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Abstract

A characteristic trait of the age of digitalisation is the ubiquitous transition from paper-reliant
and manual-based business processes to completely digital, computer-assisted and automated
versions thereof. Although many industries have already commenced with this transition away
from paper documents, several real-world information chains are still intertwined with down-
stream paperbased systems. Some of these systems might require several decades to transition
into a fully digital version thereof. Consequently, in order to fully automate these processes, the
paper-based documents ought to be digitised.

Computerised approaches, e.g. optical character recognition engines, have achieved notable suc-
cess in accurately extracting and transforming pixel-based information into machine-encoded
information. The algorithmic performance of these engines is, however, reliant on the quality of
the captured document images. Although there are a plethora of image enhancement techniques
designed to increase image quality, the implementation of some of these techniques involves a
large degree of dependency on human cognition as each document image requires a unique set of
preprocessing steps. Accordingly, the application of data-driven approaches from the realm of
machine learning — more specifically, deep learning — certainly warrants consideration within
the presented context.

In this thesis, a generic framework for intelligent document image enhancement for improved
optical character recognition is proposed. The focus of the framework is placed on facilitating the
text extraction procedure of document images by automating the preprocessing stage by means
of intelligently identifying the best combination of document image enhancement techniques to
implement in respect of individual (document) images. Powerful approaches from the domain
of computer vision, together with the implementation of transfer learning, are considered.

An instantiation of this framework is, first, implemented on a benchmark document analysis
data set. Subsequently, the framework is applied to a real-world case study in the South African
banking sector in order to illustrate the practical workability of the framework. During both
instantiations, the models developed by means of the framework are shown to improve the optical
character recognition accuracy of the document images.
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Opsomming

’n Kenmerkende eienskap van die era van digitalisering is die alomteenwoordige oorgang van
papier-afhanklike en handgebaseerde besigheidsprosesse na volledig digitale, rekenaargesteunde
en outomatiese weergawes daarvan. Alhoewel baie nywerhede reeds begin het met hierdie
oorgang weg van papierdokumente, is verskeie werklike inligtingskettings steeds verweef met
stroomaf papiergebaseerde stelsels. Sommige van hierdie stelsels kan ’n paar dekades benodig
om oor te skakel na ’n volledig digitale weergawe daarvan. Gevolglik, om hierdie prosesse ten
volle te outomatiseer, behoort die papiergebaseerde dokumente gedigitaliseer te word.

Gerekenariseerde benaderings, e.g. optiese karakterherkenningsenjins, het noemenswaardige suk-
ses behaal om pixel-gebaseerde inligting akkuraat in masjien-gekodeerde inligting te onttrek.
Die werkverrigting van hierdie enjins is egter afhanklik van die kwaliteit van die vasgelêde doku-
mentbeelde. Alhoewel daar ’n oorvloed van beeldverbeteringstegnieke is wat ontwerp is om
beeldkwaliteit te verhoog, behels die implementering van sommige van hierdie tegnieke ’n groot
mate van afhanklikheid van menslike insig aangesien elke dokumentbeeld ’n unieke stel voorver-
werkingstappe vereis. Gevolglik regverdig die toepassing van data-gedrewe benaderings uit die
gebied van masjienleer — meer spesifiek, diep leer — beslis oorweging binne die voorgestelde
konteks.

In hierdie tesis word ’n generiese raamwerk vir intelligente dokumentbeeldverbetering vir ver-
beterde optiese karakterherkenning voorgestel. Die fokus van die raamwerk word geplaas op
die fasilitering van die teksonttrekkingsprosedure van dokumentbeelde deur die voorverwerk-
ingstadium te outomatiseer deur middel van intelligente identifisering van watter kombinasie
van dokumentbeeldverbeteringstegnieke om ten opsigte van individuele beelde te implementeer.
Kragtige benaderings vanuit die rigting van rekenaarvisie, tesame met die implementering van
oordragleer, word oorweeg.

’n Instansiasie van hierdie raamwerk word eerstens gëımplementeer op ’n maatstafdokumen-
tanalise datastel. Daarna word die raamwerk toegepas op ’n werklike gevallestudie in die Suid-
Afrikaanse banksektor om die praktiese werkbaarheid van die raamwerk te illustreer. Tydens
beide instansiasies word die modelle wat deur middel van die raamwerk ontwikkel is, gewys om
die optiese karakterherkenning akkuraatheid van die dokumentbeelde te verbeter.
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1.1 Background

In 1946, the English mathematician Alan Turing produced a detailed design of a code breaking
machine called The Bombe [110]. The machine was designed with the purpose to decipher
the Enigma code which was utilised by the German army during the Second World War. The
Bombe is considered as the first working electro-mechanical computer. The success achieved by
this machine led to the 1950 publication of Turing’s seminal article “Computing Machinery and
Intelligence” [286], an article that is well-known and highly regarded in the scientific community.
It is within this landmark article that the question “Can machines think?” was considered for
the first time. Turing devised a useful test to ascertain whether a machine exhibits intelligence.
Known as the Turing Test (depicted in Figure 1.1), it comprises a human interrogator (entity A)
communicating with two other unknown entities, namely: Another human being (entity B) and
a machine (entity C). The human interrogator can only communicate with entity B and entity
C with written natural language and can only receive answers from entity B and C in written
natural language. If the human interrogator is unable to reliably distinguish the human from
the machine when examining the written natural language received by these two entities, then
the machine is said to exhibit intelligence — albeit a narrow form thereof. Today, the Turing
Test is still considered as a relevant benchmark in order to identify whether a machine exhibits
intelligence [247].

Roughly six years after the publication of Turing’s article the term Artificial intelligence (AI)
was officially coined in 1956 by Marvin Minsky (a mathematician and computer scientist) and
John McCarthy (a computer scientist and cognitive scientist) [110]. McCarthy defined AI as
“the science and engineering of making intelligent machines, especially intelligent computer

1
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A

B C

Figure 1.1: The Turing Test depiction. A human interrogator (entity A) communicating with another
human (entity B) and a machine (entity C) via written natural language.

programs” [46]. Furthermore, he affirmed that AI is related to the notion of computers being
able to “understand human intelligence,” however, he placed emphasis on AI not only being
limited to “methods that are biologically observable.”

The following two decades (i.e. 1956–1973) was characterised by significant development and
success in the field of AI. In 1959, the General Problem Solver (GPS) program was devel-
oped [201]. GPS was able to solve simple mathematical problems by separating a problem into
smaller sub-problems and attempting to solve each sub-problem individually. Devised in 1966,
the well-known ELIZA computer program was the first natural language processing (NLP) tool
capable of simulating a conversation with a human [301]. A few decades later, in 1997, a chess
program developed by IBM, called Deep Blue, was able to beat the world chess champion [39].
In order to determine the next optimal step in respect of 20 moves ahead, Deep Blue could pro-
cess 200 million possible moves per second. Developed in 2015, the computer program AlphaGo
showcased the potential of AI when the program beat the world champion in the immensely
complicated board game Go [261]. Being significantly more complex than chess, it was long
believed that computers will never have the computational capacity to beat a human in Go (e.g.
at opening there are 361 possible moves in Go, whereas there are only 20 in chess). By utilising
modern and efficient algorithms, AlphaGo was able to achieve a superior level of performance
in order to beat its human opponent.

Consequently, it can be inferred that AI has been researched actively in the science and academic
fields since the 1950s. Today, AI is employed in various industries, namely: Logistics, healthcare,
retail, banking and finance, real-estate, and manufacturing, just to mention a few [277]. It is ap-
parent that AI plays a significant role in day-to-day activities and will continue to fundamentally
impact lives as the AI research field expands.

Machine learning is regarded as a subfield of AI and is employed towards simulating human
learning activities. In 1959, Arthur Samuel (a pioneer in the field of computer gaming and AI)
was the first academic to define machine learning as “the field of study that gives computers
the ability to learn without being explicitly programmed” [140]. One of the primary aims of
machine learning is to continually improve in an automated manner when exposed to new data
(i.e. experience). A basic model of the machine learning process is depicted in Figure 1.2,
where the system receives new information from the external environment. In order to learn,
the system processes the new external information and identifies patterns, thereby converting
the information into knowledge. The newly attained knowledge is stored within a repository.
The repository comprises many general principles and design rules which are used to guide
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Environment Learning Repository Execute

Figure 1.2: The basic model of machine learning [298].

the system towards performing an action. After a certain action is completed, the information
attained by performing the task is fed back into the learning stage of the system in order
to facilitate self-adjustment. Machine learning algorithms can learn patterns markedly faster
and adapt its strategy accordingly when compared with the capability of a human to learn
a pattern and execute an action. Consequently, manual labour can be replaced by machine
learning algorithms in order to execute certain tasks traditionally performed by humans. Image
recognition, NLP, online fraud detection, medical diagnosis, and spam detection are all examples
of industry problems which can be approached by means of machine learning algorithms [50, 56,
159, 260, 312].

Deep learning is a subfield of machine learning which attempts to learn high-level abstractions
embedded within data by imitating the human brain [106]. One of the foundational underpin-
nings of deep learning is artificial neural networks (ANNs). Modelled on the human brain, an
ANN comprises artificial neurons connected so as to form a network-like architecture — the aim
of which is to achieve expedient learning from experience. Compared with more traditional ma-
chine learning approaches, ANNs can model linear and/or non-linear relationships [316]. Prior
to the 1980s, the programmatic implementation of ANNs was too computationally expensive,
however, algorithmic breakthroughs and the marked decrease in computing hardware cost, to-
gether with the increased capabilities of computer chips (e.g. GPUs), facilitated the increase in
popularity of deep learning techniques over the past few decades [106]. The subfield of machine
learning comprises many statistical learning algorithms which are capable of extracting patterns
within data, however, when dealing with unstructured data1 ANNs tend to outperform most
other machine learning techniques [64].

During the last few decades, many state-of-the-art machine learning algorithms have been out-
performed by deep learning approaches [296]. Computer vision, which is a subfield of AI, is
one of the most prominent fields dominated by deep learning approaches. The relationships
between AI, machine learning, deep learning, and computer vision are depicted in Figure 1.3.
Computer vision aims to imitate the complexity underlying the mechanisms of human vision
in order to enable computers to analyse visual information algorithmically. In 1998, Yann Le-
Cun et al. [169] introduced their work on so-called convolutional neural networks (CNNs) in the
paper titled “Gradient-based learning applied to document recognition”. In this paper Yann
LeCun et al. reported on how a CNN is capable of creating complicated abstractions by progres-
sively aggregating basic features and synthesising them. In their paper, the capabilities of various
statistical algorithms towards identifying handwritten digit recognition tasks are reviewed and
it was concluded that the novel CNN algorithm outperforms all other techniques. The potential
and utility of CNNs were recognised, however, to effectively utilise a CNN, two requirements
ought to be met, they are (1) an abundance of data and (2) sufficient computational resources.

1Data that do not reside in a fixed field within a file (e.g. images, audio, or text).
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Artificial intelligence
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learningComputer vision Deep 

learning
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Figure 1.3: Venn diagram showing the relationship between artificial intelligence, machine learning,
deep learning, and computer vision.

In the 1990s, computers did not meet the computational requirements in order to facilitate the
effective application of CNNs.

Roughly two decades later, in 2012, a group of Canadian researchers developed AlexNet (named
after the main creator, Alex Krizhevsky), which is a CNN-based approach applied in the context
of image recognition [162]. AlexNet outperformed the current best-practice image recognition
algorithms with ease. The main factor that distinguished AlexNet from the other algorithms
is the application of CNNs. This was achieved by training the CNN on a markedly large data
set called ImageNet [62]. Released in 2009, ImageNet comprises millions of labelled images.
The continuous improvement of computer capabilities (in respect of hardware especially) also
contributed to the success of AlexNet. The results obtained by AlexNet showcased that the im-
provement of modern technology made it practically feasible to utilise deep learning algorithms
in the domain of computer vision. Today, CNNs form a pivotal part of most computer vision ap-
plications. Examples of these computer vision applications, include: Enabling autonomous cars
to track objects in their surroundings, mapping high vulnerable areas during natural disasters,
informing farmers of crop health and quality, and detecting fatal illnesses of medical patients [31,
204, 242, 284].

A characteristic trait of the proliferating age of digitalisation is the phenomenon that compa-
nies within every industry are rapidly transitioning and digitising their business processes from
manual and paper-reliant to fully digital and computer-automated versions thereof. By being
less dependent on manual labour, companies are attempting to utilise the benefits that accom-
pany this digitised paradigm. There are various practical and financial incentives for companies
to increase the computer automation of manual processes, namely: Improved human resource
utilisation, improved information security, reduced potential human errors, simplified informa-
tion transfer, and savings with respect to valuable company time (and money). Although the
financial service provider (FSP) industry is certainly not exempt from this transition, they are,
arguably, not transitioning at the same rate as other industries. In-branch loan applications,
in-branch account applications, cheques, and monthly bank statements, to name but a few, are
examples of processes that hinder and inhibit most FSPs from adopting a digital-only process
workflow. These examples are especially prevalent for FSPs located in developing countries as
the deficiency and access to new technology impedes innovation.

Although there remain processes that are traditionally executed manually, the developments in
computer vision, including optical character recognition (OCR) technology, represent a possible
solution for the FSP industry towards comprehensively digitising their processes. OCR tech-
nology, commonly implemented by employing CNNs, is defined as the electronic conversion of
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images of typed, handwritten or printed text into machine-encoded text [131]. Before employ-
ing OCR on an image containing textual information, it is imperative to implement appropriate
image enhancement techniques as the performance of an OCR engine is largely dependent on
the quality of the image [163]. There are various well-researched image enhancement techniques
designed and developed for reducing the imperfections of degraded images (i.e. suboptimal for
OCR purposes). Although the implementation of these techniques are aimed at improving the
quality of the image, it is important to note that an incorrect transformation might be detri-
mental to the image quality [63]. Some of these techniques include: Binarisation, de-skewing,
sharpening, noise removal, cropping, orientation correction, and line removal. When there is
a need to digitalise fixed structure documents (i.e. documents where specific information is lo-
cated on the exact same place on every document), OCR is often employed in combination with
robotic process automation (RPA). Traditionally, after an OCR method is applied to a structured
document image to recognise the characters in an image, the RPA software employs rule-based
methods to extract relevant information from the new structured machine-encoded data [291].
These rules may include the coordinates of text boxes on a page, and what type of text should
be located in each text box (e.g. identification numbers may only consist of number characters).

There are several examples in the current FSP industry in which OCR and RPA technology are
employed to automate and digitise some process. One of the most popular applications of OCR
and RPA technology is for customers to capture credit card information using a smartphone
camera. Online credit card purchases constitute a significant part of the total revenue for
companies selling their products and services by means of online platforms. Requiring customers
to manually enter credit card information on an online software program when registering their
account which can be a tedious and error-prone activity. The integration of OCR technology
enables customers to utilise their smartphone camera to capture their credit card information
without having to manually type it in.

In 2012, Uber implemented this principle in their smartphone application [213]. With the
use of OCR and RPA technology, customers are no longer required to manually enter their
credit card information. When signing up, customers can select the option to scan their credit
card instead of typing the information in. The software program activates the smartphone
camera and displays the view of the camera together with guidelines aiding the customer towards
positioning their credit card correctly. The camera then captures a photo of the credit card
and the program employs appropriate image enhancement techniques together with the OCR
technology in order to recognise the characters on the credit card. After the characters are
identified, the program can easily employ RPA and extract the required credit card information
as the format of most credit cards are similar (i.e. the information is located roughly on the same
area on the credit card). Finally, the captured information is then displayed to the customer
to ensure that the process has been executed correctly. By employing the appropriate image
enhancement techniques, together with OCR and RPA technology, the time spent signing up
has been reduced and the customer experiences a more user-friendly process.

Alfa Bank is one of the largest private commercial banks in Russia. In 2020, Alfa bank partnered
with an OCR technology specialist company, called Smart Engines [266]. By integrating OCR
and RPA technology into the mortgage application process, employees could simply present the
passport document of an applicant to a camera in order to capture and extract the relevant
information. The format of passport documents is fixed, therefore the information can be
easily exported into the relevant fields of the digital application form automatically. Before
the OCR and RPA system’s implementation, employees were required to manually enter the
applicant’s passport information. This frequently resulted in human errors and subsequent loss
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in productivity. Consequently, the introduction of OCR and RPA technology yielded significant
value for the Russian FSP.

Considering the two aforementioned examples, the combination of OCR and RPA systems has
proved to be a noteworthy method for digitalisation when converting fixed structured document
images into usable information. In both examples, traditionally manual and laborious tasks are
successfully automated by the digitalisation of fixed structured document images. Due to the
fixed layout templates used to structure the textual information on these type of documents it
is considered to be far more elementary to locate the sought after textual strings and identify
which document image enhancement techniques to implement for the document image data
set at hand, since the enhancement procedure can be designed specifically for the data set
circumstances and structured document type. This is, however, not always sufficient when it
is required to digitise a specific domain of image data that comprise various unique document
formats (e.g. various company payslips, different journal articles, and distinct business memos)
and that differs significantly in capturing quality or composition (e.g. watermarks, noise, folds,
smudges, shadows, light ink, and over-exposure).

Consider the two visualised death certificate document images in Figure 1.4. Although both
document images stems from the same document domain, they differ significantly in layout and
composition. The death certificate document image shown in Figure 1.4(a) is considered to be
relatively clear with notable open space between different entities on the document while being
printed on a yellow-shaded paper. Printed lines are present, but does not protrude too close
to printed textual information. Conversely, the death certificate document image visualised in
Figure 1.4(b) is considered to be markedly complex with several watermarks, small and closely
printed textual information, and an abundance of printed lines located notably close to the
printed textual information. Consequently, the document image enhancement techniques best
suited for improving the quality of the first death certificate document image (Figure 1.4(a)) is
expected to differ significantly from the document image enhancement techniques best suited for
improving the quality of the second death certificate document image (Figure 1.4(b)). Moreover,
although both document images contain the same pertinent textual information required on a
typical death certificate, corresponding textual strings are far from being located at similar
coordinates on the two individual document images. Therefore, the rule-based approach of
RPA cannot be considered as a reliable method when non-standardised document templates are
present.

Considering the additional complexities alluded to during the aforementioned death certificate
example, a need is identified for the design and development of a computerised solution when it
is desired to automate the extraction of printed textual information from a data set comprising
non-standardised and uniquely degraded document images. A short overview of a contextual
case study now follows which showcases the aforementioned need practically.

The South African FSP industry may be regarded as an oligopoly2 market structure. Natu-
rally, it is notably difficult for a new bank to enter the market. In 2001, Capitec entered the
market and within two decades became the largest South African retail bank in terms of ac-
tive clients [37]. Capitec’s differentiating factor is represented by their aim of catering to the
lower income groups of South Africa. The small banking costs of Capitec have also attracted
higher income individuals, who primarily bank at other FSPs, towards opening secondary3 ac-
counts at Capitec in order to reap some of the tangible benefits. Another reason for the success

2Market shared with a small number of entities with limited competition.
3For the purpose of this thesis, the so-called primary bank of a client refers to the bank into which the main

income (or salary) of the client is paid.
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(a) (b)

Figure 1.4: A visualisation of the two different death certificate document images [5].

achieved by Capitec stems from their unique unsecured loans4 offering (which can amount up to
R 250 000) [42]. In order to approve an unsecured loan, the bank needs to determine the cred-
itworthiness of the loan applicant. Currently, Capitec requires an applicant to visit a branch
and provide a consultant with three documents for this process, namely: A South African ID
(of the applicant), the applicant’s latest payslip, and the most recent bank statements of the
applicant which is used to determine if the applicant has a stable income. The consultant then
makes copies of these documents and manually enters (i.e. annotates) the required information
(e.g. identification number, client name, client surname, occupation, employer name, age, net
pay, and employer address) into a computer system.

Capitec identified this manual and timely process as a waste of valuable resources and desires
to eliminate the need to manually enter the applicant’s information into their system. In order
to automate this process, OCR is considered as a method for converting the pixel-based infor-
mation into machine-encoded information, however, due to the non-standard variety of payslip
templates and payslip degradations, some scanned payslip document images might require the
implementation of unique combinations of document enhancement techniques (i.e. a unique
enhancement procedure). This multi-faceted computer vision problem faced by Capitec forms
the basis of work carried out in this thesis. Although Capitec stands to benefit greatly from a
solution to the main problem addressed in this thesis, the general methodology adopted may be
applicable to many incarnations of this problem in different industries and domains.

4Loans that do not require collateral.
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1.2 Problem statement

There is an abundance of research dedicated to the development of computerised approaches for
the purpose of enhancing, digitising, and processing document image data. Modern OCR engines
have achieved notable success in extracting pixel-based information from document images and
transforming it into machine-encoded information. The performance of these OCR engines is,
however, dependent on the quality of the captured document images.

Although there are a plethora of image enhancement techniques designed to increase docu-
ment image quality, the implementation of some of these techniques may either be beneficial
or detrimental to digitalisation of the captured document image — depending on the possible
degradations and composition. Consequently, the selection of which document enhancement
technique(s) to implement on which document image involves a large degree of dependency on
human rationale as each document image requires the implementation of a unique set of doc-
ument enhancement techniques. Accordingly, the application of data-driven approaches from
the realm of machine learning — more specifically, deep learning — certainly warrants consid-
eration within the presented context in order to automate the selection and implementation of
the appropriate document enhancement techniques. The underlying intuition is that a machine
learning approach can be adopted towards learning the relationship between document images
(more specifically, their visual features) and the applicability of enhancement techniques.

The principal aim in this thesis is to design, develop and demonstrate the practical workability
of a generic framework that introduces machine intelligence to the digitalisation of document
images in order to address the aforementioned shortcomings. The employment of the generic
framework ought to be executed in pursuit of improving the potential digitalisation accuracy
of a document image data set. The framework should facilitate (1) the process of preparing
previously annotated data and its corresponding document images for analysis, (2) the engi-
neering of various enhancement procedures appropriate to the considered document image data,
(3) the utilisation of machine intelligence in assigning and implementing the best enhancement
procedure for each unique document image, (4) as well as the analysis and synthesis of the
obtained results. Powerful approaches from the domain of computer vision together with the
implementation of transfer learning are considered.

1.3 Research scope

In order to narrow down the scope of the problem considered in this thesis, the following delim-
itations are adopted:

OCR engines. Multiple OCR engines have been developed throughout the past few decades,
with some freely available to the public while others requiring the purchase of a software
licence. Only two OCR engines are considered within this thesis, both of which are open-
source software, namely the Tesseract OCR engine [92] and the EasyOCR engine [141].

Document image enhancement techniques. There are a plethora of problem specific doc-
ument enhancement techniques, some of which comprise multiple hyperparameters. The
document image enhancement techniques considered within this thesis are limited to the
following: Hough transformer-based approaches [135] for skew correction, morphological
operators [120] for line removal, histogram equalisation [77] and local adaptive threshold-
ing [281] for binarisation, median filtering [126] and Gaussian filtering [275] for noise
removal, and high-pass filtering [149] for image sharpening.
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Input variables. The training, testing, and validation performed in this thesis are limited to
two components of data, namely: The open-source annotation and document image data
which are regularly used to evaluate and compare the performance of popular OCR models,
and annotation and document images provided by the industry partner of this thesis.

Learning paradigm. Supervised learning in combination with transfer learning are the machine
learning paradigms that forms the basis of the discourse considered within the modelling
phase of this thesis.

Deep learning techniques. CNNs are selected to form the basis of discourse in this thesis.
The CNN algorithm is a reputable architecture employed in the field of computer vision
as it has the capability to convert extracted image features into lower dimensions while
retaining its characteristics.

1.4 Thesis objectives

The following five objectives are pursued in this thesis:

I To conduct a review of the pertinent literature related to:

(a) Feedforward neural networks (FNNs), recurrent neural networks (RNNs), long short-
term neural networks (LSTMs), CNNs, and the application of transfer learning in
the field of computer vision,

(b) the working of a typical OCR system, different OCR evaluation metrics, and prominent
OCR engines, and

(c) the document image enhancement techniques considered within this thesis.

II To design and develop, based on the literature review of Objective I, a modular and generic
framework comprising the following four subcomponents:

(a) A subcomponent capable of guiding a user in processing the input data for analysis,

(b) a subcomponent which facilitates the engineering and comparison of enhancement
procedure categories and the appropriate assignment thereof,

(c) a subcomponent aimed at providing guidance in the development and evaluation of
a prediction model, and

(d) a subcomponent for extracting insights from the attained results.

III To verify the potential utility of the framework of Objective II through a proof-of-concept
implementation on a benchmark data set.

IV To validate the practical workability of the framework of Objective II by execution of a
case study on a real-world data set provided by the industry partner of this thesis.

V To recommend sensible follow-up work related to the contributions of this thesis, which
may be pursued in future.
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1.5 Thesis organisation

Including this introductory chapter, the research underlying this thesis is executed across eight
chapters aimed at addressing the problem statement and fulfilling the stated objectives.

Chapter 2 comprise a review of the material pertaining to ANNs, in fulfilment of Objective I(a).
More specifically, the fundamentals of FNNs, RNNs, LSTMs, and CNNs are discussed in detail.
The chapter concludes by exploring the concept and implementation of transfer learning —
specifically in the realm of computer vision.

An in-depth review of literature pertinent to the understanding of OCR is conducted in Chap-
ter 3, in fulfilment of Objective I(b). The chapter opens with an exploration of the typical OCR
process, followed by the major steps involved in executing an OCR operation. The theoretical
foundation of deep learning architectures, acquired in Chapter 2, expedites the discussion of two
prominent OCR engines, i.e. Tesseract OCR and EasyOCR.

Chapter 4, in fulfilment of Objective I(c), is devoted to the consideration of document image
enhancement techniques. First, the utility of implementing the correct document enhancement
techniques are supported by means of an example. This is followed by a discourse on the most
popular document enhancement techniques used for improving the performance of an OCR
engine.

Following the review of the literature is the design and development of a generic framework
which is capable of guiding a user in incorporating machine intelligence into the assignment and
implementation of document image enhancement techniques in pursuit of an improved OCR
performance. This chapter is executed in fulfilment of Objective II. Chapter 5 opens with a brief
discussion on the architecture of a computer software and of the general data mining process,
the inspiration for the framework architecture. The framework is then presented, followed by a
detailed top-down discussion of the various subcomponents constituting the framework.

Chapter 6 comprises a discussion on the verification of the preposed framework through a proof-
of-concept instantiation, in fulfilment of Objective III. First, an open-source and prominent
benchmark document image data set is discussed in detail. Thereafter, the generic modules
within the proposed framework is populated with specific algorithms and user-defined settings
in order to illustrate the utility of the framework. The results generated throughout the em-
ployment of the framework are then evaluated and analysed.

In Chapter 7, a case study is performed in order to validate whether the framework can produce
the desired outcome when implemented on a real-world data set provided by the industry partner
of this thesis, in fulfilment of Objective IV. The chapter opens with an exploration of the industry
partner data set. Thereafter, the framework is populated with specific algorithms and user-
defined settings in order to illustrate the working of the framework. The implementation of
the framework is briefly discussed, followed by an in-depth analysis of the obtained results. In
concluding the chapter, the proposed framework and the obtained results are subjected to face
validation by two industry partner subject-matter experts.

Chapter 8, the final chapter, serves as the conclusion of the thesis. A summary and critical
appraisal of the contributions of the thesis are provided, followed by recommendations with
respect to suitable future research endeavours, in fulfilment of Objective V.
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1.6 Data collection and management

As mentioned above, the training of machine learning techniques, and specifically CNNs, require
a large amount of data in order to be trained, validated, and tested. Consequently, in order
to achieve the objectives of this thesis, it is pertinent to acquire real-world image data. A
partnership has been established with the industry partner for this thesis (i.e. Capitec Bank)
whereby they provide appropriate image data (and its corresponding annotations), in order
for the author to successfully design and develop an effective and generic framework. Access
to the data of the industry partner is afforded exclusively to the author through a company
laptop. It must be noted that all data used in this thesis are electronic data — the acquisition,
storage, or analysis of paper data are not required in order to complete this thesis. The data
and identities of the individuals are stored on a secure Capitec Bank cloud based network which
can only be accessed through a laptop provided by the industry partner. The data on this cloud
based network are encrypted according to the standards and guidelines of the data governance
department of Capitec Bank. The author is provided with a unique passkey which is required
to utilise the laptop.

1.7 Ethical considerations

The image data sets employed in this thesis are notably sensitive. The data comprise personal,
financial, and background information of the clients of the industry partner. Accordingly, the
following principles of ethical research are considered in this thesis:

Be aware of the influence and role of a researcher. As a researcher, it is important to
remember the potential influence that the results may have on all the stakeholders, and
which roll to fulfil in the transfer of newly attained knowledge. When reporting results,
the researcher ought to report the true results attained by the models and experiments,
thereby contributing true knowledge and insight in the specific research paradigm.

Uphold confidentiality and privacy rights. When employing data in a research thesis, it
is pertinent to uphold the privacy rights of the individuals who provided the data. It is
therefore in the researcher’s best interest to be familiar with the privacy laws pertaining
to this specific research. In the case of this thesis, the data are exceptionally sensitive
and ought to be kept confidential at all costs, not only to protect the individuals, but also
the industry partner. Accordingly, it is the responsibility of the author to ensure that
the sufficient measures are in place so as to uphold confidence in the confidentiality and
privacy of the data.

Know and use ethical resources. It is the responsibility of the researcher to have several
resources available and the willingness to employ these resources when deliberating about
an ethical dilemma. Relevant documentation and field experts ought to be consulted when
ethical dilemmas are considered in order to provide guidance and knowledgable insight of
the scenario.
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Deep learning
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The aim in this chapter is to review the pertinent literature related to deep learning — more
specifically, FNNs, RNNs, LSTMs and CNNs. The chapter introduces the reader to principle
concepts and terminology found in the deep learning literature so as to facilitate an understand-
ing of the work presented in the remainder of this thesis. The chapter opens with a discussion
on ANN fundamentals, activation functions, and network learning and training. This is followed
by in-depth discussions of four prominent ANN architectures — i.e. FNNs, RNNs, LSTMs and
CNNs — during which architecture fundamentals and applications are explored. Additionally,
an intuitive explanation of the concept and application of transfer learning — specifically in the
realm of computer vision — is considered. A concise summary serves as the chapter’s conclusion.

2.1 Artificial neural networks

Utilising computational power to automate everyday tasks that involve some form of intelligence
and/or pattern recognition may be considered markedly difficult [182]. Humans, however, appear

13
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14 Chapter 2. Deep learning

to perform similar tasks without applying significant effort at all. Consider the case where a
human brain receives a vast amount of visual information of a surrounding area (including
a variety of objects) through their eyes. The human brain is able to transform this visual
information into knowledge rapidly, without substantial effort, in order to make an informed
decision on the next best action. Accordingly, understanding the approach adopted by humans
to effortlessly perform such complex tasks and then simulating these processes on computer
systems may lead to a significant increase in automation. Therefore, the emulation of biological
neural networks by computerised models as a research domain is well warranted.

An ANN may be regarded as a mathematical or computational machine learning algorithm
inspired by the substantial parallel computation of a biological neural network and its ability to
learn and respond appropriately to presented stimuli [116]. Similar to other machine learning
algorithms, ANNs are employed to solve problems through repeated exposure to data and learn
without any explicit rule-based programming [251]. A biological neural network forms part of the
human nervous system. The term “neural” is the adjective for neuron and the term “network”
denotes a graph-like (i.e. network) structure [182]. A biological neural network is a collection of
more than 1010 interconnected biological neurons through sub-networks (i.e. nerve cells1) [1]. A
depiction of a biological neuron is illustrated in Figure 2.1.

Synaptic terminals

Nucleus

Axon

Soma
Dendrites

Figure 2.1: A graphical representation of a generic biological neuron [1].

Each biological neuron comprises a soma (i.e. the cell body), one axon, and a multitude of
dendrites [116]. Dendrites are tree-shaped networks of nerve fibres connected to the soma of the
biological neuron which receive signals from other biological neurons. Within the soma is the
nucleus of the cell. The axon can be considered as a single long fibre which extends outwards
from the soma. Eventually, the axon divides into numerous sub-strands which terminates into
small end-bulbs called synaptic terminals, as indicated in Figure 2.1 [1]. The gaps between a
synaptic terminal and a neighbouring biological neuron’s dendrites are called synapses, and are
responsible for facilitating the propagation of signals (i.e. information). The number of synaptic
connections from one biological neuron to a neighbouring neuron can range from a few hundred
to 104 [116].

Biological neurons receive, process, and transmit information through biochemical reactions.
The magnitude of the incoming signals from the dendrites vary in terms of strength due to
the difference in efficiency of the synaptic transmissions [182]. All input signals are aggregated
by the soma to form a corresponding output signal. If a sufficient aggregated input signal is
received, according to an inherent threshold level, the biological neuron would be stimulated and

1The fundamental units of the brain and nervous system.
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an impulse would be fired through its axon. If the threshold level is not met, however, the input
signal will quickly decay and result in no further action. This operation is thought to underpin
the manner according to which the human brain can store information and react to new input
data in order to make cognitive decisions [251].

2.1.1 Fundamentals of artificial neural networks

Mathematically, a biological neural network may be loosely caricatured as a weighted, directed
graph of massively parallel interconnected nodes called artificial neurons — the basic processing
elements of ANNs [116]. Figure 2.2 contains a graphical illustration of a simple mathematical
model of the artificial neuron (henceforth merely referred to as neurons). This simple model
comprises three rules: Multiplication, summation, and activation [160].

Activation 
functionNet input

Output 
signal

SummationMultiplication

Weights

Activation

Bias

Figure 2.2: A simple mathematical model of an artificial neuron.

Within an ANN, neurons are directly connected via communication links. The effects of the
synapses (as discussed earlier) are represented by the input signals [x1 · · ·xi · · ·xn]T and the
strength of the input signal is scaled by the connection weights [w1 · · ·wi · · ·wn]

T , where weight
wi is multiplied by the i-th communication link. The weights are considered to be adjustable
and trainable parameters of the network. Given an ANN with randomly assigned weight values,
training data within which intrinsic relationships and patterns are embedded, and a task to be
accomplished by the ANN, an appropriate learning algorithm may be employed in order to learn
the underlying mathematical representation of the training data, thereby adjusting the weights
accordingly. This learning process is discussed in greater detail in §2.1.3. Different weight values
will therefore result in different input signals. These scaled input signals are then summed to
form an aggregated input signal (denoted by η) [182]. Accompanying η is a bias value (x0 = θ)
and a connection weight w0. A bias value is introduced so as to offset the activation function to
the left or the right along the input axis, without alternating the shape of the function. Typically,
one would set either w0 = 1 or θ = 1, and then adjust the value of the other. If η is positive,
the input signal tends to stimulate the neuron output, whereas for a negative aggregated input
signal it tends to restrain the neuron output — depending on the selected activation function
(denoted by g) which mathematically models this firing process. Accordingly, the computation
of the neuron’s output signal, denoted by y, is

y = g(η) = g

(
n∑

i=1

xiwi + w0

)
. (2.1)

The computation of y might seem simple and trivial, however, the true value of this mathemat-
ical model is realised when multiple neurons are interconnected to form an ANN. In order to
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16 Chapter 2. Deep learning

fully realise the benefits of this interconnected model, the neurons are generally not connected
randomly, but are instead structured in a pattern [160]. The pattern according to which the
interconnections are arranged within an ANN is referred to as the architecture of the network.
Several topographies of ANNs have been “standardised” through years of research. Different
types of predefined ANN topographies are suited for solving different problems. These different
types of ANNs are discussed in more detail later in this chapter. An FNN, which was the first
ANN architecture, is illustrated graphically in Figure 2.3 and depicts the general working of
most ANNs. An FNN comprises the two elementary elements of any ANN, namely connected
neurons and their corresponding weights. Accordingly, the graphical illustration in Figure 2.3
is deemed as a sufficient representation of ANNs and their basic working. The graphical rep-
resentation comprises neurons represented by the circles (or nodes), and weighted connections
represented by the directional arrow lines. The basic architecture of an ANN comprises three
types of neuron layers, namely: Input, hidden, and output layers [1].

Output 1

Output 2

Output n

Input 1

Input 2

Input n

Hidden layer(s) Output layerInput layer

Figure 2.3: A graphical representation of the general architecture of an FNN [29].

The signal flow, specifically in FNNs, is strictly in a forward direction, i.e. from the neurons in the
input layer to the neurons in the output layer (as shown by the directional arrow lines). The input
layer receives the selected input variables (i.e. an input vector), while the output layer returns
a predefined output vector. All the layers between the input and output layers are referred to
as hidden layers, comprising hidden neurons. ANNs include hidden layers which enable these
networks to approximate non-linear and complex functional mappings [297]. Although it is
possible for an ANN to have no hidden layers, it would have limited use as it would only be able
to classify input data that are linearly separable. In order to determine an appropriate number
of hidden layers in an architecture, a trade-off between the closeness-of-fit and the extrapolation2

capabilities ought to be considered. A general heuristic for determining a suitable number of
hidden layers in an ANN is as follows: As the dimensionality of the problem increases, the
corresponding number of hidden layers should also be increased. Furthermore, in order to
determine an appropriate number of hidden neurons in each hidden layer, a trade-off between
training time and the accuracy of training ought to be considered. If the number of hidden

2A prediction of a value based on extending a known sequence of values beyond the area that is certainly
known.
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neurons is insufficient, the ANN might have a need for more feature detectors, thereby sacrificing
model accuracy. Conversely, if the quantity exceeds the number required by the network, the
excessive number of hidden neurons might result in the ANN memorising the training data,
thereby producing poor generalisation.

2.1.2 Activation functions

As mentioned in §2.1.1, each neuron in an ANN may be characterised by a weight, bias, and
activation function. The purpose of the activation function is to derive a non-linear output for
each neuron from the provided input values, thereby modelling the firing process of a neuron
mathematically. Consider the case where an ANN is employed without any activation functions.
Each neuron simply performs linear transformations by multiplying the input values and bias by
their corresponding weight values, and propagate the sum of these values onto the next neuron.
Accordingly, the number of hidden layers (and neurons within those layers) would be irrelevant
as the composition of multiple linear functions is a linear function itself [21]. Therefore, without
any activation functions present, the ANN would simply mimic the learning process of a linear
regression model. Incorporating activation functions increases model complexity, however, it
enables the model to perform highly complex tasks with greater success. A summary of the
most prevalent activation functions is provided in Table 2.1.

The most basic activation function is the linear activation function given by (2.2) in Table 2.1,
where λ denotes the slope of the linear function. The function produces an activation that is
proportional to the input received. In the special case where λ = 1, the function is known as the
identity function. Typically, this function is employed by neurons in the input or output layers
of an ANN where the input signal is not altered, but instead simply transmitted to the next
layer [116]. The sigmoid activation function, given by (2.3), is a non-linear activation function
which transforms an input range from (−∞,+∞) to the range [0, 1]. The function has a smooth
S-shape and is continuously differentiable. The sigmoid activation function is commonly (but
not exclusively) used in the neurons of an ANN’s output layer as this function is employed
for predicting probability-based outputs [205]. According to Neal [199], the main advantages
of the sigmoid function include the ease with which they may be interpreted, as well as their
ability to be successfully applied in shallow network architectures3. The hyperbolic tangent
activation function, most commonly referred to as the tanh activation function, is expressed
in (2.4) and shares a similar S-shape as the sigmoid activation function. Unlike the sigmoid
activation function, however, the S-shape curve of the tanh function is a zero-centred function
with an output range of [−1, 1] [205]. Accordingly, the sign of the output produced by the
function might be different to the sign of the input [21]. In some cases, the tanh activation
function is preferred over the sigmoid activation function as it may result in increased training
performances [12]. Despite being widely adopted in industry, the tanh activation function has a
few limitations. If η = 0, the function attains a gradient of one, resulting in dead neurons. If a
neuron is dead, its accompanying weight is rarely used or updated [205]. The occurrence of dead
neurons is known as the vanishing gradient problem. Extensive research has been conducted in
order to resolve this significant issue which subsequently led to the development of the rectified
linear unit (ReLU) activation function.

Nair and Hinton [195] proposed the ReLU activation function in 2010. The usage of the ReLU
activation function showcased state-of-the-art results for deep learning applications and is there-
fore one of the most widely utilised activation functions [205]. The ReLU activation function
is given by (2.5). The function performs a threshold operation according to which negative

3Networks that consist of only one or two hidden layers.
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values are set to zero, thereby eliminating the vanishing gradient problem. ReLU has been suc-
cessfully employed in numerous deep learning architectures, which includes CNN architectures.
A noteworthy limitation of the ReLU activation function is its relatively poor generalisation
performance in certain cases when compared with some of the aforementioned functions [205].
Moreover, the most significant limitation of ReLU is that in the case where a neuron only re-
ceives negative input values, the activation function transforms all these input values to zero,
thereby transforming the neuron’s output to zero. This is a special case of the vanishing gra-
dient problem [219]. Various analyses have been conducted in order to improve upon ReLU,
and variants of ReLU have been developed. The leaky ReLU (LReLU) activation function was
proposed in 2013 and is expressed in (2.6). LReLU is markedly similar to ReLU, but with the
addition of introducing an α parameter which provides a small slope for negative η values. The

Table 2.1: Summary of prevalent activation functions.

Name Plot Equation Range

Linear g(η) = λη (2.2) (−∞,+∞)

Sigmoid g(η) =
1

1 + e−η
(2.3) [0, 1]

Tanh g(η) =
(eη − e−η)

(eη + e−η)
(2.4) [−1, 1]

ReLU g(η) =

{
0, if η < 0

η, if η ≥ 0
(2.5) [0,∞)

LReLU g(η) =

{
αη, if η < 0

η, if η ≥ 0
(2.6) (−∞,+∞)

Softmax
g(η) =

eηi∑K
j=1 e

ηj
(2.7)

[0, 1]
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purpose of this slope is to ensure that the gradients are never equal to zero during training.
Another prevalent variant of ReLU is called the parametric ReLU (PReLU), proposed by He et
al. [307] in 2015. PReLU is almost identical to LReLU with the only point of difference being
that the α variable in the PReLU activation function is a learnable parameter which is adaptively
learnt during the training of the network. In the case where α = 0, PReLU becomes ReLU.
According to He et al., performance on large scale image recognition improved when PReLU
was employed over ReLU. The final noteworthy activation function is the softmax activation
function, given by (2.7). The softmax activation function is employed to compute a probability
distribution from a vector of real numbers. Accordingly, the output range is [0, 1] [90]. The
softmax is commonly employed in the output layer of a network and when the network is tasked
with computing probabilities for classification problems — i.e. the main differentiating factor
between the softmax and sigmoid activation functions [205].

2.1.3 Network learning and training

The ability to learn is perhaps the fundamental trait of intelligence. Unlike rote learning4, the
ability to learn focusses on the difficulty of extracting inferences from accumulated information in
order to generalise a behaviour when a novel situation arises [166]. Specifically for deep learning
networks, the notion of network learning and training is defined as the process of adjusting
weight values between neurons so as to enable the network to learn intrinsic patterns embedded
within the input data in order to produce the desired set of outputs according to some update
rule [1]. When training a model, it is important to know the nature of the model environment in
which the network must carry out some task — i.e. what information is available to the network
in order to perform the given task. ANNs may be classified into four main learning paradigms,
namely supervised learning, unsupervised learning, semi-supervised learning, and reinforcement
learning.

Supervised learning aims to map a set of input variables to an output variable, and thereafter
apply this mapping to predict outputs in respect of unseen data [57]. The term supervised origi-
nates from the concept of an external teacher that provides the desired outputs that correspond
to presented inputs. Specifically in the realm of ANN learning, an input vector (i.e. features) is
presented at the input layer of the network, while a set of desired responses (i.e. corresponding
labels or outcomes), one for each neuron, is provided to the output layer of the network. After a
forward pass is performed by the network, the discrepancies between the output of the network
and the actual label is determined, and thereafter the network weights are updated according
to some learning rule [1]. Unsupervised learning simply receives an input vector, but does not
obtain corresponding labels for the neurons in the output layer (i.e. unlabelled data) [86]. The
primary objective of unsupervised learning is to train the network to discover statistically salient
features so as to identify clusters or patterns within the input vector. Moreover, in contrast to
supervised learning, there is no a priori set of categories for the input vector to be classified
as. Therefore, the network ought to develop its own representation of the input vector. In the
semi-supervised learning paradigm, the network aims to combine supervised and unsupervised
learning by utilising labelled data as well as unlabelled data when performing a learning task.
Typically, semi-supervised learning algorithms would perform one of these learning methods as
its primary method, and then attempt to improve the results by utilising information associated
with the other method. This paradigm is particularly relevant when the input is large, and the
corresponding labels are scarce [292]. Lastly, within the reinforcement learning paradigm, the
network is taught by trial-and-error to perform an action in order to be rewarded. This paradigm

4Simply memorising presented information without drawing inferences from the information [166].
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of learning is related to a problem set where the best action is not known a priori, and therefore
the network ought to develop an action policy in order to maximise the received reward.

Supervised learning algorithms are widely used in the industry for making predictions in the
realms of regression and classification problems. Regression algorithms are employed in order
to predict a continuous value based on the provided input data [108]. Accordingly, the primary
goal of a regression problem is to approximate a function that best maps a set of inputs to
a continuous (quantitative) output. Examples of regression target variables are weight, costs,
height, income, or inventory level. Classification algorithms, on the other hand, are employed in
order to approximate a mapping function that best classifies input data in respect of a discrete
output variable, such as categories or labels [32]. Examples of classification target variables
are dog breeds, plant species, and sports. It is important to consider the class distribution
when training a classification model [255]. A data set is considered to be imbalanced when
there is skewness in the output data, i.e. when the minority class is notably outweighed by
the majority class. The bias in the training data might influence the training of the machine
learning algorithm, resulting in the model disregarding the minority class entirely. Accordingly,
it might be beneficial to balance the data set. The implementation of random sampling may
be considered in order to balance a data set [310]. The two main approaches of random sample
are oversampling, whereby instances of the minority class are randomly duplicated in order to
increase the minority class, and undersampling, whereby instances of the majority class are
randomly removed in order to reduce the majority class. Although rebalancing the data set
may be beneficial for model training, it is important to note that oversampling tends to result
in overfitting, while undersampling may result in a loss of valuable information [310].

In terms of training an ANN in the learning paradigm of supervised learning, an epoch passes
when the entire training data set has been evaluated by the model once [180]. It is common
for the training data set to be too big for all the data to be presented to the model simulta-
neously [253]. Accordingly, the data set is then divided into batches. The batch size refers to
the number of training examples within a batch. The number of batches required to complete
a single epoch is called an iteration.

Training a network comprises updating the network weights by comparing the network output
with a respective desired label. A gradient-based technique is typically employed and is rendered
computationally feasible by the method of backpropagation [58]. Simply put, backpropagation
is a derivative-based approach towards adjusting the network weights based on some error (i.e.
loss) obtained after evaluating a batch of the training data. In order to elucidate the workings
of backpropagation, consider the case where a supervised learning task is presented to an FNN
(graphically represented in Figure 2.4).

In order to initialise the model before training commences, the network weights are assigned
random values. The input data are then passed from the input layer, to the hidden layers, and
then finally on to the output layer. This is known as forward propagation. At each neuron,
the weighted sums of the input signals (and bias) are passed through the activation function.
The activation value is passed to the next neuron (via the next set of weighted connections)
until all the signals reach the output layer. The output produced by the neurons in the final
layer represents the prediction of the network. This prediction may then be compared with the
corresponding label (or target value) of the given input vector, and a loss/cost may be calculated
according to some preselected loss function — the aim is to minimise the computed loss.

In the paradigm of supervised learning, there are two main types of loss functions, namely
regression loss functions and classification loss functions. Examples of prominent regression loss
functions includemean absolute error (MAE) [44] which aims to compute the absolute differences
between the target and the predicted output, mean squared error (MSE) [241] which aims to
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Figure 2.4: A graphical representation of the ANN learning process in the supervised learning paradigm.

compute the average of the squared differences between the target and the predicted output, and
root mean squared error (RMSE) [44] which aims to compute the average difference between
the target and predicted output using the Euclidean distance [59]. Examples of prominent
classification loss functions include binary cross-entropy [122] where only two pre-set categories
are considered and the actual value (0 or 1) is compared with the probability that the input aligns
with that category, and categorical cross-entropy [158] where the number of classes considered
is greater than two, following a similar process as binary cross-entropy. After computing the
loss through the employment of a selected loss function, the value is then fed backwards in the
network in order to fine-tune the network weights.

A network may comprise millions of weight parameters. A so-called optimiser (i.e. training
algorithm) is employed in order to govern the weight adjustment process computationally and
(in certain cases the learning rate of the model) in pursuit of minimising the calculated loss
function. The learning rate is a configurable hyperparameter that can be used to control to
what extent and rate the model weights are updated [33]. Several optimiser algorithms have
been developed for different applications. The gradient descent [11] optimisation algorithm is
one of the most commonly employed optimisation algorithms to train deep learning models. The
algorithm is initialised with some random weights, partial derivatives are then calculated of the
loss in respect of each network weight for the entire training data set, and then the weights are
adjusted accordingly (i.e. in the negative direction of the gradient) in order to yield a smaller
loss value.

There are three primary types of gradient descent optimisers, namely batch gradient descent
(BGD) [142], stochastic gradient descent (SGD) [232], and mini-batch gradient descent [152].
The BGD optimiser (also called vanilla gradient descent) is employed to compute the gradient
for each point in the training data set, updating the weights only after the evaluation of the
entire data set. BGD is known to produce a stable error gradient and a stable convergence. By
contrast, the SGD optimiser, referred to as a probabilistic approximation of gradient descent [23],
stochastically selects (sampled without replacement) and computes the gradient for each data
point and updates the weights for each training example one-by-one. SGD has been empirically
shown to speed up convergence, however, some instability is introduced [66]. The mini-batch
gradient descent optimiser combines the principles of the aforementioned optimisers, partitioning
the training set into small batches. The gradient is then computed for a batch, and the weights
updated according to the smaller loss value. This process is then repeated for each batch.
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The Adam [155] optimiser (the name of which is derived from adaptive moment estimation)
is considered to be a further extension of the SGD optimiser. The key difference between the
SGD and the Adam optimisers is that while the SGD optimiser maintains a single learning rate
throughout training, the Adam optimiser updates the learning rate for each network weight
individually. The Adam optimiser is considered to be a benchmark optimiser as it is easy
to implement, it is computationally less demanding, and requires less fine-tuning than other
optimisers. Although the Adam optimiser performs well in most cases, algorithms such as the
SGD optimiser may sometimes generalise better based on empirical findings [107].

After all training iterations have been evaluated and the weights adjusted according to the
adopted optimiser, the next epoch may commence, thereby repeating this pattern typically
until either the loss is below a prespecified threshold, or a maximum number of epochs have
been reached [187].

2.2 Feedforward neural networks

There are several types of ANN architectures, each utilising different principles in order to
determine a set of learning rules. These network types are implemented based on the availability
of data and the mathematical operations required to perform a task. Each type of network has
unique strengths which enable them to operate in particular domains and perform specific tasks.
The following few sections are devoted to a discussion on the fundamental differences between
some of the most prominent ANN types, namely FNNs, RNNs, LSTM, and CNNs.

In §2.1.1, specific reference was made to FNNs (graphically illustrated in Figure 2.3) and several
concepts of this particular network were discussed. FNNs are arguably the most basic type of
ANN as it solely comprises standard interconnected neurons, categorised into the three afore-
mentioned layers. The defining and main differentiating feature of FNNs is that the cyclic flow of
information (i.e. the presence of feedback connections or loops) is strictly forbidden — data move
in a forward direction from the first layer onwards until it reaches the output layer [174]. Due to
the absence of any feedback connections, all the neurons in the network may be arranged into
the three different types of configured layers, which renders the network easily understandable.

There are multiple variants of FNNs, each identifiable by their unique structural differences.
An FNN comprising only a single hidden layer is referred to as a single-layer feedforward neural
network, whereas an FNN with more than one hidden layer is referred to as a multi-layer
feedforward neural network. In the remainder of this thesis, multi-layer feedforward neural
networks are referred to as multi-layer perceptrons (MLPs). Due to its layered structure, an
MLP showcases hierarchical processing, passing information on from one layer to another, until
the last layer provides an output. MLPs may also be described as fully connected networks as
each neuron is connected to every neuron in both the previous and following layer [82]. The
MLP is the most widely utilised FNN variant due to its universal approximation capabilities
[116].

2.3 Recurrent neural networks

Several ANN structures have been proposed in the literature to perform tasks related to temporal
patterns. Examples of tasks where these temporal sequences occur are speech recognition,
dynamic control systems, and time series predictions. In some cases, MLPs cannot be utilised
in time-varying tasks as they are limited to only receiving static data patterns (i.e. an input
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vector with a predefined dimensionality); therefore, MLPs require a fixed input/output window
size in advance [249]. Examples of different variable input/output combinations are graphically
illustrated in Figure 2.5, where the bottom green rectangles represent the input vectors, the
middle grey rectangles represent the network, and the top red rectangles represent the output
vectors.

Note that the term many is not a fixed number for each input or output of the networks. From
left to right, the first example is a one-to-one scenario where a fixed-size input vector is received
and a fixed size output vector is predicted, as is the case for MLPs. Examples two to five,
however, all have a varying input/output vector present, which is difficult for MLPs to process.
Examples of real-world tasks of these scenarios are:

� One to many: Text generation, image captioning,

� many to one: Text classification, sentiment analysis, and

� many to many: Voice recognition, machine translation.

Consequently, an alternative ANN architecture that can incorporate temporal dynamics of time
varying-patterns is necessary.

One-to-many Many-to-one Many-to-many Many-to-manyOne-to-one

Figure 2.5: Examples of varying inputs/outputs combinations [148].

2.3.1 Fundamentals of recurrent neural networks

In 1986, Rumelhart et al. [233] proposed the RNN architecture, designed specifically for per-
forming time-varying tasks. An RNN introduces the notion of time by augmenting an FNN
such that it includes a recursive processing unit with a hidden state derived from the past [174].
While the primary function of an FNN’s layers is hierarchical processing, the layers of an RNN
introduce sequential memory processing. Each generation of the network attempts to remember
as much information from the past as possible in order to produce more accurate predictions
of the future. The network achieves this by containing at least one feed-back connection — the
fundamental feature of an RNN — enabling activation signals to be fed back [36].

In order to explain how forward propagation in an RNN is performed, consider the basic RNN
architecture (with a recursive pointer to itself), as shown in Figure 2.6, where xt, yt, and ht

denote the input, output, and hidden states, respectively, at a time step t [309]. Applied to the
hidden state are the weight parameters U , W , and V .

In order to elucidate the workings of a basic RNN, consider the case where an RNN is tasked
with predicting a letter in the word “car”. The input vector is the first two letters i.e. “c” and
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Unfold
WW W W

V V V V V

U U UU

Figure 2.6: The basic RNN architecture with a self-looping or recursive pointer to itself [309].

“a”, and the network is tasked with predicting the last letter i.e. “r”. In order to predict the
third letter in the target word, the hidden state applies a recurrence formula to the input vector.
When the letter “a” is supplied to the network, the recurrence formula is applied to the letter
and the previous state, i.e. “c”. The states are referred to as time steps. At time step t, the
input letter is “a”, and at time step (t− 1) the input letter was “c”. The recurrence function f
for the current state may be written as

h(t) = f
(
h(t−1), x(t)

)
, (2.8)

where h(t) denotes the new state, h(t−1) denotes the previous state, and x(t) denotes the current
input. Assuming the tanh activation function is selected for the hidden state, a weight value
V for the hidden state connection, and a weight value U for the input neuron connection, the
expression for the state at time t may be expressed as

h(t) = tanh
(
V h(t−1) + Ux(t)

)
. (2.9)

By incorporating the hidden state connection and weight into the expression, the value of the
previous state is taken into consideration when calculating the new state. For sequences compris-
ing a large number of characters, multiple states can be calculated and remembered throughout
the network. Once the current state is calculated, the output state may be calculated as

y(t) = Wh(t), (2.10)

where W is the connection weight between the hidden state and the output neuron. By applying
the softmax activation function in the final output neuron, the classwise probabilities for the
next letter can be calculated.

If the hidden state is folded up, it is has a similar structure to that of a regular MLP, and
the backpropagation algorithm performs a similar operation to when it is applied to an MLP.
When performing forwardpropagation, the information flows forward through the network and
at each time step. The algorithm, backpropagation through time (BPTT), was introduced by
Werbos [302] in 1990 and is utilised to modify an RNNs connection weights, thereby training
the network. The algorithm adopts its name due to its movement back in time through the time
steps to modify the hidden state connection weights. The BPTT learning algorithm extends
naturally from the standard backpropagation algorithm utilised in the training of MLPs [36].
Consider the case where y(t) is the predicted value and ȳ(t) is the true label. The error signal
can be calculated as a cross-entropy loss E given by the expression

E(ȳ, y) = −
∑

ȳ(t) log(y(t)), (2.11)
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and by treating the entire sequence (or in this case, the entire word) as a single training example.
Accordingly, the total error for the training example is the sum of all the errors at each time step
(i.e. character). This error signal is then propagated backwards through the network, visiting
each time step in sequence, combining the backpropagation result and modifying the connection
weights accordingly.

2.3.2 The vanishing gradient problem

It is important to note that the training of RNNs has a major limitation. According to Bengio
et al. [22], and later expanded upon by Hochreiter et al. [123], training RNNs has long been
considered to a be a markedly challenging task due to the difficulty of learning long-range
dependencies. When performing BPTT across many time steps, the gradients of the early time
steps might begin to vanish or explode. This phenomenon is known as the vanishing gradient
problem [174].

Consider a network that comprises only a single input node, a single recurrent hidden node, and
a single output node. The unfolded recurrent hidden node is visualised in Figure 2.7. An input
value β is presented to the network at time step (t− 5) and an error is calculated at time step t,
assuming that the input of all the intervening time steps is zero. The recurrent connection weight
V is the same between all time steps. Consequently, as the network steps through the time steps,
the contribution of the input β at time step (t−5) either exponentially vanishes or explodes as it
approaches time step t. Whether the gradient vanishes or explodes depends on which activation
function is selected for the hidden node and whether the connection weight value is |V | > 1 or
|V | < 1. In Figure 2.7, the specific phenomenon of a vanishing gradient is illustrated where the
contribution of the input β is represented by the intensity of the green shading in the nodes.
Note how the contribution of the input β declines for each time step as the network traverses
to time step t. Williams and Zipser [304] proposed the truncated backpropagation through time
(TBPTT) learning algorithm as a possible solution to the vanishing gradient problem. The
TBPTT limits the number of time steps the error signal may be propagated back to, according
to a predefined threshold. By truncating the learning algorithm, however, the network’s ability
to learn long-range dependencies is compromised [174].

V V V V V

Figure 2.7: The vanishing gradient problem visualised in the hidden state of a basic RNN.

2.4 Long short-term memory

In order to overcome the shortcomings of RNNs (alluded to in §2.3.2), Hochreiter and Schmid-
huber [124] introduced the LSTM architecture. The network is named according to the following
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intuition: The basic RNN has long-term memory through the modification of the connection
weights, and short-term memory in the form of ephemeral5 activations, which are passed between
successive nodes. LSTMs introduce a third type of memory, an intermediate type of storage,
through the employment of recurrently connected sub-networks known as memory cells [174].
The purpose of a memory cell is to remember values over arbitrary time intervals by utilising
a constant error carousel (CEC), which holds the error signal within each cell. The network
resembles the basic RNN architecture which comprises a hidden state, however, each hidden
state is replaced by a memory cell.

2.4.1 Fundamentals of long short-term memory

A basic LSTM memory cell block (depicted in Figure 2.8) comprises an input node z, an input
gate i, an output gate o, a forget gate f , and an output node k. The flow of information
associated with the cell is regulated by the three gates. The input signal is represented by x(t)

and the output signal by h(t), while h(t−1) is the output of the previous LSTM layer. The σ
represents the employment of a sigmoid activation whereas τ represents the employment of a
tanh activation function. The sigmoid activation function is always used as a gating function at
the input, forget, and output gates as it outputs a value between 0 and 1, determining whether
information may flow through the gate. It is customary to use the tanh activation function for
the input and output nodes as its second derivative has so-called long dynamic range, however,
in some cases the ReLU activation function may also be used [174]. The dotted blue connections
are peephole connections, which allow the block to inspect its current internal state, while ⊙
denotes point-wise multiplication [84]. The current cell state is represented by c(t) (i.e. the CEC
component), while the previous LSTM layer’s cell state is represented by c(t−1).

LSTM block

Forget
gate

Input
gate

Output
gate

Input 
node

Output
node

Figure 2.8: The architecture of a typical LSTM memory cell block [293].

In order to delineate the workings of an LSTM network, consider a network that comprises N
LSTM memory cell blocks and M inputs. Forward propagation begins at the input node z where

5The concept of objects being transitory, existing only briefly.
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the current input, x(t), and the output of the previous LSTM layer, h(t−1), is combined, yielding

z(t) = τ
(
Uzx

(t) + Vzh
(t−1) + bz

)
, (2.12)

where Uz and Vz are the connection weights associated with x(t) and h(t−1), respectively, while
bz is a bias value associated with the input node. Thereafter, the input gate i is updated with
the combination of x(t), h(t−1), and the previous cell state c(t−1) with their respective connection
weights of Ui, Vi, and pi, and the bias bi of the component, through the expression

i(t) = σ
(
Uix

(t) + Vih
(t−1) + pi ⊙ c(t−1) + bi

)
. (2.13)

Through the process of updating the input node z and the input gate i, the LSTM layer de-
termines which information should be retained in the cell state c(t). Subsequently, the LSTM
needs to determine which information should be removed from the previous cell state c(t−1).
This operation is performed at the forget gate.

The forget gate was proposed by Gers et al. [85] in order to enable the network to reset its
state by disregarding information which is not required by the network for learning. The forget
gate f , is calculated based on the current input x(t), the previous LSTM layer’s output h(t−1),
and the cell state c(t−1), their respective accompanying weight values Uf , Vf , and pf , and the
associated biased value bf of the forget gate f . This calculation may be expressed as

f (t) = σ
(
Ufx

(t) + Vfh
(t−1) + pf ⊙ c(t−1) + bf

)
. (2.14)

Thereafter, the new cell state c(t) may be calculated by combining the input node z, the input
gate i, and the forget gate f , yielding

c(t) = z(t) ⊙ i(t) + c(t−1) ⊙ f (t). (2.15)

The output gate o may then be calculated by combining the current input x(t), the previous
output h(t−1), and the previous cell state c(t−1). This may be expressed as

o(t) = σ
(
Uox

(t) + Voh
(t−1) + po ⊙ c(t) + bo

)
, (2.16)

where Uo, Vo, and po are the connection weights associated with x(t), h(t−1), and c(t−1), respec-
tively, while bo denotes the bias for the output gate. In order to calculate the output signal h(t),
the output node k and the output gate o is used which yields

h(t) = τ
(
c(t)
)
⊙ o(t). (2.17)

Comprising three different logical units of memory, an LSTM layer processes different dimensions
of the information during the forward propagation stage, thereby improving the long and short
term memory capabilities of the network [309]. Intuitively, the LSTM network may decide when
activation is permitted into the cell state c(t) (i.e. through the input gate) and, similarly, decide
when to let this activation out (i.e. through the output gate). In the case where both gates are
closed, the activation is trapped within the block, neither growing nor shrinking. Consequently,
if this case occurs, the input x(t) has no effect on the output at intermediate time steps.

Similar to an RNN, the different layers of an LSTM have shared connection weights. Graves and
Schmidhuber [103] proposed using BPTT in order to train the weights that connect the different
network components. During backpropagation, an accumulation of gradients, denoted by ∆(t),
is received by the cell state c(t) which comprise gradients from both the next cell state c(t+1)

and the output signal h(t). In the case of the error signal being denoted by E, ∆(t) corresponds
to ∂E/∂y(t). The ∆(t) accumulation is then propagated back throughout the LSTM layers,
modifying the weights accordingly.
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2.4.2 Relevant applications of long short-term memory

The LSTM architecture is incorporated in a wide array of modern studies and industry domains,
propelled by its ability to effectively capture long-term temporal dependencies [105, 124]. LSTM
is markedly well suited for time-series predictions. Fischer and Krauss [78] applied LSTMs in
order to make financial market predictions. Due to its non-linearity and non-stationarity, fore-
casting financial data presents a significant challenge to researchers and practitioners. From
their study, Fischer and Krauss showcased that LSTMs outperform other traditional machine
learning algorithms. In the context of predicting petroleum production, Sagheer and Kotb [237]
confirmed the superiority of LSTMs when they stacked multiple LSTM blocks in a hierarchi-
cal fashion and increased their model’s ability to process temporal tasks when compared with
traditional methods. Another example of LSTMs in time series predictions is predicting the re-
maining useful life of physical systems. Elsheikh et al. [72] proposed a new bidirectional LSTM
(BLSTM) architecture in order to predict the remaining life of production resources. BLSTM
enables a layer to receive information from the past and future, simultaneously.

In the field of speech recognition, a subfield of NLP, Graves et al. [100] were the first to utilise
LSTMs, as the network can handle long-term lags markedly well. In another NLP example,
Ryu et al. [235] developed a binary classifier that was trained with in-domain data, and could
detect out-of-domain sentences. Former state-of-the-art models could not reach the high ac-
curacy achieved by the LSTM model. Moreover, LSTMs may also be used to detect dialogue
breakdowns, as LSTMs possess the ability to remember long-term context. Takayama et al. [276]
considered various network architectures in pursuit of detecting dialogue breakdowns and con-
cluded that unidirectional LSTMs (BLSTMs that are trained twice through forward and back-
ward directions) produced the best results.

LSTMs also add significant value to the field of computer vision applications. Kafle and
Kanan [145] as well as Gao et al. [80] applied LSTMs, in combination with computer vision
techniques, to visual answering tasks. The intuition was that if the network can understand
questions and answers, then a system can be developed to receive text-based questions about
an image in order to infer an answer. Moreover, in the NLP space, Kanjo et al. [147] were
the first to utilise LSTMs in combination with CNNs in sentiment analysis in order to extract
information from multi-model data (i.e. using physiological, environmental and location data)
in order to recognise emotions. According to the authors, the accuracy level increased by 20%
by employing the hybrid network.

Another field in which LSTMs proved to be useful, is in OCR applications [17, 30, 264]. Naz et
al. [198] conducted a text recognition study in which a sliding window is employed over text line
images for feature extraction. The resulting vector is then fed into a multi-dimensional LSTM-
CNN hybrid network. The authors concluded that utilising LSTMs, specifically in hybrid deep
learning architectures, produced significantly improved accuracy on benchmark problems when
compared with traditional methods.

2.4.3 Connectionist temporal classification

RNNs and LSTMs may be used for sequence labelling tasks such as speech recognition or text
recognition [248]. Several methods have been developed for the training of sequence labelling
models, whereby connectionist temporal classification (CTC), introduced by Graves et al. [101],
has proven to be the most widely adopted method [175]. The steps employed by the CTC method
facilitates end-to-end model training while not requiring any pre-defined alignment information.
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The expected output is a matrix containing character probabilities for each time-step, mapped
to the final text.

Consider the input sequence X1:T of length T , provided to a model. The model then predicts
a sequence y1:T with yt denoting the probability vector of observing labels over the fixed-
length alphabet L′. The fixed-length alphabet, L′ = L ∪ ∅, comprises each of the pre-defined
labels, whereby a blank label ∅ is included at the time-step t. All observed time-steps may
be concatenated into a single path, denoted by π. In order to achieve the desired sequence
labelling training, the relationship between π and the target sequence l is sought after. The
CTC framework attains access to this relationship by defining a many-to-one mapping operation,
denoted by β. First, the mapping operation removes non-unique labels, followed by the removal
of blanks within the provided path. Feasible paths may then be defined as π mapped onto l
through the implementation of β. The sum of probabilities of all the feasible paths is known as
the conditional probability of a given l, defined as

p (l | X1:T ) =
∑

π∈β−1(l)

p (π | X1:T ) , (2.18)

and where the probability of π is given as

p (π | X1:T ) =

T∏
t=1

ytπt
,∀π ∈ (L′)T . (2.19)

In pursuit of model training, the CTC method attempts to optimise the loss function utilising
dynamic programming to efficiently sum all the feasible paths. The time complexity of this
method is O

(
TW 2

)
, where T denotes the sequence length and W the size of the provided

dictionary [99].

2.5 Convolutional neural networks

The aim of computer vision is to derive information from images, videos, and other visual inputs
by means of computational methods. A computer cannot see visually as humans do, therefore
visual information ought to be converted into an appropriate format readable by computers.
Mathematically, an image may be expressed as a matrix of pixel values, where each value
represents the characteristics of the pixel. Consider the greyscale6 image of the number eight,
graphically illustrated in Figure 2.9. Each pixel on the original image (Figure 2.9(a)) may
be converted into a number between 0 and 255, where 0 corresponds to pure black and 255
corresponds to pure white. The overlay of the image pixels and the pixel values is showcased in
Figure 2.9(a). The pixels may then be removed, leaving only an array of numbers (Figure 2.9(a))
which can be processed by a computer.

In order to utilise this pixel value information in machine learning tasks, one may consider
transforming the matrix into a one-dimensional array or vector, by simply “flattening” it. This
process is demonstrated in Figure 2.10, which depicts the transformation of a 3×3 matrix into a
1×9 vector. This vector is then subsequently fed as an input into a MLP. This method, however,
only yields an average accuracy score when applied to basic binary images and furthermore
yields little to no accuracy when applied to large and complex images having thousands of
pixel dependencies throughout [238]. Therefore, an alternative ANN architecture ought to be
considered, specifically designed to handle spatial and pixel dependencies.

6A range of grey shades from white to black.
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(a) Original image with pixels (b) Overlay of pixels and
array of numbers

(c) Array of numbers

Figure 2.9: A graphical illustration of a greyscale image of the number eight where (a) represents the
image in the form of a pixels, (b) represents the image in the form of an overlay of pixels and an array
of numbers, and (c) represents the image solely in the form of an array of numbers [293].

Figure 2.10: A simple 3× 3 matrix flattened into a 1× 9 vector [238].

The CNN architecture was first introduced by LeCun and Bengio [168] in the 1980s. Analogous
to the connectivity pattern of neurons in the human visual cortex, the CNN architecture is
designed to mimic the collection of overlapping subfields in the human brain. Each of these
subfields only respond to stimuli belonging to a specific area, called the receptive field. In terms
of CNNs, this is achieved by utilising local connectivity between neurons, and transforming the
input in a style that is hierarchically organised [185]. A CNN layer comprises a set of neurons and
several filters (also referred to as convolutional kernels7) within the layer. Each filter comprises
multiple weight values which are the trainable parameters of a CNN. The nodes produce outputs
in the form of groups of d-dimensional arrays, known as feature maps, and are used as inputs
for the next layer. A node solely receives the input from a specific window area of the previous
layer, thereby performing the role of the receptive field. CNNs enable the processing of data
that comprise some spacial dependencies (e.g. images with a two-dimensional grid-like structure)
which has resulted in a plethora of new computer vision applications [9, 35, 117, 317].

CNN architectures possess three characteristics that enable them to outperform traditional ANN
architectures when processing image data, namely: Sparse connectivity, parameter sharing, and
translational equivariance. In a typical ANN, it is common for layers to be densely connected —
each neuron in a layer is directly connected to all the neurons in the preceding and following
layer. By contrast, the connections found between neurons in a CNN are referred to as sparse —
since each neuron is only connected to a limited number of other neurons in the preceding and

7An array of weights.
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following layer. The intuition is that a sparse network requires less computational power as
there are fewer connection weights to be trained, thereby making CNNs more applicable for
computer vision tasks [240]. The difference between dense connections (also known as fully
connected) and sparse connections is highlighted in Figure 2.11. If dense connectivity is utilised
(Figure 2.11(a)), node x3 has connections to all the nodes [s1, s2, s3, s4, s5], whereas if sparse
connectivity is utilised (Figure 2.11(b)), node x3 only has connections to nodes [s2, s3, s4].

(a) Dense connectivity (b) Sparse connectivity

Figure 2.11: Graphical comparison of dense connectivity and sparse connectivity [171].

The second characteristic that enables CNNs to outperform conventional ANNs is parameter
sharing between CNN output neurons. Within an ANN, each connection weight is used only
once when computing the output of the network, whereas convolutional kernel weights are shared
across the CNN. This is a result of employing the same sets of convolutional kernel weights
across all the window areas of the input data. The sharing of these parameters reduces the
computational expenditure of the network. The third characteristic, translational equivariance,
refers to the notion that if the input changes, the output also changes correspondingly. This is
showcased by a CNN when subsampling is employed in order to only propagate prominent data,
thereby reducing the data to be processed [186]. With the reduced input data, less computational
power is required to train the network. These three characteristics all reduce the computational
burden of a CNN in order to perform machine learning tasks, thereby making it the current
dominant architecture in the computer vision realm.

2.5.1 Fundamentals of convolutional neural networks

CNN architectures comprise multiple layers, however, unlike traditional ANNs, CNNs comprise
three types of layers (or building blocks), namely: Convolutional, pooling, and fully connected
layers. The convolutional and pooling layers are employed to perform feature extraction and
dimensionality reduction, whereas the fully connected layer maps the extracted features into a
final output according so some provided task (e.g. classification). The purpose and mathematical
operations of the three layer types are discussed in detail in the following sub-subsections.

Convolutional layer

A fundamental component of a CNN architecture is the convolutional layer. The purpose of this
layer is to automatically perform feature extraction without the need of human intervention.
The convolutional layer comprises both linear and non-linear operations, namely the convolution
operation and activation functions, respectively [308]. The linear convolution operation performs
the feature extraction of the input (a multi-dimensional array of numbers, commonly referred
to as a tensor) with the utilisation of a kernel that is applied across the input.
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The linear convolution generally receives a third-order tensor as input, denoted by x, comprising
H rows, W columns, and D channels, with 0 ≤ i < H, 0 ≤ j < W , and 0 ≤ d < D. A tensor
of an image usually comprises three channels, i.e. the R, G, and B colour channels. If a grey-
scaled image is used as input, the tensor would only have a single channel (i.e. D = 1), and the
third-order tensor is reduced to a simple two-dimensional matrix. In order to extract features
from the image, different kernels may then be applied across the whole input tensor. Depending
on the set of weights for a particular kernel, different features may be extracted from the input
tensor, e.g. the detection of vertical and horizontal edges of an image [6]. The extraction of these
two particular features are graphically illustrated in Figure 2.12, where Figure 2.12(a) represents
a grey-scaled image used as the input tensor for this example. Two different kernels are then
selected for the extraction of the two different features. Two convolutions are performed on the
image, the first to extract vertical edges (visualised by the white stripes in Figure 2.12(b)), and
a second to extract horizontal edges (visualised by the white stripes in Figure 2.12(c)).

(a) Original image (b) Vertical edge detector (c) Horisontal edge detector

Figure 2.12: The effect of different convolution kernels on (a) a greyscale image, where (b) visualises
the vertical features extracted, and (c) visualises the horizontal edges extracted [210].

In order to elucidate the mathematical workings of a full convolution, consider the l-th layer of
a CNN with a third-order tensor xl, where xl ∈ RHl×W l×Dl

, as input to be transformed into
an output y, which is the input to the next layer. Assume D = 1, thereby making it a simple
matrix of size 5×5 with one single convolutional kernel of size 3×3, as illustrated in Figure 2.13.
If a kernel is placed on the top of the input matrix, the product between the numbers at the
same location in the kernel and input matrix may be computed and then summed together to
obtain a single number [306]. For example, if a kernel is placed on the top left-hand corner,
shown in Figure 2.13(a), the convolution result for the first feature map cell value would be
equal to 5. The kernel may then move a preselected number of cells to the right-hand side and
compute the next feature map cell value. The number of cell values that the kernel traverses
between positions is referred to as the stride value, denoted by S. It is common to select a stride
of S = 1, however, S > 1 may be selected in order to downsample the feature map [308]. For
this example, S = 1 is utilised. The kernel continues to move from left to right and from top
to bottom and repeat the convolution until all the cells within the feature map is computed, as
shown in Figure 2.13(b), producing a full feature map. In the case where an image has more
than one channel, the kernel has the same depth as that of the number of channels. When
the kernel is placed on top of the input tensor at the spatial location (0,0,0), the convolution
operation is repeated for each channel and the sum of all the HWDl products is assigned as the
convolutional result of the specific spatial location [154].

Convolutional layers generally comprise multiple convolution kernels. Assuming D kernels are
used, each with a spatial span of H × W , all the kernels in the l-th layer are denoted as f , a
fourth-order tensor in RH×W×Dl×D with index variables of 0 ≤ i < H, 0 ≤ j < W, 0 ≤ dl < Dl
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and 0 ≤ d < D. Therefore, in mathematical terms, the convolution procedure can be expressed
as

yil+1,jl+1,d =

H∑
i=0

W∑
j=0

Dl∑
dl=0

fi,j,dl,d × xlil+1+i,jl+1+j,dl . (2.20)

Two drawbacks from this operation include the loss of information found on the border of the
input tensor and the reduction in size of the feature map in comparison with the input tensor [6].
This occurs when no augmentation is performed to the input tensor, as in the convolution
performed in Figure 2.13. This is known as valid padding as the feature map has the same
dimensions as the kernel itself. A technique known as same padding or zero-padding, graphically
visualised in Figure 2.14, may be employed to avoid these two drawbacks. The same padding
technique results in the feature map to have the same dimensions as the input tensor. This is
achieved by augmenting the input tensor by adding a border of zeroes around it, and thereafter
applying the convolution procedure as discussed. The implementation of this technique leads to
border information having increased influence on the resulting feature map, and also provides
control over the output size of the feature map.

Input tensor

Kernel

Feature map

(a) Calculation for feature map output cell 1

Input tensor

Kernel

Feature map

(b) Calculation for feature map output cell 9

Figure 2.13: Graphical illustration of the convolution operation when calculating (a) feature map cell
1, and (b) feature map cell 9 [308].
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Input tensor

Kernel

Feature map

Figure 2.14: Same padding applied to a 5 × 5 input tensor, thereby augmenting it into a 6 × 6 input
tensor [308].

Pooling layer

In order to reduce the spatial size of the convolved feature map, it is common for a convolutional
layer to be followed by a pooling layer. The purpose of this layer is to decrease the required
computational power for data processing by reducing the dimensions of the output from the
convolutional layer while retaining useful information [172]. The pooling layer utilises a principal
called image local correlation to downsample an image. The pooling operation is performed by
mapping subregions, of size p × p, of the feature map into single numbers. The pooling layer
may downsample the height H and width W of a feature map, however, the depth D remains
the same. By downsampling the feature map dimensions, the number of parameters is reduced,
thereby yielding a decrease in network training time.

There are several pooling types available, the most prevalent of which are max pooling and
average pooling. Max pooling is performed by mapping each subregion on the feature map to
its maximum value. In mathematical terms, max pooling may be expressed as

yil+1,jl+1,d = max
0≤i<H,0≤j<W

xlil+1×H+i,jl+1×W+j,d, (2.21)

where 0 ≤ il+1 < H l+1, 0 ≤ jl+1 < W l+1, and 0 ≤ d < Dl+1 = Dl [306]. Average pooling,
on the other hand, is performed by mapping each subregion on the feature map to its average
value. More specifically, average pooling may be expressed as

yil+1,jl+1,d =
1

HW

∑
0≤i<H,0≤j<W

xlil+1×H+i,jl+1×W+j,d. (2.22)

Similar to the traversal of kernels in the convolutional layer, pooling layers also utilise stride
in order to traverse between positions and control the size of the layer output. In practice,
it is common to perform pooling with a filter size of 2 × 2 and a stride of S = 2 [308]. A
corresponding graphical illustration of the two pooling methods applied to a 4 × 4 feature
map, with p = 2 and S = 2, is provided in Figure 2.15, where Figure 2.15(a) visualises the
max pooling method, and Figure 2.15(b) visualises the average pooling method. Figure 2.16
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showcases examples of how the max pooling method was used for downsampling on three different
feature maps of the same image. The feature maps were downsized from 26 × 26 to 13 × 13.
It is important to notice how the characteristics of the feature maps remained prominent after
the pooling procedure, showcasing how pooling retains the important feature map information
while reducing the number of parameters.

Feature map Output

(a) Max pooling

Feature map Output

(b) Average pooling

Figure 2.15: Two pooling methods applied to a 4×4 feature map, where (a) visualises the max pooling
operator and (b) visualises the average pooling operator.

Figure 2.16: Max pooling of three different feature maps extracted from the image of the number
eight [308].

Fully connected layer

The fully connected layer comprises simply one or more fully connected MLPs, also known
as dense layers (i.e. each neuron receives input from all neurons of the previous layer). In
the case of image classification, the purpose of the final fully connected layers is to utilise the
condensed feature mappings and mathematical operations in order to classify the original image.
The input to the fully connected layer is a flattened one-dimensional output (as visualised in
Figure 2.10) of the final convolutional or pooling layer. This flattened array is then fed to
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the fully connected layers. Each fully connected layer employs non-linear activation functions,
where ReLU is commonly used. The final fully connected layer maps the received input to the
network output. In the case of classification, the final layer typically has the same number of
output nodes as dependent variables (e.g. classes). It is important to note that the final fully
connected layer of the architecture might implement a different activation function than the
other fully connected layers, as the final activation function is selected according to the task
that the network must perform. Commonly used activation functions include softmax, tanh,
and the sigmoid functions. Table 2.2 lists several output layer activation functions which may
be employed for various prediction tasks.

Table 2.2: Commonly applied output layer activation functions for various tasks [308].

Task Output layer activation function

Binary classification Sigmoid
Multiclass single-class classification Softmax
Multiclass multiclass classification Sigmoid
Regression to continuous values Identity

Overfitting tends to be a regular problem when training a CNN. In order to overcome these
undesired results, the dropout method may be utilised [305]. Dropout is a regulariser method
employed to prevent overfitting by stochastically setting activations of certain hidden units to
zero. This is performed for each training case during the network’s training time, resulting in
a reduction of co-adaption of feature detectors, since the neurons with a zero activation cannot
influence other retained units.

2.5.2 Prominent convolutional neural network architectures

Various technological and methodological improvements in the early 2000s led to the publica-
tion of the AlexNet architecture by Krizhevsky et al. [162], which won the ImageNet Large-Scale
Visual Recognition Challenge [62] in 2012 convincingly. The performance of AlexNet showcased
that CNN models were capable of performing object-detection tasks with considerable efficacy.
Consequently, the success of AlexNet inspired the exploration and development of new CNN-
based models, resulting in the various CNN architectures found in the literature. A timeline
of the evolution of CNN architectures between 1989 and 2019 is graphically visualised in Fig-
ure 2.17, showcasing the sudden influx of new architectures from 2012 onwards.

2015 2017

2018

2019

1989

ConvNet

1998

LeNet

2012

AlexNet

GoogleNet

VGG

2014

Inception
V2 V3 V4

ResNet
2016

DenseNet

ResNeXt

Channel
Boosted CNN

EfficientNet

Figure 2.17: Evolution of CNN architectures on 1998–2019 timeline [95].
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The distinctions between architectures relate to differences in regularisation methods (i.e. to
implement dropout, data augmentation, and/or early stopping), hyperparameter optimisation
(i.e. selection of filter size, activation functions, stride, learning rate, weights, biases), and,
most notably, structural reformation (i.e. number en sequence of layers). It was observed that
the primary reason for CNN performance improvements stemmed from the restructuring of
processing units (i.e. combination of convolutional, pooling, and fully connected layers) and the
designing of new types of processing blocks [151]. Accordingly, based on the type of restructuring,
CNNs may be categorised into seven classes, namely: Feature-map exploitation, attention-based,
spatial exploitation, width, depth, channel boosting, and multi-path CNNs. Most of the recent
innovations in CNN architectures were made in respect of spatial and depth exploitation. The
remainder of this subsection is dedicated to a more in-depth discussion of the AlexNet [162],
VGG [262], and EfficientNet [278] architectures.

AlexNet architecture

Despite inspiring several new and modern CNN architectures, AlexNet remains one of the most
efficient and effective architectures when performing image classification [252]. The overall
architecture of AlexNet is illustrated in Figure 2.18. The AlexNet architecture has eight weight
layers comprising five convolutional layers and three fully connected layers. Max pooling is
performed after the first, second, and fifth convolutional layers. The pooling layers perform
simple linear operations and are therefore not counted as weighted layers. The first convolutional
layer has 96 filters which utilise a large filter size of 11 × 11 (with an S of four), where the
second convolutional layer has 256 filters with a filter size of 5 × 5 (with an S of one), and
the third, fourth and fifth convolutional layers have 384, 384, and 256 filters, respectively, all
with a smaller 3× 3 filter size and an S value equating to one [314]. The AlexNet architecture
has 60 million parameters, which is considered to be a small network when compared with
modern CNN architectures. In order to reduce overfitting, the authors also implement data
augmentation techniques and dropout in the first two fully connected layers [162]. If dropout is
not implemented in the classification layers, AlexNet exhibits substantial overfitting.

The AlexNet architecture is adopted for solving a wide variety of complex tasks, such as: Chest
X-ray Covid-19 recognition [55], pathological brain detection [176], and time-series classification,
to name but a few. [139].

Input 
image SoftMaxfc1000fc4096fc4096fc4096fc4096conv4conv3

pool1

fc4096conv1

pool2

fc4096conv2

pool5

fc4096conv5

Figure 2.18: Overall architecture of AlexNet, where the convolutional, pooling, and fully connected
layers are visualised in green, blue, and red blocks, respectively [314].

VGG architecture

In 2014, only two years after the success of AlexNet, Simonyan and Zisserman [262] proposed
a simple CNN architecture that is similar, but much deeper (i.e. comprises more layers) than
AlexNet, called the VGG architecture. According to Khan [151], the reasoning behind the in-
crease of layers (in comparison with AlexNet) was to simulate the relation of depth with respect
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to the representational capacity of the network. There are three variants of the VGG archi-
tecture, namely VGG-13, VGG-16, and VGG-19. The architecture of VGG-16 is illustrated in
Figure 2.19. The VGG-16 architecture comprises 16 weight layers, hence the naming convention,
which consist of 13 convolutional layers each employing a convolutional filter size of 3× 3, and
three fully connected layers [314]. The S and padding of all convolutional layers in the VGG-16
architecture is fixed to one pixel. Max pooling is implemented in pooling layers with a 2×2 win-
dow and an S value equating to two. Simonyan and Zisserman experimentally showcased that
by placing small 3× 3 filters in a concurrent manner induced the same effect of the larger filter
sizes in AlexNet, while reducing the number of parameters [151]. A major downside of the VGG
architectures is that they are relatively large when compared with other CNN architectures.
VGG-16, for example, comprises 140 million parameters, the majority of which are located in
the first fully connected layer. Consequently, the three different variants, i.e. VGG-13, VGG-16,
and VGG-19, are all employed based on the computational resources available. VGG-16 is,
however, by far the most popular variant in the VGG family, as it showcases similar accuracy
performance to the VGG-19 architecture on most tasks, whilst comprising a significantly smaller
number of trainable parameters.

The VGG architecture outperformed many other architectures in the ImageNet Large-Scale
Visual Recognition Challenge in 2014. VGG also outperforms baseline accuracies on various
other detection tasks outside the realm of ImageNet. Krishnaswamy and Purushothaman [161]
showcased how a pre-trained VGG-16 model was used to detect diseased eggplants using digital
images of the samples. Zhong et al. [315] utilised two parameter sharing VGG-16 networks in
order to build a Siamese network so as to facilitate the accurate recognition of human palm
prints.

Input 
image SoftMaxfc1000fc4096fc4096

conv12

conv11

pool1

conv22

conv21

pool2

conv32

conv31

conv33

pool3
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conv41

conv43

pool4

conv52

conv51

conv53

pool5

Figure 2.19: Overall architecture of VGG-16, where the convolutional, pooling, and fully connected
layers are visualised in green, blue, and red blocks, respectively [314].

EfficientNet architecture

In order to restructure a conventional CNN architecture, the scale of either the depth, width,
or image input resolution of the architecture is altered. According to He et al. [119], increasing
the network depth, as in the case of the VGG architecture, is regarded as the most common
approach towards scaling an architecture. Deeper networks tend to capture more complex fea-
tures, resulting in improved generalisation performance with respect to new tasks [278]. Due to
the vanishing gradient problem, however, deeper networks can be challenging to train. Attempts
toward alleviating the problem by means of skip connections [118] and batch normalisation [137]
have been made, however, the accuracy gain still diminishes if the network is excessively deep.
As an example, even though ResNet-1 000 (comprising a depth of 1 000 layers) is a much deeper
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network than ResNet-101 (comprising a depth of 101 layers), both networks showcase similar
accuracies [278].

When scaling smaller sized networks, it is common to scale the network in terms of its width
(i.e. number of channels in a layer) [244]. Wider networks tend to be easier to train and capture
more fine-grained features. The trade-off, however, is that networks that are both wide and
shallow tend to not capture higher level features (or representations) [278].

Scaling the resolution of the input images may potentially lead to the capturing of finer-grained
patterns. It is common for early CNN networks to be trained on (low resolution) 224 × 224
images. For improved accuracy, modern CNN networks tend to use higher resolution images. In
2018, GPipe [127] achieved state-of-the-art ImageNet results with 480× 480 images, more than
double the resolution previously used in the literature. For notably high resolutions, however,
the accuracy diminishes, showcasing that scaling up the resolution excessively can result in no
additional accuracy gain, but increases the model complexity.

Through empirical observation, Tan and Le [278] found that scaling the dimensions of depth,
width, or resolution is not independent. Consider the case where the resolution of the input
images are scaled up. In order to capture similar features, the network depth needs to increase
as the increased resolution image comprises more pixels. Correspondingly, the network width
also has to be scaled up to capture the fine-grained patterns in the higher resolution images.
Accordingly, the scale of the three dimensions must be coordinated. In order to facilitate this
coordinated scaling, Tan and Le proposed the compound scaling method which scales each
dimension with a constant ratio, denoted by ϕ. The compound method is graphically illustrated
in Figure 2.20, where Figure 2.20(a) is a baseline architecture, Figure 2.20(b) represents scaling
by width, Figure 2.20(c) represents scaling by depth, Figure 2.20(d) represents scaling by image
resolution, and Figure 2.20(e) represents the compound scaling method.
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Figure 2.20: Model scaling dimensions, where (a) is a baseline network example, (b)–(d) are conven-
tional scaling that only increases one dimension of network width, depth, or resolution, and (e) represents
the proposed compound scaling method [278].
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The compound scaling method can be expressed mathematically as follows: Depth d = αϕ, width
w = βϕ, and resolution r = γϕ, such that α·β2 ·γ2 ≈ 2, α ≥ 1, and β ≥ 1, γ ≥ 1, where the values
of α, β, and γ are determined by means of grid search. Since scaling a model does not influence
the layer operations, it is important to have an acceptable baseline architecture. The EfficientNet
baseline architecture, EfficientNet-B0, was developed utilising multi-objective neural architecture
search [73]. The main building block of the EfficientNet-B0 is mobile inverted bottleneck blocks
(MBconv) [244], a type of residual block [118] that employ an inverted structure for efficiency
reasons. The overall architecture of EfficientNet-B0 is illustrated in Figure 2.21, where the yellow
blocks represent MBconvs. Computationally enabled by the EfficientNet baseline architecture,
together with the compound scaling method, Tan and Le demonstrated that the model can be
scaled up effectively, so much so that state-of-the-art ImageNet performance is achieved (at the
time of publication).
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Figure 2.21: Overall architecture of EfficientNet-B0, where the MBconv layers are visualised by the
yellow blocks [278].

2.6 Transfer learning from pre-trained models

Consider the following hypothetical and analogous scenario: A professional pianist (i.e. par-
ticipant A) and an individual with no musical experience or knowledge (i.e. participant B) are
tasked with learning how to play the violin. The expectation is that the skills and knowledge
that participant A obtained through years of studying and practising how to play the piano
would enable a faster learning pace when attempting to play the violin, when compared with
the pace of participant B, who is attempting to play an instrument for the first time in their life.
The reason for this expectation is that although the act of playing a piano and playing the violin
differs notably, there are many conceptual similarities as both are musical instruments requiring
a certain set of skills, e.g. motor skills, sensory skills, and a sense of rhythm, to name but a few.
Participant A is proficient in these skills as a result of his/her experience in playing piano, and
may therefore transfer these skills over in order to learn to play the piano more effectively.

State-of-the-art deep learning models are known for requiring significantly large training and
testing sets comprising well-annotated data [132]. Furthermore, in order to process these large
data sets, a significant amount of computational resources and time is required. There are many
situations where annotated data are too scarce and computational resources are too limited in
order to train new models for computer vision specific tasks. This is where a technique called
transfer learning [300] may be implemented as a method of accelerating development. Transfer
learning is a machine learning technique where parts of, or entire existing models (i.e. models
that are already trained for a specific tasks), are reused to solve a new task without retraining
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on new data. These models are referred to as pre-trained models. The intuition is that previous
weights and learnings from a pre-trained model may be utilised in order to avoid starting the
entire learning process from scratch. Similar to how the professional piano player can learn to
play the violin more effectively, due to their previously attained knowledge and experience with
another musical instrument, a pre-trained model may be utilised in order to perform a new task,
even though the model might have not been initially trained for that purpose.

A key part of the transfer learning technique is generalisation. Models utilised in the transfer
learning process must be able to generalise in order to be used in different scenarios. Many
pre-trained computer vision models were initially trained on ImageNet, comprising over a mil-
lion images classified in respect of a thousand categories [114]. The diverse set of images and
categories of ImageNet renders it an appropriate data set to train state-of-the-art CNN models
capable of good generalisation.

A pre-trained CNN model comprises two parts, namely the convolutional base, which transforms
the input image into feature maps, and the classifier, which processes the feature maps as input
and output predictions. One of the reasons why transfer learning performs well in the realm
of computer vision, is due to the capabilities of the convolutional base to automatically learn
hierarchical feature representations [259]. This results in the first few layers of the convolutional
base extracting general features, while the last few layers in the convolutional base extract more
features of a lower abstraction. Yosinski et al. [313] stated that if the first few layers extract
general features proficiently, and the last few layers extract specific low-level features proficiently,
then there must be a point in the convolutional base where the extracted features transition from
general to specific. Accordingly, the features extracted by the layers closer to the input of the
architecture are referred to as general features, whereas the features extracted by layers closer
to the classifier layers are referred to as specialised features. This is a key concept to take into
account when deciding on an appropriate transfer learning strategy.

A transfer learning strategy refers to the combination of pre-trained layers (also referred to as
frozen layers) and trainable layers (i.e. layers with weights that are retrained on the new problem-
specific data). It is common for the classifier part of a pre-trained model to be trainable in order
to produce accurate problem specific predictions, however, the convolutional base may comprise
various combinations of trainable and frozen layers [179]. There are four primary strategies for
incorporating transfer learning into a new model. These four strategies are graphically illustrated
in Figure 2.22, where the green shading refers to trainable layers and the white shading to the
frozen pre-trained layers. Strategy 1, i.e. Figure 2.22(a), relates to the case in which the entire
model is trainable on the new problem-specific data. Strategy 2, i.e. Figure 2.22(b), represents
the case in which the majority of the convolutional base is trainable on the new problem specific
data, while only the most general feature layers of the pre-trained model are kept frozen. Strategy
3, i.e. Figure 2.22(c), refers to the case when only the specialised feature layers are trainable,
while most of the convolutional base is kept frozen. Strategy 4, i.e. Figure 2.22(d), represents
the case where the entire convolutional base is kept frozen.

In order to decide which training strategy to implement, the size and similarity of the new
problem-specific data set must be compared with the data on which the pre-trained model was
trained. This decision may be guided by a size-similarity matrix, graphically illustrated in
Figure 2.23(a), with a corresponding strategy selection matrix visualised in Figure 2.23(b). The
selection process is performed as follows:

� Quadrant 1: If the problem-specific data set is considered a large data set, but the type
of data differs significantly from the data on which the pre-trained model was trained,
Strategy 1 ought to be followed. Since a large well-annotated data set of the specific
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Figure 2.22: Strategic implementation of pre-trained models with regards to (a) training the entire
model, (b) and (c) training some layers and leaving others frozen, and (d) freezing the convolutional
base [179].

problem is available (and if the computational resources are available), the convolutional
base of the model may be fully retrained. This yields the most accurate results, as the
pre-trained data differ significantly from the problem specific data.

� Quadrant 2: If the problem-specific data set is small and the data differ significantly,
Strategy 2 ought to be implemented. This is a challenging situation, as the data might
not be sufficient to retrain the entire model, and the two data sets differ significantly from
the specialised layers of the convolutional base to improve the accuracy. In this case, it is
best to attempt to freeze the most general feature layers, and retrain the remainder of the
convolutional base with the data that are available.

� Quadrant 3: If the problem-specific data set is large and the data are also similar to the
data on which the pre-trained model was trained, the user has the option to retrain some of
the more specialised layers in order to maximise accuracy, which corresponds to Strategy
3. Even though it might not be required to retrain most of the layers, due to the similarity
of the two data sets, the user does have the flexibility with the large problem specific data
set to attempt to improve the weights of the last few specialised layers in the convolutional
base.

� Quadrant 4: If the problem-specific data set is small, yet similar to the data on which
the pre-trained model was trained, Strategy 4 ought to be followed. The small size of the
problem specific data set would make it challenging to retrain the weights of any layer to
an acceptable level when compared with the fully pre-trained model.

After an appropriate strategy for training the convolutional base is selected, the second part of
the model, i.e. the classifier, must be selected and built. There are a few different approaches in
order to build a correct classifier. The most popular approach, especially for image classification,
is to use a combination of a few fully connected layers, followed by a final Softmax activated
layer, as discussed in §2.5.1. Another approach, proposed by Lin et al. [173], is to simply add a
global pooling layer in order to reduce the spatial size of the convolved feature maps, followed
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Figure 2.23: The size-similarity matrix and the corresponding decision map for pre-trained models [179].

by a final Softmax activated layer. Finally, according to Tang [279], the classifier can be trained
with a linear support vector machine (SVM) classifier in order to improve accuracy.

Regardless of the approach adopted, the high-level overview of the transfer learning process is as
follows: Identify and obtain a pre-trained model that is most appropriate for the specific problem
at hand. Thereafter, the size-similarity matrix may be utilised in order to decide on a training
strategy for the convolutional base of the pre-trained model, based on the data and resources
available. A classifier that receives the feature maps as input and produces the predictions then
follows. As a final step, attempts towards improving the model performance may be made with
fine-tuning, which may include freezing and/or unfreezing some layers in the convolutional base
of the pre-trained model and retraining the model.

Ultimately, utilising a pre-trained model in order to make new problem specific predictions
may result in a markedly faster experimentation and prototyping process, while simultaneously
requiring less resources and potentially yielding state-of-the-art performance.

2.7 Chapter summary

This chapter contained a review of the most relevant and pertinent literature pertaining to deep
learning (and more specifically, FNNs, RNNs, LSTMs, and CNNs). The reader was presented
with the necessary background information so as to facilitate an understanding of the remainder
of the research reported in this thesis.

In §2.1, the fundamentals of ANNs were explained by addressing the inspiration for ANNs —
the biological neural network — activation functions, and network learning and training. This
was followed by discussions on the main classes of ANNs, where FNNs were explored in §2.2.
The focus of this thesis — i.e. RNNs, LSTMs, and CNNs — were elaborated upon in more
detail. A discourse on RNNs was conducted in §2.3 during which the reader was introduced to
the vanishing gradient problem, a problem that receives considerable attention in the realm of
ANNs. This was followed by an exploration of LSTMs in §2.4, where relevant applications of the
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network were discussed. CNNs, the most relevant ANN type for this thesis, were discussed in
detail in §2.5. Moreover, the most prominent CNN architectures were discussed. As a technique
regularly employed in computer vision tasks, transfer learning was finally discussed in §2.6, with
an emphasis on the implementation strategy of this technique.
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The aim in this chapter is to review the pertinent literature pertaining to OCR engines. The
reader is introduced to the general structure of a typical OCR engine so as to facilitate an
understanding of the various steps that take place when digitising text contained within a
document. The chapter opens with a discussion on the general background of OCR engines
and the typical challenges faced when digitising text within an image. This is followed by a
more in-depth discussion of each of the major phases that constitute a typical OCR engine.
Thereafter, a discourse on different OCR evaluation and metrics is provided. Two prominent
OCR engines considered in this thesis, i.e. Tesseract and EasyOCR, are explored. The chapter
concludes with a concise summary of the discussed literature.

3.1 OCR engines

The amount of data in the world is growing exponentially. It has become impractical and
inefficient to store these data in physical paper format — hence the need for data to be stored
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digitally. Paper-based documents are, however, still integrated into many active systems in
the industry. Consequently, a need for automated text recognition arose in order to incorporate
paper-based documents into digital systems. The trained human brain possesses the capabilities
to recognise text/characters from an image with ease, even from a young age, while machines still
lack the intelligence to perform these actions to the same degree of accuracy and/or speed [8].
Consequently, a plethora of research efforts and development have been proffered in an attempt
to transform document images accurately into machine encoded data.

3.1.1 Origins of OCR engines

Commonly known as OCR, the process of digitising text is defined as the recognition of text
(specifically machine printed or handwritten text) within image data by employing a comput-
erised system with an optical mechanism for data extraction [96, 196, 294]. This operation is
performed to enable the text to be searched, stored more efficiently, displayed on-line, edited,
and utilised in computerised processes. OCR engines are inspired by the human sense of sight
and are modelled to resemble how a human would perform the same task, utilising the eyes as
input devices and the brain as a data processor. After the introduction of OCR in the 1950s, the
traditional use-case was to recognise characters on a provided image by matching (with the use
of some known metric) the characters against a limited reference set of known patterns in the
alphabet. Accordingly, OCR was considered as a branch of the field of pattern recognition [28].

Throughout most of the twentieth century, various OCR engines have been developed for com-
mercial use. These commercially focused OCR engines may primarily be categorised into one
of two groups, namely: Task-specific OCR engines and general purpose OCR engines [272].
A task-specific OCR engine is designed to read only a specific document type. Examples of
task-specific documents include process forms, credit card slips, mailed letters, or bank cheques.
These OCR engines are usually designed to capture a number of custom-made predefined doc-
ument regions. In order to elucidate this concept, consider the components of a standard bank
cheque. An OCR engine designed to digitise bank cheques may be customised to only scan the
amount block, name block, and date block, thereby decreasing the complexity of the system
significantly. Task-specific systems are commonly characterised by high throughput rates and
low error rates. A general purpose OCR engine is designed to be capable of reading various
document types. A single general purpose OCR engine may be employed, for example, to read
newspapers, business letters, and technical letters. A general purpose OCR engine is significantly
more complex than a task-specific OCR engine. Typically, a general purpose OCR engine cap-
tures the selected document image, separates the text and non-text regions of the image, and
applies OCR to the text regions. General purpose OCR engines are typically characterised by
lower data throughput than a task-specific OCR engine, however, recent advances in the field
have led to a significant increase in the data throughput rate of high-end page readers [196].

Factors that might contribute to the weak performance of the classifier include image defects,
similar symbols, punctuation, and typography. Typical examples of an error prone misclassifica-
tion of symbols are when the punctuation symbol “,” is confused with the punctuation symbol
“.”, when the numeral “0” is confused with the letter “O”, or when the numeral “1” is confused
with the letter “I” or the letter “l”. Although research in developing new classifier methods
continues to be active, the industry has shifted its focus primarily to the implementation of
tried and tested conventional methods.
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3.1.2 OCR challenges when digitising printed text

While general purpose OCR engines showcase improved performance in respect of digitising
machine printed text, when compared with handwritten text, character misclassification can still
occur when digitising machine printed text if the circumstances are considered to be substandard.
In order to achieve improved recognition accuracy, the OCR engine requires high quality and
high resolution input images. Moreover, it is preferable for these images to have pronounced
differentiable structural properties between the text and the background of the image [196].
If an inadequate classifier method is employed, the OCR engine might lack a proper response,
resulting in classification errors. Consequently, it is essential to ensure that the image is captured
at the best possible quality. There are several image capturing challenges that can lead to
a substandard captured image. Discussions on some of the most prevalent challenges when
digitising text, specifically pertaining to the capturing of the image, follow:

� Scene complexity: A device used regularly to capture document images is a cellphone
camera. When this informal capturing method is employed, it is common for objects of
the environment (e.g. table textures, other background pages, furniture) to be included on
the outer edges of the image. A large number of objects in the natural environment might
have comparative structures to that of printed characters, thereby rendering it challenging
for the OCR engine to segregate text from non-text [111]. Likewise, if a dirty and/or
faulty scanner is used to scan a paper document, unintended marks might be present on
the page, increasing the complexity of the recognition process.

� Inconsistent lighting conditions: Capturing a document image in an environment that is
not characterised by even lighting can prove troublesome. This might not be problematic
to the human eye, however, inconsistent lighting might result in significant portions of the
document image having a different shade when compared with the remainder of the page,
increasing the complexity of the task [218]. In the case of a flatbed scanner, this might
arise if the paper document has various folds and creases, causing shadows on the affected
areas.

� Skewness (rotation): Most open-source OCR engines are trained to receive as input text
lines that are parallel to the horizontal baseline of the image. These OCR engines might
struggle to produce an acceptable outcome when attempting to classify characters from
document images that are captured with a unique orientation, i.e. scanned in skew or
taken from a hand-held camera [257].

� Blurring and degradation: In order to achieve the best possible recognition, character
sharpness is essential. There are various document scanners and digital cameras available
for capturing images of text, all of that comprise a unique set of characteristics which
influence the sharpness of the captured image. If the characters are blurry, the OCR engine
might struggle to identify discriminative features used to recognise characters [273].

� Perspective distortion (tilting): Text captured with document scanners are usually con-
stantly parallel to the plane of the sensor capturing the text, however, this is not always
the case when capturing text in a natural environment. It is common for certain characters
in the text to be closer to the camera. Accordingly, some characters might seem to be
larger in scale when compared with the remainder of the characters, even though all the
characters are actually similar in size. Most OCR engines are not perspective intolerant,
resulting in lower recognition accuracy [190]
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� Warping: Text on objects of varying geometrics might result in twisted characters. This
capturing defect is observed in document scanners when the text of a thick book is scanned,
and the entire page could not be exactly parallel to the sensor surface.

Printed text possesses various structural properties, namely font style, font size, font colour,
spacing between words, underlined words, bolded words, language, and alphabet type. Several
of these properties might add to the complexity of the digitisation process, especially if different
combinations of these properties are found on a single captured image. Discussions on some of
the most prevalent challenges when digitising text, specifically pertaining to the text properties,
follow:

� Aspect ratios: Different use-cases of text might require different aspect ratios. The aspect
ratio of text on traffic stop signs differs from the aspect ratio of the text used on document
pages. Consequently, location, scale, and length of captured text needs to be consid-
ered when recognising characters [111]. This, in turn, introduces increased computational
complexity.

� Fonts: Various styles have been developed for different use-cases. Some complex font styles,
e.g. italic fonts, might overlap between characters, increasing the complexity of performing
character segmentation. Other font styles comprise thick (i.e. bold) line strokes, potentially
reducing the structural detail of the characters. Another property to consider is the number
of fonts captured on an image. If multiple font styles are captured in a single image, the
OCR engine must consider a large number of different character classes, thereby increasing
the complexity of the task. According to Manna et al. [165], OCR engines trained on a
single font, known as mono-font OCR engines, perform well when digitising a single font
type, but struggle when multiple fonts are introduced.

� Multilingual environments: Although many languages based on the Latin alphabet have a
considerable number of characters, they remain relatively small when compared with the
number of character classes of other alphabets, e.g. Arabic, Chinese, Russian, and Korean.
Moreover, some alphabets are regarded as even more complex as some characters are
connected when typed or written as a word, changing the writing shape of the characters.
The differences in alphabetic character types and writing styles between some of these
languages are considerable. In order to showcase these stark differences of character shapes
and connections, the English word for “cat” is visualised in Figure 3.1, using five different
alphabetic systems. Consequently, OCR engines trained on a specific alphabetic system
cannot be used to recognise characters of another alphabetic system [111].

3.2 Major phases of optical character recognition engines

Several computerised OCR engines have been developed over the years with some of the oldest
dating back to the 1980s [28]. A fully functional OCR engine comprises many components,
grouped into three stages, namely: The image acquisition stage, the prediction stage, and the
output distribution stage. These three sequential stages, specifically employed for document
images, are visualised in Figure 3.2. The document digitisation stage is employed in order to
capture the physical document into a document image. Thereafter, the captured document image
undergoes several processing steps, facilitating the character classifications. Finally, the classified
characters are exported as the primary output of the OCR engine in the output distribution
stage.
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cat
(a) Latin

ةطق
(b) Arabic

猫
(c) Chinese

кошка
(d) Russian

고양이
(e) Korean

Figure 3.1: Visualisation of the English word “cat” where (a) employs the Latin alphabet, (b) the
Arabic alphabet, (c) the Chinese alphabet, (d) the Russian alphabet, and (e) the Korean alphabet.

3.2.1 Image acquisition

When digitising text in a document, the first step is to capture the document into an appropriate
structure that can be viably processed by a computer. This is commonly achieved by optically
scanning the document with a document flatbed scanner. In order to utilise the scanned image
data in the second stage of the OCR engine, modern optical recognition methods require that
the scan be performed with a scanner that can output an image spatial resolution of at least
300 dots per inch (DPI)1 and can greatly benefit if grey-scale text imagery (i.e. a range of
different monochromatic shades from black to white) is available [125]. It has been reported that
utilising low resolution and bi-tonal thresholding (i.e. only pure black and white) may lead to the
scan breaking thin lines and/or filling gaps, which distorts character features required for the
character recognition stage [28]. Fortunately, recent advances made in the field of optical scanner
technology have resulted in high resolution scanners to be widely available for commercial use.
After successfully scanning the text document, the attained image data are then used as input
for the character recognition stage.

3.2.2 Preprocessing

The performance of an OCR engine is directly dependent on the quality of the input image
data [188]. In the case of OCR tasks, a good quality input document image is defined as
an image in which characters are easily distinguishable from the background upon which it is
printed, enabling the OCR engine to recognise the characters easily. Some of the characteris-
tics associated with high quality document images are sharp character borders, high contrasts,
suitably-aligned characters, and as little pixel noise as possible [65]. Some of the challenges dis-
cussed in §3.1.2 (e.g. uneven lighting, skewness, blurring, tilting, and warping) may increase the
complexity of the captured image, impeding the performance of the OCR engine. Accordingly,
enhancing the quality of the image by employing image enhancement techniques is an essential
step of any OCR engine. The workings of specific document image enhancement techniques are
elaborated upon in more detail later in this thesis.

1DPI is the physical dot density of an image used to measure the resolution of scanned images.
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Figure 3.2: The three sequential stages of a typical OCR engine.

3.2.3 Segmentation

After the document image is preprocessed, segmentation of the text ensues. Segmentation is
the process of classifying the document image into homogeneous zones, i.e. areas of specific
information types, whereafter the text in the document image can be isolated from the back-
ground of the document image [111]. Document segmentation ensures that when the document
is converted into an electronic format, the logical structure and format of the original document
is preserved in order for the output to be fully utilised [28]. Generally, this is achieved by first
sequentially segmenting the text lines, followed by the words within those text line segments,
and thereafter, the characters within those word segments. For most OCR engines, the success
of this step is a major contributor to the performance of the overall OCR output.

There are three categories of algorithms that may be followed for segmenting the image, namely:
Top-down methods, base-up methods, and hybrid methods. The most popular of these methods
is the top-down methods which starts with segmenting the document into large regions, recur-
sively, and then segmenting each of those regions into smaller subregions. This is repeated until
a stopping criterion is met. Base-up methods, on the other hand, start by locating interest pixels
and then grouping these pixels into connected components that form part of text characters on
the document image. These characters may then be combined in order to form words, which
combine to form text lines. The hybrid methods utilise a combination of the top-down and
base-up methods. The output obtained after employing a segmentation method, is a variety
of isolated characters. These characters are then to be standardised into a particular size for
processing [189].
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3.2.4 Feature extraction

Feature extraction is then performed, where essential characteristics of the symbols in the text
are captured and profiled as feature vectors [136]. These feature vectors are then to be used as
input for the classifier to predict the characters. The selection of which and how many features
to extract remains an important research question. Geometrical features (e.g. loops and strokes)
and statistical features (e.g. moments) are examples of possible features to extract [8]. There
are several techniques in the literature for extracting features from the segmented characters.
One such technique is called zoning, as graphically illustrated in Figure 3.3(a). A character
can typically be separated into several zones of predefined size, such as 2 × 2, 4 × 4, and so
forth. The pixel density of the image may then be broken down into each zone. The number of
pixels associated with each zone represents the numeric values used for this feature. Distance
profile features is a category of features that measures the distance from the merge box of
the image to the edge of the character by number of pixels [289]. Examples of horizontal
and vertical profile projections of the character “A” are graphically illustrated in Figure 3.3(b)
and Figure 3.3(c), respectively. Another technique is to extract projection histogram features.
Projection histograms calculate the number of pixels associated with the character in bins along
a specific direction. These are features that are projected in horizontal, vertical, or diagonal
directions [87].

(a) Zoning extraction (b) Horizontal profile projection
extraction

(c) Vertical profile projection
extraction

Figure 3.3: Feature extraction techniques visualised for the character “A”, where (a) employs zoning,
(b) employs horizontal projection, and (c) employs vertical projection [289].

3.2.5 Character classification

The character profiles of the text symbols are used as input for a classifier that attempts to
recognise the text. OCR engines broadly use methodologies that utilise pattern recognition,
where each segmented character is assigned a probability of the character belonging to a certain
class. The feature vectors provided as input must have contrasting characteristics in order to
be successfully recognised [189]. When developing an OCR engine there are various classifier
types to choose from, each with their own advantages and use-cases. The selection of the
classifier depends on several factors, the most important being the nature of the data to be
trained on [111]. The least complex classifier method involves utilising template matching.
Stored vectors are simply matched to the shape of the segmented characters. Gathering the
shape, curvature, and pixel densities, a level of correspondence between the stored vectors and
the segmented characters is determined. This method is notably sensitive to noise and subtle
disfigurements. The classifier that is utilised the most in OCR engines is the probabilistic neural
network classifier. The process of humans classifying characters is seen as heuristic rationale
— people can improve upon their recognition skills through experience. Neural network are
deemed an appropriate classifier for this task [67]. This classifier employs fully connected FNNs
in order to perform the predictions. A softmax activation function must be used in the final
fully connected FFN as there are multiple character classes.
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3.2.6 Post-processing

Post-processing is performed with the aim to reduce possible errors made by the classifier. While
preprocessing aims to “clean” document images, post-processing, on the other hand, takes aim
solely at the text output of the classification step. Exhibiting semantic, context, or linguistical
information (in respect of the document image) may greatly contribute to the success of post-
processing [111]. The least complex example of post-processing corresponds to the case in which
linguistic information is known, rendering it feasible to utilise a dictionary for comparing model
output words with the words in a dictionary. If a word produced by the engine is not a real
word in the specific language, yet markedly similar to a word in the dictionary, then it may be
assumed that it was an OCR error. The word may then be processed into the dictionary word
if certain conditions are met. This is the same principle adopted in the context of spell checking
software.

3.2.7 Output distribution

The output distribution stage receives the predicted and post-processed OCR text of the char-
acter recognition stage and presents it for further analyses. Although this stage is simple to
execute, it represents the primary communication method of the OCR results and ought to be
considered as a vital part of the OCR engine. It is common for these results to be exported
directly into comma separated value (CSV) spreadsheets, word processors, and/or databases.
Another method is for the OCR results to be used directly as input to a downstream automated
computer process.

3.3 Optical character recognition evaluation metrics

Research on OCR engines has been active for several decades, as alluded to earlier. There
are a wide variety of standardised evaluation metrics available, developed through research
outputs and open-source implementations in the industry. These evaluation metrics, however,
only provide a partial perspective of the real-world performance of the OCR engines. For the
remainder of this thesis, the actual text on a document image (i.e. text that can be annotated
if required) is referred to as the ground truth, whereas the text produced by the OCR engine is
referred to as the OCR text. In this section, the OCR accuracy analysis workflow is discussed,
where string comparison considerations, commonly used evaluation metrics and tools, and the
challenges of these approaches are explored.

The OCR accuracy analysis workflow comprises the steps performed in order to compute and
analyse the performance of the selected OCR engine [280]. This workflow is graphically illus-
trated in Figure 3.4. The process starts by receiving two flows of information, i.e. the ground
truth labels in a structured format, and the captured document images. For the first infor-
mation stream, the ground truth is stripped from any tags and/or styles embedded within the
labelled text. This may include punctuation marks, number words, white spacing conventions,
and upper-case words. Thereafter, the ground truth text is processed into an appropriate array
of text in order to be compared with the supplementary flow of information. For the second
information stream, the captured document images undergo transformation from pixel data into
machine-encoded data, i.e. the OCR text. The output is then processed into an array of text, in
a similar fashion as the ground truth, in order to be fairly compared. Thereafter, the two arrays
are compared, utilising some preselected distance algorithm. The results of this algorithm are
then used to compute an evaluation metric, representing the performance of the OCR engine.
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Figure 3.4: A typical OCR accuracy analysis workflow [280].

In order to develop an evaluation metric for OCR engines, it is important to understand how
strings are compared with one another. The most widely used metric for measuring the difference
between two strings is called the Levenshtein distance [170]. Conceptually, the Levenshtein
distance algorithm is defined as the minimum number of single-character modifications required
to change a string of characters into another string of characters. There are three different change
operators that may be applied, namely: Insertions, deletions, and substitutions. An insertion
is the act of appending a new character into the string, a deletion is the act of removing a
character from the string, and substitution is the act of replacing an existing character with a
new character.

Computing an evaluation metric may become complicated when certain scenarios arise [94].
In order to elucidate a scenario called case folding, consider three strings extracted from full
sentences, i.e. string A comprising the characters “White House”, string B comprising the char-
acters “white house”, and string C comprising the characters “White house”. It is clear for a
human that string A refers to the official home of the President of the United States, while both
string B and C refers to a simple house that is white, but that the upper case “W” in string C
is most probably the beginning of a sentence. Depending on the domain of the ground truth,
the developer of the evaluation metric ought to make an informed decision whether the case of
a letter must be discounted or not.

Another scenario to consider is white spacing. Blank or white spaces play an important role
in sentences, as it is the primary operator to separate words from one another (e.g. the string
“mangoes” differs significantly in meaning when compared with the string “man goes”). Conse-
quently, the manner in which white spaces are treated must be considered when computing an
evaluation metric. There is, however, special cases to consider in scenarios where multiple white
spaces are detected. For example, there is a character difference between the string “deep learn-
ing” with a single space and the string “deep learning” with two spaces, yet the meaning of
the strings is understood to be the same by a human. There are various such recognition errors
where the developer of the evaluation metric must decide whether to consider these scenarios as
erroneous in comparison with the ground truth, or not.

The origins of the most common evaluation metrics used in OCR related research dates back to
Stephan V. Rice [224]. Described by Rice in his doctoral dissertation in 1996, ascertaining the
quality of text recognised by an OCR engine is regarded as the measurement of the manipulation
of character strings, which are transformed by an edit distance algorithm. When computing the
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edit distance, Rice recommends Ukkonen’s algorithm [287], a close variant of the Levenshtein
distance algorithm. Moreover, Rice notes the importance distinguishing character-level accu-
racy from word level accuracy, as in some cases it is more important to measure the accuracy
of absolute words when compared with the general character accuracy of the text. In 1996,
the evaluation methods recommended by Rice were implemented in the Information Science
Research Institute Evaluation Tools [93].

Another approach to the evaluation of OCR performance is not to use character accuracy, but
rather to use the character error rate (CER), i.e. the inverted accuracy [94]. CER is defined as
CER = (i + s + d)/n, where i denotes insertions, s denotes substitutions, d denotes deletions,
and n denotes the total number of characters in the ground truth. Similarly, the word error rate
(WER) may be defined as WER = (iw + sw + dw)/nw, where iw denotes the number of words
inserted, sw denotes the number of words substituted, dw denotes the number of words deleted,
and nw denotes the total number of words in the ground truth.

Several systematic studies of OCR quality, in the context of mass recognition, have been per-
formed throughout the past two decades. In 2009, Tanner et al. [280] examined the OCR text
quality of the digitised British Library newspaper archive. Although CER was used for most
OCR evaluation metrics at the time, Tanner et al. argued that the evaluation metrics ought to
be orientated to the intellectual aims desired by the user of the OCR text, and that CER does
not achieve that aim. In order to elucidate this predicament, consider the following example
where a given paper document image comprises 1 000 words with a total of 5 000 characters. If
the OCR engine yields a 10% CER, a total of 500 misclassified characters is to be expected.
These 500 characters are spread throughout the 1 000 words. If we assume each word comprises
five characters, the following two possible extremes are possible: The 500 incorrect characters
might all be in words where all the characters are misclassified, resulting in a maximum WER of
10% (i.e. 100 words are misclassified), or on the other extreme, if a single incorrect character is
found within 500 different words, it would yield a WER of 50% (i.e. 500 words are misclassified).
As a result of this example, Tanner et al. show that CER does not represent the utility of the
OCR text to the end-user, and is therefore not an appropriate evaluation metric for real-world
applications. Accordingly, they proposed the so-called significant-word-accuracy-rate. This eval-
uation metric only considers the proportion of significant words that are incorrectly recognised.
Tanner et al. defined a word as significant only if the word is relevant to the capturing of the
document contents. In order to select these significant words, it was recommended to keep the
following considerations in mind:

� Search accuracy,

� volume of search results returned,

� ability to structure search results,

� extent of correction required to achieve desired performance, and

� accuracy of result rankings.

The Pattern Recognition and Image Analysis (PRImA) research lab has made major contri-
butions to the evaluation of OCR engines, developing several OCR labelling and evaluation
standards. The Page Analysis and Ground-Truth Elements (PAGE) format [216], released in
2010, is an XLM-based2 standard for ground truth text. It enables the user to capture granular

2Extensible Markup Language is a markup language and file format for storing, transmitting, and reconstruct-
ing arbitrary data.
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image features, structural layout, and reading order information. In 2020, PRImA developed
Flexible Character Accuracy (FCA) [53] which facilitates the evaluation of the reading order
of the recognised word. This is a particularly important evaluation metric to consider as the
meaning of most sentences and words may differ significantly depending on their position in a
sequence of words.

When constructing an evaluation metric, it is crucial to take the amount of available ground
truth data into consideration. This may refer to the number of document images that are
considered fully labelled (i.e. the entirety of the text is annotated), or the number of pages
of the document images that are partially labelled (i.e. some of the text is annotated), or the
number of document images that are not labelled. Another strategy to evaluate the OCR engine,
if sufficient ground truth data are available, is to apply random sampling of the ground truth on
the document pages [280]. The primary advantage of this method is that the adherence of the
evaluation metric is computed on randomised samples, rendering the metric more reliable when
compared with manual selection. A significant disadvantage of this method, however, is the
notion that not every aspect of a document is deemed equally important [200]. When extracting
text from a newspaper, for example, it is considered crucial to correctly recognise the heading
of the article, while correctly recognising every word in the body of the article as being less
important. Another example to consider is the relative importance of recognising the address
block of a letter, in comparison with the closing lines of the content itself.

3.4 Prominent optical character recognition engines

With the advent of GPU-computation and the rise of deep learning methodologies in the past
two decades, several new open-source OCR engines have been developed. There are a multitude
of approaches ranging from notably simple ones, which can only recognise single language pre-
processed characters, to significantly advanced ones, which employ advanced machine learning
techniques and recognise both handwritten and printed text in multiple languages. The time-
line from 1985–2021 of some of the most well-known OCR engines are graphically illustrated in
Figure 3.5. The remainder of this section is dedicated to in-depth discussions of Tesseract [92],
the most prominent OCR engine to date, and EasyOCR [141], one of the latest OCR engines
which employs a variety of modern deep learning techniques.

2017

2009

2020 2021

1985

Tesseract

1989

ABBY FineReader

2003

OCRopus

OCRFeeder

1998

AspriseOCR

Kraken
2019

KerasOCR

EasyOCR

PaddleOCR

MMOCR
2007

DynamsoftOCR

Figure 3.5: A chronological depiction of prominent OCR engine releases.

3.4.1 Tesseract

The Tesseract OCR engine was developed by the computer hardware company HP in 1985 [268].
The engine was first introduced to the public at The 4th University of Las Vegas Annual Test
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for OCR Accuracy [223] where the engine showcased excellent performance and was on par with
well-known commercial engines of the time. In 2005, HP released the Tesseract OCR engine as
open-source, whereafter, in late 2006, the development of the engine was taken over by Google.
Tesseract OCR had five major stable release versions, with the latest version 5.1.0 being released
in November 2021 [92]. Tesseract version 5.1.0 has a new LSTM-based engine. The engine
requires a significant amount of training data and is a lot more computational expensive when
compared with its earlier versions [52]. Consequently, the Tesseract engine that is discussed and
utilised in this thesis is the Tesseract version 3.0.0.

The processing performed by Tesseract version 3.0.0 is in the form of a traditional pipeline, how-
ever, some of the stages were seen as unusual in comparison with other commercial approaches
of the time. The first major step of the Tesseract architecture is to perform page layout analysis
in order to segment the image into text and non-text regions. The process removes vertical
lines and images utilising morphological processing from Leptonica [26], whereafter candidate
text blocks are created around the remaining text regions [4]. Thereafter, the lines, words, and
characters must be segmented from each other. This is achieved by implementing a connected
component analysis in order to identify the outlines of components. These outlines, known as
blobs, comprise a nesting of outlines, with a number of child outlines, and grandchild outlines
within.

After attaining the component blobs, line and word finding take place. This is done in four
sequential steps, namely: Line finding, baseline fitting, fixed-pitch detection and chopping, and
proportional word finding. A key part of line finding is to filter out blobs and line construction.
Blob filtering is performed by removing components that are smaller than some fraction of the
median height of text approximated by the engine. A simple line finding algorithm, published
by Smith [267], was designed in order to attempt to identify skew lines. Blobs overlapping by at
least half horizontally are grouped as text lines. Thereafter, baseline fitting takes place where
the text lines are fitted to the horizontal baseline utilising the quadratic spline interpolation3

method [194], which also enables Tesseract to handle images with curved baselines. Next,
the engine searches for text lines having a fixed-pitch, whereafter it separates the blobs into
characters by chopping the word up into segments. The separation process of the blobs is
graphically illustrated in Figure 3.6. This can, however, only be applied to fixed-pitch text lines.

Figure 3.6: A graphical illustration of the fixed-pitch word “mountains” separated into characters [268].

Proportional word finding, the final step in the word finding procedure, is implemented in order
to find words on a non-fixed-pitch text line. Typical problems faced when searching for words
are shown in Figure 3.7. Consider the string “11.9”% shown in this figure. The space between
the “11” and the “.” is similar to the general white space, and is certainly larger than the space
between the bounding boxes of the two strings “erated” and “junk”. There is almost no space
between the bounding boxes of “of” and “financial”. These mentioned examples are common
problems faced by any OCR engine. Tesseract tackles these obstacles by measuring the gaps
in the limited vertical range between the baseline and the mean line. If the engine struggles to

3A way of finding a curve that connects data points with a degree of three or less.
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Figure 3.7: A graphical illustration of various scenarios faced by OCR engines [268].

segment certain parts of the text line, the final decision on the word segmentation will be made
after the word recognition stage.

After the initial round of segmentation, several words have been segmented into characters
coming from the fixed-pitch text lines, and other words from the non-fixed-pitch text lines,
which still require further segmentation. Tesseract attempts to separate the non-fixed-pitch into
characters by chopping the blobs up into different segments. In order to achieve satisfactory
results, multiple candidate chopping points are identified on the blob. These candidate chopping
points are found on concave vertices of a polygonal approximation [269] of the outline. A set
of candidate chops are graphically illustrated in Figure 3.8 for the word segment “arm”. A
candidate chop formed with two chop points can be seen between the “r” and the “m”.

Figure 3.8: A graphical illustration of the word segment “arm” and all its candidate chopping
point [268].

The next major step in the Tesseract engine is feature extraction. Topological features developed
from the work of Shillman et al. [25] were utilised in earlier versions of the Tesseract engine.
Bokser [27], however, argues that these features are not robust when it comes to real-world
problems found in captured images. The breakthrough solution is to use segments of a polygonal
approximation as features (shown in Figure 3.9(a)), and then to use features extracted from the
outlines of the unknown character (shown in Figure 3.9(b)). The overlap of the physical features
are shown in Figure 3.9(c), where the solid black lines are that of the polygonal approximation
that are used as prototypes, and the broken red lines are that of the extracted outlines of the
unknown character. A problem to take note of, however, is the computationally expensive nature
of computing the distances between the different feature sets. Finally, classification may take
place by computing the similarity of the unknown character to that of the different classes of
polygonal approximations.

The Tesseract engine was originally developed in C++ and has wrappers for Python, Java and
Ruby [265]. The engine can recognise text from more than a hundred languages. Moreover, the
Tesseract engine provides notable flexibility with respect to the page segmentation procedure,
enabling a user to segment the text regions into tables, paragraphs, text lines, or simply a single
text block [92]. An engine mode may also be selected, ranging from either utilising the legacy
engine (version 3.0.0), utilising the new LSTM engine, or combining the LSTM and legacy
engines. The Tesseract engine is optimised for implementation on a CPU, and is known for its
good performance when digitising scanned documents [177]. The most noteworthy drawbacks
of the Tesseract engine include its inability to utilise the computational power of a GPU and
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batch processing, and that the specific page layout analysis technique utilised by the Tesseract
engine is seen as inferior to its deep learning counterparts.

(a) Polygonal
approximation of “h”

(b) Outline of unknown
character “h”

(c) Overlay

Figure 3.9: Classification of the character “h” graphically visualised, where (a) is the polygonal ap-
proximation of “h”, (b) is the outline of unknown character “h”, and (c) is the overlay [289].

3.4.2 EasyOCR

The EasyOCR engine is an open-source project created and maintained by Jaided AI [141],
a company that specialises in OCR services. The engine was developed in Python using the
PyTorch library [212], and was released in 2020. As the name suggests, the EasyOCR engine is
simple and lightweight to implement when compared with its peers.

A primary function built into the EasyOCR framework is for users to be able to insert any state-
of-the-art models into the EasyOCR engine. This enables the user to easily utilise the latest
models by simply implementing them into the current EasyOCR pipeline [141]. The EasyOCR
framework is visualised in Figure 3.10, where the two grey blocks represent the input image and
the output OCR text, the green blocks represent the optional processing of the data, and the
blue blocks the changeable modules.

Input
Image

Pre-
process

Other
detection 
models

CRAFT
Mid-

process
VGG+LSTM+CTC

Other
recognition models

Greedy
decoder

Other
decoders

Post-
process

OCR
text

Figure 3.10: A graphical illustration of the EasyOCR framework [141].

The base framework initialises upon receiving the input images. Optional preprocessing may
then be performed. Thereafter, the processed images undergo the segmentation stage. Easy-
OCR utilises the Character Region Awareness for Text Detection (CRAFT) algorithm [19] for
segmenting the text from the background of the image. CRAFT is designed with a CNN which
produces two different metrics, namely a region score, and an affinity score. The region score
is used to localise all the individual characters on the provided image, whereas the affinity
score is used to group these characters into a single instance. Utilising these two scores enables
the CRAFT algorithm to exploit character-level region awareness. This newfound awareness, in
turn, facilitates the detection of text with various shapes and locations on complex backgrounds.
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After the segmentation step is performed, optional processing of the segmented data may then
be applied.

In the next step, a recognition model ought to be employed in order to classify the segmented
text. EasyOCR uses the convolutional recurrent neural network (CRNN) architecture [256]
comprising three main parts, namely: A feature extractor, a sequence labeller, and a decoder.
The CRNN architecture was specifically developed to perform image-based sequence recognition,
as the authors recognised a need for a CNN-based architecture that can identify objects that
tend to occur in the form of a sequence. Unlike typical object recognition tasks, which are
only expected to recognise a single object, sequence recognition requires the engine to recognise
a series of objects. Examples of such real-world object sequences are musical scores [130],
handwritten text [153], scene text [75], and printed text [3]. Adding to the complexity of
sequence recognition, is that the length of the objects might differ significantly. Popular object
recognition architectures, such as deep convolutional neural networks (DCNN) [162], cannot
be applied to sequence prediction problems where the objects vary in length, since DCNNs
often operate on an input and output having similar dimensions [256]. Consequently, these
architectures are unable to produce noteworthy results for variable-length label sequences.

The first part of the CRNN architecture is the feature extractor. The purpose of this component
is to extract a sequential feature representation from the segmented characters received from
the output of the CRAFT algorithm. It is constructed from the convolutional and max-pooling
layers of a standard CNN architecture — the fully connected layers are not included. The layers
of several standard CNN architectures may be used for this step, with the VGG architecture
being a popular choice [141]. Feature sequence vectors are then extracted from the feature maps
produced by the convolutions, corresponding to frames on the receptive field. A visualisation of
feature sequence vectors and their corresponding frames are shown in Figure 3.11. These feature
sequence vectors and frames are used as input for the next part of the architecture.

Feature sequence

Figure 3.11: A graphical illustration of the feature sequences and frames extracted by the convolutional
and max-pooling layers [141].

The next part of the CRNN architecture is a deep bidirectional recurrent neural network built
on top of the feature extractor. This part is responsible for sequence labelling by predicting a
label distribution yt for each frame xt in the feature sequence space x = x1, ..., xT [256]. There
are three main advantages when incorporating recurrent layers into the architecture. First, the
RNN does not treat each character as independent from one another. Accordingly, the RNN
uses image cues for image-based sequence recognition. Consider the string “il” comprising two
frames. It is easier to distinguish the two characters when observing the difference between
the two frames, e.g. the character heights in the frames, rather than simply looking at the two
frames independently. Additionally, wide characters might comprise several frames, requiring
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some dependency between them. Second, both the RNN and CNN may backpropagate error
signals back through the network, enabling the architecture to be jointly trained in a unified
network. Third, traversing from start to end, the RNN layers are able to operate on sequences of
arbitrary lengths. LSTMs are the ideal RNN type for this application. Designed specifically to
enable the capturing of long-range dependencies, which often occur in image-based sequences,
LSTMs achieve all of the criteria supporting the case for its implementation in the CRNN
architecture as the sequence labelling component. LSTMs are, however, directional, meaning it
only passes past information through the module. Image-based sequences may gain insight from
both the past and future frames. Accordingly, two LSTMs are combined, one forward and one
backward, in order to form a bidirectional LSTM [102, 129].

The third and final part of the CRNN architecture comprises the transcription layers. Shie
et al. [256] describe transcription as the process of converting the per-frame predictions made
by the LSTM into a label sequence. Transcriptions may be lexicon-based or lexicon-free. A
lexicon is a set of labels to which predictions are constrained. Examples of lexicons include:
A spell checking dictionary, a set of medical terms, or a list of formal government terms. If
the transcription is lexicon-based, the predictions made by the recognition model are based on
choosing the label sequence in the lexicon with the highest probability. If the transcription
is lexicon-free, the predictions made by the recognition model omit any lexicon constraints.
The CRNN architecture utilises a lexicon-based conditional probability transcription approach
defined in the CTC layer [101].

By utilising modern deep learning approaches and architectures, EasyOCR has shown to out-
perform many other prominent OCR engines [157]. The engine provides notable flexibility
with functions such as segmentation modes, language selections, whitelisting and blacklisting of
words, and vertical text support. Additionally, the inclusion of several changeable components
enables a user to personalise the framework if unique circumstances require different detection,
recognition, or decoding models. Developed using PyTorch, EasyOCR is capable of running
on GPUs and can perform batch predictions, significantly increasing its prediction speed when
compared with its peers. EasyOCR has proven to be a good option for recognising text in
semi-structured document images (e.g. pdf files, receipts, and bills) [282].

3.5 Chapter summary

The aim in this chapter was to provide the reader with basic insight into the computer vision
subfield of OCR so as to facilitate an understanding of the various steps and components that
take place when digitising text on a document. The chapter opened, in §3.1, with an exploration
of OCR engines and the typical challenges faced when digitising text within an image. This was
followed in §3.2 by an in-depth discussion on each of the major phases of the typical OCR engine.
Thereafter, in §3.3, a discourse was presented on the development of OCR evaluation metrics
and tools, showcasing the arguments made by authors in the literature. Further elaboration
on prominent OCR engines were provided in the form of a thorough discussion in §3.4, with a
specific focus on the two OCR engines utilised in this thesis, i.e. Tesseract and EasyOCR.
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The aim in this chapter is to review the pertinent literature pertaining to document image en-
hancement techniques for improved OCR recognition. The reader is introduced to the utility
of document image enhancement for improved OCR recognition. The chapter opens with a
discussion on the general background of OCR engines and the typical challenges faced when
digitising text within an image. This is followed by an exploration of different document image
enhancement techniques implemented when enhancing a document image for OCR purposes.
First, geometric transformations are discussed, during which focus is placed on skew correction,
orientation correction, and cropping of document images. Thereafter, a discourse on different
pixel transformations is provided which are aimed at removing distortions and/or enhancing tex-
tual features. In conclusion, a concise summary is provided of the document image enhancement
literature discussed in this chapter.

4.1 Significance of image enhancement for text recognition

In the preceding chapter, two prominent OCR engines, i.e. Tesseract OCR and EasyOCR, are
discussed in detail. The flexibility of these engines are showcased during the discussion on the
vast number of hyperparameters applicable. Tuning hyperparameters of these engines alone is,
however, rarely sufficient as most real-world document images lack in resolution and/or capturing
quality. Consequently, these images ought to undergo image processing in order to enhance the
image to an acceptable quality before presenting it to the OCR engine.

61
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Consider the image visualised in Figure 4.1, where the numeric text “12-14” is captured in a
black font and with a complex (noisy) background. Although a human can clearly identify the
numeric characters on the image, OCR engines produce extremely poor results when tasked
with extracting the desired text [230]. Even the Tesseract engine, one of the most prevalent
OCR engines available at present, is unable to identify a single character in this image and
returns only an empty output (based on default engine settings). The best result attained by
the Tesseract engine was achieved after multiple iterations of hyperparameter tuning, returning
the string “T2et@ce”, blatantly failing to recognise the actual text.

Figure 4.1: An example of a captured image with numeric text on a complex background [318].

The poor performance is credited to the complex background of this particular captured image.
According to Ye and Doermann [311], the most notable challenge faced by the majority of
vision-based systems is background complexity. There are four main characteristics affecting the
complexity of an image’s background. First, the background is textured. The small background
text has a distorted line pattern, increasing the level of detail captured in the image. Second,
the background shading is inconsistent. The left-hand side of the background is significantly
lighter than the right-hand side of the image. This might hinder the process of segmenting the
full text line from the background. Third, the small background text is slightly skew, potentially
rendering it more difficult for the OCR engine to detect the orientation of the actual text line.
Fourth, there are numerous black blobs (i.e. areas with the same colour as the text) on the
image border, adding to the complexity of the text segmentation.

The purpose of document image enhancement techniques is to make the text and the background
easily distinguishable by reducing the complexity of the captured image. This is accomplished
by suppressing undesired distortions or enhancing some characteristic relevant to the recognition
of the text [104]. A cleaned version of the example’s captured image is visualised in Figure 4.2,
where the complex background was successfully removed with the use of various document image
enhancement techniques. The Tesseract engine was applied on the enhanced image, returning
the desired ground truth output of “12-14”.

Figure 4.2: An example of a captured image with numeric text after the complex background was
removed by means of various document image enhancement techniques [318].

It is important to note that the application of a document image enhancement technique does
not always result in an enhanced captured image. There are many types of document image
enhancement techniques, each with their own purpose and appropriate use case. According to
Dey [63], the selection of an appropriate document image enhancement technique is the most
essential step when developing a recognition system, even more important than the selection
of the OCR engine itself. Consider the case where the incorrect document image enhancement
techniques are applied to the aforementioned example’s captured image, resulting in the outcome
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depicted in Figure 4.3. Although the applied document image enhancement techniques are
deemed as standard and popular techniques, they are (clearly) not suited for this particular
image with this set of degradations.

Figure 4.3: An example of a captured image with numeric text after the incorrect document image
enhancement techniques were applied.

Due to the stages in an OCR system being organised in a pipeline fashion, the success of each
stage depends on the quality of the output of the previous stage [7]. Consequently, it is crucial
to understand the fundamental working of the different techniques in order to be able to apply
a document image enhancement technique only when it is appropriate.

4.2 Geometric transformations

The term geometric transformations refers to a category of document image enhancement tech-
niques where the geometry of the image is altered, while the pixel values of the image remain
unaltered [303]. Geometric transformations are employed in order to remove geometric distor-
tions that can accompany the image capturing process [45]. The geometric transformations
explored in this section are used specifically for document image enhancement (i.e. techniques
employed on images of captured documents) in pursuit of improved OCR performance.

4.2.1 Skew correction

A document image is considered skew when the text on the image requires a (relatively) small
angular tilt or rotation for it to be parallel to any of the horizontal borders of the image.
Documents scanned in a skew manner is one of the most common distortions obtained when
capturing a document image with a flatbed scanner [222]. According to Sarfraz [245], it is more
common than not for images to be scanned in with a slight angle. If an OCR engine over- or
underestimates the skew angle, the line segmentation stage of the OCR engine typically fails
considerably. Correcting this distortion tends to improve the performance of an OCR engine.
Skew correction is defined as the process of detecting the angle with which the textual body of
the document needs to be tilted in order to be parallel to a horizontal border of the image. Even
a slope that is slanted with a small degree might result in a significant OCR performance drop.
Consider the example visualised in Figure 4.4(a) of the document image that was captured with
a slight angle of only 6° to the baseline, and Figure 4.4(b) of the same document image that was
captured precisely horizontal to the baseline. This slight slope may completely deteriorate the
performance of the OCR engine.

Several algorithms and techniques have been developed throughout the last few decades to
solve this problem. These algorithms may be categorised into four classes, namely: Projection
profile-based approaches, Hough transformer-based approaches, Nearest neighbour approaches,
and Interline cross correlation clustering.
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(a) Document image captured with a
six° slope

(b) Document image captured with
no slope

Figure 4.4: A visualisation of the same document captured with (a) a 6° slope and (b) with no
slope [222].

A projection profile-based approach is a simple solution to detect skew text. The approach is to
first transform each pixel into either a fully black or white pixel (i.e. binarisation), whereafter
a series of horizontal lines is projected based on the number of black pixels in each row of the
image. The profile having the maximum variation corresponds to the best alignment of text to
the baseline. The horizontal profile projections of Figure 4.4(a) and Figure 4.4(b) are shown
in Figure 4.5(a) and Figure 4.5(b), respectively. Note the clear separation of horizontal profile
projections for the document image that is skew, compared with the more consistent projections
of the correctly tilted document image. Several variants of this approach have been proposed
in order to reduce the computation of image profiles [14, 51, 138, 146]. The performance of
projection approaches are, however, limited when the image is too noisy, and/or if the skew
angle exceeds ±15° [236]. Moreover, if the document does not have sufficiently numerous text —
especially in paragraph format — the number of text line projections might be too limited to
provide an accurate angle of skewness [193].
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(b) Projections for horizontal
document image

Figure 4.5: A visualisation of the horizontal projection lines of (a) a skew document image and (b) a
deskewed document image [222].

Hough transformer-based approaches have been widely adopted to detect lines and curves found
on images. The Hough transform algorithm [135] was first introduced as a line detector for

Stellenbosch University https://scholar.sun.ac.za



4.2. Geometric transformations 65

images by Duda [68]. Known as a feature extraction technique, the Hough transform algorithm
converts an image from Cartesian to polar coordinates, whereafter it attempts to identify im-
perfect instances of a certain class shape (e.g. lines) by a specific voting procedure. In the
case of searching for lines, the algorithm considers whether there is a large number of co-linear
pixels on lines that are coincident with the baseline of the text [271]. Consider an input image
shown in Figure 4.6(a) and its corresponding output shown in Figure 4.6(b), where the co-linear
lines of a document image are graphically visualised in red. It is expected that text lines on
the document image would result in several co-linear lines all having the same angle to the
baseline of the image border. Therefore, the intuition is that the majority co-linear line angle
ought to correspond to the angle of skewness of the text on the image. The image may then
be rotated by the identified angle accordingly. Although researchers have proposed different
strategies [20, 121, 164, 270, 299], Hough transformer-based approaches still require significant
computational resources. Moreover, Hough transform-based approaches also require the image
to contain minimal graphics or photos as possible.

(a) Input document image (b) Document image with detected lines

Figure 4.6: A visualisation of the same document captured (a) as the original input image and (b) with
the detected lines based on the Hough transformer-based approach [193].

Nearest neighbour approaches, also known as a bottom-up approach, aim to utilise the mutual
distance and spatial relationship of objects on an image by connecting and clustering them. The
angles between nearest neighbours are then collected in a histogram in order to estimate the skew
angle (or skewness) of the text relative to the baseline of the image. Several researchers prefer
nearest neighbour approaches [115, 143, 206]. The most notable drawback of nearest neighbour
approaches, however, is that noisy subparts of characters might also be seen as objects, reducing
the accuracy of this approach. Moreover, nearest neighbour approaches are markedly slow when
compared with alternative approaches [222].

Interline cross correlation clustering assumes that a horizontally aligned document image presents
a homogenous horizontal structure. Accordingly, these approaches aim to estimate the slope of
the text by measuring horizontal and vertical deviations along the image [47]. The most notable
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downside of this approach is its inability to deal with graphics and charts, as these figures usually
comprise line graphs orientated in various directions. Moreover, if the angle of the slope exceeds
±40°, a significant drop in performance can occur [222].

Based on the composition and quality of the input images, an appropriate skew correction
approach may be implemented. It is, however, important to note that there are several exceptions
that may occur, complicating the skew correction procedure. For example, if an image is scanned
at an orientation that is closer to being considered upside down than right-side up, the skew
correction approach will rotate the image so that the text is orientated parallel to the top border
of the image, resulting in an upside-down (or flipped) document image.

4.2.2 Text orientation correction

Improper text orientation corresponds to a total rotation (i.e. increments of 90° angles) away
from the correct and readable orientation (i.e. referred to as 00°), where the text lines are read
from the top to the bottom of the page. When document images are captured using a flatbed
scanner, it is common for the orientation of the image to be captured incorrectly to the left-hand
side, right-hand side, or flipped. Improper text orientation can have a 90°, 180°, or 270° angle
from the proper readable orientation of the document image. The correct orientation and the
three incorrectly oriented variants of an example document image are shown in Figure 4.7. As
discussed in the previous subsection, the implementation of skew correction approaches might
also result in flipped document images. The performance of OCR engines is considerably limited
in respect of recognising text that is not orientated correctly [217]. Therefore, it is imperative
to orientate the document image to be readable for the OCR engine.

A simple, yet extremely effective method for detecting whether a document image is oriented
correctly, is to take the input document image and create three additional variants of it, each
with a new orientation angle. One of the four orientations is the correct variant (i.e. readable
from top to bottom). All four variants may then be passed through an OCR engine, comparing
the outputs with a dictionary corresponding to the specific language of the document. The
orientation having the largest number of identified words corresponds to the correct and readable
orientation of the document image. This is by far the most popular technique in literature,
however, it is a markedly computationally expensive operation — each considered document
image must be subjected four times to an OCR engine.

(a) 0° (b) 90° (c) 180° (d) 270°

Figure 4.7: A visualisation of a document image with four different orientations.
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4.2.3 Cropping

Document image cropping is a useful document image enhancement technique whereby only
the relevant part of the document image is considered, disregarding the rest of the image [13].
The correct implementation of this document image enhancement technique may reduce the
complexity of the image, since unnecessary components are removed from the image, thereby
potentially improving OCR performance.

Consider the receipt document image, visualised in Figure 4.8(a) [225]. Although the receipt
document image may be deemed as relatively acceptable in terms of quality, the unnecessary
brown background surrounding the actual paper receipt may confuse the OCR engine. The first
stage of the cropping procedure involves detecting the areas of the image which is considered to
be a part of the paper document, i.e. the desired receipt document image. Since paper-based
documents are generally printed on rectangular-shaped pages, a polygon of four vertices may
describe the sought after region, i.e. {p1,p2,p3,p4}, where each of the four vertices comprise
an x and y-coordinate. These four vertices are acquired through the implementation of three
sub-steps. First, the image ought to be grey-scaled, showcasing the contrast between the actual
paper-based document and the environment around it. Second, the image pixels are binarised to
be either a pure white or pure black pixel, after which blob detection [112] is used to remove all
but the largest components of the image, resulting in Figure 4.8(b). Third, the outlines of the
processed image are detected using binary morphology [290] in combination with a probabilistic
Hough transform [156] in order to obtain the start and end points. The second stage of the
cropping procedure involves utilising the obtained coordinates and cutting the polygon out of
the original image, resulting in the cropped receipt document image, showcased in Figure 4.8(c).

The aforementioned example demonstrated the cropping procedure successfully, however, it is
important to note that it is dependent on the correct identification of the polygon coordinates.
Important information might be cropped out if incorrect coordinates are obtained. Therefore,
the application of cropping should only be applied on document images where there is a high
probability of detecting the correct coordinates.

(a) (b) (c)

Figure 4.8: A visualisation of the cropping procedure on a receipt document image where (a) is the
original receipt document image, (b) the detected outlines of the receipt document image, and (c) the
final cropped receipt document image [225].
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4.3 Pixel transformations

A document image usually comprises textual and graphical components. The graphical compo-
nents may include figures, logos, graphs, table lines, border lines, watermarks, artistic symbols,
and signatures. The removal of these graphical components and the enhancement of the tex-
tual components may increase the performance of an OCR engine [258]. The desired document
image enhancement techniques required to achieve these enhancements might differ from the
techniques implemented on non-document images. The desired document image enhancement
techniques also differ between the type of document images, as different document types com-
prise unique compositions of the previously mentioned textual and graphical components. The
main challenge faced when attempting text recognition in a document image is that the text is
not located in an isolated part of the image. Therefore, in order to preprocess the document
image, several pixel transformations may have to be utilised. The most prominent pixel trans-
formation techniques, specifically for document images, include line removal, binerisation, noise
removal, and image sharpening.

4.3.1 Line removal

Document images often comprise horizontal and vertical lines for page borders and/or tables.
Bank cheques, mail order forms, bank statements, tax forms, payslips, and invoices are all
examples of document types that utilise lines to structure textual information. An example of
an information rich semi-structured document image is shown in Figure 4.9(a). The horizontal
and vertical lines add value to the interpretation of the document from a visual perspective.
Although these lines aid a human operator to understand the textual information, the line
segments may potentially interfere with how certain OCR engines segment textual components
from graphical components, and deteriorate the OCR performance if the lines are too close to
characters [15]. Therefore, it is beneficial to remove these lines before OCR is performed [221].
The document image without any horizontal or vertical lines is shown in Figure 4.9(b), only
comprising textual components — a suitable condition for successful text recognition.

(a) Input document image (b) Horizontal and vertical lines removed

Figure 4.9: A visualisation of the same document as (a) the original input image and (b) without any
horizontal or vertical lines [197].

According to Refeay [220], successfully removing lines from a document image is considered
to be one of the more difficult document image enhancement techniques. Line characteristics
(e.g. line thickness, line type, line quality, and line curvature) contribute to the complexity
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of detecting and removing line segments. Several approaches have been proposed for vertical
and horizontal line removal in the literature. By far the most prominent approach is to utilise
morphological operators [98] — a range of image processing methods that process the shape (i.e.
the morphology) of an image based on predefined structural elements, referred to as kernels. By
defining the shape and size of the morphological kernel, an operator that is sensitive to specific
shapes may be constructed. In the case of line detection, the kernel is set to horizontal and
vertical black pixel runs [83].

Two of the most widely employed and basic morphological operators are dilation and erosion.
Dilation makes an object more visible by filling small holes in objects, resulting in lines appearing
thicker. Erosion removes floating pixels and thin lines so that only substantive objects remain,
resulting in lines appearing thinner. By setting the horizontal and vertical black pixel runs as
kernels, the dilation operator outputs the maximum value of all the pixels that fall within the
kernel shape and size, while the erosion operator outputs the minimum value of all the pixels
that fall within the kernel shape and size [208]. Utilising the maximum and minimum values,
according to the predefined kernel shape and size, all the horizontal and vertical line segments
can be identified and replaced by white pixels (i.e. the colour of a document’s background),
thereby removing them from the document image. It is important to note that the success of
this document image enhancement technique is notably sensitive to the selection of the kernel
shape and size.

In order to elucidate this predicament, consider document image A comprising a small text font
and short table lines, and document image B comprising a large text font and long table lines.
Removing the vertical line segments of A requires a short vertical kernel, however, if the same
short vertical kernel is applied to B, the morphological operators might identify certain textual
characters as line segments, thereby removing these segments, resulting in deteriorated OCR
performance. Consequently, the automation of line removal is still being actively researched in
order to avoid character restoration in post-processing [221].

4.3.2 Binarisation

Document image binarisation is the process of separating the foreground and background layers
of a document image. This is achieved by converting a grey-scaled document image into a bi-level
document image — image pixels are transformed into either pure black or pure white [48]. When
successfully applied, it is one of the most efficient document image enhancement techniques.
The simplest and most established category of binarisation techniques, known as thresholding,
is usually performed by comparing the pixels of an input image to a selected threshold. If the
intensity of the input pixel is greater than the selected threshold value, the pixel is transformed
into a white pixel, and conversely, into a black pixel. It essentially reduces the pixel information
contained within the document image from 256 shades of grey (0 to 255) to only two colours [70].
As is the case with many other document image enhancement techniques, however, binarisation
is not trivial, as the success of the operation is solely dependent on the components within the
image. Consequently, a plethora of binarisation techniques have been developed. Thresholding-
based techniques, the primary binarisation category considered for this thesis, may be subdivided
into global and local image thresholding algorithms [239].

Global thresholding

Global threshold algorithms employ a single global threshold value for all pixels in a document
image. Consider the grey-scaled sample image histogram graphically depicted in Figure 4.10
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which showcases the number of pixels corresponding to each of the 256 grey-scale values. By
utilising a global threshold, all pixels larger than the threshold (i.e. the background) are con-
verted into white, thereby removing it, while converting the foreground pixels into black. The
success of the binarisation process is markedly sensitive to the selection of the threshold value.
Therefore, most global thresholding algorithms automatically compute a threshold value based
on some type of discriminant criterion. Currently, the most popular global binarisation algo-
rithm is Otsu thresholding [209]. The Otsu algorithm has no parameters to tune, and is known
to handle document images with uniform backgrounds and bimodal1 histogram distributions
effectively [16, 281].

Foreground Background

Threshold

P
ix

el
s

Greyscale value

Figure 4.10: A sample histogram with a global threshold [16].

The core idea of the Otsu algorithm is to separate the image histogram pixel values, denoted by
h, into two classes, denoted by fg for foreground and bg for background, based on a threshold,
denoted by TH, which minimises the weighted variance between these two classes, denoted
by σ2

W , or maximises the weighted variance within the two classes, denoted by σ2
B [192]. The

respective probabilities of class occurrence (i.e. pfg and pbg) and the class mean level (i.e. µfg

and µbg) are obtained by the following expressions

pfg =
TH∑
i=0

pi = ω(TH), (4.1)

pbg =
L∑

i=TH+1

pi = 1− ω(TH), (4.2)

µfg =

TH∑
i=0

ipi
pfg

=
µ(TH)

ω(TH)
, (4.3)

and

µbg =

L∑
i=TH+1

ipi
pbg

=
µ(L)− µ(TH)

1− ω(TH)
, (4.4)

1A histogram of a bimodal distribution that exhibits two peaks.
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where L is the 256 grey-levels and pi is a probability distribution for level i. Accordingly, the
different class variances are given by

σ2
fg =

TH∑
i=0

(i− µfg)
2 pi

pfg
, (4.5)

σ2
bg =

l∑
i=TH+1

(i− µbg)
2 pi

pbg
, (4.6)

σ2
W = ωfgσ

2
fg + ωbgσ

2
bg, (4.7)

and
σ2
B = ωfgωbg (µbg − µbg)

2 . (4.8)

The Otsu algorithm considers all possible threshold values 0 ≤ T ≤ L in order to find the
best threshold value that both minimises the variance within-class and maximises the variance
between-class. Consequently, the optimal threshold, denoted by η, is computed by

η = max
1≤TH≤L

σ2
B

σ2
W

. (4.9)

As noted earlier, a major pitfall of Otsu’s algorithm is that it can easily fail on document images
that have complex backgrounds, or document images that are significantly blurred [16].

Local adaptive thresholding

The previous subdivision of binarisation methods, i.e. global thresholding, compares all the
pixel values in an image with a single computed threshold. In local adaptive thresholding
methods, a threshold is computed for each individual pixel, based on some local statistics of the
neighbourhood pixels (e.g. range, variance, surface-fitting parameters) [250]. The neighbourhood
pixels are defined as pixels located within a local window centred on the pixel of interest. The
size of the local window determines the extent to which the document image context is taken
into account when computing these statistics [16]. The selection of the window size becomes
considerably important when the document image contains graphical illustrations. If the window
is located entirely within a graphic, the computation of the threshold does not consider the
contents located close to the graphic, thereby distorting the result.

A simple local adaptive threshold technique was proposed by Niblack [203]. The technique is
effective at handling cases of foreground and background pixel distribution overlap. Niblack’s
thresholding uses the local mean and local standard deviation, given by

µ(i, j) =
1

w2

i+w∑
i′=i−w

j+w∑
j′=j−w

I
(
i′, j′

)
, (4.10)

and

σ(i, j) =

√∑i+w
i′=i−w

∑j+w
j′=j−w (I (i′, j′)− µ(i, j))2

w2
, (4.11)

respectively, where the window size is denoted by w, the x coordinate of the pixel by i, and the
y coordinate of the pixel by j. The per-pixel Niblack threshold is then computed according to

TN (i, j) = µ(i, j) + kσ(i, j), (4.12)
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where k is a parameter that represents the trade-off between foreground detection precision and
recall. Although a parameter setting of k = −0.2 is generally recommended, the k and w values
for each unique document image ought to be determined independently based on the document
characteristics [281]. The final binarisaton is then performed by means of

B(i, j) =

{
0 I(i, j) < TN (i, j)
255 I(i, j) ≥ TN (i, j)

}
. (4.13)

Since the success of this method is dependent upon the local pixels of a central cell, document
images having large open white areas are negatively affected, as it causes any background noise
to be brought to the forefront, resulting in a degraded output. Although the added noise may
be of significance, the immediate background around the text can be effectively identified.

In order to solve this problem, which often arises when document images have large black
background areas, Sauvola and Pietikainen [246] proposed a modern variant of the Niblack
threshold, expressed as

TS(i, j) = µ(i, j)

[
1 + k

(
σ(i, j)

R
− 1

)]
, (4.14)

where the local mean and local standard deviation are computed according to the Niblack
threshold, k = 0.5, and R is a constant set to R = 128, the maximum possible standard deviation
when L = 255. The Niblack threshold adjusts the local mean downwards based only on the local
standard deviation, while the Sauvola threshold adjusts it downwards based on the product of the
local mean and the local standard deviation. In windows where there is only a black background,
the local mean is relatively large, resulting in TS < TN . Consequently, it is expected that the
Sauvola threshold outputs fewer of these background pixels to the forefront [281]. This method
is markedly effective when a document image contains uneven illumination and/or stains [48].

Graphical illustrations of the outputs of the Otsu, Niblack, and Sauvola techniques are provided
in Figure 4.11, showcasing the different strengths and weaknesses of the well-known binarisation
techniques.

(a) Original (b) Otsu (c) Niblack (d) Sauvola

Figure 4.11: Examples of results obtained with well-known binarisation algorithms [229].

4.3.3 Noise removal

Noise removal techniques have become an essential practice in most (if not all) image processing
application [71]. As previously mentioned, the quality of a document image is highly dependent
on the grade of scanner or camera that captures the document, and the conditions under which
the capturing was performed. Moreover, a paper document itself tends to have a reduced level
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of quality due to the accumulation of defects through time and repeated usage (e.g. fingerprints,
dirt, and wrinkles). The presence of these imperfections are referred to as image noise. By
simply implementing a noise removal technique, the influence of these imperfections caused
by the document capturing process and quality of the paper document itself may be reduced,
thereby enabling the OCR engine to produce better results. A matter thoroughly discussed in
literature, various denoising techniques have been developed throughout the past few decades,
with the most commonly used filters being theMedian filter [34] (used to remove salt-and-pepper
noise types) and the Gaussian filter [61] (used to remove Gaussian and impulse noise types).

Median filter

Median filtering, classified as a non-linear filtering method, is employed in order to remove noisy
and unwanted pixels from images [283]. It is known for effectively removing salt-and-pepper
type noise, prevalent when copying and scanning document images, while preserving important
features [74]. The filter moves through each pixel of the image with a sliding window, replacing
each pixel with the median value of the pixels within the window. The median is computed by
sorting all the pixel values within the window into numerical order, whereafter the considered
pixel is replaced with the pixel value that is in the middle of the sorted list. As this filter
utilises a sliding window to compute the median, it is important to consider how to handle the
pixels located on the boundaries of the image. There are three approaches that are commonly
implemented. First, the processing of the boundaries pixels can be avoided if the boundaries do
not influence the contextual information of the image. Second, shrinking the window size when
near the boundaries, ensuring that every window is full. Third, extending the boundaries with
a padded layer with values equal to the original boundaries [283]. Visualised in Figure 4.12(a) is
an input document image containing a significant amount of salt-and-pepper noise. The Median
filter technique is then implemented on the document image in order to produce the denoised
version thereof, visualised in Figure 4.12(b).

(a) Salt-and-pepper noise input
document image

(b) Noise removed with Median filter

Figure 4.12: A visualisation of the same document (a) as the original input image with salt-and-pepper
noise and (b) without noise after implementing the Median filter [76].
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Gaussian filter

The Gaussian filter — a linear low-pass filter — has been thoroughly studied in both image
processing and computer vision literature, and is deemed as one of the more successful image
noise removal methods [61]. The filter is used to remove additive noise (e.g. Gaussian or impulse
noise) which was added to the image during transmissions and/or the capturing process. The
filter achieves a reduction in noise by slightly blurring the image by a Gaussian function [275].
Similar to many other filters, the Gaussian filter convolves the input document image with a
sliding window and a kernel. The filter then performs a weighted average of neighbourhood of
the centre pixel, where distant pixels are allocated smaller weights relative to pixels closer to the
centre pixel. Accordingly, the Gaussian filter produces an output that is slightly blurred, how-
ever, it maintains the edges of the input image better than other smoothing algorithms [79]. The
proper weights of the kernel may be calculated using either a one-dimensional Gaussian func-
tion denoted by G(x)1, or a two-dimensional Gaussian function denoted by G(x)2, respectively
expressed as

G(x)1 =
1√
2πσ2

e−
x2

2σ2 , (4.15)

and

G(x)2 =
1

2πσ2
e−

x2+y2

2σ2 , (4.16)

where σ2 is the variance of the Gaussian filters, and the size of the kernel l(−l ≤ x, y ≤ l) is
determined by omitting values smaller than five percent of the maximum value of the kernel [61].
The Gaussian filter is known as a separable filter, as it is a product of one-dimensional Gaussians.
This is a noteworthy advantage of the Gaussian filter, as separable filters require less computing
power.

Although the Gaussian filter has received considerable praise in literature, it ought to be noted
that the filter is only used for specific Gaussian or impulse noise [275]. If wrongly applied to a
document image, the filter may blur the detail on the image, thereby hampering the performance
of an OCR engine. Consequently, several variants of the Gaussian filter have been developed in
combination with edge detection techniques, in order to reduce the blurring effect on pertinent
textual information [214, 285].

4.3.4 Image sharpening

Most document image capturing equipment result in a document image having some degree
of blur. Image sharpening is a powerful image enhancement technique utilised to improve the
texture of a captured image by highlighting the edges and finer details, thereby reducing the
effect of image blur [234]. Specifically, when analysing document images containing fine textual
detail, improving the sharpness of the image may result in significant OCR improvements. There
is a tendency, however, to go to extremes by oversharpening the image, thereby highlighting
unwanted distorted pixels. Image sharpening involves the addition of a high-pass filtered version
of the input image to the input image itself [149]. The graphic in Figure 4.13 illustrates the
image sharpening principle. The selection of which high-pass filter to use is critical to the success
of the sharpening procedure.

Most image sharpening techniques involve applying a so-called unsharp mask, which amplifies the
brightness difference along edges within an image. Unsharp masks are the most common type of
image sharpening, and can be implemented on most images. The main idea of an unsharp mask
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Sharpened 
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(Output)
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Figure 4.13: Image sharpening principle [16].

is to create an appearance of added detail by increasing small-scale acutance2 [38]. It exploits a
property of the human visual system called simultaneous contrast, where the perceived brightness
of neighbouring regions is similar to the perceived level of sharpness [10]. An example of this
phenomenon is shown in Figure 4.14 where an edge with low acutance, i.e. Figure 4.14(a), is
transformed into an edge with high acutance, i.e. Figure 4.14(b). Note the smooth and slow
increase in brightness of the original edge, compared with the significant difference in contrast
of the edge after implementing image sharpening. Accordingly, by pronouncing the changes
between regions, the image sharpness may be increased. An unsharp mask is acquired by
subtracting a slightly more blurred version of the input image, obtained by employing a low-
pass filter, from the input image itself. Thereafter, the newly attained unsharp mask is added to
the input image, effectively creating a high-pass filter. This results in increased contrast along
any of the edges on the image, leaving behind a sharper image [38].

It is important to note that applying too much sharpening may lead to the introduction of
halo artefacts to the original image. These are extremely visible dark/light outlines near edges.
Additionally, the unsharp mask technique is notably sensitive to noise as it tends to amplify
unwanted pixels [38, 149].
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(a) Edge with a low acutance
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(b) Edge with a high acutance

Figure 4.14: A visualisation of the same edge (a) with low acutance before image sharpening and (b)
with high acutance after image sharpening [38].

2Describes how quickly image information transitions at an edge.
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4.4 Chapter summary

The focus of this chapter was placed on the most common document image enhancement tech-
niques found in the literature which are specifically implemented in pursuit of improved OCR
performance. The chapter opened with a discussion dedicated to providing the reader with an
understanding of the importance of document image enhancement in §4.1. In the next section of
the chapter, i.e. §4.2, focus was placed on the most prevalent document enhancement techniques
which alter the geometry of a document image. Thereafter, in §4.3, focus was shifted to document
image enhancement techniques which alter the pixel values of an image, whereby line removal,
binarisation, noise removal, and image sharpening were expanded upon. The advantages and
disadvantages of each document image enhancement techniques were highlighted throughout the
chapter to introduce the reader to the complexity of processing document images.
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The aim in this chapter is to provide the reader with a detailed top-down description of the
Intelligent Document Image Enhancement (InDIE) framework proposed in this thesis for the
purpose of enhancing document images for improved OCR performance. The chapter opens with
an overview of the major steps involved in a generic data mining process, serving as a preliminary
discussion for exploring the typical composition of a modular data mining framework. This
modular design is then adopted as the foundational building blocks for the proposed framework
structure. The proposed InDIE framework is then presented, followed by an in-depth exploration
of the various subcomponents constituting the InDIE framework. The chapter is concluded with
a brief summary of its contents.

5.1 A generic data mining process

In recent years, the development of specialised software has increasingly aided the data mining
process [183]. Similar to concepts such as an automobile or a building, software is an engineered
construct. A software programme comprises many parts or components. Accordingly, as in
the case of a building, software may be said to have an architecture, organising the various
components into layers (or a hierarchy) and controlling the manner according to which they
interact with one another. As the architecture of a building comprises doors and windows,
enabling flow and movement from one compartment to another, the architecture of a software
solution may enable (or inhibit) the flow of information between components. Based on this
engineering construct of the term software, three design principles may be outlined so as to guide

77
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the development of a well-designed software product. First, the software must possess a clear and
organised architecture, capable of supporting the evolution of the software product. Secondly,
the architecture ought to be organised into hierarchical layers, enabling multiple technologies
existing in the software product to be viewed in terms of functionality. Finally, the layers ought
to comprise a modular set of components, each with its own function and purpose.

The cross-industry standard process for data mining (CRISP-DM) is an organised methodology
of sequential steps, created to guide and govern data mining projects and software [228]. Re-
leased in 1996, the CRISP-DM methodology was developed by four industry leaders in the data
mining industry, which considered the input from over 200 data mining practitioners [254]. The
developers aimed at formalising the various stages of a data mining project in order to establish
a common reference point amongst data practitioners. The CRISP-DM methodology, illustrated
in Figure 5.1, comprises six phases in order to conceive and carry out a data mining project,
enabling cyclical iterations based on the needs of the developer and other stakeholders.

Data

Phase 1: Phase 2:

Phase 3:

Phase 4:

Phase 5:

Phase 6:

Business 
understanding

Data 
understanding

Data 
preparation

Modelling

Evaluation

Deployment

Figure 5.1: The six phases of the CRISP-DM reference model, adapted from Azevedo [18].

Perhaps the most important phase of the CRISP-DM reference model is business understand-
ing — a phase during which the business problem is converted into a well-defined analytics prob-
lem. It is of paramount importance that the business domain and principles are fully grasped,
enabling the developer to translate business requirements into design requirements [191]. This
phase comprises four steps of analysis which aims to: (1) Determine the business objectives
clearly in order to identify what precisely ought to be accomplished by the data mining project,
(2) evaluate the situation where as much detail as possible ought to be outlined, (3) determine
the goals of the project and how it aligns with the business, and (4) produce a project plan which
lays out every step that is intended to be executed until the project is completed and reviewed.
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The outcome of this phase is an in-depth understanding of the business context of the project,
with a strategic execution plan.

The second phase of the CRISP-DM methodology is data understanding, which goes hand-in-
hand with the business understanding phase. Focus is placed on ascertaining, assembling, and
scrutinising data. This phase comprises four steps and aims to: (1) Collect the data indicated
by the strategic execution plan, (2) examine the data in order to document its surface properties
and/or attributes, (3) explore the data through visualisations and/or queries, and (4) verify the
data quality by identifying special cases and erroneous values. After completing this phase, an
understanding of the data quality, potential insights, and possible problems ought to be attained.

Data preparation, also known as data cleaning or data wrangling, is the third phase of the CRISP-
DM methodology and aims at converting the data into an appropriate format for modelling.
It is arguably the most time-consuming phase of a data mining project [49]. The activities
involved in this phase may be implemented numerous times as new insights are gathered from
the following modelling phase. The tasks associated with this phase may differ based on the type
of data and the requirements of the modelling phase. Typically, data preparation comprises the
following five tasks, namely: (1) Select data whereby a decision is made regarding the data to
be included or excluded from the modelling phase, (2) clean the data by attempting to remove
erroneous values, (3) construct data by engineering new features, (4) integrate data by creating
new data sets through combining data from multiple sources, and (5) format data as necessary.
In summary, the data preparation phase is where the domain knowledge obtained in the first
phase, facilitates the formatting and creation of new and relevant features, consequently enabling
better predictive performance.

The core of any data mining project is the fourth phase, referred to as the modelling phase. The
aim of this stage is to produce the results that should satisfy the project goals determined in the
business understanding phase [228]. This phase has four tasks: (1) Select model techniques based
on domain knowledge and problem space, (2) generate test design where the data are separated
into appropriate sets for training, testing, and validation purposes, (3) build and train models,
and (4) assess models by comparing model results based on the domain knowledge and/or a set
of pre-defined success criteria This is typically an iterative phase, carried out continuously until
results are obtained which are considered to be acceptable.

The fifth phase initials the evaluation and subsequent identification of which model meets the
business requirements set out in the strategic execution plan. The phase comprises three tasks,
namely: (1) Evaluate results by means of a comparison with the business success criteria, (2)
review the process which involves critiquing all work completed thus far in order to determine
whether the project was executed properly, and (3) determine next steps where the decision
ought to be made regarding whether more iterations are needed or if deployment may proceed.

Deployment is the sixth and final phase of the CRISP-DM methodology. The tasks accom-
panying this phase may vary widely based on the business type, the chosen model, and the
associated business regulations. Typically, the phase has four tasks: (1) Plan the deployment,
where a formal document is drawn up stating common points of consideration, (2) plan the
monitoring and maintenance to avoid issues when the model is operational, (3) produce a final
report documenting a summary of the project for future reference, and (4) review the project in
order to identify what was learnt and how it could be implemented better in the future.
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5.2 A high-level modular data mining framework

As stated in the introductory chapter, the primary research aim in this thesis is to propose a
generic framework for intelligently improving OCR performance of document images, mainly by
means of the utilisation of computer vision and deep learning techniques. Taking into considera-
tion the preceding section, during which the development of a well-designed software architecture
and data mining process was explored, it is proposed that this framework should be modular
in nature. This enables the modules proposed in this thesis to be exchangeable, modified, or
deleted, thereby allowing the framework to be re-purposed for various domain-specific image
types, increasing its generalisability. Furthermore, in fulfilment of the research aim, it is pro-
posed that all modules should be conceived in a manner that encapsulates the major phases of
the CRISP-DM data mining reference model, i.e. data understanding, data preparation, mod-
elling, and evaluation (represented by phases 2–5 in Figure 5.1).

A high-level visualisation of the proposed framework structure is shown in Figure 5.2. The struc-
ture comprises two primary components, i.e. the database, in which relevant data are stored,
and a central functional component, which is partitioned into four sequential subcomponents
dedicated to the processes associated with configuring, labelling, modelling, and analysing data.
The i-th subcomponent comprises mi number of modules (for i ∈ {1, 2, 3, 4}) which are instan-
tiated to accomplish a specific task at hand. Accordingly, if additional functionality is required,
modules may be adjusted and/or new modules may be added to the subcomponents in order to
fulfil those needs.
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Figure 5.2: Schematic representation of a generic data mining framework showing the directional flow
of data between the functional elements.

The database module serves as a central repository for all input, transformed, stored, and
generated data used during the execution of the data mining process. This enables the central
functional component to perform queries in order to retrieve relevant data required by the various
subcomponents, and store the produced outputs.

The primary input to this framework is a set of raw data, comprising correlating image-based
and text-based data. In this thesis, it is assumed that the data collection step of the data un-
derstanding phase has already been completed. The raw data are used as input to the Configure
subcomponent, encapsulating the data understanding and, partly, the data preparation phases
of the CRISP-DM methodology. Facilitating the formatting, filtering, cleaning, and exploration
of the data attributes, the modules within the Configure subcomponent ought to yield structured
data sets, considered appropriately configured, and stored in the database.
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One of the most value adding (but also time-consuming and typically difficult) steps of the data
preparation phase of the CRISP-DM methodology, is to construct new data attributes and/or
features [202]. The data records within a data set may, for example, possess certain patterns
not represented by the original input data. Accordingly, a new feature may be engineered to
represent this characteristic, enriching the data set by emphasising the intrinsic data patterns.
In the case of the Labelling subcomponent, the modules are responsible for the engineering and
assignment of categorical labels to input images, based to some evaluation criterion, thereby
creating a new feature which represents a specific characteristic of each image. Therefore, the
output of this subcomponent is a new categorical feature which may be used as a target feature
in the modelling stage of the data mining process.

After the data sets have been cleaned and enriched by the first two subcomponents, it is passed
on to the modules within the Modelling subcomponent. These modules are responsible for the
model selection, model building, and model evaluation steps, encapsulating all the steps of the
fourth phase of the CRISP-DM methodology. The nature of the models included is determined
by the specific business objectives and data characteristics. The output of this subcomponent is
thus a trained model capable of categorical class predictions corresponding to the input images,
and the transformed format of those images.

The predictions may then be implemented in respect of a test set. In order to ensure that the
implementation of the model predictions corresponds with the business requirements of the data
mining process, the results and transformed images are passed to the modules in the Analysis
subcomponent. The evaluation performed by these models encapsulates the tasks set out by
the evaluation phase of the CRISP-DM methodology. The four subcomponents of the proposed
framework structure therefore encompass phases 2–6 of the CRISP-DM methodology.

5.3 Document image enhancement framework

From the literature reviewed in Chapters 3 and 4, it is well-established that the successful
enhancement of document images may greatly improve the text recognition capabilities of an
OCR engine — this is, however, no trivial task. In fact, as alluded to in §4.1, §4.2, and §4.3, the
selection and implementation of some of these techniques can also result in severe deterioration
of the document image, hampering the OCR performance. Despite immense effort by researchers
to improve the generalisability of these enhancement techniques, the endless plethora of unique
conditions that a document image may be subjected to, renders it markedly difficult to automate
(and scale) the enhancement of document images for improved OCR performance. The capability
to enhance document images intelligently for improved OCR performance by employing deep
learning methods is therefore pursued by the framework proposed in this thesis.

The framework is titled the InDIE (Intelligent Document Image Enhancement) framework. In
this section, the working of the proposed InDIE framework is formally documented, introducing
the reader to the various modules and their functions within each subcomponent. A high-level
overview of the framework is shown schematically in Figure 5.3 where the generic subcomponents
and database (proposed in §5.2) have been populated with domain-specific modules.

The database is shown to hold five data stores (enumerated as D1–D5) where D3 holds pre-
trained models, and D4 holds lexical resources relevant to the considered languages and alphabet
dictionaries. Before exploring the newly populated subcomponents, however, it is necessary to
state the assumptions made related to the type, format, and relationships of the different input
sources
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Figure 5.3: Schematic representation of a populated generic data mining framework with specific
modules showing the directional flow of data between the functional elements.

The framework assumes (and requires) two data inputs, namely:

1. A folder of domain specific document images (specifically captured with a flatbed scanner)
in PDF or PNG format, and

2. the ground truth (GT) feature entries comprising feature strings (e.g. names, amounts,
addresses, cellphone numbers, purchases, and dates) in tabular format, corresponding to
the captured document images (assumed to be annotated by human operators).

The framework is initialised by invoking the Configure subcomponent. This subcomponent starts
by filtering out erroneous documents and its corresponding data records, followed by several data
cleaning modules. Thereafter, OCR is performed (discussed in §3.2) and the output is compared
with the GT feature entries (according to a predetermined evaluation metric, as reported in §3.3)
in order to determine a baseline accuracy of the OCR performance. The cleaned data and base
OCR results corresponding to each document image are stored in the database.

After having executed the Configure subcomponent, the document image enhancement tech-
nique(s) (discussed in §4.2–§4.3) that would produce the best OCR outcomes for each unique
document image is determined in the Labelling subcomponent. This is achieved by engineer-
ing multiple enhancement procedure categories comprising unique combinations and specific
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sequences of selected document image enhancement techniques and applying these procedures
to each document image — creating several variants of each document image. Subsequently,
the OCR operation is then performed on all the variants of each document image, facilitating a
quantitative metric for identifying the enhancement procedure that would yield the best OCR
performance for each individual document image. The best enhancement procedure category is
then assigned to each document image, resulting in an engineered target feature employed in
the following modelling subcomponent.

During the implementation of the Modelling subcomponent, transfer learning (reviewed in §2.6)
is employed by selecting and utilising a pre-trained CNN architecture (explored in §2.5.2) in
order to extract image feature maps from each document image. The combination of extracted
feature maps and the previously engineered and assigned target feature is then used as input
for a supervised machine learning procedure, whereby a selected classifier is trained to predict
the best enhancement procedure category for unseen document images by learning the intrinsic
patterns related to the extracted image feature maps.

In the final Analysis subcomponent, the model predictions may be evaluated by implementing the
model predictions on a test set of document images, and performing OCR, thereby facilitating the
direct comparison of the base OCR performance before the intelligent enhancement procedure
with the OCR performance after the intelligent enhancement procedure.

The remainder of this section is dedicated to in-depth discussions pertaining to each of the
subcomponents of the InDIE framework. Central to this discussion is the utilisation of data
flow diagrams (DFDs)1 so as to visualise and describe the modules involved within each of
the subcomponents graphically, as well as the data flows, data types, and data transformations
between these modules.

5.3.1 The Configure subcomponent

As mentioned above, the Configure subcomponent is the first subcomponent of the proposed
InDIE framework and is employed in order to configure the input data. The subcomponent
comprises five modules, numbered 1.0 to 5.0, as illustrated in the level-one DFD in Figure 5.4.
Data stores D1, D2, D4, and D5 are utilised by the modules in the Configure subcomponent, with
D1 providing storage for the document images, D2 storage for the GT features, D4 providing
access to dictionaries, and D5 storage for results. Modules 1.0–3.0 are executed in succession
(according to the number convention adopted), providing Module 5.0 with the GT features lists
and corresponding OCR output lists, while Module 4.0 provides Module 5.0 with the engineered
evaluation metric. This provides Module 5.0 with the required data to evaluate the base OCR
accuracies for each document image and average base OCR accuracy for the entire data set —
the primary outputs of the Configure subcomponent.

Filter features

The input received by the first module comprises data records of GT features (i.e. text cor-
responding to the document images) annotated by a human operator. In most cases, these
annotations were originally performed in pursuit of unique business requirements and without
considering that the annotations might be employed in data mining processes. Accordingly, the
required format, quality, and type of features are determined based on what the requirements

1A data flow diagram (DFD) maps out the flow of information for any process or system. The DFD generating
guidelines is set out by Kendall and Kendall [150].
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Figure 5.4: Level-one DFD of the Configure subcomponent.

of the original business need are. This might differ significantly from what is required by a data
mining process and, in this case, an OCR data mining procedure. Consequently, some annotated
GT features might not be suited for inclusion in the OCR procedure.

The first module in the Configure subcomponent functions as a filter where the user is prompted
to select which GT features ought to be removed before proceeding to the following module, i.e.
the data cleaning module. The user begins by identifying which factors should be considered
when deciding whether to remove (or include) a GT feature. Domain knowledge greatly aids
the user in order to determine which factors to consider, and what weight of importance should
be assigned to those factors. Typical factors to consider include the following: GT feature
importance ranking, GT feature proximity, annotation accuracy, and annotated format.

GT feature importance ranking requires the user to utilise attained domain knowledge and/or
to consult domain experts to rank the GT features according to their relevance to the business
goals. Creating a list of ranked GT features facilitates the process of deciding which features
may be removed when considering all the factors discussed in the rest of this section. Consider,
as an example, ranking the annotated GT features of construction company quotes. If the
business goal is to compare construction company quotes based on the total cost to the hiring
company, the GT feature importance of total amount would greatly outweigh the importance of
the GT feature address, however, if the primary business goal is to engage with a construction
company that is in close proximity to the headquarters of the hiring company, then the address
GT feature might outweigh the total amount GT feature.

Spatial information refers to the physical coordinates where a GT feature is located on the
document image. If GT features are typically located near one another, it is rather likely that
the GT features will equally benefit from a specific enhancement technique, while if they are
typically located far from each other, an enhancement technique might improve the recognition
of one GT feature, but deteriorate the recognition of the other. Consider a payslip, for example,
where it is typical for the name and address of the client to be located on the upper third of the
document, while it is typical for the net pay to be located on the lower third of the document.
If the ranking of features resulted in the address to be ranked of low importance to the business
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goals, the user might consider prioritising the recognition of net pay and rather remove the
address from the data mining process. Therefore, only in cases where it is applicable, it would
be advantageous if the user can select GT features that are located within a close proximity to
important GT features while removing those considered less important and that are located far
away from the highly ranked GT features.

The accuracy of the annotations refers to how accurately a human operator annotated the
text on the document in respect of the tabular data set. This is a critical factor to consider
when selecting which GT features to include. Since the evaluation of an OCR operation is
performed according to character- or word-level, it is of paramount importance that there is
an acceptable level of veracity and credibility in the GT features. Accordingly, the user ought
to examine a sample of document images and manually compare the document text with the
corresponding GT feature. In order to elucidate this predicament, consider a sample of captured
bank statements and a corresponding GT feature, i.e. printed date. If it is found, after examining
several bank statements, that significant errors were regularly made with the annotation of the
printed date GT feature, and that the effect of the error cannot be mitigated through data
cleaning or post-processing, it might be beneficial to remove the GT feature from the data set.

The format of the GT feature refers to the difference in how the human operator annotated the
GT feature, and how it is presented on the document itself. Most of the deviation in format
may be resolved in the data cleaning module, however, it must be considered whether it is worth
the effort to configure the GT feature into the correct format. Removing the currency symbol
that accompanies a monetary value is considered an easy data cleaning procedure, however,
formatting different variations of the feature address into a single format may prove to be a
troublesome task.

Clean text and image data

After the GT features are filtered according to the procedures discussed above, the GT features
and document images undergo several data wrangling steps. The primary purpose of this module
is twofold — first, to remove or replace erroneous data records and document images, and second,
to format the data as necessary. The module receives the document images, the filtered GT
features, dictionaries, and user selected settings as input.

It is common for real-world data records to contain missing values. In the case of data records of
annotated features, this may occur when either the human annotator could not clearly identify
the characters of the GT feature on the document image, therefore, leaving it out, or the feature
was not present on the document image. Missing GT feature entries are specifically common
when the document type varies significantly in format, resulting in cases where some documents
do not contain all the sought-after GT features. Since the GT features are used to measure the
OCR performance, it is not practical to include a data record if some of its GT features entries
are missing. Traditional approaches towards handling missing values prove to be unavailing
in the case of measuring OCR performance, as the exact GT entry is required for accurate
representation of the OCR performance. Popular approaches for handling missing numerical
values, (e.g. imputation by replacing missing values with a mode, median, or interpolation
value) would all yield incorrect values. Consequently, it is recommended to remove all data
records with missing GT feature entries (and their accompanying document images) from the
considered data sets.

Since the GT features are to be compared with the OCR output on a character- or word-level,
it is important to wrangle all the text-based GT features into a similar format. Consider a GT
feature entry “5031.00” and the corresponding text “R 5,030.99” as seen on the document image.
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Assume an OCR engine was implemented and all of the characters were correctly recognised. For
a human, there is no significant difference between the two amount values, as the first amount
only differs from the second amount by a single cent. For a computer, however, these two data
points have almost nothing in common. First, the GT feature entry comprises seven characters,
while the recognised value comprises ten characters. Second, the GT feature entry comprises
only numerical characters and a single fullstop character, while the recognised value comprises
numerical characters, alphabetical characters, a comma as well as fullstop character, and a blank
space. Third, the number format of the GT feature entry does not have a thousand separator,
while the recognised value has a “,” as a thousand separator. Consequently, although the OCR
engine recognised all the characters correctly, an evaluation metric would reflect markedly poor
results. As illustrated by this single example, the format of the GT features is notably important.
Therefore, the user ought to decide on a fixed standard for each GT feature and then format the
data accordingly. Finally, the correctly standardised GT features ought to be formatted into a
single list for comparison purposes throughout the framework.

With regards to the cleaning procedure for the document images, two operations ought to be
performed, i.e. a skew correction operation and a text orientation correction operation. As
stated in §4.2, performing these two geometric transformations will almost certainly improve
the OCR performance. Consequently, it may be implemented on all document images. The user
may utilise the knowledge attained from consulting the literature in §4.2, where the advantages
and disadvantages of each skew correction method were discussed, in order to decide which
methods to implement (based on the type and composition of the document images). Moreover,
orientation correction may be performed utilising an OCR engine and a dictionary of words to
compare the OCR output with. Since the accuracy of the recognised characters is not prioritised
in this step, the selected OCR engine and engine parameters are not of importance.

To conclude this module, the expected output is a list of standardised text-based feature strings,
and correctly orientated document images.

Implement OCR

Before the third module may commence, the user is required to select an OCR engine for this
task. The OCR engine ought to be selected based on the task specifications and the document
characteristics. The composition of some document images might be considered to be simple and
standard, requiring minimal OCR engine hyperparameter tuning. In this case, the user might
consider the Tesseract OCR engine, while if the document image composition is considered to
be complex and/or non-standard, the user might require additional flexibility, thereby rather
considering the EasyOCR engine instead. Consulting the literature discussed in §3.4 ought to
aid the user in deciding which OCR engine is most appropriate to implement according to the
available data.

The third module receives the document images from the second module, the user selected OCR
engine, and the estimated engine hyperparameters. The primary function of this module is to
perform OCR on the document images and produce a text-based OCR output corresponding
to each document image. The process commences by preparing an experimental sample of the
document images to run a few experiments on. The purpose of this step is to compare the OCR
output of the experimental sample document images with their corresponding GT features in
order to fine-tune the OCR engine hyperparameters. Consider the case in which a considerable
number of document images comprise sentences with abnormally small blank spaces between
words. This might result in the OCR engine to misinterpret these small blank spaces as merely
spaces between characters, thereby deteriorating the word recognition capabilities. The user

Stellenbosch University https://scholar.sun.ac.za



5.3. Document image enhancement framework 87

would therefore fine-tune the OCR engine hyperparameters to be more sensitive to the size
of blank spaces, enabling the OCR engine to correctly segment sentences into separate words.
When selecting document images for the experimental sample, it is advised to select document
images that represent the composition of various formats and characteristics of the data set. For
example, if a considerable portion of the document images contains large graphics, it would be
advantageous to include some of these document images in this experimental sample in order to
tune the hyperparameters accordingly.

After the hyperparameters are estimated, OCR recognition may be performed on all the docu-
ment images in the data set, resulting in a text output corresponding to each document image.
Since the recognised text may originate from a sentence and paragraphs, several reading signs
and symbols, e.g. “,”, “.”, and/or “()”, may be included in the OCR output. In order to com-
pare the OCR output with the GT features, it is required to clean and format the OCR output
into the same fixed standard implemented in Module 2.0. Moreover, it is common for OCR
engines to output the recognised text into a single paragraph or a single sentence. Therefore,
it is necessary to format the output into a list of entries, enabling the comparison of two lists,
one containing the GT feature entries and the other with the OCR output strings. Accordingly,
final and expected output of this module is a list of standardised text-based strings without any
unintended reading signs or symbols.

Engineer evaluation metric

Engineering an evaluation metric is one of the most critical points of an OCR data mining
process. The criterion according to which the performance of the OCR engine is measured
directly influences several outcomes and actions in the InDIE framework. The fourth module
in the Configure subcomponent functions as an opportunity to engineer an evaluation metric
in order to measure the performance of the OCR engine. In pursuit of achieving the business
goals, the user ought to make use of a combination of domain knowledge and an understanding
of the type of data produced by the OCR output to ensure that the evaluation metric is a true
reflection of the performance of the OCR engine.

As mentioned in §3.3, several approaches may be adopted to design an evaluation metric for OCR
purposes. In the case of document images comprising a majority non-dictionary GT features,
it is recommended that the performance of the OCR engine be measured on a word-level. The
text constituting the body of information within a document commonly includes names and
surnames, company names, dates, amounts, and reference codes. It would be detrimental to
most business goals if even a single character is miss-recognised within an amount. Consider
a quote on an invoice where the OCR engine outputs a total amount of “9000” instead of the
GT amount of “2000”. By simply miss-recognising a single character, the real amount value of
the invoice increased by a factor of almost five. Conversely, if the document images comprise a
majority dictionary-based GT features, it might be beneficial to measure the performance of the
OCR engine on a character-level, resulting in a more sensitive and accurate evaluation metric.

OCR evaluation

The primary function of the fifth and final module of the Configure subcomponent is to compute
a single value that represents the OCR performance achieved by the OCR engine when imple-
mented on the specific document image data set. The module receives the engineered evaluation
metric, lists containing GT features entries, and corresponding lists comprising OCR output
strings as input.

Stellenbosch University https://scholar.sun.ac.za



88 Chapter 5. Intelligent document image enhancement framework

If a word-level evaluation metric was selected, the accuracy may be computed by taking the
intersect of the items within each of the corresponding lists and dividing the result by the number
of GT feature entries. This provides the base OCR performance achieved on each individual
document image. The intersection between two lists is graphically illustrated in Figure 5.5 where
the grey object represents a single list comprising all the strings recognised by the OCR engine
and the green object represents the corresponding list comprising all the GT feature entries.
It is expected that an OCR output list contains significantly more items in comparison with
the items in its corresponding GT feature list. The average base OCR engine accuracy for the
specific data set may be computed by taking the average of all the document image accuracies.
The individual base OCR accuracies and the average base OCR accuracy are stored in D5, to
be utilised in the subsequent subcomponents.

In summary, the Configure subcomponent facilitates the user in preparing the appropriate GT
feature and document image data to be subjected to OCR recognition, followed by the primary
outputs of this subcomponent, i.e. the individual base OCR accuracies for each document image
in the data set, and the average base OCR accuracy for the entire data set.

GT feature
entries

Corrrectly recognised 
GT features

OCR output strings

Figure 5.5: Graphical illustration of the intersection of the correctly recognised GT features where the
grey object represents a single list comprising all the strings recognised by the OCR engine and the green
object represents the corresponding list comprising all the GT feature entries.

5.3.2 The Labelling subcomponent

In order for the InDIE framework to introduce a form of machine intelligence into the data
mining process, the framework employs an approach from the supervised learning paradigm. As
discussed in §2.1.3, the supervised learning paradigm aims to predict a target feature, which
is assigned to each data record in the data set, according to the intrinsic patterns embedded
within the data record features. Therefore, in order to employ a supervised learning algorithm,
a data set comprising two types of data are required, namely (1) a target feature assigned to
each data record, and (2) corresponding descriptive features describing each data record.

The primary function of the second subcomponent of the InDIE framework, i.e. Labelling, is
to facilitate the engineering and assignment of a categorical target feature to each document
image, thereby fulfilling the first data requirement for the implementation of supervised learning.
The to-be assigned target feature categories represent different document image enhancement
procedures, comprising specific combinations and sequences of document image enhancement
techniques, which may be implemented on each document image in pursuit of improved OCR
performance.
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The subcomponent is graphically illustrated in the level-one DFD provided in Figure 5.6. The
subcomponent comprises three modules, i.e. Modules 6.0–8.0, facilitating the engineering of
the categorical target feature and its assignment. The aim of this subcomponent is achieved
by engineering several enhancement procedures and applying all of them on variants of each
document image. Thereafter, the OCR performance of each variant is compared in order to
determine the best performing enhancement procedure category for each document image. The
identified category may then be assigned as the target label for each document image. The
subcomponent calls data from several data stores. The document images and GT feature lists
are called from D1 and D2, respectively, and are both used in the Modules 6.0 and 8.0. Moreover,
Modules 6.0 and 8.0 calls the previously computed base OCR performances from D5, and also
receives the selected OCR engine and estimated hyperparameters from the user.
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Figure 5.6: Level-one DFD of the Labelling subcomponent.

Select enhancement techniques

The purpose of this module is to select which document image enhancement techniques ought
to be considered when engineering the enhancement procedure categories, which will be specif-
ically tailored for the document image data set at hand. Accordingly, the primary output of
this module is a list of document image enhancement techniques (and their estimated hyperpa-
rameters) which may be included in the enhancement procedures. The input received by this
module comprises the document images with their corresponding GT feature lists, the base OCR
results computed in the previous subcomponent, and the previously selected OCR engine (and
its estimated hyperparameters).

The process commences by subjecting the previously created experimental sample of document
images to various document image enhancement techniques in pursuit of identifying which tech-
niques are most appropriate for the particular data set at hand. It is advantageous if the exper-
imental sample comprises a diverse set of document images which closely represent the data set,
not only in terms of composition (e.g. graphics, lines, tables, and watermarks), but also in terms
of the previously obtained base OCR accuracies. Accordingly, it is recommended to expand
upon the experimental sample and add document images that obtained a markedly high base
OCR accuracy, and document images that obtained markedly low OCR accuracies. This will
increase the probability that the user will be able to identify the effects of the transformations
on document images considered to be of high and low image quality.

The process is iterative in nature, where a specific document image enhancement technique
(together with several estimations of its hyperparameters) is applied to all the images in the
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experimental sample, whereafter OCR is performed, and the performance is evaluated. The
newly attained OCR accuracies may then be compared with the corresponding base OCR ac-
curacies in order to identify whether the implemented technique succeeded in improving the
OCR performance, or whether it deteriorated it. Moreover, tests may also be conducted where
the effect of performing multiple enhancement techniques in a sequence are evaluated, thereby
alluding to the creation of enhancement procedures. After performing these evaluation tests on
the experimental sample of document images, the user ought to have a general understanding
of how the OCR performance either improves or deteriorates the document images when the
different enhancement techniques are incorporated. Accordingly, the selection of enhancement
techniques (and their estimated hyperparameters) may be listed, forming the primary output of
the module.

Create enhancement procedure categories

The second module within the Labelling subcomponent facilitates the engineering of the en-
hancement procedure categories, each comprising a single or a combination of document image
enhancement techniques to be applied in a particular sequence. The engineering of these cate-
gories is a simple, yet crucial step of the framework, since the engineered categories are utilised
to transform the document images. Each category is engineered based on the knowledge attained
during the iterative experiments carried out on the experimental sample document images in
the previous module.

Although each data mining process results in unique combinations and sequences of categories,
a category comprising no document image enhancement techniques must always be included in
the list of categories. This category is to be assigned to a document image when its base OCR
accuracy, obtained in the first subcomponent, cannot be improved upon by the implementation
of any of the engineered enhancement procedures. Moreover, the other categories may represent
either a single document image enhancement technique or a combination of document image
enhancement techniques, which are implemented according to a specific sequence. Accordingly,
the output of this module is a list of enhancement procedure categories, constructed specifically
for the data set at hand.

Four different examples of possible enhancement procedure categories are illustrated visually in
Figure 5.7. The first category contains no document image enhancement techniques, as discussed
above. The second category entails the sole implementation of a noise removal technique. The
third category indicates the application of binarisation, noise removal, and image sharpening,
in a sequential manner, whereas the fourth category refers to the sequential implementation of
a line removal technique, followed by binarisation.

Category 1

No enhancement

Category 2

Noise removal

 Category 3 Category 3

Binarization

Noise removal

Image shaprening

Binarisation

Noise removal

Image sharpening

 Category 4

Line removal

Binarisation

Figure 5.7: Four examples of possible enhancement procedure categories.
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Assign enhancement procedure categories to images

After the list of enhancement procedure categories are engineered, the next step is to assign
each document image an appropriate label. In order to achieve this, the third module of the
Labelling subcomponent requires the list of enhancement procedure categories, the document
images with their corresponding GT feature lists, the original baseline OCR results, and the
OCR engine (with its estimated hyperparameters) as input.

This module functions as a data labelling pipeline. The module initialises by independently
implementing each enhancement procedure category on a variant of a document image. All the
different variants then undergo the same OCR recognition steps, as explained in Module 3.0.
This is followed by computing the OCR accuracy for each variant document image based on
the evaluation metric. The previously computed base OCR accuracy is then to be compared
with all the newly attained variant OCR accuracies. The enhancement procedure category
corresponding to the document image variant that showcased the best OCR accuracy therefore
represents the best enhancement procedure for that specific document image (in terms of the
engineered categories and selected techniques). The identified enhancement procedure category
may then be assigned the target label of that document image. This process is repeated for
all the document images in the entire data set, resulting in an assigned target label for each
document image, yielding the primary output of the Labelling subcomponent.

5.3.3 The Modelling subcomponent

As mentioned earlier, the primary aim in this thesis is to design a generic framework for in-
telligently enhancing document images in pursuit of improved OCR performance. The third
subcomponent of the framework involves the notion of machine intelligence and incorporating
it into the data mining process through the implementation of computer vision, deep learning,
and transfer learning.

As mentioned earlier, the InDIE framework employs a supervised learning approach, thereby
requiring a data set comprising (1) a target feature assigned to each data record and (2) cor-
responding features describing each data record. In the second subcomponent of the InDIE
framework, each document image is labelled according to an enhancement procedure category
based on the OCR accuracy achieved (in terms of the GT features), thereby satisfying the first
data requirement. The InDIE framework attempts to satisfy the second data requirement, i.e.
features describing each document image, by invoking a pre-trained CNN model as a feature
map extractor (i.e. the convolutional base of the model). An untrained supervised learning
algorithm is added to the convolutional base, representing the classifier. The combination of a
pre-trained convolutional base and the classifier forms a transfer learning model, as discussed in
§2.6. Utilising the assigned target labels and the extracted feature maps, the transfer learning
model may then be trained to predict an appropriate document-specific enhancement procedure
to be applied.

The Modelling subcomponent comprises three modules, as illustrated in Figure 5.8. The se-
lection of an appropriate pre-trained model to employ as a convolutional base is facilitated by
Module 9.0. The transfer learning model building and fine-tuning is performed in Module 10.0.
Finally, the evaluation of the model performance is conducted in Module 11.0, facilitated by
a test set of document images unseen by the trained model. In terms of the flow of data and
information, the subcomponent takes as input a training, validation, and testing set of doc-
ument images from D1, the assigned enhancement procedure categories from D5, and several
model selections and hyperparameter estimations from the user. The subcomponent stores the
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final trained transfer learning model in D3, and the list of test set predictions and the model
evaluation results in D5 — the primary outputs of this subcomponent.
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Figure 5.8: Level-one DFD of the Modelling subcomponent.

Select convolutional base

As discussed in §2.5, feature maps describing an image are usually not interpretable by humans.
These image feature maps comprise numerical representations of various characteristics of an
image, namely: Corners, blobs, edges, histogram of oriented gradients, textures, and scale-
invariant feature transform descriptors [231]. Consequently, CNNs ought to be employed in
order to extract these feature maps, as discussed in §2.5 and §2.6.

The primary function of this module is to facilitate the selection of the convolutional base,
i.e. the first part of the model. The user has a broad range of well-known pre-trained CNN
architectures to select from, as discussed in §2.5.2. The pre-trained models considered within
the scope of this thesis include the AlexNet, VGG-16, and EfficientNet architectures. The user
may utilise their domain knowledge of the document image data set and the literature reviewed
pertaining to the advantages and disadvantages of the different CNN architectures in order to
select which model to implement in the transfer learning procedure. Accordingly, the output of
this module is the selected model for the document image feature extraction procedure

Model building

The selection of the convolutional base, in combination with a classifier, is to be used to generate
a deployable model for enhancement procedure predictions for document images unseen by the
model. The selected convolutional base may be invoked by the training data in order to transform
the image data into feature maps. Receiving the feature maps and a corresponding target feature
as input, the classifier part of the model may be trained to perform the required predictions.

Module 10.0, the building of the transfer learning model, may be partitioned into two smaller
processes (i.e. child processes), aimed at estimating the parameters of the model and the tuning
of the hyperparameters, respectively. A more detailed representation of these child processes is
provided in the level-two DFD in Figure 5.9. In this diagram, the two child processes of the
model building module is visualised, each representing a step which may be iteratively executed
in the training of the transfer learning model. Module 10.1 receives as input a document image
training and validation sets, the engineered target feature, and the selected convolutional base
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Figure 5.9: Level-two DFD of the Modelling subcomponent.

with estimated hyperparameters. In order to initiate the training procedure, several settings
ought to be estimated beforehand. The selected convolutional base (i.e. the selected pre-trained
CNN model) is the first part of the model to be implemented and requires numerous hyperpa-
rameters to be estimated before the feature maps can be extracted. Note that a pre-trained
model was trained on a specific data set and hyperparameters, and therefore, similar data and
hyperparameters are expected when employed in a transfer learning procedure. This may be ex-
ploited by the user, referencing the original hyperparameters implemented during the pre-trained
model’s training, and using it as an appropriate starting point for the estimations.

After the feature maps are extracted, they are flattened and, together with the target feature,
presented to the classifier model, which comprises several fully connected layers. Moreover, the
user must also estimate several hyperparameters for the classifier, and may use the literature re-
viewed in §2.1.1 and §2.5 as guidance. With the model hyperparameters estimated, the classifier
may be trained, producing a trained model and validation performance results.

Module 10.2 receives the output of Module 10.1 and facilitates the tuning of the hyperparameters
of the convolutional base and the classifier. The inspection of the validation performance and
the input of the revised hyperparameters are shown in Figure 5.9 by the dotted lines between
the user and Module 10.2. The revised hyperparameters are then fed back into Module 10.1,
facilitating the model to be retrained with more appropriate hyperparameters. The loop between
Module 10.1 and Module 10.2 continues iteratively until some selected stopping condition is met.

Evaluate model

The final module in this subcomponent (i.e. Module 11.0) facilitates the evaluation of the model
on a test set, comprising document images unseen by the model training procedure. The module
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receives the trained model and the test set, and saves predictions for the test set into the results
datastore (D5) while saving the final prediction model into the models datastore (D3). It is
important to emphasise the significance of the test set enhancement procedure predictions, as
this is the primary output of the modelling subcomponent, representing the intelligence imbued
into this data mining process.

5.3.4 The Analysis subcomponent

After the enhancement procedure predictions of the test set document images are attained from
the output of the Modelling subcomponent, it is required to determine whether the intelligence
added by the modelling subcomponent truly improved the average OCR performance of the data
set. Consequently, the final subcomponent of the InDIE framework draws the attention of the
user back to the evaluation of the OCR performance, this time making use of the intelligently
(i.e. automatically) predicted enhancement procedure categories.

The working of the final subcomponent of the InDIE framework, illustrated in Figure 5.10, fa-
cilitates the implementation of the enhancement procedure predictions of the test set document
images, the OCR of these enhanced document images, and the evaluation of the newly computed
average enhanced OCR performance. This is achieved by executing the three sequential modules
which perform the respective aforementioned steps. The subcomponent receives the enhance-
ment procedure predictions from the results datastore (D5), the test set document images from
the document image datastore (D1), the GT feature lists from the text features datastore (D2),
and the original base OCR results from the results data store (D5) as input.
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Figure 5.10: Level-one DFD of the Analysis subcomponent.

Implement predictions

The first module in the analysis subcomponent is devoted to the execution of the predicted
enhancement procedure categories on the test set document images. The input required by
this module comprises the test set document images and the predictions made in respect of the
test set document images. This is a rather simple module to execute, as all the enhancement
procedures are developed and tuned in the Labelling subcomponent (i.e. Modules 6.0–7.0).
Accordingly, the procedure applied to each document image in the test set is as follows: A
document image and its correlating predicted enhancement procedure category is received. The
predicted enhancement procedure category is then called and executed, in sequential order, on
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the document image. Consider the example case where the predicted category for a specific
image is the third category illustrated in Figure 5.7. The enhancement procedure would invoke
the binarisation of the document image, followed by noise removal, and finally a sharpening
procedure, resulting in the (expected) intelligently enhanced document image. This procedure
is repeated for each document image in the test set. Consequently, the output of this module is
a data set of intelligently enhanced document images.

Implement OCR

In order to truly determine if the intelligently predicted enhancement procedures improved
upon the average base OCR accuracy (i.e. before intelligent enhancement), it is to be compared
with a newly computed average enhanced OCR accuracy (i.e. after intelligent enhancement).
In the first subcomponent of the InDIE framework, i.e. the Configuring subcomponent, OCR
was performed on all the document images, which includes all the document images within the
test set, resulting in a base OCR accuracy for each image. Accordingly, the user can compute
the average base OCR accuracy of the test set before the intelligent enhancement. The user
may therefore perform the same OCR procedure (as in Module 3.0) on the intelligently enhanced
document images in order to compute the new enhanced OCR accuracies, and thereafter compute
the average enhanced OCR accuracy.

Module 14.0 facilitates the procedure discussed above. It receives the enhanced test set document
images from Module 12.0, and the OCR engine and its settings from the user. The exact same
OCR procedure performed in Module 3.0 is then performed for Module 13.0. This includes the
post-processing performed on the OCR output in order to transform the data into the same
format as the GT feature lists, resulting in an intelligently enhanced OCR output.

OCR evaluation

Module 14.0, the third and final module in the Analysis subcomponent, receives the new OCR
output lists, generated by Module 13.0, the GT feature lists from D2, and the base OCR results
computed in the Configuring subcomponent. This final module comprise two steps, first, the
evaluation of the newly generated OCR output lists in terms of the GT feature lists, and then,
secondly, the comparison between the average base OCR accuracy for the test set and the average
enhanced OCR accuracy for the test set. The first step follows the same procedure as discussed
in respect of Module 5.0, utilising the engineered evaluation metric, the GT feature text, and
the newly generated OCR output lists to measure the performance of the OCR engine in terms
of the intelligently enhanced document images. After the OCR performance is computed for all
the intelligently enhanced document images in the test set, the average enhanced OCR accuracy
is to be computed, and directly compared with the average base OCR accuracy of the test set,
thereby showcasing the true value gained by utilising the InDIE framework.

5.4 Chapter summary

In this chapter, the framework proposed in this thesis, called the InDIE framework, was intro-
duced to the reader. The chapter opened in §5.1 with a discussion of the generic data mining
process, exploring the typical architecture of a software program, followed by the steps performed
in a data mining process, specifically referencing the renowned CRISP-DM methodology. Util-
ising this attained knowledge of the data mining process, a high-level structure of a generic

Stellenbosch University https://scholar.sun.ac.za



96 Chapter 5. Intelligent document image enhancement framework

framework was proposed in §5.2, encapsulating the steps of the CRISP-DM methodology. Sub-
sequently, the InDIE framework was proposed in §5.3, containing in-depth discussions of each
subcomponent, i.e. the Configure subcomponent, the Labelling subcomponent, the Modelling
subcomponent, and the Analysis subcomponent, exploring the respective modules and flow of
information within.
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Proof-of-concept implementation
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In pursuit of demonstrating the utility of the InDIE framework proposed in the previous chap-
ter, an instantiation of the framework is implemented in respect of an open-source data set
from the literature which pertains to receipt document images. The generic modules within
the four subcomponents of the InDIE framework were populated with specific algorithms and
user-defined settings in order to illustrate the working of the framework. First, an overview
of the selected benchmark data set is given, during which the prominence of the data set in
OCR literature is addressed. Subsequently, the implementation of the four subcomponents of
the InDIE framework — i.e. the Configure subcomponent, the Labelling subcomponent, the
Modelling subcomponent, and the Analysis subcomponent — is described in detail. During the
description of the implementation of each of these subcomponents, an account of the specific
design, algorithm, and settings chosen for the proof-of-concept implementation are provided.
Lastly, the results attained are explored and scrutinised, which includes the verification and
validation procedures performed during the proof-of-concept implementation.

6.1 Data set background

The availability of an appropriate data set that contains a reasonable number of acceptable
quality samples is essential for any data mining research project [215]. Ideally, if a data set is
utilised for algorithm development in a data mining procedure, it ought to reflect the applica-
tion domain as closely as possible, thereby enabling the researcher to project the experimentally
achieved performance to real-world instances [109]. In the realm of computer vision, and specif-
ically OCR research, gathering appropriate data for research purposes is difficult and costly, as
the manual annotation of images can become mundane, time consuming, and error-prone.

97
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In order to select a data set for the proof-of-concept phase of the research project, various
requirements ought to be met. First, the document images ought to comprise mostly flatbed
captured document images with corresponding high quality annotations. Second, to reflect the
challenges faced by most practitioners in industry, the data set ought to be limited in respect of
the extent of data entries, as annotated document image data sets are rare to acquire. Moreover,
the data set must comprise document images subjected to various combinations of document
image quality degradations (i.e. fold lines and shadows, stains, varying fonts and text sizes, and
noise, to name but a few) in order to enable the implementation of the InDIE framework to
attempt to intelligently predict the best (in terms of OCR performance) enhancement procedure
for each document image.

While there are several prominent data sets containing annotated images for scene text recogni-
tion (i.e. images of natural scenes containing logo text, motorcar registration numbers, street
signs, and billboards in the background), as referenced in the literature [43, 88, 89, 167, 263],
data sets containing annotated document images are markedly scarce. There are two primary
factors contributing to this data set scarcity, namely document image annotation cost and infor-
mation privacy. In contrast to scene text recognition, which would usually only contain a small
number of text to annotate, a single document image may comprise hundreds of text strings,
resulting in the document image to be either too expensive to fully annotate, or only a few
selected strings having to be annotated, according to the specific business or research goal at
hand, thereby limiting the use cases of the data set. Information privacy is another noteworthy
contributing factor to the scarcity of openly available annotated document images. Document
images containing any potentially sensitive information of any person or company may not be
openly shared to the public, thereby reducing the available data sets.

The International Conference on Document Analysis and Recognition (ICDAR) [134], estab-
lished in 1992, is a successful conference series and is regularly referred to in literature as the
premier international gathering for researchers, scientist and practitioners in the document anal-
ysis community. As a part of the scientific event, the ICDAR organises several competitions
dedicated to a large set of unique document analysis problems [133]. The objectives of these
competitions are to compare the quality of new and innovative document analysis algorithms
on different categories of challenges. A corresponding data set is sourced for each competition
by the ICDAR competition committee and released to the public beforehand. The competition
committee gathers the data sets and related business goals by allowing any entity to freely share
their data with ICDAR by submitting it to the ICDAR website. Throughout the past few years,
a plethora of high quality data sets were released to the public through the ICDAR competi-
tions, making it one of the most popular sources of benchmark data sets. The 2019 ICDAR
competitions (and released data sets) included different challenges in several document analysis
domains, namely: Handwritten historical document layout recognition [181], historical hand-
written script analysis [243], document recognition (layout analysis and text recognition) [81],
handwriting recognition [178], document image binarisation [184], robust reading [274], post-
OCR correction [226], and chart parsing [144].

With respect to the financial, accounting, and taxation industries in particular, extracting in-
formation from receipts plays a critical role in streamlining (and automating) many document-
intensive processes. With the recent breakthroughs in deep learning technologies — in terms of
processing speeds and accuracy — OCR developed into a mature and viable option for many
practical tasks (e.g. licence plate recognition and name card recognition). In terms of receipt
document images, however, the OCR accuracy is required to be significantly higher when com-
pared with general commercial tasks. Moreover, it is well-known that receipts are one of the
paper-based document categories that degrades the most through repeated usage and storage.
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Consequently, in most systems currently used, many financial systems are still markedly depen-
dent on human resources.

Recognising the above challenges, ICDAR 2019 held a scanned receipts OCR and information
extraction (SROIE) themed competition within the document recognition competition category.
Recognised today as a benchmark data set for receipts OCR analysis is the ICDAR 2019 SROIE
data set, comprising semi-annotated receipt document images. The data set was made avail-
able specifically for the ICDAR 2019 robust reading challenge on scanned receipts OCR and
information extraction [227]. According to Huang et al. [128], this was the first open-source
semi-annotated receipt data set. Compared with traditional ICDAR and other OCR data sets,
the ICDAR 2019 SROIE data set came with a few unique challenges pertaining to the image
quality. The data set comprises receipt document images with multiple quality issues, namely:
Poor paper quality, low scanner resolution, scanning distortions, paper fold shadows, poor ink
and printing quality, and stains. Moreover, in terms of document structure and layout, the
receipt document images varies significantly in terms of text length, font size, handwritten text
over printed text, and interfering text. In order to address potential privacy issues discussed
earlier, some sensitive information fields of individuals (e.g. employee contact numbers, employee
addresses, and employee names and surnames) were manually redacted.

The data set comprises a thousand semi-annotated scanned receipt document images in Joint
Photographic Experts Group (JPEG)1 format. The receipt document images originate from
various industries in Malaysia, such as restaurants, grocery stores, hardware stores, health bou-
tiques, and many more. The oldest receipts were printed in 2016, with the majority printed
in 2017 and 2018. Most of the receipts were scanned using a flatbed scanner, with the occa-
sional receipt captured by means of a smartphone camera. Although the receipts originated in
Malaysia, all annotated characters and words stem from the English alphabet.

Five distinct receipts are visualised in Figure 6.1 so as to illustrate the quality issues and hetero-
geneity present within the data. The receipt shown in Figure 6.1(a) has several dark smudges on
the top third and bottom third of the receipt paper. This increases the complexity of the image,
potentially hindering the OCR engine when attempting to recognise the text. The text on the
receipt visualised in Figure 6.1(b) is printed in blue ink and on a red-shaded background which
varies in intensity. Moreover, handwritten words are written with black ink on the top open
space of the receipt, potentially confusing the OCR engine on which colour/shade characters
to search for. The third example receipt, shown in Figure 6.1(c), is clearly captured with a
smartphone camera, indicated by the dark border and the fingers of the operator holding the
receipt. Additionally, it also comprises blue printed text. The presence of these side-effects
add complexity to the otherwise clear background. Moreover, the receipt document image was
subjected to unfavourable lighting conditions, resulting in the lower half of the image showcasing
a darker shade than the upper half. Noted on the top half of the receipt document image is an
area digitally edited out, resulting in a white-shaded smudge. This is possibly an area where
private information was written down, and redacted for confidentiality. Although redacting
private and sensitive information is a required step for the utilisation of the receipt document
images, the digital editing remnants may increase image complexity, hampering the OCR en-
gine performance. The receipt shown in Figure 6.1(d) includes multiple fold lines and shadows
throughout the captured receipt document image. The shadows and fold lines can significantly
deteriorate the performance of an OCR engine. Lastly, a slightly skew receipt document image
is visualised in Figure 6.1(e), comprising once again of blue printed text. Significantly increasing
the complexity of the image, however, is the red-coloured text stamped over some of the printed

1A digital image format which contains compressed image data.
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text in the upper right-hand corner of the receipt, rendering it almost impossible for an OCR
engine to read the overlapping characters.

(a) (b) (c) (d) (e)

Figure 6.1: Examples of five degraded SROIE receipt document images [227].

Each receipt contains around four (if available on the paper-based document) key annotations
provided in a JavaScript Object Notation (JSON)2 file format, namely company name, company
address, purchase date, and receipt total. Screenshots of four JSON files are provided in Fig-
ure 6.2 to visualise the attribute-value pairs of the annotations. The first example, presented in
Figure 6.2(a), shows the attribute-value pairs for the aforementioned key annotation fields. Note
when comparing the date field of the JSON file screenshots of Figure 6.2(a), i.e. 09/03/2018,
Figure 6.2(b), i.e. 1 OCT 2017, and Figure 6.2(d), i.e. 2018/02/22, that the annotated date
formats differ for all three receipts. This is an important finding and will be a crucial factor
to explore if used to evaluate the performance of an OCR engine. Additionally, the receipt
total field of the JSON files screenshots of Figure 6.2(b), i.e. 250.00 with no currency symbol,
Figure 6.2(c), i.e. $7.60 with a dollar currency symbol, and Figure 6.2(d), i.e. RM39.00 with the
Malaysian Ringgit abbreviation, all differ in format, also requiring standardisation. It is also
noted that the address field contains several punctuation characters, which include “,”, “.”, “/”,
“:”, and “-”, in addition to both alphabetical and numerical characters, significantly increasing
the need for standardisation and processing of the address field.

To summarise, the ICDAR 2019 SROIE data set is a renowned data set in the document analysis
community, regarded as a benchmark data set for modern OCR and information extraction
research projects. The data set comprises a small number of predominantly flatbed captured
document images which includes limited corresponding annotations for each image. Moreover,
it is evident that the captured document images possess a combination of poor quality and
degraded elements which would most likely (if left as-is), significantly reduce the performance

2JSON is a data interchange format that uses human-readable text to store and transmit data objects consisting
of attribute-value pairs and arrays.
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of an OCR engine. Consequently, the ICDAR 2019 SROIE data set is an appropriate data set
for the implementation of a proof-of-concept study in order to evaluate the potential utility of
the InDIE framework. Therefore, the ICDAR 2019 SROIE data set is selected as the primary
data set in respect of the proof-of-concept proffered in this research project.

(a)

(b)

(c)

(d)

Figure 6.2: Examples of four JSON files comprising annotations in respect to the corresponding SROIE
receipt document images.

6.2 Implementation of InDIE framework

As previously mentioned, the ICDAR 2019 SROIE data set comprises semi-annotated receipt
document images recognised as having substandard and degraded quality (by design). The
data set has been used in various previous OCR-related studies, therefore the results obtained
during these studies can be used as a benchmark. This data set is therefore deemed appropriate
for the purposes of exploring the potential benefit of implementing the InDIE framework, the
main aim of which is the intelligent enhancement of document images in pursuit of improving
the performance of an OCR engine, specifically by means of computer vision and deep learning
techniques. Accordingly, the aim of this section is to attempt to improve the overall ICDAR 2019
SROIE data set OCR performance by predicting which enhancement procedure to implement
for each receipt document image, as a proof-of-concept. The following subsections are devoted
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to an in-depth description of the implementation of the various subcomponents of the InDIE
framework, whereafter the results obtained are analysed.

6.2.1 Implementation of the Configure subcomponent

The first InDIE framework subcomponent to be implemented is the Configure subcomponent,
comprising the five modules elaborated upon in §5.3.1. The subcomponent receives the ICDAR
2019 SROIE data set (i.e. the receipt document images in JPEG format and the corresponding
annotations in JSON format) as input. Additionally, the user also provides an OCR evaluation
criterion and a selection of the OCR engine with its accompanying settings.

Filter features

First, Module 1.0 is invoked, whereby the features that ought to be included in the OCR evalu-
ation are selected. The ICDAR 2019 SROIE data set already has a limited number of features,
as it is a semi-annotated data set — in line with the expected real-world circumstances. The
four features include company name, company address, purchase date, and receipt total.

As discussed in §5.3.1, the following four factors ought to be considered when selecting features:
GT feature importance ranking, GT feature proximity, annotation accuracy, and annotated
format. In terms of ranking the ICDAR 2019 SROIE data features, the receipt total is seen as
the most important captured feature, as a receipt is a financial document. Ranked second is the
company name, followed by the date the purchase was made. Ranked as fourth would be the
address, because if the company name is known, it is likely that the address can be obtained
from other internet sources. In terms of GT feature proximity, it is identified that the company
name and address are almost always located on the upper third of the receipts, the receipts total
located on the lower third of the receipt, while the date locations fluctuates between the upper
and lower thirds. Annotation accuracy is determined by inspecting a sample of the GT feature
entries and comparing it with the receipt document images. After a thorough inspection, it is
found that no significant annotation errors are present in the sampled annotations. Accordingly,
the accuracy of the annotations is deemed as acceptable. Finally, with regards to the annotation
format, it is recognised that the date feature differs in format (as showcased in Figure 6.2) and
that the address and receipt total features seem to be constructed out of symbols, numerical
characters, and alphabetic characters, increasing the complexity of the OCR recognition and
the standardisation of the OCR output format.

After exploring and considering all of the aforementioned factors, it is concluded that the recog-
nition of all four features are deemed as important for possible business requirements. Accord-
ingly, business value is added by including these features, all while the annotation quality is
high enough to not hamper the OCR performance. Consequently, it is decided to include all
four features.

Clean text and image data

The primary purpose of Module 2.0 is to wrangle the text and image data into appropriate
formats for downstream processing and analysis. In order to easily inspect and wrangle the
text data, the data are extracted from the JSON files and imported into a CSV for further
analysis. The first step in wrangling the text data is to remove all entries with missing values.
After inspecting the ICDAR 2019 SROIE annotation data, no missing values are found, thereby
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resulting in the inclusion of all the receipt document images within the ICDAR 2019 SROIE
data set.

The next step, and arguably the most important data wrangling step, is to format all the
entries within each feature into an appropriate format in order to be easily compared with
the corresponding OCR output. It is observed that all annotations that include alphabetic
characters were captured in uppercase characters, accordingly, all alphabetic characters are left
as-is. It is observed that some captured addresses end with a fullstop punctuation mark, but
others do not. Consequently, in order to standardise the address feature, fullstops at the end of
address entries are removed. Moreover, all currency symbols and/or abbreviations in the receipts
total feature are removed, standardising all the amounts as entries comprising only numerical
values with a decimal separator represented by a fullstop. For wrangling the date strings into
a standardised form, it is noted that the dates are annotated precisely as it is printed on the
receipts. Accordingly, the global removal of punctuation symbols that will be applied to the
general OCR output ought to be applied to the GT date strings. The final wrangling step for the
text data involves formatting the four captured features for each individual data entry into a list
of strings. This is achieved by separating the information contained within a feature annotation
into multiple strings through splitting the annotation content at each black space and adding
all the strings to a list, separated by commas.

With regards to the wrangling of the receipts document images, Module 2.0 suggests the im-
plementation of two cleaning procedures, i.e. (1) a skew correction operation and (2) a text
orientation correction. By manually inspecting the ICDAR 2019 SROIE data set, it is observed
that the majority of the receipts are scanned in with an acceptable orientation, however, if
implemented correctly, deskewing and orientation correction will almost always improve the
performance of the OCR engine. Therefore, both operations are applied to all the receipts doc-
ument images, ensuring that the performance of the OCR engine will not be hampered by any
orientation defect. For the skew correction, a Hough transformer-based approach (as discussed
in §4.2.1) is implemented on the receipt document images. For the orientation correction, the
word comparison method (discussed in §4.2.2) is implemented, whereby the EasyOCR engine is
implemented on the four different angled receipt document image variants. The OCR output
is then compared with the words within a list of the 10 000 most common English words, in
order to identify the correct orientation. The number of English words correctly recognised by
the EasyOCR engine for the correctly orientated receipt document images ought to easily out-
weigh the number of English words correctly recognised for the erroneously orientated receipt
document image variants.

An illustration of these operations are visualised in Figure 6.3, where Figure 6.3(a) represents an
original skew receipt document image, and Figure 6.3(b) represents the deskewed and correctly
orientated receipt document image. The two cleaning procedures are implemented with respect
to the entire ICDAR 2019 SROIE data set, whereafter another manual inspection is performed.
It is found that all the receipts are deskewed and orientated correctly.

Implement OCR

Module 3.0 guides the user in implementing an OCR engine in order to obtain the base OCR
output for each receipt document image, formatted into lists of standardised text-based strings.
The module receives the correctly orientated receipt document images, the GT feature lists, and
a user selected OCR engine with its accompanying estimated hyperparameters — the selection
thereof guided by the literature reviewed in §3.4. By inspecting the receipt document images,
it is found that the composition of the images are complex (i.e. they comprise various logos,
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(a) Original (b) Deskewed and orientated

Figure 6.3: A visualisation of (a) an original receipt document image and (b) the receipt document
image after skew and orientation correction is performed.

font types, font sizes, font colours, and pen marks) requiring an OCR engine with additional
flexibility. The structure of the textual information, however, is well-organised and similar in
terms of its layout throughout the data set. Taking the aforementioned into consideration, the
EasyOCR engine is selected as the OCR engine for this data mining project as the required
flexibility is provided — through the availability of numerous hyperparameters — to handle the
variations of font types, colour, and sizes of the text contained within the ICDAR 2019 SROIE
data set images.

For the implementation of the EasyOCR engine, several standard parameters ought to be spec-
ified. First, it is required to select a detection language. Although the ICDAR 2019 SROIE
data set contains receipts from Malaysia, all the annotated text are in English. Therefore, the
detection language is set to English. Next, the user may select to enable a GPU, if available.
For this data mining project, the author employed Google Colaboratory [91], which provides a
12GB NVIDIA Tesla K80 GPU. Accordingly, the GPU parameter was set to true.

The implementation of Module 3.0 requires the inspection of a small experimental sample of
the receipt document images used to fine-tune the hyperparameters of the OCR engine. The
sample ought to include receipt document images representing various formats and compositions
of the overall data set. Accordingly, 20 receipt document images are selected to form part of
the experimental sample, three of which are visualised in Figure 6.4 to showcase the various
characteristics. The receipt document image showed in Figure 6.4(a) comprise several font
types and sizes, while the receipt document image in Figure 6.4(b) has a distorted red-shaded
background, a red strip on the left-hand border, and with blue font. The third receipt document
image is visualised in Figure 6.4(c), showcasing the receipt document image scanned as an A4
size image, a characteristic observed in a considerable portion of the ICDAR 2019 SROIE data
set.
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(a) (b) (c)

Figure 6.4: A visualisation of receipt document images where (a) represents a receipt document image
with variation in font sizes and types, (b) represents a receipt document image with a red background
and blue font colour, and (c) represents a receipt document image scanned in as an A4 size image.

The EasyOCR engine is employed on each receipt document image in the experimental sample,
producing an output of recognised text strings, whereafter it is compared with the corresponding
GT feature lists. The recognition errors are then identified and the hyperparameters are fine-
tuned in order to mitigate these recognition errors. The process is iteratively repeated until
acceptable outputs are obtained for the experimental sample.

By exploring the OCR output obtained from the 20 experimental receipt document images, it is
found that the variety of font sizes require that the detection text boxes ought to be fine-tuned
for the ICDAR 2019 SROIE data set. It is conjectured that the variation in font sizes may
result in the OCR engine confusing fonts with large spacing between characters as blank spaces,
splitting a single word up into multiple words. This is especially prevalent when detecting the
numeric strings with decimal numbers (e.g. amounts with cents) as some fonts result in abnormal
spacing after a fullstop reading sign. Accordingly, it is noted that several “amount” strings are
(incorrectly) separated into two strings. EasyOCR provides various hyperparameters for this
purpose. The add margin hyperparameter may be tuned to extend the bounding box in all
directions by a certain value. The default value is set to 0.1. Consequently, in order to reduce
this occurrence, the add margin hyperparameter is increased to 0.3, enlarging the detection text
box, and thereby reducing the errors. Moreover, the width ths hyperparameter is also fine-tuned
for this purpose. This setting allows the user to increase or decrease the maximum distance
between two detection text boxes before the boxes must merge into one. The default value is
0.5, however, in order to reduce the aforementioned error, the value is significantly reduced to
0.15.

After the hyperparameters are estimated, the EasyOCR engine is employed on the entire ICDAR
2019 SROIE data set, resulting in a text output (in a paragraph form) corresponding to each
receipt document image. Next, the output is cleaned and transformed into the required list
format. Several punctuation characters are removed from the recognised output, which includes
“ , ”, “ ( ”, “ ) ”, “ : ”, “ ; ”, “ ’ ”, “ # ”, “ { ”, “ } ”, “ [ ”, and “ ] ”. Similar to the
cleaning of the GT features, all currency symbols and/or abbreviations are removed. This is
achieved by removing the strings “$” and “RM” if they appear first in a string comprising solely
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other numeric characters and/or a fullstop. Regular expressions (Regex), referred to as a mini
programming language, is employed for the removal of these unwanted character strings [288].
Additionally, all the alphabetic characters within the output strings are converted into uppercase
characters since the GT features are captured in uppercase characters.

The EasyOCR engine outputs the recognised text of each receipt document image into a single
paragraph, whereby the recognised words are separated where a blank space character is located.
Consequently, blank spaces are removed, and the output is formatted into list entries called OCR
output lists, equivalent to the standardised GT feature lists. This enables the GT feature lists
to be compared with the corresponding OCR output lists.

Engineer evaluation metric

The fourth module provides the user with the opportunity to engineer the evaluation metric
used to compare corresponding GT feature lists with OCR output lists. As discussed in §3.3,
OCR performance may be evaluated on a character- or word-based level. The annotations of
the ICDAR 2019 SROIE data set comprise company names, dates, addresses, and amounts.
Accordingly, receipts are classified as financial documents. Since the application of OCR on
financial document images require a higher accuracy than standard scene text recognition or
other non-numeric document image types, a word-based evaluation metric is selected, i.e. all
the characters within a string ought to be recognised correctly for the string to be regarded as
an accurately recognised string.

By inspecting the JSON files visualised in Figure 6.2, it is observed that the GT features such
as company name, date, and address sometimes comprise several strings. Since the scope of this
data mining project is to simply improve the overall OCR performance, and not to specifically
extract specific targeted features, it is decided that each string would have the same weighting
to the evaluation metric. Consequently, some features will have a greater impact on the OCR
performance than others, as some features tend to have more strings than others. It is, however,
noted that a user can easily add specific weightings to the features for evaluation purposes, if so
required.

In order to elucidate the working of the evaluation metric, consider the receipt document image
visualised in Figure 6.5(a), and its corresponding JSON file shown in Figure 6.5(b). The company
name feature is indicated on the receipt document image by the yellow border, the date by the
blue border, the address by the green border, and the receipt total by the purple border.

The company name is located on the top text line of the receipt and comprises four separate
strings. The address is located on the upper third of the receipt, beneath the company name,
and crosses three text lines while comprising nine separate strings. The date is located roughly in
the middle of the receipt and comprises only a single string of numeric characters, separated by
the “/”-symbol. Finally, the receipt total is located in the lower third of the receipt, comprising
only a single string with no alphabetic characters.

The corresponding GT feature list (i.e. the output of Module 2.0) is shown in Figure 6.6(a), while
the corresponding OCR output list (i.e. the output of Module 4.0) is shown in Figure 6.6(b).
The GT feature list only contains the 15 annotated strings, while the OCR output list contains
68 strings, comprising all the OCR strings found on the receipt document image. Although it is
found that all 15 GT feature strings are recognised by the OCR engine, not all are recognised
correctly. Visualised in Figure 6.6(b), the correctly recognised GT strings are highlighted with a
green border, while the incorrectly recognised GT strings are highlighted with a red border. Even
though most of these errors are obtained from only a single character incorrectly recognised, the
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evaluation metric is word-based, therefore all the characters in a string ought to be correctly
recognised for the string to be deemed as accurate. Four of the 15 GT strings were incorrectly
recognised, therefore, the EasyOCR engine obtained a base OCR accuracy of 0.73 for this specific
receipt document image.

(a) Receipt document image

(b) Receipt JSON file containing annotations

Figure 6.5: A visualisation of (a) an example receipt document image with GT features visualised with
coloured borders and (b) its corresponding JSON file with GT features visualised with coloured borders.
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(a) Receipt GT feature list

(b) OCR output list

Figure 6.6: A visualisation of (a) the receipt GT feature list and (b) its corresponding OCR output
list.

Evaluate OCR results

The evaluation of the OCR engine is performed in Module 5.0. The module takes the GT feature
lists, the OCR output lists, and the engineered evaluation metric as input. The evaluation
metric, discussed above, is utilised in order to compute an accuracy score for each receipt
document image by taking the intersect of the corresponding GT feature list and the OCR
output list. These OCR accuracies are then stored in the data store for use cases in the following
subcomponents. Finally, an average base OCR accuracy is computed by taking the average of
the base OCR accuracies achieved by all the receipt document images in the ICDAR 2019 SROIE
data set.

6.2.2 Implementation of the Labelling subcomponent

The second InDIE framework subcomponent implemented is the Labelling subcomponent, com-
prising the three modules elaborated upon in §5.3.2. The subcomponent receives an array of
selected enhancement techniques and corresponding hyperparameters from the user. Addition-
ally, the subcomponent takes the stored receipt document images, the GT feature lists, and the
base OCR accuracies for each receipt document image obtained in the previous subcomponent
as input.

Select enhancement techniques

Module 6.0 guides the user towards selecting which set of document image enhancement tech-
niques is appropriate for the data set at hand. The process is commenced by, once again,
utilising the experimental sample sourced in the previous subcomponent. The experimental
sample is, however, expanded by adding a few receipt document images which achieved a high
OCR accuracy and a few which obtained a low OCR accuracy. The expansion of the experi-
mental sample increases the probability of the user to identify the effects of the document image
enhancement techniques, and whether it improves upon the base OCR accuracy, or deteriorates
it. As discussed in §4.1, document image enhancement techniques do not always improve the
image quality, accordingly, it is just as important to observe the effects of the transformations
on receipt document images that are considered to be of high quality, than it is to observe the
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effects on receipt document images considered to be of low quality. Consequently, ten receipt
document images that obtained a base OCR accuracy of at least 0.90, and ten receipt document
images that obtained a base OCR accuracy of at most 0.50, are added to the experimental
sample.

The first document image enhancement technique considered is cropping (briefly discussed in
§4.2.3). The intuition is that cropping out unnecessary white spaces ought to reduce the com-
plexity of the image, thereby aiding the performance of the OCR engine. By visual inspection
of the ICDAR 2019 SROIE experimental sample data set, it is identified that there are several
receipt document images that may benefit from undergoing cropping. Consider the receipt doc-
ument image visualised in Figure 6.7, where Figure 6.7(a) shows the original receipt document
image with excess white spacing (black border shows original page size to visualise page size),
and Figure 6.7(b) shows the cropped receipt document image with the white space removed
(black border shows new page size). Before implementing the document image enhancement
technique, the OCR engine achieved an OCR accuracy of 0.85, while after being cropped it
improved to an OCR accuracy of 1.00. This equates to a 0.15 improvement in OCR perfor-
mance. Since there are many receipt document images showcasing a similar composition as the
one visualised in Figure 6.7, it is decided to include cropping as a possible document image
enhancement technique for the ICDAR 2019 SROIE data set.

(a) Original receipt document image (b) Cropped receipt document im-
age

Figure 6.7: A visualisation of (a) an original receipt document image and (b) the receipt document
image after being cropped.

The second document image enhancement technique considered is line removal (briefly discussed
in §4.3.1). Printed lines for tables and/or structural reasons that are printed too close to
characters tend to confuse OCR engines. Therefore, it is usually beneficial to remove these
lines. By visual inspection of the ICDAR 2019 SROIE experimental sample data set, it is
identified that there are limited lines printed on the receipt document images. This is as a result
of the document type, as most receipts do not require many lines to structure the information
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for reading purposes. Although lines are present on some receipt document images, they rarely
protrude near important text. Consequently, it is decided not to include line removal as a
possible document image enhancement technique for the ICDAR 2019 SROIE data set.

The third document image enhancement technique considered is document image binarisation
(briefly discussed in §4.3.2). The intuition is that binarisation can remove shadows and overlap-
ping background shapes from the surfaces of the receipt document images, reducing the com-
plexity of the images. This can in turn (potentially) aid the performance of the OCR engine.
By visual inspection of the ICDAR 2019 SROIE experimental sample data set, it is identified
that there are several receipt document images that include shadows and background shapes,
indicating that it may be beneficial to implement binarisation on some receipt document im-
ages. Consider the receipt document image visualised in Figure 6.8, where Figure 6.8(a) shows
the original receipt document image comprising several dark shaded zones, and Figure 6.8(b)
shows the receipt document image after global thresholding binarisation, without the presence
of shadows. Before implementing the document image enhancement technique, the OCR en-
gine achieved an OCR accuracy of 0.86, while it improved to an OCR accuracy of 1.00 after
the implementation of binarisation. This equates to a 0.14 improvement in OCR performance.
Accordingly, it is decided to include document image binarisation as a possible document image
enhancement technique for the ICDAR 2019 SROIE data set.

(a) Original receipt docu-
ment image

(b) Binarised receipt doc-
ument image

Figure 6.8: A visualisation of (a) an original receipt document image and (b) the receipt document
image after being binarised.

The fourth document image enhancement technique considered is noise removal (briefly dis-
cussed in §4.3.3). Reducing noise on document images is a staple and widely utilised document
image enhancement technique. Since the ICDAR 2019 SROIE data set is mostly scanned in
with flatbed scanners, it is expected that noise will be present. By visual inspection of the
ICDAR 2019 SROIE experimental sample data set, it is identified that there are several receipt
document images containing noise, alluding to the high probability that it might be beneficial
to include noise removal within the enhancement procedures. Consider the receipt document
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image screenshot visualised in Figure 6.9 (enlarged for viewing purposes), where Figure 6.9(a)
shows the original noisy receipt document image, and Figure 6.9(b) shows the receipt document
image after a median filter noise removal technique is applied. Before the implementation the
document image enhancement technique, the OCR engine achieved an OCR accuracy of 0.69,
while it improved to an OCR accuracy of 0.88 after the implementation of the median filter noise
removal technique. This computes to a 0.19 improvement in OCR performance. Consequently,
it is decided to include noise removal as a possible document image enhancement technique for
the ICDAR 2019 SROIE data set.

(a) Original receipt document image (b) Receipt document image after noise removal

Figure 6.9: A visualisation of (a) an original receipt document image and (b) the receipt document
image after noise removal.

The fifth and final document image enhancement technique considered is image sharpening
(briefly discussed in §4.3.4). Most document image capturing equipment result in some image
blur, therefore, image sharpening is used to increase the image quality by highlighting the edges
and finer detail. By visual inspection of the ICDAR 2019 SROIE experimental sample data
set, it is observed that there are several receipt document images that may benefit from the
implementation of an image sharpening filter. Consider the receipt document image screenshot
visualised in Figure 6.10 (enlarged for viewing purposes), where Figure 6.10(a) shows the original
receipt document image, and Figure 6.10(b) shows the sharpened receipt document image. The
filter used to convolve the document image is 0 −1 0

−1 5 −1
0 −1 0

 .

(a) Original receipt document image (b) Sharpened receipt document image

Figure 6.10: A visualisation of (a) an original receipt document image and (b) the receipt document
image after being sharpened.

By means of visual inspection, it might not seem like the implementation of the image sharpening
technique makes a notable difference, however, OCR engines are notably sensitive, even to the
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smallest improvement in image quality. Before the implementation of image sharpening, the
OCR engine achieved an OCR accuracy of 0.69, while it improved to an OCR accuracy of 0.88
after the implementation of the sharpening filter. This computes to a 0.19 improvement in OCR
performance.

As discussed earlier, though, enhancement techniques can also deteriorate the document im-
ages. It is therefore also important to explore the examples where enhancement techniques did
not result in improved OCR performance. In order to visualise the degradation that image
sharpening can potentially introduce to an image, consider the screenshot visualised in Fig-
ure 6.11 (enlarged for viewing purposes), where the original receipt document image is shown
in Figure 6.11(a) and the corresponding sharpened screenshot of the receipt document image is
shown in Figure 6.11(b). Notice how the image sharpening technique amplified the imperfections
around the printed characters, thereby distorting the character quality. Before implementing
image sharpening, the OCR engine achieved an OCR accuracy of 0.71, however, it deteriorated
to an OCR accuracy of 0.41 after the implementation. This results to a reduction in OCR
accuracy of 0.30.

(a) Original receipt document image

(b) Over-sharpened receipt document image

Figure 6.11: A visualisation of (a) an original receipt document image and (b) the receipt document
image after being sharpened.

The intuition is that the processes implemented in the later modules of the framework might be
able to discern between the receipt document images that showcase OCR accuracy improvement
from the ones that showcase deterioration. After exploring the results obtained by implementing
image sharpening on selected images from the experimental sample data set, it is decided to
include image sharpening as a possible document image enhancement technique for the ICDAR
2019 SROIE data set.

Create enhancement procedure categories

Module 7.0 facilitates the creation of the enhancement procedure categories which forms part
of the list of possible receipt document image labels for the ICDAR 2019 SROIE data set. The
enhancement procedure categories may comprise a single enhancement technique, a combination
of enhancement techniques, or no enhancement techniques at all.

As mentioned in §5.3.2, a category comprising no enhancement techniques must always be
included in the list of categories, ensuring that if all other enhancement procedures will result
in a deterioration in OCR performance, that the document image ought to remain unaltered.
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Accordingly, this is the first enhancement procedure to be included, called Base image. In
Module 6.0, it was determined that cropping, binarisation, noise removal, and image sharpening
are included in the list of possible document enhancement techniques. Implementing cropping
showcased impressive results, as seen in the example visualised in Figure 6.7. It is also noted that
there are several receipt document images with a similar structure as the visualised example.
Therefore, the sole implementation of the cropping document enhancement technique is the
second enhancement procedure, called Cropping. The implementation of a binarisation technique
attained satisfactory results, as seen in the example visualised in Figure 6.8, for which an
improvement of 0.14 was achieved. It is, however, important to note that the implementation of
binarisation can also be markedly detrimental to some document images. This is an important
caveat to be considered in the following modules. Nonetheless, the sole implementation of the
binarisation document enhancement technique is selected as the third enhancement procedure,
called Binarisation. Implementing noise reduction is identified as an effective document image
enhancement technique for flatbed scanned document images, improving the OCR performance
of the receipt document image, visualised in Figure 6.9, by 0.19. The sole implementation of the
noise removal document enhancement technique is therefore selected as the fourth enhancement
procedure, called Noise removal. The image sharpening filter showcased impressive results
when an OCR improvement of 0.38 was attained on the receipt document image visualised in
Figure 6.10. Although difficult for the human eye to see, the small improvements in image
quality have a marketable influence on the performance of an OCR engine. Consequently, the
sole implementation of the image sharpening filter is selected as the fifth enhancement procedure,
called Sharpening.

As mentioned earlier, enhancement procedures may also include the sequential implementa-
tion of multiple enhancement techniques. It is deemed appropriate to create three additional
enhancement categories, comprising the implementation of two sequential enhancement tech-
niques. Consequently, the three additional enhancement techniques are as follows:

1. The implementation of cropping followed by noise removal, called Cropping and noise
removal,

2. the implementation of cropping followed by image sharpening, called Cropping and sharp-
ening, and

3. the implementation of binarisation followed by noise removal, called Binarisation and noise
removal.

Therefore, eight enhancement procedures are engineered, one for implementing no enhancement
technique, four for implementing a single enhancement technique, and three for implementing
two sequential enhancement techniques. Consequently, each receipt document image will be
assigned one of the eight engineered enhancement procedure categories as a label.

Assign enhancement procedure categories to images

The eighth module, and also the final module within the Labelling subcomponent, functions
as a data labelling pipeline by assigning one of the eight previously engineered enhancement
procedure categories to each receipt document image in the ICDAR 2019 SROIE data set. The
module requires the list of enhancement procedure categories, the receipt document images, the
GT feature lists, the selected OCR engine and its estimated hyperparameters, and the base
OCR results, attained in Module 5.0, for each receipt document image.
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The following procedure is repeated for each individual receipt document image: First, an
enhancement procedure is applied to a receipt document image. Thereafter, the OCR recognition
and output formatting steps of Module 3.0 is implemented, once again, whereby the EasyOCR
engine, in combination with its previously estimated hyperparameters, is applied to the receipt
document image. This is followed by the output formatting steps in order to produce the
OCR output list. The OCR evaluation steps of Module 5.0 is then invoked, producing an OCR
accuracy score for the receipt document image after being subjected to the specific enhancement
procedure. These steps are repeated for each of the seven new enhancement procedures (the first
category requires no enhancement; therefore, it is assigned the same OCR accuracy as the base
OCR accuracy attained earlier), outputting eight OCR accuracy scores for the receipt document
image, each corresponding to an enhancement procedure. The enhancement procedure which
reflects the best OCR accuracy is then deemed the best category for the specific receipt document
image and is therefore assigned its corresponding label.

6.2.3 Implementation of the Modelling subcomponent

The third subcomponent of the InDIE framework to be implemented is the Modelling subcom-
ponent, comprising the three modules elaborated upon in §5.3.3. The subcomponent receives
the selected model components with their corresponding estimated hyperparameters, a training
set, a validation set, a testing set, and the assigned labels.

Select convolutional base

The convolutional base of the model, i.e. the first part of the model, ought to be utilised to extract
feature maps from the receipt document images, usually not interpretable by humans. The
three pre-trained models considered are the AlexNet [162], VGG-16 [262], and EfficientNet [278]
architectures.

Since there is limited research on the capabilities of pre-trained models to extract knowledge
from document images for document image enhancement purposes, the research performed on
document image classification is used as a source to draw inspiration from. Document image
classification encapsulates the task of classifying document images based on text contents and/or
structural properties. According to Das et al. [60], a document structure can be realised through
the use of a pattern classification system, e.g. deep learning techniques. The Ryerson Vision
Lab Complex Document Information Processing (RVL-CDIP) data set [113] comprises scanned
document images belonging to 16 classes. These classes include letters, forms, resumes, and
memos. Numerous approaches and algorithms have been developed in pursuit of automating
this complex task, including several transfer learning approaches, obtaining state-of-the art
results, as graphically illustrated in Figure 6.12.

In 2017, Afzal et al. [2] implemented a transfer learning approach, exploring the capabilities of
several pre-trained CNN architectures, and found that the VGG-16 pre-trained model performed
the best, obtaining an accuracy of 0.910 on the RVL-CDIP data set. Moreover, one year later,
Das et al. [60] improved upon the work of Afzal et al. using the VGG-16 pre-trained model which
achieved an accuracy of 0.922. The state-of-the-art results achieved by the application of the
VGG-16 pre-trained model suggests the model’s capabilities to transfer its learning experience
from being trained on ImageNet to the domain of document image classification. Consequently,
the intuition is that the feature maps extracted from the document images for the document
image classification task might also be used to predict which enhancement procedure ought to
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Figure 6.12: Graphical illustration of the top performing methods for document image classification on
the RVL-CDIP data set [211].

be used on each of the ICDAR 2019 SROIE data set receipt document images. Therefore, the
pre-trained VGG-16 model is selected as the convolutional base for the prediction model.

Build and train model

The building and training of the model is performed in three stages, namely: (1) The data
preparation stage, where the data are transformed and parsed in an appropriate data sets for
model training, (2) the model construction stage, where the different layers of the model is
compiled together, and (3) the training stage, where the model is fitted to the prepared data
sets.

The iterative nature of building a model to predict the enhancement procedures for ICDAR 2019
SROIE data set is initiated by splitting the data set into a training, validation, and testing set,
based on a 60%, 20%, and 20% split, respectively. Thereafter, the training set and validation
minority classes are oversampled in order to balance the data set. The receipt document images
in all three data sets are resized to a 224×224 dimension with three colour channels, as recom-
mended by Das et al. [60], since the VGG-16 model was initially trained on 224×224×3 images.
Thereafter, the training set and validation set data are augmented to increase the number of
data instances by adding slightly modified copies of the original receipt document images. The
augmentations include initial estimated parameters of rotations, namely 20°, shifting the width
with a range of 0.2, shifting the height with a range of 0.2, adding a zoom range of 0.3, and
permitting horizontal and vertical flip. The test set data are not augmented. Thereafter, the
training set, validation set, and testing set data image pixel values are normalised by dividing
each pixel by 255.

Next, the model is constructed, incorporating the convolutional base and a chosen classifier. The
VGG-16 feature extraction layers are added as the convolutional base, requiring the removal of
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the original VGG-16 classifier. The convolutional base layers may be set to frozen and/or
unfrozen, depending on the extent of training desired. A global average pooling layer is added
to further reduce the data, followed by a flatten layer. According to the results obtained by
Das et al. [60], a classifier comprising multiple dense layers will result in the best accuracy when
utilising the VGG-16 as a convolutional base. Accordingly, a classifier is constructed comprising
three dense layers, the first of which has a starting number of 250 neurons, the second 50
neurons, and the third and final classification layer contains the number of neurons equal to the
number of classes to be predicted. The first and second dense layers employ the ReLU activation
function, while the third (i.e. final) classification layer employs a softmax activation function, as
recommended by the literature (listed in Table 2.2). It is regarded as good practice to include
dropout layers in order to attempt to reduce overfitting, as discussed in §2.5.1. A dropout layer is
added between the first and second dense layers, and between the second and third dense layers,
with initial dropout rates of 0.3 and 0.2, respectively. Afzal et al. [2] recommend a learning rate
of between 0.01 and 0.0001. The Adam optimiser is selected with an estimated learning rate of
0.0001 for the initial training instance. Since the aim of the model is to predict categories, the
categorical cross-entropy loss function is employed for model training. The chosen metric for
model evaluation is AUC.

Finally, the model may be fitted to the training data set and evaluated in respect of the validation
data set. Afzal et al. [2] recommend the number of training epochs to range between 40 and 80
epochs. Accordingly, the model is initially trained for 50 epochs.

Since the initial hyperparameters are merely estimations gathered from previous works in the
domain of transfer learning for document images, several iterations of fine tuning are performed.
During training, the training and validation curves are visualised and presented to the user.
The validation curve is used to validate the training of the model and measure the performance
of the model. The insight gained by inspecting the validation curve (e.g. whether the model
is under- or overfitting or the possible need for additional epochs) is then used as a guide to
fine-tune the hyperparameters of the model by means of a sensitivity analysis.

Upon further analysis of the various training and validation curves produced by the fine tuning
stage of the training procedure, it was found that the task of accurately predicting which of
the eight possible enhancement procedures would produce the best OCR performance for each
receipt document images is deemed too complex for the model at hand. Accordingly, the problem
is simplified by reducing the complex multiclass classification problem into a simpler binary
classification task by only considering whether (or not) to implement a specific enhancement
procedure. In order to select which enhancement procedure to select for the binary classification
task, the results obtained after Module 8.0 is inspected. The enhancement procedure that, if
correctly predicted and therefore implemented, can potentially result in the best overall OCR
improvement is selected. In the case of the eight enhancement procedures created for the ICDAR
2019 SROIE data set, image sharpening achieved the best average OCR accuracy (if correctly
predicted and implemented). Accordingly, Modules 8.0–10.0 are repeated, this time as a binary
classification problem.

Evaluate model

In order to fairly evaluate the performance of the trained model, the model is tested in respect of
the testing set (i.e. receipt document images comprising 20% of the overall ICDAR 2019 SROIE
data set, unseen by the trained model) in the eleventh module of the InDIE framework.
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6.2.4 Implementation of the Analysis subcomponent

The fourth and final InDIE framework subcomponent to be implemented is the Analysis sub-
component, comprising the three modules, i.e. Modules 12.0–14.0, as elaborated upon in §5.3.4.
The subcomponent receives the test set receipt document images created in Module 9.0, the
corresponding predicted classifications provided as output from Module 11.0, the corresponding
GT feature lists produced by Module 2.0, and the OCR engine with its accompanying estimated
hyperparameters as input. The implementation of Modules 12.0–14.0 is only briefly discussed,
as the results obtained throughout the proof-of-concept implementation is elaborated upon later
in this chapter.

Implement enhancement procedure predictions on test set images

Module 12.0 facilitates the implementation of the predicted classifications on the test set receipt
document images. The test set receipt document images that received a prediction for Base
image3 are left as is, whereas the remainder are transformed (and hopefully enhanced) with the
image sharpening filter technique discussed earlier. The new and transformed test set is passed
on as input to Module 13.0.

Implement OCR on enhanced test set

Module 13.0 receives the transformed and adapted test set receipt document images, and the
OCR engine with its accompanying hyperparameters as input. OCR is implemented on the test
set, and the OCR output is cleaned in a similar manner, as explained in the implementation of
Module 3.0. The produced output is the new OCR output lists corresponding to the test set
receipt document images.

Evaluate OCR results

In Module 14.0, the final module of the InDIE framework, the newly attained OCR output lists
are used, in combination with the GT feature lists and the evaluation metric to compute the
enhanced OCR accuracy of each receipt document image in the test set, whereafter the average
enhanced OCR accuracy for the enhanced test set is obtained. The average enhanced OCR
accuracy is then compared with the original test set average base OCR accuracy (i.e. the test
set before any transformation) in order to determine whether the employment of the trained
model improved the average OCR accuracy of the test set.

6.3 Results produced by InDIE framework implementation

A plethora of results were produced during the proof-of-concept implementation of the InDIE
framework applied to the ICDAR 2019 SROIE data set. The insights gained through the analysis
of these results were employed in order to guide the user towards making important design
decisions, influencing the quality and accuracy of the trained model, and ultimately, the value
that was added by the implementation of the InDIE framework. The remainder of this chapter
is devoted to the visualisation, exploration, and in-depth discussions of the results obtained

3Enhancement procedure category indicating that document image ought to remain unaltered.
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throughout the implementation of the four InDIE subcomponents on the ICDAR 2019 SROIE
data set.

Initial base OCR results

Through the implementation of Module 5.0, i.e. the evaluation of the base OCR results, a base
OCR accuracy was assigned to each receipt document image, according to the evaluation metric
engineered in Module 4.0. As discussed earlier, the ICDAR 2019 SROIE data set is a well-known
data set in the OCR document analysis academic committee. Accordingly, from the conception
of the data set in 2019, several benchmark results have been attained which may be utilised
in order to verify whether the implementation of the Configure subcomponent resulted in the
expected base OCR performance.

In 2021, Correa et al. [54] released a comparative study analysing the base OCR performances
of several OCR engines on the ICDAR 2019 SROIE data set. The OCR engines included
Calamari, Kraken, OCRopus (employs an RNN model), Tesseract version 3, Tesseract version
4.1 (employing an LSTM model), Tesseract version 5 (employing an LSTM model), and Google
Vision [24] (a proprietary and paid service). Although EasyOCR was not included due to its
recent release in 2020, the results obtained by the Tesseract OCR engines may be used for
comparison purposes as the Tesseract OCR engines and the EasyOCR engine are both open-
source models, while Google Vision is a paid service. A summary of the average base OCR
accuracy results obtained by Correa et al. and the EasyOCR results obtained by the InDIE
framework implementation are provided in Table 6.1. The InDIE EasyOCR implementation
achieved an average base OCR accuracy of 0.7695, while the Tesseract version 4.1 (released
in 2019 and which employs an LSTM model) of Correa et al. achieved an average base OCR
accuracy of 0.7842. It is important to note that the goal of this comparison is not to achieve a
higher base OCR accuracy, but rather to showcase that the InDIE EasyOCR implementation
was conducted in a manner (e.g. data cleaning, formatting, and estimations of hyperparameters)
that produces expected and comparable results, verifiable by other works in the literature. The
similar results showcase that the implementation of the EasyOCR engine is on par with other
open-source OCR engine counterparts. Therefore, it is verified that the implementation of the
first subcomponent of the InDIE framework achieved the desired outcome.

Table 6.1: Summary of average base OCR accuracy (word-level) results obtained by Correa et al. [54],
and the EasyOCR results obtained by the InDIE framework implementation.

OCR Engines Average base OCR accuracy

Calamari 0.5631
Kraken 0.3656
Tesseract version 3 0.1149
Tesseract version 4.1 0.7842
Tesseract version 5 0.7973
Google Vision 0.8608

InDIE: EasyOCR 0.7695

After verifying that the EasyOCR engine produced the expected results, valuable insights may be
attained by visualising and analysing the base OCR accuracies assigned to the receipt document
images. The chart visualised in Figure 6.13 displays the number of receipt document images
that achieved a base OCR accuracy with respect to each of the ten accuracy bins. The lower
base OCR accuracy bins are showcased in red, while the higher base OCR accuracy bins are
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Figure 6.13: Graphical illustration of the base OCR accuracy results for the ICDAR 2019 SROIE data
set.

showcased in green. The base OCR accuracy bin comprising the most receipt document images
is the “0.81–0.90” bin, followed closely by the “0.71–0.80” bin. This reflects the average base
OCR accuracy of 0.7695.

Enhancement procedure results

After the construction of the eight original enhancement procedure categories in Module 7.0, the
receipt document images were labelled in Module 8.0 according to the enhancement procedure
that resulted in the best OCR performance. The original results (before the binary relabelling)
of the assigned labels are shown in Table 6.2, where the first column indicates the category name
and the second column indicates the portion of the receipt document images assigned to the
corresponding label (i.e. assigned if the enhancement procedure obtained the best OCR results).

It is found that 0.43 of the receipt document images were assigned the Base image category.
This means that 0.43 of the receipt document images did not improve by any of the document
enhancement techniques, and were therefore assigned the Base image category. The second most
assigned enhancement procedure category was Sharpening, with 0.20 of the receipt document
images experiencing the most pronounced OCR accuracy improvement after the implementation
of the image sharpening filter. Although each category was assigned to several receipt document
images, it was found that the enhancement procedure categories of Noise removal, Cropping &
noise removal, Cropping & sharpening, and Binarisation & noise removal were all assigned to
only a portion of 0.07, 0.04, 0.03, and 0.02 of the receipt document images, respectively.

Another factor to consider is the portion of images which would be improved upon (in terms of
OCR accuracy) if each enhancement procedure was individually applied to the entire data set
without any intelligence. The original results (before the binary relabelling) of the individual
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Table 6.2: Summary of the original labelling distribution when considering all eight enhancement
procedure categories.

Enhancement
procedure category

Portion of image
category assignment

Base image 0.43
Cropping 0.11
Binarisation 0.10
Noise removal 0.07
Sharpening 0.20
Cropping & noise removal 0.04
Cropping & sharpening 0.03
Binarisation & noise removal 0.02

application of enhancement procedures are shown in Table 6.3, according to which the first
column indicates the category name that was individually implemented and the second column
indicates the portion of the receipt document images that exhibited improved OCR accuracy.
When inspecting the second column results, it was found that Sharpening improved the largest
proportion of receipt document images (when applied to all), with 0.30 of the data set showcasing
an improved OCR accuracy (i.e. in comparison with their corresponding base OCR accuracies).

Table 6.3: Summary of the portion of images which showcased an improved OCR accuracy after the
individual application of enhancement procedures.

Single enhancement
procedure category

Portion of entire data set which
showed OCR improvement

Cropping 0.16
Binarisation 0.17
Noise removal 0.19
Sharpening 0.30
Cropping & noise removal 0.23
Cropping & sharpening 0.27
Binarisation & noise removal 0.16

The ICDAR 2019 SROIE data set is considered to be a markedly small data set. Accordingly, the
portion according to which some of these enhancement procedures were assigned, were deemed
too small, as it is hypothesised that the model would not be able to learn from the intrinsic
patterns between all eight categories. Consequently, it was decided to remove all enhancement
procedure categories assigned to less than 0.10 of the receipt document images. The few corre-
sponding receipt document images were relabelled with the remaining enhancement procedure
categories.

It was found that if the assigned labels are perfectly implemented (i.e. if each receipt document
image was subjected to the enhancement procedure that would result in the best possible OCR
improvement), the average best OCR accuracy for the ICDAR 2019 SROIE data set would be
0.8231. Therefore, if the transfer learning model of the Modelling subcomponent possesses the
capability of predicting all the assigned labels exactly, followed by the implementation of the
predicted enhancement procedures, the average OCR accuracy would be improved from 0.7695
(the average base OCR accuracy) to 0.8231 (the average best OCR accuracy), constituting an
improvement of 0.054. This emphasises an important facet of OCR-related tasks. It is important
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to note that even the smallest OCR improvement can have a significant impact on the real-world
business case. Consider the example where the text of one million receipts (comprising an average
of 15 GT feature strings each) are to be correctly recognised. An improvement of only 0.054
would result in an increase of correctly recognised GT strings by an additional 810 000 strings,
a substantial rise in potential business value.

Graphically illustrated in Figure 6.14 is a chart showcasing both the computed base OCR ac-
curacy distribution and the theoretical best OCR accuracy distribution, in terms of the ten
accuracy bins. The results of the base receipt document images are shown in red, and the the-
oretical best receipt document images in green. Note the extent to which the red bars surpass
the green bars in the ranges “0–0.10” to “0.71–0.80”, and the green bars surpass the red bars in
the top performing ranges “0.81–0.91” and “0.91–1.00”. This is an indication that the correct
implementation of the assigned enhancement procedures can result in a reduction of low OCR
accuracy receipt document images and an increase in high OCR accuracy receipt document
images.
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Figure 6.14: Graphical comparison of the number of receipt document images from the base OCR
accuracy scenario and the enhanced OCR accuracy scenario, in terms of the ten accuracy bins.

Additional results were examined, specifically focussing on the computed OCR accuracies.
though the assignment of the enhancement procedure categories, where each enhancement pro-
cedure was implemented on all the receipt document images in order to provide insights on
the impact of solely implementing an enhancement procedure without any intelligence versus
correctly predicting whether to implement the procedure or not. These results are presented in
Table 6.4, where the first column indicates the enhancement procedure category and the second
column indicates the average OCR accuracy if the corresponding enhancement procedure was
applied to the entire receipt document images without any intelligence. It is found that none of
the full implementations of any of the enhancement procedures could improve upon the average
base OCR accuracy of 0.7695, with Sharpening achieving the closest results of 0.7481. The

Stellenbosch University https://scholar.sun.ac.za



122 Chapter 6. Proof-of-concept implementation

Table 6.4: Summary of the OCR results obtained when applying individual enhancement procedure
categories on the entire receipt data set.

Enhancement
procedure category

Average full OCR accuracy

Base image 0.7695
Cropping 0.7399
Binarisation 0.6881
Noise removal 0.7476
Sharpening 0.7481
Cropping & noise removal 0.7400
Cropping & sharpening 0.7400
Binarisation & noise removal 0.6822

displayed results, once again, showcase the damage done by document enhancement techniques
if not applied to the appropriate receipt document images.

Moreover, it was also examined which individual enhancement procedure would produce the best
average OCR accuracy if it is assumed that a binary transfer learning model can precisely predict
whether a specific individual enhancement procedure ought to be applied or not — i.e. only
applied to the receipt document images if it would produce an improved OCR accuracy. These
results are shown in Table 6.5. Since it is assumed that the theoretical transfer learning model
can predict perfectly, it is expected that all the obtained average OCR accuracies ought to be an
improvement on the average base OCR accuracy. The individual application of Sharpening, once
again, obtained the best results with an average OCR accuracy of 0.8002, showing a maximum
possible improvement of 0.0307 for a single enhancement procedure. When considering the
example of the one million receipt document images, this would constitute an increase in the
number of correctly recognised GT strings by 460 500 strings, still a considerable gain in potential
business value.

Table 6.5: Summary of the average best OCR results obtained when applying individual enhancement
procedure categories only on receipts which would showcase an improved OCR accuracy.

Single enhancement
procedure category

Average Best OCR accuracy

Cropping 0.7823
Binarisation 0.7823
Noise removal 0.7838
Sharpening 0.8002
Cropping & noise removal 0.7880
Cropping & sharpening 0.7969
Binarisation & noise removal 0.7831

As mentioned in §6.2.3, the model training and validation curves showcased suboptimal training
performance, and therefore a binary classifier was also considered in order to reduce the com-
plexity of the task. After inspecting the results presented in Table 6.4 and Table 6.5, it was
found that Sharpening showcased the best possible results when implementing a single enhance-
ment procedure (other than the Base image enhancement procedure category). Consequently,
the receipt document images were relabelled according to the binary classification of Base image
(i.e. unaltered) or Sharpening.
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Graphically illustrated in Figure 6.15 is a chart showcasing both the base OCR accuracy dis-
tribution and the theoretical best OCR accuracy distributions (for the individual application of
the Sharpening enhancement procedure), in terms of the ten accuracy bins. The results of the
base receipt document images are shown in red, and the Sharpened receipt document images
(i.e. when only considering the Sharpening) in green. Once again, it may be noted how the red
bars surpass the green bars in the ranges “0–0.10” to “0.71–0.80”, and the green bars surpass the
red bars in the top performing ranges “0.81–0.91” and “0.91–1.00”, although the magnitude of
the difference is slightly reduced when compared with the difference seen in Figure 6.14. This is
another indication that the correct implementation of the Sharpening enhancement procedures
can result in a reduction of low OCR accuracy receipt document images and an increase in high
OCR accuracy receipt document images.
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Figure 6.15: Graphical comparison of the number of receipt document images from the base OCR
accuracy scenario and the enhanced (i.e. Base image or Sharpened) OCR accuracy scenario, in terms of
the ten accuracy bins.

Model training and validation results

First, the model training and validation results when considering the five selected enhancement
procedures are examined. After the assignment of the original five enhancement procedure cat-
egories in Module 8.0, the model was trained and fine-tuned several times. Recall that the first
few training iterations were performed on the multiclass classification target feature, comprising
Base image, Cropping, Binarisation, Noise removal, and Sharpening. The initial hyperparam-
eters were estimated based on recommended document image classification hyperparameters
identified in literature. After the implementation of a sensitivity analysis, whereby numerous
rounds of fine-tuning were performed (guided by the literature reviewed in §2.1 to §2.6), it was
found that the multiclass classification task struggled to learn from the provided data, producing
validation AUC scores of less than 0.53. By inspecting the training and validation curves after
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every training round, several attempts were made to increase the model’s capability to learn
more complex patterns, e.g. increasing the number of layers in the classifier, reducing dropout,
and/or unfreezing several layers of the pre-trained VGG-16 convolutional base. Unfortunately,
none of the aforementioned techniques introduced the model with the required capabilities to
learn the complex patterns within the data. Consequently, the required complexity was reduced
by relabelling the receipt document images according to a binary classification context where
the image is either labelled as with the Base image category (i.e. no transformation) or the
Sharpening category.

The training of the new task produced better results, showcasing that the model is indeed
learning some intrinsic patterns embedded within the data. The training and validation curves of
the first training iteration, i.e. before any fine tuning was performed, is illustrated in Figure 6.16,
where the blue curve represents the training AUC curve, and the orange curve represents the
validation AUC curve. For the first 30 epochs the training and validation curve continuously
obtained an increasing AUC score as training continued. After 100 epochs, the training curve
achieved a maximum AUC score of 0.71, however, when inspecting the validation curve, it was
identified that the validation AUC curve reached a plateau around the 70 epoch mark, and
slowly started to decrease until the last epoch. This was recognised as an indication that the
model might be overfitting the training data.

Figure 6.16: Visualisation of training (blue) and validation (orange) AUC curves for the training of the
prediction model.

The possible occurrence of overfitting was verified by inspection of the loss curves visualised
in Figure 6.17. For the first 60 epochs both the training and validation losses decreased as
training continued, however, after approximately 70 epochs of training, the validation loss curve
showcased a noteworthy spike which kept moving further away from the training loss curve,
clearly indicating continuous overfitting. In order to attempt to reduce overfitting, the dropout
values were increased during the fine tuning procedure.
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Figure 6.17: Visualisation of training (blue) and validation (orange) loss curves for the training of the
prediction model.

After reducing the effects of overfitting, two layers of the pre-trained VGG-16 model were un-
frozen, enabling the training of its weights. In order to train the unfrozen layers, the added
classifier head was first trained for 50 epochs with the fully frozen pre-trained convolutional
base. Thereafter, the last two layers of the convolutional base were unfrozen and trained in
conjunction with the classifier for another 50 epochs. The training thereof resulted in significant
overfitting. Accordingly, another dropout layer was added after the convolutional base with a
dropout value of 0.5 The training and validation AUC curves are visualised in Figure 6.18 where
the green line shows the start of the additional training of the two unfrozen convolutional base
layers. There is a clear elevation in validation AUC score when the training on the two unfrozen
layers commences, showcasing that an increase in AUC score can be obtained by unfreezing
some of the convolutional base layers. The final AUC scores attained were 0.70 for the training
curve, and 0.62 for the validation curve. Although these results are not particularly high AUC
scores, it is found that the model is learning some information from the intrinsic patterns within
the data, which is considered to be a valuable academic finding.

After the model was fine-tuned, it was evaluated on the test set. The test set confusion matrix
is provided in Figure 6.19. It was found that 0.61 of the Base image category was predicted
correctly, while only 0.57 of the Sharpening category was predicted correctly. It is important
to remember that the Base image category ought to comprise all the receipt document images
that would either deteriorate or remain in a neutral state if sharpened, while the Sharpening
category ought to comprise all the document images that will improve if sharpened. Accordingly,
when a receipt document image is incorrectly classified as Base image while its actual value
is Sharpening, that no enhancement procedure will be implemented. Although the desired
improvement will not be realised, no damage will be done by not enhancing the receipt document
image. The receipt document image is merely left in its original state. In contrast, if the model
classifies a receipt document image as Sharpening, while it has an actual value of Base image, this
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Figure 6.18: Visualisation of training (blue) and validation (orange) AUC curves for the training of the
prediction model where the initiation of unfreezing two convolutional base layers are indicated with the
green vertical line.

may potentially deteriorate the receipt document image, as it might sharpen a receipt document
image that will deteriorate when altered, reducing the average OCR accuracy. Therefore, the
priority of the model ought to be to reduce false predictions of the Sharpening category (i.e.
the false negatives). In the case of the test set, the attained false negative value is 0.39. It is
recognised that the false negative value is still deemed as a relatively high value, however, it
shows that the trained model has the capability to learn from the intrinsic patterns within the
data, and to employ this attained knowledge to (slightly) reduce the false negative predictions.
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Figure 6.19: Test set confusion matrix results for the binary classification model.

Enhanced test set OCR results

The final results to be explored are obtained from the fourth and final subcomponent of the
InDIE framework, i.e. the Analysis subcomponent, whereby the predicted classes were imple-
mented on the receipt document images of the test set.

After implementing the model predictions, the average enhanced OCR accuracy (i.e. the test
set OCR results which utilised the intelligent predictions) was computed and compared with the
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corresponding test set’s average base OCR accuracy (i.e. without any enhancement), the test
set’s average full Sharpening OCR accuracy (i.e. if Sharpening was applied to all the test set
receipt document images), and the test set’s average best OCR accuracy (i.e. if applied only to
the receipt document images that would showcase an improved OCR accuracy). These results
are shown in Table 6.6. The average base OCR accuracy for the test set is 0.7720. If one would
implement the sharpening filter on all the test set receipt document images, the average OCR
accuracy would fall to 0.7612, a decrease of 0.0108. If the sharpening filter is only implemented
on the test set document images that would improve (i.e. the best possible case), the average
OCR accuracy would be 0.8039. This means that if the transfer learning model classifies all
the test set document images correctly, that the average OCR accuracy can be increased by
0.0319. Finally, after implementing the predictions of the trained model, an average enhanced
OCR accuracy of 0.7827 was achieved, i.e. an increase of 0.0107. Considering the previously
discussed business case of one million receipt document images with 15 GT feature strings each,
this improvement would constitute an increase of 160 500 strings, still a noteworthy benefit to a
real-world business case.

Table 6.6: Average OCR accuracy scenarios for different test set conditions.

Test set category Average OCR accuracy

Average base OCR accuracy 0.7720
Average full Sharpened OCR accuracy 0.7612
Average best OCR accuracy 0.8039

Average enhanced OCR accuracy 0.7827

When comparing the newly attained average enhanced OCR accuracy (i.e. 0.7827) with the
average full Sharpened OCR accuracy (i.e. 0.7612), an improvement of 0.0215 is achieved. In
order to gain more insight into how the added machine intelligence aided in actualising this
OCR improvement, it is important to analyse the number of receipt document images that ei-
ther improved, remained unchanged, or deteriorated (in terms of OCR accuracy). Shown in
Table 6.7 are detailed results of the aforementioned two categories in terms of their performance
compared with the test set base OCR accuracies. If the Sharpening enhancement procedure
is applied to all the test set receipt document images, a 0.30 portion improves in OCR accu-
racy while 0.38 of the images deteriorate in OCR accuracy, deriving an improved/deteriorated
ratio of 0.7895. Since the ratio is considerably less than one, it can be inferred that the full
implementation of the Sharpening enhancement procedure would deteriorate the average OCR
accuracy. If the Sharpening enhancement procedure is intelligently predicted and implemented
on the test set receipt document images (i.e. with the use of machine intelligence), a 0.18 portion
improves in OCR accuracy while 0.16 of the images deteriorate in OCR accuracy, deriving an
improved/deteriorated ratio of 1.1250. Since the ratio is greater than one, it is confirmed that
the intelligent application of the Sharpening enhancement procedure derives an improvement of
the average OCR accuracy.

In conclusion, it is found that before any form of machine intelligence was employed, the Sharp-
ening enhancement procedure deteriorated the average OCR accuracy of the test set, with more
receipt document images being damaged than enhanced. After the addition of machine intel-
ligence, however, the implementation of the Sharpening enhancement procedure improved the
average OCR accuracy of the test set, with more receipt document images being enhanced than
damaged.
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Table 6.7: A comparison of the number of improved, unchanged, and deteriorated receipt document
images when sharpening all the images and when only sharpening the predicted images.

Impact category compared
with the original base OCR

All images in
test set

Only applied to predicted
images in test set

Number Ratio Number Ratio
Improved 38 0.30 22 0.18
Same 39 0.31 83 0.66
Deteriorated 48 0.38 20 0.16

Improved/deteriorated 0.7895 1.1250

6.4 Chapter summary

In this chapter, a proof-of-concept implementation was executed by means of the InDIE frame-
work. The chapter opened in §6.1 with the discussion of an appropriate benchmark data set for
the proof-of-concept implementation, whereafter the ICDAR 2019 SROIE data set was selected
and explored. This was followed by an in-depth discussion in §6.2 of the proof-of-consent imple-
mentation of the four InDIE subcomponents and all their underlying modules. The chapter was
concluded in §6.3 with a thorough analysis of the results attained throughout the implementation
of the proof-of-concept.
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In order to further illustrate the potential utility of the InDIE framework (introduced to the
reader in Chapter 5 whereafter a proof-of-concept implementation was provided in Chapter 6),
an instantiation is applied to a real-world case study, utilising data sourced by the industry
partner attached to this project. The generic modules within the four subcomponents of the
InDIE framework are populated with specific algorithms and user-defined settings in order to
illustrate the working of the framework. First, the background of the case study is presented, as
well as an exploration of the provided industry partner data associated with this study, whereby
the difference between benchmark data sets and real-world data sets is showcased by means of
visualisations and inspections. Subsequently, the implementation of the four subcomponents
of the InDIE framework are briefly described. Thereafter, the results returned throughout the
implementation are analysed, followed by a detailed discussion of the case study validation —
aided by the critique and validation of two subject-matter experts. The chapter is concluded
with a summary of its contents.

7.1 Data set background

The previous chapter showcased a proof-of-concept implementation of the InDIE framework by
introducing machine intelligence into the selection and application of document enhancement
techniques, thereby improving the average OCR accuracy of the ICDAR 2019 SROIE [227] data
set. Although the data set is considered as a high quality benchmark data set in the realm of
document analysis, real-world data sets (i.e. data sets engineered for real-time industry products
and services) tend to be associated with additional and unforeseen complexities — spawned by
factors that arise in everyday industry data pipelines (e.g. human-prone errors, system downtime,
lost files, corrupt files, and the mixture of legacy and new code). Consequently, the InDIE
framework ought to be employed on a real-world data set in order to showcase the potential
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utility of the framework when the data set is not specifically prepared for document analysis
purposes.

As mentioned in Chapter 1, the financial service provider industry allocates considerable re-
sources (specifically labour) to the mundane task of annotating paper-based document infor-
mation in order to be used in downstream products and services. An array of paper-based
document classes may form part of these downstream products and services, namely bank state-
ments, payslips, identification documents, and application forms, to name but a few. The need
for automated document information extraction systems is therefore especially relevant in this
sector.

In order for a financial service provider to provide a client with an unsecured loan, the client’s
last few months of transactional history, identification document, and payslip are required [41].
Traditionally, the client would be required to visit a branch of the financial service provider and
to physically provide these documents for a consultant, who would then manually annotate the
values in the presence of the client and input the data into the computer system for downstream
analysis. The annotation of these paper-based documents is typically time consuming and also
degrades the client’s experience as the time utilised on annotations could rather have been used
to service more pertinent client-specific needs [295]. If a client utilises a specific financial service
provider as their primary financial provider (i.e. the client’s monthly salary is deposited into this
financial service provider’s system), the financial service provider would have access to the client’s
transactional data, personal identification data, and salary data, constituting all the required
information. If the client only utilises this financial service provider as a secondary bank (i.e.
the client’s salary would be deposited into a bank account hosted by another financial service
provider), the financial service provider would be deprived from the client’s salary information.
Consequently, the bank consultant would still be required to manually annotate the payslip in
front of the client. In order to streamline this process and reduce waste, the financial service
provider would prefer access to the aforementioned documents in a computer-readable data
format, whereby a computer system can automatically transform the pixel-based information
into computer-readable data, enabling the computer to extract the required information.

At the time of writing, the industry partner of this thesis, i.e. Capitec Bank, has eighteen million
active clients [40], however, a large number of these clients do not deposit their primary salary
into their Capitec Bank account. Consequently, Capitec Bank cannot utilise the transactional
history of these clients to derive their salary information. It is therefore required of these
clients to visit a branch, during which a consultant can annotate the client’s payslip information
for ingestion by a computer system. In order to streamline the unsecured loan application,
the industry partner is considering the implementation of an OCR system that can accurately
recognise the pertinent information on client payslips, however, due to the degraded quality
of payslip document images, open-source OCR engines seldom deliver the required average
OCR accuracy performance. Accordingly, the implementation of an additional system that can
intelligently enhance the payslip document images is necessitated in order to improve the average
OCR accuracy attained when extracting the required information. Consequently, the situation
faced by Capitec Bank is deemed as an appropriate real-world case study for the implementation
of the InDIE framework.

Capitec Bank has provided 2 000 payslip document images and its corresponding annotations in
a CSV file. The payslip document images originates from previous unsecured loan application
branch visits from Capitec Bank clients, whereby the client would provide the consultant with
the paper-based payslip, enabling the consultant to first scan the payslip with a flatbed scanner,
whereafter the consultant would annotate the required information into the computer system.
The consultants were required to annotate, if available, the following eleven feature strings: Em-

Stellenbosch University https://scholar.sun.ac.za



7.1. Data set background 131

ployee name, employee surname, employee code, employee occupation, company name, company
address, company postal code, base salary, gross salary, total deductions, and net salary.

As mentioned before, real-world data sets are not compiled to the same degree of high quality
(or for the specific document analysis purpose) when compared with a benchmark data set.
Since Capitec Bank has more than 840 branches across South Africa [40], each housing several
consultants (specifically for receiving unsecured loan applications), it is an eventuality that the
quality and standard of annotations would vary to a certain degree. Consequently, after an
initial exploration of the provided payslip data set was carried out, several human-prone errors
were found. It was observed that contrary standards were applied throughout the annotation of
various GT features.

Consider the case in which the GT feature of a client’s “employee code” is “00be7762”. Where
one consultant would annotate the employee code as printed on the payslip, another consultant
might annotate it as “be7762”. This type of human-prone error is a regular occurrence through-
out the data, and is spawned from the notion that removing and/or only partly annotating
certain GT features which would (according to the consult) not be detrimental to the specific
business goal at that time. Consider the case where the GT feature of “gross salary” of a client is
“R9 899.96”, but it is annotated as “R9 900.00”. In the business case of annotating the value for
an unsecured loan application, rounding up the gross salary by a mere four cents would not have
a significant influence on whether the application is successful or not. In the case of measuring
the OCR accuracy of the payslip document image, however, it would constitute as an erroneous
GT feature as the GT feature value does not match the value printed on the payslip (in terms of
a word-level evaluation metric). Consider the case in which the GT feature “workplace address”
of a client comprises “PO BOX 141”. Where most consultants would annotate it as-is, it was
found that some consultants would input an additional blank space between the character “P”
and “O”, influencing the splitting of strings in the text formatting steps of the InDIE framework,
and thereby falsely reducing the measured OCR accuracy.

Recall the finding that there are no missing values in the ICDAR 2019 SROIE annotation
data (§6.2.1). Created as a data set for academic document analysis purposes, the ICDAR
2019 SROIE data set comprises exceptionally high quality annotated data, however, document
analysis is (as expected) not considered a priority when annotating payslips for unsecured loan
application purposes. It was observed that most GT features contained a plethora of missing
values, as shown in Table 7.1. The GT feature with the most missing values, i.e. company
address, has 1 556 missing values, which equates to 78% of the total payslips.

Table 7.1: Total missing values for each GT feature for the payslip data set.

GT feature name Missing values GT feature name Missing values

Employee name 30 Company postal code 488
Employee surname 8 Base salary 1
Employee code 333 Gross salary 1
Employee occupation 23 Total deductions 23
Company name 165 Net salary 2
Company address 1 556

After exploring a subset of the payslip document images, it was found that the majority of
the images may be classified as having substandard and degraded quality. The degradations
vary from a single quality issue to a combination of quality issues, namely: Shadows on certain
sections of the background, multiple fold lines intersecting textual information, an array of
skewed document scan angles, coffee stains, dark watermarks over important text strings, a
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variety of font types and sizes, and the frequent occurrence of table and/or structural printed
lines close to textual information.

Five distinct payslips are visualised in Figure 7.1 in order to illustrate the aforementioned data
quality issues pertaining to this data set. It is important to note that these provided payslip
document images are available online [69] and not sourced from the Capitec Bank payslip data
set, as all payslip document images and corresponding annotations from the case study data
set are deemed as confidential, as stipulated in a signed non-disclosure agreement between the
author and Capitec Bank. A clear distinction between the ICDAR 2019 SROIE data set and the
payslip data set is the discernable presence of tables and structural lines printed on the payslips.
An additional observation is that payslip document images also comprise notably more textual
information (when compared with the receipt document images), resulting in increased strings
on the document images.

(a) (b) (c)

(d) (e) (f)

Figure 7.1: Examples of six generic payslip document images [69].

Consider the payslip presented in Figure 7.1(a). Almost half of the printed strings are grouped
within predetermined text blocks, specifically made for those features. Moreover, it is also
observed that several textual features are printed with a particularly light-toned ink, increasing
the complexity of the recognition thereof. Another noteworthy observation is the usage of dark-
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shaded backgrounds for column or row headings. This may potentially hinder the OCR engine,
since most text are printed in black, but some headings are printed in white. Consider the
payslip visualised in Figure 7.1(b), where an excessive number of printed strings are present on
the payslip document image. The number of used strings results in the usage of a noteworthy
small font size. As the font size of the characters decreases, the quality also decreases. This might
hinder the OCR engine towards discriminating the character’ shapes from one another, resulting
in erroneous recognitions. The payslip document image shown in Figure 7.1(d) represents a
commonly occurring case according to which the scanned payslip image comprises several paper-
based pieces. This results in various shadows and unwanted lines on the payslip document image,
unnecessarily increasing the complexity of the payslip document image. When inspecting the
payslip presented in Figure 7.1(e), a skew and incorrectly oriented payslip document image
is observed. The characteristics of this payslip are prevalent throughout the payslip data set,
according to which several payslips are recognised to be either skew and/or incorrectly orientated.

7.2 Implementation of the InDIE framework

The Capitec Bank payslip data set is a real-world data set employed in industry. It comprises
semi-annotated payslip document images recognised as having a substandard and degraded
quality. Accordingly, in order to explore the utility of the InDIE framework when implemented
on a real-world data set, the Capitec Bank payslip data set is deemed appropriate for this case
study. Similar to the proof-of-concept implementation in §6.2, the aim in this section is to
attempt to improve the average OCR accuracy of the provided real-world payslip document
image data set by intelligently predicting which enhancement procedure to implement for each
payslip document image. The remainder of this section comprises brief discussions of the case
study implementation selections and estimations for each of the fourteen modules of the InDIE
framework.

Filter features

As mentioned previously, eleven pertinent payslip features were annotated by in-branch con-
sultants as part of unsecured loan applications by clients. The four factors discussed in §5.3.1
are explored in fulfilment of this module. First, the GT features are ranked according to their
importance to the business goals at hand — i.e. extracting specific textual information for un-
secured loan application purposes. Due to this specialised business domain of unsecured loan
applications, it is required to ascertain GT feature rankings that reflect the true business value
of the features. Accordingly, a suitable subject-matter expert, employed by the industry part-
ner, is consulted on the importance of recognising certain GT features [295]. The GT feature
rankings, as recommended by the subject-matter expert, are provided in Table 7.2. Net salary
and company name are ranked as the most important features, while company address and
employee code are ranked as the least important features.

Second, an analysis of the general proximity of the eleven GT features is performed. It is
found that the information pertaining to the employee (and the company that employs them)
is generally located on the upper third of the payslips. The base salary, gross salary, and total
deductions are generally located in the middle third of the payslip, while the net salary is
predominantly located on the lower third of the payslip.

Third, the annotation accuracy of each GT feature is inspected. By examining the missing data
information provided in Table 7.1, it is found that the GT features employee code, company
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Table 7.2: GT features ranked according to the guidance by subject-matter expert.

Rank GT feature name Rank GT feature name

1 Net salary 7 Employee surname
2 Company name 8 Employee name
3 Occupation 9 Company postal code
4 Base salary 10 Company address
5 Total deductions 11 Employee code
6 Gross salary

name, company address, and company postal code all have more than 15% of their values missing,
significantly degrading the value of these GT feature annotations. Moreover, it is found that
the annotations of monetary-type GT features (i.e. net salary, base salary, gross salary, total
deductions) sometimes deviate slightly from the actual strings printed on the payslip document
images. The most detrimental human-prone error is the rounding of monetary values, thereby
completely deteriorating the potential OCR accuracy evaluation of the GT feature. Additionally,
it is recognised that some employee name annotations comprise solely the initials of the clients,
while the printed string is the full client name. Finally, with regards to annotation format,
it is recognised that several monetary GT features deviate from a common standard, varying
by including/excluding currency symbols, and utilising a “,” decimal separator instead of a
“.”decimal separator.

After exploring and considering all of the aforementioned factors, it is concluded that the fol-
lowing eight GT features are selected for the case study data set: Net salary, base salary, gross
salary, total deductions, company name, occupation, employee name, and employee surname.

Clean text and image data

The first text-based data cleaning procedure is the removal of all data entries that contain a
missing value within one of their corresponding GT features. After the removal of these entries
(and their corresponding payslip document images), 1 835 data entries and payslip document
images remain.

Next, the GT feature strings are transformed into appropriate and standardised formats in
order to be easily compared with the corresponding OCR output. It is found that all alphabetic
characters are captured in uppercase format, and are left as-is. In order to mitigate the damage
incurred by the monetary-type GT features due to rounding errors, it is decided to filter out
all decimals (i.e. cents), thereby restoring the precision of the OCR accuracy, whilst having
a negligible effect on the business goals. Monetary-type GT feature annotations for which a
“,”-symbol is annotated as the decimal separator are correspondingly replaced by a “.”-symbol.
As a final step, the eight captured GT features for each individual data entry are formatted
as a list of strings. This is achieved by separating the information contained within a feature
annotation into multiple strings through splitting the annotation content at each blank space
and joining all the strings into a comma-separated list.

Since it is common for payslips to be printed in a landscape format, correctly orientating the
images is a crucial step in the data wrangling process of document images. Accordingly, all
the payslip document images are wrangled through the implementation of both (1) the skew
correction operation and (2) the text orientation correction operation. A Hough transformer-
based approach [193] is implemented for correcting any undesired angle in respect of the payslip
document images. For the orientation correction, the word comparison method is implemented,
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whereby the EasyOCR engine [141] is employed with respect to the four different angled payslip
document image variants. After a manual inspection is performed, it is found that the two
operations corrected the skew and/or incorrectly orientated payslip document images.

Implement OCR

Upon inspection of the payslip document images, it is found that the composition of the images is
deemed complex. The payslip document images comprise various logos, background watermarks,
complex font types and sizes, many printed lines overlapping with alphabetic strings with thick
fonts, and a constant occurrence of shaded areas and fold lines. Therefore, it is required to
select an OCR engine with the flexibility to be adapted to the required conditions. Taking the
aforementioned into consideration, the EasyOCR engine is selected as the OCR engine for this
case study implementation.

A small experimental sample of 30 payslip document images is created and utilised to fine-tune
the hyperparameters of the EasyOCR engine. Several hyperparameters are selected by the user.
First, the detection language is set to English. Next, the GPU option is set to false, as the
industry partner device does not have a GPU, and the data ought to remain on the provided
device as it contains markedly sensitive and confidential data. After performing a sensitivity
analysis on the experimental sample, it is found that the detection text boxes ought to be fine-
tuned for the payslip data set. The add margin hyperparameter is tuned from its default value
of 0.1 to 0.3, while the width ths hyperparameter is increased from its default value of 0.5 to
0.65. The increase of the width ths hyperparameter is due to the faulty merging of text boxes
for payslip document images comprising characters with notably small font.

After the estimation of suitable hyperparameter values, the EasyOCR engine is applied to all
of the payslip document images, producing corresponding OCR outputs (in a paragraph form).
This is followed by the formatting of the OCR outputs, whereby punctuation marks and cur-
rency symbols are removed from the obtained strings. Thereafter, all alphabetic characters are
transformed into uppercase characters. The single paragraph OCR output is then divided into a
list of strings, separating the strings when a blank space is found in the paragraph. This enables
the GT feature lists to be directly compared with the corresponding OCR output lists, as both
are similarly standardised and appropriately formatted.

Engineer evaluation metric

The engineering of an appropriate evaluation metric is a crucial step in the InDIE framework
implementation, as the downstream usage thereof influences the assignment of the subsequent
engineered enhancement procedures. The receipt and payslip document types both reside in
the domain of financial documents, requiring higher average OCR accuracies, as previously
mentioned. Moreover, financial documents comprise several monetary-type GT features, thereby
warranting a word-based evaluation metric.

Upon taking the aforementioned into consideration, a word-based evaluation metric is engi-
neered, whereby each string within the GT feature lists holds equal weighting in the calculation
of the OCR accuracy. Therefore, the evaluation metric for the payslip data set case study is
alike to the evaluation metric engineered for the ICDAR 2019 SROIE data set proof-of-concept
implementation.
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Evaluate OCR results

The base OCR accuracy of a single payslip document image is computed by taking the intersec-
tion of the OCR output list and the GT feature output list, and dividing it with the total number
of GT feature strings. Thereafter, the average base OCR is computed by taking the average of
all the base OCR accuracies of the payslip document images, yielding the base performance of
the EasyOCR engine on the payslip data set.

Select enhancement techniques

In this module, the expected impact from the implementation of several document enhancement
techniques are tested by utilising the previously compiled experimental sample. The experi-
mental sample is expanded upon by adding 15 high achieving OCR accuracy payslip document
images and 15 low achieving OCR accuracy payslip document images. As previously mentioned,
the addition of these payslip document images aids towards showcasing the possible improvement
(or deterioration) caused by the various document enhancement techniques. The considered en-
hancement techniques include cropping, line removal, binarisation, noise removal, sharpening,
and a sequential combination of the mentioned document image techniques.

First, the effects of cropping is evaluated. After inspecting the experimental sample, it is ob-
served that the majority of payslip document images does not have an abundance of excess
white space. This is a consequence of the plethora of information contained in a generic payslip,
thereby requiring vastly more space for structuring and presenting the information than a typ-
ical document. Moreover, the usage of tables and printed lines results in a natural border on
the edges of a document page, as showcased in Figure 7.1(a). Consequently, most payslip doc-
ument images contain limited space for cropping purposes. After implementing the document
enhancement technique on the experimental sample, it is found that the majority of the payslip
document images deteriorated as a result of erroneous cropping, with only a few that improved
(in terms of OCR accuracy). It is therefore decided not to include cropping as a potential
document enhancement technique.

While line removal was disregarded in the ICDAR 2019 SROIE data set proof-of-concept imple-
mentation, it is expected to be a prominent method for the enhancement of payslip document
images. By visually inspecting the experimental sample, it is observed that the overwhelming
majority of the payslip document images contain either printed tables or several printed struc-
tural lines. After implementing line removal, it is found that several payslip document images
showcased a considerable improvement when compared with its base OCR accuracy, with several
payslip document images improving by more than 0.30 in terms of OCR accuracy. Simultane-
ously, several payslip document images also deteriorated after the removal of lines, with a few
showcasing a marked deterioration of 0.45. Intelligently identifying which payslip document
image requires line removal would be beneficial towards improving the average OCR accuracy.
Therefore, line removal is included as a potential document enhancement technique.

The document enhancement techniques of binarisation, noise removal, and sharpening all per-
formed similarly on the experimental sample payslip document images, with a range of re-
spectable improvements and notable deteriorations. Binarisation, noise removal, and sharpening
are therefore included as potential document enhancement techniques.
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Create enhancement procedure categories

Upon considering the aforementioned document enhancement techniques, eight enhancement
procedure categories are created, as listed in Table 7.3. The first enhancement procedure is
called Base image, once again a requirement for ensuring that if all other enhancement procedures
result in a deterioration of OCR performance, the document image ought to remain unaltered.
The next four enhancement procedures, i.e. category 2–5, all constitute the implementation of
a single enhancement technique. Categories 6–8 all comprise the sequential implementation of
line removal, and then either noise removal, binarisation, or sharpening, respectively.

Table 7.3: Constructed enhancement procedures for the payslip data set case study.

Category Enhancement procedure

1 Base image
2 Line removal
3 Binarisation
4 Noise removal
5 Sharpening
6 Line removal & noise removal
7 Line removal & binarisation
8 Line removal & sharpening

Assign enhancement procedure categories to images

After the creation of the eight enhancement procedures, each payslip document image is sub-
jected to eight image transformations, each corresponding to their own payslip document image
variant. Thereafter, OCR is implemented in respect of each variant, and the OCR output for-
matted. This enables the evaluation of each enhancement procedure for each payslip document
image. The enhancement procedure corresponding to the best OCR accuracy is then deemed the
best category for the specific payslip document image, and is therefore assigned its corresponding
label.

Upon further analysis of the attained assignment results (elaborated upon later in this chap-
ter), it was found that several enhancement procedures were either not assigned to sufficient
payslip document images in order to be reasonably separated into the training, validation, and
testing sets, or that the improvement showcased by the implementation of the enhancement
technique did not produce the desired results. Consequently, it is decided to only consider three
enhancement procedure categories, namely Base image, Line removal, and Sharpening.

Select convolutional base

Referring back to the exploration of document image classification discussed in §6.2.3, it was
found that at the current state of pre-trained CNN models, the VGG-16 model has some capabil-
ities of extracting feature maps that represent the intrinsic patterns between document images
and their assigned labels. Accordingly, it is suggested that the VGG-16 pre-trained model may
transfer its learning experience from being trained on ImageNet to the domain of document
image classification. Similarly, the same argument is employed to select an appropriate convo-
lutional base for the payslip data set model. Consequently, the pre-trained VGG-16 model is
selected as the convolutional base for the prediction model.
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Build and train model

First, the payslip data are separated into three data sets, i.e. the training set, the validation set,
and the testing set, based on a 60%, 20%, 20% split. Thereafter, the training set and validation
minority classes (i.e. Line removal and Sharpening) are oversampled in order to balance the
data set. Although one may technically reduce or enlarge the input images, Das et al. [60]
recommend that the payslip document images within each data set to be resized to 224×224×3,
since the VGG-16 model was trained upon these specifications. This is followed by augmenting
the training and validation data sets with rotations of 20°, shifting the width by a range of 0.2,
shifting the height by a range of 0.2, adding a zoom range of 0.3, and permitting the horizontal
and vertical flipping of images. Each of the payslip document images is then normalised by
dividing each pixel value by 255.

The VGG-16 feature extraction layers (i.e. without the VGG-16 classifier) forms the convolu-
tional base of the prediction model. For the first training round, all convolutional layers are
kept frozen, making their weights fixed and untrainable. A global average pooling layer is added
to further reduce the data, followed by a flatten layer. Three dense layers are added as a new
trainable classifier (as recommended by Das et al. [60]), with 500 neurons for the first layer,
250 neurons for the second layer, and three neurons (equal to the number of classes) for the
third layer. The first two dense layers employs the ReLu activation function, while the third
employs a softmax activation function. Dropout layers are added between the flatten layer and
the first dense layer, and between all the dense layers, with initial dropout values of 0.5, 0.3,
and 0.2, respectively. The Adam optimiser is selected with an estimated learning rate of 0.0001.
Moreover, the categorical cross-entropy is employed as the loss function for this model, with
an AUC evaluation metric. As recommended by Afzal et al. [2], the initial number of training
epochs is set to 50. Several rounds of training are performed where the training and validation
curves are utilised to fine-tune the aforementioned hyperparameters.

Evaluate model

After the prediction model is fine-tuned to the user’s satisfaction (and the model’s capabilities),
the predictive power of the model is evaluated in respect of the unseen payslip document images
contained within the previously separated test set. The results obtained by this analysis are
visualised and elaborated upon later in this chapter.

Implement enhancement procedure predictions on test set images

The twelfth module of the InDIE framework facilitates the implementation of the predicted
enhancement procedure categories on the test set payslip document images. Each payslip docu-
ment image in the test set is transformed according to its corresponding enhancement procedure
prediction, unless it received the Base image prediction, in which case the image is left unaltered.
The newly transformed test set payslip document images are then stored and passed on to the
next module for OCR processing.

Implement OCR on enhanced test set

The newly transformed test set payslip document images are subjected to the previously selected
EasyOCR engine and its accompanying estimated hyperparameters for text recognition. It is
important to use precisely the same OCR engine hyperparameters in order to fairly compare
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the OCR performances. After an OCR output is produced for each test set payslip document
image, the OCR output is standardised and cleaned according to the aforementioned list format
(for comparison purposes).

Evaluate final OCR results

The fourteenth and final module of the InDIE framework facilitates the final evaluation of the
OCR performance after machine intelligence was incorporated into the enhancement of the
payslip document images. The OCR output lists are compared with the corresponding GT
feature list, resulting in a new OCR accuracy for each of the test set payslip document images.
The new average enhanced OCR accuracy for the test set is computed, whereafter is it compared
with the average base OCR accuracy for the test set. The analysis of these results are elaborated
upon in the next section of this chapter.

7.3 Results produced by InDIE framework implementation

Copious results were produced throughout the case study implementation of the InDIE frame-
work. These results were explored so as to gain valuable insights which were, in turn, employed
in order to carry out design decisions and estimations. The choices made by the user ultimately
influenced the final performance of the InDIE framework, therefore, the results ought to be scru-
tinised and explored in order to verify the decisions made throughout the execution of the case
study. The remainder of this section is devoted to the visualisation, exploration, and in-depth
discussion of the results obtained throughout the implementation of the InDIE framework on
the payslip data set.

Initial base OCR results

Module 5.0 (i.e. the evaluation of the base OCR results) facilitated the assignment of a base
OCR accuracy for each payslip document image, calculated by utilising the evaluation metric
designed in Module 4.0. The average base OCR accuracy attained by the EasyOCR engine
for the payslip data set was 0.7375. Recall that in the proof-of-concept implementation that
an average base OCR accuracy of 0.7695 was achieved. This is an indication that EasyOCR
engine might struggle with greater difficulty under the more complex and degraded quality of
the real-life payslip data set.

Valuable insights may be obtained by visualising these computed accuracies. The results are
illustrated in Figure 7.2, where the payslip document images that achieved specific base OCR
accuracies are binned together in increments of 0.1. The red-coloured bars indicate the payslip
accuracy bins that achieved poor results, while bars coloured green indicated more favourable
results. When comparing the visualisation of base OCR accuracies in Figure 7.2 with the
visualisation of base OCR accuracies of the ICDAR 2019 SROIE data set in Figure 6.13, it is
observed that there are proportionally more payslip document images in the lower end of the
chart than there were receipt document images in the proof-of-concept results. Accordingly, this
verifies the comparatively poorer performance of the case study data set results when compared
with the proof-of-concept data set result. An unsurprising result given the complexity associated
with real-world data sets.
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Figure 7.2: Graphical illustration of the base OCR accuracy results for the payslip data set.

Enhancement procedure results

In order to determine which enhancement procedures ought to be included in the final modelling
stage of the case study it is important to analyse the portion of the payslip image date set to
which each enhancement procedure was assigned and the corresponding impact on the average
OCR accuracy.

Through the implementation of Module 8.0, each of the payslip document images were labelled
according to the best performing enhancement procedure category (in terms of OCR accuracy).
The distribution of the considered labels are presented in Table 7.4, where the first column
indicates the category name and the second column indicates the portion of the payslip document
images assigned to the corresponding label (i.e. assigned if the enhancement procedure obtained
the best OCR result across all of the categories).

The first noteworthy observation is that the Base image category is deemed the best enhancement
procedure for 0.60 of the payslip document images, constituting the majority of the payslip
document images. This indicates that one might need to prepare for the possibility that the
desired average OCR accuracy improvement might be lower than expected, since only 0.40 of the
payslip images can showcase an improved OCR accuracy when altered with the enhancement
procedures created in the Labelling subcomponent. Upon further analysis of the obtained results
presented in the table, it is apparent that two enhancement procedure categories, i.e. Line
removal and Sharpening, are assigned to considerably more payslip document images than their
counterparts, accounting for 0.13 and 0.12 of the payslip document images, respectively, while
the remaining enhancement procedures each account for less than 0.04 of the entire payslip
image data set. Consequently, there is a possibility that the transfer learning model might find
it difficult to learn the intrinsic patterns of these enhancement procedures, which were assigned
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Table 7.4: Summary of the original labelling distribution when considering all eight enhancement
procedure categories.

Enhancement
procedure category

Portion of image
category assignment

Base image 0.60
Line removal 0.13
Binarisation 0.03
Noise removal 0.04
Sharpening 0.12
Line removal & noise removal 0.03
Line removal & binarisation 0.02
Line removal & sharpening 0.03

to such small portions of the payslip data set, since so few training examples would be provided
to the model.

Another factor to consider is the portion of images that would be improved upon (in terms of
OCR accuracy) if each enhancement procedure was individually applied to the entire payslip
data set without any added machine intelligence. The original results of the individual appli-
cation of each enhancement procedure are shown in Table 7.5, where the first column indicates
the enhancement category name that was individually implemented and the second column in-
dicates the portion of the payslip document images that showcased an improved OCR accuracy
(when compared with their corresponding base OCR accuracies). When inspecting the table, it
was found that two enhancement procedures, i.e. Sharpening and Line removal & sharpening,
achieved the best results, with both improving 0.21 of the payslip document images. Follow-
ing closely are Line removal & noise removal with a portion of 0.20 which improved, and Line
removal with a portion of 0.17 which improved.

It is interesting to note that both enhancement procedures that incorporated binarisation sig-
nificantly underperformed when compared with the remainder of the enhancement procedures,
indicating that it might not be beneficial to consider binarisation for this particular payslip
image data set. Another noteworthy observation is that although the individual application of
Line removal resulted in a portion of 0.17 of the payslip document images improving and the
individual application of Noise removal resulted in an a portion of 0.13 of the payslip document
images improving, the enhancement procedure category combining Line removal & noise removal
resulted in an improvement of 0.20 of the payslip document images. This is an indication that
it can be beneficial to sequentially apply document image enhancement techniques.

Table 7.5: Summary of the portion of images which showcased an improved OCR accuracy after the
application of enhancement procedures.

Enhancement
procedure category

Portion of entire data set which
showed OCR improvement

Line removal 0.17
Binarisation 0.05
Noise removal 0.13
Sharpening 0.21
Line removal & noise removal 0.20
Line removal & binarisation 0.09
Line removal & sharpening 0.21
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The enhancement procedures of Binarisation, Noise removal, Line removal & noise removal, Line
removal & binarisation, and Line removal & sharpening were all assigned to 0.04 (or less) of
the payslip document images — a portion of 0.04 constituting merely 73 of the 1 835 payslip
document images. Consequently, the enhancement procedure categories of Binarisation, Noise
removal, Line removal & binarisation, and Line removal & sharpening are removed, and the
few corresponding payslip document images relabelled with the best remaining enhancement
procedure category.

It was found that if all of the assigned enhancement procedures are precisely predicted by
a transfer learning model, and subsequently implemented, the average OCR accuracy of the
payslip data set would be 0.7936 (referred to as the average best OCR accuracy). This equates
to improving the average base OCR accuracy from 0.7375 to the average best OCR accuracy
of 0.7936, constituting a theoretical improvement of 0.0561. Through exploring the GT feature
lists engineered in Module 2.0, it is found that the average payslip comprises around ten GT
feature strings. Accordingly, with the cleaned payslip data set comprising 1 835 images, the total
number of sought after GT feature strings was computed as 18 350. An average OCR accuracy
improvement of merely 0.0561 would result in an additional 1 030 GT features, a substantial
improvement in potential business value.

A comparison of the base OCR accuracy distribution with the theoretical best OCR accuracy
distribution, in terms of ten accuracy bins, is graphically illustrated in Figure 7.3. The results of
the base payslip document images are shown in red, and the theoretical best payslip document
images in green. The most considerable difference between the two sets of results is the signif-
icant increase of payslip document images in the “0.91–1.00” accuracy bin. It can be observed
that the correct application of the enhancement procedures improved the OCR accuracies of
several payslip document images from the lower accuracy bins to the “0.91–1.00” accuracy bin.
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Figure 7.3: Graphical comparison of the number of payslip document images from the base OCR
accuracy scenario and the enhanced OCR accuracy scenario, in terms of the ten accuracy bins.
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Consequently, visual inspection of the presented chart verifies that the correct implementation
of the assigned enhancement procedures results in a reduction of low OCR accuracy payslip
document images and an increase in high OCR accuracy payslip document images.

In order to gain insights into the impact of implementing an enhancement procedure without
any added machine intelligence versus correctly predicting whether to implement the procedure
or not, each enhancement procedure was individually implemented on all the payslip document
images and corresponding average OCR accuracies were computed. These results are provided
in Table 7.6, according to which the first column indicates the enhancement procedure category
and the second column indicates the average OCR accuracy if the corresponding enhancement
procedure was applied to all of the payslip document images. A noteworthy finding was that
only one enhancement procedure improved upon the average base OCR accuracy, i.e. the im-
plementation of Line removal, improving from 0.7375 (i.e. the average base OCR) to 0.7425. By
far, the full implementation of binarisation deteriorated the average OCR accuracy the most, de-
creasing to 0.5494, once again showcasing the detrimental effect that an enhancement procedure
can have when not applied to the appropriate payslip document images.

Table 7.6: Summary of the OCR results obtained when applying enhancement procedure categories on
the entire payslip data set.

Enhancement
procedure category

Average full OCR accuracy

Base image 0.7375
Line removal 0.7415
Binarisation 0.5494
Noise removal 0.7168
Sharpening 0.7200
Line removal & noise removal 0.7247
Line removal & binarisation 0.5536
Line removal & sharpening 0.7160

Moreover, it was also examined which individual enhancement procedure would produce the
best average OCR accuracy if it is assumed that a transfer learning model can precisely predict
whether a specific individual enhancement procedure ought to be applied or not — i.e. only
applied to the payslip document images if it would produce an improved OCR accuracy. These
results are shown in Table 7.7. Since it is assumed that the theoretical transfer learning model
can predict with perfect accuracy, it is expected that all the obtained average OCR accuracies
ought to be an improvement on the average base OCR accuracy. The individual application of
the Line removal & sharpening, once again, obtained the best results with an average best OCR
accuracy of 0.7660, while Line removal & noise removal came second, and Sharpening third.

Upon considering all of the results explored in the aforementioned tables and figures, it may
be concluded that in order to provide the machine learning model with adequate training,
validation, and testing data, that only enhancement procedures that are assigned to a sufficient
portion of the data while simultaneously producing acceptable OCR improvements may be
considered. Therefore, only three enhancement procedures were included, namely Base image,
Line removal, and Sharpening. Accordingly, the payslip document images were relabelled by
only considering these three enhancement procedures.

The newly attained labelling results are presented in Table 7.8. The Base image enhancement
category was assigned to the majority (a 0.68 portion) of the available payslip document images,
with Line removal assigned to a 0.20 portion of the available payslip document images, and
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Table 7.7: Summary of the average best OCR results obtained when applying enhancement procedure
categories only on payslips that would showcase an improved OCR accuracy.

Enhancement
procedure category

Average best OCR accuracy

Line removal 0.7604
Binarisation 0.7437
Noise removal 0.7518
Sharpening 0.7624
Line removal & noise removal 0.7644
Line removal & binarisation 0.7507
Line removal & sharpening 0.7660

Sharpening only to a 0.12 portion of the available payslip document images. It was observed
that after the relabelling procedure, Line removal increased by an additional 0.07 portion of
the available payslip document images when compared with the original assignment, while the
portion assigned by the Sharpening enhancement procedure remained unchanged.

Table 7.8: Newly attained enhancement procedure label results.

Enhancement procedure
category

Portion of images assigned
per category

Base image 0.68
Line removal 0.20
Sharpening 0.12

After the newly assigned labels, it was found that if, theoretically, the transfer learning model
predicts all the assigned labels to precision (i.e. the best possible scenario), an average best
OCR accuracy of 0.7772 may be obtained. This is a stark improvement when compared with
the original average base OCR accuracy of 0.7375.

A comparison of the base OCR accuracy distribution with the new theoretical best OCR accu-
racy distribution (when only considering the three selected enhancement procedures), in terms of
ten accuracy bins, is graphically illustrated in Figure 7.4. It can be observed that the number of
payslip document images within bins “0–0.10” to “0.71–0.80” are reduced after the implementa-
tion of the enhancement procedures. Note the significant gains observed within the “0.91–1.00”
bin, indicating that the positive effects of an enhancement procedure not only improves the
OCR accuracy of most payslip document images from one bin to the next, but in most cases it
improves the OCR accuracy from its current bin to the best performing bin.

Model training and validation results

After the assignment of the enhancement procedure categories in Module 8.0, the model was
trained and fine-tuned several times. The training and validation curves of the final training
round is presented in Figure 7.5, where the blue curve represents the training AUC curve, and
the orange curve represents the validation curve. The hyperparameters employed for the final
training round is as follows: A batch size of 32, image dimensions of 224×224×3, a learning
rate of 0.0001, 50 epochs, a fully frozen VGG-16 convolutional layer, a dropout layer after the
global pooling layer with a dropout rate of 0.2, a dense layer with 250 neurons, followed by a
dropout layer with a dropout rate of 0.5, a dense layer with 100 neurons, and a dropout layer
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with a dropout rate of 0.5 before the final dense layer comprising three neurons and a softmax
activation function.
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Figure 7.4: Graphical comparison of the distribution of payslip document images from the base OCR
accuracy scenario and the enhanced OCR accuracy scenario, in terms of the ten accuracy bins.
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Figure 7.5: Visualisation of training (blue) and validation (orange) AUC curves for the training of the
prediction model.
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After inspecting the AUC curves, it was found that both the training and validation curve
showcase a steady increase from epoch 0 to around epoch 15, whereat the two curves converge.
After epoch 15, however, the validation curve stabilises at around an AUC score of 0.61 while
the training AUC score continues to increase to an AUC score of 0.65. This is an indication that
the model started to overfit on the training data and therefore training was terminated.

Multiple rounds of training were performed whereby unfrozen convolutional layers were intro-
duced to the training of the model. Significant overfitting was observed, which was followed
by the dropout rates being increased. The added regularisation did not, however, prevent the
model from overfitting. Consequently, all convolutional layers were kept frozen.

After the model was fine-tuned, it was evaluated on the test set. The test set confusion matrix is
presented in Figure 7.6. It was found that 0.57 of Base image category was predicted correctly,
0.52 of Line removal category was predicted correctly, and 0.44 of Sharpening was predicted cor-
rectly. It was previously construed that although misclassifying an image as Base image results
in a loss of potential improvement, the OCR performance is at least not undermined by merely
leaving the image in its original state. Misclassifying an enhancement procedure as another
implementable enhancement procedure, however, might be detrimental to the OCR accuracy
of an image as there is no prior knowledge whether the implemented document enhancement
technique will improve or deteriorate the OCR accuracy. Accordingly, it ought to be a priority
of the model to reduce false positives predicted as Line removal or Sharpening.

In the case of the payslip test set, 0.14 of the payslip document images holding an actual label
of Sharpening was falsely predicted to be Line removal. Moreover, 0.32 of the payslip document
images holding an actual label of Line removal was falsely predicted to be Sharpening. Although
it is recognised that it would be desired to reduce these false negative results even further, it
shows that the trained model has the capability to learn from the intrinsic patterns within the
data, and thereby reduce the (potential damaging) false negative predictions.
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Figure 7.6: Visualisation of the confusion matrix for the payslip test set.
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Enhanced test set OCR results

The final results to be explored were obtained from the fourth and final subcomponent of the
InDIE framework, i.e. the Analysis subcomponent, whereby the predicted classes were imple-
mented on the payslip document images of the test set.

Module 12.0 facilitated the implementation of the predicted classifications of the test set payslip
document images. Thereafter, in Module 13.0, the transformed (and hopefully enhanced) test
set payslip images underwent OCR and output formatting, producing corresponding enhanced
OCR output lists. The newly attained OCR output lists were then subjected to OCR evaluation
(employing the engineered evaluation metric), producing new enhanced OCR accuracy values
for each payslip document image within the test set. Lastly, the new average enhanced OCR
accuracy was computed.

Presented in Table 7.9 are the original average base OCR accuracy for the test set, the average
full Line removal OCR accuracy (i.e. if Line removal was applied to the entire test set), the
average full Sharpening OCR accuracy (i.e. if Sharpening was applied to the entire test set),
and the newly attained average enhanced OCR accuracy (i.e. the test set OCR results which
utilised the intelligent predictions). The average base OCR accuracy for the test set was 0.7382.
If one would implement Line removal on the entire test set, the average OCR accuracy would
actually improve to 0.7402, showcasing the value of removing printed lines from payslip document
images. If Sharpening was applied to the entire test set, the average OCR accuracy would fall
to 0.7200, a decrease of 0.0182. If the test set payslip images are enhanced precisely as labelled
(i.e. the model predicts 100% correctly), the average OCR accuracy would increase to 0.7744,
i.e. an increase of 0.0362. Finally, after the implementation of the trained transfer learning
model predictions, a new average enhanced OCR accuracy of 0.7444 was achieved. This increase
constitutes an improvement of 0.0062. Considering the 1 835 payslip document images available,
the implementation of the InDIE framework would increase the number of correctly recognised
GT feature strings with an additional 114 strings, which would previously not be recognisable
by the OCR engine. Considering that the industry partner receives several several thousands
of unsecured loan applications every month, this small increase in recognition can result in a
significant increase in business value.

Table 7.9: Average OCR accuracy scenarios for different test set conditions.

Test set category Average OCR accuracy

Average base OCR accuracy 0.7382
Average full Line removal OCR accuracy 0.7406
Average full Sharpened OCR accuracy 0.7200
Average best OCR accuracy 0.7744

Average enhanced OCR accuracy 0.7444

A clear OCR accuracy improvement was achieved when comparing the newly computed average
enhanced OCR accuracy (i.e. 0.7444) with the average full OCR accuracies attained by applying
either Line removal or Sharpening to the entire test set. In order to gain more insight into why
this improvement was realised, it is important to scrutinise the number of payslip document
images that either improved, remained unchanged, or deteriorated (compared with the base
OCR accuracies).

Presented in Table 7.10 are detailed results of the three aforementioned categories. Upon in-
specting the portion of the test set that improved, it was found that the intelligently enhanced
images produced the smallest number of improved payslip document images, with only 59 show-
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casing improved OCR accuracies. Although this seems to contrast the average OCR accuracy
improvement, it is found that the overall improvement does not stem from enhancing more
payslip document images, but rather from reducing the number of payslip document images
that were erroneously altered. After applying Line removal to the entire test set, a 0.16 portion
of the payslip document images deteriorated. After applying Sharpening to the entire test set,
a considerable 0.30 portion of the payslip document images deteriorated. After altering only
the payslip document images according to their intelligently predicted enhancement procedures,
only a 0.11 portion of the payslip document images deteriorated — a significant reduction in
the portion of deteriorated payslip document images.

This is reflected in the improved/deteriorated ratio, where a higher score is representative of the
desired outcome. After applying Line removal on the entire test set, an improved/deteriorated
ratio of 1.0169 was attained, applying Sharpening on the entire test set produced an im-
proved/deteriorated ratio of 0.6759, and the intelligently predicted application achieved an im-
pressive improved/deteriorated ratio of 1.4390 — a clear indicator that the utilisation of the
transfer learning model outperformed the rudimentary application of document enhancement
techniques.

Table 7.10: A comparison of the number of improved, unchanged, and deteriorated payslip document
images when Line removal is applied to all the images, Sharpening is applied to all the images, and when
only the intelligently predicted images are enhanced.

Impact category compared
with the original base OCR

Line removal
on all images

Sharpening
on all images

Only predicted
images

Number Ratio Number Ratio Number Ratio
Improved 60 0.16 73 0.20 59 0.16
Same 249 0.68 187 0.51 268 0.73

Deteriorated 59 0.16 108 0.30 41 0.11
Improved/deteriorated 1.0169 0.6759 1.4390

In conclusion, when considering the aforementioned analysis of results obtained from the im-
plementation of the InDIE framework with respect to a real-world data set, it was found that
the addition of machine intelligence reduced the detrimental effects of document enhancement
techniques by intelligently predicting which payslip document images require which type of en-
hancement. Therefore, the average OCR performance of the selected OCR engine was improved
with the utilisation of machine intelligence.

7.4 Subject-matter expert validation

During the implementation of the InDIE framework in respect of the real-world payslip data set,
it was found that the utilisation of machine intelligence to enhance the payslip document images
can lead to improved OCR performance, even if the original intent for the data set was not for
the purpose of document analysis — thereby numerically validating the practical workability of
the framework. In pursuit of an additional measure to attain credibility and foster confidence in
the utility of the framework when applied to a real-world environment, the proposed framework
was presented to two key Capitec Bank representatives.

Interviews were conducted with (1) Mr David Gouvias [97] and (2) Mr Johan Olivier [207].
Gouvias holds an Honorous in Computer Science and Mathematics from the University of Cape
Town and is currently a senior data scientist at Capitec Bank. Gouvias has more than 30 years
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of experience as a systems architect, steering software programs into production for various
reputable companies such as Sanlam, Discovery Health, and inQuba. Olivier, currently a senior
machine learning engineer at Capitec Bank, holds a BCom in Actuarial Sciences, Mathematics,
and Statistics, and is board certified by the Institute and Faculty of Actuaries. Olivier has eight
years of data science and machine learning engineering experience, developing and implementing
various deep learning solutions into production. Both Gouvias and Olivier have developed
software programs exploiting the power of OCR technology, and is therefore deemed as qualified
and appropriate subject-matter experts.

The proposed InDIE framework was presented to the subject-matter experts in a structured
manner This included the detailing of the identified opportunity, the design and development of
the framework architecture and modules within, the proof-of-concept instantiation with its cor-
responding Python scripts and results, and the case study demonstration with its corresponding
Python scripts and obtained results. This enabled the Capitec Bank representatives to ascer-
tain the practical workability of the framework, while additionally confirming the validity of the
results obtained.

It is imperative for the architecture and composition of the InDIE framework to undergo scrutiny
from industry representatives in order to uphold the stated utility of implementing the framework
on real-world problems. The presentation was well received by the Capitec Bank representatives,
with an overwhelming positive response to the potential utility of the framework for produc-
tionising real-world software solutions. Olivier expressed that by employing the three design
principles of a well-designed software product and the six phases of the CRISP-DM reference
model (discussed in §5.1) as inspiration for the architecture of the InDIE framework, renders
the research conducted during this project an understandable and scientifically sound guide for
any industry practitioner who desires to implement/improve their digitalisation processes.

“If I was tasked to improve the OCR performance of a real-world computerised sys-
tem, I can see myself easily using the InDIE framework, especially as a logical starting
point, adapting the modules and utilising more advanced enhancement techniques for
the problem at hand.” — Johan Olivier

According to Gouvais, there is novelty in the approach adopted by the author, viewing the
problem in a (pleasantly) unexpected way. Continuing, Gouvais stated that the flexible nature
of the framework (i.e. the inter-changeability of the modules, as alluded to in §5.2) showcases
the potential value attainable from an industry perspective.

With regards to the implementation of the Modelling subcomponent on the real-world payslip
case study (discussed in §7.2), Olivier confirmed that the estimation and selection of model
algorithms, model architecture, and hyperparameter settings were logical and acceptable. Al-
though the model encountered some difficulty to learn from the provided image data (referring
to the relatively low validation AUC score), Gouvias suspects that the model training can ben-
efit greatly if a slightly larger data set is considered. Gouvias was impressed by the ability
of the pre-trained VGG-16 convolutional base to transfer some of its learning experience from
being trained on ImageNet to the realm of payslip document images. Additionally, Gouvais was
surprised by the finding that training the classifier on slightly more than a thousand instances
resulted in the model being capable of discriminating between the three considered classes with
moderate accuracy.

Considering the newly attained average OCR test set performance (showcased in §7.3), Gou-
vais and Olivier both stated in agreement that any improvement at all is considered to be an
impressive result.
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“OCR problems scale. Therefore, albeit a rather small improvement in terms of the
average accuracy gain, this is a major victory when considering the complexity of the
underlying problem and the limited resources employed” — David Gouvias

7.5 Chapter summary

In this chapter, a real-world case study was executed by means of the InDIE framework. The
Chapter opened by introducing the reader to the case study background and data set in §7.1.
Thereafter, in §7.2, the implementation of the various InDIE framework modules were briefly
discussed, followed by an in-depth analysis of all the obtained results. Finally, an expert-
validation was provided in §7.4, whereby the methodology and results were scrutinised by two
subject-matter experts.
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This chapter opens with a summary of the contents of this thesis in §8.1. This is followed by an
appraisal of the contributions made in the thesis in §8.2. The chapter is concluded in §8.3 with
a number of suggestions with respect to potential future work that may stem from the research
conducted in this thesis.

8.1 Thesis summary

In addition to this final concluding chapter, the thesis comprised seven chapters aimed at ad-
dressing the problem statement and fulfilling the stated objectives. In Chapter 1, the introduc-
tory chapter of this thesis, a brief background of the problem is provided. In particular, the
reader was introduced to the interrelation of the machine learning subfields of deep learning and
computer vision. This was then expanded upon by the exploration of the utility of computer
vision in the proliferating era of digitalisation, whereby the technology of OCR was introduced
to the reader. Several modern implementations of OCR were discussed, whereafter the problem
faced by the industry partner of this thesis was stated. Finally, the scope and objectives of the
study were detailed, along with a brief outline of the thesis organisation, data collection and
management, ethical considerations, and reporting of results.

Chapter 2, 3, and 4 were devoted to a review of the pertinent literature, in fulfilment of Ob-
jective I(a), Objective I(b), and Objective I(c), respectively. In Chapter 2, a literature review
was presented detailing the principle concepts and terminology found in the machine learning
paradigm of deep learning. This chapter opened with a discussion on ANN fundamentals which
explored the working of FNNs, RNNs, LSTMs, and CNNs. This was followed by considering
several prominent CNN architectures. In particular, the discussion expanded upon the architec-
tures of AlexNet, VGG-16, and EfficientNet, showcasing the different compositions that a CNN
architecture may describe. Thereafter, the concept and implementation of transfer learning
(specifically in the realm of pre-trained CNN models) were discussed.

In Chapter 3, a further review was conducted on the pertinent literature pertaining to the major
phases of OCR systems, the engineering of OCR evaluation metrics, and two prominent OCR
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engines. This chapter was primarily focussed on providing the background information that is
necessary to understand the underlying processes employed when implementing an OCR engine
in pursuit of transforming pixel-based textual information into computer-readable data. First,
the origins of OCR and typical challenges faced by OCR systems were discussed. Thereafter,
the major phases of an OCR engine were explored. This included discussions on segmentation,
feature extraction, and character classification. This was followed by considering different OCR
evaluation metrics. In particular, the difference between character-based and word-based eval-
uation metrics were highlighted. Finally, the working and advantages of two prominent OCR
engines considered within this thesis were explored, namely Tesseract and EasyOCR.

Chapter 4 was devoted to the pertinent literature relating to document image preprocessing
techniques for improving OCR performance. The chapter opened with introducing the reader to
the utility of implementing preprocessing techniques on document images in pursuit of improved
OCR performance. In particular, typical challenges faced by OCR systems were presented via
the consideration of a degraded document image. The implementation of several document image
enhancement techniques remedied the document image, thereby facilitating an OCR engine to
improve its recognition of the textual information on the considered document image. Thereafter,
different document image enhancement techniques in the paradigms of geometric transformations
and pixel transformations were explored, showcasing the potential benefit of introducing these
techniques to degraded document images.

The InDIE framework was introduced to the reader in Chapter 5 through a discourse on the
top-down description of the proposed framework, in fulfilment of Objective II. The chapter
opened with an overview of the major steps involved in a generic data mining process, serving
as a preliminary discussion for exploring the typical composition of a modular data mining
framework. Thereafter, the modular design was adopted as the foundational building blocks
for the proposed InDIE framework structure. After presenting the modular framework to the
reader, each of the 14 modules, constituting the InDIE framework, were explored in detail.

Chapter 6 comprised a discussion on the verification of the InDIE framework proposed in this
thesis through a proof-of-concept instantiation, in fulfilment of Objective III. First, the open-
source and prominent benchmark receipt document image data set, which was selected for the
proof-of-concept implementation, was discussed in detail. In particular, several receipt docu-
ment images were visualised and scrutinised, followed by the inspection of the GT features which
were contained within JSON files. Thereafter, the generic modules within the InDIE framework
were populated with specific algorithms and user-defined settings in order to illustrate the utility
of the InDIE framework. The four subcomponents of the InDIE framework were initialised and
implemented on the selected benchmark data set. The results generated throughout the employ-
ment of the InDIE framework were evaluated and analysed. It was concluded that by utilising
the InDIE framework it is (to some degree) possible to intelligently predict which enhancement
procedure to implement on which receipt document image, resulting in an improvement of the
average OCR accuracy attained by the selected OCR engine. Accordingly, the proof-of concept
instantiation was deemed a success, verifying that the implementation of the InDIE framework
can result in an improved OCR performance.

In Chapter 7, a case study was performed in order to validate whether the InDIE framework can
produce the desired outcome when implemented on a real-world data set provided by the industry
partner of this thesis, in fulfilment of Objective IV. The chapter opened with an exploration
of the industry partner data set, whereby die document images and the corresponding GT
features were examined. Thereafter, the generic InDIE framework was populated with specific
algorithms and user-defined settings in order to illustrate the working of the framework. The
implementation of the four subcomponent of the InDIE framework was briefly discussed, followed
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by an in-depth analysis of the acquired results. It was found that the addition of machine
intelligence was successful in reducing the detrimental effects of the document enhancement
techniques by automatically predicting document specific enhancement techniques. Therefore,
the attained results validated the utility of the InDIE framework. In conclusion of the chapter,
the proposed model was subjected to face validation by subject-matter experts, who deemed the
results achieved by the model as satisfactory.

The present chapter serves as the conclusion of this thesis and includes sensible follow-up work
which may stem from the research performed in this thesis, in fulfilment of Objective V.

8.2 Thesis contributions

The main contributions of this thesis are five-fold. This section contains a documentation and
appraisal of these contributions.

Contribution I The design and development of a generic framework for intelligently enhancing
document images in pursuit of improved OCR performance.

The overarching aim in this project was to design, develop, and demonstrate the practical
workability of a generic framework capable of intelligently enhancing document images in
pursuit of improved OCR performance. This was achieved through the process of data
mining by incorporating various ideas, techniques and methods from three separate fields
of research, namely deep learning, OCR, and document image enhancement, reviewed
in Chapters 2, 3, and 4, respectively. An architectural design of the modular InDIE
framework was formally presented and described in detail in Chapter 5. Being modular
by design enables any module to be exchanged, modified or deleted in accordance with
new findings in the literature without inhibiting the functional working of other modules
of the framework.

Contribution II Instantiation of the proposed framework as a proof-of-concept demonstrator
involving a prominent document analysis benchmark data set.

The design of the aforementioned intelligent document enhancement framework was not
limited to a conceptual level only. The focus of Chapter 6 was to verify the potential
utility of the InDIE framework. To this end, the framework was successfully applied to
the ICDAR 2019 SROIE data set, a prominent document analysis benchmark data set, in
the form of a computerised proof-of-concept demonstrator. The ICDAR 2019 SROIE data
set comprised degraded receipt document images which experienced a reduction in average
OCR performance (i.e. from 0.7720 to 0.7612 in respect of the test set) if the Sharpening
enhancement procedure is applied universally. Accordingly, the ICDAR 2019 SROIE data
set can be regarded as a suitable data set for verifying the utility of the framework. During
this instantiation, details were provided to describe how the various modules constituting
the framework may be realised. The framework was shown to be effective in intelligently
minimising the incorrect implementation of the Sharpening enhancement procedure on the
receipt document images, thereby achieving an improved average OCR performance (i.e.
from 0.7720 to 0.7827 in respect of the test set).

Contribution III Application of the proposed framework to a real-world case study.

Although the execution of the proof-of-concept demonstrator with respect to the bench-
mark data set was successful, it does not reflect all the challenges and unforeseen complex-
ities that accompany real-world document image data sets. The focus of Chapter 7 was to
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validate the ability of the InDIE framework to provide utility on a real-world data set by
performing an instantiation of the InDIE framework on a payslip document image data
set provided by the industry partner of this project. The payslip document image data set
and its corresponding annotations were not collected for the intent of being used in the
realm of document analysis, and is therefore a suitable data set for validating the frame-
work. The framework was shown to be effective in intelligently minimising the incorrect
implementation of both the Line removal and Sharpening enhancement procedures on the
payslip document images, thereby achieving an improved average OCR performance (i.e.
from 0.7382 to 0.7444 in respect of the test set).

Contribution IV A demonstration of transfer learning’s utility in respect of an ImageNet pre-
trained VGG-16 architecture applied to document image enhancement.

Based on the research conducted by Afzal et al. [2] in 2017 and Das et al. [60] in 2018,
it was found that the pre-trained VGG-16 model exhibits the capabilities to transfer its
learning experience from being trained on ImageNet to the domain of document image
classification. Consequently, the intuition was that the feature maps extracted for achiev-
ing success in the realm of document image classification might achieve similar success in
the realm of intelligent document image enhancement. Through the successful instanti-
ations of the proof-of-concept demonstration and the real-world case study, it was found
that the transfer learning model could learn intrinsic patterns within the document image
data, proving the intuition to be correct. This is considered to be a valuable and novel
finding, opening further exploration of transfer learning approaches within this field.

Contribution V Suggestion of potential future projects emanating from thesis contributions.

An abundance of research has been conducted in the realm of document image analysis,
however, the recent increase in computational capabilities has enabled the application
of new deep learning and computer vision approaches. Although the proof-of-concept
and case study instantiations verified and validated the potential utility of the InDIE
framework, further analysis and exploration is required to improve upon the obtained
results. Consequently, the author formulated several proposals for future work (elaborated
upon in the remainder of this chapter) which may potentially elevate the utility of the
framework.

8.3 Suggestions for future work

This final section contains suggestions for ten avenues of further investigation as possible follow-
up work on the contributions of this thesis.

Proposal I Procure a larger data set for model training, validation, and testing.

Although the utilisation of a pre-trained CNN model significantly reduces the amount of
data required to train the prediction model (from millions of training instances to only
thousands), additional data are still required for all the considered classes to be fairly
represented when separated into training, validation, and testing sets. As discussed in
§7.3, several enhancement procedure categories where removed from consideration as they
would not have been adequately represented in the downstream processes. Acquiring more
data would enable the user to consider additional enhancement procedures which were
previously excluded as they where not assigned to a sufficient number of document images,
rendering them inconsequential in respect of the validation and testing sets. Moreover,
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the amount of available training data is especially important when the considered data
image domain significantly differs from the image data on which the pre-trained model was
trained, as it might be beneficial to retrain some of the pre-trained model’s final layers
on the new data. The domain of annotated document images differs notably from the
original ImageNet data set which most pre-trained models were trained on. Therefore, if
more data are obtained successfully, it might be possible to retrain more of these layers,
enabling the model to produce more accurate predictions.

Proposal II Consider the inclusion of a confidence score for the OCR evaluation metric.

The two methods of OCR evaluation considered within this project, discussed in §3.3,
included character-level and word-level accuracy. Both of these methods, however, have
some accompanying drawbacks, as a character-level evaluation metric cannot be used for
monetary entities, while word-level evaluation metrics consider an entire entity as incorrect
even though only a single character may have been recognised incorrectly. Some modern
OCR engines can provide the user with a confidence score for both on a character-level
and/or a word-level. Internal scoring mechanisms are utilised in order to compute these
confidence scores, whereafter a confidence threshold is selected for determining whether
the recognised text is considered to be correct or incorrect. This internal computation may
be incorporated into the engineering of the OCR evaluation metric in the first subcom-
ponent of the InDIE framework, thereby possibly providing a more valuable evaluation
metric. This, in-turn, might result in document images being assigned other enhancement
procedures as their target labels (i.e. the implementation of Module 8.0), since the em-
ployment of a newly engineered evaluation metric might result in a new best performing
enhancement procedure. Therefore, the quality of the training, validation, and testing
data sets might improve, possibly resulting in a more accurate prediction model.

Proposal III Expand and diversify the validation suite on data sets from various domains.

The data sets considered in both the proof-of-concept instantiations in Chapter 6 and the
case study in Chapter 7 varied in image composition and quality of annotations. Both
data sets stem, however, from the domain of financial documents analysis and therefore
comprises similar monetary GT features. Due to limited computing power and availability
of acceptable data sets, however, only one proof-of-concept and one case study were im-
plemented. In order to further support the InDIE framework’s generic nature, it may be
valuable to apply it to several additional data sets, comprising a greater variation of docu-
ment type and accompanying annotations. Attempting to intelligently enhance newspaper
article images, progress report images, memo images, journal article images, and technical
drawings are all examples of possible additional use cases of the InDIE framework.

Proposal IV Conduct a comparative study in respect of the base average OCR accuracy by
employing different OCR engines for the various case studies.

Both the proof-of-concept instantiation of Chapter 6 and the case study implementation
of Chapter 7 employed only a single pre-selected OCR engine. Due to limited comput-
ing power available, the author was constrained to select a single OCR engine based on
literature and the complexity of the image data at hand, rather than experimentally ex-
ploring the significance of different OCR engine implementations. While it is typically
beneficial to consult the literate for additional insights and guidance, each image data set
is problem-specific and may deviate from the expected norm. In order to further increase
the attained OCR performance, it may be beneficial to explore the different OCR perfor-
mances of multiple open-source OCR engines, as some OCR engines might yield better
results in specific domains.
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Proposal V Conduct a comparative study in respect of the predictive model by employing dif-
ferent convolutional bases for the various case studies.

As described in §6.2.3, the pre-trained VGG-16 CNN model may be utilised as a convolu-
tional base for the domain of document image enhancement as the usage of the VGG-16
model showcased state-of-the-art results in the similar domain of document image classi-
fication. Although the pre-trained VGG-16 CNN model yielded positive results in respect
of both the proof-of-concept and case study instantiations, not much is known regarding
the capabilities of recently developed pre-trained models. Consequently, an in-depth ex-
ploration of whether the utilisation of these modern pre-trained models as convolutional
bases can add value to the prediction of enhancement procedure techniques.

Proposal VI Compare the performance of the predictive model by employing different classifier
heads for the various case studies.

The current version of the proposed InDIE framework employs a classifier comprising
several dense and dropout layers. This selection was made based on the recommendations
reported in the literature pertaining to transfer learning in the realm of document image
classification. Although the dense layer classifier achieved positive results in both the
proof-of-concept and the case study instantiations, it may prove beneficial to determine
experimentally whether it is the best classifier for the domain of intelligent document image
enhancement.

Proposal VII Extend the set of considered enhancement techniques by including more complex
and modernised algorithms.

As explored in Chapter 4, there are various geometric and pixel transformations that can
be applied to a document image in order to reduce the impact of image degradations.
Although the current InDIE framework considers multiple document image enhancement
techniques, they are mostly computationally simple and straightforward to implement.
Since the focus of the project was placed on the design, development and demonstration
of the practical workability of the InDIE framework, only the most popular and basic
document enhancement techniques were considered. Although the implementation of the
considered techniques showcased noteworthy improvements on the proof-of-concept and
case study instantiations, it may be of interest to investigate the effects of more complex
document enhancement techniques — the aim being to create additional and improved
enhancement procedures which is expected to minimise the number of images assigned to
the Basic image category (as discussed in §5.3.2).

Proposal VIII Investigate which pre-trained convolutional base filters are most important for
extracting the intrinsic patterns within the provided data sets.

Through the successful execution of the proof-of-concept instantiation in Chapter 6, it
was reported that the pre-trained VGG-16 model possesses the capability to transfer its
learning experience from being trained on ImageNet to the domain of intelligent document
image enhancement. Accordingly, some of the general feature filters trained for the Im-
ageNet data set are also valuable feature filters for extracting document image features.
Investigating which of these general feature filters are most important for extracting the
intrinsic patterns within the provided document image data may add significant value to
the research and its contributions.

Proposal IX Applying the framework to document images with handwritten characters.

The current implementation of the InDIE framework only considers the processing of
document images comprising printed textual information. The InDIE framework was con-
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structed in such a manner that it may be easily adapted to different problem settings.
Instead of solely considering OCR engines that can only recognise printed text, OCR en-
gines trained on handwritten text may be included, with the addition of new text cleaning
procedures tailored for handwritten text. Accordingly, document images containing hand-
written textual information may then be used as input data. The Labelling, Modelling,
and Analysis subcomponents of the framework may then be used in a similar manner as
it was employed in the aforementioned instantiations.

Proposal X Applying the framework to document images captured with mobile phone cameras.

The InDIE framework was presented and validated in this project in the context of docu-
ment images captured with flatbed scanners. It is assumed that document image enhance-
ment procedures required for images captured with mobile phone cameras are considered
markedly more difficult attributable to the capturing angle (and lighting conditions). In
order to further strengthen the generic nature of the InDIE framework, it would be valu-
able to source an appropriate image data set — captured with mobile phone cameras —
and apply the InDIE framework to it. Some minor adjustments may have to be made to
the InDIE framework in order to facilitate this change, including the addition of various
other document enhancement techniques tailored for reducing the effects of perspective
distortions.
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