figure 5.8: NSA controller pole-zero plot and step response using the reduced order
model

is placed close to the short period mode poles as to not constrain the NSA controller
bandwidth. The zero is placed by the integrator to reduce its negative transient effects.
The NSA step response has a very fast rise time and almost no overshoot indicating
sufficient damping. The initial negative value of the response is believed to be cause by
approximations in the model.

NSADLC Controller Closed-loop System

To allow the outer controllers to be designed in a cascaded configuration, the NSADLC
controller needs to be augmented into the full linear longitudinal model. The airspeed
controller was already augmented into the model, therefore its closed-loop model from
equation 5.18 can be used as the plant for the NSADLC controller and it is restated as,

ẋ
AS

= A
AS

x
AS

+ B
AS

u
AS

(5.57)

The DLC integrator state can be augmented into this model to form,
ẋ

AS

ėf

 =
A

AS
06×1

0 −Lα
m

−LQ
m

01×3 − 1
τc

x
AS

ef

+
 B

AS

0 −LδF
m

0

u
AS

+
06×1

−1

Cdf
wref

(5.58)
The A matrix in this equation can be represented more compactly as Aėf . Substituting
the DLC control law from equation 5.24 into this equation while simplifying results in,

ẋ
AS

ėf

 =
Aėf +

 Bδf

−LδF
m

 [01×6 −Kif

] x
AS

ef

+
Bδe 06×1 Bv̄ref

0 −1 0

δe

Cdf
wref

v̄ref

 (5.59)

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 84

where,

Bδe = B
AS

[
1 0 0

]⊺
; Bδf = B

AS

[
0 1 0

]⊺
; Bv̄ref = B

AS

[
0 0 1

]⊺
(5.60)

This equation can be written in a compact state space form as,

ẋ
DLC

= A
DLC

x
DLC

+ B
DLC

u
DLC

(5.61)

with,
Cdf
w = C

DLC
x
DLC

(5.62)

The close-loop transfer function which relates the DLC controller NSA reference to the
DLC controller output is calculated as,

Cdf
w (s)

Cdf
wref (s)

= C
DLC

(sI − A
DLC

)−1Bdf
Cwref

(5.63)

where,

C
DLC

=
[
0 −Lα

m
−LQ

m
0 0 0 KifLδF

m

]
; Bdf

Cwref
= B

DLC

[
0 1 0

]⊺
(5.64)

The DLC controller has now been augmented into the full longitudinal model. All that
remains is to add the NSA controller to form the full hybrid NSADLC closed-loop model.
The NSA controller integrator state is augmented into the DLC state space equation(5.61)
which results in,

ẋ
DLC

ėc

 =
A

DLC
07×1

0 −Lα
m

−LQ
m

01×3
KifLδF

m
0

x
DLC

ec

+
 B

DLC

−LδE
m

0 0

u
DLC

+
07×1

−1

Cde
wref

(5.65)

The A matrix in this equation can be represented in a more compact form as Aėc . Assuming
that the input NSA reference to the NSA and DLC controllers are the same, the NSA
control law (5.43) can be substituted into this equation to give,
ẋ

DLC

ėc

 =
Aėc +

 Bδe

−LδE
m

 [0 KcLα
m−KcLδE

KcLQ−mKq
m−KcLδE

01×3 −KcKifLδF
m−KcLδE

− mKie
m−KcLδE

] x
DLC

ec

+

(

mNc
m−KcLδE

Bδe + Bdf
Cwref

)
Bv̄ref

−
(

1 + NcLδE
m−KcLδE

)
0

Cwref
v̄ref

(5.66)

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 85

where,

Bδe = B
DLC

[
1 0 0

]⊺
; Bdf

Cwref
= B

DLC

[
0 1 0

]⊺
; Bv̄ref = B

DLC

[
0 0 1

]⊺
(5.67)

This equation represents the closed-model of the full NSADLC hybrid system. This model
can be written in a compact state space form as,

ẋ
Hyb

= A
Hyb

x
Hyb

+ B
Hyb

u
Hyb

(5.68)

and,
Cw = C

Hyb
x
Hyb

+ D
Hyb

u
Hyb

(5.69)

where,

C
Hyb

=
[
C
DLC

0
]

− LδE
m

[
0 KcLα

m−KcLδE

KcLQ−mKq
m−KcLδE

01×3 −KcKifLδF
m−KcLδE

− mKie
m−KcLδE

]
(5.70)

D
Hyb

=
[
− NcLδE
m−KcLδE

0
]

(5.71)

This model can be used to form the plant of the outer-loop controllers, and their control
laws can be augmented into this model. The closed-loop transfer function, which relates
the NSA reference to the NSA output of the entire NSADLC controller, can be calculated
as,

Cw(s)
Cwref (s)

= C
Hyb

(sI − A
Hyb

)−1BCwref
+ D

Hyb
(5.72)

where,
BCwref

= B
Hyb

[
1 0

]⊺
(5.73)

The step response of the NSADLC closed-loop model, shown in Figure 5.9, has a very fast
rise time and minimal overshoot. The overshoot period and hence the 2% settling time of
the NSADLC controller is longer then the standard NSA controller on the reduced-order
dynamics (Figure 5.8b). This is expected as the NSADLC controller operates on the full
longitudinal dynamics. Its performance is still within specification. The fast rise time of
the NSADLC controller is very important for it to not limit the performance of the outer
(climb rate and altitude) controllers, which use it as an inner-loop controller.

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 86

Figure 5.9: Step response of the full NSADLC controller.

5.2.1.3 Climb Rate Controller

The climb rate controller controls the aircraft’s climb rate state by commanding the NSA
reference for the NSADLC controller based on climb rate references it receives from the
altitude controller. The climb rate is defined as the aircraft’s upwards velocity in the
inertial frame. This means that the climb rate is positive in the upwards direction, which
is the opposite direction to the Z-axis (down axis) of the inertial frame. On the practical
vehicle, the aircraft’s inertial velocity is obtained from the Extended Kalman Filter (EKF)
which uses the IMU’s data combined with corrections obtained from the DGPS. The climb
rate can be obtained from the EKF data by simply multiplying the Z inertial velocity
component by -1 which is mathematically expressed as,

ḣ = −Ḋ (5.74)

The block diagram outlining the climb rate architecture is shown in figure 5.10.

-1

Figure 5.10: Block diagram of the climb rate controller.

ḣref is the climb rate reference, ḣ is the climb rate, and Cwref is the NSA reference
command. The −1 block converts the climb rate controller command to the down axis
used by the NSADLC controller. The climb rate controller uses a PI control law as the

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 87

integrator is used to compensate for biases in the normal acceleration measurements. The
climb rate controller can be designed on the full longitudinal model dynamics which allows
the climb rate plant to use the NSADLC closed-loop model from equation 5.68. To obtain
the climb rate plant, the relationship between the NSA reference and climb rate has to be
derived. This requires the climb rate to be extracted from the NSADLC closed-loop state
vector x

Hyb
. The downwards inertial velocity (Ḋ) is related to the body axis velocities via

the inverse DCM as,

Ḋ = −U sin(Θ) + V cos(Θ) sin(Φ) +W cos(Θ) cos(Φ) (5.75)

The climb rate is related to the inertial downwards velocity via equation 5.74. Therefore,
using small angle approximations, and a roll angle (Φ) of zero, the climb rate can be
written as,

ḣ = −Ḋ = UΘ −W (5.76)

During straight and level flight it can be assumed that U ≈ V T and W ≈ V T α which
allows the climb rate to be simplified to,

ḣ = V T (Θ − α) (5.77)

This equation extracts the climb rate from the x
Hyb

state vector. Therefore, the transfer
function from the NSA reference to the climb rate state, which is the climb rate controller
plant, is written as,

ḣ(s)
Cwref (s)

= C ḣ(sI − A
Hyb

)−1BCwref
(5.78)

where,
C ḣ =

[
0 −V T 0 V T 01×4

]
(5.79)

The PI control law for figure 5.10 is written as,

Cwref = −Kp
CR
ėr −Ki

CR
er (5.80)

with,
ėr = ḣ− ḣref (5.81)

where ėr is the climb rate error and er is the time integral of the climb rate error. The
climb rate controller gains are selected so that the dominant closed-loop poles are optimally
damped, having a damping ratio (ζ) of 0.707. The gains are also selected to ensure the
step response has a rise time of less than 3 seconds, an overshoot of less than 20% and zero
steady-state error. The step response requirements were obtained from Peddle [8], who
choose them based on what would be reasonable for conventional flight. The controller

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 88

gains selected that meet these requirements are,

Ki
CR

= 0.9 (5.82)
Kp

CR
= 2.70 (5.83)

Figure 5.11 shows the pole-zero plot and step response for the climb rate controller using
the selected gains.

(a) Pole-Zero Plot (b) Step Response

Figure 5.11: Climb Rate controller pole-zero plot and step response

The two black lines in the pole-zero map represents the damping ratio (ζ) boundary
at 0.707 and it can be seen that the dominant closed-loop poles are optimally damped.
The step response has a fast rise time of 0.59 seconds, an overshoot of 10%, and zero
steady-state error, which are within the requirements for the controller. The fast rise
means that the climb rate controller should not hamper the outer altitude controller’s
response time. The step response has an undesirable second peak which is caused by the
slower complex pole pair near the closed-loop zeros. This causes the 2% settling time
to be much slower at 9.4 seconds. However, this is still acceptable as the outer altitude
controller contains a limited integrator which would minimise this effect.

The closed-loop model for the climb rate controller can now be derived so it can be
used for the altitude controller design. The NSADLC closed-loop model from Equation
5.68 can be augmented with the climb rate controller integrator to give,

ẋ
Hyb

ėr

 =
A

Hyb
08×1

0 −VT 0 VT 01×5

x
Hyb

er

+
B

Hyb

01×2

u
Hyb

+
08×1

−1

 ḣref (5.84)

The A matrix can be written more compactly as Aėr and the climb rate control law

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 89

(Equation 5.80) can be substituted into the equation to form,
ẋ

Hyb

ėr

 =
Aėr +

BCwref

0

 [0 Kp
CR
VT 0 −Kp

CR
VT 01×4 −Ki

CR

] x
Hyb

er

+
KpCRBCwref

Bv̄ref

−1 0

ḣref
v̄ref

 (5.85)

where,
BCwref

= B
Hyb

[
−1 0

]⊺
; Bv̄ref = B

Hyb

[
0 1

]⊺
(5.86)

The −1 multiplication used for the calculation of the BCwref
vector is used to account for

the opposite direction between the NSA and climb rate. Equation 5.85 can be written in
a more compact form as,

ẋ ḣ = Aḣx ḣ + Bḣu ḣ (5.87)

with,
ḣ = C ḣx ḣ (5.88)

where,
C ḣ =

[
0 −VT 0 VT 01×5

]
(5.89)

The transfer function that relates the climb rate reference to climb rate is calculated as,

ḣ(s)
ḣref (s)

= C ḣ(sI − Aḣ)−1Bḣref
(5.90)

where,
Bḣref

= Bḣ

[
1 0

]⊺
(5.91)

5.2.1.4 Altitude Controller

The altitude controller controls the aircraft’s altitude, based on the references it receives
from the guidance system, by commanding the climb rate controller which itself commands
the NSADLC controller. As with the climb rate, the altitude is positive in the upward
direction in the inertial frame. On the practical vehicle, the aircraft position in the inertial
frame is obtained from the EKF which uses the IMU and DGPS measurements. The
altitude is then obtained by multiplying the Z-component of the position (D) by −1 which
is mathematically expressed as,

h = −D (5.92)

It is important for the altitude controller to have very good glide slope tracking during the
landing phase, as any deviation from the altitude reference will cause a large longitudinal
position error due to the small glide slope angle. Another issue is that it takes a significant

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 90

period of time for the altitude controller to produce the correct climb rate reference to
track the glide slope. This can cause the aircraft to have a steady-state error when tracking
the glide slope, or to not have settled in time for the landing. A common method used
to address this issue is to pre-inject the desired climb rate reference into the climb rate
controller and then have the altitude controller work around this set point to reject any
disturbances. This pre-injected climb rate reference (˙̄href) is only added to the altitude
controller’s climb rate reference command during the glide slope tracking phase. The
pre-injected climb rate reference is provided by the guidance system and its derivation
is discussed in section 6.4. Figure 5.12 shows the block diagram of the classical altitude
controller,

Limited
Integrator

Figure 5.12: Block diagram of the altitude controller.

where href is the altitude reference, h is the altitude, ḣref is the climb rate reference
command, and ˙̄href is the pre-injected climb rate reference. The limited integrator is
added to compensate for climb rate biases that can cause glide slope tracking errors. The
limited integrator does not form part of the altitude controller and is instead an external
component which, similar to the ˙̄href component, helps the altitude controller. The
parameters of the limited integrator are manually tuned and their selection are discussed
later in this subsection.

The altitude plant can be formed using the closed-loop model of the climb rate controller
from equation 5.87. The altitude can be easily obtained from the climb rate model state
vector x ḣ by extracting the climb rate and then integrating it. The altitude controller
plant relates the climb rate reference to the altitude state, and this is calculated as,

h(s)
ḣref (s)

= 1
s

C ḣ(sI − Aḣ)−1Bḣref
(5.93)

where C ḣ and Bḣref
have been defined previously in equations 5.89 and 5.91 respectively.

For the design of the altitude controller, the pre-injected climb rate reference (˙̄href)
is set to zero. The altitude controller only consists of a proportional component as the
addition of an integrator makes the controller response too slow. The altitude proportional

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 91

control law, with reference to figure 5.12, is define as,

ḣref = −Kp
Alt
eh (5.94)

with,
eh = h− href (5.95)

where eh is the altitude error. The altitude controller has to have very good step response
performance to successfully command the aircraft to land on the moving platform. To
achieve this, it is crucial that the controller eliminates any altitude error before touchdown.
Therefore, the controller needs to have a 2% settling time that is less than the time it
takes the aircraft to complete its glide slope. The glide slope time can be calculated using,

tGS = LGS
Vground

(5.96)

where LGS is the glide slope longitudinal distance and Vground is the aircraft ground speed.
As will be shown in chapter 6, the glide slope length is chosen to be 250 m and the ideal
ground speed is chosen as 18 m/s for the moving platform landing. The glide slope time is
therefore calculated as,

tGS = 250
18 = 13.89 s (5.97)

The 2% settling time requirement can therefore be specified as,

ts < 13 s (5.98)

Additional requirements that the controller should meet are: a rise time of less than 6
seconds, less than 20% overshoot, and zero steady state error. The additional requirements
are obtained from Peddle [8], who choose these requirements based on the physical
capabilities of the aircraft. The altitude gain that is selected to meet these requirements
is,

Kp
Alt

= 0.8 (5.99)

The pole-zero plot and step response of the altitude controller for this gain are shown in
Figure 5.13.

The damping ratio of the most dominant complex pole pair in Figure 5.13a is,

ζcl = 0.956 (5.100)

which is quite high. This ensures that there is minimal overshoot in the step response.
The altitude step response in Figure 5.13b has a 2% settling time of 3.39 seconds, a rise
time of 2.26 seconds, an overshoot of less than 1%, and zero steady-state error. These
characteristics are within the requirements for the controller. The settling time is much

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 92

(a) Pole-Zero Plot (b) Step Response

Figure 5.13: Altitude controller pole-zero plot and step response

faster then the requirement, which is good, especially since the ground speed could increase
significantly due to a tail wind. The altitude limited integrator gain is found through
manual tuning using the non-linear simulation model. This gain is found to be,

Ki
Altlim

= 0.5 (5.101)

The saturation limits for the integrator are set to ±0.1 m/s which is believed to be the
maximum climb rate bias.

To create the altitude response closed-loop model, it is first required to augment the
altitude state h into the climb rate closed-loop model from equation 5.87 which results in,ẋ ḣ

ḣ

 =
Aḣ 09×1

0 −VT 0 VT 01×6

x ḣ
h

+
 Bḣ

01×2

u ḣ (5.102)

where the climb rate (ḣ) state is extracted from the x ḣ vector using equation 5.77. The A
matrix from this equation can be more compactly written as Aḣ2

, and the altitude control
law from equation 5.94 can be substituted in to give,
ẋ ḣ
ḣ

 =
Aḣ2

+
Bḣref

0

 [09×1 −Kp
Alt

] x ḣ
h

 +
Kp

Alt
Bḣref

Bv̄ref

0 0

href
v̄ref

 (5.103)

where,
Bḣref

= Bḣ

[
1 0

]⊺
; Bv̄ref = Bḣ

[
0 1

]⊺
(5.104)

Equation 5.103 can be written in a more compact form as,

ẋh = Ahxh + Bhuh (5.105)

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 93

with,
h = Chxh (5.106)

where,
Ch =

[
01×9 1

]
(5.107)

The transfer function that relates the altitude reference to altitude is calculated as,

h(s)
href (s) = Ch(sI − Ah)−1Bhref (5.108)

where,
Bhref = Bh

[
1 0

]⊺
(5.109)

5.2.2 Lateral Controllers Design

5.2.2.1 Lateral Specific Acceleration(LSA) Controller

The lateral specific acceleration (LSA) controller controls the aircraft’s lateral acceleration
by commanding the rudder deflection based on references it receives from the yaw controller.
To design the LSA controller, it is assumed that the lateral-directional dynamics can be
decoupled to form the lateral dynamics and directional dynamics which are independent of
each other, as was done by Peddle [9]. The LSA controller is designed for the directional
dynamics while the roll rate controller, which is introduced later, is designed for the
lateral dynamics. To perform this decoupling, it is assumed, that the side forces and
yawing moments produced by the aircraft roll rate and aileron defection are significantly
smaller than those produced by the yaw rate, rudder deflection, and sideslip. It is also
assumed that the rolling moments produced by the yaw rate and rudder deflection are
significantly smaller than those produced by the roll rate, aileron deflection, and sideslip.
These assumptions are not entirely true, as the rudder deflection influences the lateral
dynamics, while the aileron deflection influences the directional dynamics [9]. These effects
are known as the adverse yaw and rudder-induced roll and are treated as disturbances to
the appropriate controllers. The lateral acceleration measurements on the practical vehicle
are obtained from a three-axis accelerometer which measures the acceleration in the body
axes. The LSA reference is set to zero for conventional flight (waypoint navigation) to allow
for coordinated turns, and therefore the yaw controller is disabled in this stage. The LSA
reference is no longer zero when the yaw controller is activated during the de-crab stage of
landing. The LSA controller is formed by combining two separate controllers together, as
shown in figure 5.14, with the inner controller used for stability augmentation and the
outer controller used to regulate the lateral specific acceleration. The inner controller is
only used to place the dutch roll mode poles at a desired location.

In figure 5.14, Bw is the lateral specific acceleration in the wind axes, Bwref is the

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 94

Outer
Controller

Inner
Controller

Figure 5.14: Block diagram of the LSA controller.

lateral specific acceleration reference, and δr is the rudder deflection from trim.

Stability Augmentation Controller Design

The LSA plant is represented by the reduced-order directional dynamics which is given as,
β̇
ṙ

 =
− Yβ

mV̄T
−1

Nβ
Izz

NR
Izz

β
r

+
 YδR
mV̄T
NδR
Izz

 δr (5.110)

Bw =
[
Yβ
m

YR
m

] β
r

+
[
YδR
m

]
δr (5.111)

where Izz is the principle moment of inertia about the z-axis, β is the slideslip angle, r is the
yaw rate from trim, and Yβ, YR, YδR , Nβ, NR, and NδR are stability and control derivatives
which are defined in appendix A.3.3. The control law for the stability augmentation
controller with respect to figure 5.14 is given as,

δr = −Krr −KBBw + δrr (5.112)

where δrr is the rudder command from the outer controller. This control law is substituted
into the directional dynamics of equation 5.110 and the characteristic equation can be
derived. This characteristic equation, which is obtained from Peddle [9], is only valid if
the following constraints are met:

∣∣∣∣∣KB

Kr

∣∣∣∣∣ <<
∣∣∣∣∣ mlF

YR(lD − lF)

∣∣∣∣∣ (5.113)

|Kr| <<
∣∣∣∣∣ mV T lW

YδR(lW − lF)

∣∣∣∣∣ (5.114)

where,

lW = −
Nβ

Yβ
; lD = −

NR

YR
; lF = −

NδR

YδR
(5.115)

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 95

Coefficient matching is used on the characteristic equation to obtain the controller gain
equations as,

KB =
YβNR
mV T Izz

+ Nβ
Izz

− ω2
ncl

YδR
m

[
ω2
ncl

− Yβ
Izz

(
Nβ
Yβ

− NδR
YδR

)] (5.116)

Kr =
Izz

NδR

 Yβ

mV T

+
NR

Izz
+ 2ζclωncl

(
1 +KB

YδR
m

) (5.117)

To calculate the gains, it is first required to choose the closed-loop damping ratio ζcl and
natural frequency ωncl of the dutch roll mode poles. The damping ratio was chosen to be
0.9 and the closed-loop natural frequency was chosen as 1.2 times the open-loop natural
frequency of the dutch roll mode poles(equation 4.120). The selected values are therefore,

ζcl = 0.9 (5.118)
ωncl = 1.2ωnol = 4.60548 rad/s (5.119)

The gains are therefore calculated as,

KB = −0.0899 (5.120)
Kr = −0.3176 (5.121)

For these gains to be valid, the constraints of equations 5.113 and 5.114 must be satisfied.
Therefore evaluating the constraints results in,

∣∣∣∣∣KB

Kr

∣∣∣∣∣ = 0.2831 <<
∣∣∣∣∣ mlF

YR(lD − lF)

∣∣∣∣∣ = 115.7929 (5.122)

|Kr| = 0.3176 <<
∣∣∣∣∣ mV T lW

YδR(lW − lF)

∣∣∣∣∣ = 4.7772 (5.123)

The inner controller gains are therefore valid.

LSA Regulation Controller Design

The transfer function which represents the plant for the LSA regulation controller is
defined by Peddle [9] as,

Bw ≈ Kssδrr (5.124)

where Kss is the steady-state gain of the transfer function and is given as,

Kss =
YδRYβ

mIzzω2
ncl

(
Nβ

Yβ
−
NδR

YδR

)(
1 +KB

YδR
m

)−1

(5.125)

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 96

The control law for the outer controller with respect to Figure 5.14 is given as,

δrr = −Ki
LSA

eb (5.126)

and,
ėb = Bw −Bwref (5.127)

To obtain a practically feasible controller, Peddle [9] constrains the natural frequency of
the closed-loop integrator pole with the following equation,

ωni <
1
3

∣∣∣∣∣∣∣
√√√√ − Yβ(lF − lW)

Izz

∣∣∣∣∣∣∣ (5.128)

The control law of the outer controller is substituted into the plant from Equation
5.124. Coefficient matching is then performed with a characteristic equation to derive the
integrator gain equation as,

Ki
LSA

= a

Kss

(5.129)

where a is the integrator pole location which can be selected. The steady-state gain can
be calculated by evaluating Equation 5.125 with the stability augmentation gain (KB)
and closed-loop natural frequency (ωncl) resulting in,

Kss = −2.7604 (5.130)

The constraint from Equation 5.128 is evaluated to form,

ωni < 1.3429 rad/s (5.131)

The integrator pole location needs to be lower then this frequency. Therefore, it is chosen
as,

a = 0.75 rad/s (5.132)

The integrator gain can then be calculated using Equation 5.129 to give,

Ki
LSA

= −0.2717 (5.133)

The pole-zero plot and step response of the LSA controller using these gains are shown in
Figure 5.15.

The pole-zero plot shows that the dutch role mode poles are sufficiently separated from
the dominant integrator pole of the outer controller. This means that the LSA response
depends on the outer controller which is desired since this controller regulates the LSA.
The step response has a rise time of 2.22 seconds which is slower then the NSADLC

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 97

(a) Pole-Zero Plot (b) Step Response

Figure 5.15: LSA controller pole-zero plot and step response

controller. However, this is expected, as the rudder is smaller then the elevator, reducing
its effectiveness. This slower rise time is still acceptable for the crab angle controller as it
only has to de-crab the aircraft on landing where there will be sufficient time to perform
this manoeuvre.

LSA Closed-Loop Model

The LSA controller was designed on the reduced-order directional dynamics. However
to design the outer controllers, the LSA controller has to be augmented into the full
lateral dynamic model from Equation 4.108. The full lateral model can be more compactly
written in state space form as,

ẋ
Lat

= A
Lat

x
Lat

+ B
Lat

u
Lat

(5.134)

where A
Lat

and B
Lat

are system and input matrices, respectively, for the lateral model.
The control law of the stability augmentation controller from Equation 5.112 is substituted
into this model and the resulting compact state space system is given as,

ẋs = Asxs + Bsus (5.135)

The LSA regulation controller integrator from Equation 5.127 is augmented into this
model, and then the control law for the LSA regulation controller from Equation 5.126 is
substituted in, resulting in the following compact state space system:

ẋbw = Abwxbw + Bbwubw (5.136)

with,
Bw = C bwxbw (5.137)

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 98

The closed-loop transfer function that relates the LSA reference to the LSA is given as,

Bw(s)
Bwref (s)

= C bw(sI − Abw)−1BBwref
(5.138)

The complete derivation of the closed-loop system for the LSA controller was performed
by De Bruin [16].

5.2.2.2 Roll Rate Controller

The role rate controller controls the aircraft’s roll rate by commanding aileron deflections
based on references it receives from the roll angle controller. The roll rate controller
operates on the decoupled lateral dynamics as discussed in the previous section. On the
practical vehicle, the roll rate feedback is received from the EKF, which uses a three-axis
gyroscope to get the measurements. Figure 5.16 shows the roll rate controller architecture.

Figure 5.16: Block diagram of the Roll Rate controller.

In the figure, p is roll rate, pref is the roll rate reference, and δa is the aileron deflection
from trim. The plant used for the roll rate controller is the reduced-order lateral dynamics,
which is represented as,

ṗ =
[
LP
Ixx

]
p+

[
LδA
Ixx

]
δa (5.139)

where Ixx is the principle moment of inertia about the x-axis, and LP and LδA are control
and stability derivatives defined in appendix A.3.3. The roll rate controller has a PI
architecture, as shown in Figure 5.16, and therefore the control law with respect to this
figure is written as,

δa = −Kp
RR
ėp −Ki

RR
ep (5.140)

with,
ėp = p− pref (5.141)

where ėp is the roll rate error and ep is the time integral of the roll rate error. The
integrator is state is augmented into the roll rate controller plant and then the roll rate
control law is substituted in. Coefficient matching is then performed with a characteristic

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 99

equation to derive the roll rate gain equations as,

Kp
RR

=
α1Ixx + LP

LδA
(5.142)

Ki
RR

=
α0Ixx

LδA
(5.143)

where α0 and α1 are the characteristic equation coefficients which are defined based on
the desired pole locations. To calculate the gains, the closed-loop integrator and roll mode
pole locations needs to be selected. The roll mode pole position was chosen to be kept at
its open-loop location while the integrator pole was selected to be slightly slower then the
roll mode pole. The pole locations are obtained as,

p1 =
∣∣∣∣∣∣
LP

Ixx

∣∣∣∣∣∣ = 12.0775 rad/s (5.144)

p2 =
(3

4

)
p1 = 9.0581 rad/s (5.145)

where p1 is the roll mode pole and p2 is the integrator pole. The characteristic coefficients
are therefore calculated as,

α0 = p1 × p2 = 109.3997 (5.146)
α1 = p1 + p2 = 21.1356 (5.147)

Substituting these coefficient values into the roll rate gain equations results in,

Kp
RR

= −0.0644 (5.148)
Ki

RR
= −0.7783 (5.149)

The pole-zero plot and step response of the roll rate rate controller with these gains are
shown in Figure 5.17.

The pole-zero plot shows that the integrator pole is dominant, but is still close to the
roll mode pole. The roll rate controller step response has a very fast rise and settling time,
as well as no overshoot, which is desired to not limit the roll angle controller.

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 100

(a) Pole-Zero Plot (b) Step Response

Figure 5.17: Roll Rate controller pole-zero plot and step response

Roll Rate Closed-Loop Model

The roll rate controller was designed on the reduced-order lateral dynamics. However, to
design the outer controllers, the roll rate controller needs to be augmented into the full
lateral dynamic model. The closed-loop model of the LSA controller from Equation 5.136
contains the full lateral model and is used to augment the roll rate controller. The roll
rate controller’s integrator state is first augmented into the model, and then its control
law is substituted in to create the roll rate closed-loop model. The roll rate closed-loop
model is represented in a compact state space form as,

ẋp = Apxp + Bpup (5.150)

with,
p = C pxp (5.151)

where,
C p =

[
0 1 01×4

]
(5.152)

The closed-loop transfer function that relates the roll rate reference to the roll rate is given
as,

p(s)
pref (s) = C p(sI − Ap)−1Bpref (5.153)

where,
Bpref = Bp

[
1 0

]⊺
(5.154)

The complete derivation of the closed-loop system for the roll rate controller is performed
by De Bruin [16].

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 101

5.2.2.3 Roll Angle Controller

The roll angle controller controls the roll angle by commanding the roll rate controller
based on references it receives from the transition multiplexer. On the practical vehicle,
the roll angle is obtained by converting quaternion estimates received from the EKF.
The EKF uses a three-axis accelerometer and magnetometer to provide the quaternion
estimates. Figure 5.18 shows the roll angle controller architecture, where ϕ is the roll angle
from trim, ϕref is the reference roll angle, and pref is the roll rate reference.

Figure 5.18: Block diagram of the Roll Angle controller.

The roll angle reference is limited to ±π
6 rad (±30◦) to prevent excessive banking which

can cause the aircraft to stall. The roll angle controller is designed on the full lateral
dynamic model that is augmented with the LSA and roll rate controllers. This model is
represented by the closed-loop roll rate controller model, from Equation 5.150, which is
used to design the roll angle controller plant. The roll angle plant consists of a transfer
function which relates the roll rate reference to the roll angle, and is given as,

ϕ(s)
pref (s) = Cϕ(sI − Ap)−1Bpref (5.155)

where,
Cϕ =

[
01×3 1 01×2

]
(5.156)

The roll angle controller uses a proportional controller architecture as shown in Figure
5.18 and therefore its control law with respect to this figure is given as,

pref = −Kp
RA
eϕ (5.157)

with,
eϕ = ϕ− ϕref (5.158)

where, eϕ is the roll angle error. The roll angle controller’s step response needs to have
minimal overshoot and a 2% settling time of less than 3 seconds. These requirements were
obtained from De Bruin [16], who chose them to ensure that the roll angle controller’s
response would be acceptable for the outer cross-track controller. The proportional gain
Kp

RA
is adjusted to meet these requirements with the resulting gain found to be,

Kp
RA

= 1.5 (5.159)

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 102

The pole zero plot and step response for the roll angle controller with this gain value is
shown in Figure 5.19.

(a) Pole-Zero Plot (b) Step Response

Figure 5.19: Roll Angle controller pole-zero plot and step response

The step response has less than 1% overshoot and a 2% settling time of 2 seconds, which
are within the requirements for the controller. Unfortunately, there is a steady-state error
in the step response, which is due to the roll angle controller not containing an integrator.
An integrator was considered to be added to the controller however the response time
was too slow and would not meet the controller transient response requirements. The
steady-state error will instead be handled by the outer cross-track controller.

Roll Angle Closed-Loop Model

To design the outer controllers, the closed-loop model for the roll angle controller needs to
be derived. The control law of the roll angle controller is substituted into the roll rate
closed-loop model from Equation 5.150. The compact state space form of the resulting
model is given as,

ẋϕ = Aϕxϕ + Bϕuϕ (5.160)

with,
ϕ = Cϕxϕ (5.161)

where,
Cϕ =

[
01×3 1 01×2

]
(5.162)

The closed-loop transfer function that relates the roll angle reference to the roll angle is
given as,

ϕ(s)
ϕref (s)

= Cϕ(sI − Aϕ)−1Bϕref (5.163)

where,
Bϕref = Bϕ

[
1 0

]⊺
(5.164)

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 103

The complete derivation of the closed-loop system for the roll angle controller is performed
by De Bruin [16].

5.2.2.4 First Cross-Track Controller

The first cross-track controller is used to manoeuvre the aircraft along the ground track to
allow it to follow waypoints around the airfield. The ground track is a straight-line segment
between two waypoints and it is define in the XY-plane of the inertial frame. The first
cross-track controller manoeuvres the aircraft by regulating the cross-track error (y), which
it does by sending commands to the roll angle controller based on the references it receives
from the guidance system. The cross-track error (y) is the perpendicular distance between
the aircraft position and the ground track, as shown in Figure 5.20. The cross-track error
and in-track distance (x) is provided by the guidance algorithm which is further discussed
in section 6.1.

Destination Waypoint

Source Waypoint

Figure 5.20: Diagram showing the cross-track error measurement.

As mentioned in the roll angle controller design section, the roll angle reference is
limited to ±π

6 rad (±30◦) to be within the physical capabilities of the aircraft. A major
drawback of using the first cross-track controller is that, when the controller is activated
while the aircraft is far from the ground track, it causes the aircraft to circle continuously
around a point, resulting in the aircraft being unable to follow the ground track. This
is caused by the first cross-track controller saturating due to the limit placed on the roll
angle reference. This issue can be solved by using a second cross-track controller combined
with a heading controller which can control the aircraft’s heading. Unfortunately, these
two controllers have a very slow response time which would cause a large cross-track
being present during landing. The first cross-track controller has a faster response time,
and it should therefore have a lower cross-track error. It is therefore desired to use the
first cross-track controller when the aircraft is close to the ground track, and the second
cross-track controller when the aircraft is far from the ground track. This can be achieved
by using a transition multiplexer that selects which roll angle reference to give based on
the aircraft’s distance to the ground track. The transition multiplexer is discussed in a
later section. Figure 5.21 shows the architecture of the first cross-track controller.

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 104

Figure 5.21: Block diagram of the first cross-track controller.

In the figure, y is the cross-track error, ẏ is the cross-track error rate, ÿ is the cross-track
error acceleration, and yref is the cross-track error reference. The cross-track error and
cross-track error rate are produced by the guidance algorithm for the simulation and
practical vehicle, with the cross-track error rate being calculated using the vehicle ground
speed. The cross-track error reference is normally set to zero by the guidance control
system, which causes the aircraft to follow the ground track as accurately as possible.
This reference only changes during the landing stage when the aircraft tracks the moving
platform. This will be discussed further in chapter 6.

For an aircraft that is in a steady turn with a non-zero constant roll angle ϕ, the lift
vector acting on the aircraft counters the aircraft’s weight and centripetal acceleration
used to initiate the turn. This centripetal acceleration is the lateral acceleration acting on
the aircraft and it can be expressed as,

a
L

= g tan(ϕ) (5.165)

where g is the gravitational acceleration value on earth. Assuming that the roll angle is
small, tan(ϕ) ≈ ϕ, and therefore Equation 5.165 can be simplified to,

ÿ = gϕ (5.166)

The first cross-track controller is designed on the full lateral linear model that is augmented
with the LSA, roll rate, and roll angle controllers. The first cross-track controller plant can
be represented as a transfer function that relates the roll angle reference to the cross-track
error, and this transfer function is derived as,

y(s)
ϕref (s) =

g

s2 Cϕ(sI − Aϕ)−1Bϕref (5.167)

The first cross-track controller uses a PD control architecture and its control law, with
reference to Figure 5.21, is given as,

ϕref = −Kp
G
ey −Kd

G
ẏ (5.168)

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 105

with,
ey = y − yref (5.169)

where ey is the cross-track error. To obtain high lateral landing accuracy, it is important
that the first cross-track controller minimises the cross-track error before touchdown. To
achieve this goal, the 2% settling time of the controller needs to be less than the time
it takes the aircraft to complete the glide slope, as discussed in the altitude controller
section. The settling time requirement is therefore chosen as,

ts < 13 s (5.170)

The controller gains are selected to meet this requirement and to also cause the dominant
closed-loop pole pair to have a damping ratio (ζcl) of 0.9. This high damping ratio was
chosen so that the step response has minimal overshoot. The values determined for the
gains are,

Kp
G

= 0.017 (5.171)
Kd

G
= 0.065 (5.172)

The pole-zero plot and step response of the first cross-track controller with these gains
are shown in Figure 5.22. The dominant poles, shown in Figure 5.22a, have a damping

(a) Pole-Zero Plot (b) Step Response

Figure 5.22: First cross-track controller pole-zero plot and step response

ratio of 0.935 which is within the requirement. The step response has minimal overshoot
and a 2% settling time of 7.89 seconds which is well within the requirements. A limited
integrator was considered to be added to the first cross-track controller to deal with roll
angle bias. However, this integrator significantly slowed down the response time, which
resulted in the settling time requirement not being met. The integrator also introduced
excessive overshoot, which is not desired. After consulting the simulation and practical

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 106

data, it was found that the effect of roll angle bias was negligible and hence the limited
integrator was omitted from the controller.

First Cross-Track Controller Closed-Loop Model

The first cross-track controller needs to be augmented into the closed-loop model of the
roll angle controller, from Equation 5.160, so that the crab angle controller can be design
on it. First the cross-track error and cross-track error rate states are augmented into
the roll angle state vector (xϕ). The control law of the first cross-track controller is then
augmented in to derive the closed-loop model, which is given in a compact state space
form as,

ẋy = Ayxy + Byuy (5.173)

with,
y = C yxy (5.174)

where,
C y =

[
01×7 1

]
(5.175)

The closed-loop transfer function that relates the cross-track reference to the cross-track
error is given as,

y(s)
yref (s) = C y(sI − Ay)−1Byref (5.176)

where,
Byref = By

[
1 0

]⊺
(5.177)

The complete derivation of the closed-loop system for the first cross-track controller was
performed by De Bruin [16].

5.2.2.5 Crab Angle Controller

The crab angle controller controls the aircraft’s crab angle by commanding the LSA
controller based on references it receives from the guidance control system. The crab
angle is defined as the yaw angle between the X-axis in the body frame and the heading
angle of the ground track. The crab angle controller is used to execute the de-crab
manoeuvre during landing so that the aircraft’s landing gear is aligned with the moving
platform on touchdown. This controller is only active for the landing phase of flight and
for the other phases it is disabled. On the practical vehicle, the crab angle is obtained by
subtracting the aircraft’s heading from the predefined ground track heading. The aircraft’s
heading is obtained from the EKF, which uses magnetometer and three-axis accelerometer
measurements. Figure 5.23 outlines the crab angle controller architecture.

In the figure, ψcrab is the crab angle, ψcrabref is the crab angle reference, and Bwref

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 107

Figure 5.23: Block diagram of the crab angle controller.

is the LSA reference. The crab angle controller is designed on the full lateral linear
model augmented with all the inner lateral controllers (LSA, roll rate, roll angle, and
first cross-track). The first cross-track controller closed-loop model, from Equation 5.173,
encapsulates these dynamics and is therefore used in forming the crab angle controller
plant. De Bruin [16] proved that for the controller design (linear simulation), it can be
assumed that the crab angle (ψcrab) is approximately equal to the sideslip angle (β) for
small deviations from trim. This is mathematically expressed as,

ψcrab = β (5.178)

This assumption allows the crab angle to be easily extracted from the xy state vector,
which means the transfer function used as the plant for the crab angle controller can be
easily derived. This transfer function, which relates the LSA reference to the sideslip angle,
and hence the crab angle, is given as,

ψcrab(s)
Bwref (s)

=
β(s)

Bwref (s)
= Cβ(sI − Ay)−1BBwref

(5.179)

where,
Cβ =

[
1 01×7

]
; BBwref

= By

[
0 1

]⊺
(5.180)

For the non-linear simulation and practical vehicle, the crab angle is obtained by subtracting
the aircraft’s heading from the ground track’s heading. This crab angle formulation was
used when the non-linear simulation and practical results were obtained, which are shown
in later chapters.

The crab angle controller uses a PI architecture so that the integrator can compensate
for the errors produced due to assuming that the crab and sideslip angles are equal. The
control law of the crab angle controller with respect to figure 5.23 is given as,

Bwref = −Kp
H
ėψcrab −Ki

H
eψcrab (5.181)

with,
ėψcrab = ψcrab − ψcrabref (5.182)

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 108

where ėψcrab is the crab angle error and eψcrab is the time intergral of the crab angle error.
A side effect of performing the de-crab manoeuvre with the crab angle controller is

that the cross-track error of the aircraft increases. This is because the force produced by
the lateral component of the wind still acts on the aircraft as the aircraft aligns with the
platform. The first cross-track controller would eventually compensate for this, however,
due to its slower response time it would not be able to do this before touchdown. It is
therefore required that the crab angle controller have a fast response to minimise the
cross-track error produced by de-crabbing. In light of this, the requirement for the crab
angle controller is selected to be that the step response should have a rise time of less than
3 seconds, which is quite fast, but is achievable. The gains which allow the controller to
meet these requirement were determined as,

Ki
H

= −2.25 (5.183)
Kp

H
= −1.9 (5.184)

The pole-zero plot and step response for the controller with these gains are shown in
Figure 5.24.

(a) Pole-Zero Plot (b) Step Response

Figure 5.24: Crab angle controller pole-zero plot and step response

The step response has a rise time of 2.27 seconds, which is within the requirement for
the controller. There is a slight oscillation in the step response at steady state, which
can be attributed to the dominant closed-loop pole pair not having a high damping ratio.
This oscillation is still acceptable as it does not amplify the crab angle that the crab angle
controller is trying to minimise.

Crab Angle Controller Closed-Loop Model

The crab angle controller integrator state is augmented into Equation 5.173 and then the
crab angle control law is substituted in to give the closed-loop model of the crab angle

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 109

controller. This closed-loop model is represented in a compact state space form as,

ẋψcrab = Aψcrabxψcrab + Bψcrabuψcrab (5.185)

with,
ψ = Cψcrabxψcrab (5.186)

where,
Cψcrab =

[
1 01×8

]
(5.187)

The closed-loop transfer function that relates the crab angle reference to the crab angle is
given as,

ψcrab(s)
ψcrabref (s)

= Cψcrab(sI − Aψcrab)−1Bψcrabref
(5.188)

where,
Bψcrabref

= Bψcrab

[
0 1

]⊺
(5.189)

The complete derivation of the closed-loop system for the crab angle controller was
performed by De Bruin [16].

5.2.2.6 Transition Multiplexer

As mentioned in the first cross-track controller design section, it is desired to use the
first cross-track controller when the aircraft is close to the ground track, and the second
cross-track controller when the aircraft is far from the ground track. There exists an
optimal cross-track error point to switch from the second cross-track controller to the first,
and this point was determined by Le Roux [14] as,

|ye| =
Kd

G

Kp
G

V T (5.190)

where V T is the trim airspeed, and Kd
G

and Kp
G

are the first cross-track controller gains.
It is desired to have a gradual transition from one cross-track controller to the other,
to ensure that the roll angle command does not abruptly change, which could cause
unexpected behaviour by the aircraft. Le Roux [14] proposed using sinusoidal weighting
to achieve this gradual transition and this is illustrated in Figure 5.25.

In the plot, bu represents the upper bound, bl represents the lower bound, |ye| is the
magnitude of the cross-track error, and r

HG2 represents the weighting multiplier of the
heading and second cross-track controller. The upper bound was chosen by Le Roux [14]

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 110

1

0

Figure 5.25: Graph showing the weighting multiplier of the heading cross-track controller
based on the cross-track error magnitude.

as the optimal switching point mentioned earlier therefore,

bu =
Kd

G

Kp
G

V T (5.191)

The lower bound is chosen to be half the upper bound therefore,

bl = bu
2 (5.192)

There are three regions that can be identified from this graph, and their significance are:

• 0 ≤ |ye| < bl - In this inner region, only the first cross-track controller is active, as
the cross-track error is within the operating range of this controller.

• bl ≤ |ye| < bu - In this transition region, both controllers are active and their
commands are scaled using weighting multipliers. The magnitude of these multipliers
are based on the aircraft’s cross-track error.

• bu ≤ |ye| - In this outer region, only the heading and second cross-track controllers are
active, as the cross-track error is outside the operating range of the first cross-track
controller.

The magnitude of the heading and second cross-track controller weighting multiplier is
calculated as,

r
HG2 = sin

(
π

2
|ye| − bl
bu − bl

)
(5.193)

The first cross-track controller’s weighting multiplier can then be calculated as,

r
G1 = 1 − r

HG2 (5.194)

For the inner region, the output of the transition multiplexer is simply the roll angle
command from the first cross-track controller. For the outer region, it is the roll angle
command from the heading controller. Finally for the transition region, it is the sum of

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 111

these two roll angle commands with the weighting multipliers applied to them, which is
represented as,

ϕref = r
HG2 ϕrefHG2 + r

G1 ϕrefG1 (5.195)

where ϕrefHG2 and ϕrefG1 are the roll angle commands from the heading and first cross-track
controller respectively. The roll angle command is sent to the roll angle controller from
the transition multiplexer.

5.2.2.7 Heading Controller

The heading controller controls the aircraft’s heading angle by commanding the roll
angle controller based on references it receives from the second cross-track controller.
The heading angle refers to the angle between the aircraft’s nose and true north. This
differs from the crab angle controller whose crab angle refers to the angle between the
aircraft’s nose and the ground track. The heading angle is limited to ±180◦. On the
practical vehicle, the heading angle is obtained from the EKF which uses magnetometer
and accelerometer measurements. Figure 5.26 shows that the heading controller uses a
proportional architecture.

Figure 5.26: Block diagram of the heading controller.

In the figure, ψ is the heading angle, ψref is the heading angle reference, and ϕref is the
roll angle reference. An important characteristic that the heading controller should have
is to be able to provide the roll angle command that will cause the aircraft to follow the
shortest path to the reference heading. This is not possible with the architecture in Figure
5.26, as the heading error cannot find the shortest path. This point can be illustrated
using Figure 5.27 where the reference heading is 150◦ and the current heading is −120◦.
The heading error would be eψ = 150 − (−120) = 270◦ and since the gain Kpψ is positive,
the roll angle reference will also be positive indicating a right turn. This is not the shortest
path as a left turn with a −90◦ heading error would achieve the same the result.

A more sophisticated method is therefore required to calculate the heading error. This
method consists of first finding the magnitude of the angle by performing the dot product
between vectors formed from the heading angle and heading angle reference. The sign of
the angle is then calculated based on the cross and dot products of these vectors. The

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 112

True North

Figure 5.27: Diagram showing an example of a heading state and reference value.

equations used to implement this method are,

uref = [cos(ψref) , sin(ψref) , 0] ; u = [cos(ψ) , sin(ψ) , 0] (5.196)
uD = [0 , 0 , 1] (5.197)
x = (u× uref) · uD (5.198)

sign = (x > 0) − (x < 0) (5.199)
eψ = sign arccos(u · uref) (5.200)

where × is the cross product, · is the dot product, and eψ is the heading angle error.
The heading controller is designed on the full lateral model that is augmented with

the LSA, roll rate, and roll angle controllers. The heading angle plant can therefore be
formed using the roll angle closed-loop model. In the first cross-track controller section it
was mentioned that the lateral acceleration for an aircraft that is turning at a constant
roll angle is given as,

a
L

= g tan(ϕ) (5.201)

Using small angle approximation, and acknowledging that the lateral acceleration is related
to heading angle rate, this equation can be written as,

a
L

= gϕ = V T ψ̇ (5.202)

Rearranging results in,
ψ̇ = g

V T

ϕ (5.203)

The heading can therefore be easily obtained from the roll angle which is already included
in the roll angle state vector xϕ. The plant of the heading controller is therefore the
transfer function that relates the roll angle reference to the heading angle which is given

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 113

as,
ψ(s)
ϕref (s)

=
1
s

C ψ̇(sI − Aϕ)−1Bϕref (5.204)

where,
C ψ̇ =

[
01×3

g

V T
01×2

]
(5.205)

The heading control law with respect to Figure 5.26 is,

ϕref = Kp
ψ
eψ (5.206)

with,
eψ = ψref − ψ (5.207)

where eψ is the heading angle error.
The requirements for this controller are that the step response should have a rise time

of less than 3 seconds, an overshoot of less than 20%, and a 2% settling time of less than
10 seconds. These requirements were adapted from Le Roux [14] but were made more
stringent, so that improved performance compared to Le Roux could be obtained. The
heading controller gain that was determined to meet these requirements is,

Kp
ψ

= 1.25 (5.208)

The pole-zero plot and step response of the heading controller using this gain are shown
in Figure 5.28.

(a) Pole-Zero Plot (b) Step Response

Figure 5.28: Heading controller pole-zero plot and step response

The step response has a rise time of 2.54 seconds, an overshoot of 4.2%, and a 2%
settling time of 5.24 seconds, which are all within the requirements for the controller.
There is a slight undershoot after the overshoot which is caused by the dominant pole pair
not having a high damping ratio. This undershoot is still within the 2% steady-state limit

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 114

and is therefore acceptable.

Heading Controller Closed-Loop Model

The heading controller closed-loop model is derived by first augmenting the heading state
into the closed-loop model of the roll angle controller, from Equation 5.160. The control
law of the heading controller is then substituted in and the resulting model is written in a
compact state space form as,

ẋψ = Aψxψ + Bψuψ (5.209)

with,
ψ = Cψxψ (5.210)

where,
Cψ =

[
01×6 1

]
(5.211)

The closed-loop transfer function that relates the heading angle reference to the heading
angle is given as,

ψ(s)
ψref (s) = Cψ(sI − Aψ)−1Bψref (5.212)

where,
Bψref = Bψ

[
1 0

]⊺
(5.213)

The complete derivation of the closed-loop system for the heading controller is performed
by Le Roux [14].

5.2.2.8 Second Cross-Track Controller

The second cross-track controller controls the cross-track error by commanding the heading
controller based on references it receives from the guidance control system. The second
cross-track controller command ∆ψref is added to the heading of the ground track ψtrack as
shown in Figure 5.29. The second cross-track controller command is also limited to ±45◦

to ensure that the aircraft minimises the cross-track error while also following the ground
track. On the physical aircraft, the cross-track is obtained from the guidance algorithm
as mentioned in the first cross-track controller section. Figure 5.29 shows the controller
architecture of the second cross-track controller. In the figure, y is the cross-track error,

Figure 5.29: Block diagram of the second cross-track controller.

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 115

yref is the cross-track error reference, and ∆ψref is the heading angle reference relative to
the ground track heading ψtrack. The plant for the second cross-track controller is formed
using the closed-loop model of the heading controller. The cross-track error rate is the
projection of the aircraft’s ground speed in the direction of the cross-track error which
represented as,

ẏ = V T sin(ψ − ψtrack) (5.214)

Using small angle approximation results in,

ẏ = V T (ψ − ψtrack) (5.215)

The heading controller requires a heading reference with respect to true north and, since
the output of the second cross-track controller is the relative heading, the ground track
heading needs to be added to it before sending it to the heading controller. This is
represented as,

ψref = ∆ψref + ψtrack (5.216)

The cross-track error state can now be augmented into the heading closed-loop model,
resulting in ẋψ

ẏ

 =
Aψ 0

C ẏ 0

xψ
y

+
 Bψ

01×2

uψ +
07×1

−V T

ψtrack (5.217)

where,
C ẏ =

[
01×6 V T

]
(5.218)

The transfer function that relates the relative heading angle reference to the cross-track
error represents the second cross-track controller plant and it is given as,

y(s)
∆ψref (s) =

1
s

C ẏ(sI − Aψ)−1Bψref (5.219)

The control law of the second cross-track controller with respect to Figure 5.29 is,

∆ψref = Kpyey (5.220)

with,
ey = yref − y (5.221)

where ey is the cross-track error. The step response for the second cross-track controller is
required to have a rise time of less than 6 seconds, an overshoot of less than 20%, and
ideally a 2% settling time of less than 13 seconds. The 2% settling time requirement is the
same as the first cross-track controller and the remaining requirements are adapted from
Le Roux [14]. The 2% settling time requirement is not as important to fulfil, as the first

Stellenbosch University https://scholar.sun.ac.za

5.2. Classical Controller Design 116

cross-track controller will control the aircraft when it is close to the ground track, which is
steady state for the second cross-track controller. The second cross-track controller gain
determined to meet these requirements is,

Kpy = 0.017 (5.222)

The pole-zero plot and step response of the second cross-track controller using this gain
are shown in Figure 5.30.

(a) Pole-Zero Plot (b) Step Response

Figure 5.30: Second cross-track controller pole-zero plot and step response

The step response has a rise time of 5.25 seconds, an overshoot of 2.3%, and a 2%
settling time of 8.54 seconds, which are all within the requirements for the controller. The
2% settling time requirement was met even though it was not as important. There is
a slight undershoot after the overshoot due to the low damping ratio of the dominant
closed-loop poles. Comparing this step response to the first cross-track controller step
response from Figure 5.22b, it can be seen that the second cross-track controller has a
faster rise time while the first cross-track controller has a faster 2% settling time. The
second cross-track controller also has a larger overshoot which, while being within the
requirements, is not desired. This is due to it being desired to have a centimeter level
cross-track error on landing which requires very low steady-state error. The first cross-track
controller’s response is ideal for this, and that is why it is chosen to perform the cross-track
control when the aircraft is close to the ground track.

Second Cross-Track Controller Closed-Loop Model

The second cross-track controller closed-loop model is derived by first augmenting the
cross-track error state into the closed-loop model of the heading controller, from equation
5.209. The control law of the second cross-track controller is then substituted in and the

Stellenbosch University https://scholar.sun.ac.za

5.3. Model Predictive Control Design 117

resulting model is written in a compact state space form as,

ẋy2 = Ay2xy2 + By2uy2 (5.223)

with,
y = C y2xy2 (5.224)

where,
C y2 =

[
01×7 1

]
(5.225)

The closed-loop transfer function that relates the cross-track reference to the cross-track
error is given as,

y(s)
yref (s)

= C y2(sI − Ay2)−1By2ref (5.226)

where,
By2ref = By2

[
1 0

]⊺
(5.227)

The complete derivation of the closed-loop system for the second cross-track controller
was performed by Le Roux [14].

5.3. Model Predictive Control Design
This section will first present some general theory regarding MPC to gain a better
understanding of the design approach. Then, the MPC design for the fixed-wing UAV will
be presented.

5.3.1 MPC Theory

Model Predictive Control (MPC) is a range of control methods that uses a model of a
process to obtain the control action at each time step by minimising a cost function [63].
The MPC uses the model to predict the process’s behaviour into the future over a horizon
known as the prediction horizon (ny). The amount of control actions that the MPC can
apply during the prediction horizon, is known as the control horizon (nu). A simplified
overview of the MPC’s structure is shown in Figure 5.31. The MPC consists of the
plant/process model, optimiser, constraints, and cost function. These components will
discussed in the following subsections. In Figure 5.31, k is the current time instant and i

is the factor of the sample time Ts. The MPC executes every sample time Ts at which it
updates its values and recalculates the ideal control actions. The MPC’s main goal is to
produce the control actions that will bring the predicted model output ym(k + i) as close
to the reference r(k + i) as possible [63].

MPC is also known as receding horizon control as the prediction horizon moves with

Stellenbosch University https://scholar.sun.ac.za

5.3. Model Predictive Control Design 118

Model

Optimiser

Cost
Function Constraints

Process

Process Output

Input

Predicted Output

Error

MPC

Reference Trajectory

Figure 5.31: MPC structural diagram

the time instants [64]. This movement is due to the predicted outputs and control actions
being calculated every time instant. Figure 5.32 illustrates the concept of the receding
horizon for the MPC.

Figure 5.32: Illustration of the MPC receding horizon reproduced from [65].

Using Figure 5.32’s notation, for time instant k, the MPC calculates the predicted
outputs over the prediction horizon m, based on the control actions calculated over the
control horizon p. Only the first control action is applied to the process and the rest are
discarded. At the next time instant k + 1, the MPC will repeat the optimisation process
and calculate a new set of control actions. This is computationally inefficient and requires
a significant amount of resources which is a reason why MPCs are frequently used for
slower processes [66]. The control horizon is subjected to the constraint p ≤ m and is

Stellenbosch University https://scholar.sun.ac.za

5.3. Model Predictive Control Design 119

often considerably smaller than the prediction horizon to reduce the MPC’s computational
complexity.

The implementation of the MPC depends on the type of MPC used, which in this
research project is a linear MPC as the plant is a linear model. The MPC architecture used
for this research project is based on the architecture used by Amadi [38], who himself based
his architecture on the architecture used by Wang [62]. Wang proposed a general MPC
architecture which could be applied to many different applications. Amadi applied Wang’s
MPC architecture to control the angular rates of a multi-rotor UAV (quadcopter) while
running on a Pixhawk flight controller. Amadi used the standard PX4 PID controllers to
control the other states of the UAV. The Pixhawk has low processing power as it contains
an STM32 microcontroller, and therefore it is quite a challenging task to run an MPC
on it. The Pixhawk also ran PX4 autopilot software with all the components required
to operate the UAV. Amadi had to disable a substantial amount of components in the
PX4 software to get the MPC to function correctly. Once he did, the MPC performed
exceptionally well with a fast response.

For this research project, it was planned to run the MPC on a Jetson Nano, which is
more powerful than the Pixhawk but not as powerful as a desktop PC. Therefore, the MPC
architecture had to be efficient, hence why Amadi’s MPC architecture was chosen. This
research project applied Amadi’s MPC architecture to control the altitude and airspeed of
a fixed-wing UAV.

The remainder of this section will summarise Amadi’s MPC architecture. The compo-
nents of the MPC that was modified for a fixed-wing UAV will be discussed in Section
5.3.2.

5.3.1.1 State Matrix Augmentation

Consider the discrete state space model below for a general process that the MPC is trying
to control at time step k,

x
M

(k + 1) = A
M

x
M

(k) + B
M

u
M

(k) (5.228)

y
M

(k) = C
M

x
M

(k) (5.229)

It is desired to have zero steady-state error for the MPC’s step response, therefore an
integrator needs to be augmented into the MPC’s model. Amadi [38] used Wang’s [62]
augmentation method, whose process will be described. The MPC model can be considered
for the difference between time steps which is given as,

x
M

(k + 1) − x
M

(k) = A
M

(x
M

(k) − x
M

(k − 1)) + B
M

(u
M

(k) − u
M

(k − 1)) (5.230)

y
M

(k + 1) − y
M

(k) = C
M

(x
M

(k + 1) − x
M

(k)) (5.231)

Stellenbosch University https://scholar.sun.ac.za

5.3. Model Predictive Control Design 120

Letting,

∆x
M

(k + 1) = x
M

(k + 1) − x
M

(k) (5.232)

∆x
M

(k) = x
M

(k) − x
M

(k − 1) (5.233)

∆u
M

(k) = u
M

(k) − u
M

(k − 1) (5.234)

and substituting the equations into the MPC difference model and simplifying, results in,

∆x
M

(k + 1) = A
M

∆x
M

(k) + B
M

∆u
M

(k) (5.235)

y
M

(k + 1) = C
M

A
M

∆x
M

(k) + C
M

B
M

∆u
M

(k) + y
M

(k) (5.236)

The input of the model becomes u
M

(k). A new state vector is formed by combining
∆x

M
(k) and y

M
(k) to give,

x
AUG

(k) =
[
∆x

M
(k)T y

M
(k)
]T

(5.237)

Combining equations 5.235, 5.236, and 5.237 produces the augmented state space model
as, ∆x

M
(k + 1)

y
M

(k + 1)

 =

 A
M

0n×q

C
M

A
M

I q×q

∆x

M
(k)

y
M

(k)

+

 B
M

C
M

B
M

∆u
M

(k) (5.238)

y
M

(k) =
[
0q×n I q×q

] ∆x
M

(k)
y
M

(k)

 (5.239)

where q is the number of outputs in the model, n is the number of states in the model,
and I q×q is an identity matrix with dimensions q × q. The augmented state space model
can be expressed in a compact form as,

x
AUG

(k + 1) = A
AUG

x
AUG

(k) + B
AUG

∆u
AUG

(k) (5.240)

y
AUG

(k) = C
AUG

x
AUG

(k) (5.241)

where,
y
AUG

(k) = y
M

(k) ; ∆u
AUG

(k) = ∆u
M

(k) (5.242)

5.3.1.2 Output Predictions

The predicted plant output must be calculated to design the MPC with the future control
signal used as the adjustable variable(s). Assuming that k is the current time step, the

Stellenbosch University https://scholar.sun.ac.za

5.3. Model Predictive Control Design 121

future control trajectory is given as,

∆U =
[
∆u(k), ∆u(k + 1), ∆u(k + 2), · · · , ∆u(k + nu − 1)

]T
(5.243)

Amadi [38] showed that the output predictions can be expressed as,

y(k + 1)
y(k + 2)
y(k + 3)

...
y(k + ny)

=

CA
CA2

CA3

...
CAny

x(k)+

CB 0 0 · · · 0
CAB CB 0 · · · 0
CA2B CAB CB · · · 0

...
CAny−1B CAny−2B CAny−3B · · · CAny−nuB

∆U

(5.244)
where A,B, and C are matrices from the augmented model in equations 5.240 and 5.241.
The output predictions can be expressed in a more compact form as,

Y = Px(k) + H∆U (5.245)

where,

P =

CA
CA2

CA3

...
CAny

; H =

CB 0 0 · · · 0
CAB CB 0 · · · 0
CA2B CAB CB · · · 0

...
CAny−1B CAny−2B CAny−3B · · · CAny−nuB

(5.246)

5.3.1.3 Constraints

The MPC allows constraints to be applied to the input, output, and states of the MPC
model. This provides the MPC with the knowledge of any limitations in the process
which it will account for when generating the control actions. For this research project,
constraints will only be applied to the input (control) variables u(k) and their rate of
change ∆u(k). The constraints on the input variables are represented as,

umin ≤ u(k) ≤ umax (5.247)

where u(k) is the input vector containing the input variables at time instance k, umin is
the minimum limit for the input variables, and umax is the maximum limit for the input
variables. Correspondingly, the constraints for the rate of change of the input variables is
represented as,

∆umin ≤ ∆u(k) ≤ ∆umax (5.248)

Stellenbosch University https://scholar.sun.ac.za

5.3. Model Predictive Control Design 122

Amadi [38] showed that the rate of change of input constraints can be expressed in matrix
form as, −I

I

∆U ≤

−∆Umin

∆Umax

 (5.249)

where ∆U , ∆Umin, and ∆Umax are the input variables and corresponding limits over
the control horizon. The ∆U matrix is defined in equation 5.243.

Amadi shows that the input variables can be written to incorporate their rate of change,
as follows

u(k)
u(k + 1)

...
u(k + nu − 1)

 =

I
I
...
I

u(k − 1) +

I 0 0 · · · 0
I I 0 · · · 0
...
I I I · · · I

∆u(k)

∆u(k + 1)
...

∆u(k + nu − 1)

 (5.250)

The input constraints can therefore be written in terms of the rate of change of the input
variables as,

−(C 1u(k − 1) + C 2∆U) ≤ −Umin

(C 1u(k − 1) + C 2∆U) ≤ Umax
(5.251)

where,

C 1 =

I
I
...
I

 , C 2 =

I 0 0 · · · 0
I I 0 · · · 0
...
I I I · · · I

 (5.252)

The constraints for the input variables and their rate of change are combined as,C∆u

Cu

∆U ≤

d∆u

du

 (5.253)

where,

Cu =
−C 2

C 2

 ; du =
−Umin + C 1u(k − 1)

Umax − C 1u(k − 1)

 ; C∆u =
−I

I

 ; d∆u =
−∆Umin

∆Umax

(5.254)

The constraints in Equation 5.253 can be compactly expressed as,

CC∆U ≤ d (5.255)

where,

CC =
C∆u

Cu

 ; d =
d∆u

du

 (5.256)

Stellenbosch University https://scholar.sun.ac.za

5.3. Model Predictive Control Design 123

5.3.1.4 Cost Function

The cost function is used to balance the reduction of the error between the reference
values and predicted outputs with the control actions (input variables) used to achieve
the outputs. At time instant k, only one set of reference values r(k) is known and this
poses a problem as the error needs to be calculated for the entire prediction horizon ny. A
common solution is to assume that the reference remains the same for the entire prediction
horizon, which is represented by the matrix,

Rs =

I
I
...
I

 r(k) (5.257)

This matrix is then used to calculate the error in the cost function. For this research
project, assuming a constant reference would be true for most cases. However, when the
aircraft captures the glide slope, the altitude reference is a ramp response which changes
continuously. The future altitude reference for the glide slope can still be easily calculated
as the glide slope angle is constant. This will be shown in section 5.3.2.4.

The cost function used by Amadi [38] is derived from Wang [62] and is given below,

J = (Rs − Y)T (Rs − Y) + ∆U TW ∆U (5.258)

The first term in the cost function minimises the error between the reference values and
the predicted output, while the second term minimises the control actions ∆U . W is
a diagonal weighting matrix used to tune the MPC response. High weight values in the
matrix prioritises minimising the control action magnitudes ∆U at the expense of a slower
response. Low weight values in the matrix prioritises minimising the error between the
reference and predicted outputs at the expense of large control action magnitudes (∆U).

The predicted output from Equation 5.245 is substitute into the cost function which
results in,

J = (Rs − Px(k))T (Rs − Px(k)) − 2∆U TH T (Rs − Px(k)) + ∆U T (H TH + W)∆U
(5.259)

5.3.1.5 Optimiser

The optimiser minimises the cost function in Equation 5.259 to obtain the control actions
∆U to apply to system, while adhering to the constraints. The optimisation first consists

Stellenbosch University https://scholar.sun.ac.za

5.3. Model Predictive Control Design 124

of taking the first derivative of the cost function which results in,

J = 1
2∆U TE∆U + ∆U TF (5.260)

with the constraints CC∆U ≤ d. E and F are matrices used by the optimiser and have
the following expressions,

E = 2(H TH + W) ; F = −2H T (Rs − Px(k)) (5.261)

The minimisation of the cost function is a quadratic programming problem, which can be
solved using many different methods. However, Amadi chose Wang’s primal-dual method.
This method consists of systematically eliminating constraints. Wang [62] derives the dual
problem equation as,

min
λ≥0

(1
2λ

TTλ+ λTK + 1
2dTE−1d) (5.262)

where λ is a vector of Lagrange multipliers while the T and K matrices are,

T = CCE−1CCT (5.263)
K = d + CCE−1F (5.264)

The dual programming problem is solved using an algorithm called the Hildreth’s quadratic
programming procedure. This procedure is the optimiser and its implementation can
found in Wang’s textbook [62] or Amadi’s thesis [38]. The output of the optimiser is the
control actions over the control horizon. However, only the first control action is applied
to the process, and the rest are discarded.

5.3.2 Fixed-Wing UAV MPC Design

The MPC controller replaces the classical altitude and airspeed controllers for the landing
phase of flight to improve the landing accuracy performance. The MPC controls the
altitude and airspeed states simultaneously by producing the thrust command from trim
and climb rate reference respectively, based on references it receives from the guidance
control system. The MPC architecture is based on the architecture used by Amadi [38].
However, it was modified to control the altitude and airspeed states. Figure 5.33 outlines
the MPC operation. The MPC uses a model of the aircraft to the predict aircraft’s future
behaviour. The optimiser uses the cost function, constraints, and the aircraft model to
calculate the optimal control actions (climb rate reference and thrust command from trim)
based on the altitude and airspeed references it receives. Hildreth’s quadratic programming
method is used as the optimiser for the MPC.

Stellenbosch University https://scholar.sun.ac.za

5.3. Model Predictive Control Design 125

Optimiser

Model

Lower Level
Controllers Aircraft

Constraints Cost Function

MPC

Figure 5.33: Block diagram showing the overview of the MPC controller.

5.3.2.1 MPC Parameters

The MPC has three selectable parameters that influence its performance, namely the
sample time Ts, prediction horizon ny and control horizon nu. These parameters must
be chosen to obtain desirable MPC performance while not being too computationally
expensive. The parameters were initially going to be chosen based on rules of thumb
obtained from the Mathworks white paper [67]. However, this project’s MPC plant
behaviour did not match the behaviour expected by the paper. Therefore the rules of
thumb were adjusted to suit this project’s MPC application. For the sample time, the rule
of thumb is that there should be 10 to 20 samples within the rise time, which is expressed
mathematically as,

Tr
20 ≤ Ts ≤ Tr

10 (5.265)

where Tr is the rise time of the open-loop step response. This project’s MPC open-loop
system produces a ramp response for a step reference and is therefore unstable. As an
open-loop step response cannot be obtained, it is instead decided to use the desired rise
time of the MPC closed-loop step response in the equation. The desired rise time is 2
seconds for both the altitude and airspeed step responses, with 20 samples within the rise
time. The sample time is therefore calculated as,

Ts = 2
20 = 0.1 seconds (5.266)

The rule of thumb for the prediction horizon is that the prediction time should be greater
than or equal to the settling time of the open-loop step response, which is expressed as,

nyTs ≥ Tsettling (5.267)

Stellenbosch University https://scholar.sun.ac.za

5.3. Model Predictive Control Design 126

As the open-loop step response was unattainable, the desired settling time for the altitude
and airspeed step responses was used instead. The desired settling time was 2.5 seconds.
The prediction horizon was therefore calculated to be,

ny = 2.5
0.1 = 25 samples (5.268)

The prediction horizon should be limited to between 20 to 30 samples. The calculated
prediction horizon is 25 samples, which is within these bounds. The control horizon’s rule
of thumb is that it should be between 10% to 20% of the prediction horizon, which is
mathematically expressed as,

0.1ny ≤ nu ≤ 0.2ny (5.269)

The limit is chosen as 20% of the prediction horizon. Therefore,

nu = 0.2 × 25 = 5 samples (5.270)

The control horizon should be more than 2 samples, which means that the calculated value
of 5 samples satisfies the rule of thumb. The sample time determines the period at which
the MPC runs. The prediction and control horizons influence the MPC’s matrices sizes,
which impact its computational complexity.

5.3.2.2 MPC Plant Model

The plant used by the MPC consists of the full longitudinal model augmented with only the
NSADLC and climb rate controller. The thrust lag characteristics are also reaugmented to
improve the model accuracy. The thrust lag model from equation 4.55 is restated below,

Ṫ = −KT

τe
T + KTc

τe
Tc (5.271)

It was assumed that the thrust commanded was the thrust produced for the classical
airspeed controller as it had an integrator to compensate for any discrepancies. The MPC
does not have such an integrator therefore the thrust model must more accurately represent
the real thrust dynamics for the MPC to work correctly on the practical vehicle. The
method used to obtain the thrust constants is discussed in appendix B.5.1. Using this
method, the thrust magnitude constant KT and thrust command constant KTc was set as,

KT = 1
KTc = 2.57975

(5.272)

Stellenbosch University https://scholar.sun.ac.za

5.3. Model Predictive Control Design 127

The thrust lag model with these constants was augmented into the linear longitudinal
model from equation 4.107 to give,

˙̄v
α̇

q̇

θ̇

∆Ṫ

=

∂U̇
∂U

V T
∂U̇
∂W

∂U̇
∂Q

∂U̇
∂Θ

∂U̇
∂T

1
V T

∂Ẇ
∂U

∂Ẇ
∂W

1
V T

∂Ẇ
∂Q

1
V T

∂Ẇ
∂Θ

1
V T

∂Ẇ
∂T

∂Q̇
∂U

V T
∂Q̇
∂W

∂Q̇
∂Q

∂Q̇
∂Θ

∂Q̇
∂T

∂Θ̇
∂U

V T
∂Θ̇
∂W

∂Θ̇
∂Q

∂Θ̇
∂Θ

∂Θ̇
∂T

0 0 0 0 −KT
τe

v̄

α

q

θ

∆T

+

∂U̇
∂δE

∂U̇
∂δF

0
1
V T

∂Ẇ
∂δE

1
V T

∂Ẇ
∂δF

0
∂Q̇
∂δE

∂Q̇
∂δF

0
∂Θ̇
∂δE

∂Θ̇
∂δF

0
0 0 KTc

τe

δe

δf

∆Tc

(5.273)
which can be written in a compact state space form as,

ẋ
Long3 = A

Long3xLong3 + B
Long3uLong3 (5.274)

The NSADLC controller was then augmented into this model using the same gains and
method as equations 5.58 to 5.66 to give,

ẋ
Hyb2 = A

Hyb2xHyb2 + B
Hyb2uHyb2 (5.275)

Thereafter the climb rate controller was augmented into equation 5.275 using the gains
and method from equations 5.84 and 5.85 to give,

ẋ ḣ2 = Aḣ2x ḣ2 + Bḣ2u ḣ2 (5.276)

The ”2” subscript is used to distinguish these models from the classical controller counter-
parts as these models do not include the airspeed controller. The altitude state was then
augmented into this model so it can be used by the MPC resulting in,ẋ ḣ2

ḣ

 =
Aḣ2 08×1

0 −VT 0 VT 01×5

x ḣ2

h

+
Bḣ2

01×2

u ḣ2 (5.277)

which can be written in a compact state space form as,

ẋ
MPC

= A
MPC

x
MPC

+ B
MPC

u
MPC

(5.278)

with, h
v̄

 = C
MPC

x
MPC

(5.279)

where,

C
MPC

=
01×8 1

1 01×8

 (5.280)

Stellenbosch University https://scholar.sun.ac.za

5.3. Model Predictive Control Design 128

This MPC plant model was then discretised using the sample time Ts so that the MPC can
use the model for every time iteration. The MPC model also undergoes the augmentation
process described in Section 5.3.1.1 so that the MPC optimiser matrices can be calculated.

5.3.2.3 Constraints

There are three constraints that can be applied to the MPC, namely the input, output and
state constraints. The input constraint limit the control actions (ḣref and ∆Tc) produced
by the MPC, while the output constraint limit the output variables regulated by the MPC
(h, v̄), and the state constraints limit the state variables in the model (x

MPC
) used by the

MPC. The output constraints are not applied to the MPC as the altitude and airspeed
can vary to any value. The state constraints are also not applied, as other controllers
control these states and therefore the MPC should not limit those controllers. Only the
input constraints are applied to the climb rate reference and thrust command from trim,
as they are limited by the physical capabilities of the aircraft. The input constraints that
are applied are specified as,

−2 m/s ≤ ḣref ≤ 2 m/s (5.281)
−26.5513 N ≤ ∆Tc ≤ 13.4487 N (5.282)

−1.2 ≤ ∆ḣref ≤ 1.2 (5.283)
−12 ≤ ∆∆Tc ≤ 12 (5.284)

where the ∆ḣref and ∆∆Tc are the rates of the climb rate reference and thrust command
from trim respectively. The climb rate reference limit is selected to prevent excessive
strain on the aircraft while still allowing the aircraft to follow the glide slope. The thrust
command limit is set to constrain the motor thrust between 0 N to 40 N, as this is the
thrust range the motor can physically produce, as highlighted in Appendix A.2. As the
MPC thrust command is added to the trim value of TT = 26.5513 N (Equation 4.83), the
MPC thrust command range therefore corresponds to the physical motor thrust range.
These climb rate reference and thrust command limits also apply to the classical altitude
and airspeed controllers. However, they are not considered during the design phase, but
only for the non-linear simulation and practical phases. The input rate limits (∆ḣref and
∆∆Tc) are selected to be 60% of the amplitude of the input limits (Equations 5.281 and
5.282). The constraint values are used to form the CC and d matrices from Equation
5.256 to be used by the optimiser.

5.3.2.4 Cost Function and Optimiser

The cost function used for the MPC of this research project is the same as Amadi’s [38]
from Equation 5.259. During the normal phases of flight, it is safe to assume that the

Stellenbosch University https://scholar.sun.ac.za

5.3. Model Predictive Control Design 129

altitude and airspeed references are constant for the entire prediction horizon. However as
previously mentioned, during the glide slope capture phase, the altitude reference (href)
follows a ramp response. This requires the reference matrix Rs used in the cost function
to account for the ramp for future references in the prediction horizon. Let the altitude
reference at time instant k be,

r1(k) = href (5.285)

As the glide slope angle is constant, the future prediction can be calculated using the
equation,

r1(k + i) = r1(k) + i tan(−γ)TsVg i ∈ {0, 1, · · · , ny − 1} (5.286)

where Vg is the aircraft’s ground speed. The altitude references are added to the reference
matrix Rs.

The optimiser’s goal is to find the input signals (climb rate reference and thrust
command from trim) that minimise the cost function. The optimiser consists of the
Hildreth’s quadratic programming procedure used by Amadi. The E and F matrices from
Equation 5.261 are calculated to be used by Hildreth’s algorithm.

5.3.2.5 MPC Tuning

The MPC is tuned by adjusting the weights in the weight matrix W . The W matrix is
a square diagonal matrix that contains the weights for both input variables (climb rate
reference and thrust command from trim) for each time step over the control horizon. The
W matrix therefore has a size of 2nu × 2nu. The weights of the input variables are kept
the same for all the time steps in the control horizon and only differ from one another.
The weight matrix has the form,

wḣref1 0 0 0 0 0 0 0 0 0
0 w∆Tc1 0 0 0 0 0 0 0 0
0 0 wḣref2 0 0 0 0 0 0 0
0 0 0 w∆Tc2 0 0 0 0 0 0
0 0 0 0 wḣref3 0 0 0 0 0
0 0 0 0 0 w∆Tc3 0 0 0 0
0 0 0 0 0 0 wḣref4 0 0 0
0 0 0 0 0 0 0 w∆Tc4 0 0
0 0 0 0 0 0 0 0 wḣref5 0
0 0 0 0 0 0 0 0 0 w∆Tc5

(5.287)

where wḣref i is the climb rate reference weight, w∆Tci is the thrust command weight, and
i ∈ 1, ..., nu is the time step. The wḣref i weights are set to the same value and the w∆Tci

weights are also set to the same value. When the weights are set to low values, the state

Stellenbosch University https://scholar.sun.ac.za

5.3. Model Predictive Control Design 130

errors are quickly minimised at the expense of large input variable commands. When
the weights are set to high values, the input variable commands are minimised which
produces a slower response. It is therefore important to choose the correct weights to
obtain desirable performance while not producing aggressive input variable commands.

Initially, the MPC was tuned with weights that produced step responses with signifi-
cantly better performance than the classical altitude and airspeed controllers in simulation.
However, on the practical vehicle, the MPC was too aggressive as its step responses had
excessive oscillation. This was due to the MPC being so reliant on the plant model.
Therefore, any inaccuracies in the model would have a significant impact on the MPC
performance. These inaccuracies occur in the real world due to uncertainties. The MPC
was therefore retuned to be less aggressive with the weights set to the following,

wḣref i = 7.5e− 1 (5.288)

w∆Tci = 7.5e− 2 (5.289)

The MPC altitude and airspeed step responses with these weights are shown in Figure 5.34
and Figure 5.35 respectively. It should be noted that when obtaining the step response for
one of the states (for example, altitude), the reference for the other state (airspeed) was
kept at a constant value to not affect the results. This same procedure was followed to
obtain the MPC’s step responses in the non-linear simulations and on the practical vehicle.

(a) Altitude Response for Altitude Step (b) Airspeed Response for Altitude Step

Figure 5.34: MPC controller altitude and airspeed responses for an altitude step

The MPC altitude response for the altitude step, shown in Figure 5.34a, has a rise
time of 0.99 seconds, an overshoot of 6.2%, zero steady-state error, and a 2% settling time
of 1.92 seconds. These characteristics are within the requirements specified in the classical
altitude controller design section. The rise time and settling time of the MPC are much
better then the classical altitude controller at the expense of increased overshoot. This
increased overshoot is acceptable as it is within the 20% overshoot limit. The airspeed

Stellenbosch University https://scholar.sun.ac.za

5.3. Model Predictive Control Design 131

response for the altitude step, shown in Figure 5.34b, is minimally affected by the altitude
step, as the MPC was able to maintain the airspeed close to its reference while responding
to the altitude step.

(a) Altitude Response for Airspeed Step (b) Airspeed Response for Airspeed Step

Figure 5.35: MPC controller altitude and airspeed responses for airspeed step

The MPC airspeed response for the airspeed step, shown in Figure 5.35b, has a rise
time of 0.7 seconds, an overshoot of 5.3%, zero steady-state error, and a 2% settling time
of 1.6 seconds. These values are within the requirements specified in the classical airspeed
controller design section. The MPC rise time is faster than the classical airspeed controller
at the expense of increased overshoot. However, the 2% settling time is the same for
both controllers. The altitude response for the airspeed step, shown in Figure 5.35a, is
minimally affected by the airspeed step, as the MPC was able to maintain the altitude
close to its reference while responding to the airspeed step.

The reason the MPC has faster response times compared to the corresponding classical
controllers is because the MPC is able to use both states to minimise the error. This
behaviour can be observed for the altitude response for the airspeed step, shown in Figure
5.35a, where the MPC slightly decreases the altitude to increase the airspeed, which assists
in reducing the airspeed error. When the airspeed error becomes small, the MPC will then
increase the altitude back to its reference. Similar behaviour occurs with large altitude
steps where the airspeed will change its value to minimise the altitude error. The 1 m
altitude step in Figure 5.34 is too small to show this effect, however, this behaviour does
occur for larger steps (more than 10 m).

These results show that, at least for the linear model, the MPC has better performance
then the classical altitude and airspeed controller.

The climb rate reference (ḣref) and thrust command from trim (∆Tc) commanded
by the MPC for the altitude and airspeed steps are shown in Figure 5.36. The MPC’s
commands are well within the limits applied to them. Therefore, the MPC should be
physically realisable. The MPC commands are far from their limits, which indicates

Stellenbosch University https://scholar.sun.ac.za

5.3. Model Predictive Control Design 132

(a) MPC Commands for Altitude Step (b) MPC Commands for Airspeed Step

Figure 5.36: MPC controller commands for altitude and airspeed steps

that the MPC could be tuned further to obtain improved performance. As previously
mentioned, an MPC was designed with superior performance to the current MPC, however,
it caused excessive oscillation on the physical UAV. While the current MPC might not
fully utilise its potential, it is a safer tune to use on the physical UAV and should reduce
oscillations.

5.3.2.6 MPC Limited integrator

A limited integrator is added in parallel with the MPC as shown in Figure 5.37.

MPC

Limited
Integrator

Figure 5.37: Block diagram showing the limited integrator in parallel with the MPC
controller.

The integrator is used to assist the MPC in altitude control to enable the aircraft to
follow a ramp reference, which is the glide slope during the landing phase. This is similar
to the limited integrator used on the classical altitude controller. Without the limited
integrator, the MPC cannot follow a ramp reference as it has a steady-state error. This
occurs because when the aircraft starts following the downwards ramp, its airspeed begins
to increase and this causes the MPC to want to increase its altitude, which it cannot
do due to its altitude reference, resulting in conflicting behaviour. The MPC eventually

Stellenbosch University https://scholar.sun.ac.za

5.4. Summary 133

becomes satisfied with slight-steady state errors in both airspeed and altitude, as these
states reach an equilibrium. The limited integrator eliminates the altitude steady-state
error by providing an additional climb rate command which is combined with the MPC
climb rate command output. This does result in an increase in the airspeed steady state
error. However, this is deemed acceptable as the wind will cause the airspeed to vary in
any case. The airspeed is not required to be at a specific value for landing, as long as it is
above the stall speed. This is due to the ground speed being used instead to configure the
aircraft for landing. The gain used for the limited integrator is,

Kilimmpc = 0.65 (5.290)

where this value was obtained through trail and error using non-linear simulations. The
limit for the integrator is set to ±2 m/s. The limited integrator is not active when
obtaining the MPC altitude and airspeed step responses. It is only activated during the
landing tests.

5.4. Summary
The flight control system combined classical control with model predictive control, and
its design was presented in this chapter. The classical controllers’ design was split into
the longitudinal and lateral groups and utilised successive loop closure methods. The
MPC was added to replace the classical airspeed and altitude controllers to obtain a more
precise landing. All the components of the MPC were considered in this chapter, and the
results of the MPC showed that it had superior performance compared to its classical
controller counterparts. Now that the flight control system (FCS) has been designed to
control the local states of the aircraft, the next chapter will focus on the design of the
guidance control system, which provides references to the FCS to allow the aircraft to
follow a trajectory and land on the moving platform.

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Guidance Control System Development

The Guidance Control System (GCS), which is developed in this chapter, is used to guide
the aircraft to follow a trajectory around the airfield and land on a moving platform by
providing references and states to the FCS. The GCS consists of the guidance algorithm,
waypoint scheduler, landing position predictor, and state machine. These individual
components are presented in the following sections.

6.1. Guidance Algorithm
The trajectory that the aircraft follows around the airfield is defined by a set of predefined
waypoints and straight line segments between these waypoints. The waypoints consists of
North and East coordinates measured in meters and are specified in the inertial frame. A
straight line segment between a set of waypoints is called the ground track. Figure 6.1
shows the ground track formed between a source and destination waypoint.

The cross-track controllers, discussed in the sections 5.2.2.4 and 5.2.2.8, were designed
to minimise the cross-track error to ensure that the aircraft can stay on the ground track.
These controllers therefore require the cross-track error value to perform their function.
The cross-track error is defined as the perpendicular distance from the aircraft to the
ground track [AA833 course notes]. To easily obtain the cross-track error, a guidance
frame, also known as the guidance axis system, is defined which relates the aircraft’s
position to the ground-track as shown in Figure 6.1.

The guidance frame’s origin is placed at the source waypoint with the X-axis aligned
with the ground track and pointing towards the destination waypoint. The guidance frame
is related to the inertial frame by the ground track heading ψtrack which is calculated using,

tan(ψtrack) =
Edest − Esrc

Ndest −Nsrc
(6.1)

where (Edest, Ndest) are the destination waypoint coordinates and (Esrc, Nsrc) are the source
waypoint coordinates.

A rotation matrix is used to convert aircraft’s position to the guidance frame so that

134

Stellenbosch University https://scholar.sun.ac.za

6.1. Guidance Algorithm 135

N

E

Source Waypoint

Destination Waypoint

Figure 6.1: Block diagram showing the guidance frame [adapted from AA833 course
notes].

the cross-track error can be obtained. This calculation is performed using the equation,x
y

 =
 cos(ψtrack) sin(ψtrack)
− sin(ψtrack) cos(ψtrack)

N −Nsrc

E − Esrc

 (6.2)

where x is the in-track distance and y is the cross-track error. The in-track distance is
defined as the distance of the aircraft’s projection onto the ground track from the source
waypoint [AA833 course notes]. The track length Ltrack is calculated using,

Ltrack =
√

(Ndest −Nsrc)2 + (Edest − Esrc)2 (6.3)

The in-track distance and the track length are used by the waypoint scheduler to switch
waypoints. The first cross-track controller also requires the cross-track error rate (ẏ) to
function and this is calculated using,ẋ

ẏ

 =
 cos(ψtrack) sin(ψtrack)
− sin(ψtrack) cos(ψtrack)

Ṅ
Ė

 (6.4)

where Ṅ and Ė are the aircraft ground velocity components in the inertial frame. On the
practical vehicle, the aircraft position and velocity in the inertial frame, which is used by
the guidance algorithm, is obtained from the EKF which uses DGPS measurements.

Stellenbosch University https://scholar.sun.ac.za

6.2. Waypoint Scheduler 136

6.2. Waypoint Scheduler
The waypoint scheduler’s main function is to determine which waypoints are currently
being tracked by selecting the source and destination waypoints which are sent to the
guidance algorithm. The guidance algorithm then works out the corresponding states of
the aircraft with respect to the ground track which is formed from these waypoints, as
highlighted in the previous section.

The waypoint scheduler selects the next set of waypoints in the waypoint list if the
aircraft has reach the end of the current ground track. It does this by comparing the
aircraft’s in-track distance x to the track length Ltrack. Initially, it was decided to switch
the waypoints when the in-track distance was greater than the the track length. However,
this resulted in the aircraft overshooting the next ground track, increasing the cross-track
error as shown in Figure 6.2a. The cross-track controllers would have to first deal with
the overshoot before they can begin to minimise the cross-track error. This would take a
significant amount of the in-track distance of the new ground track segment and hence
time which the cross-track controllers, unfortunately, do not have. This would result in
the cross-track error not being small enough in time for the landing. A solution to this
problem, as suggested by Le Roux [14], is to perform early switching when the aircraft
is close to the destination waypoint, by looking ahead and checking when the aircraft’s
in-track distance is within a specified range from the target waypoint. This allows the
cross-track controllers to immediately minimise the cross-track error for the next ground
track segment, and focus on improving the lateral accuracy for landing, as shown in Figure
6.2b. The specific distance to the destination waypoint at which early switching should
be performed was obtained by considering the aircraft’s maximum roll angle and forward
speed. A distance of 75m from the destination waypoint was chosen as the distance
at which the aircraft must switch to the next waypoint. This distance was determined
through trail and error in simulation. The waypoint scheduler performs three additional
secondary functions to assist the other components in the GCS, namely:

• Resetting the current waypoint to the first waypoint in the waypoint list when the
abort command is called by the state machine.

• When the aircraft is not in the land sub-mode, the final waypoint is reset to the
first waypoint when its ground track is completed, so that the aircraft can circuit
continuously around the airfield.

• When the aircraft is in the land sub-mode and the aircraft is in line with the runway,
the waypoint scheduler sends a command to the state machine letting it know that
the aircraft can land.

Stellenbosch University https://scholar.sun.ac.za

6.3. Landing Position Predictor 137

S1
D1 / S2

D2
(a) Standard waypoint switching method where
the waypoints are switched after reaching the
destination waypoint.

S1D1 / S2

D2
(b) Look-ahead waypoint switching method
where the waypoints are switched a certain dis-
tance before reaching the destination waypoint.

Figure 6.2: A comparison between the standard and look-ahead waypoint switching
methods.

6.3. Landing Position Predictor
The landing position predictor calculates the predicted touchdown point between the
fixed-wing UAV and the moving platform. The prediction algorithm is a simple projected
touchdown point technique proposed by Le Roux [14] which uses the aircraft and moving
platform positions and velocities. Consider an aircraft and moving platform moving at
different speeds in the same direction, as shown in Figure 6.3. In the figure, V a is the
horizontal component of the aircraft ground velocity, V p is the moving platform horizontal
velocity, da is the distance from the aircraft to the touchdown point, dp is the distance from
the moving platform to the touchdown point, dap is the instantaneous relative distance
between the aircraft and the platform, hvp is the virtual platform altitude, and γ is the
glide slope angle. The aircraft is assumed to be behind the moving platform and is moving
faster then it, therefore Va > Vp, which means that the aircraft will eventually catch up to
the platform. It can be assumed that the aircraft is on the glide slope for the majority of
the time when the prediction algorithm is used, as the moving platform only moves when
the aircraft is on final approach.

For the aircraft and moving platform to meet at the same point for touch down, they
both need to cover a distance da and dp respectively within a time ∆t. Therefore, the time

Stellenbosch University https://scholar.sun.ac.za

6.3. Landing Position Predictor 138

Predicted
Touchdown

Point

Figure 6.3: Diagram showing the projection of the touchdown point between the aircraft
and moving platform.

it takes the aircraft to reach the moving platform is calculated as,

∆t =
dap

V a − V p

(6.5)

where ∆t is the time it takes for the aircraft to reach the moving platform, dap is the
instantaneous relative distance between the aircraft and the platform, and (V a−V p) is the
relative speed between the aircraft and the platform. The distance between the moving
platform and the predicted touchdown point is calculated as,

dp = V p∆t (6.6)

This distance defines the touchdown point with respect to the moving platform’s position.
On the practical UAV, the relative position and velocity between the UAV and moving

platform are obtained from the DGPS measurements. Originally, the aircraft’s horizontal
velocity component was used to obtain the time to touchdown, however, this resulted in
unusual behaviour. Consider an aircraft descending on the glide slope and having a slight
increase in velocity. The time it takes to reach the moving platform decreases and hence
the touchdown point moves closer. The glide slope therefore changes position and the
aircraft needs to descend to capture the new glide slope. This descent further increases the
aircraft’s velocity repeating the behaviour. This cyclic behaviour can be broken by setting
a constant velocity that the aircraft should maintain on the glide slope, and this velocity
is selected to be the trim speed. Substituting this set velocity into Equation 6.5 results in,

∆t =
dap

V T cos(γ) − V p

(6.7)

The cos(γ) term is added to obtain the horizontal component of the desired aircraft

Stellenbosch University https://scholar.sun.ac.za

6.3. Landing Position Predictor 139

velocity. Note that setting the aircraft velocity does not eliminate the touchdown point
shifting however it does reduce it. The touchdown position can then be obtained by using
either the aircraft’s or moving platform’s current position and velocity with the time value
calculated. The moving platform is chosen to be used as its velocity is unlikely to change
as it approaches the touchdown point.

Equation 6.6 defined the touchdown point with respect to the moving platform. How-
ever, it is desired to define the touchdown point in the inertial frame so that it can be used
by other components in the GCS. The moving platform’s position is already defined in the
inertial frame. Therefore, its position can be added to the distance between the platform
and the touchdown point (dp) to obtain the touchdown point in the inertial frame. This is
mathematically expressed as,

dtd = dp + dp0 (6.8)

where dp0 is the current inertial position of the platform when the prediction is made.
The prediction algorithm that has been described only operates in one dimension.

However, the touchdown point required is defined in the inertial frame with three-position
coordinates (N,E,D). The touchdown point’s altitude (htd) is set to the sum of the
moving platform altitude (hmp) and the virtual platform altitude (hvp). The touchdown
point’s down coordinate D is the negative of the touchdown point’s altitude (D = −htd).
The moving platform’s altitude is generally constant and only changes slightly due to
environmental factors such as dips in the runway or sensor noise. This means that the
touchdown point’s altitude, and hence the down coordinate (D), is not required to be
predicted and can be updated with the DGPS measurements. The moving platform’s
horizontal coordinates change continuously as it moves and therefore these two coordinates
need to be predicted for the touchdown point. Originally, the prediction algorithm ran in
both the N and D directions of the inertial axis system which worked well as long as the
platform moved in exactly a straight line. Unfortunately, the RC car used as the moving
platform is very agile which means that its heading can change rapidly. This poses an
unusual problem where the lateral position of the touchdown point with respect to the
runway can vary wildly as is demonstrated in Figure 6.4.

Consider the RC car on the runway moving slightly to the right of the centreline
(position A) as shown in Figure 6.4. If the car maintains this heading then the touchdown
point is predicted to be on the right side of the centreline at location 1. This is not desired
therefore the driver of the RC car will correct it by commanding a left steering angle to
change its heading, putting the car in position B. The touchdown point now changes to the
left side of the centreline (location 2). If the driver lets the car overshoot the centreline,
then he would have to correct it again putting the touchdown point back to location 1.
This oscillatory behaviour is not ideal as the UAV would not be able to change its heading
fast enough resulting, in an inaccurate landing. The RC car can also not be guaranteed to

Stellenbosch University https://scholar.sun.ac.za

6.3. Landing Position Predictor 140

XX
12

A

B

C

Figure 6.4: Diagram showing the predicted touchdown point changing based on the
moving platform heading. [RC car model adapted from [68]]

follow the centreline perfectly due to loose joints on the car and the runway not being
completely level.

A solution to this oscillatory behaviour is to only perform the touchdown point
prediction in the direction of the runway centreline. This is possible as both the moving
platform and UAV generally move in the direction of the runway centreline. Using this
method will cause the touchdown point to only fall on the centreline. However, the offset
of the moving platform’s position from the centreline still needs to be dealt with. This
issue is resolved with the cross-track controllers by giving them a reference that equals the
offset of the moving platform from the centreline.

The disadvantage of using this method is that it forces the aircraft to land at a certain
heading, which in this case is the runway heading. This is not a problem for this project,
as the aircraft is required to land on the platform in the direction of the runway. For a
scenario where the moving platform maintains a new heading during the landing, this
method would not work and therefore either the original prediction in both the X and Y
axes of the inertial reference frame needs to be used, or the runway heading angle needs
to be changed to the new moving platform heading.

To implement this method, the UAV and moving platform positions and velocities
must be defined with respect to the runway centreline. This can be achieved by using
the runway frame whose X-axis points in the direction of the centreline of the runway, as

Stellenbosch University https://scholar.sun.ac.za

6.3. Landing Position Predictor 141

shown in Figure 6.5.

N

E

x

Figure 6.5: Diagram showing the runway frame.

The runway frame is related to the inertial frame by an angle Ψr, with their origins
occurring at the same point. The runway heading Ψr is the angle between the runway and
true north, and this angle is fixed as the runway does not change its position in real life.
The runway heading was found to be,

Ψr = −16.123◦ (6.9)

A rotation matrix with the Ψr angle can be used to transform the aircraft and moving
platform positions and velocities from the inertial frame to the runway frame. This is
mathematically expressed as,

Vr = RΨrVixr

yr

 =
 cos Ψr sin Ψr

− sin Ψr cos Ψr

xi

yi

 (6.10)

where Vr and Vi are coordinate vectors in the runway and inertial frames respectively.
Only the x component of the aircraft and moving platform positions and velocities in the
runway frame is used with the prediction algorithm which was defined from Equations
6.6 to 6.8. The y component of the moving platform’s position in the runway frame is

Stellenbosch University https://scholar.sun.ac.za

6.4. State Machine 142

sent to the state machine. The state machine then sets this value as the reference for the
cross-track controllers during the descent phase for landing.

The touchdown point is considered a waypoint and therefore it must be converted from
the runway frame to the inertial frame, so that it can be used by the guidance algorithm.
This is done by using the inverse of the rotation matrix RΨr which is its transpose. The
conversion is mathematically represented as,

PTDi = (RΨr)−1 PTDr

PTDi = (RΨr)⊺ PTDr

(6.11)

where PTDi and PTDr are the touchdown points in the inertial and runway frames, respec-
tively.

6.4. State Machine
The state machine provides the references for the FCS outer controllers to follow. These
references are the airspeed (v̄ref), altitude (href), cross-track error (yref) and crab angle
(ψcrabref) references, which all change depending on the phase of flight. One of two distinct
state machines are used to control the aircraft depending on the type of landing being
performed. One state machine is used if the aircraft is doing a stationary runway landing,
while the other is used for the moving platform landing. Before the state machines are
introduced, the stabilisation of the aircraft for landing will first be discussed. Thereafter
both state machines will be described. Finally, the section will be concluded by discussing
the additional minor function performed by the state machine.

6.4.1 Aircraft Landing Stabilisation

It is important that the aircraft be stabilised for landing before it touches down, to
ensure that the aircraft is in a safe position to accurately land and come to a complete
stop without damaging the aircraft. The aircraft is stabilised if its variables are within
predefined limits which are set depending on the landing performed. First the limits for
the runway landing will be discussed and thereafter the moving platform landing limits
are introduced.

6.4.1.1 Stationary Runway Landing Limits

The aircraft variables which are checked for stabilisation during a runway landing are the
airspeed (V), sink rate (Ḋ), crab angle (ψcrab), pitch angle (Θ), roll angle (Φ), cross-track
error (y) and altitude error (herr).

The aircraft is expected to land at an airspeed of 16 m/s for the runway landing. The
airspeed can deviate slightly from this value due to the wind speed changing as the aircraft

Stellenbosch University https://scholar.sun.ac.za

6.4. State Machine 143

lands. It is expected that the aircraft should be able to keep the airspeed within ±1 m/s
from the airspeed reference, otherwise the aircraft may depart from the glide slope. The
ideal sink rate of the aircraft on the glide slope is calculated using,

Ḋ = Vground sin γ (6.12)

where Ḋ is the sink rate, Vground is the ground speed, and γ is the glide slope angle.
Assuming that there is no wind, and therefore the ground speed equals the ideal airspeed
of 16 m/s, the ideal sink rate is calculated to be 1.12 m/s. The wind has a significant
effect on the aircraft’s sink rate, because if it is assumed that the aircraft’s airspeed is
sufficiently controlled, then the wind speed directly influences the ground speed and hence
the sink rate. The maximum acceptable wind speed in which the aircraft is expected to fly
is 3.1 m/s. If this is a tail wind, then the sink rate will be at its maximum. The ground
speed of the aircraft at this wind speed will be 19.1 m/s therefore the maximum allowable
sink rate is 1.33 m/s.

For a standard runway landing, a flare manoeuvre is performed to reduce the sink rate
just before touchdown, to minimise the touchdown force acting on the aircraft which could
cause damage. It was decided not to perform the flare manoeuvre for the landing as it
would cause the aircraft to overshoot its intended touchdown point, decreasing the landing
accuracy. The maximum sink rate therefore had to be tested to ensure that damage is not
caused to the aircraft. This was done by performing a drop test from a certain height, so
that the aircraft reaches the maximum sink rate just before impact. The height for the
drop test was calculated using the following equation used by Le Roux [14],

h0 =
v̄2

2g (6.13)

where h0 is the height from which the aircraft is dropped and v̄ is the speed of the aircraft
just before impact. Using the maximum sink rate of 1.33 m/s, the aircraft should be
dropped from a height of 0.0906 m or 9.06 cm. The aircraft was dropped from this height
and the landing gear was able to absorb the shock without damaging the aircraft.

The maximum crab angle that the aircraft is allowed to have for a landing was set to
10◦, as a higher angle would be too difficult for the rudder reduce to zero, and it would
struggle to de-crab the aircraft. The maximum pitch and roll angle limits were determined
by De Bruin [16] using the airframe geometry. Since the same airframe is used for this
research project, the limits would be the same. The maximum allowable pitch and roll
angle for the airframe are 9◦ and 23◦, respectively. To ensure that the aircraft does not
experience a wingstrike or tailstrike, more stringent pitch and roll angle limits were selected
with their values being set to 6◦ and 8◦ respectively. The aircraft is expected to land
within a 3 m by 3 m square and therefore the maximum allowable cross-track error is 1.5

Stellenbosch University https://scholar.sun.ac.za

6.4. State Machine 144

m for the aircraft to have an accurate landing. The in-track error also has a maximum
limit of 1.5 m however, its accuracy depends on the aircraft’s ability to track the glide
slope. This means that the altitude tracking error must be limited to a maximum value of,

herr = 1.5 tan γ = 0.105 m ≈ 0.1 m (6.14)

A summary of all the limits that the aircraft must satisfy for a stationary runway landing
is shown in Table 6.1.

Table 6.1: Stationary Runway Landing Limits

Aircraft Variable Landing Limit
Airspeed 15 m/s < V < 17 m/s
Sink Rate Ḋ < 1.33 m/s

Crab Angle |ψcrab| < 10◦

Pitch Angle Θ < 6◦

Roll Angle |Φ| < 8◦

Cross-track Error |y| < 1.5 m
Altitude Error |herr| < 0.1 m

6.4.1.2 Moving Platform Landing Limits

The aircraft variables checked for stabilisation during a moving platform landing are the
same as those for the runway landing. However, the cross-track error of the aircraft is
measured with respect to the moving platform instead of the runway centreline (y − yrmp).
An additional variable is also checked for stabilisation, namely the moving platform’s
cross-track error from the centreline (yrmp).

The aircraft’s airspeed for a moving platform landing is 18 m/s and, similar to the
runway landing, it is expected that the aircraft keeps the airspeed within ±1 m/s of the
airspeed reference. Using equation 6.12 with the aircraft’s airspeed of 18 m/s, the ideal
sink rate is calculated to be 1.26 m/s. The 3.1 m/s tail wind is also considered when
obtaining the maximum sink rate of the aircraft which is calculated to be 1.47 m/s. As
the aircraft tracks an agile moving platform, the sink rate limit was increased to 1.80 m/s
which is still safe as the aircraft does not actually impact the platform. This also means
the drop test would not need to be performed.

The crab and pitch angle limits were kept the same as for the runway landing. The roll
angle limit was increased as the aircraft had to track the moving platform in the lateral
direction as well, requiring the aircraft to bank. The roll angle limit was set to 15◦ which
is still less then the maximum allowable limit previously mentioned. The aircraft will not
touchdown in any case, so the possibility of a wingstrike is minute.

Stellenbosch University https://scholar.sun.ac.za

6.4. State Machine 145

The cross-track error limit of the aircraft with respect to the moving platform was
set to 1.5 m as this is the maximum acceptable cross-track error on touchdown. The
cross-track error limit of the moving platform with respect to the centreline was set to 3
m to ensure that the aircraft does not follow the platform in case it veers off the runway.
The altitude tracking error limit was increased to 0.3 m which is required because the
touchdown point and hence the glide slope changes continuously. The touchdown point
stabilises as the aircraft approaches it therefore the altitude error should reduce. Table 6.2
shows a summary of all the limits used to determine if the aircraft is sufficiently stabilised
for a moving platform landing.

Table 6.2: Moving Platform Landing Limits

Aircraft Variable Landing Limit
Airspeed 17 m/s < V < 19 m/s
Sink Rate Ḋ < 1.8 m/s

Crab Angle |ψcrab| < 10◦

Pitch Angle Θ < 6◦

Roll Angle |Φ| < 15◦

Aircraft Cross-track Error
from Moving Platform

|y − yrmp| < 1.5 m

Moving Platform
Cross-track Error

|yrmp| < 3 m

Altitude Error |herr| < 0.3 m

6.4.2 Stationary Runway Landing State Machine

The stationary runway state machine contains 6 distinct states (0-5) that must be followed
to perform a runway landing, as shown in Figures 6.6 and 6.7. When the state machine is
first activated, by either entering land mode or after the moving platform landing has been
completed, it starts in the Waypoint Navigation state (state 0) and completes the circuit
around the airfield. When the aircraft is on final approach, the waypoint scheduler alerts
the state machine and this allows the state machine to transition to the Final Approach
state (state 1). In this state the aircraft is commanded to slow down to its landing speed
of 16 m/s.

When the aircraft reaches a distance dg from the touchdown point (shown in Figure
6.7), and the altitude error herr is less than a meter, the state machine will transition to
the Glideslope Tracking state (state 2). The state machine causes the aircraft to track
the glide slope by providing the appropriate altitude reference to the FCS. When the
aircraft is a distance dt from the touchdown point, the state machine checks if the aircraft
is stabilised by determining if the aircraft variables from Table 6.1 are within their limits.

Stellenbosch University https://scholar.sun.ac.za

6.4. State Machine 146

S0: Waypoint
Navigation

D1

S1: Final
Approach

True

False

D2

S2: Glideslope
Tracking

False

True

D3 S3: StabilisedTrue

False

S4: Decrab

D4

S5: Landed

False

True

Figure 6.6: Diagram showing the states for the stationary runway landing. The decisions
made by the state machine are shown in Table 6.3.

Table 6.3: Stationary runway landing state machine decisions

Decision 1 (D1)
Final approach waypoint reached ? (waypoint END == true ?)

Decision 2 (D2)
Altitude tracking error is within acceptable limits ? (|herr| < 1 m ?)

Decision 3 (D3)
Aircraft state variables are within the acceptable envelope for a runway landing

(Defined in Table 6.1) ?
Decision 4 (D4)

Touchdown acceleration spike detected ? (D̈ < −20 m/s2 ?)
Aircraft altitude is below 0.5 meters ? (h < 0.5 m ?)

If the aircraft is not sufficiently stabilised, then the state machine will abort the landing
attempt and cause the aircraft to return to the Waypoint Navigation state so it can go
around and try the landing again. If the aircraft is sufficiently stabilised, then the state
machine transitions to the Stabilised state (state 3). From this state onward the aircraft
can no longer abort and has to commit to the landing unless land mode is disengaged or
the human pilot takes over. This was chosen because it is not desirable for the aircraft to
perform any drastic manoeuvres when close to the ground, as it could be catastrophic and
lead to a crash. If it is unsafe to land when close to the ground, then the human pilot will
take over and manually go around.

When the aircraft is a distance dd from the touchdown point, then it starts to perform
the de-crab manoeuvre. This manoeuvre is executed when the state machine, in the
Decrab state (state 4), activates the crab angle controller and sends it a 0◦ angle reference.

Stellenbosch University https://scholar.sun.ac.za

6.4. State Machine 147

State 1:
Final Approach

State 0:
Waypoint Navigation

Ground Roll

State 2:
Glideslope Tracking

State 3:
Stabilised

State 4:
Decrab

Touchdown

State 5:
Landed

Abort

Figure 6.7: Diagram showing the state transitions for the stationary runway landing
profile. The values for the symbols in the diagram are shown in Table 6.4.

Table 6.4: Stationary runway landing profile values

Symbol Value
dg 250 m
hg 17.48 m
γ 4◦

ht 5 m
dt 71.5 m
dd Depends on Vground

The distance dd is dynamically calculated based on the aircraft ground speed (Vground) and
the crab angle controller’s rise time (τcrab), and it is calculated using,

dd = Vgroundτcrab (6.15)

The aircraft continues along the glide slope until it touches down on the runway. At
touchdown, the aircraft experiences a large acceleration spike which can be measured to
determine if the aircraft has landed. If the acceleration spike is greater than −20 m/s2

and the aircraft’s altitude is less than 0.5 m (to prevent early activation) then the state
machine transitions to the Landed state (state 5). In this state the thrust command and
control surface deflections are set to zero, and it is expected that the human safety pilot
will immediately takeover and bring the aircraft to a standstill.

Stellenbosch University https://scholar.sun.ac.za

6.4. State Machine 148

6.4.3 Moving Platform Landing State Machine

The moving platform state machine is similar to runway landing state machine with the
main difference being that it has an additional state. The moving platform state machine
therefore has 7 distinct states (0-6) to perform the moving platform landing, as shown in
Figures 6.8 and 6.9. The moving platform state machine is activated when the aircraft
is placed into moving platform mode. It starts in the Waypoint Navigation state (state
0) similar to the runway state machine. The moving platform state machine will then
transition to the Final Approach state (state 1) when the aircraft is aligned with the
runway and the waypoint scheduler alerts the state machine. Unlike the runway state
machine, the moving platform state machine does not slow the aircraft down but instead
keeps it at the trim airspeed of 18 m/s.

S0: Waypoint
Navigation

D1

S1: Final
Approach

True

False

D2

S2: Glideslope
Tracking

False

True

D4

S4: Stabilised

True

False

S5: Decrab

D5

S6: Landed and
Go-Around

False

True

S3: Moving
Platform TrackingD3 True

False

Figure 6.8: Diagram showing the states for the moving platform landing. The decisions
made by the state machine are shown in Table 6.5.

When the aircraft is a distance dg from the touchdown point (shown in Figure 6.9)
and has an altitude error of less than one meter, the state machine transitions to the
Glideslope tracking state (state 2) so that the aircraft can catch the glide slope.

When the aircraft is a distance dct from the touchdown point and the moving platform’s
cross-track error (yrmp) is within 3 m of the runway centreline, the state machine transitions
to the Moving Platform Tracking state (state 3). In this state the state machine provides
the cross-track controllers a reference that equals the moving platform’s cross-track position
from the centreline (yrmp). This is so that the aircraft can track the moving platform’s
lateral position. The distance dct is dynamically calculated using the aircraft’s ground
speed Vground and both the first cross-track and crab angle controller rise times (τct and
τcrab).

dct = Vground (τct + τcrab) (6.16)

Stellenbosch University https://scholar.sun.ac.za

6.4. State Machine 149

Table 6.5: Moving Platform landing state machine decisions

Decision 1 (D1)
Final approach waypoint reached ? (waypoint END == true ?)

Decision 2 (D2)
Altitude tracking error is within acceptable limits ? (|herr| < 1 m ?)

Decision 3 (D3)
Moving platform’s cross-track error is within acceptable limits ? (|yrmp| < 3 m ?)

Decision 4 (D4)
Aircraft state variables are within the acceptable envelope for a moving platform

landing (Defined in Table 6.2) ?
Decision 5 (D5)

Aircraft altitude has reached virtual platform altitude ? (h < hvp m ?)

State 2:
Glideslope Tracking

State 4:
Stabilised

State 5:
Decrab

Abort

State 0:
Waypoint Navigation

Predicted
Touchdown Point

State 1:
Final Approach

State 3:
Moving Platform Tracking

State 6:
Landed and Go-Around

Figure 6.9: Diagram showing the state transitions for the moving platform landing profile.
The values for the remaining symbols in the diagram are shown in Table 6.6.

Table 6.6: Moving platform landing profile values

Symbol Value
dct Depends on Vground

hvp 3 m
V p 3 m/s

The reason the crab angle controller rise time is included when calculating dct is so that the
aircraft can be aligned with the moving platform before the aircraft de-crabs. De-crabbing
causes the aircraft to increase its cross-track error which makes alignment with the platform
difficult, which is the reason why these two manoeuvres are performed separately. When
the aircraft is a distance dt from the touchdown point, the state machine checks if the

Stellenbosch University https://scholar.sun.ac.za

6.5. Summary 150

aircraft is stabilised by determining if the aircraft variables from Table 6.2 are within their
limits. If the aircraft is not sufficiently stabilised then, similar to the runway landing, it
will abort the landing attempt and try again. If the aircraft is sufficiently stabilised then
the state machine transitions to the Stabilised state (state 4). The stability check for the
moving platform landing is continuously done from this state onward until touchdown, as
there is no physical impact with the moving platform and the aircraft does the go-around
after landing anyways. This continuous check will protect the aircraft if the moving
platform veers off the runway as the aircraft will then abort the landing attempt. As
with the runway landing, the aircraft de-crabs when it reaches a distance dd from the
touchdown point and the state machine transitions to the Decrab state (state 5). The
aircraft is considered to have touched down when its altitude is less than the virtual
platform’s altitude. The moving platform state machine will then transition to the Landed
and Go-Around state (state 6) and after that, it activates the stationary runway landing
state machine. The aircraft is then programmed to go around and land on the runway.
However, it is more likely that the human safety pilot would take over and manually land
on the runway.

6.4.4 Additional Function of State Machine

The additional function of both state machines is to produce the pre-injected climb rate
reference (˙̄href) used by the classical altitude controller. This reference is calculated by
using the aircraft ground speed Vground and glide slope angle γ with the equation,

˙̄href = −Vground tan γ (6.17)

The state machines provide the classical altitude controller with this reference when the
aircraft starts tracking the glide slope (from state 2 onward).

6.5. Summary
This chapter presented the guidance control system used to navigate the aircraft around
the airfield. First, the guidance algorithm used to calculate the values needed by the FCS
cross-track controllers was described. Then the waypoint scheduler used to select the
current waypoints being tracked was introduced. This was followed by the description of
the landing position predictor, which was used to predict the touchdown point between the
aircraft and the moving platform. Finally, the state machines used during the runway and
moving platform landing were discussed. Now that both the flight and guidance control
systems have been developed, they can be tested in non-linear simulations to verify their
performance in a more realistic environment before they are implemented on the physical
system. The non-linear simulations are presented in the next chapter.

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Non-Linear Simulation

This chapter presents the non-linear simulation implementation and results. The non-
linear simulations are performed to test the developed control systems on a non-linear
model that more closely resembles the physical UAV. These simulations will identify any
discrepancies in the control system design, which allows them to be corrected before being
implemented on the physical UAV. This is a crucial process as the non-linear simulations
are a low-risk environment compared to the practical tests where there is only one physical
UAV. The non-linear simulations are first performed in Simulink and then in the PX4
Autopilot software in software-in-the-loop (SITL) mode. The Simulink non-linear model is
first discussed, with the additions made to control systems for the non-linear simulations
being mentioned. The software-in-the-loop implementation is then described, with the
different components used in the implementation being highlighted. Finally, the non-linear
simulation results for control systems are analysed.

7.1. Simulink Non-Linear Model
The controllers were designed using a linear model. However, their performance must be
verified using a non-linear model, which better represents the non-linearities of the aircraft.
This will also ensure that all the linearisation decisions made are validated. The controllers
are first tested on a non-linear model in Simulink so that the controllers performance can
be verified fairly quickly. This is important as the controllers need to be tuned to obtain
ideal performance on a non-linear model while still staying within their requirements.
Simulink is ideal for this as it is easy and time-efficient to test the controllers. The Simulink
model does not include sensor noise or wind therefore, the results obtained are the best
case for the controllers, which serves as a good baseline for the software-in-the-loop (SITL)
results.

Most of the controller references are bounded to ensure that the aircraft behaves in a
predictable manner and that a commanded manoeuvre will not cause the aircraft to go
unstable. These reference bounds which applied are listed below:

• The NSA reference Cwref for level fight is −g m/s2 where g is the gravitational
acceleration. This due to the accelerometer experiencing a normal force when the

151

Stellenbosch University https://scholar.sun.ac.za

7.2. Software in the Loop Implementation 152

aircraft is flying level. The NSA reference is limited to ±g m/s2 from this level flight
reference value.

• The climb rate reference is limited to ±2 m/s to prevent strain on the aircraft.

• The roll angle reference is limited to ±π
6 rad (±30◦) to prevent the aircraft from

stalling on turns.

• The LSA reference is limited to ±g m/s2.

The control surface deflection angles are also limited to ±1 rad (±57.3◦), as this is the
maximum angle that the SITL mixer can provide. This limit is applied to the Simulink
simulation as well to make its results consistent with the SITL results. The thrust command
is bounded between 0 N and 40 N as this is the thrust range of the physical motor. All
the controller integrators contain anti-windup to prevent them from winding up when the
controller output saturates.

7.2. Software in the Loop Implementation
The Software in the Loop (SITL) simulation is performed to test the controllers in a more
realistic environment and, if successful, it will provide confidence in the controller’s ability
to perform on the practical vehicle. The SITL implementation includes sensor noise and
wind which improve the realism of the simulation. The SITL simulation is implemented
by using the PX4 autopilot software to execute the flight and guidance control systems,
Gazebo to simulate the aircraft physics, and ROS to run the MPC algorithm, as shown in
Figure 7.1. For SITL, the PX4 autopilot software, ROS node, and Gazebo simulator are
all run on the same computer which uses a Linux operating system.

PX4 Autopilot

Gazebo
Simulator

Control Surface
Deflections and
Thrust Command

Simulated Sensor
Values

ROS Node

MPC
Output

MPC References
and

Aircraft Variables

Figure 7.1: Diagram showing an overview of the SITL implementation.

The classical controllers of the flight control system are implemented in the PX4
software. The PX4 software therefore outputs the control surface deflections and thrust
command produced by the lower level controllers, which are sent to the Gazebo simulator

Stellenbosch University https://scholar.sun.ac.za

7.2. Software in the Loop Implementation 153

using MAVLink. Gazebo applies these commands on the aircraft model and then outputs
the simulated sensor values derived from the aircraft physics. The PX4 software also sends
the MPC, which is located in the ROS node, its airspeed and altitude references together
with the aircraft airspeed and altitude states. The MPC in turn provides the PX4 software
with the climb rate reference and thrust command from trim.

7.2.1 Robot Operating System

The Robot Operating System (ROS) is a set of software libraries that uses ROS nodes
to perform actions and uses ROS topics to transmit data between these nodes [69]. The
MPC algorithm is implemented in a ROS node and it uses MAVROS with MAVLink to
communicate with PX4. MAVLink is a messaging protocol used to allow communication
between isolated hardware or software components on UAVs [50]. In the SITL implementa-
tion, MAVLink connects both the ROS node and Gazebo to the PX4 software. MAVROS
is a communication driver that converts MAVLink messages to ROS messages, and vice
versa [51].

The details of the MPC implementation on a ROS node in simulation and on practical
hardware can be found in Appendix B.5.2.

7.2.2 PX4 Autopilot Software

PX4’s architecture is similar to ROS where it uses modules to execute certain functions
and these modules communicate with each other using topics. The functions they perform
include flight control, state estimation, and communication. A simplified overview of the
PX4 architecture used for the SITL implementation is shown in Figure 7.2.

Flight and Guidance
Control SystemEstimator MixerSensor

Measurements

Aircraft
States Actuator

Commands

Figure 7.2: Diagram showing a simplified overview of the PX4 architecture.

The sensors measurements provided to the PX4 software are updated at different rates
and are often too slow to be used by the controllers. This issue is resolved by using a state
estimator which estimates the states of the aircraft at a higher rate and uses the sensor
measurements for corrections. PX4 already contains an estimator which is an Extended
Kalman Filter (EKF) that has been successfully used in many UAV projects. This EKF is
therefore chosen to be the state estimator for this research project. The EKF operates in
delayed time and it uses a complementary filter to propagate the state estimates to real
time [70].

The flight and guidance control systems from Chapters 5 and 6 were implemented from
scratch in a custom module using the PX4 software module template. This module is

Stellenbosch University https://scholar.sun.ac.za

7.2. Software in the Loop Implementation 154

programmed in C++ and its notation are derived from other PX4 software modules. This
custom module can be built for both the SITL simulation and for the Pixhawk 4 hardware.
The only differences between the two builds are minor changes used to accommodate
the practical UAV. The flight and guidance control systems run every 20 ms in the PX4
software, as this is the update time of the aircraft states from the EKF.

The mixer is used to convert the control surface deflections and thrust command to
actuator commands [71]. This is a crucial conversion for the practical UAV as the servos
for the control surfaces and the electronic speed controller (ESC) for the motor require a
PWM signal with a duty cycle between a certain range. The practical mixer is discussed
in more detail in Appendix B.3. The SITL mixer does not have a conversion (scaling and
offset) for the control surface deflections as there is no physical component to accommodate
for. The mixer only accepts a normalised input between -1 to 1 and since the deflection
angles are usually less than ±1 rad (±57.3◦), they are not normalised. This means that the
deflection angles commanded by the controllers are sent unchanged from the PX4 software
to the Gazebo simulator. The deflection angles are therefore limited to the normalised
range, making their limits ±1 rad (±57.3◦). This deflection angle range is much larger
than the commands provided by the lower-level controllers, and therefore the controllers’
performance should not be impacted. The SITL mixer performs a conversion on the thrust
command as the thrust has a range from 0 N to 40 N. The thrust command is normalised
between 0 and 1 to send it through the mixer. The original thrust command is recovered
in the Gazebo simulator to apply it to the aircraft.

7.2.3 Gazebo Simulator

Gazebo simulates the fixed-wing UAV and the moving platform as models in a three-
dimensional world. Figure 7.3 shows the fixed-wing UAV in the Gazebo world.

Figure 7.3: Simulated fixed-wing UAV flying in Gazebo simulation.

Gazebo also uses a similar structure to ROS in which it uses plugins to perform actions
on the models while using topics to transmit data between the plugins. Figure 7.4 shows
a simplified overview of the fixed-wing UAV simulation in Gazebo.

Stellenbosch University https://scholar.sun.ac.za

7.3. Non-Linear Simulation Results 155

Fixed-Wing
UAV Model

Custom
Aerodynamic and

Thrust Plugins

GPS, Barometer,
Magnetometer, IMU and
Airspeed sensor Plugins

Gazebo Simulation Overview

Aircraft States
Forces and
Moments Emulated Sensor

Measurements

Figure 7.4: Diagram showing a simplified overview of the Gazebo simulation.

A model for the fixed-wing UAV is already available by default. However, the model’s
aerodynamic and thrust plugins cannot be used as they do not model the UAV as a rigid
body. Custom aerodynamic and thrust plugins were therefore created which implement
the force and moment models from sections 4.3.1 and 4.3.2, respectively. The aerodynamic
plugin includes the different types of wind modelled in section 4.4. The turbulence filters
from Table 4.2 are discretised before they are added. The control surface deflections
output by the PX4 software are used in the aerodynamic model equations to calculate
the aerodynamic forces and moments acting on the aircraft. The thrust command is first
converted back to its unnormalised value before it is used in the thrust model equation to
calculate the thrust force acting on the aircraft.

Gazebo produces emulated sensor measurements based on the fixed-wing UAV model
states, so that they can be used by the PX4 EKF. The emulated sensor measurements
are produced by individual plugins which represent the sensors. The sensors that are
simulated are the GPS, barometer, magnetometer, IMU and airspeed sensor.

The moving platform model and plugin were created from scratch. The physics of the
platform is not that important, as it will be represented by an RC car that is manually
controlled. Only the position and velocity of the platform are of interest, therefore the
plugin uses the standard Gazebo functions to move the platform at a constant velocity in
a straight line.

7.3. Non-Linear Simulation Results
The non-linear simulation environment has now been introduced. Therefore, this section
focuses on analysing the results of the non-linear simulation. First, the step responses
of the individual controllers are simulated and analysed. Next, the waypoint navigation,
stationary runway landing, and moving platform landing are simulated and discussed.
Finally, the runway and moving platform landing simulations with wind are performed to
show the distribution and evaluate the landing accuracy of the touchdown points when
affected by wind. Only the SITL results will be analysed, as the Simulink results are very
similar to SITL.

Stellenbosch University https://scholar.sun.ac.za

7.3. Non-Linear Simulation Results 156

7.3.1 Controller Step Responses

The controllers in the FCS were designed using a linear model. However, now their
performance must be tested on the non-linear simulation model to verify that the design
decisions made were sound. The inner-loop controllers (NSADLC, LSA and roll rate) are
not tested on the non-linear aircraft model as they cause the aircraft to depart from trim
flight. These controllers will be indirectly tested through the outer-loop controllers. The
heading and second cross-track controllers are also not tested as they are not used for
the landing procedure but only to bring the aircraft close to the ground track. No wind
effect is active when testing the individual controllers in the SITL simulation. The step
response magnitude for the controllers are set to values that have a significant impact on
the aircraft, while also not causing the controllers to saturate.

7.3.1.1 Airspeed Controller

The airspeed controllers are tested with the aircraft being in level flight holding its
current altitude. Figure 7.5 shows the airspeed step response and the corresponding thrust
command for both the classical airspeed and MPC controllers. Note that the airspeed
step is applied with respect to the trim airspeed of the aircraft and the controller thrust is
added to the trim thrust, which is exerted on the aircraft.

0 2 4 6 8 10
Time (s)

18.0

18.5

19.0

19.5

20.0

A
ir

sp
ee

d
(m

/s
)

Airspeed Reference
Classical Airspeed Controller
MPC Controller

(a) Airspeed Step Response

0 2 4 6 8 10
Time (s)

26

28

30

32

34

36

38

40

T
hr

us
tC

om
m

an
d

(N
)

Classical Airspeed Controller
MPC Controller

(b) Thrust Command

Figure 7.5: Airspeed step response and corresponding thrust command for the classical
airspeed and MPC controllers.

The airspeed state in SITL is only updated every 100 ms as the state is the filtered
output of the airspeed sensor measurements. The EKF is not involved in obtaining the
airspeed state; therefore, the update rate is slow. The airspeed response contains visible
high-frequency variations caused by sensor noise. The sensor noise is present in the airspeed
state provided to the airspeed controllers. Nonetheless, both the classical airspeed and
MPC controllers can adequately control the airspeed even with the slow update rate and
sensor noise.

Stellenbosch University https://scholar.sun.ac.za

7.3. Non-Linear Simulation Results 157

The simulated closed-loop step response of the classical airspeed controller exhibits a
rise time of 1.42 seconds, an overshoot of 9%, and zero steady-state error. These metrics
are within the requirements for the controller specified in the classical airspeed controller
design section. The requirements specified for the controller are a rise time of less than
3 seconds, an overshoot of less than 20% and zeros steady-state error. The nonlinear
airspeed response is more representative, and less ideal than the linear airspeed response,
which can be attributed to the simplified model (Equation 5.2) used during the design
process. The model decoupled the airspeed state from the other longitudinal states under
the assumption that the airspeed is not affected by the other states. This is not entirely
true as the airspeed is affected by the NSA and hence the NSADLC controller.

The simulated closed-loop airspeed step response for the MPC controller has a rise
time of 1.46 seconds, an overshoot of 8.5%, and a 0.075 m/s nominal steady-state error.
The rise time and overshoot are within the MPC controller requirements however, the
steady-state error is not, as it should have been zero. The MPC controller requirements are
the same as the classical airspeed controller requirements that were just mentioned. The
steady-state error in airspeed is due to the MPC trying to maintain the current altitude
reference by sacrificing some airspeed control. As the aircraft airspeed increases, the lift
force exerted on the aircraft also increases, which affects the altitude, and this needs to be
dealt with by the MPC. The MPC linear airspeed response has better performance then
the non-linear response which is due to the MPC being very model-dependent. Applying
the MPC to a different model from the one it is designed on degrades its performance,
which is expected. The KTc thrust scalar was introduced to compensate for inaccuracies in
the MPC thrust model when compared to the practical data. By introducing this scalar,
the practical performance improved at the expense of worse simulation performance. The
MPC was first designed without the scalar and it had less steady-state error however, its
practical performance was lacking, therefore the scalar was introduced.

Comparing the classical airspeed and MPC step responses it can be seen that they are
similar to a point after which the MPC’s response exhibits the steady-state error. Therefore
the classical airspeed controller performs better than the MPC controller in SITL, which
contrasts the linear step response results. This is due to the MPC’s model dependence
which degrades its SITL performance more than the classical airspeed controller. It is very
difficult for the controllers to keep the airspeed exactly at the reference due to the airspeed
depending on wind which randomly changes. It is more important for the controllers to
keep the airspeed above the stall speed and to ensure that the airspeed does not effect
the other controllers. This is especially true for the MPC as its altitude control needs
to be highly accurate to maintain the glide slope on landing, even at the expense of
airspeed control performance. Nonetheless, both the controllers are capable of reasonably
controlling the airspeed.

The associated thrust command for both controllers, shown in Figure 7.5b, are within

Stellenbosch University https://scholar.sun.ac.za

7.3. Non-Linear Simulation Results 158

the physical limits of the motor, therefore these controllers should be physically realisable.

7.3.1.2 Climb Rate Controller

The climb rate controller is tested with the aircraft flying at a constant heading and
airspeed. Figure 7.6 shows the simulated climb rate step response and the associated NSA
reference commanded produced by the climb rate controller.

0 2 4 6 8 10 12 14
Time (s)

0.0

0.5

1.0

1.5

2.0

C
lim

b
R

at
e

(m
/s

)

Climb Rate Reference
Climb Rate Controller

(a) Climb Rate Step Response

0 2 4 6 8 10 12 14
Time (s)

−15

−14

−13

−12

−11

−10

N
SA

R
ef

er
en

ce
(m

/s
2)

Climb Rate Controller Output

(b) NSA Command

Figure 7.6: Climb rate step response and corresponding NSA command for the climb
rate controller.

The non-linear climb rate response has less sensor noise than the non-linear airspeed
response, which is due to the climb rate state being provided by the EKF that reduces
noise. The climb rate is the negative of the down inertial velocity component, which the
EKF generates by using the IMU with corrections from the GPS measurements. The
non-linear climb rate step response has a rise time of 0.54 seconds, a 13.65% overshoot,
and zero steady-state error, which are within the requirements for the climb rate controller.
The climb rate controller requirements are a rise of less than 3 seconds, an overshoot of
less than 20% and zero-steady state error. The step response also has a 2% setting time of
5.85 seconds. The rise time and 2% settling time of the non-linear climb rate step response
are faster then the linear response at the expense of a slightly higher overshoot. These
non-linear performance metrics are acceptable. However, they are expected to influence
the outer-loop altitude controller.

The associated commanded NSA reference in Figure 7.6b is within the ±g limit from
the level flight setpoint (−g m/s2), making the controller realisable.

7.3.1.3 Altitude Controller

The altitude controllers are tested with the aircraft flying at a constant heading and
airspeed. The altitude steps are applied from a captured altitude point which is set when
the autopilot is engaged. This altitude point is aimed to be set close 50 m above the

Stellenbosch University https://scholar.sun.ac.za

7.3. Non-Linear Simulation Results 159

runway. Figure 7.7a shows the the altitude controllers’ non-linear step response, with
the aircraft altitude being measured with respect to the captured altitude point. Figure
7.7b shows the associated climb rate reference commanded by the altitude controllers to
produce the step response. The limited integrators for the classical altitude and MPC
controllers are not active for these step responses to have a fair comparison between the
non-linear and linear responses.

0 2 4 6 8 10 12 14
Time (s)

0.0

0.5

1.0

1.5

2.0

A
lti

tu
de

(m
)

Altitude Reference
Classical Altitude Controller
MPC Controller

(a) Altitude Step Response

0 2 4 6 8 10 12 14
Time (s)

0.0

0.5

1.0

1.5

2.0

C
lim

b
R

at
e

R
ef

er
en

ce
(m

/s
)

Classical Altitude Controller
MPC Controller

(b) Climb Rate Command

Figure 7.7: Altitude step response and corresponding climb rate command for the classical
altitude and MPC controllers.

The classical controller altitude step response has a rise time of 1.82 seconds, no
overshoot, and zero steady-state error which are within the requirements for the classical
controller. The classical altitude controller requirements are a rise time of less than 6
seconds, less than 20% overshoot, zero steady-state error, and a 2% settling time of less
than 13 seconds. The classical altitude step response has an undershoot, which drastically
increases its 2% settling time to 9.17 seconds when compared to the linear step response.
This settling time, however, is still within the controller requirement and is therefore
acceptable. The MPC step response has a rise time of 1.40 seconds, a 10.7% overshoot,
and zero steady-state error which are all within the requirements for the MPC. The
MPC altitude requirements are the same as the classical altitude controller requirements
mentioned above. The 2% settling time for the MPC altitude response is 3.13 seconds,
which is slower than the linear MPC altitude response, due to the MPC being model-
dependant. However, it is still acceptable, as it is within the requirement for the MPC. The
MPC does slightly deviate from the reference towards the end of the response, however, it
is still within the 2% limit, and it does return to the reference.

Comparing the classical altitude controller and MPC responses, it can be seen that the
MPC performs better, as it has a faster rise and settling time at the expense of higher
overshoot. This faster rise and settling time is due to the MPC being able to use the
airspeed to assist its altitude response and to also command the maximum climb rate
reference (shown in Figure 7.7b) to increase the altitude as fast as possible. The MPC

Stellenbosch University https://scholar.sun.ac.za

7.3. Non-Linear Simulation Results 160

overshoot is an acceptable trade-off in obtaining the fast settling time required by the
aircraft to quickly track the glide slope and achieve an accurate landing.

The climb rate reference produced by both controllers in Figure 7.7b are within the
limits for the reference. The MPC is able to utilise the climb rate reference to its limit as
the limit is specified when the MPC is designed.

7.3.1.4 Roll Angle Controller

The roll angle controller is tested with the aircraft flying at a constant altitude and
airspeed. Figure 7.8 shows the roll angle controller step response and the associated roll
rate reference commanded by the controller. The roll angle step magnitude is set to 20◦

(0.349 rad).

0 2 4 6 8
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

R
ol

lA
ng

le
(r

ad
)

Roll Angle Reference
Roll Angle Controller

(a) Roll Angle Step Response

0 2 4 6 8
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5
R

ol
lR

at
e

R
ef

er
en

ce
(r

ad
/s

)

Roll Angle Controller Output

(b) Roll Rate Command

Figure 7.8: Roll angle step response and corresponding roll rate command for the roll
angle controller.

The non-linear roll angle step response has a 1% overshoot and a 2% settling time of
2 seconds, which are within the requirements of the controller. The roll angle controller
requirements are minimal overshoot and a 2% settling time of less than 3 seconds. These
step response metrics match the linear roll angle step response values, which shows that
there is minimal difference in the roll angle characteristics between the linear and non-linear
model. Similar to the linear response, the non-linear roll angle response has a steady-state
error which is due to the roll angle controller not having an integrator. This error will be
dealt with by the outer cross-track controller. The roll rate reference commanded by the
roll angle controller is not limited. However, the maximum aileron deflection produced by
the roll rate controller to achieve the commanded reference is -2.58◦, which is physically
attainable.

Stellenbosch University https://scholar.sun.ac.za

7.3. Non-Linear Simulation Results 161

7.3.1.5 First Cross-Track Controller

The cross-track controller is tested with the aircraft being at a constant altitude and
airspeed. Figure 7.9 shows the first cross-track controller step response and the associated
roll angle command commanded by the controller.

0 2 4 6 8 10 12 14
Time (s)

0

2

4

6

8

10

C
ro

ss
-t

ra
ck

er
ro

r(
m

)

Cross-Track Reference
First Cross-Track Controller

(a) Cross-Track Step Response

0 2 4 6 8 10 12 14
Time (s)

−0.05

0.00

0.05

0.10

0.15

R
ol

lA
ng

le
R

ef
er

en
ce

(r
ad

)

First Cross-Track Controller Output

(b) Roll Angle Command

Figure 7.9: Cross-Track step response and corresponding roll angle command for the
first cross-track controller.

The non-linear cross-track controller response has a 2% settling time of 6.98 seconds
which is within the requirements of the controller, and is slightly better then the linear
response. The first cross-track controller requirement is a 2% settling time of less than 13
seconds. The non-linear response does not have a steady-state error, which shows that
the first cross-track controller compensates for the steady-state error of the roll angle
controller. The roll angle reference commanded by the first cross-track controller is within
the ±30◦ (±π

6 rad) bound for the reference.

7.3.1.6 Crab Angle Controller

The crab angle controller is tested with the aircraft flying at a constant airspeed and
altitude. The crab angle for the non-linear simulation and the practical vehicle is the
difference between the aircraft heading and the ground track heading. Figure 7.10 shows
the crab angle controller step response and the associated LSA command produced by the
controller.

The non-linear crab angle response has a rise time of 1.77 seconds which is within the
controller requirement and is faster than the linear response. The crab angle controller
requirement is a rise time of less than 3 seconds. The non-linear response has much higher
overshoot and undershoot compared to the linear response. This is due to the lateral
dynamics used by the cross-track controller having a larger impact on the directional
dynamics used by the crab angle controller than expected. The cross-track controller
will therefore have a greater influence on the crab angle controller’s response. Since the

Stellenbosch University https://scholar.sun.ac.za

7.3. Non-Linear Simulation Results 162

0 2 4 6 8 10 12 14
Time (s)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
C

ra
b

A
ng

le
(r

ad
)

Crab Angle Reference
Crab Angle Controller

(a) Crab Angle Step Response

0 2 4 6 8 10 12 14
Time (s)

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

L
SA

R
ef

er
en

ce
(m

/s
2)

Crab Angle Controller Output

(b) LSA Command

Figure 7.10: Crab angle step response and corresponding LSA command for the crab
angle controller.

crab angle controller is only used to perform the de-crab manoeuvre, it is more important
for the aircraft to approximately align itself with the runway as fast as possible than to
have an accurate alignment. This is achieved by the controller with a fast rise time, and
therefore its performance is acceptable. The LSA reference commanded by the crab angle
controller is within the ±g limit, and is therefore practically realisable.

7.3.2 Stationary Runway and Moving Platform Landing

Now that the performance of the individual controllers in the FCS has been analysed,
the behaviour of the complete control system in simulation can be tested. First the
aircraft’s waypoint navigation behaviour will be tested. Then the stationary runway
landing performance will be tested. Finally, the moving platform landing performance
will be tested. No wind effect will be active for this section’s SITL simulation so that the
control system’s pure landing performance, unaffected by external disturbances, can be
assessed. Wind will be added in Section 7.3.3, where its effect on the landing performance
will be tested. Sensor noise, however, is present in the SITL simulation. For landing
scenarios, the performance of both the classical airspeed and altitude controllers, as well
as the MPC, will be evaluated. The classical airspeed and altitude controllers will be used
as a baseline for the MPC, as previously mentioned. The baseline will provide a gauge on
the MPC’s performance to determine if there is any improvement when using the MPC.

7.3.2.1 Waypoint Navigation

By default, the control system navigates the aircraft around the airfield until a controller
test or land command is given, which will change the system’s behaviour. Figure 7.11
shows the aircraft’s simulated flight path around the airfield as it follows the waypoints in
SITL simulation.

Stellenbosch University https://scholar.sun.ac.za

7.3. Non-Linear Simulation Results 163

W0 / W7

W1

W2

W3

W4

W5

W6

Figure 7.11: Diagram showing the ground track reference and the aircraft flight path
in the SITL simulation. The waypoints forming the ground track are labeled and the
runway diagram is added at waypoint 0 / 7.

The waypoint locations are chosen based on the space available at the physical airfield.
The runway heading at the airfield was determined to be ψr = −16.123◦. Therefore, the
waypoints that form the circuit are adjusted to ensure that the circuit’s final leg is aligned
with the runway. Waypoint 0/7 represents the location where the aircraft is armed on the
runway, and waypoint 3 is added to ensure the aircraft follows the correct groundtrack
when the autopilot is engaged. Waypoint 6 is the location where waypoint navigation
ends if the aircraft is commanded to land. Figure 7.11 shows that the aircraft is able
to accurately follow the ground track. The early waypoint switching method allows the
aircraft to be inline with the runway on final approach and this should enable the aircraft
to have a high lateral landing accuracy.

7.3.2.2 Runway Landing

Figure 7.12 shows the aircraft’s performance for a runway landing in SITL simulation,
using either the classical altitude and airspeed controllers or the MPC controller.

The longitudinal position in the figures is the in-track position of the aircraft along the
runway with respect to the intended touchdown point. The lateral position in the figures
is the cross-track position of the aircraft perpendicular to the runway with respect to the
intended touchdown point. In Figure 7.12d, the cream rectangle represents the runway
and the grey rectangle represents the bounding box on the runway for the runway landing.
All the plots, besides Figure 7.12c, start when waypoint navigation ends for the aircraft,

Stellenbosch University https://scholar.sun.ac.za

7.3. Non-Linear Simulation Results 164

−400 −300 −200 −100 0
Longitudinal Position (m)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

A
lti

tu
de

(m
)

Referance Altitude
Classical Airspeed and Altitude Controllers
MPC Controller

(a) Altitude Trajectories

−400 −300 −200 −100 0
Longitudinal Position (m)

15.5

16.0

16.5

17.0

17.5

18.0

A
ir

sp
ee

d
(m

/s
)

Referance Airspeed
Classical Airspeed Controller
MPC Controller

(b) Airspeed Responses

−2 −1 0 1 2
Lateral Position (m)

−2

−1

0

1

2

L
on

gi
tu

di
na

lP
os

iti
on

(m
)

Classical Airspeed and Altitude Controllers
MPC Controller

(c) Touchdown Locations

−20 −10 0 10 20
Lateral Position (m)

−400

−300

−200

−100

0

L
on

gi
tu

di
na

lP
os

iti
on

(m
)

−5.0 −2.5 0.0 2.5 5.0
−5.0

−2.5

0.0

2.5

5.0

Ground Track
Classical Controllers
MPC Controller

(d) Horizontal Position Trajectories

Figure 7.12: The aircraft trajectories, airspeed and touchdown locations for a runway
landing in SITL simulation, using either the classical altitude and airspeed controllers or
the MPC controller.

and the plots end when the aircraft touches down on the runway.
For the runway landing, the aircraft is slowed down to 16 m/s when it is on final

approach. This is shown in Figure 7.12b where the airspeed reference is reduced to 16
m/s from the trim speed of 18 m/s. Both the classical airspeed controller and the MPC
are able to slow the aircraft down. The MPC uses the altitude to reduce the airspeed,
which is manifested as a small oscillation at the beginning of the MPC altitude trajectory
shown in Figure 7.12a. The MPC recovers from the oscillation before it reaches the glide
slope and therefore its glide slope tracking performance is not influenced. The aircraft
starts to descend to capture the glide slope at a longitudinal position of -250 m from the
intended touchdown point. As the aircraft descends, its airspeed increases however both
the classical airspeed controller and the MPC are able to return the airspeed back to the
reference. The MPC has better control over the airspeed compared to the classical airspeed
controller, as the MPC’s airspeed peak is lower than the classical airspeed controller’s
peak when the descent begins. This is due to the MPC being able to balance the airspeed
and altitude errors as the aircraft descends. The classical airspeed controller can only

Stellenbosch University https://scholar.sun.ac.za

7.3. Non-Linear Simulation Results 165

respond to the airspeed disturbances that are caused by the aircraft descending with the
classical altitude controller.

As shown in Figure 7.12a, both the classical altitude controller and the MPC can
track the glide slope accurately, however, the MPC performs better as it has a slightly
lower altitude error. Consequently as shown in Figure 7.12c, the MPC has better landing
accuracy with an in-track error of 6 cm and a cross-track error of 2 cm while the classical
controllers achieve an in-track error of 11 cm and a cross-track error of 9 cm. The in-track
error is defined as the longitudinal distance between the aircraft and the desired touchdown
point. The landing accuracy for both controllers can vary by a few centimetres from the
reported values due to the noise of the sensors and the EKF. As the virtual platform has
a size of 3 m by 3 m, the maximum in-track and cross-track errors that the aircraft may
have is ±1.5 m. Both the controllers have landing accuracies that are well within these
limits, and therefore their performance is acceptable.

Figure 7.12d shows the lateral tracking performance of the aircraft for the runway
landing. The same cross-track controller is used for the classical controllers and MPC
landing. This results in their trajectories having similar lateral tracking performance. For
both trajectories, the cross-track controller can reduce the cross-track error to a centimetre
level before it reaches the intended touchdown point. This indicates that, at least in ideal
conditions, the cross-track controller is sufficient for lateral tracking.

7.3.2.3 Moving Platform Landing

Now that it has been verified that both controllers can land the aircraft on a runway,
their moving platform landing performance can be tested. Figure 7.13 shows the aircraft’s
performance for a moving platform landing in SITL simulation, using either the classical
altitude and airspeed controllers or the MPC controller. The longitudinal position in the
figures, besides Figure 7.13d, is the in-track position of the aircraft along the runway with
respect to the runway frame’s origin. The longitudinal and lateral positions in Figure
7.13d are the in-track and cross-track distances from the centre of the virtual platform.

As described in section 3.3.3, the virtual and moving platforms share the same lon-
gitudinal and lateral positions, but the virtual platform is 3 m higher than the moving
platform. The virtual platform is the target for the UAV to land on for the moving
platform landing scenario. Both the virtual and the moving platforms move at a speed of
3 m/s at a constant heading.

The aircraft is kept at the trim airspeed therefore Figure 7.13b shows that the MPC
does not exhibit an oscillation in altitude before tracking the glide slope, as was the case
for the runway landing. The aircraft begins to descend on the glide slope at a longitudinal
position of around -160 m. The aircraft’s airspeed begins to increase and, as shown in
Figure 7.13c, the classical airspeed controller and MPC can keep the airspeed close to the
reference. Once again, the MPC can control the airspeed better than the classical airspeed

Stellenbosch University https://scholar.sun.ac.za

7.3. Non-Linear Simulation Results 166

−400 −300 −200 −100 0 100
Longitudinal Position (m)

0

5

10

15

20

A
lti

tu
de

(m
)

Referance Altitude
Classical Altitude Controller
Virtual Platform
Moving Platform

(a) Classical Controller Altitude Trajectory

−400 −300 −200 −100 0 100
Longitudinal Position (m)

0

5

10

15

20

A
lti

tu
de

(m
)

Referance Altitude
MPC Controller
Virtual Platform
Moving Platform

(b) MPC Altitude Trajectory

−400 −300 −200 −100 0 100
Longitudinal Position (m)

17.8

17.9

18.0

18.1

18.2

18.3

18.4

18.5

A
ir

sp
ee

d
(m

/s
)

Referance Airspeed
Classical Airspeed Controller
MPC Controller

(c) Airspeed Responses

−2 −1 0 1 2
Lateral Position (m)

−2

−1

0

1

2

L
on

gi
tu

di
na

lP
os

iti
on

(m
)

Classical Airspeed and Altitude Controllers
MPC Controller

(d) Touchdown Locations

Figure 7.13: The aircraft altitude trajectories, airspeed and touchdown locations for
a moving platform landing in SITL simulation, using either the classical altitude and
airspeed controllers or the MPC controller.

controller, as the MPC’s airspeed peak is lower than the classical airspeed controller’s
peak.

Figure 7.13a and Figure 7.13b show that both the classical altitude controller and the
MPC can track the glide slope fairly well. However, just as with the runway landing, the
MPC performs better due to its response having less altitude error when following the
glide slope reference. The MPC’s landing accuracy is therefore better with an in-track
error of 10 cm and a cross-track error of 26 cm, while the classical controllers’ accuracy
has an in-track error of 15 cm and a cross-track error of 32 cm. These touchdown points
are shown in Figure 7.13d. Both the MPC and classical controllers’ in-track errors are
slightly larger than their stationary runway landing errors. This is due to the predicted
touchdown point varying continuously as the aircraft and platform states change, and this
consequently causes the glide slope altitude references to also vary. The aircraft also has a
higher ground speed for the moving platform landing, as it is not slowed down, which gives
it less time to capture the glide slope. This is a more difficult scenario for the controllers
to handle, hence the degraded performance. The cross-track errors are significantly higher

Stellenbosch University https://scholar.sun.ac.za

7.3. Non-Linear Simulation Results 167

than their runway landing equivalent values which is due to the aircraft tracking the
platform’s lateral position. The aircraft’s lateral performance is not as responsive as the
moving platform, causing increased error. Nonetheless, both controllers can land on the
virtual platform within the 1.5 m limits for in-track and cross-track error, and therefore
their performance is acceptable.

The moving platform model is given a small velocity perpendicular to the runway so
that it can be slightly offset from the centreline. This is done to test that the aircraft
can track the platform even if the platform is not aligned with the centreline. Figures
7.14a and 7.14b show the lateral tracking performance of the cross-track controller when
executing the moving platform landing in the SITL simulation, using either the classical
controllers or the MPC. The lateral position in the figures is the cross-track position of
the aircraft perpendicular to the runway with respect to the runway frame’s origin. The
figures show that the virtual platform, and hence the moving platform, have a trajectory
slightly towards the right of the runway centreline. The cross-track controller can track
the moving platform fairly well as the cross-track error just before touchdown is in the
centimetre level.

−20 −10 0 10 20
Lateral Position (m)

−400

−300

−200

−100

0

100

L
on

gi
tu

di
na

lP
os

iti
on

(m
)

−5.0 −2.5 0.0 2.5 5.0
77.5

80.0

82.5

85.0

87.5

Classical Controllers
Virtual Platform

(a) Classical Controller Horizontal Trajectory

−20 −10 0 10 20
Lateral Position (m)

−400

−300

−200

−100

0

100

L
on

gi
tu

di
na

lP
os

iti
on

(m
)

−5.0 −2.5 0.0 2.5 5.0
77.5

80.0

82.5

85.0

87.5

MPC Controller
Virtual Platform

(b) MPC Horizontal Trajectory

Figure 7.14: The aircraft horizontal plane position trajectories for a moving platform
landing in SITL simulation, using either the classical altitude and airspeed controllers or
the MPC controller.

7.3.3 Runway and Moving Platform Landings with Wind

The wind models from section 4.4 were implemented in the SITL simulation so that the
control system performance can be tested when the aircraft experiences wind disturbances.
Since the aircraft is small, it is very sensitive to changes in the wind. Therefore, the
control system needs to be able to compensate for wind, to be effective on the practical
UAV. The maximum wind speed at which the aircraft will be expected to land is 3.1
m/s. This is because when a crosswind has this wind speed, it requires the aircraft to
have the maximum acceptable crab angle (10◦) for a landing. The gust, turbulence, wind

Stellenbosch University https://scholar.sun.ac.za

7.3. Non-Linear Simulation Results 168

shear, and ground effect models were implemented in the gazebo aerodynamic plugin.
The turbulence, wind shear, and ground effect models are reactive, as they depend on
the aircraft states. The gust model values, however, need to be selected depending on
what type of gust is desired. The gust amplitude is set to the maximum wind speed value.
The gust is only applied when the aircraft is on the glide slope as the glide slope tracking
performance determines the landing accuracy. The gust is applied as a headwind, tailwind,
starboard-side crosswind, and port-side crosswind.

The stationary runway and moving platform landings were retested with the different
wind conditions, but only for the MPC controller as it was determined as the better
controller in the previous section.

7.3.3.1 Runway Landing

Figure 7.15 shows the touchdown points in SITL simulation, for the aircraft performing
the runway landing in different wind conditions. The ideal touchdown point is the origin,
with zero in-track and cross-track errors. The MPC controller is used to perform the
landings.

−2 −1 0 1 2
Lateral Position (m)

−2

−1

0

1

2

L
on

gi
tu

di
na

lP
os

iti
on

(m
)

No Wind
Wind with No Gust
Headwind
Tailwind
Port-side Wind
Starboard-side Wind

Figure 7.15: Stationary runway landing touchdown locations in SITL simulation, for the
aircraft in different wind conditions.

The landing accuracy degrades relative to the ideal landing performance when wind is
introduced. The runway landings in wind have higher in-track and cross-track errors than
the runway landings with no wind. However, all of the touchdown points are within the
required 3 m x 3 m landing zone. Gust has the most significant impact on the landing
accuracy of the aircraft compared to the other wind effects and therefore its results are

Stellenbosch University https://scholar.sun.ac.za

7.3. Non-Linear Simulation Results 169

distinctly shown. The crosswind touchdown points have a slight increase in in-track error
and a large increase in cross-track error when compared to the no wind touchdown point.
This is expected as the de-crabbing manoeuvre causes the aircraft to align with the runway
and therefore to no longer counteract the wind, increasing the cross-track error. The
tailwind causes the aircraft to significantly overshoot the desired touchdown point as
the aircraft’s ground speed is much higher than its airspeed. Conversely, the headwind
causes the aircraft to only slightly undershoot the desired touchdown point due to a slower
ground speed. The ground speed determines how fast the aircraft completes the glide
slope. Therefore, a faster ground speed results in the aircraft having less time to capture
the glide slope. The tailwind decreases the time the aircraft has to correct its altitude
error, while the headwind provides more time, hence the difference in landing accuracy.
All the touchdown points are within the 1.5 m limit for the in-track and cross-track errors
therefore the control system response is adequate for a runway landing. The control system
performance can now be tested for the moving platform landing with wind scenario.

7.3.3.2 Moving Platform Landing

Figure 7.16 shows the touchdown points in SITL simulation, for the aircraft performing
the moving platform landing in different wind conditions. The MPC controller is used to
perform the landings.

−2 −1 0 1 2
Lateral Position (m)

−2

−1

0

1

2

L
on

gi
tu

di
na

lP
os

iti
on

(m
)

No Wind
Wind with No Gust
Headwind
Tailwind
Port-side Wind
Starboard-side Wind

Figure 7.16: Moving platform landing touchdown locations in SITL simulation, for the
aircraft in different wind conditions.

All of the touchdown points are within the required 3 m x 3 m landing zone on the
virtual moving platform. The wind with no gust landing has similar performance to the

Stellenbosch University https://scholar.sun.ac.za

7.3. Non-Linear Simulation Results 170

no wind landing. However, the latter has increased cross-track error. This is due to the
aircraft tracking the lateral position of the platform, which gradually changes, introducing
variance in the cross-track error on landing. The crosswind landings significantly increased
the cross-track error due to the aircraft performing the de-crab manoeuvre, while the
in-track error only slightly increased, which is expected. The tailwind landing once again
caused the aircraft to significantly overshoot the intended touchdown point due to the
aircraft’s increased ground speed. The time the aircraft has to capture the glide slope
for the moving platform landing is shorter than the runway landing as the aircraft is not
slowed down, and this time is further reduced by the tailwind. The headwind landing has
the least in-track error on touchdown as the aircraft in this wind condition has the lowest
ground speed and hence the most time to capture the glide slope. All the touchdown
points are within the 1.5m limits for the in-track and cross-track errors. Therefore, the
control system can land the aircraft onto the moving platform in the SITL simulation
within the specified wind limits.

Figure 7.17 shows the aircraft performing the de-crab manoeuvre in SITL simulation
when executing the port-side wind moving platform landing.

148 149 150 151 152 153
Time (s)

0.00

0.05

0.10

0.15

0.20

C
ra

b
A

ng
le

(r
ad

)

Referance Crab Angle
Crab Angle

(a) Aircraft Crab Angle

148 149 150 151 152 153
Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

C
ro

ss
-T

ra
ck

Po
si

tio
n

(m
)

Referance Cross-Track Position
Cross-Track Position

(b) Aircraft Cross-Track Position

Figure 7.17: The aircraft’s crab angle and cross-track position in SITL simulation, when
performing the port-side wind moving platform landing.

The plots are shown during the last few seconds that lead to the aircraft touching down.
Figure 7.17a shows that just before performing the de-crab manoeuvre, the aircraft has a
crab angle of approximately 0.175 rad (10◦). At touchdown, the aircraft has a crab angle
of approximately -0.03 rad (−1.72◦). While the aircraft at touchdown is not perfectly
aligned with the moving platform, the crab angle controller is able to reduce the crab
angle fairly quickly, which is its main purpose. As has been previously mentioned, the
aircraft’s cross-track error (aircraft’s cross-track position with respect to the reference
cross-track position) increases rapidly when the de-crab manoeuvre is executed, as the
aircraft no longer counteracts the wind. The rapid increase in cross-track error is shown at
the end of Figure 7.17b. At touchdown, the cross-track error is still within the 1.5 m limit,

Stellenbosch University https://scholar.sun.ac.za

7.4. Summary 171

which is due to the crab angle controller quickly minimising the crab angle, allowing for
the controller’s late activation. It can therefore be deduced that the crab angle controller
is able to successfully execute the de-crab manoeuvre in the SITL simulation.

7.4. Summary
This chapter first discussed the Simulink non-linear model. This was followed by describing
the software-in-the-loop implementation. The individual controllers in the FCS were then
tested in the SITL simulation, and their step responses were analysed. All the tested
controllers performed well, as their step responses were within their designed requirements.
The MPC had better altitude control compared to the classical altitude controller, but
slightly worse airspeed control compared to the classical airspeed controller. The runway
and moving platform landings were then tested in the SITL simulation with no wind.
The designed control systems could successfully execute the landing scenarios, with the
MPC obtaining better landing accuracies compared to the classical airspeed and altitude
controllers. The control systems were then tested to execute the runway and moving
platform landings during different wind conditions. The designed control systems could
successfully land the aircraft, within the maximum limits, on the runway and the moving
platform for the wind conditions specified. It has now been determined that the designed
control system can land the aircraft on the runway and the moving platform in the
non-linear simulations. This provides more confidence that the control systems should be
capable of controlling the physical UAV in real life. The focus now shifts to verifying the
control systems’ real-world performance by performing practical flight tests. The outcome
of these tests will be discussed in the next chapter.

Stellenbosch University https://scholar.sun.ac.za

Chapter 8

Practical Tests Overview and Results

This chapter presents the practical flight tests that were performed to verify the control
systems’ performance on a physical UAV in the real world. The hardware used for the
practical flight tests was already introduced in Chapter 3. This chapter will first provide
an overview of the practical flight test logistics and then discuss the practical flight test
campaign. This chapter will then conclude by examining the practical flight test results
and determining if the developed control systems can land the physical UAV onto a moving
platform.

8.1. Practical Flight Test Logistics
This section presents the environment where the practical flight tests were performed and
then discusses the procedure used during the practical flight tests.

8.1.1 Practical Flight Test Environment

The practical flight tests were performed at the Helderberg Radio Flyers (HRF) Club near
Maccassar, South Africa. The satellite view of the HRF club is shown in Figure 8.1.

The flight tests were performed on days with high visibility and low wind (less than
6 knots) as the aircraft flies far from the runway and is susceptible to wind. The flight
tests were done in the morning when the wind was the lowest. The circuit around airfield
can only be completed in an anti-clockwise direction due to electric pylons and the N2
highway limiting the direction of travel north of the runway. The touchdown location
for a stationary runway landing is the start of the runway so that the UAV has enough
distance on the runway to come to a complete stop. The HRF runway length is 150 m
long, therefore the moving platform needs to travel a distance less than the runway length
during the moving platform landing so that no runway excursion occurs. It was found that
if the moving platform’s speed is limited to 3 m/s, then its travelling distance will be well
within the runway length, and therefore the moving platform’s speed was set to this value.

172

Stellenbosch University https://scholar.sun.ac.za

8.1. Practical Flight Test Logistics 173

Airfield

Runway

N2

Figure 8.1: Aerial view of the HRF airfield and runway. The image is obtained from
Google Maps [72].

8.1.2 Practical Flight Test Procedure

A practical flight test refers to all the objectives to be completed on a flight test day.
These objectives are usually testing individual controllers or completing a landing scenario.
A practical flight session refers to the duration between when the UAV takes off from the
runway to the time the UAV lands back on the same runway. The sensors on the UAV are
calibrated at the start of the flight test day by following the instructions given in QGC.

The procedure followed for a practical flight session consists of first placing the UAV
on the runway and then have the pilot take off the UAV from the runway. The pilot then
manoeuvres the aircraft into level flight on a long straight and switches to Autopilot mode.
The autopilot will then capture the altitude at this point and look for the closest waypoint,
which it will use to join the circuit. The aircraft then continuously circuits around the
airfield until a command is given by the GCS operator. The operator will enter the UAV
into the appropriate sub-mode to complete the flight session objective. If the objective is
not a landing scenario, then after the objective has been completed, the pilot will switch
the UAV into Manual mode and land the UAV back on the runway.

Checklists are used to ensure that all the tasks required for the flight test are completed.
The checklists used for the flight test are shown in appendix C.

Stellenbosch University https://scholar.sun.ac.za

8.2. Flight Test Campaign 174

8.2. Flight Test Campaign
The practical flight tests began once the control systems were implemented on the hardware
and the physical fixed-wing UAV was fully assembled. The ideal progression of the flight
tests consisted of first manually flying the aircraft and then gradually activating the
controllers, increasing the autonomy of the autopilot. The first flight involved the human
safety pilot manually flying the UAV around the airfield. This was to ensure that the UAV
was controllable and maintained stabilised flight.

The following flight tests involved testing the individual controllers in the FCS, by
commanding step responses when the fixed-wing UAV was on long straights in the circuit.
First, the longitudinal controllers were tested, with the safety pilot still having manual
lateral control of the UAV. Next, the lateral controllers were activated, and the UAV flew
fully autonomously. The MPC was then tested to ensure that it had adequate control
of the UAV’s altitude and airspeed. It should be noted that some of the flight tests
were redone, as the practical data obtained was used to improve the aircraft model. The
improved model required the controllers to be retuned and then retested. In the end, all
the controllers performed successfully on the practical vehicle.

After the FCS controllers’ practical performance was approved, the landing scenarios
could then be practically tested. The runway landing scenario was first performed using
the classical airspeed and altitude controllers and then the MPC. Once their runway
landing performances were deemed sufficient, the moving platform landing tests were then
performed. All the flight tests were successfully completed, except for the moving platform
landing onto the physical moving platform. Due to late complications with the DGPS
configuration on the moving platform hardware, the moving platform landing was instead
performed onto a virtual moving platform. This will be discussed in more detail later in
this chapter.

8.3. Practical Flight Test Results
This section presents the practical flight test results. The first subsection analyses the
individual FCS controller responses. The second subsection discusses the navigational
performance of the control system in circuiting the aircraft around the airfield. The
third subsection analyses the practical runway landing performances, and the final two
subsections discuss the moving platform landing results.

8.3.1 Flight Controller Responses

The individual controllers that were tested in SITL were retested on the practical UAV to
verify their real world performance. The inner-most controllers were not tested as they

Stellenbosch University https://scholar.sun.ac.za

8.3. Practical Flight Test Results 175

cause the UAV to depart from trim flight. During initial flight testing, the controllers were
activated in stages to gain confidence in them. The pilot would still have partial control
of the UAV until all the controllers were active. For example, when only the longitudinal
controllers were active, the pilot was instructed to control the UAV’s lateral dynamics.
For the controller responses shown in this subsection, all the controllers were active so
that the practical results can be fairly compared with the SITL results.

8.3.1.1 Airspeed Controller

Figure 8.2 shows the airspeed step response obtained from the practical flight data, for
the classical airspeed and MPC controllers, with their associated thrust commands.

0 2 4 6 8
Time (s)

17.5

18.0

18.5

19.0

19.5

20.0

20.5

A
ir

sp
ee

d
(m

/s
)

Airspeed Reference
Classical Airspeed Controller
MPC Controller

(a) Airspeed Step Response

0 2 4 6 8
Time (s)

26

28

30

32

34

36

38

40

T
hr

us
tC

om
m

an
d

(N
)

Classical Airspeed Controller
MPC Controller

(b) Thrust Command

Figure 8.2: Airspeed step response and corresponding thrust command for the classical
airspeed and MPC controllers operating on the physical UAV.

Both controllers can regulate the airspeed state with reasonable performance, however,
both their responses contain more steady-state variations than the corresponding SITL
results. These variations contain high-frequency components caused by sensor noise and
low-frequency components caused by disturbances and model uncertainty. The disturbances
refer to the wind whose velocity changes continuously, affecting the airspeed. The model
uncertainty refers to the uncertainty in thrust produced, which is due to the changing
atmospheric conditions and the motor’s dependence on the battery voltage.

The classical airspeed step response has a rise time of 0.82 seconds and zero steady-state
error. The overshoot of the response is difficult to determine due to the steady-state
variations. However, it seems to be less than 20%. The rise time practically measured
is faster than the simulated rise time in the SITL simulation. This is most likely due to
the thrust produced by the motor being higher than the 40N limit in the model. This is
expected as the thrust limit was conservatively chosen. Therefore if the maximum thrust
produced deviated from this value, it would impact performance.

The MPC response has a rise time of 0.98 seconds and zero steady-state error. Once

Stellenbosch University https://scholar.sun.ac.za

8.3. Practical Flight Test Results 176

again the overshoot is difficult to determine due to the steady-state variations. However, it
seems to be less than 20%. The rise time and steady-state error of the practically measured
response both improve on those of the SITL simulated response. The steady-state error
improvement is due to the addition of the KTc scalar, which compensates for some of the
thrust model inaccuracies.

The classical airspeed controller performs better than the MPC controller due to its
response having superior transient response characteristics. The two controllers were
tested on different days with dissimilar weather conditions which may have affected their
performances slightly differently. This was not by choice but was due to the MPC requiring
a readjustment and hence a retest. The thrust commands of both controllers in Figure
8.2b are within the limits set for the motor. The main function of the airspeed controllers
is to maintain the airspeed state, which both controllers achieve, and therefore their results
are acceptable.

8.3.1.2 Climb Rate Controller

Figure 8.3 shows the practically measured climb rate step response and the associated
NSA command for the classical climb rate controller.

0 2 4 6 8 10
Time (s)

0.0

0.5

1.0

1.5

2.0

C
lim

b
R

at
e

(m
/s

)

Climb Rate Reference
Climb Rate Controller

(a) Climb Rate Step Response

0 2 4 6 8 10
Time (s)

−15

−14

−13

−12

−11

−10

−9

N
SA

R
ef

er
en

ce
(m

/s
2)

Climb Rate Controller Output

(b) NSA Command

Figure 8.3: Climb Rate step response and corresponding NSA command for the climb
rate controller operating on the physical UAV.

The climb rate response has a rise time of 0.56 seconds, an overshoot of 17.15%, and
zero steady-state error, which are within the controller requirements. Unfortunately, no 2%
settling time can obtained as the response continuously deviates beyond the 2% envelope
due to external disturbances. This behaviour is partially caused by the imperfect control
surface deflection on the UAV which is attributed to the mechanical linkages that connect
to them. De Bruin [16] found that these linkages contain backlash that contribute to
oscillatory behaviour. Since the same airframe as De Bruin is used, this effect would still
be present in this research project’s responses. The practical PX4 software mixer also

Stellenbosch University https://scholar.sun.ac.za

8.3. Practical Flight Test Results 177

approximately produces the commanded deflections. The climb rate state produced by
the EKF also contains some noise. When considering all these factors, the climb rate
response is acceptable, as it can sufficiently regulate the climb rate state so that the
altitude controllers can perform their function. The NSA command produced by the climb
rate controller is within its specified limits.

8.3.1.3 Altitude Controller

Figure 8.4 shows the altitude step response, obtained from the practical flight data, for
the classical altitude and MPC controllers, with their associated climb rate commands.

−1 0 1 2 3 4 5 6
Time (s)

0.0

0.5

1.0

1.5

2.0

A
lti

tu
de

(m
)

Altitude Reference
Classical Altitude Controller
MPC Controller

(a) Altitude Step Response

−1 0 1 2 3 4 5 6
Time (s)

0.0

0.5

1.0

1.5

2.0

C
lim

b
R

at
e

R
ef

er
en

ce
(m

/s
)

Classical Altitude Controller
MPC Controller

(b) Climb Rate Command

Figure 8.4: Altitude step response and corresponding climb rate command for the classical
altitude and MPC controllers operating on the physical UAV.

Both the classical altitude and MPC controller responses contain oscillation at steady-
state, partially due to the imperfect control surface angle deflections mentioned in the
climb rate controller section. The oscillation magnitude in the step response is low enough
to perform accurate glide slope tracking for the landing tests and is therefore acceptable.
The imperfect control surface deflections could be corrected with a more sophisticated
mechanical mechanism to move the control surfaces. However, this is outside the scope of
the current research project. The change in the environmental conditions also effects the
UAV’s aerodynamic performance and hence its response. Some of the control surfaces on
the UAV were slightly warped due to usage which would impact performance.

The classical altitude response has a rise time of 1.64 seconds, an overshoot of 4.65%,
and zero steady-state error. The classical altitude response also has a 2% settling time
of 4.50 seconds, which is well within the controller requirement. The rise time and 2%
settling time for the classical altitude controller are both faster on the physical UAV
compared to the SITL simulation, which is due to the limited integrator being active on
the UAV, improving its performance. The limited integrator provides additional climb
rate command that is added to the climb rate command produced by the classical altitude

Stellenbosch University https://scholar.sun.ac.za

8.3. Practical Flight Test Results 178

controller’s proportional component.
The MPC response has a rise time of 1.49 seconds, a 5.15% overshoot, and zero

steady-state error. The MPC response also has a 2% settling time of 5.20 seconds, which is
well within the controller requirement. The MPC rise time and 2% settling time are both
slower on the physical UAV compared to the SITL simulation. This is expected due to the
MPC’s model dependence. The MPC model does not capture all the uncertainties in the
real world which will degrade its performance. The MPC’s response has a delay of around
200 ms when it starts to respond to the step that is applied. This delay is the result of
the MPC only running every 100 ms compared to the 20 ms execution of the classical
controllers. Running the MPC at a faster rate would decrease the delay. However, the
benefit of this would be minimal, and it would cost an increase in computational resources.
The MPC is therefore left to run every 100 ms.

Comparing the classical altitude and MPC responses it can be seen that the classical
altitude has a faster 2% settling time, while the MPC has a faster rise time. It is difficult
to determine which controller performs better as their performance metrics are similar and
are well within the requirements. Wind and other environmental changes cause the UAV
to slightly deviate from the altitude reference at steady-state. This causes the responses
to occasionally violate the 2% envelope about the reference. The MPC’s altitude response
reached steady-state faster than the classical altitude controller’s response. However, the
MPC’s altitude response then violated the 2% envelope, which most likely was caused by
an external wind disturbance. Wind disturbances will always be present in the controllers’
response as they are tested in the real world. When acknowledging this point, it can
be deduced that the MPC’s altitude control is slightly better than the classical altitude
controller. Nonetheless, both the controller responses are acceptable as they meet the
requirements, and they both should be viable to track the glide slope for an accurate
landing.

The climb rate references produced by both controllers, shown in Figure 8.4b, are
within the limits set for the reference.

8.3.1.4 Roll Angle Controller

Figure 8.5 shows the roll angle step response obtained from the practical flight data for
the roll angle controller. Unfortunately, the roll rate reference produced by the roll angle
controller was not logged during the flight test and therefore cannot be plotted.

The roll angle reference step magnitude was set to 20◦ (0.349 rad). The roll angle
response has steady-state variations due to imperfect aileron deflections and the roll angle
state containing noise from the EKF. These variations have to be accepted on the UAV
as no reasonable solution was available to mitigate this behaviour. This results in the
response being unable to achieve a 2% settling time due to it continuously exiting the
2% envelope. Instead, the time that the response reaches steady state is examined and is

Stellenbosch University https://scholar.sun.ac.za

8.3. Practical Flight Test Results 179

0 2 4 6 8
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

R
ol

lA
ng

le
(r

ad
)

Roll Angle Reference
Roll Angle Controller

Figure 8.5: Roll angle step response for the roll angle controller operating on the physical
UAV.

found to be 1.95 seconds, which is less than the 2% settling time requirement. The roll
angle response has a 7.74% overshoot, which is higher than the overshoot in the SITL
simulation. The roll angle response has a steady-state error. However, the variations
make it difficult to obtain an exact value for the error. The steady-state error is small and
should be compensated for by the outer first cross-track controller.

The roll angle response is acceptable even though the variations makes it difficult to
measure the 2% settling time. The response’s steady-state variations will be filtered out
by the outer cross-track controllers making the response usable.

8.3.1.5 First Cross-Track Controller

Figure 8.6 shows the practically measured cross-track step response and the associated
roll angle command for the first cross-track controller.

0 2 4 6 8 10
Time (s)

0

2

4

6

8

10

C
ro

ss
-t

ra
ck

er
ro

r(
m

)

Cross-Track Reference
First Cross-Track Controller

(a) Cross-Track Step Response

0 2 4 6 8 10
Time (s)

−0.05

0.00

0.05

0.10

0.15

R
ol

lA
ng

le
R

ef
er

en
ce

(r
ad

)

First Cross-Track Controller Output

(b) Roll Angle Command

Figure 8.6: Cross-track step response and corresponding roll angle command for the first
cross-track controller operating on the physical UAV.

Stellenbosch University https://scholar.sun.ac.za

8.3. Practical Flight Test Results 180

The cross-track response has a 2% settling time of 6.96 seconds and zero steady-state
error. These results are similar to the SITL simulation response and are within the
requirements for the controller. The cross-track response on the UAV is smooth, which
shows that the first cross-track controller is able to tolerate the high-frequency variations
of the roll angle response. The cross-track response’s performance is acceptable to reduce
the cross-error so that the UAV can have an accurate landing. It should be note that
when a crosswind is applied to the UAV, the cross-track controller will attempt to reject
the disturbance. However, if the crosswind is applied close to landing then there will be
a cross-track error on landing, as was shown in simulation. The roll angle command, in
Figure 8.6b, produced by the first cross-track controller is within its limits.

8.3.1.6 Crab Angle Controller

Figure 8.7 shows the practically measured crab angle step response and the associated
LSA command for the crab angle controller. The step magnitude is 5◦ (0.0873 rad).

0 2 4 6 8
Time (s)

0.00

0.02

0.04

0.06

0.08

C
ra

b
A

ng
le

(r
ad

)

Crab Angle Reference
Crab Angle Controller

(a) Crab Angle Step Response

0 2 4 6 8
Time (s)

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

L
SA

R
ef

er
en

ce
(m

/s
2)

Crab Angle Controller Output

(b) LSA Command

Figure 8.7: Crab angle step response and corresponding LSA command for the first crab
angle controller operating on the physical UAV.

The crab angle response struggles to reach the reference value due to the rudder not
having sufficient authority to produce the yaw moment required to crab the UAV. The
crab angle response also has a significant amount of oscillation due to the imperfect rudder
deflection angle commanded. The physical UAV’s directional dynamics does not seem
to be fully captured in the model, hence the sub-optimal performance. The rise time of
the crab angle response is 2.99 seconds, which is slower than the SITL response but is
within the requirement for the controller. Even though the UAV cannot maintain the
exact crab angle commanded, it can reach close to it fairly quickly, which is sufficient to
perform the de-crab manoeuvre. The response is therefore acceptable. The LSA reference
that is commanded by the crab angle controller, shown in Figure 8.7b, is within the limits
specified for it.

Stellenbosch University https://scholar.sun.ac.za

8.3. Practical Flight Test Results 181

8.3.2 Airfield Waypoint Navigation

Now that the individual controllers’ performances have been analysed, their combined
performance to navigate the UAV around the airfield can be investigated. Figure 8.8
shows the UAV’s practically measured trajectory around the HRF airfield as it follows the
waypoints.

W0 / W7

W1

W2

W3

W4

W5

W6

Figure 8.8: Diagram showing the ground track reference and the UAV flight path at
the HRF airfield. The waypoints forming the ground track are labeled and the runway
diagram is added at waypoint 0 / 7.

The UAV is able to follow the ground track reference. However, it does slightly
overshoot at the corner waypoints. This is likely due to the look ahead distance being too
small for the practical UAV even though it was sufficient for the simulation. Unfortunately,
this behaviour was only discovered after the flight tests were completed and therefore
could not be corrected. The overshoot at waypoint 2 and 4 are larger than the other corner
waypoints due to the UAV experiencing a tail wind. The tail wind increases the UAV’s
ground speed causing the UAV to have less time to turn. A solution to the issue is to
dynamically select the look ahead distance based on the UAV’s ground speed, as suggested
by Le Roux [14]. This solution only works if the changes in the wind occur before the
turn. Any changes in the wind during the turn will have to be compensated for by the
cross-track controllers. Even though the UAV overshoots the ground track, it can still
minimise its cross-track error fairly quickly. The UAV has a very small cross-track error
when passing over the runway, therefore it should be able to achieve the required lateral
landing accuracy on touchdown. The UAV’s trajectory around the airfield is therefore
acceptable.

Stellenbosch University https://scholar.sun.ac.za

8.3. Practical Flight Test Results 182

8.3.3 Runway Landing

Now that it has been established that the fixed-wing UAV can navigate around the airfield,
the runway landing performance of the UAV can be examined. Figure 8.9 shows the
practically measured performance of the physical UAV for the practical runway landing,
using either the classical airspeed and altitude controllers or the MPC controller.

−400 −300 −200 −100 0
Longitudinal Position (m)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

A
lti

tu
de

(m
)

Referance Altitude
Classical Altitude Controller
MPC Controller

(a) Altitude Trajectories

−400 −300 −200 −100 0
Longitudinal Position (m)

15.5

16.0

16.5

17.0

17.5

18.0

18.5

A
ir

sp
ee

d
(m

/s
)

Referance Airspeed
Classical Airspeed Controller
MPC Controller

(b) Airspeed Responses

−2 −1 0 1 2
Lateral Position (m)

−2

−1

0

1

2

L
on

gi
tu

di
na

lP
os

iti
on

(m
)

Classical Airspeed and Altitude Controllers
MPC Controller

(c) Touchdown Locations

−20 −10 0 10 20
Lateral Position (m)

−400

−300

−200

−100

0

L
on

gi
tu

di
na

lP
os

iti
on

(m
)

−5.0 −2.5 0.0 2.5 5.0
−5.0

−2.5

0.0

2.5

5.0

Ground Track
Classical Controllers
MPC Controller

(d) Horizontal Position Trajectories

Figure 8.9: The fixed-wing UAV trajectories, airspeed and touchdown locations for a
practical runway landing, using either the classical altitude and airspeed controllers or
the MPC controller.

Both controllers were successfully able to track the glide slope and land the UAV on
the runway, within the designated 3 m x 3 m landing zone. Similar to the SITL simulation,
the UAV is commanded to slow down to 16 m/s for the runway landing. As shown in
Figure 8.9b, both the classical airspeed controller and the MPC can slow the aircraft
down. The MPC uses the altitude to help slow down the UAV, and this is represented by
a small oscillation at the beginning of the MPC’s altitude trajectory, shown in Figure 8.9a.
This oscillation does diminish before the UAV descends to capture the glide slope. Both
airspeed responses contain steady-state variations caused by high-frequency noise and
low-frequency disturbances, as previously mentioned during the analysis of the practical

Stellenbosch University https://scholar.sun.ac.za

8.3. Practical Flight Test Results 183

airspeed step responses (Section 8.3.1.1). The variations are acceptable as the airspeed does
not reach the stall speed. The variations also do not hinder the UAV from capturing the
glide slope. The UAV begins to descend on the glide slope at -250 m from the touchdown
point. However, unlike the SITL simulation, it is difficult to observe if there is an increase
in airspeed during the descent due to the steady state variations masking the possible
increase in airspeed. The classical airspeed controller has better control over the airspeed
due to the MPC airspeed response containing a steady-state error. The magnitude of the
steady-state error is hard to determine due to the steady-state variations. Nonetheless,
both controllers’ airspeed responses are acceptable for the runway landing.

Both the classical altitude controller and the MPC can accurately track the glide slope,
as shown by their altitude trajectories in Figure 8.9a. However, they do have slightly more
oscillation than the corresponding SITL simulation altitude trajectories due to imperfect
control surface deflections and wind. The oscillation does diminish for both altitude
trajectories as the UAV reaches the touchdown point. As shown in Figure 8.9c, both
controllers can land the UAV on the runway within the 1.5 m limits for the in-track and
cross-track errors. The classical airspeed and altitude controllers obtained an in-track error
of 19 cm and a cross-track error of 1 cm, while the MPC controller obtained an in-track
error of 17 cm and a cross-track error of 52 cm. These landing accuracies are slightly
worse than the SITL simulation, which was anticipated. The landing accuracies for both
controllers are similar, as the MPC only has a slightly better in-track error compared
to the classical controllers. The MPC’s cross-track error is significantly higher than the
classical controllers’ cross-track error, which is due to the difference in the environmental
conditions during the two landings, as the same cross-track controller is shared between
them. The classical controllers and MPC runway landings were performed on different
days with different wind conditions due to the MPC requiring readjustment. The UAV
experienced a cross-wind during the MPC runway landing, which caused the increased
cross-track error.

Figure 8.9d shows the lateral tracking performance of the cross-track controller during
both practical runway landings. As was discussed in the airfield waypoint navigation
section (Section 8.3.2), the UAV overshoots the corner waypoints due to the selected
look-ahead distance being too small. This behaviour was present during both practical
runway landings. The cross-track controller was therefore required to recover from the
overshoot and return the aircraft to the ground track. The effect of the recovery is shown at
the beginning of the horizontal trajectories in Figure 8.9d. The MPC horizontal trajectory
has a larger overshoot as the crosswind on landing was a tailwind before turning on the
final approach. The tailwind caused an increase in the UAV’s ground speed and this
provided less time to execute the turn resulting in a larger overshoot. The cross-track
controller can successfully recover from the overshoot and minimises the cross-track error
to a centimetre level before touchdown for both practical runway landings. In the MPC

Stellenbosch University https://scholar.sun.ac.za

8.3. Practical Flight Test Results 184

practical runway landing just before touchdown, the UAV performs the de-crab manoeuvre
to align the UAV with the runway. This increases the UAV’s cross-track error, hence the
larger cross-track error for the MPC controller touchdown point in Figure 8.9c. The UAV’s
performance when executing the de-crab manoeuvre is shown in Figure 8.10.

248 249 250 251 252
Time (s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

C
ra

b
A

ng
le

(r
ad

)

Referance Crab Angle
Crab Angle

(a) UAV Crab Angle

248 249 250 251 252
Time (s)

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
ro

ss
-T

ra
ck

Po
si

tio
n

(m
)

Referance Cross-Track Position
Cross-Track Position

(b) UAV Cross-Track Position

Figure 8.10: The fixed-wing UAV’s crab angle and cross-track position when executing
the de-crab manoeuvre during the MPC practical runway landing.

The plots are shown during the last few seconds that lead to the UAV touching down on
the runway. Figure 8.10a shows that just before the UAV performs the de-crab manoeuvre,
it has a crab angle of approximately 0.06 rad (3.44◦). At touchdown, the crab angle is
reduced to approximately 0.02 rad (1.15◦) by the crab angle controller. The crab angle
controller struggles to change the crab angle of the UAV, which is expected as the practical
crab angle step response in Section 8.3.1.6 exhibited similar behaviour. While the crab
angle controller could not completely align the UAV with the runway, it could minimise
the crab angle fairly quickly, which is what the de-crab manoeuvre requires. Figure 8.10b
shows that the cross-track error increases rapidly as the crab angle changes. This is due
to the aircraft no longer counteracting the crosswind. At touchdown, the cross-track error
is still within the 1.5 m limit, making it acceptable.

The control system performance for the practical runway landing using either the
classical controllers or the MPC is acceptable, as the landing accuracies are within the
1.5m in-track and cross-track limits.

Figure 8.11 shows the UAV just before touchdown on the runway for the classical
airspeed and altitude controllers. A 3 m by 3 m bounding box was created on the runway
to visually observe the UAV’s touchdown point on the runway. As shown in the image,
the UAV lands within the bounding box.

Stellenbosch University https://scholar.sun.ac.za

8.3. Practical Flight Test Results 185

Figure 8.11: Image showing the UAV landing on the runway within the bounding box
when using the classical airspeed and altitude controllers.

8.3.4 Moving Platform Landing

It has now been determined that the developed control systems are capable of accurately
landing the physical fixed-wing UAV on the runway. Therefore, the final moving platform
landing test can be performed. Unfortunately, it was discovered that the base GPS module
on the moving platform was not operating correctly as it produced false measurements.
The false measurements were observed in the log and the effect of this could be seen on the
physical UAV. During this flight test the UAV began to randomly descend even though the
autopilot thought that it was maintaining its altitude. This is very dangerous behaviour
which cannot be allowed.

After investigating the complication and contacting the manufacturer, it was identified
that the problem was caused by a driver issue between the Drotek GPS module and the
Raspberry Pi 4. The Raspberry Pi 4 was not officially supported by the GPS module and
therefore it was not guaranteed that these two components would work together. The GPS
module operated correctly on a Laptop which proved that the hardware was not faulty.
Alternative options to the Raspberry Pi 4 were considered, such as the NVIDIA Jetson
Nano, Mecer PC Stick, and Intel NUC. The Jetson Nano could not be used as it would
not run the ground station software (QGroundControl). The PC Stick could also not be
used as it would not provide enough power to run the telemetry module required for the
ground station. The Intel NUC had a steep power requirement with power electronics
that would not compactly fit on the RC car, therefore it could not be used. Due to no
alternatives being found, the RC car had to be abandoned.

It should be noted that the modified u-blox driver in the PX4 software did not influence
the Raspberry Pi’s fault, as the u-blox driver was located on the Pixhawk mounted on the
UAV. The modified u-blox driver worked correctly when using a Laptop with the GPS base
module, as the relative distance between the rover and base GPS modules was accurate at

Stellenbosch University https://scholar.sun.ac.za

8.3. Practical Flight Test Results 186

the centimetre level. As the physical RC car was no longer used, the effectiveness of the
modification could not be determined.

An alternative option for the moving platform is to use the 3 m by 3 m trailer that
was used by Möller [19] and planned to be used by Le Roux [14]. This trailer would be
towed by a full size vehicle on a long straight stretch of road. The GCS operator would
then be inside the tow vehicle with the ground station hardware connected to the laptop.
This method would have required a vast amount of preparation using a significant amount
of time that was not available, and therefore it could not be implemented.

It became evident that a physical moving platform could not be used for the moving
platform landing due to the project time constraint and the RC car not functioning
correctly. It was still desired to perform the moving platform landing test with the physical
UAV, therefore a substitution for the physical moving platform was conceptualised. The
substitution consisted of using a virtual car as the moving platform. The virtual car
would be simulated in PX4 on the physical UAV. Since the landing position predictor only
requires the moving platform’s position and velocity, this approach would work. While this
approach is not the most ideal solution, it still tests all the control systems used to perform
the moving platform landing, which was an objective of this project. The implementation
and results of the moving platform landing test using the physical UAV and virtual car is
presented in the next subsection.

8.3.5 Virtual Moving Platform Landing

The procedure followed for the virtual moving platform landing is the same as the standard
moving platform landing except for the physical RC car. The moving platform’s motion
is simplistic, as it just needs to move at a constant speed in a straight line. This can be
easily simulated using the moving platform model presented in Chapter 4 (Section 4.5).
The moving platform model is restated for convenience as,

pmp(t) =
∫ t

0
Vmp(τ) dτ + pmp(0) (8.1)

where pmp(t) and Vmp(t) are the instantaneous position and velocity of the virtual car at
time t in the runway frame, and pmp(0) is the initial position of the virtual car at time
t = 0 in the runway frame. The instantaneous velocity of the virtual car Vmp(t) at time t
in the runway frame is given as,

ẋmp = Vmp + ηvx (8.2)
ẏmp = ηvy (8.3)
żmp = 0 (8.4)

Stellenbosch University https://scholar.sun.ac.za

8.3. Practical Flight Test Results 187

where Vmp is the nominal speed of the virtual car, and ηvx and ηvy are in-track and
cross-track velocity disturbances, respectively. The nominal speed of the virtual car was
set to 3 m/s, to ensure that the fixed-wing UAV would not overshoot the runway when
performing the landing. The in-track and cross-track velocity disturbances were set to zero
for the virtual moving platform landing to maximise the chances of physical UAV landing
on the virtual moving platform. The virtual car’s position and velocity are given in the
inertial frame to the landing position predictor. The virtual car’s position and velocity are
converted from the runway frame to the inertial frame using the following transformation
matrix,

(Rr→i) =

cos Ψr − sin Ψr 0
sin Ψr + cos Ψr 0

0 0 1

 (8.5)

where Ψr is the runway heading.
The virtual platform, which is located above the moving platform, is still the touchdown

target for the UAV and is therefore still implemented with the virtual car. Figure 8.12
shows the virtual platform and car configuration for the virtual moving platform landing.

Virtual Platform

Virtual Car

Figure 8.12: Diagram showing the virtual car and the corresponding virtual platform
above the car.

The height hvp is kept to the same value of 3 m. Figure 8.13 shows the practically
measured performance of the fixed-wing UAV when performing the virtual moving platform
landing using either the classical airspeed and altitude controllers or the MPC controller.

The classical controllers and MPC moving platform landings were tested on different
days with dissimilar wind conditions, which caused the UAV’s ground speed to differ
between the two landings. The predicted touchdown points for the two landings therefore
varied, which caused their altitude references to be distinct from one another. This is the
reason why the two controller altitude trajectories in Figures 8.13a and 8.13b are plotted
separately from one another. Both controllers were successfully able to track the glide
slope and landed the physical fixed-wing UAV onto the 3 m x 3 m virtual platform.

Similar to the SITL simulation, the UAV is kept at the trim speed for the moving
platform landing, therefore there is no initial oscillation in the MPC’s altitude trajectory

Stellenbosch University https://scholar.sun.ac.za

8.3. Practical Flight Test Results 188

−400 −300 −200 −100 0
Longitudinal Position (m)

0

5

10

15

20

A
lti

tu
de

(m
)

Referance Altitude
Classical Altitude Controller
Virtual Platform
Moving Platform

(a) Classical Controller Altitude Trajectory

−400 −300 −200 −100 0 100
Longitudinal Position (m)

0

5

10

15

20

A
lti

tu
de

(m
)

Referance Altitude
MPC Controller
Virtual Platform
Moving Platform

(b) MPC Altitude Trajectory

−400 −300 −200 −100 0
Longitudinal Position (m)

17.4

17.6

17.8

18.0

18.2

18.4

18.6

18.8

19.0

A
ir

sp
ee

d
(m

/s
)

Referance Airspeed
Classical Airspeed Controller
MPC Controller

(c) Airspeed Responses

−2 −1 0 1 2
Lateral Position (m)

−2

−1

0

1

2

L
on

gi
tu

di
na

lP
os

iti
on

(m
)

Classical Airspeed and Altitude Controllers
MPC Controller

(d) Touchdown Locations

Figure 8.13: The fixed-wing UAV altitude trajectories, airspeed and touchdown locations
for a practical virtual moving platform landing, using either the classical altitude and
airspeed controllers or the MPC controller.

as shown in Figure 8.13b. Both the airspeed responses of the classical airspeed controller
and the MPC, shown in Figure 8.13c, contain steady-state variations, which were also
present during the practical runway landings. The variations are acceptable as they do
not cause the airspeed to go close to the stall speed and do not hinder the UAV from
capturing the glide slope. When the UAV descends on the glide slope, the airspeed of
the UAV is expected to increase. However, the steady-state variations mask the increase
in airspeed, which makes it difficult to observe the controllers’ responses to the sudden
increase in airspeed. Once again, the classical airspeed controller performs better than the
MPC as the MPC contains a steady-state error. Nonetheless, both controllers’ airspeed
responses are acceptable for a virtual moving platform landing.

Both the classical altitude controller and the MPC were able to track the glide slope
fairly well with minimal oscillation in their altitude trajectories, as shown in Figures 8.13a
and 8.13b. Figure 8.13d shows that the MPC controller has a better landing accuracy
with an in-track error of 21 cm and a cross-track error of 2 cm compared to the classical
airspeed and altitude controllers, which achieve an in-track error of 45 cm and a cross-track

Stellenbosch University https://scholar.sun.ac.za

8.3. Practical Flight Test Results 189

error of 5 cm. It should be noted that during the classical controller’s landing, the UAV
experienced a tail wind which, as shown in the SITL results, would cause the UAV to
overshoot the intended touchdown point. It is quite challenging to obtain landing results
for the controllers that are not influenced by external factors when testing in the real world.
Testing the two controller landings on the same day with multiple landing attempts would
paint a clearer picture of the controllers’ landing performance, which was the original plan.
This method, however, would require a lot of time and batteries, which were not available
when completing the flight tests.

Figure 8.14 shows the lateral tracking performance of the first cross-track controller
for the virtual moving platform landing when using either the classical controllers or the
MPC.

−20 −10 0 10 20
Lateral Position (m)

−400

−300

−200

−100

0

100

L
on

gi
tu

di
na

lP
os

iti
on

(m
)

−5.0 −2.5 0.0 2.5 5.0

65.0

67.5

70.0

72.5

Classical Controllers
Virtual Platform

(a) Classical Controller Horizontal Trajectory

−20 −10 0 10 20
Lateral Position (m)

−400

−300

−200

−100

0

100

L
on

gi
tu

di
na

lP
os

iti
on

(m
)

−5.0 −2.5 0.0 2.5 5.0

72.5

75.0

77.5

80.0

MPC Controller
Virtual Platform

(b) MPC Horizontal Trajectory

Figure 8.14: The aircraft horizontal position trajectories for a virtual moving platform
landing on the physical fixed-wing UAV, using either the classical altitude and airspeed
controllers or the MPC controller.

For both virtual moving platform landings in Figure 8.14, the UAV overshoots the
corner waypoints around the airfield, which was also the case for the practical runway
landing. The cross-track controller recovers from the overshoot and returns the UAV to
the ground track for both virtual moving platform landings. The cross-track controller
successfully minimises the cross-track error of both horizontal trajectories and brings the
error down to a centimetre level before touchdown. As a result, the cross-track error at
touchdown is within the 1.5 m limit. The cross-track controller’s performance is therefore
acceptable for the virtual moving platform landing.

The aim for the practical flight tests was to validate that the control system designed
could accurately land a physical UAV onto a moving platform. This aim has been achieved
by both sets of controllers, as their touchdown points are within the virtual platform’s 1.5
m limits.

Stellenbosch University https://scholar.sun.ac.za

8.4. Summary 190

8.4. Summary
This chapter first discussed the practical flight test logistics. This was followed by a
presentation of the practical flight test campaign. Finally, the results from the practical
flight tests were then analysed. The analysis of the practical flight test results first
considered the individual controller step responses. All the controllers performed adequately
on the physical fixed-wing UAV. The classical airspeed controller outperformed the MPC
in controlling the physical UAV’s airspeed. However, the MPC slightly outperformed
the classical altitude controller in controlling the physical UAV’s altitude. The control
system could navigate the physical UAV around the airfield but with overshoots at corner
waypoints. For the practical runway landing, both the classical airspeed and altitude
controllers and the MPC could land the physical UAV on the runway. The landing
performances for the classical controllers and the MPC were similar, but the MPC had
a larger cross-track error due to a crosswind experienced by the UAV on landing. The
physical moving platform landing could not be performed due to complications with the
RC car hardware. A virtual car was used as a substitute for the physical RC car so that the
virtual moving platform landing test could be still performed with the physical fixed-wing
UAV. The MPC obtained a better virtual moving platform landing accuracy than the
classical airspeed and altitude controllers. However, the physical UAV experienced a
tailwind during the classical controllers’ landing, reducing its landing accuracy. Based
on the results, it can be deduced that the MPC outperformed the classical controllers
for the virtual moving platform landing. However, the SITL simulation (Section 7.3.3)
showed that the wind has a significant effect on landing accuracy. The aim of the practical
flight tests was to verify that developed control systems could land a physical fixed-wing
UAV onto a moving platform. This aim has been achieved as the control systems landed
the physical fixed-wing UAV within the limits of the virtual platform. The next chapter
concludes the thesis.

Stellenbosch University https://scholar.sun.ac.za

Chapter 9

Conclusion and Recommendations

9.1. Conclusion
A control system was designed, implemented and practically tested to automatically land
a fixed-wing unmanned aerial vehicle onto a moving platform. A non-linear model was
created that captured all the relevant flight dynamics of the aircraft and this model was
then linearised around a trim point so that it could be used for control system development.
A flight control system (FCS) was designed to control the local states of the aircraft. The
FCS combines classical control with model predictive control (MPC). The MPC was added
to improve the UAV’s landing accuracy by having better glide slope tracking. The guidance
control system (GCS) was then developed to provide references to the FCS so that the
aircraft can follow a trajectory and land on the moving platform. The GCS consists of: the
guidance algorithm that provides the guidance variables to the FCS to allow the aircraft
to follow a trajectory; the waypoint scheduler which selects the current waypoints being
tracked; the landing position predictor which predicts the touchdown point between the
aircraft and moving platform; and the state machine that provides the references to the
FCS. The control systems’ performances were verified in non-linear simulations, first using
Simulink, then performing software-in-the-loop (SITL) simulation using Gazebo. The
SITL simulation consists of implementing the control systems into PX4 Autopilot software
and ROS. Once their performances were deemed acceptable, preparations were made to
perform the practical flight tests to verify the control systems’ real-world performance.
First, the new avionics stack was developed by procuring commercial hardware that was
proven to work reliably with fixed-wing UAVs. The software used for the avionics was
built on open-source software, as it was proven to work for many different applications.
The physical fixed-wing UAV was then assembled by placing new avionics stack into a
model RC plane airframe. The individual controllers in the FCS were then practically
tested and the practical runway landing scenario was executed. Once these practical
results were considered satisfactory, then the physical moving platform was assembled
by mounting electronics to an RC car chassis. Unfortunately, the GPS module on the
RC car did not function correctly due to a driver issue resulting in the physical moving
platform tests being abandoned. It was decided to substitute the physical RC car with a

191

Stellenbosch University https://scholar.sun.ac.za

9.1. Conclusion 192

virtual RC car that would be simulated on the physical UAV. This solution would still
allow the control systems on the physical UAV to be practically tested, which was the
main aim of the practical tests. The virtual moving platform landing scenario was then
successfully executed by the physical UAV. All the objectives listed in Section 1.2 were
successfully achieved, except for the creation of the physical moving platform to be used
for the practical moving platform landing tests. However, the virtual moving platform
substitute was an acceptable replacement as the virtual moving platform landing test still
verified that the physical aircraft could successfully land on a virtual moving platform
with the required landing accuracy.

All the controllers that were designed performed well in both linear and non-linear
simulations, as well as in practice on the physical UAV. Even though the MPC normally
replaced the classical airspeed and altitude controllers for landing, the latter were still
developed to execute the landing scenarios so that their results could serve as a baseline for
the MPC. In linear simulation, the MPC had faster response times in airspeed and altitude
compared to the classical controllers. For the non-linear SITL simulation, the MPC had
a superior altitude response. However, its airspeed response was slightly worse than the
classical airspeed controller due to the MPC’s airspeed response containing a steady-state
error. This was tolerable as accurate control of the airspeed is not as important as accurate
control of the altitude trajectory. Consequently, the MPC had better landing accuracy
than the classical controllers for the runway and moving platform landing scenarios in SITL
simulations. The MPC achieved a landing accuracy (in-track error) of 6 cm for the SITL
simulation runway landing, and a landing accuracy (in-track error) of 10 cm for the SITL
simulation moving platform landing. For the practical tests, the MPC once again achieved
better altitude control but worse airspeed control compared to the classical controllers.
For the practical runway landing, both the MPC and classical controllers achieved similar
landing accuracies. However, for the practical virtual moving platform landing, the MPC
achieved a better landing accuracy. The MPC achieved a landing accuracy (in-track error)
of 17 cm for the practical runway landing, and a landing accuracy (in-track error) of 21
cm for the virtual moving platform landing. When considering the linear and non-linear
simulation tests, and the practical flight tests, the MPC outperforms the classical airspeed
and altitude controllers, especially in the landing scenarios. It was therefore the correct
decision to add the MPC to the FCS. Nonetheless, both the MPC and classical controllers
were able to successfully land the fixed-wing UAV onto a platform that moved at 3 m/s
(or 10 km/h) within the 1.5 m limit from the intended touchdown point.

This project’s landing results can be compared to De Bruin [16] and Le Roux [14]
to gauge how well it performed. De Bruin only performed the runway landing scenario,
therefore only this scenario’s results can be compared. De Bruin achieved a landing
accuracy (in-track error) of 15 cm in his practical runway landing which is close to
this project’s practical runway landing accuracy (in-track error) of 17 cm. It should

Stellenbosch University https://scholar.sun.ac.za

9.2. Research Contributions 193

be noted that the wind conditions during the De Bruin’s and this project’s flight test
days were different therefore the landing accuracies would be affected. Le Roux did
perform the moving platform landing scenario but only in simulation. Le Roux’s moving
platform landing accuracy (in-track error) was 13 cm on average compared to this project’s
simulation moving platform landing accuracy (in-track error) of 10 cm. Le Roux’s system
did not adapt well to the physical UAV as his practical performance contained excessive
oscillation. This would have resulted in inadequate glide slope tracking performance
and hence unacceptable landing accuracy. In contrast, the practical performance of this
project’s control system was well adapted to the physical UAV, as it could perform the
practical virtual moving platform landing with a high accuracy. Therefore, it can be
deduced that this project’s control system is an improvement on Le Roux’s system.

Since all the research project objectives have been achieved and the moving platform
landing accuracy is within 1.5 m, it can be concluded that a control system was designed,
implemented, and physically tested to automatically land a fixed-wing UAV onto a moving
platform. Both the primary and secondary goals of the research project have been
accomplished.

9.2. Research Contributions
The following research contributions were made to the fixed-wing UAV group in the ESL:

• The FCS and GCS designed were able to land a fixed-wing UAV onto a moving
platform in simulation and on a virtual moving platform in practice. If in the future it
is desired to create a system to land the fixed-wing UAV on physical moving platform,
then this project’s system would serve as a good base for further development.

• The FCS and GCS are able control the aircraft in stable flight and navigate it around
the airfield. These control systems could serve as low-level component for projects
investigating high-level applications of fixed-wing UAVs, such as collision avoidance
and aerial surveying.

• This is the first project in the ESL to implement a fixed-wing UAV system in PX4
and Gazebo, therefore any future fixed-wing UAV projects that were to use these
software packages can use this project as a reference.

• A physical fixed-wing UAV was fully assembled using commercial off the shelf
hardware with full support. The UAV was proven to be reliable as it did not have
any major issues during the flight tests. This UAV can be used for practical tests in
future ESL projects.

Stellenbosch University https://scholar.sun.ac.za

9.3. Recommendations for Future Work 194

• A physical moving platform was assembled and even though its GPS did not function
correctly it is complete and mobile. If the GPS issue is fixed in the future, then the
RC car could once again be used as a moving platform.

• Obtaining the relative position between the base and rover RTK D-GPS modules is
not supported in PX4, therefore custom support was made to utilise this feature.
This support can used by future ESL projects that require the feature.

9.3. Recommendations for Future Work
Although the system designed was able to accomplish the goals of the research project,
there are aspects of the project that could be improved. These improvements will be
suggested for the different components in the project.
Control Systems:

• A larger thrust jig should be used that can measure the full capabilities of the motor.
The values in the thrust model should be updated to more accurately represent the
thrust.

• The Athena Vortex Lattice (AVL) method used by De Bruin to obtain the aero-
dynamic coefficients has limitations which require the coefficients to be manually
adjusted using practical data. It is recommended that the coefficients be obtained
using a different method, so that the aerodynamic characteristics of the aircraft are
more accurately represented.

• The MPC performance deteriorates in SITL simulation and on the practical vehicle,
compared to its designed performance. This is due to its model dependency, therefore
it is recommended to use a more complex form of MPC, such as non-linear or adaptive
MPC, to limit the performance deterioration.

• The early switching point in the waypoint scheduler should be dynamic depending
on the ground speed of the UAV and not a fixed value as it was in this project.
This will ensure that the UAV does not overshoot the ground track no matter the
airspeed.

• A controller should be created that can operate directly on the relative data from
the GPS, instead of the indirect method that was considered for this project. As the
physical moving platform was not used, the indirect method could not be tested.

• The moving platform model could be improved to be more representative of aircraft
carrier motions, such as pitching, rolling, and heaving. This will require more
complex methods to be developed that can allow the aircraft to track the moving
platform.

Stellenbosch University https://scholar.sun.ac.za

9.3. Recommendations for Future Work 195

Software Utilisation:

• Hardware in the loop (HITL) mode is supported in PX4, but not for a fixed-wing
model using Gazebo. Custom support should be made to add the functionality, as
the HITL simulation will provide results that are closer to the practical data.

• The practical mixer that was created to map the controller commands to the physical
actuators was derived using a simple method. A more sophisticated method should
be used to derive the mixer, so that the actuator deflections are more accurate on
the physical UAV.

• A custom visual interface should be made in QGroundControl (QGC) to quickly
change the sub-modes and interact with the aircraft. The current method uses the
MAVLink console in QGC which is time consuming and prone to errors.

Hardware Configuration:

• The avionics shelf is mounted with self-tapping screws in the airframe. The PLA
material used to form the shelf gets worn down every time the screw is tightened. It
is therefore suggested to either 3D print a new shelf or add threaded inserts into the
shelf.

• The vibrations produced by the motor cause some nuts in the avionics shelf to loosen.
Washers were added to reduce the effect of vibrations. However, this was insufficient.
A more elegant solution is required to isolate the shelf from the vibrations.

• A new airspeed sensor mount should be created to prevent the rotational motion
present in the current airspeed sensor mount.

• High-precision servos should be used to gain more angle resolution in the actuator
deflections.

• The Intel NUC should be considered for the mini computer on the RC car. However,
this would require a practical solution to power the NUC on the RC car.

• Additional sensors, such as an IMU, GPS and rotary encoder, could be added to
the moving platform. The sensor data could be fused using an EKF to obtain faster
updating and more accurate measurements of the platform’s state.

Stellenbosch University https://scholar.sun.ac.za

9.3. Recommendations for Future Work 196

Flight Tests Operation:

• The UAV should be landed on the runway at a slower speed (less than 16 m/s) to
prevent a prop strike on touchdown. The propeller tips may chip causing vibrations
that can influence sensor measurements.

• The practical moving platform flight tests could be performed using the 3 m x 3 m
trailer similar to the one that was used by Möller [19] to perform the automated
quadcopter landing onto a moving platform. This allows the GCS operator to sit
in the tow vehicle with a laptop that can connect to the base GPS module. This
would, however, require a significant amount of preparation as Möller’s flight tests
took place on a naval base.

Stellenbosch University https://scholar.sun.ac.za

Bibliography

[1] J. J. Buckley, Air Power in the Age of Total War. Bloomington: Indiana University
Press, 1999.

[2] S. Mills, The Dawn of the Drone: From the Back-Room Boys of World War One.
Casemate, 2019.

[3] General Atomics Aeronautical, “MQ-9B-Capability-Profile,” 2017, https://www.ga-
asi.com/images/products/aircraft systems/pdf/MQ-9B-Capability-Profile-II.pdf.

[4] Airbus, “Accidents by Flight Phase,” https://accidentstats.airbus.com/statistics/
accident-by-flight-phase, 2022, Accessed: July 2022.

[5] J. Hayward, “How Do Autoland Systems Work?” https://simpleflying.com/how-do-
autoland-systems-work/, August 2022, Accessed: July 2022.

[6] R. Pavithran, V. Lalith, C. Naveen, S. P. Sabari, M. A. Kumar, and V. Hariprasad,
“A prototype of Fixed Wing UAV for delivery of Medical Supplies,” IOP Conference
Series: Materials Science and Engineering, vol. 995, no. 1, p. 012015, nov 2020.
[Online]. Available: https://dx.doi.org/10.1088/1757-899X/995/1/012015

[7] H. Aetnaean, “What is the aircraft loss-rate from Nimitz-class aircraft carri-
ers?” https://aviation.stackexchange.com/questions/34175/what-is-the-aircraft-loss-
rate-from-nimitz-class-aircraft-carriers, December 2016, Accessed: July 2022.

[8] I. K. Peddle, “Autonomous Flight of a Model Aircraft,” Master’s thesis, Stellenbosch
University, 2005.

[9] I. K. Peddle, “Acceleration Based Manoeuvre Flight Control System for Unmanned
Aerial Vehicles,” Ph.D. dissertation, Stellenbosch University, 2008.

[10] J.-C. Roos, “Autonomous Take-Off and Landing of a Fixed Wing Unmanned Aerial
Vehicle,” Master’s thesis, Stellenbosch University, 2007.

[11] R. D. de Hart, “Advanced Take-off and Flight Control Algorithms for Fixed Wing
Unmanned Aerial Vehicles,” Master’s thesis, Stellenbosch University, 2010.

[12] F. N. Alberts, “Accurate Autonomous Landing of a Fixed-Wing Unmanned Aerial
Vehicle,” Master’s thesis, Stellenbosch University, 2012.

197

Stellenbosch University https://scholar.sun.ac.za

https://www.ga-asi.com/images/products/aircraft_systems/pdf/MQ-9B-Capability-Profile-II.pdf
https://www.ga-asi.com/images/products/aircraft_systems/pdf/MQ-9B-Capability-Profile-II.pdf
https://accidentstats.airbus.com/statistics/accident-by-flight-phase
https://accidentstats.airbus.com/statistics/accident-by-flight-phase
https://simpleflying.com/how-do-autoland-systems-work/
https://simpleflying.com/how-do-autoland-systems-work/
https://dx.doi.org/10.1088/1757-899X/995/1/012015
https://aviation.stackexchange.com/questions/34175/what-is-the-aircraft-loss-rate-from-nimitz-class-aircraft-carriers
https://aviation.stackexchange.com/questions/34175/what-is-the-aircraft-loss-rate-from-nimitz-class-aircraft-carriers

Bibliography 198

[13] S. J. A. Smit, “Autonomous Landing of a Fixed-Wing Unmanned Aerial Vehicle using
Differential GPS,” Master’s thesis, Stellenbosch University, 2013.

[14] C. T. Le Roux, “Autonomous Landing of a Fixed-Wing Unmanned Aerial Vehicle
onto a Moving Platform,” Master’s thesis, Stellenbosch University, 2016.

[15] G. L. Hugo, “Autonomous Landing of a Fixed-Wing Unmanned Aircraft With Partial
Wing and Stabiliser Losses,” Master’s thesis, Stellenbosch University, 2017.

[16] A. de Bruin, “Accurate Autonomous Landing of a Fixed-Wing Unmanned Aircraft
under Crosswind Conditions,” Master’s thesis, Stellenbosch University, 2017.

[17] A. M. de Jager, “The design and implementation of vision-based autonomous rotorcraft
landing,” Master’s thesis, Stellenbosch University, 2011.

[18] A. D. Swart, “Monocular Vision Assisted Autonomous Landing of a Helicopter on a
Moving Deck,” Master’s thesis, Stellenbosch University, 2013.

[19] P. D. S. Möller, “Automated Landing of a Quadrotor Unmanned Aerial Vehicle on a
Translating Platform,” Master’s thesis, Stellenbosch University, 2015.

[20] C. K. Fourie, “The Autonomous Landing of an Unmanned Helicopter on a Moving
Platform,” Master’s thesis, Stellenbosch University, 2015.

[21] P. G. Ioppo, “The Design, Modelling and Control of an Autonomous Tethered
Multirotor UAV,” Master’s thesis, Stellenbosch University, 2017.

[22] J. T. Mfiri, “Autonomous Landing of a Tethered Multi-Rotor Unmanned Aerial
Vehicle on a Stationary Platform,” Master’s thesis, Stellenbosch University, 2019.

[23] P.R. Grobler, “Automated Recharging and Vision-Based Improved Localisation for a
Quadrotor UAV,” Master’s thesis, Stellenbosch University, 2021.

[24] J. Moring, “Taking Off and Landing on an Aircraft Carrier,” https://illumin.usc.edu/
taking-off-and-landing-on-an-aircraft-carrier/, September 2005, Accessed: August
2022.

[25] S. Fritz, “How do naval aviators land on a carrier in dense fog when they cannot
see the Fresnel Lens Optical Landing System?” https://www.quora.com/How-do-
naval-aviators-land-on-a-carrier-in-dense-fog-when-they-cannot-see-the-Fresnel-
Lens-Optical-Landing-System, February 2019, Accessed: August 2022.

[26] T. Harris, “How Aircraft Carriers Work,” https://science.howstuffworks.com/aircraft-
carrier4.htm, August 2002, Accessed: August 2022.

Stellenbosch University https://scholar.sun.ac.za

https://illumin.usc.edu/taking-off-and-landing-on-an-aircraft-carrier/
https://illumin.usc.edu/taking-off-and-landing-on-an-aircraft-carrier/
https://www.quora.com/How-do-naval-aviators-land-on-a-carrier-in-dense-fog-when-they-cannot-see-the-Fresnel-Lens-Optical-Landing-System
https://www.quora.com/How-do-naval-aviators-land-on-a-carrier-in-dense-fog-when-they-cannot-see-the-Fresnel-Lens-Optical-Landing-System
https://www.quora.com/How-do-naval-aviators-land-on-a-carrier-in-dense-fog-when-they-cannot-see-the-Fresnel-Lens-Optical-Landing-System
https://science.howstuffworks.com/aircraft-carrier4.htm
https://science.howstuffworks.com/aircraft-carrier4.htm

Bibliography 199

[27] L. Chien, “Do airplanes land on moving aircraft carriers, or does the ship stop for
airplanes to land?” https://www.quora.com/Do-airplanes-land-on-moving-aircraft-
carriers-or-does-the-ship-stop-for-airplanes-to-land, March 2019, Accessed: August
2022.

[28] B. J. Visser, “Die presisie landing van ’n onbemande vliegtuig,” Master’s thesis,
Stellenbosch University, 2008.

[29] G. J. Goosen, “Automatic Upset Recovery for Small Fixed-Wing UAVs,” Master’s
thesis, Stellenbosch University, 2018.

[30] J. Jantawong and C. Deelertpaiboon, “Automatic Landing Control Based on GPS
for Fixed-Wing Aircraft,” in 2018 15th International Conference on Electrical En-
gineering/Electronics, Computer, Telecommunications and Information Technology
(ECTI-CON), 2018, pp. 313–316.

[31] A. Dharmawan, A. Ashari, A. M. Handayani, R. Meirani Utami, and I. M. Tresnayana,
“Auto Landing System on A Fixed Wing Unmanned Aerial Vehicle Using Linear
Quadratic Approach,” in 2019 5th International Conference on Science and Technology
(ICST), vol. 1, 2019, pp. 1–6.

[32] B. Brukarczyk, D. Nowak, P. Kot, T. Rogalski, and P. Rzucid lo, “Fixed Wing Aircraft
Automatic Landing with the Use of a Dedicated Ground Sign System,” Aerospace,
vol. 8, p. 167, 06 2021.

[33] M. Laiacker, K. Kondak, M. Schwarzbach, and T. Muskardin, “Vision Aided Au-
tomatic Landing System for Fixed Wing UAV,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2013, pp. 2971–2976.

[34] N. P. Santos, V. Lobo, and A. Bernardino, “Autoland project: Fixed-wing UAV
Landing on a Fast Patrol Boat using Computer Vision,” in OCEANS 2019 MTS/IEEE
SEATTLE, 2019, pp. 1–5.

[35] J. Wang, W. Lou, Y. Zhao, and W. Liu, “Fixed-wing UAV Recovery Reliably
by Moving Platforms based on Differential Games,” in 2019 IEEE International
Conference on Unmanned Systems (ICUS), 2019, pp. 694–698.

[36] Y. Feng, C. Zhang, S. Baek, S. Rawashdeh, and A. Mohammadi, “Autonomous
Landing of a UAV on a Moving Platform Using Model Predictive Control,” Drones,
vol. 2, no. 4, 2018. [Online]. Available: https://www.mdpi.com/2504-446X/2/4/34

[37] L. Persson, “Autonomous and Cooperative Landings Using Model Predictive Control,”
Licentiate Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2019.

Stellenbosch University https://scholar.sun.ac.za

https://www.quora.com/Do-airplanes-land-on-moving-aircraft-carriers-or-does-the-ship-stop-for-airplanes-to-land
https://www.quora.com/Do-airplanes-land-on-moving-aircraft-carriers-or-does-the-ship-stop-for-airplanes-to-land
https://www.mdpi.com/2504-446X/2/4/34

Bibliography 200

[38] C. A. Amadi, “Design and Implementation of Model Predictive Control on Pixhawk
Flight Controller,” Master’s thesis, Stellenbosch University, 2018.

[39] “Pixhawk 4,” https://docs.px4.io/main/en/flight controller/pixhawk4.html, August
2022, Accessed: August 2022.

[40] “Jetson Nano Developer Kit,” https://developer.nvidia.com/embedded/jetson-nano-
developer-kit, 2022, Accessed: August 2022.

[41] “Holybro Pixhawk 4 Power Module (PM07),” https://docs.px4.io/main/en/power
module/holybro pm07 pixhawk4 power module.html, May 2022, Accessed: August
2022.

[42] “DP0601 RTK GNSS (XL F9P),” https://store-drotek.com/891-1024-rtk-zed-f9p-
gnss.html#/106-case-with, 2021, Accessed: August 2022.

[43] “Digital Air Speed Sensor,” http://www.holybro.com/product/digital-air-speed-
sensor/, 2022, Accessed: August 2022.

[44] “Professional Grade Magnetometer RM3100,” https://store-drotek.com/893-
professional-grade-magnetometer-rm3100.html, 2021, Accessed: August 2022.

[45] “TBS CROSSFIRE NANO RX - FPV LONG RANGE DRONE RECEIVER,” https://
www.team-blacksheep.com/products/prod:crossfire nano rx, 2022, Accessed: August
2022.

[46] “Radio Telemetry Kit (433 / 915 Mhz - Soon to EOLA),” https://drotek.gitbook.
io/additional-devices/telemetry/radio-telemetry-kit-433-915-mhz, 2022, Accessed:
August 2022.

[47] J. Baker, “8 open source drone projects,” https://opensource.com/article/18/2/drone-
projects, February 2018, Accessed: August 2022.

[48] J. M. Louw, “Data-Driven System Identification and Model Predictive Control of
a Multirotor with an Unknown Suspended Payload,” Master’s thesis, Stellenbosch
University, 2022.

[49] A. Erasmus, “Stabilization of a Rotary Wing Unmanned Aerial Vehicle with an
Unknown Suspended Payload,” Master’s thesis, Stellenbosch University, 2020.

[50] “MAVLink Developer Guide,” https://mavlink.io/en/, Accessed: August 2022.

[51] vooon, “mavros,” http://wiki.ros.org/mavros, March 2018, Accessed: August 2022.

[52] STM32G4 Nucleo-32 board (MB1430), STMicroelectronics, 9 2019, rev. 2.

Stellenbosch University https://scholar.sun.ac.za

https://docs.px4.io/main/en/flight_controller/pixhawk4.html
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://docs.px4.io/main/en/power_module/holybro_pm07_pixhawk4_power_module.html
https://docs.px4.io/main/en/power_module/holybro_pm07_pixhawk4_power_module.html
https://store-drotek.com/891-1024-rtk-zed-f9p-gnss.html#/106-case-with
https://store-drotek.com/891-1024-rtk-zed-f9p-gnss.html#/106-case-with
http://www.holybro.com/product/digital-air-speed-sensor/
http://www.holybro.com/product/digital-air-speed-sensor/
https://store-drotek.com/893-professional-grade-magnetometer-rm3100.html
https://store-drotek.com/893-professional-grade-magnetometer-rm3100.html
https://www.team-blacksheep.com/products/prod:crossfire_nano_rx
https://www.team-blacksheep.com/products/prod:crossfire_nano_rx
https://drotek.gitbook.io/additional-devices/telemetry/radio-telemetry-kit-433-915-mhz
https://drotek.gitbook.io/additional-devices/telemetry/radio-telemetry-kit-433-915-mhz
https://opensource.com/article/18/2/drone-projects
https://opensource.com/article/18/2/drone-projects
https://mavlink.io/en/
http://wiki.ros.org/mavros

Bibliography 201

[53] “Raspberry Pi 4 Model B - 4GB,” https://www.robotics.org.za/PI4-4GB?search=
raspberry%20pi%204, Accessed: August 2022.

[54] D. Leone, “US Navy Aircraft Carriers are so fast they can outrun virtually every
surface ship and submarine in most sea states,” https://theaviationgeekclub.com/us-
navy-aircraft-carriers-are-so-fast-they-can-outrun-virtually-every-surface-ship-and-
submarine-in-most-sea-states/, January 2022, Accessed: August 2022.

[55] M. V. Cook, Flight Dynamics Principles. Elsevier Butterworth-Heinemann, 1997.

[56] B. Etkin and L. D. Reid, Dynamics of Flight, Stability and Control, 3rd ed. John
Wiley & Sons, 1996.

[57] J. H. Blakelock, Automatic Control of Aircraft and Missiles, 2nd ed. John Wiley &
Sons, 1991.

[58] FoxFX, “Cessna 152 Plane,” https://sketchfab.com/3d-models/cessna-152-plane-
5c6849f1458f45398e93e1a7887d688e, 2020, Accessed: August 2022.

[59] Flying Qualities of Piloted Aircraft MIL-F-8785C, U.S. Department of Defence,
November 1980.

[60] Flying Qualities of Piloted Aircraft MIL-HDBK-1797, U.S. Department of Defence,
December 1997.

[61] D. G. Hull, Fundamentals of Airplane Flight Mechanics, 1st ed. Springer, 2007.

[62] L. Wang, Model Predictive Control System Design and Implementation Using MAT-
LAB®, 1st ed. Springer, 2009.

[63] E. F. Camacho and C. Bordons, Model Predictive Control, 2nd ed. Springer, 2007.

[64] J. A. Rossiter, Model-Based Predictive Control: A Practical Approach, 1st ed. CRC
Press, 2004.

[65] L. Dai, Y. Xia, M. Fu, and M. S. Mahmoud, “Discrete-time model predictive control,”
in Advances in Discrete Time Systems, M. S. Mahmoud, Ed. Rijeka: IntechOpen,
2012, ch. 4. [Online]. Available: https://doi.org/10.5772/51122

[66] J. Mattingley, Y. Wang, and S. Boyd, “Receding Horizon Control: Automatic Gen-
eration of High-Speed Solvers,” IEEE Control Systems Magazine, p. 52–65, June
2011.

[67] Mathworks, “White paper: Three ways to speed up model predictive controllers,”
MathWorks, White Paper, 2021.

Stellenbosch University https://scholar.sun.ac.za

https://www.robotics.org.za/PI4-4GB?search=raspberry%20pi%204
https://www.robotics.org.za/PI4-4GB?search=raspberry%20pi%204
https://theaviationgeekclub.com/us-navy-aircraft-carriers-are-so-fast-they-can-outrun-virtually-every-surface-ship-and-submarine-in-most-sea-states/
https://theaviationgeekclub.com/us-navy-aircraft-carriers-are-so-fast-they-can-outrun-virtually-every-surface-ship-and-submarine-in-most-sea-states/
https://theaviationgeekclub.com/us-navy-aircraft-carriers-are-so-fast-they-can-outrun-virtually-every-surface-ship-and-submarine-in-most-sea-states/
https://sketchfab.com/3d-models/cessna-152-plane-5c6849f1458f45398e93e1a7887d688e
https://sketchfab.com/3d-models/cessna-152-plane-5c6849f1458f45398e93e1a7887d688e
https://doi.org/10.5772/51122

Bibliography 202

[68] S. Lee, “Ghostbusters: Afterlife - RTV - RC Car,” https://sketchfab.com/3d-models/
ghostbusters-afterlife-rtv-rc-car-632609ac302447c3ab197c45f88a334b, 2022, Accessed:
October 2022.

[69] “ROS - Robot Operating System,” https://www.ros.org/, Open Robotics, 2021,
Accessed: October 2022.

[70] “Using the ECL EKF,” https://docs.px4.io/main/en/advanced config/tuning the
ecl ekf.html, 2022, Accessed: October 2022.

[71] “Mixing and Actuators,” https://docs.px4.io/v1.12/en/concept/mixing.html, June
2021, Accessed: October 2022.

[72] “Google Maps,” https://www.google.com/maps/@-34.0471565,18.7407475,1101m/
data=!3m1!1e3, Google, Accessed: October 2022.

[73] Sanghyuk Park, “Avionics and Control System Development for Mid-Air Rendezvous
of Two Unmanned Aerial Vehicles,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2004.

[74] P. Carpenter, “RC Airplane World flight school - lesson #4 : weight and balance,”
https://www.rc-airplane-world.com/rc-airplane-weight-and-balance.html, 2022, Ac-
cessed: November 2022.

Stellenbosch University https://scholar.sun.ac.za

https://sketchfab.com/3d-models/ghostbusters-afterlife-rtv-rc-car-632609ac302447c3ab197c45f88a334b
https://sketchfab.com/3d-models/ghostbusters-afterlife-rtv-rc-car-632609ac302447c3ab197c45f88a334b
https://www.ros.org/
https://docs.px4.io/main/en/advanced_config/tuning_the_ecl_ekf.html
https://docs.px4.io/main/en/advanced_config/tuning_the_ecl_ekf.html
https://docs.px4.io/v1.12/en/concept/mixing.html
https://www.google.com/maps/@-34.0471565,18.7407475,1101m/data=!3m1!1e3
https://www.google.com/maps/@-34.0471565,18.7407475,1101m/data=!3m1!1e3
https://www.rc-airplane-world.com/rc-airplane-weight-and-balance.html

Appendix A

Aircraft Specifications

This appendix provides the specifications of the fixed-wing UAV used in this research
project. These specification were used to form the model of the UAV and to design the
control systems.

A.1. General Specifications
For the practical flight tests, the fixed-wing UAV will be flown at an airfield that is close
to sea level. The air density can therefore be approximated as,

ρ = 1.255 kg/m3 (A.1)

This value is the density of air density at sea level at 15◦C.
It is assumed that the earth’s gravitational field is uniform so that gravitational

acceleration can be constant. The gravitational acceleration is assumed to be,

g = 9.81 m/s2 (A.2)

To measure the mass of the fixed-wing UAV, the UAV was first fully assembled with all
the components it would use during the practical flight tests. The UAV was then placed
on an accurate digital scale and the mass value was recorded. The mass of the fixed-wing
UAV was found to be,

m = 5.885 kg (A.3)

The fixed-wing UAV’s moment of inertia were found using the double pendulum method.
This method was used by many previous ESL students to find the moment of inertia for
their fixed-wing UAVs. The method consists of having the aircraft suspended by two
strings of equal length that are parallel to the moment of inertia axis that is of interest.
The aircraft is then deviated by a small angle from its rest position, and then its period of
oscillation is timed [8]. The period of oscillation is related to the moment of inertia by the
following equation [73],

I =
mgd2

4π2l
T 2 (A.4)

203

Stellenbosch University https://scholar.sun.ac.za

A.2. Motor Thrust Specifications 204

where T is the period of oscillation, d is the distance between each string and the moment
of inertia axis of interest, and l is the length of each string. This equation is only used to
calculate the principle moments of inertia (Ixx, Iyy and Izz) of the fixed-wing UAV. The
products of inertia are set to zero as the aircraft is symmetrical about the XZ-plane and
the Ixz moment of inertia is small. The fixed-wing UAV’s moment of inertia is therefore,

I =

0.486602 0 0

0 0.47552 0
0 0 0.86461

 kg·m2 (A.5)

Figure A.1 shows the fixed-wing UAV suspended along its X-axis so that the Ixx moment
of inertia can be calculated.

Figure A.1: Image showing the fixed-wing UAV suspended along the X-axis to calculate
the Ixx moment of inertia.

A.2. Motor Thrust Specifications
The thrust produced by the motor propeller combination needs to be analysed to accurately
model the thrust. The RCbenchmark series 1580 thrust jig was used to measure the thrust
produced by the motor as it was available to be used in the laboratory. Figure A.2 shows
the thrust measurement experiment with the motor connected to the thrust jig.

A barrier was placed between the operator and the motor to ensure safety. Unfortu-
nately, this thrust jig could not measure the full thrust capabilities of the motor as the jig
hit its maximum vibration limit before maximum thrust could be produced. No larger
thrust jig was available during the test. Therefore, it was decided to reduce the 6S LiPo

Stellenbosch University https://scholar.sun.ac.za

A.2. Motor Thrust Specifications 205

Figure A.2: Image showing the setup of the thrust jig.

battery voltage from full charge (25.2 V) to 50% charge (23.1 V). At 50% charge, the
maximum thrust could be obtained. Figure A.3 shows the thrust force measured by the
thrust jig during the thrust experiment.

0 20 40 60 80
Time (s)

0

10

20

30

40

T
hr

us
t(

N
)

Figure A.3: Plot showing the thrust measured from the motor.

The motor started at no thrust, and then its speed was gradually increased until
it produced the maximum thrust. The motor was then gradually slowed down until it
stopped. The maximum thrust produced by the motor was 45.86 N. The thrust test
took place in a laboratory with no wind and a controlled temperature. In the real world,
these factors are not controlled, and other uncertainties exist. Therefore, it was decided
to conservatively limit the maximum thrust to 40 N. This would ensure that the motor
would always produce enough thrust commanded by the airspeed controllers preventing a
stall. The thrust produced by the motor depends on various factors, including the battery
voltage and atmospheric conditions that continuously change. Selecting a lower thrust

Stellenbosch University https://scholar.sun.ac.za

A.3. Airframe Aerodynamic Specifications 206

estimate would be safer for the aircraft. Therefore the thrust range of the motor is,

0N ≤ T ≤ 40N (A.6)

The time delay from when the thrust command was given to the generated thrust was
measured to be,

τe = 0.25 s (A.7)

This project uses the same motor and propeller combination as De Bruin [16]. De Bruin
obtained the same thrust range and time delay, which gives confidence that the values
obtained are correct.

A.3. Airframe Aerodynamic Specifications
The airframe for this project’s fixed-wing UAV is the same as the airframe used by De
Bruin [16]. This means that De Bruin’s aerodynamic values can be used for this project.

A.3.1 Airframe Geometry

Table A.1 shows the airframe geometry values for the fixed-wing UAV.

Table A.1: Airframe geometry values

Meaning Symbol Value
Wing Area S 0.6975
Wing Span b 1.918

Mean Chord c̄ 0.363
Wing Aspect Ratio A 5.28

Oswald Efficiency Factor e 0.858

A.3.2 Aerodynamic Coefficients

De Bruin [16] used the Athena Vortex Lattice (AVL) method to obtain the aerodynamic
coefficients for his airframe. As this project uses the same airframe as De Bruin, his
aerodynamic coefficients can be used for this project. De Bruin found that the AVL
method did not completely capture the aerodynamic characteristics of the airframe as
he had to manually adjust the parasitic drag coefficient (CD0) based on practical data.
For this research project, the CD0 coefficient was readjusted and it was also required
to manually adjust the CLα , Cmα and CmQ coefficients due to the practical controller
performances being too dissimilar from the simulation. Table A.2 shows the aerodynamic
coefficients used in this research project after the coefficients were manually adjusted.

Stellenbosch University https://scholar.sun.ac.za

A.3. Airframe Aerodynamic Specifications 207

Table A.2: Aerodynamic Coefficients of airframe

Coefficient Value Coefficient Value Coefficient Value
CL0 0.243200 Cy

δR
0.115794 CmQ -6.220962

CLα 3.040906 CD0 0.180000 Cm
δE

-0.922107
CLQ 7.046092 Cl

β
-0.056602 Cm

δF
0.111822

CL
δE

0.419064 Cl
P

-0.415489 Cn
β

0.038208
CL

δF
0.936323 Cl

R
0.127831 Cn

P
-0.031465

Cy
β

-0.211019 Cl
δA

-0.257631 Cn
R

-0.067882
Cy

P
0.108287 Cl

δR
0.000920 Cn

δA
0.007213

Cy
R

0.150403 Cm0 -0.026700 Cn
δR

-0.049972
Cy

δA
0.000780 Cmα -0.380993

A.3.3 Stability and Control Derivatives

The derivation of the stability and control derivatives for the longitudinal and lateral
dynamics used in this research project are shown in Tables A.3 and A.4. The derivations
are obtained from Alberts [12].

Table A.3: Stability and Control Derivatives for the longitudinal dynamics

Caused By Lift Forces Pitch Moments
Angle of attack (α) Lα = qTSCLα Mα = qTSc̄Cmα

Pitch rate (Q) LQ = qTS
c̄

2V T
CLQ MQ = qTSc̄

c̄
2V T

CmQ

Flap deflection (δF) Lδ
F

= qTSCL
δF

Mδ
F

= qTSc̄Cm
δF

Elevator deflection (δE) Lδ
E

= qTSCL
δE

Mδ
E

= qTSc̄Cm
δE

Table A.4: Stability and Control Derivatives for the lateral dynamics

Caused By Sideslip Forces Yaw Moments Roll Moments
Angle of sideslip (β) Yβ = qTSCy

β
Nβ = qTSbCn

β
Lβ = qTSbCl

β

Roll rate (P) YP = qTS
b

2V T
Cy

P
NP = qTSb

b
2V T

Cn
P

LP = qTSb
b

2V T
Cl
P

Yaw rate (R) YR = qTS
b

2V T
Cy

R
NR = qTSb

b
2V T

Cn
R

LR = qTSb
b

2V T
Cl
R

Rudder deflection (δR) YδR = qTSCy
δR

NδR = qTSbCn
δR

LδR = qTSbCl
δR

Aileron deflection (δA) YδA = qTSCy
δA

NδA = qTSbCn
δA

LδA = qTSbCl
δA

Stellenbosch University https://scholar.sun.ac.za

Appendix B

Additional Development and Derivations

This appendix presents the additional development of components that was performed
for this research project. Additional derivations for this thesis are also presented in this
appendix.

B.1. Software Safety Layers
The PX4 autopilot software already contains built-in software protections for the UAV.
However, as a custom module was created for the UAV with new control systems, it was
necessary to implement additional software safety layers to protect the fixed-wing UAV
from errors. Some of the safety layers developed are as follows:

• When the RC transmitter signal is lost, the UAV will switch to or remain in autopilot
mode. The UAV will then continuously circuit around the airfield until a command
is given.

• For the moving platform landing, the state machine will continuously check if the
moving platform is in a safe position for landing. Otherwise, the landing attempt is
aborted.

• When the aircraft is switched between autopilot to manual mode or vice versa, the
sub-modes are deactivated to prevent the UAV from behaving abnormally when the
autopilot is reengaged.

• When communication between the Pixhawk 4 and the Jetson Nano is lost, the MPC
becomes inactive and the classical airspeed and altitude controllers on the Pixhawk
4 become active. The classical airspeed and altitude controllers will take over from
the MPC.

• Only one autopilot sub-mode can be activated at a time. This is to prevent the UAV
from behaving abnormally due to a combination of commands.

• During the MPC ramp response testing, the altitude floor is set to 15 m. This is to
prevent the UAV from descending to a lower altitude than 15 m during the response,
protecting it from a possible crash.

208

Stellenbosch University https://scholar.sun.ac.za

B.2. RTK GPS Operation 209

Two additional features were developed for the autopilot, namely altitude capture and
waypoint capture. These features do not increase the safety of the autopilot but rather
increase its functionality. The altitude capture saves the altitude value of the UAV when
the autopilot is engaged. The UAV will then maintain this altitude until a command is
given. Waypoint capture finds the closest waypoint in the circuit when the autopilots are
engaged. The UAV will then join the circuit using this waypoint.

B.2. RTK GPS Operation
This section discuss the RTK GPS configuration and the custom Ublox driver that was
created to allow the GPS configuration to work in the PX4 software.

B.2.1 RTK GPS Configuration

The standard configuration for using real-time kinematic (RTK) GPS is to have a rover
module on the moving unit, e.g. a person, vehicle, or UAV, and a stationary base module
connected to the ground station. The base module will first survey its global position
using satellite data to a certain accuracy limit, which in QGC is set to 2 m. The base
module data is then sent via telemetry radio to the rover module which will use this data
combined with satellite data to obtain the rover’s position at centimeter level accuracy.
This high precision position accuracy is only with respect to the base module and therefore
it is called differential GPS (DGPS). In this research project, this configuration is used for
testing the individual controllers and for performing the runway landing scenario.

The standard RTK GPS configuration cannot be used for the moving platform landing
as the platform imitates an aircraft carrier in the ocean with no stationary component.
The RTK GPS should therefore be operated in a mode where the both base station
module and the rover unit module are allowed to move while still proving relative position
accuracy to within centimeter level accuracy. The Drotek RTK DGPS module was chosen
for this project because it contains a u-blox ZED-F9P chip that supports moving base
station mode. In this mode both the rover and base modules can move while the relative
position and heading between these modules are accurately determined. Unfortunately,
the PX4 Autopilot software stack does not fully support this mode, and only provides
the relative heading and not the relative position. Custom support was therefore added
by modifying the u-blox driver in the PX4 software to also provide the relative position.
This modification in PX4 autopilot is experimental as there is no documented attempt of
someone using this method online. The modification in the u-blox driver is discussed in
more detail in Appendix B.2.2.

Since the relative position between the UAV and the moving platform is required, the
DGPS base module must be located on the moving platform. To transmit the RTK packets

Stellenbosch University https://scholar.sun.ac.za

B.2. RTK GPS Operation 210

from the base module to the rover module on the UAV, two different configurations are
considered:

1. the DGPS base module and the ground control station hardware can both be
physically located on the moving platform,

2. the DGPS base module can be physically located on the moving platform, and can
transmit the RTK packets wirelessly to stationary ground station,

3. the DGPS base station module can be physically located on the moving platform
and can transmit the RTK packets wirelessly directly to the DGPS rover module on
the UAV, without using the ground control station as an intermediary.

The first option was chosen for this research project as it more closely represents a typical
real-world scenario, such as a fixed-wing UAV landing on an aircraft carrier in the ocean.
The second option would introduce an additional transmission delay which could impact
the relative position accuracy. The third option would require a dedicated communication
link between then moving platform and the UAV to be added.

B.2.2 Ublox RTK GPS PX4 Driver Modification

In the PX4 software, the ublox GPS driver is located in the “PX4 devices” submodule in
the “ubx.cpp” file. The relative position between the base and rover modules is calculated
by the rover module on the UAV. The relative position is then outputted by the rover
module via the “UBX ID NAV RELPOSNED” message. This message is read by the
“ubx.cpp” file in the PX4 software however only the relative heading between the two
modules is extracted. It was therefore required to manually extract the relative position
from the “UBX ID NAV RELPOSNED” message.

For the rover module to operate correctly for the chosen RTK configuration it is required
that the “GPS UBX MODE” PX4 parameter be set to the default value. However, in the
default mode, the “UBX ID NAV RELPOSNED” message is not enabled. Therefore, the
message was forced to be enabled in the default mode.

The relative position data needs to be sent to the guidance control system, which is
located in a custom PX4 module. This process is done with a uorb topic which allows data
to be sent between PX4 programs. Unfortunately, this could not be done directly from
the “ubx.cpp” file as the ublox driver is a class. Instead, the ublox class constructor was
modified to extract the relative position data from the driver. The “gps.cpp” file creates
an object of the ublox driver class, and therefore in this file, the relative position data is
sent via the uorb topic to the guidance control system.

Stellenbosch University https://scholar.sun.ac.za

B.3. Practical Mixer and Aircraft Weight Distribution 211

B.3. Practical Mixer and Aircraft Weight Distribution
As was mentioned in section 7.2.2, PX4 contains a mixer to convert the FCS control surface
deflection and thrust commands to actuator commands. By default, the commands from
the FCS does not cause the intended physical actuator movement. For the control surfaces,
this inaccuracy is due to the linkage geometry on the UAV while for the motor thrust, the
inaccuracy is due to change in battery voltage and atmospheric conditions. The mixer’s
purpose is to allow the physical actuator to move as commanded and this achieved by
adjusting the mixers values (explained in [71]). For the control surfaces, the mixer values
are obtained by performing practical experiments with a digital angle gauge. The process
for these experiments is to command certain angles then measure the physical deflection
with the angle gauge. Average mixer values are then derived from these measurements.
The physical defections are approximately at their commanded values which sufficient for
the controllers. Unfortunately, no mixer adjustment is created for the thrust command
as the change in battery voltage and atmospheric conditions are difficult to compensate
with a mixer. The classical airspeed controller has an integrator that compensates for the
thrust uncertainties and the MPC’s thrust model has been adjusted based on the practical
data. This is deemed sufficient to perform practical airspeed control.

For the UAV to be stable in flight its weight distribution needs to be correct. The
UAV’s centre of mass is required to be in front of its centre of lift and this can be check
using the standard weight distribution method for RC airplanes [74]. The centre of mass
was found to be too far back and therefore lead sinkers were placed close to the nose of
the UAV to correct the centre of mass location. The aircraft was setup to be slightly nose
heavy so that it would be stable in flight.

B.4. Trim Variables Equation Derivation
The trim variables equation is derived to obtain the trim values, which are used during
the linearisation process of the equations of motion. The trim values are the trim angle of
attack, trim elevator deflection and the trim thrust. The derivation continues from the
discussion in Section 4.6.1.

During level trim flight the pitch angle is small therefore it can be assumed that,

ΘT = αT (B.1)

The pitch rate at trim flight is Q = 0 and therefore the required trim variables to be
calculated are (α, δE, T)T . As the sum of the forces and moments are equal to zero, with

Stellenbosch University https://scholar.sun.ac.za

B.5. MPC controller 212

reference to Figure 4.13, the following body axes equations hold,

∑
FX = −qTSCDT cos(αT) + qTSCLT sin(αT) + TT −mg sin(ΘT) = 0 (B.2)∑
FZ = −qTSCLT cos(αT) − qTSCDT sin(αT) +mg cos(ΘT) = 0 (B.3)∑

MY = qTS c̄ CMT
= 0 (B.4)

These equation are simplified by assuming that the trim angle of attack(and pitch) is
small and the lift force is an order of magnitude greater then drag at trim. Applying these
assumptions to equations B.3 and B.4 results in,

− qTSCLT +mg = 0 (B.5)

qTS c̄ CMT
= 0 (B.6)

Substituting the coefficients of lift and pitching moment from equations 4.47 and 4.49
and then making trim angle of attack and trim elevator deflection the subject of the
formula gives, αT

δET

 =
CLα CL

δE

Cmα Cm
δE

−1

mg

qTS
− CL0

−Cm0

 (B.7)

Substituting this result into equation B.2 and making trim thrust the subject of the
formula gives,

TT = qTSCDT cos(αT) − qTSCLT sin(αT) +mg sin(αT) (B.8)

where,

CDT = CD0 +
C2
LT

πAe
(B.9)

B.5. MPC controller
This section presents the MPC thrust model constants derivation and the implementation
of the MPC in the ROS node.

B.5.1 MPC Thrust Model Constants

For the MPC’s practical airspeed step response test (before the KT and KTc constants
were added), it was noted that the MPC’s response had a steady-state error. This steady-
state error was not present in the non-linear simulation airspeed step response before the
practical flight tests were performed. The steady-state error was most likely due to the
uncertainties that exist in the thrust produced by the motor, and also that the MPC thrust

Stellenbosch University https://scholar.sun.ac.za

B.5. MPC controller 213

model was not completely accurate. Adding an integrator in parallel with the MPC thrust
command could have potentially solved this problem, as it did for the classical airspeed
controller. However, the integrator would have affected the MPC’s altitude performance,
which was not desired hence the integrator was not added. It was therefore decided to
add scaling terms to the thrust lag model to more accurately represent the actual thrust
produced by the motor. The thrust lag model was already introduced in the thesis however
it is restated for convenience,

Ṫ = −KT

τe
T + KTc

τe
Tc (B.10)

where KT is the thrust magnitude constant and KTc is the thrust command constant. The
thrust commanded by the MPC is around the trim thrust TT , therefore the thrust model
that is augmented into the MPC plant is represented as,

∆Ṫ = −KT

τe
∆T + KTc

τe
∆Tc (B.11)

where ∆Ṫ is the rate of the thrust magnitude from trim, ∆T is the thrust magnitude from
trim, and ∆Tc is the thrust commanded from trim. At steady-state, ideally the ∆Ṫ term
is zero, therefore,

KT

τe
∆T = KTc

τe
∆Tc (B.12)

For convenience the KT constant was set to 1, therefore the equation could be simplified
to,

KTc∆Tc = ∆T (B.13)

In both the non-linear simulation and the practical tests, the airspeed response was tested
for a ±2 m/s step from the trim airspeed (18 m/s). For the practical tests, the actual
average thrust that was commanded from trim by the MPC for these steps was,

∆Tc(actual) = 2.4487 + 1.5513
2 = 2 N (B.14)

The thrust command that the MPC expected would be based on the model it uses for
the predictions. In the simulation, no thrust uncertainties exist, therefore it can be
deduced that the thrust commanded by the MPC in the simulation would be the thrust it
expects in its predictions. For non-linear simulations, the expected average thrust that
was commanded from trim by the MPC for the ±2 m/s steps was,

∆Tc(expected) = 5.461 + 4.858
2 = 5.1595 N (B.15)

Stellenbosch University https://scholar.sun.ac.za

B.5. MPC controller 214

The KTc constant can then be calculated as,

KTc = ∆Tc(expected)
∆Tc(actual) = 2.57975 (B.16)

By considering Equation B.13, it can be seen that adding the thrust constants essentially
informs the MPC that its thrust command has a greater effect (2.57975 times) on the
thrust produced by the motor. Placing the thrust constants into the MPC’s plant allows
the MPC to know beforehand that it should be more gentle with its thrust command. The
MPC should then potentially perform better on the physical UAV for the practical flight
tests.

It should be noted that once the thrust constant values were obtained, the MPC model
was updated and then the MPC was retuned and retested. The results of the MPC that
are shown in the thesis are from the final iteration of the MPC after the thrust constants
were added.

B.5.2 MPC implementation Process

This subsection discusses the implementation of the MPC in the ROS node for the SITL
simulation and the practical flight tests. The implementation of the MPC in the ROS
node for the SITL simulation and the practical flight tests is mostly the same with a
few minor differences accounting for the physical vehicle. The code used for the MPC’s
implementation was based on Amadi’s code but was modified to work for a fixed-wing
UAV, being implemented in ROS and executing on a Jetson Nano. Figure B.1 shows a
simplified overview of the MPC implementation in the ROS node.

The MPC matrices that remain constant in the MPC algorithm are first defined.
These matrices are the discrete MPC model (Ad, Bd and C d), the constraint matrices
(CC , dd and dupast), the prediction matrices (P and H), and the optimiser matrix (E).
The derivation for the majority of these matrices is discussed in Section 5.3. The MPC
algorithm runs in a loop until the ROS node is stopped. The MPC algorithm loop executes
for every sample time of the MPC (Ts). The inputs to the MPC, which are the airspeed
and altitude references and states, are processed for the MPC algorithm. The references
are processed depending if the reference response is a step or ramp. For a step response,
the entire prediction horizon is set to the reference value. For a ramp response, a special
calculation is performed, which was discussed in Subsection 5.3.2.4. The states are assigned
to appropriate variables.

The MPC internal model states are then updated using the discrete MPC model
matrices, the previous states and the previous inputs. The previous states are augmented
with the airspeed and altitude states that are provided to the MPC. The dynamic MPC
matrices, which depend on the MPC states at execution, are then calculated. These
matrices are the optimiser matrix F and the constraint matrix d. Hildreth’s quadratic

Stellenbosch University https://scholar.sun.ac.za

B.5. MPC controller 215

Define Constant MPC
Matrices

ROS_OK

Process MPC
References and States

Update MPC Model
States

Calculate Dynamic
MPC Matrices

Run Hildreth's
Quadratic

Programming

Extract First MPC
Commands

Publish MPC
Commands

True

False

Figure B.1: Simplified overview of the MPC implementation in the ROS node.

programming procedure is then run to obtain the ideal control actions (MPC commands)
to apply to the aircraft over the entire control horizon. Only the first set of control actions
(MPC commands) are extracted and the remainder is discarded. The MPC commands are
the climb rate reference (ḣref) and the thrust command from trim (∆Tc). These commands
are then published and sent to MAVROS, which transmits the commands to the PX4
software via MAVLink.

Stellenbosch University https://scholar.sun.ac.za

Appendix C

Checklist Development

Checklists were created for the practical flight tests to ensure that all the required items
were completed. The checklists were based on De Bruin’s [16] checklists but were extensively
altered to account for the new avionics hardware and software. Three documents were
created for a flight test day, namely the flight plan, the packing checklist, the setting up
checklist and the flight session checklists. The flight plan informs the pilot and the flight
crew about the flight tests that are going to take place on the day. The pilot and flight
crew are also informed of their duties to be performed for the day. The packing checklist
contains the items that need to be done in the last few days leading to the flight test day,
to prepare the fixed-wing UAV and the other hardware for the flight test day. The setting
up checklist contains hardware components that need to be present and configured for the
flight sessions. The flight session checklists contain the items that need to be completed
before, during and after the flight session. The flight crew mainly consisted of two groups
which were the pilot crew and the ground station crew. The pilot crew consisted of the
pilot and his two assistants. The assistants performed the checks on the UAV and placed
the UAV on and off the runway. The ground control station crew just consisted of the
ground control station operator. The operator monitored the ground station software
(QGroundControl) to ensure that the UAV functioned correctly. The operator also changed
the autopilot sub-mode to test the different components of the control system or to execute
a landing scenario. As two distinct flight crew groups existed, it was required to create two
separate flight session checklists. The two checklists contained items that would ensure the
two groups would be performing the correct tasks at the designated time. The checklists
were improved as the flight tests were performed until the final iteration was derived. The
flight test day 6 flight plan, packing and setting up checklists, and single flight session
checklist for both crews are shown in the remainder of this appendix.

216

Stellenbosch University https://scholar.sun.ac.za

Flight Plan for Flight Test Day 6

Flight Test Details

Test Name MPC Runway + Moving Platform Retest. RC car test

Test Date 19 October 2022

Test Location Helderberg Radio Flyers Club

I, the undersigned, fully understand my role in the execution and safety of the above flight test:

Team Member Role Member Name Signature Date

Coordinator and GC Operator Mohamed Zahier Parker

Safety Pilot Michael Basson

Safety Officer and Cameraman Dr JAA Engelbrecht

Assistant Clayton Pheiffer

Assistant Merrick Hughes

Test Objectives
The objectives of the flight test are as follows:

• Retest the MPC for a moving platform land with the virtual car.

• Retest MPC for runway landing.

• Possibly test moving platform landing on actual car if it works correctly.

These objectives will be completed by having two-four flight sessions depending on if the physical

car works. The first flight session is used to complete objective one, the second flight session is used

for objective two and the third and fourth flight session is used for objective three.

Briefing

Pilot

• Complete check list before every flight.

• Aircraft has not been updated since last time. We should not be required to reprogram it like

last time as I left the same values which will force it to land.

• The RC car GPS sensor works now however its accuracy is not great. We will do the flight

test as see if it works accurately otherwise, we will stop with that test.

• Please fly further out compared to last time as you saw how far the circuit is. This is to allow

waypoint capture to be smooth and not let the autopilot travel to far to get on to the track.

• For the Land Mode (ALL Flight sessions) the aircraft must be armed at the location you

want it to land. I will mention it again before that session.

• The first session consists of testing the aircraft’s ability to do a moving platform landing

with a virtual car. When the autopilot is engaged, the aircraft align itself with the runway on

final. It will then descend on a glideslope and almost land at the end of the runway. It will

stop at a predetermined height (default is 3m) then abort and go around. The aircraft is then

programmed to go around and land on the runway as we did previously however I most likely

will tell you to take over and land yourself.

If we go with auto runway land then when the aircraft touches down you must

immediately switch to manual mode and bring it to a stop.

217

Stellenbosch University https://scholar.sun.ac.za

In autopilot mode you will not control of any control surface (ailerons, elevator, rudder and

flaps) and throttle while in manual mode you control everything. The tasks for this flight

session are as follows:

1. Place the aircraft and arm it on the location you want it to land(for auto land).

The aircraft saves the arming location as the landing point.

2. Take-off with the aircraft from the runway and get the aircraft airborne. Keep a low

altitude(20m) as the autopilot altitude is low. Start performing a circuit around the

airfield.

3. Once in stable flight and on a long straight switch to AUTOPILOT MODE by

toggling the mode switch (SE) to the centre position on the remote.

4. When moving platform land mode is selected by the GCS operator, he will inform

you and then observe the aircraft as it completes the circuit and lines up with the

runway on final.

5. Observe the aircraft as it catches the glideslope and comes into almost land on the

runway.

6. IT SHOULD NOT ACTAULLY LAND BUT SHOULD ABORT AT THE

SPECIFIED HIEGHT. 3M IS THE DEFAULT.

7. If the aircraft is not satisfied with its glideslope tracking, then it will abort and go

around to try the moving platform landing again. If it fails on a third attempt, then

switch to MANUAL MODE and land the aircraft on the runway. I will tell you if it

aborts.

8. If it is successful, I will tell you. Wait for me to tell you if you should go into manual

mode to land it yourself.

!!NB!!: The second session consists of testing the aircraft’s ability to do the Runway

Landing. When the autopilot is engaged, the aircraft align itself with the runway on final. It

will then descend on a glideslope and land at the spot it was armed (beginning) on the

runway. When the aircraft touches down you must immediately switch to manual mode

and bring it to a stop.

In autopilot mode you will not control of any control surface (ailerons, elevator, rudder and

flaps) and throttle while in manual mode you control everything. The tasks for this flight

session are as follows:

1. Place the aircraft and arm it on the location you want it to land. The aircraft

saves the arming location as the landing point.

2. Take-off with the aircraft from the runway and get the aircraft airborne. Keep a low

altitude(20m) as the autopilot altitude is low. Start performing a circuit around the

airfield.

3. Once in stable flight and on a long straight switch to AUTOPILOT MODE by

toggling the mode switch (SE) to the centre position on the remote.

4. When land mode is selected by the GCS operator, he will inform you and then

observe the aircraft as it completes the circuit and lines up with the runway on final.

5. Observe the aircraft as it catches the glideslope and comes into land on the runway.

6. ON TOUCHDOWN IMMEDIALITY GO INTO MANUAL MODE AND

BRING IT TO A STOP.

7. If the aircraft is not satisfied with its glideslope tracking, then it will abort and go

around to try the landing again. If it fails on a third attempt, then switch to MANUAL

MODE and land the aircraft on the runway.

218

Stellenbosch University https://scholar.sun.ac.za

• The third and fourth flight test procedure is the same as the first one with the only difference

being that the plane will track the car instead a specific point on the runway. The almost land

point is around the same location as flight session 1 at the end of the runway.

• MODES

1. For the 1st, 3rd and 4th sessions the plane must start in MANUAL MODE then switch

to AUTOPILOT(POSITION) MODE and finally return to MANUAL MODE

after the GCS operator says to land manually.

2. For the 2nd session the plane must start in MANUAL MODE then switch to

AUTOPILOT(POSITION) MODE and finally return to MANUAL MODE on

touch down.

• IF AT ANYTIME YOU FEEL THAT THE AIRCRAFT IS FLYING UNSAFLY THEN

YOU CAN RETURN IT TO THE RUNWAY AND LAND OR IF NOT POSSIBLE

THEN LAND WHERE IT IS SAFE.

Pilot Assistant

• Take note of the current task being performed and inform the pilot.

• You are responsible for communication (Walkie Talkie) with the Ground Control Station

(GCS) crew and should relay any information between the pilot and GCS crew. This means

that you will do the following:

o Receive instructions from the GCS Crew and relay them to the pilot.

o Communicate any situation reports from the pilot to the GCS Crew.

• You must carry the checklist and ensure it is completed by the pilot and yourself. Mark the

checklist every time an item is completed.

• Execute the Pilot Crew checklists when prompted by the GCS Operator.

Ground Control Station Operator

• Explain the remote controls and the check lists with all the required personnel.

• Monitor QGroundControl(QGC) during the flight and report any anomalies to the pilot.

• Make sure that the aircraft is flight ready at all times and in the “green” zone on QGC.

• Complete the check list before every flight.

• Ensure that the pilot knows what flight task is being performed.

• Give authorisation to start and end the corresponding flight task.

• Communicate with the pilot crew using the walkie talkie.

• For each Flight task confirm what mode the pilot is in during the relevant times.

• Check that the pilot is conforming to the flight task plan by monitoring QGC.

• Tell the pilot any important information they should know.

• During flight session 1 and 2 apply steps for the appropriate controller during the flight.

• During flight session 3 and 4 activate land mode.

• Inform the pilot when the flight step tests are complete.

• You must carry the checklist and ensure it is completed. Mark the checklist every time an

item is completed.

Safety officer

• Ensure that all personnel are operating in a safely manner. (Do not put hands near the

propeller!!).

• If there is an injury attend to them with the first aid kit and if need be, then call an ambulance.

• If there is a fire on the aircraft, then be ready to extinguish it with the fire extinguisher. If the

fire is out of control, then call the fire department.

219

Stellenbosch University https://scholar.sun.ac.za

Cameraman

• Responsible for taking the video during the flight task. Wait for the GCS operator’s

instruction when to start and stop recording.

• Make sure that the video files are saved for each flight test.

Safety briefing (All Personnel)

• Do not touch or place any obstruction near the propeller once the battery is installed into the

aircraft and the avionics are powered on.

• Whoever plugs in the battery note that there will a spark due to the ESC capacitors. This is

normal and do not be alarmed.

• Nobody should approach the aircraft when it is armed unless it has crashed (be careful

though).

• If anyone has an injury, then inform the safety officer so they can provide you with relief with

the first aid kit.

• If you spot the UAV on fire, then inform the safety officer and help them with extinguishing

it with the fire extinguisher.

• Look out for any other aircraft operating on the same airfield.

Debriefing

Pilot

• How did the aircraft fly?

• Was there any point you felt that it was unsafe?

• What improvements, if any, to the aircraft do you suggest I do to make it operate better?

• Thank you for your time.

Pilot Assistant

• Were all the checklist items completed?

• Was it difficult to follow the checklist and inform the pilot of things?

• Could you clearly communicate with the QCS crew?

• Was the work assigned to you overwhelming?

• Any suggestions for the next flight test?

• Thank you for your time.

GCS Operator

• Were all the checklist items completed?

• Was it difficult to follow the checklist and inform the GCS operator of things?

• Was the work assigned to you overwhelming?

• Any suggestions for the next flight test?

• Thank you for your time.

Safety Officer

• Where there any injuries to anyone due to the operation of the flight test?

• Was there a fire that occurred on the aircraft?

• Have any personnel acted in an unsafe manner?

220

Stellenbosch University https://scholar.sun.ac.za

• Any suggestions to improve safety for the next flight test?

• Thank you for your time.

Cameraman

• Could you easily take a video of the plane for the flight tasks?

• Were there any communication issues between you and the GCS operator?

• Are there any suggestions to improve the video recording of the plane in the future?

• Thank you for your time.

221

Stellenbosch University https://scholar.sun.ac.za

Packing Checklist

Day Before the Flight Test
Items to Charge

UAV Battery(6S Lipo)

Back-up UAV Batteries(6S Lipos)

RC Battery(2s Lion battery)

Laptop Battery

RC Car Batteries(2S Lipos)

RC Car Remote Battery

Olfi Camera(RC Car Camera) Battery

Walkie-Talkie Batteries

UPS Battery

Physical Check

Fuselage and wing

Control surfaces (elevator, rudder, ailerons, and flaps)

Wheels and propeller

Servos and main motor

Telemetry receiver mount

GPS mount

RC receiver mount

Airspeed Sensor Mount

Airframe weight distribution

RC Car

Systems Check

Load the latest PX4 code onto the Pixhawk

Boot up PX4 and connect it to QGC

Calibrate the sensors and other settings if necessary

Check that all sensors are ready in the QGC status menu

Connect the RC to the UAV and that the signal is strong by checking RSSI/LQ value

Calibrate the RC if necessary

Arm the UAV and test the control surface direction and motor in manual mode

Test that the behaviour is correct for autopilot(position) mode

Check the logging was done correctly and the results is expected

Check Pixhawk PX4 parameters in QGC

Car Works

Other

Check the predicted weather at the airfield

Contact the safety pilot

Attach Propeller onto plane

222

Stellenbosch University https://scholar.sun.ac.za

Morning of Flight Test
Pack

UAV airframe + wings

UAV Battery (6s Lipo)

UAV Backup Batteries (6s Lipo)

RC Car

RC Car Batteries

RC Car Remote (Tango)

RC Car Extras bag + RC Camera Extras Case + Extra Opamp

Lipo Charger

Telemetry transceiver + Antenna

Micro USB cable

Radio Controller (RC) (with accessories)

RC Battery

Crossfire RC transmitter

GPS Base Module

USB hub

Laptop

Laptop Charger

Laptop Mouse

Extension lead and multiplug (2 prong adapter as well)

UPS

Grey and Black Toolkits

Fire Extinguisher

First Aid Med kit

Wing bolts and bracket

Walkie Talkies(4 of them)

Go Pros/Camera

GPS Tripod

Table

Chairs

Pens and Papers

Clipboards

Multimeter

Double sided tape, Duct tape and insultation tape

Paper Roll / Tissues

Chalk

Telemetry antenna box for table

Voltage tester

Router + Lan cables (30m and others)

Wi-Fi Extender

UPS

Checklists

223

Stellenbosch University https://scholar.sun.ac.za

Setting Up Checklist

Items Present and Airfield

Fire extinguisher present

Medkit present

Aircraft present

RC Car + Accessories(Remote and extras) present

Grey and Black Toolkits present

RC Box present

Laptop bag and normal bag present

Extension lead present

Table, chairs and broom present

GPS Tripod present

Setup

Aircraft Assembled

Wing nuts tightened

Table assembled

Laptop booted up

GPS Tripod Setup on the right of laptop to not block telemetry

USB hub connected to laptop

GCS Telemetry sticked to table in correct orientation with antenna 30° angle from

vertical and away from runway

GCS Telemetry connected to USB hub

GCS GPS sticked to table

GCS GPS connected to Laptop

Mouse connected to USB hub

RC setup

Power connected with lead

Laptop charger connected

224

Stellenbosch University https://scholar.sun.ac.za

Pilot Crew Checklists

Before Flight Test

Location: Grass near GCS operator

Pilot Crew

Physical Check (0A)

The UAV 6S LIPO battery is DISCONNECTED

Fuselage and wing

Control surfaces (elevator, rudder, ailerons, and flaps)

Wheels and propeller

Servos and main motor

Telemetry receiver mount

GPS mount

RC receiver mount

Airspeed Sensor Mount

Runway condition + Cleanup(broom)

Aircraft (0B)

Check that the UAV 6S LIPO battery voltage is acceptable (more than 24v)

Open the aircraft’s battery cover

UAV 6S LIPO battery is placed into airframe and is secure.

Close the aircraft’s battery cover

Airframe weight distribution

All the RC switches are in their lowest positions and throttle stick is zeroed (lowest

position)

Turn on RC if it is not on already (If there are switch/stick warnings provide by the RC then

follow them to put the switches/stick in the correct positions)

Open the aircraft’s battery cover

Connect the UAV 6S LIPO battery

Check that the Jetson light is on (green)

Close the aircraft’s battery cover(Make Sure Plastic Screws are fastened all the way)

Pixhawk start up beeping sequence heard

Telemetry transceiver lights up

RC receiver lights up Green

Beeping sound from main motor

Confirm with GSC that the Telemetry, GPS, airspeed sensor and RC connections are

picked up

Complete Sensor Calibration Process by following GCS crew’s instructions

225

Stellenbosch University https://scholar.sun.ac.za

Flight Session 1 Checklists

Location: On grass near runway starting area

Pilot Crew

Arming checklist

Aircraft (1A)

Aircraft is on grass near runway starting position

UAV is placed in Manual mode by moving the MODE (SE) RC switch to the position

away from the pilot.

Set throttle to zero.

Ask GCS crew if UAV is in Manual mode and it is ready to place on runway

Place Aircraft at desired RUNWAY LANDING LOCATION on Runway

Arm Vehicle by moving the ARM(SF) RC switch to the position towards the pilot.

Test control surfaces direction (optional but should at least be done once on the day)

Ask GCS crew if UAV is Armed and ready for takeoff.

Start Flight Session /Takeoff

Disarming checklist

Aircraft (1B)

UAV on the edge of runway

Disarm the Vehicle by moving the ARM(SF) RC switch to the position away from the

pilot.

Set throttle to zero.

UAV is placed in Manual mode by moving the MODE(SE) RC switch to the position away

from the pilot.

Ask GCS crew if UAV is Disarmed, in manual mode and aircraft can be picked up

Move aircraft to the grass near runway starting position

Flight Session Complete

Open the aircraft’s battery cover

Measure the UAV 6S LIPO battery voltage with the voltage tester while it is still plugged in.

• If it is acceptable to continue using, then close the aircraft’s battery cover(Make

Sure Plastic Screws are fastened all the way) and begin next flight session

checklist (2).

• If it is too low, then begin the battery removal checklist (1C).

Relay UAV 6S LIPO Battery status to GCS crew

NB: If battery voltage is acceptable then move to flight session 2 checklist else

complete the battery removal (1C) and battery replacement (1D) checklists on the next

page.

Flight Session 1

226

Stellenbosch University https://scholar.sun.ac.za

UAV Battery Removal Checklist flight session 1

Location: On grass near runway starting area

Pilot Crew
Aircraft (1C)

The aircraft’s battery cover is open

Disconnect Battery

Check that all GPS, RC receiver and telemetry radio lights are off.

Power off the RC

Remove the UAV battery

Inform GCS crew of battery removal

UAV Battery Replacement Checklist flight session 1

Location: Grass near GCS operator

Pilot Crew
Aircraft (1D)

Check that the replacement 6S LIPO battery voltage is acceptable (more than 24v)

The aircraft’s battery cover is open

6S LIPO battery is placed into airframe and is secure.

Close the aircraft’s battery cover

Airframe weight distribution

All the RC switches are in their lowest(away) positions and throttle stick is zeroed

(lowest position)

Turn on RC if it is not on already (If there are switch/stick warnings provide by the RC then

follow them to put the switches/stick in the correct positions)

Open the aircraft’s battery cover

Connect the UAV 6S LIPO battery

Check that the Jetson light is on (green)

Close the aircraft’s battery cover(Make Sure Plastic Screws are fastened all the way)

Pixhawk start up beeping sequence heard

Telemetry transceiver lights up

RC receiver lights up Green

Beeping sound from main motor

Confirm with GSC that the Telemetry, GPS, airspeed sensor and RC connections are

picked up

227

Stellenbosch University https://scholar.sun.ac.za

QCS Operator Checklists

Before Flight Test

Ground Control Station Crew

Ground Control Station (0A)

Boot up laptop

Start QGroundControl

Listen for Pixhawk start-up beep

Wait for Telemetry signal to be received

Monitor all sensors and confirm with pilot crew that all sensors and RC are working

Check that RTK has enough satellites and is accurate enough

Guide pilot crew with sensor calibration process

Complete only once at the beginning of the day:

• Inform the pilot crew about the RC mode switch positions.

• Check power settings.

• Check safety settings.

Flight Session 1 Checklists

Ground Control Station Crew

FIRST SELECT DESIRED OPTIONS FOR CONTROLLER

• Virtual car: commander fw_cust_opt virtual_car enable

• Set virtual platform height if desired: commander fw_cust_opt vp_adj 7.0(altitude value)

• No mp land decrabing if desired(decrab by default).

• Check setting set status: commander fw_cust_status options

Arming checklist

GCS (1A)

Check that the UAV is in Manual mode and Flight Ready

Tell the pilot crew that the UAV is in Manual mode, and it is ready to place on runway

Tell Cameraman to Start Camera recording

Check that the Vehicle is armed

Tell the pilot crew that the Vehicle is armed and ready for takeoff.

Start Flight Session

Assist pilot crew during flight

Move to appropriate flight session checklist

Flight Session 1

228

Stellenbosch University https://scholar.sun.ac.za

Flight Session Tasks

Virtual Moving Platform MPC Land Mode
• Virtual car mode is ENABLED: commander fw_cust_status options

• On first circuit in downwind leg enable moving platform land mode:

o commander fw_cust_mode_set mpc_mvland enable

• Observe the aircraft in as it comes to do moving platform landing.

• Check status of state machine after land attempt

o commander fw_cust_status sm

• Three landing attempts only.

• If moving platform land succeeded, then tell Michael to land plane manually.

Disarming checklist

GCS (1B)

Check that the UAV is Disarmed

Check that the UAV is in Manual mode

Tell the pilot crew that the UAV is Disarmed, in manual mode and aircraft can be picked

up

Tell Cameraman to End Camera Recording

Ask the pilot crew of the UAV Battery status.

NB: If battery voltage is acceptable then move to flight session 2 checklist else

complete the battery removal (1C) and battery replacement (1D) checklists.

UAV Battery Removal Checklist flight session 1

Ground Control Station Crew
GCS (1C)

Confirm Battery has been removed

Disconnect QGroundControl from the UAV

UAV Battery Replacement Checklist flight session 1
Ground Control Station (1D)

Listen for Pixhawk start-up beep

Wait for Telemetry signal to be received

Monitor all sensors and confirm with pilot crew that all sensors and RC are working

Check that RTK has enough satellites and is accurate enough

Tell pilot crew that the Telemetry, GPS, airspeed sensor and RC connections are picked

up.

229

Stellenbosch University https://scholar.sun.ac.za

	Declaration
	Abstract
	Uittreksel
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background
	Project Goals and Objectives
	Project History
	Research Approach
	Scope and Limitations
	Thesis Outline

	Literature Review
	Aircraft Carrier Landing
	Previous Research
	Internal ESL Research Projects
	External Research
	Findings and Design Decisions

	System Overview
	Physical System for Moving Platform Landing
	Fixed-Wing UAV Setup
	Avionics Hardware
	Avionics Software

	Moving Platform
	Stationary Ground Station
	UAV Safety Pilot and Moving Platform Driver

	Simulation Software
	Landing Strategy
	Moving Platform Specifications
	Landing Scenarios
	Stationary Runway Landing
	Moving Platform Landing

	Landing Procedure
	Stationary Runway Landing Procedure
	Moving Platform Landing Procedure

	Summary

	Aircraft Dynamic Model
	Reference Frames
	Inertial Frame
	Body Frame and Aircraft Notation
	Wind Frame
	Guidance Frame and Runway Frame

	Equation of Motion Development
	Kinetics
	Kinematics

	Force and Moment Models
	Aerodynamic Model
	Thrust Model
	Gravitational Model

	Wind Model
	Discrete Gust Model
	Turbulence Model
	Wind Shear Model
	Ground Effect

	Moving Platform Model
	Linearisation of Aircraft Model
	Obtaining the Trim Variables
	Linearising Equations of Motion around Trim

	Natural Modes of Motion
	Longitudinal Modes of Motion
	Short Period Mode
	Phugoid Mode

	Lateral Modes of Motion
	Roll Mode
	Dutch Roll Mode
	Spiral Mode

	Summary

	Flight Control System Development
	Flight Control System Overview
	Classical Control Overview
	Model Predictive Control Overview

	Classical Controller Design
	Longitudinal Controllers Design
	Airspeed Controller
	Normal Specific Acceleration Direct Lift Control Controller
	Climb Rate Controller
	Altitude Controller

	Lateral Controllers Design
	Lateral Specific Acceleration(LSA) Controller
	Roll Rate Controller
	Roll Angle Controller
	First Cross-Track Controller
	Crab Angle Controller
	Transition Multiplexer
	Heading Controller
	Second Cross-Track Controller

	Model Predictive Control Design
	MPC Theory
	State Matrix Augmentation
	Output Predictions
	Constraints
	Cost Function
	Optimiser

	Fixed-Wing UAV MPC Design
	MPC Parameters
	MPC Plant Model
	Constraints
	Cost Function and Optimiser
	MPC Tuning
	MPC Limited integrator

	Summary

	Guidance Control System Development
	Guidance Algorithm
	Waypoint Scheduler
	Landing Position Predictor
	State Machine
	Aircraft Landing Stabilisation
	Stationary Runway Landing Limits
	Moving Platform Landing Limits

	Stationary Runway Landing State Machine
	Moving Platform Landing State Machine
	Additional Function of State Machine

	Summary

	Non-Linear Simulation
	Simulink Non-Linear Model
	Software in the Loop Implementation
	Robot Operating System
	PX4 Autopilot Software
	Gazebo Simulator

	Non-Linear Simulation Results
	Controller Step Responses
	Airspeed Controller
	Climb Rate Controller
	Altitude Controller
	Roll Angle Controller
	First Cross-Track Controller
	Crab Angle Controller

	Stationary Runway and Moving Platform Landing
	Waypoint Navigation
	Runway Landing
	Moving Platform Landing

	Runway and Moving Platform Landings with Wind
	Runway Landing
	Moving Platform Landing

	Summary

	Practical Tests Overview and Results
	Practical Flight Test Logistics
	Practical Flight Test Environment
	Practical Flight Test Procedure

	Flight Test Campaign
	Practical Flight Test Results
	Flight Controller Responses
	Airspeed Controller
	Climb Rate Controller
	Altitude Controller
	Roll Angle Controller
	First Cross-Track Controller
	Crab Angle Controller

	Airfield Waypoint Navigation
	Runway Landing
	Moving Platform Landing
	Virtual Moving Platform Landing

	Summary

	Conclusion and Recommendations
	Conclusion
	Research Contributions
	Recommendations for Future Work

	Bibliography
	Aircraft Specifications
	General Specifications
	Motor Thrust Specifications
	Airframe Aerodynamic Specifications
	Airframe Geometry
	Aerodynamic Coefficients
	Stability and Control Derivatives

	Additional Development and Derivations
	Software Safety Layers
	RTK GPS Operation
	RTK GPS Configuration
	Ublox RTK GPS PX4 Driver Modification

	Practical Mixer and Aircraft Weight Distribution
	Trim Variables Equation Derivation
	MPC controller
	MPC Thrust Model Constants
	MPC implementation Process

	Checklist Development
	Blank Page

